WL-TR-92-7007

Investigation of Battery Charged Capacitor Pulsed Power Systems for Electromagnetic Launcher Experiments

James B. Cornette

Wright Laboratory, Armament Directorate Analysis and Strategic Defense Division Electromagnetic Launcher Technology Branch Eglin Air Force Base FL 32542-5434

FEBRUARY 1992

FINAL REPORT FOR PERIOD JANUARY 1990 - APRIL 1991

Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE - For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

WRIGHT LABORATORY, ARMAMENT DIRECTORATE Air Force Systems Command I United States Air Force I Eglin Air Force Base

NOTICE

(WL-TR-92-7007)

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise as in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service (NTIS), where it will be available to the general public, including foreign nationals.

FOR THE COMMANDER

GEORGE (F. KIRBY Chief, Analysis and Strategic Defense Division

Even though this report may contain special release rights held by the controlling office, please do not request copies from the Wright Laboratory, Armament Directorate. If you qualify as a recipient, release approval will be obtained from the originating activity by DTIC. Address your request for additional copies to:

> Defense Technical Information Center Cameron Station Alexandria VA 22304-6145

If your address has changed, if you wish to be removed from our mailing list, or if your organization no longer employs the addressee, please notify WL/MNSH, Eglin AFB FL 32542-5434, to help us maintain a current mailing list.

Do not return copies of this report unless contractual obligations or notice on a specific document requires that it be returned.

AGENCY USE ONLY (Leave blain information, including suggestion trighway, Suite 1204, Arthrogton, 14, 2220 AGENCY USE ONLY (Leave blain ittle AND SUBTITLE investigation of Battery (Systems for Electromagne UTHOR(S). Cornette VL Program Manager: Ja ERFORMING ORGANIZATION N Electromagnetic Launche Analysis and Strategic De	 and restrictions and the line of the hard set of the hard set of the hard set of the hard set of the office of standardment and the hard set of the office of standardment and the office of standardment an	advarters Services Dementioner Service Budget: Paper Acres Binduction Pr 3. REPORT TYPE AI Final J:	And A De Matrice et la contraction de la contractione de la contractione de la contractione de la contraction (De la contraction de la contraction de la contractione) de la contractione de la contraction
TILE AND SUBTITLE nvestigation of Battery (Systems for Electromagne UTHOR(S) ames B. Cornette VL Program Manager: Ja ERFORMING ORGANIZATION N Electromagnetic Launche Analysis and Strategic De	February 1992 Charged Capacitor Pulsed Po etic Launcher Experiments ames B. Cornette (WL/MNS AME(S) AND ADDRESS(ES)	Final Ja	PE 63217C PR 1203 TA 03
NVESTIGATION OF Battery C Systems for Electromagne UTHOR(S) ames B. Cornette VL Program Manager: Ja ERFORMING ORGANIZATION N Electromagnetic Launche Analysis and Strategic De	Charged Capacitor Pulsed Pe etic Launcher Experiments ames B. Cornette (WL/MNS	ower	PE 63217C PR 1203 TA 03
NVESTIGATION OF Battery C Systems for Electromagne UTHOR(S) ames B. Cornette VL Program Manager: Ja ERFORMING ORGANIZATION N Electromagnetic Launche Analysis and Strategic De	ames B. Cornette (WL/MNS	ower	PE 63217C PR 1203 TA 03
VL Program Manager: Ja ERFORMING ORGANIZATION N Electromagnetic Launche Analysis and Strategic De	AME(S) AND ADDRESS(ES)	SH)	TA 03
ERFORMING ORGANIZATION N Electromagnetic Launche Analysis and Strategic De	AME(S) AND ADDRESS(ES)	SH)	
Electromagnetic Launche Analysis and Strategic De			
Armament Directorate, W Eglin Air Force Base, FL	efense Division /right Laboratory		8. PERFORMING ORGANIZATION REPORT NUMBER
ONSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(ES))	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
ame as above.			AUENCT REPURT NUMBER
			WL-TR-92-7007
approved for Public Rele	ease; distribution is unlimite	d.	А
ABSTRACT (Maximum 200 word	<i>i</i> s)		<u></u>
andidate nulsed nower syste			
hachinery and non-rotating d industrial and educational ins and inductors. These too are applies of equal power and o ower systems for electromag nose identified as promising the basic equations governin lectromagnetic launcher are lectromagnetic launcher has oncept with presently available	ems for electromagnetic launche levices. Rotating machinery for stitutions around the world. Not the subject of research program energy capability. In 1988, syst gnetic launchers. Battery charge for electromagnetic launcher sy g the battery charging capacitor the subject of this report. A ba also been built and tested. This ble hardware, but can be used to	this purpose is under n-rotating hardware in ns, but as yet, are muc tem studies identified ed capacitor pulsed po- stems. sequence, and the cap ttery charged capacito s experiment not only o establish a baseline	development at several cludes capacitors, batteries, ch larger than rotating several attractive pulsed over systems were among pacitor discharge into an r system powering an validates the system for evaluation of future
hachinery and non-rotating d industrial and educational ins and inductors. These too are applies of equal power and o ower systems for electromag nose identified as promising the basic equations governin lectromagnetic launcher are lectromagnetic launcher has oncept with presently available	levices. Rotating machinery for stitutions around the world. Nor the subject of research program energy capability. In 1988, syst gnetic launchers. Battery charge for electromagnetic launcher sy g the battery charging capacitor the subject of this report. A ba also been built and tested. This	this purpose is under n-rotating hardware in ns, but as yet, are muc tem studies identified ed capacitor pulsed po- stems. sequence, and the cap ttery charged capacito s experiment not only o establish a baseline	development at several cludes capacitors, batteries, ch larger than rotating several attractive pulsed over systems were among pacitor discharge into an r system powering an validates the system for evaluation of future rove.
hachinery and non-rotating d industrial and educational ins and inductors. These too are upplies of equal power and o ower systems for electromagnose identified as promising the basic equations governin lectromagnetic launcher are lectromagnetic launcher has oncept with presently availat systems when technology in o	levices. Rotating machinery for stitutions around the world. Not the subject of research program energy capability. In 1988, syst gnetic launchers. Battery charge for electromagnetic launcher sy g the battery charging capacitor the subject of this report. A ba also been built and tested. This ble hardware, but can be used to	r this purpose is under n-rotating hardware in ns, but as yet, are muc tem studies identified ed capacitor pulsed po- stems. r sequence, and the cap ttery charged capacito s experiment not only o establish a baseline l energy densities impo-	development at several cludes capacitors, batteries, ch larger than rotating several attractive pulsed wer systems were among pacitor discharge into an r system powering an validates the system for evaluation of future rove.
hachinery and non-rotating d industrial and educational ins and inductors. These too are upplies of equal power and o ower systems for electromagnose identified as promising the basic equations governin lectromagnetic launcher are lectromagnetic launcher has oncept with presently availation systems when technology in our SUBJECT TERMS	levices. Rotating machinery for stitutions around the world. Not the subject of research program energy capability. In 1988, syst gnetic launchers. Battery charge for electromagnetic launcher sy g the battery charging capacitor the subject of this report. A ba also been built and tested. This ble hardware, but can be used to capacitor and battery power and	r this purpose is under n-rotating hardware in ns, but as yet, are muc tem studies identified ed capacitor pulsed po- stems. r sequence, and the cap ttery charged capacito s experiment not only o establish a baseline l energy densities impo-	development at several cludes capacitors, batteries, ch larger than rotating several attractive pulsed over systems were among pacitor discharge into an r system powering an validates the system for evaluation of future rove. 15. NUMBER OF PAGES 24 16. PRICE CODE
	ems for electromagnetic launche	rs constitute two broa	d catego

