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Foreword

The Navy Operational Global Atmospheric Prediction System
(NOGAPS) provides numerical guidance and products in support
of a wide range of Navy oceanographic and atmospheric require-
ments. The forecast model component of NOGAPS is the heart of
the system and represents a multiyear development effort by the
scientists of the Naval Oceanographic and Atmospheric Research
Laboratory's Atmospheric Directorate.

Because many other Navy oceanographic and atmospheric research
efforts depend on NOGAPS for environmental inputs, there is
continuing demand for detailed technical descriptions of the forecast
model's physical, mathematical, and computational processes. Only
with this documentation can other Navy scientists understand research
results influenced by NOGAPS output products. Because such
numerical weather prediction systems as NOGAPS are constantly
evolving, periodic updates to system documentation are also a key
to supporting future Navy environmental research.

NOGAPS development directly responds to validated Chief of
Naval Operations requirements, but in a larger sense it is fair to
say that because so many Navy environmental needs depend on
NOGAPS to some degree, nearly every meteorological and
oceanographic requirement benefits from NOGAPS and its
continuing development.

W. B. Moseley R. Elliott, Commander, USN
Technical Director Commanding Officer



Executive Summary

The forecast model of the Navy Operational Global Atmospheric
Prediction System (NOGAPS) is described in complete physical and
mathematical detail. NOGAPS 3.2 is the latest in the NOGAPS forecast
models developed by the scientists of the Naval Oceanographic and
Atmospheric Research Laboratory. The model is a key part of Fleet
Numerical Oceanographic Center's (FNOC) central site environmental
support of the fleet.

The spectral spherical harmonic formulation of the NOGAPS model's
governing equations are described, particularly the unique hybrid vertical
coordinate. The nonlinear normal mode initialization is described. The
initialization removes unwanted gravity waves from initial conditions to
ensure subsequent forecast fields are free from "noise." The techniques
used to increase the length of the maximum allowable NOGAPS timestep
are described. This procedure is of great operational importance because
the computational requirements of NOGAPS are enormous, anything that
reduces this requirement directly benefits FNOC's operational scheduling.

The NOGAPS model's diabatic processes, i.e., moist physics, dissipa-
tion, and radiation, are described in detail. Emphasis is given to those
aspects of the NOGAPS model that are of particular importance to special
Navy requirements: the physics of the marine planetary boundary layer,
cumulus convection, and cloud/radiation interactions. The interaction of
shortwave solar radiation and longwave terrestrial radiation with the model's
predicted cloud field is the single, most important process in determining
systematic errors in the model's near-surface conditions. Therefore, the
model's cloud and radiation physical parameterizations are given special
emphasis.

NOGAPS is the foundation of much of the Navy's operational environ-
mental central site fleet support. Nearly every environmental product
produced by FNOC is. to some degree, dependent on NOGAPS input.
Some users understanding of the NOGAPS model and its formulation is
important to the understanding of these products. Navy scientists who
develop environmental models will invariably depend on NOGAPS inputs.
The description of NOGAPS formulation will greatly assist them in
interpreting their research results. This guidance will become even more
important in the future as atmospheric and ocean models become
more closely coupled and interdependent.
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The NOGAPS Forecast Model:
A Technical Description

Introduction
This report describes the initialization and forecast model of the Navy's Operational Global

Atmospheric System, NOGAPS 3.2 developed by the Naval Oceanographic and Research Labora-
tory. The performance of the system, however, is not presented. Seasonal statistics and evaluation
of NOGAPS are given in the Fleet Numerical Oceanography Center's (FNOC) Quarterly Performance
Summaries. We emphasize that NOGAPS is a forecast system that includes data quality control,
optimum interpolation analysis, normal mode initialization, forecast model, post processing, and
verification components. A description of the quality control and the optimum interpolation analy-
sis is given by Barker et al. (1989) and Baker (1989).

The Navy began global numerical weather prediction with the introduction of NOGAPS (Rosmond,
1981) in August 1982 after several years of development. It was a 9-layer, finite difference model
with a full physics package and a horizontal resolution of 2.40 x 3.00. The major components of the
model's dynamics and physics were based on those originally developed for the University of
California at Los Angeles' (UCLA) general circulation model (Arakawa and Lamb, 1977). The
operational forecasts were run to 5 days with the model showing skill to 96 hours.

A major correction, NOGAPS 2.2, was implemented in July 1986 to correct some apparent
deficiencies in the ground temperature and wetness parameterizations. In January 1988, a global
spectral model, NOGAPS 3.0, replaced NOGAPS 2.2. The model's resolution was 47 wave triangular
truncation (T47) in the horizontal and 18 levels in the vertical. Completely new diabatic parameter-
izations were introduced with NOGAPS 3.0, and initially not all of the various components were
compatible. To meet operational deadlines, it was necessary to apply a major engineering fix to
NOGAPS 3.0's radiative forcing.

In March 1989, several major corrections to the paramterizations were implemented, and the new
version of the model was called NOGAPS 3.1. The horizontal and vertical resolutions of versions
3.0 and 3.1 were the same. In August 1989, the horizontal resolution of the model was increased
to 79 wave triangular truncation (T79), and this version was designated as NOGAPS 3.2 The model
parameterizations are the same as NOGAPS 3.1. Aside from the increase in resolution, the only
important change in NOGAPS 3.2 is the introduction of a spectral filter that allows longer model
time steps in the presence of high winds.

The development of the various forecast components for 3.0/3.1/3.2 drew heavily from many
different sources and the references are noted in the text. With the exception of the radiation code,
however, all of the forecast and initialization coding was performed. The longwave and shortwave
codes, without the cloud parameterizations, were obtained in 1984 from the Laboratory for Atmo-
spheres, NASA Goddards Space Flight Center, and revisions were introduced by the authors to
correct the cold bias that developed when the radiation scheme interacted with the other physical
parameterizations.

The authors have gone into considerable detail describing the initialization scheme, adiabatic
calculations, and physical parameterizations so that the reader will be able to understand the param-
eterizations and numerical techniques used in NOGAPS. Any suggestions that provide improvements
to the Navy's forecast ability will be greatly appreciated.
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Chapter 1

Introduction

We discuss the equations for the model using the hybrid coordinate system in

Chapter 2. This chapter is a review of basic transformation theory for the primitive

equations, but it is included as an introduction to the technical points presented

in the next chapters. The hybrid vertical finite difference formulation of the model

is given in Chapter 3. The potential temperature is the thermodynamic forecast

variable and the vertical finite difference relations for both the potential tempera-

ture equation and the hydrostatic equation are slightly different from most spectral

models. The moisture variable used in the forecast model is the reciprocal of the

natural log of specific humidity, rather than the specific humidity itself. The vertical

differencing of the moisture is also discussed in Chapter 3. We present a discussion

of the spectral representations for the forecast fields on hybrid pressure surfaces

in Chapter 4, together with a description of the spectral transform procedure. A

short discussion on the use of spectral filtering to reduce the Gibb's phenomena

and its application to the terrain field is also given in the last section of Chapter 4.

The nonlinear normal mode initialization (NNMI) scheme is presented in Chapter

5. The NNMI discussion is placed after the development of the equations since

the initialization draws heavily on the adiabatic formulation of the model and the

spectral representations of the model variables. This chapter marks the beginning



0

of the discussion of the workings of the forecast model. Chapter 6 presents the

overall time step strategy of the forecast model. This chapter describes the time

splitting of the adiabatic and the diabatic processes. Later chapters will refer back

to Chapter 6 in their discussions of the provisional forecast fields as input into the

different parameterizations. The calculation procedure for the explicit adiabatic

tendencies is given in the first section of Chapter 7. The discussion there is brief,

since the equations are fully discussed in Chapter 3 and the transformation theory

is given in Chapter 4. Section 7.2 explains the details of the semi-implicit treat- 0

ment of gravity wave propagation, and Section 7.3 presents the implicit advection

calculations for vorticity and moisture. Chapter 8 describes the adiabatic tendency

truncation procedure, which ensures a sufficiently large time step for the opera- 0

tional runs, the Newtonian cooling filter of potential temperature at the top of the

atmosphere, the Robert time filter, and the fourth order implicit horizontal diffu-

sion of the divergence, vorticity, potential temperature and moisture variables. We 0

describe the physical parameterizations of the model in Chapters 9-15. The model

contains physi,,, parameterizations as s' phisticated as can be found in any numer-

ical weather prediction model. The parameterizations include gravity wave drag 1

due to mountains (Chapter 9), vertical turbulent diffusion (Chapter 10), shallow

cumulus mixing (Chapter 11), cumulus convection (Chapter 12). large scale stable

precipitation (Chapter 13), and the heating due to longwave radiation (Chapter 0

14) and solar radiation (Chapter 15).
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Chapter 2

The Equations of Motion With a

Hybrid Coordinate System

We introduce the partial differential equations of motion for the forecast model

in this chapter. A similar discussion can be found in the work of Simmons and

Strilfing (1981). The horizontal coordinates are the longitude, A. and the latitude.

p; the vertical coordinate is represented by the variable q which ranges from 0 at

the model top to 1 at the surface. We shall call the combination of the spherical

coordinates (A, ;) with q the hybrid coordinate system. The pressure p is a function

of 77 and is given by the relation:

p = A (q) + B (77) r . (2.1)

The functions A(7 ) and B(rq) are any two functions defined on the interval 0 to I

and with the boundary conditions:

A(O) = Pto,,
A() = ptop (2.2)

B(0) = 0

B(I) 1

7



where p,,, is the model's top pressure, and 7r is the difference between the surface

pressure, Ps, and ptro:

7r = PS - Ptop. (2.3)

The hybrid vertical coordinate system is a cross between a pressure coordinate

system and a sigma coordinate system. The hybrid vertical coordinate is a pressure-

like coordinate in regions where B(r7 ) is 0; 77 is a sigma-like coordinate in regions

where A(7) is a constant and B(7 ) is not equal to 0.

We begin by deriving the mass continuity equation for any finite volume, V. 0

that is moving with the fluid with a mass density p. The total change of mass

following the flow, without mass sources, is zero, which we write as,

'f f f pAz=0, (2.4)

where dA is a differential element. We transform the z coordinate in (2.4) to 17

using the differential relation: 9

dz = ZOPd.d O p -&ia l

It is assumed that the vertical variations in pressure are hydrostatic, so that the •

term, Oz/,p, is replaced by -I/pg. With this transformation, we write the integral

mass conservation equation (2.4) as

d 1 1 dAdtq =0.

For finite volumes, the above integral relation is equivalent to the differential form

of the continuity equation: 0

+7 L) = 0. (2.5)

1t( l9 1)+ ULP) +1
where u is the horizontal velocity vector. 0

8



We obtain the equation for ir by integrating Equation (2.5) from r; = 0 to

rj = 1, and employing the upper and lower boundary conditions for r7, which are

q(0) = r(1) = 0; (2.6)

and the boundary conditions for B, which are given by Equation (2.1). The final

form of the 7- tendency equation is

-= -]V'. u=-)dm1- - V. (udp), (2.7)

where dp is a function of A, ;, and 77.

We obtain the vertical motion equation by integrating (2.5) from 0 to TI.

Substituting for the dir/Ot term with the right hand side of Equation (2.7). we

obtain the vertical motion equation:

(7) = B() J V. ( U LP di - j " V ( LP1 d 7. (2.)

The time rate of change of any dynamic variable, denoted by X. due to

advection is expressed in the hybrid coordinate system bY

ax \ u OX -vax ax(t dv- acos , 7 - 0' (2.9)

where a is the radius of the earth. Since the vertical advection term is evaluated

at constant A and o, we use the chain rule to transform the q-derivative in (2.9) to

a p derivative, which yields

(ON) u ax - (2.a10)
a d a cosp 0A a 19p

This is the form for the advection term we use throughout the forecast model.

The thermodynamic variable of the forecast model is the virtual potential

temperature 0, which is

9= T (1 +.608q) (2.11)

9



where q is the specific humidity. The variable P in Equation (2.11) is defined as

P = (P), (2.12)

where po denotes 1000 mb and K is the gas constant divided by the heat capacity,

r. = R/c. Two major advantages of using 0 in place of T ar- (1) an equation for

the vertical velocity, w = dp/dt, is not needed, and (2) the conservation of total

energy is easily satisfied for the finite difference formulation. We derive the discrete

form of the energy conservation equations in Chapter 3. We obtain the prognostic

equation for 0 by combining the advection term with the diabatic forcing, which

yields
_ _u O0 v O0 [. L90 +Q (2.13)

9t acos 'aA a0p i9 J7 8P

The diabatic forcing, Q9, is due to radiation, latent heat release processes, horizontal

diffusion, and vertical mixing.

We write the hydrostatic equation in the form

0= -CP, (2.14)

where 0 is the geopotential and P is defined by (2.12). This form is chosen since

the finite difference form of (2.14) ensures total energy conservation (see Chapter

3 and Haltiner and Williams [1980], Chapter 7-2).

The moisture equation is usually written for the specific humidity, q. A

conservation equation, however, can be written for any continuously differentiable

function of q, which we denote by f[q]. The form of the moisture equation, which

is the same as the 0 equation, is: 0

,Of[q]_ u of[q] v O f[q] f [ + Q1f (2.15)
at acos p oA a 5[7 ap

The forcing term, Qf[ql, is due to condensation/evaporation processes and turbulent 0
and cumulus vertical mixing. In NOGAPS 3.2 the moisture function is 1/ ln(q).

10 0



Our choices for the variables describing the velocity field are the vorticity, C,

and the divergence, D, since both C and D are easily expanded in terms of Legendre

polynomials and the semi-implicit scheme adjustments are given in terms of D. The

vorticitv and the divergence are defined by the relations

1 [ O 0- (ucos'P)] (2.16)
acosy [9A A,,)

and
D= [5-_ + j- (vcos)] . (2.17)

a cos p LA aP I
We obtain C and D equations by differentiating the horizontal velocity equations,

which are given by
Ou u ___ you [.Op ] au
at a cos (p 0A a ran- ] app

+uv t a n ( + fv - 0€ 1 &6077 +Q. (2.18)
a a cos ( 0A a cos ; t9779A

and

Ov - 9 a, vav .p av
at a cos v A a 0p 0"-7 ap

u2 tan f 1 1U - + Q,. (2.19)
a a,9V aa, rP

The variable f denotes the Coriolis parameter,

f = 2M sin V,

with the angular rotation rate of the earth denoted by Q. The diabatic forcing

terms in (2.18) and (2.19) are due to vertical turbulent fluxes, gravity wave drag,

and horizontal diffusion. The second to last term on the right side of (2.18) describes

the forcing of the velocity field due to variations in the 77-coordinate with respect

to the terrain, and is evaluated as

(a)(aA7 ) ( ~ ( a) ( t)

77 Op (a)P

11



where the subscripted variables indicate the variables that are held constant during

the partial differentiation. It is easily shown that at constant pressure (and therefore

constant P) we have

We use this result together with the hydrostatic equation (2.14) to replace the

terrain pressure term in (2.18) by

S( = c,0 ( P . (2.20)

(L (2-)? aAPa aAr

A similar relation is obtained for the terrain pressure term in (2.19). With these

results, we write Equations (2.18) and (2.19) in the forms

009u u 19u ve9U r .aP]1 au tan (
at a --cos v TA-a T -[al]'- + UV a + fV

a cos V pA - a Cos JO Jr a Q (2.21)

and

09V__ aU 9vav 9 ra at' 0V U2tan~ fu
t a cos (p aA a [% , I , I -p a

1aoI I t +QV. (2.22)

We can now obtain the equations for vorticity and divergence by differentiat-

ing (2.21) and (2.22) and by using the definitions given by (2.16) and (2.17). The

derivation is simplified considerably by introducing the following definitions. The

cosine weighted velocities, which vanish at the poles, are given by

cos

U u , (2.23)
a

and
cos p 0

V .CP (2.24)
a

12



We define the functions G, H, and I by:

G = U(C+f)± [.ap]I ( av)

a2 k Tr all ~ a

H =V(C+f)- LI(a)
(O- O cos'p Q  -,(22a77 aa

- 0 OA + Q a ' (2.26)

and

= (U 2 +V 2 ) (2.27)
= 2 COS2 "

The variable u, which replaces p in the above definitions, is given by

p = sin '. (2.28)

Finally we define an operator, a(g, h), which operates on any two functions g and

h, by

c(9, h) 1o2 a + O (2.29)

With the above definitions, we write definitions of the vorticity and the divergence

as

= a(,-U) (2.30)

and

D =cr(U, V), (2.31)

and the vorticity and the divergence equations as

I-=- a(G, H) (2.32)

and

a- = a(H, -G) - V 2(6 + 1). (2.33)

13



Equations (2.7), (2.8), (2.13), (2.14), (2.15), (2.30), (2.31), (2.32), and (2.33)

are the basic equations for the spectral model with a vertical hybrid coordinate

system. In the next chapter, we derive the vertical finite difference versions for

these equations and we show that these equations conserve the total energy for

adiabatic motions.

14



Chapter 3

The Vertical Finite Difference

Formulation

The vertical staggering of the variables is shown in Figure 3.1. We place subscripts

on the variables in order to designate the level of the horizontal grid point fields,

the variables's spectral coefficients, or the discrete values of the functions A(r)

and B(iq). The total number of levels is identified by L; at present there are

L = 18 vertical levels. The functions A and B, the pressure p, the function P that

is defined by (2.12), and the vertical velocity [(iOp/,977] are evaluated at the half

pressure levels. The half levels begin at the pressure prop, also denoted as P1/2,

and end at the pressure Ps, which according to the indexing system is PL+1/2. We

compute from (2.1) the discrete values of the pressures at the half levels as

Pk+1/2 = Ak+1/2 + Bk+l/ 27r. (3.1)

15



Level Variables
1/2 ptop, 7?1/2=O

3/2 0

2------------
5/2

k-1/2 Pk-1/2s Pk-1/2, &l-1/2

k ----------- Uk, Vh, Dk, k, Ok, f[qlk, O
0

k+1/2 Pk-1/2, PM+l/2, &k+1/2

L-1/2
L -

L+1/2 Ps, Ps, 7L+1/2=0

Figure 3.1: The finite difference vertical structure of the forecast model.

16



The values Ak+/1 2 and Bk+11 2 are arbitrary except at the top and the bottom where

they must satisfy the boundary conditions given by (2.2):

A 1/ 2  = Ptop

AL+1/ 2  - Ptop (3.2)

B11 2  = 0

BL+/2 -" I

In NOGAPS, Pop is set to 1 mb. The discrete values for A(r7) and B( 7 ) are given

in Table 3.1. At present the hybrid coordinate is a sigma-like coordinate system.

The virtual potential temperature 0, the moisture function f[q], the geopo-

tential 0, the cosine weighted velocities U and V, the vorticity C, and the divergence

D are evaluated at the full levels, and their discrete values are indicated by: Ok,

f(qk), Ck, Uk, Vk, (k, and Dk respectively (see Figure 3.1). From (2.1), we compute

the pressure depth for the kth layer as:

Apk = AAk + ABkr, (3.3)

where

AAk = Ak+l/2 - Ak-1/21

ABk = Bk+I/ 2 - Bk-1/2.

At the half pressure level, we compute the function P as:

= (P+/ a " (3.4)

In order to compute the temperature from the virtual potential temperature, P

must also be defined at the full levels. The definition of Pk is that given by Phillips

(1974), which has the form

Pk = PK1 (3.5)

(r + l)p' \Pk+1/- Pk-1/

17



Table 3.1. The discrete values of the functions A(ii) and B( 7 ).

Level A B

1/2 1.000000 0.000000

3/2 1.000000 0.015947

5/2 1.000000 0.039867

7/2 1.000000 0.071761

9/2 1.000000 0.111628

11/2 1.000000 0.159468

13/2 1.000000 0.215282

15/2 1.000000 0.279070

17/2 1.000000 0.350831

19/2 1.000000 0.435382

21/2 1.000000 0.527741

23/2 1.000000 0.622923

25/2 1.000000 0.715947

27/2 1.000000 0.801827

29/2 1.000000 0.875581

31/2 1.000000 0.932226 •

33/2 1.000000 0.966777

35/2 1.000000 0.989369

37/2 1.000000 1.000000 0

18



This form is exact for an isentropic atmosphere as demonstrated by Tokioka (1978).

We calculate the pressure values at the full levels by taking the values of Pk in (3.5)

and inverting the definition (2.12), which gives the result

Pk - PI/K (3.6)

In order to compute the right hand sides of (2.7) and (2.8) for ir and [rOp/Oiq]

respectively, we must vertically integrate the velocity and the mass divergence. In

performing these integrals, we assume that the velocities are constant in the layer

Apk. With this assumption, the right hand side of (2.7) is computed as

L

- E = -Z[AAIDI + ABMI. (3.7)Tt 1=1

The quantities DI and M are the layer I values of the divergence and mass diver-

gence:

A V'U 1 , (3.8)

M, = V.(rul). (3.9)

We integrate (2.8) by using the same integration strategy as we used in the deriva-

tion of (3.7), so the vertical motion is given at the half levels by

[ piL k
] = Bk+l/2 Y (AA1D + ABIM,) - _ (AA D + ABM). (3.10)

9,1 k+1/2 1 L 1

Note that (3.10) satisfies the boundary conditions given by (2.6), namely:

1/2 L+1 =0. (3.11)

The half pressure level values for U, V, and 0 are also needed to evaluate the

vertical advection terms for the vorticity, divergence, and temperature equations.

The finite difference form of the vertical advection term that is consistent with the

19



flux conserving form is given by Haltiner and Williams (1980) as

LP~) + [A '977 k+1 2Xk)(.2

1 Xk -Xk-1 2  (312a +7 APk I+ 1k-1/2 ( p ) I

where X represents any dynamic variable. The choice of the interpolated values of

X is crucial to the energy conservation of the vertical finite difference scheme. The

interpolation that conserves the square of X is given by

X+ 1/ (Xk + Xk+ (3.13)

We use the interpolation given by (3.13) for the velocities, Uk+1/ 2 and Vk+1/2.With

(3.13) we now write the vertical finite difference forms for (2.25)-(2.27) and (2.27 -

(2.33) as

a =u (¢+y)+[+] (v+-v [.ok (V - vk -I
Gk= U(+f) + PI +/2+1 L lk ;

+a7 21Pk a k7a'2 2z"Pka-

+CpOk P) Or COSQvk (3.14)
r & + a a

L Up] ( -_U [.aP]-(Uk_-
ld77(C+] 9 Ik+1/2 (2zAPk 1 #97. k-1/2 k 2 1APk/0

CPO/, (a a + QUk aO (3.15)

= (a2 (3.16)

(k = a(Vk,-Uk), (3.17)

Dk = a(Uk, Vk), (3.18)

--- -a (Gk, Hk), (3.19)

and
aDk•

= a (Hk, -Gk) - V 2 (-k + Ik ). (3.20)

20



In order to calculate (3.14) and (3.15). we must evaluate the term (OP/alr)k. This

is done by inserting the definition (3.1) of Pk+1/2 into the definition of Pk given by

(3.5) and differentiating with respect to 7r. The final result is

Pk____ Bk+/2 (Pk+/2 - Pk) + Bk-1/ 2 (Pk - Pk-1/ 2 ) (3.21)
(97r I/(P+,- APk 1 J 3.1

where we have used the definitions of Pk and Pk+1/2 in order to simply the final

relation.

We vertically integrate the hydrostatic equation (2.14) to obtain the geopo-

tential field 4k. The result above the surface layer (i.e. I < k < L) is

0k+1 - k = -CpOk+Il2 (Pk+i - Pk); (3.22)

and in the surface layer the geopotential is computed as

O, = 's + C OL (PL+I/2 - PL), (3.23)

where 0s is the surface geopotential given by gzs.

The vertical finite difference formulation of the virtual potential temperature

equation (2.13) is given by

ao~r. kp -V(k POk+1/2 - O
= -Uk.V(ok)- [la7 k+1/2 ) -APk

- -. _]( -0 1/ + Q2k) (3.24)

We determine the interpolation formula for 0 on the half level pressure surfaces by

computing the total energy and requiring that the adiabatic vertical finite difference

equations conserve energy. In the following discussion we again draw heavily from

the work of Haltiner and Williams (1980). In the layer Apk, the kinetic energy is

defined as
KE:" = APk (Uk + Vk (3.25)
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We compute the kinetic energy equation by first formulating the vertical finite dif-

ference equations for u and v, which are given by (2.21) and (2.22), and multiplying

the Uk and t'k equations by APkuk and ApkVk, respectively. The result, with the

right and left hand sides of the kinetic energy equation having been switched, is

QK "A = Ako-t 2 + PkVk• (7

Sap +/(Uk+lUk + Vk+lVk- Uk Vk
+ k+1/2

[7~~a~] (UkI ~2 + Vkk+U 2_ .p i u k-i U k + k .- V k + Uk ) (3.26) 0149-1 7k-1/2 2ApN

The term !KE, is the generation of kinetic energy, which is composed of the terms

9K,,, = -APkUk " Vk - APkCpOk ( ) Uk - V 7r + A/pkUk " Quk .  (3.27)

The vertical finite difference form for the pressure equation (2.5) is

(AP) + V. (UkApk) + r?7 kj - [1 = 0. (3.2S)

By multiplying Equation (3.28) by (u2 + v2)/2 and adding this result to Equation

(3.26) we obtain the final result, which in flux form is

a'E + V (UkKE) + .FKE, , - 'FKEk 1/2 = QKEk' (3.29)
-r'+'(kEat

where -F,~r 1/2 are the vertical fluxes,

[.a711 k+ L" Uk+IUk+Vk+lV) (3.30)

The sum over all levels, together with the integral over the entire sphere,

reduces the left hand side to the time derivative of the total kinetic energy of the

atmosphere. We simplify the generation term by first integrating by parts the first

term of (3.27), and then using Equation (3.28) tu oblLain the result that

KE:A = V' (UkLP) - '6kaAPk [.ap] [Lp-1/
S at + 71[k+1/ k /2 )

-ApkC0kkUk • Vr. (3.31)
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Adding and subtracting the term,

to the right hand side of (3.31) and using the definition of Apk given by (3.3), we

obtain

07r
gK, -V. (ukpk ) -Uk • 1 - Bk-,2) 33

- Xl '~' . 6k+1/2 L' I Ok- 1/2)

+ [ P771 k+12 - 07k)-1/2

-A'PkCpOk kUk -V~r. (3.32)
07r

The final form is obtained by adding and subtracting the term,

(Bk+1/20k+1/2 - Bk-1/20k-1/2) Or

to (3.32), with the result

9 =E -V(ukkPk - 49P k+1/2 - a 1P1 k-i/2

- (Bk+1,2077k+1/2-Bk1 2~k12 ~ B 971 (k-1/2- )

