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oltzmann Machines learn to model the structure of an environment by modifying internal
weights. The algorithm used for changing a weight depends on collecting statistics about the
behavior of the two units that the weight connects. The success and speed of the algorithm
depends on the accuracy of the statistics, the size of the weight changes, and the way in which the
accuracy of the machinc's model varies as the weights are changed. This paper presents theoretical
analysis and empirical results that can be used to select more effective parameters for the learning
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1. Introduction
This paper assumes familiarity with Boltzmann Machines, and the learning algorithm described in (Hinton ct
al, 1984). As discussed there, the learning parameters affect the accuracy of the estimate of the gradient of the

cost function, G, at a point, and how that estimate is used to sclect the next point to be investigated.

The first section of this report discusses G in general terms and presents some intuitions about its topography.
This is followed by two scctions devoted to empirical analysis of the results of varying parameters of the
learning algorithm in an cffort to speed up the process.  Scctions 5 and 6 discuss specific problems
encountered, and the conclusion speculates on modifications to the cost function which may further improve

the learning.
2. General Results about G-space

2.1, Description of G-space

The Boltzmann Machine learns to make its modetl of its cnvironment cotrespond to the actual environment in
which it is placed. An envitonment is a probability distribution of patterns over a subsct of the units called
the visible units. The environment can be specified eaplicitly as a list of ordered pairs, giving a pattern, Va,
over the visible units, and a probability for the occurrence of the pattern,, Q/Va ),., The machine's model is just
the probability distribution it would producc over the visible units if it were allowed to run freely without any
environmental input. This probability distribution is not stored directly. [nstead, it is specified implicitly by
the magnitude of the weights in the machine. For a machine architecture with v visible units, there are 2Y
possible patterns. A machine whose weights were all sero would implicitly specify an environment where
each of these patterns had piobability 273, since the encrgy of all states would be the same, namely 0. [n all
the environments we have investigated, the number of states that occur is very small, on m&rdcr of v rather
than 27}

Sampling the probability distribution implicit in the machine's conncctions is accomplished by simulated
anncaling in Energy Space. The points in this space correspond to the 2V " discrete states of the v+ /1 units;

the valuc of £ at each point is determined by the weights, which remain fixed during the anncaling process.

The learning procedure attempts to change the weights to minimize the distance between the two probability

distributions, as measured by the function

G= 3 MVy)log _11’_3((1_‘//%_

1 . .
see section 4 1 for an example of an environiment.
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where /X V,) is the environmental probability for state ¥, and P/(V,) is the probability derived from the
machine’s model. G is a function of the W weights, and lics on a ¥ dimensional surface within the W41
dimensional sfaacc we call G-space. Optimization is done by finding the global minimum (or a good local

minimum) over this surface,

In many ways optimization in this continuous spacc is like the optimization in the discrete cnergy space. Itis
important not to confuse the two; onc iteration of the optimization process for (7 requires many complete

optimizations in £-space.

2.2. Analytical Results
G is a rather nice function, and several important results can be found analytically. The principle one used by

the learning procedure,

0G
Bw,j

= (o' (M)

was given in (Hinton ct al 1984). Py is the probability that two units are both on when e visible units are
clamped into environmentally specificd states, and p’,, is the corresponding probability when the visible units
arc not clamped. We sample these probabilities by running the machine in two phases. When it is running

undcr the influence of the environment, we metaphorically say it is in the wake phase; when frec running it is

in the sleep phase. By sampling these two probabilitics we can estimate the gradicnt of G, and usc this as the
basis for optimization. T is only a scale factor for the weights; doubling T and doubling all the weights will
not affect the behavior of the machine, nor will it affect the learning provided that increments in the weights
are also scaled appropriately. For simplicity, it will be assumed throughout this paper that the anncaling
searches in £-space usc a final temperature of 1.0,

The following result about the smoothness of G gives us a guarantee that we can change the weights by a fixed

proportion of the gradicnt and continuc to descend.?

9:G w
|55 | s5— (2)

where W is the number of weights, and s is any unit vector in G-space. To accomplish steepest descent, let s
point away from the gradient vector. Then in the worst case, %%7 will increase toward scro by 172 for every
unit distance moved in direction s. Thus, we can always go a distance of ZJ—Vwﬂ while continuing to decrease
G, and twice this distance without cnding up worse thaii where we started. In practice, this is an extremely
conservative bound. When deciding how far to move in G space, onc must also take into account the

reliability of the cstimates of p, and p’,; good estimates require longer sampling times. [t has been found that

2Scc appendix [ for the derivation.




moving a distance of | V G| works well for the problems we have studied.?

Here are two more interesting thcorems about the topography of G:

o If all weights but one arc fixed, there is exactly one value for the remaining weight which is a local
minimum of G.

o Corollary: There arc no local maxima in G-space (though there may be several local
minima),

¢ With no hidden units, G is concave upward in all directions.