.

PREFACE

This work was funded by the Electromagnetic Launcher Technology Branch (WL/MNSH), Analysis and Strategic Defense Division, Armament Directorate, Wright Laboratory at Eglin, AFB, Fl under the Kinetic Energy Weapons program of the Strategic Defense Initiative. Personnel from WL/MNSH performed the work during the period of January 1990 to April 1991 at Eglin Air Force Base, Florida 32542-5434.

This report documents a design analysis of an electrolytic capacitor based rapid fire electromagnetic launcher power system. This report expands a paper that was presented at the Third European Symposium on Electromagnetic Launcher Technology in London, England on 16-18 April, 1991 and the 8th I.E.E.E. Pulsed Power Conference in San Diego, California on June 17-19, 1991.

Acces	ssion For	l.
NTIS	GRA&I	Contraction of the second
DTIC	TAB	9
Unam	aounced	ň
Just	lfication_	I
By		
Distr	ibution/	
Ava1	lability	Codes
	Avail and	/or
Dist	Special	
N		
1 ·		1

iii /iv (Blank)

TABLE OF CONTENTS

٠.

Section	Title	Pag	ge
I	INTRODUCTION	• • •	1
II	BATTERY CHARGING REGIME	•••	2
ш	CAPACITOR CHARGING SEQUENCE	• • •	3
IV	CAPACITOR DISCHARGE SEQUENCE	•••	7
v	ENERGY BASED CPACITOR DISCHARGE CIRCUIT ANALYSIS	1	12
VI	CONCLUSIONS	1	15
	REFERENCES	1	16

LIST OF FIGURES

Figure	Title	Page
1	Power System Schematic	1
2	Battery Charging Schematic	4
3	Capacitor Driven Launcher	7
4	Breech Voltage Components	9
5	Simplified Capacitor Driven Launcher	10

LIST OF TABLES

Title

Table

Page

1Battery Parameters22Electrolytic Capacitor Specifications33Example Charging Circuit54Example Launcher Parameters9

LIST OF ABBREVIATIONS AND ACRONYMS

γ	Gamma
δ	Delta, Skin Depth
η	Eta
λ	Gamma, Flux Linkage
π	Pi
Ω	Omega
С	Capacitor
CCA	Cold Cranking Amps
C _{eq}	Equivalent Capacitor
d	Distance Between Plates
DC	Direct Current
I	Current
Κ	Dielectric Constant
L'	Inductance Per Unit Length
Р	Power
R´	Resistance Per Unit Length
R _A	Armature Resistance
R _{INT}	Internal Resistance
S	Area In Square Centimeters
SCR	Silicon Controlled Rectifiers
SOC	State of Charge
τ	Tau, Time Constant
V	Velocity
V _A	Mass, Armature
V _{Cap}	Capacitor Voltage
V _{oc}	Open Circuit Voltage
Vswitch	Closing Switch Voltage
W	Energy
·.	Therefore
Σ	Summation, Sigma
μ	Micro, mu
~	Approximately Equal
\$	Integral

۰.

