
AD-A247 334 TAllON PAGE JM 0.001
NsiM~w WOjuaW Sais 14. OfN. VAm2U. .M"V of w o fl ftbmmn "i f i" Aft&. 01w of

1. VC UEOLY (Lamw 2. REPORTODATE RE. R TPE ANDDATSW W

: [,Final 12 Oct 1991 to 01 Jun 1993
4TTEANDSBIL 5. FUNDING NUMBERS"-

Valdation Summary Report: Atech Defense Systems Inc., AI-ADAI96K, Version 3.0,
Sun-4/330 under SunOS 4. 1.1 (Host) to DSP96002 ADS board (bare
machine)(Target), 91 1012W1 .1 1225
6. AUTHO()

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) S. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER
Bldg. 676, Rm 135 AVF-VSR-507.0292
Wright-Patterson AFB, Dayton, OH 45433

9. SPNOIWWiON TORING AGENCY NAE(S) AND ADE SWI A L-a 10. SPONSORINGOOMONrrORIN AENCY

Ada Joint Program Office EL ECT F REPORT NUMBER
United States Department of Defense MAR 10O 1992
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIOWAVAILABILITY STATEMENT 12b. DISTRIBUTION OWE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maxmium 200 woft)
Aftech Defense Systems Inc., AI-ADA/96K, Version 3.0, Wright-Patterson AFB, Sun-41330 under SunOS 4.1.1(Host) to
DSP96002 ADS board (bare machine)(Target), ACVC 1.11.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. I__._PRICE_____
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIIMIL-STD-1815A, AJPO. ~6PIECD

17. SECURITY CLSSFICAION Iis. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION j23. UMITATioN OF ABSTRAC
OF REPORT I OF ABSTRACT

UNCLASSIFIED IUNCLASSIFED IUNCLASSIFIED
NSN 7540-01-2604O Standard Form 29e. iRsv. 2-89)

Pr, ih-br by ANSI Sid. 23*126

AVF Control Number: AVF-VSR-507.0292
4 February 1992

91-06-21-AIT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 911012W1.11225
Aitech Defense Systems Inc.

AI-ADA/96K, Version 3.0
Sun-4/330 under SunOS 4.1.1 => DSP96002 ADS board (bare machine)

Prepared By:
AdaValidation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

ACeO..sj Iter

! t k.W at I o Cwe

0 , c "\ y
rAvailability Cod.O

Aail end/or

Dist SIpeelal

92-05963
*2 3 05 013 lNhlIhlNUl

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 12 October 1991.

Compiler Name and Version: AI-ADA/96K, Version 3.0

Host Computer System: Sun-4/330 under SunOS 4.1.1

Target Computer System: DSP96002 ADS board (bare machine)

Customer Agreement Number: 91-06-21-AIT

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
911012W1.11225 is awarded to Aitech Defense Systems Inc. This certificate
expires on 1 June 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

VT i~pion Organization
Diredtor,%omputer and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Joint ProgrmOfc
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

,,itebch
DECLARATION OF CONFORMANCE

Customer: AITECH Defense Systems Inc.

Ada Validation Facility: ASD/SCEL, Wight-Patterson AFB

ACVC Version 1.11

Ada Implementation:

Compiler Name and Version: Al-ADA/96K Version 3.0

Host Computer System: Sun-4/330 SunOS 4.1.1

Target Computer System: DSP96002 ADS Board Bare Machine

Customer's Declaration

I, the undersigned, representing AITECH Defense Systems, declare thatAITECH Defense
Systems has no knowledge of deliberate deviations from Ada Language Standard
ANSI/MIL-STD- 18 15A in the implementation listed in this declaration.

e Leemor
AITECH Defense Systems Inc.
3080 Olcot St., Suite 105A
Santa Clara, CA 95054

TABLE OF CONTENTS

CHAPTER 1 InTRWcTIw

1.1 USE OF THIS VALIDATION SUMMARY REPORT -11.2 REFERENCES 1-2

1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITIOZN OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield "- 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard inv.'1ving .u!tiple, sepz:r-tely compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and rUG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System assoc:.?ted scfte re, that -.- __-tvn storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

IN'RODUCTION

Conformity P'ulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A te.f foi n t' be incorrec* - t used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDECIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BD1BO6A AD1BO8A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A4lE CD2A87A CD2BI5C
BD3006A BD400aA CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMnP WMTION DEPENDENCIES

The following 285 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)