The proof of the first theorem involves showing that the curvature of G along an axis, &, is the variance of the
cooccurence function, b,. That of the sccond involves showing th.at the curvature in an arbitrary direction is a

quadratic form involving the dircction vector and the covariance matrix of b,

2.3. What G Looks Like

For most environments that we have studicd there are a few cqually probable desired statcs, and many
improbable states. This environmental structure and the previous theorems lead to the following mental
image of G: In polar coordinatcs, G is very much dependent on the angles, but not so much on the distance
from the origin. More specifically, for any point in G-space, GG will be more or less monotonic on the path
from the origin to the point, and on toward infinity. Basically the idea is this: For a given set of weights, if we
incrcase them all proportionally, they will increase the probability difference between high and low
probability states. If they lowered G with respect to its value at the origin, increasing them will further
decrease G, and vice versa.

To be more precise, it can be shown that
aG

—a——— =<E>-<El>
r

where r is the polar coordinate radius, <£> is the average encrgy when the environment clamps the visible

units, and <E’> is the average encrgy when the machine is free running,

‘Thus claiming that scaling the weights will enable them to do whatever they were doing more cffectively
cntails claiming that <£>—=<ZE’> doesn’t change sign with the scaling. Empirical investigation of G for a very

simple problem corroborates this conclusion (sce figure 2-1).

When examining a two dimensional cross section of G, it is important not to over generalize. In figure 2-1 it

3'I'ypncally | V Gyl | V Gl see secticn 3.1
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Figure 2-1:
Two dimensional cross scction of G for the 1-1-1-1 Encoder
problcm.4

appears that the solution lics in the ravine sloping down to the right. In fact, one should only conclude that
the bost trade-off between the independent vectors X and Y in G-space given that cverything clse must
remain fixed is to have Y small and negative and X large and positive. It is quite possible that by changing
some other vector, a better ravine could be found,

Getting out of local minima presumably involves getting out of the wrong ravine and into the right one.
Obviously this is much casicr if the errant weights are small, since the ravines scem to converge at the origin,
Since the ridges between ravines rise monotonically, for moderate sized weights it is almost certain that the
machine will be in one of the ravines.’ The differences in the heights of the floors of the ravines are small

enough, however, that it is difficult to select the right one; generally there are more wrong than right choiccs.

3. Search Methods

*The 1-1-1-1 Gncoder is descnbed in section 4.1,

s‘l‘he amount of noise in the search Jetermines how close to the bottam of a ravine the machine gencrally stays.




3.1. Steepest Descent with Noise

In section 2, optimization was discussed as if the goal was to descend in G as fast as possible. Since (7 is not, in
general, concave upward. and globally rather than merely locally optimal combinations of weights are desired,
occasional uphill steps in (G must be allowed, just as occasional uphill steps in £ were allowed. [t is less
straightforward to define a temperature for scarching G and to use it for anncaling than it is for /.. Currently
the possibility of going uphill is provided in two ways. IFiist, there is incvitably some noisc introduc:d when
estimating the gradient of G by sampling coocurrence rates, so G may dactually increase in the estnuted
direction of steepest descent. Sccond, we move farther in ¢ than is guaranteed by the smoothness results, As
will be shown, the cstimates we have been using are poor, and lead to gross uscrestimatces of the magnitude of
the gradient; the fact that we use a step siz¢ that would excced the smoothness guarantec cven with perfect

cstimates is largely irrelevant,

Many of the various scarch techniques we are experimentuing with can be viewed as attempts to modify the
characteristics of the noise so as to facilitate rapid descent in G, while preserving the ability to escape from
merely local optima. Before analyzing how we can improve our noise, let us examine what it looks like to

begin with:

The following assumptions lcad to a simple cxpression for the variance of the magnitude of the estimated
gradient:

1. The number of weights is large
2, The samples arc independent

3. All units indcpendently come on half the time

The derivation in appendix 1 gives the following result:

w
ol V Gy ll) = TN

where W is the number of weights, and \V is the number of samples. For a simple knowled ' representation
problem, I used W=271, N=7. A typical value for the magnitude of the gradient was probably one or two.

Thus the variance, 11, was much larger than the actual value.

Contrary to assumption 2 above, the samples used to estimate py, and p’, are highly cortelated singe sequential
samples of the global state differ by at most one unit. To combat this, we usually anncal sev el times in cach

slecp or wake cycle, producing several independent sequences of samples.




