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CONVERSION FACTORS, NON-SI TO SI UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI units as follows:

Multiply By To Obtain

inches 2.54 millimetres

kips (force) per square inch 6.894757 megapascals

pounds (mass) per cubic foot 16.01846 kilograms per cubic metre
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I. INTRODUCTION

1.1 Review of Literature on Wavefront Propagation

One possible way of studying wave propagation is to follow the evolution of

wavefronts in spacetime. A need to approach many problems in that way arises in cases

of intensive dynamic loads acting on material bodies. The researches are typically based

on either the theory of characteristics or the theory of propagating singular surfaces. The

first of these relies on the methods of solution of hyperbolic partial differential equations

and borrows heavily from developments in gas dynamics. This approach, in which the

first papers appeared in the forties, developed rapidly in the sixties, and is described in

the book of Cristescu (1967). This book is devoted to the transient response of

continuous plastic bodies and remains a classic reference to this day. Many advances

were made later, particularly in the class of one-dimensional (I-D) problems, but also in

various 2-D and 3-D axisymmetric problems. Various constitutive laws were considered

- such as elastic-plastic and elastic/viscoplastic - since the effort was on both solids and

soils. This progress is evidenced in the monograph by Nowacki (1978). Another

monograph of similar quality is the one due to Wlodarczyk (1986). We conclude this

very brief account of this class of studies on wave propagation in elastic-inelastic

materials with an observation that the material spatial randomness - and hence,

randomness in constitutive response and its effect on wave passage - has not been

accounted for.

The theory of propagating singular surfaces dates back to Hadamard (1903) who

provided the celebrated Hadamard compatibility condition. This is a condition that all

surfaces of discontinuity, strong or weak, have to satisfy. Evolution of surfaces of

discontinuity within the framework of modem continuum mechanics was studied

rigorously by Truesdell and Toupin (1960) and Truesdell and Noll (1965). In the

following years this approach was utilized to examine the growth and decay behavior of

shock waves and acceleration waves in various classes of materials. Many results in this
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area were treated in the book by Chen (1976). Again, a reader interested in the effect of

material randomness on the propagation of these discontinuity waves will come away

disappointed: the deterministic continuum theory is well advanced, but the stochastic

problems are not yet treated. This statement is meant not as a criticism but only as an

observation; the deterministic theories always provide a basis for extensions to stochastic

phenomena in physics and mechanics. Since such extensions are usually not

straightforward, various existing deterministic approaches have to be learned in order to

find the best route. Thus, in the remainder of this section we give short accounts of

several other wavefront propagation analyses we considered.

Of special interest to us are theoretical researches on transient waves in

inhomogeneous media. One of the first papers in this category was due to Steinberg and

Chakravorty (1959), who investigated the propagation of rotary shear waves in an

inhomogeneous isotropic elastic plate from a circular opening. The inhomogeneity was

considered in the form of a power-like dependence of the shear modulus on the radial

distance from the center of the hole. Indeed, this problem provided the basis for other

theoretical techniques and more general assumptions. Thus, while the original problem

could be tackled by a Laplace transform, a wider class of inhomogeneities was treated by

a numerical scheme based on the theory of characteristics (Chou and Schaller, 1966).

Following this, a new approach was developed by Achenbach and Reddy (1967) which

relied on the Taylor series representation of the field quantities in the vicinity of the

wavefront. This method was utilized by several authors, and was critically assessed by

McCarthy (1975). In view of the drawback of the method in the setting of a

deterministic medium, this line of approach does not seem promising for media with

random microstructures.

Recently, a new method of solving linear wave equations has been developed by

Seymour and Varley (1989). While the method can be applied to problems involving

very general spatial inhomogeneities of the medium, its usefulness for us is restricted by

the assumption of a linear elastic constitutive behavior.
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Strong material spatial randomness of geologic media was the motivation for

Rohani (1982) who initiated a program of research aimed at bringing out the

microstructural nondeterministic effects. In that study the problem was considered as

one of wave propagation in a homogeneous medium whose defining physical constants

are random variables. In addition, the characteristics of airblast were considered random

too. Several sensitivity analyses were conducted to assess the relative effects of these

random quantities on the scatter of output quantities. Further studies in this vein were

reported in (Rohani and Cargile, 1984).

An attempt to introduce the spatial variability of the medium's properties was

undertaken in (Sadd, Hossain and Rohani, 1986). This study was based on a distributed

body concept advanced by Goodman and Cowin (1972) and the associated wave

propagation studies conducted by Nunziato and Walsh (1978) and Nunziato, Kennedy

and Walsh (1978). The wave propagation calculations were based on the Bernoulli

equation for the evolution of an acceleration wave, in which the two material coefficients

were related to the microstructure in the distributed body concept. Similar as before,

these coefficients were taken as space homogeneous constants assigned random values.

