F RS

AD-A247 334 TATIONPAGE

OPM No. 0704-0188

P -
Pl I 0t A
neet e o
Hom 4 QL
Man - o e e

i; ;H ur por 1eponse, inciuding the me for reviewing instructions, ssarching existing data souross gathering and maintsining the dala
v & burden estimate or any other aspect of this collection of information, including suggeations for reducing this burden, 1o Weshingion
il fisrson Davis Highway, Sulle 1204, Aringion, VA 22202-4302, and 10 the Ofice of Information and Regulatory Allaire, Ofice of

1. AGENCY USE ONLY (Leave Biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final: 12 Oct 1991 to 01 Jun 1993

4. TITLE AND SUBTITLE
Validation Summary Report: Aitech Defense Systems Inc., AI-ADA/96K, Version 3.0,
Sun-4/330 under SunOS 4.1.1(Host) to DSP96002 ADS board (bare
machine)(Target), 911012W1.11225

5. FUNDING NUMBERS

6 AUTHOR(S)
Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility, Language Control Facility ASD/SCEL
Bidg. 676, Rm 135

Wright-Patterson AFB, Dayton, OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

AVF-VSR-507.0292

Approved for public release; distribution unlimited.

) | ORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/MONITORING AGENCY |
Ada Joint Program Office ELECTE REPORT NUMBER
United States Department of Defense MAR1 0 1992 ;
Pentagon, Rm 3E114 X i
Washington, D.C. 20301-3081
71, SUPPLEMENTARY NOTES T e
[12absTh AVAILABI ATEM 12b. DISTRIBUTION CODE

713, ABSTRACY (Maximum 200 words)

DSP96002 ADS board (bare machine)(Target), ACVC 1.11.

Aitech Defense Systems Inc., Al-ADA/96K, Version 3.0, Wright-Patterson AFB, Sun-4/330 under SunOS 4.1.1(Host) to

14, SUBJECT TERMS
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIMIL-STD-1815A, AJPO. 16.

7. i 78, SECURITY GLASSIFICATION] 10. SECURITY CLASSIFICATION |20, LIMITATION OF ABSTRACT |
OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

15.NUMBER OF PAGES |

NSN 7540-01-280-550

Standard Form 20€, (Pev. 2-89)
Prescribed by ANS! Sid. 239-128

AVF Control Number: AVF-VSR-507.0292
4 February 1992

91-06-21-AIT

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 911012w1.11225
Aitech Defense Systems Inc.
AI-ADD /96K, Version 3.0
Sun-4/330 under SunOS 4.1.1 => DSP96002 ADS board (bare machine)

Prepared By:
Ada Validation Facility
~ ASD/SCEL
Wright-Patterson AFB OH 45433-6503

HAci-;d;ioa For
| NTIT GRaML B

. DPIC 4B 0
i Ucanno'mneed O

{ Justification

{

f By

| Distributien/

i
| Availabllity Codes
i [Avail asd/or
Dist Speeial

A\

92-05963
EESRRRAID

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 12 October 1991.

Compiler Name and Version: AI-ADA/96K, Version 3.0
Host Computer System: Sun-4,/330 under SunOS 4.1.1
Target Computer System: DSP96002 ADS board (bare machine)

Customer Agreement Number: 91-06-21-AIT

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
911012wW1.11225 is awarded to Aitech Defense Systems Inc. This certificate
expires on 1 June 1993.

This report has been reviewed and is approved.

:"{/\.o—
Eég Vaélégtlon Fac1%1ty

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

1on Organization

omputer and Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

YN IVR.

Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

«zitech

DECLARATION OF CONFORMANCE

Customer: AITECH Defense Systems Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB
ACVC Version 1.11

Ada Implementation:

Compiler Name and Version: AI-ADA/96K Version 3.0
Host Computer System: Sun-4/330 SunOS 4.1.1
Target Computer Systoem: DSP96002 ADS Board Bare Machine

Customer’s Declaration

I, the undersigned, representing AITECH Defense Systems, declare that AITECH Defense
Systems has no knowledge of deliberate deviations from Ada Language Standard
ANSI/MIL-STD-1815A in the implementation listed in this declaration.

