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1. Introduction; notation

We are interested in shift-invariant subspaces of L2(IR d). By this we mean any closed linear

subspace S of L 2(IRd) which is closed under shifts, i.e., which, for each 0 E S, also contains

5(.- a) for every multi-integer a E 2Zd . Such a space contains, with each 4 C S, the set

S0(O)

of all finite linear combinations of integer translates of all the 0 E . We write

S(4)

for the L2-closure of So( 4 ), and call it the shift-invariant space generated by . In particular,

we call S a finitely generated shift-invariant, or FSI space, if S = S(D) for some finite set D.

We call the cardinality of a smallest generating set for S the length of S, and write

len S - min{# : S (S()}.

We note that the orthogonai projector Ps onto a closed shift-invariant space S commutes with any

(integer) shift, i.e.,

(1.1) Psf( - a) = (Psf)( - a), ae E ad .

Shift-invariant spaces play a basic role in multivariate approximation theory, since such a space

S, together with its dilates
S' :- {f(./h): f E S},

provides theoretically and practically convenient approximating families. This was recognized some

time ago by those working with the Finite Element Method, but has been already exploited, in

a univariate context, as long as there has been interpolation in a table. More recently, most

work with so-called radial basis functions, and all the work on multiresolutions, hierarchical bases,

and wavelets, involves principal shift-invariant, or PSI spaces, i.e., spaces S = S({)) =: S(0)

generated by one function.

In [BDR], we derived a simple characterization of a PSI space and of the orthogonal projection

onto a PSI space. In the present paper, we derive corresponding results for FSI spaces and use

them to explore in some detail the structure of FSI and PSI spaces. Of particular concern are

the existence and construction of generating sets with desirable properties, such as stability, linear

independence, or orthogonality. One of the fruits of this labor is a proof (cf. Theorem 4.1) that,

for every finite set 4 C L2(IRd) of compactly supported functions, there exists 1b E So(4) so that,

for any f E L 2(IRd),

dist(f, S(f)) _< dist(f, S(0;)) _< constp dist(f, S(f)).

This settles, at least in the context of L2 , a problem of some twenty years' standing.



We next provide a more detailed overview of the paper's results and, in the process, introduce
some notation.

It turns out that shift-invariant spaces are closely related to the doubly invariant spaces studied
in operator theory. To bring out this useful connection, we recall the standard notation

f(X) := eai f(y) dy

for the Fourier transform of f E L2(]Rd), and consider the map T, given by the rule

(1.2) TI: Ud --)e 12(7zd) :x -_ (f(x + 27ra))QE2d =: 41.,

i.e., " associates with each f E L2(lld) the element Tf of the Hilbert space L 2(rlfd, 2(Z d)) of all
£2( )-valued square-integrable functions on the d-dimensional torus

Thc identity

Id f ,d + (+a)'CrE27r2 "

valid for any f E LI(IR d), shows that T is well-defined and is unitary, i.e., for every f,g E L 2 (IRd),

(1.3) (27r)d(f, g)L2 (. d) = (Tf,Tg) :=g J [ ' ]dx,

with

(1.A) [f,g]Y : UIFf .- Cd : X (f_ y gll*) 2 f(x + fO)'ig + f3)
,CE21rTd

the bracket product of f with g, i.e., the periodization of f7. Note that [f,g1 E L,(Iffd) for
any f,g E L2 (Iltd).

The map T is useful here because a subset S of L 2(IRd) is shift-invariant if and only if T(S)
is a doubly-invariant subset of L2(jr d, .(TZd)), i.e., invariant under pointwise multiplication by
C'O for any a E 7 ,d. This is a well-known concept from operator theory that readily yields the
characterization of FSI spaces given in Theorem 1.7 below and much used in this paper. lere is
the derivation.

From the known characterization of doubly-invariant spaces (see [II; Theorem 8] for d = 1; the
extension to the multivariate setting presents no difficulty), we conclude the following

Result 1.5. The closed linear subspace S of L2(IRd) is shift-invariant if and only if

S = {f E L2 (lRd) : j , E J(x), a.e. on ll~d},
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with each J(x), x E "ITd, a closed linear subspace Ofj 2 (Zd), and such that the function " .-C :

X -. (Pj(.)f, g)t,(2Zd) is measurable for every f, g E e2(7/d). Here, Pj(,) is the orthogonal projector

from e2 (2Zd) onto J(x).

Such a map J on " 'd into the set of closed linear subspaces of f 2 (72Zd) is called a range
function. For a given closed shift-invariant subspace S of L2(Rd), we denote by

Js

the range function associated with S. Result 1.5 is useful for the study of S to the extent that

we have information about the corresponding range function Js. Fortunately, it is rather easy to
prove (cf. Proposition 3.1) that, for a FSI space S with generating set 4), necessarily

(1.6) Js(x) = span{4jl: € E f} a.e.

This formula for the range function provides the following very useful characterization of a FSI
subspace of L2(,Rd) (the special case of a PSI space was treated in [BDR] without recourse to

Result 1.5).

Theorem 1.7. For any finite subset 4D of L2(lld) and any f E L2 (I d), f E S(4)) if and only if

(1.8) E= ZT
OE(P

for some 27r-periodic functions ro.

We call 4) a basis for S(qt)) if the periodic functions ro in (1.8) are uniquely determined by f.
Theorem 1.7 together with (1.6) implies that this happens if and only if $11, is a basis for Js(x) for

a.e. x. Thus, a FSI space S cannot have a basis unless S is regular in the sense that dim Js(x) is

constant a.e. We prove (cf. Corollary 3.14) that, conversely, any regular FSI space has a basis. We
also prove (cf. Corollary 3.11) that the iro in (1.8) are necessarily measurable if 4) is a basis.

More generally, we call 4) a quasi-basis for S(4)) if the periodic functions ro in (1.8) are

uniquely determined by f a.e. on

a(S) := {x E 3fd : dim Js(x) > 0},

the spectrum of S. Thus, a (nontrivial) FSI space S cannot have a quasi-basis unless it is quasi-
regular in the sense that there is a unique j > 0 for which

a,(S) := Ix E dim Js(x) = j}

has positive measure. We prove (cf. Corollary 3.14) that, conversely, every quasi-regular FSI space
has a quasi-basis, and that any quasi-basis for S has cardinality len S. We also show (cf. Theorem
3.5) that a FSI space S is tie orthogonal sum of len S PSI spaces.

It is quite clear that not every FSI space contains a basis, but, since the sets aj(S) provide a
partition for "Ird, every FSI space is the orthogonal sum of quasi-regular spaces (see Theorem 3.2).
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Assuming that 4) is a quasi-basis for S(4)), we provide (in Theorem 3.9) the formula

(1.9) Pf detGO(f)

€E$

for the Fourier transform of the orthogonal projection Pf of f E L2(IRd) onto S(). Here, G()

is the Gramian matrix

G(fl P

of the finite set 4) C L2(IRd), and the related matrix Gj(f) is obtained from G(4)) by changing its

0th row to ([,VIPEO.
The characterization (1.7) of the space S(f) and the formula (1.9) for the orthogonal projec-

tor onto S(4)) provide a solid foundation for our main goal: the search for particularly su'table

generators for a given FSI space S.

We call the generating set (D for S stable if the map

€E4' aE7Ld

is a llilbert-space isomorphism between ., (.D x 2Zd) and S() (with the convergence above assumed

to be unconditional in L2(IRd)). If every E 4D has compact support, hence 4)*'c makes sense (as

a pointwise limit) for arbitrary c E COx z"d, then we call D linearly independent if ,*' is 1-1 as

a map on CDX7Ld. Finally, whether or not the elements of 4i are compactly supported, we call 4)

orthogonal if

- a),(. - /)) = , , for 0, , E 1, a,0/ E Zg d .

These properties are listed here in increasing order of difficulty of attainment.

We show (cf. Corollary 3.30) that a quasi-basis 4) is stable if and only if the eigenvalues of

G(4))(x) are bounded and bounded away from zero uniformly for x E UId except, perhaps, for a

set of measure zero. In particular, a quasi-basis which is not a basis cannot be stable. But, for this

case, we introduce and characterize a suitable notion of quasi-stability, and show (cf. Theorem
3.20) that any FSI space with a quasi-basis has a quasi-stable basis. In particular (cf. Corollary

3.31), an) FSI space with full spectrum has a stable basis and even has an orthogonal basis.

We call a shift-invariant space local if it is generated by a finite set 4) of compactly supported

functions. For such 4), the entries of G() are trigonometric polynomials and the spectrum of

S((D) is full. We prove (cf. Proposition 3.42) that a univariate local space is the finite orthogonal

sum of PSI spaces, each generated by some compactly supported function whose integer translates

are linearly independent. In particular, the generating set for S(4)) made up of these linearly

independent generators is linearly independent.

Because of the present wide interest in PSI spaces, and despite the fact that most of our results

on PSI spaces can be regarded as a specialization of their FSI counterparts, we found it important to

devote a separate self-contained section to the analysis of PSI spaces. As it turns out, the analysis

of that part can be handled with essentially no use of the general tools detailed above (such as
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the range function and the pointwise projection), although, of course, these notions are implicit in
the discussion. As a matter of fact, we tried, whenever possible, to present our arguments via the
generator(s) of the space rather than the range function, since, as a rule, in practical problems the
generators constitute the explicitly known information.

Here is an outline of the paper. In Section 2, we determine under which circumstances a PSI
space has a quasi-stable, respectively quasi-orthogonal generator. In case the PSI space is generated
by a compactly supported function, we also look for the essentially unique linearly independent
generator (if there is any), stressing the fact that the situation is rather different for d = 1 than
for d > 1. Section 3 is devoted to the discussion of FSI spaces, providing proofs of the various
results mentioned earlier. Finally, Section 4 considers the application of our structure results to
Approximation Theory.

We finish this introduction with some observations concerning the bracket product (1.4), and
some additional notations and conventions.

Given f.g E L.(lRd), we know that [f,] E L, (1 d). This entitles us to consider the Fourier
series of [f, ]. The following two lemmata follow from standard properties of the Fourier transform.

Lemma 1.10. For f,g E L 2 (IRd), [f, ] has the Fourier series E (f, g(.+a))e, . Consequently,

f is orthogonal to the PSI space S(g) if and only if = 0.