•.

SECTION I

INTRODUCTION

When using a battery charged capacitor pulsed power system to discharge into a transient load (in this case an electromagnetic launcher), operation can be divided into three distinct regimes.

The first regime is the charging of the batteries by an external direct current (DC) source. The second operational subdivision is the charging of the capacitor system by a current pulse from the batteries. The result of this sequence is a fully charged capacitor system with the appropriate stored energy required by the design of the system for discharge into a static or transient load. Finally, the capacitors are discharged into the load. This third operating regime is characterized by a much shorter time interval than the previous two sequences.

This report discusses these three phases of operation for a battery charged capacitor system for discharge into a generic transient load. Figure 1 shows a simplified schematic of such a system.

Figure 1. Power System Schematic

In Figure 1, silicon controlled rectifiers (SCR's) are shown as the devices by which the capacitors are discharged into the transient load. Other forms of switching can be used, as can no switching at all for a hot rail system. For the purposes of this report, SCR's are used to ensure controlled switching into the transient load.

SECTION II

• •

BATTERY CHARGING REGIME

Charging requirements for the battery portion of the system vary depending upon the type of battery selected. Several types of batteries are commonly in use today, such as: lead-acid, nickel-cadmium, nickel-zinc, lithium systems, silver systems, hydrogen systems, and bipolor configurations of these and many more examples. For this analysis, the standard cell, 12 Volt, lead-acid batteries will be considered. The basic battery string consists of 60 batteries in series.

For the charging process one must use high current electrical power to reform the active chemicals of the batteries to a high energy charge state. Lead-acid systems involve the conversion of lead sulfate in the positive electrodes to lead oxide, the conversion of lead sulfate at the negative electrode to metallic lead, and restoration of the electrolyte to a high concentration sulfuric acid solution. The rate at which the charging process can occur depends upon how many amp hours have been previously discharged from the battery system. In general, batteries follow the ampere hour recharge rule as follows:

$$I = Ae^{4}$$
(1)

Where I is the charging current and A is the number of amp hours previously removed. As the battery is recharged, the voltage increases and the charge current is reduced according to the manufacturers recommendations. The charging sequence can take several minutes. The charging sequence has the longest event duration of the three operating regimes and, hence, the least interesting for the purposes of this report. But, unless properly designed, the charging system for the battery system can affect the operating efficiency of the battery charged capacitor system. Table 1 shows the relevant battery parameters assumed for this discussion.

TABLE 1. SINGLE BATTERY PARAMETERS

$V_{oc} = 12.76V$ $R_{INT} = 4.00 \text{ m}\Omega$ $I_{MAX} = 5000A \text{ (<ms peak current)}$

1520 A- Maximum current for impedance matching 2000 A- Maximum current for a 5s pulse
2800 A- Maximum current average over 100ms pulse 10⁷ Joules- Approximate energy storage

SECTION III

CAPACITOR CHARGING SEQUENCE

As previously mentioned, the discharge energy store is made up of electrolytic capacitors. Electrolytic capacitors are by no means a new technology. Some of the first Electrolytic capacitors were fabricated in Germany in the 1800s, Reference 1. Improvements have been made in the efficiency of the electrochemical reaction and packaging since the early days but, the basic operation remains the same and is governed by the same equations.

A capacitor has three essential parts. Two of those are conducting, usually metal, plates that are separated by the third component called a dielectric. The quality of the dielectric is measured by its ability to insulate the two conducting plates and store electrical charges, versus the amount of voltage developed across the conductor plates. The electrical capacity of the capacitor is expressed as follows:

$$C = \frac{q}{V}$$
(2)

Where q is the charge in coulombs and V is the voltage potential between the conductors. If a capacitor's potential rises by one volt when it receives a charge of one coulomb, it would have a capacitance of 1 Farad. Practical electrostatic or electrolytic capacitors have capacitances of micro-Farads (μ F=10⁶ Farad), or pico-Farads (μ F=10⁹ Farad). Equation (2) can also be expressed in terms of the physical properties of the capacitor itself as follows, Reference 2:

$$\mathbf{C} = 0.0885 \frac{\mathrm{KS}}{\mathrm{d_e}} \tag{3}$$

where, C = Capacitance in pF K = Dielectric constant S = Area of one plate in square centimeters d = distance between plates in centimeters

Electrolytic capacitors differ from conventional types of electrical capacitors in that only one of the conducting surfaces is a metallic plate. The other conductor is formed by a conducting chemical or electrolyte. The dielectric is a very thin film of oxide of the metal that constitutes the metallic plate of the first conductor, Reference 2. The oxide dielectric does have a higher resistance than the standard conductor. Hence, electrolytic capacitors have higher internal resistances than other electrostatic energy storage capacitors.