)=
Gabriel Leemor

AITECH Defense Systems Inc.
3080 Olcott St., Suite 105A
Santa Clara, CA 95054

1 USE OF THIS VALIDATION SUMMARY REPORT
2 REFERENCES. . . « ¢« « « « « .

3 ACVC TEST CLASSES
4 DEFINITION OF TERMS

IMPLEMENTATION DEPENDENCIES

.1 WITHDRAWN TESTS
.2 INAPPLICABLE TESTS. . .
.3 TEST MODIFICATIONS. . .

PROCESSING INFORMATION

1 TESTING ENVIRONMENT ¢« « ¢« o « « + &
2 SUMMARY OF TEST RESULTS « « « & + .
3 TEST EXECUTION. e & e 6 e & e+ e e s s o o

WWW W NN N R

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

e s e 0

1-1
1-2
1-2
1-3

2-1
2-1
2-4

3-1
3-1
3-2

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]). A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act” (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield va 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

i s s et e s el

INTRODUCTION

1.2 REFERENCES

[AdaB83] Reference Manual for the Ada Programming Lan ’
ANSI /MIL-STD- , February and ISO -1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UGB9] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard invelving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values —- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated scftvare, that wzez common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

ISo
LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

validation

Withdrawn
test

INTRODUCTION

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A~1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incerrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C €32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612Aa C€45612B C45612C C45651a
C46022Aa B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D €83026A B83026B C83041A
B85001L C86001F €94021A Cc97116A €98003B BA2011A
CB7001A CB7001B CB7004A Cccl1223a BC1226A CC1226B
BC3009B BD1B02B BD1B06A AD1B0SA BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B €D4024C
CD4024D Cp4031A CD4051D CD5111A CcD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE311lC CE3116A CE3118A CE3411B CE3412B CE36078B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
« C45421F..Y (20 tests) C45521F..Z2 (21 tests)
C45524F..2 (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..2 (21 tests)

The following 21 tests check for the predefined type SHORT INTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C455028 C45503B C45504B C45504E
C45611B 456138 C45614B C45631B C45632B
B52004E C55B078B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONG_INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
€45502C C45503C C45504C C45504F C45611C
€45613C €45614cC C45631C C45632C B52004D
C55807A B55B09C B86001W €86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_INTEGER, or
SHORT_INTEGER; for this implementation, there is no such type.

C35713B, (C45423B, B86001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C460138, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for ’SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OVERFLOWS is TRUE.

IMPLEMENTATION DEPENDENTIES

C4A013B contains a static universal real expression that exceeds the
range of this implementation’s largest floating-point type; this
expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CA2009A, CA2009C..D (2 tests), CA2009F, and BC3009C instantiate
generic units before their bodies are compiled; this implementation
requires that the body of a generic unit be compiled before any
instantiation of that unit, as allowed by AI-00506. (See Section
2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; this implementation does not support
pragma INLINE.

CD1009C checks whether a length clause can specify a non—default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2AS4E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINE CODE.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE220lF..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (2) EE2401D ce2nlz. .7 (2) EE2401G
CE2401H..L (5) CEZ403A CEZ404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119Aa EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401Aa
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)

2-3

IMPLEMENTATION DEPENDENCIES

CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414a
CE3602A..D (4) CE3603a CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt
to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USE_ERROR. (See Section 2.3.)

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 23 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B55A01A BAI110lE BA3006A BA3006B BA3007B BA3008A
BA3008B BA3013A BC2001D BC2001E

CA2009A, CA2009C..D (2 tests), CA2009F, and BC3009C were graded
inapplicable by Evaluation Modification as directed by the AVO. These
tests instantiate generic units before those units’ bodies are compiled;
this implementation rejects a unit that contains an instantiation of a
unit whose body is not in the program library.

BC3204C..D (2 tests) and BC3205C..D (2 tests) were graded passed by
Processing Modification as directed by the AVO. These tests check that
instantiations of generic units with unconstrained types as generic actual
parameters are illegal if the generic bodies contain uses of the types
that require a constraint. However, the generic bodies are compiled after
the units that contain the instantiations, and this implementation creates
a dependence of the instantiating units on the generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic bodies
makes the instantiating units obsolete——nn errors are detected. The
processing of these tests was modified by re-compiling the obsolete units;
all intended errors were then detected by the compiler.

