A

—A247 335 INTATION PAGE

Form Approved

OPM No. 0704-0188

g hia burden estimate or any other aapec of his colection of

information, including suggestions
..... ~ 218 Joflerson Davis Highway, Sule 1204, Arington, VA 222024302, and fo the Office of Information and Reguiatory Altairs, Office of

mmn Blank) : 3. REPORT TYPE AND DATES COVERED
Final: 03 Oct 1991 to 01 Jun 1993

searching existing data sources gathering and maintaining the data
for reducing this burden, 1o Washingion

4. TITLE AND SUBTITLE
Validation Summary Report: International Computers Limited, VME Ada Compiler
VA3,00, ICL Series 39 Level 80 (Host & Target), 911003N1.11222

Manchester, UNITED KINGDOM

[6. AUTHOR(S) I , I ' l (:
National Computing Centre Limited K ..

5. FUNDING NUMBERS

United States Department of Defense
Washington, D.C. 20301-3081

" ' 8. PERFORMING ORGANIZATION]
W REPORT NUMBER
g:tgrnda'quomnoad ing Centre Limited c AVE. VSR 9050231
Manchester Ml 7ED
UNITED KINGDOM
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENGY |
Ada Joint Program Office REPORT NUMBER

[77, SUPPLEMENTARY NOTES

[12a. DISTRIBUTION/AVAILABILITY STATEME|
Approved for public release; distribution unlimited.

12b. DISTRIBUTION E

13. ABSTRACT (Maximum 200 words)

ACVC 1.11.

international Computers Limited, VME Ada Compiler VA3,00, Machester Egland, ICL Series 39 Level 80 (Host & Target),

(74, SUBJECT TERMS

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. R T Lo EE—
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIMIL-STD-1815A, AJPO. 16. PRI

17, SECURITY GLASSIFICATION] 18, SECU LASSIFICATION 110 SECURITY CLASSIFICATION] 20. LIMITATION OF ABSTRACT |
OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

15. NUMBER OF PAGES

NSN 7540-01-280-550

Standard Form 298, (Rev. 2-89)
Prescribed by ANSI S\d. 239-128

AVF Control Number: AVF_CONTROL_90502/31-920109

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #911003N1.11222
International Computers Limited
VME Ada Compiler VA3,00
ICL Series 39 Level 80

Prepared By:
Testing Services
The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED
England

Template Version 91-05-08

92 3 05 019

i Acousioa For
| NTTS GRaal

Wk SOl J N 0 }

| Werwmounced 0 I

! Jusnl:icatxon,_“_z

,“W‘

} By

{ _Distitbutieay
B e

Availability co‘g.g
vail asd/er

Speeial .

(=4
fve
[/}
ot

v

-

92-05977
\MMMM\

Validation Susmary Report

Internationsl Computers Limited

AVF_VSR_90502/31
VME Ade Compiler VA3, 00

Certificate Information
The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 3 October 1991.
Compiler Name and Version: VME Ada Compiler VA3,00

Host Computer System: ICL Series 39 Level 80 (under VME with VMEB
Environment Option Version SV291)

Target Computer System: ICL Series 39 Level 80 (under VME with VMEB
Environment Option Version SV291)

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate #911003N1.11222 is awarded to
International Computers Limited. This certificate expires on 1 March 1993.

This report has been reviewed and is approved.

Jon Leigh ”é

Manager, System Software Testing

The National Computing Centre Limited
Oxford Road

Manchester

M1 7ED

England

er and Software Engineering Division
Institute for DeldnSe Analyses

Ada Validation Organization

Alexandria VA 22311

Ik, B Gl

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

Vatidation Summsry Report AVF_VSR_90502/31
Interrational Computers Limited VE Ade Compiler VA3, 00

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Declaration of Conformance

Customer:
Ada Validation Facility:
ACVC Version:

Ada Implementation:

Ada Compiler Name and Version:

Host Computer System:

Target Computer System:

Declaration:

International Computers Limited
National Computing Centre Limited

1.11

VME Ada Compiler VA3,00

ICL Series 39 Level 80 (under VME with VMEB
Environment Option Version SV291)

ICL Series 39 Level 80 (under VME with VMEB
Environment Option Version SV291)

I, the undersigned, declare that I have no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

30l jy

Date '

Validation Summery Report
Internationsl Computers Limited

AVE_VSR_90502/31
VME Ada Compiler VA3,00

TABLE OF CONTENTS

TABLE OF CONTENTS
CHAPTER 1 . . it ittt ittt ittt ieenesanaesanes, 1
INTRODUCTION i i i ittt eteetaaanennneanann, 1
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1
1.2 REFERENCES ittt ittt ineenannn, 1
13 ACVCTESTCLASSESttt ittt iinannnaaaennn, 2
v 1.4 DEFINITIONOFTERMSt iiiiiiiiiiannnennnn, 3
CHAPTER 2 ... i i i sttt ittt i eannanenonnns 1
IMPLEMENTATION DEPENDENCIESttt iiiiiiiiiiiiiraannnnnnn. 1
21 WITHDRAWNTESTS ittt iin e, 1
2.2 INAPPLICABLE TESTSiittiiiiiittinennnernneannss 1
23 TEST MODIFICATIONS ... i ittt i ine e, 4
CHAPTER 3 ... i ittt et i i ittt taaannanssneeaans 1
PROCESSING INFORMATION i i it i ia e eaenan 1
31 TESTING ENVIRONMENT i, 1
32 SUMMARYOFTESTRESULTS, 1
33 TESTEXECUTION it et e 2
APPENDIX A ... i i et e i e et 1
MACRO PARAMETERS i i et iiiian e, 1
APPENDIX B ... i i i i i it e et e 1
COMPILATION SYSTEM OPTIONS i it et e ee 1
APPENDIX € .. i i it it i ittt ettt et 1
APPENDIX FOF THE Ada STANDARD i, 1
Validation Susmary Report AVF_VSR_90502/31
Internationsl Computers Limited Table of Contents - Page 1 of 1 VME Ade Compiler VAS,00

. INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada Validation Procedures
[Pro90] against the Ada Standard [Ada83) using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of this Ada
implementation. For any technical terms used in this report, the reader is referred to [Pro90]. A
detailed description of the ACVC may be found in the current ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and free public disclosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act" (S U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

[Ada83] Reference Manual for t Programming Language
ANSIMIL-STD-1815A, February 1983 and ISO 8652-1987.
[Pro90] Ada Compiler Validation Procedures,

Version 2.1, Ada Joint Program Office, August 1990.

Validation Summery Report AVF_VSR_90502/31
International Computers Limited Chapter 1 - Page 1 of & VME Ads Compiler VA3, 00

- INTRODUCTION

[UG89] Ada Compiler Validation Capability User’s Guide,
21 June 1989.

13 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are executed. Three Ada library units,
the packages REPORT and SPPRT13, and the procedure CHECK_FILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECK_FILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Standard. The operation of REPORT and CHECK_FILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is provided
in Appendix A. In addition to these anticipated test modifications, additional changes may be required
to remove unforeseen conflicts between the tests and implementation-dependent characteristics. The
modifications required for this implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by the AVF. This customization
consists of making the modifications described in the preceding paragraph, removing withdrawn tests
(see section 2.1), and possibly removing some inapplicable tests (see section 2.2 and [UG89)).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite
according to the Ada Standard.

Validation Sumsery Report AVF_VSR_90502/31
International Computers Limited Chapter 1 - Page 2 of & WE Ade Campiler VA3, 00

INTRODUCTION

14 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation Capability
(ACVC)

Ada Implementation

Ada Joint
Office (AJPO)

Program
Ada Validation Facility
(AVF)

Ada Validation
Organization (AVO)

Compliance of an Ada
Implementation

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer System

The software and any needed hardware that have to be added to a given
host and target computer system to allow transformation of Ada
programs into executable form and execution thereof.

The means for testing compliance of Ada implementations, consisting of
the test suite, the support programs, the ACVC user’s guide and the
template for the validation summary report.

An Ada compiler with its host computer system and its target computer
system.

The part of the certification body which provides policy and guidance for
the Ada certification system.

The part of the certification body which carries out the procedures
required to establish the compliance of an Ada implementation.

The part of the certification body that provides technical guidance for
operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and associated
software, that uses common storage for all or part of a program and also
for all or part of the data necessary for the execution of the program;
executes user-written or user-designated programs; performs user-
designated date manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify themselves during
execution. A computer system may be a stand-alone unit or may consist
of several inter-connected units.

Fulfilment of a product, process or service of all requirements specified.

An individual or corporate entity who enters into an agreement with an
AVF which specifies the terms and conditions for AVF services (of any
kind) to be performed.

