
AD-A247 364
'ill It'IIAllhl II * Report No. 91034

Cn ROYAL SIGNALS AND RADAR ESTABLISHMENT,
0 MALVERN
0
0.

ELEC'E

D
THE VISTA STRUCTURED ASSEMBLER

Author: J Kershaw

Uj4? l v-

PROCUREMENT EXECUTIVEl MINISTRY OF DEFENCE
RSRE
Ms(vorn, Worcestrshire,

Jamasry tW02

2)' 1 061 UNLIMITED ?92.-06594

CONDITIONS OF 14ELEASE
0120147 308889

..................... DRIC U

COPYnfGI IT (c)
198
CONTROLLER
HMSO LONDON

..................... DRIC Y

Reports quoted are not necessarily available to members of the public or to commercial
ofganisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 91034

TITLE: The VISTA Structured Assembler

AUTHOR: J Kershaw

DATE: January 1992

SUMMARY

VISTA is a structured assembly language for the VIPER microprocessor chip. Though the
syntax of VISTA and the appearance of VISTA programs are reminiscent of a high-level
language, the actual statements are VIPER machine instructions. VISTA provides the
clarity and much of the convenience of a true high-level language without the need for a
complex and possibly untrustworthy compiling program.

This Report describes the VISTA language by means of an annotated example, and gives
instructions for using the VISTA translator. A formal grammar of VISTA, and descriptions
of VIPER and the VIPER Object Program format, are included.

Jj3 i:, :r.nOL

By ..Dist. ibutio:' I

Avai It!;i¢ .oJ%,

Dist ". :

Copyright l-
Controller HMSO London

1992

INTENTIONALLY BLANK

Contents

I Introduction 2

2 VISTA program example 3

3 Notes on the example (by line number) 6

4 Constructs not included in the example 11

5 Commentary on the grammar of VISTA 12

6 VISTA Grammar 18

7 Using the VISTA translator 25

8 VIPER Machine Definition 26

8.1 ALU operations 27

8.2 Comparisons 28

9 VIPER Object Program (.VOP) Format 29

References 31

INTENTIONALLY BLANK

1 Introduction

VISTA is a high-level assembly language: its statements are essentially VIPER machine
instructions [Ker 87] embedded in a syntax resembling that of Algol 68. While it does not
hide the structure of the underlying machine in the way that a true high-level language
would, it does perform many of the routine housekeeping functions which can otherwise
distract the programmer and make mistakes more likely.

The advantage of a relatively simple language like VISTA is that it does not need a complex
compiler. Not only is the VISTA translator very much smaller and simpler than a typical
compiler, but also its outputs are similar enough to the inputs to be checked easily. The
outputs are printable, and annotated in such a way that mechanical checking is possible.

VISTA is not an inherently safe language, in the sense that some specialised languages
[Cur 841 might be, though it does limit the programmer to structures which are reasonably
free of complications. For example, there are no pointers or GOTO statements in VISTA.
If VISTA is used to write safety-critical software, the program texts should be subjected
to static analysis with a toolset such as MALPAS or SPADE. This process is made easy
by the design of VISTA, which includes only constructs which can be analysed effectively
by such toolsets. In fact the VISTA language was designed in parallel with a translator
to the MALPAS input language [RTP], and many difficulties were resolved by changes to
the language structure. A translator for SPADE [PVL] has also been developed.

This note describes VISTA in two ways: informally by means of an annotated example and
formally with a modified BNF grammar. The example uses most of the constructs of the
language, though one or two have escaped e.g. ISCLUDE, CONTINUE. The grammar defines
all possible constructs but does not in itself describe the semantics ("meaning") of a VISTA
program; where this is not obvious it is described in the accompanying commentary.

The following program in VISTA is fairly trivial and makes no pretensions to safety:
it reads in a text and then counts occurrences of selected words in that text. The line
numbers are merely for reference in the notes below, and are not part of the program. Page
layout of VISTA programs is completely free: the example follows normal conventions for
indentation. Two pieces of hardware called keyboard and screen are assumed to be
available for input and output.

The only aspects which will not seem reasonably familiar are the "region declarations"
(lines 4 to 7) which define regions of memory into which code, constants, and so on are to
be placed, and the fact that procedures in VISTA are declared after (rather than before)
their calls. There is no profound reason for this: it simply seems more natural to put the
main program first. No "loopholes" are allowed for recursion, which is forbidden in VISTA
though a devious programmer with knowledge of the machine architecture can sneak it in
and thereby probably lose the ability to analyse the program. Notice that A, 1, Y are
the VIPER machine registers, 32 bits each, and there is a single bit flag register called B.
I and Y (only) can be used as indexes.

2

J-_

INTENTIONALLY BLANK

2 VISTA program example

1 PROGRAM word frequency counter.
2
3
4 CODE prog FROM 0 TO 3999; -- memory regions with bounds
6 COIST const FROM 4000 TO 4095;

6 DATA data FROM 16r8000 TO 16r8000+8191;

7 PEll peri FROM 0 TO 1;
8

9 BEGIN
10 lIT last, count, match, k, p. q; -- variables in DATA region

11

12 CHAN keyboard, screen; -- in PERI region
13

14 INT key[20]. text[9000J; -- more data, vectors
is
16 INT up - 32, eof - 26, cr - 13; -- in the COIST region

17 INT ms1[] u "\nlnput the text: \0\"; -- messages

18 IFT ms2[) " "\nKeyvord: \0\";
19 UNT ms3[J - "\nlumber of occurrences is \0\";
20 INT ms4[) - "outside range\O\";
21
22 -- End of variable and constant declarations, no, for the program

