554

HMEMORANDUM No. 4

RSkhc

0 -A2
RN

DNV D

7 366

*%

RSRE
MEMORANDUM No. 4554

ROYAL SIGNALS & RADAR
ESTABLISHMENT

A PROCESS MONITOR
FOR THE TRANSPUTER

Authors: K R Milner & L. Choda

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,
RSRE MALVERN,
WORCS.
e T e
ey (o Peen approved
oo iy e o

92-06590

UNLIMITED SR

CONDITIONS OF RELEASE
0120151 308893

sasnsssssnasssstassssanana DRIC U

COPYRIGHT (c)
1988

CONTROLLER
HMSO LONDON
Wamaasannesensenneaansonan DRICY
Reports q d are not ity ilable to bers of the public or to commercial

organisations.

DRA (Electronics Division)

Memorandum 4554

A Process Monitor for the Transputer

K.R. Milner and L. Choda

November 1991

Summary

A brief survey of performance monitoring tools for parallel machines 1s given. followed by
the particular problems of designing a performance monitor for the transputer. A new monitor
process is then described. which outputs data such as process active time and communication

waiting time for each process being monitored.

NTIS CRAéI

Accesion For
h‘—_______ -
TiIC TAB I

Unaanouized __}
N Justficaticn e

poe) By)
NS Distribution | i
PRSP —
4 Aval e T T

Dist SD«:C:M
i
A-l i

A A © British Crown Copright 1991/MoD
Printed with the permission of Her Britannic Majesty’s Stationery Office

INTENT!ONALLY BLANK

Contents

Summary
1. Introduction

2. Background on Transputers
2.1. Process Scheduling
2.2. Channels and Communication

3. Existing Performance Monitoring Tools
3.1. PICL/ParaGraph
3.2. Express
3.3. CPU Monitor
3.4. The TM Process (De Pietro and Villano)

4. The New Process Monitor
4.1. The Process Monitor Algorithm
4.2. Using the Monitor
4.3. Limitations

Acknowledgements

References

INTENTIONALLY BLANK

1. Introduction

Performance monitoring tools are useful in a number of different areas of parallel
processing. Much of our performance monitoring work has been motivated by the requirements
of dynamic load balancing[1], for which the process monitor was originally developed, but
performance monitoring tools have a much wider application as an aid to developing and
debugging software. Parallel programs are notoriously sensitive to seemingly insignificant
changes and the behaviour of even simple programs can surprise the unwary. We have found
that even a simple processor efficiency monitor (such as that described in Section 3.3) can
provide very useful information when developing an application.

The objective of our work was to produce a software monitor which runs in parallel with
the application code to be monitored. Such a software monitor will necessarily be intrusive to
some extent. but this is the price which has to be paid for the collection of performance data. In
practice, we have found that the application is rarely perturbed significantly, and the
information provided by a good monitoring tool can be invaluable.

Performance data can be collected at the processor level, for example link usage or CPU
usage, or from individual processes at the application level. Process information could include
the number of messages sent and received, ime spent waiting on channels, time spent on the
process queue etc. There is a trade-off here between the amount of information collected and
the overhead which is acceptable when running the monitor in parallel with the application
code.

There are two possible approaches to the displaying of performance data gathered by a
monitor process: it can either be displayed in real-time, as the application is running, or as a
separate post-execution program which uses the data collected during the execution of the
user’s application. Neither approach is completely satisfactory; displaying performance data in
real-time involves running processes in parallel with the user’s application to collect and send
data to a display. This could significantly affect the performance of the application. The
alternative approach - running a post-execution program to display the performance data - is
less intrusive and has the advantage that the same program run can be reviewed a number of
times. but the user loses the ability to ‘see’ his application and its associated performance data
in real-time.

2. Background on Transputers

The transputer[2] was designed as an embedded systems microprocessor, which can also
be used to build highly paralle! systems using its four high-speed communications links. The
T8 transputer also contains 4Kbytes of on-chip RAM and a floating-point unit capable of
sustaining 1 MFLOPS.