A formal statement from a customer assuring that conformity is realized
or attainable on the Ada implementation for which validation status is
realized.

A computer system where Ada source programs are transformed into
executable form.

Validation Summary Report

International Comgurters Limited

AVF_VSR_90502/31

Chapter 1 - Page 3 of & VME Ada Compiler VA3, 00

- INTRODUCTION

Inapplicable test

ISO

LRM

Operating System

Target
System

Computer

Validated Ada Compiler

Validated Ada
Implementation

Validation

Withdrawn test

A test that contains one or more test objectives found to be irrelevant for
the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSIMIL-STD-1815A-1983 AND ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that provides
services such as resource allocation, scheduling, input/output control and
data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are possible.

A computer system where the executable form of Ada programs are
executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully either by
AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to the Ada
programming language and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in conformity testing. A test
may be incorrect because it has an invalid test objective, fails to meet its
test objective, or contains erroneous or illegal use of the Ada
programming language.

Validetion Summery Report

international Computers Limited

AVF_VSR_90502/31

Chapter 1 - Page & of 4 VME Ade Compiler VA3, 00

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

21 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for this list of withdrawn tests is 2
August 1991.

E28005C B28006C C32203A C34006D C355081 C35508)
C35508M C35508N C35702A C35702B B41308B C43004A
CAS114A C45346A CAS612A C45612B C45612C C45651A
C46022A B49008A B49008B AT4006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CCl1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A AD1B0OSA BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2AJI1E CD2AS7A CD2B15C
BD3006A BD400SA CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CDS111A CD7004C ED700SD
CD700SE AD7006A CD7006E CD7104B AD7201A AD7201E
ADT206A BD8002A BD8004C CD900SA CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

22 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
implementation. Reasons for a test’s inapplicability may be supported by documents issued by the ISO
and the AJPO known as Ada Commentaries and commonly referenced in the format Al-ddddd. For
this implementation, the following tests were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

C241131..N (6 tests) allow source lines with 134 characters. This implementation does not support
such a length.

The following 159 tests have floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

C241130..Y (11 tests)
C357060..Y (11 tests)
C357080.Y (11 tests)

C357050..Y (11 tests)
C357070..Y (11 tests)
C358020..Z (12 tests)

AVF_VSR_90502/31
VME Ade Compiler VA3, 00

vslidation Summry Report

International Computers Limited Chapter 2 - Page 1 of S

IMPLEMENTATION DEPENDENCIES

CA452410..Y (11 tests) C453210..Y (11 tests)
C454210..Y (11 tests) C455210..Z (12 tests)
C455240..Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

The following 21 tests check for the predefined type SHORT_INTEGER; for this implementation,
there is no such type:

C35404B B3610SC C45231B C45304B C45411B
C45412B C45502B C45503B C45504B CASSO4E
C45611B C45613B C45614B C45631B C45632B
BS2004E CS5B07B BSSB09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER; for this implementation,
there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT; for this implementation, there is no such type.

C45423A..B (2 tests), C45523A, and C45622A check that the proper exception is raised if
MACHINE_OVERFLOWS is TRUE and the results of various floating-point operations lie outside
the range of the base type; for this implementation, MACHINE_OVERFLOWS is FALSE.

B86001Y uses the name of a predefined fixed-point type other than type DURATION; for this
implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the range of type
DURATION; for this implementation, the ranges are the same.

CA2009C and CA2009F are not applicable because the implementation requires that generic unit
bodies be compiled together with their specifications.

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE for procedures and
functions; this implementation does not support pragma INLINE.

CD1009C checks whether a length clause can specify a non-default size for a floating-point type; this
implementation does not support such sizes.

CD2AS4A, CD2AS4E, CD2AS41..J (2 tests), and CD2AS40 use length clauses to specify non-default
sizes for access types; this implemen‘ation does not support such sizes.

CD2B15B checks that STORAGE_ERROR s raised when the storage size specified for a collection
is too small to hold a single value of the designated type; this implementation allocates more space
than was specified by the length clause, as allowed by AI-00558.

Validation Susmery Report AVF_vSR_90502/31
International Computers Limited Chapter 2 - Page 2 of 5 VME Ads Compiler VAS, 00

IMPLEMENTATION DEPENDENCIES

BD8001A, BDS8003A, BD8004A..B (2 tests), and AD8011A use machine code insertions; this
implementation provides no package MACHINE_CODE.

AE2101C and EE2201D.E (2 tests) are instantiations of package SEQUENTIAL_IO with
unconstrained array types and record types with discriminants without defaults; these instantiations
are rejected by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT_IO with unconstrained
array types and record types with discriminants without defaults; these instantiations are rejected by
this compiler.

The tests listed in the following table check that USE_ERROR is raised if the given file operations
are not supported for the given combination of mode and access method; this implementation
supports these operations.

Test File Operation Mode File Access Method
CE2102D CREATE IN_FILE SEQUENTIAL_IO
CE2102E CREATE OUT_FILE SEQUENTIAL_IO
CE2102F CREATE INOUT_FILE DIRECT_IO
CE21021 CREATE IN_FILE DIRECT_IO
CE2102) CREATE OUT_FILE DIRECT_IO
CE2102N OPEN IN_FILE SEQUENTIAL_IO
CE21020 RESET IN_FILE SEQUENTIAL_IO
CE2102P OPEN OUT_FILE SEQUENTIAL_IO
CE2102Q RESET OUT_FILE SEQUENTIAL_IO
CE2102R OPEN INOUT_FILE DIRECT_IO
CE2102S8 RESET INOUT_FILE DIRECT_IO
CE2102T OPEN IN_FILE DIRECT_IO
CE2102U RESET IN_FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIRECT_IO
CE3102E CREATE IN_FILE TEXT_IO
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE eeeeee TEXT_IO
CE31021 CREATE OUT_FILE TEXT_IO
CE3102) OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_IO

The test listed in the following table checks the given file operation for the given combination of
mode and access method; this implementation does not support this operation.

Test File Operation Mode File Access Method
CE2111C RESET OUT_FILE SEQUENTIAL_IO
Vatidation Sumsery Report AVF_VSR_90502/31

Internatiomal Compasters Limited Chapter 2 - Page 3 of 5 WVE Ada Compiler VA3, 00

IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct and text files when multiple internal files
are associated with the same external file and one or more are open for writing: USE_ERROR is
raised when this association is attempted.

CE2107B.E CE2107G.H CE2107L CE2110B CE2110D

CE2111D CE2111H CE3111B CE3111D.E CE3114B
CE3115A

CE2203A checks that WRITE raises USE_ERROR (if the capacity of an external sequential file is
exceeded; this implementation cannot restrict file capacity.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an external direct file is
exceeded; this implementation cannot restrict file capacity.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 63 tests.

The following tests were split into two or more tests because this implementation did not report the
violations of the Ada Standard in the way expected by the original tests.

B2600SA B38003A B29001A B35101A B37106A

B37301B B37302A B38003A B38003B B38009A
B380098B BSSAO1A B61001C B61001F B61001H
B610011 B61001M B61001R B61001W B67001H

B83A07A B83A07B B83A07C B83E01IC B83EO01D
B83EOIE B85001D B85008D B91001A B91002A
B91002B B91002C B91002D B91002E B91002F
B91002G B91002H B91002I B91002) B91002K
B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1101B
BC1109C BC1109D BC1202A BC1202E BC1202F
BC1202G BD2A25A BE2210A BE2413A

C64103A and C95084A were graded passed by Evaluation Modification as directed by the AVO.
Because this implementation’s actual values for LONG_FLOAT'SAFE_LARGE and
SHORT_FLOAT’LAST lie within one (SHORT_FLOAT) model interval of each other, the tests’
floating-point applicability check may evaluate to TRUE and yet the subsequent expected exception
need not be raised. The AVO ruled that the implementation’s behaviour should be graded as passed
because the implementation passed the integer and fixed-point checks; the following
REPORT.FAILED messages were produced after the type conversions at line 198 in C64103A and
lines 101 and 250 in C95084A failed to raise exceptions:

C64103A: "EXCEPTION NOT RAISED AFTER CALL -P2 (B)"

CI5084A: "EXCEPTION NOT RAISED BEFORE CALL - T2 (A)"

Validation Summry Report AVF_VsR_90502/31
International Computers Limited Chapter 2 - Page &4 of 5 VME Ada Compiler VAS,00

|

IMPLEMENTATION DEPENDENCIES

"EXCEPTION NOT RAISED AFTER CALL - TS (B)"

C83030C and C86007A were graded passed by Test Modification as directed by the AVO. These tests
were modified by inserting "PRAGMA ELABORATE (REPORT);" before the package declarations
at lines 13 and 11, respectively. Without the pragma, the packages may be elaborated prior to package
Report’s body, and thus the packages’ calls to function REPORT.IDENT_INT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

Validation Summery Report AVF_VSR_90502/31
Internationsl Computers Limited Chapter 2 - Page 5 of 5 VME Ads Compiler VAS, 00

PROCESSING INFORMATION

CHAPTER 3

PROCESSING INFORMATION

31 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately by the information
given in the initial pages of this report together with the following:

The Memory Size of the Host/Target Configuration is 64 Mbytes.
For technical information about this Ada implementation, contact:

Christine Saunders

International Computers Limited
Eskdale Road

Winnersh

Wokingham

Berkshire

RG11 5TT

Testing of this Ada implementation was conducted at the customer’s site by a validation team from
the AVF.