23
24 A :0 1; CALL message; -- invite the user to type

25 A :- 1; last :- A; -- in a sample of text

26 A :a sp; text[O] := A;
27
28 WHILE (CALL getchar; CALL upper) A /a *of
29 DO I :a last; -- in case getchar changes 1

30 CASE A >a 'A' AND A <v 'Z': SKIP; -- letters

31 A >= '0' AND A <- '9': SKIP -- digits

32 ELSE A :" sp -- all others

33 ESAC;
34 text[l] :0 A; I :- I + 1; -- store the character

36 last := I
36 OD;
ST

38 1 := last; A := sp; text[l] :a A; -- terminator for last word

39

40 REPEAT A :* 2; CALL message; DISPLAY get new key word

41 A :0 0; p :" A;
42

3

43 WHILE (CALL getchar; CALL upper) A /- cr
44 DO I := p;
45 keyEI] :A A; -- read A store key word

46 I :1 X * 1;
47 p :=
48 OD;
49
so X := p; A := sp; keytI) :a A; -- terminator for key word
51 IF I a 0 TE BREAK FI; -- exit if null key word

52 A :a 0; p :M A; count :- A;
53
64 WHILE (T :- 0; match :- Y; I :- p) I < last
SS DO WHILE (A :a key[TY) A - text[l]

56 DO IF A a sp
57 THE :- 1;
58 match :- A; -- end of word A no mismatch
59 BREAK
60 FI;
61 X := I 1;
62 y : 7 * 1 -- more letters, keep trying

63 OD;
64 IF (A : match; I := p; 7 : texttl-l])

65 A /0 AND Y sp
66 THEN A : count; -- whole of key matched
67 A :a A + 1; -- check space before word
68 count := A -- .. don't want to find ..
69 FI; -- e.g. "king" in "smoking"

70 1 := I * 1; p :- I

71 0O;

72
73 A := 3; CALL message; -- print number of matches

74 A :• count; CALL print
76
76 UNTIL (A :a key[O]) A = sp; -- until null key word input
77 STOP;
78
79 -- low for the procedures, notice they follow the main program

s0
81 PROC getchar: (VEILE (A :& INPUT keyboard) A * 0 DO SKIP OD);

82
63
84 PROC upper: (IF A)> 'a' AID A <a I' THEN A : A-('a'-'A') FI);
86

4

86

87 PROC print: -- unsigned decimal output

88 BEGIN IIT lzflag;

89 I :a 0; -- suppress leading zeros

90 lzflag :- 1;

91 IF A (0 OR A > 9999 THEN A :- 4; CALL message

92 ELSE 1 :- 1000; CALL digit;

93 1 :u 100; CALL digit;

94 :- 10; CALL digit; -- 4 digits maximum

95 X : 1; CALL digit

96 FI;

97

98 PROC digit: -- prints I digit of number in A

99 BEGIN INT power; -- I must hold a power of 10, I / 0

100 power :- I;

101 Y :- 0;

102 WHILE A >= power DO A := A - power; Y :- Y + 1 OD;

103 IF I a I OR Y > 0 THEN lzflag :- I FI;
104 Y :Y + '0'; -- convert to ASCII

105 1 : lzflag;

106 IF I a 0 THEN Y : sp FI; -- leading zero

107 OUTPUT Y, screen

108 EID
109 END; -- of "print"

110
111

112 PROC message: -- outputs message selected

113 BEGI INT select; -- .. by A register. 1 to 4

114 select :- A;

115 I :- 0;

116 WHILE TRUE -- i.e. do forever, exit

117 DO CASE (A :a select) A IN -- .. by BREAK or RETURN

118 1: (A : msl[I);

119 2: (A :8 2[X]); -- get 4 bytes from the message

120 3: (A : us3[11);

121 4: (A : am4[])

122 ELSE A :a 0

123 ESAC;

124

125 T :- A AID 255; -- now output the characters

126 IF T a 0 TIES RETURN FI; -- .. terminating on a NULL

127 OUTPUT I. screen;

128 CALL rig*8;

129 IF Y - 0 TEEN RETURN FI; -- return from "message"

130 OUTPUT T. screen;

131 CALL rights;

5

132 IF T - 0 TEEN RETURN FI;
133 OUTPUT Y, screen;

134 CALL right8;
136 IF - 0 TEEN RETURN FI;

136 OUTPUT T. screen;
137 1 :W Z 1
138 OD;

139

140 PROC rightS: -- 8 place right shift
141 BEGIN
142 A :* A/2; A : A/2; A :1 /2; A :1 /2;
143 A : 1/2; : 1/2; A :1 /2; A :A /2;
144 Y :A IAND 255
145 END
146
147 END -- of "message"

148 END -- of program

149 FINISH

3 Notes on the example (by line number)

I

AU programs begin with PROGRAM, followed by an identifier which is taken as a title. The
rest of the title line is ignored as comment. Identifiers in VISTA begin with a lower 7ase
letter and are made up of lower case letters and/or digits. They can be of any length
though the translator will remember only the first 12 characters. The whole of a VISTA
program must be processed at once - there is no "separate compilation" facility.

4..7

Region declarations. All storage in a VISTA program is allocated in a defined region, in
ascending order of address. Constants are kept separate from data to allow use of ROM.
The translator will report an error if a region fills up, or if region declarations overlap.
The PERI region has a separate address space from the other three. Notice the use of
decimal and hex numbers (the other bases allowed are 2r for binary and or for octal) and
of constant expressions which can be arbitrarily complex.

All the region declarations must be at the start, before the first block opens.

9

BEGIN marks the opening of the main block. All the data and procedure declarations of

6

the program must be within this or within procedures enclosed by it. Blocks may not be
nested, though procedures can be: compound statements enclosed by BEGIN .. END or
round brackets (which are everywhere interchangeable) are allowed but they may not

contain declarations. Local redeclarations of variables within procedures take precedence
over less local declarations with the same names, in the usual way. Local redeclarations of

scalar constants are required to have the same value as any less local declarations which
may still be in scope.

