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Abstract

oltzmann Machines learn to model the structure of an environment by modifying internal
weights. The algorithm used for changing a weight depends on collecting statistics about the
behavior of the two units that the weight connects. The success and speed of the algorithm
depends on the accuracy of the statistics, the size of the weight changes, and the way in which the
accuracy of the machine's model varies as the weights are changed. This paper presents theoretical
analysis and empirical results that can be used to select more effective parameters for the learning
algorithm.
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1. Introduction
This paper assumes familiarity with Boltzmann Machines, and the learning algorithm described in (Hinton et

al, 1984). As discussed there, the learning parameters affect the accuracy ot the estimate of the gradient o the

cost function, G, at a point, and how that estimate is used to select the next point to be investigated.

The first section of this repoi t discusses G in general terms and presents some intuitions about its topography.

This is followed by two sections devoted to empirical analysis of the results of varying parameters of the

learning algorithm in an effort to speed up the process. Sections 5 and 6 discuss specific problems

encountered, and the conclusion speculates on modifications to the cost function which may further improve

the learning.

2. General Results about G-space

2.1. Description of G-space

The Boltzmann Machine learns to make its model of its cnironment cot respond to the actual environment in

which it is placed. An environment is a probability distribution of patterns over a subset of the units called

the visible units. The environment can be specified explicitly as a list of ordered pairs, giving a pattern, Va,

o,ver the visible units, and a probability for the occurrence of the patterr '( V) The machine's model is just

the probability distribution it would produce over the visible units if it were allowed to run freely without any

environmental input. This probability distribution is not stored directly. I nistead, it is specified implicitly by

the magnitude of the weights in the machine. For a machine architecture with v visible units, there are 2v

possible patterns. A machine whose weights were all icro would impliLitly specify an environment where

each of these patterns had piobability 21-,, since the energy of all states would be the same. namely 0. In all

the environments we have investigated, the number of states that occur is xcry small, on thArder of v rather

than 2v.1

Sampling the probability distribution implicit in the machine's connections is accomplished by simulated

annealing ;n Energy Space. The points in this space correspond to the 2V h.t discrete states of the v+ h units;

the value of E at each point is determined by the weights, which remain fixed during the annealing process.

The learning procedure attempts to change the weights to minimize the distance between the two probability

distributions, as measured by the function

G I'( V) log
w If(--x-Va)"

lscc section ,4 1 for an example of an environnent.



where /I V,) is the environmental probability for state Va, and P'( Va) is the probability derived From the

machine's model. G is a function of the W wcights, and lics on a IV dimensional surface within the W+ 1

dimensional space we call Cspace. Optimization is done by finding the global minimum (or a good local

minimum) over this surface.

In many ways optimization in this continuous space is like the optimization in the discrete energy space. It is

important not to confuse the two; one iteration of the optimiiation process for G requires many complete

optimi/ations in E:-space.

2.2. Analytical Results

G is a rather nice function, and several important results can be found analytically. The principle one used by

the learning procedure,

a WU 1 .

was given in (Hinton et al 1984). p., is the probability that two units are both on when dhe visible units are

clamped into en ironmentally specified states, and pY is the corresponding probability when the visible units

are not clamped. We sample these probabilities by running the machine in two phases. When it is running

under the influence of the environment, we metaphorically say it is in the wake phase; when free running it is

in the sleep phase. By sampling these two probabilities we can estimate the gradient of G, and use this as the

basis for optimization. T is only a scale factor for the weights; doubling T and doubling all the weights will

not affect the behavior of the machine, nor will it affect the learning pro ided that increments in the weights

are also scaled appropriately. For simplicity, it will be assumed throughout this paper that the annealing

searches in E-space use a final temperature of 1.0.

The following result about the smoothness of G gives us a guarantee that we can change the weights by a fixed

proportion of the gradient and continue to descend.2

PG W (2)

where IV is the number of weights, and s is any unit %ector in C-space. To accomplish steepest descent, let s

point away from the gradient vector. Then in the worst case. will increase toward ,cro by 11V/2 for every

unit distance moved in direction s. Thus, we can always go a distance of2 -1 hile continuing to decrease

G, and twice this distance without ending up worse thaa where we started. In practice, this is an extremely

conservative bound. When deciding how far to move in G space, one must also take into account the

reliability of the estimates of pt and p'0 ; good estimates require longer sampling times. It has been found that

2Se appendix I for hc derivation.
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moving a distance of I V Gestj I works well for tile problems we have studicd. 3

Here arc two more interesting theorems about the topography of G:

" If all weights but one arc fixed, there is exactly one value for the remaining weight which is a local
minimum of G.

o Corollary: There arc no local maxima in G-spacc (though there may be several local
minima).

" With no hidden units, G is concave upward in all directions.