1.2 Motivation and Scope of the Present Research

Randomness of physical and geometrical microscale properties is an inherent

characteristic of most materials. It is definitely the case with granular media, and this

aspect has to be taken into account in any model aimed at a more precise description of

mechanical phenomena. The phenomenon under study in this report is one of transient

wave propagation in a granular microstructure; see Fig. la). We follow the theoretical

approach of our earlier works (Ostoja-Starzewski, 1984 and 1989a). The model is

developed in detail in a one dimensional (I-D) setting, that is, for a microstructure

represented by a sequence of grains whose properties - mass density and constitutive

moduli - are randomly assigned but constant throughout the domain of the grain. The

approach adopted here is based on the recognition of the Markovian property of
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disturbance propagation in so far as the ray kinematics as well as the amplitude

modulation of the wave transmitted forward are concerned. Descriptions of both these

processes in terms of Fokker-Planck equations are obtained, and these lead in turn to the

formulas that describe the dependencies of first and second moments on the medium's

statistics and the propagation times. The ensuing model is thus based on a semi-group

property of a Markovian propagator, which reflects a stochastic form of Huygens' minor

principle. Since this model is applicable to any characteristics of the forward

propagating (transmitted) waves up to the point of intersection with another

characteristic, it can be used to investigate 1-D problems of transient response of

microstructures with various constitutive laws. Two cases are treated here:

microstructure with linear-elastic grains, and microstructure with linear-hysteretic grains.

In the last chapter of this report we show how our theoretical approach can be

extended to two and three dimensions. Starting from the Markov property of disturbance

propagation we present a generalization of the diffusion approximation, which, in

conjunction with solutions of transient wave problems in deterministic media, can be

used to find the responses of randomly heterogeneous media. Finally, we introduce the

concept of local averaging of wavefronts.
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II. 1-D WAVEFRONT PROPAGATION

2.1 Basic Model

In this section we consider wavefront propagation in a 1-D model of a granular

medium. That is, by a granular medium we understand a family of semi-infinite (XI > 0)

sequences of grains; response of each sequence is independent of that of others. Each

grain is taken as a homogeneous continuum of physical properties, such as mass density

p(o) and elastic modulus E(wo), sampled from certain probability distributions. In

addition, the lengths 1(o) of grains may also be random. It is seen that a single sequence

of grains is a deterministic medium B(co), while a family B = (B(o); co r Q2) is a random

medium, whereby fl denotes an underlying sample space; see also Sobczyk (1986).

We consider a space-time graph of a disturbance propagating in a class of media B

in which grains are linear elastic and grain boundaries are possibly dissipative. By a

disturbance we understand any single point of the pulse p(t) shown on the t-axis of Fig. 2;

this pulse results in a wavefront moving in the material domain.

We observe that due to random speeds of propagation, any initial disturbance, from

to an arbitrary point p(to) of the pulse, diffuses in the space-time within a forward

causality cone C'. The cone C' is a set of all possible stochastic ray paths

(characteristics) that originated from X =X 1 =0 at t = t., which in view of the model's

microstructure are continuous piecewise linear lines. In the following we take, without

loss of generality, to = 0. Locally, the gradient of the characteristic is the phase velocity

C [ da(e, w )/P(o)]Q  (1.1)

Now, we introduce a dispersion distance defined by

X(t, (o)=xct, o) - <X(t)> (1.2)
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where <X(t)> = <c>t is the position of the average* path defined as a path in an average

medium. It follows that 4(t) is a random walk about the origin 4 = 0.

A model fully equivalent to this one may be formulated by introducing a

dispersion time:

r(X, 0) = t(X, co) -T(X) (1.3)

which describes the Markovian spreading of paths about the average path, see Ostoja-

Starzewski (1984). In the latter reference r was parametrized by the average time

T= X/< >, where <> is the ensemble average of phase velocities c of the grains.

Let us define:

Fq. (t) - set of all materials points in B disturbed in time < t;

Oq. (t) = i'Pqo (t) - set of all material points in B reached at time t.

Thus Oqo (t) is a disturbance at t due to a cause at point qO = (X= 0, to = 0); that is,

Oqo (t) is a zone of finite rather than zero thickness as would be the case of a disturbance

propagation in a deterministic medium. We note that IF, (t) and O.)(t) may also be

parameterized by the average time T as indicated in Fig. 2 - then we have %FqO (1) and

OIqO(M.

The evolution of 0qo (t) is determined by the dynamics of the t process (definition

(1.2)), or equivalently, by the c- process (definition (1.3)). Let us consider the process 4t

from now on. The physical properties p(cO) and constitutive law a(e,w) are, in general,

correlated in spatial domain. Without loss of generality we assume them to be

describable by a Markov process (p,a)t. It follows then from (1.1) that 4t is Markov

only in the sense of the vector process (p,a,4)t being Markov. For simplicity, however,

* The symbol <.> is used to denote ensemble averages.
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we shall assume henceforth that the statistics of the physical properties are spatially

homogeneous in the strict sense. In that case 4t alone is Markov and its transition

function is time-homogeneous

P(t,x,t + At,F) = P(At,x,F) = P(4(At)E F I 4(0) = x) (1.4)

We thus specify this process in terms of its one-step transition function, where

At = <I/c> (1.5)

is the basis of a (yet to come) continuous diffusion process approximation of the discrete

physical process. Also, F is any set in the range (state space) BE of the variable .