10

Ordinary variable declarations in the DATA region. The only data types allowed are lIT
and BITS, and vectors thereof. Both types occupy one 32 bit word per element. There is

no restriction on the use of either. All storage allocation in VISTA is static. The initial
values of variables are undefined; in a typical VIPER system they will be the contents of

a RAM chip which has just been switched on.

12

Peripheral addresses in the PERI region, usable only with INPUT or OUTPUT (see lines 81,
107).

14

Vectors of variables. The lower bound is fixed at 0. Only one dimension is allowed.

16

Constants, to be placed in the COIST region. These are just ASCII character values.

Wherever VISTA expects a constant (e.g. here or as a vector size, line 14) a constant
expression can be written using any of the usual arithmetic and logical operators. Once
declared, a named constant (e.g. "eof") can be used in constant expressions. Constants
declared as of type BITS are treated as unsigned in constant expressions, as are numbers
denoted in hex, octal, or binary. Decimal numbers and named constants of type lIT are
treated as signed. The choice of operator (signed vs. unsigned) in a constant expression

is based on the type of the left operand: the distinction matters in practice only for the

operators >>, /, % (see below).

The operators permitted in constant expressions, in descending order of priority are:

* unary * - NOT applied to primaries i.e. single names or numbers, or bracketed
expressions.

<< >> left/right shift the left operand by the number of places given by the right

operand. Signed right shift fills with copies of the sign bit, unsigned with zeroes.

7

a a I bitwise logical AND, OR.

* * / % multiply, divide, modulo, defined as on the host machine.

* + - add, subtract.

Constants (scalar or vector) cannot be assigned to. Their values are fixed irrevocably by
the declaration, as they would be in reality if stored in ROM.

17..20

Vectors of constants. These can be given values either as a list of constant expressions

e.g. (1. 2, 3. 4) or (as here) a string of 7 bit ASCII characters. Characters are stored
four per word, least significant first. Notice the special characters \n (line feed) and \O\
(character of value 0, used here as a string terminator). Characters can also be used as
individual constants: the declaration on line 16 could equally well be written as

I1T sp = ' ', sof = '\26\', cr = '\c';

Character constants generate the standard ASCII representation without parity. See Sec-
tion 5 ("initlist") for a list of special characters.

22

Comments follow -- as in Ada, and extend to the end of the line.

24 et seq.

Instructions are translated one-for-one to VIPER machine instructions. There are three 32
bit registers called A, 1. Y of which I and Y can be used as index registers. Y is changed
by the CALL instruction, but otherwise the registers can be used interchangeably.

No explicit arguments are allowed with procedure calls, but A and I can be used freely to

hand over parameters.

28

Notice the "preface block" (CALL getchar; CALL apper) which is optional before a
condition to set up the register contents. Conditions generally compare a register with
a variable or constant (not two registers or two variables) but there are also conditions
B. NOT B, TRUE, FALSE for special cases.

SO..33

This form of the VISTA CASE statement requires an explicit predicate on each limb. A
single preface block is allowed immediately after the word CASE. Conditions are tested in
the order written and never cause a change in the register values; when a condition is
found to be true the corresponding limb is entered and followed by exit from the CASE
statement. See comment on line 117 for the other form of CASE statement.

Notice the use of AID as a connective in conditionals. Any number of AID or OR connectives
may be used, but not both in the same condition. No brackets are allowed. Without these
restrictions (which arise because of the need to map VISTA statements into single VIPER
instructions) it would have been possible to use a simple IF - TEEN - ELSE here.

The SKIP statement has no effect (and generates no code) but is provided for clarity. It
can be used or omitted as preferred.

32

The ELSE limb is optional. If it were omitted and no condition was true, a CASE statement
would cause the machine to stop. If you want a CASE statement to do nothing in this
situation, use ELSE SKIP.

40

Loop constructs are WHILE - DO - OD and REPEAT - UNTIL

DISPLAY is an alternative form of comment which is preserved in the translator output
file. It does not form part of the program but can be picked up by other software e.g. the
VIPER simulator.

31

BREAK and CONTINUE are valid only in a WHILE or REPEAT statement. Their effect is,
respectively:

* Exit from the most local loop, i.e. jump to the statement following 0D or following
the condition after UNTIL.

" Proceed to the next cycle of the most local loop, i.e. jump to the beginning of the
condition after WHILE or UNTIL.

The jump in this case is to line 77

64..65

This is a fairly elaborate condition! The whole thing compiles to 6 instructions.

9

77

The STOP statement generates an illegal VIPER instruction which stops the processor. A
constant expression can be placed after the STOP, in which case its value will be compiled
into the (otherwise mused) address part of the instruction and will be visible on the
address bus when the processor has stopped. If no expression is given, the translator will
insert the address of the instruction.

81

Procedure declarations in VISTA follow their calls, i.e. only forward reference is allowed.
This is logically more satisfactory (the main program comes first) and matches MALPAS
better than the traditional rule of declaration before use. Recursion is not in principle
possible, since the language does not allow pointers of any kind.

Variables and constants (lines 10..20) must be declared before use in the conventional way.
In this and most other respects VISTA conforms to the normal Algol or Pascal block
structure. Round brackets are interchangeable with BEGIN .. END .

The peripheral location keyboard is assumed to deliver 0 until a character is typed.

84

upper turns lower case letters in A to upper case.

87

4 digit unsigned decimal output.

98

digit is nested within print

102

Division by repeated subtraction, since VIPER has (at present) no divide instruction. The
loop is never obeyed more than 9 times.

107

The peripheral location screen is assumed to make characters visible in some way.

10

116

WHILE TRUE gives an endless loop which can be left only by BREAK or (in a procedure)
RETURN.