The proof of the first theorem involves showing that the curvature of G along an axis, ij, is the variance of the

cooccurcnce function, b. That of the second inolvcs showing tlat the curvature in an arbitrary direction is a

quadratic form involving the direction vector and the covariance matrix of b.

2.3. What G Looks Like

For most environments that we have studied there are a few equally probable desired states, and many

improbable states. This environmental structure and the previous theorems lead to the following mental

image of G: In polar coordinates, G is very much dependent on the angles, but not so much on the distance

from the origin. More specifically, for any point in G-space, G will be more or less monotonic on the path

from the origin to the point, and on toward infinity. Basically the idea is this: For a given set of weights, if we

increase them all proportionally, they will increase the probability difference between high and low

probability states. If they lowered G with respect to its value at the origin, increasing them will further

decrease G, and vice versa.

To be more precise, it can be shown that
a 6 =<E>-<E'>
ar

where r is the polar coordinate radius, <E> is the average energy when the environment clamps the visible

units, and <E'> is the average energy when the machine is free running.

Thus claiming that scaling the weights will enable them to do whatever they were doing more effectively

entails claiming that <E>-<E'> doesn't change sign with the scaling. Empirical investigation of G for a very

simple problem corroborates this conclusion (see figure 2-1).

When examining a two dimensional cross section of (7, it is important not to over generalize. In figure 2-1 it

3 I'pically I V . - I V GI: see scction 3.1.
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Figure 2-1:

Two dimensional cross section of G for the 1-1.-1 Encoder
problem.

4

appears that the solution lics in the ravine sloping down to the right. In fact, one should only conclude that

the best trade-off between the independent vectors X and Y in G-spacc given that everything else must

remain fixed is to have Y small and negative and X large and positive. It i% quite possible that by changing

some other vector, a better ravine could be found.

Getting out of local minima presumably involves getting out of the wrong ravine and into the right one.

Obviously this is much easier if the errant weights are small, since the ravines seem to converge at the origin.

Since the ridges between ravines rise monotonically, for moderate sized weights it is almost certain that the

machine will be in one of the ravines. 5 The differences in the heights of the floors of the ravines are small

enough, however, that it is difficult to select the right one; generally there are more wrong than right choices.

3. Search Methods

4The 1-1-1-i Encoder is descnbcd in section 4.1.

5 f[bhe amount of noise in the search determines how close to the bottom of a ravine the machine generally sta~s.
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3.1. Steepest Descent with Noise

In section 2. optimization was discussed as if the goal was to descend in G as fast as possible. Since G is not. in

general. concave upward. and globally rathcr than merely locally optimal combinations of k eights are desircd,

occasional uphill steps in G must be allowed, just as occasional uphill steps in E were allowed. It is less

straightforward to define a temperature for searching G and to use it for annealing than it is for E. Currently

the possibility of going uphill is provided in two ways. liist, there is ineitably some noise introduc-d when

estimating the gradient of G by sampling coocurrence rates, so G may actually increaw in the estumated

direLtion of steepest descent. Second, we move farther in G than is guaranteed by the smoothness results. As

will be shown, the estimates we have been using are poor. and lead to gross omercstimates of the magnitude of

the gradient; the fact that we use a step size that would exceed the smoothness guarantee c'en with peit'ct

estimates is largely irrelevant.

Many of the various search techniques we are experimenting with can be viewed as attempts to modify the

characteristics of the noise so as to facilitate rapid descent in (7, while preserving the ability to escape from

merely local optima. Before analyzing how we can improve our noise, let us examine what it looks like to

begin with:

The following assumptions lead to a simple expression for the variance of the magnitude (if the estimated

gradient:

1. The number of weights is large

2. The samples are independent

3. All units independently come on half the time

The dcrivation in appendix 11 gives the following result:

W
I2(11 V G,,Il) = 2NVI r

where JY is the number of weights, and N is the number of samples. For a simple kno.% led.'. representtioln

problem, I used W=271, N=7. A typical value for the magnitude of the gradient was piob,:bly one or two.

Thus the variance, 11, was much larger than the actual value.

Contrary to assumption 2 above, the samples used to estimate p. and p',j are highly coriclatcd i ice sequcnrial

samples of the global sute differ by at most one unit. 'o combat this. %&e usually anneal se. t.,I times in ,'ch

sleep or wake cycle, producing several independent sequences of samples.
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3.2. Moving a Constant Distance in G.space

One way to avoid making very large mocs when the estimated gradient is %ery large is to always move a

constant distance in each learning cycle. The large %ariance in tLhe estimate utr the magnitude of V G suggests

that this may perform better than the previous method. If minima tend to hae diameters of order 10 (with

T= 1). moving a distance of I e'ery time may be a good compromise between the possibility of 1ot finding a

minimum when close to it and the possibility of remaining too long in a sub-optimal minimum. In contrast,

the proportional technique can priuducc the wrong sort of feedback: when at the bottom of a minimum, the

gradient will be small, and little searching will be done. When far from a minimum, the gradient w ill be large,

leading to overshoot. In fact. unbounded oscillations were the reason for originally trying the constant

distance technique.

rhe tecchnic,ue requires non-local information, because the change to any weight is dependent both on its pq

and p't' and on the magnitude of the gradient estimate, which depends on all of the Pt and p'.. Further,

results in the next section show that this performs significantly ivorse than the proportional technique for a

very small problem.