Furthermore, since

p(At,x,y) = P (k(At) = y I k(O) = x) = P((At) = y-x I4(0) = 0) (1.6)

the transition function is also homogeneous in the state space. In the above we have used

a transition density

p(Atxy) = P(Atx,y) (1.7)

Now, we note that the above function can be determined in terms of the medium's

statistics

p(At,x,y) = P(c: X(At,co) - <c> At = y- x), X(At,co) = c(co)At (1.8)

The dynamics of the 4t process is described by a Chapman-Kolmogorov equation

p(t1 + t2 , xo, x2)= p(t, xo, x)p(t2, x1, x2 )dxl , (1.9)

where the integration is over C(t) r C-(t2), and C-(t2) is a backward dependence

cone for a time difference t2 .
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It follows from the theory of Markov processes that, by introducing an operator

U(t)lf(x)] = f f(y)P(t, x, dy), f e L1 () (1.10)

relation (1.9) leads to a semi-group property:

U(t 1 + t2) = U(l)U(t2) (1.11)

which represents a stochastic form of Huygens' minor principle for the arrival of

disturbance Oq,(t)-

At this stage we introduce a diffusion approximation of the 4t process, which is

expressed by the following:

i) the Fokker-Planck equation*

t p(t x)- ') [A.(x)p(t, x)] + --- [B4,(x)p(t, x)] (1.12)

x) ax 2 jx2 P

in which

ii) p(t, x) is the probability density

p(t, x) = JP(t, x, x)dx (1.13)

iii) satisfying the initial condition

p(O, x) = 8(x - xO) (1.14)

iv) and p(t, x, x) being such that

* The time derivative here is meant in the sense of forward time differencing, i.e. 24(0) f(t+At)- f()

where f(t) is an arbitrary function.
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A((x) = <( >)_ (0) 1(O) = x> (1.15)

1

Bg(x) = 1 <[4(<o,>) - 4(o)12 1 (0) = x> (1.16)

1 <([ (<a>- ()]" I(0) =x>--, n >2 (1.17)
aac

< n>2

Condition (1.17) represents a constraint on strength of randomness of the medium's

microstructure for the validity of the diffusion approximation.

The wave amplitude evolves as a Markov process with discontinuous sample

paths. In view of the spatial homogeneity of the medium's statistics, the transition

function is time homogeneous and we have for a grain-grain transition

P(At, z, E) = P(C : E (At) = Cz) (1.18)

C in the above is a transmission coefficient. The Huygens' minor principle for this

process is expressed by a semi-group property.

W(t1 + t2 ) = W(tl)W(t2) (1.19)

of the operator

W(t)[f(z)] = j f(z)P(t,z, dz), f e L1 (Z) (1.20)
z

Also here we introduce a diffusion approximation. This is expressed by

i) the Fokker-Planck equation

-- p(t, z)= [A;(z)p(t, z)] + '- 2 [B(z)p(t z)] (1.21)

in which
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ii) p(t, z) is the probability density

p(t, z)= p(t, z, z)dz (1.22)
z

iii) satisfying the initial condition

p(O, z) = B(z -zO) (1.23)

iv) and p(t, z, z) being such that

1
A; (z) = -- <(< UT>) - (O) I (O) = 7> (1.24)

= <-z)<I (< Or>) _ (0)]2 1 C(0) = Z> (1.25)

E<(<-t (o)] I C(O) = z> 0, n >2 (1.26)
< ~

Similar to (1.17), also (1.26) represents a constraint on the strength of randomness of the

medium's microstructure. Our preliminary calculations indicate that (1.17) is more

restrictive than (1.26). These calculations were based on the assumption that the random

variables E and p have independent uniform probability densities.

We observe from (1.1) that in case of a nonlinear constitutive law, the 4t process is

dependent on the t process. Thus, 4t is then Markov only in the sense of the vector

process (C, 4)t being Markov. In this case we have the transition probability function

P(At, (z, x), E, F)=P (At) e E, 4(At) e FI =z, 4= x) (1.27)
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2.2 Wavefront Propagation Due to an Arbitrary Pulse: Linear-Elastic Grains

For the case of a microstructure with grains whose constitutive law is piecewise

linear, the 4t process is not explicitly dependent on the Ct process, providing C takes

values in any given linear range; we consider linear-elastic grains here. Thus both

processes are Markovian separately, and their transition functions are given by (1.4), and

(1.15), respectively. However, their joint probability density p(t, x, z) depends on the

joint transition function p(t, x, z, x, z) as expressed by the conventional relation

p(t, x, z) -J p(O, x', z')p(t, x, z', x, z)dx dz (2.1)
-Z

where

p(t, x z x, Z) = a2p(t, x, z,Z) (2.2)
txaz

and p(O, x', z') is the initial probability density.

