
Thr~ry TackVOLUMEE
Neu-zI &-v Co gnitive--: Sdiences--Trrack I

of, the--

anterationalI-

Januarycc onN~l-wsLn
Was'igtn D.C.

yannuary 15-19; 1990

This Document
Reproduced Fromn

* Best Available Copy

ELECTRICAL ArN
'MERNAIAL ~~ro E-LFcTnONICS Ed~tOfr2'
50C-xFrY M~~E~ N.Naureen cai~adl

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished

to DTIC contained pages that may have the following quality
problems:

e Pages smaller or larger than normal.

* Pages with background color or light colored printing.

* Pages with small type or poor printing; and or

* Pages with continuous tone material or color

photographs.

Due to various output media available these conditions may or

may not cause poor legibility in the microfiche or hardcopy output

you receive.

D�If this block is checked, the copy furnished to DTIC
contained pages with color printing, that when reproduced in

Black and White, may change detail of the original copy.

REPORT DOCUMENTATION PAGE ? Ao'°cle1
.MP40 >^4.~r188

AECy ;JSE ONLY .Le4 0oar.X, i REPORT DATE . ; -!NO DATES COVERED
FINAL 1 Dec 89 - 30 Nov 90

4 .E %AND SUBTITLE IS FUNDING NUMBERS

"ORGANIZATION OF 1990 MEETING OF INTERNATIONAL NEURAL
NETWORK SOCIETY JOINTED WITH IEEE" 61102F

2305/B3
AuT"ORJS)

3Dr. Harold Szu

' PERFORMING ORGANIZATION NAME(S; AND ADDRESS(ES) B. PERFORMING ORGANIZATION

,International Neural Network Society ,.aT NEIwa 0
i1250 - 24th St NW, Suite 600

jWashington DC 20037

9 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(IES) 10. SPONSORING, MONITORING

AFOSR/NM AGENCY REPORTP"M'UER
1Building 410

Bolling AFB DC 20332-6448 AFOSR-90-0106

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION, AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release;
Distribution Unlimited UL

13. ABSTRACT (Maximum200worosI
This two volumn conference proceedings contains results presented at the January
1990 International Conference on Neural Networks in Washington, DC (IJCNN-90-WASH-DC)
The meeting was sponsored jointly by the International Neural Network Society (INNS)
and the IEEE Neural Network Comiittee.

14 SUBJECT TERMS 15. NUMBER OF PAGES

764 (Vols. 1 & 2)
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED CLASSIFIED SAR

1.SN 7540-o'-280-5500 Stanaaci ;orm 298 (Rev 2-89)

C-P M IIIid19-i

IJCNN-90-WASH DC

International
Joint
Conference on
Neural
Networks

January 15-19, 1990
Omni Shoreham Hotel
Washington, DC

Volume I
Theory Track
Neural and Cognitive Sciences Track

92-05676

co-sponsored by the
International Neural Network Society
and the
Institute of Electrical and Electronics Engineers, Inc.

IE• LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
Hillsdale, New Jersey Hove and London

92 3 03 099

Copyright © 1990 by Lawrence Erlbaum Associates, Inc.
All rights reserved. No part of this book may be reproduced in
any form, by photostat, microform, retrieval system, or by any other
means, without the prior written permission of the publisher.

Lawrence Erlbaum Associates, Inc., Publishers
365 Broadway
Hillsdale, New Jersey 07642

ISBN 0-8058-0775-6 (Vol. 1)
ISBN 0-8058-0776-4 (Vol. 2)
ISBN 0-8058-0754-3 (Set)

PRINTED IN THE UNITED STATES OF AMERICA
10987654321

O~ranizing Commiffee

General Conference Chair:
Leon Cooper, Brown University

Technical Program Co-Chairs:
James Anderson, Brown University
Andras Pellionisz, New York University Medical School

Finance Chair and Proceedings Coordinator:
Maureen Caudill, Adaptics

Exhibits Chair:
Jennifer Humphrey, Science Applications International Corporation

Volunteer Coordinator:
Karen Haines, Carnegie-Mellon University

Local Arrangements Committee:
Chair:

Harold Szu, Naval Research Laboratory
Committee:

Y. C. Chien, National Science Foundation
Lee Giles, NEC Labs
Richard Nakamura, National Institute of Health
Robert Pap, Accurate Automation Corporation
Paul Werbos, National Science Foundation
Barbara Yoon, DARPA

DVTIC

A Special Note of Appreciation
Accesion For ... *

The INNS would like to extend special thanks to NTIS cRA&DTiC TAB3[-

Harriet Caudill Urd r~Otic:'I L i

who provided extraordinary support for this meeting,
and invaluable assistance in preparing these proceedings. q .

Lawrence Erlbaum Associates Inc , ,--365 Broadway . *

Hillsdale, NJ 07642 3/6/92.9_1%T 0 6 2i •v:: , - :
d8.9 er set vol. I & 2 'NWW4 3/6/92 it .. '!I:

A-1ji

Technical Program Committee

James Anderson Brown University& Andras PellioniSz New York University Medical Center

Committee Members:
Shun-ichi Amari Tokyo University Tim Kraft Science Applications International
Pierre Baldi Jet Propulsion Laboratory Corporation
Jacob Barhen Jet Propulsion Laboratory Tom Landauer Bell Commications.
Mark Bear Center for Neural Sciences Research
Tom Brown Yale University Medical School Daniel Levine University of Texas at
Daniel Bullock Boston University Arlington
Heinrich Bulthoff Brown University Ralph Linsker IBM Watson Research Center
Charles Butler Physical Sciences Inc. James McClelland Carnegie-Mellon
Gall Carpenter Boston University University
John Caulfield University of Alabama in Carver Mead California Institute of

Huntsville Technology
Michael Cohen Boston University Ennio Mingolla Boston University
Leon Cooper Brown University Sel Mlyake ATR Auditory& Visual Perception
Claude Cruz Plexus Systems Labs
John Daugman Harvard University Paul Mueller University of Pennsylvania
Rolf Eckmiller Heinrich-Heine-Universitat Mussa-lvaldi Massachusetts Institute of

Dusseldorf Technology
Gerald Edelman The Rockefeller University Yoh-han Pao Case-Western Reserve
Federico Faggin Synaptics University
Walter Freeman University of California, Andrew Penz Texas Instruments

Berkeley Barry Peterson Northwestern University
Kunihiko Fukushima Osaka Univeristy Medical School
Apostolos Georgopoulos Johns Hopkins Demetri Psaltis California Institute of

University Medical. School Technology
Lee Giles NEC Laboratories Doug Reilly Nestor, Inc.
Jeflm Goldberg Baylor College of Medicine David Rumelhart Stanford University
Hans Graf AT&T Bell Lobs Tariq Samad Honeywell
Stephen Grossberg Boston University Eric Schwartz New York University Medical
Dan Hammerstrom Oregon Graduate Center

Center Allen Selverston University 'f California, Son
Robert Hecht-Nielsen Hecht-Nielsen Diego

Neurocomputer Corp. Bernard Softer Hughes Research
Geoffrey Hinton University of Toronto Laboratories
Morris Hirsch University of California, George Sperling New York University

Berkeley David Stork Stanford University
James Houk Northwestern University Harold Szu Naval Research Laboratory

Medical School David van Essen California Institute of
David Hubel Harvard University. Medical Technology

Sch,':.ol Christoph von der Malsburg University of
Harry Jerison University of Cclifornia. Los Southern California

Angeles Alex Weibel ATR
Ken Johnson Hughes Aircraft Company Fred Weingard Booz-Allen & Hamiiton
Cand•ce Kamm BelIcore Bernard Widrow Stanford University
Teuvo Kohonen Helsinki Unversity of George Works Science Applications

Te :hnology International Corporation
v

Conference Sponsors

The International Neural Network Society and the IEEE Technical
Activities Board Neural Network Committee are the co-sponsors of
the International Joint Conference on Neural Networks, 1990,
Washington, DC.

International Neural Network Society (INNS)
Officers:

Bernard Widrow President
Gail Carpenter Vice-President
David Rumelhart Secretary, Executive Board

Govemina Board

Shun-ichi Amari Bart Kosko
James Anderson Christoph von der Malsberg
Gail Carpenter Carver Mead
Leon Cooper Djmetri Psaltis
Walter Freeman David Rumelhart
Kunihiko Fukushima Terrence Sejnowski
Lee Giles George Sperling
Stephen Grossberg Harold Szu
Morris Hirsch Bernard Widrow
Teuvo Kohonen

vii

IEEE Technical Activities Board, Neural Networks Committee

Robert J. Marks, II, University of Washington, Chair

!EEE Acoustics, Speech and Signal Processing Society
Dolores M. Etter University of New Mexico, President
B. H. Juang AT&T Bell Laboratories, Representative
Richard P. Lippman MIT Lincoln Labs,Representative

IEEE Circuits and Systems Society
Anthony Michel Notre Dame University, President
Robert J. Marks, II University of Washington, Representative
Robert Newcomb University of Maryland, Representative

IEEE Communications Society
John C. McDonald Contel Corporation, President
Kesh Bakhru Cubic Corporation, Representative

IEEE Control Systems Society
Jane K. Cullum IBM, President
William S. Levine University of Maryland, Representative
Herbert Rauch Lockheed Corporation, Representative

IEEE Engineering in Medicine and Biology Society
Willis Thompklns Univeristy of Wisconsin
Russell C. Eberhart Johns Hopkins Applied Physics Laboratory, Representative
Evangelia Tzanakou Rutgers University, Representative

IEEE Industrial Electronics Society
Fernando Aldana University of Madrid, President
Troy Nagle North Carolina State University, Representative
Yoichi Okabe University of Tokyo, Representative

IEEE Information Theory Society
Ian F. Blake University of Wvterloo, President
Yasser S. Abu-Mustafa California Institute of Technology, Representative
Edward C. Posner California Institute of Technology, Representative

IEEE Lasers and Electro-Optics Society
Melvin Cohen AT&T Bell Laboratories, President
Joseph W. Goodman Stanford University, Representative
Kristina Johnson University of Colorado, Representative

IEEE Robotics and Automation Society
Arthur C. Sanderson Rensselaer Polytechnic Institute, President
Wesley Snyder North Carolina State University, Representative

IEEE Systems, Man, and Cybernetics Society
Arye R. Ephrath Bell Communications Research Lob, President
Don Bouldin University of Tennessee, Representative
Nicholas DeClaris University of Maryland, Representative

ix

This document contains
blank pages that were
not filmed

Table of Contenis, Volume I

VOLUME I

NEURAL AND COGNITIVE SCIENCES
Multidirectional Associative M emory ... 1-3

Masafumi Hagiwara Keio University
Maximum Entropy Prediction in Neural Networks 1........ -7

William B. Levy University of Virginia School of Medicine
Neural Dynamics of Motion Segmentation: Direction Fields, Apertures, and Resonant Grouping1-11

Stephen Grossberg and Ennio Mingolla Boston University
About the Geometry Intrinsic to Neural Nets 1-15

Andras Pellionisz New York University Medical Center
Optimal Preprocessing Networks and a Data Processing Theorem .. 1-19

Donald St. P. Richards and William B. Levy University of Virginia
Learning "Semantotopic Maps' from Context 1-23

Helge Ritter University of Illinois at Urbana-Champaign and Teuvo Kohonen Helsinki
University of Technology

Aialysis of EEG Changes Between Frontal and Occipital Area in Speaking Process 1-27
Gang Wang, Morikuni Takigawa, Tomoyuki Miyazaki, and Taisuke Takeishi Kagoshima
University

High-Order Bidirectional Associative Memory and Its Application to Frequency Classification 1-31
Chwan-Hwa Wu Auburn University, Heng-Ming Tai University of Tulsa, Chia-Jiu Wang
University of Colorado at Colorado Springs, and Tai-Lang Jong Texas Tech. University

A Neural Net Editor with Biological Applications ... 1-35
Vahe Bedian, James F. Lynch, and Fengman Zhang Clarkson University

Using Classifier Systems to Implement Distributed Representations .. 1-39
Lashon B. Booker Naval Resear'.h Laboratory

Short-Term Memory Capacity Limitations in Recurrent Speech Production and
Perception Networks .. 1-43

Gordon D.A. Brown University College of North Wales
Implications from Structural Evolution: Semantic Adaptation ... 1-47

Peter Cariani Boston MA
M odularity of Neural Network Architecture .. 1-51

William P. Coleman University of Maryland Baltimore, David P. Sanford Aeronautical Radio
Inc., Andrea De Gaetano CNR Centro di Studio per la Fisiopatologia, and Fred H. Geisler
University of Maryland, Baltimore

Symbolic Networks with Timers, Latches and Classifiers May Be Mapped to the Nervous System ...I-55
Armand de Callatay IBM A. K. Watson International Education Center, Belgium

Modelling of Human Neocortical Surface and Its Growth ... 1-59
Vinod D. Deshmukh University of Florida and V. Ramamurthi University of North Florida