Here and below, Acession For

eo : x -+ e iez, 0 E IRd NTIS GRA&I

DTIC TAB
is the complex exponential with frequency 0. Unan-nmonced Q

! ,. . Jusr. ifIcntion

For 6 E L(IRd), we define its symbol, I "u ,..i.n r

Availability Codes
It is clear that 4) is a nonnegative 2r-periodic function. Also jAvatl and/or

(Ud, - 2 7~d/1101.Dist Special
Lemma 1.11. 4 E L 2 (317d), and IkIL,(r-) = I11(11d

Here and hereafter t

Note that the map 0 is not linear.

We reserve the notation f*g for the standard convolution product (say, on L 2 (IRd) x L 2 (IRd)),

and, following a tradition in Approximation Theory, use the separate notation *' for the semi-

discrete convolution

f*' I C(K - a~ca),aE
aE2Zd

which is well-defined under various assumptions on the function f and the sequence c.

All measurable subsets Q C IRd are defined in this paper modulo a null-set. For such 0, we

use the abbreviation

' := fQ + 2zr Z
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for the 2r-periodic extension of the subset Q of 2Ujd. Also, we identify any function r on UI d with
its 2fr-periodic extension to IRd.

If f is a measurable function, then its reciprocal is, offhand, only defined on the support of f.

We find it convenient to extend 1/f to the whole domain of f by setting it to 0 off the support of
f. Thus, if g is a measurable function with the same domain as f, then

Of : X - fg(x)/f(x) xEsupp ff nsupp g;
0 otherwise.

Finally, we use the (self-evident) notation

F:= {f: f E F}, forF C L2(IRd).

2. Principal shift-invariant spaces

2.1. Preliminaries

We stud), here the structure of the PSI space S(O) and the action of certain operations (such as
orthogonal projection or semi-discrete convolution) associated with this space. The analysis makes

essential use of the following two results, proved in EBDRI, which are special cases of (1.9) and
Theorem 1.7, respectively.

Result 2.1. Let P be the orthogonal projector of L2(IRd) onto §S(O). Then

(2.2) Pf=['~

Result 2.3. For any 0 E L 2 (,Rd),

S(O) = {re E L2(IRd): r is 27r-periodic}.

Further, we shall make use of the following immediate corollaries of Result 2.3.

Corollary 2.4. If ' E S(O), then S(b) = S(O) if and only if supp C supp .

Note that, by symmetry, the corollary implies that supp = supp 4 for any two generators of
a PSI space. Also, recall our convention that all measurable sets are determined up to a null-set.

Proof. The necessity follows directly from Result 2.3, hence we only discuss the sufficiency.

Sinice 0 E S(€). we have S(O) C S(O). To prove the reverse inclusion, we need to show that

¢ E S( ,). By Result 2.3, there exists a 2,r-periodic r such that V) = To. Since supp 7-- supp ¢, 7

is nonzero a.e. on that set, and we conclude that = (1/r)V. Since E L2 (IRd), Result 2.3 now

provides the conclusion that 0 E S(O'). A
The corollary implies in particular that we can always "undo finite differencing" in the following

sense:
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Corollary 2.5. If 4 E So(0)\0, then S(?P) = S(0).

Proof. By assumption, 4 = r4 for some 21r-periodic trigonometric polynomial T. Thus

supp 4 = supp . Now apply Corollary 2.4. 4
Since spaces that contain (nontrivial) compactly supported functions are very important in

theory and applications, we will frequently restate our results for that special case, as we do now.

Corollary 2.6. Let S be a PSI space. Then every compactly supported 0 E S generates S.

Proof. Since 0 is of compact support, is the restriction to IRd of an entire function, hence

supp = ,d . Therefore, if 4, is a generator for S, we have supp 4 C supp . Now apply Corollary

2.4. 4
Here is a simple illustration of the usefulness of the last corollary.

Example 2.7. Let X be the characteristic function of [0..11, and let H := X - X(- - 1) be

the Hlaar function. It is easy to see that S(X) is the space of all functions in L2(R) which are

piecewise constant with breakpoints at the integers (this follows also from the fact that the shifts

of X are stable). It seems harder to understand the nature of S(H); however, both Corollary 2.5

and Corollary 2.6 imply at once that S(11) = S(x). 4

Definition 2.8. Let S be a PSI space. The spectrum a(S) of S is supp ¢, where 0 is some (any)

generator for S. We say that S is regular if its spectrum is full, i.e., if a(S) = U d.

It is easy to check that the definition of spectrum given in the introduction coincides for a

PSI space with the one given here. In particular, the definition is independent of the choice of the

generator.

We remark in passing that the question whether 4, E S generates S can be settled in terms of

a(S):

Proposition 2.9. Let S be a PSI space, 4 E S. Then 4 generates S if and only if supp a(S).

Proof. The necessity follows from the previous discussion. Assume therefore that 4, does not

generate S. We n,,ed to show that supp 4 $ a(S). Let 0 be a generator for S. By Result 2.3,

4, = re for some 2,r-periodic r. Since 4 does not generate S, r must vanish on some set Pi C a(S)

of positive measure (otherwise, supp 4 = supp and Corollary 2.4 would imply that 4, generates

S). It follows that 4 l'ir = 0, and hence 4 vanishes on Q.

2.2. Quasi-stable and quasi-orthogonal generators

A PSI space S is usually defined in terms of a generator 0. However, sometimes, one would

like to find a better behaved generator for the space. For example, while Result 2.3 gives an explicit

description of the Fourier transform of the PSI S(O), it does not enable us to write every f E S(O)

as a con'ergent series 5*'c, for some sequence c. On the other hand, already the Preliminaries make

clear that any (nontrivial) PSI space has many generators. Thus the following questions arise here

in a natural way:

(1) Does there exist 4' E S(O) such that S(O) = 0*'1(TZd)?
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(2) Does there exist a generator ' E S(( ) such that each f E T(-) can be written in a uniquc
way in the form f = v

(3) Does there exist a stable generator ! for S(<& in the sense that '*' induces a Hilbert
space isomiorphism between , zz) and S(0)?

(4I) Does there exist an orthogonal generator for S(0) in the sense that its shifts form an
orthogonal system?

Clearly, (3) requires more than (2)t, and (41) requires more than (3). Onl the other hand, it is

(essentially) known that (3) implies (4). As we will see below, question (1) is answered affirmatively
for arbitrary PSI spaces, and the answer to question (2) is independent of the generator chosen.

Remarkably, the affirmiative answer to each of the questions (2-4) is equivalent to thle regularity of
the space S:

Theorem 2.10. Let S be a PSI space. Then the following conditions are equivalent:

(a) S is regular, i.e., a(S) = '.
(b) S contains a stable generator.

(c) S contains an orthogonal generator.

(d) For ever ' (some) generator 0 of S and everY (somje) f E S, f is uniquely represented in the

formi ro for som e 2 r -Jeriodic 7.

Ill pa rt icular, if S contains nontrivial comnpactY ivsupJport ed functions, t hen S satisfies (a) hence

(h-d) as Vvell.

We will p~rove this theoremn later . Already at this point we emplhasize that Theorem 2.10

implies, in case S cointains a comnpact ly su pportedl fuinct ion, the existence of a st able generator but

iiot thle existence of a COmfpatly 5Unjp)I-rtd st able general or. As a matter of fact, we will sketch a

Coll 1t4'rexilill ple to this hoped- for result. O il the positive Side, we nment ion that f'r Z11ir'arialc PSI
5jhk('e,, the results of (R 21 imply that we dof have ii coimplactly. supportedi stable generator whenever

S contains corn l)c%" su~pportedI functidions. W\e elaborate onl this last point in the next subsection.

While Theorem 2. 10 provides valuable information onl regular PSI spaces, it fails to quantify

thle extent to which a P~SI space fails to be regular, nor does it suggest any alternatives to the

notions, of stab~ility andl orthogonality in the absence of regularity. In what follows. we :uuc

weitker versions of stability a nd orthogonality which we refer to as "quasi-stability" and "quasi-

ort hoonality'. eshwthat any PSI space contains a quasi-stable and] even a quasi-orthogonal

generator, and then characterize the quasi-stability and quasi-orthogonality of a given generator

0 for S in terms of . Theorem 2.10, as well as some related results, are eventually proved by
spiecializing the aforementioned results to regular spaces.

Our dlefinition,, are nmotivatedl by the following considerations: By Result 2.3, any f E S(O)

is the inverse Fourier transform Of 7r for some 2r-periodic functionl 7. Thus, formally, f = *c
with c the Fourier coefficients of 7- (say, whenever 7 E L1 ('IFd)). Further, since T is unchanged if
we chiange r off the spectrum of 5, we expect 0*'c to be zero for anly c whose Fourier series

8



has its support in m]'d, eS). Defining

(2.11) Ks := {c E 12(27 d) : supp FC (,d\a(S))},

we 'a, only hope to find generators € which behave nicely on the orthogonal complement of Ks,
i.e., on the space

(2.12) Cs {cE t 2(7Zd): suppF CU(S)}.

The discussion should be, of course, more careful, since the only requirement made of r in Result
2.3 is that r be in L2. In particular, there is offhand no reason to believe that r = F for some
c E (..

Definitions 2.13. Let S = S(O). We say that 0 is a quasi-stable (resp., quasi-orthogonal)
generator if o,' : 2 (7 d) L,(Id) is well-defined (and bounded), vanishes on 'S, and provides
an isormorphisin (resp., an isometry) between CS and S.

We begin with a Lemma that makes the above discussion precise and provides the essential
facts for our analysis of these properties.

Lemma 2.14. Let ( E L,(110).
(a) If' " is bounded, then 6*' is a bounded linear map from f2(jZ a ) into S(6) C L2( IU). Further,

I 1 /l Ta( , 5)) ll, 2(7,) < lO"ClL,(2(n ) - tloll/. IkIll Z',) , Vc E Cs ,

and these inequalities are sharp.
(1) If o is not bounded, then c>*' fails to be a bounded map on Cs.

Proof. (a): For any finitely supported sequence c, (6*'cr" = Fj, therefore

(2. 15) (2-.)/I~II IoIL(~)=ICIL(F)=ICIL(()

for such a c, with S := S(6).
Thus, if 5 is bounded, then, for arbitrary c E t2(Vd), the series 6*'c converges unconditionally

in L,(ll(), necessarily to an element of S(6), and so 6*' is a bounded linear map from t2( a) into
S(o) C L,(lI0). Moreover, (2.15) then holds for arbitrary c E f 2 (7 /d), and the inequalities of (a) as
well as their sharpness now follow from (2.15) and from the fact that kIhLC(Lv'T) = jjc~jt 2( 7,,)(2r)'/2.

