
AD-A247 336
I* bwus e"W or OWy Otw rdof it coftK of kftmwbm' AdeVe sugga= M~wwng V1*= iWv,%=WW*0D

,.., ,,,..,,,...., ,.. i ... , .=,, ,,,4 ,,V M , 5 Jelismon Dav Howay. Ske 1204. Arkicn, VA 2 -4302 and to ft officeof ktmlfton and IAuppa Nbgh, Ofllk of
Mmwww anduzV Waion. DC 206M

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I IFinal: 21 Jan 1992 to 01 Jun 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: IBM Canada Ltd., AIX Ada/6000 Internal Development
Version, RISC System/6000. model 7012-320 (Host & Target), 920121Wi .11234

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-524.0292
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) z., " 1 . 10. SPONSORINGMONITORING AGENCY

Ada Joint Program Office 'F!_ REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a, DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

IBM Canada Ltd., AIX Ada/6000 Internal Development Version, Wright-Patterson AFB, RISC System/6000. model
7012-320 (Host & Target), ACVC 1.11.

14. SUBJECT TERMS 15. NUMBEROF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 1_._PRICEWOE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Sid. 230-128

AVF Control Number: AVF-VSR-524.0292
13 February 1992

91-11-12-IBM

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 920121W1.11234
IBM Canada Ltd.

AIX Ada/6000 Internal Development Version
RISC System/6000, model 7012-320 -> RISC System/600

0, model 7012-320

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Acoio±a for
N. O-RA&L

Av11abtlity Codes
Aell and/or

.Dlst S £peoial

92.05976

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 21 January 1992.

Compiler Name and Version: AIX Ada/6000 Internal Development Version

Host Computer System: RISC System/6000, model 7012-320, AIX 3.2

Target Computer System: RISC System/6000, model 7012-320, AIX 3.2

Customer Agreement Number: 91-11-12-IBM

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920121w1.11234 is awarded to IBM Canada Ltd. This certificate expires on 1
June 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

nAra ion Organization
Dire twf1JComputer and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

(,j~ Jont Program office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

423~ 1

declaration of..onfoxmanoe Won Jan 20 13:23:04 1I92 1

DECLARATION OF CONFORMANCE
mmmft=mm m mimmmnIn

Customer: IBM Canada Ltd.

Ada Validation Facility: Wright Patterson AVE

ASD/SCEL
WPA?3 Oil 09433
USA

ACVC VeLedulI: 1 11

Ad& linplitue'tentatioa:
CgQflPf3 r 'Immrb ant A1grliong IVX s /COOO 1,.LwLasia 'i IvpmeT VLtai.uis
Host Computer Syotem: RISC System/6000, model 7012-320, AIX 3.2
Tmrget Compu tr Syatcm: RISC Cyxtwm/COOO, Auiul U1012-320, AIX s.z

CuStomer's Declaration

I, the undersigned, representing IBM Canada Ltd., declare that 13M Canada Ltd.
has no knowledge of deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A in the implementation listed in this declaration.

!~6c~ '~/~ Date: ~ fT
Peter Moogk
IBM Canada Ltd. Laboratory
644 Don Mills Road
North York, Ontario
CANADA M3C 1V7

Co-Signer: .//

Date: /-4 d O/ J
Paul Kohlbrenner
OC Systems, Inc.
9926 Main St. Suite AuU
Fairfax, VA 22031
USA

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT.. 3-1
3.2 SUMMARY OF TEST RESULTS3-2
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTICN

1.2 REFERENCES

LAda83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRTI3,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect andi not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BDIBO6A AD1BO8A BD2AO2A CD2A2lE
CD2A23E CD2A32A CD2A41A CD2A4lE CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD700SE AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814. CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IUnJUN7TATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55BO9C B86001W C86006C CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-poin t operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLONS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DUATI N; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; this implementation does not support
pragma INLINE.

2-2

IMPLEMENTAi ION DEPENDENCIES

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2AB40 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIALIO
CE2102P OPEN OUff FILE SEQUENTIALIO
CE2102Q RESET OUT FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT_10
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102E CREATE IN FILE TEXT 15
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT IO
CE3102I CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXTIO
CE3102K OPEN OUT FILE TEXT I0

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE-ERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the c.Dacity of an
external sequential file is exceeded; this implemencation cannot
restrict file capacity.