- Bk..120(k1/ - k-1k1/2) 0 7r + ] k+1/2 (Ok+1/2 k)

~~~7~ + k11/2 -A CkUkVr

'9' k-1/2

Note that the first three terms of (3.33) are in flux form, so they integrate to zero

over the entire atmosphere.

The derivation of the total potential energy equation (the sum of the internal

energy plus the gravitational potential energy) starts with the writing the tempera-

ture equation from the potential temperature equation given by (3.24). The virtual
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temperature is related to the virtual potential temperature by
Tk

S-- k' (3.34)
Pk

and therefore we write the virtual temperature equation as

Tk- + u-V (T)

+ p Tk+1/ 2 - Tk f 9] (Tk- k/ 2

- /Pk Apk )L Ik+1/2 + U' )l /2 ( P /

k 0k~ [ + Uk V(7r) + [] Tk+1/ 2 - PkOk+l/2)

PkO1/2 Tk-1/ 2 + Qek, (3.35)

where we have added the term,[ O] Tk+l/2" rk1
ANI 1 ANaJ7 k+1/2 ( ( k-/

to both sides of Equation (3.35). The total potential energy in the layer Apk is

defined by

P-,, = cTkLPk. (3.36)

We obtain the equation for P&E by multiplying Equation (3.35) by Cp,/Pk and

multiplying Equation (3.28) by cTk, and then adding the resultant equations. The

final result is

PE+ V (UkPE) + F,+ P 2 - - !Pgk" (3.37)

The vertical fluxes Fpik+ are defined by

FpE =[. !] k ad (cpTk+l/2) , (3.38).T'pE,+4I/ -- k- +1/2

and the generation of total potential energy is given by

gpE"= CPOkAPk y [k +~ Uk V](r)0
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+ +/2(Tk+1, 2 - PkOk+1/2)

+ [ Lp] ___(PkOk-1/2 - Tk..l,2) + CpLAPkQ Ok* (3.39)

We obtain the equation for total energy by adding (3.29) and (3.37), and then

summing over all levels and integrating over A\ and V. By comparing the generation

terms given by Equations (3.33) and (3.39), we observe that, in order to conserve

total energy, the following three terms must match in the 9K_,k equation and in the

gPE, equation:

.k+1/2 - Ok = c, (Tk+1l2 - PkOk+ 1/2) , (3.40)

Okk - Ok1/2 = cp (PkOkI,2 - Tk_,/2), (3.41)

and

Bk+1/2 (tk+1/2 - 'kk) - Bk-/ 2 ('k - 'k-1/2) = CpOkPk a (3.42)

Equations (3.40) and (3.41) are equivalent to the hydrostatic equation (3.22). This

can be seen by solving Equation (3.41) for Ok+1/2 (by changing the index k to k+ 1)

and substituting the result into Equation (3.40). We rewrite the third condition,

(3.42), using the results of (3.21), (3.40), and (3.41) to obtain the result that

Bk+1/2 (Tk+1/ 2 - PkOk+1,2) - Bk..1/2 (PkOk-1/2 - Tk..1,2)

= Bk+,/2k (Pk+1, 2 - Pk) + Bk-1/20k (Pk - Pk 12) . (3.43)

Equation (3.43) will be satisfied if the following two relations hold:

Tk+1/2 - PkOk+1/2 = Ok (Pk+l/2 - Pk) (3.44)

and

PkOk-1/2 - Tk-1/2 = Ok (Pk - Pk-,/2). (3.45)
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Solving Equation (3.45) for Tk+l/ 2 and substituting into Equation (3.44)., we obtain

the necessary interpolation form for Ok+1/2:

Ok12-- Ok (Pk+l/2 -Pk~ + Ok+1 (Pk+i - Pk+ 1/2 (.6
(+1/2 Pk+ -Pk ) Pk+ - Pk (4

Note that Ok+1/2 is a nonlinear interpolation of the function P. This interpolation

is a price one must pay to ensure that the vertical finite differencing conserves total

energy.

We write the vertical finite difference form for the moisture equation (2.15)

as

[. q] k f [qlk+l2 - f[q]Pk

f q _ -uk.V (f[q]k) - r/w- {[---

- [--[q]k-f[q] A-1/2 }+Qf(q). (3.47)
19,q ) APk

We chose the interpolation formula of f[q] that is a linear interpolation in P,

namely:

f~qlk+12 = f[qlk+l (Pk+/ 2 - Pk) + f[q]k (Pk+l - Pk+/2 (3.48)

f Pk+1  Pk \ Pk+ - P

This interpolation does not formally conserve q, so it may not be appropriate for 0

climate simulations.

Equations (3.7), (3.10), (3.14)-(3.20), (3.22)-(3.24), and (3.47) are the equa-

tions for the discrete vertical fields of the model. In the next chapter we discuss

the spectral representation of the fields, the transformation between the variable's

grid point and its spectral representation, and the computation of the horizontal

derivatives.

26



Chapter 4

The Spectral Expansions

In this chapter we first derive the spectral representation of the field variables and

discuss the nature of the corresponding Gaussian grid point values. In the following

section the spectral filtering of the terrain field is briefly discussed.

4.1 The Spectral Expansion of the Variables

The ir, (k, Dk, Ok, and f(qk) fields are the dynamic variables of the forecast model.

They are expanded in terms of spherical harmonics, which are the associated Leg-

endre polynomials, P' (y') multiplied by the complex Fourier series, e m. The

subscript n is the total wavenumber. The series are truncated assuming a triangu-

lar truncation with M indicating the total number of resolvable waves. At present,

NOGAPS 3.2 has a spectral resolution of 79. The spectral expansion of any variable

X is written as

M M
X A ,t - TtPn e (4.1)

M=-M ?jMj
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The spectral coefficients X, (t) are complex and satisfy the condition ensuring that

the field X is real:

X-¥m (t) = [Xr4 (t)], (4.2)

where the asterisk indicates a complex conjugate.

The spectral coefficients are obtained from (4.1) by applying the orthogonality 0

property of the spherical harmonics:

X, (t)= 1  X (A, P, t) pn- (t)e-m:dAd# •  (4.3)

The grid point values of the fields are evaluated at points that facilitate the exact

evaluation of the sums in Equation (4.1) and the integrals in Equation (4.3). The

integral with respect to A in (4.3) is performed using a fast Fourier transform (FFT). 0

Accordingly, there must be at least 3(M + 1) evenly spaced, discrete values of A,

which are given by

= 2r [3(Ml+ 1)] 1 = 1, 3(M + 1). (4.4)

After the FFT integration, Equation (4.3) can be written in the shorthand form,

X(t) " ] [lX(p, t) P(p)dp, (4.5)

where F- [XI (IL, t) is the Fourier transform, defined by the integral relation,

I o27r
.T' [X] (, t) = - I X (A, i, t) e-"AdA. (4.6)

The remaining integration of (4.5) is performed using the method of Gaussian

quadrature. This procedure is based on the theorem that, given any polynomial S

g(tt), of degree 2n - 1 or less, the integral of g from -1 to 1 is computed exactly as

=
j=2
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where uj are the roots of the Legendre polynomial P(p) and w), are the weights

given by

W 0 =J n~ [,u -jujt] dp.wLj = e-* A --IId

ii j - Pi

The roots and the weights are tabulated by Carnahan et al. (1969). The integrand

in (4.5) can be shown to be a polynomial in p of degree less than or equal to 3M,

so that the minimum number of latitudinal points needed is (3M + 1)/2. These

latitudinal points, which are identified by pji, are called the Gaussian latitudes.

The spectral coefficients are finally evaluated by using the results of the Gaussian

quadrature theorem:

(3M+1)/2
Xn' (t) = E wj. [ X] (Pj, 0 P.,(PA ). (4.7)

j=1

The discrete grid point values for the fields, Xi(t), are obtained by evaluating

Equation (4.1) at the Gaussian grid points,

M MX1 jt) M_ Xn x (PZ'j) e' ,  (4.8)
m=-m n=Iml

The summation over m in (4.8) is performed using FFT's. The grid point values

of the horizontal derivatives are needed for the calculation of the time tendencies

of the dependent variables. The discrete values of the horizontal derivatives are

obtained from the expansion (4.1), which we use to obtain

ax] M M i~[X (t) = Z imX (t) P,, (y,)emAL (4.9)I j m= mn=Il

and
X M [ x 9 (t) 1 (/)emA. (4.10)

m--41j r=-m nIm 19'U

The evaluation of the advection tendency terms requires the computation of

the grid point values of the cosine weighted velocities, Uk and Vk. To obtain the
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spectral expansions for the velocity components, we first introduce the streamfunc-

tion OIk and the potential function Xk. The velocity vector Uk is expanded in terms

of I'k and Xk as

Uk = VXk - Vx (kk), (4.11)

where k is the unit vector in the vertical. The vorticity and the divergence are

related to the streamfunction and to the velocity potential by the relations

(k = V 2'Ok (4.12)

and

Dk = V2 Xk. (4.13)

We obtain the expansions for the cosine weighted velocities, Uk and Vk, from the

results of (4.11):
1 aXk cos2 V 0k (4.14)
a2 a a2  O (.4

and

k cs 2  1 + ,.k (4.15)
a2  a2 a0A

The spherical harmonics, Pn(n)eim , are eigenfunctions of the Laplacian operator, •

V 2 , with the eigenvalues, - [n(n + 1)/a 2]:

V2 {pm(), imA} = - P1)] P,(y)eiimA. (4.16)

The above eigenvalue equation is used to obtain the relationship of the spectral

coefficients of the vorticity and divergence to the coefficients of the strearnfunction

and the divergence: 0

,n=_[n(n +1)1(k, = - a2  j ', (4.17)

[n(n + 1)] X(4.18)
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Inserting the spectral expansion of the form given by (4.1) for the streamfunction

and the potential function into Equations (4.14) and (4.15) and using the relations

(4.17) and (4.18), we obtain the final spectral expansion for the velocity fields as

M M -i.m
Uk(A,y, t) = E E - D-(t)P- (y)

m=-M nl I n(n + 1)

M M Cos2 p (tdPn(i) iM.1
+ 1 E ±1 Ck) de (4.19)

m=- Mn=jmj I  )d

and

M M -im
Vk(Aq,,,t) = Z - + k¢ (t)P (,) em

=-M n(n +1)

M M Cos 2 
_Dp(_)_i .- E E ,kn+ ) '- L mil~f+1) ~'~d~u(4.20)

M=-M n=Il nn+ )d

The spectral coefficients of the vorticity and the divergence can be obtained from

the grid point fields of Uk and Vk by using the spectral representations, which are

giveri by (4.19) and (4.20), the orthogonaility of the expansion functions, and the

zero boundary conditions of Uk and Vk at the poles. The final form is written

Q( .t) = 2k--Vk (A,y,t) P"(p)em

+ 2  Uk(A,#,t) eifX, (4.21)

and

Dm(t) = 2r Io -cos Uk(Apt) Pm(I)e m'

1 21r I1"
- - v (A,',t) dP () i (4.22)

The above integrals are calculated in the same manner as Equation (4.7).
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4.2 Spectral Filters and the Terrain Field

For any field that is expanded in terms of spherical harmonics using Equation (4.1),

a spectral average (spectrally smoothed) field, X, can be defined as

M M
"X(Al,t) X= (t) P- (y) (4.23)

m=-M n=m

The spectral filter coefficients, an, depend only on the total wavenumber n. Differ-

ent examples of filters are the Sardeshmukh and Hoskins (1984) filter:

r 0"
an = exp - n(n +1) r. (4.24)

Ino(no + 1)]'

the Bartlett filter (Jenkins and Watts, 1968 , Section 6.3.5):

n
an = 1 - U; (4.25)

the Tukey filter (Jenkins and Watts, 1968):
e

n = -(1+cos (4.26)

and the Lanczos (1956) filter:

sin(n7r/M) (4.27)

= nir/M

In order to lessen the effect of negative terrain caused by spectral truncation,

we apply a spectral filter to the terrain field. Comparisons of the various filters to

the unfiltered silhouette terrain are presented in Table 4.1. The results are for a

spectral resolution of 47 and the units are in meters. The rms difference is the root

mean square difference of the filter to the silhouette terrain. The unfiltered field is

the terrain field that has only been spectrally truncated (that is a,=l). It was felt

that the Lanczos (1956) filter produced the best results of the filters (4.24)-(4.27);

i.e., reducing the negative overshoots of the terrain with the smallest rms difference.
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Table 4.1: Comparisons of different filters to the silhouette terrain for a spectral
resolution of 47.

Filter Max Min RMS

Type Height Height Error

Silhouette 5912.17 0.0 -

Unfiltered 6457.05 -700.80 176.79

Lanczos 5717.10 -93.817 245.89

Sardeshmukh 5241.42 -235.274 333.31

Bartlett 5047.76 3.67 280.80

Tukey 5496.15 -42.2809 275.59

It is of interest to note that the Bartlett filter gives non-negative results but the

maximum heights are greatly reduced. The final terrain field used by the model is

given by the spectral representation,

M M sin(nr/M)zs = . sinrM z'P (!)eimGA, (4.28)

m=-M n=lm /

The unfiltered spectral coefficients, Zn', are obtained from a spectral representation

of a silhouette profile of the U.S. Navy's global terrain field, which has a horizontal

resolution of 10 minutes.
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Chapter 5

Nonlinear Normal Mode

Initialization

The removal of inconsistencies between externally derived initial conditions (as

obtained from an objective analysis scheme) and the internal dynamics of the

NOGAPS model is achieved through the use of nonlinear normal mode initial-

ization (NNMI), as originally proposed by Machenhauer (1977) and independently

by Baer (1977) and Baer and Tribbia (1977). In this section, we derive the nor-

mal modes of the NOGAPS model and describe the initialization procedure used

to achieve a balanced set of initial data. To accomplish this, we need only con-

sider the adiabatic model equations linearized about some basic state, in a manner

analogous to that used in Chapter 7 to derive the semi-implicit time differencing

scheme. In general, the basic state that is chosen is a state at rest with a uniform

pressure and temperature field given by p, = 5 and T = T(7 ), where p is the

pressure at some height, p, is the surface pressure, T(q') is the temperature defined

on ,-surfaces (,q being a hybrid vertical coordinate defined in Chapter 2) and the

overbar denotes a suitable horizontal average. Note that the choice T = T(7) differs
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from the isothermal basic state used in the semi-implicit scheme. In tests with the

NOGAPS model, the former appears to be better suited for use with the NNMI

iterative procedure described in Section 5.2. As pointed out by Errico (1987), the

mode structures are independent of p, but depend significantly on T(77) in that

T(rq) should correspond to a statically stable environment. In the NOGAPS model,

T(r1 ) is taken to be the global mean values of T(r) derived from a specified data

set. In order to get a limited eigenvalue problem, a separation of the equations into

vertical and horizontal structures is sought (Andersen, 1977). The development

outlined in this section closely follows that of Errico (1987) and Andersen (1977).

5.1 The Normal Modes of the NOGAPS Model

As in most numerical forecast models, the dependent variables in the NOGAPS

model are defined on discrete surfaces as described in Chapter 3. It turns out

that it is simpler to describe the derivation of the vertical modes in terms of this

discrete structure. Thus, we consider the dependent variables to be column vectors

at discrete points whose elements are the dependent variables on the L model 77-

surfaces (L=18); e.g.,

_(Ay) = [x(p, A,iq), x(pA,712),...,x(A,P,1L)1, (5.1)

where an underline denotes a column vector with L data elements x. The symbols

A and p are the longitude and sine of the latitude, respectively, and the superscript

T denotes a transpose.

Using the notation in (5.1), we can write the adiabatic, linearized vertically

discrete model equations in the form

= -2MD - 29V, (5.2)
Tt
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aD
at = 2Qa( -2flU- VP, (5.3)

=- AD, (5.4)

at
a7r = -_qT D (5.5)
Ot

where

= V 2V) is the vertical vorticity,

D = V 2 X is the horizontal divergence,

0 = T(po/p)R/cp is the potential temperature,

Ir = P - Ptop,

U = 1(cosV)la,

V = k (cos )/a,

po = 1000 mb,

' is the streamfunction,

x is the velocity potential,

R, V are the horizontal velocity components,

Q is the angular velocity of the earth,

Prop is the pressure at the top of the model,

V is the latitude,

p is the sin (,

a is the radius of the earth,
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V2 is the horizontal Laplacian,

and the operators A and q are discussed below. 0

In the linearized form of the model, the time-tendencies of the velocity fields depend

on the thermodynamic fields via the pseudo-geopotential

= +BO+ cr, (5.6)

where _. is a vector whose L components are all equal to the terrain geopotential

Note that in the vertically discrete form, certain operators in (5.4)-(5.6) take

the form of matrix or vector operators that closely resemble those derived in Chap-

ter 7 for the semi-implicit time differencing scheme. For the purposes of this dis- •

cussion, we need only note that

B = B(T,p) is an L x L matrix related to the linearized hydrostatic relation,

A = A(iaO/ao7) is an L x L matrix related to the linearized vertical advection of

potential temperature,

c = c(T,p) is an L-column vector related to the linearized hydrostatic relation

and to the q-coordinate representation of the pressure gradient force,

q is an L-column vector with elements At7k, and is proportional to the discrete

form of the integral operator f1 dii.

We can differentiate (5.6) with respect to t in order to obtain

&D 00 a7r
S + C-(5.7)

and then use (5.4) and (5.5) to write

04'

= -SD, (5.S)
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where

S = (BA + cqT) (5.9)

is an L x L matrix. The prognostic equations (5.2), (5.3) and (5.8) form the

foundation for the separation of the dependent variables C, D and 4 into horizontal

and vertical structures.

In the NOGAPS model, the normal mode decomposition of the fields is carried

out in terms of the spectral representations of the dependent variables (Chapter 4).

Accordingly, we obtain the spectral representations of (5.2), (5.3) and (5.8), by

expanding the dependent variables in the form

M M
_(A, pt) = E E x(t)P"(yu) exp(imA), (5.10)

m=-M n=lm

where n is a column vector of spherical harmonic coefficients, and Pn"(p) is an

associated Legendre polynomial of order m and degree n. Because (5.10) is trun-

cated (triangularly) at zonal wave number M (M=79), (5.2), (5.3) and (5.8) are

transformed into a finite system of ordinary differential equations given by

dd = -2V' D,-2flV_, (5.11)dt -"0 -- 29
W Cn(n +

-D4n = 29p, m - 2flU + 1)n (5.12)
dt- a 2  -n

d = -SD tm  
(5.13)

t- 7n

The problem obtains a more suitable form after using the definitions

m n m ( n

1) n= + im 1_ (5.14)
n(n + 1) n n+1C'm __ _ rn

1)m __ m + n-Di- n+l Dm  (5.15)1n(n +1) nn n+1n1

and the recurrence relation

n n 1-1 + n+, (5.16)
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0

where
[n2 - M 2 11/2

= -n - (5.17)

to rewrite (5.11)-(5.13) in the form

d 2n im ,,(n+I)D,, I n ) (518
= 2 [(n l).- -n n n + n +1 (5.18)

d 2  im .m(n±+1)i mm nyT-- In(n 1)-- n =  _I +,, + I_+,

+ n(n + 1) m 
(5.19)

a
2

ddt .- = -s0 .20)

5.1.1 Vertical structure

The only vertical coupling in (5.18)-(5.20) occurs through the matrix operator S

in (5.20). Thus, the separation of the horizontal and vertical structures is obtained

by first computing the eigenvectors of S. These eigenvectors represent the vertical

structures of the normal mode solutions, while the corresponding eigenvalues play

the roles of the equivalent depths in a series of shallow water equations. The vertical

structures are determined by solving the eigenvalue problem

SZ =gZH, (5.21)

where g is gravity, Z is a matrix whose columns are the eigenvectors z, (i.e., the

vertical modes), and H is a diagonal matrix whose elements are the eigenvalues

H (i.e., the equivalent depths). In the NOGAPS model, the vertical modes are

normalized such that
L

E Zk,t zk1?lk = 1, (5.22)
k=1

for each vertical mode I = 1,. . . , L, where Zk,t represents the kth 17-level component

of the fth vertical mode, and the values Ak are the discrete components of d77 that
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would appear in the vertically continuous form f0 zjzjd7 = 1. It should be noted

that, in the NOGAPS model, the vertical modes are not orthogonal in the sense

that
L

zkj Zk,1 AIA = 0, for j 3 e, (5.23)
k=1

is not true in general. Thus, strictly speaking, the vertical modes do not contribute

independently to the total variance of the fields. However, the vertical modes do

satisfy (5.23) to a very high degree for all but the shallowest equivalent depths, and

therefore, are extremely useful in conventional initialization applications; i.e., in

controlling spurious high frequency gravity waves that arise due to inconsistencies

between analyzed data and the internal dynamics of a numerical model.

A typical set of values of T( 1) for NOGAPS 3.2 is shown in Table 5.1. The

corresponding vertical modes z1 are shown in Figures 5.1-5.6. The values of T(77)

in Table 5.1 are the global mean values at each n7-layer obtained from an extended

forecast produced by the NOGAPS model. The 18 equivalent depths Ht are also

shown in Table 5.1, ordered from largest to smallest. Note that the values range

from nearly 10 km for the external (t = 1) mode to only a few hundredths of a

meter for the shallowest internal (t = 18) mode. Recall that the equivalent depths

H, in Table 5.1, and the vertical modes zt in Figures 5.1-5.6, are the eigenvalues

and eigenvectors, respectively, of the vertical structure equation (5.21).

The vertical modes of the NOGAPS model shown in Figures 5.1-5.6 are typ-

ical of those in other models having similar vertical resolution (cf., Wergen, 1987).

In particular, we see that the external mode in Figure 5.1 is equivalent barotropic

(i.e., approximately independent of pressure) throughout the depth of the model

atmosphere, while vertical modes f = 2 and e = 3 exhibit one and two sign changes

with height, respectively. It can be seen in Figures 5.2-5.6 that the number of

zero crossings for each mode increases by one for successively shallower equivalent
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depths. Note that, in general, the shallower modes have their greatest amplitude

in the lower troposphere. However, because the modes have been normalized ac-

cording to (5.22), no meaningful comparison can be made between the amplitudes

of different modes at a given vertical level.

Because the vertical eigenvectors form a complete set, a vector of r7-surface

data values can be expanded in terms of these eigenvectors to obtain a vector

of vertical mode coefficients. Thus, the transform, or projection of a dependent

variable __' onto the vertical modes is given by

im = Z-1x , (5.24)
n -

where irn represents the transformed vector of vertical mode coefficients and the

superscript -1 denotes an inverse. Conversely, the vector of 1q-surface values can

be determined from the vertical mode coefficients via

= Z i. (5.25)

By applying (5.25) to the prognostic equations (5.18)-(5.20), we can transform that

set into one describing the tendencies of the vertical mode coefficients. When this

is done, (5.18) and (5.19) retain the same form, except that the dependent variables

are replaced by the transformed ones. In contrast, the form of (5.20) changes; the

new relation is obtained by using (5.25) combined with (5.21) to yield

- =-gHbn. (5.26)

Thus, for each vertical mode t, we have
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Table 5.1: Values of T(r7 ) from a 30-day simulation with the NOGAPS model, and
the set of equivalent depths HI, corresponding to the vertical modes in Figures 5.1-
5.6. Note that I is a model index for 77 and T, but refers to the ordering of the
vertical modes in the case of H.

I p T(K) H(m)

1 0.008 8.99 229.25 9669.53

2 0.028 28.97 209.14 3224.16

3 0.049 49.95 198.15 801.71

4 0.092 92.91 199.12 308.66

5 0.136 136.86 214.05 130.55

6 0.187 187.81 217.82 63.85

7 0.247 247.75 227.33 40.60

8 0.315 315.69 236.96 21.30

9 0.393 393.61 247.70 11.48

10 0.482 482.52 258.23 6.63

11 0.575 575.43 266.92 3.99

12 0.669 669.33 273.94 2.36

13 0.759 759.24 279.79 1.45

14 0.839 839.16 283.94 0.75

15 0.904 904.10 287.66 0.40

16 0.950 950.05 290.40 0.18

17 0.978 978.02 291.83 0.10

18 0.995 995.01 292.08 0.02
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Figure 5.1: The vertical modes of the 18-level NOGAPS model, based on the
parameter values in Table 5.1, for vertical modes 1-3.
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Figure 5.2: The vertical modes of the 18-level NOGAPS model, based on the
parameter values in Table 5.1, for vertical modes 4-6.
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Figure 5.3: The vertical modes of the 18-level NOGAPS model, based on the
parameter values in Table 5.1, for vertical modes 7-9.
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Figure 5.4: The vertical modes of the 18-level NOGAPS model, based on the
parameter values in Table 5.1, for vertical modes 10-12.
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Figure 5.5: The vertical modes of the 18-level NOGAPS model, based on the

parameter values in Table 5.1, for vertical modes 13-15.
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Figure 5.6: The vertical modes of the 18-level NOGAPS model, based on the

parameter values in Table 5.1, for vertical modes 16-18.
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nf= 2QK7± 1 c- (f+1b n Mrnflbr (5.27)

d bm t J=m2P ?M fl + n+1 + EM n m
t in(n+ 1) nt ( n n, + (+ I),+.

n(n + 1) -,
+ a2  n t (5.28)

= -gHDn,t. (5.29)

5.1.2 Horizontal structure

For a given vertical mode f, the system of prognostic equations (5.27)-(5.29) is

decoupled from that for any other vertical mode. Each system represents a set of

shallow-water equations on a sphere with the corresponding equivalent depth Ht 0

as its scale height. For a given equivalent depth, the horizontal structures of the

normal modes are determined from the eigenvectors of this system.

Equations (5.27)-(5.29) obtain a more convenient form if we use the dimen- 0

sionless forms

t' =Qt, 0

=

b =

and introduce the transformation

-h, '' (5.30)
= ihnt b,' (5.31)

4' - n M (5.32)
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where

h, (= 2 a- 2)1/2  (5,33)

As discussed below, the dependence of the transformation of vorticity and diver-

gence on n in (5.30) and (5.31) enables the prognostic equations to obtain a simple

symmetric form well suited for solution as an eigenvalue problem. Note that no such

transformation of the pseudo-geopotential is required and that (5.32) is included

only for notational consistency. The resulting dimensionless system can thus be

written

d d. = i[c- + a b-,, + a-, Db- 1], (5.34)

dt doT i~b + ~i + .7n +n a, +,
=~- , b- + a + (5.35)

d - =i[b' D'I , (5.36)
Tt n n n'~]

where

ao = bg = c = o, (5.37)

and

-2,m
a - .[(n + 1)(n - 1)]1/2, (5.38)n

b -= n(n + 1)j , (5.39)

C - 2nm) (5.40)

C = [ n -M ,21/2 (5.41)

for n > 0. For convenience, the subscript f is implied, as well as the primes denoting

the dimensionless quantities.

Equations (5.34)-(5.36) separate into independent sets for each zonal wave

number m. Thus, m may be considered a parameter of the problem, as is HI, and

may be dropped as a superscript unless otherwise necessary. Furthermore, it turns

51



out that for each m, (5.34)-(5.36) separate into two independent systems: one in

which there are only even values of (n - m) for b' and and odd values for

S, and one in which the even and odd conditions are reversed. These two systems

are called the symmetric and antisymmetric cases, respectively, in reference to the

symmetries of the dependent variables about the equator. Note that the reference

to the symmetry of the fields about the equator should not be confused with the

symmetric form of the equations themselves, which occurs in both cases.

For the symmetric case, (5.34)-(5.36) may be written in the form

dt

where the subscript S denotes the symmetric case and Rs is the vector

Rs = ( b0, 0 , 1, fD2, &,a,..., ,N_2, bN-2,CN_,) T , (5.43)

and Ms is the matrix

0 bo 0 0 0 0 ... 0 0 0

b0 co a, 0 0 0 ... 0 0 0

0 a, cl 0 a2 0 ... 0 0 0

0 0 0 0 b2 0 ... 0 0 0

0 0 a2 b2 c2 a3 ... 0 0 0Ms = (5.44)

0 0 0 0 a 3 c3 ... 0 0 0 0

0 0 0 0 0 0 ... 0 bN- 2  0

0 0 0 0 0 0 ... bN-2 CN-2 aN-i S

0 0 0 0 0 0 ... 0 aN-1 CN-I

The single subscripts in (5.43) and (5.44) denote values of (n - m) and the super-

script m is implied. The value N denotes the truncation size associated with zonal
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wave number m, which for a triangular truncation at wave number m = M is given

by N = Al - Iml + 1. Thus, the truncation size N decreases with increasing zonal

wave number m, such that N = AI + 1 form = 0, N = .l form = 1, N = -- I

for m = 2, and so on, down to N = 1 for m = M. The relationship bctween the

truncation size N and the order of the matrix Ms is discussed below. It should be

noted that the last element of Rs in (5.43) has been described for the case when N

is even; when N is odd the last element of Rs is DN 1. Similarly, the matrix Ms

has been described for the case when N is even, otherwise the last row and column

will have forms like the next-to-last row and column in (5.44).

For the antisymmetric case, (5.34)-(5.36) may be written in the form

dt -iMAkA, 
(5.45)

where the subscript A denotes the antisymmetric case and XA is the vector

