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Abstract

The problem of point source location using a multi-beam focal-plane staring ar-
ray radar is addressed. It is viewed as one in functional approximation in which
the position of the source is regarded as a nonlinear function of the sampled radar
image and it is required to construct an approximant, using a training set, which
minimises the mean square error in the position estimate. The problem is also one
of generalisation., since the expected operating conditions are likely to be corrupted
by noise and this must be taken into account when designing the approximant.
Two feed-forward network architectures are considered - a particular radial basis
function network which arises as a consequence of the rmaimum mean square error
solution and is appropriate when the signal-to-noise ratis is 'small' and a multi-
layer perceptron. chosen for high signal-to-noise ratio approximation. The errors
in the position estimates for each of these approaches are compared with a maxi-
mum likelihood position estimation method. The maximum likelihood method gives
better overall performance and has the advantage that it is not dependent on the
signal-to-noise ratio.
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1 Introduction

The problem addressed in this paper is one of multi-sensor data analysis. Data generated
by a given sensor system represents a particular view of the scene under consideration. The
signal processing problem is to provide a description of that scene, given some a p iori
knowledge of the scene characteristics and knowledge of the properties of the sensor. For
example, in an active radar situation, the scene may be comprised of point scatterers, dis-
tributed scatterers, clutter, chaff and interference. One common form of a priori knowledge
imposed is the special case that the scene can be represented spatially by a collection of
point sources. There are many techniques for estimating the parameters of sources in a
scene, all of which require some form of training of the system. This may be achieved by
moving a single source around in the far field and recording the output of the system. If the
outputs of all sensors in the system are sampled simultaneously, then we obtain a vector
of numbers, the 'image vector', which gives a snapshot from the system for a given source
position. All these vectors are collected together as columns of a matrix which forms a
'reference library' of signals expected from each incident direction. This library lies on a
two-dimensional manifold, termed the array manifold [18, 23], within the space of sensor
outputs.

The particular sensor system we consider is a focal-plane array radar. Focal-plane array
technology provides a wide multiple-beam field of view with no moving parts and benefits
from a high level of front-end circuit integration [1]. It uses a lens to provide multiple-beam
coverage over a wide field of view, and a planar array of receivers, with no requirement for
any beam-forming circuitry. Furthermore, the individual receivers that make up the array
are very small and they can be designed so as not to contain any microwave circuitry.
All of these factors combine to make the receiver and array architecture so simple that
it is potentially possible to implement complete arrays within a small area of low-cost
monolithic silicon. The two principal components of a focal-plane receiver front-end are
a dielectric lens and an array of receivers. The lens system focuses incoming radiation on
to the antenna array. The combined operation of the lens and receiver array provides a

multiplicity of beams, each with its own direction of look. The radiation pattern of each
beam depends on the lens aperture, the properties of the len-;, the responses of the receivers
and their poositions on the focal plane.

One of the main purposes of this paper is to show a possible use of adaptive feed-forward

networks (or 'neural' networks) to the problem of point-source location using radar focal-
plane arrays. Neural networks for sensor signal processing tasks are currently an area of
considerable research [4, 25]. One particular area of interest is that of automatic target
recognition [21] and the problems which have been addressed to date apply neural network
techniques to data from a variety of sensor outputs including radar [Z 4, 6], sonar [8], infra-
red and laser returns and these techniques have been used to identify various target types
such as ships, aircraft, munitions, ground vehicles in a clutter environment, and terrain
types. Other signal processing problems being addressed include bearing estimation [9, 13],
multitarget tracking [15] and radar signal categorisation [20].

The advantage of an adaptive network solution to the problem of point-source location
is that the network implicitly allows a parametrisation of the point-spread function or array
manifold (by the weights in the network) which obviates the need to store the point-spread
function explicitly. Also, with technology currently being developed there is the potential
for an integrated solution on the focal plane of the system. There are other techniques which
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may be used, however. A maximum likelihood approach to position estimation has been
considered in [27 i and indeed a neural network implementation of a maximum likelihood
algorithm is described in [11]. The approach in this paper differs from that in [11] in that
we are considering feed-forward architectures and we consider the effects of noise on the
estimates in position.

The specific problem we shall consider in this report is the estimation of the position
of a single source in the scene given its sampled image vector. For illustration purposes,
we shall restrict the analysis and the numerical examples in this paper to linear arrays,
though it applies equally to two-dimensional arrays. Section 2 describes the generation of
an image vector and how a library of such vectors may be used in the problem of point source
location. In Section 3 we consider the problem of deriving an approximation to a known
functional transform which generalises to points not in the data set and which approximates
the function in a minimum mean square error sense. Section 4 gives a brief description of
ad' ptive feed-forward networks and methods of training such networks. Section 5 considers
the application of the network to point source location, with the specific example of an
idealised linear array of receivers in the focal-plane of an imaging system. The problem
is one of generalisation. In a practical situation, the array outputs (the inputs to the
feed-forward network) are likely to be corrupted by noise. Therefore, we wish to design a
network, based on the training data characterising the array manifold (perhaps generated
from a model of the imaging process or obtained during some calibration of the system),
which generalises from the noiseless training data set to input vectors corrupted by noise.
Two types of network are considered. One is a particular radial basis function network (see
Section 4) appropriate when the expected noise "in operation" is large (a low signal-to-
noise ratio). The second is a multilayer perceptron architecture designed for high signal-
to-noise ratios. The performance of these networks is compared to a maximum likelihood
approach. Finally, the paper concludes with a discussion of the results and a summary of
the advantages and disadvantages of the use of a network for point source location and gives
some suggestions for further work.

2 The Imaging Problem

The problem of point-source location may be posed as one of image restoration in which
we desire to reconstruct a scene from a set o! measurements of the image of the scene, given
some knowledge of the imaging operation. This knowledge is often expressed in terms of
the point-spread function, usually specified as a library of vectors. This library of vectors is
generated from the outputs of an array of N sensors in the focal plane of an imaging system
as follows.

The one-dimensional imaging equation relating a time-varying image g(z; t) to the scene,
f(f; 1) is given by a convolution equation of the form

g(z;t) = Ih(z;f)f((;t)df+n(z;t)

where h(r; f) is the point-spread function of the imaging system and n(X; t) is the noise in
the degraded image.