Simulation and Analysis of a Model of Mitral/Granule Cell Population Interactions in the
M am m alian O lfactory Bulb .. 1-62

Jay A. Edelman and Walter J. Freeman University of California Berkeley
Connectivity in the Observed Portion of an Auditory Neuronal Network 1-66

Ismael E. Espinosa Universidad Nacional Autonoma de Mexico
Fast Synaptic Modulation Provides a Ubiquitous Mechanism to Support An Instruction-Data
Distinction in Biological Neural Networks ... 1-70

Chris Fields New Mexico State University
Function Mapping and Its Relationship with the Psychophysical Functions in the Theory of
N eural N etw orks ... 1-74

J. G. Figueroa Universidad Autonoma del Estado de Mexico, C. Flores Univ. Autonoma
Metropolitana Jztapalapa, E. Vargas Univ. Autonoma Metropolitana Iztapalapa, and M.
Romero Univ. Autonoma Metropolitana lztapalapa

Xi This Document Contains Missing

Page/s That Are Unavailable In

The Original Document

Table of Contents, Volume I

Pattern Recognition in Primate Temporal Cortex: But Is It ART? ... 1-77
Paul M. Gochin Princeton University

The Emergent Selh. A Phylogenetic and Ontogenetic Evolution of Biological Networks:
A Psychiatric Point of View .. 1-81

Ronald Goulet Hopital lean-Talon
On the Behavior and Significance of Random Neuronal Networks ... 1-86

Guenter W. Gross, Jacek M. Kowalski, and David Golden University of North Texas
A Cognitive Triangular Relationship .. 1-90

Arno J. Klaassen Delft University of Technology
Sub-Neural Factors of Neural Networks .. 1-94

Djuro Koruga University of Belgrade Yugoslavia
Comparison of the Moore-Penrose and Drazin Generalized Inverses in Biological Coordinate
System Transformations ... 1-98

Jozsef Laczko Central Research Inst. of Physics Budapest and Bertrand LeGoff CNRS Paris
GENNET: System for Computer Aided Neural Network Design Using Genetic Algorithms 1-102

Borut Maricic and Zoran Nikolov CVTs KoV INA
Synthetic Cerebellum: What It May Do and How It May Do It .. 1-106

Mahmood J. Nahvi California Polytechnic State University
Cognition and Neural Computing-An Interdisciplinary Approach ... 1-110

Markus F. Peschl University of Vienna Austria
Motion Detection in the Visual Cortex of the Cat .. 1-114

Stanislav Reinis and David S. Weiss University of Waterloo
Using Neural Networks and Genetic Algorithms as Heuristics for NP-Complete Problems---.........1-118

William M. Spears Naval Research Laboratory and Kenneth A. De Jong George Mason
University

On the Assignment-of-Credit Problem in Operant Learning 1-122
J. E. R. Staddon and Y. Zhang Duke University

Self-Organization ot a Linear Multilayered Feedforward Neural Network 1-1-6
R. Stotzka and R. Manner University of Heidelberg

Temporal-Spatial Coding Transformation: Conversion of Frequency-Code to Place-Code
Via a Time-Delayed Neural Network .. 1-130

David C. Tam University of California Irvine
The Evolution of Connectivity: Pruning Neural Networks Using Genetic Algorithms 1-134

Darrell Whitley and Christopher Bogart Colorado State University
Biophysical M odel of a Hebbian Synapse ... 1-138

Anthony Zador Yale University, Christof Koch California Institute of Technology, and
Thomas H. Brown Yale University

An Improved Competitive Learning Algorithm Applied to High Level Speech Processing 1-142
Pedro L. Galindo and Thierry Michaux Universidad Politecnica de Madrid

Motor Programs and Sensorimotor Integration .. 1-147
J. C. Houk, A. Barto, L. N. Eisenman, J. Keifer, S. P. Singh, T. Sinkjaer, and D. Vyas
Northwestern University Medical School and University of Massachusetts

Computation of Pattern Primitives in a Neural Net for Acoustical Pattern Recognition 1-149
Paul Mueller University of Pennsylvania

Modeling of Spatial Transformations in Vestibular Reflex Systems ... 1-152
Barry Peterson Northwestern University Medical School

Computer Simulation of a Macular Neural Network .. 1-157
Muriel D. Ross NASA-Ames Research Center, Judith Dayhoff Judith Dayhoff & Associates,
and Dale Mugler University of Akron

DEFAnet-A Deterministic Approach to Functon Approximation by Neural Networks 1-161
Wolfgang J. Daunicht Hein rich-Heine- Universitaet Duesseldorf

Internal Representation of Space in Neural Networks of Primates and Other Sensorimotor
M apping M achines ... 1-165

Rolf Eckmiller Heinrich-Heine- Universitat, Dusseldorf

xii

Table of Contents, Volume I

Coding of the Direction of Reaching by Neuronal Populations 1-169
A. Georgopoulos Johns Hopkins University School of Medicine

Relationship of Visual Spatial Map and Saccadic Motor Map in Salamander 1-170
Gerhard Manteuffel University Bremen

On the Role of Input Representations in Sensorimotor Mapping .. 1-173
Lina Massone and Emilio Bizzi Massachusetts Institute of Technology

Learning Spatiotemporal Patterns in a Neural Network with Lateral Inhibitory Connections 1-177
Noboru Murata, Kenji Doya, and Shuji Yoshizawa University of Tokyo

Collective Oscillations in Neuronal Networks: Functional Architecture Drives the Dynamics 1-181
D.M. Kammen, Philip J. Holmes, and Christof Koch California Inst. of Technology

A Multilayer Neural Network Modelling the Perceptual Reversal of Ambiguous Patterns 1-185
F. Masulli, M. Riani, and E. Simonotto Universita' di Genova

Learning from Natural Selection in an Artificial Environment ... 1-189
David H. Ackley and Michael S. Littman Bell Communications Research

Genetic Programming: Modular Neural Evolution for Darwin Machines ... 1-194
Hugo de Garis George Mason University

Cart Centering and Broom Balancing by Genetically Breeding Populations of Control
Strategy Program s .. 1-198

John R. Koza Stanford University and Martin A. Keane Third Millenium Venture Capital
Preadaptation in Neural Circuits ... 1-202

David G. Stork, Scott Walker, Mark Bums, and Bernie Jackson Stanford University
Optimizing Small Neural Networks Using a Distributed Genetic Algorithm 1-206

Darrell Whitley and Timothy Starkweather Colorado State University
Using Verbs and Remembering the Order of Events .. 1-210

Robert B. Allen Bellcore
Visual Navigation with a Neural Network .. 1-214

Nicholas G. Hatsopoulos and William H. Warren Jr. Brown University
An Unsupervised Learning Procedure That Discovers Surfaces in Random-Dot Stereograms 1-218

Geoffrey Hinton and Suzanna Becker University of Toronto
Experiments on Constructing a Cognitive Map: A Neural Network Model of a Robot that
D aydream s .. 1-223

Larrie V. Hutton Johns Hopkins Applied Physics Laboratory, Vincent G. Sigillito Johns
Hopkins Applied Physics Laboratory, and Howard Egeth Johns Hopkins University

Directing Focus of Attention Through Control in Depth Perception ... 1-228
Clayton McMillan University of Colorado and Gerhard Dirlich Max Planck Institute for
Psychiatry

The Effects of Threshold Modulation on Recall and Recognition in a Sparse
Auto-Associative Memory: Implications for Hippocampal Physiology .. 1-232

Valeriy I. Nenov University of California Los Angeles, Walter Read UCLA and California
State University Fresno, Eric Halgren, University of California Los Angeles, and Michael G.
Dyer University of California Los Angeles

Expertise Acquisition Through Concepts Refinement in a Self-Organizing Architecture 1-236
Phillippe G. Schyns Brown University

Possible Mechanisms of Experience-Dependent Synapse Modification in the Visual Cortex 1-240
Mark Bear Brown University

Chaos in the Biodynamics of Pattern Recognition by Neural Networks .. 1-243
Walter Freeman and Yong Yao University of California, Berkeley

Feature Linking by Synchornization in a Two-Dimensional Network ... 1-247
G. Hartmann and S. Drue Universitat Paderborn

Some Similarities Between Single-Cell Recordings of the Motor Cortex and Neural Networks:
Broad Tuning and (Possibly) Task-Modulated Changes in Neuronal Output 1-251

Larrie Hutton Johns Hopkins Univ. Applied Physics Lab, Vincent Sigillito Johns Hopkins Univ.
Applied Physics Lab, and James Sims Johns Hopkins Univ. Space Telescope Science Institute.

Xiii

Table of Contents, Volume I

Neural Computation in a Vertebrate Adaptive Reflex System ... 1-255
W. T. Rogers E. 1. DuPont Company, S. C. Dembinski E. 1. DuPont Company, E. B. Graves College
of William and Mary, K. M. Spyer Royal Free Hospital, A. R. Moser E. 1. DuPont Company, and
J. S. Schwaber E. 1. DuPont Company

Identification of Synaptic Connectivity Using a Hidden Markov Model 1-259
Xiaowei Yang and Shihab A. Shamma University of Maryland

PATTERN RECOGNITION AND ANALYSIS OF NETWORK DYNAMICS
Why Two Hidden Layers Are Better Than One ... 1-265

Daniel L. Chester University of Delaware
On the Optimality of the Sigmoid Perceptron ... 1-269

Bill Home and Don Hush University of New Mexico
Recognition of Spatio-temporal Patterns with a Hierarchical Neural Network 1-273

Takayuki Ito and Kunihiko Fukushima NHK Science and Technical Research Labs.
Clustering Taxonomic Data with Neural Networks ... 1-277

Behzad Kamgar-Parsi University of Maryland and J. Anthony Gualtieri NASA
Reproducing Infinite Boolean Sequences: An Application of Hidden Markov Models to
Connectionist Learning ... 1-281

A. Kehagias Brown University
Grammatical Inference and Neural Network State Machines .. 1-285

Y. D. Liu University of Maryland, G. Z. Sun University of Maryland, H. H. Chen University of
Maryland, and Y. C. Lee University of Maryland, and C. L. Giles Air Force Office of Scientific
Research

A Comparison of a Neural Network Based Estimator and Two Statistical Estimators in a
Sparse and Noisy Data Environment 1-289

Reza Shadmehr and David Z. D'Argenio University of Southern California
Neural Networks Models for Linear Programming ... 1-293

Jean-Christophe Culioli, Vladimir Protopopescu, Charles L. Britton Jr., and Milton N. Ericson
Oak Ridge National Laboratory

On the Amari-Takeuchi Theory of Category Formation ... 1-297
Morris Hirsch University of California, Berkeley

State Evaluation Functions for Neural Networks and Possible Lyapunov Functions 1-301
Youichi Kobuchi Ryukoku University

An Orthogonal Projection Type of Associative Memory .. 1-305
Kiyotoshi Matsuoka Kyushu Institute of Technology

An Efficient Algorithm for Annealing Schedules in Boltzmann Machines 1-309
Robert Richards Stanford University

On the Learning Power of Networks with a Bounded Fan-In Layer ... 1-313
Haim Shvaytser David Sarnoff Research Center

Colored Noise Annealing Benchmark by Exhaustive Solutions of TSP .. 1-317
Harold Szu Naval Research Laboratory

Nonlinear Dynamics of Analog Associative Memory Neural Networks .. 1-321
F. R. Waugh, C. M. Marcus, and R. M. Westervelt Harvard University

Modeling of Fault-Tolerance in Neural Networks .. 1-325
Lee A. Belfore 1I, Barry W. Johnson, and James H. Aylor University of Virginia

Neural Networks with Periodic Outputs: Applications to the Recognition of Temporal
Sequences of Pattern ... 1-329

Paul Bourret University of Maryland, College Park and Onera-Cert/Deri
An Asymmetric Spin-Glass Model of Long-Term Memory in a Dynamic Network Architecture 1-333

Valerio Cimagalh University of Rome, Massimiliano Giona University of Rome, Gianfrance
Basti Pontifical Gregorian University, Antonio Perrone Pontifical Gregorian University, and
Eros Pasero University of Rome

xiv

m~//

Table of Contents, Volume I

Sensititivity of Layered Neural Networks to Errors in the Weights .. 1-33"
Maryhelen Stevenson, Rodney Winter, and Bernard Widrow Stanford University

An Improvement on Simulated Annealing and Boltzmann Machine .. 1-341
Lei Xu Lappeenranta University of Technology

Programming Neural Networks: A Dynamic-Static Model ... 1-345
Yong Yao and Qing Yang University of California, Berkeley

Theories on the Hopfield Neural Networks with Inequality Constraints 1-349
Shigeo Abe and Junzo Kawakami Hitachi Research Laboratory

Adaptive Junction: A Spatio-Temporal Neuron Model 1-353
Yoshiaki Ajioka, Yuichiro Anzai, and Hideo Aiso Keio University