-C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORTINTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55807A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORTINTEGER; for this implementation, there is no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LON FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFIAS is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

2-2

IMPLEMENTATION DEPENDEN'TIES

C4AO13B contains a static universal real expression that exceeds the
range of this implementation's largest floating-point type; this
expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CA2009A, CA2009C..D (2 tests), CA2009F, and BC3009C instantiate
generic units before their bodies are compiled; this implementation
requires that the body of a generic unit be compiled before any
instantiation of that unit, as allowed by AI-00506. (See Section
2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; this implementation does not support
pragma INLINE.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE24O!9 CE2AJM. .2 (2) EE2401G
CE2401H..L (5) CE2403A CE2404-A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3!02A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3l04A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)

2-3

IMPLEMENTATION DEPENDENCIES

CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt
to create a file and expect NAME ERROR to be raised; this
imDlementation does not support external files and so raises
USEERROR. (See Section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 23 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B55AO1A BAI101E BA3006A BA3006B BA3007B BA3008A
BA3008B BA3013A BC2001D BC2001E

CA2009A, CA2009C..D (2 tests), CA2009F, and BC3009C were graded
inapplicable by Evaluation Modification as directed by the AVO. These
tests instantiate generic units before those units' bodies are compiled;
this implementation rejects a unit that contains an instantiation of a
unit whose body is not in the program library.

BC3204C..D (2 tests) and BC3205C..D (2 tests) were graded passed by
Processing Modification as directed by the AVO. These tests check that
instantiations of generic units with unconstrained types as generic actual
parameters are illegal if the generic bodies contain uses of the types
that require a constraint. However, the generic bodies are compiled after
the units that contain the instantiations, and this implementation creates
a dependence of the instantiating units on the generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic bodies
makes the inst.nipt. '!iny unit . obsolete-n ' e.rrrs are detected. The
processing of these tests was modified by re-compiling the obsolete units;
all intended errors were then detected by the compiler.

AD7203B was graded passed by Test Modification as directed by the AVO.
This implementation allocates 16K words of the target memory for task
stacks; by default, equal amounts of storage are allocated to all tasks.
AD7203B contains 8 tasks, in addition to the environment task; since the
environment task requires in excess of 2K words, STORAGE ERROR is raised
when the test is run. The test was modified by adding a-'STORAGE SIZE

2-4

IMPLEMENTATION DEPENDECIES

length clause for the task type TSK at linp 165 to specify an allocation
of 1024 storage units (words) for the activation of each task of the type.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external
file. This is acceptable behavior because this implementation does not
support external files. (cf. AI-00332).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Uri Gries
Aitech Defense Systems Inc.
3080 Olcott Street, Suite 105A
Santa Clara, CA 95054
(408) 980-6200

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Prograivi-- t-.enguage Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3431
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 95
d) Non-Processed I/0 Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 644

g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system through ethernet and an OPI (Once Protocol Interface) box
manufactured by Aitech and run. The results were captured on the host
computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

-L Produces list files.
-A Produces asm files.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX INLEN-also listed here. These values are expressed
here as Ada string-agigregates, where "V"9 represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX IN LEN 240 - value of V

$BIGIDi (l..V-l - 'A', V ->'1')

$BIG_1D2 (l..v-l W>'A, V -> 2')

$BIG_1D3 (l..V/2 W>'A) & '3' &
(l..V-1-V/2 -> 'A)

$BIG_1I4 (l..V/2 -> 'A') & '4' &
(l..V-l-V/2 -> 'A)

$BIGINTLIT (l..V-3 -> 0') & "298"

$BIGREALLIT (l..V-5 ->'0') & "690.0"

$BIG-S~TP!1 '"& (- ", > WA) &I"

$BIGSTRING2 ' & (1. .V-1-V/2 -> 'A) & '1' & 1'"F

$BLANKS (l..V-20 m

SMAXLENINTBASEDLITERAL
"2:" & (1..V-5 -> 0') & "11:"

$MAX LEN REAL BASEDLITERAL
"16:" & (l..V-7 -> 0') & "F.E:"

A-i

MACRO PARAMETERS

$MAXSTRINGLITERAL "' & (1..V-2 -> 'A') & ""