When the image is sampled, the image is known at only a finite number of points in
the image plane (Z:, Z2,... ZN) corresponding, in the focal plane imaging problem, to the
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array receiver positions and Equation (1) becomes

g,(t) =f h,(f)f(t; t)d + n,(t) (2)

where gi(t) is the value of the sampled image at position z, at time t and N is the number
of image sample positions (number of receivers). The function h,( ) is the response at the
position z, to a point source in the far-field as a function of position of that source. For an
ideal, diffraction-limited, space-invariant imaging system (one which acts uniformly across
image and object planes) (with a narrow slit as the aperture) the response hjt) is given by

hi = ut) (z - U] (3)

In the examples of Section 5, we take f? = 7r, so that sampling at the Nyquist rate,
(r/fl) gives unit spacing of the sample points.

If noise effects are absent then a point source of unit amplitude in the far field at a
position (to) gives rise to an image vector

h(0) h h=N(to)) °  (4)

where * denotes vector transpose. The library of vectors used to characterise the imaging op-
eration consists of a set of P such images of sources (hl, h 2 ,..., hp) at P different positions
in the scene (these images lie on a one-dimensional manifold, termed the array manifold,
in the N-dimensional space of sensor outputs) together with the set of corresponding po-
sitions {,. i = 1,.... PI. Thus the data points used to characterise the imaging operation
are points {(h. ,).i = I. P} in the space RN ®IR. In the terminology of feed-forward
networks. thi- is referred to as the training set. The image vectors, I,. will be complex-
valued in general, though in our examples we shall consider the ided responses given by

Equation (3) which gives rise to real-valued quantities.

The problem of image restoration is to reconstruct an object from its band-limited im-
age, given knowledge of the point-spread function and some a priori knowledge concerning
the object. The particular constraint that we consider here is that the scene consists of a sin-
gle point source (of unknown amplitude, A) and the problem addressed is the determination
of the position of the source given its image vector, L which is of the form

I = Ah+ n,

where n is a noise vector. Thus, the image vector is a scaled (by amplitude A, which may
be a complex quantity) and corrupted (by additive noise) version of a vector h which lies
on the array manifold, but which is not necessarily a member of the training set.

3 Minimum Mean-square Estimate

Before we discuss feed-forward networks in Section 4 and consider in particular their appli-
cation to position estimation in Section 5, we shall present some functional approximation
preliminaries. We view the problem of point-source location, given an image vector, as one

I-
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in nonlinear function approximation and generalisation. That is, we regard the position of
the source in the scene as a nonlinear function of the image, with the form of the nonlinear
function being specified by the training data. Also, we wish to generalise to data points
not in the training set. This was the problem addressed in [26 and in this section we shall
present some results relating to the approximation of a function f (a), where z is a noiseless
data sample, by a function g(z), where z is a data sample corrupted by additive noise.

Suppose that we wish to approximate a transformation f from I to Ri". Let the
approximation be given by g which is chosen so that the quantity V, defined by

V Jf() - g(. -C-)] 2p.()p(a)dzdf (5)

is a minimum, where p(f) is the probability density function of a noise distribution in the
space itm and p(m) defines the distribution of data points z in the space R'. Equation (5)
defines the expected square error in the approximation when the data points in the domain
of f are corrupted by additive noise, and may be written (for z = a + f) as

V= I(f( ) - g(z))'p.(z - z)p(z)dzdz. (6)

Minirnsing with respect to the function g gives the solution for g as

g(-) = f f(z)p,.(z - )p(-)d" (7)
f p. (z - a)p(z)dz

This is the approximation to the function f for which the expected square error in the
functional value, integrated over the domain of f, is a minimum and generalises f to points
z outside the distribution of the data points z.

More generally. the minimum mean square estimate of f given z is the expected vector
of the a postcriori denmity '7'

g(z) = Ef(r)z] = Jf(z)p(a:)d-

ff(z)p(zI)p(-)dz

fp(zia)p(z)dz

Note that the function g(z) may be defined over the whole space 1R', whereas the data
points a may lie on a reduced dimension manifold, X, in R' (as specified by the probability
density function, p(r)). Thus, the approximation to f, g(z), is defined for values of z which
do not necessarily lie on the manifold, X. This is important in many applications in which
noise will corrupt data points, a, to give values z = a + j which lie outside the domain of f.
In these situations it is not sufficient to interpolate the training set {(A, f,),i = 1,... P}
without due regard to defining the mapping for points outside the manifold.

The minimum mean-square approximation derived above provides a biased estimate, in
that for a data point, a0 . the mean of the estimate (the average over all perturbations f to
zs) is not necessarily equal to the functional value f(zo), i.e.

I g(a)p(zjzo)dz 5 f(ro) (9)
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where z = a0 + (. In some practical situations it may be advantageous to have an unbiased
estimate so that integration may be performed after the functional transformation, i.e. we
need to produce an approximation g(z) which is defined for all noise perturbations and
which, for inputs z = z 0 +f, if averaged will tend to f(zo), the true value in the absence of
noise. An approach for finding such an unbiased approximation using Lagrange multipliers
is given in [26].

3.1 Radial Basis Function Approximation

For a function f defined by a finite set of points {(i, f ), i = 1. P} in K' 9 IR"°, then
provided that the integrands in Equation (7) are sufficiently smooth, the solution g may be
approximated by g given by

O(z) = EL 1 fP.(z - ) (10)
.'= Ipn(. z -,) 0

or
P

4(z) = .f-n(z- a) (11)

where j5,(z - z,) is defined by

p-(z - a,).z-,)= ~i.x- ( -a)(12)

Equation (11) is identical in form to radial basis function approximations [3' in that the
approximating functional is a linear combination of (specified) nonlinear functions of the
difference between a data point. z and a 'centre'. In this case the nonlinear basis functions
are determined by the noise probability density function, the centres by the data points
a,, and the weights are the function values, fi at the centres. Thus a radial basis function
network structure arises as a natural consequence of the minimum variance solution. For
example, for a Gaussian noise model with diagonal covariance matrix with equal diagonal
elements a 2

O(Z) =) f. exp[- 21z - -'.2(I) = exp[_- 2 z  (13)

Note that in order to derive the function 9 which approximates f and generalises to
unseen data, we have not assumed a specific functional form, nor a smoothness condition
(as in a regularisation theory approach). We have assumed that we know how to perform
the mapping if there were no noise (noi'eless training data) and assumed a minimum mean
square error measure. A consequence of this is the radial basis function nature of the
solution. However, we do need to know the noise distribution. If we were to assume that
it is Gaussian with diagonal covariance matrix with equal elements, then we would need to
specify the noise variance, a', on the test data.