XA = ((o, 1, Di, (2, )3, D 3 , ... , N-, 4N-i, DN_.)T, (5.46)

and MA is the matrix

co 0 a, 0 0 0 ... 0 0 0

0 0 b, 0 0 0 ... 0 0 0

a, bi cl a2 0 0 ... 0 0 0

0 0 a 2 c2  0 a3 ... 0 0 0

0 0 0 0 0 bz ... 0 0 0MA = . (5.47)

0 0 0 a3 b3 c3 ... 0 0 0

0 0 0 0 0 0 ... CN-2 0 aN-1

0 0 0 0 0 0 ... 0 0 bN- I

0 0 0 0 0 0 ... aN-1 bv-i CN-1
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As before, the last element of :CA in (5.46) has been described for the case when N

is even; when N is odd the last element of xA is 4N-i. Similarly, the matrix MA

has been described for the case when N is even, otherwise the last row and column

will have forms like the second-to-last row and column in (5.47).

The order of the matrix M for a given value of m is given by the sum of the

gravitational components (equal to the number of geopotential and divergence ele-

ments) plus the rotational components (equal to the number of vorticity elements)

in the state vector :k. Recalling that N = M - Iml + 1, and following Andersen

(1977), we compute the number of gravity modes NaV for zonal wave number m

by the formulae

- J 2[(N + 1)//2] symmetric (5.48)
2[N//2] antisymmetric

and the number of rotational modes Nrot by the formula

Not = N/2 symmetric (5.49)
(N + 1)//2 antisymmetric

where the symbol "//" denotes integer division. Thus, the order Nord of the matrix

M is

Nid 2[(N + 1)//2] + N//2 symmetric (5.50)
2[N//2] + (N + 1)//2 antisymmetric

It should be noted that for the zonally symmetric (m = 0) fields there arises a

formal problem in defining the components 0, bo and 4o. The components o and

Do correspond to zero-valued velocity fields, and thus, have no physical significance.

The component o corresponds to the horizontal mean geopotential field so that

data will, in general, have a non-zero projection onto this mode. However, rather

than reduce the order of the matrix M for m = 0, we simply set the corresponding

elements to zero (as shown in (5.37)) since the remaining meaningful components
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are mapped invariant by the matrix (Andersen, 1977). Thus, we retain the formula

in (5.50) for all m and simply note that, for m = 0, the number of gravity modes

is reduced by two in the symmetric case, while the number of rotational modes

is reduced by one in the antisymmetric case. A formal treatment of these special

modes is given in Errico (1987).

The horizontal structures of the modes are given by the eigenvectors of M.,

which we determine from the eigenvalue problem

ME = EW, (5.51)

where E is a matrix whose columns are the horizontal eigenvectors ej (i.e., the

horizontal modes), W is a diagonal matrix whose elements are the eigenvalues wj

(i.e., the frequencies of the modes), and the subscript j denotes a particular mode.

Note that there is a unique horizontal eigenvector ej for each mode. The normal

mode solutions to (5.34)-(5.36) take the form

k = ajej exp(iwjt), (5.52)

where a is the time-dependent amplitude coefficient, or normal mode coefficient.

Again, the subscripts I and m are implied; i.e., each mode is uniquely identified by

a triplet of indices (1, m, j).

Because the matrices (5.44) and (5.47) are real and symmetric, all a and e are

real-valued. For a given equivalent depth, all the modes corresponding to m $ 0

are orthonormal in the sense that
1 forzi= j,

(e, ej) Ior J (5.53)
0 for ij,

where the operation on the left side denotes a vector inner-product. For m = 0 the

rotational modes are stationary and degenerate having a, = 0. The eigenvectors
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corresponding to these eigenvalues are not uniquely determined, and thus, are not

orthogonal in the sense of (5.53). However, this problem is of little relevance within

the context of conventional nonlinear normal mode initialization since we seek to

balance only the gravitational components of the flow. Methods for dealing with

this ambiguity are discussed by Kasahara (1978) and by Errico (1987).

For m 3 0, the modes can be ordered from smallest to largest according to

their frequencies wj, and then divided into three separate bands corresponding to

the three types of modes. In the NOGAPS model, the smallest third in this sequence

are negative-valued, and correspond to eastward propagating inertia-gravity modes

(EG modes) in the linearized model. These include the Kelvin modes, which are low

frequency eastward propagating gravity modes. The middle third of the frequencies

for each zonal wave number are positive valued and correspond to rotational, or

Rossby modes (RT modes), while the largest third in this ordering corresponds

to the westward propagating inertia-gravity modes (WG modes). For increasing

values of m, the number of modes decreases by three from 3(M + 1)-or (M + 1)

of each type-for m = 0, down to 3--or one of each type-for m = M, including

those for the symmetric and antisymmetric cases together.

Finally, in a manner analogous to (5.24) and (5.25), the projection of the

state vector, or vertical mode coefficients, R, onto the normal modes is given by

a = ETx, (5.54)

where a is a vector containing the N normal mode amplitude coefficients corre-

sponding to vertical mode I and zonal wave number m, and ET = E 1 owing to the

symmetric form of the matrix M. Conversely, the vertical mode coefficients can be

expanded in terms of the normal modes via

= Ea. (5.55)
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5.2 Adiabatic Initialization: Machenhauer's Method

The unforced, nonlinear equations for the NOGAPS model can be written in the

general form
dicd- = iMi + ., (5.56)

where A represents the nonlinear contributions to the tendencies, which were omit-

ted in the determination of the normal modes. We obtain the normal mode form of

(5.56) by transforming R according to (5.54) and then applying (5.51), which yields

dad-= iw, + Z, (5.57)

where 1Z = ETK. Thus, for mode j we have

da3d = 2wLjaj + TZj , (5.58)dt

where again wj is the frequency of the mode in the linearized model determined as

an eigenvalue of the matrix M. The nonlinear term Rj generally depends on modes

other than aj alone, and thereby acts to couple the linear modes in the nonlinear

model (Errico, 1987).

The aim of the initialization procedure is to eliminate dynamic imbalances in

the initial data that lead to unrealistically large gravity mode oscillations during the

early part of a model forecast. Machenhauer (1977) proposed the balance condition

d = 0 (5.59)

initially for all gravity modes, based on scaling arguments regarding the magnitudes

of the terms in (5.58). It is clear from (5.58) that balance is thus obtained when

the mode amplitude satisfies

aj = -RZ/iwj . (5.60)

57



As (5.60) is a nonlinear equation, Machenhauer proposed an iterative solution

Jn+l = -Z /iw3 , (5.61)

where the superscript (n) denotes an iteration number and "Z' ) is computed from

data in terms of a(' ) . In its present form, (5.61) is extremely cumbersome owing

to the difficulty in deriving the expression TZ(' ) for each new set of coefficients.

However, it obtains a far more convenient form if we use (5.58) to substitute for

Z(n, giving
Ai(n) (n+i) _(,) 1 daj (n )

iwj dt ' (5.62)
where Ac( is the nonlinear correction to the mode amplitude. The advantage of

this approach is that we may now use the forecast model to compute the nonlinear 0

term "Z(n ) implicitly as the difference between the mode tendency and its linear

forcing. The term dac')/dt may be approximated by first computing -j n ( to), and

then making a short forecast (say, one model time step) to obtain a n)(to + At) and 0

the tendency
dQ (n)  ()(t + At) - a ")(to)

dcij P a j(5.63)d--t At'

where to refers to the initial conditions and At is a small time-step. In practice

this procedure is further simplified by taking a model step and then transforming

the tendencies of the dependent variables directly into normal mode space, rather

than transforming data from two time levels. Thus, the term dac' )/dt is analyzed

in terms of the actual time-differencing scheme used in the model. In NOGAPS,

a forward time step is used for the first iteration and centered time steps are used

thereafter.

The convergence of the iterative scheme is monitored by computing the squared

sum of the tendencies of the initialized coefficients, as introduced by Andersen

(1977). This quantity is usually computed for each vertical mode e after each
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iteration, and may be written

BAL d- daJ (5.64)BA E= 1[ dt dt'

where the asterisk denotes a complex conjugate and G1 is the set of initialized

gravity modes pertaining to vertical mode f. The closer BAL is to zero, the closer

the initial data are to the desired balance. Experience with NOGAPS shows that,

for a conventional adiabatic initialization, two or three iterations of (5.62) are suf-

ficient for obtaining values of BAL that may be considered zero at half precision

machine accuracy. Of course, the number of iterations required to obtain BAL 0.

or more importantly, the likelihood of (5.62) converging, depends strongly on the

number of modes initialized. The number of vertical modes initialized operationally

in NOGAPS 3.2 as well as the determination of the subset G1, is discussed in Sec-

tion 5.3.

5.2.1 Rasch's scheme

As an alternative to (5.62), Rasch (1985) proposed an iterative scheme that gen-

erally converges for a larger subset of modes than does the Machenhauer scheme.

Although it is not used operationally at the present time, this scheme is an available

option in NOGAPS that may be invoked by simply resetting a parameter value, In

the Rasch scheme, the balance condition (5.59) is the same, but (5.62) is replaced

by

( (( j daj (5.65)Aa " )  - &)- u(n-' dt '(.5

where the overdots in the denominator denote time derivatives and j is a relaxation

coefficient that controls the rate of convergence. Typical values of 0 are in the range

0.5 < /3 < 1. Because (5.65) requires coefficients from two time levels, the values

for n = 1 are obtained by using a drastically under-relaxed Machenhauer step of
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the form

a~l) =_~(o) E daj(0) (5.66)=o i~oj dt W

where e is a small number; e.g., e = 0.05 has been used successfully in the NOGAPS

model. By comparison with (5.62), we can view the parenthesized quantity

.(n) _(n-1)

j - j

that appears in (5.65) as an empirically derived frequency for a given normal mode

(Rasch, 1985). Note that the denominator of this quantity represents a poten-

tial singularity and, under certain conditions, might need to be replaced by some

nonzero number. This is discussed in more detail by Rasch (1985). Finally, it should

be noted that the Rasch scheme may be particularly useful in NNMI applications

that require robust convergence properties, such as initializing many vertical modes

or including diabatic forcing terms on the right side of (5.58).

5.2.2 Correction of the prognostic variables

After each iteration, the corrections Aa to the mode coefficients must be trans-

formed back to "model space" (e.g., spherical harmonic coefficients in the case of 0

NOGAPS) and then added to the fields before computing the next set of tenden-

cies. Accordingly, we perform the inverse horizontal and vertical transforms (see

Sections 5.1.1 and 5.1.2) on Aa to obtain the corrections A_(', AD' and AI

At this point, the corrections to the vorticity and divergence fields can be applied

in a straightforward manner by simply adding A _n and AD to (' and D,

respectively. •

The remaining problem is to extract the corrections to the pressure and po-

tential temperature fields from A-_ . To accomplish this, we make use of (5.13),

which states that the divergence may be expressed solely in terms of the time change
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of the pseudo- geopotential as

Dm  5- I -1 (5.68)
dt -

The time change of the pressure field can thus be expressed in terms of the time

change of the pseudo-geopotential by combining (5.68) with the spectral form of

(5.5) to obtain

dmri d
n P -p_17 , (5.69)

where p = qTS-1 is an L-vector whose elements depend on linear operators de-

scribed in Section 5.1. Then from (5.69), it follows that the correction to the surface

pressure is given by
Ar' = p T_, . (5.70)

In the same manner, the time change of the potential temperature field may be

expressed in terms of the time change of the pseudo-geopotential by combining

(5.68) with the spetral form of (5.4) to obtain

dr = T d (5.71)

where T = AS - ' is an L x L matrix. From (5.71), it follows that the correction to

the potential temperature is given by

A 0 = T A,0 . (5.72)

Having obtained A , AD' AO' and A~r', we adjust the values of each prognostic

variable accordingly, and then take a model step to obtain a new set of tendencies for

the next iteration of (5.62). The process is repeated until BALI - 0 for all vertical

modes initialized (or until some pre-specified number of iterations is performed),

indicating that the initial values of (,, D', 0' and 7r- have obtained the desired

state of balance.
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5.3 Summary of the NOGAPS NNMI

Procedure 0

NOGAPS 3.2's NNMI is configured to initialize three vertical modes f =1-3 (i.e.,

the external and first two internal modes) using the Machenhauer iterative scheme

(5.62). Two iterations of (5.62) are performed, not including the calculations of

the initial tendencies at n = 0. In addition to a vertical mode cutoff at t = 3, a

frequency cut-off is employed that restricts the subset of initialized modes G, to

those with natural periods less than 24 hours (as determined from their linear fre-

quencies w). The cutoff values for t and w were determined empirically and appear

to eliminate most of the undesired initial gravity wave noise without severely dam- 0

aging meteorologically significant divergent circulations. This is especially crucial

for preserving the character of certain tropical circulations. Future research with

NOGAPS's NNMI will be aimed at improving the initialization of these circula- •

tions through, for example, the inclusion of diabatic processes in (5.58) or more

specialized choices of G1.

The sequence of operations performed during NOGAPS's NNMI is summa- 0

rized below. In the following, we denote the model data corresponding to time t

and iteration n by x(")(t). The sequence of operations is as follows:

0. Set n = 0 to begin the procedure with the uninitialized data x(°)(to).

1. Perform a nonlinear model step to determine dx(n)/dt from x(n)(to).

2. Transform dx(n)/dt into dac(n)/dt using (5.7), (5.24), (5.30)-(5.32) and (5.54). 0

Check for convergence using (5.64).

3. Compute the corrections to the mode amplitudes A,(n) from da( ()/dt using

(5.62).
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4. Transform Aa N into corrections in "model space" AX (
n
) using (5.55), (5.30)-

(5.32), (5.25), (5.70) and (5.72).

5. Apply the corrections to the model fields, where the corrected values are given

by x(")(to) = x(n)(to) + AX (n).

6. Set x(n)(to) = X(c) (to) and n = n + 1. If n < 2 (or some other pre-specified

number of iterations), then return to step (1). Otherwise, the corrected values

x(n)(to) represent the initialized data at to and the procedure is complete.
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Chapter 6

The Time Step Integration

Strategy

In this chapter we present an overall view of the numerical procedures that are used

to compute the time tendencies of the dynamical variables. In the subsequent chap-

ters we describe the details of the adiabatic calculations (Chapter 7), the implicit

adjustments (Chapter 7), the horizontal smoothing (Chapter 8), and the diabatic

calculations (Chapters 9-14).

A schematic diagram of the NOGAPS 3.2 forecast system is presented in Fig-

ure 6.1. The forecast model saves 3 time levels of spectral coefficients corresponding

to the previous time level (t-At), the current time level (t), and the spectral time

tendency for ir, (, Dk, Ok, and f[qkl. The time tendency is computed using central

differencing:
LgX X(t + At) - X(t - At) (6.1)
-a- 2At

where X represents any variable. In addition, we store the spectral coefficients of

the potential temperature tendency due to radiation, since the radiative parame-

terizations are not called every time step. As opposed to the spectral coefficients.
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Data Assimilation: QC and 0!

Nonlinear Normal Mode Initialization

A----- diabatic; Semi-Implicit; Zonal Advection: k~I

Shal Cum., A-S Gum., and St. Precip.: Eqn. (6.6)

_____________~____________

Longwave and Shortwave Radiation

_______________________t_
Spectral Coeff.: 0(',):, etc.

*
lior. Duff.; Newton. Cool.; Robert Filter: 0(t + At),ec

Output

Figure 6.1: A schematic flow chart of NOGAPS 3.2 numerical computations.
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however, we store only I time level of the Gaussian grid point fields: 7, k, Dk, Uk.

Vk, Ok, f[qk], Pk, and Pk+1/2.

The forecast cycle begins with the adiabatic calculations, which use either (at

the first time step) the nonlinear normal mode initialization adjustments (described

in Chapter 5) to the optimum interpolation analysis fields interpolated to the model

coordinates, or (for all subsequent time steps) the results from the previous time

step. The fields, 7r, (k, Dk, Ok, and 1/ln[q]k are the dynamical variables of the

forecast model and their dynamical equations are given respectively by (3.7), (3.17),

(3.18), (3.24), and (3.47). These tendencies are computed explicitly using the

fields evaluated at the central time. The details of the adiabatic calculations are

given in Chapter 7. We adjust the explicit adiabatic tendencies of r, Dk, and Ok

by treating gravity wave propagation semi-implicitly (Chapter 7), and we modify

the expiicit adiabatic tendencies of (k and f[q]k by treating the zonal advection

implicitly (Chapter 7). After the above calculations, we compute the adiabatic

spectral coefficients at time t+At for ir, 1/ ln[q]k, (k and Dk as (X representing rr,

Dk, (k, or 1/ln[q]k)

(+ At) - X(t - At) + 2AtX(aO),(t). (6.2)

The superscript (ad) indicates that the tendency term is from the adiabatic cal-

culations and the t + At fields are evaluated using only these adiabatic tendencies.

The spectral coefficients for the virtual potential temperature are computed from

the adiabatic and radiation tendencies as

Ok n(t +n t)= 0k(- t) + 2At k(o ) + , (6.3)

where the notation, 0(
Tad), indicates we use the adiabatic and the radiative ten-

dencies in the calculation. Using the results of (4.8), (4.19), and (4.20), we then

compute the grid point fields, corresponding to the spectral coefficients of (6.2)
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and (6.3), for the velocities, potential temperature, and the moisture function. W,%et(a:d) 1(d r a d f (a]d),

denote these fields, respectively, as U rk , Vliad) I , and f )[q] (ad where the sub-vj '1 k , whrethksb

scripts have the range: I = 1, 3M + 1, j = 1, (3M + 1)/2, and k = 1, L. :he grid

point specific humidities are then obtained by inverting the moisture function:

(ad) __r(a d)
qlk = exp{1/f[q]JqJk •

The details of the diabatic parameterizations are given in Chapters 9-15.

All the NOGAPS 3.2 diabatic processes calculate implicit vertical adjustments to

the grid point fields based on the current values of these fields. Therefore, the

order that we call the diabatic routines has an impact on the final grid point

fields. The order that the parameterizations are called is: the gravity wave drag,

the turbulent vertical diffusion, the shallow convection, the penetrative cumulus

convection, and the large scale precipitation. The output from the large scale

precipitation parameterizaLion is the final diabatic grid point prediction. If the

time step is a multiple of 2 hours, then the radiation tendency is computed from

the final diabatic predictions of temperature and moisture. Gravity wave drag and

the vertical diffusion are the only two parameterizations that alter the velocity

fields. For the velocities we write the adjustment scheme as

U(gw(t + At) -q (t +
=j d( + At) + AC(g"

ik ~' lik k

U t( t+) = U'Z (t + t) + r )() (6.4)=i ( + At) + Atk,

and

Vk + Ait) = + At) + AV(g) 1
V,,fk(t + At) = V1")(t + At)+ AV[jVf) (6.5)

The superscripts (gw) and (vf) indicate respectively the gravity wave drag and

the vertical flux calculations. The temperature and the moisture are changed by

the vertical diffusion, the shallow convection mixing, the penetrative cumulus con-

vection, and the large scale precipitation. The diabatic adjustment scheme for
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temperature is

O=(t + At) +()t AO(Vf)Ilk =(tk + At) ,--,ik,

+At) = (Vf)( + At) + AO(SC)
I ljk Ilk'

0(cu)(t + At) = c(t + At)+ AO(Cu) (6.6)

0 OP)(t + At) = (t + At) +

The superscripts (sc), (cu), and (sp) indicate the shallow convection mixing, the

large cumulus convection, and the large scale precipitation calculations. A similar

sequence as (6.6) can be written for q. The end results of the physics calculations

are the grid point fields of temperature, specific humidity, and velocity, which are

valid at t+At.

Following the diabatic parameterizations, we first calculate the grid point spe-

cific humidity function, I/ln[q]; we then compute the spectral coefficients for the

virtual potential temperature, the moisture function, the vorticity, and the diver-

gence from (4.7), (4.21), and (4.22). We adjust the spectral coefficients of potential

temperature at the top model level (i.e., 01) using a Newtonian cooling term to

reduce the false reflection of vertically propagation gravity waves (Chapter 8), and

we apply an implicit fourth order diffusion operator to the spectral coefficients of

Ck(t + At), Dk(t + At), Ok(t + At), and 1/ ln[q]k(t + At) to reduce small scale noise.

Finally, we apply a Robert time filter to the spectral coefficients evaluated at time t

to damp the computational mode. We do not, however, recalculate new grid point

fields corresponding the implicit spectral coefficients computed above, since exper-

iments indicated that little is gained by the Gaussian grid point parameterization.

Instead, the grid point fields are those obtained after the large scale precipitation

computation. The spectral fields obtained after horizontal diffusion and the grid

point values obtained after the parameterization of large scale precipitation are

then used for the next time step.
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To demonstrate the difference between the adjustment procedure and the ten-

dency computed from fields using a previous time step, we present results from the

forecasts starting at 12Z February 23, 1989. At that time NOGAPS 3.0 (triangu-

lar truncation of 47) was operational, and the gravity wave drag and the vertical

flux calculations were done by computing a tendency based on the t -At grid point

fields. Since the grid point fields corresponding to this time step are not saved by

the model, NOGAPS 3.0 computed the grid point fields from their spectral coef-

ficients, which greatly added to the computational overhead of the model. The

time series of NOGAPS 3.0's lower level variables and PBL stresses were often very

noisy, especially under stable conditions. This is demonstrated in Figure 6.2 for

the lowest level wind speed. Figure 6.3 is the time series for the same case and

truncation (NOGAPS 3.1) starting from exactly the same initial conditions with

the gravity wave and vertical flux tendencies computed using the current grid point

fields. Using the current fields to compute implicitly the adjustments does not re-

move all variations associated with changes in stability states, but they are greatly

reduced as seen by comparing the sensible heat flux computed in NOGAPS 3.0

in Figure 6.4 with that computed for NOGAPS 3.1 starting from the same initial

condition given in Figure 6.5.

0
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0 4 a 32 is1 21 28 32 3 'M *A

Figure 6.2: The lowest level wind speed for the open sea point 48 041 N, 17205W for
12Z February 23, 1989, from NOGAPS 3.0 calculating the vertical flux tendency
from the t - Ait fields.
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Figure 6.5: The sensible heat flux for the open sea point 58° 34 N, 42°50W for 12Z
February 23, 1989, from NOGAPS 3.1 calculating the vertical flux tendency as an

adjustment from the t + At fields.
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Chapter 7

The Adiabatic and Implicit

Adjustments

In this chapter we first present a short description of the procedure to calculate

the explicit adiabatic terms. The discussion is brief since all the equations have

been presented in previous chapters (Chapters 3 and 4). In the second section of

this chapter we give the details of the semi-implicit method and the implicit zonal

advection of the moisture function and vorticity.

7.1 The Explicit Adiabatic Calculation

We compute the explicit adiabatic tendencies using central differencing. We start

the adiabatic calculations with the calculation of the grid point values of the -r time

tendency terms given by the right hand side of Equation (3.7). Using the quadra-

ture formula given by (4.7) we compute the corresponding spectral coefficients for

the ir tendency. The grid point values of the vertical motion, [io'p/Oq] k+1/2, are

then computed from Equation (3.10). We calculate the grid point values of Gk and

Hk from Equations (3.14) and (3.15) (without the forcing terms); the correspond-
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ing spectral coefficients are computed using (4.7), and we compute the derivatives

that are needed in Equations (3.19) and (3.20) using the spectral expansions of

Equations (4.9) and (4.10). The geopotential term of (2.33) is obtained from Equa-

tions (3.22) and (3.23). We calculate the kinetic energy term of (3.16) by squaring

the cosine weighted velocities. We add the grid point values of the geopotential

and the kinetic energy and then compute the spectral coefficients of the resulting

sum. Using the results of the eigenvector/eigenvalue relationship of the spherical

harmonics given by Equation (4.16), we multiply the spectral coefficients of the

geopotential and kinetic energy by the eigenvalues, - [n(n + 1)/a 2 ], to obtain the

spectral contribution of the Laplacian term on the right hand side of Equation

(3.20).

The adiabatic calculation of the spectral tendencies for the virtual potential

temperature equation (3.24) and the moisture equation (3.47) proceed in the same

manner as those of the vorticity and divergence equations. We calculate the neces-

sary terms for the tendency from the grid point values at time t, and then compute

the corresponding spectral coefficients. At the end of the explicit adiabatic calcula-

tions we have the spectral coefficients for the explicit adiabatic time tendencies of rr,

(k, Dk, Ok and f[qk, which are denoted as (a).' aa-89)(Ae.)
(20'"'J' eX l earpl

and (k ez L/

7.2 Semi-Implicit Calculation

If we used only the explicit time tendencies for the dynamic variables, a small time

step would be needed to prevent computational instability. In general, the time

step must satisfy the CFL criterion,

a
At < a

u m IrWM + 0'
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where the velocity u,,, is the sum of the maximum advective wind speed plus the

external gravity wave speed. With an explicit treatment of gravity wave propa-

gation this maximum speed is about 400 m sec 1 . In order to achieve a larger

time step, we treat gravity wave propagation in a semi-implicit manner using the

method developed by Robert et al. (1972). The approach that is described below

closely follows that given by Hoskins and Simmons (1975). The final results of the

procedure are corrections for those terms responsible for the gravity wave propa-

gation, namely the divergence and the geopotential terms in the 7r, Ok, and the Dk

equations.

First, we define a mean atmospheric reference state that is characterized by

a constant 7r, which we denote by T and is independent of A and M, and a mean

virtual potential temperature field denoted by 0 k. We use an isothermal mean

state of 300K to ensure maximum numerical stability as suggested by Simmons

et al. (1978). We set T to 600 mbs because our stability analysis also shows a