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGMENT 1

$COUNT_LAST 2_147_483_647

$DEFAULT MEM SIZE 32768

SDEFAULT STOR UNIT 32

$DEFAULT SYS-NAME DSP96002

$DELTADOC 2#1.0#E-31

$ENTRY ADDRESS 16#400#

$ENTRYADDRESS1 16#401#

SENTRY ADDRESS2 16#402#

$FIELDLAST 50

$FILE TERMINATOR ' 0

$FIXEDNAM NOSUCHFIXEDTYPE

$FLOAT NAME NO SUCH-TYPE

SFORMSTRING

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATERTHAN DURATION
75_000.0

$GREATERTHAN DURATION BASE LAST
T31_073.0

$GREATERTHAN FLOAT BASE LAST
- 1.0141E+38

SGREATER THAN FLOAT SAFE LARGE
1.E38

A-2

MACRO PARAMETERS

$GREALTER THAN SHORT FLOAT SAFE LARGE
1.07308 -

$HIGH PRIORITY 23

$ILLEGAL EXTERNALFILE NAME1
\NODIRECTORY\FILENAME

$ILLEGAL EXTERNAL FILE NAME2
- THIS FILE NAME IS TOO LONG FOR MY SYSTEM

$INAPPROPRIATE LINELENGTH
-1

$INAPPROPRIATE PAGE LENGTH
-1

$INCLUDEPRAGMAl PRAGNA INCLUDE ("A28006DI.ADA")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006FI.ADA")

$INTEGER FIRST -2147483648

$INTEGER LAST 2147483647

$INTEGER LAST PLUS 1 2147483648

$ INTERFACELANGUAGE ASSEMBLER

$LESSTHAN DURATION -75_000.0

SLESS THAN DURATION BASE FIRST
- -- 111_073.0

SLINE TERMINATOR ASCII.LF

$LOWPRIORITY 1

$MACHINE CODESTATEMENT
NULL;

$MACHINE CODE TYPE NO SUCH TYPE

$MANT!qSA)OC 31

$MAXDIGITS 9

$MAX INT 2147483647

$MAXINTPLUS_. 2147483648

$MIN INT -2147483648

$NAME NO SUCH TYPE AVAILABLE

A-3

MACRO PARAMETERS

$NAME_LIST MC68020, MC88000, i860, DSP96002

$NAMESPECIFICATION1 /home/val/acvcl_1i/ctest/dev/x2120a

$NAMESPECIFICATION2 /home/val/acvclli/ctest/dev/x2120b

$NAMESPECIFICATION3 /home/val/acvcll1/ctest/dev/x2120c

$NEGBASED INT 16#FOOOOOOE#

$NEW MEM SIZE 65535

$NEW STOR UNIT 32

SNEWSYSNAME MC88000

$PAGETERMINATOR ASCII.FF

$RECORD DEFINITION NEW INTEGER;

$RECORD NAME NO SUCH MACHINE CODE TYPE

$TASKSIZE 32

$TASKSTORAGESIZE 1024

STICK 0.000_001

$VARIABLEADDRESS 16#0320#

$VARIABLE ADDRESS1 16#0321#

$VARIABLE ADDRESS2 16#0322#

$YOURPRAGMA INTERFACEPACKAGE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-i

aitech OVEVAND COIMND S5UAWRV

2.&.1 Ada Cross-Comnplier (ADAS6K)

The compiler is activated using the command ADAS6K.

Syntax: ADA9 6K [qualifiers] <source-file-name>

Parameters: source-file-name

Denotes the Mie containing the source text for te
compilation. If no I'le typ is given, ADA is assumed.

Qualiffers: The qualifiers and options available awe detailed in the
following table:

/asmjlist Generates an assembler file for each True
compilation unit. The fie name is the unit
name with a suffix 6_T or "_ a' nd fth
file type isASM ._ _ _

/configuration- Controls various parameters of fth list Internal
file file layout. input line length. etc. defaufta
/coopysoMurce Saves the source file for fth compilation False

in the lbray ____

list Generates a list file for the compilation. False
The file name is tha of the source fie,

_____ with file "ap .US _ _

Abrary Compiles the unit(s) into the given lbrary ADA96K_
UBRARY

/optimize Controls various optimization options False
/reorder Activates the code reordering paso h False

_________compiler ___

lsuppressall Disables generation of code for rn-tme False
checkts_ _ _

/brc Enables generation of tre-bk False
information_____

verbose Outputs information during compiletion False
/uref Generates a cross-reference Rating in the False

Ilist file L __

2-5

aftech OVErVIEW AND COAMAwN ASzA~R

2.3.2 Program Ubrary Manager (PLM96K)

The interactive program library manager is activated using fth command
PLNW6K.