The function g will provide a good approximation to the exact minimum mean-square
solution, g. if the standard deviation of the noise is large compared to the distance between
sample points. m.
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3.2 Perturbation Analysis for High Signal-to-Noise Ratios

The solution for the minimum variance approximation to a known function, f : R' - R"
is given by Equation (7). When the functional transformation is specified only by points in
R ing'® , then this minimum variance solution may be approximated by a summation which
takes the form of a radial basis function network with nonlinear functions being (normalised)
noise probability density functions. This summation will be a good approximation to the
minimum variance solution provided that the standard deviation of the noise distribution
is large compared to the spacing between samples, m,. In a low noise situation (where
the standard deviation of the noise distribution is small compared to the distance between
sample points), the approximation j(z) to g(z) will be accurate only in the region of the
sample points and at intermediate values will give a very poor approximation. Therefore,
we need to specify a model for the approximation to f(z), or a constraint in the form of a
regularisation term, in order to describe how the function varies between sample points.

Let us assume that we have a parameterised model for the approximation to f. In the
following section, we shall consider a specific model (namely a feed-forward network), but
at the moment there is no restriction to its form other than it is a continuous function, g, of
the data z with continuous first derivatives. First of all we shall calculate the perturbation
to the error between the actual values, f, and the approximate values due to noise on the
data points.

Let {(z,.f,. i = 1,....,P} denote the set of points describing the mapping f : R'
Rn'. For a given data value, z, let E, E E(zp) be the error between the approximation to
f(z) and the desired value. fp for the pth pattern, ap. Often, the total error, is given by

1 
P  1

P

ET = Y Ep = -Z E(.,), (14)

with E(zp) being the square of the error for pattern, z., between the desired value (termed
the 'target' values in a feed-forward network framework), and the approximation, giving
ET as the sum-square error between the approximations and the desired values. However,
in the analysis which follows we impose no such restriction.

If the input patterns are corrupted by noise, i.e. they are of the form za + n, where the
noise vector n has the property that (nn*) = a 21, (I is the n x n identity matrix) then it
is shown in Appendix B that the expected error at the output, (ET) may be written

1 P
(ET) = - E(zp) + 2 T(H'). (15)

p= 1

The first term in the expression is the error in the approximation when there is no noise on
the data. The second term is a second derivative quantity proportional to the noise variance
01 . For &'2 = 0, (ET) reduces to the usual error term in the absence of noise. Thus, if we

have a mapping f : IRn R' defined by points in R' g IR' in which the data points in
R" are corrupted by additive noise with zero mean and variance a2 (sufficiently small so
that the higher order terms in the Taylor expansion may be neglected). then minimising the
error over all patterns and over the noise distribution with respect to the parameters of the
approximating function. g, is equivalent to minimising a modified error term defined on the
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patterns in the absence of noise. Equation (15) shows that the effects of noise on the test

data can be compensated for by training an approximant with a modified error criterion.

A different approximation to f can be derived for different values of the noise variance, a2.

The two terms in Equation (15) may be regarded as the usual error metric plus a

regularisation or stabilising term with regularisation parameter a2 , the variance of the

noise on the inputs. For the sum-squared error criterion, the second term in Equation (15)

may be written as

E Z(Iljp2 -. (fp-.g(p))'qP) (16)
p=1

where the n' x n matrix JP' is the Jacobian

= 0g (17)

representing the derivative of the ith component of the approximation with respect to the

jth input.evaluated for pattern zp. The vector qP= (qj,q'2.... ,qP)" is a vector of second

derivative terms. with kth component

S9k(18)

'=1 '

evaluated for the pth pattern.

3.3 Summary

It is appropriate at this stage to sununarise the results of this section.

1. Suppose that we have a known function, f(r) which we wish to approximate. In the

problem considered in this paper. {i} is the set of images of a point source in the
absence of noise and f(z) is the position of the source.

2. Suppose that we wish to approximate in a least squares sense the function f(z) by a

function g(z) which is defined for points z outside the set {z}. For example, z may

be the image of a source corrupted by additive noise. i.e. z = + + n

then

* the solution for g(z) is given by

g(z) f f(z)p.(z - z)p(r)dz (19)g~)= f p.(z - z)p(z)dz

e This may be approximated by a finite sum

!:=, f. pn(Z Z. )
(z) f.(20)

S,=,p,,z-z,)
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provided that the sample spacing of the points a, is small compared to the standard
deviation of the noise probability density function.

* If this is not so (the noise is small), then we assume a particular parametric form
for g(z) and choose the parameters which minimise an augmented sun-square error
measure. This is equivalent to training on data representative of the operating con-
ditions. That is, we may simulate the effects of noise by using the noiseless data with
a modified error criterion.

4 Feed-forward Adaptive Networks.

Connectionist models based on feed-forward networks (for example, multilayer perceptrons
(MLPs) [22] and radial basis function networks [3] (RBFs)) have been used with some
success when operating as static pattern classifiers on a wide range of problems. Such
networks perform a nonlinear transformation from an n-dimensional input space to the
n'-dimensional output space via a characterisation space defined by the outputs of the
(final layer of) hidden units in which a specific feature extraction criterion is maximised
[17, 29 . This feature extraction criterion may be viewed as a nonlinear multidimensional
generalisation of Fisher's linear discriminant function. Training the network for a pattern
classification task consists of presenting data vectors as input, together with class labels
at the output of the network, suitable coded, and minimLising an error criterion. For a
1-from-n' target coding scheme, and the usual sum-square error criterion, the outputs of
a trained network approximate the Bayes discriminant vector, giving the probability of a
class given the input to the network 17.

An alternative viewpoint to the pattern classification description on the operation of
adaptive, feed-forward layered networks such as the multilayer perceptron is that they per-
form well for certain tasks by exploiting their modelling flexibility to create an implicit
interpolation surface in a high-dimensional space [3, 161. In fact, it may be shown that
multilayer feed-forward networks with a single hidden layer are universal approximators
in that an arbitrary function can be approximated arbitrarily well [10, 241. However, in a
practical problem, the mapping we wish to approximate is not known continuously but it
is usually defined by a finite set of points in R'n 0 R"' defined by a training set. Specifi-
cally, in mapping a finite set of P, n dimensional 'training' patterns to the corresponding
n' dimensional 'target' patterns, f : -R .R one may think of this map as being gen-
erated by a 'graph' r C ER i ]Rn' . The input and target pattern pairs are points on this
graph. The learning phase of adaptive network training corresponds to the optimisation of
a fitting procedure for r based on knowledge of the data points. This is curve fitting in the
generally high dimensional space W ® B"'. Thus generalisation becomes synonymous with
interpolation along the constrained surface which is the 'best' fit to r [31].