stability advantage for a reference state near minimum expected terrain pressure

values. Using these mean states, we write r and Ok as the sum of the mean and a

deviation in the form:

7r = + r', (7.1)

0k = Vk+ 9. (7.2)

If we insert (7.1) and (7.2) into the 7r tendency equation given by (3.7), then the

tendency equation takes the form:

aTr L L

- - p - 'V .(r'V I), (7.3)1t =1 l

where

A = 'AA + AB, T.
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We treat implicitly the divergence in the first term on the right hand side of (7.3)

by evaluating it as the sum of the forward time divergence DI(t + At) and the

backward time divergence D1 (t - At). We compute the remaining terms of (7.3)

explicitly; that is, we evaluate them using the central time values. The equation

then takes the form:

air L [-(+e +t L~~
_ = -L 2D(t+At) + D(At) Aj - ABIV. [r'VI(t)]. (7.4)

It 1=1

Adding and subtracting the term AptD(t) to the right hand side of equation (7.4), 0

we obtain the simplified form of the equation:

" =  -(75)

where from Equation (3.7) the explicit 7r tendency is given by

t - [AAD,(t) + ABIM,(t)]. (7.6)
k ) expl 1=1

In Equation (7.5), we have introduced for any variable X, the quantity X, given by

-~+t + ~ - t X (t). (7.7)

Note that X can be viewed as a perturbation due to the implicit scheme and

Equation (7.5) expresses the change in the ir tendency due to the divergence change.

The divergence term enters the 0 k equation given by (3.24) through the ver-

tical advection terms. Using the same procedure as the 7r equation, we rewrite the

vertical motion, which is given by Equation (3.10), as

[ .aplL _ k

k+1/2 1=1 1

L

+ Bk+l/2 Z [AAIDI(t) + ABIMI(t)]

1=1
78[AAD(t) + ABtMI(t)] (7.8)
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Inserting the vertical motion calculation of Equation (7.8) into the adiabatic form

of the Ok equation given by (3.24), we obtain the final result,

a _ (00k L

at ZSki D1, (7.9)

where Ski denote the components of a matrix S, which are defined by

________ k k1/2lSki12 Bk+1/22Apl + _w Bk-1/2LNpIski = Ap Ak

AN__ I LPkJ 1/ZP

- k +12 k z-p- -hk Ik - -1/2 A. (7.10)

In the above definition, the components hki define a matrix H that are given as

{ if k>l
0 ifk<I

We separate the divergence equation (3.20) in a similar manner as the r and

the Ok equation in order to find the relationship of the divergence tendency to 7r and

Ok. The dependence of ODk/t on r and 0 k comes from the expansion of the pressure

gradient forcing terms about the mean state. These terms are treated in the same

implicit manner as the divergence term in the 7r tendency equation given by (7.5).

However, before the final implicit expansion of the divergence tendency equation is

performed, we need some special handling of the geopotential term to extract the

dependence of the geopotential on ir and Ok. If we insert the interpolation formula

for Ok+l/2, which is given by (3.46), into the integrated hydrostatic equation (3.22),

we obtain the result that

6'k - 6k+1 = CpOk (Pk+l/2 - Pk) + CpOk+l (Pk+I - Pk+l,2) (.1

Equation (7.11) demonstrates that the geopotential difference is a function of both

Ok and r. Therefore, we expand this difference in Taylor series about the mean
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atmospheric state as

k- Ok+ = c,,O (Pk+, 2 - Tk) + <po-+1 (P+ 1 - Pk+l/2)

+ Cp(Ok - F) (Pk+1,2 - Pk + cp(Ok+, - +I) (-7+1 - Pk+ 1i2 )

+ Cprk ( F 'k+ 1,2 ;Pl -+ T

(Ok+/ I =22

+ 1 ~~iar 97 ) r - Y) + O- k+I (7.12)

The double prime terms above indicate second order terms in a Taylor series ex-

pansion. Equation (7.12) is valid for k < L. We obtain the expansion form for the

bottom geopotential (k = L) from Equation (3.23):

=L OkS +CpFL(PL+ 2 -)T

+ C(OL - Fo) (PL+,2 - FL)

+TLO PL+1/2 ! (r + (7.13)

We put the results of (7.12) and (7.13) into the shorthand form:

L L L

, 1=1 bk101 + Ck(,r - T) + ak ++,0''. (7.14)
1=1 1=1 1=1

The components aki of the matrix A, the components bkl of the matrix B, and the

components Ck of the vector C are given, respectively, by

I if k=/

aki= -1 ifk=l+l andk#L , (7.15)

0 otherwise

{ c(Pk,' 2 P I-)if k=1

bkt j cp ( - ifk=I+l andk-#L (7.16)

0 otherwise

80



and

k)(+P (OPk+I OPk+/ 2 )

Ck = -k ! k k (7.17)

-5-
CL = CP-L c- T -" (7.18)

Since A is a non singular matrix, we denote the inverse matrix by A-' (with elements

ak-) and we finally write the geopotential as

L L L

ck = akl b bO + a-ict(1 -C ) + 0k. (7.19)
j=1 i 1=1

We use the result of (7.19) to write the divergence tendency equation (3.20)

as
aDk A(fk,-Gk) - VIk

Ot
L L L

--Z_'bVO3 + a ,c V2 7r + V 201,. (7.20)
1=1 )1l 1=l

We shall treat all 7r and 0 dependency in the divergence equation above in a similar

manner as the divergence in the ir and the Ok equations. Note that both Hk and Gk

defined by (3.14) and (3.15) depend on r, and we must take this dependence into

account. Therefore, we write the corrected divergence tendency due to the implicit

treatment of 7r and Ok as

8Dk _ ~ ___at t w) ,

L L L

a Z akbi3 0, + a a l clFr. (7.21)
1=1 2=i 1=1

We evaluate the Pk+l/2 derivative from Equation (3.21) to compute the derivatives

in (7.17) and the definition of Apk. which is given by (3.3):

0 Pk+112 Pk+1/2

09 -'/ Pk+-1 2
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Combining (7.21) with (7.19), we write the divergence equation in its final

form for the semi-implicit method as

aDk (ODk L
(OD- ) E fkiV 2 0j - gkV2Fr, (7.22)at \--0[- 1=1

where the components fkl comprise the matrix F, defined by

F = A- 1 B, (7.23)

and the elements of the vector gk are given by

FL
9k = COk + Zak'c. (7.24)

L--1

Equations (7.5), (7.9), and (7.22) are the governing equations for the adjust-

ment to the adiabatic tendencies due to the semi-implicit treatment of gravity wave

propagation. To calculate the hatted variables, we define a modified geopotential,

L

k fkl + gk r. (7.25)
/=1

Note the similarity between (7.25) and the pseudo-geopotential discussed in Chap-

ter 5. We obtain an equation for 4k by first applying the matrix F to Equation (7.9),

then multiplying Equation (7.5) by g, and finally adding the resultant equations.

In addition, we use (7.25) to simplify (7.22). We write this system of equaions as

_- _tEMkID1 (7.26)at a t 1 = 1

aDk =( )Dke -V 2 k, (7.27)
at at e- x ,pi

where the components of the matrix M are defined as,

L
mk1 = 1 fk)sj, + glk A.PI (7.28)

It is assumed that the matrix M has L distinct eigenvalues (L is the total number

of model levels, IS), which are denoted as k, If we denote E as the matrix whose
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columns are the eigenvectors of M, and we denote BE as the diagonal matrix whose

* diagonal elements are the eigenvalues , then the matrix M is given by the canonical

form,

M E-1 -E (7.29)

We define the notation that a superscript E on a vector indicates that the vector

has been multiplied by the matrix E- 1 . Therefore, as for example, the variable D'

is defined as
DE 

L

D=z e-1 D1. (7.30)
1=1

Applying the matrix E-1 to Equations (7.26) and (7.27), we get the following wave

equation system:

at at e-N - - G D (731

= (OD) _ V 2k (7.32)
at at XPI 7.2

The above equations take the same form as the linearized shallow water equations.

The dependent variables above define the vertical modes of the forecast model for

* the given mean atmospheric state, Y and 0 k. From the wave equation nature of

the above system an eigenvalues G is equivalent to the square of the gravity wave

phase speed for the kth vertical mode.

0 Equations (7.31) and (7.32) are most easily solved in spectral harmonic space.

We write the spectral coefficients tendency equations as

=k (OmE) e - DnE (7.33)

at_ a t } (.33

n k ) DP + [n(n +1)] $ E(7.34)

We rewrite the left hand sides of (7.33) and (7.3-) by Making use of the central

difference definition of the time tendency, which is given by (6.1). and the definitions
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of D and , which are given by (7.7) in order to obtain the following:

___m E 'E + OE(t)- 0-(t--t)at At (7.35)

at AaDn" k i "-k + Dn- E(t)- E(t--At)
at n k At -nk(736)

By inserting (7.35) and (7.36) into (7.33) and 7.34), we write a matrix equation for

the variables n k and Dn'rk as

1 k k (7.3 7)

-n(n + 1)At/a2  1 1 ZnkE

where

ymE = -E (tt )(t)(3

at )(738)

Z DE = (aD k ) At + D (t-At)- D (t). (7.39)

at / nkpi

The solutions to the system (7.37) is given by

^ }YnmE GA tZn k /a2

k= 1 + Gfn(n + 1)At 2 /a 2 ' (7.40)

and
" ,mE - Zk + fn(n + 1)At/a]y(7E

1 +kn(n(n 1)At 2/a 2  (7.41)

Finally, we compute Dnk by applying the matrix E to the results of (7.41), so that

we obtain
L, = k En ekE - (7.42)
L=l

Once D I and 4,,k are known, the new spectral tendencies for 7r, and Ok are com-

puted from Equations (7.5) and (7.9) respectively and we get the new spectral

divergence tendency from Equation (7.27) as

-D _ (OD .) + [ a l]Irn (7.43)

at a
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(This result can also be obtained from (7.36) which is what is done by the code.)

The final results of these calculations are the spectral adiabatic tendencies for 7r,

divergence and the potential temperature: ir(ad),, n(kd)n, and 0k:d)n.

7.3 Implicit Advection of Vorticity and

Moisture

The semi-implicit method discussed above removes the CFL criterion due to the

propagation of gravity waves, but there is still the constraint of the advection due

to non-divergent horizontal velocities. The ideal approach to remove this stability

limit is to couple the semi-implicit method with a semi-Lagrangian formulation.

As an alternative, we treat the longitudinal advection of the vorticity and the

moisture function in an implicit manner using a technique developed by Simmons

and Jarraud (1983). This enables an approximate 25% additional increase in the

time step above the semi-implicit method.

We begin by writing the longitudinal cosine weighted velocity Uk for each

level as a sum of a mean zonal velocity plus a difference:

Uk(A, A,t) = Uk(p,t) + Uk(A,,, t). (7.44)

We define Uk(p, t) as the average of the maximum and the minimum of the longi-

tudinal velocity at time t-At:

Uk([,t) =- xUk(A, p, t -At) + min Uk()A, pt -At) (7.45)

If we represent the vorticity or the moisture function by Xk, we can put the tendency

equations for vorticity (3.19) or moisture (3.47) into the form:

_ (aX ,, cos_ k )( [aL. ta" (7.46)
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where the expl subscript on the tendency indicates that this quantity is the sum

of all terms that comprise the explicit adiabatic tendency, which is computed from

the fields valid at the central time t. For convenience of notation, we shall suppress

the dependence of Xk on A and p, but we will display the time level at which the

variable is evaluated. We compute the A derivative in Equation (7.46) implicitly as

Xk = a [Xk(t+At) + Xk(t-At) - Xk(t)]J (7.47)aA aA

Using the relation given by (7.47), we write (7.46) as

a~('9Xk)
at at ]z,

Uk(_,t) a [Xk(t+At) + Xk(t-,At) - 2Xk(t)] (7.48)Cos, V oaA

We see from the form of Equation (7.48) that the tendency correction has the

same structure as a diffusion term. This time diffusion allows an increase in the

time step At. Using the definition for the computation of the central difference

time tendency given by (6.1), we write (7.48) in terms of the time tendency of the

dependent variable as

e9Xk ('Xk' Uk(PIt)2Zt 1 ['9Xk 1
at at) expi cos2 p ( A O t

+ 2 Uk(,, t) [XI (t) - Xk(t--At)] (7.49)cos2 1P A

By calculating the Fourier transform of (7.49), (see [4.6]),we obtain the result that

F [aXl] = Uk(jt)2 At a [aXk 1 -'] dA2,rcos 2  Jo '9\[-'9-J

2Uk( , t)21a
+ 2- [Xk(t) - Xk(t- At)e-dA+2r cos2 1Pm. d) a

+ rn [(oaX't)zpl]. (7.50)

Note that .F[Xkl is a function of p and t. We perform the integrals of Equation

(7.50) by parts, and use the fact that the variables are periodic in A to eliminate
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the integral of the total derivative, leaving the result

-r- [aXkltl = im (y, t)2At " [O7 klnt]
cos

2 7k

+ 2 imUk(, t) {j."[Xk(t)] - Fm[Xk(t - At)}

+ .r x f a(k/ot), (7.51)

Solving for the Fourier transform of the tendencies, we obtain

*m [YM  IX/Ot] = '[Xk]/ {1 + irn-Uk(y, t)2At/ cos2 , (7.52)

where

0 g~xk] r~ [axklaoxl

+ [2imUk(p, t)/ cos2 p] {F"1[Xk(t) - .Tm [Xk(t - At)]} (7.53)

Given the Fourier transform computed above, we compute the new spectral tenden-

cies for the vorticity and the moisture function by using the Gaussian quadrature

calculation of Equation (4.7). The final results of these calculations are the spectral

adiabatic tendencies for the vorticity and moisture function: (ad) m and f(q] ad)m

8k n
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Chapter 8

,, Adiabatic Truncation and

Implicit Smoothing Calculations

In this chapter we discuss several algorithms that enhance the stability of the

numerical solutions. These are the truncation of the top levels' adiabatic tendencies,

the Newtonian cooling term for the top level temperature, the fourth order implicit

diffusion of the fields, and the Robert time filter.

8.1 Adiabatic Tendency Truncation

The T79 forecast model uses a time step of 1200 seconds. We have truncated the
0

top 2 or 3 level adiabatic tendencies in order to preserve the stability of the model

in the presence of intense stratospheric polar night jets. If the maximum wind

speed of the model is less than 120 m sec -1 then the adiabatic tendencies in the
0

top level are truncated to a total wavenumber of 63, and the second level adiabatic

tendencies are truncated to 71. Hovever, if the maximum wind speed exceeds 120

m/sec then the top 3 level adiabatic tendencies are truncated to resolutions of 47,

63, and 71, respectively. Under most circumstances, this algorithm preserves the
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1200 second time step. However, if the maximum winds exceed 160 m sec - 1 the

time step of the model is reduced to 900 seconds for the remaining forecast.

8.2 Top Level Newtonian Cooling Term

In order to damp falsely reflecting vertically propagating gravity waves from the

model's top, we added a Newtonian damping term to the top level virtual potential

temperature tendency equation to relax the top 2 model levels toward an isother-

mal condition. The relation between the virtual temperature and virtual potential

temperature is given by Equation (3.34). If we ignore the small amount of moisture

present in the stratosphere, then the condition that the top two levels be isothermal

is given by

61= 02. (8.1
P

If we add a term of the form,

KV2 (01 -02-7f)

to the top virtual potential temperature equation, it has the effect of damping the 0

temperature difference at the higher wavenumbers. In order to reduce the overhead

of calculating the Gaussian quadratures associated with the grid point values of P

and P2 , we use the average values of P and P2 associated with the mean state of

the atmosphere, T. We then write the 01 equation in the form:

-= 0 + Is2V 2 TK 1 - 02w) (8.2) 

where (( )' contains the explicit adiabatic tendency, the semi-implicit correction.

and all diabatic adjustments (see Chapter 6 for the discussion of the integration

scheme and the superscript notation). If we use the central difference definition of
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the time derivative, and we define (Chapter 6):

O(-"}"d(t + At) = O'(t - At) + 2-AtPP)

then we can put (8.2) into the form:

o (t +At) = 0")(+ At)- 2AtKo

n(n+2 (.3
n + O-(t + At) - +() (t +At) (8.3)2 - 2P

Solving (8.3) for 01(t + At), we obtain the new spectral coefficients of the virtual

potential temperature as

0 n( +A)=n(n_+ P2O;) ( t
In(t + At) = O(P)(t + At) + 2AtK, [nSn ' 11 + At)

1 n a~ 2 j P,

I+ 2AtK , [n 1)]} (8.4)

We choose the damping coefficient K, so that the highest wavenumber coefficient

has a e-folding relaxation time of 4 hours, so that the reciprocal of K, is given by:

M(43600 sec xI(M + 1) (8.5)

K1 =a 2

The effect of the damping term can be seen by comparing Figure 8.1 with

Figure 8.2. Both figures are taken from forecasts starting at 12Z July 30, 1988, at

which time a strong stratospheric jet was present around Antarctica. The initial

conditions are the same for both runs. Figure 8.1 is taken from NOGAPS 3.0,

which did not contain the Newtonian damping term. With a time step of 1440

seconds significant noise developed in the stratospheric heights. From analysis of

time series of heights and temperatures it was evident that the temperature profile

was buckling at the top of the model, probably due to false reflection of upward

propagating gravity waves generated at the larger time step. This noise problem

was not evident at smaller time steps. The inclusion of the damping term eliminates
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Figure 8.2: The NOGAPO' 3.1 20 mb height field forecast for r =18 hrs starting

from July 30,1988.
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the stratospheric height noise at the larger time step as seen in NOGAPS 3.1 run

of Figure 8.2. An examination of time series indicates that the Newtonian cooling

term also eliminates the temperature buckling.

8.3 Horizontal Diffusion

We apply an implicit fourth order diffusion operation to spectral coefficients of vor-

ticity, divergence, virtual potential temperature, and the moisture function at the

time step t + At. The procedure is similar to that performed with the Newtonian

cooling of the top level virtual potential temperature with the exception that a

fourth order diffusion operator is used instead of the second order diffusion oper-

ator used with the Newtonian cooling. The effect of the terrain following hybrid

coordinates must also be taken into account for the moisture and the temperature

fields.

If we let Xk represent either the vorticity or divergence at level k, we can

write the tendency equation with diffusion as
-x-- nx) - KdV'xk (8.6)

The term X sP,,m is the sum of all the preceding adiabatic, adjustment, and diabatic

adjustments terms (see Chapter 6 for the discussion of the integration scheme and

the superscript notation). For central time differencing and with the definition of

Xisp) n(t + At) from Chapter 6:

Xk)m(t + At) = Xk - At) + 2AtxO )m,

we put (8.6) into the form:

X(t + A t) = (-'P)m-(t + 'At)

- 2AtkAn [ a ] Xk, (t + Nl). (8.T)
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Solving (8.7) the spectral coefficients for divergence and vorticity, we obtain the

spectral coefficients of divergence and vorticity as

Dk(t+At) = DkSflt(t + At)/ I + 2AtK L 2 ,2 (8.8)

and
(2(t+At) - C''(t + At)/ I + 2AtKAd a 2  (8.9)

We see from (8.8) and (8.9) that the diffusion is highly wavenumber selective,

damping the higher wavenumbers greater than the smaller ones. Under most cir-

cumstances a value of the diffusion coefficient is chosen to yield an e-folding damping

time for the highest wave number of 1 day:

M(Ml + 1) (.0
I- = 24 x 3600 sec x a2 1 . (8.10)

At the top level, divergence diffusion is increased by a factor of 5, and moisture and

temperature diffusion by a factor of 4. In the second level, divergence diffusion is

increased by a factor of 2.5, and moisture and temperature diffusion by a factor of 2.

For any level with maximum winds exceeding 80 m/sec, we increase the divergence

diffusion by a factor of 10. A similar strategy is described by Simmons et al. (1989)

for the ECMWF model.

Since the hybrid coordinate varies with the terrain pressure, the virtual po-

tential temperature and the moisture function will contain some high wavenumber

features that are due to the terrain variations. Instead of applying the diffusion

operator directly to these fields, we write the equivalent of Equation (8.7) in terms

of 0k - 0"' and f(qk) - f[q]ef, where the ref superscript denotes a reference state.

We calculate the reference state for potential temperature by first defining a sur-

face pressure from the standard atmospheric pressure at the model's terrain height.

which we denote as ir'- 1 . We then obtain the pressure values, pk1 , from (3.1),

(3.5), and (3.6). We then calculate the standard atmospheric values of potential
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temperature, which we denote as O"f. We define the reference moisture function

as the value of the moisture function evaluated at the saturation specific humidity

value for a virtual potential temperature given by O"f and a pressure of prel. This

is computed as

= f[q,.t(O f,pCf)]. •

These reference values are independent of time and are computed at the initial

time of the forecast and are saved by the model. The procedure is now the same

as that used to obtain (8.7). The results for the virtual potential temperature and

the moisture function are

rn~ ,( + 2 re f r*10= {9's)m(t + At) + 2AtKd [ 2 }
x 1+ 2At Kd[n(n+ 1)12}(811

anda

f[q](t+A t) = f[q]'-qp)m(t + At) + 2Atld 1) I+ f[qref ] n

{I+2AtKd[n(n + 1)]}1 (8.12)S1 + AK1 a2

As a final point, in place of O(sP m(t + At) in (8.11), we use the results from the

Newtonian cooling computation given by (8.4).

8.4 Robert Time Filter

We apply a Robert time filter to the spectral coefficients of the dynamical variables

in order to damp the computational mode inherent in using central time differenc-

ing. This time filter changes the spectral coefficients at the t time step and is the

last modification to the variables. If we let X represent either 7r, .k, Dk, Ok, or
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f(qk), we calculate the final values of the spectral coefficients at time t, Xf'n") m(t),

by using the Robert filter:

X(f"i -)(t) = X-(t) + KR[A 7 (t+At) - 2A'(t) + X7(t-At)I. (8.13)

The spectral coefficients on the right hand side of (8.13) are the values obtained

after the fourth order diffusion operator. The Robert time filter constant, which is

given by KR, is set at 0.05.
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Chapter 9

Gravity Wave Drag

The effect of increased vertical shear due to the breaking of subgrid scale vertically

propagating gravity waves, which are generated by orography, is modeled by the

gravity wave drag parameterization. Palmer et al. (1986) show that the introduc-

tion of a gravity wave drag parameterization reduces the Northern Hemispheric

zonal wind bias. Our parameterization is based on the work of Palmer et al. (1986)

and the following discussion closely follows their work.

If we represent the vertical flux vector, which describes the upward transport

of horizontal momentum by the gravity waves, by Tgw, then we can write the

vertical flux equation for the horizontal velocity vector, u, as

au aTgw-- = -g9 (9.1)
9t op

The vertical structure of the model is shown in Figure 3.1. With the fluxes evaluated

at the half pressure levels, we write the vertical finite difference form of (9.1) as,

OUk Tgwk+1 /2 - Tgwk- 1 / 2iT= g p (9.2)

The computation of the vertical gravity wave flux utilizes the Eliassen-Palm the-

orem (Eliassen and Palm [1961]), which states that, in the absence of transients
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and dissipation, vertically propagating waves preserve their vertical flux. Using this

result, we assume that the surface flux, which is due to the generation of gravity

waves, will be transported upward until some turbulent layer is reached, N% here

this flux will be reduced and thereby dissipate the mean flow. At each-half level,

we define the Brunt-Vaisiila frequency, Nk+hl2 , and the bulk Richardson number,

Rik+1/2, which are given as

Nk+1/2 - g(Ok - Ok+1) (93)
+ ZkOk+1/2

Rk+ 1/2 =g(Ok - Ok+1)AZk (94)
Ok+1/2[(uk+l - uk)2 + (vk+l - Vk) 2 '

where we use the simple interpolation formula:

Ok+ 1/ 2  Ok+1 k (9.5)

We use the adiabatic velocities and temperature to calculate Nk+l/2 and Rik+l/2.

We compute the layer thickness AZk from the hydrostatic equation (3.22):

Azk = CpOk+l/2(Pk - Pk+i)/g. (9.6)

We take the surface stress to be in the direction of the surface layer wind, UL, and

we denote the component of any level wind vector projected in the surface wind

direction by u:

Uk - UL (9.7)ut l. ULl"

The projection of the horizontal wind at the half-level hybrid surface is given by

U t/ " (uk+l + Uk) UL (9.8)

kluLl" (9.

We assume that the surface stress vector, defined as Tgws, is proportional to the

surface density, the surface wind, the surface buoyancy frequency, and the variance
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of the terrain field, (bZS) 2 , which is obtained from the U.S. Navy's 10 minute

resolution global terrain field. This relationship is

Tgws K WPSNL-1/2UL(bZs) 2. (9.9)

A maximum of 400 meters has been set for bZs and the adjustable constant, KW is

set to 2.5 x 10- m-1 , (Palmer et al. [1986]).

Starting at the L - 3/2 level and continuing to the top of the model, we

compute a wave bulk Richardson number, Rik+1/2 , which is based on linear wave

theory, as

R 1 1/2 = Rik/ 2  +1 - [Nh/u]k+/2  (9.10)
R i 21 + Ri+/2[N Sh utlk+1 2}k+/22'

where the wave amplitude bhk+1/2 is obtained by assuming that relation given by

Equation (9.9) is valid in the vertical with bzs replaced by 5hk+1/ 2, Ps by Pk+1/2,

and the surface stress by the stress at k+1/2:

6hk+112 = T_ k+2 (9.11)
gw.[PNut]k+l/2'

The scalar, rk+1/2 , is the magnitude of the gravity wave drag:

rk+1/2 = ITgwk+1 /21.

At the lowest level we set L-1/2 = 7s and bhL-1/2 = bZs.

We use the results of the Eliassen- Palm theorem to assume that 7k+1/2 remains

equal to rs until a layer of turbulent dissipation is reached. This occurs when the

wave bulk Richardson number, given by (9.10), is less than 1/4. When this occurs,

RiZ+,/2 is reset to 1/4 and Equation (9.10) is solved for 5hk+1/2. The solution of

the quadratic equation is given by

1 -'/2 + .2I1/2

6hk+x/2 = (ut/N)k+x/ 2 Rik+l]2 (i + 2Ri 1 / 2 )

1/ 4  .1 /2 -1/2_ 1} (9.12)12R01+I + 2tZ
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Resetting the wave bulk Richardson number back to the critical value of 1/4 is based

on a "saturation hypothesis, "which assumesthat with the transition to turbulence

the wave amplitude has reach,.d its maximum (Lindzen [1981]). Given the new

value of the wave amplitude, we calculate the vector gravity wave stress as

Tk+1/2 = l7 wPk+l/2Nk+l,2Uk+l/2  (9.13) 0

All of the above calculations assume that uk+1/2 is greater than zero. If at any half
t

level u,+,/2 is less than or equal to zero, it is assumed that at this level a critical

layer has been reached, the gravity wave breaks totally, and we set rk+I/2 equal to

zero. All the dissipation of the mean flow is assumed to occur at this critical layer.

Only the component of the mean flow projected onto the surface wind vector

is dissipated by the breaking of the gravity waves. Therefore, given the values of

the gravity wave stresses in the 2 adjacent layers, we calculate the new value of

u(-" ) t from Equation (9.1) as

k (ad) t _ 2zt-~- (Tk+1/2 - Tk-1/2) (9.14)

The discussion of the time integration strategy and the superscript notation is

presented in Chapter 6. We obtain the new winds, ua) and v4.k), which are

adjusted by gravity wave drag, from (9.14) as

(ad)
( 9 -) ( a d ) U L -( 9 .1 5 )
(gw (Ud k kt-L(k+1/2 -Tk-1/2) ULd 2 (15)"

UL + VL

and
(ad)

( - -) (ad) 2_
k V k - 2A-1 (k+1 /2 -Tk.1/2) (ad) 2 (ad) 2 (6

ANP VUL + VL

At the top of the model, we set the gravity wave stress, r,12, to zero so that any

excess gravity wave drag is deposited in the top layer.

We have incorporated one modification to the Palmer et al. (1986) algorithm.

With the above formulation, a large percentage of the gravity wave drag is com- 0

pletely deposited in the lowest layers of the model. To enable more of the gravity
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wave drag to reach the upper atmosphere, we set the maximum gravity wave stress

reduction in layer k to 50% of the stress at level k + 1/2 for p, > 450 mb and
k+12 > 0. Above 450 mb, we allow the stress to be absorbed completely in a

single layer. Also, if at any level, u(ad) t < 0, the gravity wave stress is set to zero

for all levels above this critical level.
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Chapter 10

Vertical Flux Parameterization

The calculation of the subgrid vertical diffusive fluxes is based on the work of

Louis (1979) and Louis et al. (1982). If we let X represent either the horizontal

velocity components u or v, the virtual potential temperature 0, or the specific

humidity q, then we can write the vertical diffusion equation for X, in z coordinates

as
ax ia (10.1)
5t p az

The vertical flux Fx is defined as