3.2. Moving a Constant Distance in G-space

One way to avoid making very large moves when the estimated gradient is very large is to always move a
constant distance in cach lcarning cycle. The large variance in the estimate of the magnitude of V (G suggests
that this may perform better than the previous method. If minima tend to have diameters of order 10 (with
T=1), moving a distance of 1 every time may be a good compromise between the possibility of not finding a
minimum when close to it and the possibility of remaining too long 1n a sub-optimal minimum. In contrast,
the proportional technique can produce the wrong sort of feedback: when at the bottom of a mmimum, the
gradient will be small, and little searching will be done. When far from a minimum, the gradicnt will be large,
lcading to overshvot. In fact, unbounded oscillations were the reason for originally trying the constant

distance technique.

Fhe technique requires non-local information, because the change to any weight is dependent both on its py;
and p’,, and on the magnitude of the gradient cstimate, which depends on all of the p, and p’,. Further,
results in the next scction show that this performs significantly worse than the proportional technique for a
very small problem,

3.3. Changing Each Weight by a Fixed Increment

A related technique is 10 increment or decrement cach weight by a fixed amount,® depending only on the sigi
of %%;l.}. This will also result in moving a constant distance in (7 on cach »tep, however it has the advantage
that all weights are modified cvery learning cycle and it does not require non-local information. With the
previous technique, which only movces in the dircction of the gradicnt, the machince could spend all its effort
sloshing back and forth up the sides of a ravine. With the fixed increment method, it will also make progress

along the ravine,

The fixed increment technique also has the advantage that it is compatible with two valued (or small intcger
valued) weights, for which simpler, and hence faster, simulation techniques suffice. [n addition, it forces the
machine to pick a representauon that does not require very precise coordination between the numerical
values of weights. An example of this undesirable behavior is where a positive and a negative weight must
differ in magnitude by a precise amount to achieve the desired behavior, Such combinations of values are

hard to learn and often lead to suicidal behavior! of the units involved.

Note that the fixed increment method 1 not a steepest descent technique.

8 linton et al, 1534

7.\ce section 5.1.1




3.4. Ravine Search

A class of non-steepest descent techniques are ravine scarch methods.® The existence of ravines is apparent
from figure 2-1. Figure 3-1 shows the path of the machine in G space as it descends a ravine (the learning
algorithm was modified so that motion was restricted to this cross section of the parucular 7 dimensional 7
space of the 1-1-1-1 Encoder in order to produce this figure). [t is apparcent that there is more side-to-side
movement than movement downhill. This sloshing results because the sides of a ravine are much steeper than
the bottomn, and the "sideways gradient” dominates the desired gradient along the ravine cxcept at the very

bottom.

3.5. Temyporal Filtering: Giving the Weights Momentum
One of the ravine scarch technigues involves low pass filtering in time by averaging current estimates for p,,
and p’,.-with prc  -us estimates, some of which were taken on one side of the ravine, some on the other.

Thus the sideways gradient will tead to cancel out, lessening the sloshing,.

In addition to the improvements in ravines, where successive learning cycles have very different statistics due
to sloshing, it also improves learning of weights whose coocut rences change little between successive cycles. In
these cases, the effect is similar to increasing the sampling tme within cycles, and reduces the variance.
Excessive variance is the causc of two serious problems: getting lost (see scction 4.2.4), and suicide (see scction
6).

3.6. Spatial Filtering: Smoothing G-Space

An interesting possibility is to low pass filter 7 before scarching it. Since the sides of ravines become higher
farther from the origin in G, the ravines thenselves will stope up in filtered G. This will keep the weights
small, which is a big advantage: At large radi, it is a long way from one ravine to another, and the high ridges
between ravines (caused by the large weights) also preclude getting equilibrium statistics, upon which the

whole optimization procedure is based,

[Further, it is easy to simulate the filtering. AJdding gaussian noisc to cach weight will result in behavior which
is an average of that obtained with nearby combinations of weights, If the noise is proportional to the
magnitude of the weight, it will have the fullowing cffect: if two weights must differ by a constant, the

variance of the difference, and hence G, will be lower when the magnitudes of the weights are small?

8Sc\ch techmques for searching topographies with ravines are discussed in {(Gelfand and 'sctlin, 1966).

9Gcolf Hinton, personal communication
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Figure 3-1: Path of Machinc down a Ravine

3.7. Explicitly Keeping the Weights Small
We can also keep the scarch confined to the arca near the origin by adding a term to the cost function which

penalizes large wcights.lo For instance

[/

090Gy _ 0G
aw,-,- -3w,-]

+ hW,j

To do gradient descent in this new space, we proceed as before, and in addition subtract from each weight a
fraction of its value,

Very small values of /4 scem to be sufficient to keep the weights small.

3.8. Adding noise to the environmental input

In addition to altering the scarch techiniques, there are alternative methods of gathering the statistics from
which the gradient of G is estimated. A technique designed to keep the weights small is to occasionally clamp
patterns during wake which do not occur in the environment (more accurately. the environment is modified

so that many or all of the patterns have a finite probability). This avoids the following problem: If certain

loﬂamk Pearlmutter, personal communication




patterns never occur in the environment, they must be given infinitely higher cnergy than the onces that do
occur. ‘This requires infinite weights. One must be carcful to modify the environment in a way that the
Boltzmann Machine can casily model; if it has to devote some of its representation capacity to modelling the

structure of this cnvironmental noise, the technique will be counter-productive.