If there is noise in the expected operating conditions (on the test set) then this must
be taken into account when designing a fitting surface to the training data points. This
was the problem addressed in [26] in which it was shown how to construct a fitting surface
which gives the expected value of the observation in R"' given the data sample' in R".

The problem of point source location is one of generalistaion [26E in that we wish to
generalise to data points (scaled and corrupted by noise) which are not in the training
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set. In this section we give a brief description of the structures we shall use to process the
outputs of a focal-plane array radar.

Input layer Hidden layer Output layer

•2
2 3

nno n

Figure 1: A schematic diagram of the standard feed forward adaptive layered network
geometry considered in this paper.

The structure of a standard layered network model is depicted in Figure 1. It is envisaged
that input data may be represented by an arbitrary (real-valued) n-dimensional vector, z,
or an ordered sequence of n real-valued numbers, {z,; i = 1_.... ,n}. Thus there are n

independent input nodes to the network which accept each input data vector. Each input
node is totally connected to a set of no 'hidden' nodes (hidden from direct interaction with
the environment). Associated with each link between the i-th input node and the j-th
hidden node is a scalar ;,. Usually, the fan-in to a hidden node takes the form of a
hyperplane: the input to node j is of the form 0 = = z*p, where #i is the

vector of n scalar values associated with hidden node j and * denotes transpose. The r6le of

each hidden node is to accept the value provided by the fan-in and output a value obtained
by passing it through a (generally. though not necessarily) nonlinear transfer function,

Oj= OP +0)= 0,(Poj + L*Ap) (21)

where uoj is a local 'bias' associated with each hidden node. In principle, the input data
vector may be an n-dimensional comple.-valued vector with the nonlinearity defined to

map complex input to real-valued output. However, in this paper, we shall consider only
input data vectors which are real-valued.
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The hidden layer is fully connected to a set of n' output nodes corresponding to the
components of an n' dimensional output space. The strength of the connection from the
j-th hidden node to the k-th output node is denoted Ajk and thus the value received at
the k-th output node is a weighted sum of the output values from all of the hidden nodes,
ok = 7-3'=0 Aj,.

In general the output from the k-th output node will be a nonlinear function of its
input, ok = 46(A0k + )*4O) where A0k is a 'bias' associated with that output node.

Thus the network, provide a transformation mapping from an n-dimensional input
space to an n-dimensional output space via an intermediate characterisation space. This
mapping is totally defined by the topology of the network (in particular, how many hidden
units are employed) once all the nonlinear transfer functions are specified and the set of
weights and biases {, p} have been determined. This set of weights and biases is found by
a 'training' procedure.

Networks performing a transformation from an n-dimensional input space to an n'-
dimensional output space using more than one intermediate hidden layer have been con-
sidered by some workers [19', but we shall restrict our attention in this paper to networks
with a single hidden layer.

The network will operate once a set of weight values jAjk, Ai} has been determined.
This set is conditional upon training data presented in the form of representative input and
corresponding target output patterns. The set of parameters {Ajk , p,j) is chosen so that
the actual outputs of the network, {oP,p = 1,2.... .P}, for a given set of inputs, {p,p =
1.2,...P}, are 'close' in some sense to the desired target values, {,p = 1,2.... P}. Usu-
ally. this error criterion is a sum-of-squares error of the form

P

E= Eli tP-o P 
.2 (22)

p=I

where the summation runs over all the patterns in the training set. Using the Euclidean
distance function and expressing the outputs in terms of the set of weights and biases and
the inputs, the error may be written explicitly as a function of the set {.\,A p,}. For
instance, in the case of the standard multi-layer perceptron, this error may be expressed as

E = , - + + (23)
p=1 k=1 j7=1 i=1

If the training data is not representative of the test data and we wish to derive an
approximation to the mapping from IR' to R"° defined by the training data for which the
sum-squared error in operation is a minimum, then the error function used during training
must be modified to take account of the discrepancies between training and operating
conditions [261.

The expressions for the error, ((22) or the form (15), modified to take account of expected
noise on the data) are differentiable nonlinear functions of the parameters and the aim of
any training procedure is to find a minimum of this function. Therefore, some strategy for
nonlinear function minimisation must be employed. Of course, a global minimum cannot
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be guaranteed. Nevertheless, it may be possible to obtain a good local minimum. Also, not
only do we require a good solution, but it must be obtained 'within a reasonable timescale'.
Schemes which find a good solution a small percentage of the time, but are very fast, may
be preferable to one which finds a good solution on most occasions, but takes a long time
to do so. Optimisation strategies for nonlinear functions have been discussed in previous
papers [30, 28]. These were applied to the training of adaptive feed-forward networks and
various example problems considered. For the problem of point source location using a

4 x 4 focal-plane array, the best solution (in terms of the smallest mean error on test) was
obtained using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimisation scheme. This
is the method which we shall use in Section 5.3.

Testing the network consists of applying the trained network to patterns not previously

used as part of the training set and comparing the outputs with the labels corresponding to
those patterns. It is not sufficient to consider how closely the network models the training

set alone since, if it models the training set too well, the network may not have captured
the underlying structure of the data and be unable to generalise to unseen data.

5 Feed-forward Network Estimation of Source Position

In this section, we consider the application of feed-forward adaptive networks to point source
location using focal-plane arrays. The method may be applied to any array of sensors where
the image response function may be characterised by an array manifold. However, in order
to be specific, we have confined our study to the focal-plane situation and one idealised array
in particular, namely a 5 x 1 array of elements, each with a sin(z)/z shape point-spread
function (Equation 3). Thus, the array manifold consists of a set of real-valued vectors.
In each example. the distance between adjacent elements in the focal-plane is unity, giving
samples of the image at Nyquist rate. Figure 2 illustrates the response of each receiving
element to a point source in the far field for the linear array. The distance between the
peak of a response and the first null is termed the "beamwidth" and is equal to unity for
these examples.

Section 5.1 describes the data used for training and testing the network. Sections 5.2 and
5.3 describe feed-forward network estimators of position. Section 5.4 assesses a maximum
likelihood approach. This provides a reference by which to judge the feed-forward network
technique. Section 5.5 gives results for the bias in the estimate of the position of a source
as a function of position for both the linear and square arrays, and compares the results
wi'h the maximum likelihood method.