3.3. Changing Each Weight by a Fixed Increment

A related technique is Lo incrementt or decrement each weight by a fixed amount,6 depending only on the sign

of 4P,. This will also result in mo% ing a constant distance in ( on each ,tep, however it has the advantage

that all weights are modified eery learning cycle and it does not require non-local information. With the

previous technique, which only moves in the direction of the gradient, the machine could spend all its effort

sloshing back and forth up the sides of a ravine. With the fixed increment method, it will also make progress

along the ravine.

The fixed increment technique also has the advantage that it is compatible with t% o valued (or small integer

'alued) weights, for which simpler, and hence faster, simulation techniques suffice. In addition, it forces the

machine to pick a representation that does not require ,ery precise coordination between the numerical

values of weights. An example of this undesirable bchaior is whcre a positive and a negative weight must

differ in magnitude by a precise amount to achieve the desired behavior. Such combinations of values are

hard to learn and often lead to suicidal behavior 7 of the units involved.

Note that the fixed increment method , not a sieepest descent technique.

611intn ct al. 1984

7.cc section 5.1.1
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3.4. Ravine Search

A class of non-stecpest descent techniques are ram inc search methods.8 Thc existence of ras ines is apparent

from figure 2-1. Figure 3-1 shows the path of the machine in G space as it descends a raine (the learning

algorithm was modified so that motion was restricted to this cross section of the particular 7 dimensional G

space of the 1-1-1-i Encoder in order to produce this figure). It is apparent that there is more sidc-to-side

movement than movement dovvnhill. This sloshing results becausc the sides of a ravine are much steeper than

the bottom, and the "sideways gradient" dominates the desired gradient along the ravinc except at the very

bottom.

3.5. Temporal Filtering: Giving the Weights Momentum

One of the ravine search techniques involves low pass filtering in time by averaging current estimates for p,

and p',,.with prc -us est.imates, some of which were taken on one side of the ravine, some on the other.

Thus the sideways gradient will tend to cancel out. lessening the sloshing.

In addition to the improvements in ravines, where successivc learning cycles have very different statistics due

to sloshing, it also improves learning of weights whose coocui rences change little between successive cycles. In

these cases, the effect is similar to increasing the sampling time within cycles, and reduces the variance.

Excessive variance is the cause of two serious problems: getting lost (see section 4.2.4), and suicide (see section

6).

3.6. Spatial Filtering: Smoothing G-Space

An interesting possibility is to low pass filter G before searching it. Since the sides of ravines become higher

farther from the origin in G, the ravines themselves %ill slope up in filtered G. This will keep the weights

small, which is a big advantage: At large radii, it is a long way from one rav ine to another, and the high ridges

between ravines (caused by the large weights) also preclude getting equilibrium statistics, upon which the

whole optimization procedure is based.

Further, it is easy to simulate the filtering. Adding gaussian noise to each %keight will result in behavior which

is an average of that obtained with nearby combinations of weights. If the noise is proportional to the

magnitude of the weight, it will hae the following effect: If two weights must differ by a constant, the

variance of the difference, and hence G, will be lower when the magnitudes of the weights are small.9

8Seeral techniques ror searching topoeraphics with raencs are discu=ed in (Gcltand and FI'hn. 1966).
9Gcol" fl linion. icrsonal communication
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Figure 3-1: Path of Machine down a Ravine

3.7. Explicitly Keeping the Weights Small
We can also keep the search confined to the area near the origin by adding a term to the cost function which

penalizes large weights. t0 For instance

Gnew = G + ~ wo

a G = a + h w 0

To do gradient descent in this new space, we proceed as before, and in addition subtract from each weight a

fraction of its value.

Very small values of h seem to be sufficient to keep the weights small.

3.8. Adding noise to the environmental input
In addition to altering the search tcchniques, there are alternative methods of gathering the statistics from

which the gradient of G is estimated. A technique designed to keep the weights small is to occasionally clamp

patterns during wake which do not occur in the environment (more accurately, the cn.ironment is modified

so that many or all of the patterns have a finite probability). This avoids the following problem: If certain

0 ,iarak Pcarlmutter, personal communication
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patterns nevcr occur in the environment. they must be given infinitely higher energy than the ones that do

occur. This requires infinite weights. One must be careful to modify the environment in a way that the

Boltzmann Machine can easily model; if it has to devote some of its representation capacity to modelling the

structure of this environmental noise, the technique will be counter-productive.