Syntax: PLM96K (I 1ibrary-<1ibraryaase>j

Qua1lfers: / 1ibrary-<1ibrary_ name>

This optional qualifier sets the current default library for the
PLMV96K. If omitted, t default program library defined by
the logical name ADA96KUBRARY will be opened.

Interactive The PLM96K commands and options are detailed in the
Commands: following table:

~A

Create Creates a new Ada program sublibrary Nn
For root librar ______

Delete Deletes the given unit(s) from the current None
default program library______

Show Displays information for the given unit(s) None
______ from the current defasuit program lOvary ____

Exit Leaves the program library manager None

Help Displays the PLM496K commands and None
_________options ______

Library Sets the current default program libary Show the
for the PLM96K current default

librry

Type Displays the Ada source for the given None
unit(s) from the current delauitl program
library__

2-6

aitech OVERVIEWo DCOAwvO SSMURY

Extract Creates a copy of the stored Ada source None
for the given unit(s) in the current
directory

Import Inserts an externally generated None
compilation unit body into the current
default program library _____

Allocate Allocates a unit number for an externally None
_______ generated compilation unit body_____

Verify Checks the corrwees of the current None
________default program library

2.3.3 Ada Cross-Unker (LNK96K)

The cross-linker is activated using the command LNK96K.

Syntax: LNK96K (qualifiers I <main-unit-namie>

Parmeters: main-unit-am

Denotes the main unit for the Ada program to be linked.
The unit given must be a paranieterless procedure.

Qualifirs: The qualifier and options avalable are detailed in the
following table:

.O~ fte~ ..: ...2. f
/Flirary Specifies the program library where the A0A96K

main and Its required units will be looked UBRARY
for

/map Generates a map file for the Ink The file True
name will be the main unit name, with

____ file type.MAP_ _ _

2-7

atach OEMWIVAl COIAgINDSZIAA

i~oress Outputs information during the link False
_____ process_ _ _ _

flog Generates a log fie for the link. The log False
file name can be given in the command.
If not given, the main unit name will be

_______used, with file type .LOG

/directives Uses the directives In the given None
_________directives file to guide the rink process ______

Aarget Specifies the target identifier 096 (ADS)

iwith rts Includes the required modules from the False
________ATSin the link

/minimal- Includes a minimal, single-task RTS in False
its the Ink

/gepjts Generates the load file for a new fully- False
______ configured ATS executable image ____

/twoe Enables the RTS tracing functions False

Ifirut - Specifies the initial memory address (800,800,400)
address for X, Y and P spaces _____

flast - Specifies the last memory addresse for (7FFE,7FFE,
address X Y, and P spaces FFFE)

/rtssize Specifies the maximal size of a fully- (600,200,
configured RTS in the different memory 3C00)
spaces _______

/external- Includes the given object file(s) or None
module modules from the given object library in

the fink

Ahags Controls various special functions of the None
t I linker

248

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
•..e

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONGFLOAT is digits 9 range

-1.79769313E+308 .. 1. 79769313E+308;

type DURATION is delta 2.*-14 range -131072.0 .. 131072.0;

end STANDARD;

C-1

Appendx Ba

Appendix F of the Ada Reference Manual

This appendix descrins fth implementation-dependent characteristics of
the Al-ADAJ96K Cross-Compilation System, as required In the
Appendix F frame of fth Ada Reference Manual (ANSI/MIL-STD-1815A).

5.1 Implementation-Dependent Pragmas

Th. followving implementation-dependent pragmas awe defined in the
compiler

*suppress..afl
* nterfscepackage
*externalisubprogramjiame

For detailed Information on the use of these pragmas, refer to Section 6.8,
Imrplementation-Dependent Features.w

B.2. Implementation-Dependent Attributes

No implementation-dependent attributes are defined for this version.

B.3. Package SYSTEM

The specfication of the package SYSTEM:

package SYSTEM is

type ADDRESS is now INTEGER:
type PRIORITY is range 1 .. 23;

-- Priority 0 is reserved for the Null Task
-- Priority 24 is reserved for System Tasks
-Priorities 25. .31 are for interrupts

type NAME is (MC68020,MCSOO.860,0SP96002);
SYSTEM NAME: constant NAME :D 0P96002;
STORAGrE UNIT: constant :w32;
MEMORY SIZE: constant 32 32 1024;
MIN 01f: constant :~-2 147 483 647-1:
MAX 1ST: constant :~2 T47 T83 '47;
MAX DIGITS: Constant !r ; -
MAX MANTISSA: constant :ft 31,

~is hA47EMWFF TEARA ME91CMAVAL

FPINE DELTA: constant :-2.0 ** (-31):t
TfC!E: constant :-0.000001;

tYPe INTERFACE-LANGUAGR is (ASSENSLER, C RTS)

end SYSTEM;

B.4. Representation Clauses

B.4.1 Length Cluses

The following kinds of lengt doauses ame supported:

1. Sime specificaon: Trsize

Supported as described In ARM. For scat., objct residing in tie
fram, the smelledt possible size On complete words) will always be
chosen by the compiler.