5.1 Generation of Data

Training and test sets have been generated for the linear array, with each set consisting of a
set of images of single point sources of unit amplitude (used as input to a network), together
with the source positions (taken to be the target data). Thus, the input dimension of the
network, n is taken equal to the dimension of the receiver array, N. For all experiments.
the size of the linear array was fixed to contain 5 receivers at Nyquist spacing in the focal-
plane. Thus. the set of input data, {1} is a set of representative images. {h(OP)}. with
the corresponding targets, ft being the positions 9P.
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Beamshapes for a linear array
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Figure 2: Response of each receiving element to a point source in the far-field for a 5 x 1
linear array of receivers in the focal-plane of an imaging system.

For the linear array considered, the images of a single source are calculated using Equa-
tion 3 at 101 different positions, equally spaced across the field of view of the array from
-2.5 to 2.5 (at a spacing of -L). For the test data, the images of a single source at 200
positions chosen randomly between -2.0 and 2.0 are taken as input with the source position
as target.

The focal-plane array illustration described is highly idealised. In general, the array
manifold, and the image vectors, would be complex vectors due to the phase of the source
and the relative phase between receivers being a function of source position and therefore
some method of incorporating complex vectors into a feed-forward network would have to

be considered. This is not a difficult task, but for our purposes we shall restrict the example
to considering real vector inputs only.

5.2 Radial Basis Function Approximation

We now derive, using the training data, an estimate of source position which is a nonlinear

function of the measured image vector, z. A naive application of Equation (10) (with the
zi taken to be the data points and the fi the target points) is inappropriate for the point
source location problem. This is because, for a single point source in the scene, the measured
image, z, is not simply a point a on the array manifold corrupted by noise, but it is a scaled
version of a point on the array manifold corrupted by noise, i.e.

z = Az - n (24)

where A is the amplitude of the source. Thus,

p(zle,A) = p,.(z -An), (25)
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where p, is the noise probability density function.

The solution for g(z) which mninimises the variance now involves the prior probability
density function of the amplitude, A,

g(z) = f f f(z)p.(z - Ar)p(A)p(z)dzdA (26)
J fp(z - Az)p(A)p(z)dzdA

For a Gaussian noise process, with diagonal covariance matrix with equal diagonal ele-
ments, a 2,

N(n) exp- In 2] (27)

and assuming that p(A) is uniformly distributed, then integrating (over (0, cc)) with respect
to A gives

g(z) ff(r)s(a,z)p(2)dz (28)
f s(z, z)p( )dz

where

s(z.) = exp{-2iz(I - *;°)z} I (l ±erf(UI.Iz )) (29)

where the + sign is taken if z*& > 0. and the minus sign if z*; < 0.

Approximating the integrals with respect to z by a summation over the training set
(this implicitly assumes that all angles are equally likely since the training data is sampled

uniformly in angle space)
j'P I zP).XP.. z)

P= (30)

This approximation is valid provided that the function s(z. z) is sampled on a scale which
is small compared to the standard deviation, cr; that is we require

IZp - i., (31)

5.5 Multilayer Perceptron for High Signal-to-noise Ratio

In a high signal-to-noise ratio situation, the approximation given by Equation (30) becomes
increasingly invalid. Therefore, we choose to approximate the function by a particular
transformation and determine the parameters by some appropriate minimisation procedure.
The particular functional form we have chosen is a feed-forward network having a single
hidden layer with input in the form of a hyperplane and a nonlinear transfer function
O(z) = 1/(1 + e-*). In fact, it may be shown that multilayer feed-forward networks with
a single hidden layer are universal approximators in that an arbitrary function can be

approximated arbitrarily well 110. 241. However, in a practical problem, the mapping we
wish to approximate is not known continuously but it is usually defined by a finite set of
points in R" e R"' defined by a training set. The output nodes are taken to be linear

functions. 4(z) = r.

S.
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As in the radial basis function example above, we wish to define an approximant which
not only generaises to noise data not in the training set, but also is relatively insensitive to
source amplitude. Therefore we choose to normalise the data vectors to be of unit magnitude
on input to the network. This removes, at least in a high signal-to-noise situation, the effect
of fluctuations of image vector magnitude due to source amplitude fluctuations. Thus the
network used is that depicted in Figure 3 : an input normalisation layer, a hidden layer and

Input layer Normalisation layer Hidden layer Output layer

/I~i Ajk

Figure 3: A feed forward adaptive layered network with an input normalisation layer.

a linear output layer.

For a multilayer perceptron with a single hidden layer and the sum-square error criterion.
the regularisation term. Equation (16). may be written in terms, of the weights using the
results that

jr~ ~ Y A,, h'(I - h')P-i(2
'j 4z ' k=1 P ~ 49'W

and

=? 9,

= , A kj. . h -(1 - h - )(1 - 2 h -) . ,,j +, o h ] i , .)49
~ ~. ) 2 t=1 '

(33)
where hP is the output of the jth hidden node for input pattern ae and z' represents the
jth component of the normalisation layer. The scalar quantities A,, and Ajk are the weights
between the ith output node and the jth hidden node, and between the jth hidden node
and the kth input node respectively.
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For a given value of no and a given set of training data, the network was trained to
minimise the sum-squared error using the procedure described in Section 4. For the source

location problem, the error between the outputs of the network and the targets which is
mininised has a physical interpretation: it is the sum of the square of the error in position

estimation. Initially, the values of the network weights were chosen randomly from a uniform
distribution on (- 1.0,1.0). Then the BFGS nonlinear optimisation strategy was used to find

the solution for the weights for which the mean square error at the output of the network is
a minimum. The network was tested using the test data generated and the normalised error

on test calculated. The experiment was run for 100 different random start configurations

for the weights. The solution for the weights which gave the lowest normalised error on on
the training set over the 100 experiments was chosen as the one which best describes the

mapping from image space to position space for the particular network under consideration.
This solution is the one used in the analysis of the performance of the network in Section
5.5.