Fx = -pw'Y', (10.2)

where the primed variables indicate the turbulent eddy difference from the mean and

the overline indicates an averaging (temporal) process. The full diffusive equation

would include horizontal turbulent diffusion in addition to the vertical diffusion,

but we neglect the horizontal terms under the assumption that they are small in

comparison to the vertical term.

The vertical diffusive fluxes are related to the derivatives of the mean quanti-

ties through a first order closure assumption (K theory). Introducing a mass mixing

length lh and a momentum mixing length 'in, we assume that the turbulent fluxes
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0

are assumed are given by the relationships:

u pIT I T, (10.3) 0

7q = p12 ih 49q (10.4)

= P1, au 9 (10.5)
.Y' = l u ar
= z" a (10.6)

The forms for the momentum and mass mixing lengths are based on the Monin-

Obukhov (1954) similarity theory and are defined on the half levels (see Figure 3.1).

Their functional forms are defined below. The vertical fluxes are computed on the

half level surfaces. At each half level a bulk Richardson number Rik+l/2 is defined

for the layer centered at zk+1/2, with a thickness given by AZk+1/2. The heights

and thicknesses are computed from the hydrostatic equation (3.22) starting at the

surface level L + 1/2 as

ZL+I/2 ZS,

z4-1/2 = Zk+1/2 + CP Ok(Pk+1/2 - Pk-1/2),g
eZk+1/2 k - ek+I 0

9

For the Richardson numbers and the exchange coefficient calculations in this sec-

tion, we use the winds computed from the gravity wave drag, uk' ) and v , the
temperatures from the adiabatic and radiative tendencies, T(,d ) , and the adiabatic

specific humidity, qk d). We present a complete discussion of the time integration

scheme in Chapter 6. Also, we omit the horizontal grid point indices, i and j, on all

the variables. The functional relations for the bulk Richardson number are given

below by (10.30) and (10.32). We assume that a positive bulk Richardson number

implies that the layer is stable to thermally forced turbulence, while a negative bulk

Richardson numbers indicates this layer is unstable to thermally forced turbulence.
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Above the svrface, we calculate the fluxes at the half levels as

12 Uk+1 -Uk (k- Xk+l(
• *X+/2= pk+1/2 Xk+,1 2  Zk+ 1 - Zk  I Zk - Zk.. ) I(10.7)

where, if X = u or X = v then lx = 1i, and if X = 0 or X = q then 1x = h.

For the u and v fluxes we set the velocity at the surface to zero so that the surface

wind stresses can be expressed as

uL (10.8)
lul

and

..-s  P5
2 L (10.9)

lULI
where the frictional velocity given by u. is defined as

u. = (zI,,s)2 (10.10)' (ZL -zs)2 "

The surface sensible heat flux and the surface flux for the virtual potential

temperature are defined as

FTs = v {Ts - OLPLI(l + .608q,)} (10.11)

and

Yes = "(Os - OL), (10.12)

where the mass flux coefficient v (sometimes call the ventilation factor) is given by

PSlhluLI (10.13)(ZL - zs)2"

The surface value of the virtual potential temperature 0s is related to the surface

temperature Ts and surface moisture qs from (3.34) as

Os = Ts(1 + .608qs) (10.14)
PL+1/2
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We define the ground moisture qs as a combination of the ground saturation specific

humidity, q..t(Ts), and the surface air specific humidity by the relation:

qs = Wsq8 ,(Ts) + (I - Ws)qL. (10.15)

The factor Ws is the ground wetness. Finally, we calculate the surface evaporative

flux by assuming Equation (10.12) is valid for the moisture:

qs = vWs(qs - qL). (10.16)

We specify the following constants for the computation of the momentum

exchange coefficient:

bm, = 5.0

Cm = 7.5

dm = 5.0 (10.17)

KCm = 0.4

AM = 150.0 •

and we define the neutral stability (Ri=0) mixing length for momentum at the

surface and at the half levels as

l n)  = t z
nA1 + Pz/A' (10.18)

1(n) -•K (10.19)
inS ln [(z + zo)/zo]'

and we specify the function:

z3/z/2 [z +Az - 1 3/2 (10.20)

The variables z and Az are evaluated at the half levels. The variable z0 is the

roughness length. For water points we update the value of the roughness length,

zo at each time step using Charnock's relation (Charnock [1955]):

Zo 0.032 (10.21)

g
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For land points the roughness length is fixed throughout the forecast by its clima-

tological value, which is obtained by interpolation to thc valid initial time from

monthly values. Using these definitions, for positive bulk Richardson numbers.

Louis et al. (1982) specify im by

1l = 2Rd ( Ri > 0), (10.22)

while for negative bulk Richardson numbers, they define 1m as

1' - 2bmRi 1 1/2

1+2bc -  (Ri < 0). (10.23)

In the above formulas we have omitted the subscript k+ 1/2 on the Richardson

number and the momentum exchange coefficient.

For the mass exchange coefficient computation, we set the following constants:

bh = 5.0

Ch = 5.0

dh = 5.0 (10.24)

rh = 0.4

Ah = 450.0

and we define the surface and half level neutral mixing lengths as

-~n KhZ

S hZ/Ah' (10.25)

hS ln[(z+ zo)/zo]' (10.26)

together with the function:

12 1/3 13/2

fh A z - 1+A (10.27)

With the above definitions, for positive bulk Richardson numbers, Louis et al.

(1982) specify lh as
lh = ' '  I ,1/2

1 + {+ ( Ri > 0), (10.28)
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while for negative bulk Richardson numbers, they define lh by

I~)3bh RZ /

1h = n) { 1+ 3bChfh -l /, (Ri < 0). (10.29)

The bulk Richardson numbers are computed at the half levels. Above the

surface, we set Rik+1/2 by the relationship:

g(zk - Zk 1)(Sk - Sk+1) (10.30)
CpIUk - Uk+1 2 Tk+1/2

The variable Sk is the virtual dry static energy, which is defined by the equation,

Sk = CpTk + Ok. (10.31)

At the surface, we use the formula for the bulk Richardson number that is suggested

by Randall (1976):

Ris = g(zL - zs)[cp(Ts - TL) + .608WsTs(qs - qL)I (10.32)

(cTs + gzs)IL UL (

We form the uk' I equations by inserting (10.3) into (10.1), together with

the central time formula for the time derivative and the definition of u(g-). This

implicit uk system of equations is given by

u1; - U1 - 12 2 u (1033
Apk 2Atp3/l 2 M/2l Z~ -- Z1 Z~

( (gw) " (gw) - uk\
(P U(gw) - 9 UA~+12 2 - U1 }(+- , (1.3

k 2 k -- (k (g
A~kZk+41 - Zk k k - Z+

f ~~(gw) -(w) k
+ g 2A tpk- 1/ Uj  k Uk-- 1) 1 k-1 - , Uk (10.34)

1Pk L Zk - Z- 1  j Zk- - Zk

L- {APL Msl ZL -ZS } (Z- ZS)

U(gw) - (gw) I UL-1 U+~1 "7--A O _II L_ . . . (10.35)
LAPL ZL - ZL-1 ZL- - ZL (

The system given by (10.33)-(10.35) is implicit and linear for u(vf). However, it is

not fully implicit since the bracket terms are calculated using the gravity wave drag
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(input) fields. An iterative procedure could be set up to adjust these coefficients,

but we feel that this is too expensive and the final results would not be greatly

changed. The system (10.33)-(10.35) is a tridiagonal system of equations, which

can be expressed in the form:
amku + bmku () = (w) (10.36)

am, u-i +b,,,uk +CMAUk+1 =Uk

We obtain the momentum tridiagonal coefficients am, bmk, and c,, from Equations

(10.33)-(10.35), which for I < k < L are

am, = 0, (10.37)

a. =2 .2ln Iu k .. - k-1 (10.38)at = ~ -- 2t k-1/2 (zk-I -- zk) 2  I

b, = 1-(aMk + cMk), (10.39)

bL = 1 + PSU!.2Atg - amL, (10.40)

'jLI 2 -U 1

(g (gw) U(gw)j=2 -Ap 3/2 (Z - 2) 2  (10.41)

ck = - Apk2Atk+1/2 12 1k__+ - k I (10.42)

1 A ~ Mk1/2(Zk - Zk+1)2  I
cmL = 0. (10.43)

The v( f) equations take the same form as above, and we write the equation system:

W) ((P ) = (gu)amvk-l+ bp4vj' + Cmk"k(= Vk+ I . (10.44)

We solve the tridiagonal systems (10.36) and (10.44) for uvf) and v(f) using the

double sweep (Gaussian elimination) method (Carnahan et at. [1969]).

The vertical diffusion of momentum removes kinetic energy from the mean

flow. We account for this lost of energy by assuming that it goes directly into

the internal eiergy and therefore increases the temperature of the air. After the

horizontal velocity calculations, we compute a new temperature as
2 r + -2 +(vf)2

T =vf T2 + Vkkk*k(10.45)k2cp



Above the surface level (k=L=18), the potential temperature and the specific

humidity equations are similar in form to Equations (10.33) and (10.34), except that

the mass exchange coefficient replaces the momentum coefficient. At the ground, we

hold the ground wetness to its climatological value throughout the forecast for all

points. However, the surface flux for temperature and moisture, which are given by

(10.12) and (10.16), depend on the surface temperature and the saturated specific

humidity. Over water points, the sea surface temperature is held at the initial

analysis value throughout the forecast, but over land or ice points the temperature is

predicted. Therefore, the surface land temperature and saturated specific humidity

equations are coupled into the predictive equations for 0('f) and q(V ), and we must

solve for these two variables along with the temperature and moisture. 0

The ground temperature equation for non-water points is given by

,dTs
cs dTS= Fsw - .LW - cpv(Ts - OLPL) - vL.Ws(qs - qL)

-LiSM + kscs(Taim - Ts). (non water points) (10.46)

For water points, the temperature is fixed by its initial analysis value, so that:

0
Ts = T, (water points). (10.47)

In Equation (10.46): the variable .Fsw is the incoming surface shortwave radiation

flux; 'LW is the outgoing surface longwave radiation flux; L, is the latent heat 0

of condensation; Li is the latent heat of fusion; c, is the specific heat of air; cs

is the heat capacity of the ground; v is the mass exchange coefficient given by

(10.13); S is the snow melting rate with units kg m -2 sec- 1; T,,, is the sea surface 0

temperature; Tcim is the climatological relaxation surface temperature; and ks is

112



one over a climatological relaxation time. The surface heat capacity is given by

I 4.20 x 10' J m -2 K-' /27.5[.387 + .l5Ws(1 + Ws)] land

cs= 2.14 x 10 Jm - 2 K-' ice (10.48)

9.66 x 104 J m -2 K snow.

For land points, Tcim is the climatological ground temperature. For sea ice points,

we set Tlim =271.2 K. For land points, we set ks to

ks = 2r/100 hours;

while for sea ice points:

= ,ilh,

where ti is the thermal conductivity of ice (5 x 10- cal (sec cm K)-') and I, is

the sea ice thickness held fixed at 2 meters (Holloway and Manabe [1971]).

Equation (10.46) depends on the snow melting rate SM. At a land point,

the snow, S, is increased by the amount of precipitation that reaches the ground if

the surface temperature is less than 273.15 K. If the ground temperature increases

above freezing when snow is present, then the difference, AT, between the pre-

dicted temperature and 273.15 K is used to melt a snow amount of csAT/(LAt).

The surface temperature is decreased either back to 273.15 K if there is still snow

remaining, or to Ts - LiS if all the snow is melted.

We derive an equation for saturation adjustment from the relationship of

saturation specific humidity, qja(T,p), to saturation vapor pressure, e,8 t(T):

qt(T,p) = 62197e5 ,(T) (10.49)p - e,.t(T)

A first order Taylor expansion in temperature with fixed pressure of (10.49) yields:

q,t,(T + A T, p) = q,.t(T,p) + L" 2 AT, (10.50)
cp
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with the variable -y given by

L,, \OT)

Using the Clausius-Claperyon Equation, which is

det mrLwesat
dT R*T2

we evaluate - in terms of pressure and temperature as

= Z,) (p ()(m,,qsatL, (10.51)" = -: p - epat ( T) ) R -T: 2

where R* is the universal gas constant and mt is the mass per unit mole of water.

We convert (10.50) to a time tendency equation by dividing both sides by At,

yielding
dqs _ yLw dTs
d'-- cp dt (10.52)

We combine the results of Equations (10.1), (10.3), (10.4), (10.7), (10.12), 0

(10.16), (10.46), (10.52), with the central difference time difference formula, (10.45),

and the definition of qkad) to obtain the equations for the virtual potential temper-

ature, surface temperature, the specific humidity, and the surface humidity. These 0

are given by
{ ---' 1gw u2W- u (g w OW0 )- ("f' )  (1.)

OW W) O ' -g 2Atp31 1123/ - z (:i02 - (10.53)

SUIIk+U - k(V(k) -W. - v0s+)

k g2APk 1/ '+1/7 k1Z ,.

{(~) .- ' L 2 A~tP $1.l2 ,, Lk - Ul--_____

Zk Zk..- Zk...1 - Zk I

iPk Jk- k /1(Z-I-

- i2itpsl' I~) j (O~Jf) -Tsll + .0q]
L APL h ZLZS J ZL - ZS

1 2 .- UL-1 OW

+ g 2tPL-1/2 hL-1 L~w -- L~~~ (10.55)"*-
A tP L  - 1 2 h - l  

ZL - ZL-1 I ZL-I - ~L
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Ts = Ts({ + W- p - _ . v[Ts - OIPLI}
CS

+b6 A- t {vL.Ws[qs - qL] + LiS - kscs[Tciim - Ts]} (10.56)
CS

and.

((gw) - (gw) q(vi) -(vf)q(vf) q(ad) 2 A t P3/2 12 1h 2  - -l(10.5-)

AP 22-2 Jk Z - Z2)1

( (gw) (gw) W) k(')qkV a= 1 g + 2 Uk+l - k q
Apk l

k+l1/ 2  Zk+l - Zk zk Zk +1

, (gw) . (gw) ( vi) (v)
1/2 U- 1 kv, - ,k (10.58)

I A 1 k - Uk Ik-1 - q-1 k

..) (ad) I (1qv U qW"- - O
.qL A h .51 Z ZS - Z

12 U(gw) (gw &P ) (VP)
+ h L - LL-1 L (10.59)gAPL PL-lp'h /-1

(V) = L( + {Ts - Ts(t)}.
qS qS ' T S (10.60)

The variables Ts and qs without the time variable are the forecasted surface tem-

perature and saturated moisture at the time t+At. Also, the variable &, is defined

as 0 for water points and 1 for non water points to account for the fixed sea surface

temperature.

The above systems are coupled and can be written in the tridiagonal form,

for k = 1,...,L -1, as

ahk9k-4 + bhO(v)) + = O(v=')

ah, q -4 + bhq) + (v) = q a) (10.61)

where the tridiagonal mass coefficients ah,, bhk, and Ch. are identical to the mo-

mentum tridiagonal coefficients given by (10.37)-(10.42) except that l replaces l.

For k = L we have the equations:

aTLOi + bTLO) + CTLTS = ') (10.62)
_(v i) (10.62)

a (-f)q~vf)+ b (.)q~v + c(v,)qs = q (adqL )tL-i"J Oq( L L [ 9L L,)
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where the coefficients are

aTL = - 2tPL-1/2'hL,/ 2  , (10.63)

bTL = 1+ v - aT, (10.64)
APL
2At

CTL = - pt 11 + .608qs(t)}, (10.65)

aq(,j) = aTL, (10.66)

b 9(.) = 1 - (aqvn) + cq (-)), (10.67)

C(-f) = -VWs2t (10.68)
9APL

Finally , we cast the Ts equation, given by (10.56), and the qs equation, given by

(10.60), into the matrix form:

a T a5 OW) bi, b T s xT
1 1 L + 12 T (10.69)
0 0 q(f) b21 1 qs yT

where the coefficients and right hand side are defined as:

a = -6wcpAtPs{v/cs(1 + .608qs(t)}, (10.70)

a = -b,6,WsL,At(v/cs), (10.71)

bT = I + &,Atv(cp/cs) + 5&ks, (10.72)

bT2 = 5 ,L,WsAt(,1cs), (10.73)

2= -6,L.(y/,,,), (10.74)

XT = Ts(t) + At (Fsw - FLW) - 6 S.tLi
CS CS

+,wTcihmkscs, (10.75)

yT = qs(t) - ,,Ts(t) L '  (10.76)
cp

The equations, given by (10.61), (10.62), and (10.69), are a tridiagonal system,

and we solve them by extending the double sweep method, which is used for the

velocities, to handle the case where the coefficients are matrices.

116



Our final vertical diffusion results are the grid point horizontal velocities,

specific humidity, virtual potential temperature, surface temperature, and the snow
amount, which are denoted by u (vf ) "v) 0") q,(vf) Ts and Sip respectively.

ij ljk i Ijk W jk i Si

We also compute the surface drag D, the surface sensible heat flux Fh, and the

surface latent heat flux .Fh from these new fields as

E uULI (10.77)

-PSU.1uf),

"A CV{ITS - 9Lvf)PL/(1 + .608qiv 1 ), (10.78)

-Fh= LvWs{qo,(Ts) - q5j)}. (10.79)
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Chapter 11

Shallow Convection

The shallow convection parameterization scheme is based on the work of Tiedtke

(1984). We include a shallow convection mixing parameterization in order to repro-

duce more accurately the trade wind inversion layer. Without the shallow cumulus

mixing mechanism, the subtropical boundary layer in the NOGAPS's model is too

shallow and too moist.

The change in any quantity X due to subgrid scale eddy flux caused by shallow

cumulus convection is given by

ax 1 ay(x
- pI.Iat P Oz..

We take into account only the vertical mixing. The vertical flux .Fx is defined as a

large scale average over the smaller cumulus scales of the turbulent quantities:

.Fx = -pw'X' . (11.2)

We relate the flux, which is defined by (11.2), to the large scale quantities by using

a simple turbulent mixing theory as,

aX
- pw'X' = K -s-. (11.3)
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We specify the mixing coefficient, K,, as

10.0 m 2 sec -1  shallow cumulus interior

K = 2.00 m2 sec- 1  shallow cumulus top (11.4)

0.00 no shallow cumulus

In NOGAPS, we assume that shallow cumulus convection occurs when the

following four conditions are met:

1. the relative humidity of the lowest layer is at least 70 percent;

2. the surface temperature is greater than the surface air temperature;

3. the lifted condensation level (LCL) for surface air occurs within the lowest

175 mb of the atmosphere;

4. the atmosphere is moist unstable somewhere in the lowest 175 mb of the

atmosphere.

We check for the first item by defining the relative humidity of the bottom

layer, RhL and we require that,

RhL = qL/q,.t(TL) > 0.70. (11.5) 0

For the second condition, we compute the surface air temperature by assuming

an adiabatic lapse rate between the surface and the lowest pressure level. We assume

that there is a constant specific humidity between the lowest level and the surface.

With Ts denoting the surface skin temperature, we write the second condition as

Ts > O'Iv)P/(1 + .6 08 qL). (11.6)

We check for the third condition by computing the LCL temperature from

Inman's (1969) formula:

TLCL = Td, - (0.212 + 0.O0171Td. - 0.000436Ts)D, (11.7)
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where Td, is the dew point in degrees C at the surface and Di is the surface dew

point depression. We assume an adiabatic ascent up to the LCL, and therefore the

pressure for the LCL is given by:

1000 mb

PLCL = {OLI[TLcL(l + .608qL)]}cP/ "  (11.8)

For the final condition, we compute the moist static energy for all levels:

hsatk = cpTk + k + Lqsat(Tk) (11.9)

We assume that the atmosphere is moist unstable if there exists a layer k such that,

hsatk+l > hsatk. (11.10)

Note that we check all of the above conditions using the grid point fields from the

vertical flux calculation.

If all the criterion are met, then we assume that there is mixing of temperature

and moisture by shallow cumulus clouds. The shallow convection layer extends from

the surface up to the top of the moist instability with a maximum depth of 175 mb

above the surface. We solve for 0("') and q("') in a manner similar to that described

in Chapter 10. The equations take the form:
(SC) + [g2ACtISc, ] () - 9(SC)

= _________/ k+1 k

kc k A 4k (Zk+I Zk

(ac+) = °P + L c+1 +,- q:+gj~vf 2 ~tK +_ l ,(S )  ( SC)kv .- k-, 1 .1
A LPk Zk - Zk'

g2AtK , -/2  (- (11.12)3

Apk kzk - - (11.12)

The notation and the time integration scheme are described in Chapter 6. In the

surface layer, k=L=18, we assume that the vertical gradients of virtual potential

temperature and the specific humidity are zero.
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0

The tridiagonal system for 0("c) (we omit the horizontal indices 1 and j) is

a)bk9c) + =kO) (11.13)

where

g2AtK ch 1 /2  (
ak = - Apk(Zk- - Zk)' (11.14)

bk = 1-(ak+-ck), (11.15)

g2 At K' Ik+ 1/2

Apk(zk - Zk+l)' (11.16)

CL = 0. (11.17)

An analogous system obtains for qk "C). We solve (11.13) using the same Gaussian

elimination procedure employed in Chapter 10 (Carnahan et al. [1969]). 0

0

S
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Chapter 12

Cumulus Parameterization

The cumulus parameterization used in the NOGAPS forecast model is based on

the Arakawa-Schubert (A-S) scheme. Arakawa and Schubert (1974) describes the

theoretical basis for the approach, Lord and Arakawa (1980) and Lord et al. (1982)

develop the discrete form of the parameterization to be used in a numerical model,

and Lord (1972) presents verification results from semi-prognostic experiments with

GARP Atlantic Tropical Experiment GATE data.

The A-S scheme shares similarities with other cumulus paramtterization schemes

in use today. Like other schemes, the A-S scheme adjusts a model predicted thermo-

dynamic state toward some reference atmosphere. This adjustment process must

reduce conditional instability in the model atmosphere. The reference state is de-

fined in terms of a cloud work function which is a generalized form of conditional

instability. Arakawa and Schubert (1974) show that the cloud work function can

be interpreted as the work done by the buoyancy force that is converted into the

kinetic energy of the cumulus updrafts. A fundamental assumption of A-S is that

there is a quasi-equilibrium between the generation of the cloud work function by

large scale processes and its conversion to cloud scale motion. Therefore, the cloud

work function vertical profile in a convectively active atmosphere always remains
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near some reference or climatological state. This reference state has been obser-

vationally verified (Lord and Arakawa, [1980]) to be nearly constant over a wide

range of convective regimes.

An important property of the cloud work function is that it is dependent on

the vertical profile of a composite of temperature and moisture, but is not a function

of each variable profile individually. For this reason the cloud work function quasi-

equilibrium is a less restrictive constraint than, for example, the moist adiabatic

lapse rate, which is a function of temperature only. This gives the A-S scheme more

degrees of freedom to reach a convective equilibrium state. Theoretically, this is an

attractive property of the scheme, but in practice it can allow undesirable biases to

develop in vertical heating profiles. Considerable research on this problem remains

before the full advantage of the A-S scheme will be realized.

A second similarity of the A-S scheme with other cumulus parameterization

schemes is the use of a cloud model to interact with the large scale environment. A-S

differs from most other schemes in allowing an ensemble of cloud types with different

cloud top pressures to exist at each model grid point. Cloud and environmental

thermodynamic budgets are derived for each cloud type. The early A-S formulations

use a simple entraining plume model for each cloud in the ensemble, with constant

entrainment rate for each cloud defined. All downdrafts take place in the dry

environment. Payne (1981) has shown the benefits of including moist downdrafts in

the A-S cloud model. In the NOGAPS formulation, the cloud model is generalized

to include the effects of a simple cloud scale moist downdraft. This has a beneficial

impact on the vertical heating/moistening profiles produced by the NOGAPS A-S

scheme.

In all cumulus parameterization schemes, a closure assumption must be made

to determine the strength or intensity of the convection. In the A-S scheme, this
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closure is defined in terms of the cloud base mass flux generated by each cloud in

the ensemble. Once found, the cloud base mass fluxes are combined with the envi-

ronmental budgets to yield the changes to thermodynamic variables. The problem

of the parameterization therefore reduces to solving for these mass fluxes.

The cloud ensemble concept is the distinguishing characteristic of the A-S

parameterization from nearly all other schemes used in NWP models. Not only do

the clouds interact with the large scale environment to stabilize it, but the clouds

in an ensemble interact with one another as they modify the environment. This

interaction is represented in the A-S scheme through a cloud interaction kernel

that is a unique feature of the scheme. Much of the following discussion on the

cloud and environmental budget equations is from Lord(1978). Readers interested

in more details and theoretical discussion are referred there.

12.1 Thermodynamic Profiles and Vertical

Structure

The model atmosphere is defined by the thermodynamic state variables potential

temperature 0, or temperature T, and specific humidity q. The geopotential 0 is

computed from 0 via the hydrostatic equation. The dry static energy and moist

static energy are defined as

s = cpT + 0, (12.1)

and

h =cPT + 0 + L,q. (12.2)

For cloud buoyancy effects we use the virtual dry static energy

s, = s + cpT(q - t), (12.3)
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where 6= 0.608 and f is the cloud liquid water content.

The thermodynamic variables predicted by the model represent the large scale

environment. All cloud thermodynamic properties must be expressed in terms

of these variables. We assume that cloud air is saturated. From the Clausius-

Clapeyron equation

C = p aT sC - (12.4)

where the superscript c denotes a cloud variable, the asterisk a saturation value,

and the overbar a large scale environment value. Also
1

Sc -9= (hc- ) (12.5)l+-

and

- + L (h (12.6)

where

L(12.7)

A convective cloud becomes non-buoyant with respect to the large scale en-

vironment when

sc - -+ cpT[6(qc 1c] = 0. (12.8) 0

Neglecting overshooting, the level of vanishing buoyancy is the cloud top. From

(12.4 - 12.8) the cloud top moist static energy is

+ (1+ )L , [w ) - (12.9)
1 + "y 6

where
(12.10)

and the (-) denotes a cloud top value. In a conditionally unstable environment the

condition S

1 < 6 < 7 (12.11)
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Figure 12.1: Schematic profiles of h and h*. Dashed lines are profiles of cloud air

hc produced by entrainment mixing.
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must exist. Figure 12.1 shows a typical vertical profile of h and h*. The dashed lines

are profiles of hc that result from the entrainment (mixing) of high h air from below

the lifting condensation level (LCL) with lower h air as the cloud rises. Where a

dashed line crosses h" defines a cloud top. The smaller the entrainment rate, the

less rapidly the cloud loses its buoyancy with respect to the environment and the

higher it will penetrate. A non-entraining hot tower cloud can penetrate until h

equals the moist static energy of the sub cloud layer.

12.2 Parameterization of Ice Physics

The release of latent heat of fusion when cloud liquid water freezes is a significant

factor in buoyant energy production in deep cumulus convection. The microphysics

of precipitation is far too complex and computationally expensive for any attempt

to model it as part of a large scale cumulus parameterization. The most we can

hope for is to crudely model the bulk effects of ice formation on cloud buoyancy.

Ice formation increases cloud buoyancy over liquid water formation through

two mechanisms. First, the equilibrium saturation vapor pressure e* over ice is

less than that over water, so more precipitate will be formed and more latent heat

released when we include this dependence. Second, the extra change of phase step

from liquid to ice releases the latent heat of fusion, in addition to the latent heat

of condensation already released when water vapor condenses. We model the first

effect by linearly combining the over water and over ice values of saturation vapor

pressure such that:

J por for T > 0 C,

e',,,o , - T/40(eTc, - e,,.po,.) for -40' C < T < 0' C, (12.12)

eice for T < -40' C.
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We model the second effect by linearly combining the latent heat of condensation

L,,, and latent heat of fusion Li such that:

L,, for T > 0' C,

L {i L,-T14OLj for -400 C <T<00 C, (12.13)

Lw + Li for T < -400 C.

We replace L,, with Lwi in all terms representing vapor/liquid/ice change of phase

processes.

12.3 The Discrete Model

We now introduce the vertical structure of the discrete model used in the NOGAPS

A-S cumulus scheme. Figure 12.2 shows an example ensemble of 3 clouds with

tops at model full levels Kfop, Ktop + 3, Ifp + 9, where Ktop = 5. For purposes

of demonstration we assume that candidate clouds at the other levels have been

eliminated by the variety of mechanisms that will be described later. We introduce

a local vertical coordinate k with its origin (k = 1) at the top of the deepest cloud

(Ktop). The bottom full level is k = Np = L - Ktop + 1 = 14. The first full level

above the LCL is k = k, = 12. For convenience we also define a cloud type index

kt with its origin at the top of the highest cloud. In the present example the cloud

tops are at kt = 1,4, and 10 respectiviely. In all subsequent descriptions, vertical

indexing will be in terms of k or kt unless otherwise indicated. Ktop may have values

corresponding to the full range of meteorologically realistic cloud top pressures. In