3.9. Choosing Environmental Patterns

Originally. we clamped all the enironmental patterns for a period proportional to their probabilitics. For

emironments with many patterns. howe.cr. this becomes prohibitisely slow. since an annealing must be done

every time a new pattern is clamped. Randomly choosing patterns for clamping introduces a lot of noise into

the staitisics, but seems unavoidable. Using temporal filtering in conjuction with random pattern selection

may reduce the variance back to an acceptable level. "

3.10. Partial Clamping during Sleep

When we arc sampling the machine's model of its environment, the visible units are not clamped. Thus p'j is

always estimated from random samples. and will be noisier than estimates of pj. To combat this, we can

encourage the correct distribution of samples by clamping a subset of the visible units during sleep. The

clamped units will then behave according to the en'ironment, and the sleep and wake statistics of the weights

connecting them will be identical. Thus these weights will not change. However, the rest of the weights will

obtain statistics with a lower variance.

In some situations, the Boltzmann Machine will havc some ',isiblc units, 0. dedicated to output, and some, I,

to input. An environment then specifics a set of conditional probabilities of the form 1(Opi I,). In this case,

there is no need for the machine to learn the structure among the input units, since they will always be

clamped. All the weights can bc used for modelling the structure between the inputs and outputs. Thus sleep

clamping can produce faster learning for this special case. The appropriate G measure in this case is

G= RP(I. AOp) In R0OIfr)

Similar mathematics apply in this formulation and a GI a wv is the same as before.12

For a knowledge representaton problem with 32 environmental patterns. 10 of which are clamped during

each learning cycle, the machine was not able to learn the environmental distribution due to the high noise.

Using sleep clamping the learning proceded smoothly.

1 tc section 3.5

[2 linion ct al. 1984
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4 Empirical Tests of the Search Methods

4.'4. Problem Description

!'o zhock our analytic results and compare search methods, a 'cry small problem was invcstigated. trc are

f,xur units, :wo visible and two Iiiddcn, and sevcn weights. In the cnvironmcnt, the two visible ue, ts are

always either both on or both off. The hidden units must cncode the state of the visible units. They Form a

chr.nnel through which the visible units can communicate thcir state. Figure 4-1 shows the layout of the

pr c r.

visible hidden n idJ,-, visible

_ unit I" ... n~it 2 u unt

PATTERN PROBABILITY
Unit I Unit 2 Unit 3 tlnit4

on x x an .50
off A A off .50

Figure 4.1: Architecture a,,d Environmeat for the 1-1-1-1 Encoder

This problem is the minimal case of the cncoders described in (I linton, et al. 1984) since each visible group

consists of only one unit. The channel, howc r, consists of two groups of hidden units, neither of which can

directly perceive both visible groups. This makes it much harder for random weight changes to increase the

correlation between visible units and be reinforced. With less environmental influence, more of the

undesirable tendencies toward suicidal behavior are exhibited (see section 6). This is proving useful for

gainin,, a better understanding of the pre'iously unexplained behavior on larger problems.

For this size system, it was possible to analytically determine p. and p' and do error analysis. Comparing

statistics derived analytically with those found by a simulated real machine turned up some subtle bugs due to
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round-off error. Boltzmann Machines arc extremely sensitive to small consistent errors, even when buried in

large amounts of statistical noise. This makes such errors difficult to detect except by careful analysis.

In addition we were able to investigate the adequacy of our annealing schedules by comparing the analytic

statistics, which reflect the true equilibrium distribution of states as gi.en by the Bolt/mann distribution, to

those of a simulated real machine, %hich only asymptotically approach equilibrium. The results of this

investigation are discussed in section 5.1.

Sets of weights which model the cnvironment must include either three positive weights between the four

units, or one positive weight and two negative weights. The bias weights must then be adjusted so that their

unit is on about half the time (the environmental probability).

4.2. Results

Due to the large number of parameters, comparisons were done by varying only one parameter at a time. The

control values were as follows:

* Ten independent samples were taken during both slcep and wake in order to estimate , and P'.

" At each learning cycle, the weights were modified so as to travel a distance of .5 in G-space in the
direction of the cstimated gradient.

" Fach of the two patterns was shown in its correct form during wake for an equal period, and there
was no clamping during sleep.

" The annealing schedule is shown in figure 4-2.13 After each annealing, a single sample was taken
at the final temperature, 1.0

* The weights were each initialized to random values uniformly distributed on [-2.0, 2.01, prior to
each run.