5.4 Maximum Likelihood Solution

Before we give results for the radial basis function and the multilayer perceptron network
estimators of position, we consider a maximum likelihood approach to position estimation.
It is shown in Appendix A that the maximum likelihood estimate of position is that value
of 9 for which the quadratic form. Q. given by

I h(O )'N- l, 2

Q = h(9)Nl'h(6) (34)

is a maximum. In principal, the maximum of Q may be found using some nonlinear optirii-
sation strategy. However, since in general we do not know the function, h(8) continuously,
but only at a finite set of points determined by a calibration procedure and given as the

training set, then the value of the quadratic form can only be evaluated at these positions.
For the training set considered in this paper, these data points are equally spaced in posi-
tion. One estimate of source position would be to take the position at which Q is greatest.
This would give an estimate of position to an accuracy determined by the sample spacing.

A more accurate estimate of position would be to interpolate the sample values and adopt
the position of the peak of the interpolating function as the estimate of position. This was

the procedure adopted in [27).

A maximum likelihood method has been implemented for the 5 x 1 array, with a data
set consisting of a set of images of sources at equally-spaced positions. The set of data
vectors contains 101 images of dimension 5, together with associated positions, equally

spaced across the field of view from -2.5 to 2.5 (i.e. a spacing of 1). The procedure for

determining the maximum likelihood estimate of position given the image of a single source

corrupted by noise is

1. Calculate the value of the quadratic form (34) at each point of the training set.

2. Find the peak value.

3. Fit a quadratic function to the 3 data points centred on the peak position.

4. Select the position of the source as the peak of the interpolating quadratic function.
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Figure 4: The root of the total square error as a function of position for the linear array and
the maximum Likelihood method for a value of a2 of 10- 2 (upper curves) and 10-1 (lower
curves)

Figure 4 plot the root mean square error in position as a function of position for the
maximum likelihood method for values of cr2 of 10-2 and 10'. The solid lines are the
analytic approximations derived in Appendix A.

2 OB
1, 2 - (35)

where OB is the beamwidth (unity in this example) and Ke is a function of 0. The dashed
lines are the result of Monte-Carlo simulations based on 5000 images at each position. The
estimate of position was made using the method described above.

For both values of signal-to-noise ratio, there is very good agreement between the re-
sults obtained using the Monte-Carlo simulation and the high signal-to-noise theoretical
predictions. At lower signal-to-noise ratios, we would expect deviation between the simula-
tion and the theory to increase since the analytic approximation for the error derived in the
appendix was derived for a high signal-to-noise ration regime. Also, at very high signal-
to-noise ratios, there would be deviation between theory and experiment. This is because
there is a limit on the error (even in the absence of noise) imposed by the approximate
nature of the maximum likelihood solution, which is based on a finite number of samples
of the point-spread function and a quadratic interpolation to the quadratic form, Q. We
have found that the bias introduced by sampling the point-spread function and quadratic
interpolation is less than 7.0 x 10- over the central region of the field of view. This is much
smaller than the noise errors for the values of signal-to-noise ratio used in the illustrations
and only becomes similar to the noise error at signal-to-noise ratios of about 106.

5.5 Feed-forward Network Results

Figures 5 and 6 plot the variance in the radial basis function approximator for several values
of o

2
. again obtained using a Monte-Carlo simulation. Figure 5 plots the variance over the

field of view for the same values of a2 used to illustrate the maximum likelihood estimator.
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Figure 5: The root of the total square error as a function of position for the linear array
and a Radial Basis Function network trained with a' = 102 (solid line) and a2 

= 10
-3

(dashed line)

The performance is very similar. Figure 6 is a zoomed-in plot of the central region of the
field of view for three values of a2. It shows that for a2 = 10-4, the network is unable

to interpolate between points in the training set - hence the saw-tooth effect of the error.
It peaks at a value of 0.025 (which is half of the sample spacing in the data set). The

reason for this failure is that the approximation given by Equation (30) is not valid since
the varaince in the noise is smaller than the sample spacing of data vectors.

Therefore, in order to achieve estimates of position more accurate than that permitted
by the spacing of points in the training set, a parametric form must be adopted for the
approximating function. The parameters of this function may then be obtained by a suitable

optimisation strategy which minimises an error between the approximation and the desired
values.

Multilaver perceptron results are given in Figures 7 - 13. Several multilaver perceptron

networks, each with a single hidden layer with a different number of hidden units, were
trained and the normalised error' on the train and test sets calculated. In the first instance,
the networks were trained to minimise the sum-squared error between the actual output
of the network and the desired output for the training set. Figure 7 plots the normalised

errors as a function of the number of hidden units. A normalised error of 10- 2 on the test

set corresponds to a root mean sum-squared error in position of 1.15 x 10- 2 of a beamwidth
and a normalised error of 10- 4 on the test set corresponds to a root mean suit-squared
error in position of 1.15 x 10-4. The figure shows that the training error is a monotonic
decreasing function of the number of hidden units, whilst the test error decreases up to
5 hidden units and then begins to fluctuate. Therefore, we have selected a network with
5 hidden units to illustrate the results. Figure 8 plots the bias in position (the difference
between the actual position and the position predicted using the network) as a function

of actual source position for a trained network with 5 hidden units over the test interval,

i-2.0.2.0 . The normalised error on the test set is 2.09 x 10- 4 and corresponds to a root of
the mean sum-squared error in position of 2.4 x 10- 4 of a beamwidth and the peak value

'The normalised error is the square root of the ratio of the mean sum-squared error to the variance in

the target values j30 I



18 Point-source Location

0.10 -

0.08-

0.06-
error

0.04

0.02 - -"- - -" " ' ; -.' ' -' - ..--- -,

0.007 I I l ' ' i

-0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5

position
Figure 6: The root of the total square error as a function of position for the linear array and
a Radial Basis Function network trained with a 2 = 10-2 (solid line), a2 10-3 (dashed
line) and a' = 10- (dotted line)
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Figure 7: Loglo(normalised error) on the training set (solid line) and the test set (dashed
line) for the linear array.
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Linear array errors

1.0-

0.5

bias (X10 3) 0.0-

-0.5

-1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

position

Figure 8: Bias ( x 1000) as a function of position fo: a linear array and a network with 5
hidden units, trained on 101 patterns.

of the bias error is 9.0 x 10- 4 of a beamwidth. These errors are very small and therefore,

from the experiments with the linear data, we conclude that it is possible to achieve a very
accurate nonlinear mapping from the image vector to position. However, there will be errors

in the position estimate due to noise on the inputs. Figure 9 plots the standard deviation in
the position estimate. ((6- o)2'. obtained using a Monte-Carlo simulation for noise on the

inputs of value a2 = 10-3. It is immediately apparent that this is significantly greater than
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Figure 9: The root of the total square error as a function of position for the linear array
and a network with 5 hidden units for noise on the inputs with value a2 = 10- 3

the maximum likelihood method or the radial basis function approximation. The reason for

this is that the network has been trained to minimise the sum-squared error on a training

set which is not representative of the data used to test the network (i.e. the training set is

noiseless) and has not been trained for the operating conditions of noisy images.