the L = 18 level NOGAPS we allow

3 < Ktop < L - 1,

which allows clouds to penetrate to about 70 mbs.
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2 --- - - - - - - - - - - - - - - - - - - - - - - -

3 --- - - - - - - - - - - - - - - - - - - - - - - -

4 --- - - - - - - - - - - - - - - - - - - - - - - -

ktop 5 -l ------- t =/c = 1

6 -2 - - - - - - - - - - --1

7 - - -- -- -- -- -- -- -- -- -- -- -- ---- 3

8 -- kt = k = 4

9 - - - - - - - - - - - - - - - 5

10 - - -- -- -- -- -- -- -- -- -- -- -- ---- 6

11 - - - - - - - - - - - - - - - - 7

13 - - - - - - - - - - - - - - - - 9

14---------------- kt =k= 1

16-------------------------kc = 12
LCL

17- -- ------------- ---------------- 13

Im = 18- -- ------ ------ ------- ------- np = 14

Figure 12.2: Three cloud ensemble showing vertical coordinate and cloud top index

coordinate for the A-S scheme.
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12.4 Cloud Budget Equations

The cloud model is an entraining plume with constant entrainment rate A. In

continuous form the cloud model is

77= exp[A(z - Zo)], z > Z., (12.14)

where qi is the normalized cloud base mass flux. Above the cloud base, the discrete

form of 12.14 is

r7k-1/2,k, = ?7k+1/2,k,(l + Ak, AZk), kt < k < k, (12.15)

where at cloud base

7rk,+1/2,k, = 1. (12.16)

Below the cloud base, the mass flux varies linearly to zero at the surface. The cloud

base (LCL) is defined simply as the half level k, + 1/2 below the lowest full level k,

where qN, > q;,. Figure 12.3 schematically shows the discrete cloud mass budget.

ek,k, and dk,k, are entrainment and detrainment terms which are related to the net

entrainment rate and the normalized mass flux by

ek,k, = Ak(1 + cd)Azkqk+1/2,k,, (12.17)

dk,k, = AkcdAzkr7k+I/2,k,, (12.18)

where Cd is a fractional detrainment parameter (currently we use Cd = 0). An

alternate form of (12.15) is

r/k-1/2,k, = 77k+1/2,k, + Ck,k, - dk,k . (12.19)

At the cloud top, all mass must be detrained into the large scale environment;

therefore

4, = 7m+1ik(l + Ak,.AZk,). (12.20)
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CLOUD TYPE kt

t~hg+1/2.kt

k-1/2

ekut dkkt --- k

I 
k+1/2,2

kc- 1/2

L=>C k,,,,4t 1'7&.- I/2,i dchti

tr kc* 1/2

'7kc+1/2,kt = 1.0

Figure 12.3: Schematic depiction of cloud mass budget for A-S cloud model showing

exchange of mass between cloud and large scale environment.
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The cloud ensemble moist static energy budget is

'lk-1/2,kt l/2,k, - 7?k+1/2,k, hk+I/2,kc

- -11,k + hck(12.21)
= ek,khk- dk k, 2 (12.21)

Figure 12.4 gives a schematic view of the budget. Using (12.15), (12.16), and

(12.18) we can rewrite (12.21) as

h_ = hk + Ik,k,(hk+1/2,k, - hk), (12.22)

where

Ik~k, 2,,~ (12.23)
S1 + (1 + £d)Ak,Azk(

At cloud top, the moist static energy budget is

dkhk, = ?7k,+/2,khk,+1/2,,k

hk, + h+ /
+ ektke hk, - dk,k, 2 (12.24)

which becomes

hk, = hk, + Ik,(hk,+l/.k, - hkt), (12.25)

where

i'k, 1 2AkAz-- .(12.26)t21 + (1 + ')Akzk,

Equations (12.22) and (12.25) require values of h+/ 11 2 (i.e., surface values) to

begin the recursive solution for the cloud budgets of moist static energy. Because

we start the budget calculations below the actual cloud bases, however, we can

only define virtual values for cloud variables in sub-cloud layers. We have chosen to

define hc,+/, as the pressure weighted mean moist static energy in the subcloud

layer. We write
_-k=N ,Wkp, (1227

hNcp+/ -- " kl (12
1 k=N3 A
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CLOUD TYPE kt

hIaj1 dki i -- -

(his + hh+/jS/

* 0

k-1/2

h... j/2ktIh -1/2.M 
0

hmhktdjb,jt(hn + h-/./ - - - 0k

- h+*/2

Figure 12.4: Schematic of cloud moist static energy budget showing exchanges

between cloud and large scale environment.
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where k, + 1 is the first full layer below the LCL.

The cloud ensemble total water budget equation is analogous to the moist

static energy budget, with the complication that we must partition the total cloud

water among cloud water vapor, non-precipitating liquid water, and precipitating

liquid water via a crude microphysics model. The cloud water budget equation is

r7k_1/2,kqk.l 2k, - r1k+1l2,kqk+ll2,k, =

ekk2qk - dkK, + qk-/2,kt k,k, rk,k, AZk. (12.28)

2

The last term in (12.28) is the moisture sink due to precipitation. Figure 12.5 is a

schematic representation of the total cloud water budget process. Notice that r7 k,k,

is a full level normalized mass flux. For computational convenience we choose

dk,kt
T7k,kt - 7 k+1/2,kt + ek,k, 2

- ?lk+1/2,k,[1 + Akt(1 + )AZk]. (12.29)
2

The cloud liquid water computations are done at the full levels. The full level water

budget equation is

C =+de ,k c77k,k,qc.k, := 7k+1/2,khqk+/2,k, + ek,k,4k - -k l. (12.30)

or

qk,k, = qk + Jk,k,(qkc+/2,k, - qk), (12.31)

Notice that (12.31) is exactly analogous to (12.22) for the moist static energy bud-

get. This is a consequence of our choice of (12.29) for defining ?lk,k,. The cloud

saturation water vapor is found using (12.6):

k= + 1 +kk (12.32)

I+ 7YkL

The total cloud liquid water content is

k qk,c, - qk.k, (12.33)
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CLOUD TYPE kt

(4dk +

qL+Lj2JdJ7IM1/2/2

qjh.-j/2,M'i7h- +l,k

c- 1/2

qje~k ~dkM( 1 /2 + q... 1 2k)/2 - - - 16

0
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The cloud liquid water content after precipitation is removed is

-kk, " ek,k, - rk,k,Azk, (12.34)

where

rk,k, = Cok,[e,k , - 4]. (12.35)

t, is the minimum cloud liquid water content at which precipitation can be pro-

duced and cok, is a cloud microphysics parameter which determines precipitation

generation efficiency. Currently 4c is set to 0.0 and co,, to 0.002 m- 1 for all levels

within a cloud except at cloud top, where it is 0.004 m- 1 . Combining (12.34) and

(12.35) and solving for 4,k, yields

i k,k, + Cokc AZk
ek,k = 1 + Cok AZk (12.36)

and the amount of precipitation per unit cloud base mass flux produced in layer k

from cloud type kt is

Rk,k, = r1k,k, rk,k, Azk, (12.37)

which is also the last term in (12.28). However, if we subtract (12.30) from (12.28)

we get

qk-1/2,k,(r7k-1/2,k, + = ( - (12.38)

The term in parentheses in the last term of (12.38) is total cloud water after pre-

cipitation is removed. If we substitute (12.29) and (12.18) into (12.38) the result

is

qk-1/2.k, = qkck, - rk,kt/AZk (12.39)

At cloud top the total water budget equation is exactly analogous to the

budget equations at lower levels, so

qkt,k, = qk, + 1k,(qc,41/2.k, - qk, (12.40)
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A requirement for cloud existence is that at cloud top a cloud be saturated, i.e,

that qkc,,k, > i,- At lower levels within each cloud this is not required.

12.5 Special Treatment at Top of Deepest Clouds

In section 12.1 the cloud top moist static energy is defined (Equation 12.9). In

the discrete model, each full model level kt may become a cloud top, and there

is a unique value of h" at each of these levels. The deepest possible cloud is one

with entrainment rate Ak, equal to zero, which corresponds to hk,-1/ 2 equal to hN,.

Because in practice there is seldom an exact matc'; between h ,-,/, and hN, at any

level, the deepest cloud (kt = 1) actually occurs for the case where h;-,/, > hN,

and hk,+,/2 < hNp. During a forecast model integration, however, it is not unusual

for TN, to increase enough so that < hNP, where earlier in the forecast

h ,-1/2 > hNP, meaning that kt = 1 must be defined one model level higher. When

this is allowed to occur at a grid point, a cloud type which has previously been

excluded from the cloud ensemble spectrum may suddenly appear, or if the process

is reversed, suddenly disappear. Such behavior is physically unrealistic as well as a

source of computational noise as deep clouds are sporadically turned on and off.

The solution is to redefine the position of the kt = 1 level and the variables

values there so that the kt = 1 clouds can smoothly vary in height as hNp varies S

relative to h. At k, = 1 we have

h-/2 - K hNP < h;/2. (12.41)

Let
= hN, + h/(.

ho 2 (12.42)

and the adjusted height at kt = 1 be

l= z3/ 2 + i(hNp)[zl - z 3/2], (12.43)
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where K(hNp) is the linear interpolation coefficient

K(hN,) = h - (12.44)

Note that K(hN,) varies from 0.0 to 1.0 as TN, varies from h1 / 2 to h;/2, so we have

the smoothly varying behavior we want. The thermodynamic variables for layer

kt = 1 are redefined as

'= '3/2 + K 4 1P)[/ 1 2 - P3/21, (12.45)

2

where

W=

We use (12.45) for only these variables, all derived quantities are computed in

appropriate ways to preserve non-linearities, e.g., using (12.45) to get Tk,=l and

Pk,=, and then finding q,=, as a function of these interpolated quantities.

The cloud budget equations described in section 12.4 are in no way affected

by this redefinition of layer kt = 1. The changes do influence the large scale

environmental changes, however, and will be discussed in section 12.13.

12.6 Solution for Entrainment Rate

Equations (12.22) and (12.25) form a recursive system of equations for the budget

of cloud moist static energy. Since at its top a cloud must be neutrally buoyant

with respect to the large scale environment, we can use (12.9) to close the system.

The system is highly non-linear in Ak, and so must be solved numerically for the

root that represents a physical solution. We use the pseudo-secant method, which

is a finite difference analog to Newton's method. The buoyancy equation is

A, = h -, , - ek (1 + yk,)cpTk, (12.46)
= - tk,k, II + Ik, bCpTk, / L,,
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The pseudo-secant algorithm is

B(AA) _ B(A )  (12.47)

where

Av+ 1 = Am + AAv + ', v = iteration counter.

Notice that we must have two estimates of Ak, to begin the iteration.

We start the iteration with an assumed small value of Ak,, say 10', and

recursively solve the moist static energy equations (12.22, 12.25) and the total water

budget equations (12.31, 12.39, 12.40) from the bottom up using the sub-cloud base
layer values hNp and qg, as hc / , and q / If the cloud top buoyancy

B(A",) is greater than zero, A" 1 is too small and A,=2 must be greater than A" .

If B(Al') is less than zero, A"' is too big and A =2 must be less than A We

use a ±10% A increment for these differences. The iteration is terminated when

IB(Ak,)j is less than 4.0 Joules kg - 1, which corresponds to ±0.004° C or ±0.0016 g

kg- 1 specific humidity. Six to seven iterations is usually sufficient. Experience has

shown that the method converges best when an iteration starts with Am= too small

(clouds too buoyant). We therefore begin with the deepest cloud in an ensemble

(kt = 1) and use Ak,=, as the initial estimate for A'=', etc.

A byproduct of the pseudo-secant iteration is a very good estimate of the

derivative of the buoyancy function B(Ak,) as a function of Ak,. At convergence we

save [BA,]=B(A,,) - B(A-1

dk[B(Ak)I Am, - A _1 ) (12.48)
k k '

for later use in a true Newton's method iteration when we find the elements of the

cloud interaction kernel matrix.

There are several potential physical and computational problems that can

occur during a Ak, iteration. They are
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1. B(A",) - B(AV- 1) = 0.0,1. k, t

2. A < 0.0,

3. A" too large (> 0.01),

4. No convergence (v greater than 10),

5. Cloud not saturated at top: c <.

In the first four cases the condition is pathological and this cloud must be removed

from the ensemble. The last condition normally occurs when the large scale en-

vironment is so dry that the entrainment processes never let the cloud air reach

saturation. This is a real physical mechanism for rejecting potential clouds from

an ensemble. Another situation that requires rejection of clouds from an ensemble

occurs when a cloud loses its buoyancy at a level with an unstable layer above

that level. Figure 12.6 shows a profile of h* with typical A solutions for a situation

which might occur above a trade wind inversion. The distinguishing characteristic

of the A solutions in this case is for A to increase for increasing cloud top height, a

physically implausible result. To detect these physically unrealistic values of A, we

look for the condition

Ak,-l > Ak, > \k,+l. (12.49)

Wherever 12.49 is satisfied, Ak, is rejected from the cloud ensemble.

After the Ak, are found, we use (12.15) to get r7 k-1/2,k,, the normalized mass

flux profiles. Solution of the total cloud water budget equations (12.31, 12.37, 12.40)

also yields the normalized convective precipitation. However, since the precipitation

must be equal to the vertically integrated net environmental drying in a column,

we use the environmental water budget equations of Section 12.8 to ensure an exact

balance between these two terms in global water budget accounting.
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Figure 12.6: Example of A solution for cloud detraining below unstable layer. Cloud 0

for Ak, must be rejected.
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12.7 The Cloud Work Function

Arakawa and Schubert (1974) show that the generation of kinetic energy by cloud

buoyant force is given by

A(A)) gA(A) = I g ,s " 7,)dz'. (12.50)Jz c ,Tz'7 s .' -

The cloud work function per unit cloud base mass flux is therefore proportional

to the buoyancy of the cloud air relative to its large scale environment and the

normalized mass flux within the cloud, integrated from cloud base to cloud top. In

discrete form (12.50) can be written as

Np

Ak, = 9 E_ ?7k+/2,k, AZk+1/2[fk+1/2(hk+l/2,k, - 4k+1/ 2 ) - f'k,k,], (12.51)
k=kt

where
1 + "'k+ll2 Cp'Tk+l/2 /Lw

(1 + k+1/ 2 )CpTk+l/2

In a convectively active atmosphere the cloud work function Ak, has been

shown to be approximately constant, i.e. the quasi-equilibrium condition (Lord,

[1978]). In the NOGAPS model we use (12.51) to compute the Ak, and compare

them to predefined climatological values A"' (Table 12.7). If

Ak1 - Ac > 0,

then the kt cloud can exist. If this difference is less than zero, then the kt cloud is

not unstable enough to exist and is removed from the ensemble.
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12.8 Large Scale Environmental Budget

Equations

Table 12.1: Climatological cloud work function at a function of cloud top pressure.
Values are normalized by pressure depth of cloud.

Prp Acjtm

top Pbot-Ptop

10.0 2.0000

100.0 1.8983

200.0 1.2425

300.0 0.5162

400.0 0.3252

500.0 0.1915

600.0 0.0924

700.0 0.0577

800.0 0.0350

900.0 0.0220

1000.0 0.0150
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CLOUD TYPE ki

h, + h:,,&)/2

i1k- 1/2.kthh- 1
4 k-1/2

ek,k, ,k(. _,/2 + hk+1/ 2)/2

k.1/2,2ht

4U ,,.-1/2

Sdk.,kw(hL..1 2 + hck,. 112)/2 - - - i

4 &ci.1/2hj

Figure 12.7: Schematic representation of fluxes between clouds and large-scale en-

vironment. Each flux in the environmental budgets has a corresponding flux in the

cloud budgets.
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Figure 12.7 gives a schematic picture of the distribution of fluxes between cloud and

large scale environment from the perspective of the budgets of a thermodynamic

variable Wk in the large scale environment, where W is either h or q. Comparison

with Figures 12.4 or 12.5 shows an exact counterpart for every flux in the cloud

budget equations. The budget equations for the changes to environmental moist

static energy Dh and total water DV per unit cloud base mass flux are

g

ODhk,,, [ _Kk[rk-12,k(hk-1 - hk)

+ dkk ( +1/2k + h/, k, - h1)], (12.52)
2

D'k,k, = - [k-1l2,k,(4k-1 - qk)

+ ., (qk+/2,k, + qk-1/2,k, _ (12.53)

and at cloud top

Dhk,,k, = y ke+1/2,ke R + A\k Zk,)(4,~ - kr)Dh ,.k, APk,'

+C .-. hk, + hT,+l/2 .k, hk,)], (12.54)

Dqktke = t 1ik,+1/2,k,[(1 + Ak, Zkt)( k ,-

k( k+ qkc,+l/ 2,k, - qk)" (12.55)+ cdAk, Azk, 2 k

The environmental budgets are similar in appearance to the cloud budget equations,

although the choice for the subsidence terms is a departure from the form originally

proposed by Lord (1978). Notice that the ' subsidence terms defined on the half

levels in Figure 12.7 are the product of the half level normalized mass flux and the T

gradient between the two full levels above and below that half level. This is a donor

cell form of vertical advection and is a flux form of upstream differencing. It has
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the property of systematically reducing the drying bias characteristic of the simple

entraining plume cloud model. Also, because upstream differencing is diffusive, it

eliminates much of the two grid interval noise in the heating profiles that plague

centered space differencing forms of the budget equations.

12.9 Evaporation of Convective Precipitation

In section 12.4 convective precipitation per unit cloud base mass flux was generated

as an integral part of the total cloud water budget computation. Observational

studies have shown that a significant portion of convective precipitate evaporates

before it reaches the Earth's surface (Leary and Houze, 1980). This process tends to

cool and moisten the lower atmosphere where the evaporation occurs, so including

it in the NOGAPS A-S scheme corrects some of the excessive low level drying A-S

otherwise produces.

The mass of water evaporated into each layer as it falls is assumed propor-

tional to the mass M of the layer and inversely proportional to the layer relative

humidity Rh. For any cloud type kt there are k = kt,.. . , Np - 1 layers that may

produce precipitate, and the precipitate from each of these layers falls through

Np - k layers. Therefore

IM k I I = kj,...,Np-1
A = M A[ = At (12.56)

R 4k k 1, INp.

We assume that the evaporation is a constant fraction of the total precipitate R,

generated by each cloud layer 1. Therefore

1 , = A= k bR1, (12.57)
k=1 k=l Rh,

so

- beR1 (12.58)
147 Mk
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The final step is to modify the environmental water budget equations by summing

over all cloud types 1.

Np-I

D~k,k, = D~k,k, + E Aq, k = l, Np. (12.59)
1=kt

A value of b, = 0.2 is used. Note that because moist static energy is conserved

during moist processes, the Dhk.k, are unaffected.

12.10 Saturated Downdraft Model

The total cloud water budget equations partitioned the moisture into three parts:

cloud water vapor, non-precipitating liquid water, and precipitating liquid water.

In section 12.9 we further divided the precipitating fraction into an evaporating

and non-evaporating fraction. The downdraft model exploits the non-precipitating

fraction based on empirical evidence that evaporation of suspended cloud water gen-

erates negatively buoyant cloud scale air parcels. These downdrafts carry suspended

cloud liquid water downward, depositing it at lower levels where it is evaporated.

This is in contrast to the A-S cloud model, which evaporates cloud liquid water at

the level where it detrains into the environment.

Payne (1981) incorporates a downdraft model directly into the budget equa-

tions of the A-S scheme. His approach is quite sophisticated and certainly attractive

as a long-term alternative to the current A-S cloud model. However, we have cho-

sen to model the downdrafts in a much simpler manner by taking advantage of the

observed biases in the vertical moistening/drying (Q2) profiles of the A-S scheme.

Figure 12.8 is from Lord (1978) and shows observed and predicted Q2 from a GATE

semi-prognostic study. The difference between the profiles is also shown. This dif-

ference is quite typical of Q2 bias from A-S. We can fit it reasonably well with a
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Figure 12.8: Observed Q2 profiles from GATE and Lord (1978) A-S semi-prognostic

study, plus difference between two showing typical vertical biases.
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12.11 The Perturbed Cloud Budget Equations

We now have a complete set of budget equations describing the interaction of a

cumulus cloud ensemble with the large scale environment. For each cloud in an

ensemble the cloud work function for a unit cloud base mass flux gives us a mea-

sure of the instability in the large scale environment that must be reduced to an

equilibrium state. For each cloud in the ensemble we must find the actual cloud

base mass flux which reduces the cloud work function to this equilibrium. We can

formally write the cloud base mass flux kernel system of equations as
Np-I

E Ckrk,mBkt + Yk, = 0, k = 1, Np - 1, (12.66)

where •

Ck,,k - Yk, (12.67)

A - c  (12.68) •

The complexity of the cloud and environmental budget equations precludes any

hope of an analytic solution to (12.66). A finite difference approach is required. To

find the matrix elements k,,kl we assume a cloud base test mass flux m' for a

cloud type k' in an ensemble. We run this test value through the environmental

budget equations (12.52), (12.53), (12.54), and (12.55) to get changes to the large

scale environment due to this cloud. The perturbed values are

hk= hk+ mB,;Dhk,k,, (12.69)

and 0

=qk + Bqkk (12.70)

Using these adjusted thermodynamic profiles, we resolve the cloud budget equations

(12.22), (12.25), (12.31), (12.39), and (12.40) for all values of kt, with the attendant
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simple quadratic profile. Let

=qk k, =ak(ax- Xk), (12.60)

where

Xk = (Pk -Pk,/(PN, - k,

Mk = k layer mass,

a, a = proportionality constants t.b.d.

The parameter xk is a locally defined pressure coordinate normalized to 0.0 at

cloud top and 1.0 at the surface. We assume the downdrafts are non-precipitating,

so there is no net change of moisture in the column. Therefore
Np

yZ Aqk,k, = 0, (12.61)
k=kt

so
Np Np

a = E MkxkI l M j . (12.62)
k=kt k=kt

From (12.61) we know that the normalized downdraft moisture flux from the moist

bias area to the dry bias area in Figure 12.8 must be equal to the negative (lower)

area of the difference profile of Figure 12.61. The flux is therefore

J
Fk, = d qkk,, J = highest layer where Aq > 0. (12.63)

k=N,

The actual strength of the downdraft moisture flux is assumed to be proportional

to the total drying in the column (i.e., precipitation), so

a = bdRk (12.64)

YFk,

Based on model sensitivity experiments we use bd = 0.1. The final step is to modify

the environmental water budget equations,

Dq,k, = Dqk,k, + Aq dk, (12.65)

As was the case for evaporation of convective precipitation, there are no changes

to the moist static energy budget.
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values of entrainment rate A' and normalized mass flux 1/,k,. The cloud work

function Ak is recomputed for the perturbed environment, where

Np
k, -" g k+ ek (12.71)

A jjk +l2,kAk+1/2[fk+l/2(hk+l/2,k, + - (12.71)
k=kt

This entire process is repeated for all allowable values of k'. The matrix elements

of (12.66) are given by
A' Akt,

.k,,k, -- k n ,,(12.72)

A constant value of ,= 2.0 kg m-2 sec 1 is used fo[ all values of k'.

The computational effort to find the k1,,kt is quite large compared to the

original cloud budget calculations. In the original cloud budget calculations for a

given Ktp we have kt = L - Ktop possible clouds. Finding the elements of (12.68) 0

requires all possible combinations of k' = L- Ktop and kt = L - Kto, so the problem

is of order k, rather that kt. However, because the test mass flux changes in the

cloud budget calculations are small, we can take advantage of the results of (12.48) 0

from the original cloud budget solutions in a Newton's method solution to (12.46),

rather than the original pseudo-secant method. So

d0
A"' = A', - B(A',)/- [B(Ak,)] . (12.73)

Beginning with A"' = Ak, ,two iterations give solutions to (12.73) which are within

±4.0 Joules kg- '.

12.12 Solution of the Cloud Kernel Equation

Equation (12.66) is a deceptively simple linear system of equations. However, the

physical constraints we impose on the solutions to this system have historically

presented a non-trivial problem to implementations of the discrete A-S scheme.
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We must minimize
N- I

9i= i,,rnj + y, i = 1,Np - 1, (12.74)
3=1

with the constraints

m, > 0, (12.75)

and

9s > 0. (12.76)

Equations (12.74), (12.75), and (12.76) form a constrained linear system of order

N = L - /t,. Schubert (1973) proposed an iterative solution method which was

used in early versions of the UCLA general circulation model. The method worked,

but was subject to occasional numerical problems. Silva-Dias and Schubert (1977)

solved (12.74 - 12.76) as a linear programming problem using the simplex algorithm

(Dantzig, 1963). Simplex finds the optimum solution and is numerically robust,

but is computationally expensive for the large number of low order linear systems

generated by the A-S scheme. More details of these methods are in Lord (1978).

The nature of (12.74 - 12.76) suggests a calculus of variations approach. We

want to minimize the functional

N N

J71 = E[ i(dm - M0.)2 + ai( KCi,m 3 + yi) 2], (12.77)
i=1 j=l

where in,, are the unconstrained solutions to (12.74) which generally will not satisfy

(12.75) for all values of i. The factors ci and ai are the so-called weak constraint

variational weights to be determined. Taking the first variation of (12.77) with

respect to m, and collecting terms yields

N N N

EE+ E3) = + (j)iE + fm 01, (12.78)
7=1 1=1 1=1

which is of the form
N

=Eim - hi. (12.79)
=1
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The iterative solution of (12.78) proceeds as follows:

1. Solve (12.74) with g, = 0.0 to get io,.

2. If ino, satisfies (12.75), then set a, to 0.0 and (, to 1.0, which causes

(12.78) to reduce to ni = mno,, so (12.75) is satisfied.

3. If ino, is less than 0.0, then set m.o, to 0.0, Ei to 0.0, and ai to 1.0 in

(12.78). This causes 9i to be greater than 0.0, so (12.76) is satisfied.

4. With the adjusted values of ino, and the assigned values of ci and ai,

solve (12.78) for mj.

5. Check to see if (12.75) and (12.76) are satisfied for all values of i. If not,

then replace mo, with any positive mi and return to step 2 above and

repeat the iteration.

The method usually converges within 2-3 iterations, even for cloud ensembles

with 8-10 positive values of mi. Non-pivoting Gaussian elimination is used to solve

(12.79) because experience has shown that Li,j is almost always well-conditioned. In

rare cases with pathological temperature and moisture structure this method fails.

In these cases full-pivoting Gaussian elimination is tried, and if this also fails the

mass fluxes for this cloud ensemble are set to zero. Computationally the method is

an order of magnitude faster than the simplex algorithm and yields exactly the same

solutions in nearly all cases. No meteorologically significant differences between the

two methods' solutions is ever observed.

12.13 Update of Large Scale Environment

Solution of (12.74-12.76) closes the A-S parameterization. Since the environmental

budget equations are for a unit cloud base mass flux, the changes at each level k in
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the environment are

ATA; =Np-I Np(1.0

* AEk = mBk, E D4k,k,, (12.80)
k, =1 k=kt

Np-1 Np

Aqk = E MBk, E Dqk,k,. (12.81)
ke=1 k=kt

So

ATk = Ahk - LA~k (12.82)
cp

The total precipitation is

P. - Aqk. (12.83)
k=1

The total cloud base mass flux is

Np-1

MB = Bk. (12.84)
kt=l

In Section 12.5 the need to redefine the definition of the layer containing the tops

of the deepest penetrating clouds was described. These redefined layers are always

thinner than the full model layer that is otherwise defined at these levels. Therefore

the deepest cloud heating and moistening changes computed from the environmen-

tal budgets must be adjusted for the difference in thickness between the temporary

thin layers and the full model layers. Using 12.44, we obtain the adjusted heating

and moistening changes

Ahk,== K(hN,)Ahk,=,, (12.85)

Aqk,= 1  K(hN,)Ak,=l. (12.86)
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* Chapter 13

Large Scale Precipitation

The large scale precipitation parameterization removes all supersaturation remain-

ing in the model after all previous temperature and moisture adjustments. We per-

form the computations with the current grid point fields, which in this case, are the

temperature and moisture from the Arakawa-Schubert cumulus parameterization:

T(-) and q(cu) (see Chapter 6 for the discussion of the time integration procedures).

The large scale precipitation processes begin at the highest supersaturated model

layer and continue downward to the surface.