The specifications for the electrolytic capacitors for this system are listed in Table 2.

TABLE 2. ELECTROLYTIC CAPACITOR SPECIFICATIONS

Electrolytic Capacitor Specifications (Single)

Maximum charge Voltage	= 450V
Maximum current output	= 6000A
Capacitance	= 3500µF

Stored energy at 450V	=	354J
Internal resistance	Ξ	$41m\Omega$

Constructing a single bank composed of these capacitors requires two in series to exceed the 765V battery string maximum charge rating, and 48 of these series pairs in parallel with each other. This arrangement of capacitors has a total capacitance of 84mF. In this configuration the capacitor module stores 27kJ at 800V (the maximum capacitor voltage rating).

The battery string is designed to charge the capacitor module prior to a discharge according to the circuit in Figure 2.

Figure 2. Battery Charging Schematic

A single make/break mechanical switch is used to initiate and interrupt charging current. After the charge voltage capability of the battery string and the circuit parameters of the system have been defined, the performance of the circuit can be calculated.

When the switch is closed, the batteries discharge current through the bus to the capacitor bank causing it to collect charge and develop a potential, Reference 3. The batteries here are standard automotive lead acid batteries with a fully charged open circuit voltage of 12.76V. The internal resistance of the batteries depends on the discharge current level, reference 4. At currents of 2000A the steady state internal resistance is approximately $4.0m\Omega$. The internal resistance for a fully charged battery of the type used here rises from 3.25 to $3.5m\Omega$ in the first few milliseconds of the discharge. Over a 5s pulse the average resistance is $4.0m\Omega$, and the resistance continues to increase as time progresses and the conductors heat, Reference 5. In this case, the battery charging current pulse is less than 100ms. The bus resistance is assumed to be approximately $300\mu\Omega$ with an inductance of 200nH using standard 2/0 cable. For any large string of batteries, say more than 10 in series (i.e. $R_{tot} =$ $40m\Omega$), the internal resistance is much greater than the bus resistance allowing us to neglect the connection resistance. Also the inductive time constant ($\tau = L_{But}/(R_{But} + R_{tot})$, in μ s) for the circuit is very short when compared to the capacitive (τ = RC, in ms) time constant which allows the researcher to ignore the bus inductance, Reference 6. The equation relating the final open circuit voltage (V_{0c}) to the dynamic charging voltage (V_{Cap}) is given as follows, Reference 6:

$$V_{Cap} = V_{oc} \left(1 - e^{-i\pi} \right)$$
(4)

Where $\tau = R_{int} C_{eq}$.

• •

The time to reach a given capacitor voltage when the open circuit voltage of the battery string is known was found by rearranging Equation 4 as follows:

$$t = -\tau \ln \left(\frac{V_{Cap}}{1 - V_{OC}} \right)$$
(5)

The maximum charge current was approximated by:

$$\frac{V_{OC}}{I_{MAX} = R_{INT}}$$
(6)

Now by assuming the current has reached the maximum value, the time varying expression for the current is written as follows, Reference 6:

. .

$$I(t) = I_{MAX} \left(e^{-t/t} \right) \tag{7}$$

This allows the researcher to calculate the magnitude of the current and by rearranging they can determine the time for the current to drop to any value from:

$$t = \tau \ln \left(\frac{I(t)}{I_{MAX}}\right)$$
(8)

To get an idea for the magnitude of the parameters in Equations 4 through 8, consider a 60 battery series string ($V_{oc} = 765V$, $R_{INT} = 240m\Omega$ [180-210 m Ω at time zero]), charging the 84mF capacitor bank to 700V.

From these initial calculations a battery system could charge the capacitor bank in less than 100ms (10Hz) for voltages and capacitances similar to the example. The researcher must also consider the maximum charging current capability of the batteries and the time that the batteries can remain at that level.

TABLE 3. EXAMPLE CHARGING CIRCUIT

Example Charging Circuit

$\tau = R_{int} C_{eq}$	= 20ms
Charge time, t	= 49ms
IMAX	= 3188A (Batteries)
Energy storage	= 21kJ

Current Decay Times From Peak

lo	1000A, t	= 23ms
to	100A, t	= 69ms

Lead acid batteries used here have shown current discharge capabilities of 2000A for 5 seconds, Reference 5 and 7. Currents of 3000 to 4000A have also been demonstrated from time periods of several hundred milliseconds to several seconds, Reference 5. Therefore, initial estimates of battery discharge currents at energy levels comparable to the example appear practical.