Competitive Learning with Modifiable Thresholds for Visual Pattern Recognition......1-357
Dimitrios Bairaktaris University of St. Andrews, Scotland

A Spatio-Temporal Novelty Detector Using Fractal Chaos Model ... 1-361
J. M. Bertille and J. C. Perez IBM France

Additive Automata and Associative Memories ... 1-365
M. Ceccarelli Centro di Studio sui Calcolatori lbridi, CNR, A. Petrosino Centro di Studio sui
Calcolatori lbridi, CNR, and R. Tagliaferri Universita degli Studi di Salerno

On the Training of a Multilayered Neural Net .. 1-369
C. B. Chittineni Du Pont Company

Classitron: A Flexible Generalization of the Perceptron .. 1-373
Tomas B. Co Lehigh University

Global Minima within the Hopfield Hypercube ... 1-377
Bruce R. Copeland Tennessee Technological University

A Neural Network for Explicitly Bounded Linear Programming ... 1-381
Jean-Christophe Culioli, Vladimir Protopopescu, Charles L. Britton Jr., and Milton N. Ericson
Oak Ridge National Laboratory

Langevin Equations and the Formal Foundations of Neural Networks .. 1-385
J. G. Figueroa Universidad Autonoma del Estado de Mexico, M. Romero Univ. Autonoma
Metropolitana Iztapalapa, E. Vargas Univ. Autonoma. Metropolitana lztapalapa, and C.
Flores Univ. Autonoma Metropolitana iztapalapa

Classifier Voting in Neural Networks .. 1-388
Michael L. Gargano AIG Research and Development and Pace University

Incomplete Learning Paradigms In Neural Netowrk Computing Models 1-392
David B. Hertz, Guolin Deng, and Koushik Basu University of Miami

"A Performance of Neural Network Classifiers for the 1-Class Classifier Problem 1-396
Don R. Hush and John M. Salas University of New Mexico

"A Synchronous Equivalent to Asynchronous Network Dynamics ... 1-400
Yoshio lzui and Alex Pentland MIT Media Lab

Bounding Analysis of a Single-Layer Feedforward Neural Network for a Binary
Hypothesis-Testing Problem .. 1-404

Carry M. Jacyna and Manette B. Lazear Mitre Corporation
Input Representation and Output Voting Considerations for Handwritten Numeral
Recognition with Backpropagation .. 1-408

J. S. N. Jean and Y. C. Chan Wright State University
Sejong-Net: A Dynamic Visual Pattern Recognition Neural Net 1-412

Yillbyung Lee and A-Yeun Chung Yonsei University
Hangul Recognition Using Neocognitron 1-416

Yillbyung Lee, Tae Cheon Kim, and Eun Jin Kim Yonsei University
A New Neocognitron Structure Modified by ART and Back-Propagation 1-420

Dapeng Li and William G. Wee University of Cincinnati
Segment Reversal and the Traveling Salesman Problem .. 1-424

Raymond Lister University of Sydney
Stability and Temporal Pattern Recognition ... 1-428

Teresa B. Ludermir Imperial College

xv

Table of Contents, Volurme I

An Adaptive Strategy to Design the Structure of Feedforward Neural Nets 1-432
B. Malakooti and Y. Zhou Case Wes!ern Reserve University

Multiple Descent Cost Algorithms for Standard Pattern Self-Organization 1-436
Yasuo Matsuyama Ibaraki University

Towards Reducing the Hardware Complexity of Feature Detection-Based Models 1-440
Bassem Medawar and Andrew Noetzcl Polytechnic University

Parsimony in Neural Networks ... 1-443
William S. Meisel Speech Systems Incorporated

An Optimal Self-Organizing Pattern Classifier .. 1-447
A. Mekkaoui and P. Jespers Microelectronics Laboratory

Probability-based Neural Networks 1-451
John H. Murphy Westinghouse Science & Technology Center

Fault-Tolerance of Optimization Networks: Treating Faults as Additional Constraints 1-455
Peter W. Protzel and Michael K. Arras NASA Langley Research Center

Sampling Learning Recall and Filtering in Stable Adaptive Neural Systems with
Graded Response .. 1-459

Bemd Schurmann Siemens AG
Self-Learning Simulated Annealing .. 1-463

Enrique Carlos Segura and Bruno Cernuschi Frias Universidad de Buenos Aires
Associative M em ory Systems .. 1-468

Patrick K. Simpson General Dynamics
Equilibrium Uniqueness and Global Exponential Stability of a Neural Network for Optimization
Applications... 1-472

S. 1. Sudharsanan and M. K. Sundareshan University of Arizona
Connectionist Finite State M achines ... 1-476

Claude Touzet and Norbert Giambiasi L. E. R. I.
Phase Space Diagrams: Towards a Useful Characterization of Network Behavior 1-477

Ronan Waldron Trinity College
Disproof of Two Conjectures on Capacity of Hopfield Associative Memories....................._ 1-481

Xin Wang University of Southern California
Generalized Neural Network Model and Its Properties ... 1-485

X. Xu and W. T. Tsai University of Minnesota
Effects of Neuron Properties on the Performance of Associative Memory Networks 1-489

Hiro F. Yanai and Yasuji Sawada Tohoku University
Neural Networks for Maximum Likelihood Error Correcting Systems 1-493

Jar-Ferr Yang, Chi-Ming Chen, and Jau-Yicn Lee National Cheng Kung University
A New Kind of Associative Memory Network Model ... 1-499

Hong Feng Yin and Ju Wei Tai Academia Sinica, Beijing
Neural Network for Image Representation Using Back Propagation 1-503

Tatsuhiro Yonekura, Shigeki Yokoi, and Jun-ichiro Toriwaki Nagoya University

LEARNING THEORY
Neural Representation of Information ... 1-509

Shun-ichi Amari University of Tokyo
Adjoint-Operator Algorithms for Learning in Neural Networks ... 1-512

Jacob Barhen, N. Toomarian, and S. Gulati Jet Propulsion Laboratory
A Method to Establish an Autonomous Self-Organizing Feature Map ... 1-517

Russel E. Hodges and Chwan-Hwa Wu Auburn University
Expectation Driven Learning with an Associative Memory .. 1-521

G. Lukes, B. Thompson, and P. Werbos National Science Foundation
The Real-Time Classification of Temporal Sequences with an Adaptive Resonance Circuit 1-525

Albert L. Nigrin Duke University

xvi

Table of Contents, Volume I

A Neural Model of Interpolation or Interpolation with Blobs .. 1-529
Alexander Shustorovich Eastman Koduk Company

MRIII: A Robust Algorithm for Training Analog Neural Networks 1-533
David Andes Naval Weapons Center China Lake, Bernard Widrow Stanford University,
Michael Lehr Stanford University, and Eric Wan Stanford University

Orthogonal Extraction Training Algorithm ... 1-537
Harold K. Brown, David F. Lange, and John L. Hart University of Central Florida

A Model of the Neural Network Based on the Local Interaction Hypothesis and Two-Stage
Modeling of Long-Term Enhancement .. 1-541

Hiroaki Kitano Carnegie Mellon University
Tree Net: A Dynamically Configurable Neural Net .. 1-545

John A. Nevard University of California Los Angeles
Information Storage Matrix Neural Networks ... 1-549

R.L. Waterland and N. Samardzija E.I. du Pont & Co.
Neural Networks in Statistical Classification ... 1-553

Andrew K. C. Wong and John 0. Vieth University of Waterloo
Error Functions to Improve Noise Resistance and Generalization in Backpropagation Networks-...I-557

Javier R. Movellan University of California Berkeley
Incremental Backpropagation Learning from Novelty-Based Orthogonalization 1-561

Ken Otwell Martin Marietta Laboratories
Backpropagation Improvements Based on Heuristic Arguments 1-565

Tariq Samad Honeywell
Learning Complex Mappings by Stochastic Approximation 1-569

D. Sbarbaro and P. J. Gawthrop The University, Glasgow
Back-Propagation Learning With Coarse Quantization of Weight Updates 1-573

P.A. Shoemaker, M.J. Carlin, and R.L. Shimabukuro Naval Ocean Systems Center
Connectionist Pushdown Automata That Learn Context-Free Grammars ... 1-577

G. Z. Sun, H. H. Chen, C. L. Giles, Y. C. Lee, and D. Chen University of Maryland
Multiple Threshold Perceptron Using Gaussian Function .. 1-581

Kaveh Ashenayi University of Tulsa, Heng-Ming Tai University of Tulsa,
Mohammad R. Sayeh Southern Illinois University at Carbondale, and Mohammed T.
Mostafavi University of North Carolina at Charlotte

A Hybrid Algorithm for Finding the Global Minimum of Error Function Neural Networks 1-585
Norio Baba Tokushima University

Automatic Evolution of Neural Net Architectures ... 1-589
A. W. Bailey Physical Sciences Inc.

Optimization Methods for Back-Propagation: Automatic Parameter Tuning and
Faster Convergence ... 1-593

Roberto Battiti California Institute of Technology
The Tempo-Algorithm: Learning in a Neural Network with Variable Time-Delays 1-597

Ulrich Bodenhausen Philipps-University Marburg
Stepsize Variation Methods for Accelerating the Back -Propagation Algorithm 1-601

J. R. Chen and P. Mars University of Durham
An Accelerated Learning Method with Backpropagation .. 1-605

Sung-Bae Cho and Jin H. Kim Korea Advanced Institute of Science & Technology
Algebraic Analysis of Neural Networks Applications Independent of Global
Netw ork Architecture .. 1-609

William H. Clingman W. H. Clingman & Co. and Donald K. Friesen Texas A&M University
Extrapolatory Methods for Speeding Up the BP Algorithm ... 1-613

Hasanat M. Dewan and Eduardo D. Sontag Rutgers University
Accelerated Back Propagation Using Unlearning Based on Hebb Rule .. 1-617

Masafumi Hagiwara Keio University

xvii

Table of Contents, Volume I

Self-Organizing Autoassociative Dynamic Multiple-Layer Neural Net for the Decomposition of
Repetitive Superimposed Signals ... 1-621

M.H. Hassoun, J. Song. S-M Shen, and A.R. Spitzer Wayne State University
Numerical Analysis and Adaptation Method for Learning Rate of Back Propagation 1-627

,unichi Higashino Hitachi Ltd., Bart L. de Greef Philips Research Laboratories, and Eric H. J.
Persoon Philips Research Laboratoties

Introducing Efficient Second Order Effects into Back Propagation Learning ..-----
D. M. Himmelblau University of Texas

A Novel, One-Step, Geometrical, Supervised Learning Scheme ... 1-635
Chia-Lun J. Hu Southern Illinois University

Speeding Up Back Propagation ... 1-639
Yoshio Izui and Alex Pentlaid MIT Media Lab

Explanation-Based Learning and Relevance 1-643
Bruce F. Katz University of Illinois

Merging Hebbian Learning Rule and Least-Mean-Square Error Algorithm for Two-Layer
Neural Networks ... 1-647

Sang-Ho Koh, Soo-Young Lee, Ju-Seog Jang, and Sang-Yung Shin Korea Advanced Institute of
Science and Technology

Modular Neural Neworks: Combining the Coulomb Energy Network Algorithm and the
Error Back Propagation Algorithm ... 1-651

Won Don Lee ChungNam National University, Kyunghce Lee Electronics &
Telecommunications Research Institute, and Jongwook Jang Electronics & Telecommunications
Research Institute

Analysis of Decision Contour of Neural Network with Sigmoidal Nonlinearity.........................-655
Ho Chung Lui National University of Singapore

"A Learning Algorithm Based on Prediction .. 1-660
Akihiko Machizawa Communications Research Lab MPT

"A System in Control of Its Knowledge that Provides Alternative and Different Solutions from
One Input Set ... 1-664

Oscar Martinez and Craig Harston Computer Applications Service
Fast Quadratic Separation Using a Single-Layer Interconnect Model ... 1-668

Jack L. Meador Washington State University
A Perceptron Based Auto-Associative Memory .. 1-672

A. Mekkaoui and P. Jeskers Microelectronics Laboratory
Acceleration of Back-Propagation Through Learning Rate and Momentum Adaptation 1-676

Ali A. Minai and Ronald D. Williams University of Virginia
Backpropagation Learning with High-Order Functional Networks and Analyses of Its
Internal Representation .. 1-680

Akira Namatame National Defense Academy
NN/I: A Neural Network Which Divides and Learns Environments 1-684

Yoshikazu Nishikawa, Hajime Kita, and Akinori Kawamura Kyoto University
Selective Presentation of Learning Samples for Efficient Learning in Multi-Layer Perceptron 1-688

Noboru Ohnishi Nagoya University, Atsuya Okamoto Nippondenso Co., Ltd., and Noboru
Sugie Nagoya University

Fast Neural Nets with Gram-Schmidt Orthogonalization .. 1-692
Sophocles J. Orfanidis Rutgers University