TIME TEMPERATURE
4.0 2.0
6.0 1.5
8.0 1.2

10.0 1.0

Figure 4-2: Annealing Schedule for 1-1-1-1 Encoder Problem

131n one unt of me all of the unts are probed once each (on a'cragc). When probed, a unit decodes mhcthcr to be on or off based on

its energy gap.
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Each of the following graphs represent ten runs of 500 learning cycles. For this problem,

G= Poff log;I+P,,log p =.69

for uncorrelated behavior between the two visible units.14 Because G varies tremendously from one learning

cycle to the next, the data was smoothed before plotting, by averaging with nearby 'alues. 15 The valucs for pj

and ply used to cilculate G were found analytically, since the ,ariancc of the estimate from the simulated

machine, using only 10 samples, is extremely high.

Figure 4-3 shows the results obtained with the control paramenter values, to which each of the other graphs

should be compared. In each graph, it is clear when the machine finds the basic structure of the enironment.

The main things to note are how many successful runs there are out of ten trials, and how early the success

becomes evident.

4.2.1. Number of Samples

The number of samples, N, used to estimate Pij and p% was varied between five and twenty. As can be seen

from figure 4-4, the number of successes generally increases slightly with increase in number of samples,

while the variablity in G over short periods decreases. Since time to estimate P, and p', varies directly with N,

ten looks like a good compromise between number of successes and running time. I think ten will remain a

good value for larger problems. Since getting independent samples requires an annealing for each sample,

and hence takes longer than getting dependent samples, there is a tradeoff between having many dependent

samples or few independent samples, given a fixed sampling time. Gail Gong (personal communication) has

determined the optimal number of annealings per sample period in terms of the variances of dependent and

independent samples, but no empirical work has been done to see how accurately these variances can be

estimated.

4.2.2. Choosing patterns

The machine has a much harder time when the environmental patterns are picked randomly, albeit with the

correct probability (figure 4-5-). Unfortunately, for large problems, there are too many patterns for them all

to be shown on each learning cycle. "'he techniques of clamping some units during sleep and temporal

filtering16 both tend to reduce the variance and may alleviate this problem. Figure 4-516suggests that sleep

clamping helps when each pattern is shown evety i.),de. It may have even more cffect in the case of random

14 It is lower when randomness is introduced in the clamping. G becomes .37 and 22 ,evpcctiel) for a clamping noiqc (ivxplaincd in

section 4.2.3) of.05 and .10 when the visible units are uncorrclated.

15specifically, the data was convolved with a triangle function of length seven

16see section 3.5
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f 1

0 100 ago .00 400 
go0

$1ef - We e Cyclee

Figure 4-3: Performance Obtained with the Control Parameters

pattern selection.

4.2.3. Environmental Noise
One model for introducing noise in the environment, in the quest to combat unbounded weight growth17 , is

to give each visible unit a probability to be clamped incorrectly. This probability is termed the clamping

noise.

Boltzmann machines represent ratios of probabilities betwccn states as energy differences between those
states. With clamping noise, the probability ratios are relatively small, and change rather slowly as we move
to patterns farther away in Hamming distance. Thus small energy gaps between adjacent patterns will suffice.
With small energy gaps, the machine moves rapidly through E-space, and it is easy to get a good sample of the

equilibrium values of py and ply. In geographic terms, the bottoms of the ravines flatten out and begin to rise
again, rather than continuing to descend in the direction of ever larger weights. Thus we can argue that a

Boltzmann machine performs better with clamping noise.

17see section 3.8
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5,,

Figure 4-4: Effect of Number of Samples on Performance

Tefollowing clamping noises were compared. For each. the corresponding environmnt is given.

CLAMPING NOISE STATES OF VISIBLE UNITS PROBABILITY
.00 on on.60

of of .60

.05 o on .45
on of.05
off on.08
of off .46

.10 on on.41
on of.09
off on.09
off off .41
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IVI 
I

sittawow'i"

a Random Patter Order 
b Slecp Clamping

Figure 4-5: Effect of Clamping Strategy on Performance

The results in figure 4-6(a), 8 seem to indicate a second advantage of" clamping noise. As the hidden units
randomly modify their weights and form constraints bcetween the visiblc units. thcy . i i iniually not get them
right, quanutavely, even if the signs are correct. It seems that the clamping noise reduces the penalty for
these attempts to use the hidden units by allowing for a certain number of atypical states. It thus reduces the
tendency toward dissociation (see section 5.1.1). Figure 4-6(b) suggests that too much clamping noise obscures
the pattern to the point that it is not learned in the number of cycles given.