AD7203B was graded passed by Test Modification as directed by the AVO.
This implementation allocates 16K words of the target memory for task
stacks; by default, equal amounts of storage are allocated to all tasks.
AD7203B contains 8 tasks, in addition to the environment task; since the
environment task requires in excess of 2K words, STORAGE ERROR is raised
when the test is run. The test was modified by adding a ’STORAGE SIZE

2-4

IMPLEMENTATION DEPENDENCIES

length clause for the task type TSK at line 165 to specify an allocation
of 1024 storage units (words) for the activation of each task of the type.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external
file. This is acceptable behavior because this implementation does not
support external files. (cf. AI-00332).

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Uri Gries

Aitech Defense Systems Inc.
3080 Olcott Street, Suite 105A
Santa Clara, CA 95054

(408) 980-6200

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the ada Programmirao Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3431

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 95
d) Non-Processed I/0 Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 644
g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system through ethernet and an OPI (Once Protocol Interface) box
manufactured by Aitech and run. The results were captured on the host
computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect
-L Produces list files,
-5 Produces asm files.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89). The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN—-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
$MAX_IN LEN 240 — Value of V
$BIG_ID1 (1..v-1 => 'A’, V => '1')
$BIG_ID2 (1..v-1 => 'A", V => r2’)
$BIG ID3 (1..V/2 => 'A’) & '3" &
(1..v-1-V/2 => 'A’)
$BIG_ID4 (1..v/2 => 'A") & "4’ &
(1..v-1-v/2 => 'A’)
$BIG_INT LIT (1..v-3 => "0') & "298"
$BIG REAL LIT (1..v-5 => '0’) & "690.0"
$BIG_STRI‘.‘?C~1 e & (1. =y 'A") & P
$BIG_STRINGZ e o& (1..V=1-V/2 => 'A’) & '17 & '’
$BLANKS (1..v=20 => " ')

$MAX_LEN INT BASED LITERAL
"2:" & (1..Vv-5 = '07) & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V=7 => '0") & "F.E:"

A-1

MACRO PARAMETERS

$MAX STRING_LITERAL

g (l..v-2 = 'AT) & '

The following table lists all of the other macro parameters and their

respective values.

Macro Parameter

Macro Value

$ACC_SIZE
$ALIGNMENT
$COUNT_LAST
$DEFAULT MEM SIZE
$DEFAULT_STOR UNIT
SDEFAULT_SYS NAME
$DELTA DOC
$SENTRY_ADDRESS
$ENTRY ADDRESS1
$ENTRY ADDRESS2
$FIELD LAST

$FILE TERMINATOR
SFIXED NAME
$FLOAT NAME
$FORM_STRING
$FORM_STRING2

32

1

2 147 483 647
32768

32

DSP96002
241.04E~31
1644004
1644014
1644024

50

NO_SUCH FIXED TYPE
NO_SUCH_TYPE

"CANNOT RESTRICT FILE CAPACITY"

S$GREATER _THAN DURATION

75 000.0

$GREATER THAN DURATION BASE LAST

131 073.0

SGREATER THAN FLOAT BASE LAST

1.80141E+38

S$GREATER THAN FLOAT SAFE LARGE

1.0E38

A-2

MACRO PARAMETERS

SGREATER THAN SHORT FLOAT SAFE LARGE

$HIGH PRIORITY

1.0E308 ~
23

$ILLEGAL EXTERNAL FILE NAMElL

\NODIRECTORY\FILENAME

$ILLEGAL EXTERNAL FILE NAME2

THIS FILE NAME IS TOO LONG FOR MY SYSTEM

SINAPPROPRIATE LINE LENGTH

-1

$INAPPROPRIATE PAGE LENGTH

$INCLUDE_PRAGMA1
$INCLUDE PRAGMA2
SINTEGER FIRST
$INTEGER LAST
$INTEGER_LAST PLUS 1
$INTERFACE LANGUAGE

$LESS_THAN DURATION

-1
PRAGMA INCLUDE ("A28006D1.ADA")
PRAGMA INCLUDE ("B28006FL.ADA")
~2147483648

2147483647

2147483648

ASSEMBLER

-75_000.0

$SLESS_THAN DURATION BASE FIRST

$LINE_TERMINATOR

$LOW_PRIORITY

-131_073.0
ASCII.LF
1

$MACHINE CODE_STATEMENT

$MACHINE CODE_TYPE
$MANTTSSA DOC

$MAX DIGITS

$MAX INT
$MAX INT PLUS 1
$MIN_INT

SNAME

NULL;