(b): if 6 is unbounded, then we can find, for each n E IN, a set Q, C a(S) of positive measure
such that 6 > n + 1 on Q,. Approximating the characteristic function of this set by a sequence of
trigonometric polynomials {rk}k, we conclude that for large enough k

(2,)d/2jII6*'(r7 )!Ijj ) I~~I 2(l) IkILns) fhTI 2 n = (2w,)d/ 2njjITZ/Ije(7z).

ConsequeMtly, 0*' does not admit a continuous extension from the finitely supported sequences to
all of e2(Tzd), hence fails to be a bounded map on t 2(7Td).

The next two theorems provide characterizations of quasi-stability and quasi-orthogonality,
along the lines of the above motivation.



Theorem 2.16. Let S be a PSI spare.

(a) 0 E S is a quasi-stable generator for S if and( only if both and l/p are essentially bounded

Oil U(S).
(b) Let 0 be a quasi-stable generator for S, and v!' E S. Then Vi is also a quasi-stable generator for

S if and only if <' = T for sorni 2-%-periodic r With 171 and 1/ITI essentiall), bounded on C(S).

Proof. The proof is a direct consequence of Lemmna, 2.14.

(a): Liv Lemma 2.14, ( *' is a bounded miap from f)( 7 /d to L2 (llld if and only if 0i oudd
and thus, we miav assume the boundedness of (on a(S), hience everywhere), and need only prove

the equivalence between the quasi-stability of and the boundedness on a(S) of 1/. Now, since

o is bounided, 0*' is well-defined (and hounded) on Ks and CS, and this map then clearly vanishes

011 AS, hence 0*7 2 (71') = *'C's. Thus, SO(O) is contained in 0*'Cs, and since SO(O) is dense in

S(O), 6*'Cs is a dense suhspace of S(( ). This finishes the proof, since then, by Lemmia 2.1-4, ( *' is

bmin ded below onl C's if andl only if I/o is bounded on a(S), and, in such a case, 0*'Cs is closed.

hen1ce coincides with all of S(( ).
For (1)), conclude from Proposition 2.9 that m,'generates S(o) if andl only if 7 n for sonic

27-jp riodiC 7 wit h su pp r D a(S). Since thlen ?, No, (b ) follows from (a).A

The last result shows that quasi-st ahilit v cornpetes wit It the localizing power of the generator.

If C(SK) /- 11.1, anld Q: is quaIsi-st ahle. thenl 6 can not he continuous, since otherwise 11/o must be
ilmie I ded niea r thle houn dar rv of aT(S). This does riot i mply t hat quasi-st able generators (to niot

exit. It onily Iicans thIiat thiei r associated o nm ust be dliscontinuous at the b~oundary of the spect ruim.

1in tjg f =g =0 ini Leninma 1 .10, t his discont inuiity translates into the fact that a quasi-stabe

(( ra(711W of aI ?ioTZ(uldar SpareC docs riot dtctiy fast at 00.

On i thle ot her ha 11(, if S is regular. we rnight even have a comnpact ly supported stable generator.

Ini aniy event, if thle generator (: decays fast enough at r-- to make contimuous, then Theorem 2.16

imiplies thle followi ii(.

Corollary 2.17. If S(O) is regular alld 0 is continuous, then 0 is a stable generator if and only, if

0 vanishes nowhere.

'l'liis last result is essentially known. For a conmpactly supported 0, it was stated .'n [SF1
(see thle proof ini [l\I). Extensionis from compactly supp~orted functions to functions which have

somie (hecav at r-%- canl he found in [IM2]. In all these references, the authors considered the shift-

inivariant space 0*'(7(W). However. wvhen 0 is continuous, hence bounded, 117011 =~~I 11711120) <

rI~IITJ IiirI-l~).anid therefore &Y(/)is then a (trivially dense) subspace of .5(0) (again.,

by Result 2:3).

W\e turn now our attention to quasi-orthogonality. First, we give several characterizations

of (1uasi-orthogonahity, and subsequently prove that crcry PSI sm-icc contains a qUasi-orthogonal

gtn1crmtor (hence has quasi-stable generators).

Theorem 2.18. Let e E L2(lH) al"] S = -5N. Then the following conditions are equivalent:

(a) is a quasi-orthogonal generator for S(O).

(b) = ,(5

10



(c) The orthogonal projector onto S(O) is given by

PF:f *- [f,I.

Proof. Assuming (a), we may transform the quasi-orthogonality into the Fourier transform

domain to obtain that we have

IIT'IiL2(o(S)) = 11T411 = IlriIL2('ird)

for any r E L 2 (UId) with support in a(S). By Lemma 9.14(a), this can happen if and only if (1 and

1/k have oc-norm 1 on a(S), i.e., if and only if = 1 a.e. on a(S), and we obtain (b). Conversely,
assuming (b), Theorem 2.16 implies that 0 is quasi-stable, and the argument above can then be

reversed to imply that 0 is also quasi-orthogonal.

The implication (b)==>(c) follows from Result 2.1.

Finally, we show that (c) implies (b). Since Pq = €, we obtain from (c) that

By periodization, this implies that 2 = , hence, since < is non-negative, it must be the charac-
teristic function of its support. This support is, by definition, the spectrum O(S). 4

Corollary 2.19. Assume that 0 is a quasi-orthogonal generator for S. Then:

(a) The orthogonal projector P onto S is given by

(2.20) P: f'- U, 0,(.-I-COM(.+a).

crE2Zd

(b)
~j I ,(. + a))12 = 1111 (2r)-dmeas( fd\a(S)).

QtE2Zd\O

(c) 0 E S is a quasi-orthogonal generator for S if and only if 70 = rq for some 2r-periodic r that

satisfies [rl = 1 on a(S).

Proof. Since 0 is quasi-orthogonal, hence quasi-stable, we know that each f E S(0) can be

written in the form Te, with r E L2(Twd). Thus, from the equivalence of (a) and (c) in Theorem

2.18 we know that the orthogonal projection of f into S(O) is given by 0*'c, with the sequence

c E t. 2(Zd) the Fourier coefficients for [f', ]. Invoking Lemma 1.10 (with g = €), we obtain (a).
To prove (b), we use Lemma 1.10 once more, now with f = g = 0, which together with

the equivalence of (b) and (a) in Theorem 2.18 shows that the Fourier coefficients of the function

X (s() = [0,0] are {(0, 1(. + a))f1fQE . Thus Parseval's identity implies that

(measa(S))/( 2 r)d = iIxU(S()) 1/( 2 7r)d = (€,)2 + E I(0, 0( + a))12.
aE2Zd\O

This proves (b), since (0, 0) = 110112 = k11, (ird)/(27r)d - measa(S)/(2r)d, and meas(Ifd\a(S)) =

(2 )d - meas a(S).

11



To prove (c), let 0b E S(0). By Result 2.3, = r for some 2Ir-periodic T, and hence =

lrks = IrIXo(S), the last equation by the equivalence of (a) and (b) in Theorem 2.18. Furthermore,

this equivalence implies that ?b is quasi-orthogonal if and only if = (s), and we see that indeed

this is equivalent to I7 = 1 on a(S). 4

Remark. We emphasize that the formula (2.20) just proved for the orthogonal projection Pf of

f into S(0) in case 0 is quasi-orthogonal is one of many formulas for Pf in case the spectrum

of S differs from "dI . For, in that case, *' fails to be 1-1 on t 2(2d), hence Pf = *'c for

many different e2-sequences c. However, (2.20) is optimal in the sense that the coefficient sequence

((f,(. + a)))-,Zda is of smallest possible e2-norm: Indeed, if Pf = q*'c for some c E t 2 , then

[f, 010 = Pf = -O, therefore, by periodizing, [f, q] = on a(S). Since [f, ¢] = 0 off a(S), it follows

that -L,(J) ! h (s) 'ld= =
One obtains a quasi-orthogonal generator by quasi-orthogonalizing (or, normalizing) any given

generator.

Theorem 2.21. Lel q5 E L2 (IRa d) and S := S('k). Then the function q0, defined via its Fourier

transform by

is a quasi-orthogonal generator for S.

Proof. Since Fl = (1/a) = ) E L2(a(S)), we conclude that (1/ ) = o E L2(IRd).

Since 1/ is 2w,-periodic, this implies with Result 2.3 that qj E S, hence with Theorem 2.18 that

q. is a quasi-orthogonal generator for S(qo) C S. But, since supp = a(S), we conclude from

Proposition 2.9 that, in fact, S(q¢) = S. A
We are now ready to prove Theorem 2,10.

Proof of Theorem 2.10. By Theorem 2.21, S contains a quasi-orthogonal generator. Assuming

(a), we conclude that this generator is an orthogonal generator (say by Corollary 2.19(b)). This

shows that (a):(c), while certainly (c)*(b). On the other hand, if a(S) U d' then Ks is not

trivial, then, the moment 0*' is well-defined on t 2(2Zd) (as required for stability), it must vanish

on A's. Therefore no generator for S can be stable. This shows that (b)=: (a).

It remains to shows that (a) and (d) are equivalent. If (a) is violated, then, with T the

2-periodic extension of XIF \,,(S), we obtain that T = 0 for every generator € for S, hence no

representation is unique. Conversely, if r = 0 for some 2ir-periodic r and some generator 0, then

also nI1 = 0. This implies that T = 0 a.e., in case a(S) = " d 
= supp . A

In light of Theorem 2.10, the characterization of quasi-stability (Theorem 2.16) and quasi-

orthogonality (Theorem 2.18) readily give:

Corollary 2.22. The generator 0 for S(0) is stable, respectively orthogonal, if and only if is

bounded away from 0 and infinity (a.e.), respectively = 1 (a.e.).

2.3. Compactly supported generators for PSI spaces

Let S be a PSI space containing a compactly supported function 0. Since is entire, only

vanishes on a set of measure zero, i.e., S(0) is regular, and therefore S = S(O) (see Corollary

12



2.6). Hence, by Theorem 2.10, there are stable generators and even orthogonal generators for S.