4.2.4. Size of Weight Step
Changing the size of the weight stcp seems to be the most sensiuve parameter (figure 4-.7), and is one whose
optimal vdlue may be expected to change drasucally from one problem to another. I'here are two sets of data
here; data when the weight step is fixed, and data when it is proportional to the graient. The magnitude of

18ote hat the y axis scalcs have ben adjusted o that G or uncorrclated behavior is at about the sme hcishL
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.00 5-00
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Figure 4.7. :Ffcct orWctght S~cp on Pcr~ormance

2 10i

!kW .1 ..C"

0 10 2 00 0 0O 0 '00 no0 no0'

1,a WVcight Step = .2 b W'cight Stcp = .7

2SI

d eshtSe
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the gradient is less than the square root of the number of weights.19 With 7 weights, I V 615 2.6. Usually, it

was observed to be much lower, around 1. Thus, the distances moved on runs with a fixed step of .5 (figure

4- 3) and on runs with a proportional step of 1 1 V 61 (figure 4-7c) are about the same, on average. 20

Reasonably enough, these two did about the same overall. With proportional steps, the machine is quite

happy to stay pretty much where it is when the gradient is small. Thus the variance in G is smaller for runs

which haven't yet got the structure of the environment than it is for the case of fixed steps. Conversely, when

it is obvious what to do, the propoltional step runs show a higher variance for G. The fact that fixed steps lead

to wider searching when the gradient is small and there is nothing obvious to do seems to be an advantage for

this technique.

Unfortunately, searching widely with little guidance from the gradient is likely to lead the machine far from

the origin. In this never-never land of large weights, the machine can no longer reach equilibrium, and the

nice monotonic behavior of G, even for large weights, evidenced in figure 2-1 is for naught. 21 This behavior

can be seen in the graph for %%eight step = .7. If a run doesn't luck into a good combination of weights early

on, it gets lost and never finds one. 'hc basic result is this: In a problem where one need only go down in

G-space, it is best not to go too far, lest one's estimate be wrong, or the gradient change too much along the

way.

5. Reaching Equilibrium

5.1. Necessity of getting Equilibrium Statistics

Equation 1 is based on the assumption that py and p, follow from Boltzmann distributed global probabilities.

If we do not anneal long enough before sampling, 22 P sa will be dependent on the starting state as well as the
est

true Pa, resulting in erroneous pi and Pl'y An example which comes ip often in simulations is the test tube

space (see figure 5-1).

The annealing process begins with the machine in a random state. It is equally likely to be within the

collecting area for minimum A or for minimum B, since we hypothesize the same number of states in each.

Assuming that annealing proceeds too fast to reach equilibrium, the machine will fall to the bottom of

whichever minimum it began in and stay there. In this case, we are meaisuring the proportion of states with

19see appendix I

204 is twice the bound given by equation 2 with W=7.

21Section 5.1 contains more discussion of thc necessity of reaching equilibrium.

22Long enough is approximately the recurrcncc time (ora random global state.
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Ea-
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A B

Figure 5-1: Energy Space which I)emonstrates the Effect of Insufficient Annealing

downhill paths into cach minimum, rather than the relativc depths of each minimum.

This effct is evident in figure 5-2. The upper curve is G calculated analytically under the assumption of

equilibrium statistics. The lower curve is G estimated from the statistics actually collected by the machine.

Even where the analytic G is very high, the sleeping and waking statistics are nearly identical. The machine

would be able to complete environmental patterns quite well.

One may therefore ask whether it is essential to reach equilibrium; all we really want is for the sleeping and
waking statistics to converge so we have a learning associative memory device. We can use the fact that the

collecting areas of and Hamming distances between minima are important, and learn things that the

theoretical Boltzmann Machine can't. 23 The answer seems to be no, though problems show up only under
extreme conditions where the weights are large. Table 5-1 shows two sets of coocurrence statistics for a
machine which is on the borderline of trouble. Due to the large weights, the machine's statistics are very close

to the environmental ones, though the true equilibrium statistics are not.

5.1.1. Case Analysis

The problem has to do with the way non-equilibrium statistics compare with equilibrium ones. Consider the
energy space for the encoder problem. There are two minima, one for each of the environmental states as in

figure 5-1. Due to the symmetry of the architecture, the areas of the minima are the same; thus as the
machine's statistics diverge from equilibrium, they will approach 50% in each minimum, independent of the

relative depths. By happy accident, this is the same percentage in each state that occurs in the environment.

To investigate how the machine handles itself when it must actively maintain the correct ratio between

patterns, the environment was changed so that the visible units are off 60% and on 40%. Now, as the weights

increase, the machine's statistics become closer to 50% than the equilibrium statistics. As a result, the

difference in depth of the minima increases. Eventually the space looks like figure 5-3.