3.9. Choosing Environmental Patterns

Originally, we clamped all the cnvironmental patterns for a period proportional to their probabilitics. For
environments with many patterns, howevcer, this becomes prohibitively slow., since an anncaling must be done
every time a new pattern is clamped. Randomly chouosing patterns for clamping introduces a lot of noise into
the statistics, but scems unavoidable. Using temporal filtering in conjuction with random pattern sclection

may reduce the variance back to an acceptable level. !}

3.10. Partial Clamping during Sleep

When we are sampling the machine’s model of its environment, the visible units arc not clamped. Thus p’;jis
always estimated from random samples. and will be noisicr than estimates of p,. To combat this, we can
encourage the correct distribution of samples by clamping a subsct of the visible units during slcep. The
clamped units will then behave according to the environment, and the sleep and wake statistics of the weights
connecting them will be identical. Thus these weights will not change. However, the rest of the weights will

obtain statistics with a lower variance.

In some situations, the Boltzmann Machine will have some visible units, Q. dedicated to output, and some, /,
to input. An environment then specifies a set of conditional probabilities of the form X 0gll,). In this case,
there is no nced for the machine to learn the structure among the input units, since they will always be
clamped. All the weights can be used for modelling the structure berween the inputs and outputs. Thus sleep

clamping can produce faster learning for this special case. The appropriate G mcasure in this case is

G= z;ma AOp) I l’,’,‘(o‘:’,a))

Similar mathematics apply in this formulation and 3 G/ 9 w;;is the same as before. 12

For a knowledge representation problem with 32 environmental patterns, 10 of which are clamped during
cach learning cycle, the machine was not able to learn the environmental distribution due to the high noise.

Using sleep clamping the learning proceded smoothly.

“<cc section 3.5

P linton c al. 1984




10
4 Empirical Tests of the Search Methods

4.1. Problem Description

0 check our analytic results and compare scarch methods, a very small problem was investigated, : f.ore are
four units, ‘wo visible and two hidden, and seven weights. In the environment, the two visible ugits are
always cither both on or both off. The hidden units must encode the state of the visible units, They form a
channel through which the visible units can communicate their state. Figure 4-1 shows the layout of the

pri blen,

visible hidden hidde.. visible

\

unit 1 "‘“"’"\dmt ?./
\’\I/’
o890
PATTERN PROBABILITY
Unit 1 Unit 2 Unit 3 Unit4d
on X X an .50
of f X A of f .50

Figure 4-1:  Architecture a.d Environmeat for the 1-1-1-1 Encoder

This problem is the minimal case of the cncoders described in (1linton, ot al, 1984) since cach visible group
consists of only onc unit. The channel, however, consists of two groups of hidden units, ncither of which can
dircctly perceive both visible groups. This makes it much harder for random weight changes to increase the
corrclation bctween visible units and be reinforced.  With less environmental influence, more of the
undesirable tendencies toward suicidal behavior are exhibited (see section 6). This is proving useful for

gaining a oetier understanding of the previously unexpiained behavior on larger problems.

For this size system, it was possible to analytically determine py and p! y and do crror analysis. Comparing

statistics derived analytically with those found by a simulated real machine turned up some subtle bugs duc to
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round-off crror. Boltzmann Machines arc extremely sensitive to small consistent errors, even when buried in

large amounts of statistical noise. This makes such crrors difficult to detect except by careful analysis.

In addition we were able to investigate the adequacy of our anncaling schedules by comparing the analytic
statistics, which reflect the true cquilibrium distribution of states as given by the Boltzmann distribution, to
those of a simulated real machine, which only asymptotically approach cquilibrium. The results of this
investigation arc discussed in scction S.1.

Scts of weights which model the environment must include cither three positive weights between the four
units, or onc pasitive weight and two negative weights, The bias weights must then be adjusted so that their
unit is on about half the time (the environmental probability),

4.2. Results

Due to the large number of parameters, comparisons were done by varying only one parameter at a time, The
control values were as follows:

o 'T'en independent samples were taken during both sleep and wake in order to estimate pyand p i

e At cach learning cycle, the weights were modificd so as to travel a distance of .5 in G-space in the
dircction of the estimated gradicent,

e Fach of the two patterns was shown in its correct form during wake for an cqual period, and there
was no clamping during sleep.