32 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and ?plicable), a result was obtained that conforms to the Ada
Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories. All tests were
processed, except those that were withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the implementation’s maximum precision (item
e; see section 2.2), and those that depend on the support of a file system -- if none is supported (item

d). All tests passed, except those that are listed in sections 2.1 and 2.2 (counted in items b and f,
below).

a) Total Number of Applicable Tests 3810
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 265

Validation Sumsery Report AVF_VSR_90502/31
Internationsl Computers Limited Chapter 3 - Page 1 of 2 VME Ada Compiler VA3, 00

PROCESSING INFORMATION

d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point Precision Tests 0
) Total Number of Inapplicable Tests 265 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

33 TEST EXECUTION

A set of magnetic tapes containing the customized test suite (see section 1.3) was taken on-site by
the validation team for processing. The contents of the magnetic tapes were loaded directly onto the
host computer.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

Testing was performed using command scripts provided by the customer and reviewed by the
validation team. See Appendix B for a complete listing of the processing options for this
implementation. It also indicates the default options. The options invoked explicitly for validation
testing during this test were:

INPUT
SUBLIBRARY
SAVELIST
SOURCESAVE

(explanations of the above are given in Appendix B).

Test output, compiler and linker listings, and job logs were captured on magentic tape and archived
at the AVF. The listings examined on-site by the validation team were also archived.

Validation Summery Report AVF_VSR_90502/31
International Computers Limited Chapter 3 - Page 2 of 2 VME Ade Compiler VA3, 00

MACRO PARAMETERS

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The meaning and
purpose of these parameters are explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms of the maximum input-line length,
which is the value for SMAX_IN_LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX_IN_LEN 126

$BIG_ID1 1.V-1 => A",V =>"1)

$BIG_ID2 (1.V-1 => A",V =>2)

$BIG_ID3 (1.V2 =>"A) &3 & (1..V-1-V/2 => ’A’)
$BIG_ID4 (1.VR2 =>'A) & '4 & (1.V-1-V2 => 'A’)
$BIG_INT_LIT (1.V-3 =>'0") & "298"

$BIG_REAL _LIT (1.V-5 => ’0") & "690.0"

$BIG_STRING1 & (L.V2=>"A)&™

$BIG_STRING2 " & (1V-1-V2=>"A) &1’ &™
$BLANKS (1.V-20 =>"")

$MAX_LEN_INT_BASED_LITERAL
" & (1.V-§ => 0°) & "11"

$MAX_LEN_REAL_BASED_LITERAL
"16" & (1.V-7 => '0’) & "FE:"

$SMAX_STRING_LITERAL & (1L.V2=>"A)&™

The following table lists all of the other macro parameters and their respective values.

Validetion Susmsry Report AVF_VSR_90502/31
International Computers Limited Apperdix A - Page 1 of & VME Ada Compiler VA3, 00

MACRO PARAMETERS

Macro Parameter Macro Value
$ACC_SIZE 32
SALIGNMENT 4
$COUNT_LAST 131070

$DEFAULT_MEM_SIZE
$DEFAULT_STOR_UNIT
$DEFAULT_SYS_NAME
$DELTA_DOC
$SENTRY_ADDRESS
SENTRY_ADDRESS1
$SENTRY_ADDRESS2
SFIELD_LAST
$FILE_TERMINATOR
SFIXED_NAME
SFLOAT_NAME
$FORM_STRING

$FORM_STRING2

$GREATER_THAN_DURATION

16#FFFF_FFFF#
8

VME_2900
2#1.0#E-63
ENT’ADDRESS
ENTI’ADDRESS
ENT2’ADDRESS
67
NO_SUCH_TYPE
NO_SUCH_TYPE
"CANNOT_RESTRICT_FILE_CAPACITY"

75000.0

SGREATER_THAN_DURATION_BASE_LAST

2#1.0#EA4

SGREATER_THAN_FLOAT_BASE_LAST

8.0E+75

$GREATER_THAN_FLOAT_SAFE_LARGE

16#0.FFFF_FFFF_FFFF_FO#E63

SGREATER_THAN_SHORT_FLOAT_SAFE_LARGE

16#0.FFFF_FC#E63

Validation Susmary Report

International Computers Limited

Appendix A - Page 2 of &

AVE_VSR_90502/31
VME Ade Compiler VA3,00

MACRO PARAMETERS

$HIGH_PRIORITY 63

SILLEGAL_EXTERNAL_FILE_NAME1
<NOT-A-VME-FILENAME >

SILLEGAL_EXTERNAL_FILE_NAME2
[ANOTHER-BAD-VME-FILENAME]

$INAPPROPRIATE_LINE_LENGTH 4096

SINAPPROPRIATE_PAGE_LENGTH
-1

$INCLUDE_PRAGMAL1 PRAGMA INCLUDE ("A28006D1.ADA")
SINCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006D1.ADA")
SINTEGER_FIRST -2147483648
$INTEGER_LAST 2147483647
SINTEGER_LAST_PLUS 1 2147483648
SINTERFACE_LANGUAGE 3
SLESS_THAN_DURATION ~75000.0
$LESS_ THAN_DURATION_BASE_FIRST
-2#1.0#EAS
SLINE_TERMINATOR "
SLOW_PRIORITY 0

SMACHINE_CODE_STATEMENT NULL;

$SMACHINE_CODE_TYPE NO_SUCH_TYPE

$MANTISSA_DOC 63

$MAX_DIGITS 18

SMAX_INT 9223372036854775807

$MAX_INT_PLUS_1 9223372036854775808

$MIN_INT -9223372036854775808

Validation Summsry Report AVF_VSR_90502/31

International Computers Limited Appendix A - Page 3 of 4 VIE Ade Compiler VA3, 00

MACRO PARAMETERS

SNAME

SNAME_LIST
$NAME_SPECIFICATION1
SNAME_SPECIFICATION2
$SNAME_SPECIFICATION3
$NEG_BASED_INT
SNEW_MEM_SIZE
$NEW_STOR_UNIT
SNEW_SYS_NAME
SPAGE_TERMINATOR
SRECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
$TICK
$VARIABLE_ADDRESS
$VARIABLE_ADDRESS1
$VARIABLE_ADDRESS2

$YOUR_PRAGMA

NO_SUCH_TYPE_AVAILABLE
VME_2900
:ADAVAL.X2120A(1,* 1)
:ADAVAL.X2120B(1,*,1)
:ADAVAL.X3119A(1,%,1)
16#FFFF_FFFF_FFFF_FFFE#
16#FFFF_FFFF#

8

VME_2900

ASCILFF

NEW INTEGER;
NO_SUCH_MACHINE_CODE_TYPE
32

8192

0.000002

VAR’ADDRESS
VARI’ADDRESS
VAR2’ADDRESS

INTERFACE_SPELLING

Validation Susmery Report

International Computers Limited

Appendix A - Page & of 4

AVF_VSR_90502/31
VME Ads Compiler VA3, 00

COMPILATION SYSTEM OPTIONS

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report.

Validetion Susmery Report AVF_VSR_90502/31
International Computers Limited Appendix B - Page 1 of 2 VME Ada Compiler VA3,00

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 1
SYSTEMS UNIT Page: 76 of 114
D3 ADA_COMPILE
ADA
Summary

The ADA_COMPILE command is used to compile one or more Ada
compilation units.

ADA_COMPILE (

Parameter details

Keyword
INPUT

SUBLIBRARY

€literale INPUT,
@literale@ SUBLIBRARY :="",
@literaleg SAVELIST s="",
@superliteral@ LISTINGS :=SOURCE,
@literale@ CONFIG s="",
€literaleg TEST s="",
ébooleang PROGRESS :=FALSE,
@inte@ UNIT_ID =1,
ébooleand SOURCESAVE :=TRUE,
@literalé@ SUPPRESS_CHECKS -—"NO'
@superliterald OPTIMISE s="",
@booleant DEBUG :=FALSE,
éresponse@ RESPONSE :=RESULT)
Use, options and effect Default
Name of file (in any VME format) Mandatory
containing the input to the compiler.
The file may hold one or more
compilation units.
Must not be *STDAD.
Specifies the current sublibrary and Null

thereby also the current library which

consists of the current

sublibrary and

its ancestor sublibraries (see Section
2.1). The name may be up to 16
characters.