117..123

The strings output by message must be known to the procedure in advance. It is
not possible to hand over the address of an arbitrary string since VISTA does not allow
pointers. This is an example of the other form of CASE statement in which each limb has
either a single selector value or a bounded range of values e.g. 1..9: If the contents of
the nominated register (A in this case) match the selector, the limb is entered. Selector
values and bounds may be constant expressions, as usual. A minor variation replaces I by
UISIGNED, telling the translator to use unsigned tests when checking whether the register
is within a range.

This form of CASE is much easier for programs like MALPAS to analyse, e.g. when checking
for coverage and overlap of the conditions.

126

A zero character terminates the string. Strings are stored with the least-significant 8 bits
of the word holding the first character. RETURN exits from the most local procedure orly.

140

right8 is nested inside message.

142

These are "arithmetic" shifts which duplicate the sign bit. Line 144 renders this unimpor-
tant. The alternative is an end-around shift through B (e.g. A >> 1) which in this case
would do just as well.

149

Every program ends nominally with FINISH though end-of-Hfe alone is acceptable.

4 Constructs not included in the example

e B :a TRUE; B := FALSE

Direct setting/clearing of the a flag.

11 I

* INCLUDE \path\tilname.vis

Source text inclusion facility. The first non-printing character e.g. space or end-of-
line, terminates the file name. There is no default extension. The example given is
of an MSDOS file name; the syntax is that appropriate to the host machine on which
the VISTA translator is running. INCLUDE files may be nested up to 9 deep. A list
of the files used will be printed at the top of the diagnostic output file.

5 Commentary on the grammar of VISTA

A modified form of the BNF grammar which follows is input to the SID parser generator,
whose output forms the kernel of the translator. This version of the grammar has been
shorn of the "compiling actions" which form the interface to the rest of the translator, but
do not change the structure of the language except in the handling of character strings
where the effect of an absent action has been embodied into the syntax for clarity.

Terminal symbols e.g. UN, SEMI, BEGIN are in capitals, non-terminals in lower case.
Comments are between \ . . \ . Punctuation characters (for instance a . ;) are
part of the meta-language of this version of BNF: commas separate alternatives and the
last alternative of a rule ends with a semicolon. Empty alternatives are indicated by void.

The commentary is indexed by the names of the non-terminals, i.e. those which appear to
the left of an - sign.

prog

The leading rule. Every program begins with PROGRAM and a name; any text following on
the same line is taken as comment.

regions

A "region" declaration defines a bounded region of store or peripheral addressing space
into which objects of appropriate type (CODE, COUST, DATA or PER) can be placed by the
compiler. Only objects in DATA regions can be assigned to; only objects in PERI regions
can be used in INPUT or OUTPUT instructions. Regions are global to the whole program,
and the space they occupy is allocated permanently. The address space for PERI regions
is separate from the other three. Region bounds are inclusive.

Several region declarations of the same type may be made e.g.

CODE roal FROM 0 TO 409S;
CODE rou2 FROM 65536 TO 65536 * 4095;

Only one region of each type (CODE. COIST, DATA, PERI) is in use at any one time,
but it can be changed between declarations (for CODE, between procedures) by writing e.g.

12

CODE IN roal; and reset to the region previously in use by e.g. RESET CODE; Changes
are stacked separately for each type e.g.

CODE IN roul; DATA IN ran; PROC funl: (etc);
CODE IN roz2; PROC tuu2: (otc);
RESET CODE;
RESET CODE; -- restore status quo
RESET DATA;

A region declaration automatically sets the new region as the current one of that type.
WAhile a region is in use, objects of appropriate type are placed at successively increasing
addresses within that region until it is full, when an error message is given. While a region
is not in use (because the programmer has changed to another of the same type) its current
loading position is remembered.

AU the region declarations in a program must be grouped together at the top, before the
main block begins.

block

VISTA is block structured, where a block is either the main program or the body of

a procedure. Blocks cannot be "nested" in VISTA, except as the bodies of procedures:
BEGIN . . END or round brackets can be used to group instructions (e.g. for a CASE limb
where the syntax demands a single instruction) but such a "compound statement" cannot

include declarations. The present VISTA translator does not re-use memory allocated
to local variables which cannot be in scope simultaneously, but this is not guaranteed to
persist in future versions.

The scope rules are as follows:

9 A "region" declaration is in scope for the whole program.

* An "object" (variable or constant) declaration is in scope from the point of decla-
ration until the end of the main block or of the enclosing procedure, whichever is
smaller.

* A "procedure" declaration is in scope from the start of the main block or of the
enclosing procedure, whichever is smaller, until the start of its own declaration.

The sequence within a block is strictly defined, and is the same whether the block is the

main program or a procedure body.

1. Variable and/or constant declarations (if any).

2. Main code, which can be void e.g in a program consisting entirely of procedures.

3. Procedure declarations which can be interspersed with more variable or constant

declarations (e.g. those used only to communicate between procedures) or with

region changes.

13

-j MMMMK

BEGI. EID and () are interchangeable but must be correctly paired.

procdec

No explicit arguments or return values are allowed. What you do with the registers is
up to you, but remember that the CILL instruction changes 7. RETURN changes no
register except the program counter which is not visible in VISTA.

The form PROC ID FROM unsoxp declares that a procedure can be found at the
absolute address given by the unsigned expression, and is used to call facilities in other
(separately compiled) programs e.g. in a ROM-resident monitor. The monitor program
would contain a CODE region declaration starting FROM the same address.

objdec

An "object" declaration allocates space in one or other of the current regions. Types
BITS and IT allocate space in the DITI region, or in the COIST region if the
object is initialised. Type CHA allocates space in the PERI region.

Wherever a number would be appropriate in VISTA, a constant expression can be written.
Objects declared as scalar constants e.g.