A single lead acid battery as used here stores $3 \times 10^5 \text{ C}$ (As) at 100 percent state of charge (SOC), Reference 8 and 9. They also have a cold cranking amp (CCA) rating of 875A that relates to their automotive origins. The CCA means that the battery has been tested by the manufacturer and is capable of discharging 875A for 30 seconds, Reference 5. Assuming that this occurs at slightly below peak power, the energy discharged is 189kJ. For this 23Kg battery, reference 5, the energy density under CCA conditions is 8kJ/Kg. High discharge rates of 2000A for 5 seconds have demonstrated pulsed energy densities of up to 170kJ/Kg and a 5 percent reduction in the SOC, Reference 5. Assuming the battery could be discharged to 0 percent SOC and 2000A, the total battery energy storage is over 3.0MJ. The resistance rises and current decreases with decreasing SOC, so 3.0MJ is impossible to realize but, discharges to <50 percent SOC have been demonstrated; storing over 1.0MJ, Reference 5. Therefore, it appears that lead-acid batteries are more than adequate to output 100's of short current pulses without damage.

SECTION IV

ς.

CAPACITOR DISCHARGE SEQUENCE

In a battery charged capacitor electromagnetic launcher system, the capacitor bank must supply the current pulse to the launcher. The initial capacitor bank energy is dissipated in the resistive ohmic losses, stored by the circuit inductance, and transferred to kinetic energy of the accelerated mass. The shape of the current pulse determines the shape of the acceleration curve and, hence, the acceleration profile of the mass. Figure 3 depicts a capacitively driven electromagnetic launcher circuit.

Figure 3. Capacitor Driven Launcher

The capacitor bank discharges an electrical current pulse through the connecting bus to the breech of the launcher after the closing switch (represented by V_{switch}) has been activated. This assumes that the bank had been previously charged to an open circuit voltage (V_{oc}) by another system, a battery in this case. The launcher is assumed to have a constant L (μ H/m), and R ($\mu\Omega/m$), and the voltage drop of the mass armature is represented by (V_A).

By writing the voltage equation around the barrel loop using Kirchoff's voltage law, Reference 6, we can determine an expression for the breech voltage of the launcher as follows:

$$V_{B} = IR_{Rail} + IR_{Armature} + dt (L(x) I)$$
(9)

$$V_{B} = IRx + V_{A} + [L(x) \frac{dI}{dt} + I \frac{dL}{dx} \frac{dx}{dt}]$$
(10)

The $IR_{Armstere}$ term is replaced by V_A when using a plasma armature as shown in Equation 10. Remembering that the change in inductance per unit length is a constant (dL/dx=L'), and that the inductance of the launcher as a function of distance x down the bore is L(x)=L'x,

$$V_{B} = IR'x + V_{A} + L'x dt + IL'v$$
(11)

Where v is the instantaneous velocity of the projectile.

In order to develop an understanding for the origin and meaning of terms on the right hand side of Equation 11, each term is discussed separately.

The first term (left to right) represents the resistive voltage drop along the rails (V=IR). As the mass moves down the launcher, the current must flow through a longer length of conductor material to reach the armature. With complete current penetration of typical small launcher rails, $R' = 84 \ \mu\Omega/m$ and using $\delta = 7.1 \times 10^3 \text{ m} \oplus 1 \text{ kHz}$, $R' = 1.1 \ m\Omega/m$. Although the actual value of R' changes with the depth of penetration of current into the conductors, a constant value of R' is assumed here as the average of the complete and 1 kHz current penetration resistances ($\therefore R' \approx 600 \ \mu\Omega/m$). With a constant resistance gradient of R', the total resistance will be R'x, resulting in a voltage drop of IR'x.

The second term is the voltage drop caused by the current flowing through the armature. The armature voltage is assumed constant here, but the electrical dynamics of a plasma are much more complicated than this simple assumption indicates, Reference 10. Plasma armature research has been conducted for many years resulting in a large volume of modeling and experimental data. Several references concerning these results are provided to allow the reader to develop a better understanding of plasma armature physics, References 11, 12, 13, and 14. For launchers, the plasma armature voltage can be estimated by an equation that is a function of the bore dimension and the current density. This equation is derived and presented by, Reference 15. Assuming a 15mm conductor separation for the launcher, with 250kA driving current, the plasma voltage consists of a constant 45V plus 3200V/m of bore height for a total plasma voltage $\approx 93V$.

The remaining two terms of breech voltage arise from the voltage drop across the inductance of the barrel when the current is changing and the consequence of the expanding current loop the moving projectile creates. Assuming an electrically linear system whose flux linkages can be expressed in terms of a spatial inductance, the flux linkage is written as, Reference 16:

$$\lambda = \mathbf{L}(\mathbf{x})\mathbf{I} \tag{12}$$

The voltage drop across this inductance is expressed as follows, Reference 6:

$$V_{L} = dt = dt (L(x)I)$$
(13)

$$V_{L} = L(x) \frac{dI}{dt} + I \frac{dL}{dx} \frac{dx}{dt}$$
(14)

Now substituting L'=dL/dx, and L(x)=L'x for the functional inductance of the expanding loop, and v=dx/dt, generates:

$$V_{L} = L'x dt + IL'v$$
(15)

Oſ,

$$V_{L} = V_{trans} + V_{Speed}$$
(16)

The V_{trans} term is the voltage drop resulting from a time varying current. This shall be referred to as the transformer voltage. The second term is developed along the rails as the armature moves through the magnetic field and is referred to as the speed voltage, Reference 16. Substituting the results of Equations 12 through 16 into Equation 11, generates:

$$V_{B} = V_{Rall} + V_{A} + V_{trans} + V_{Speed}$$
(17)

Figure 4 depicts a simplified side view of a launcher and the general orientation of the breech voltage components.