The effects of training on noisy vectors (i.e. data representative of the expected operating

4
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conditions) may be simulated by training on the noiseless data but modifying the error
criterion used for training. In the final experiments illustrated here, a multilayer perceptron
was trained to minimise the augmented error given by Equation (15). A value of 10 - 3 was
taken for al and the results are given in Figures 10 and 11. Figure 10 plots the bias as

1.0-
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-0.5-1

-1.0 _ _ _ __

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
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Figure 10: Bias x 10) as a function of position fcr a linear array and a network with 5
hidden units, trained on 101 patterns, and with a value of a 2 of I0 - 3.
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Figure 11: The root of the total square error as a function of position for the linear array
and a network with 5 hidden units

a function of position. This is considerably greater than that shown in Figure 8. but the
root of the total error (calculated using a Monte-Carlo simulation with input noise of 10 - 3

and given in Figure 11) is reduced compared to Figure 9. Thus, it is possible to reduce
the total squared error in position for a multilayer perceptron operating on noisy data by
taking into account the expected operating conditions during the training procedure. The
errors are still not so small as the errors given by the maximum likelihood method or the
radial basis function network, but it can be reduced further by the addition of more hidden
units. A multilayer perceptron with 25 hidden units reduces the total square error (averaged
across the test set) from 1.78 x 10- 3 obtained for 5 hidden units to 5.04 X 10 - 4. Results
for 25 hidden units are given in Figures 12 and 13. Also, since the multilayer perceptron
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Figure 12: Bias (x 10) as a function of position for a linear array and a network with 25
hidden units, trained on 101 patterns, and with a value of ,2 of 10

- 3 .
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Figure 13: The root of the total square error as a function of position for the linear array
and a network with 25 hidden units

is making a global fit to the data, it is not so sensitive to the sample spacing as the radial
basis function network. Of course, increasing the number of hidden units (and hence the
number of free parameters to adjust) may lead to overfitting of the data.

We conclude this section with a short discussion of the three methods which we have
considered in this paper. The main points are summarised in Table 1. Firstly, both the
maximum likelihood method and the radial basis function network require storage of the
point-spread function; that is, all the training data is required for implementation of the
methods. For the problem considered in this paper, or indeed even for the two-dimensional
array, the amount of data is not excessive. However, this may not be so in problems where
the input and output dimensions are large. The multilayer perceptron, on the other hand,
parameterises the point-spread function in the weights of the of the network 2.

2 0f course, a radial basis function network could be constructed with a reduced number of centres [3]
since it is not necessary to have at centre at every data point. However, in these comparisons, we consider
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__ _ _METHOD I
property RBF MLP MLP
Storage all training weights all training

requirements data data
global or local local global local

method
SNR rigime low SNR high SNR any value

SNR requires requires does not

dependence a 2  a 2  require a2

Table 1: Summary of properties of the methods discussed in this paper.

The multilayer perceptron performs a global fit to the training data. The maximum
likelihood method is a local method in that, once the position corresponding to the peak
of the quadratic form is determined, only local points are used to obtain a more accurate
estimate of position. The radial basis function network uses all data points to estimate the
position of the source, but the contribution from those which are distant from the input
vector is minimal so that it is effectively a local method.

Both the multilayer perceptron and the radial basis function network require knowledge
of the signal-to-noise ratio. A different value of a 2 requires a different network. Thus, a
network must be constructed for each different signal-to-noise ratio rigime or some means
of adapting the weights of the multilayer perceptron or the nonlinear functions in the radial
basis function network must be employed. The maximum likelihood method does not require
a knowledge of o 2. For a given image vector, the position of the maximum of the quadratic
form Q (see Equation (34)) is independent of a 2.

The particular radial basis function network aproximation derived in this paper is valid
for low signal-to-noise ratios. The multilayer perceptron has been derived for high signal-
to-noise ratios, but could be extended to lower signal-to-noise ratios by including higher
order terms in the expansion of the error. The maximum likelihood method is appropriate
for any value of a 2, though the analytic expressions for the bias and variance in the estimate.
derived in the appendix, are valid for a high signal-to-noise approximation.

6 Discussion.

This paper has considered a functional approximation approach to point-source location
using an array of sensors. Specifically, the array of sensors considered was a focal-plane
array radar and the position of a single source in the scene giving rise to a measured image
was regarded as a nonlinear function of that image. The problem then is, given some training
data comprising representative images of point sources and their associated positions, define
a mapping from image space to position which is robust to noise on the image. A minimum

the particular radial basis function network which arises as a consequence of approximating the integral (28)
by a finite stun over the training set.
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mean square error approach was adopted since this gives an approximant which is the
expected value of the position for a given image.

The approximant which gives the expected value of the a posteriori density may be
expressed as a sum over the training set giving the form of a radial basis function network.
This is valid in the situation where the noise variance is large compared to the sample spacing
of data points in the training set. In the other extreme of small noise, we must assume some
parametric form for the approximant and we adopted a multilayer perceptron architecture.
We evaluated the performance of both of these feed-forward network architectures and

compared them with a maximum likelihood approach.

For a low signal-to-noise ratio, the errors in the position estimate for the radial ba-
sis function network and the maximum likelihood approach are very similar. At higher
signal-to-noise ratios, the radial basis function approximation becomes increasingly invalid
and a prescribed parametric form (the multilayer perceptron) was used. This was trained
using an augmented error criterion to simulate the effects of noise on the expected data 'in
operation'. A MLP with 5 hidden units did not perform so well as the maximum likelihood

method. Increasing the number of hidden units to 25 improved the performance, but the
maximum likelihood method was still superior. A further advantage of the maximum like-
lihood method is that it does not depend on the noise power, a2, whereas the RBF and the
MLP approximants are functions of a 2.

One advantage of exploring the MLP architecture is that it is general purpose and there
is the potential for implementation on the focal plane of the array, which may give significant
data reduction on the array and which may be very important in some applications. The
approach of regarding the position of a point source as a nonlinear function of the image
also has application to staring array sensors other than radar in which it is required to
obtain sub-pixel accuracy of a source (eg [5). Obviously, the work can be extended to
two dimensional arrays (see 127' for the maximum likelihood method applied to square
and hexagonal two-dimensional arrays) but the study in this paper was restricted to one
dimension for illustration purposes.