IT marom = 4095;

can be used in constant expressions - their values are held in the compiler as well as
(possibly) in the program. Scalar constants which will fit into 20 bits are usually embedded
in literal instructions and not stored separately. Vectors of constants (or elements thereof)
e.g.

BITS table[I a (1. 2. 4. 6. 16, 32, 64, 128);

cannot be used in constant expressions. They are indexed from 0 up.

Vectors of variables e.g. ITT voc[10); must be declared with the size (in 32 bit
words) and are also indexed from 0 up, in this case to 99.

initlist

A vector of constants can be initialised to a string, which will be stored 4 ASCII bytes per
word without parity, least significant byte first. There is no automatic terminator, though
unfilled words will be padded with nulls. Certain special characters can be included in
strings using "backslash" and a lower case letter e.g. \n. \c. \f, s, \ Vt \ \\ for
respectively linefeed, carriage return, form feed, space, tab, quote (which would otherwise
terminate the string) and backslash. An arbitrary 8 bit constant can be placed in a string

14

(e.g. as a terminator) thus: "A null-tsr-inatad string\O\". Any of the usual number
bases may be used.

Strings must normaly fit within one line. To extend a string on to the following line(s),
end each line with the sequence \e thus:

IT message[3 "An example of a string which will not fit \o
comfortably within a single line";

\e does not insert a new line into the string: an explicit \n (or \c\n) must be used.

exp

Expressions are either all constant or consist of a variable only. Variables appear only in
instructions. Unary minus or NOT are allowed only before a primary e.g. -(Conhlt-1) is
allowed but -const-1 is not. See the commentary on the example program for a list of
permitted operators. Any identifiers used in an expression must be already declared and
in scope, see above under "block".

inst

The syntax of VIPER instructions- most of the rest of VISTA is not VIPER-specific. Void
is allowed as an instruction, but SKIP is provided for clarity e.g. as a null branch in
CASE statements. It generates no code.

regassign, indexreg

Data registers (srg or dreg) are A, I. T. Index registers are I, Y only.

loopst

BREAK. CONTINUE are valid only in VUILE or REPEAT statements, and transfer control
to the instruction following the innermost loop or the start of the controlling test of the
innermost loop respectively.

casest

CASE statements come in two forms, one with an explicit predicate on each limb (caseiten)
and one with a nominated register and a selection value or range on each limb (eotitem).
Either form can have an optional ELSE limb at the end, but if this is not present the
translator will insert ELSE STOP. In both forms, the cases are tested in the order written.
There is no check for coverage or overlap between predicates.

15

condlist

Conditions all correspond to single VIPER instructions, which compare a register with an
immediate or stored operand. To set up the registers ready for the comparison, a "preface"
can be inserted thus:

IF (A := fred) A > 0 THEN FI;
WHILE (:- index; A :- tabletl]) A /- 0 DO OD;

The preface (if present) is part of the test - see COiTIIUE above.

There is no particular advantage in doing IF statements this way: compare

A : fred; IF A > 0 ...

but the same is not true for WHILE and REPEAT statements: consider

A : fred; WHILE A > 0 DO A :- 1; joe :- A 0D;

condition

Compound conditions can be written using IND or DR but not both, because of the
restriction that each comparison is a single VIPER instruction. Every comparison is
performed every time. The only possible side effect is a hardware error on address-out-of-
bounds e.g. in

I :- 5000000; IF A - 0 AND T >- table[t] THEN ... FI;

IF cendl OR cond2 OR ... THEN is compiled as (see VIPER definition below)

TEST condl
SET B IF cond2
SET B IF ...

IF NOT 3 GOTO else-or-li
then- code

IF condl AND cond2 AND ... TIED is compiled as

TEST inverse of condi
SET 3 IF inverse of cond2
SET a IF ...
IF 3 GOTO else-or-ti
then-cod.

"Condition" includes TRUE and FALSE for situations like WHILE TRUE DO ... OD and
3, OT 3 for special occasions.

16

relop

GE. LT are unsigned 32 bit comparisons.

operand, unsop

Things on the right-hand side of a regassign i.e. constant expressions, variables, vector
references. If a constant expression can be fitted into 20 bits it will be handled as a literal,
otherwise storage will be allocated for it in the current COIST region.

offset

A constant offset done at compile time, with an optional run-time index in the I or
Y register.

variable

Writes to memory e.g. fred :a A , also arguments of INPUT or OUTPUT.

function

These are machine f)unctions, not to be confused with operators in constant expressions
even though * - can be used in either context. They appear only after a register name
(A. I or Y).

shift

/2 >>1 .2 <<I are the only permitted combinations in instructions, corresponding to
the VIPER machine functions. The right operand is unrestricted in constant expressions.

17

INTENTIONALLY BLANK

6 VISTA Grammar

****************** Basic language structure *******e***C**\

'RULES'

prog - PROGRAM ID regions block opsomi FINISH;

regions a rdec SERI, \ All region decs are global \
rdoc SEMI regions; .. and there must be >- 1 \

rdec . AREA bounds, \ data region declaration \

\ AREA - COIST, DATA, or PERI

CODE bounds, \ CODE region declaration \

datachange, \ change current region \

codechange;

bounds * ID FROM unsexp TO unsexp

block . BECI decpart codepart END,

OPEN decpart codepart CLOSE;

dacpart f void. a void decpart is allowed \
ddec SEMI decpart; \ note CODE change not allowed \

codepart . inst, \ notice this can also be void \
inst SEMI procode;

procode c codepart,

procetc proclist;

procet$ * procdec,
ddoc. \ interspersed data decs.

codochang.; or region changes ..

but only between PROCs \

18

procdec * PROC ID COLON block,

PROC ID FROM unsezp;

proclist - void,

SEMI, \ have mercy on spare semis! \
SEMI procetc proclist;