The armature voltage (V_A) is often termed muzzle voltage since it can be measured across the muzzle of the launcher. The speed voltage results from the addition of differential inductance segments as the mass moves down the launcher. Therefore, it is difficult to represent the location of a voltage tap that would be used to measure the speed voltage in a static illustration. Figure 4 attempts to illustrate that the speed voltage is a result of the moving mass (dotted line represents the previous mass position).

1

Figure 4. Breech Voltage Components

The relative magnitudes of the breech voltage components can vary significantly. As an example, consider a breech voltage calculation using the fictional launcher parameters of Table 4.

TABLE 4. EXAMPLE LAUNCHER PARAMETERS

Conductor separation	= 100mm
Launcher length	= 5m
Current	= 5.0MA
L	= 0.5 μH/m
R'	= 25 μΩ/m

9

V,	= 1000 V
Velocity	= 2km/s

Substituting the given values into Equation 11 and assuming dI/dt=0, yields:

$$V_{RAIL} = 625V$$

 $V_{A} = 1000V$
 $V_{SPEED} = 5000V$
 $V_{B} = 6625V$

As the velocity of the mass increases, the speed voltage begins to dominate the breech voltage equation. For low velocity launchers, the speed voltage is not as important as the armature voltage which has the highest value (with plasma armatures).

There now exists an equation for the breech voltage that the power system must provide to the launcher. Simplifying Figure 3 and representing the launcher with the breech voltage symbol (see Figure 5), a researcher can rewrite Kirchoff's voltage law to obtain the power system voltage equation. The capacitor system voltage will now be related to gun parameters.

Figure 5. Simplified Capacitor Driven Launcher

The instantaneous capacitor voltage at any time during the discharge is represented by Equation 18.

$$V_{Cap} = V_{Switch} + L_{Bus} \left(\frac{dI}{dt}\right) + IR_{Bus} + V_{B}$$
(18)

The switch voltage is the resistive drop across the closing switch and is assumed constant during current conduction. The magnitude of the switch voltage should be designed to be very low compared to either the breech or initial capacitor voltages ($V_{\text{Switch}} = V_{Cep}/1000$). Although the voltage drop is small, the switch must conduct very high currents (>100kA), which implies low resistance, and experience very high current rise rates (dI/dt's) without failure. The switch voltage will be ignored in the following equations.

The bus inductance and resistance are assumed constant during the current pulse. Inductance in the circuit will not contribute a voltage drop during constant current (i.e., dI/dt=0). However, the

inductance will directly affect the rate at which the current rises. A low bus inductance combined with a high initial capacitor voltage will generate a quickly rising current pulse after switch closure. Whereas, a very inductive circuit will tend to stretch out the current pulse in time and result in a lower peak current value. The initial open circuit voltage of the capacitor system must be high enough to drive the current to its maximum value in a short time (as dictated by acceleration and jerk limits) after the switch is closed. The rate at which the current is designed to rise due to the initial buss and barrel inductances (Plus an armature breakdown voltage term) will determine the initial capacitor voltage required. The equivalent capacitance and open circuit voltage determine the amount of stored energy available to support the losses in the circuit and for conversion to muzzle energy of the projectile.

SECTION V

ENERGY BASED CAPACITOR DISCHARGE CIRCUIT ANALYSIS

The initial energy stored by the capacitor bank is written as, Reference 3:

$$W_{\rm C} = C_{\rm eq} V_{\rm OC}^2 \tag{19}$$

Where V_{∞} is the open circuit voltage of the capacitor bank prior to the discharge.

Now write the energy equations that allow researchers to select the appropriate value for the circuit elements. The launcher circuit is a conservative system with respect to energy when the resistances, or time dependent energy loss components are ignored. The inductive components appear in both the ideal and real systems. Therefore, a general energy equation representing the initial energy, intermediate and final energy of the system is written as follows:

$$W_{Initial} = W_{Intermediate} = W_{Final}$$
(20)

The initial energy of the system is represented by Equation 19 when the capacitor bank has been fully charged. During the discharge, the capacitor bank energy decreases and the circuit elements store or dissipate energy while the mass gains kinetic energy. The inductive energy of the circuit is conservative and the resistive is not. This implies that the energy dissipated by the resistors is dependent on the time history of the current during the discharge, whereas, the inductively stored energy is not.

The final system is composed of any remaining energy in the capacitor bank, the final kinetic energy of the mass, and the sum of the stored and resistively dissipated energy in the circuit.