NO_SUCH_TYPE

31

9

2147483647

2 147_483 648
-2147483648
NO_SUCH TYPE AVAILABLE

A-3

MACRO PARAMETERS

$NAME LIST

$NAME SPECIFICATIONL
$NAME SPECIFICATION2
$NAME SPECIFICATION3
SNEG_BASED INT
$NEW_MEM SIZE
$NEW_STOR_UNIT
$SNEW_SYS_NAME

$PAGE TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME

$TASK SIZE

$TASK STORAGE SIZE
STICK

SVARIABLE ADDRESS
SVARIABLE ADDRESS1
$VARIABLE ADDRESS2

$YOUR_PRAGMA

MC68020, MC88000, 1860, DSP96002
/home/val/acvel 11/ctest/dev/x2120a
/home/val/acvel 11/ctest/dev/x2120b
/home/val/acvel 11/ctest/dev/x2120c
164F000000E#

65535

32

MC88000

ASCII.FF

NEW INTEGER;

NO_SUCH MACHINE CODE_TYPE

32

1024

0.000_001

16#03204%

16403214

16403224

INTERFACE PACKAGE

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not

to this report.

B-1

aitech

OVERVIEW AND COMMAND SUMMARY

2.3.1 Ada Cross-Complier (ADA96K)
The compiler is activated using the command ADASEK.

Syntax: ADA96K [qualifiers]

Parameters: source-file-name

<source-file-name>

Denotes the file containing the source text for the
compilation. If no file type is given, .ADA is assumed.

Qualifiers: The qualifiers and options available are detailed in the
following table:

Generates an assembler file for each

/asm_list True
compilation unit. The file name is the unit
name with a suffix *_S" or *_B" and the
file type is .ASM . '
Icontiguration_ | Controis various parameters of the fist internal
file file layout, input line length, etc. defaults
/copy_source | Saves the source file for the compilation | Faise
in the brary
fNist Generatas a list file for the compilation. Faise
The file name is that of the sourcs file,
with file type .LIS
fibrary Compiles the unit(s) into the given library | ADASEK_
LIBRARY
loptimize Controls various optimization options Faise
/recrder Activates the code reordering pass of the | Faise
compiler
/suppress_all | Disables generation of code for run-time | Faise
checks
frace Enables generation of trace-back Faise
information
Nerbose Outputs information during compilation Faise
Ixref Generates a cross-reference listing in the | False
list file

2-5

aitech OVERVIEW AND COMMAND SUMMARY

23.2 Program Library Manager (PLM96K)

The interactive program library manager is activated using the command
PLMIEK.

Syntax: PLM96K {/library=<library_name>]

Qualifiers: /library=<library name>

This optional qualifier sats the current default library for the
PLMgEK. if omitted, the default program library defined by
the logical name ADAS6K_LIBRARY will be opened. ‘

Interactive The PLM96K commands and options are detailed in the
Commands: following table:

Create Creates a new Ada program sublibrary None
or root library

Daelete Delétes the given unit(s) fram the current | None
default program library

Show Displays information for the given unit(s) | None
from the current default program brary

Exit Leaves the program [ibrary manager None

Help Displays the PLMSEK commands and None
options

Library Sets the current default program library Show the
for the PLMS6K current default

{brary

Type Displays the Ada source for the given None
unit(s) from the current default program
library

26

OVERVIEW AND COMMAND SUMMARY

Craeates a copy of the stored Ada source | None
for the given unit(s) in the current
directory

Import

Inserts an externally generated None
compilation unit body into the current
default program library

Allocate

Allocates a unit number for an externally | None
generated compilation unit body

Verify

Checks the correctness of the current None
default program library

2.3.3 Ada Cross-Linker (LNK96K)

The cross-linker is activated using the command LNK9EK.

Syntax:

Parameters:

Quailfiers:

LNK96K [qualifiers] <main-unit-name>
main-unit-name

Denotes the main unit for the Ada program to be linked.
The unit given must be a parameteriess procedure.