\eeeee.eeeeeeeeo Data and channel declarations *eeeeeeee************\

ddec = objdec,

datachange;

objdec = TYPE obj objlist; \ data or CIN dec \
\ TYPE = BITS, INT, or CHIN \

datachange = AREA If ID, \ change data region \

RESET AREA; \ back to old region \

codechaige = CODE I ID, \ change CODE region \

RESET CODE;

obj . ID,

ID EQUALS *xp, \ not with CHAN! \

ID oSQ unsxp CSQ,
ID OSO CSQ EQUALS initlist;

objlist = void,

COMMA obj objlist;

initlist a OPEN exp *zlist CLOSE,
QUOTE <string> QUOTE; \ character string, see above \

erlist - void,

COMMA oxp oxlist;

19

\ Constant expressions, including scalar identifiers declared as COIST \

\ A scalar variabla as an operand is included for syntactic reasons

oxp a unsep,

PLUS primary, \ +ID or NOT ID still .
NOT primary, \ qualifies as a variable

MINUS primary; \ while -ID does not \

unsexp . term, \ operators + \

unsoxp PLUS term.
unsexp MINUS term;

term = factor, \ operators * / %.
term TIMES factor,

term SLASH factor,

tern ROD factor;

factor = shiftor, \ opar A I \
factor AMPERSAND shifter,

factor BAR shiftor;

shiftor = primary, \ opo:ators >> <<

shiltor GREATER GREATER primary,
shifter LESS LESS primary;

primary . ID,

NUN.
BIGNUN, \ over-size number \

SIZE ID,
OPEN unsexp CLOSE;

20

\ Executable statements. This includes nearly all the VIPER-specific bits

inst = void, \ to allow spare semicolons \
simstat, \ those allowed in prefaces \
SKIP, \ explicit null instruction \
RETURN,
STOP,
STOP exp, \ qualifier for diagnostics \
loopst,
BEGIN codelist END, \ compound statements \
OPEN codelist END;

siustat regassign,

variable COLON EQUALS srog,
CALL ID,
OUTPUT sreg COMMA variable,

IF condlist TEEN codelist elsepart FI,

casest;

regassign = dreg COLON EQUALS sreg
dreg COLON EQUALS NOT sreg,
dreg COLON EQUALS operand,

dreg COLON EQUALS sreg function unsop,
dreg COLOR EQUALS sreg shift NUM,

dreg COLON EQUALS INPUT variable,

B COLON EQUALS TRUE,
B COLON EQUALS FALSE;

codelist W inst.
inst SEMI codelist;

elsepart W void,

ELSE codelist;

loopst a WEILE condlist DO codelist OD.

REPEAT codelist UNTIL condlist,
BREAK, \ legal only in WEILE/REPEAT \

CONTINUE; \ ditto \

21

\eeeeeeeeeeeeeeeeeeeee CASE stcatements eeeeeeeeeeeeee\

cases% CASE caseitem caselist ESAC,
CASE preface caseitem casolist ESAC,

CASE areg signtype betitom metlist ESAC,
CASE preface sreg signtype setitem setlist ESAC;

preface . BEGIN simplist END, \only assignments A calls
OPEN simplist CLOSE; allowed in prefaces\

uimplist . simstaL,
simstat SEMI simplist;

caseitem = condition COLON inst;

caselist . void, no ELSE present\
SEMI, ditto, spare semi\

SEMI caseitem casalist.

epsemi ELSE codelist; \default limb\

signtype z is, \default type SIGNED\
UNSIGNED;

setitem . range COLON inst;

sotlist a void,
SEMI.

SEMI setitem setlist.

opsemi ELSE codelist;

range . exp,
*ip DOT DOT exp;

22

\ s********O*~******se.. Conditions oo.........~

condlist a condition,
preface condition; \"preface" statements

condition - B,
lOT B.
TRUE.,
FALSE,
cond.
cond AID andlist,
cond OR crlist;

eandlist . cond. can't mix AID, OR\
cond AID andlist;

orlist . cond,
cond OR orlist;

cond . reg relop oxp,
areg relop ID indxtail;

relop = LESS,
GREATER EQUALS,
EQUALS,
SLASH EQUALS, \VIPER test instructions\

LESS EQUALS,
GREATER.
LT,
GE;

opsemi = void, forgive @par. semicolons!\

SERI;

oreg = DATAREG; an* of A. 1. T

dreg . DiAR~EG;

23

\eeeeeeeeeeeeeeeeee Operands and Functions *~CeCeee*eeee.

operand a exp. constant or scalar variable\
ID inditail, \ vCtor reference\
NOT ID indxtail;

unsop . unsexp,
ID iudxtail;

indxtail . OSQ offset CSQ;

offset = unsexp. \non-negative constant offset
indoxreg, \run-time index \
indeireg PLUS unsexp. ditto with constant offset\

indeireg MINUS unsexp;

variable . ID, \subset of "operand"\
ID indxtail;

indexrog = INDREG; one of X. Y

function = PLUS,
xMIS,
ADD, \VIPER machine functions, not to be confused
SUB, with operators in constant expressions\
XOR,
AID,
NOR,
AND NOT;

shift * SLASB,
GREATER GREATER,
TIMES,
LESS LESS;

\eCCSCCCCCCCC5C5CC~*CC End of graar eeeeeeeeeeeeeeee

24

INTENTIONALLY BLANK

7 Using the VISTA translator

This description relates to VISTA Version 5 running on an IBM PC-compatible under
MSDOS 3.3 or later.

The translator will print a summary of the operating instructions if invoked without ar-

guments. Normally the name of the VISTA source file follows the program name; if no
extension is given .VIS will be assumed e.g. vista sourcefil

VISTA can generate two output files, one containing diagnostics and information about
the memory layout of the object program and the other containing the object program

itself. The files normally have the same name as the source, and extensions (respectively)
.ERR and .VOP but the names of the output files can be changed by an option.