¢ The anncaling schedule is shown in figure 4-2.13 After cach annealing, a single sample was taken
at the final temperature, 1.0

o The weights were cach initialized to random values uniformly distributed on [-2.0, 2.0}, prior to
each run,

TIME TEMPERATURE
4.0 2.0
6.0 1.5
8.0 1.2
10.0 1.0

Figure 4-2:  Anncaling Schedule for 1-1-1-1 Encoder Problem

13In onc umit of ume all of the units are probed once cach (on average). When probed, a unit decides whether to be on or off hased on
its energy gap.
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Each of the following graphs represent ten runs of 500 learning cycles. For this problem,

. P‘
G=Pyplog T3 + Doy log 722 = 69

for uncorrelated behavior between the two visible units.!* Because G varies tremendously from one lcarning
cycle to the next, the data was smoothed before plotting, by averaging with ncarby values.! The values for Py
and p',j used to colculate G were found analytically, since the vanance of the cstimate from the simulated

machine, using only 10 samples, is extremely high.

Figure 4-3 shows the results obtained with the control paramenter values, to which cach of the other graphs
should be compared. In cach graph, it is clear when the machine finds the basic structure of the environment.
The main things to note are how many successful runs there are out of ten trials, and how carly the success
becomes evident,

4.2.1.Number of Samples

The number of samples, N, used to estimate p, and p’,, was varicd between five and twenty. As can be seen
from figure 4-4, the number of successes generally increases slightly with increase in number of samples,
while the variablity in G over short periods decreascs. Since time to estimate pyand p’ y varies dircctly with o,
ten looks like a good compromise between number of successes and running time. [ think ten will remain a
good value for larger problems. Since getting independent samples requires an anncaling for cach sample,
and hencc takes longer than getting dependent samples, there is a tradcoff between having many dependent
samples or few independent samples, given a fixed sampling time. Gail Gong (personal communication) has
determined the optimal number of anncalings per sample period in terms of the variances of dependent and
independent samples, but no empirical work has been done to sce how accuratcly these variances can be
estimated.

4.2.2, Choosing patterns

The machine has a much harder time when the environmental patterns are picked randomly, albeit with the
correct probability (figure 4-53). Unfortunately, for large problems, there are too many patterns for them all
to be shown on cach learning cycle. The techniques of clamping some units during sleep and temporal
ﬁltc:ring16 both tend to reduce the variance and may alleviate this problem, Figure 4-5bsuggests that sleep

clamping helps when cach pattern is shown every cycle. It may have even more cffect in the case of random

1411 is lower when randomness is introduced tn the clamping. G becomes .37 and 22 respectively for a clamping noise (cxplained in

section 4.2.3) of .05 and .10 when the visible units are uncorrelated.

155;)cciﬁcal|y. the data was convolved with a triangle function of length seven

16sce section 3.5
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200 300 400 500
~ .. Sisen-woeke Cycles

Figure 4-3: Performance Obtained with the Control Parameters

pattern selection,

4,2.3. Environmental Noise

One model for introducing noise in the environment, in the quest to combat unbounded weight growth17, is
to give each visible unit a probability to be clamped incorrectly. This probability is termed the clamping
noise.

Boltzmann machines represent ratios of probabilities between states as cnergy differences between those
states. With clamping noise, the probability ratios are relatively small, and change rather slowly as we move
to patterns farther away in Hamming distance. Thus small cnergy gaps betwcen adjacent patterns will suffice,
With small energy gaps, the machine moves rapidly through E-space, and it is casy to get a good sample of the
cquilibrium values of p and p’y;. In geographic terms, the bottoms of the ravines flatten out and begin to rise
again, rather than continuing to descend in the direction of ever larger weights. Thus we can argue that a
Boltzmann machine performs better with clamping noise.

17see section 3.8
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Figure 4-4: Effect of Number of Samples on Performance

The following clamping noises were compared. For each, the corresponding environment 1s given.

CLAMPING NOISE
.00

.08

STATES OF VISIBLE UNITS

on
of?

on
on

off
off

on
on
off
of?

on
off

on
of?
on

off

on
offt
on

off

PROBABILITY

.60
.60

.48
.08
.08
.46

.41
.09
.09
.41
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—
«00 4
Skpeo-wsne Crer

a Random Pattern Order b Sleep Clamping

Figure d-5: Effect of Clamping Strategy on Performance

The results in figure 4-6(a)® seem to indicate a second advantage of clamping noise. As the hidden units

randomly modify their weights and form constraints between the visible units. they wiil iniually not get them

right, quanutatvely, even 1f the signs are correct. It seems that the clamping noisc reduces the penalty for

these attempts to use the hidden units by ailowing for a certain number of atypical statcs. [t thus reduces the

tendency toward dissociation (see section 5.1,1) Figure 4-6(b) suggests that too much clamping noise obscures

the pattern to the point that it is not learned in the number of cycles given.