Our interest is then in finding a compactly supported stable/orthogonal generator for S. But in the
context of compactly supported generators, one studies as well another significant property of the
generator, the linear independence of its shifts. Note that if 0 E L2 (QRd) is compactly supported,
then the series *'c converges uniformly on compact sets, for any sequence c (of arbitrary growth).

Correspondingly, we define
ker*' := {C: 2Zd -_ C : ),'C = 0}

when 4 is compactly supported.

Definition 2.23. We say that the shifts of the compactly supported 4 E L 2(JRd) are linearly
independent if ker 0*' = {0}. With a slight abuse of language, we call 4 a linearly independent
generator for S(4)), in case 4 is compactly supported and its shifts are linearly independent.

The following characterization of linear independence was obtained in [R11. Recall that for a
compactly supported 4, 4 is the restriction of an entire function. We use the same notation, 0, for

its analytic extension to Cd.

Result 2.24. The shifts of the compactly supported 4 E L2 (lkd) are linearly dependent if and

only if = (¢(x + ))0,2, = 0 for some x E Cd.

In view of this result, and the characterization of stability (see (2.22)), we can "rank" the
properties of stability, linear independence, and orthogonality, as follows:

Proposition 2.25. Let 4 be a compactly supported L2 (IRd)-function. Consider the following

properties:

(a) 4 is a stable generator for S(O);
(b) 4 is a linearly independent generator for S(0);

(c) 4 is an orthogonal generator for S(O).

Then (c) == (b) ==> (a).

Proof. (c) ==>(b): For any c E ker 0*',

0 (,*'c)= c (4,0(. - a))c(a)
supp ofnsupp o(.-a)o

the sum being finite since 4 is compactly supported. With this, (c) implies that c(0) = 0. Since

ker4*' is shift-invariant, this can only happen if ker *' = {0}.

(b)==>(a): Since 4 is compactly supported, 2 is a trigonometric polynomial (by Lemma 1.10),

hence continuous, therefore bounded on ird. Further, by Result 2.24, 011, $ 0 for every x, hence

O(x) > 0 for every x, therefore, by continuity, also 1/0 is bounded. 4
In the context of compactly supported generators, it seems more interesting to study linear

independence rather than stability. For example, if 4 is a stable univariate generator for S(0),

then we can replace 4 by 4 := 4 - a4)(. - 1) and still get a stable generator, provided only that

jal j 1. This means that we can construct stable generators of arbitrarily large support. By

contrast, a given PSI space can contain at most one linearly independent generator (up to shifts

and multiplication by a scalar), as we show in a moment.
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Thus, given a compactly supported function 0, we can ask whether S(O) contains a linearly

independent (or even orthogonal) compactly supported generator and whether such a generator is

unique (up to shifts and scalar multiples). In this regard, we first recall the following result from

[R21.

Result 2.26. Let 0 be a univariate compactly supported function. Then there exists a compactly

supported 4p such that

(a) The shifts of 7P are linearly independent;
(b) 0 E So(1b).

It follows that diam supp 4 _< diam supp 0 with equality if and only if the shifts of 0 itself are

linearly independent. In the light of Corollary 2.5, this implies the following.

Corollary 2.27. Let q E L2 (IR) be compactly supported. Then S(O) contains a linearly indepen-

dent generator.

We will see that already in two dimensions not every local PSI space contains a linearly

independent generator. However, the uniqueness property of such a generator holds in arbitrary

dimensions.

Theorem 2.28. Let 0 be a linearly independent generator for S. Then:

(a) i' E S(O) has compact support if and only if 4, E So(¢).

(b) Up to shifts and scalar multiples, 0 is the unique linearly independent generator for S.

Proof. Since 0 is compactly supported by assumption, so is any element of S0(€). On the

other hand, since 0 is linearly independent, it is stable (by Proposition 2.25), hence every 4 E S(O)

has a unique representation 4, = €*'c, with cV, E 2(Zd). By [BR], the resulting linear functional

, .- cp(O) is local, i.e., there exists a ball BR of some (finite) radius R (depending on 0) so that

c,(O) = 0 whenever supp on BR = q. Since (0*'c)(. - a) = 0*'c(- - a) for any a E 7zd , this proves

(a).

Assume now that V; is also a linearly independent generator for S(O). Then, by (a), we also

must have 46 = 4'*'co for some unique finitely supported co, therefore 0 = 0*'(c0*cp), hence, by

linear independence, c,*c , must be the delta-sequence, which can happen only if both c, and c¢P

have one-point support. This proves (b). 4

As an immediate consequence, we find that many of the spline spaces now in the literature do

not have a compactly supported orthogonal generator:

Theorem 2.29. Let q be a linearly independent generator for S. If $ is not an orthogonal

generator, then S has no compactly supported orthogonal generator.

ProofL By Proposition 2.25, any compactly supported orthogonal generator is also a linearly

independent generator, hence must be a multiple of a shift of 0, by Theorem 2.28, therefore 0 itself

must be orthogonal. 4
For the univariate case, Theorem 2.28 together with Corollary 2.27 provides the following

result:

14



Theorem 2.30. Let S be a univariate PSI space, and let 4 E S be compactly supported. Then
the following conditions are equivalent:
(a) 4 is a linearly independent generator for S.
(b) So(O) contains all compactly supported elements of S.

(c) 4 is of minimal support, i.e., for every ?P E S, diam supp 4 _< diam supp 4.
Furthermore, up to shifts and multiplication by constants, there exists a unique function 4 E S

that satisfies any (hence all) of these conditions.

Proof. The implication (a)==(b) follows from Theorem 2.28. The implication (b)==*(c) is
trivial. To prove that also (c)==>(a), we invoke Corollary 2.27 to conclude that there exists a
compactly supported linearly independent generator 4P E S such that 4 E So(4'). Since we are
assuming that 4 is of minimal support, this can only happen if 4 is a constant multiple of a shift
of 4, hence 4 is also a linearly independent generator.

The existence of a linearly independent generator follows from Corollary 2.27, while the unique-
ness assertion has been proved in Theorem 2.28. 4

Since a compactly supported orthogonal generator is, in particular, linearly independent, we
have the following result.

Corollary 2.31. Let S be a local PSI space, and let 4 be a compactly supported orthogonal
generator of S. Then 4 is of minimal support among all functions in S, So(O) contains all com-
pactly supported functions in S, and 4 is, up to shifts, the unique compactly supported orthogonal

generator of S.

Theorem 2.32. There exist local (multivariate) PSI spaces that contain no compactly supported

stable generator (hence, in particular, no linearly independent generator).

Proof. Perhaps the simplest example is the PSI space generated by the characteristic function

x of the L, unit ball in the plane, i.e., the diamond with vertices (±1, 0), (0, ±1).
Suppose that 4 is a compactly supported function in S(X). Then, by Result 2.1,

Further, by Lemma 1.10, [ , El is a trigonometric polynomial, since X and 4P are compactly sup-
ported. It is easy to see that

= 2 sinc( x) sinc((x)

with = (1, 1), " (-1, 1), and with sinc(t) := sin(t/2)/(t/2). From Lemma 1.10, one concludes

that

[%k](xIX 2) = 2 + cosx +cosX 2.

Thus, (7r, ir) + 2x7, 2 are the only zeros of [ ,j on IR2 and for X E ]R2 \0, (D,) 2[j, )(7r, 7r) $ 0.

Now, let # E (ir, r)±-2rZ 2 . Then j, hence ,] , is an entire function that vanishes on whichever

line of the following two

+t :t E IR}, f/3+t(: tE IR}
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does not go through 0. Without loss, we may assume that it is the first line. By L'l{6pital rule,

V(03) - __V_____v_(_
D'([ , ]%))== 0.

We conclude that ' vanishes on (7r, 7r) + 27rT 2 , and hence, by Corollary 2.17, ib is not a stable

generator of S(X). 4

3. Finitely generated shift-invariant spaces

3.1. General

Our analysis of finitely generated closed shift-invariant (or, FSI) spaces is based on the results

concerning closed doubly-invariant subspaces of L 2 (Id,t 2 (7Zd)) quoted in the introduction. Still,

as already stressed before, most of the questions that we are interested in focus on the nature of

the generating set 4) of the space rather than on the content of the "fibers" Js(x), x E ' r , and this

explains our efforts to avoid the application of these tools, whenever such efforts do not interfere
with the efficiency of the analysis. We divide our discussion into two parts: in the first subsection,

we discuss various basic properties of general FSI spaces. The rest of the section is devoted to

quasi-regular spaces (as defined in the introduction) and to problems concerning the properties of

their possible generating sets.

3.2. General FSI spaces

Given a closed shift-invariant space S, we can always describe it in terms of its range function

JS, but, if we know a countable generating set 4), then there is a simple description of the range

function in terms of 4), as follows.

Proposition 3.1. If S = S(4)) for some (at most) countable 4D, then

Js(x) = Span $11, =: S1, for a.e. x E "f d ,

with Span denoting the closed linear span.

Proof. If 4) is a countable generating set for S and f E S, then f is the limit of sums of the
form Ik := EE]E$ rkA, where each rk,o is a trigonometric polynomial and all but finitely many

of these polynomials arc zero. For each k and almost all x E UId, fkllx E span$,,,. Since f,
converges to f, we may assume, after going to a subsequence, that Tfk converges pointwise a.e.

to Tf. This says that, for a.e. x E "J[' d, the sequence {fkll}k converges in 1 2 to f1, showing that

f1p E Span $11l a.e. Since f was arbitrary, this shows that Js(x) C Span 4tfx for a.e. x E "r , while
the converse inequality follows from Result 1.5. 4

Theorem 1.7 is nothing but a convenient rewrite of the above proposition for an FSI space.
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We remark in passing that every closed shift-invariant subspace of L2(Rd) is countably gener-
ated. Indeed, let S be a closed shift-invariant space and Ps its corresponding orthogonal projector.

For /3 E 2ir7Zd, let Cg be the cube / + [r .rd and So the translation-invariant space with

spectrum CO, i.e.,

S0 : {f E L 2 (IRd): suppf C CO}.

By Result 2.3, Sp is the PSI space generated by 7p := (X¢,)", and hence it follows that L2(IRd)

is the (orthogonal) sum of the PSI spaces {S13})3E2,Zd. Since Ps commutes with shifts (cf. (1.1)),

it follows that S is generated by {p := PsO} 3.

Actually, these arguments provide the first step in the proof of Result 1.5 (cf. [I] for more
details).