We now consider the diffusion approximation for p = p(t, x,z). The Fokker-Planck

equation reads

1 i[.p
-=- -_7'- -2[A~p]

t az
1 a 1 a2  1 a2  1 a 2

+---[Bgp] -+ 12 [B~p] + - 2xz[Bp + )2 [B;p] (2.3)
2 ax2 2 axaz 2 axaz [2p & a 2

Clearly, a complete diffusion process description of the pulse evolution is obtained with

(2.3) rather than with a system of two equations (1.9) and (1.18) - this is due to the

presence of "cross-terms," i.e. fourth and fifth on the right hand side above. In the

following we adopt, for simplicity, the approach based on the system of (1.9) and (1.18).

As a matter of fact, this corresponds to following the evolution of the pulse in terms of an

operator

11



T(t) = U(t)W(t) (2.4)

Considering first the 4t process we need A4(x) and B4(x) in terms of the

medium's statistics. From (1.8), (1.15) and (1.16) we obtain*

A(x) = 0, B4(x) = D (2.5)

where, for simplicity of notation, we have introduced a constant D. Now, (1.12) becomes

a simple diffusion equation

tBg p(t~x) (2.6)

Solution to (2.6) subject to the initial condition

p(t,x) = 8(x) at t=O (2.7)

is, as is well known,

1

p(t,x) = (2xBgt) 2 exp [-x 2/2Bt] (2.8)

Turning now to the t process, we need to determine the coefficient functions

A;(z) and B;(z). These will depend on the transmission coefficient itC and the relative

impedance i

* <<>> denotes variance

12



it += 2 'p --c - -tEl2 (2.9)

In the above, i and t denote the regions (i.e. grains) of incident and transmitted waves,

respectively. From (1.18), (1.24) and (1.25) we find

A;(z) z (<itC> - 1) = Az

<I/c>

(2.10)
z2Bft(z) = (<itC2> - 2<itc> + 1) = Bz2

where, for simplicity of notation, we have introduced two constants A and B. It follows

that the Fokker-Planck equation (1.21) is, in Van Kampen's (1981) terminology, a so-

called nonlinear equation; the cause of the nonlinearity lies in the multiplicative character

of the process Q as reflected by the transition function (1.18). At this stage we can either

seek the solution p(t,z), or assess the time dependence of the first and second moments

only. We decide here on the latter alternative, and hence obtain from (1.21)

dtd< > = <A ;(z)>

(2.11)

dtT.c = 2<( - < >)A;(z)> + <B;(z>

These have to be supplemented with the initial conditions

* Solution of the equation (2.3) is obtained in Ostoja-Starzewski (1991).
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<C>=z. and <C3- =0 at t=O (2.12)

In view of (2.10), relations (2.11) become

d
dt

(2.13)

d
d : (2A + B)-C:so + B <C>2

Finally, we obtain (note from (2.12) that <C(0)OPa =0)

<(t> -= zo exp (At)

(2.14)

t

,C (t):.* = -cC(O)aP- exp [(2A + B)t] + J <t(t)>2 B exp [(2A + B) (t - s)] ds
0

In this section we study wavefront propagation in a microstructure made of linear-

elastic grains, occupying the X k 0 half-space, and subjected to a surface pressure f(t) at

X = 0, see Fig. 2. The constitutive law of any grain is

a = E(o))e (2.15)

where (0 indicates that the Young's modulus E is a random variable. The above

statement corresponds to a problem of wave propagation in a 1-D rod made of elastic

elements with varying moduli. By introducing the constitutive law

of = [X(co) + 2g(co)]e (2.16)

we have a problem of wave propagation in a half-space made of layers of varying

(random) moduli X + 2t. For simplicity of notation we stay with equation (2.15).

There are two regions, I and H, in the space-time domain (Fig. 3). In region I we

have for stress, strain, and particle velocity:

14



C =0, C, =0, vI =0 (2.17)

For any specific medium B(co), region I is bounded by a trajectory above which the body

is disturbed; the latter region is denoted by U. The stress, srain, and particle velocity in

region II are determined jointly by the Ct-process, the constitutive law (2.15) and the

well-known relation

v =- ce (2.18)

If the pressure is prescribed it is most natural to represent stress by t. In view of the

developments of section 2.1, we obtain a family of boundaries X(O, (o) separating both

regions, that is, undisturbed I from disturbed IL Rather than working with this "fuzzy"

ever-broadening boundary we introduce the mean path OA and trace the character of

evolution of the disturbance in the random medium B = (B(co); oe 1) in terms of the

process referred to this path.

Now, it follows by the argument of linearity of response of all the grains (see

equation (2.15)) that the propagation speed c(co) is same for every stress level in any

given grain. Hence, for any fixed time t, the trajectory X(t, w) is same as X(O, 0o) for any

given body B(co), except for the time shift t. This is analogous to two characteristics

being parallel in case of wave propagation in a homogeneous deterministic

microstructure. In fact, it follows that the reference paths are parallel for a linear elastic

microstructure.