The qualifier and options available are detailed in the
following table:

fibrary Specifies the program lbrary where the ADASEK_
main and its required units will be locked | LIBRARY
for

/map Generates a map file for the link. The file | True

name will be the main unit name, with
file type .MAP

2-7

aitech

OVERVIEW AND COMMAND SUMMARY

fprogress | Qutputs information during the link Faise
process
flog Generates a log file tor the link. The log Faise
file name can be givan in the command.
it not given, the main unit name will be
used, with file type .LOG
Idirectives | Uses the directives in the given None
directives file to guide the link process
Rarget Specifies the target identifier 096 (ADS)
fwith_rts Includes the required modules from the Faise
RTS in the link
/minimal_ | Includes a minimal, single-task RTS in Faise
ns the link
/gen_rts Generates the load file for a new fully- Faise
configured RTS executable image
Mrace Enables the RTS tracing functions Faise
Mrst_ Spacifies the initial memory addressas {800,800,400)
address for X, Y and P spacas
Nast_ Specifies the last memory addresses for | (7FFE,7FFE,
address X, Y, and P spaces FFFE)
Ins_size Specifies the maximal size of a fully- (800,200,
configured RTS in the different memory | 3C00)
spaces
/external_ | Includes the given abject file(s) or None
module modules from the given object library in
the fink
Mags Controis various special functions of the | None
linker

2-8

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONG FLOAT is digits 9 range

-1.79769313E+308 .. 1.79769313E+308;

type DURATION is delta 2**-14 range -131072.0 .. 131072.0;

Cc-1

Appendix B.

Appendix F of the Ada Reference Manual

This appendix describes the implementation-dependent characteristics of
the AI-ADA/86K Cross-Compilation System, as required in the
Appendix F trame of the Ada Reference Manual (ANSVMIL-STD-1815A).

B.1 implementation-Dependent Pragmas

The following implementation-dependent pragmas are defined in the
compiler:

* suppress_all
* interface_package
* extemal_subprogram_name

For detailed information on the use of these pragmas, refer to Section 6.8,
, "implamentation-Dependent Features.”

B.2. Implementation-Dependent Attributes
No implementation-dependent attributes are defined for this version.

B.3. Package SYSTEM
The spedification of the package SYSTEM:

package SYSTEM is

type ADDRESS is new INTEGER;

type PRIORITY is range 1 .. 23:
-= Priority 0 is reserved for the Null Task

-- Priority 24 is reserved for System Tasks
~- Priorities 25..31 are for interrupts
type NAME is (MC68020,MC88000,i860,DSP96002);

SYSTEM NAME: constant NAME :w» DSP96002;
STORAGE _ONIT: constant tw 32;

MEMORY SIZE: constant 1w 32 * 1024;
MIN_INT: constant 1@ =2 147_483_647-1;
MAX_INT: constant :w 2 T47_783_%47;
MAX DIGITS: constant t- 3

MAX _MANTISSA: constant tw 31,

B-1

aitech APPENDIX F OF THE ADA REFERENCE MANUAL

FINE_DELTA: constant i= 2.0 ** (-31);

TICK: conatant s= 0,000_001;

type INTERFACE_LANGUAGE is (ASSEMBLER,C,RTS) ;
end SYSTEM;

B.4. Representation Clauses

B.4.1 Length Clauses

The following kinds of length clauses are supported:

1. Size specification: T'size
Supported as described in ARM. For scalar objects residing in the
frame, the smallest possible size (in complete words) will always be
chosen by the compiler.

2. Specification of a collection size: T'storage_size

Specifies the number of storage units allocated to the collection
associated with access type T.

3. Spodwonoftuksize T'storage_size

Spodﬂamonumrdsbmomlhdlomhnwhacﬁvaﬂonof
a task of type T. This size includes space for the task's stack, s
well as some RTS overhead (approximately 54 words).

4. Specification of small for a fixed point type: T'small

B.4.2. Enumeration Representation Clause

Enumeration representation clauses may specify representations in the
range of the predefined type INTEGER.

B-2

aitech APPENDIX F OF THE ADA REFERENCE MANUAL

B.43. Record Representation Clause

Record representation clauses are supported as detailed in Section 13.4
of the ARM.

B.S implementation-Dependent Names for
Implementation-Dependent Components

None defined by the compiler.

B.6 Address Clauses

Address clauses are supported for objects (variables or constants) and
task entries (linkage to hardware interrupt); refer to Chapter 16, “Al-TCK

Target Configuration Kit.”

Address clauses for objects are interpreted as absolute addresses, and
code is generated using the ORG directive. The compiler does not check

for possible overiaps.