2-3

IMPLEMETNTICN DEPENDECIES

EE2401D uses an instantiation of DIRECT I0 with an unconstrained array
type whose index type is INTEGER; this Tmplementation raises USE ERROR
on the attempt to create a file of such a type, as the array type's
size exceeds the implementation's maximum element size.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an Tnappropriate value fo? the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this Tmplementation, the value of
COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 26 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B28003A BA1001A BA2001C BA2001E BA3006A BA3006B
BA3007B BA3008A BA3008B BA3013A

C52008B was graded passed by Test Modification as directed by the AVO.
This test uses a record type with discriminants with defaults; this test
also has array components whose length depends on the values of some
discriminants of type INTEGER. On elaboration of the type declaration,
this implementation raises NUMERIC ERROR as it attempts to calculate the
maximum possible size for objects of the type. The AVO ruled that this
behavior was acceptable, and that the test should be modified to constrain
the subtype of the discriminants. Line 16 was modified to create a
constrained subtype of INTEGER, and discriminant specifications in lines
17 and 25 were modified to use that subtype; these lines are given below:

16 SUBTYPE SUBINT IS INTEGER RANGE -128 .. 127;
17 TYPE RECI(Dl,D2 : SUBINT) IS

25 TYPE REC2(Dl,D2,D3,D4 : SUBINT := 0) IS

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

2-4

IMPLEMENTATION DEPENDENCIES

CD1009A, CD1009I, CDICO3A, CD2A21A..C (3 tests), CD2A22J, CD2A23A..B (2
tests), CD2A24A, CD2A31A, CD2A31B and CD2A31C were graded passed by
Evaluation Modification as directed by the AVO. These tests use
instantiations of the support procedure LENGTH CHECK, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instances of LEGTHCHECK-i.e, the allowed Report.Failed messages have
the general form:

* CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIR0NMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

Paul Kohlebrenner
OC Systems, Inc.
9926 Main Street, Suite 200
Fairfax, VA 22031

For sales information about this Ada implementation, contact:

Peter Moogk
IBM Canada Ltd. Laboratory
844 Don Mills Road
North York, Ontario
Canada M3C 1V7

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3-1

PROCESSING INFORMATICN

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Progranming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3777
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 97
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 298 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were (loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The results were captured on the computer system.

3-2

PROCESSING INFORMATIN

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Compiler Options:

-l Produces a compiler listing

-b BIND NAME Binds the object into an executable
with BIND NAME as the main unit.

-m Binds the object into an executable
with the first compilation unit in
the file as the main unit.

-v Produces compiler banner.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX IN LEN 200 - Value of V

SBIG ID1 (1..V-1 -> 'A', V-> '1')

$BIG ID2 (l..V-I -> 'A', V-> '2')

$BIGID3 (1..V/2-> 'A') & '3' &
(l..V-I-V/2 -> 'A')

$BIG ID4 (l..V/2 -> 'A') & '4' &

(1..V-l-V/2 -> 'A')

SBIG INT LIT (I..V-3 -> '0') & "298"

SBIG REAL LIT (l..V-5 -> '0') & "690.0"

SBIGSTRING1 '"' & (1..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (1..V-1-V// -> 'A') & 'I' & '"'

$BLANKS (1..V-20 -> '

SMAX LEN INT BASED LITERAL
"2:" & (1..v-5-> '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7-> '0') & "F.E:"

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$MAXSTRINGLITERAL '"' & (..v-2 -> 'A') & '

$ACCSIZE 32

$ALIGMENT 4

$COUNTLAST 2_147_483_646

$DEFAULT_MEMSIZE 268_435456

$DEFAULT STOR_UNIT 8

$DEFAULTSYSNAME AIX_6000

$DELTADOC 2#1.0#E-31

SENTRYADDRESS ENTRYO 'ADDRESS

$ENTRYADDRESS1 ENTRY1 'ADDRESS

$ENTRY ADDRESS2 ENTRY2 'ADDRESS

$FIELDLAST 1000

$FILE TERMINATOR 0 ,

$FIXED NAME NO SUCH FIXED TYPE

$FLOATNAME NOSUCH TYPE

$FORM STRING "of

$FORMSTRING2 "CANNOT RESTRICT FILECAPACITY"