The energy equation for the launcher circuit including the resistive components, is written as follows:

$$C_{eq} V_{OC}^{2} = C_{eq} V_{Cep}^{2} + L_{Bes} I^{2} + L' x I^{2} + \int R_{A} + R_{Bes} + R' x I^{2} dt + m v^{2}$$
(21)

Where R_A represents the armature resistance. Now rewriting Equation 18 to include the breech voltage components generates:

$$V_{Cap} = IR_{Bus} + L_{Bus} \frac{dI}{dt} + V_A + IR'x + L'x \frac{dI}{dt} + L'Iv$$
(22)

The right hand side of Equation 21 is composed of the instantaneous energy of the capacitor bank (which ideally should be zero at the end of the discharge), and the integrals of all the voltage components multiplied by the system current (Power), and integrated over the launch time (E=/Pdt, Reference 16). Therefore, the right hand side of Equation 21 represents the energy of the circuit for all time. The Ll^2 terms are the inductive energy terms and the integral terms represent the time history of the resistive energy losses.

To illustrate a process by which a launcher system designer can determine the circuit performance, calculate the velocity of the mass with the circuit parameters given.

Examining Equations 21 and 22 the researcher finds that v (dx/dt), I (dI), $V_{C_{sp}}$, and x are not known. To determine these unknowns requires at least 4 simultaneous equations. Proceed by selecting small dt's and calculating the unknowns using those equations.

First, researchers can relate the kinetic energy of the mass to the circuit parameters of the launcher for our third relation, and determine the velocity/distance equations for the fourth. The instantaneous force on the projectile is written as:

$$F = L'l^2 \tag{23}$$

The mass energy is given by the integral of the force times the differential distance traveled. Reference 16:

$$W_{Mass} = \int F \, dx = \int \left(L' I^2 \right) dx = L' \int I^2 \, dx \tag{24}$$

and recalling the kinetic energy equation for a moving mass,

$$W_{Mass} = mv^2 = L' \int I^2 dx$$
 (25)

The researcher has now expressed the kinetic energy of the projectile in terms of the launcher parameters. The current I is an unknown with respect to x, as is the velocity.

From basic physics, Reference 17, and assuming that the initial position and velocity are equal to zero generates:

$$\mathbf{x} = \mathbf{at}^2 \tag{26}$$

and,

$$v = at$$
 (27)

Equations 26 and 27 together form the fourth relationship needed to solve for the velocity of the projectile at any time during the shot.

The procedure used is an iterative solution to the simultaneous equations represented by Equations 21 through 27. The designer chooses small dt's and steps through Equations 21 through 27 to solve for the unknown parameters over the duration of the discharge.

Initially, the capacitor is charged to V_{ee} , and I_e , v_e , and x_0 are equal to zero. Determine the first dI, by choosing a small dt and solving Equation 20 as follows:

$$\mathbf{V}_{sc} = \mathbf{V}_{A} + \mathbf{L}_{Bus} \frac{d\mathbf{I}}{dt_{1}} \operatorname{OR} \left(\frac{\mathbf{V}_{cc} - \mathbf{V}_{A}}{\mathbf{L}_{Bus}} \right) dt_{1} = d\mathbf{I}_{1}$$
(28)

With dI determined, the researcher knows the value of the current for the first time interval. Solving Equation 25 for v and combining Equations 26 through 27 to determine x, the researcher can then solve Equation 21 for the capacitor voltage (V_{cool}) at the end of the first time interval.

At this point the next iteration begins and the new capacitor voltage is substituted into Equation 22, the next time step is chosen, and dI_2 is calculated. For the second time interval, x, v, and I are non zero such that:

$$\frac{V_{C_{sp}}}{dI_{2}} = \frac{V_{A} - I_{1}R'x_{1} - L'I_{1}v_{1}}{L_{Bus} + LX_{1}}$$
(29)

The total current will now be equal to , $I = dI_1 + dI_2$, and the next velocity increment and distance traveled down the launcher are calculated using Equations 21 through 27, as before. In general the current is represented by:

$$I_{n} = \sum_{0}^{n} dI_{n}$$
(30)

With the new velocity and distance calculated, the capacitor voltage at the end of time period 2 is calculated from Equation 21. In summary, the relevant equations are presented together as follows:

$$C_{eq} V_{eq}^{2} = C_{eq} V_{Cap}^{2} + L_{Bus} I^{2} + L'xI^{2} + \int (R_{A} + R_{Bus} + R'x) I^{2}dt + mv^{2}$$

$$V_{Cap} = IR_{Bus} + L_{Bus} + \frac{dI}{dt} + V_{A} + IR'x + L'x dt + L'Iv$$

$$W_{MASS} = mv^{2} = L' \int I^{2}dx$$

$$x = at^{2}$$

$$v = at$$

Using this iterative method, the velocity profile for the entire discharge can be computed for the given mass and circuit parameters.

The circuit parameters can also be calculated from a desired mass and velocity. The same equations can be used as a basis for computing the circuit parameters, but the task becomes more difficult due to the greater number of unknowns. Computer programs can and have been written that allow the designer to change the circuit parameters and calculate the mass velocity over the duration of the discharge with relative ease. But, the iterative technique discussed here can always be used as an initial design tool to determine the velocity of the mass.