2. Specifcation of a collection size: 1rstorag...sze

Specifies the number of storae units allocated to the collection
associated with access typ T.

3.. Specification of task sine: T'slorsge

Specifies the number of storage unit allocated for each activation of
a task of type T. This as iIncludes space for the tosks stack, as
well as some RTS overhead (approximately 54 words).

4. Specification of small for a thud point type: T'amal

B.4.2 Enumeration Representatin Chuse

Enumeraion representation clauses may specify repentat--ions In the
range of theprdefined type INTEGER.

&-2

ch ARPEM F OF ME ADA EERDIC EMAL

8.4.3. Record Representation Clause

Record representation clauses are supported as detailed in Section 13.4
of the ARM.

B.5 Implementation-Dependent Names for
Implementation-Dependent Components

None defined by the compiler.

8.6 Address Clauses

Address clauses are supported for objects (vanables or constants) and
task entries (linkage to hardware interrupt); refer to Chapter 16, "AI-TCK
Target Configuration KIL"

Address clauses for objects are interpreted as absolute addresses, and
code is generated using the ORG directive. The compiler does not check
for possible overlaps.

8.7. Unchecked Conversion

No warning is Issued when conversion between objects of diffrent sizes
Is performed. The result of such a conversion is unpredictable.

B.8. Input-Output Packages

Input-Output packages am supplied with the AI-ADA/96K Cross-Compiler
System.

Standard input and Standard.ouput are supported. External files and file
objects ae Implementation dependent, and therefore ae handled as

s ed In th ARM.

9.3

it'ch F F TiE ADA RB9E SW MMAML

B.8.1. Specification of the Package Sequental_10

with BASIC 10 TYPES;
with IO EXrEPYIONS;
generic-

type ELEM TYPE 1s private;
package SEQUENTIAL 10 is

type FILE TYPE Th limited private;
type FI-NODE is (IN Fn.E, OuT FILE);

- File management
procedure CREATE (

FILE : in out FILE TYPE:
MODE : in FILE MODE :- OUT FILE;
NAE : in STR ; : "; FORm : in STRING :

procedure OPEN (
FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAM: in STRING;
FORM :in STRING :)

procedure CLOSE (FILE in out FILE TYPE);
procedure DELETE (FILE : in out FILZTYPE);
procedure RESET (

FILE : in out FILE TYPE;
NODE : in FILE NODEl);

procedure RESET (rLz : in out FL EnTz);
function NODE " (FILE : in FILE TYPE)r-eturn FILE MODE;

function NAME (FILE : in FYLE TYPE) return STRING;

function FORM (FILE : in FILE TYPE) return STRING;
function IS OPEN(FILE : in FIL-TYPE) return BOOLEAN;

- input and output operationsprocedure READ (
FILE : in FILE TYPE
ITEM : out ELEEU T-TYPE);

procedure WRITE (
FILE : in VILE TYPE;
ITEM : in ELEMNT TYPE);

function END OF F L (FILE : in FILE-TYPE)
return SOOTFA;

8.4

....... A FE . OAF T7EADA BE .MAMAL

- exceptions
STATUS ERROR : exception renames

10 ftCEPTIONS.STATUS ERROR;
MODE 1RROR : excepti s renames

0Z EXCEPTIONS.MODE ROR;
NA&E ERROR : exception renames
10 EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames
10 XCEPTIONS.USE ERROR;

DEVIC2 ERROR : exception renames
10 £kCEPTIONS.DEVICE ERROR;

END kROR : exception renames
fO EXCEPTIONS.END ERROR;

DATW URROR : exception renames
I6 EXCEPTIONS -DATA ERROR;

private
type FILE-TYPE is new BASICIO TYPES.FILE TYPE;

end SEQUENTIAL 10;