B.7. Unchecked Conversion

No warning is issued when conversion between objects of diffarent sizes
ls performed. The result of such a conversion is unpradictable.

B.8. input-Output Packages

input-Output packages are supplied with the Al-ADA/86K Cross-Compiler
System.

Standard_input and Standard_output are supported. External files and file
objects are implementation dependent, and therefore are handled as
specified in the ARM.

aitech APPENDIX F OF THE ADA REFERENCE MANUAL

B.8.1. Specification of the Package Sequential_lO

with BASIC IO TYPES;

with IO_EXCEPTIONS:

generic
type ELEMENT TYPE is private;

package SEQUENTIAL IO is
type FILE TYPE {3 linited private;
type FILE | HODE is (IN_FILE, OUT_FILE);

—— File management
procedure CREATE (
FILE : in out FILE TYPE:
MODE : in FILE MODE := OUT FILE;
NAME : in STRING := *""; FORM : in STRING := "");

procedure OPEN (
FILE : in out FILE_TYPE;

MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING 1 ") ;

procedure CLOSE (FILE : in out FILE TYPE);
procedure DELETE (FILE : in out FILE TYPE);
procedure RESET (

FILE : in out FILE TYPE;

MODE : in FILE MODE);

procedure RESET (FILE : in out FILE TYPE);
function MODE = (FILE : in PILE TYPE) return FILE ,_MODE;
function NAME (FILE : in FTLE ,_TYPE) return STRING;

function FORM (FILE : in FILE TYPE) return STRING:
function IS_OPEN(FILE : in FILE TYPE) return BOOLEAN;
— input and output operations
procedure READ (
FILE : in FILE TYPE;
ITEM : out ELEMENT_TYPE);

procedure WRITE (
FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE);
function END OF FILE (FILE : in FILE_TYPE)
return BoO :

R Rk v TR = e —_—

aitech APPENDIX F OF THE ADA REFERENCE MANUAL

-- exceptions

STATUS_ERROR : exception renames
I0 EXCEPTIONS.STATUS _ERROR;

MODE_ERROR : exception renames
I0 EXCEPTIONS.MODE , _ERROR;

ERROR : exception renames

10 _EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames
I0 EXCEPTIONS.USE _ERROR;

DEVICE ERROR : exception renames
I0 EXCEPTIONS.DEVICE_ ERROR;

END ERROR : exception renames
0 _EXCEPTIONS.END_ERROR; °

DATA ERROR : exception renames
IO_EXCEPTIONS DATA_ERROR;

private
type FILE_TYPE is new BASIC_IO_TYPES.FILE_TYPE;

end SEQUENTIAL I0;

B8.82. Specification for Package Direct Input-Output

with BASIC IO TYPES:

with IO _EXCEPTIONS;

generic™
type ELEMENT TYPE is private;

packaq- DIRECT 10 is
type FILE_TYPE is limited private;
type - FILE MODE is (IN_FILE, INOUT FILE, OUT_FILE):;
type COUNT is range 0..INTEGER’LAST;
subtype POSITIVE_COUNT is COUNT range l..COUNT’LAST;
== File management

procedure CREATE (
FILE : in out FILE TYPE;

MODE : in FILE MODE := INOUT FILE;
NAME : in STRING T PR
TORM : in STRING 1w "%);

prtocedure OPEN (
FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in 8 ;

FORM : in STRING 1m W),

procedure CLOSE (FILE : in out FILE TYPE):
procedure DELETE (FILE : in out FILE TYPE);
procedure RESET (

altech APPENDIX F OF THE ADA REFERENCE MANUAL

FILE : in out FILE E;
MODE : in FILE_MODE);

procedure RESET (FILE : in out FILE TYPE);

function MODE (FILE : in FILE TYPE) return FILE MODE;
function NAME (FILE : in FIIE_TYPE) return STRING;
function FORM (FILE : in FILE TYPE) retura STRING;
function IS_OPEN(FILE : in FILE TYPE) return BOOLEAN;

-~ input and output operations

procedure READ (

FILE : in FILE TYPE;
ITEM : out ELEMENT TYPE;
FROM : in POSITIVE COUNT);

procedure READ (
FILE : in FILE TYPE;
ITEM : out ELENMENT TYPE);

procedure WRITE (

FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE;
TO : in POSITIVE_COUNT);

procedure WRITE (
FILE : in FI