If the parameter is defaulted the
sublibrary designated by the Jsv
ICL9ADA2SUBLIBRARY is used as the

current sublibrary.

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 1
SYSTEMS UNIT Page: 77 of 114

SAVELIST Name of permanent VME file to hold the Null
compilation 1listing. This must not be
greater than 38 characters.

Alternatively the name of a library
followed by a full stop may be
specified. In this case the filename is
the terminal part of the input file name
and the complete name must not be
greater than 38 characters.

If absent, a temporary file is created,
the name of which is the source file
terminal name prefixed by "ICLYADA2LF".
This means that the source file terminal
name must not be greater than 22 chars.

LISTINGS Listings required: SOURCE
SOURCE, OBJECT, XREF.

A value of "NONE" will suppress the
compilation listing.

CONFIG Name of VME file holding configuration Null
information (see 4.4).

If absent a standard configuration file
is used.

TEST Literal controlling production of Null
diagnostic listings and conditional
compilation. This parameter should only
be used at the request of the Ada
Development Unit.

PROGRESS Boolean controlling the issue of FALSE

progress messages.
A value of TRUE will cause messages to
be generated on the user’s terminal as
the passes are entered.

UNIT_ID Integer controlling the unit number of -1

the compiled program unit. (See 2.4.2.)

If the compilation contains more than
one program unit, UNIT_ID applies only
to the first.

Of use when incorporating non-Ada Code.
The default value of -1 causes the

compiler to select a suitable unit
number.

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 1
SYSTEMS UNIT Page: 78 of 114

SOURCESAVE A value of TRUE will cause the source TRUE
text of the compilation unit to be
stored in the program library. If the
source text file has several compilation
units the source text for each
compilation unit will be stored.

The source is not stored if there is an
error in the compilation unit.

The source texts stored in the library
can be extracted (or inspected) using
the Program Library Utility.

A value of FALSE means that the source
is not stored in the library.

SUPPRESS _ A value of "NO" will cause code tao be "NO*
CHECKS generated to do the checking described
in the LRM.

A value of "YES" pecifies that no
checking should be performed at run

time.
OPTIMISE This parameter has no effect. Null
DEBUG A value of TRUE will cause information FALSE

to be generated for the debugger.

A value of FALSE specifies that no such
information should be generated.

RESPONSE Specifies the name of a JSV which will RESULT
contain the result of the command call.

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to linker documentation
and not to this report.

Val idation Summry Report AVF_VSR_90502/31
Internationel Computers Limited Appendix B - Page 2 of 2 WE Ada Compiler VA3, 00

ICL
SECURE
SYSTEMS

ADA
DEVELOPMENT
UNIT

Ref: ADAADM.VA3.4

1

Page: 79 of 114

D4 ADA_LINK

Summary

ADA_LINK is invoked to produce an executable program from the

current program library.

ADA_LINK (

€literale MAINUNIT,
@literale SUBLIBRARY
@literale COLLECTLIB,
@literale TAG,
€literaleg SAVELIST
€booleant DEBUG
€literal@ DETAILS
@literaléd EXTRACOMMANDS
éinteger@ TEST
€response@ RESPONSE

Parameter details

Keyword
MAINUNIT

SUBLIBRARY

COLLECTLIB

Use,options and effect

Specifies the main program which must be
a library unit of the current library,
but not necessarily of the current
sublibrary.

Specifies the current sublibrary and
thereby also the current library which
consists of the current sublibrary and
its ancestor sublibraries (see Section

2.1). The name may be up to 16
characters.

If the parameter 1is defaulted the
sublibrary designated by the JSvV

ICL9ADA2SUBLIBRARY is
current sublibrary.

used as the

Specifies the name of the OMF library in
which the Ada program will be stored.
The filename used will be:

<main program name>MOD
with an entry name of:

<main program name>.

Default

Mandatory

Null

Mandatory

ICL ADA Ref: ADAADM.VA3.4

SECURE DEVELOPMENT Issue: 1
SYSTEMS ONIT Page: 80 of 114
TAG This parameter is used to form the names Main

of both the OMF library to be created to program
hold the Ada modules required for the name

name (ICLY9ADA20OMF<tag>) and the
Collector’s command file
(ICL9ADA20PT<tag>). After successful
collection these are deleted. They

remain only if the collection fails or
is not attempted.

SAVELIST Specifies the name of the file to hold Null
the information produced by the linker
(see section 5.2).

If absent and provided the DETAILS or
TEST parameter is used a file
"ICL9ADA2LINKLOG" will be used and
automatically listed, and deleted.

Output from the Collector is sent to a
separate workfile which is deleted
unless a failure occurs.

DEBUG A value of TRUE will cause information FALSE
to be generated for the debugger.

A value of FALSE specifies that no such
information should be generated.

DETAILS Specifies the amount of information the "N"
linker will output on the optional log
file.

By default only error messages and a
short summary are output. With DETAILS
= "Y", "y" or any string starting with
these characters more information from
the linking process is output.

A more precise description of the output
is found in Section §5.2.

EXTRACOMMANDS Specifies a file containing minor Null
commands which will be added to the
command file supplied to the Collector.

TEST This parameter should only be used as 0
advised by the Ada Development Unit.

RESPONSE Specifies the name of a JSV which will RESULT
contain the result of the command call.

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The implementation-dependent characteristics
of this Ada implementation, as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to compiler documentation and not to

this report. Implementation-specific portions of the package STANDARD are presented on the
following three pages.

Validation Summery Report AVF_VSR_90502/31
Internationsl Computers Limited Apperdix C - Pege 1 of 1 WME Ada Compiler VAS, 00

ICL
SECURE
SYSTEMS

ADA Ref: ADAADM.VA3.4
DEVELOPMENT Issue: 3
UNIT Page: 96 of 118

APPENDIX F Implementation Dependent Characteristiﬁs

Fl

The following sections describe the implementation
dependent characteristics of the compiler.

Sections F2 onwards address the topics given in the
Appendix F of the Ada Language Reference Manual (ANSI/
MIL-STD-1815A), except for topic (5), which is prot
relevant since implementation- generated names for

implementation-dependent components are supported by this
compiler.

Predefined Types

This section describes the implementation-dependent
predefined types declared in the predefined package

STANDARD (cf. (LRM] Annex C), and the relevant attributes
of these types.

Integer Types

Two predefined integer types are implemented, INTEGER and
LONG_INTEGER.

They have the following attributes:

INTEGER'FIRST = -2_147_483_648
INTEGER'LAST = 27147_483_647
INTEGER' SIZE = 32

LONG_INTEGER'FIRST = -16:8000_0000_0000_0000:
LONG_INTEGER'LAST = 16:7FFF_FFFF_FFFF_FFFF:
LONG_INTEGER'SIZE = 64

Floating Point Types

Three predefined floating point types are supported,
SHORT_FLOAT, FLOAT and LONG_FLOAT.

They have the following attributes:
SHORT_FLOAT'DIGITS

SHORT_FLOAT'’FIRST
SHORT_FLOAT ‘' LAST

6
-16:0.FPFFF_FF:E63
1610.FFFF_FF:E63

SHORT_FLOAT'‘'MACHINE_OVERFLOWS

SHORT_FLOAT'’SIZE = 32
SHORT_FLOAT'’SAFE_SMALL = 2:1.0:BE-253
SHORT_FLOAT ' SAFE_LARGE = 16:0.FFFF_F8:E63
SHORT_FLOAT '’ SAFE_EMAX = 252
SHORT_FLOAT'MACHINE_RADIX = 16
SHORT_FLOAT'MACHINE_MANTISSA = 6
SHORT_FLOAT‘MACHINE_EMAX = 63
SHORT_FLOAT'MACHINE_EMIN = -64