The following theorem shows that each FSI space can be written as the orthogonal sum of

quasi-regular spaces with pairwise disjoint spectra. It provides a useful tool for extending results
(such as the explicit formula for the orthogonal projection) from quasi-regular spaces to arbitrary

FSI spaces.
In this theorem, we use, for Q C IRa , the notation PQ for the orthogonal projector onto the

translation-invariant space with spectrum Q° := Q + 2r Z a , i.e.,

Pof = x". f.

Since ran PQ is translation-invariant, PO commutes with translations, and in particular with shifts,
and hence maps any shift-invariant space S onto a (possibly different) shift-invariant space. More-

over, since X.. is 2r-periodic, Theorem 1.7 (or, more generally, Result 1.5, if S is not FSI), shows
that Pq maps S into itself. If now _j}'--0 is a partition of Ujrd (into measurable sets), it is clear

that F,00 Po,(L-(IRd)) = L2(IRd) and this sum is orthogonal because fl n Q 0 for j k.

Theorem 3.2. Let S = S(-,P) for some finite D, and set

a3 := aj(S) = {x E ,F : dim span }.x -

Then,

(3.3) S = s(P, D)
j--1

is an orthogonal decomposition of S into quasi-regular spaces

S~i := P, S = S(P, 4D),

with c(Sj) = oa (up to nullsets), all j.

Proof. Since aj cannot have positive measure for j > #t, it follows that aj, j = 0,..#.,

provides a finite partition of Ud.. Since P, 0 S = {0}, the remarks preceding this theorem prove
that, indeed, (3.3) is an orthogonal decomposition of S and Sj is generated by P,,. It remains,
thus, to show that each Sj is quasi-regular.
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This last fact is also straightforward: it is clear that a(Pa,S) C aj. On the other hand, for
x E 0j, $l1x = xa 4 1lIx, showing thus that O'k(P,S) is a null-set unless k E {0,j}. In other words,

P,, S is quasi-regular. 6
The theorem is valid with respect to a countable 4, too, only that in this case one needs to

verify that each Sj is a FSI space before concluding that it is quasi-regular. Furthermore, since at

each z E rIfd, dim Sjjj, -j, it seems plausible that only j functions will be required to generate Sj.
This is true, indeed, and is proved subsequently. We first require the following fact, which shows
that the orthogonal complement of a shift-invariant space in another shift-invariant space can be

well-understood in terms of the corresponding range functions.

Corollary 3.4. Let S' be a closed shift-invariant subspace of the closed shift-invariant subspace S
of L2 (Itd), and let S" be the orthogonal complement of S' in S. Then S" is a closed shift-invariant
space and, a.e. on U 11, ." is the orthogonal sum of S'll and S"I"

Proof. Since Ps' commutes with any integer shift (cf. (1.1)), S" is shift-invariant. Let t (41)
be an at most countable set of generators for S' (S"). Since S' 1 S", Lemma 1.10 implies that

[, 4,] = 0 for every 0 E 4 and , E T, or, in other words, that 011, _L V11, for every € E 4, '0 E IQ
and almost every x E T1 d. Thus, a.e., S'll I S"I,,, and these two spaces sum up to S!1, since D U T
generates S. A

Theorem 3.5. Let S be a closed shift-invariant space. Then S is a FSI space if and only if

ds := ess supdim{Sj,. x E Ud}

is finite. In such a case, ds = len S, and S can be written as the orthogonal sum of ds = len S PSI

spaces.

Proof. Assume that S is a FSI space, and let (I be a generating set for S of cardinality len S.

Then 11x = span jjx a.e., and hence ds < len S, and in particular, ds is finite.

The proof of the rest of the theorem is based on the following lemma:

Lemma 3.6. Let S be a closed shift-invariant space. Then S contains a PSI subspace with

spectrum a(S).

We first show how, based on the lemma, the proof of the theorem can be completed.

Assume that ds is finite. If ds = 0, then S = 0 and there is nothing to prove. Otherwise, let

S' C S be the PSI space of the lemma, and S" its orthogonal complement in S. Since a(S') = a(S),
dim 'll = 1 on a(S), and therefore, by Corollary 3.4,

dim S"i, = dim S11, - dim S'll < ds - 1,

a.e. on a(S) (and trivially on llrd\a(S)). Thus, ds,, < ds - 1. By induction on ds, S" can be
written as the orthogonal sum of ds - 1 PSI spaces, and hence S can be written as the orthogonal
sum of d5 PSI spaces. The generators of these spaces certainly generate S and hence ds > len S.
This completes the proof of the theorem.
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It remains to prove the lemma. Let 4D : be a generating set for S. Since x E U(S) iff

54 0, and 011, = 0 iff O(x) = 0, we conclude that

a(S) = Uj supp 4j.

Therefore the sets
Slj := supp _j\(Uk=l suPP Ok), j = 1,2,

form a (measurable) partition of a(S). We define now g via its Fourier transform by

Since X., is 2r-periodic and bounded, each X,¢j is in S(Oj), hence in S. Since the series converges

and S is closed, the limit g is in §, too, and therefore g E S. Because {j}j are pairwise disjoint,

supp =Ujj = a(S). S(g) is then the required space. 4

3.3. Basic facts about quasi-regular spaces

We shall next describe the projector s onto S for a quasi-regular space. We begin with the

following characterization of Ps whose proof may be found in [II; p.58] and on which the proof of

Result 1.5 is based.

Result 3.7. Let S be a shift-invariant space. Then Ps, the projector onto S, is pointwise in the

sense that for each f E L2 (IRd) and each x E "Ffd , Psf11 is the orthogonal projection of into

the space 
SII "

If, now, S is a quasi-regular space and -t is a quasi-basis for S, then the orthogonal projection

at z, Psfll,, onto SI, = span 41, can be computed by solving (pointwise on a(S)) the normal

equations

1:~ ~~)= fIx,~ E 4?,
OEO

where the sought-for 27r-periodic functions {T0}0 are the functions in the representation

PSfAX) = S ) W
OE4€

(cf. Theorem 1.7), which can be defined a priori to be 0 on 'Ird\o,(S). Since 4? is a quasi-basis, 4ll,

is linearly independent for a.e. x E a(S). Since

(3.8) det G(4?)(x) = 0 = $ll is linearly dependent,

with
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the Gramian of -t, the fact that t is a quasi-basis implies that det G( I) $ 0 a.e. on a(S). Thus,

Cramer's rule provides the standard formula

Ps-f(x)~ = det G(f)(r)

OE det G( D)(x)

with

G¢(f)

the "modified Gramian" obtained from G() by changing its qth row to ([U, V1)0,-

This proves

Theorem 3.9. Let 11 be a quasi-basis for the FSI space S and let f E L 2 (IRd). Then the orthogonal

projection Pf of f into S is given by

(3-1) 1:det Go (f)

(3.10) P '= detG(4I)

Corollary 3.11. IfS is a FSI space, with quasi-basis D, then the 27r-periodic functions 7e in the

representation f = EOEIV r0 for f E S (cf. (1.8)), uniquely determined on a(S) (up to null-sets),

are measurable there.

Proof. Since Pf = f for every f E S, we conclude from (3.10) that, on a(S), re =

detGO(f)/detG(f), and these are measurable. A

Since the orthogonal projector Ps acts pointwise and each of the "fiber" spaces S11, is finite-

dimensional, many of the basic linear algebra facts give rise to analogous results for FSI spaces.

The following theorem collects some of them.

Theorem 3.12. Let it be a finite subset of the FSI space S.

(a) If # T > j, then det G(V) vanishes a.e. on aj(S). In particular, det G(T) vanishes a.e., in case

#T' > lenS.
(b) The following are equivalent:

(1) IQ is a quasi-basis for S.

(2) det G(T) is nonzero a.e. on a(S), and #t > len S.

(3) S is quasi-regular, 1Y generates S, and and #TP < len S.

(c) Let P be a quasi-basis for S. Then %P is a quasi-basis for S if and only if %F = T for some

square matrix T whose entries are 2ir-periodic and which is nonsingular a.e. on o(S).

Proof. (a): i11, is a subset of the space S11,, the latter has dimension j on aj(S). Thus, if

#'q > J, I11, must be linearly dependent a.e on aj(S), and, by (3.8), det G('I)(x) = 0 a.e.
(b): For x E a(S), 'Pjj is a subset of S11 and dim SI11 < len S. Now, (1) says that 'P1- is a

basis for S11, (2) says that dim Sjjr < len S < # T and that (by 3.8)) q11, is linearly independent,

and (3) says that dim Six = len S > #T and that I11, spans Sl.. Thus, these three conditions are,

indeed, equivalent for any fixed x, and (b) easily follows from that.
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(c): If 4) is a quasi-basis, it is, in particular, a generating set for S, and the fact that ' = T$
follows from Theorem 1.7. Further, if this matrix is not square, #41 > #4), hence T' is not a quasi-

basis (say, by (a) here). Now, if T is non-singular a.e. on a(S), then we can write $ = T -' Q, which
implies (by Theorem 1.7 when applied to S('P)) that 4D C S(TP), hence S = S(4)) C S(%L), and
equality must hold since the reverse inclusion in assumed. Conversely, if T is a quasi-basis, T1. is
linearly independent a.e. on a(S), which implies that T(x) is non-singular a.e., since TI1$ =

a.e. A
Some of the results of the previous section admit improved versions for quasi-regular spaces.

For example, we have the following consequence of Corollary 3.4 and Theorem 3.5:

Theorem 3.13. Let S' be a quasi-regular subspace of the quasi-regular space S, assume that
a(S) = a(S'), and let S" be the orthogonal complement of S' in S. Then, S" is quasi-regular, too,

a(S") = a(S), and len S" = len S - len S'.

Proof. Since, both, S and S' are quasi-regular with spectrum a(S), we know that dim S11, as
well as dim 9'11, are constants a.e. on a(S). By Corollary 3.4,

dim P" '11 = dim S11. -- dim "l"1,

and hence dim 3"11, is also constant on a(S) (and vanishes on UI'd\or(S)). Therefore, S" is quasi-

regular with spectrum a(S), and, further, ds,, (defined as in Theorem 3.5) is ds- ds,. By Theorem
3.5, for any shift-invariant S, ds = len S, and we have thus proved that len S" = len S - len S'. 4

As an easy consequence of the above results, we obtain that every quasi-regular space has a

quasi-basis:

Corollary 3.14. A FSI space S is quasi-regular if and only if it is the orthogonal sum of len S
PSI spaces, each with spectrum a(S). By selecting a generator for each of these PSI spaces, one
obtains a quasi-basis for S (of cardinality len S). Further, any quasi-basis for S has cardinality
len S. In particular, every regular FSI space has a basis.