For level k with temperature Tk and pressure Pk the saturation specific hu-

midity is given by

q.t(Tk, Pk) - .62197e*(Tk)
q* (T ,k) =Pk - e*(Tk) ' (13.1)

where e*(Tk) is the saturation vapor pressure. We obtain the saturation vapor

pressure by solving the Clausius-Claperyon equation:

de* .62197L e*

dT - RT 2  ' (13.2)

where .62197 is m,/md, that is the ratio of the mass per unit mole of water vapor,

m, (18.016 g mole-') to the mass per unit mole of dry air, md (28.966 g mole-'); R

is the dry air gas constant (287 J K-1 kg-1); and L, is the temperature dependent
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0

latent heat of condensation L,,i given by Equation (12.13). Equation (12.12) is also

used to include saturation vapor pressure dependence with respect to ice.

We define Rk as the accumulated liquid water falling into layer k with pressure

thickness Apk (Rk = 0 for the top saturated layer), and define Ek, the amount of

evaporation in the layer, as

f (Rhqsatk -qk) Amin
Ek = max Rk (13.3)

0, 0

where Rh, is the maximum relative humidity to which Ek can raise layer relative

humidity. Currently Rh, is 100%. We assume that the evaporation moistens the

layer uniformly and that the heat used to evaporate Ek is removed from the layer, 0

giving new layer specific humidity and temperature

qg = qk + Ek , (13.4)

T -sp,)  Tu Lw g Ek (13.5)

CP APk

Using Equations (13.1) and (13.2), we calculate the relative humidity for the layer

for the moisture and temperature given by (13.4) and (13.5): q sP) and 7T (). If

the relative humidity is greater than 100%, we find the saturation temperature and

specific humidity, add the excess moisture to the accumulated precipitation, and

add the latent heat to the layer's temperature. This procedure is done iteratively

and is described below.

We define the nth iterate for moisture and temperature by,

n T1 _-I

qk = qat(Tk,Pk) = q - C, (13.6)

and

T n T - + Lw Ckn, (13.7)
cp
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with Ck' denoting the amount of moisture removed by the iteration to obtain sat-

uration. The input moisture and temperature are q($P') and Tk(" ') . Expanding qsat

of Equation (13.6) in a first order Taylor series in temperature about the previous

iterate, we get the result:

6 = q n 1 - qsat(T ,pk) - -C

Solving for C67, we obtain:

Cn qk ' - q.,t(Tk- Pk)Ck + (13.8)

with

__ I,___at (13.9)S--cp a p*

Using the Clausius-Claperyon equation (13.2), we write the partial derivative of

qat with respect to temperature as

(dq r _RT
2  1 - e'/p(13.10)

The procedure given by Equations (13.6)-(13.10) is continued until the change C' is

sufficiently small (typically I or 2 iterations). If N is the total number of iterations,

then the rain falling into the next layer, k + 1, is given by the excess moisture from

level k and by the difference between the accumulated and the evaporated moisture

in that layer:
ANN nRk+1 = Rk - Ek + A p-- 2 Ck' (13.11)

g n=1

Rk+I falls into the next layer below and the process is repeated, continuing down to

the surface layer L, where no evaporation of precipitation is allowed. The accumu-

lated liquid water RL is the predicted large scale precipitation at the ground. If the

ground temperature is below freezing the precipitation is assumed to accumulate

as snow.
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The temperature and moisture fields are given by (13.6) and (13.7) summed

over all iterations and are denoted by T("P) and q(P). These are the t + -At forecast

grid point fields used for the next time step plus the radiation calculations if the

forecast time is a multiple of 2 hours.
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Chapter 14

Longwave Radiation

The time tendency equation for temperature due only to the absorption of longwave

radiation is

P W - -FLW (14.1)

The upward longwave radiative flux, FP w, and the downward longwave radiative

flux, X*,LW, are the radiative energy per unit time and per unit area (Watts m-').

The variable p is the density of air and cp is the specific heat of air at constant

pressure (1005.45 J K- 1 kg-'). Equation (14.1) is valid for both a cloud free and

a cloudy atmosphere. The longwave calculation proceeds by first calculating the

longwave fluxes in the absence of clouds, and then obtaining the longwave fluxes in

the presence of clouds by reducing the clear sky fluxes by a probability of the clear

line of sight between pressure levels.

b 14.1 Fundamentals of Longwave Radiation

The following discussion is taken from Liou (1980). We start by considering a pencil

of light impinging on a surface area at an angle 0 (see Figure 14.1) and by defining

dE,, as the differential radiant energy that crosses the area dA, in the direction 0

161



measured normal to dA, in the tire interval t to t+dt, in the frequency range v

to v+dv, and in the solid angle span df. The radiance, (monochromatic intensity,

brightness) I, is defined as

dEL,
= dvdt cos OdAdfl (14.2)

The monochromatic flux density F, is the total energy emitted through dA in time

dt with the frequency range dv:

"7c" = fo2r f,/2 (O,V)cos0sinOdOdp. (14.3)

If the radiance is isotropic, then the monochromatic flux density is given by

FZ, = irI, (isotropic radiation).

The flux density F that appears in Equation (14.1) is the integral of the monochro-

matic flux density over all frequencies: 1

F= jF dv. (14.4)

We assume that the atmosphere is locally in a state of thermodynamic equi-

librium, so that at each point in the atmosphere we can define a temperature and

assume the atmosphe, c'o omiszivity is equal to it. absorptivity (Kirchhoff's law).

Further, we assume that the absorption and emission of longwave radiation domi-

nate any multiple scattering-absorption processes. We will consider only longwave

radiation with an upward or downward component, and we will define 0 as the angle

of the radiation normal to the vertical z coordinate (the plane parallel approxima- 0

tion). Under these conditions, the fundamental equation for radiative transfer is

the Schwarzschild's equation for the radiance:

dIL,=- pk I. sec 0 + pk B, sec0, (14.5)
dz
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z

dEy

I m A
Figure 14.1: A pencil of radiation through area dA in the direction 0 and confined

to the solid angle di?.
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where k, is the mass extinction cross section and B. is the monochromatic intensity

for a blackbody:

c2 (eh,I/kT - 1) (14.6)

The constants of the blackbody monochromatic intensity are Planck's constant h

(6.6262x 10- 27 erg sec), Boltzmann's constant k (1.3806x10-16 erg K-1), and the

speed of light c (2.998x10' cm sec-1). The temperature T is a function of the

height z or the pressure p. We shall express the dependence of B, on T, z, or p

interchangeability.

We obtain an equation for the upward longwave radiance, I t , from the Schwarzschild

equation (14.5) by considering only 0 > 0, and we obtain the downward longwave

radiance I 's equation by setting 0 < 0. The results are 0

d = _pk, I. sec0 + pk,B,sec0 (14.7)dz

and 0
d = pk,I. secO - pk,,B, sec O. (14.8)
dz

The boundary conditions for (14.7) and (14.8) are the surface emits longwave

radiation as a blackbody at the surface temperature Ts and there is no down- 0

ward longwave radiance at the top of the atmosphere. We write these boundary

conditions as

IJ(O) = B[Ts] (14.9)

I (Zo ) 0

The solutions of (14.7) and (14.8) with boundary conditions (14.9) for the upward

and downward intensities are 0

12(z) = B.[Tsle- f'pk ec Od'

+ j'B.[z'Jpk, sec e-'- f Pk,,ed"'dz' , (14.10)
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and

I (z) = 12°" z']pk sec Oe pk1 sec dz" dz ' .  (14.11)

We compute the upward and downward monochromatic flux density by integrating

(14.10) and (14.11):

.Fr(z) = rB,[I+rB c (z,zl)dzf, (14.12)
.F,(z = B[Ts] rf (z' '=0) + 7 r z'

top d9~fI ,(4.3

F (z) = - I rBL,--(Zz)dz'. (14.13)
az

We have simplified the form of the fluxes by introducing the diffuse transmission

function, r!, which is given by the integral:

r(z,z') = 2 j sin 0 cos Oe f:'kPsecedz"dO. (14.14)

We perform the integrals in (14.12) and (14.13) by parts, which yields the results

that

'F(z) = 7rB,,[T(z)] + rB,[Tsjr,(z,O) - rB,[Tz = O)Irl (z,0)

jrO!(zz (7rB,[T(z')]) dz' (14.15)

and

F7(z) = rBL,[T(z)] - 7rB[Tz,Iop]rj(ztop, z)

1 T(Z, z) z(7rB.[T(z)])dz'. (14.16)

In (14.15) and (14.16), we use the fact that

T1 (Zz) - 1.

Note that in (14.15) we have distinguished between the surface ground temperature,

Ts, and the temperature of the surface air denoted by T(z = 0).

For the numerical computations we evaluate the fluxes at the half level sur-

faces (see Figure 14.2), and we must replace the integrals of (14.15) and (14.16) by
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finite sums over the levels. We add two extra levels to the existing model, where N

indicates the total number of levels for the longwave calculation, i.e. N=L+2, with

L=18. (see Figure 14.2). We take the top model temperature as the temperatures

of the two added levels, and we set the specific humidity of the top level to zero

and the next level humidity to 3.0 x 10-. With these conventions, we write the

finite difference form of (14.15) and (14.16) as

YF.(Zk+1/2) = 7rB,[T(Zk+1,2 )I

+ irB[TsI-TI(zk+i/2 ,0) - 7rBL4[TN+l/2 JrL{(Zk+1/2 ,0)
N-k

E fj {rB,[T(Zk+j.../ 2 )]Tf(Zk+.P 2 , Zk+,)
j=l

- 7rB[T(k++1/)]!r(Zk+l1,Zk+j)}, (14.17)

and

.(zk+1l2)= irB[T(zk+l/2 )]

- rB[T.,.,]r {(zto,, Zk+1/2)

N+1-k

--- 1

- rnB,[T(zk+ij+,l/2)Ir!(zk+lj,zk+l/2)}. (14.18)

14.2 The Band Model
0

The following development is based on the work of Harshvardhan et al. (1987).

To obtain the total clear air longwave fluxes, we must first calculate the diffuse

transmission function for all atmospheric longwave absorbers, and second we must

integrate (14.17) and (14.18) over all frequencies. The major difficulty is that rI is a

very complicated and often rapidly varying function of v, which has a very different

transmission property for the different molecular components of the atmosphere.
0

To obtain a solution, we first limit the longwave absorbers to the three major
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Model Level Longwave Radiation Level

--------------------- T =Tt0 ,q 0

p = tp/
-------------------- ------- T = Ttp q =3 x 10-1

1/2 P =Ptop

k-1/2_____P = Pk-1/2i V

k-------------- T =Tk, q =qk
k+1/2 p =Pk:+1/2, r1, jr

L-1/2

L+1/2 pP7j r

Figure 14.2: The vertical structure for the longwave calculation.
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Table 14.1: The spectral longwave band regions in /m.

AvA .V 2  Av3  Av 4

5.26-7.25 3.330-5.260 12.5-18.5 9.09-10.2

29.41-o 7.250-9.090

10.20-12.50

18.52-29.41

ones: water vapor, carbon dioxide, and ozone. Second, in order to approximate

the fluxes, we break up the frequency domain into four distinct regions, where

broadband parameterizations are applied. This technique is called the band model

parameterization.

We write the total flux as a finite sum over four frequency bands,

=,dv = 57 F,,dv. (14.19)

We designate the four ads considered as 0

1. the water jor band center (AVL),

2. the water vapor band wing (Av 2),

3. the 15um carbon dioxide band (Av3 ), and

4. the 9pm ozone band (Av4).

The values of the bands are given in Table 14.1. Three of the four band regions

contain more than one type of absorption. We summarize the different absorption

properties of the regions as:

* Band region 1 contains solely absorption and emission due to the center band

of water vapor alone.
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" Band region 2 contains just water vapor absorption and emission with 2 dif-

ferent types of absorption:

1. the continuous absorption of water vapor, which is dependent on the

water vapor's partial pressure, e (the e-type absorption); and

2. the absorption in the wings due to the water vapor amount.

" Band region 3 includes water vapor and carbon dioxide absorption of the

following types:

1. the e-type water vapor absorption,

2. the wing water vapor absorption,

3. the carbon dioxide center band absorption, and

4. the carbon dioxide wing band absorption.

" Band region 4 includes water vapor and ozone absorption:

1. the e-type water vapor absorption and

* 2. all types of ozone absorption in the infrared.

For each region, we define the spectrally integrated Planck flux, Bi[T], by

0 B,[T] = J rB,[T]dv, (14.20)

and we define the Planck weighted transmission funcion, ri(p,p'), of the diffuse

transmission function (14.14) by the integral,

7i(Wp) = 1 J T/(pp')7rB,[T(p)]dv. (14.21)ri~p'p) =Bi [T(p)]

In (14.21) we have made the simple change of variables from z to pressure p. Note

that the convention is that when we write r(pl, P2), p1 is greater than p2.
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From (14.20) and (14.21), we obtain the total upward and downward fluxes

by replacing the integral in (14.17) by the sum over the 4 bands:

' = Z { B4-+i/2 1 + B r[Tslrj(ps, pk+1/2 )

- B[T(ps)]r-(ps,Pk+1/2)}
4 N-k

- B, B[Tk+j-1/21r,(pk+j,Pk+1/2)
t1 j=1

- Bi[Tk+j+1/2r-i(pk+j,pk+1/2)} (14.22)

and

k+1/2 = x{B2 [T+,/]
i=1

- Bi[T(pop)]ri(pk+/2, Ptop)}

4 N+1-k

+ E E {Bi[Tk+l-j-1/2]ri(pk+1/2,pk+l-j)
i=l j=l

- Bi[Tk+1-j+1/2]i(pk+/2,Pk+,-j)}. (14.23)

In the above equations, Ps is the surface pressure, Ptop is the model's top pressure,

Ts is the surface temperature, and T(ps) is the surface air temperature.

In order to determine the Planck weighted transmission function (14.21),

we integrate the diffuse transmission function (14.14) over the different frequency

bands. This requires a parameterization of the functional form of the highly com-

plicated molecular mass extinction cross section k,(p, T). We assume that the

functional form of the cross section can be written as

k.,(p,T) = k.,(p,, T,.)f(p, T), (14.24)

where p, and T, are representative values of pressure and temperature, and the

shape function f is given by the form

f(p,T) = exp[r(T rT.)]
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The units of p and P, are mb, the temperature units are degrees K, and the coeffi-

cient r has units K -1.We define the scaled optical path u(p,p') by

u(p, p') f(p", T)dp"/g, (14.25)

and with this definition we write the diffuse transmission function as

r! = 21 cos Oek(P-T)u(PP')secOd cos 0. (14.26)

The water vapor scaled optical path for the e-type absorption in the atmo-

spheric window, u, is given by Chou (1984) as

u(p 1 'P 2 ) = P qeV exp [1800 ( 1 )] 9 (14.27)

The partial pressure e, is in the units of atmospheres and q is the specific humidity.

Using the equation of state for e", which is

pq
ev -q + .62197'

we write u (gm/cn 2 ) as

U(P1,P2) = 1.02 630.2 exp 1 8T - 6 .0811] dp. (14.28)JP 630.211 1_

The leading coefficient (1.02) is the conversion factor of mb to g/cm- 2 . The water

vapor scaled optical path in the water center band, which is denoted by v, is given

by Chou (1984) (g/cm2 ) by

v(p 1 ,p2 ) = 1-02P qP exp[.005(T - 225)]dp. (14.29)

The water vapor scaled optical path in the water wing band, w, is given by Chou

(1984) (g/cm- 2) as

w(p 1 , P 2) = 1.02 ( -) exp[0.016(T-256)]dp (14.30)
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We take the functional form of the carbon dioxide scaled optical path in the CO2

center band, denoted by x, from Chou and Peng (1983) and is given (g/cm' ) by

(P2 p 0 8 5

x(p1 ,p 2 ) = 1.02(0.26) ]pI ( L ) exp[0.0089(T - 240)]dp. (14.31)

Chou and Peng (1984) give the carbon dioxide scaled optical path in the CO 2 band

wing, y (g/cm- 2) by

rP2 / p \ 1/2

Y(Pl,P2) = 1.02(0.26) P exp[0.025(T - 240)]dp. (14.32)

The factor 0.26 corresponds to 330 ppm by volume for the CO 2 concentration.

Finally, we write the scaled optical path for ozone, z0, (g/cm2) by

Zoz(Pi,P2 ) = 1.02 j qozdp, (14.33)

where the ozone mixing ratio, qo, is obtained from the climatological values tabu-

lated by Dopplick (1974).

The Planck weighted transmission functions for the four regions, ri, are func-

tions of the different scaled optical paths defined above. We write this formally

as

Ti(pI,p 2) = 7i[UI(p1,p2 ), u 2 (pI,pP),...].

In the water vapor center band region (Band Region 1), the Planck weighted trans-

mission function rl is a function of the scaled optical path v, given by (14.29).

Chou (1984) expesses this as the series,

rl(v,T) = rl(v, 250) [1 + ck(v)(T - 250) + 01(v)(T - 250)2]. (14.34)

In Harshvardhan et al. (1987), equations for rl(v, 250), al(v), and 01(v) are de-

rived based on the tabulated values of Chou (1984). These equations, which were

obtained from the computer code, are

r(v, 250) = 1 0
1 + 9.2vf- - .187v 3/ 2 + 0.323v'
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al(v) = .08v/V- .187v 3/ 2 + .0323v,

1(v) = .0O1{.239v- .09v3/2 - .016v2}.

In the water vapor wing band (Band Region 2), the Planck weighted trans-

mission function r2 depends on the scaled optical path for the e-type absorption u,

which is defined by (14.28), and the water vapor wing absorption path w, which is

given by (14.30). A functional form of r2, which is given by Chou (1984), is

r2(u,w,T) = r2(u,w,250)[1 + a2 (u,w)(T- 250)

+ 02(u,w)(T- 250)2] , (14.35)

with r 2(u, w, 250), a 2 (u,w), and 0 2(u,w) parameterized by Harshvardhan et al.

(1987) as

-r2(u, w ( l+32.2u )+ Vw (53 + 199u - 1990.6 U2'\

1 + 52.85u) / 1 + 333.2u
w [(v+1)( 1+ 74.1u

\.433 + 24.1uJi

a 2(u,w) = [(.005 1.05u- 39U2 + (07+4.4u +3. 5-uv-)

+ (-.038 - 3.6u + 7. 9WU 2  (.32006 + .71u - 2.8u 2 '

1 1u + 70u J

32 (U, W) = .001[(003j +.38u +5.19u) + (-.029 - .u+ l.9U2V/W)

(0A4+ 1.8u -10.1U 2 ) + W3/2 002 - .371u +2.35u 2)]

+ 984 1w 1+12u

The Planck weighted transmission function in the 15 m band (Band Region 3)

is a function of the scaled optical paths u, w, x, and y, which are given by (14.28)

and (14.30)-(14.32), and weakly depends on the temperature T. The functional

form tor r3 is given by Harshvardhan et al. (1987) as

r3= .384a3(Y)3(u)b3(w) + .6161 3(x)Y3 (u)6 3(w), (14.36)
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where a 3(y) is the transmission function for carbon dioxide in the 15pm wing band:

C(3(y) = exp{-0.04y/(1 + 9y-s)}; (14.37)

03(x) is the transmission function in the 15pm center band:

/33 (x) = exp{-3.lx/(1 + 15.lx) 5 6}; (14.38)

-y3 (u) is the water vapor e-type transmission function in the 15pm band:

YA(u) = exp{-27u'}; (14.39)

and 3(w) is the water vapor wing band transmission function in the 15pm band:

63(w) = exp{-6.7w/(1 + 16w° 6 )}. (14.40)
0

The Planck weighted transmission function in the 9pm region (Band Region

4), r4, is a function of the optical paths u, given by (14.28), and z,., specified by

(14.33). We assume that it is independent of the temperature. The functional form

is given by

'74 (u, zo) = a 4(u)03 4(Zoz), (14.41)

where a4 (u) is the transmission function for the e-type water vapor absorption, and 0

04(z) is the transmission function for ozone. These are approximated by

Ct4(u) = exp{-27.0u°°'},

and

04(Zoz) = 1- .677 [1- exp{-4.4-4 -1)1],

where 0

-14 = zoZ/lO13L pqozdp

and
4444 1381.12 jvs •

64 = -4.4y4 I+ 1 12f pqodp.
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The spectrally integrated Planck fluxes, Bi[T], which are defined by (14.20),

are given in tables in the code provided by Harshvardhan at al. (1987). With

these values and with the transmission functions defined above, we compute the

cloud-free upward and downward fluxes from (14.22) and (14.23).

14.3 The Cloud Parameterization

A cloud parameterization is a crucial part of any radiation scheme. We diagnose

two types of clouds in the forecast model: stratiform and cumulus. For each grid

point we define Ct as the stratiform cloud fraction and C,, as the cumulus cloud

fraction occupying the grid box at the point.

To define the stable cloud fraction function, we use the formulation that wa;

developed for the ECMWF's forecast model (Slingo and Ritter [19851). At each

pressure level Pk, we compute the relative humidity Rhk, and we define an average

relative humidity Rhk by

Rhk = 0.5Rhk + 0.25(Rhk-l + Rhk+I), (14.42)

with R-h = Rhi and RhL = RhL. We calculate the stratiform cloud fraction at

level k from the equation,

C'tk = ( I - Rh ) ) (14.43)

The variable RhZ, which is a function of the pressure level and the surface pressure

ps, is the cloud critical relative humidity and is specified by the relation:

Rh;=I+2 (] + [ -3 +2 ( ] .

S PSl ~PS .PS PS ~ PS

The values of Rh* for a surface pressure of 1000 mb as a function of pressure are

shown in Table (13.2). As we see from Equation (14.43), the vertically averaged
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Table 14.2: The critical relative humidity for stratiform clouds versus pressure (mb)
with a surface pressure of 1000 mb.

Pressure Rh' 0

100 0.94

200 0.85

300 0.73 0

400 0.60

500 0.50

600 0.44 0

700 0.43

800 0.51

900 0.70 0

1000 1.00

relative humidity must be greater than the critical relative humidity for the strati-

form cloud fraction to be greater than zero. The smaller values of Rh' in the middle

atmosphere favor middle clouds compared to lower and higher level clouds.

We assume that the cumulus cloud fraction starts at the lifting condensa-

tion level given by Equation (11.8) and extends to the highest entraining cloud

level computed by the Arakawa-Schubert scheme (Chapter 12). We set a con-

stant cumulus cloud fraction up to the level where cumulus anvils are diagnosed

(T <233.16); above this level we increase the fraction in order to account for the

ice anvil. The cumulus cloud fraction is based on the amount of cumulus rainfall.

We use the function developed for cumulus clouds by Slingo (1987). For a cumulus

precipitation rate P,, given in units of cm/hr the cumulus cloud fraction is

C,, = 0.93 + 0.124ln(P,,) Tk > 233.16, (14.45)
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Table 14.3: The cumulus cloud fraction versus cumulus precipitation rate in cin/hr.

Pc C.

0.0012 0.10

0.0028 0.20

0.0062 0.30

0.0139 0.40

0.0312 0.50

0.0699 0.60

0.1565 0.70

0.3595 0.80

with a maximum cumulus cloud fraction without anvils set at 0.80. The values of

cumulus cloud fraction versus cumulus precipitation rate are given in Table 14.3.

We enhance the cumulus cloud fraction to take into account the presence of ice

anvils. When the temperature is sufficiently cold we increase the value of C,, by

0.20. Therefore, if the temperature is below 233.16 K then the cumulus cloud

fraction is

CCk = 1.13 + 0.124 ln(Pcu) Tk :< 233.16. (14.46)

The probability of clear line of sight through a layer with cloud fraction Ck

is simply

Pk= -Ck.

We compute the total cloud fraction, denoted by CTk, by combining the stable and

convective cloud fractions as if their associated clear line-of-sight probabilities were

independent:

CT = Cst' + CcU, - C't' Ceu. (14.47)
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14.4 Longwave Radiation in a Cloudy Atmo-

sphere

We use the total cloud fraction, specified by (14.47), to compute a probability of

a clear line of sight between any 2 pressure levels. In order to account for the

different emissivities of ice versus liquid water, we reduce the total cloud fraction

for the longwave calculations if the temperature is less than freezing. We assume

that the emissivity for water clouds (temperatures greater than 273 K) is 1 and that

for ice clouds (temperature less than 233 K) the emissivity is 1/2. For temperatures

between 273 K and 233 K we compute an emissivity of the cloud by taking a linear

interpolation in temperature between the two values. We define the total effective

cloud fraction in the longwave as the emissivity times the cloud fraction, which is

given by

CT T > 273 K

CT, - [0.5(273 - T) + (T - 233)] CTk/40 233 K < T < 273 K (14.48)

0.5CTk T< 233 K

Two types of cloud overlap strategies are used in the model: maximum and

random. For the maximum overlap case, given the total cloud fractions at each

layer k (14.48), we define the probability of a clear line of sight between 2 pressure

levels, pi and pj, as

PM, min(1 -CT,),(1 -CT,+ 1 ),...,(l -CT,_,)] i (14.49)PM,= rin[(1 - CT,_,),(I1- CT,-,),..., (I -CT)) if i<j

The form of PM,, given by (14.49) assumes that the clouds are stacked one on top

of another and that the largest cloud fraction between pi and pj determines the

probability of a clear line of sight between the two levels. For the random cloud

overlap case we assume that the cloud fraction in a layer is independent of the cloud
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fraction in any other layer. Therefore we define the probability of the clear line of

sight between pressure levels, pi and pj, as

PR, = [(1- CT)(1 - C ... (1- CT 1 )] ifi> (1450)
" [(1 -CT,)(1 -CT- 2 )...(1 -CT)] if Z<j

The total probability of a clear line of sight PT, is given as the product of (14.49)

and (14.50):

PT,, = PM,, PR,. (14.51)

We assume that the clouds can be treated as blackbodies so that the longwave

radiation fluxes between 2 pressure levels are given by the clear air fluxes between

the two points times the probability of the clear line of sight between the points.

Therefore, we write the final form for the upward and downward fluxes for the

cloudy atmosphere as
4

-r1
k+1/2 =ZBi[Tk+11 2I

4
+ PTLk {Bi[Tslrt(ps,Pk+,/2) - B[T(ps)lri(ps,pk+,/2)}

4 N-k

E PT,,,, {B[Tk+j-1 /2lr,(pk+j,pk+1/2)
ilj=1

Bi[Tk+j+1/2lrpk+,Pk+1/2)}, (14.52)

and
4

.k+112 = [{B[Tk+1/21

- PT,, B,(T[ptop)rl(pk+l/2, Ptop)}

4 N+1-k

+ E E PT,,+ , {Bi(Tk+,--1 1 2/)r,(pk+/2,Pk+-)
i=1 j=1

- Bi(Tk+l-j+/ 2)r(pk+l/2 ,pk+l-j)}, (14.53)

and the longwave radiation temperature tendency is

" '( Pk ( k+1/2 -- k-1/2 k-1/2 (14.54)

dt)LW = PI )(p ,~J~+ + ' y
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In order to demonstrate the influence of clouds on the longwave radiation,

we present some results of a 30 day integration of the 47 wave models starting from

1 December 1989. For every call to the longwave radiation parameterization, we

computed the temperature tendency with and without clouds. We present the zonal

mean cross section of the 30 day cloud fraction in Figure 14.3; Figure 14.4 is the

cross section of the zonal mean longwave cooling without clouds; Figure 14.5 is

the cross section of the zonal mean cloudy longwave cooling; and Figure 14.6 is

the zonal mean cross section of the difference between the cloudy and cloud-free

tendencies. Figure 14.3 demonstrates that the stable cloud parameterization favors

the prediction of middle clouds (380-800 mb). The larger cloud fractions in the

tropics are due to the cumulus activity. The distribution of longwave cooling with-

out clouds (Figure 14.4) is relatively simple, reflecting the absorption and emission

of the atmospheric components. There are two maximums, one at the tropopause

and one at the top of the model. The tropospheric maximum corresponds to the

position of the maximum cooling due to water vapor; the stratospheric maximum is

caused primarily by CO 2. The cloudy longwave distribution (Figure 14.5), however,

is more complicated, especially in the troposphere. Large maximums occur near

the surface, reflecting strong longwave cooling off stratus and small cumulus tops.

As we see from Figure 14.6, the difference is more than 2"C in the tropics. The

tropical cumulus cloud fractions, which are constant in the vertical, create

relatively constant strong cooling, up to the ice anvil positions. Overall, the clouds

have a strong cooling influence in the troposphere, with the maximum difference

occurring near the surface. A large amount of longwave radiation emitted by the 0

troposphere is absorbed in the upper atmosphere; and therefore, clouds effectively

create a warmer stratosphere.

10
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Figure 14.3: The cross section of the 30 day average of the zonal mean cloud fraction

for a T47 NOGAPS integration starting at 1 December 1989.
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* Chapter 15

Shortwave Radiation

The time tendency equation for temperature due to the absorption of solar radiation

is
&T Asw

CP Pt 9z (15.1)

where Asw is the absorbed solar flux (Watts/m 2 ), p is the density of air, and cp

is the specific heat of air at constant pressure (1005.45 J K- 1 kg-'). At the top of

the atmosphere the incoming solar radiation is given by

S = Socos 00. (15.2)

So is the solar constant, which is taken to be 1368.3 Watts/m 2 . The variable 00 is

the solar zenith angle, which we define by the relation,

cos 0o = sin A sin b + cos A cos 6 cos h, (15.3)