Fast Training of Multilayer Perceptrons Using Multilinear Parameterization 1-696
Francesco Palmieri and Samir A. Shah University of Connecticut

Learning by Local Variations .. 1-700
Ajay Patrikar and John Provence Southern Methodist University

A New Learning Algorithm for the BSB Model ... 1-704
Robert Proulx and Jean Begin Universite du Quebec a Montreal

The Effect of the Slope of the Activation Function on the Back Propagation Algorithm 1-707
Ali Rezgui and Nazif Tepedelenlioglu Florida Institute of Technology

xviii

Table of Contents, Volume I

Learning with the Optimum Path Paradigm ... 1-711
Samir I. Sayegh Purdue University

A Fast Training Algorithm for Neural Networks 1-715
Robert S. Scalero Grumman and Nazif Tepedelenlioglu Florida Institute of Technology

Recurrent Networks Adjusted by Adaptive Critics ... 1-719
Jurgen Schmidhuber Technische Universitat Munchen

Speeding Up Back Propagation by Gradient Correlation .. 1-723
David V. Schreibman Grumman Data Systems and Eugene M. Norris George Mason University

Learning to Identify Letters with REM Equations 1-727
Wayne E. Simon and Jeffrey R. Carter Martin Marietta Astronautics Group

Improved Back-Propagation Combined with LVQ .. 1-731
Takehisa Tanaka, Motohiko Naka, and Kunio Yoshida Matsushita Research Institute Tokyo,
Inc

Adding Top-Down Expectation into the Learning Procedure of Self-Organizing Maps 1-735
Lei Xu and Erkki Oja Lappeenrata University of Technology

Analyses of the Hidden Units of Back-Propagation Model by Singular Value
Decomposition (SVD) ... 1-739

Qiuzhen Xue, Yuhen Hu, and Willis J. Tompkins University of Wisconsin-Madison
Connections Between Levels of Description of Perception ... 1-743

James L. McClelland Carnegie Mellon University

AUTHOR INDEX

TITLE INDEX

SUBJECT INDEX

Xix

Table of Contents, Volume II

VOLUME II

PLENARY LECTURE BY BERNARD WIDROW
Development of Neural Network Interfaces for Direct Control of Neuroprostheses I.-3

Eric A. Wan, Gregory T. A. Kovacs, Joseph M. Rosen, and Bernard Widrow Stanford University
and Palo Alto Veterans Administration Medical Center, Stanford, CA

SPECIAL LECTURES ON SELF-ORGANIZING NEURAL ARCHITECTURES
Time-The Essential Dimension 1-25

Carver Mead California Institute of Technology
Self-Organizing Neural Architectures for Motion Perception, Adaptive Sensoxy-Motor Control,
and Associative Mapping .. 11-26

Stephen Grossberg Boston University
ART 3 Hierarchical Search: Chemical Transmitters in Self-Organizing Pattern Recognition
Architectures .. 11-30

Gail A. Carpenter and Stephen Grossberg Boston University
Self-Organizing Analog Fields (SOAF) 11-34

Fred S. Weingard Booz-Allen & Hamilton, Inc.
Characteristics of Neural Population Codes in Hierarchical, Self-Organizing Vision Machines... 11-35

Kenneth Johnson Hughes Aircraft Company
Spatiotemporal Pattern Segmentation by Expectation Feedback 11-40

Robert Hecht-Nielsen HNC, Inc.

APPLICATION SYSTEMS AND NETWORK IMPLEMENTATIONS
A Transputer Implementation of Toroidal Lattice Architecture for Parallel Neurocomputing....... .1143

Naoyuki Fukuda, Yoshiji Fujimoto, and Toshio Akabane Sharp Corporation
A Parallel Neurocomputer Architecture Towards Billion Connection Updates Per Second 11-47

Hideki Kato, Hideki Yoshizawa, Hiroki Iciki, and Kazuo Asakawa Fujitsu Laboratories Ltd.
Concurrent ANS Architecture Using Communicating Concurrent Processes I-51

Tim Kraft and Stephen A. Frostrom Science Applications International Corporation
Fuzzy Knowledge Model of Neural Network Type: A Model Which Can Be Refined By Learning ... 11-55

Atsushi Morita, Yoshihito lmai, Akio Noda, and Morikazu Takegaki Mitsubishi Electric Corp.
Architecture of a Systolic Neuro-Emulator 11-59

U. Ramacher and J. Beichter Siemens AG
Optically Configured Phototransistor Neural Networks ... 11-64

Charles F. Neugebauer, Aharon Agranat, and Amnon Yariv California Institute of Technology
Optically Implemented Hopfield Associative Memory Using Two-Dimensional Incoherent
Optical Array Devices ... 11-68

Kazuhiro Noguchi and Toshikazu Sakano NNT Transmission Systems Laboratories
Learning in Optical Neural Computers 11-72

Demetri Psaltis, David Brady, and Ken Hsu California Institute of Technology
Simulated Annealing Feature Extraction from Occluded and Cluttered Objects 11-76

Harold Szu and Kim Scheff Naval Research Laboratories
System Design for a Second Generation Neurocomputer .. 11-80

Dan Hammerstrom and Eric Means Oregon Graduate Center
A Parallel Implementation of Kohonen Feature Maps on the Warp Systolic Computer 11-84

Richard Mann and Simon Haykin McMaster University
Multiplexed Charge-Based Circuits For Analog Neural Systems ... 11-88

L.W. Massengill Vanderbilt University
Learning Logic Array .. 11-92

Ethem Alpaydin Swiss Federal Institute of Technology
Framework for Distributed Artificial Neural System Simulation .. 11-94

Roger S. Barga and Ronald B. Melton Pacific Northwest Laboratory

xx

Table of Contents, Volume II

Computer Aided Radiologic Diagnosis Using Neural Networks ... 11-98
John M. Boone, George W. Gross, and Gary S. Shaber Thomas Jefferson University

Pulse Coding Hardware Neurons that Learn Boolean Functions ... 11-102
Sabine Canditt and Rolf Eckmiller Heinrich-Heine-Universitat Dusseldorf

Biological Learning Primitives in Analog EEPROM Synapses ... 1-106
H. C. Card Univerisity of Manitoba and W. R. Moore University of Oxford

Introducing a Neural Network Design Language ... I-110
Sing-chai Chan National University of Singapore and Yaohan Chu University of Maryland at
College Park

Hybrid Neurocomputer Using Optical Disk .. 1. 1-114
Kyusun Choi, Taiwei Lu, William S. Adams, and Francis T. S. Yu Pennsylvania State
University

An Analog CMOS Implementation of a Self Organizing Feedforward Network 1-118
James J. Clark Harvard University

CASENET: Computer Aided Neural Network Generation Tool .. I1-122
R. W. Dobbins and R. C. Eberhart Johns Hopkins Applied Physics Lab

Adaptive Analog MOS Neural-Type Junction ... 1-126
N. El-Leithy University of Maryland, R.W. Newcomb University of Maryland, and M.E.
Zaghloul George Washington University

An Optoelectronic Interconnection Scheme for Neural Networks ... -129
David Y. Fong Lockheed Missiles and Space Co. and Christopher Tocci Raytheon Co.

Simulation of Artificial Neural Network Models Using an Object-Oriented Software Paradigm ... I1-133
Gregory L. Heileman, Harold K. Brown, and Michael Georgiopoulos University of Central
Florida

A Two-Level Pipeline RISC Processor Array for ANN .. 1-137
Atsunobu Hiraiwa, Shigeru Kurosu, Shigeru Arisawa, and Makoto Inoue Sony Corporate
Research Laboratories

Parallelizing the Self-Organizing Feature Map on Multi-Processor Systems 11-141
Russel E. Hodges Auburn University, Chwan-Hwa Wu Auburn University, and C.-J. Wang
University of Colorado at Colorado Springs

Optical Associative Processors with Adaptive Learning Capabilities Using Variable Non-
linearity in the Fourier Domain .. 1-145

Bahram Javidi University of Connecticut
Optical Formation of Interconnection Weight Matrix for a Neural Net Using Electron Trapping
(ET) M aterials .. I-147

Suganda Jutamulia, George Storti, Joseph Lindmayer, and William Seiderman Quantex

Corporation
A Stochastic Neuron Model for Pattern Recognition .. I-151

Danny Kilis and Eugene Ackerman University of Minnesota
Systolic Implementation of Multi-Layer Feed-Forward Neural Network With Back-Propagation
Learning Scheme ... 11-155

Hon Keung Kwan and Pang Chung Tsang University of Windsor
Application of Generalized Boolean Functions for Neural Networks ... 11-159

Erwin Langheld University of Stellenbosch, South Africa and Karl Goser Universitaet
Dortmund

An Analog Synaptic Weight System .. 11-163
W. E. Mat'is Villanova University and V. Uzunoglu Synchtrack

A Hybrid Architecture for the ART2 Neural Model .. 11-167
William R. Michalson and Peter Hleldt Raytheon Company

Introduction of New Angle Modulated Architectures for the Realization of Large Scale Neural
Netw ork H ardw are .. 11-171

Patrick Nunally and Brian Hallse General Dynamics Corporation

xxi

/i

Table of Contents, Volume II

A Multiple-Bus Network for Implementing Very-Large Neural Networks with
Back-Propagation Learning 1 -175

D. K. Panda and H. Kwang University of Southern California
Parallelized Back-Propagation Training and Its Effectiveness ... 11-179

Ken L Parker and Allison L. Thornbrugh Martin Marietta Space Systems
Improvement of Autoassociative Memory Models Based on Properties of BAMS 11-183

C.J. Perez, J. Carrabina, E. Valderrama, and N. Avellana Universitat Autonoma de Barcelona
Digital Implementation Issues of Stochastic Neural Networks 11-187

E. E. Pesulima, A. S. Pandya, and R. Shankar Florida Atlantic University
Integrating Digital and Artificial Neural Networks Using Neurocontrollers: An Intermediate Step
Toward the Universal Computer11-191

Luis Rabelo University of Missouri-Rolla, Doo Kim University of Missouri-Rolla, and Temel
Erdogan Boeing Aerospace Research and Technology

A Dataflow-Based Neural Net Multiprccessor .. 11-195
Behrooz Shirazi and Chungching Wang Southern Methodist University

Connectionist Production Systems in Local Representation .. I-199
Andrew Sohn and Jean-Luc Gaudiot University of Southern California

Recognition of 26-Character Alphabet Using a Dynamic Opto-Electronic Neural Network...... .II-203
Shuichi Tai, Masaya Oita, Masanobu Takahashi, Keisuke Kojima, and Kazuo Kyuma
Mitsubishi Electric Corporation

ROBOTICS, SPEECH, SIGNAL PROCESSING, AND VISION
FLETE: An Opponent Neuromuscular Design for Factorization of Length and Tension 11-209

Daniel Bullock and Stephen Grossberg Boston University
A Self-Regulating Generator of Sample-and-Hold Random Training Vectors 11-213

Paolo Gaudiano and Stephen Grossberg Boston University
Manipulator Control Using Layered Neural Network Model with Self-Organizing Mechanism.....lI-217

Shinya Hosogi Fujitsu Limited
One-Class Generalization in Second-Order Backproptgation Networks for Image Classification ..II-221

Mary M. Moya and Larry D. Hostetler Sandia National Laboratories
Model-Based Perceptual Grouping (MPG): A Cooperative-Competitive Apprach to Shape
Recognition in Neural Networks .. 11-225

J. Michael Oyster and Nancy B. Lehrer Hughes Signal Processing Laboratory
Neural Computation for Collision-Free Path Planning ... 11-229

Jun Park and Sukhan Lee University of Southern California
Learning Aspect Graph Representations of 3D Objects in a Neural Network 11-233

Michael Seibert and Allen M. Waxman MIT Lincoln Laboratory
Training Continuous Speech Linguistic Decoding Parameters as a Single-Layer Perceptron-- 1-237

Mark T. Anikst and David J. Trawick Speech Systems Incorporated
Neural Network Based Data Compression Using Scene Quantization 11-241

Mohammed Arozullah and Aran Namphol Catholic University of America
A Preliminary Note on Training Static and Recurrent Neural Networks for Word-Level Speech
Recognition ... 11-245

Kamil A. Grajski, Dan P. Witmer, and Carson Chen Ford Aerospace
An Adaptive Discrete-Signal Detector Based on Self-Organizing Maps .. 11-249

Teuvo Kohonen Helsinki University of Technology, Kimmo Raivio Helsinki University of
Technology, Olli Simula Helsinki University of Technology, Olli Venta Helsinki University
of Technology, and Jukka Henriksson Nokia Research Center

Some Practical Aspects of the Self-Organizing Maps 11-253
Teuvo Kohonen Helsinki University of Technology

xxii

Table of Contents, Volume II

A Technique for the Classification and Analysis of Insect Courtship Song 11-257
Eric K. Neumann Brandeis University, David A. Wheeler Brandeis University, Jamie W.
Burnside A4IT Lincoln Laboratory, Adam S. Bernstein Brandeis University, and Jeffrey C. Hall
Brandeis University