B.8.Z Speciffcation for Package Direct Input-Output

with BASIC 10 TYPES;
with o X-CEYIONS;
generic-

type ELEMENT TYPE is private;
package DIRECT 'O is

type FILE TIThE is limited private;
type FILEMODE is (IN-FILE, INOUT FILE, OUT FILE);
type COUNf is range 0..INTEGER'LAST;
subtype POSITIVE COUNT is COUNT range 1.. COUNT' LAST;
- rile management

procedure CREATE (
FILE : in out FILE TYPE;
MODE : in FILE MOD! :- INOUT FILE;
NME : in STRIWG :M "";
FORM : in STRING :m -);

procedure OPEN (
FILE : in out FILE TYPE;
MODE : in FILE MOD!;
NAME : in STRIfG;
FORM : in STRING :- -');

procedure CLOSE (FILE in out FILE TYPE);
procedure DELETE (FILE in out FIIZ TYPE);
procedure RESET (

I I5

APE WFCF11EADA / IRBST4MJL

FILE in out FETYE;
MODE in FILE MODE);

procedure RESET (FILE : in out FILE TYPE);
function NODE (FILE : in FILE TPEFreturn FILE NODE;
function lNE (FILE : in F132 TYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;
function IS OPEN(FILE : in FILE TYPE) return BOOLEAN;

input and output operations

procedure READ (
FILE : in FILE TYPE;
ITEM : out CLERMN TYPE;
FROM : in POSITIVE-COUNT);

procedure READ (
FILE : in FILE TYPE;
ITEM: out ELERMTTZYPE);

procedure WRITE (
FILE : in FILE TYPE;
ITEM : in ELEMrNT TYPE;
TO : in POSITI COMNT) ;

procedure WRITE (
FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE;

procedure SET INDEX(
FILE : in th TYPE;
TO : in POSITIVECOUNT);

function INDEX(FILE : in FILE TYPE) return
POSITIVE COUNT;

function SIZE (FILE : in FILE TYPE) return COUNT;
function END OF FLE(FILE : it FILE TYPE)

return OO--Lzi;

- except:ions

STATUS ERROR : exception renames
10 9kCEPTIONS.STATUS ERROR;

NODE_'RRoR : exception rename
1O EXCEPTIONS.MODE RROR.;

NAME IRROR % exceptlon renames
IT EXCEPTIONS.NAME RROR

USE nROR : excepton rnamen
MEXCEPTIONS.USE ERROR;

8-6

IfchAPFW XF OFTIGADA REFERNCEIMIAL

DEVICE ERROR :exception renames
10 £OCCEPTIONS. DEVICE ERROR;

END E1WRR : sic epti~n ren ae
Th EXCEPTIONS.ENDERROR;

DATA IRROR : excep~tion renames
IC6EXCEPTIONS .DATAERROR;

private
type FILE-TYPE is new BASIC_10_TYPES.FILE TYPE;

end DIRECT-10;

8.8.3. Specification of Package Text Input-Output

with BASIC 10 TYPES;
with 10EXftPYfIONS;
package TEXT 10 is
type FILE TY!E is limited private;
type FILENODE is (IN FILE, OUT FILE);
type COUNY is range 0-.. INTEGER' LAST:
subtype POSITIVE-COUNT is COUNT range 1 .. COUNT' LAST;

UNBOUNDED: constant COUNT:- 0; - line and page length
subtype FIELD is INTEGER range 0 .. 35;
subtype NUMBER BASE is INTEGER range 2 .. 16;
type TYPE-SET Ts (LOWER CASE, UPPER CASE);

- rile management

procedure CREATE (
FILE : in out FILE TYPE;
N01DE : in FILE MODE OUT FILE:
NAME : in STRINIG :- ;
FORM. : in STRING so);

procedure OPEN (
FILE : in out FILE TYPE;
NODE : in FILE MO~f;
NANE : in STRINIG;
FORM : in STRING :W")

procedure CLOSE (FILE : in out FILE TYPE);
procedure DELErTE (FILE : in out FILETYPE);
procedure RESET (

FILE t in out FILE TYPE;
MODE : in FrLE-MOO);

B-7

witch F OAPPXFIW ADA RWEICMAMNIAL

rOcedure RESET (FILE : in out FILE TYPE);
ction MODE (FILE : in FILE TYPI) return

FILE NODE;
function NAME (FILE : in FILE TYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;
function IS OPEN(FILE : in FILETYPE) return BOOLEAN;

- Control of default input and output files

procedure SET INPUT (FILE : in FILE TYPE);
procedure SET-OUTPUT (FILE : in FILE TYPE);
function STANDARD INPUT return FIrZ TYPE;
function STANDARD-OUTPUT return FILE-TYPE;
function CURRENT TNPT return FILE-TYPE;
function CURRENT OUTPUT return FILE--TYPE;