Options are typed after the source file name, separated by a space. Every option begins

with a letter (upper or lower case immaterial) and may include also a decimal number or

a file name. Spaces may not appear within numbers or names, and a space (or end-of-line)

must appear after a file name, but otherwise layout is unrestricted e.g.

vista sourcefilo D6000 v p400b404 j2000o vopfile

All options have default values which can be found by running the translator and inspecting

the statistics printed at the end. The options available are as follows:

Do a trial translation only i.e. no .VOP file

V Non-verbose output i.e. no comments in .VDP file.

Verbose .VDP files Lre typically 3 times as big.

F 20 Allow for 20 source files i.e. up to 19 INCLUDE files.

D 12000 Allow for 12000 data declarations in the program

(variables and constants). Similarly P (procedure

declarations) and I (region declarations).

J 6000 Allow for 5000 Jumps - 3 each per IF, VUILE. REPEAT,

CASE in the program.

C 200 Allow for 200 different anonymous constants i.e.
constants appearing in instructions but not dec-

lared explicitly uith names.

3 1000 Allow 1000 blocks. Blocks w procedures * 2

0 nane Use "namevop" and "name.err" for the two output files.
Any extension typed will be ignored. "0" is a letter.

25t

8 VIPER Machine Definition

The VIPER machine has 3 general purpose 32 bit registers (called A. X, Y), a program
address counter (P), and a single bit Boolean register (B). Memory addresses occupy 20
bits, so only the least significant 20 bits of P are meaningful: loading a "1" into any of
the top 12 bits will cause the machine to stop.

All instructions occupy 32 bits, divided into a 12 bit function code and a 20 bit address.

[Function 12 bits I Address 20 bits I
*------------4--------------------------

The function code is further divided into:

S HF I HF I DF I CF I FF I
S2 bits I 2 bits 3 bits I 1 bit I 4 bits I
+------ 4------------*---------- --- ----- 4-

Most instructions are of the form D : - R op X, where D and R are registers chosen
from A I T P. N is either a 20 bit literal constant or the contents of a 32 bit memory

location. Memory addresses are limited to 20 bits, and the machine will stop if a computed
address (HF = 2 or 3, see below) exceeds this limit.

IF: source register field

0 X is contents of register A
I R '. . . " X
I f "[.. . "
2 R Y
3 R P after incrementing

HF: memory address control field

0 X is the address, i.e. 20 bit non-negative constant

1 N is contents of address, memory or peripheral

2 X is contents of (address.I) "

3 X is contents of (address*T) "

DF: destination control field

0 D is the A register
I D a " I
2 D " n T
3 D " " P

4 D P " if B, else do nothing
S D " " P if 1OT 3, else do nothing
* D is N in peripheral space) see

7 D is N in memory space) below

26

The sequence in which the CF. DF, and FF fields are inspected is important:

V

----------- yes The instruction is a comparison. The
I CF a I 1 ------ > DF field is ignored.
*-------------

I no
V

------------- yes The instruction is "store R": N will

I DF >a 6 I ---- > be used as the destination, stopping if
* - +F a 0. The FF field is ignored.

I no
V

* ----------- 4 yes If B is false do nothing, otherwise ALU

I DF = 4 1 ----- > operation to P.
4------------4

I no
V

------------ yes If B is true do nothing, otherwise ALU

I DF a 6 1 ------ > operation to P.
------- 4

1 no
V

4-------------------------------4-

I ALU operation to register specified I
I by DF (in the range 0 to 3). I
4--4

8.1 ALU operations

If CF a 0 and DF < 6. FF and possibly HF specify the ALU function:

FF a 0 D :a NOT N i.e. N operand complemented
I Y :- P then P :- N from memory space i.e. CALL

2 D :w N from peripheral space e equivalent
3 D := N from memory space ift 0
4 D : R N. U :a carry

6 D := R * 1, stop on overflow
6 D :- I N, B :- borrow
7 D :a I - N, stop on overflow

i D : IOR N
9 0 :D I AND N

10 D : I1O N
11 D I AND (NOT N)

27

I
a _

12, HF - 0 D :R /2, sign b t copied
HF a 1 D :R >> I through B. i.e. D31 : B,

DO..30 :- I..31, B : RO
HF a 2 D : i * 2, stop on overflow
KF a 3 D :a R << I through I, i.e. DO :B ,

DI..31 :a RO..30. I 8 R31

13 spare instruction, stop
14 spari instruction, stop
16 spasw instruction, stop

Note that if the destination is P (DF = 3, 4, or 5) only functions 1, 3, 5, and 7 are legal.
Attempting to obey any other will cause the machine to stop. Fuanction 1 operates only
on P; if DF specifies any other destination register the machine will stop.

The operation D := 1t can be achieved by performing D a I + 0 or (for desti-
nations A. 1, Y) D :- 1 AID NOT 0 which is faster. D :a 10T R can be done as
D :- R NOR 0.

8.2 Comparisons

If CF a 1. FF specifies a comparison. Comparisons never change anything other than
B, apart from the change in P implied by continuing to the next instruction, and never
cause the machine to stop unless a memory address exceeds 20 bits (HF = 2 or 3). For
comparisons the ALU function is forced to 1 - H, and the arithmetic unit behaves as
if it had 33 bits with initial sign extension and no overflow detection, allowing signed or
unsigned comparison of 32 bit values.