4.2.4. Size of Welight Step

Changing the size of the weight step scems to be the most sensiuve parameter (figure 4-7), and is one whose

optimat value may be expected to change drasucally from one problem to another. [here are two scts of data

here: data when the weight step 1s fixed, and data when it is proportional to the gragient. The magnitude of

it

Note that the y anis scales have becn adjusted <o that G for uncorrelated behavior 15 at about the same height
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Figurc 4-6:  Effect of Environmental Noise on Performance
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Figure 4-7. [ffect of Werght Step on Performance
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the gradient is less than the square root of the number of weights.! With 7 weights, |V Gl £2.6. Usually, it
was obscrved to be much lower, around 1. Thus, the distances moved on runs with a fixed step of .5 (figure
4-3) and on runs with a proportional step of 3|V G| (figurc 4-T¢) arc about the same, on uvcragc.20

Reasonably enough, these two did about the same overall.  With proportional steps, the machine is quite
happy to stay pretty much where it is when the gradient is small. Thus the variance in G is smaller for runs
which haven't yet got the structurce of the environment than it is for the case of fixed steps. Converscly, when
it is obvious what to do, the proportional step runs show a higher variance for G. The fact that fixed steps lead
to wider searching when the gradient is small and there is nothing obvious to do scems to be an advantage for

this technique.

Unfortunately, scarching widely with little guidance from the gradient is likely to lead the machine far from
the origin. In this never-never land of large weights, the machine can no longer reach cquilibrium, and the
nice monotonic behavior of G, even for large weights, cvidenced in figure 2-1 is for naughl.21 This bchavior
can be scen in the graph for weight step = .7. If a run doesn’t luck into a good combination of weights carly
on, it gets lost and never finds one. The basic result is this: In a problem where one need only go down in
G-space, it is best not to go too far, lest one’s estimate be wrong, or the gradient change too much along the

way.
5. Reaching Equilibrium

5.1. Necessity of getting Equilibrium Statistics

Equation 1 is based on the assumption that p; and p’, follow from Boltzmann distributed global probabilities.
If we do not anneal long cnough before sampling,22 Pam will be dependent on the starting state as well as the
true P, resulting in crroncous p; and p). An example which comes up often in simulations is the test tube

space (sce figure 5-1).

The annealing process begins with the machine in a random state. It is equally likely to be within the
collecting area for minimum A or for minimum B, since we hypothesize the same number of statcs in cach,
Assuming that annealing proceeds too fast to rcach cquilibrium, the machine will fall to the bottom of

whichever minimum it began in and stay there. In this case, we are measuring the proportion of states with

19scc appendix 1

20% is twice the bound given by cquation 2 with W=7,
21Seclion 5.1 contains more discussion of the necessity of reaching cquilibrium,

22[.ong enough is approximately the recurrence time for a random global state,
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Figure 5-1: Encrgy Space which Demonstrates the Effect of Insufficient Anncaling

downhill paths into cach minimum, rather than the relative depths of cach minimum.

This effect is evident in figure 5-2. The upper curve is G calculated analytically under the assumption of
cquilibrium statistics. The lower curve is G estimated from the statistics actually collected by the machine.
Even where the analytic G is very high, the slceping and waking statistics are ncarly identical. The machine

would be able to complete environmental patterns quite well.

One may thercfore ask whether it is essential to reach equilibrium; all we really want is for the slecping and
waking statistics to converge so we have a learning associative memory device. We can usc the fact that the
collecting arcas of and Hamming distances between minima arc important, and learn things that the
theoretical Boltzmann Machine can’t.2 The answer seems to be no, though problems show up only under
extreme conditions where the weights are large. Table 5-1 shows two sets of coocurrence statistics for a
machine which is on the borderline of trouble. Due to the large weights, the machine’s statistics are very close
to the environmental ones, though the true equilibrium statistics are not.

5.1.1. Case Analysis

The problem has to do with the way non-equilibrium statistics compare with cquilibrium ones. Consider the
energy space for the encoder problem. There are two minima, one for each of the environmental states as in
figure 5-1. Due to the symmetry of the architccture, the arcas of the minima are the same; thus as the
machine’s statistics diverge from equilibrium, they will approach 50% in cach minimum, independent of the
relative depths. By happy accident, this is the saine percentage in cach state that occurs in the environment,
To investigate how the machine handles itself when it must actively maintain the correct ratio between
patterns, the environment was changed so that the visible units arc off 60% and on 40%. Now, as the weights
increase, the machine’s statistics become closer to 50% than the cquilibrium statistics, As a result, the
difference in depth of the minima increases. Eventually the space looks like figure 5-3.