2.3 Wavefront Propagation Due to a Square Pulse: Linear-Hysteretic Grains

In this section we study wave propagation in a body whose elements (i.e. grains in

case of a rod model, or layers in case of a half-space model) are governed by a stress-

strain diagram of Fig. 4. The stress-strain curve is a straight line OM on initial loading to

M; its slope defines the initial modulus E0 . Upon unloading the stress-strain curve is

another straight line MN which defines the second modulus E,

15



a --Om = El (E- e) (3.1)

If material is reloaded, it follows the line NM to M, and then continues along the initial

loading line. E. and El are random from grain to grain; they correspond to phase

velocities co and cl, respectively.

We consider wave propagation under action of a pressure pulse f(t) applied at

X = 0, where f(t) is a square pulse

f(t){Po for 05t<t1  (3.2)
0 otherwise

The problem with this initial condition for a deterministic homogeneous medium, which

was solved by Salvadori et al (1960) (see also Rohani, 1970), forms the reference basis

for solution of a stochastic problem. In Fig. 5 we give the space-time diagram of the

deterministic problem. We see that there are several regions: 1,H, III, IV, V, .... Region

I is that of an undisturbed body, i.e.

('1 =0, el =0, v =0 (3.3)

Region II corresponds to a material in which

(In =- Po, P-1 =  oyn/F-, V n = -Coen (3.4)

the boundary between I and I being given by

X=Cot (3.5)

In region III we have

(m = 0, vm = vi - O (3.6)OCI

The time t2 at which the pressure p, reaches the original wavefront is obtained as
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C1

t2 = tj (3.7)
c1 -CO

As discussed in the above reference, at time t 2 there is a reflection of the wavefront

travelling at velocity cl (i.e. upper boundary of region II) from the original wavefront

travelling at c. so that a new region IV is created. The field quantities in IV are

Trv = cpo, vIv c v/pci (3.8)

where

cl/co - 1a--- (3.9)
c1/C +I

The analysis can be continued in this fashion to cover the entire X, t-plane, and to

study arbitrary pulses f(t).

Turning now to the random medium problem we see that each of the lines in Fig. 5

representing the discontinuity waves (i.e. shocks) can be considered as a mean path

providing reference for stochastic processes 4 and . Thus, for example, the leading

shock is a reference for a family of characteristics

X(O, (o, +co)=X(t, (0, +co)I W0, ce fl (3.10)

Similarly, the line bounding the region U from above is a family of characteristics

X(t 1 , (0, 4-C1)-- X(t, (0, +j) t, C C-Q (3.11)

and so forth. The cones corresponding to the 4 processes along the above mentioned two

mean characteristics (paths) are shown in Fig. 6. Clearly, the point of intersection will be

diffused about the reference point (X = <CO>t2, t2 ).

First, we consider one characteristic X(O, co, +co) which is slower than the mean

one. This, we may say, corresponds to an effective velocity co = co.,f for body B(co)

being smaller than <co>; <co> defines the average path according to (1.2). In case the
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moduli Eo(c) and El (c) in the constitutive law are independent random variables, there

is no way to predict whether the characteristic X(t1 , c, +c1 ) for the same body B(wa) will

also be slower than the mean one corresponding to <+c1>. In that case the intersection of

both characteristics - X(O, co, +co) and X(tj, w, +cl) - may take place anywhere in the

quadrilateral ABFE. In the special case of dependence between random variables Eo (co)

and El (co) being such that

Eo(c) <<E0 > ifandonly if El(c) < <El> (3.12)

and the same holding for '" signs in place of "<", the point of intersection will fall in the

HBFOr quadrilateral.

Now, if we consider a characteristic X(O, cc, +co) which is faster than the mean

one, we obtain immediately the following conclusions in a complete analogy to the

above analysis:

i) for no dependence of moduli Eo(cc) and EI(c), the intersection will occur

somewhere in the quadrilateral EDCF,

ii) for a dependence of moduli according to (3.12), the intersection will occur

somewhere in the quadrilateral EDGO.

It is seen from the geometry of the problem that, in case of dependence between

E0 (c) and E, (c) for all co, the scatter in point of intersection of two characteristics - as

measured by the distance between points AC - increases for the ratio E1 /Eo decreasing to

1. This indicates that even a weak randomness in the medium's properties may alter

certain aspects of its response in a significant way.

On the other hand, in case of dependence defined by (3.12), the scatter in the

location of point of intersection of two characteristics, as measured by the distance

between points B and D, is much weaker.

The foregoing analysis of the intersection of characteristics for a random

microstructure governed by a bilinear-type constitutive law carries over to any
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intersection point of Fig. 5, as well as to all such points of other bilinear-type (and

piecewise-linear) problems.

2.4 Numerical Results

In Section 2.2 we have derived the diffusion equations governing the behavior of

probability densities p(tx) and p(t,z). From these we have obtained explicit formulas for

p(t,x) and the first and second moments of the variable , that is equations (2.8) and

(2.14). These formulas are governed by the coefficients D, A, and B, which, in turn,

depend on the three random variables 1, p, and E describing the microstructure. It is of

interest now to investigate the effects of this dependence.