The transputer has a rather unconventional instruction set. It was designed to compile
occam programs efficiently, but a number of features which are common to almost all
conventional processors are absent on the transputer. For example, it does not contain different
user and supervisor addressing modes and therefore does not provide memory protection. Also,
it dces not provide machine instuctions for low level context save and restore operations.
Process scheduling is controlled by the micro-coded hardware scheduler.

2.1. Process Scheduling

Any transputer process not currently being executed is in one of three states: it is either
waiting for a communication to complete. waiting on a timer, or waiting in an active process
queue. The transputer maintains two process queues, high-priority and low-priority, each in the
form of a linked list of workspaces. High-priority processses run to completion without being
descheduled. unless they contain timed waits or channel communications. Low-priority
processes can get descheduled at any time by a high-priority process which 1s ready for
execution, otherwise they get descheduled by another low-priority process after a certain
number of clock cycles.

When a process is descheduled. very little state needs to be saved, resulting in a very fast
context switch time. The transputer has only three general-purpose registers (arranged in a
stack) and in most cases, when a process is descheduled, the stack information does not have
to be saved. (The only exception is when a high-priority process interrupts a low-pniority one.)
Note that processes that are waiting on a timer or on a channel communication are not placed
on one of the active process queues and therefore do not steal CPU cycles.

An important point to realise is that the two active process queues can be altered at any time
by the hardware scheduler, independently of the CPU. It can add a process onto the back of a
queue either because an external communication has been completed, or because a certain time
has been reached. This means that any attempt to manipulate the process queue in software is
potentially dangerous, since it may conflict with the hardware scheduler. This has important
consequences for the type of process monitor it is possible to implement for the transputer (see
Section 3 .4).

2.2. Channels and Communication

Processes communicate with one another via point-to-point channels which are
implemented via a word in memory called the channel word. Initially, the channel word is set
to Minlnt (the minimum integer value), when a process tries to communicate, it examines the

2

contents of the channe! word; if it is equal to MinInt then the other process is not ready to
communicate, SO it stores its instruction pointer at its workspace offset -1, the address of the
data to be transferred at offset -3, its process descriptor (workspace pointer + priority of
process) in the channel word and then deschedules. When the other communicating process is
ready, it examines the contents of the channel word and finds a valid process descriptor. It thus
knows that the first process is ready to communicate, the exchange of data takes place and the
first process is rescheduled. When the communication is complete, the channel word is reset to
Minlnt. External channel communication takes place in the same way, but the channel words
are reserved memory locations at the bottom of the memory address space. Channel
communication is summarised in Table 1.

Table 1 - A Summary of Channel Communication

Event Scheduler Action Value of Channel Word
Before communication | None Minlnt
process A initiates A is descheduled A’s process descriptor

communication

process B completes A is rescheduled Minlint
communication

3. Existing Performance Monitoring Tools

3.1. PICL/ParaGraph

PICL (Portable Instrumented Communication Library){3] is a set of primitives which can
be inserted as procedure calls into the user’s code to provide trace information which can be
displayed by a separate graphics package called ParaGraph[4]. ParaGraph is a post-execution
program (based on X windows) which can be used to display performance data in a number of
different ways. It provides a number of standard options, such as the ability to display processor
utilisation over time and communication patterns between processors. More exotic options
include the ‘phase portrait’ (which shows the relationship over time between communication
and processor usage) and the ‘critical path’ (which highlights the longest serial thread in a
parallel computation). There are over 20 different types of display and with the menu/windows
interface a number of displays can be viewed simultaneously. Most of the displays can be used
to display data from up to 128 processors.

o R |

L
Se3F QIS

i

PICL and ParaGraph are both written in C and have been used on a number of different
paralle! architectures (e.g. Cogent, Iniel and N-Cube machines) but as yet there is no transputer
version of either.