Radar Classification of Sea-Ice Using Traditional and Neural Classifiers l.. -263
Jim Orlando, Richard Mann, and Simon Haykin McMaster University

Neural Tree Structured Vector Quantization .. 11-267
Eric Wan, Paul Ning, and Bernard Widrow Stanford University

Application of Neural Network to Pulse-Doppler Radar System for Moving Target Indication II-271
Chia-Jiu Wang University of Colorado at Colorado Springs, Chwan-Hwa Wu Auburn
University, Rodger E. Ziemer University of Colorado at Colorado Springs

A VLSI Implementable Handwritten Digit Recognition System .. 1-275
L. C. Agba, R. Shankar, A. S. Pandya, and C. Naylor Florida Atlantic University

Spatio-temporal vs. Spatial Pattern Recognition by the Neocognitron .. 1-279
Kunihiko Fukushima Osaka University

Textured Image Segmentation Using Localized Receptive Fields 11-283
Joydeep Ghosh, Nanda Gopal, and Alan C. Bovik University of Texas, Austin

Computational Framework and Neural Networks for Low and Intermediate 3D
Computer Vison ... 11-287

Ziqing Li University of Edinburgh
Designing a Sensory Processing System: What Can Be Learned from Principal Components
An alysis? ... 11-291

Ralph Linsker IBM Watson Research Center
A Real-Time ART-1 Based Vision System for Distortion Invariant Recognition and
Autoassociation .. 1-298

J. C. Rajapakse, 0. G. Jakubowicz, and R. S. Acharya SUNY at Buffalo
A Decoder for Block-Coded Forward Error Correcting Systems .. 11-302

Michael D. Alston and Paul M. Chau University of California, San Diego
A Continuous Speech Recognizer Using Two-Stage Encoder Neural Nets .. 11-306

M. T. Anikst, W. S. Meisel, R. E. Newstadt, S.S. Pirzadeh, J. E. Schumacher, P. Shinn, M. C.
Soares, and D. J. Trawick Speech Systems Incorporated

A Neural Network Architecture for Silhouette Completion .. 11-310
E. Ardizzone University of Palermo, A. Chella CRES-Centro per la Ricerca Elettronica in
Sicilia, S. Gaglio University of Palermo, and F. Sorbello University of Palermo

Enhancement of Detection of Dense Multiple Targets Through Lateral Suppression
Among Overlapping Neural Networks ... 11-315

Mohammed Arozullah and William J. Semancik Catholic University of America
Multilayer Back-Propagation Network for Learning the Forward and Inverse
Kinematics Equations .. 11-319

Francisco J. Arteaga-Bravo George Mason University
Neuromorphic Computer Architecture for Adaptive Control II-323

Izhak Bar-Kana and Allon Guez Drexel University
Detecting Symmetry with a Hopfield Net ... 11-327

Eric I. Chang and David Tong General Electric
Design of Edge Detection Templates Using a Neural Network ... 11-331

Scott C. Douglas and Teresa H.-Y Meng Stanford University
Multi-Resolutional Retina Images for Machine Vision ... 11-335

A. M. Fong University of London
Analysis of an Inhibitive Directional Selective Unit for Vision .. 11-339

David Yu-Shan Fong Lockheed Missiles and Space Company and Carlos A. Pomalaza-Raez
Purdue University

Competitive Activation Methods for Dynamic Control Problems .. 11-343
Sharon M. Goodall and James A. Reggia University of Maryland, College Park

Xxiii

K.

Table of Contents, Volume II

A Neurocontroller with Guaranteed Performance for Rigid Robots .. 11-347
Allon Guez and J. W. Selinsky Drexel University

Multiple-Order HMM Based Speech Recognition Using Neural Network.....
Isao Hayakawa and Seiichi Nakagawa Toyohashi University of Technology

The Use of Modular Neural Networks in Tactile Sensing .. I-355
Dean Hering, Pradeep Khosla, and B.V.K. Vijaya Kumar Carnegie Mellon University

Classification of Unaveraged Evoked Cortical Magnetic Fields II-359
Lasse Holmstrom Rolf Nevanlinna Institute, Petri Koistinen Rolf Nevanlinna Institute, and
Risto J. Ilmoniemi Helsinki University of Technology

A Two-Layer Hopfield-Tank Network for Motion Estimation 11-363
R. M. Inigo University of Virginia and C. Narathong University of Wisconsin

An Artificial Neural Network Approach for Solving Autonomous Navigation Control Problems ...II-367
Oleg Jakubowicz and Robert Spina SUNY Buffalo

Visual Discrimination of Multi-Spectral Signals ... 11-371
Oleg G. Jakubowicz SUNY Buffalo

Superresolving Neural Network for Deconvolution .. 11-375
Peter A. Jansson E. I. DuPont de Nemours and Co.

Design of a Saccadic Motion Generator That Learns .. 1 1-379
J. D. Johnson and T. A. Grogan University of Cincinnati

A Multilevel Neural Architecture for Robot Dynamic Control .. 11-383
A. Khoukhi Telecom Paris ENST

MSK Signal Noise Estimation Using a Hopfield Neural Network .. 11-385
Gregory J. Klein Johns Hopkins Applied Physics Lab.

Psychophysical Experiments and Computer Simulations of the Binocular Rivalry II-389
Tetsuo Kobayachi Hokkaido Institute of Technology

A Vision Architecture for Scale, Translation, and Rotation Invariance .. 11-393
Mark W. Koch, Morien W. Roberts, and Steven W. Aiken Clarkson University

Adaptive Pole Placement for Neurocontrol ... 11-397
Sanjay S. Kumar and Allon Guez Drexel University

Range Image Analysis Using Neural Network .. 11-401
Robert Y. Li and Huaxiano Si University of Nebraska

A Self-Organizing Recursive Network for Object Recognition ... I1-405
Herwig Mannaert and Andre Oosterlinck K. U. Leuven

Shape Recognition by Ring Hidden Markov Models .. 11-409
W. D. Mao and S. Y. Kung Princeton University

Human Face Recognition Using a Multilayer Perceptron ... 11-413
John L. Perry and Jeanne M. Carney ENSCO Inc.

An Application of Neural Networks to the Guidance of Free-Swimming Submersibles 11-417
D. P. Porcino and J. S. Collins Royal Roads Military College

A Multilayered Neural Network to Determine the Orientation of an Object II-421
Morien W. Roberts, Mark W. Koch, and David R. Brown Clarkson University

Locally Optimizing Neural Networks in Adaptive Robot Path Planning 11-425
Frank Rudolph University of New Hampshire

Data Expressions Suitable for Size- and Rotation-Invariant Pattern Classification 11-429
Kazutaka Sakita, Makoto Kosugi, and Isamu Yoroizawa NTT Human Interface Laboratories

SIPS-II: A Spatial Information Processing System on Perceptual GroupingII-433
Chen-Han Sung and An-Hoang Nguyen San Diego State University

A Speech Recognition System Featuring Neural Network Processing of Global Lexical Features.....11-437
Chen-Han Sung and William C. Jones Ill San Diego State University

An Analog-Divider-Design Based on a Perceptron-Neural-Network ... 11-441
Axel Thomsen and Martin A. Brooke Georgia Institute of Technology

Experiments with the Spatio-Temporal Pattern Recognition Approach and the Dynamic
Time Warping Approach to Word Recognition ... 11-445

M. Daniel Tom and M. Fernando Tenorio Purdue University

xxiv

Table of Contents, Volume II

Point Pattern Matching Using a Hopfield-type Neural Network .. 11-449
Darrin R. Uecker University of California, Santa Barbara and Hiroshi Sakou Hitachi Ltd.

An Application of Neural Networks to Impulse Radar Waveforms from Asphalt-Covered
Bridge D ecks ... U-453

G. Vrckovnik, T. Chung, and C. R. Carter McMaster University
Feature Detector and Application to Handwritten Character RecognitionI-457

Xiao-yan Zhu, Kouichiro Yamauchi, Takashi Jimbo, and Masayoshi Umeno Nagoya Institute
of Technology

EXPERT SYSTEMS AND OTHER REAL-WORLD APPLICATIONS
Integrating Neural Networks and Knowledge-Based Systems in a Commercial Environment...._. -463

Joseph P. Bigus IBM Corporation and Keith Goosbey University of Texas
A Connectionist Network for Color Selection .. 11-467

James R. Chen University of California, San Diego, Richard K. Belew University of
California, San Diego, and Gitta B Salomon Apple Computer

Deductive and Inductive Learning in a Connectionist Deterministic Parser 11-471
Kanaan A. Faisal and Stan C. Kwasny Washington University

Compiling High-Level Specifications Into Neural Networks ... 11-475
P. Myllymaki, H. Tirri, P. Floreen, and I. Orponen University of Helsinki

Risk Assessment of Mortgage Applications with a Neural Network System: An Uod& ;.* me
Test Portfolio Ages .. I-479

Douglas Reilly, Edward Collins, Christopher Scofield, and Sushinito Ghosh Nestor Inc.
Fuzznet: Towards A Fuzzy Connectionist Expert System Development Tool..........................IJ-483

Steve G. Romaniuk and Lawrence 0. Hall University of South Florida
Interfacing a Neural Network with a Rule-Based Reasoner for Diagnosing Mastitis -487

Jos F. Schreinemakers Erasmus University of Rotterdam and David S. Touretzky Carnegie
Mellon University

Neural Networks as Forecasting Experts: An Empirical Test ... I-491
Ramesh Sharda and Rajendra B. Patil Oklahoma State University

Artificial Neural Networks for Multiple Criteria Decision Making ... 1-495
Jun Wang and B. Malakooti Case Western Reserve University

An Overview of Weightless Neural Nets ... I-499
Igor Aleksander Imperial College, University of London and H. B. Morton Brunel University

Optimization Search Using Neural Networks .. 1-503
Henzer Chen and Shuo-Jen Lee G. E. Corporate Research and Development

Fault Tolerant Random Mapping Using Back Propagation .. I-507
Kejitan Dontas, Jayshree Sarma, Padmini Srinivasan, and Harry Wechsler George Mason
University

Setpoint Control Based on Reinforcement Learning ... 11-511
Aloke Guha and Anoop Mathur Honeywell

Pattern Recognition of Handwritten Phonetic Japanese Alphabet Characters 11-515
Kazuhito Haruki and Hisaaki Hatano Toshiba Corporation

Smiles Parity and Feature Recognition ... 11-519
J. M. Minor and R. L. Waterland E. I. DuPont de Nemours & Co.

Comparative Performance Measure for Neural Networks Solving Optimization Problems 11-523
Peter W. Protzel NASA Langley Research Center

Fish Detection and Classification Using A Neural-Network-Based Active Sonar System-
Prelim inary Results .. 11-527

N. Ramani, P.H. Patrick, W.G. Hanson, and H. Anderson Ontario Hydro Research Division
Vector Pair Correspondence by a Simplified Counter-Propagation Model: A Twin
Topographic M ap .. 11-531

Lei Xu, Erkki Oja Lappeenranta University of Technology

xxv

Table of Contents, Volume II

A Special Purpose Neural Network for Scheduling Satellite Broadcasting Times---....... I-535
P. Bourret University of Maryland & ONERA-CERT/DERI, F. Remy ENSAE, and S. Goodall
University of Maryland

DASA/LARS: A Large Diagnostic System Using Neural Networks ... 11-539
Fred Casselman GTE Government Systems, and Jody DeJonghe Acres Defense Communications
Agency

Scheduling by Self-Organization .. II-543
Ahmed Hemani Swedish Institute of Microelectronics and Adam Postula Royal Institute of
Technology

Preliminary Development of a Neural Network Autopilot Model for a High Performance
A ircraft .. 11-547

Gary M. Josin Neural Systems Incorporated
Modular Back-Propagation Neural Networks for Large Domain Pattern Classification II-551

Nagesh Kadaba, Kendall E. Nygard, Paul L. Juell, and Lars Kangas North Dakota State
University

Neural Networks for Addressing the Decomposition Problem in Task Planning --------------- 11-555
C. L. Masti and David L. Livingston Old Dominion University

A Fault Tolerance Analysis of a Neocognitron Model .. 11-559
Qing Xu, Charles Jurgens, Begona Arrue, Jay Minnix, Barry Johnson, and R. M. Inigo University
of Virginia

Robust Tracking Control of Dynamic Systems with Neural Networks .. 1-563
Stanislaw H. Zak Purdue University

Dynamic Digital Satellite Communication Network Management by Self-Organization..........1I-567
Nirwan Ansari and Yizhong Chen New Jersey Institute of Technology

Diagnosis of Epilepsy via Backpropagation ... 11-571
B. Appolloni Universita di Milano, G. Avanzini Instituto Neurologico C. Besta, N. Cesa-
Bianchi Universita di Milano, and G. Ronchini Universita di Milano

A Connectionist Approach to the Processing of Time Dependent Medical Parameters 11-575
Barry Blumenfeld University of Pittsburgh

Extraction of Semantic Features and Logical Rules from a Multilayer Neural Network............_II-579
Laurent Bochereau and Paul Bourgine CEMAGREF

Problem-solving by Using Reinforcement Learning Neural Nets .. 11-583
Victor C. Chen VITRO Corporation

Composite Stock Cutting Pattern Classification Through Necognitron 11-587
Cihan H. Dagli, M. Reza Ashouri, Gary Leininger, and Bruce McMillan University of Missouri,
Rolla

Switch Pattern Planning in Electric Power Distribution Systems by Hopfield-Type
Neural Netw ork ... 11-591

Chihiro Fukui and Junzo Kawakami Hitachi Ltd
Invariant Target Recognition Using Feature Extraction ... 11-595

J. Joseph Fuller West Virginia Institute of Technology and Ali Farsaie Naval Surface Warfare
Center

Fuzzy Logic in Connectionists' Expert Systems .. 11-599
L. S. Hsu, H. H. Teh, S. C. Chan, and K. F. Loe National University of Singapore

Architectural Isomorphisms in Neural Network Applications .. 11-603
Jim Huffman and John Scoggins Motorola Inc.