SHORT _FLOAT‘'MACHINE_ROUNDS = FALSE

FALSE

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 3

SYSTEMS UNIT Page: 97 of 118

FLOAT'DIGITS = 15

FLOAT'FIRST = -16:0.FFFF_FFFF_FFFF_FF:E63
FLOAT' LAST = 16:0.FFFF_FFFF_FFFF_FF:E63
FLOAT'SIZE = 64

FLOAT ' SAFE_SMALL = 2:1.0:E-253

FLOAT' SAFE_LARGE = 16:0.FFFF_FFFF_FFFF_E0:E63
FLOAT ' SAFE_EMAX = 252

FLOAT‘MACHINE_RADIX = 16

FLOAT'MACHINE_MANTISSA = 14

FLOAT‘MACHINE_EMAX = 63

FLOAT‘MACHINE_EMIN = ~64

FLOAT'MACHINE_ROUNDS = PALSE
FLOAT'MACHINE_OVERFLOWS = FALSE

LONG_FLOAT ' DIGITS = 18

LONG_FLOAT ' FIRST =

-16:0.FFFF_FFFF FFFF _FFFF_FFFF_FFFF_FFFF:E63
LONG_FLOAT'’LAST

16:0.FFFF_FFFF PFPF _FFFF_FFFF_FFFF_FFFF:E63
LONG_FLOAT'SIZE = 128
LONG_FLOAT’SAFE_SMALL = 2:1.0:E-253
LONG__ _PLOAT'’ SAPE LARGE

16:0.FFFF_FFFF_ FFFP _FFF8_0000_0000_0000:E63
LONG_FLOAT'SAFE__ EMAX = 252

LONG_FLOAT ‘' MACHINE_RADIX = 16
LONG_FLOAT'MACHINE_MANTISSA = 28
LONG_FLOAT ' MACHINE_ = 63
LONG_FLOAT ' MACHINE_EMIN = -64
LONG_FLOAT'MACHINE_ROUNDS = FALSE
LONG_FLOAT‘'MACHINE_OVERFLOWS = FALSE

FPixed Point 8

Two kinds of anonymous fixed point types are supported;
FIXED and LONG_FIXED occupying 32 and 64 bits
respectively with the characteristics:

FIXED'’PIRST = -2 147_483_648
FIXED'LAST = 2_147 483 — 647
FIXED'SIZE = 327
PIXED'MACHINE ROUNDS = FALSE
PIXED'MACHINE _OVERFLOWS = TRUE

LONG_FIXED'’FIRST

B -16:8000_0000_0000_0000:
LONG_PIXED'LAST

163 7FFP_ PPFP PFFP _FFFPF:

LONG_PFIXED’SIZE 64
LONG_FIXED’MACHINE_ROUNDS FALSE
LONG_FIXED’MACHINE_OVERFLOWS = TRUE

The DURATION

The predefined fixed point type DURATION is supported and
has the following attributes:

DURATION'FIRST = =2:1.0:E44

DURATION’LAST = 16:0FPFF_FFFF_FFFF.FFFFE:
DURATION'DELTA = 2.0E-6

DURATION'’SAFE_LARGE

. DURATION’LARGE
DURATION'SAFE_SMALL

DURATION'SMALL

ADA N VA3.4
DEVRLOPMENT Issue: 3
SYSTEMS UMIT Page: 98 of 118
DURATION'’SMALL = 2:1.0:E-19
DURATION’SMALL_ POWER = -19
DURATION'SIZE = 64
DURATION’MACHINE_ROUNDS = FALSE
DURATION’'MACHINE_OVERFLOWS = TRUE
DURATION'’LARGE = DURATION'LAST
DURATION’FORE = 15
DURATION'AFT = 6
DURATION‘MANTISSA = 63

F2 Pragmas
F2.1 Lanquage Defined Pragmas

This section 1lists all language defined pragmas and any
restrictions on their use and effect as compared to the
explanation given in the [LRM). Pragmas which are
innapropriate to the compiler are described as “Not
applicable".
Pragma CONTROLLED
Not applicable.
Pragma ELABORATE
As in the [LRM].
Pragma INLINE
Not applicable.
Pragma INTERFACE
Supported for S3 (see section 7.3).
Pragma LIST

- As in the [LRM].
Pragma MEMORY SIZE
Not supported, cf. SYSTEM_ NAME
Pragma OPTIMIZE

Not applicable.

g W, N LT T e

SECURE
SYSTEMS

ADA Rel: ADAADN.VAJ.4
DEVELOPMENT Issue: 3

UNIT Page: 99 of 118

Pragma PACK

In the absence of any other representation clauses on the

type, the effect of pragma PACK on a composite type will
be:

For arrays

a) BOOLEAN and other bit-sized elements will be packed
one per bit.

b) other integer, fixed and enumeration types will be
packed as tightly as possible (using their minimum
sizes) with the proviso that no byte contains more
than one element.

c) floating point, access and task types occupy their
predefined sizes ’

d) array and record elements occupy their already
calculated sizes, ie packed if requested on the

component type, or obeying any other size
specifications on the component type.

For records
a) inter-component gaps will be less than a byte.

b) BOOLEAN and other bit-sized components will be
packed one per bit.

c) other integer, fixed and enumeration types will be
packed as tightly as possible (using their minimum
sizes) with the proviso that no byte contains more
than one component.

d) floating-point, access and task types occupy their
pre-defined sizes.

e) array and record elements occupy their already
calculated sizes, ie packed if requested on the

component type, or obeying any other size
specifications on the component type.

If the user wants any tighter packing, this should be
done by the use of other representation clauses.

If the recoxrd also has a rep clause, fields not
mentioned in the rep clause will be allocated
according to the above rules.

Pragma PAGE

As in the [LRM].

DEVELOPMENT Issue: 3
UNIT Page: 100 of 118

F2.2

Pragaa PRIORITY
Not applicable.
Pragma SHARED

Not applicable.
Pragma STORAGE UNIT
Has no effect.
Pragma SUPPRESS

The implementation only supports the following form of
the pragma:

pragma SUPPRESS (identifier);
where identifier ia as defined in [LRM] section 11.7.
i.e., it is not possible to restrict the omission of a
certain check to a specified name.
Pragma SYSTEM NAMR

Not supported. The only meaningful SYSTEM NAME is
VME_2900 when using the VME Ada Compiler.

Implementation Defined Pragmas

The following implementation defined pragmas are
supported:

Pragma INTERFACE_SPELLING
The permitted syntax is as follows:

pragma INTERFACE_SPELLING (name, "S3-name");
This is used in conjunction with pragma INTERFACE(S3) and
indicates that no body exists for the Ada subprogram name
and an 83 procedure S3-name will be expected by the
linker.
The use of pragma INTERFACE_SPELLING will also ensure
that the S3 name is a valid S3 external name (i.e. less
than or equal to 32 alphanumeric characters, of which the
first is alphabetic and all are upper case).
Pragma MAIN
The permitted syntax is as follows:

pragma MAIN (name);

Indicates to the System Linker that the library
subprogxam name is a main program. (see also section 5.3)

T —

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 3

SYSTEMS UNIT Page: 101 of 118

Pragma COMMON
The permitted syntax is as follows:

pragma COMMON (name, omf-name);
Indicates to the System Linker that the library unit name
is to be a "visible” name in the OMF module omf-name, and
can therefore be referenced from any program forming part
of the "system". (see also section 5.3)
Pragma BASE
The permitted syntax is as follows:

pragma BASE (name);
This is used to extend a system definition, and name is
the package containing the system definition or extended
system definition to be extended. (see also section 5.3)

F3 Attributes

The following implementation defined attributes are
provided:

P'DESCRIPTOR for a prefix P that denotes an object:

Yields the VME descriptor to the object.
The value of this attribute is of the type
DESCRIPTOR defined in the package SYSTEM.

The type/bound word of the descriptor has
the following format:

for INTEGER, FIXED, SHORT_FLOAT, TASK,
ACCESS, ENUMERATION (including BOOLEAN and
CHARACTER): type = word; bound = 1

for LONG_INTEGER, LONG_FIXED, FLOAT: type
= long word; bound = 1

for LONG_FLOAT: type = long 1long word;
bound = 1

for records: type = string (not byte-
vector); bound = size of record in bytes

for unpacked arrays of records: type =
string; bound = record size in bytes *
total number of elements

for unpacked arrays of unconstrained
records: type = string; bound = (record
size in bytes + size of red tape in bytes)
* total number of elements

ICL . 8 VKT,
SECURE DEVELOPMENT Issue: 3)
SYSTEMS UMIT Page: 102 of 118

for other unpacked arrays: as above
depending on element type; bound = total
number of elements

for packed arrays of BOOLEAN: type = bit;
bound = total number of elements

for packed arrays of CHARACTER (e.g.
STRING): type = byte; bound = total number
of elements.

P'FULL_ADDRESS for a prefix P that denotes an object:

P‘FULL_SIZE

This attribute is the same as the
predefined attribute 'ADDRESS except for
objects (not parameters) which are
unconstrained discriminated records, in
which case this attribute yields the
address of the first storage unit of the
red tape area which precedes the actual
record data.

for a prefix P that denotes an object:

This attribute is the same as the
predefined attribute ‘SIZE except for
objects which are unconstrained
discriminated records, in which case this
attribute yields the total size of the
record including the red tape area which
precedes the actual record data.

for a prefix P that denotes a type:

This attribute yields the same value as the
attribute when applied to an object of that

type.