where A is the latitude, 6 is the inclination of the sun (< 123.51 degrees), and h is

the hour angle (the degrees that the earth must turn so that the point is at local

noon). The shortwave radiation heating is computed every two hours of forecast

time, using the current moisture and temperature fields. However, the solar zenith

angle is computed for the mid point of the two hour radiation time step.

185



0

The shortwave calculations are based on the work of Davies (1982), which

in turn drew heavily from the work of Lacis and Hansen (1974). In the present

treatment, we assume that water vapor and ozone are the only gases that absorb

solar radiation. We ignore the effects of aerosols and cloud droplets and the spectral

nature of the surface albedo.

15.1 Absorption by Ozone

We assume that the absorption of ozone takes place above any level of scattering of

radiation by clouds (i.e., above the cloud top for a given point) and at wavelengths

less than 0.9pm (A <0.96um). The effective path traveled by the direct solar beam

to reach the half level k+ 1/2 is given by

Xk+1/2 =Muk+1/2 (15.4)

where M is the magnification factor, which accounts for the inclined path and

refraction of the direct solar radiation (Rogers [1967]):
M35

M = 35(15.5)
V/1224cos2 00 + 1

and uk+l/+ 2 is the normal optical path of ozone, defined at the half pressure levels

(see Figure 3.1):

Uk+1/2 = Plop qozdp/g. (15.6)

The mixing ratios of ozone are taken from the climatological results tabulated by

Dopplick (1974). The reflected radiation effective path is given by

X;+112 = MUL+1/2 + 1.9(UL+/2 - Uk+1/2). (15.7)

The empirical factor 1.9 accounts for the diffuse upward radiation and L is the total

number of atmospheric layers.
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The absorption by ozone in the visible frequencies (the Chappius band) is

parameterized by Lacis and Hansen (1974) by the function:

,S ( 0.02118x
oZ I + 0.042x + 0.000323x 2 ' (15.8)

* and the absorption of ozone in the ultraviolet frequencies (the Hartley and Huggins

band) is given by Lacis and Hansen (1974) as

AUV(X - 1.082x 0.0658x(

A (1 + 138.6x)0 -805  1 + (103.6x) 3  (15.9)

The total absorption of ozone is the sum of (15.8) and (15.9):

A0 =(x) = Ao3 (x) + Ao(x). (15.10)

The total absorption by ozone in the kh layer, which is denoted by Aok, is the

difference between the absorbed radiation at k+1/2 and the absorbed radiation at

* k-1/2, which we compute as

"Az'AZk = SocosOo[Ao(Xk+/2)- Ao(Xk-12)]

+ R,SocosOo[Ao(X'._1 /2) - Ao:(X 1 /2 )]. (15.11)

The factor R, is the total albedo of the underlying (and probably cloudy) atmo-

sphere to visible and ultraviolet light. We obtain Ro, from a solution to the diffuse

* radiative transfer equation.

15.2 Diffuse Radiation and the Two Stream
0

Solution

In order to calculate the albedo of the lower atmosphere, we must consider the
0

scattered part as well as the direct solar radiation. The radiative transfer equation
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for the diffuse radiance, 1,, for a plane-parallel atmosphere illuminated by a solar

flux, 7r.Fo, at an angle, 0o, (see Liou [19801) is

(9z pk I, sec 00

+ pk,, sec Ooj P(p, ; p', 1')I ,(z, p', ')dp'dy'

" pk., sec 0 or.FOP(, (p; -1o, - 0)e - /M°, (15.12)

where v denotes the frequency and p = cos 0. The first term on the right hand

side of (15.12) is the loss of radiance due to absorption and single scattering, with

the mass extinction cross section given by ke. The second term is the increase

of radiance due to multiple scattering, with k, denoting the mass scattering cross

section. P is the scattering phase function, which is the probability that a photon

will be scattered from the direction given by the angles, (p', V'), into the direction

(p, (). The phase function P is defined such that

J, j2, P(ju, p; y', p')dcp'dp' = 41r

The third term of (15.12) is the increase of radiance due to the single scattering of

the direct solar beam whose direction is given by (-yo, -Vo).

We define the upward and downward diffusive fluxes by the integrals:

yj 21r I ,p Vpp 1.3.d'if = fo2 fo'I(,,)dd I.3

and
.'f = fo2 fo-l 1,(z,p, V)pdpdV. (15.14)

The total downward flux is the sum of the direct and the diffuse radiation, which

is

.Tt= i.'Fooe- ' / sO + I(z, p,p)1dpdV. (15.15)

We assume that all reflected solar radiation is diffuse, so that the total upward flux

is given by (15.13).
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The optical thickness, r, of the air column above a height z is defined as

r = j pk,dz. (15.16)
z

Replacing the vertical coordinate z with r in the radiative transfer equation (15.12),

we obtain the result that

O =, "u r  I ,,', ')P(p, o; p', - )dj,'dj

- (wo/4r) rro P(#,p; -/o, -o), (15.17)

where P is phase function wo is the single scattering albedo, which is defined by

the relation:
Lou -ek"

The phase function P is typically taken to be a function of the scattering

angle, O, only, which is given by the relation

Cose =p'± 1 + , 1-pcos(P'- V).

The expansion of the phase function in terms of Legendre polynomials, PI, results

in the expansion sum with coefficients, DI, of the form:

00

P(cose) = EZ&IP(cosO) (15.18)
1=0

with t;O = 1. The first moment of the phase function is called the asymmetry factor,

which is denoted by g, and is obtained from the relation:

g = 3 = -2 P(cosO)cosOdcosO. (15.19)

The general form of P(cos 0) is given in terms of Legendre and associated

Legendre polynomials (see Liou [1980]) as

P(cosO) = ; IP(')PI(V)
1=0

* 0 1 (l -rn)!+ Z -2 (1+r)! P'(p)P(p')cos[m(v - v')).  (15.20)
1=0 8=9
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For the remaining discussion, however, we shall restrict ourselves to cases where the

radiances are independent of the azimuthal angle p. From the integral of (15.20)

with respect to ;, we define the integrated phase function P(, ,u') as

P(p') = ' iP( )P,('). (15.21)
1=0

We assume that I, is independent of V, so that when we integrate (15.17) with

respect to p, we obtain the azimuthal independent transfer equation for the diffuse

radiance:

097401, lrr (2)-1 _,I,(r,p')P(p ,,')dp'

- ( O 7r.Foe-r/°P(p, -,o). (15.22)

By performing the integrals of (15.22) with respect to p from 0 to 1, and from -1

to 0, we obtain the following upward and downward radiance equations:

- 1 ) dy - , , u)dp'du

- ( ) 7r.oe-"/"° j1 P(, -Po)dy (15.23)

and

d- 0 I(r,)d - N,')d'd

dr 1- 1

Wo ) r Foe_ P(p , -p o)dp, (15.24)

where the functions I+(r) and I-(r) are defined by

I'
I+ (r) =1 1 . (r, p)dp (15.25)

and

1,-(r) = .Iv(r,,u)dp. (15.26)

In order to obtain approximate solutions to the differential/integral equations

(15.23) and (15.24), we use certain assumptions to evaluate the integrals. One of
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these assumption is that the radiance is approximately constant over /I. With this

approximation, we evaluate the first term on the right hand side of (15.23) as

, ( ,r, u)dp = 2I (7).(15.27)

This type of approximation will be used throughout the analysis. Defining the

function o(,'o) by

0Bo(po) = f-J P(p,-yo)dq, (15.28)

which implies (from the normalization of the phase function) that

1 - 30(po) = f P(p, -po)dp, (15.29)

and defining the number 0' as

0, 17
= ~ j P(p, y')dqd/', (15.30)

which implies (from the normalization of the phase function) that

= - P(1 , ')dady', (15.31)

and using the integral approximations demonstrated by (15.27), we convert Equa-

tions (15.23) and (15.24) into the Coakley and Ch3lek's (1975) two-stream approx-

imation transfer equations:

dIr 2I+  - 2wo(1 - #')I + - 2wofl'I-

dT

- Woyoe-/° Io(,o) (15.32)

and

d = 21- - 2wo(1 - 3')I- - 2wo'I +

* - wo.'oe-/AO[1 - to(p0)]. (15.33)
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The Coakley and Chlek two-stream method is one of many different two-stream

approximations to the transfer equations. In general, the two-stream approxima- 0

tion method is any method where the transfer equations can be put into the form

(Meador and Weaver [1980]):

d7- 7 1 I +  
- 1, - 7r.Foe-I/s°Wo7 3  (15.34)

and
dZ; = 7 I- + r.'oe-'/'Owo 4. (15.35)

The solution to the transfer equations (15.32) and (15.33) for an atmospheric

layer of total optical thickness, r, with boundary conditions:
0

7rI () 0 (15.36)
7/rI(0) = 0

is given by Coakley and Ch:lek (1975). We obtain the reflection coefficient R(I 0 ) 0

and the transmission coefficient, T(po), which are defined by

R(po) ='rI+(0) (15.37)
7r.olo 0

and

T(#o) = 7r1'o7) (15.38)

from the Coakley and Ch~lek (1975) solution as

R~p + 1 2fi*r + (I - C/-*)[ 0  _ 20'pol} (15.39)R(#o = 1+ 20'r"

and 
•

T(yo) = 1 + 2frr {(1 - go + 20'fo)[1 - - 2I'rC- /M° }. (15.40)
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15.3 The Atmospheric Reflection for A <0.9jim

In order to calculate the total reflection, Ro, in Equation (15.11), of an atmo-

spheric layer with a surface albedo for diffuse radiation, as, and an albedo for

direct radiation, Rs(,io), we use the results of the previous section and the results

of Chandrasekhar (1960), who gives the total reflection RT(6o) by

RT(Yo) = R(po) + T (Rs(yo)e-'/"°_ + asT(o) (15.41)1 - asR ] 1.1

* R(po) and T(1i0 ) are given by (15.39) and (15.40) and W and T denote the average

reflection and transmission coefficients, which are defined by

-W = 1 - T = 21 1 oR(yo)dpo. (15.42)

The albedo for the direct solar radiation is given by Paltridge and Platt (1976) as

(as - O.05
Rs(Uo) = ( 0.95 )

+ {1 - ( as-0'5 exp {' "(2-0°)} (15.43)

Over land, as are obtained from monthly climatological tables, which are then

0 interpolated to the day at the beginning of each forecast. Over sea ice, the albedo

is given a value of 0.60, and over open sea as is set to 0.09.

In order to take into account the frequency dependence of the total reflec-

tion coefficient for the underlying atmosphere for wavelengths less than 0.9pm, we

perform two separate two-stream calculations for different total optical depths, 7T'

and rT, which are the sums of the Rayleigh optical depth, rR, and the cloud optical

* depth, rc. The total optical depth of the clouds is defined by

L

rC = Zf(T)CT Ap, (15.44)
1=1

where L is the total number of model layers (L=18), and CT, is the total cloud

fraction, which is given by (14.47). The empirical factor f(T), which parametrizes
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the effect of clouds' liquid water drops, is

0.08 T > 273 K

f(T)= [0.02(273 - T + O.08(T - 233)] /40 233 K < T, < 273 K (15.45)

0.02 TI < 233 K

For the first calculation, we set the Rayleigh optical depth to zero, i.e. Tr = 0,

so that the optical depth is given by only the cloud optical depth:

TI = TC

The function 03o(po), defined by (15.28), is given by Davies (1982) as

1  [1 + a(,so)]g (15.46)13o(po) = 2 1- 1 + a(yo)g

with a(po) given by

a(yo) = -1.01373 + 1.14 3 9 7yo + 0.68246 4. (15.47)

Davies (1982) took the above form of Oo(po) from Figure 3 of Wiscombe and Grams

(1976). We assume that the scattering is conservative:

WO = 1, (15.48)

and that the asymmetry factor g, defined by (15.19), is constant:

g = 0.85. (15.49)

To improve the accuracy of the solutions, we use empirical adjustments or scalings

for g, r*, and w0 , which we denote by g', r', and w . The idea of scaling was

originally introduced by Joseph et al. (1976) in order to improve on the Eddington

solution to the transfer equations. These scalings are given by

= g/(1 + g),

r = (1 -wog 2)r , P (15.50)

,4 = (1 - g 2),wo/(1 - g2Wo)
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The constant 3' defined by (15.30) is given by

With the scaling given by (15.50), we compute the reflection and transmission coeffi-

cients from (15.39) and (15.40). From (15.42) we calculate the average transmission,

Tas
- = 1
T= 1 + .1299r" (15.52)

and we obtain the total reflection (for the rR = 0 case) from (15.41), which we

denote by RT,.

In the second calculation for the total reflection coefficient, we set the Rayleigh

optical depth to 0.85, r = 0.85, so that the total optical depth is

r; = 0.85 + re. (15.53)

Again, we assume that the scattering is conservative:

woO = 1,

but we use a asymmetry factor, which is given by the formula,

g = 0.85 R . (15.54)

* The scaling for this case is given by

g (g=g O-g)

S (1 -wog), ;, / (15.55)

WO (1 - g2)Wo/(1 - g'Wo)

the function /o(yo) is given by (15.46), with g replaced by g'; and 3' is defined by

0 ' = 2(1 - .4375g'). (15.56)
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The solutions for the reflection and transmission coefficients are given by (15.39)

and (15.40); T, which is defined by (15.42), is given by 0

- 1

1 + 0.866(1 - g)' (15.57)

and we denote RT as the total reflection coefficient, (for the Tr = 0.85 case),

which is given by (15.41). Finally, we calculate the total reflection coefficient for

wavelengths less than 0.9,"m, which is specified by tIoz in (15.11), as the weighted
sum of RT, and RT2. 0

RT, 2RT2  (15.58)

3 3

With this result, we compute the atmospheric absorption due to ozone from (15.11).

The absorption of solar radiation by the surface for wavelengths less than 6.9pm is 0

As, = Sopo[0.647 - Ao,(Mu 0 )](1 - Rs,). (15.59)

In order to calculate the reflection coefficient at the burface, Rs,, we repeat the 0

calculation that resulted in the reflection coefficient, RT2, wuicn is given by Equation

(15.58), using the same scaling, A, and fl' but for a Rayleigh optical depth of 0.118,

rR = 0.118. S

15.4 Clear Sky Water Vapor Absorption

We assume that all water vapor absorption occurs at wavelengths greater than

0.9pm (A >0.9 pm). The effective water vapor path at half level k+1/2 is defined

as •

Xk+1/2 = Myk+1/ 2 , (15.60)

where the effective water vapor amount, Yk+1/2, is given by

Yk+1/2 = - 27p (15.61)

g jo (101396 5mb T
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The return path for the reflected solar radiation is given by

4+112 = MyL+ll2 + " - (15.62)

The 5/3 is an empirical factor that accounts for the diffuse transmission. The cloud

free water vapor absorption for the k"k layer is

iz-Azk= Saouo[A..(xk+l,2 ) - A.,,(Xk...lp)

+ SoyoRs[A..(x;-i, 2) - A,,(X;+1/2) ] ,  (15.63)

where the water vapor absorption function is given by Lacis and Hansen (1975) as

2.9x

A,,,(x) = (1 + 141.5x) 0 635 + 5.915x (15.64)

The total absorption for the cloud free sky case is the sum of (15.11) and (15.63).

The surface absorption for the clear sky case for A >0.9pm is given by

As2 = SOO(1 - Rs)[0.353 - A,,,(MyL+I/ 2)], (15.65)

and the total surface absorption is the sum of (15.59) and (15.65).

15.5 Cloudy Sky Water Vapor Absorption

For cloudy conditions there is usually significant scattering of the solar radiation for

wavelengths greater than 0.9 pm. In place of one equation of the form of (15.63),

we calculate the absorption for different bands of the absorption coefficient. We

assume that the transmission can be broken up into discrete values of the absorption

coefficient as
5

T(x) = Zp(k)e- ' , (15.66)
i=1

where p(k,) is the fraction of incident flux that is transmitted with an absorption

coefficient ki with an absorption range 6ki. The absorption coefficient replaces
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Table 15.1: The discrete values for the absorption and probability distribution.

i k p(k )

1 0.005 0.107

2 0.041 0.104

3 0.416 0.073 0

4 4.752 0.044

5 72.459 0.025

frequency as the dependent variable because frequency dependent transmissions

are not multiplicative (see Stephens [19841). The values for ki and p(k) are given

in Table 15.1.

We write the incoming direct solar radiation for A >0.9pm at the top of the

cloud layer as the sum
5

S = So~op(kj)e - k ycoP, (15.67)
i=1

where yd, is the effective water vapor amount at the cloud top level, which is

defined by (15.61). The numerical procedure is: First, we solve for the total upward

and downward fluxes, which are specified by U1+1 / 2 and D1+1/ 2 , using the adding

method (described below), together with the two-stream solution for the diffuse

radiation in each layer. Second, once U1+1/2 and D1+1 / 2 are known for all levels, we

compute the total absorption for A > 0.91tm for layer I by •

O0:! , Az = (Dr- 1/ 2 - U- 1/ 2) - (D+112 - U1+112). (15.68)
Oz

In order to obtain the total upward and downward fluxes, we must calculate

the following quantities:

S1+112 = the direct solar flux at level 1+1/2,

Ui+,/2 = the reflected diffuse flux at level 1+1/2 due to the direct flux,
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D1+3/2= the transmitted diffuse flux at level 1+3/2 due to the direct flux,

r1+1/2 = reflection coefficient due to diffuse radiation as the source,

tI+3/2 =- transmission coefficient due to diffuse radiation as the source

We compute the above quantities by summing the two stream solutions for each of

the five absorption coefficients given in Table 15.1. The details are given after the

discussion of the adding method. Once the quantities 01+1/2, DI+ 3/2, rl+1/2, and

tI+3/2 are calculated, we define the following intermediate quantities as part of the

adding method:

D1+3/ 2 = the downward diffuse flux at level 1 + 3/2 due to all diffuse

radiation, which has not previously crossed level 1 + 3/2,

UI+1/2 = the upward diffuse flux at level 1+ 1/2 due to all diffuse

radiation, which has not previously crossed level 1+ 3/2,

M+11/2 = the magnification factor for multiple reflections at level 1 + 1/2

for all levels above 1 + 1/2

S1/(1 - +/2r+2),

RI+1/2 = the composite reflection coefficient of the entire atmosphere

above level 1+1/2

= rj- 1 2 + tI-1/2A-1/2tI-1/2M-1l2.

The boundary conditions for the various quantities are

D/2= 0

D1/2 - 0

U1 2  = U1 /2  (15.69)

RI/ 2  0

M 1 /2  1

rL+1/2 CI S
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We obtain the relations for 01 112 and Dl+1 / 2 by starting at the top of the atmo-

sphere, with the boundary conditions (15.69), and we assume that the two adjacent

layers are separated by a small vertical displacement (see Figulre 14.1). At level 3/2,

the downward intermediate flux is given by the two stream downward flux from the

top layer: 0

D3/2 = D 312.

This downward flux, D3/2, is reflected off the next layer diffusely with the reflection

coefficient, r3/ 2 , and contributes to the upward flux, so that, in the absence of

reflections from the top layer, the upward intermediate flux would be U3/2+r3/2D3/2.

However, this upward flux is repeatedly bounced between the first two layers with

a total magnification factor of M3/ 2, so that the total intermediate flux is given by

U32= (r3/2D3 /2 + U-2M32

The returning downward flux between the first two layers is not counted in D31 2, 0

since the radiation has already crossed the 3/2 level. This returning flux will be

counted as part of the next downward flux. For the 5/2 level, the downward diffuse

flux, due to all sources above 5/2, is the sum of the two stream downward flux, Dsl2, 0

plus the contribution from the layers above, which are from two sources. First, the

upward flux, 03/ 2, is reflected off all layers above it with a total reflection coefficient

of R 3/ 2 , which then undergoes multiple reflections and finally transmitted downward

with a coefficient, t5 / 2 ,to reach level 5/2. The second contribution from above is

the downward flux, D312 , which undergoes multiple reflections and is transmitted

downward to 5/2. The total result is 0

Ds/2 = Ds2 + ts12M 312(R312U3/ 2 + D312).

The upward diffuse flux due to all sources above level 5/2 is the multiple reflections 0

of the upward flux originating in the layer, 05/2, and the reflected downward flux,
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1/2

3/2

3/2 r/D/

5/2

5/2/

7/2

Figure 15.1: The adding method for the intermediate upward and downward fluxes.
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rs/2D5 /2. The total is

Us/ 2 = M5/ 2(U5 /2 + r5/2Ds/2).

The above computational procedure continues lown to the surface. For an

arbitrary number of levels, the results are summarized by Davies (1982) as

= D 1 /2 + tl+3/2M1+1/2(D 1 /2 + R 1. 2U 1 /2), (15.70)

and

U,+1/2 = AM1+ 1/ 2(rl+1/ 2D+,/2 + U,+ 1/2). (15.71)

Once we compute (15.70) and (15.71), we calculate the total fluxes by starting

at the bottom of the atmosphere and proceeding upwards. At the surface, the total

upward flux is given by the definition of the intermediate flux as

UL+1/2 = UL+1/2.

The total downward flux at the surface is given by the sum of all diffuse downward

fluxes due to sources above the surface, DL+1/2, plus the amount of the diffuse

upward flux reflected off the entire atmosphere, RL+1/2UL+1/2, plus the direct solar

radiation, SL+1, 2:

DL+1/2 = DL+1/2 + RL+1/2UL+1/2 + SL+1/2.

The total upward flux at the first layer above the surface has two sources of diffuse

radiation. The first is the upward flux due to all sources above level L-1/2, which

is given by UL-1/ 2. The second source is the upward flux from the layers below,

which in this case is the surface. Only part of this flux is transmitted through

the bottom layer, tL-1/2UL+1/2, which then undergoes multiple reflections with the

atmosphere. Therefore, the total upward radiation at level L - 1/2 is given by

UL-1/2 = UL-1/2 + AL-1/2i1/2UL+1/ 2.
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The total downward flux at this level is the sum of all diffuse downward fluxes

due to sources above L-1/2, DL-1/2, plus the amount of the diffuse upward flux

reflected off the atmosphere above, RL.-1/2UL-1/2, plus the direct solar radiation,

SL-1/2. The result is

DL-112 = DL-1/2 + RL- 1/2UL-1/2 + SL-i12.

The above procedure continues for the all levels. The final results of the

adding method for arbitrary levels are given by (Davies [1982]) as

UI+1/2= UT+ 112 + ML+1/2tl+l/ 2U+ 3/ 2, (15.72)

and

D+1 l2 = DI+1 2 + R,+1 l2U+l/2 + S+112 , (15.73)

with the surface boundary condition:

UL+i/2 = UL+1/2. (15.74)

The solution for the fluxes S1+1,2, 0 1+1/2, and -'T+3/2, and the coefficients

r1+1/2 and t+1 /2 are the summation of two-stream solutions for each of the five

absorption coefficients of Table 15.5:

= EIl S+1lr

UI. 1/2 = '=£1 UF+ 1l2

D+312 = 1D 4 3 /2  (15.75)

ri~~l1 Z ,i= ri~l
r14. 1/ 2  = M 1 1/

t+312= Ei 4+3/2

The boundary conditions are given by (15.36). The direct flux for each absorption

coefficient at the top of any layer I is given by

S112= Sop( k,)e-k'v*Pe{M(k ' y */2+cI* 
I
') , (15.76)

203



0

where Yctop is the effective water vapor amount defined by (15.61) at the cloud top

level, M is the magnification factor defined by (15.5), and rc,,,, 2 is the optical 0

thickness from the cloud top to level I + 1/2 computed as

Netop

Tc,+1/ 2 = f(Tj)CT,Apj, (15.77)

with the factor f(T) given by (15.45).

We obtain the diffuse reflection and transmission coefficients, r+ 1 / 2 and t,+1/2,

from the Sagan and Pollack (1967) quadrature two-stream solution for diffuse ra-

diation only, i.e. .Fo = 0 in the two-stream transfer equations (15.32) and (15.33).

We introduce scaling in order to improve the solution. Defining the quantities:

g = 0.85, (15.78)

f = g2 , (15.79)

gi = (g- f)/(1 -f), (15.80)

r +l/2 = kiYI+l/2 + TrC,4 1 2 , (15.81)

w01 112 = 0.80kjyi+j/2/Tr+ 1/2, (15.82)
WI+,12 = (1 - f)wO,+, 2/(1 - fwo,+112), (15.83) 0

r[+1/2 = rl*+/ 2(1 - fwo, 112), (15.84)

uI+1/2 = {(1 - g'w+11 2)/(1 - W 1 12) (15.85)

zI+,12 = Tr+1 /2 {3(1 - w+1 /2 )(1 - g'w'+/112 )}1 2; (15.86)

we write the Sagan and Pollack (1967) two-stream solution for the diffuse reflection

and diffuse transmission functions as

r =+/2 (U -1)(ei+1,2 - e 2+1/2 (15.87)
1(u1/2 + 1)2ez1*1, - (u1+1 l 2 - 1 )e-I+*12

and
4 u,+1/ (15.88)

t'1+3/2 =(uI+1/2 + 1) 2 ezi+i/2 - (Ul+l/2 - 1) 2 e-"+1/2
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We place the empirical factor 0.80 on the single scattering albedo formula (15.82)

to ensure that an average of 82 Watts/m 2 are absorbed globally in the shortwave

spectrum by the atmosphere.

We get the upward and downward fluxes, UtI+1/2 and D+ 3 / 2 , using the Coakley

and Ch'lek (1975) two-stream solution. These are given by (15.39) and (15.40),

and we use the scaling of (15.78)-(15.86). The results are

S; +1/2  {2I'r'+,/2 + (1 - e-T'L12/Mo)[/3o - 20'po]} (15.89)UI+1/2 = I + 2y,3'l+/20,r,/+

and

D 1 +/ ST+ 1  (1  - f3o + 203'1 o)[1 - e--,+,,21A]_ 20/'rI+l/2e-'[+I2/oi,D +32 =I + 213'rl+1/2

(15.90)

with Po(po) given by (15.46) with g' replacing g and #' given by

0' = 0.5 - 0.43759'. (15.91)

For the cloudy part of the atmosphere, the total atmospheric absorption is the sum

of (15.11) and (15.68).

For levels I > Ndop, the absorption for A > 0.9pm is given by

z Az = Sopo[A,,,,,(x+ 2 )-A, 2)

Oiz
5

U o1- . (15.92)

The clear sky adsorptions, A.(x+11 2), are given by (15.64). The incoming solar

flux at the surface for A > 0.91im is UL+1/2, which we obtain from the adding

method.

The 30 day average shortwave heating cross sections, corresponding to Fig-

ures 14.4-14.6 are given in Figures 15.2-15.4. Figure 15.2 is the cloud free solar

heating. The large water vapor content in the lower tropical atmosphere is reflected
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in the maximum heating; the stratospheric maximum at the southern pole is caused

by ozone absorption. With clouds (Figure 15.3) the distinct tropospheric heating

profile is spread out, with large solar absorption occurring near the cloud tops. The

difference of the heating profiles (Figure 15.4) demonstrates that clouds warm the

entire troposphere; their influence on the stratosphere, however, is small.
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Figure 15.4: The zonal mean cross section of the 30 day difference of the cloud-

free and the cloudy shortwave heating (deg/day) for a T47 NOGAPS integration

starting at 1 December 1989.
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Chapter 16

Summary

The purpose of this report is to present a description of the initialization and fore-

cast components of the current Navy Operational Global Atmospheric Prediction

System (NOGAPS 3.2). We hope that this report will serve three purposes: (1)

provide a means of identifying those aspects of model formulation which make NO-

GAPS unique from other numerical weather prediction models; (2) act as a research

guide for future improvements to NOGAPS numerical procedures and physical pa-

rameterizations; and (3) be a handbook for meteorological and oceanographic users

of NOGAPS products, so that they can better understand the precise workings

and assumptions of the model. With these purposes in mind, we have presented in

detail the numerical procedures and physical parameterizations of the model.

In the introduction we give a brief history of NOGAPS. In Chapter 2 we

define the vertical hybrid coordinate system and review the transformation theory

for the primitive equations with this coordinate system. Chapter 3 contains the

vertical hybrid finite difference formulation of the model, and Chapter 4 contains

the horizontal spectral representations for the forecast fields on hybrid pressure

surfaces, together with a description of the spectral transform procedures. The

discussion of the nonlinear normal mode initialization (NNMI) scheme is presented
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in Chapter 5. In Chapter 6, we present the time splitting numerical procedure for

the adiabatic and diabatic processes. Chapter 7 contains the details of the time

splitting for the calculations of the explicit adiabatic tendencies and the tendency

corrections due to the implicit treatment of gravity waves and zonal advection.

In Chapter 8, we describe the additional implicit adjustments, which ensure a S

sufficiently large time step for operational integrations.

We describe the physical parameterizations of the model in Chapters 9-15.

The model contains state of the art physical parameterizations and the presentation

is as detailed as any that can be found in the literature. The parameterizations

include gravity wave drag due to mountains (Chapter 9), vertical turbulent diffusion

(Chapter 10), shallow cumulus mixing (Chapter 11), cumulus convection (Chapter 0

12), large scale stable precipitation (Chapter 13), and the heating due to longwave

radiation (Chapter 14) and solar radiation (Chapter 15). We have included in

all the discussions not only the theory behind the paraneterizations, but also our

precise tunings of the NOGAPS physics, which have minimized the cold biases that

plague many other numerical weather prediction models.

0
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