3 David Ackley, personal communication.
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Figure 5:2:  Effect of Non-Equilibrium on Performance
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Connected Units Weight p p'
ANALYTIC
1 (bias) 11.4 .50 .90
2 (bias) 1.6 .50 .10
3 (bias) 1.1 .50 .10
4 (bias) 10.3 .50 .90
1 2 -18.2 .00 .00
2 3 16.7 .50 .10
4 3 -18.9 .00 .00
SIMULATED
1 (bias) 11.4 .50 .50
2 (bias) 1.6 .50 .50
3 (bias) 1.1 .50 .49
4 (bias) 10.3 .50 .51
1 2 -18.2 .00 .00
2 3 16.7 .50 .49 .
4 3 -18.9 .00 .00

Table 5-1: Sample Sleeping and Waking Coocurrence Statistics

A B

Figure §-3: Worscning Energy Space

Now a tiny change in the height of the barrier makes a tremendous difference in the states probabilitics. We
thus have a tense combination of weights; large in magnitude, and precisely coordinated in relative terms,
This in itself is not sufficient for disastcr, however. Another effect of non-equilibrium prevents the weights
from correcting perturbations, Once the hidden units have reached a state where one is on and one is off,
they are unlikely to change, even if the positive weight is large(see figure 5-4). The visible unit is much more
responsive to changes in the value of the positive weight. This is because there is no barrier to be crossed
when the visible unit flips, as there is when both hidden units flip. To gencralize, the probability ratio




22

between two states is closer to the equilibrium ratio for states which are close in Hamming distance.

visible hidden hiddan visible

biases

Figure 5-4: Weights Associated with Poor Energy Space

Eventually, random sampling crrors will lead to weight changes which cause the more probable state (both
off) to occur almost all the time. To correct this, the machine will lower the weights to both visible units and
modify the weights to the hidden units so as to cqualize the state probabilities. The latter process, however,
takes place much more slowly than the former, and the net effect is that the visible units dissociate themselves
from the hidden units, which then have no incentive to change; they continue to always be in the same state.
This behavior is termed signal driven suicide (to distinguish it from suicide driven by random noise as
discussed in scction 6). The dissociation is generally stable since during both slecp and wake the statistics will
be the same for the hidden units, either 100% or 0% on. Thus the estimated value of 3@ G/ @ wy wilt be 0.

Figure 5-S shows the behavior of the machine for an asymmetric environment. The dotted curve shows the
value of G estimated from the machine’s statistics; tae solid curve shows the analytic value of G. The behavior
is the same as in figure 5-2, until the asymmetry causes the visible units to dissociate from the hidden ones
after 1300 cycles,

5.2. Ensuring Equilibrium

A promising technique for discouraging the type of behavior discussed in scction 5.1 is to use two annealing
schedules. When the weights begin to get large and create a test tube like energy space, the less conservative
anncaling schedule will begin to generate poor statistics before the more conservative one. The difference
between statistics is then used to coax the weights away from combinations of values that make it hard to
reach cquilibrium,

Suppose we have two deep minima, A and B, and that we have two extreme anncaling schedules. One
quenches the system, going dircctly from infinite to zero temperature, and thus measures the relative areas of
the minima, The other is slow enough to reach equilibrium, and thus mcasurcs the relative depth of the
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Figure 5-5:  Effect of Asymmetric Fnvironmental Probabilitics
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minima,

Now we can insert special learning cycles where quenching takes the place of the normal wake cycle, and no
units arc clamped. After collecting statistics, we modify the weights in the normal manner:

[ 4
Bwy = ™ P iigon)

If the depth of a minimum is too large for its collecting arca, all weights between units that cooccur in that
minimum will be reduced, and vice versa for overly shallow minima. The effect is to change the depth of the
minima so that the cquilibrium statistics match those obtained with the faster schedule. Since the total arcas
of minima remain relatively constant with time, it prevents any minimum from getting too deep. If we usc a
moderatcly fast anncling schedule instead of a very fast quench, the special learning cycle will have no cffect
on minima until they get too decp for the fast schedule to reach equilibrium, As this point is approached, the
special learning cycle will prevent further deepening.

A reasonable implementation for these extra cycles would scem to be to alternate them with standard learning
cycles. If we are willing to use the same epsilon for both cycles, we can save time and combine the two.
Notice that the net weight change after a standard cycle followed by a special cycle is

[ 4
Awy = = y=p'yt = P

If we use two fast anncaling schedules in the standard cycle, the second and third terms cancel. We can get
the effect of the two types of cycles simply by using the fast schedule during the wake phase of the standard
" c¢ycle, and the slow schedule during the sleep phase.

This technique is not robust in the sense that if a very bad energy space develops, it cannot recover, because
even the conservative schedule provides poor statistics. The encoder problem was run with this technique,
and the weights remained small. The bound on the weights could be varied by changing the difference in
speed between the two anncaling schedules. Similar results were obtained on a larger problem involving 37
units and 559 weights.

6. Suicide

One context in which suicide occurs is when hidden units get little feedback from the environment. This
difficulty was encountered early on, but was not understood until recently. Hidden units tend to develop all
positive or all negative weights and consequently are cither always on or always off.