P'EBCDIC_IMAGE for a prefix P that denotes a discrete

type or subtype:

The attribute is the same as the predefined
attribute ‘'IMAGE except that the result
type is the type STRING declared in package
EBCDIC.

P'EBCDIC_VALUE for a prefix P that denotes a discrete

type or subtype:

The attribute is the same as the predefined
attribute ‘VALUE except that the actual
parameter must be a value of the type
STRING declared in package EBCDIC.

ICL ADA Ref: ADAADM.VA3.4

SECURE DEVELOPMENT Issue: 3
SYSTEMS ONIT Page: 103 of 118
F4 Packages in Root Sublibrary

F4.1 Package SYSTEM

Package SYSTEM is

type ADDRESS is new INTEGER;

" subtype DESCRIPTOR is LONG_INTEGER;
type RESPONSE is new INTEGER;
subtype PRIORITY is INTEGER range 0..63;

type NAME is (VME_2900);

SYSTEM_NAME: constant NAME := VME_2900;
STORAGE_UNIT: constant = 8;

MEMORY_SIZE: constant s= 2:1:E32 - 1;
MIN_INT: constant := -16:8000_0000_0000_0000:;
MAX INT: constant := 16:7FFF_FFFF_FFFF_FFFF:;
MAX DIGITS: constant :1= 18;

MAX MANTISSA: constant t= 63;

FINE_DELTA: constant t= 2:1.0:E-63;

TICK: constant := 0.000_002;

type INTERFACE_LANGUAGE is (S3);
end SYSTEM;

The definitions of ADDRESS and DESCRIPTOR are liable to
change in future releases and for forward compatibility
should be treated as if they were private types.

F4.2 Package EBCDIC

A following package for the purpose of manipulating
textual data held in EBCDIC format is provided:

package EBCDIC is

type CHARACTER is

(NUL, SOH, STX, ETX, EO4, HT, E06, DEL,
B08, B09, BOA, Vr, FFP, CR, SO, SI,
DLE, DC1l, DC2, DC3, El14, NL, BS, El17,
CAN, EM, ElA, E1B, PS, GS, RS, US,
MS, MNL, VP, B23, E24, LF, ETB, ESC,
BE28, B29, BE2A, E2B, E2C, ENQ, ACK, BEL,
B30, B31, SYN, E33, E34, B35, E36, EOT,
E38, E39, B3A, B3B, DC4,
* ¢, E41, E42, BE43, E44, E4S, E46, E47,
E48, EB49, '[’, '. . ’
's’, BS1, BE52, ES3, ES54, E5S5, ES56, ES7,
ES8, B59, ']1’', ’'$’', '*’, i R A
-, */*, E62, E63, EG4, E65, E66, E67,
E68, B69, ‘|’, ‘,’,
E70, E71, E72, B73, E74, E?75, E76, E77,
878' l\" '31' 'ﬁ', 'ec' nc" "n' :wa'
380, la" lbo' 'C', 'dl, 'e" lf" 'g"
‘h’, ‘i’, EBA, E8B, ESC, EBD, ESE, ESF,
890' cjl' lkl' 010' 'm', InI’ lol' vpl'

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 3
SYSTEMS UNIT Page: 104 of 118
‘q’, 'r’, E9A, E9B, E9C, E9D, E9E, E9IF,
EAO, ?~y lsl' ltl' lu" lvl’ lwl’ lxl'
‘'y’'s '2’, EAA, EAB, EAC, EAD, EAE, EAF,
EBO, EBl1l, EB2, EB3, EB4, EBS, EB6, EB7,
EB8, EBY9, EBA, EBB, EBC, EBD, EBE, EBF,
l{l' IAI' IBO' 4 o4 'D', 131’ ‘P’ 'G"
‘H’, '1’, ECA, ECB, ECC, ECD, ECE, ECF,
u)c' IJI' lKI' 'L', cuc' 'N', lOl' vpn'
‘Q’, '‘R‘’, EDA, EDB, EDC, EDD, EDE, EDF,
c\c’ Egl' vsl’ 'T" 'U" vvl’ W’ 'xv'
‘'Y’, 'Zz’, EEA, EEB, EEC, EED, EEE, EEF,
lO' 011’ 020’ 031’ '40' 15" 161 p70,
‘8’, '9’, EFA, EFB, EFC, EFD, EFE, EFF);
L_Bracket : constant CHARACTER := '[’;
Exclam ¢ constant CHARACTER := '!’;
Ampersand : constant CHARACTER := ‘&’;
R_Bracket : constant CHARACTER := ‘]’;
Dollar ¢ constant CHARACTER := ‘S$’;
Semicolon : constant CHARACTER := ’';’;
Circumflex : constant CHARACTER := ‘“~’;
Bar : constant CHARACTER := '|‘;
Percent ¢ constant CHARACTER := ’‘%‘;
Underline : constant CHARACTER := ' ’‘;
Query t constant CHARACTER := ’'?’;
Grave ¢ constant CHARACTER := ’'*‘;
Colon ¢ constant CHARACTER := ‘:’;
Pound ¢ constant CHARACTER := ‘£’';
At_Sign : constant CHARACTER := '@’;
Quotation : constant CHARACTER := '"’;
Tilde ¢t constant CHARACTER := '~';
L_Brace 3 constant CHARACTER := '{’;
R_Brace : constant CHARACTER := '}’;
Back_Slash : constant CHARACTER := '{';
FEO : constant CHARACTER := BS; -- Back Space
FE1l : constant CHARACTER := HT; -- Horizontal
Tabulate
FE2 : constant CHARACTER := LF; -- Line Peed
PE3 : constant CHARACTER := VT; -- Vertical Tabulate
FE4 : constant CHARACTER := FF; -- Form Feed
FE5 : constant CHARACTER := CR; -- Carriage Return
IS1 : constant CHARACTER := US; -- Unit Separator;
IS2 : constant CHARACTER := ;s =-- Record Separator
IS3 : constant CHARACTER := ; == Group Separator
IS4 : constant CHARACTER := FS; -- File Separator
TC1l : constant CHARACTER := SOH; -- Start of Heading
TC2 : constant CHARACTER := STX; -- Start of Text
TC3 : constant CHARACTER := ETX; -- End of Text
TC4 : constant CHARACTER := EOT; -- End of
Transmission
TCS : constant CHARACTER := ENQ; -- ENQuiry
TC6 : constant CHARACTER := ;s -=- Acknowledge
TC? : constant CHARACTER := DLE; -- Data Link Escape
T™C8 : constant CHARACTER := : -- Negative

IR ERREmmm—————]

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 3
SYSTEMS UNIT Page: 105 of 118
Acknowledge
TC10 : constant CHARACTER := ETB; -- End of
Transmission Block
type STRING is array(POSITIVE range <>) of CHARACTER;
pragma PACK(STRING);
-- function "=" (Left, Right : STRING) return Boolean;
-- function "/=" (Left, Right : STRING) return Boolean:
-- function "<* (Left, Right : STRING) return Boolean;
-- function "<=" (Left, Right : STRING) return Boolean;
-~ function ">" (Left, Right : STRING) return Boolean;
-~ function ">=" (Left, Right : STRING) return Boolean;
-- function "&"(Left : STRING;
- Right : STRING) return STRING;
-~ function "&"(Left : CHARACTER;
-— Right : STRING) return STRING;
-- function "&"(Left : STRING;
- Right : CHARACTER) return STRING;
-- function "&"(Left : CHARACTER;
- Right : CHARACTER) return STRING;
end EBCDIC;
F4.3 VME Interface Package

The VME_IF package is provided to permit Ada programs to
read and write Job Space Variables, to read the real
time clock and to determine the full hierarchic name of

local names.

This package uses VME Compiler Target Machine (CTM)
procedures and while it is intended that the following
descriptions should be sufficient for most purposes
the CTM Manual [CTM] may be consulted for further
details.

F4.3.1 The Ada Specification of the Package

package VME_IF is

type VME_NUMERIC_TIME is

record
YEAR,

MONTH,

DAY,
HOUR,

MINUTE,
SECOND,
MSEC_10 : INTEGER;
end record;

1CL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 3
SYSTEMS UNIT Page: 106 of 118

-- MSEC_10 is in 100ths of a second.
subtype VME_RESULT is INTEGER;

-- ZOro - success.

-- 30461 - the JSV does not exist.

-=. =9105 - value too small, value truncated.