3.2. Express

Express[5] is a set of useful facilities for the parallel programmer, ranging from message-
passing primitives and graphical configurer to interactive debugger and performance analysis
tools. Its performance analysis tools are similar to PICL/ParaGraph 1in that procedure calls are
inserted in the user’s code and the trace information collected is displayed in a post-execution
phase. Examples of the type of performance data returned by Express are: the number of times
the various message-passing procedures are called, the size of messages sent, the calculation/
communication ratio etc.These values are calculated and displayed per processor in histogram
form. At present only C and Fortran are supported.

3.3. CPU Monitor

A number of wansputer-specific monitors have been described which output an efficiency
value for each processor in terms of CPU usage[6}{7). These monitors require detailed
knowledge of the transputer scheduling and since this sort of detail is hidden from the occam
programmer, they are erther written partially in transputer assembler or take advantage of
known features of current compilers. One such monitor has been described by Geraint Jones[6];
it consists of a process which repeatedly places itself on the back of the (low-priority) process
queue and finds the time between successive reschedulings. There is an initial calibration period
which records the time between two successive reschedulings of the monitor process when no
other processes are running. This calibration will depend on the type of transputer, whether or
not the monitor code 1s in internal memory etc. The monitor process is then run in parallel with
the user’s application and calculates the CPU usage as follows: each time the monitor process
1s scheduled, it reads the clock and then deschedules itself. The next time it gets scheduled it
reads the clock again and compares the two clock times. If the difference is greater than the time
between successive reschedulings during the calibration phase (when no other code was
running). then the process queue must have contained one or more application processes in the
meantime. The percentage of CPU usage can therefore be found by noting the number of times
in a given period that the queue was empty.

3.4. The TM Process (De Pietro and Villano)

One way of measuring the CPU time used by individual processes on a ransputer has been
described by De Pietro and Villano[8]. All processes in their system must be run at high-priority
and they manipulate the high-priority process queue so that each time a user’s process is
scheduled, it is sandwiched between two schedulings of a monitor process (the TM process).
The TM process reads the high-priority timer before and after the user process is scheduled and
hence determines the CPU time it was allocated.

This approach requires the TM process to perform (in software) the role of the hardware
scheduler . It must therefore ensure that the scheduler and the TM process never access the same
process queue simultaneously. There are two cases in which this might happen: a timer input
has been used and a process is rescheduled after a certain time interval, or a process is
rescheduled after an external communication. The first possibility can be circumvented by
preventing the user from using timers. (Note that it is possible to relax this restriction for some
transputer types e.g. T805, T425 in which timer interrupts can be disabled.) The second
problem is more serious: De Pietro and Villano overcome it by transforming a multi-processor
occam PROGRAM into a single-processor EXE - hence transforming all external
communications except those with the host into internal ones. Host communications are dealt
with by a separate process which guarantees that no other process is running whilst there is an
incomplete EXE-host communication.

This solution of the problem of measuring processing times for individual processes is
ingenious, but has limited use since it can only be used on single-processor EXEs. The
transformation from a multi-processor PROGRAM to a single-processor EXE is essential
because of the potential conflict between the hardware scheduler and the TM process, since
both aiter the active process queue. Our approach 1s a way of collecting process information
without altering the active process queue and can be used on mulu-processor PROGRAM:s -as
well as single-processor EXEs.We describe our process monitor in the following section.

4. The New Process Monitor

4.1. The Process Monitor Algorithm

The basic idea of the monitor described in Section 3.3 has been retained in our new process
monitor - it runs in parallel with the application code and repeatedly reschedules itself. Each
time 1t executes, it examines the state of the process queue and if it is empty, increments the
processor idle count. It then gathers process data and adds itself to the back of the (low-priority)
process queue. As well as the processor idle count, it collects process data for each process
being monitored by inspecting addresses associated with each process: workspace offsets and
channel words. An initialisation phase is therefore required, in which workspace offsets and
channel words are gathered and sent to the monitor process. The user therefore needs to insert
an initialising procedure call at the start of each process being monitored.