$GREATER THAN D RATION
100_000,0

$GREATER THAN DURATION BASE LAST
131_073.0

$GREATER THAN FLOAT BASE LAST
- .E308

SGREATER THANFLOATSAFE LARGE
3.XE38

$GREATER THANSHORTFLOATSAFE LARGE

A-2

MACRO PARAMETERS

1.0E308

$HIGHPRIORITY 255

$ ILLEGAL EXTERNAL FILE NAME1
AK*

$ ILLEGALEXTERNALFILE NAME2*B

$INAPPROPRIATELINE LENTH
-1

$ INAPPROPRIATEPAGE LENGTH
-1

$INCLUDE PRAGMA1 PRAGMA INCLUDE ("A28006D .TST")

$INCLUDEPRAQ4A2 PRAGMA INCLUDE ("B28006DI.TST")

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$INTERFACELANGUAGE FORTRAN

$LESSTHANDURATIN -100_000.0

$LESSTHAN DURATICN BASE FIRST
-151073.0

SLINETERMINATOR ASCII.LF

$OW mPRIORITY 0

$MACHINECODE_STATEMENT
NULL;

$MACHINECODETYPE NOSUCH TYPE

$MANTISSADOC 31

$MAXDIGITS 15

$MAX INT 2147483647

$MAX INT PLUS-1 2147483648

SMININT -2147483648

$NAME SHORT SHORT INTEGER

A-3

MACRO PARAMETERS

$NAMELIST AIX 6000

$NAME_SPECIFICATIONI /dino/val/work/ctests/X
2120A

$NAMESPECIFICATION2 /dino/val/work/ctests/X2120B

$NAMESPECIFICATION3 /dino/val/work/ctests/X 3 11 9A

SNEGBASED INT 16#FOOOOOOE#

$NEWMEMSIZE 65535

$SNEWSTORUNIT 16

$NEW _SYS_ NAME AIX_6000

$PAGETERMINATOR ASCII. FF

SECORDDFINITION NEW INTEGER;

$RECORD NAME NO SUCHMACHINE CODE TYPE

$TASK SIZE 32

$TASK STORAGESIZE 32768

$TICK 0.00006

$VARIABLEADDRESS VARIABLE 'ADDRESS

$VARIABLEADDRESS1 VARIABLE1 'ADDRESS

$VARiABLE ADDRESS2 VARIABLE2 'ADDRESS

$YOUR_PRAMA EXPORT

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

USAGE: ada [Option I FileName]

OPTION/SWITCH EFFECT

-a Produce assembler code.

-b UnitName Bind and link unit.

-d Keep debug info in the Ada sublibrary.

-e Suppress creation of executable file.

-G Do partial optomization.

-h Display info about the ada conuand.

-i FileName Include archive or object file FileName
when binding.

-I Read a list of files to compile from
standard input.

-1 Generate a compilation listing.

-L Library Use this library list file.

-m Compile and bind the last unit as the
main program.

-o FileName Specify the name of the executable is to

be FileName.

B-1

COMPILATION SYSTEM OPTIONS

OPTION/SWITCH EFFECT

-O Produce fully optomized code.

-p
Turn on execution profiling option.

Consistently detect single precision
floating point overflow.

-q Parameter-Value Special parameters as follows:.
task stack-Bytes
time-slice-Mill i seconds.

-s Suppress run-time checks for Adaexceptions.

-u Unlock the working sublibrary.

-v Verbose - display informative messages.

-V Pages Specify the number of 1K memory pages

to be used.

B-2

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

There is no separate linker.

B-3

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
..........

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT_-SHORTINTEGER is range -128 .. 127;

type FLOAT is digits 6 range
-3.40282E+38 .. 3.40282E+38;

type LNG FLOAT is digits 15 range
-1.79769313486232E+308 .. 1.79769313486232E+308;

type DURATION is delta 2**(-14) range
-86400.0 .. 86400.0;

end STANDARD;

C-I

Pre-validauon Overview RISC SystemV6000 Ada

Appendix 5 - Appendix F of the Ada Language Reference Manual

Appendix F. Implementation-Dependent Characteristics

The Ada language definition allows for certain target dependencies in a
controlled manner. This appendix, called Appendix F as prescribed in the Ada
Language Reference, describes implementation-dependent characteristics of the
AIX Ada/6000 compiler running under the AIX operating system Version 3.