Proof. Let S be a quasi-regular space. By Lemma 3.6, S contains a PSI subspace S' with
spectrum a(S). By Theorem 3.13, the orthogonal complement, S", of S' in S is quasi-regular of
length len S - 1. Employing induction, we obtain that S is the orthogonal sum of len S PSI spaces,
each with spectrum a(S). The rest of the claims of this Corollary are straightforward. 4

In general, though, the generating set 4D for S, which was constructed inductively in the proof
of Theorem 3.5, may fail to be a quasi-basis for the simple reason that a FSI space need not be

quasi-regular. For example, the univariate space generated by € := X10,2 ,] v and b := X10,37] v is
not quasi-regular.

Given a minimal generating set for a FSI space S', this set cannot always be extended to a
minimal generating set for a FSI space S D S'. However, this is true for quasi-regular spaces:

Theorem 3.15. Let S' be a quasi-regular proper subspace of the quasi-regular space S, and
assume that a(S) = a(S'). Then any quasi-basis for S' can be completed to a quasi-basis for S.
Furthermore, the completion can be chosen independently of the given quasi-basis for S'.

Proof. By Theorem 3.13, the orthogonal complement, S", of S' in S is quasi-regular. One
easily verifies that, given any quasi-basis 4t for S' and quasi-basis %P for S", the union 4t U '9 is a
quasi-basis for S. 4
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3.4. Quasi-stability in quasi-regular spaces

We earlier characterized quasi-stable PSI spaces in term of the behavior of ¢ on a(S). The

analogous results in the finitely generated case are obtained along the same lines, with det G(4P)

replacing €. First, we define the notion of quasi-stability for a FSI space S. As before, we define

Cs := {c E 2(2Zd): suppC a(S)},

and denote by Ks the orthogonal complement of CS in e2 (7zd).

Definition 3.16. Let (P be a finite set of L 2(IRd)-functions. We say that 'D is a quasi-stable

generating set for S(D) if the map

(3.17) t*': Cs -. S(4) : c . := E0.3',
OE4

is a ulilbert-space isoinorphism. If, in addition, a(S(,t)) = U d, then we call 4D stable.

It should be understood that the search for quasi-stable generators can succeed only in quasi-

regular spaces:

Proposition 3.18. Let b be a quasi-stable generating set for the space S. Then (D is a quasi-basis

for S (hence S is quasi-regular).

Proof. Assume that D is not a quasi-basis for S. Then there exists Q C a(S) of positive

measure andi a proper subset T C (D such that, for almost all x E Q, 411, is linearly independent.

but { 4' ., 11lr} is linearly dependent for some 6 E (\T. This implies the existence of bounded

2.-periodic functions {rv).,E, r O with support in Q so that tee+= 0, anl r vanishes

nowhere on Q. By going to a proper subset of Q (still of positive measure) if necessary, we can

assume that T is bounded away from zero on Q, hence 0on Q for certain bounded

functions 7' with support in Q. Since Pn '" is a quasi-basis (for the space it generates), r, are

measurable (Corollary 3.11), hence are in L,('IId'). This implies that each r' is the Fourier

transform of some c,,, E Cs. We conclude that 4' cannot be defined in a 1-1 manner on C', hence

D is not a quasi-stable generating set. 4

In view of the above proposition, we assume for the remainder of the discussion that S is

quasi-regular, and further, that the generating set in question is a quasi-basis for S. Our main

result concerning quasi-stability is the following:

Theorem 3.19. Let (D be a quasi-basis for the FSI space S.

(a) If 4 is a quasi-stable quasi-basis, then det G(D) is essentially bounded below and above on

a(S) by positive constants.

(b) If [f, 4] is continuous on a(S) for every 0, TP E I, then 4 is a quasi-stable quasi-basis if and

only ifdet G(i) vanishes nowhere on the closure of a(S).

In particular:
(c) If S is regular and each [0, V5 is continuous, then P is a stable basis if and only if det G($)

vanishes nowhere.
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We note that part (c) of the theorem is essentially due to Jia and Micchelli, [JM1,2. See

Corollary 3.30 below for a characterization of quasi-stability even in case the entries of the Gramian

G((I) are not continuous.

Another important question is the existence of a quasi-stable quasi-basis for a given FSI space.

The following theorem provides a complete answer to this question.

Theorem 3.20. Let S be a FSI space. Then:

(a) S contains a quasi-stable quasi-basis if and only if S is quasi-regular.

In particular:

(b) S contains a stable basis if and only if S is regular.

In the next subsection (cf. Theorem 3.35), we prove that every space that is generated by

finitely many compactly supported functions is regular. Hence:

Corollary 3.21. If S is generated by finitely many compactly supported functions, then S contains

a stable basis.

We prepare for the proofs of Theorems 3.19 and 3.20 with the following observations. Let (P

be a quasi-basis for S and let f = , *'c, with each c. in Cs, i.e., co E 1 ( 7Zd) and the

corresponding 2:r-periodic function r o := - having its support in a(S). Then f = Z~E, ,

helice

(3.22) 7~ILui (x)"G(x)T(x) dx,

with G := G( 4), the Granian of P, and with

7 : x -- ((X))$ = ( ))X

Further, since G(x) is a lermitian positive semidefinite matrix, it satisfies the sharp inequalities

(3.23) A,(x)Jt.) < v G(x)v < A,(x)]Vj2, v E t2( 4D),

with

I"[ := V"V= '12, V E t2 ),

and

A4 (.r) := sup vHG(.r)v/Ir = max = max IG(x)v 2/It't 2 = IiG(x)I,
v t2(0) 2 XEspect(G(r)) vEt 2 ($)

and, correspondingly,

A,b(x) := inf v'G(x),/Ivl2= rin = m, I(x),'lIvl. = /IIG( )-.
VVA(D) 2 AEspect(G(x)) vEV2 ()1)

In particular,

(3.2-1) < detG < A *'
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Lemma 3.25. The functions At and A, are measurable and nonnegative and have their support

in a(S).

Proof. Only the measurability of these functions requires verification. Since each entry of G is

in L1 (,IWd), it can be approximated in L,(lfd) by simple functions. Upon passing to a subsequence,

we obtain a sequence {G,,},, such that each entry of each matrix Gn is a simple function in

Li(Ird), and such that G,(x) converges to G(x) for almost every x E "IUd. Let An and A, be the

maximal and minimal eigenvalue functions associated with Gn. Because each of the entries of G,. is

simple and measurable, it is clear that An and An are simple and measurable. On the other hand,

A,,(x) -- Ap(x), whenever G,(x) - G(x). Consequently, {A,}}, converges pointwise a.e. on Ud

to Ap. Hlence Ap is measurable, and, by an analogous argument, A,, is measurable, too. 4
Also, AV(.r) = 0 if and only if det G(,D)(x) = 0, and therefore, since D is a quasi-basis for S,

A.p is nonzero a.e. on a(S). In other words, 1/Atp is finite a.e. on a(S).

On combining (3.22) with (3.23), we find that

(3.26) 1/llAVlL,(,(S)) <_ Ilf1l 2L(R1)l j I()I dx _

Here, 1l/A.fll(a(s)) equals the essential infimum of A,> on its support.

\We next show that (3.26) is sharp:

Lem ma 3.27. The constant (respectively I /1]l/AIJL_,(s))) in (3.26) cannot be

replice( by any smaller (respectively, larger) constant.

Proof. If, e.g.. 1/jjl/) j,,s)) < c, then, for some c' < F, the set Q := {x E a(S)

,\,,(.r) < 1/2} has positive mea.,ure. The natural way to proceed is by choosing the function

7 = r to consist, for each x E Q, of an eigenvector of G(x) corresponding to A,(x). However.

such ian alproach leaves questionable the measurability of r, hence we use instead a simple function

atpproximation.

As in the previous lenna, we let {G,,} be a sequence of matrices which converges pointwise

a.e. to G;, and whose entries are simple 2-periodic functions. By Egorov's Theorem, Gn converges

imiforinly (i.e., each entry converges uniformly) on a subset of Q of positive measure, which we may

assume, without loss, to he the original Q. With An the minimal eigenvalue function associated with

G,,, we can find sufficiently large n for which 1/ll /A,llL.() m el, and such that II(G, - G)(x)ll,. _

b, for some small b and uniformly for x E Q. Since th, entries of G, are simple, we can replace

Q by a subset of it, still of positive measure (which we still denote by Q), on which Gn, hence A,,

are constant. Let 1, = {r} be a (constant) eigenvector of Gn(x), x E Q, corresponding to the

(constant) eigenvalue A,j(x), normalized to have I'1 = 1. We define r E L ('I d), 5 E 4. by

70 := tVOXf

Then r1tGy,, = AT, < El < E on Q), and r"G,r = 0 elsewhere. With an appropriate choice of

b, we can ensure that the same holds with G replacing Gn and with e replacing Cl (and with r

unchanged). Defining

.f:= Z 4,
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we see that f E L2(IRd), and hence, by Corollary 3.11, f E S. Therefore, from (3.22),

IjfII 2 (1 ~ r(x)HG(x)T-(x) dx < jE = E IT12,L2(-Rd) L - In(s) 2

showing that f 2(s) Irl 0 and Î 2 (B' )/ Jo(S) 2

We thus arrive at the following result:

Proposition 3.28. Let $I be a basis for the FSI space S. For c E CM, let IC12 be its norm, i.e.,
Ic12 = C0112 Then the inequalities

(3.29) 1/11l/AOllLo(a(s)) <_]R < JjAslL.o(,(s))

are valid and sharp.

Proof. It should be understood that the middle quantity of (3.29) is defined to equal oo

whenever (I*' does not extend continuously from finitely supported sequences to all of t 2 (2Zd x D).

Thus, we show first that in such a case A, is unbounded (on a(S)): Since 4 is a basis, 4I*' does

not extend to .(2Zd x DI) exactly when, for some 0 E 4D, 0*' does not extend to t 2(2Z), and the

latter is equivalent (cf. Lemma 2.14) to being unbounded on its support supp C a(S). Yet,

€ = [ ,€ is one of the (diagonal) entries of the Gramian G, and we conclude that G has an entry

unbounded on a(S), hence A, must be unbounded on that set, too.