SECTION VI

CONCLUSIONS

Using the simple circuit equations and the iterative techniques presented here, a basic battery charged capacitor pulsed power system to drive an electromagnetic launcher can be designed. This initial design can then be modified to include realistic parameter values emulating the actual hardware. In order to make an accurate determination of the viability of the battery charged capacitor concept, a detailed engineering parameter analysis must be conducted that would then lead to the detailed design of an effective system. Successful completion of the detailed design and a well instrumented test series could then lead to educated conclusions pertaining to real applications of the battery charged capacitor system.

REFERENCES

- 1. Dummer, G. W. A., (1956): "Fixed Capacitors", Radio and Electronic Components: Vol. 3, Sir Isaac Pitman & Sons, LTD.
- 2. Deelely, P. M., (1936): "Electrolytic Capacitors", The Comell-Duiblier Electric Corp., Recorder Press
- 3. Hayt, W. H., (1989): "Engineering Electromechanics", 5th ed., McGraw-Hill Book Co.
- 4. Linden, D., (1984): "Handbook of Batteries and Fuel Cells", McGraw-Hill Book Co.
- Palmer, M. R., Kirkland, E. C., Cornette, J. B., Thurmond, L. E., (1987): "Component and Subscale Testing in Support of the Design of a Battery Power Supply for the Electromagnetic Gun Research Facility", 6th IEEE Pulsed Power Conference, 29 June-1 July 1987, Arlington, Virginia
- 6. Nilsson, J. W., (1983): "Electric Circuits", Addison-Wesley Publishing Co., Inc.
- Cornette, J. B., Thurmond, L. E., (1988): "Prototype Development of a Battery Power Supply at the Electromagnetic Launcher Research Facility", IEEE Transactions on Magnetics, Vol. 25, No. 1, January 1989, 4th Symposium on Electromagnetic Launch Technology, 12-14 April 1988, Austin, Texas
- Jensen, Capt D. B., Cornette, J. B., Heyse, M. W., Kirkpatrick, D. J., (1990): "Demonstration of a Rapid Fire Electromagnetic Launcher System Using a Battery Charged Capacitor System", 5th Symposium on Electromagnetic Launch Technology, 3-5 April 1990, Sandestin and Eglin Air Force Base, Florida
- 9. Jensen, Capt D. B., (1990): Personal Communications, Air Force Armament Laboratory (AFATL), Hypervelocity Launcher Technology Branch (SAH), 1986-1990
- 10. Parker, J. V., (1989): "Why Plasma Armature Railguns Don't Work (and What Can Be Done About it)", IEEE Transactions on Magnetics, Vol. 25, No. 1, January 1989, 4th Symposium on Electromagnetic Launch Technology, 12-14 April 1988, Austin, Texas
- 11. Jamison, K. A., Burden, H. S., (1988): "Measurements of Plasma Properties From a Large Bore, Plasma Armature Railgun", IEEE Transactions on Magnetics, Vol. 25, No. 1, January 1989, 4th Symposium on Electromagnetic Launch Technology, 12-14 April 1988, Austin, Texas
- 12. Parker, J. V., (1988): "The SRS Railgun: A New Approach to Restrike Control", IEEE Transactions on Magnetics, Vol. 25, No. 1, January 1989, 4th Symposium on Electromagnetic Launch Technology, 12-14 April 1988, Austin, Texas
- 13. Rolader, G. E., Batteh, J. D., Powell, J. D., Desai, P. V., (1988): "Transient Modeling of Railgun Plasma Armatures", IEEE Transactions on Magnetics, Vol. 25, No. 1, January 1989, 4th Symposium on Electromagnetic Launch Technology, 12-14 April 1988, Austin, Texas

- 14. Jackson, G. L., Tower, M. M., Haight, C. H., (1988): "Scaling Relationships for Plasma Driven Railguns", IEEE Transactions on Magnetics, Vol. 25, No. 1, January 1989, 4th Symposium on Electromagnetic Launch Technology, 12-14 April 1988, Austin, Texas
- 15. Parker, J. V., (1990): "An Empirical Model for Plasma Armature Voltage", 5th Symposium on Electromagnetic Launch Technology, 3-5 April 1990, Sandestin and Eglin Air Force Base, Florida
- 16. Woodson, H. H., Melcher, J. R., (1968): "Electromechanical Dynamics", Part I: Discrete Systems, John Wiley and Sons
- 17. Sears, F. W., Zermansky, M. W., Young, H. P., (1976): "University of Physics", 5th ed., Addison-Weseley Publishing Co., Inc.

DISTRIBUTION

•.

.

Defense Technical Info. Center DTIC-DDAC Cameron Station Alexandria VA 22304-6145	2
AUL/LSE Maxwell AFB AL 36112-5564	1
WL/MNOI Eglin AFB FL 32542	1
AFDTC/PA	1

AFDTC/PA Eglin AFB FL 32542

ŧ