This effect is best explained by an analogy: Nearly all the loose gravel on a busy road accumulates at the side
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of the road, cven if the road is flat. This is not becausc cars sclectively push gravel toward the nearcst side. 1t
is because a picce of gravel has a much higher probability of making a move when it is necar the middle of the
road, so it spcn_ds very little time in the middle. Similarly, when a hidden unit comes on about haif the time
there will be a very high variance in p;; and p’;;, so | p=p’,| will be large and the weights will change a lot.
When the unit is almost always on or almost always off, there will be very little variance and the weights will
remain fixed. This cffect can overpower the systematic effect duc to the true value of 9 G/ 3 wy.

Since this explanation for suicide depends on the fact that the magnitude of the change to a weight is a
function of the weight, it was thought that removing this dependence could solve the problem, ‘This may be
accomplished by estimating the standard deviation of the estimates of py; and p’y, and dividing by it to
determine the change to the weight. Results so far have been negative, however.

‘The suicide problem may be reduced by using more samples in the estimate of pyand P i than were taken in
the current learning cycle as mentioned in scction 3.5, as well as by the techniques discussed above for
keeping the weights small,

7. Conclusion

7.1. Robustness .

The results developed above secm to be generally applicable to Boltzmann Machines. The techniques
requiring problem dependent constants, namely constant disiance weight modification (section 3.2) and
explicitly keeping the weights small (section 3.7), were found to be unnecessary. Work on a 37 unit problem
has indicated that the best values for parameters found above can be successfully used unchanged; these
include the annealing schedules, number of patterns per learning cycle, epsilon, and amount of temporal
filtering, Many techniques used formerly to prevent unbounded weight growth are rendered unnccessary by
the single technique of special learning cycles using slow and fast annealing cycles (section 5.2). These old
techniques include explicitly keeping the weights small, noise in the environment (scction 3.8), and others too
specialized for treatment here,

7.2. Future Work

The most important result about learning in Boltzmann Machines is that there exists a global measure, G, of
the discrepancy between the machine’s raodel of its environment and the actual environment, and that the
partial derivatives of this measure with respect to the weights arc locally computable, For problems where the
cnvironment can be modeled with pairwise constraints among the visible units, G is concave upward and
gradicnt descent works well,
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Upon reflection, it should not be surprising that more complicated environments that need hidder units to
model higher order constraints among the visible units are difficult to model without dircctly considering
non-local phenomena. Incorporating meta-knowledge about uscful representations into an cost function
could perhaps climinate the need to scarch many of the local minima found in G. For large problems,
hicrarchical representations will be necessary. "Concepts” at cach level can only be formed after those at
lower levels upon which they depend. At cach level, the influence of the evironment is weaker, and the
gradient of the evaluation function will be correspondingly smaller, Additional constraints to sclect among
possible ravincs will be invaluable. Modifications to G which cncourage small weights have been discussed.
Encouraging units not to duplicate the behavior of other units may also be necessary. Possibilities such as
these will becume the center of investigation as the structure of G-space and the performance of techniques
for scarching it become better understood.
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Appendix*

|. Derivation of the Smoothness Resuit
The clements of the Hessian of G are given by

_ 9% _ 2
h""‘?wka /] - Bwk [P,I-PI]

=[u(beb)~ p(bubl~ D P(Vodulbibja)— 3 P(Vo)u(bela)n(bia)
« a

where pu(-) is the statistical mean; and by is 1 if both units connected by weight a are on, 0 otherwise. Each
. . 3 . 2 -
term is restricted to [=.25,.25), so | A1 <.5. Thus the maximum curvature in any dircction, | -339 l,is £.

Other Smoothness Results
G \ _ . _
|WI = |py=p'yl <1
since p; and p’ jare probabilities. Thus, the slope along any axis is less than one, and the gradient must satisfy

V6l = VZEr+ o+ Ely s VT

where W is the number of weights, Further,
9:G
Fwy = =P 2 Pall=p ]

where p§ is the conditional probability that units i and j are both on (coocurrence probability) given that state
" ais clamped over the visible units. Both terms are restricted to {0, .25}, so

129 s
aW[j 4

ll. Derivation of the Variance of the Estimated Gradient

Rl V Gey= V GII) = Zj[w,-,-m—p',-,-,_,,p-(py-p'm’
is
Let
I =(pj,,~ i)~ Ci=p'p)

Assuming a zero mean normal distribution for the difference between estimates (this is equivalent to
assuming a large number of samples),

24Bolh appendices assume a lemperature of 1 in the derivations,
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K|V Goy= Y Gl =/ o)

Assuming we have N independent samples,

a¥i(J) =ﬂlﬂﬂi%’ﬂll. N-i-ln—

assuming all units arc independently on half the time,

W
p(|V Gy~ V GIJ)* =W
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