"A Neural Lexicon in a Hopfield-Style Network ... 11-607
Arun Jagota and Yat-Sang Hung State University of New York, Buffalo

"A Neural Network Model for Fault-Diagnosis of Digital Circuits ... 11-611
Oleg Jakubowicz and Sridhar Ramanujam State University of New York, Buffalo

Feasibility of Use of a Neural Network for Bad Data Detection in Power Systems 11-615
S. A. Khaparde and Rita Mehta Indian Institute of Technology, Bombay

Design of a Pole-Balancing Controller Using Neural Networks ... 11-619
Yoo Seok Kim and Jang Gyu Lee Seoul National University

xx":

Table of Contents, Volume II

Application of Neural Network to Information Retrieval .. 11-623
K. L Kwok Western Connecticut State University

Combinatorial Optimization Using Competitive-Hopfield Neural Networks 11-627
Bang W. Lee and Bing J. Sheu University of Southern California

A New Model for Concept Classification Based on Linear Threshold Unit and Decision Tree 11-631
Hahn-Ming Lee and Ching-Chi Hsu National Taiwan University

Application of Coulomb Energy Network to Korean Character Recognition 11-635
Kyunghee Lee Electronics & Telecommuncations Research Institute and Won Don Lee
ChungNam National University

ART 1.5--A Simplified Adaptive Resonance Network for Classifying Low-Dimensional
Analog Data ... 11-639

Daniel S. Levine University of Texas at Arlington and P. Andrew Penz Texas Instruments
Retro: An Expert System Which Embodies "Chemical Intuition". ... 11-643

Hudson H. Luce and Rakesh Govind University of Cincinnati
Neural Networks and General Purpose Simulation Theory ... 11-647

Gregory R. Madey and Jay Weinroth Kent State University
Optimizing the Household Utility Function Using Neural Networks ... 11-651

Sergio Margarita Universita di Torino
Detection of Heart Malformation Using Error Back-Propagation Network II-655

Borut Maricic CVTs KoV INA, Dragan Beocanin CVTs KoV INA, Branislav Modric Vojna
bolnica Zagreb, and Josko Buljan OZIR

Stability Analysis of Power Systems Using Multi-Layer Perceptron ... II-659
D. Rao Marpaka, Seyed M. Aghili, and Michael H. Thursby Florida Insititute of Technology

Interfacing Data Base To Find the Best and Alternative Solutions To Problems By Obtaining
the Knowledge From the Data Base ... 11-663

O.Enrique Martinez and Craig Harston C.A.S.
An Interactive Activation and Competition Model for Machine-Part Family Formation 11-667
in Group Technology

Young B. Moon Syracuse University
A Neural Network Approach to Electronic Circuit Diagnostics ... I-671

James R. Reeder Westinghouse Integrated Logistics Support and L. James Koos Westinghouse
Science & Technology Center

A Neural Network Implementation of Parallel Search for Multiple Paths 11-675
Lyle A. Reibling and Michael D. Olinger SLI Avionic Systems Corp.

Neural Network Models and Their Application to the VUV and Optical Spectroscopy
of M olecular System s ... 11-679

Kresimir Rupnik Louisiana State University
Principles of Sequential Feature Maps in Multi-Level Problems .. 11-683

Jagath K. Samarabandu and Oleg G. Ja!'ubowicz SUNY Buffalo
Neural Nets vs. Analog Computers: An Observation ... 11-687

Gursel Serpen and David L. Livingston Old Dominion University
Neural Network Enhancement to Traditional Computer Environment ... 11-691

Yuri Shestov Boston University and TU Inc.
A Method for Neural Network Based Melody Harmonizing ... 11-695

Naoki Shibata, Hideo Shimazu, and Yosuke Takashima NEC Corporation
Fault Tolerance in Neural Networks .. 11-699

Gnanasekaran Swaminathan, Sanjay Srinivasan, Shanka Mitra, Jay Minnix, Barry Johnson, R.
M. Inign University of Virginia

Space-Scanning Curves for Spatiotemporal Representations--Useful for I.arge Scale Neural
Network Computing .. 11-703

Harold Szu Naval Research Laboratory and Simon Foo Florida State University
Comparison of the Performances of Three Popular Neural Network Architectures 11-707

A. C. Tsoi University of New South Wales

xxvii

Table of Contents, Volume II

Fault Tolerant Behavior of 12t Parallel Computing Network .. 11-712
Steven W. Welch Systenttix Inc., Russell G. Brown Systematix Inc., Francis M. Wells
Vanderbilt University, A. B. Bonds Vanderbilt University, Lloyd W. Massengill Vanderbilt
University, and Kenneth R. Fernandez NASA

An Adaptive Neural Algorithm for Traveling Salesman Problem ... 11-716
X. Xu and W. T. Tsai University of Minnesota

Fuzzy Rule on Associative Memory System .. 11-720
Toru Yamaguchi LIFE: Laboratory for International Fuzzy Engineering Research, Naoki
Imasaki Toshiba Corp., and Kazuhito Haruki Toshiba Corp.

AUTHOR INDEX

Tm.E INDEX

SUBJECT INDEX

xxviii

o~.o

Neural and
Cognitive Sciences

Multidirectional Associave Memory

MASAFUM HAGIWARA

Dept. of Elec. Eng.
Facul. of Sci. and Tech.

Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama

223 Japan

AhC Multidirectional Associative Memory (MAM) is proposed and simulatedLIt enables multiple
associations such as (ABi,C1 ,...). Its structure is very simple, and is devised to satisfy many facts
based on psychology. Te prope MAM has the foilowing features.
1) By recollecting one data, many other data can be recalled (multiple association).
2) When an interferece from other layer exists, it can be suppressed by recollecting other data (noise

uppreson effect).
3) Recollection becomes cornet by memorization with other data (robust memory).

Introduction
It is widely accepted that human memory is characterized by its associative, distributed, and

parallel processing capabilities. With this notion, many kinds of memory models have been proposed [I -
[6]. Among them, a bidirectional associative memory (BAM) proposed by B.Kosko has attracted much
attention because of its simple stntrcture and its similarity to brain (for example, there exists reverbelation in
the BAM) [5]. The BAM agrees with the fact that a neural projection from one region to another is usually
accompanied by a backward proj-ction [6). The BAM is the minimal two-layer nonlinear feedback
network and produces two-way asbciative search for stored stimulus-response associations (Ai,Bi).
However, it is similar to the conventional ones in respect of the number ofvectors stored simultaneously.
multiple associations such as (A1,Bi,C...) are impossible.

It is well known that the fillowing strategies are effective in order to ensure memorization.
I) Deep understanding of the meaning of the data to be stored.
2) Understanding of the mutual relation of the data to be stored.
In addition, it is noticeable that the more the data for retrieval exist, the more correctly the recollection
becomes.

In this paper, a new memory model called a Multidirectional Associative Memory (MAM) is
proposed and simulated. It enables multiple associations such as (A.,B-,C,...). The structure of the
MAMisvery simple, and is devised to satisfy above mentioned facts 6ase on psychology. Therefore, the
proposed MAM has the following features.
1) By recollecting one data, many other data can be recalled (multiple association).
2) When an interference from other layer exists, it can be suppressed by recollecting other data. (noise

suppression effect).
3) Recollection becomes correct by memorization with other data (robust memory).

Following this introduction, the proposed MAM is explained in Sec.2. In Sec.3, a demonstration
is shown by computer simulation.

2. Stnxchn of MAM

TN this section. structure of the multidirectional associative memory (MAM) is explained using a
three-layer type MAM as an example.

2.1 Bebavior ofMSA
Since the MAM can be considered as a multilayer type bidirectional associative memory (BAM), it

has many features in common with the BAM [51.

1- 3

The MAM is the minimal multi-layer nonlinear feedback network. Information pass forward from
one layer to others by passing through the connection matrices P,Q,R,.-.. Information pass backward
through these matrices transpose P,QT RT,....

When the neurons are activated, the network
quickly evolves to a stable state of multi-pattern Layer-I
reverberation, or resonance. The stable reverberation A
corresponds to a system energy local minimum.

Fig. 1 shows a structure of a multidirectional
associative memory (MAM) when the number of the
layers is three. The behavior of a MAM is explained p. pT . R, RT
using Fig. I (three-layer MAM). It produces a sequence
of grouped approximations to the stored group
(Ai,Bi,Ci): (A,B,C), (A',B',C'), (A',B",C"),
(A"',B"',C"'),-'. Ideally, this sequence will B C
quickly converge to some fixed group (Af,Bf,Cf), and La2 Q QT j*y1 r3
this fixed group will be (Ai,Bi,C:) or nearly so.

A MAM behaves as a heteroassociative content Fig. I Stmctme of multiiredwonal asociajive memay
addressable memory (CAM) if it is represented by a (three-layer type).
recollection such as shown in Fig.2.

QT QQ0 0
-HI2. ReUetion example of 3-layer MAM.

22 MAM azoftd
Here, the encoding ofa MAM is explained using the three-layer MAM.

1) Let (At ,BP,CI),.- (AmBm,Cm) be the bipolar date groups to be stored.
2) To make the matrix from the layer A to the layer B, convert bipolar pairs into bipolar correlation

matrices AIT Bi.
3) Add up the bipolar correlation matrices,

,• P- Ai Bi

Matrix P stores the m associations: (AI,Bt),'-(Am,Bm).
4) To make the matrix backward direction of Eq.(1) (faim layer-i to layer-2), a matrix transpose is made

pr Z iAi

(2)
5) In the same way of 2)-4), all the matrices Q(layer-2-.layer-3), QT(layer-3-*layer-2), R(layer-3--

layer-I), and RT (layer- l-.layer-3) are made.

2.3 MAM decoding

The MAM recall procedure is a nonlinear feedback procedure. Each neuron aj, bi, and ci

independently and synchronously examines its input sum from the neurons of other layers (see Fig.2),
then changes state or not. The input sum to a,, bi, and ci are

1-4

B (P T) + C R ., (bj pj + cj rji) (3)

C (4 T)'* A P'- (cj qj + aj pj,) (4)

A(RT)I +BQ1 " (ajrq + bj qji) (5) 1 4
J

where Xi means the i-th column of the matrix X, and xj is an () 4YMAM.
element of X. We take 0 as the threshold for all neurons. In
summary, the threshold functions for ai, bi, and ci are

J1: if B(PT)l +CR' !0 (6)
-1: if B(PT)i+CRI <0

1: if C(QT)'+AP P'0 (*
-1: if C(QT)I+API <0 (7)5-)yMAM.

I I: if A(RT)I +BQ' 20 (8)
-1: if A(RT)i +BQ I <0

The neurons continue their synchronous state changes until a multidirectionally stable state
(ArBf,C') is reached.

-- far the three-layer MAM is explained. It should be state that there exist many kinds of MAMs
such as shown in Fig.3.

3. Simulation results

In this section, we show the compv:ter simulation results to demonstrate the effectiveness of the
p- sedMAM.

The following simulation conditions are used.
1) The spatial character associations (Aa, 1) (B,b,2), and (C,c,3) are stored for the MAM, and (A,a)

(B,b), and (Cc) are stored for the BAM.
2) The layer- I contains 648-48 neurons (MAM and BAM), the layer-2 contains 597-35 neurons (MAM

and BAM), and the layer-3 contains 4x6-24 neurons (MAM).

Table I Simulation result.