On the other hand, if 4I*' is well-defined, then, the claim of the proposition follows from the

preceding analysis and the following equality, valid for every c E C ,

II Ic1L2(1Rd)/I112 = 11 E3 1 1713)~d)

where r := {ro := 4}. 4

Corollary 3.30. Let (I be a quasi-basis for the (quasi-regular) FSI space S. Then 45 is a quasi-

stable basis if and only if both Ap and 1/Ab are in Loo(a(S)). In particular, if S is regular, then

(D is a stable basis for S if and only if A, and 1/A, are bounded a.e. on UFd .

Note that A, vanishes on Tjd\a(S), hence its boundedness on a(S) is equivalent to its bound-

edness everywhere.

We prove now the two theorems stated earlier in this subsection:

Proof of Theorem 3.19. (a): If 45 is a quasi-stable basis, then by Corollary 3.30, AO and 1/As

are bounded on a(S). Since A*O < det G(I) < A'O, we conclude that det G(I) must be bounded

below and above by some positive constants a.e. on o(S).

(b): If all the entries of G(4I) are continuous, so are A, and A. It follows that A, is necessarily

bounded on "IFd. As to 1/Ao, it is bounded on a(S) if and only if A, does not vanish on the closure

of a(S). The latter is equivalent to det G(i) being nonzero on the closure of a(S).

(c) is a special case of (b). 4
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Proof of Theorem 3.20. Statement (b) is a special case of (a). By Proposition 3.18, if -t is a
quasi-stable generating set for S, then S must be quasi-regular, so that we only need to prove that

a quasi-regular space contains a quasi-stable quasi-basis. By Corollary 3.14, S is the orthogonal
sum of n := len S PSI spaces {Sj2 j, each of which with spectrum a(S). By Theorem 2.21, each
Si contains a quasi-orthogonal generator 4j. By the orthogonality of the Sj spaces, [qjbk] = 0
for j # k, and by the quasi-orthogonality of each Oj, we have Oj = Xa(s ) = X(s). Therefore, we
conclude that G({j}j)(x) is the identity matrix for each x E a(S). In particular, by Corollary

3.30, {j}j is a quasi-stable generating set.
In particular, the construction of the last proof implies the following:

Corollary 3.31. Let S be a regular FSI space. Then S contains a basis D which is orthogonal in

the sense that (0(. - a), (. - 03)) = bOb, ,, for all 0, 0, E t, a, 03 E 2/
d .

We conclude this section with the following result concerning the connection between two
quasi-stable quasi-bases for S:

Corollary 3.32. Let 4> be a quasi-stable quasi-basis for the FSI space S. Let T C S. Then 'P is

also a quasi-stable quasi-basis for S if and only if there exists a square matrix T with 27r-periodic
entries such that ' = T$ and IT[I, 1T'I are bounded (a.e.) on a(S).

Proof. Because of Theorem 3.12(c), we may assume that 4I is a quasi-basis, that = ,
with T a square matrix which is non-singular on a(S), and prove that the quasi-stability of 'P is
equivalent to the boundedness of IIT1[ and [IT - I l on a(S).

For this, recall that, for any matrix A, JAil" = hhA1 ) "2 = max, cHAAC - )JAAHJJ and
"l AAHc HG% ~ P

1/IA 1h 2 = mine C - 1/hI(AA')-hI while A, = mine C and Ap = max c C

Since G(T) = TG(4)T , we have

cHG(ID)c (T11c)hfG(4t)(THc) c1 TT Hc

ct ic (T 1c)H(T1lc) cHc

from which we conclude that, for a.e. x E O'(S),

A).(x)IT(x) 11
2 < Ap(x) _< Ab(x)IT(x)jj2 and ,t(x)/hIT(x)-' 1 1 2 < Ak(x) _< AV(x)/hT(x)-' 112.

Thus, since ib is quasi-stable by assumption, 'P is also quasi-stable if and only if 11T1h and JIT-111
are both bounded functions on a(S). A

3.5. Local spaces

We call a space local if it is a FSI space with compactly supported generators. Such spaces are
locally finite-dimensional, hence particularly attractive in applications. The recent work by Jia and
Micchelli (cf. [JM2I] and the surveys [Ml], [M2]) on FSI spaces deals largely with local spaces. For
a local space, our earlier theorems concerning FSI spaces can be sharpened because of the following
observation.
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Lemma 3.33. Let 4) be a finite set of compactly supported functions. Then det G(4)) is a trigono-

metric polynomial.

Proof. By Lemma 1.10, [ , 4,] is a trigonometric polynomial for any compactly supported 4
and 4. This implies that all entries of G(4D) are trigonometric polynomials, hence so is detG(4 ).

Since we have already used the term 'linearly independent' in connection with the linear
independence of the integer shifts of a given 0, we now use the related term free to denote the fact
that 4) is a finite set of compactly supported functions for which G(4)) is invertible a.e. That is, 4I
is free iff it forms a basis for the space it generates. It follows that a compactly supported set 4) is
either free, or else det G(4)) vanishes a.e.

Corollary 3.34. Let (D and 9' be finite sets of compactly supported functions. If is is free and in
S := S(4)), then T can be completed to a basis for S by elements from 4).

Note the difference between this result and Theorem 3.15: the latter merely says that 4) can
be completed to a basis. The claim here shows in particular that the completion can be made by
compactly supported functions.

Proof. Let ' be a maximal free subset of 4) U %F containing %V. Since for any compactly
supported 0, the singleton set { } is free, it follows that 4' is not empty (even if 'P is). But

then, by the maximality of ', det G(kP U {0}) must vanish a.e. for every 0 E 4)\V'. By (3.8), this
implies that 11  U{ 11  is linearly dependent, while 'P is free by construction, hence T11. is linearly
independent a.e. Therefore, 0)), E span k , a.e., and hence (say, by Theorem 1.7) 0 E S(V'). Since

0 E (D was arbitrary, we obtain that D C S(%P'), while also ' C S(4)), hence S(V') = S().
Since det G(V') vanishes almost nowhere, this implies that ' is a basis for S(4)). 4
Application of Corollary 3.34 with IQ = 0 gives the following.

Theorem 3.35. Let 4) be a finite set of compactly supported functions. Then 4) contains a basis

for S(l), hence S(l) is regular.

Corollary 3.36. Let S be a FSI space, and assume that the space S, of all compactly supported

functions in S is dense in S. Then S is local.

Proof. Let 4) C S, be a maximal set with respect to the property det G(4)) 0 a.e. Since S
is finitely generated, Theorem 3.12 (together with Lemma 3.33) implies that 4) is finite. Clearly, 4)
is a basis for the regular space S(4)), hence, by (3.8) and the maximality of 4, S, C S(), and, as

S, is dense in S, this shows that S = S(4)). 4
We can also interpret the two last results directly in terms of Gramians (which in any case

were involved in the arguments) as follows:

Corollary 3.37. Let S be a local FSI, and 'P a finite set of compactly supported functions in S.

(a) If det G(41) 5 0, then 'P can be completed to a basis for S.
(b) If det G(T) = 0, then 'P contains a basis for S(T).

The following is the local version of Theorem 3.13.
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Theorem 3.38. Let S be a local space. Let T C S be a finite collection of compactly supported

functions. Then the orthogonal complement S' of S(q') in S is local as well, and we have

(3.39) len S' + len S(TI) = len S.

Moreover, if T is a basis for S(T), then a compactly supported basis ' for S' can be obtained as

(3.40) )' := {' := det G(I) (0) -PA¢p)): € E 'D},

where T U 4 is any compactly supported completion of T to a basis for S. Here, P3 is the orthogonal

projection onto S('I').

Proof. By Theorem 3.35, T contains a basis for S(T), which we assume to be T itself. With

regard to the localness of S', we first note that Corollary 3.34 ensures the existence of a finite

set 4) of compactly supported functions so that T U -0 is a basis for S. By Proposition 3.1 and

Corollary 3.4, (1 - P 0), 4 E 4), is a basis for Js,(x) for a.e. x. Since detG(T) is nonzero

a.e., it follows that also $', {= ' : 0 E ()} is a basis for Js,(x), hence ' is a basis for S'.

It follows that each 0' is compactly supported, since the corresponding € as well as all functions

in 'k are compactly supported, therefore each entry of each determinant in the formula (3.10)

for the orthogonal projection P(¢) is a trigonometric polynomial (cf. Lemma 1.10) and hence

4'- det G('Q)O = - det G(I)Pp (0) equals Z ¢E4 r0, with each r, a trigonometric polynomial. 4
Assume now that i) is a compactly supported basis for the FSI space S. Then, for any 4 E I),

we can apply Theorem 3.38 with respect to the choice 4 and ' := \{0}, to conclude that S(4))
is the orthogonal sum of the local spaces S(4)') and S(T), with 4' given by (3.40). Assume further

that the basis i) is stable. Then, the basis {0'} U IQ is stable if and only if 0' is a stable generator of

S(O'). In the context of compactly supported generators, Theorem 3.19(c) reduces the stability of a

finite generating set F to the linear independence of F1, for every x E Urd . Thus, 0' is an unstable

generator if and only if 'k'z = 0 for some x E IUd . Since P'-),1 E I-'P l, and 011. is independent

of ' I,,, by virtue of the stability of ) = {)} U 41, this can only happen if det G(4o)(x) = 0, which
in turn, would contradict the stability of I). Consequently, {'} U T is still stable, and, using an

inductive construction, we recover the following result of Jia and Micchelli.

Corollary 3.41 [JM2]. Any FSI space with a compactly supported stable basis is the orthogonal

sum of finitely many PSI spaces, each with a compactly supported stable generator.

The results in section 2.3 concerning linearly independent generators for a PSI space have

obvious extensions to local spaces.

For example, we obtain by repeated applications of Theorem 3.38 that the orthogonal comple-

ment of any local subspace S' of a local space S is the orthogonal sum of finitely many PSI spaces,

each generated by a compactly supported function. Since Corollary 2.27 guarantees the existence

of a linearly independent generator for any univariate local PSI space, this proves the following.

Proposition 3.42. The orthogonal complement of a local subspace within a univariate local

space is the orthogonal sum of finitely many PSI spaces, each generated by a linearly independent

(hence compactly supported) function. In particular, each univariate local space is such a sum.