Consonant with our assumption of a strict spatial homogeneity of material

properties (recall the discussion preceding equation (1.4)) we describe the properties of

any grain by a density p(l,p,E), and, in what follows, assume a particular special case

p(l, p,E) = p(l)p(p)p(E) (4.1)

Calculations of D, A and B according to (2.5)2 and (2.10) are unwieldy. Indeed,

even the calculation of the probability density of the phase velocity c = W is lengthy.

The problem qualifies perfectly for an application of a Monte Carlo technique. Results

based on this approach are summarized in Tables 1 and 2; C denotes <c> here. These

calculations correspond to the situation of p(l), p(p), and p(E) being uniform densities

with means equal 1 and standard deviations al, ap, and oE ranging from 0.02 to 0.2. In

order to bring out the relative importance of randomness of I versus p versus E, four

general cases were considered:

i) al = ap = E = 0.02 through 0.2: left part of Table 1,

ii) a, = 0,(p = aE = 0.02 through 0.2: right part of Table 1,
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iii) al = OE = 0, ay = 0.02 through 0.2: left part of Table 2,

iv) a1 = aP = 0, 0 E = 0.02 through 0.2: right part of Table 2.

TABLE 1

al=0
Ol=cp=aE A B C D ap::FE A B C D

0.02 -.0007 .0005 1.0002 .0002 0.02 -.00005 .0005 1.0001 .0002

0.04 -.0008 .0002 1.0003 .0008 0.04 -.0005 .0002 1.0003 .0008

0.06 -.0009 .0005 1.0009 .0019 0.06 -.0009 .0005 1.0010 .0018

0.08 -.0014 .0008 1.0016 .0033 0.08 -.0014 .0008 1.0020 .0032
0.10 -.0020 .0013 1.0024 .0050 0.10 -.0019 .0012 1.0023 .0052

0.12 -.0044 .0019 1.0043 .0075 0.12 -.0029 .0018 1.0026 .0072

0.14 -.0053 .0025 1.0049 .0102 0.14 -.0045 .0025 1.0044 .0100
0.16 -.0075 .0033 1.0095 .0135 0.16 -.0066 .0032 1.0078 .0134
0.18 -.0097 .0043 1.0076 .0171 0.18 -.0091 .0043 1.0096 .0173
0.20 -.0106 .0054 1.0092 .0214 0.20 -.0102 .0052 1.0132 .0219

TABLE 2

al=aE=O Y=OP=0

oP A B C D aE A B C D

0.02 -.0000 .0000 1.0001 .0001 0.02 -.0000 .0000 1.0000 .0000

0.04 -.0002 .0001 1.0006 .0004 0.04 -.0002 .0001 .9998 .0004

0.06 -.0004 .0002 1.0013 .0009 0.06 -.0004 .0002 .9996 .0009
0.08 -.0011 .0004 1.0030 .0016 0.08 -.0011 .0004 .9986 .0016
0.10 -.0012 .0006 1.0038 .0026 0.10 -.0013 .0006 .9988 .0025

0.12 -.0018 .0009 1.0054 .0037 0.12 -.0018 .0009 .9983 .0037
0.14 -.0024 .0013 1.0077 .0052 0.14 -.0025 .0013 .9978 .0050

0.16 -.0028 .0017 1.0089 .0068 0.16 -.0027 .0017 .9974 .0065
0.18 -.0036 .0021 1.0117 .0089 0.18 -.0036 .0021 .9969 .0083
0.20 -.0047 .0027 1.0149 .0113 0.20 -.0046 .0027 .9959 .0104
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The numbers of both tables were obtained by using 104 samples for each specific

case (i.e. each specification of all three C's). The last digits are only approximate since a

rather simple random number generator was employed.

The results of Table 1 show that the effect of random grain lengths vis-k-vis the

deterministic ones is practically negligible. On the other hand, restricting the material

randomness to p alone, or E alone, has a definite effect of decreasing the randomness of

the system: weaker attenuation and smaller diffusion. Interestingly, case iv) is the only

one which results in <c> < 1.

The above being a dimensionless formulation it clearly offers a possibility of

calculating any particular dimensional case if the means g and standard deviations a of 1,

p, and E are given. Thus, for example, if the following case is given:

1 
= I" = 0.0254m , am = 0.0

p= 1001b/ft3 = 1602 k-3g cp = 0.1-gp (4.2)

9E= 6 3 ksi = 3016 440-, rE = 0.1.E
M2

we read from the right part of Table 1 the following values:

A = -0.0019, B = 0.0012, C = 1.0023, D = 0.0052 (4.3)

V V V V

Now, the dimensional values of the four constants - denoted by A, B, C, and D - can be

obtained from these formulas

A . .91

V
B=-
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V _ IPC = c(4.4)

V\fEE

Thus, (4.3) yields (in the SI system)

1 1
A =-3.25 - B 2.05-

S S

(4.5)

v V v 2
C = 43.49-s D = 9.79 S2
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II. FRAMEWORK FOR THE WAVEFRONT PROPAGATION STUDIES IN 2-D