The new value of B is derived from the result of the subtraction as follows: bit32 is
the conceptual extra (33rd) bit:

FF - 0 9 : bit32 (i.e. I < H)
1 B :NOT bi32 (R >a X)

2 1 :=allro (Ra)
3 5 :a OT alloro (R /N H)
4 3 :3 bit32 O1 ailsero (t < H)
5 3 N IOT bit32 AM OT alsoro (R > H)
6 B : borrow (unsigned I < H)
7 1 T0T borrow (unsigned R >a H)

FF a to 16: the sot of operations is repeated, but it the
result is 0 (i.e. FALSE) 3 is left unchanged.

28

9 VIPER Object Program (.VOP) Format

VIPER Object Program files are printable, and contain the information needed by a pro-
gram loader, PROM programmer, or VIPER simulator. Only the information within the
defined format is significant; the remainder of each line is undefined and can be filled
with whatever material may be useful. The VISTA translator outputs the current loading

address and a "reconstructed" version of each instruction, followed on some lines by a
"marker" showing the beginning of loops, procedures etc.

The type of every line is indicated by the character in column 1, which is followed (in most
cases) either by a string of characters, a hex number, or a sequence of decimal numbers.
Some types of line have alternative decimal or hex forms. The defined formats must be
adhered to rigidly.

In the following description, underscore indicates mandatory space characters. d stands
for a decimal digit (0..9) and h for a hex digit (0..9, A..F or a..f). All other characters
stand for themselves. Every defined format must end with a "white space" character i.e.
space, TAB, or end-of-line.

T any character str ng
D any charac'. r tring

Title a ,' Date of program. These are not mandatory but are generated by VISTA from
(respectively) the PROGRAM line which begins the source file and the date derived from
thr host operating sytem.

C*Ihhhhhhh

*.ddddd-ddddd

Set the currrent loading address i.e the address starting at which subsequent data will be
loaded into memory. In the decimal form the second 5 digit number represents the least
significant 16 bits of the address (0..65535) and the first number represents the rest. In
both forms the digits are in the usual order i.e. most significant first. Addresses up to

16rFFFFF are interpreted as in memory. Addresses in the range 16r100000 to 16rlFFFFF
are treated by the VIPER simulator as in peripheral space.

All the digits must be present in either format.

C.bhhhhhh

C-ddd.ddd.ddd.ddd

Load the 32 bit value given into the location pointed to by the current loading address,

add I to the address, and update the sumcheck (see below). In the decimal form the four
numbers (0-255) represent the four bytes of the value, most significant first. All the digits

must be present.

29

Verify the current sumcheck against the hex value given, and clear the sumcheck. The
sumncheck is the 32 bit residue of the sum of every 32 bit value loaded plus its address,
since the sumcheck was last clered. The siu-check is zero initially. All the digits must be
present.

K

End of .VOP file.

The remaining formats are relevant only to a simulator or a prototyping system which
contains a host computer of some kind. PROM programmers ignore them.

AIthhbhhhh
i.ddd-ddd.ddd-ddd

Format as for C. Load the VIPER A register with the 32 bit value given. Similar formats
exist for the 1, Y. and P (program address) registers.

BTRUE
B.FALSE
S.TRUE
S.FALSE

Set/clear the B flag or the internal STOP flag.

MNddddddd-ddddddd
I.ddddddd.ddddddd

Define a memory or I/O region size, for memory allocation in the simulator. The first
deci-a number is the lowest address in the region, the second is the highest. In a VISTA
output these correspond to the regions declared by the progranner, with the upper bounds
as actually used rather than as declared. The bounds must be decimal, 0..1048575, but in
these two formats leading zeroes may be omitted.

U any character string

The character string is the name of a file "used" by an INCLUDE statement. Simulators
can use this information to improve diagnostics.

Q any character string

Corresponds to DISPLIY in the VISTA source. The character string may be interpreted
by a simulator program or simply displayed as a diagnostic.

30

References

[Ker 871 Kershaw J: "The VIPER Microprocessor", RSRE Report 87014, 1987.

[Cur 84] Currie I F: "Orwellian Programming in Safety- Critical Systems", Con-
ference on Systems Implementation Languages - Practice and Experience,
University of Kent at Canterbury, 1984.

[RTP] MALPAS is supplied by Rex, Thompson and Partners Ltd, West Street,
Farnham GU9 7EQ, UK.

[PVL] SPADE is supplied by Program Validation Ltd, 26 Queen's Terrace,
Southampton S01 1BQ, UK.

31

INTENTIONALLY BLANK

REPORT DOCUMENTATION PAGE DRIC Reference Number (it known)

Overall security clafcation of shoot UNCLASSIFIED...
(AS far as possibe this sheet Should ontain only unclassified Information. f Nt is necessary to enter classfied Information, the field ooricsmeld
mu~st be rrarted to incete ft classificaion eg (R). (C) or (S).
Originators Reference/Report No. Month Year

REPORT 91034 JANUARY 1992

Originators Name and Lecabor
RSRE, Si Andrews Road
Malvern, Worcs WR14 3PS

Monitoring Agency Nam and Location

Te

THE VISTA STRUCTURED ASSEMBLER

Report Security Classification ~lassification (U, R, C or S)
UNCLASSIFIED U

Foreign Language Title (in the case of transltionls)

Conference Details

Abstract

VISTA is a structured assembly language for the VIPER microprocessor chip. Though the
syntax of VISTA and the appearance of VISTA programs are reminiscent of a high-level
language. the actual statements are VIPER machine instructions. VISTA provides the clarity
and much of the convenience of a true high-level language without the need for a complex and
possibly untrustworthy compiling program.

This Report describes the VISTA language by means of an annotated example, and gives
instructions for using the VISTA translator. A formal grammar of VISTA, and descriptions of
VIPER and the VIPER Object Program format, are included.

Abtract Claslifcation (IJ,R,C or S)

U
Descriptors

Distribution Statement (Enter any flmitations on the distribuion of the document)

UNLIMITED

sew~a

INTENTIONALLY BLANK