It follows that a univariate local space always has a linearly independent basis in the sense of

the following definition.
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We call the finite set i of compactly supported functions linearly independent if the linear

map -N ,: C0( co a

is 1-1 even if we allow here arbitrary c E C'" Z . The sum here is taken pointwise.

This raises the question whether, in Corollary 3.41, it is possible to replace 'stable' by 'lin-
early independent', i.e., whether Proposition 3.42 also holds in more than one variable under the

additional assumption that the local space has a linearly independent basis. We don't know the

answer, but guess that, for a general local FSI, it is in the negative. In this regard, it is useful to

quote the following (non-trivial) generalization of Result 2.24.

Result [JM1; Cor.3]. The finite collection D of compactly supported integrable functions is

linearly independent if and only if'I: is linearly independent for all X E Cd.

4. An application to approximation theory

Orthogonal projectors are optimal approximation maps (at least as far as the error is con-
cerned), and we became interested in projectors onto shift-invariant spaces in order to understand
the approximation properties of these spaces. Indeed, [BDR] contains an extensive discussion of the
approximation orders and density orders from principal and from arbitrary shift-invariant spaces.

Here is some terminology. For a closed subspace S of L 2(IRd), we use the notation

E(f, S):= IIf - PsfI1, f E L2(IRd),

i.e., E(f, S) is the distance between f and S. Also,

S' := {f(./h): f E S}

is the h-dilate of the space S. We say that S provides approximation order k, in case

E(f,Sh) < constshkIlfIlw(n d) forf E W2(Ia),

with
w (kt) {f E L2(ltd) IlfIlwh(B) (2r)-d/211(1 + I . )kfll < }.

If, in addition,
E(f, Sh) = o(hk) for f E Wk(Ild),

then we say that S provides density order k.

We proved in [BDR] that the approximation order of a general (not necessarily finitely gen-
erated) shift-invariant space is attained by one of its principal subspaces, but were not prepared
there to indicate the nature of this subspace. With the aid of Theorem 3.9, we derive below more

concrete results with respect to quasi-regular FSI spaces.

Our first result concerns local FSI spaces.
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Theorem 4.1. Let S be a FSI space and assume that the compactly supported functions in S

form a dense subspace of it. Let g be any compactly supported function (not necessarily in S).

Then, there exists a compactly supported function tl E S such that, for every f E L2(IRd),

(4.2) E(f, S(O)) _< E(f, S) + 2E(f, S(g)).

Furthermore, for any compactly supported generating set t for S, 0 can be chosen from So(4).

This theorem settles a long standing question in the area of spline theory, namely under what
circumstances the approximation power of a local FSI space S is already realized by one of its local

PSI subspaces. The theorem says that, in L2(IRd) at least, this is always possible. For, it is not hard
to show that a local FSI space can only have finite approximation order (since it is locally finite-

dimensional). Thus it is possible to choose a compactly supported function g whose corresponding
PSI space S(g) has approximation order at least as good as that of S. The theorem then asserts

the existence of a compactly supported k in S for which S(O) has the same approximation order

asS.
The question of when a local space contains a principal subspace with the same approxima-

tion orders was first studied in [SF], following a suggestion by Babu~ka that this should always be
possible. Introducing a restrictive notion of approximation, the so-called "controlled approxima-

tion" (which only considers approximations of the form D*'c with lIcille bounded in terms of the

approximand), the authors there claimed that the local space S = S(4b) has "controlled" approxi-

mation order k if and only if there is some 0 E So(-O) (with some special properties) so that already
S(O) has that "controlled" approximation order. This claim was shown to be false by Jia, in [J1],

but the claim was shown to be true (in [BJ]) if "controlled" approximation is replaced by "local"
approximation (which is another restrictive notion of approximation).

Proof. By Corollary 3.36, we know that S contains a compactly supported basis, and fur-
thermore, Theorem 3.35 ensures that every compactly supported generating set can be reduced to

a basis. Therefore, in the proof of the theorem, we may assume that we are given a compactly

supported basis 4I for S. Given f E L2(IRd), let Pf denote its orthogonal projection into S. From
Theorem 3.3 of [BDR], we know that

(4.3) E(f, S(Pg)) E(f, S) + 2E(f, S(g)),

and hence, for the proof here it suffices to show that S(Pg) is generated by a function which is a
finite linear combination of the shifts of T (hence necessarily compactly supported).

Let G,¢(g) be as in Theorem 3.9. Since g and T are compactly supported, every det GP(g),

Vf E 1k, as well as det G(19) are trigonometric polynomials (Lemma 3.33). By Theorem 3.9,

(4.4) detG(%P)Pg = detaG(g)'.

Defining 0 as the inverse transform of G('I)Pg, we conclude from (4.4) that 0 is a finite linear
combination of the shifts of T. By Result 2.3, 0 E S(Pg), and by Corollary 2.6, 0 generates S(Pg).

Replacing Pg by .0 in (4.3), we obtain the desired result. 4
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Following up on a result in [BDI according to which a locally finite-dimensional shift-invariant

space of univariate functions has density order 0 (in Co(IR) rather than L(Il)) if and only if it

contains a local PSI space, Jia in [J3] proved that a locally finite-dimensional univariate shift-

invariant space S provides approximation order k (in any particular Lp(IR)) if and only if some

local PSI space in it does so. Further, in [J2], Jia conjectured the corresponding result for functions

of several variables. For the case p = 2, the following corollary provides an alternative proof for
the main step in the proof of the aforementioned result of [J3]:

Corollary 4.5. Let S be a univariate local space which provides approximation order k > 1. Then

there exists a compactly supported function 4) E S such that 4(0) 0, but 4 has a zero of order k

at each of the points j E 21r2.

It is well-known that, for 4) as in the above corollary, S(O)) provides approximation order k.

This, however, is obtained in the proof below as a by-product.

Proof. By Theorem 4.1, there exists a compactly supported function 4' E S such that S(O')
provides approximation order k. By Result 2.26, S(O') contains a linearly independent generator

4). Since S(O) = S(O)), S(46) provides approximation order k. Invoking Theorem 1.14 of [BDR], we

obtain that 4 has a zero of order k at each j E 27r7Z, in particular, 4 vanishes on 27r7Z\0. This

forces 4(0) $ 0, since otherwise Result 2.24 would imply that shifts of 4 are linearly dependent. 4
There is work, by Cheney and Light [LC], by Jia and Lei [JL], and by Halton and Light [HL]

(see also Light's survey [L]) which extends the results of [BJ] to nonlocal FSI spaces with suitably

decaying generators, using a suitable notion of "local controlled" approximation. The argument

is based on quasi-interpolants, hence requires the generators 4' E T to decay at o, faster than

IXI
-
1

- k if it is to be shown that "local controlled" approximation order k from S(T) (in L 2(Rd),

say) implies the existence of some 4 E S(41) such that already S(O) gives that approximation order.

Motivated by the above-cited references, we derive below a generalization of Theorem 4.1 to

spaces generated by functions which are not compactly supported, but still decay at 00 in some

manner. Rather than dealing with specific decay rates, we prefer to describe it in the following

convenient axiomatic way.

Definition 4.6. We say that the pair (FC) is compatible, in case F is a subspace of L2(lRd),

C is a subalgebra of tl(&d), satisfying the following:

(a) {(f,g(- + a))}O,2 E C for every f,g E F.

(b) f*'c E F for every f E F and c E C.

For example, the set of compactly supported functions in L 2(IRd), together with the set of

finitely supported functions on Z ad , is such a pair. Another example is given by the pair

(4.7) Fr {f: If(x)l -< constj'(1 + Ixi)'1' C, := {c: Z~d --_ C Ic(a)l _< const,(1 + IaI)1)

with r > d. In this case, Fr and Cr are subalgebras of Li(IRd) n Lc,(IRd) and t,(7) respectively,
hence (a) holds, while (b) can be verified directly. As further examples, we may take F (C) to be

the space of all L2 (t1) rapidly decaying functions (sequences), or take F (C) to be the space of all

L 2-functions (ti-sequences) which decay exponentially at oo.
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Theorem 4.8. Let (F,C) be a compatible pair (as defined in Definition 4.6). Let IV C F be a
quasi-basis for the FSI space S. Then, for every g E F, there exists 0 E S n F that satisfies (4.2).
Furthermore, 0 = 4I*'c, with c E C.

The point of the theorem is as follows: if F is known to contain a function g whose correspond-

ing S(g) provides approximation order k, then, with 0 E S the function associated with g by the
theorem, S(0) provides approximation order k as soon as S does so. Note that in all the examples
discussed prior to the theorem, the space F contains D(lRd) (the space of compactly supported

C'°-functions), and we can choose g to be an appropriately selected element of (IRad).
Proof. Since IQ is a quasi-basis, det G(T) vanishes almost nowhere on a(S), and hence, by

Corollary 2.4, for every 0 E S, the inverse transform of detG(%P)O generates S(0), provided that
det G('I)O E L2(R). Therefore, following the proof of Theorem 4.1 (and in view of Theorem 1.7),
we need only to prove that the function , defined by

1:= det Goq(g) ,

is in F. Recall from Lemma 1.10 that each entry [ ,, 2] of any Gp(g) is the Fourier series of
the sequence {(1,IV2(" + 0))}-EZd. Since {g} U 'i C F, then, by (4.6)(a), each [, 1 , / 2]V is in

C. Thus, det G,(g) is the transform of linear combinations of convolution products of elements
from C. Since C is an algebra, it follows that (det Gp(g))v is in C as well. Finally, det Gv(g)v is
the Fourier transform of the semi-discrete convolution product 4*'(det G(g))v, hence is in F, by

virtue of (4.6)(h).
The fact that = '*'c follows from the above argument (with cp, = (det G ,(g))V.) 4
From the first example discussed after Definition 4.6, we see that Theorem 4.8 generalizes

Theorem 4.1. Furthermore, for the choice (F, C) := (Fr, C,), Theorem 4.8 provides the following:

Corollary 4.9. For some r > d, let (Fr,Cr) be the compatible pair defined in (4.7). Let 41 C Fr
be a basis for the FSI space S. If S provides approximation order k, then there exists c E C ' such
that 4b := '*'c E Fr n S, and the PSI subspace S(0) of S provides approximation order k, as well.
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