-= =9110 - the JSV was created (so will not be visible

- on return from the Ada program).
-= =9112 - string too short, name truncated.

subtype VME_TIME is LONG_INTEGER;

procedure VME_NUMTIM NOW (TIME : out VME_NUMERIC_TIME;
RES : out VME_RESULT);

-- TIME - the current date and time.
-- RES - always zero.

procedure VME_CPUTIME (TIME : out VME_TIME;
RES : out VME_RESULT);

-- TIME - the process time in microseconds
-=- RES - always zero.

procedure VME_WAIT_TIME (TIME : in INTEGER;
RES : out VME_RESULT);

-- TIME - the delay time in milliseconds (N.B. the delay
-- will be at least TIME).
-- RES - zero, indicating that the delay has occurred.

procedure VME_GIVE_NAME (LOCAL : in STRING;
FULL : out STRING;
LEN : out INTEGER;
RES : out VME_RESULT);

-- LOCAL - specifies the LOCAL name.
-=- FULL - the corresponding full hierarchic name.
-- LEN =~ the length of the name in the string FULL.
-= RES - zero or -9112.
procedure VME_READ STRING (NAME : in STRING;

VALUE : out STRING;

LEN t$ out INTEGER;

RES 1 out VME_RESULT);
-=- NAME - name of JSV.
-=- VALUE - contents of JSV in upper case.
-- LEN - the length of the contents in string VALUE.
-- RES =~ zero, -9105 or 30461.

procedure VME_READ BOOL (NAME : in STRING;
VALUE : out BOOLEAN;
RES ¢ out VME_RESULT);

ICL AUA REIYT ADARDN.VA3. &

SECURE DEVELOPMENT Issue: 3
SYSTEMS UNIT Page: 107 of 118

-- NAME - name of JSV.
-= VALUE - value of JSV.
-- RES - zero or 30461.

procedure VME_READ_INT (NAME
VALUE
RES

in STRING;
out LONG_INTEGER;
out VME_RESULT);

-- NAME - name of JSV.
-= VALUE - value of JSV.
-= RES - zexo or 30461.

procedure VME_WRITE_STRING (NAME : in STRING;
VALUE : in STRING;
RES : out VME_RESULT);

-= NAME - name of JSV.
-= VALUB - value to be written to JSV.
-= RES - zero or -9110.

procedure VME_WRITE_BOOL (NAME : in STRING;
VALUE : in BOOLEAN;
RES ¢ out VME_RESULT);

-=- NAME - name of JSV.
-« VALUE - value to be written to JSV.
-= RES - zero or -=-9110.

procedure VME_WRITE_INT (NAME : in STRING;
VALUE : in LONG_INTEGER;
RES : out VME_RESULT);

-=- NAME - name of JSV.
-= VALUE - value to be written to JSV.
-- RES - gzero or -9110.

procedure VME_READ_STRING_KEEP_CASE
(NAME : in STRING;
VALUE : out STRING;
LEN : out INTEGER;
- RES : out VME_RESULT);

name of JSV.

contents of JSV.

the length of the contents in string VALUE.
zero, -9105 or 30461.

B

end VME_IF;
P4.3.2 Using The Interface Procedures

All of these procedures return a VME RESPONSE value (in
parameter RES) which should be tested for zero or any of
the specific values indicated above; other positive
values indicate that a VME error has occurred; other
negative values indicate that a VME warning has occurred.

SECURE DEVELOPMENT Iasue: 3
SYSTEMS UNIT Page: 108 of 118

JSV Procedures

Job Space Variables can be used to pass information into
an Ada program and to return results. Since an Ada
program is bracketed by a BEGIN and END it is important
to realise that any output JSV’'s need to be declared in
the outer block prior to entering the Ada program.

The JSV procedures use either CTM_JS_READ or CTM_JS_WRITE

[CTM] and automatically convert from EBCDIC to ASCII and
vice versa.

Real Time Clock Procedures

The value returned by VME_CPUTIME has an undefined base,
but it is constant for all calls within one job, thus the
difference between successive calls should be taken.

The real time clock procedures use the CTM_DATE_TIME,
CTM_PROC_TIME and CTM_WAIT_TIME procedures [CTM].

Give Name Procedure
This uses the CTM_GIVE_NAME procedure [CTM].

F5 Representation Clauses

F5.1 SIZE specifications

In general, a size specification is taken to be the
number of bits to be allocated to objects of the type,
not an upper bound.

Integer, enumeration and fixed Types

The minimum size clause allowed for a discrete or fixed
type is the smallest number of bits required to hold the
range of values. If the range has no negative values then
the size allowed is the smallest number of bits to hold
the unsigned range. Biased representations are not used.

- The maximum size clause allowed for an integer or fixed
type is 64.

The maximum size clause allowed for an enumeration type
is 32.

Ploating Point Types

The only size clauses allowed are the sizes of the pre-
defined types, ie 32, 64, or 128.

Array Types

For a constrained array, the given size must be at least
as large as the (statically determinable) size that would

ICL ADA Ref: ADAADM.VA3l.4
SECURE DEVELOPMENT Issue: 3

SYSTEMS UNIT Page: 109 of 118

normally be used for the array; the size clause will not
cause packing.

For an unconstrained array the size must be sufficient
for the largest values of all the index subtypes (again,
these must be static).

Record Types

A size clause for a record does not cause packing.

The given size must be at least as large as the size that
would normally be allocated for the record.

Access Types

The only size clause allowed is 32.
Task Types

The only size clause allowed is 32.

P5.2 STORAGE SIZE specifications

Access Types

The minimum collection size allowed is 12, the number of
storage units required to hold necessary housekeeping.
The maximum collection size allowed is the maximum size
of an area allowed by VME. The value is rounded up to a
multiple of 4.

This sets the collection size, it includes space for
housekeeping. The value should be stored in, or derived
from, the collection housekeeping to support the
attribute of the same name.

For an access type that has not been given a collection
size, 'STORAGE_SIZE returns -1. This value is accepted as
a collection size specification and indicates that a
dynamic sized collection is to be used.

Sized collections are allocated on the auxiliary stack.
Task Types

A storage size of a task includes the space for the
control stack and the space for the auxiliary stack, but
doesn’t include the that for any dependent tasks.

The algorithm for dividing the space between the two
stacks has not been decided yet. The maximum and minimum
storage sizes allowed will be affected by this decision.
The maximum control stack size is 255 kbytes, the maximum
auxiliary stack size is the maximum VME area size. The
size will be rounded up to a multiple of 8.

— ~ ADAT Ref: ADAADM.VA3.4 @4

SECURR DEVELOPMENT Issue: 3
SYSTEMS UNIT Page: 110 of 118

This storage size value can be interrogated, and so
should be saved somewhere or derived. There should be a
default value and some means of setting it.

F5.3 SMALL specifications

Any positive real value is allowed for SMALL.

If SIZE and SMALL specifications are inconsistent, ie
SIZE too small, then one of them is rejected.

FS.4 Enumeration representation claﬁses

The range of enumeration representation codes allowed is:

"2.*31 L) 2**31-1

Non-contiguous enumeration representation codes are
allowed.

If size and enumeration representation clauses are
inconsistent, ie s8ize too small, then one of them is
rejected.

F5.5 Record representation clauses

Composite types must start on a word boundary.

No component may be forced to start on a non-byte
boundary if to do so means it would occupy all or part of
more than 8 storage units, ie bytes.

e.g. type E is (El, E2, E3);

for E’SIZE use 4;
type R is
record
A : B;
B : LONG_INTEGER;
end record;

for R use
record
A at 0 range 0 .. 3;
B at 0 range 4 .. 67;
end record;

This would be rejected as B would occupy parts of 9
storage units and start on a non-byte boundary.

The only values allowed for the alignment clause are 1, 2
and 4. If a component for which a component clause has
been given |has subcomponents with alignment, the
'‘POSITION part of the clause must agree with the highest
subcomponent alignment.

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 3

SYSTEMS UNIT Page: 111 of 118

F6 Address Clauses

Address clauses are only supported for objects. The

value for an address can only be the result of an ADDRESS
attribute.

Address clauses for subprograms, packages task units and
entries are not supported.

F7 Unchecked Conversion

Unchecked conversion is only allowed between objects of
the same size, where size is as defined in section 7.1
but excluding any red-tape.

For dynamic arrays and unconstrained records, the size
check will be performed at run time.

The TARGET may not be an unconstrained record. If the
TARGET is an unconstrained array, it may only be a one-
dimensional array of scalar type with an index type of
size 32 bits. The index of the TARGET array will start
from ’'FIRST of the index range.

F8 Input-Output
F8.1 Introduction

This implementation supports all requirements of the Ada

language, by providing an interface to the Series 39/VME
file system.