There are several possible avenues for further work. Improved performance may be
obtained for the MLP if the nonlinear functions at the hidden nodes were better matched
to this particular problem. Also. it may be appropriate for some applications if the estimate

of the position were unbiased so that integration may take place after position estimation.
Application to real radar data will require some modification to the MLP architecture, since
the data vectors will be complex, and the MLP must be designed so that it is insensitive
to an arbitrary phase associated with the target. This is not a difficult problem. Further,
can the functional approximation approach be applied to multi-source scenes? A direct
implementation of the method would lead to a vast amount of training data covering all
possible positions and relative amplitudes of sources. Therefore, some other architecture
may be more appropriate (see [9, 121 for an approach based on Hopfield networks). However,
the single source assumption is valid where range and doppler processing can be employed
to discriminate between sources and, after all, is the assumption which monopulse radar
makes.

In conclusion, a novel approach to point-source location based on function approxima-
tion has been presented and compared with a more traditional solution. The potential for
implementation of the method on the focal-plane of the sensor could be significant.
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Appendix A Maximum Likelihood Solution

The conditional probability of an observation, 1. E IU', given the position, 0, and ampli-
tude, A, of a source for a Gaussian noise process is given by

p(I.19,A) = (ez ( - Ah(@))N-(I, - Ah()) (36)

where N, is the m x m positive semi-definite covariance matrix of additive noise.

Thus, the log likelihood, log(p(t.10, A)) is given by

log(p(I.10,,A)) m ~log(27r) - -log(INI) - 1(1, - 1)*N-'(I, - 1,), (37)
2 2 2

where

1o = Ah(O), (38)

is the image of a source of amplitude A at position Gin the absence of noise.

Since the first two terms in Equation (37)are independent of the parameters A and 0,
the maximum of the likelihood function occurs when the quadratic form

(I. - Io)*N- (I - 1O), (39)

is a minimum.

Differentiating the above expression with respect to the parameter A and equating to
zero gives the maximum likelihood solution for A, expressed in terms of h(O) as

A = h.()Nlh(9) (40)

Substituting for A into the expression (39) and simplifying the algebra, we find that the
expression is now a function of 0 alone (through h(8)) and that a minimum occurs when
the quantity E, given by

E = rN-I. Ih-N-t1. 2  (41)

is a minimum. Since the first term is independent of 9, the maximum likelihood solution
for 9 occurs when the second quantity (including the minus sign) is a minimum, i.e. when

lh* '. (42)

is a maximum.

For N = aI. the quadratic form reduces to

1 Ih'I.! '  I 2
-

2 h h - h 1h't (43)
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where Pt is the normalised point-spread function vector (normalised to unit magnitude).

This is a function of 9 alone, and the maximum likelihood estimate of position is the value

of 0 at which the above quantity attains its maximum. In order to determine this value

some means of nonlinear optimisation must be employed since, in general, it may not be

possible to write down a solution in closed form.

However, we can obtain expressions for the bias and the variance in the maximum

likelihood estimator (at least in a small noise approximation) from a perturbation expansion

as follows. Differentiating the expression (41) with respect to 9, and equating to zero give.

(h-N-1h) I.-N 1 -h - (Ir.N-'h) (hN- 1 - = 0 (44)

In the absence of noise, the solution is given by 0 = Go. When noise is present, let the

image be given by
In = Aoh(Oo) + n (45)

where Ao and 0 are the true values of amplitude and position and n is the perturbation

of the image due to noise.

For a small perturbation to the noiseless image given by the noise vector, n, let the

solution for 0 be 0 - e. Substituting this into Equation (43) and expanding the functions

h(O) and h/90 using Taylor's theorem leads to solutions for the mean and the standard

deviation3 of the estimate as

_
2 f .h- - h'h3}

A, 2  8 2(46)

and

where

. h' Oh _/8') 2  (48)

and
&2h'h b h h h hO2h" 8h (49)

Defining the signal-to-noise ratio to be the total power received by the array of sensors

for a source in a reference position (usually taken to be the centre of the field of view)

divided by the noise power per receiver
4

snr,ef = Ao 2h. (, )h(G,.,) (50)

'The standard deviation may also be obtained by using the result that the maximum likelihood estimate
is asymptotically normally distributed with a dispersion matrix depending on the likelihood function [14].
Thi, was the approach considered in [27j

'This gives a position indepe-')-nt definition of signal-to-noise ratio
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then the standard deviation may be written in the form

B(51)

where

Ko = h.(6)h(O)hO9, j)h(O,,f ) ) B (52)

and O6 is the beamwidth. This is a form often quoted for the tracking error in monopulse
radar. It shows that the standard deviation is inversely proportional to the square root of
the signal-to-noise ratio, with the constant of proportionality being a function of position.
Figure 14 plots the quantity KO as a function of position.

K factor
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2.0

1.5

1.0-

0.5 -

0.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

position

Figure 14: The quantity K as a function of position for the linear array.

Similarly. the mean of the estimate may be written

< O BB -(53)
snr,,f

where

B9 - 2h'h h'(O,,1 )h(O,.,) (54)

This shows that the mean is inversely proportional to the signal-to-noise ratio. Figure 15
plots the quantity Bo as a function of position.

These results show that, at high signal-to-noise ratio, the bias is small compared to the
standard deviation.
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bias factor

-2.0 -

-2.0 -

-3.0
- 2.0 -1.5 - 1.0 -0.5 0.0 0.5 1.0 1.5 2.0

position

Figure 15: The bias factor. B. for a linear array
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Appendix B Expected Error

Let the pattern zP be corrupted by additive noise, n, so that the error for pattern zp is

Ep = E(zp + n) = E(zp) + (n'V)E2 , + (n'V)2 E (55)

expanding by Taylor's theorem and assuming that n is small so that terms O(In 3) may be
neglected. For (n) = 0, the expected error (average over all noise vectors) is

(E,) = E(z,) + I(n'Hn) (56)
2

where E(zp) is the error in the absence of noise and - (n*HPn) is an additional error term
where H ' is the Hessian with respect to the data space components, evaluated for the pth
pattern

HP = a
2 E 

(

For (n,n,) = a2 6,J the additional error term may be written

-(H') = -Tr(HP). (58)

where Tr is the matrix trace operation. Averaging over all data patterns gives the mean

expected error
P F 2P

P=I P=I
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