- specification of line and page lengths

procedure SET LINE LENGTH (
FILE % in FILE TYPE;
TO - in COUNT);

procedure SET LINE LENGTH (TO : in COUNT);
,procedure SET-PAGE-LENGTH (

FILE .in FfLE TYPE;
TO in COUNT);

procedure SET PAGE LENGTH (TO : in COUNT);
function LINELENUTH (FILE : in FILE TYPE)
return COUNT;

function LINELENGTH return COUNT;
function PAGE LENGTH (FILE : in FILE-TYPE)

return COUT;
function PAGELENGTH return COUNT;

- Column, Line, and Page Control

procedure NEW LINE (
FILE : in-FILE TYPE;
SPACING : in POSITIVE COUNT :- 1);

procedure NEWLINE (SPACING : in POSITIVECOUNT 1);

procedure SKIP LINE (
FILE : in IILE TYPE;
SPACING : in POSITIVECOUNT :- 1);

procedure SKIP-LINE (SPACING : in POSITIVECOUNT
:" 1) ;

function END OF LINE (FILE : in FILETYPE)
return BOOLEA -

II | III

hAm M =FCTIEAOA AOWImM M M

function END OFLINE return BOOLEAN;

procedure NEW PAGE (FILE : in FILETYPE);
procedure NEW-PAGE

procedure SKIP PAGE (FILE : in FILETYPE);
procedure SKIP PAGE

function END OF PAGE (FILE : in FILE TYPE)
return S0OLIEXf-

function END OFPAGE return BOOLEA;

function END OF FILE (FILE : in FILE TYPE)
return BOOLE i_

function ENDOFFILE return BOOLEAN;

procedure SET COL (FILE : in FILE TYPE;
(TO • in lOSITIVECOUNT);

procedure SET COL (TO : in POSITIVE COUNT);
procedure SET-LINE (FILE in FILE TY]E;

(TO in POSITIVECOUNT);

procedure SETLINE (TO : in POSITIVE COUNT);
function COL (FILE : in FILE TYPE)
return POSITIVE COUNT;

function COL return POSITIVECOUNT;

function LINE (FILE : in FILE TYPE)
return POSITIVE COUNT;

function LINE -return POSITIVE COUNT.

function PAGE (FILE : in FILE TYPE)
return POSITIVE COUNT;

function PAGE return POSITIVECOUNT;

- Character input-Output

procedure GT "(
FILE in FILE TYPE;
ITEM out CKIJACTER);

procedure GET (ITEM : out CHARACTER);

procedure PUT (
rILE : in FIL TYPE;
ITEM : in CHAP&TER);

procedure PUT (ITEM : in CHARACTER);

It II

dAFhPEMIFOF ADA D9U*MAM6

- String Input-Output

procedure GT (
FILE : in FILE TYPE;
T : out STRTNG);

procedure GT (ITEM : out STRING);

procedure PUT (
FILE : in FILE TYPE;
ITEM : in STRIN);

procedure PUT (ITEM in STRING);
procedure GET LENE (

FILE : in FILE TYPE;
ITEM : out STATNG;
LAST - out NATURRL);

procedure GET NE (
ITEM : out S3!flMG;
LAST : out NATURAL);

procedure PUT LINE (
r=E in Fff. TYPE;
ITE: in STRInG);

procedure PUTLINE (ITEM in STRING);

- Generic Package for Input-Output of Integer Types

generic

type NUM is range <>;

package INTEGER IO is
DEFAULT WIDTH FIELD : NUN'WIDTH;
DEFATLTRASE : NUMBER BASE g- 10;

procedure ET
FILE : in FILE TYPE;
Im : out NUN:
WIDT : in FIELD :- 0);

procedure GET (
ITEM : out NuN;
WIDTH : in FrELD :-0);

I I I0

dt* APPE1W F OF IE ADA FEM KAU

procedure PUT
FILE : in FILE TYPE;
ITEM : inNUM;-
WIDTH : in FID :- DEFAULT WIDTH;
BASE t in NUMBER BASE :- DIFAULTDAS);

procedure PUT (
ITEM : inNUM;
WIDTH : in FIELD :- DEFAULT WIDTH;
BASE : in NUMBER BASE :- D&FAULT BASE);

procedure GET (
FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (
TO : out STRING;
ITEM : in NUM;
BASE : in NUMBER BASE :- DEFAULT BASE);

end nTR 10;