AND 3-D RANDOM MICROSTRUCTURES

3.1 Basic Model

The stochastic model of disturbance evolution presented in the preceding section

forms a basis for a treatment of wavefronts propagating in 2-D and 3-D media. For

illustration of the analysis, we consider the 2-D case here only. Specifically, we look at

microstructures representable by graphs, such as the one shown in Fig. la). As discussed

by Ostoja-Starzewski (1987, 1989a), thin lines connect the centers (vertices of the set V)

of interacting grains and form set E of graph G(V, E). On the other hand, thick lines of

the set E outline the contours of polygon-shaped grains; they meet in triplets at vertices

of the set V', and hence we have the graph G(V', E'). It is assumed that the space of any

polygon domain is filled by a homogeneous continuum so that there are no voids.* The

continuum itself is, in general, anisotropic and hence the propagation characteristics of

any type of wave (e.g., dilatational) are given by an envelope of velocity vectors, i.e. an

indicatrix, opecific to any grain. Thus, the microstructure can be characterized by a set of

indicatrices, each of which is attached at the vertex of G(V, E), see Fig. 1b).

The microstructure represented in Fig. la) and lb) is just one possible realization

of microscale geometrical and physical properties of the medium in this part of spatial

domain, and therefore it is a deterministic medium B(c0); co indicates a parameterization

by an element from the sample space Q. Accordingly, a random medium B is a family

(B(co); co e Q) of all bodies thus described, with probability distributions of

microstructural geometries and physical characteristics specified. In the following we

* This model permits a simulation of actual voids (i.e. absence of grains) by letting the elastic moduli of a
given polygon domain be equal to zero.
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assume these probability distributions to be spatially homogeneous.

Evolution of disturbances follows the kinematics of rays governed by two

equations

dX = c2Ydt

(1.1)

dY = cl [ dt

where X and Y are the position and direction, respectively, of the ray. Evidently, the

pair (X, Y) undergoes a Markovian evolution, and we can write its transition function in

terms of the medium's statistics. However, it is more convenient to formulate this

process in terms of the dispersion vector (recall (1.2))

0(t, co) = X(t, co) - <X(t)> (1.2)

and the angle il shown in Fig. 7. In this figure we give a space-time graph of plane

disturbance propagation in X1, X2 -space, where the initial conditions are

X(O) = (0, 0), Y(O)f=- (1, 0).
c

Introducing the transition probability function

P(t, x, y, E)= P([(t), il(t)] e EI (O) x, rj(O)= y) (1.3)

we have a Markovian operator

U(t)[f(x, y' = f f f(x, y)P(t, x, y, dx', dy'), f e L, (E x H) (1.4)
= H

which satisfies the semi-group property

U(tI + t2) = U(tl)U(t 2) (1.5)
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Similar to the 1-D model, the spatial inhomogeneity of the medium has, besides

randomization of characteristics, an effect on wave amplitude carried by any disturbance.

In Fig. 8a) we show a typical grain a of the microstructure in which a plane disturbance

propagates. The modulation of the disturbance amplitude in its passage through grain a

is described by a transmission operator

C: -(t)-+ % t (t + At) (1.6)

Here, again, i is a field quantity such as stress or strain, and i and t indicate the incident

and transmitted quantities, respectively. Evolution of the disturbance takes place along

the actual random ray path specific to the grain a; the average path is shown for

reference. The development at the end of Section 2.1 applies here as well, and thus W(t)

is the appropriate evolution operator.

3.2 Spherical and Cylindrical Waves, and Local Averaging

The approach presented in the I-D setting (Section I) may be briefly described as

a combination of the method of characteristics with the diffusion process approximation

of arrival times and fiele quantities referred to the mean paths (i.e. average

characteristics). This suggests a method for 2-D and 3-D settings: use the solutions to

deterministic wave problems with spherical or cylindrical symmetry as a reference for

the diffusion processes (P) 1 and it in order to assess the results (e.g. strength of

fluctuations) in random media (books by Nowacki (1978) and Wlodarczyk (1986) are

good references on such problems). In these problems, on account of the assumed

symmetry, all the field quantities are functions of time and a single spatial variable

(radius r). However, higher level of complexity is encountered here due to the presence

of more complex stress states than those in the I-D problems. Of course, any type of

spatial symmetry is not a condition for the applicability of our Markovian theory, but

then more complicated analyses need to be carried out.
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Finally, we note that the entire approach adopted here gives descriptions of the

wavefront 4qo (t) - random field in space-time - with the scale of resolution equal to the

average grain size <1>. Evolution of (bq.(t) is described along any given average

characteristic by the propagator T(t) such that (Huygens' minor principle)

T(t1 + t2 ) = T(t) T(t2) (1.7)

This corresponds, in fact, to a local averaging of the true wave process at the scale <1>.