This section describes the functional aspects of the VME
file system interface, for the benefit of systems
programmers that need to control VME specific Input-
Output characteristics via Ada programs.

The section is organised as follows:

Subsection F8.2 discusses the requirements of Ada Input-
Output systems as given in the language definition and
provides answers to issues that are not precisely
described in the language definition.

Subsection F8.3 describes the relation between (Ada)
files and (VME) external files.

Subsection P8.4 describes the implementation dependent
FORM parameter of OPEN and CREATE procedures.

The reader should be familiar with the following
documents:

The Ada Language Reference Manual [LRM]
VME Programmer’s Guide [VME]

ICL ADA Ref: ADAADM.VAJ.4

SECURE DEVELOPMENT Issue: 3

SYSTEMS UNIT Page: 112 of 118
F8.2 Clarifications of Ada Input-Output Reggireménts

The Ada Input-Output concepts as presented in chapter 14
of the [LRM] do not constitute a complete functional
specification of the Input-Output packages. Some aspects
are not discussed at all, while others are deliberately
left open to an implementation. These gaps are filled in
below, with reference to sections of the [LRM].

The range of the type COUNT defined in package DIRECT_IO
is 0..INTEGER'LAST and in TEXT_ IO is 0..131070

F8.2.1 Assumptions
14.2.1(15) For any RESET operation, the content of the file is

not affected.

14.2.1(7) For sequential and direct input-ouput, files

created by SEQUENTIAL IO for a given type T, may be
opened (and processed) by DIRECT_ IO for the same
type and vice-versa, if the VME RAM for this
external file supports this mode of operation. 1In
the case of SEQUENTIAL_IO access the function
END_OF_FILE (14.2.2(8)) may fail to produce TRUE in
the case where the file has been written at random,
leaving "holes" in the file.

14.2.1(15) For any attempt to overwite an existing record the

replacement record must be the same size as the one
being replaced.

F8.2.2 Implementation Choices

14.1(1) An external file is any VME file, which may be

regarded as a logical collection of records.

14.1(7) An external named file created on a filestore

device will exist after program termination, and
may later be accessed from an Ada program.

14.1(13) See Section F.8.3.4 File-Access and Sharing.

14.2.1(3) The name parameter, when non-null, must be a valid

VME filename; a file with that name will then be
created. PFor a null name parameter, a temporary,
unnamed file will be created.

The form and effect of the form parameter is
discussed in Section F.8.4.

14.2.1(13) Deletion of a file is only supported for files on a

14.6

disk device, and requires delete permission to the
file.

Package LOW_LEVEL_IO is not provided.

R TVEES JTHNNIITE s vEsd e ® T 7

SECURE DEVELOPMENT Issue: 3
SYSTEMS UNIT Page: 113 of 118

F8.3 Basic File-Mapping

Basic file-mapping concerns the relationship between Ada
files and (formats of) external VME files, and the
strategy for accessing the external files.

Below, the default and acceptable file formats are
summarised. The symbol ES is used to denote the element
size, that is, the number of bytes occupied by the
element type, or, in case of a varying size type, the
maximum size (which must be determinable at the point of
instantiation from the value of the SIZE attribute for
the element type).

For DIRECT_IO and SEQUENTIAL_IO, when a successful
connection has been made to an external file, an
additional check is made that the record size of the
connected file is suitable for the element size.
USE_ERROR is raised if the record size is unsuitable.

F8.3.1 DIRECT IO

An element is mapped into a single record of the external
file.

For CREATE the standard file description *STDDIRECT is
used by default. This is acceptable provided ES = 80. If
ES is not 80 then a suitable file description must be
created (any description that is supported by the direct
serial RAM is acceptable) and the FORM paramter must then
be used to specify this file description.

For OPEN the file specified must have a description that
is supported by the direct serial RAM, and a record size
matching the element size.

F8.3.2 SEQUENTIAL IO

An element is mapped into a single record of the external
file.

Por CREATE the standard file description *STDM is used by
default. This is acceptable provided ES is less than or
equal to 2036. If ES is greater than 2036 then a suitable
file description must be created (any description that is
supported by the serial RAM is acceptable) and the FORM
paramter must then be used to specify this file
description.

For OPEN the file specified must have a description that
is supported by the serial RAM.

ICL
SECURR
SYSTEMS

ADA o Ref: ADAADM.VA3.4
DEVELOPMENT Issue: 3
UNIT Page: 114 of 118

F8.3.3 TEXT IO

Lines of text are mapped onto records of external files.

The default files provided for STANDARD INPUT and
STANDARD OUTPUT are *STDAD and *STDOUT respectively.

For output, the following rules apply.

The Ada 1line terminators and file terminators are never
explicitly stored. Page terminators, except the last,
are mapped onto a FF character trailing the last line of
the page. (In particular, an empty page (except the
last) is mapped onto a single record containing only a FF
character). The last page terminator in a file is never
represented in the external file. It is not possible to
write records containing more than 2048 characters. That
is , the maximum line length is 2047 or 2048, depending
on whether a page terminator (FF character) must be
written or not.

On input, a FF trailing a record indicates that the
record contains the last line of a page and that at least
one more page exists. The physical end of file indicates
the end of the last page.

For CREATE the standard file description *STDM is used
by default. This is acceptable provided ES is less than
or equal to 2036. If ES is greater than 2036 and less
than or equal to 2048 then a suitable file description
must be created (any description that is supported by the
serial RAM is acceptable) and the FPORM paramter must hen
be used to specify this file description. Any attempt to
input or output a record containing more than 2048
characters will raise a USE_ERROR exception.

For OPEN the file specified must have a description that
is supported by the serial RAM.

F8.3.4 Pile-Access and Sharing

In this section a characterisation of the file-access
used is given.

OPEN and CREATE procedures use the normal VME defaulting
mechanism to determine the exact file to open or create.
The file generation number (when not specified), defaults
(for OPEN) to highest existing, or (for CREATE), one
higher than the highest existing or 1 when no versions
exist. If an empty string is specified as name, CREATE
will create a workfile.

External files will be accessed via standard VME access
methods. Por SEQUENTIAL IO and TEXT_ IO, any file
description supported by the serial RAM is acceptable,
while for DIRECT_I10, any file description supported by
the direct serial RAM is acceptable.

ICL ADA Ref: ADAADM.VA3.4
SECURE DEVELOPMENT Issue: 3

SYSTEMS UNIT Page: 115 of 118

A file opened with mode IN_FILE will allow other
processes and, indeed, the current process to open and
read the file (e.g. as IN_FILE in an Ada program). For
INOUT_FILE or OUT_FILE, no file sharing is allowed. 1In
particular, attempting to gain write access to such an
external file by OPEN or RESET will raise USE_ERROR.

There is an ablolute VME limit of 255 on the number of
concurrent file connections. Since the VME System uses a
number of system files the limit for an Ada program is
somewhat less than this. This absolute limit is also for

sequential files; the limit for index-sequential files is
considerably less.

F8.4 Form parameter

The FORM string parameter that can be supplied to any
OPEN or CREATE procedure, has the intention of enabling
control over external file properties such as physical
organisation, allocation etc. In the present
implementation, this is acheived by a combination of the
name and form parameters.

Any of the following values of the FORM parameter are

permitted:
(1) Null
(2) LOCAL

(3) DESC=<fd>

(4) ALL=<fa>

(5) DESC=<fd>,ALL=<fa>

(6) DESC=<£fd>, LOCAL

(7) ALL=<fa>,LOCAL

(8) DESC=<fd>,ALL=<fa>,LOCAL

(9) DESC=*STDFORM

LOCAL has the effect of causing the run time system to

treat the value of the NAME parameter as a VME local
name.

DESC which only has effect on a CREATE call, specifies
that the pre-existing file description <fd> should be
used. A new file description can be set up using the
DESCRIBE_FILE command available in VME/B.

ALL which only has effect on a CREATE call, is used when
the file allocation to be used is required to be

SYSTEMS

® Vel o "8

DEVELOPMENT Issues 3
UNIT Page: 116 of 118

Pe.s

different from the default allocation; in this case <fa>
must specify a pre-existing file allocation.

The special form parameter "DESC=*STDFORM" when supplied
to SEQUENTIAL_IO will provide a listing workfile.

All letters in the FORM parameter must be given in upper
case, and only the first 32 bytes of the form parameter
are analysed. If the syntax is incorrect a message will
be sent to the journal but no exception will be raised.
No semantic validation is carried out; the value given
will be passed unmodified to VME as parameters to a file
creation interface, were it may be ignored if it
conflicts with information already known about the file.
e.g a library cannot contain two files with different
descriptions.

Additional I/0 Packages

No additional packages are provided.