- Generic Packages for Input-Output of Real Types

generic

type NM is digits <>;
package. FLdATIO0 is

DEFAULT FORE : FIELD :-, 2;
DEFAULT-AFT a FIELD : NU'cdigits - 1;
DEFAULT XP : FIELD :, 3;

procedure GET (
FILE : in FILE TYPE;
ITI : out Nm;
WIDTH : in FIELD :-0);

procedure GETC
ITEM a out NUN:
WIDTH : in FiEL o):

procedure PUT (
FE in FILE TYPE:
ITEm in NUN:-
FORE ain FIELD : - DEFAULT FORE;
AT : in FIELD :- DZFWLTAFT;
MCP in FIELD : - DEFAULT-EXP),

• IIi

mirsAE F OF MEA12 11PHIENCE MAL

p:ocedure PUT
ITEM : in NUN;
FORE : in FIELD :- DFAULT FORE;
AFT in FIELD : DEFULT-A T;
ZIP :in FILD = DEFAU1LT EXP);

procedure GZT (
FRCK : in STRING;
ITEM : out KUN.:
LAST : out POSITIVE);

procedure PUT (TO out STRING;
ITME : in NUN;
AFT : in I - DEFATULT AFT;
UIP t in FL :-DEFAULTEXP);

end FLOAT IO;

generic
type N is delta <>;
package FI -IDO is

DEFAULT FORE : FIEL : NUDM' FORE;
DEFAULT ArT : FiEL : - NUM'AFT;
D AUTLCP : FIED3 :0 0;
procedure GT (FiL : in FILETYPE;

ITUE : out NUN;
WID : in rI :-0);

procedure GT (
ITUE : out NUN;
WIDTH : in FIELD :-0);

procedure PUT (
FILE : in FILE TYPE;
ITZU : in NUN:-
FORE : inF : DEFAULT FORE;
MT - : iELD :* DEFLT-A;

P : n FIELD : DEFAUiT P)

procedure PUT (IMU : in NUN;
FOU: in FIrELD : DZFrULT FORE;
AFT S in IL : DEFAULT-AFT;
MMP : in FIEL : Z DEFULT ZIXP)

procedure MT (
FrRH : in STRING;
ITDE: out NUN;
LAST : out POSITIV);

9-12

dbh AP F OF IMADA RUqWM4MUL

procedure PUT
TO : out STRING;
ITEM : inamiU ;
AFT :. ix FIELD DEFAULT AFT;
MM : in FIELD : DEFAULT EXP);

end rIUDZO

- Generic package for Input-Output of EnumerationTypes

generic

type B i (s);
package EZNMERATION 10 is
DEFAULT WIDTH : FEL :- 0;
DEAuT SETTING : TYPESET :U- PPER CASE;
procedure GET (

FzLE : in ILE TYPE;
I-,1 z out alU);

procedure QET (ITEM : out ENUN);
procedure PUT (

r=L t in FILE TYPE:
Im a in EnuM:

IMDTH : in FIELD :- DEFAULT WIDTH;
SET : in TYPESET :- DEFAULT SETTIG);

procedure PUT (
:TM : in : rM;

WIDT : in FIELD :-DEFAULT WIDTH;
SET : in TYPE SET :- DEFAULTSETTING) ;

procedure QT (FRCM : in STRING;
ITEM 2 out =lMr
LAST x out POSITIVE);

procedure PUT (TO : out STRING;
ITM z in 31M;
SET % Ln TYPE SET :- DEFAULT SETTING);

end I IU] AToN 10;

8-t3

Maech A9EF WMEA.DA Bi~l M LM4L

-Exceptions

STATUS ERROR : exception renames
10 £tCkhTIONS . STATUS ERORt

NODE -b=R : except ion renames
16, EETXItIS .NODE ERROR;

WANE bwR -: exceptlon renames
IcT EXCETIOWS. WANEMRROR;

oSE D=Roi : exceptIon renames
lb EXCEPTIONS .USE ZRROR,

DEVI2 ERROR :exception renames
10 LJCCEPTIONS .DEVICE ZRROR;

END LIROR 2 exception rename
lb EXCEPTIONS. zD uRmOR

DATA -bRR : exception renames
fb EXETIONS .DATA ERMOR;

LXYOVFuf mO : ezceptfom renames
10 XCEPTI0NS. .LKOUTEMOR

private

type FILETYPE is new AS IC 10 TYPES * FIL TYPE;

end TEXT-10;

8-14