By using the notion of local averaging of random fields (Vanmarcke, 1983) we can arrive

at less detailed but smoother descriptions of O(t), all of them parameterized by 8 = L/<I>,

where L is the scale of averaging. The situation is akin to the notion of a window in the

problem of continuous parameter random field approximations in quasi-statics of random

microstructures; see Ostoja-Starzewski and Wang (1989a and b). In the latter case L is

the edge length of a window AV, AV being a representative volume element. Clearly, for

any 8 < @ we have a statistical continuum, while for 8 - we obtain a deterministic

continuum since the number of microelements (e.g. grains) in AV becomes infinite.

Returning to our present problem we show a ray tube of width L or 8 in the

microstructure of Fig. 8b). Hence, the analysis can be conducted in terms of a

transmission operator C(8) and a propagator T(t, 8) corresponding to a given

approximation 8.
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IV. CONCLUSIONS

In this report we outlined a model for analysis of stress wavefronts propagating in

granular media without voids. The following are two keystones of the model:

- microstructure is representable by a graph,

- attention is focused on the evolution of a single point of wavefront (pulse) called a

disturbance.

The report is based on our previous work on wave propagation in discrete random

media. Specifically, we use the result that the evolution of a forward propagating

disturbance, travelling along its stochastic characteristic, is described by a random vector

process (,)t; is the amplitude of the field quantity (e.g. stress) at the disturbance, and

is the fluctuation in distance covered by the disturbance up to time L Thus, with we

model stochastic temporal variability of the amplitude of, say, stress, while with we

model diffusion of characteristics in space-time, and hence, scatter in the arrival times.

(t,4)t is a Markov process for a microstructure with grains of a nonlinear type,

where nonlinearity reflects either a non-Hookean nature of elastic grains, or a nonelastic

nature (e.g. elastic-plastic) of their constitutive laws. In the case of a nonlinear

constitutive law there arises an interesting phenomenon of curving of the effective

average paths of forward propagating waves; this is presently under study and will be

reported in the next paper. It is important to note that, ( ,4)t is, strictly speaking, Markov

only for grains whose properties are not mutually dependent in space, i.e. when the

physical properties of the grains (mass density and constitutive moduli) are independent

random variables. Otherwise, the process ( ,4)t retains its Markov property only in the

sense of being driven by the random Markov process of physical properties.

A very practical approximation of the (C,4)t process is obtained for grains whose

constitutive law is piecewise linear. The simplest approximation is obtained in the form

of two Fokker-Planck equations - one for Ct and one for - in which the key coefficient
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functions can be calculated explicitly in terms of the statistics of medium's properties.

The 4t process is then governed by a linear diffusion equation, and hence its probability

density at any arbitrary time t > 0 is Gaussian. The t process is a multiplicative one - its

solution is found here in terms of the first and second moments only; complete solution

for the probability density is possible too. The rates of change of field quantities in the

model are referred to the temporal microscale in the problem: At = <I/c>.

After discussing the implications of the above stochastic model for a

microstructure of linear elastic grains, we turn to the case of linear-hysteretic grains. We

develop a method of solution, also applicable to all transient wave problems with

microstructures of piecewise linear constitutive laws, which uses the space-time diagram

of the deterministic medium problem as a reference for the average paths of the

stochastic setting. It is shown that there can occur a very strong scatter in solutions due

to an even small randomness of the medium.

In the presentation of our recent conference paper (Ostoja-Sta-wski, 1989b) we

have discussed an extension of this analysis to miczwtructures governed by bilinear-

elastic and nonlinear elastic laws with random constitutive coefficients. In the first case

there is a possibility of an abrupt change in the orientation of the forward characteristics,

while in the second case there is a continuous curving of characteristics; see (Ostoja-

Starzewski, 1991) for analysis of interesting phenomena which arise in the first situation.

In a separate section of the report we present results of calculation of the key

coefficients (drift and diffusion) which appear in the equations governing the evolution of

forward characteristics and modulation of pulse strength. The calculations are caried

out in the dimensionless setting of a I-D linear elastic model. This has an obvious

advantage that any physical (dimensional) case can be calculated with the formulas (4.4)

and Tables I and 2, under the condition that the actual case satisfies the assumptions of

statistical independence of generic random variables 1, p, and E describing the

microstructure.
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In the final part of the report we outline a framework for solving 2-D and 3-D

problems. First, we present a generalization of the disturbance propagation process in

terms of vector Markov processes. Analogous to the l-D setting, this can be combined

with the classical solutions of deterministic problems -- typically well known in cases of

spherical and cylindrical symmetry -- to obtain solutions of stochastic problems. Finally,

we briefly introduce the concept of local averaging of wavefronts -- an idea which should

be very useful in matching experimental measurements with this theory.

It is our opinion that a model of transient wave propagation in randomly

heterogeneous materials has to be derived from micromechanical considerations. The

key observation is that a propagating disturbance is affected by the random

microstructure of the material. Hence, one has to be very careful with applying effective

continuum models that were initially derived for quasistatic situations. As the analysis in

this report shows the random nature of micro-scale properties, even with a weak strength

of fluctuations, may result in rather strong macroscopic effects.
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