23David Ackley, peronal communication.
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Figure 52: Effect of Non-Eq uil ibri LM on Performance

J iI'LA .I!0~ ~ ~ ~ ' 100 20 00 00 50
3lo-aeCce



21

Connected Units Weight pp

ANALYTIC

1 (bias) 11.4 .50 .90
2 (bias) 1.6 .50 .10
3 (bias) 1.1 .50 .10
4 (bias) 10.3 .50 .90
1 2 -18.2 .00 .00
2 3 16.7 .50 .10
4 3 -18.9 .00 .00

SIMULATED

1 (bias) 11.4 .50 .50
2 (bias) 1.6 .50 .50
3 (bias) 1.1 .50 .49
4 (bias) 10.3 .50 .51
1 2 -18.2 .00 .00
2 3 16.7 .50 .49.
4 3 -18.9 .00 .00

Table 5-1: Sample Sleeping and Waking Coocurrence Statistics

Ea

Eb

A B

Figure 5-3: Worsening Energy Space

Now a tiny change in the height of the barrier makes a tremendous difference in the states probabilities. We

thus have a tense combination of weights; large in magnitude, and precisely coordinated in relative terms.

This in itself is not sufficient for disaster, however. Another effect of non-equilibrium prevents the weights

from correcting perturbations. Once the hidden units have reached a state where one is on and one is off,

they are unlikely to change, even if the positive weight is large(see figure 5-4). The visible unit is much more

responsive to changes in the value of the positive weight. This is because there is no barrier to be crossed

when the visible unit flips, as there is when both hidden units flip. To generalize, the probability ratio



22

betwccn two states is closer to the equilibrium ratio for states which are close in Hamming distance.

visible hidden hidden visible

-1.0 -5.8 1947.8

biases

Figure 5-4: Weights Associated with Poor Energy Space

Eventually, random sampling errors will lead to weight changcs which cause the more probable state (both

off) to occur almost all the time. To correct this, the machine will lower the weights to both visible units and

modify the weights to the hidden units so as to equalize the state probabilities. The latter process, however,

takes place much more slowly than the former, and the net effect is that the visible units dissociate themselves
from the hidden units, which then have no incentive to change; they continue to always be in the same state.

This behavior is termed signal driven suicide (to distinguish it from suicide driven by random noise as

discussed in section 6). The dissociation is generally stable since during both sleep and wake the statistics will

be the same for the hidden units, either 100% or 0% on. Thus the estimated value of a G/ a wU will be 0.

Figure 5-5 shows the behavior of the machine for an asymmetric environment. The dotted curve shows the

value of G estimated from the machine's statistics; tie solid curve shows the analytic value of G. The behavior

is the same as in figure 5-2, until the asymmetry causes the visible units to dissociate from the hidden ones

after 1300 cycles,

5.2. Ensuring Equilibrium
A promising technique for discouraging the type of behavior discussed in section 5.1 is to use two annealing

schedules. When the weights begin to get large and create a test tube like energy space, the less conservative

annealing schedule will begin to generate poor statistics before the more conservative one. The difference

between statistics is then used to coax the weights away from combinations of values that make it hard to

reach equilibrium.

Suppose we have two deep minima, A and B, and that we have two extreme annealing schedules. One
quenches the system, going directly from infinite to zero temperature, and thus measures the relative areas of

the minima. The other is slow enough to reach equilibrium, and thus measures the relative depth of the



23

Figure 5-5: Effect of Asyrmetric F.nvironmcntal Probabilities
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minima.

Now we can insert special learning cycles where quenching takes the place of the normal wake cycle, and no

units are clamped. After collecting statistics, we modify the weights in the normal manner:

AWj = T ( Ufas'ts Pio,.)

If the depth of a minimum is too large for its collecting area, all weights between units that cooccur in that

minimum will be reduced, and vice versa for overly shallow minima. The effect is to change the depth of the

minima so that the equilibrium statistics match those obtained with the faster schedule. Since the total areas

of minima remain relatively constant with time, it prevents any minimum from getting too deep. If we use a

moderately fast anneling schedule instead of a very fast quench, the special learning cycle will have no effect

on minima until they get too deep for the fast schedule to reach equilibrium. As this point is approached, the

special learning cycle will prevent further deepening.

A reasonable implementation for these extra cycles would seem to be to alternate them with standard learning

cycles. If we are willing to use the same epsilon for both cycles, we can save time and combine the two.

Notice that the net weight change after a standard cycle followed by a special cycle is

AwY/ = - _ _,'1+ ,

If we use two fast annealing schedules in the standard cycle, the second and third terms cancel. We can get

the effect of the two types of cycles simply by using the fast schedule during the wake phase of the standard
cycle, and the slow schedule during the sleep phase.

This technique is not robust in the sense that if a very bad energy space develops, it cannot recover, because

even the conservative schedule provides poor statistics. The encoder problem was run with this technique,

and the weights remained small. The bound on the weights could be varied by changing the difference in

speed between the two annealing schedules. Similar results were obtained on a larger problem involving 37

units and 559 weights.