BAM M A M

01 O 0 0 0 0

_ X 0 0 0
SAAAO 00O

Law-2 - Noise free __ Noise free __ Noise free
______input input input

S- _ Noise free Noise free
Lay-.3 input input

0: cori recollection X: false recollection n,: (reversed) cat rcollecfion

1-5

Table I shows the simulation result.
The pattern for the digit "A" to the layer- I
was corrupted by randomly reversing each
bit from 0 to 48 (all bits are reversed). As
for the BAM, when the number of reversed M A M B A M
bits exceeds 19, correct recollection can not Layer-I Layer-2 Layer-3 Layer-I Layer-2
be done even if a Poise free correct initial
input is added to another layer. On the other [i 1lf1~ tL
hand, as for the proposed MAM, when one Initial
noise free correct initial input is added to state
another layer, recollection becomes perfect
irrespective of the corruption of the layer- 1.

Fig.4 displays snapshots of 44
synchronous MAM and BAM recall. In this
figure, the steady state comes only ai die
second steps. The pattern for the digit "A" to Steady

the layer-I was corrupted by randomly state
reversing each bit with a probability of
44%.When the input is restricted to the
layer- 1 only, the BAM cannot recall (correct recollection) (False recollection)
correctly. However, with additional input to Fig.4. Synchronous MAM and BAM recall. (The digit *A* was

the layer-3, the MAM can recall perfectly corted by randomly reversing with a probability 0.44.)
because of multiple association effect of the
MAM. Therefore, it can be said that the multiple association enables a supreme noise suppression and

robustness of memory.

4. Conclusions

Multidirectional Associative Memory (MAM) has been proposed and simulated. It enables multiple
associations such as (A B. Ci,..--). Its structure is very simple, and is devised to satisfy many facts
based on psychology. Th'efolliowing features of the proposed MAM have been confirmed.
1) By recollecting one data, many other data can be recalled (multiple association).
2) When an interfcrence from other layer exists, it can be suppressed by recollecting other data (noise

suppression effect).
3) Recollection becomes correct by memorization with many data (robust memory).

ACKNOWLEDGEMENT

The author would like to thank Prof. Masao Nakagvaw of Keio university.

REFERENCES

[I] K.Nakano :"Associatron - a model of associative memory", IEEE Trans. Syst. Man. Cybem.,
vol.SMC-2, pp.380-388, 1972.

[21 Y.Hirai: "A model of human associative processor (HASP)", IEEE Trans. Syst. Man. Cybem.,
vol.SMC- 13, no.5, pp.851-857, Sept.,Oct. 1983.

[31 Y.Hirai: "Mutually linked HASP's; a solution for constraint-satisfaction problems by associative
processing", IEEE Trans. Syst. Man. Cybem., vol.SMC- 15, no.3, pp.432-442, May/June 1985.

[41 T.Kohonen, Self-organization and associative memory, Berlin: Springer-Verlag, 1984.
[5] B.Kosko: "Bidirectional associative memories", IEEE Trans. Syst. Man. Cybern., vol.SM -i8,

no. 1, pp.49-60, Jan./Feb. 1988.
[61 K.Okajima, S.Tanaka and S.Fujiwara: "A heteroassociative memory network with feedback

connection", Proc. IEEE Int. Conf. Neural Networks, II 711-718, 1987.

1-6

r U -

Maximum Entropy Prediction in Neural Networks

William B Levy, Ph.D.
Department of Neurological Surgery

University of Virginia School of Medicine
Charlottesville, Virginia 22908

Neural networks can generate predictive representation$. Particularly interesting arc the networks that
produce a predictive representation that is a vector of probabilities associated with a future representation.
These predictive representations are interesting because, among other reasons, such vectors imply the predictive
representation of maximum lkelihood.

Such a vector of probabilities, called a type It predictive representation to distinguish it from a maximum
likelihood predictive representation, consists of elements each of which is the probability of one particular
neuron firing. More specifically, each neuron produces the probability of its own future state. In our
investigations each neuron generates this probability by a local computation that uses maximum entropy (M.E.)
inference, stored averages, and Bayes's equation.

The motivation for such investigations' comes from the importance of prediction in the life of an
animal ,1 7, from various observations that point out how synaptic modification can lead to the encoding of a
statistic 1 4,1 4, and from the existence of a unique, optimal procedure to produce probabilities based on
statistics, i.e., M.E. inference 6,1 5.

In order for a neural network to produce this type II predictive representation, there is a small set of absolute
axioms and requirements: a definition of the prediction problem, the requirements of M.E. inference, and
complexity considerations. In turn the implementation of these requirements leads to a set of network
characteristics as natural outcomes of the usual, classic characteristics of neurons and synapses. The purpose of
this communication is to point out the implications these requirements have for neural networks which mediate
predictive representations.
THE PREDICTION PROBLEM

It is first necessary to define the type of prediction we are studying. We want a network to generate
predictions which are useful (i.e. usable by another network or the organism itself); moreover, we want a
network to base such predictions on appropriate correlational information which is adaptively encoded at
neurons and synapses.

There are three requirements of a predictive representation. (To emphasize that a prediction is also a
representation, we call it a predictive representation as distinct from a "standard representation.") The first two
requirements stem from our interest only in predictions which will be usable.

(1) Timeliness: A predictive representation must precede in time the standard representation being
predicted (because the whole point of creating a prediction is to improve some outcome in the future).

(2) Meaningfulness: A predictive representation space must map into the standard representation space
being predicted about. This requirement is necessary if a prediction is to be used for the benefit (survival,
propagation) of the organism containing this network. A specific example might make the motivation for this
requirement clearer. Consider a prediction generating network which is embedded in a larger network that
alters W in the external world to suit some homeostatic purpose. This larger network needs to relate, or map, a
predictive representation onto the standard representation of W in order to use the prediction to control W in a
sensible way that anticipates homeostatic needs. Without this map, the homeostatic part of the network would
be unable to take advantage of the predictions being generated.

The third requirement stems from our desire that the network encode and use appropriate associative
(correlational) information.

(3) Aptness: Appropriate correlations must be used to generate predictions. Among the many constraints
on a neural network there is the local principle which sensibly limits the information available to a neuron; e.g.,
of all the synaptic weights and neuronai activities in a network, only those which arc inputs to a neuron are local
to that neuron. Then suppose, because of the local principle and extant circuitry, a neuron can only learn an
association between a representation in the space A and another representation in the space B where any one A
representation precedes any one B representation. Then it is appropriate for this neuron to use an A
representation to predict about B. However, it is not appropriate for the neuron to use a B representation to
predict about A in the future or to use an A representation to predict about some nonlocal event C (except in

1-7

the sense that C can be represented as B). Furthermore, even though the local principle requires convergence
of an input to a cell such convergence is not enough for aptness. Just because the inputs to a neuron are, by
definition, local to that neuron, does not imply that it is appropriate for such a neuron to associate just any set of
these inputs. Specifically, a neuron would be living in a fantasy world of inappropriate correlational encodings if
it were to use its own predictive representation rather than a standard reprmsentation for synaptic reinforcement.
NETWORK CHARACTERISTICS DERIVATIVE OF THIS DEFINITION

The requirement for a timely prediction is, in part, implemented by the temporal characteristics of
associative modification ruless , 2. These characteristics allow tima spanning associations between two
standard representations. However, the allowable time span of these rules is rather short, certainly less than 125
ms. This span is hardly large enough for most practical purposes requiring prediction. An arbitrarily large time
gap, however, can be spanned by using feedback circuitry for preprocessing the representation that will be used
as the conditioning variable in prediction generation 8 .

Requirements (2) and (3) produce the need for a bidirectional mapping between the standard representation
space and the corresponding predictive representation space. The obvious implementation of this bidirectional
mapping is that the same neuron mediates both a standard representation and its own predictive representation.
There are advantages to such a mapping including simplicity, immediate interpretability, and constancy over
changes in circuitry due to synaptic modification. However, although this mapping prevents confusion as to the
applicable space of a prediction, it does not prevent, rather it can cause, confusion between the two types of
representations themselves.

Such a dual representational implementation within a single neuron leads to the possibility that the two
different types of representations will be confused. Such confusion could happen in two places. One place is at
the associatively modifiable synapses of the prediction generating neuron. Associative synaptic modification
could be reinforced by the unconfirmed state of a predictive representation instead of the reality of a standard
representation. The other place of possible confusion is at the postsynaptic cells receiving inputs from such a
prediction generating neuron. These postsynaptic neurons must distinguish which input signals are predictive
representations and which are standard representations.

The distinction which solves the first problem can be accomplished by a nonspecific, low dimension, marking
signal, a two-compartment neuron, and non-simultaneity of the two types of representations. The second
problem needs only a marking signal and the non-simultaneity of the two representations to produce the
necessary distinction. Such merking signals would alter the interaction of postsynaptic cells according to the
marking signal's temporal relationship with one of the two types of representations.

Combined with the ne'work characteristics just noted, aptness is satisfied by an associative modification rule
in which reinforcement of synaptic modification is a rectified affair. Consider the event being predicted as the
voltage of compartment 1, Z, in the figure. Thcn Z in compartment 1 can reinfoice compartment 2 synaptic
modification for a state of each input Xi in compartment 2 that precedes the state Z but cannot reinforce
modification of states which, ccur after state Z in time. Furthermore, the prediction generating compartment (2
in the figure) cannot reinforce synapses in compartment 1.

NonspecificT Marking
Input zSignal

Time Spanning
xx2----

IPreprocessor

Prediction Generating Neuron k
Compartment 1 generates a standard representation
Compartment 2 generates a predictive representation, P*(ZklX)

1- 8

3

Although the definitional requirements constrain the characteristics of suitable networks, our
implementations are probably not unique in satisfying these requirements because so many different types of
neurons exist. Still, the suggested network characteristics seem rather natural, straightforward con-
structions, particularly when considered in the context provided by the hippocampus of the mammalian brain a.

Let us now consider computational constraints which limit the characteristics of a neural network. For
simplicity of exposition, we consider a standard representation space in which each neuron takes on a state in
the set {0,1} and a predictive representation space in which each neuron takes on some monotonic function of a
probability- for expository purposes, let it take on values in [0,11 as the probability itself.
COMPUTATIONAL CONSIDERATIONS

In an idealized situation each prediction generating neuron, k, would, at time t, generate
P(Zk(t + n) - 1 X(t) - x), the conditional probability that k will be in the one state at some n steps into the
future given that its inputs, the vector variable X, is in state x now at time t.

Because the dimension of X is quite large, there will be many configurations X that have never been
experienced before the prediction generation time t. Moreover, even with sufficient sampling, it is impossible to
store the exponentially many statistics, e.g. the expectation E[Zk - II X - x], that might be needed. The
solution to this problem is to use Bayes's equation and M.E. inference on low-order moments. In accord with
Bayes's equation and leaving implicit the time notations mentioned above, each neuron would compute

P$(Zk11 Xx) = P*(X=xI Zk-l). P*(Zk=1)/P*(X=x) (1)

where, on the right hand side, P)is a M.E. inferred probability distribution computed from sample averages
that have nearly converged to the population based expectation. A M.E. inferred probability based on the
lowest order moments of interest is:

P*(X=xI Zk 1) - 4 P*(XiI Zk=l) - 1) P(Xi= I I Zk=l) -xi (--P(Xi=I1 Zk=l)) xi) (2)

= exp xi. log1P(Xi- I I Zk = 1) + (1 - xi)- log (1 - F(Xi - I Zk - 1))} (3)

where the P() are sample based averages.
As in many neural networks, synapses would store statistics, e.g. (P(Xi I Zk = 1)), and the readout of the

appropriate statistics is just a natural result of the signaI flow, xi. The learning" of such statistics could result
from synaptic modification rules similar to those known to exist in the brain 7 " 1 0,1 1 .

The existence of synaptic modification rules that encode averages provided much of the impetus for the
approach described here. Equation (1) and computations like equation (2) implythe need for three different
types of averages: P(Xi -1 1 Zk = 1), P(Zk = 1), and P(Xi = 1i Zk = 0). Note that P(Zk) requires a neuron to
encode its own average activity or to guarantee a preset value. Note also that a synaptic encoding of
PA = II Zk - 1)/F(Xi = 1) might substitute for the pair (P(Xi = 11 Zk = 0), P(Xi = II Zk = 1)). In either case a
neuron has the information to calculate the denominator of equation (1). Interestingly there is recent evidence
for the existence of a synaptic modification rule that would encode P(Xi I Zk = 0) or the alternate statistic', .

Regardless of the statistics in the constraint set (in our case the low order statistical correlations), M.E.
inference will always use what is essentially a multiplicative form 2 . This requirement leads to an obvious
implementation in a neural network: add logarithms and exponentiate. Because synaptic currents vary with the
logarithm of their conductance and because depolarization translates into cell firing in a nonlinear way, such
hypothetical characteristics are plausible. (Of course a maximum likelihood predictive representation does not
even require exponentiation before its formation from a monotonic function of a type II predictive
representation formed with logarithms.)
ANOTHER COMPLEXITY CONSTRAINT

M.E. inference can make use of moment constraints, which are essentially correlations, of any order. For a
postsynaptic ccl: k and inputs Xi, Xj, Xh, a lowest order constraint of intcrest would be P(Xi = I t Zk = 1) and
examples of higher order constraints are P(Xi. Xh = 1i Zk = 1) and P(Xi. Xi. Xh = 1i Zk = 1).