The monitor keeps three counts for each process: one giving the time spent waiting on a
timer, the second the time spent waiting for communication and the third the time spent in the
process queue (this last count also includes the time spent setting up communications). The
monitor can determine the time spent waiting on a timer by examining the workspace offset -3
(which will contain the value MinInt + 2)). It is not possible to find the time spent waiting on a
channel simply by looking at workspace offsets, 50 1n this case, the channel word corresponding
to each channel has to be .necked. If process A is communicating with process B, then the
channel word will contain either Minlat (no communication is currently taking place), A's
process descriptor (communication is taking place, initiated by A), or B’s process descriptor
(communication is taking place, initiated by B). Process A will therefore be waiting on a

communication down a channel if the appropriate channel word contains A’s process
descriptor.

If each process has a large number of processes and channels being monitored, then it is
possible that the monitor process may get descheduled during execution before it has examined
the state of each process. It is therefore important to ensure that the monitor does not get
descheduled unnecessarily. Low-priority processes like the monitor process only get
descheduled by other low-priority processes after they have been running for a certain
minimum period of time and a ‘safe’ instruction has been executed (one in which no
information is retained on the stack). We have therefore implemented the monitor process
mostly in assembler, to ensure that it does not contain any safe instructions and hence cannot
be descheduled before it has examined the state of each process.

The process monitor algorithm is given in Figure 1 in a pseudo-programming language
(the actual code is mostly written in transputer assembler).

monitor .= TRUE
WHILE monitor
{{{ first check state of CPU }}}
IF process queue = empty
THEN
increment idle count
{{{ check state of each process ;'
LOOP process.num = 0 FOR num.processes
IF process.running[process.num]
THEN
IF process[process.num] is waiting on timer
THEN
increment timer count for process[process.num]
ELSE
{{{ check if process[process.num] is waiting on a channel }}}
waiting.on.channel := FALSE
LOOP channel.num = 0 FOR num.chans WHILE NOT waiting.on.channel
IF channel{channel.num] contains process descriptor of
process[process.num]
THEN
waiting.on.channel := TRUE
increment waiting count for process(process.numj
ENDLOOP
IF NOT waiting.on.channel
THEN
increment processing count for process[process.num]
ENDLOOP
Place monitor process at back of process queue and deschedule

Figure 1 - The Process Monitor Algorithm

4.2. Using the Monitor

Each monitored process must send its workspace pointer and channel words to the process
monitor. Channel words are obtained by the procedure “channel.to.channel.id” and these are
sent to the process monitor along with the workspace pointer by placing a call of
“get.process.data’ into the process to be monitored.

PROC get.process.data (CHAN OF ANY to.process.monitor, [CHAN OF ANY user.chans)
PROC channel.to.channel.id (CHAN OF ANY chan, INT chan.word)
GUY
LDLP chan
STL chan.word

... other declarations
SEQ
{{{ send work space pointer
GUY
LDLP 0 -- get workspace pointer
STL wspace -- store workspace pointer
SEQ i=0 FOR SIZE user.chans
channel.to.channel.id{user.chans]i], chan.ids]i])
to.process.monitor ! (wspace+offset); SIZE chan.ids::chan.ids

h

Note that since any procedure call adjusts the workspace pointer of the surrounding
process. the workspace pointer obtained by the above procedure is readjusted to become
(wspace + offset) before it 1s sent. The process monitor can be incorporated into a user's
application as follows:

PAR
process.monitor (channel.pointer, to.monitor, from.monitor, work.space.chan)
SEQ
{{{ calibrate monitor
to.monitor ! monitor.calibrate
to.monitor ! monitor.ack
)
PAR
user.process (...)
{{{ output efficiencies every second
WHILE TRUE
SEQ
to.monitor ! monitor.start
... ong second delay
to.monitor ! monitor.read
from.monitor ? cpu.efficiency; process.efficiency
... output efficiencies (e.g. to graphics display)

m

~3}

[o2 V.

b

4.3. Limitations

The choice of which processes to monitor is entirely up to the user. In the case of our load
balancing work, we have chosen those processes which are available for migration, and the
process monitor supplies performance data which we can use to decide which process to
migrate. It is clear that monitoring too many processes will result in a significant overhead - we
have found that monitoring 10 processes with 2 channels per process entails approximately 2
10% overhead.