Implementation-Defined Pragmas

Implementation dependent pragmas are:

pragma CO14ENT (String Literal) ;

Imbeds StringLiteral into object code.

pragma IMAGES(Enumeration Type, immediate I deferred);

Generates a table of images for the enumeration type. deferred causes the table
to be generated only if the enu.e=ation type is used in a compilation unit.

pragma INTERFACEINFORMATION
(Interfaced Subprogram-Name, LinkName);

When used in conjunction with cracga !NTERFACE, provides access to any routine
whose name can be specified by an Ada string literal.

pragma LINKNAME (InterfacedSubprogram Name, LinkName);

When used in conjunction with prag.a :-NTERFACE, provides access to any routine
whose name can be specified by an Ada string literal. Pragma
INTERFACE INFORMATION is the preferred method for naming non-Ada routines.

pragma OSTASK (Priority);

Appears within the declaration for a task or task type (in the same context as
pragma PRIORITY), and causes the task or task type to be placed into a separate
AIX process. The priority value is of type SYSTEM.PRIORITY, and is not
currently acted upon. To maintain upward compatibiliy, always use a 0 for this
parameter.

pragma NO_SUPPRESS(Condition_Name);

Prevents checks for a specified condition from being suppressed. It has the
same scope as pragma SUPPRESS.

pragma PRESERVELAYOUT (RecordType);

Prevents the compiler from re-ordering record components. It must occur in a
declarative region, following the declaration of thu record type to which it is
applied.

OC Systcms. Inc. - December 19. 1991 18

Ph-validation Ova,iew RISC Symwi600 Ad&

pragma SUPPRESS-ALL;

Suppresses all error checks, including elaboration checks. It has the same

scope as pragma SUPPRESS.

pragma EXPORT(object, StringLiteral, Language);

Makes the named object visible to other programs. The object can be

a procedure or a function or a data object. The stringliteral is the

name the linker will make global. The Language must be C, FORTRAN, or

Assembler, all of which have the same effect.

Predefined Pragmas

Supported pragmas are INTERFACE, ELABORATE, SUPPRESS, PACK, PAGE, LIST, INLINE,

and PRIORITY.

All pragmas have conventional meanings except LIST, which suppresses listings

prior to pragma LIST(ON) regardless of the user request.

Pragma INTERFACE supports the interface languages C, FORTRAN, and ASSEMBLY.

Unrecognized and unsupported pragmas are ignored with the appropriate warning

message.

Representation Clauses

Supported representation clauses include:

w Length clauses

w Enumeration representation clauses, except for Boolean types

w Record representation clauses

w Address clauses, including those for interrupt entries.

Records are aligned by default on 32-bit boundaries. You can use a
representation clause to force them to be aligned on 64-bit boundaries.

Restrictions on Unchecked Conversion

The only restriction on unchecked conversion is that the two types (or

subtypes) A and B must be the same static size, and that neither A nor B are

private.

Package System

The package SYSTEM has the following characteristics:

PACKAGE system IS
-- for integer use 32:
TYPE Memory is private;
TYPE Address is access Memory;
TYPE name IS (AIX 6000);

OC Systems. Inc. - December 19, 1991 19

Pe-validaion Overview RISC Syn=KO0 Ada

System Name : CONSTANT name :- AIX_6000;
StorageUnit : CONSTANT :- 8;
Memory Size : CONSTANT :- 1024*1024*256;
-- 256 Mb.
-- System-Dependent Named Numbers:
MinInt

: CONSTANT :- -(2**31);
MaxInt : CONSTANT :- (2 ** 31) -1;
MaxDigits : CONSTANT :- 15;
MaxMantissa : CONSTANT :- 31;
Fine Delta : CONSTANT :- 1.0 / (2 ** MAX MANTISSA);
Tick : CONSTANT :- 0.00006;
-- Other System-Dependent Declarations
SUBTYPE Priority IS integer RANGE 0..255;
END System;

Representation Attributes

All defined representation attributes shall be supported.