6. Suicide
One context in which suicide occurs is when hidden units get little feedback from the environment. '[his

difficulty was encountered early on, but was not understood until recently. Hidden units tend to develop all

positive or all negative weights and consequently are either always on or always off.

This effect is best explained by an analogy: Nearly all the loose gravel on a busy road accumulates at the side
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of the road, even if the road is flat. This is not bccause cars selectively push gravel toward the nearest side. It

is because a piece of gravel has a much higher probability of making a move when it is near the middle of the
road, so it spends very little time in the middle. Similarly, when a hidden unit comcs on about half the time
there will be a very high variance in pj and pli, so I pi-P'jI will be large and the weights will change a lot.

When the unit is almost always on or almost always off, there will be very little variance and the weights will
remain fixed. This effect can overpower the systematic effect due to the true value of a G/ a W/q.

Since this explanation for suicide depends on the fact that the magnitude of the change to a weight is a
function of the weight, it was thought that removing this depcndence could solve the problem. This may be
accomplished by estimating the standard deviation of the estimates of p j and ply, and dividing by it to
determine the change to the weight. Results so far have been negative, however.

The suicide problem may be reduced by using more samples in the estimate of p0 and p'i than were taken in
the current learning cycle as mentioned in section 3.5, as well as by the techniques discussed above for

keeping the weights small.

7. Conclusion

7.1. Robustness

The results developed above seem to be generally applicable to Boltzmann Machines. The techniques
requiring problem dependent constants, namely constant distance weight modification (section 3.2) and

explicitly keeping the weights small (section 3.7), were found to be unnecessary. Work on a 37 unit problem
has indicated that the best values for parameters found above can be successfuilly used unchanged; these
include the annealing schedules, number of patterns per learning cycle, epsilon, and amount of temporal

filtering. Many techniques used formerly to prevent unbounded weight growth are rendered unnecessary by
the single technique of special learning cycles using slow and fast annealing cycles (section 5.2). These old
techniques include explicitly keeping the weights small, noise in the environment (section 3.8), and others too

specialized for treatment here.

7.2. Future Work
The most important result about learning in Boltzmann Machines is that there exists a global measure, G, of

thc discrepancy between the machine's r,.odcl of its environment and the actual environment, and that the
partial derivatives of this measure with respect to the weights arc locally computable, For problems where the

environment can be modeled with pairwise constraints among the visible units, G is concave upward and
gradient descent works well.
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Upon reflection, it should not be surprising that more complicated environments that need hiddern units to

model highei order constraints among the visible units are difficult to model without directly considering

non-local phenomena. Incorporating mcta-knowledge about useful representations into an cost function

could perhaps eliminate the need to search many of the local ntinima found in G. For large problems,

hierarchical rcprescntations will be necessary. "Concepts" at each level can only be formed after those at

lower levels upon which they depend. At each level, the influence of the evironment is weaker, and the

gradient of the evaluation function will be correspondingly smaller. Additional constraints to select among

possible ravines will be invaluable. Modifications to G which encourage small weights have been discussed.

Encouraging units not to duplicate the behavior of other units may also be necessary. Possibilities such as

these will beLgne the center of investigation as the structure of G-space and the performance of techniques

for searching it become better understood.
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Appendix"

I. Derivation of the Smoothness Result

The elements of the Hessian of G are given by

hkI= aI-- a
aFWkaW!" =-F*k-P'Ip1

= I,(b bl) -j,(bk)JU(bA~- P(V,,)IA(bkb~a)- P /(V.)t,(bkja)ju(b~a)
a a

where IA(.) is the statistical mean; and bk is I if both units connected by weight a are on, 0 otherwise. Each

term is restricted to [-.25,.25], so I hk/I < .5. Thus the maximum curvature in any direction, I "f I, is i.

Other Smoothness Results
aG

I --- I = Ipu-pJI s 1

since PU and p'U are probabilities. Thus, the slope along any axis is less than one, and the gradient must satisfy

aG 6 , a G ,

where Wis the number of weights. Further,

=G (1-,U)PU- P,(1-p)p

where p 4 is the conditional probability that units l and] are both on (coocurrence probability) given that state

a is clamped over the visible units. Both terms are restricted to [0, .25], so

8 -w"U- 4

II. Derivation of the Variance of the Estimated Gradient

,A(II V Get- V GII)2= -"[(pU.,-p'j-(pU-p'u)]

Let
j = (Pij,1- Ye ) - (PF YU)

Assuming a zero mean normal distribution for the difference between estimates (this is equivalent to

assuming a large number of samples),

248o)th appendices assume a temperature of 1 in the derivations.
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IA(11 V Ggt- V Gil)' = -V (j)

Assuming we have N independent samples,

{/2()& Lt4 I

assuming all units are indcpendcnty on half the time,

wji(ll VG¢st-V Gil)' = 2N -
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