The process monitor can be used to output a number which gives the ‘processing’ time of
a process. This gives the percentage of time that the process is active i.e. on the process queue.
This ‘processing efficiency’ should only be used when all channels into and out of the process
are being monitored, since the process monitor assumes that all time not spent waiting on a
timer or waiting on a channel must be ‘active’ time.

A degree of care is needed when choosing which processes to monitor. The process
monitor was designed to monitor primitive processes i.e. processes that do not contain other
(parallel) processes. If a monitored process contains (parallel) sub-processes, then the process
monitor could produce misleading results, since it assumes that a process can only be in one
state at any one time.There can also be a problem when a process being monitored contains a
procedure call. In this case the process workspace is adjusted so that additional space is
allocated for variables that are internal to the procedure. This means that a procedure which
includes a timer input will record the timed wait in the workspace associated with the procedure
call, not the enclosing process.

It is not possible for the process monitor to distinguish between an active process and one
which has terminated, since there is no need for the hardware scheduler to distinguish between
these two cases! We solve this problem by using a boolean which is set before the user’s process
starts and is reset by the process when it completes.

As it stands, our performance monitor runs at low-priority and cannot be used to monitor
processes running at high-priority.

Acknowledgements

This work forms part of ESPRIT project PUMA which is 50% funded by the CEC, and has
been carried out with the support of the Procurement Executive, Ministry of Defence.

References

[1] Baker S.A., Milner K.R.. “A Process Migration Hamess for Dynamic Load
Balancing”,WoTUG-14, Loughborough 1991.

[2] INMOS Ltd. Transputer Reference Manual, Prentice Hall International, London 1988.

[3] Geist, G.A.,etal., “PICL: A Portable Instrumented Communication Library, C Reference
Manual, Technical Report ORNL/TM-11130, Oak Ridge National Lab,, Oak Ridge,
Tennessee, 1990.

[4] Heath, M.T,, Etheridge, J.A., “Visualizing the Performance of Parallel Programs”, IEEE
Software, pp. 29-39, September 1991.

[5] Express User’s Guide, Parasoft Corporation, CA, USA.

{6] Miichell, D.AP., Thompson, J.A., Manson, G.A., Brookes, G.R., “Inside The
Transputer”, Blackwell Scientific Publications.

[7] Jones, G.J., “Measuring the Busyness of a Transputer”, OUG Newsletter, Jan. 1990.

[8] De Pietro. G.. Villano. U., “An Environment for Transputer CPU Load Measurements”,
OUG-13, York. 1990.

e

INTENTIONALLY BLANK

REPORT DOCUMENTATION PAGE DRIC Ref6rence NUMBEr (It KNGWN)ow.ssrsressesssssemerssssssesoes

Overall security classification of Sheetccvecrvernenee. UNCLASSIFIED
(As far as possible this sheet should contain only unclassified information. !f it is necessary to enter classified information, the field concerned
must be marked to indicate the classification eg (R), (C) or (S).

Originators Reference/Report No. Month Year
MEMO 4554 NOVEMBER 1991
Originators Name and Location

RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

Monitoring Agency Name and Location

A PROCESS MONITOR FOR THE TRANSPUTER

Report Security Classification Title Classification (U, R, Cor S)
UNCLASSIFIED u

Foreign Language Title (in the case of transtations}

Conference Details

Agency Reference Contract Number and Period

Project Number Other References

Authors Pagination and Ref
MILNER, KR; CHODA, L 9

Abstract

A brief survey of performance monitoring tools for paraliel machines is given, followed by the
particular problems of designing a performance monitor for the transputer. A new monitor
process is then described, which outputs data such as process active time and communication
waiting time for each process being monitored.

Abstract Classification (U,R.C or 8)
U

Descriptors

Distribution Statement (Enter any limations on the distribution of the document)
UNLIMITED

o o et =

INTENTIONALLY BLANK