Implementation-Generated Names

There are no implementation-generated names denoting implementation-dependent
components. Component names generated by the compiler shall not interfere with
programmer-defined names.

implementation-Dependent Characteristics of the I/O Packages

w Packages SEQUENTIAL_1O, DIRECTrO, and TEXTIO are supported.

w Package LOW LEVEL_10 is not supported.

w Unconstrained array types and unconstrained types with discriminants
may be instantiated for I/O.

w File names follow the conventions and restrictions of the target
operating system, except that non-printing characters, blank(' ') and asterisk
('"*) are disallowed.

w In TEXT_10, the type FIELD is defined as follows:

subtype Field is integer range 0..1000;

w In TEXT 10, the type COUNT is defined as follows:

type Count is range 0..2_147_483_646;

Form Parameters for File Operations

Section 14.2 of the Language Reference describes the Ada functions for
manipulating files. As stated in that section, the form string parameter allows
you to set file protections when you create a file. The details of file
protections and privileges under the AIX operating system are described under
the chmod call in the AIX Calls and Subroutines Reference for IBM RISC
System/60 00 (SC23-2198).

OC Systems, [nc. - December 19, 1991 20

Pft-vWlidm Ovuview RISC SYMuw6000 Aft

if you do not specify a form string, the default file protection is both read
and write privileges for the owner, group, and all others. If you do specify a
form string, it is interpreted in the following way:

w The form string consists of a series of substZings, separated by
blanks.

w The substrings are not case sensitive.

w The order of the subatrings does not matter.

w Some substrings control the file protection settings.

w Some substrings enable special AIX behavior for file opening, for
example opening with no delay and opening a file for append.

v The list of recognized substrings in contained in the section entitled
*Input/Output" in the User's Guide for IBM AIX Ada/6000 (SC09-1321).

Predefined Numeric Types

The current specification of package STANDARD includes:

type SHORTSHORTINTEGER
is range -128 .. 127;

type SHORT3INTEGER
is range -32768 .. 32767;

type INTEGER is
range -2147483648 .. 2147483647;

type FLOAT is
digits 6 range -3.40282E+38 .. 3.40282E+38;

type LONGFLOAT is
digits 15 range
-1.79769313486232E+308 .. 1.79769313486232E+308;

type DURATION is
delta 2**(-14) range -86400.0 .. 86400.0;

SHORT SHORTZNTEGER

'First - -128

'Last - 127

'Size - 8

SHORT INTEGER

'First - -32768

'Last - 32767

OC Sysmms, Inc. - December 19. 1991 21

Pzt-validauim Ovuview RISC Syuzv6OO Ads

'size - 16

INTEGER

'Frt- -2147483648

'Last - 2147483647

'size - 32

FLOAT

'Digits - 6

'EMAx - 84

'Epsilon -9.53674E-07

'Large w 1.93428E+25

'Nachine-Emax - 128

'Machi@.Emifl - -125

'Machine Mantissa - 24

'Kachine.Ovinrf lows = TRUE

',MachineRadix - 2

'Nachine Rounds - TRUE

'M~antissa - 21

'Safe-EUSx - 125

'Safe Large w 4.25353E+37

'Safe-Small - 1.17549E-38

'Size - 32

'Small - 2.58494E-26

LONG FLOAT

'Digits - 15

'Emax - 204

'Epsilon -8.88178419700125E-16

'Large m 2.57110087081438E+61

'Iiachine-Emaz - 1024

OC Syizs Inc. - Deceber 19, 1991 22

PiWVakWM OVWvew RISC SyMm/000 Ada

'Machine _mmn - -1021

'Machine Mantissa - 53

'Machine-Overflows - TRUE

'Machine-Radix - 2

'Machine-Rounds - TRUE

'Mantissa - 51

'Size - 64

'Safe nax - 1021

'SafeLarge - 2.24711641857789E+307

'Safe Small - 2.225073858507203-308

'Small - 1.94469227433161Z-62

DURATION

'Delta - 2**(-14)

'First - -86400.0

'Last - 86400.0

'Machine everflows - FALSE

I'Iachine -Rounds - FALSE

Restrictions on Machine Code Insertions

Machine code insertions are not supported.

Parameters to a Main Subprogram

You can code an Ada/6000 main subprogram to accept parameters, or to return a
value if it is a function. Any parameters to the main subprogram have undefined
values when the program is run: use the subprograms in package COSMAND LINE if
you need to pass information to an Ada program when it is run. The operating
system always ignores any function value it xeturna; use
COMAND LINE. SET RETURN CODE if you need to return a value when the program is
completed.

OC Syunm. Inc. - Deember 19. 1991 23
..... - . um u m m m m m m