Unfortunately computational complexity issues oftcn make it impossible, in practice, to compute a M.E.
derived probability from a constraint set of arbitrary moments of arbitrary order. A computationally intractable

1-9

4.*'\ (

problem can arise if the constraint set does not consist solely of lowest order correlates because there might be
overlap among two constraints in the set. When such overlap exists, there can be a need for an exponential
number of variables to calculate the M.E. inferred probability distribution. This exponential requirement
renders the M.E. method computationally intractable in such cases.

Example of a set of nonoverlapping moment constraints:
{f(X1 = -1I Zk = 1), P(X2 = 1 Zk = 1), P(X3 . X4 - 11 Zk = 1)}.

Example of a set with overlapping constraints:jF(XI = I1I Zk = 1), PR-X1•- X4 = I I Zk -- I)* •

On the other hand, intractability will always be avoided if the constraints in a set do not overlap. That is, if a
conditioned variable Xi (i.e. the activity of input line i) appears in no more than one moment constraint in a set
of constraints, then there will be no overlap, and this particular complexity problem is avoided.

We view this complexity problem and its solution as a constraint affecting the characteristic computation of a
prediction generating network. More exactly the affect is on the preprocessor computation that produces the X
inputs of the prediction generating neurons. It would be useful for the prediction generating neurons to receive
their inputs from a network preprocessor that moves information out of higher-order moments into lower-order
moments and that avoids overlapping constraints with high probability. Moreover, it seems possible that this
preprocessor and the time spanning preprocessor are identical8 .

Full connectivity from the X space to a prediction generating neuron is not a requirement because M.E.
inference remains consistent even with missing moment constraints.

Thus the requirements stemming from this particular computation, equations (1) and (2) or (3), imply several
network characteristics. These requirements include: a multiplicative combination of probabilities; computation
of M.E. inference as if working with lowest order moments; and a requirement for averages over three different
kinds of distributions. The combination of these computational requirements and the definitional requirements
create an important set of restrictions on the class of acceptable neural networks that create predictions.

This research and WBL are supported in part by the NIH (NS14588)and by an NIMH RSDA (MH00622).

The help of D. Adelsberger-Mangan, C. M. Colbert, and N. L Desmond is greatly appreciated.

References

1. Amari, S.-I. (1977) Biol. Cybern.. 26, 175-185.
2. CsiszA r, 1. (1975) Ann. Prob. 3, 146-158.
3. Dawkins, R. (1976) The selfish gene. New York: Oxford University Press.
4. Geman, S. (1981) SIAM AMS Proc., 13 91-105.
5. Gustaffson, B., Wigstr6 m, H., Abraham, W. C., and Huang, Y.-Y. (1985) J. Neurosci. 7,774-780.
6. Jaynes, E. T. (1978) In R. D. Levine & M. Tribus, Eds., The maximum entropy formalism. 15-118.

Cambridge: MIT Press.
7. Levy, W. B (1982) Proc. Fourth Annual Conference of Cognitive Science Society, 135-136.
8. Levy, W. B (in press) In: R. D. Hawkins and G. H. Bower, Eds., Computational models of learning in simple

neuronal systems. New York: Academic Press.
9. Levy, W. B, Colbert, C. M. and Desmond, N. L (1989) In: M. A. Gluck and D. E. Rumelhart, Eds.,

Neuroscience and connectionist models. Hillsdale, NJ: Lawrence Erlbaum Assoc., Inc.
10. Levy, W. B and Desmond, N. L (1985) In G. Buzsaki and C. H. Vanderwolf, Eds., Electrical activity of the

archicortex. Budapest, Hungary: Akademiai Kiado, 359-373.
11. Levy, W. B and Steward, 0. (1979) Brain Res. 175, 233-245.
12. Levy, W. B and Steward, 0. (1983) Neurosci. 8,791-797.
13. Lorente de N6, R. (1938) J. Neurophysiol. 1, 207-244.
14. Rosenblatt, F. (1962) Principles of neurodynamics. Washington, DC: Spartan Books.
15. Shore, J. E., & Johnson, R. W. (1080) IEEE Trans. Information Theory, IT-26, 26-37.
16. Stanton, P. K. and Sejnowski, T. J. (1989) Nature 339, 215-218.
17. Young, J. Z., Ed. (1970) The life of mammals. Oxford: Clarendon Press.

1- 10

NEURAL DYNAMICS OF MOTION SEGMENTATION:
DIRECTION FIELDS, APERTURES, AND RESONANT GROUPING

Stephen Grossberg and Ennio Mingolla
Center for Adaptive Systems. Boston .'niversity

111 Cummington Street. Boston. MA 0221.5

A neural network model of motion segmentation by visual cortex is described. The
model clarifies how preprocessing of motion signals by a motion OC Filter is joined to long-
range cooperative motion mechanisms in a motion CC' Loop to control phenomena such
as induced motion, motion capture. and motion after effects. The total model system is
a motion Boundary Contour System (BCS) that is computed in parallel with the static
BCS of Grossberg and Mingolla before both systems cooperate to generate a boundary
representation for 3-D visual form perception. The present investigations clarify how the
BCS used in static segmentation problems can be modified for use in motion segmentation
problems, notably for analysing how ambiguous local movements (the aperture problem)
on a complex moving shape are suppressed and actively reorganized into a coherent global (
motion signal. Unlike many previous approaches. we analyse how a coherent motion signal
is imparted to ali regions of a moving figure (motion capture-). not only regions at which
unambiguous motion signals exist.

Why Are Static and Motion Boundary Contour Systems Needed?
Some regions of visual cortex are specialized for motion processing. notably region MT

(Albright, Desimone. & Gross. 1984: Maunsell & van Essen. 1983: Newsome. Gizzi. &
Movshon, 1983; Zeki. 1974a. 1974b). However. even the earliest stages of visual cortex pro-
cessing, such as simple cells in V1. require stimuli that change through time for their maximal
activation and are direction-sensitive (DeValois. Albrecht. & Thorell. 1982: Heggelund. 1981:
Hubel & Wiesel, 1962. 1968. 1977: Tanaka. Lee. & Creutzfeldt. 19S3). Why has evolution
generated regions such as MT, when even Vl is change-sensitive and direction-sensitive?
What computational properties are achieved by" MT that are not already available in U'1?

The monocular Boundary Contour System. or BCS. theory of Grossberg and Mingolla
(1985a. 198.5b), and its binocular generalization (Grossberg. 19O b: Grossberg & Marshall.
1989). has successfully modelled many boundary segmentation properties of V1 and its
prestriate projections. (See Grossberg (19S7c. 19SSa) for collections of these and related
articles.) The BCS was there used to analyse data generated in response to static visual
images. Henceforth we therefore call such a BCS a static BCS model. Nonetheless. its
model cells can easily be gated by cells sensitive to image transients. such as Y cells (Enroth-
Cugell & Robson. 1966: Hoffmann. 1973: Sekuler. 1975: Stone. 1972: Stone & Dreher. 1973:
Tolhurst. 1973). to generate receptive fields sensitive to image transients. How does a motion
BCS differ from a static BCS whose cells are sensitive to image transients!

Joining Sensitivity to Direction-of-Motion
with Insensitivity to Direction-of-Contrast

The static BCS consists of two major subdivisions: an oriented contrast-sensitive ,'er.
called the OC Filter. and a cooperative-competitive feedback network, called the CC' Loop.
The OC Filter models the simple cells and complex cells of 1V1. Its projections to hypercom-
plex cells form the interface of the OC Filter with the CC Loop. The hypercomplex cells
project. in turn. to a cell type called cooperative bipole cells by Grossberg and Nlingolla.
The bipole cells interact wit-h the hyperconmplex cells via the ('C Loop.

This research was supported in part by the Air Force Office of Scientific Research
(AFOSR F49620-$6-C-0037 and AFOSR F49620-87-C-0018). the Army Research Office (ARO
DAAL03-SS-K-0OSS).

I - 11

/

The OC Filter is a nonlinear filter that multiplexes several different types of image infor-
mation into a spatially organized representation. or map. across the network of hypercomplex
cells. Such a map functions as a compressed code that is capable of reacting selectively to
prescribed combinations of image features.

The CC Loop reacts to this multiplexed spatial map by transforming and amplifying
those spatial combinations of cell activations whose coded information is . iutually consistent,
and actively suppressing the rest. The result combines information i.out image edges,
texture, shading, depth, and spatial scale into a resonant boundary representation. Eckhorn
et aL. (1988), Gray et al. (1989) and Peterhans and von der Heydt (1989) have recently
reported neurophysiological data that support predicted cooperative and resonant properties
of the CC Loop.

Although the simple cells of the BCS are sensitive to direction-of-contrast, or contrast
polarity, the complex cells of the BCS are rendered insensitive to direction-of-contrast by re-
ceiving inputs from pairs of simple cells with opposite direction-of-contrast. Such a property
is also true of the simple cells and complex cells in area V1 (DeValois, Albrecht, & Thorell,
1982; Poggio, Motter, Squatrito, & Trotter, 198.5; Thorell, DeValois, & Albrecht, 1984).

This property is useful for extracting boundary structure that is independent of illumi-
nation fluctuations, such as shadows. As a result. the output of the static OC Filter is unable
to differentiate direction-of-motion. A key property of the motion BCS model presented here
is that it possesses a modified OC Filter that multiplexes the property of insensitivity to
direction-of-contrast, which is equally useful for the processing of static and moving forms.
with sensitivity to direction-of-motion (Grossberg. 1987a). The properties of this motion OC
Filter (Figure 1) clarify many properties of motion perception. Grossberg and Rudd (1989a,
1989b) have, for example, used the motion OC Filter to explain properties of apparent mo-
tion. When the motion OC Filter is connected to the CC Loop. a much larger body of data,
including coherent global motion percepts such as induced motion and motion capture, can
also be analysed.

For example, a consideration of the action of Level 4 cells in the OC Filter indicates
how ambiguous information about object motion direction can be combined into a motion
direction signal near image corners. Consider the lower right corner of a light rectangle.
moving diagonally up and to the right, on a dark background. Over time. triplets of level
2 cells of horizontal orientation, when gated by a -darkening- Level 3 cell, detect roughly
vertical motion (along the bottom horizontal edge). Simultaneously, vertically oriented Level
2 cells, when gated by a (different) "brightening- Level 3 cells, detect roughly horizontal
motion (along the leading vertical edge). These two motion signals (upward, rightward)
are derived from direction-of-contrast- sensitive cells, but combine to form a total direction
signal that is independent of contrast direction. This is accomplished by the Level 4 to Level
5 Gaussian filter, which computes a direction field from the oriented motion direction vectors
over relatively large spatial distances and over a range of orientations.

A similar process occurs at the top-right corner of the same rectangle (though there the
process is aided by the local filters at 45 degrees). Interaction of this direction field with a
motion CC Loop can select the preferred directions near the figural corners and use these
directions to complete the direction field along the entire leading edge of the figure. Such
resonant completion uses cooperative-competitive feedback between motion hypercomplex
cells fed by the motion OC Filter and the motion bipole cells to which they project.

Multiplexing of Motion Direction and Motion Depth
In the static BCS it has been shown how cells become binocular at the complex cell level

(Grossberg. 1987b; Grossberg & NMarshall. 19S9). A similar hypothesis is made about the
motion BCS; namely, that another role of the Gaussian filter is to combine motion signals
from both eyes at the complex cells of Level .5 (Figure 1). As noted above, the Gaussian filter
also provides an additional degree of freedom whereby cells at Level .5 can become sensitive
to direction-of-motion over a wider range of stimulus orientations than cells at Level 2.

1- 12

whose pr erred direct ion-of-mot ion is perpendicular to their preferred orientation. Likewise.
many Ce1 .s in . T are sensitive to direction-of-motion over a range of stimulis orientations.
wherea, cells in V1 typically are sensitive to the direction-of-motion perpendicular to their
orieut ional preference (Aibright. 19S4: Albright. Desimone. & Gross. 1984: .Maunsell k
v1,r. ,sen., 19S3).

MOTION OC FILTER

Insensitive to Direction-of-Contrast

Sensitive to Direction-of-Motion

Level 5

Gaussian
filter

Level 4

Level 2 Level 3 Level 3 Level 2

t a i-level 1

Figure 1. The motion OC Filter: Level 1 registers the input pattern. Level 2 consists of
rectified and time-averaged signals from sustained response cells with oriented receptivefields
that are sensitive to direction-of-contrast. Level 3 consists of rectified and time averaged
signals from transient response cells with unoriented receptive fields that are sensitive to
direction-of-change in the total cell input. Level 4 cells gate pairwise the sustained cell and

transient cell signals to become sensitive to direction-of-motion and sensitive to direction-of-

contrast. A long-range Gaussian filter combines outputs from Level 4 at Level 5. Level 5 cells

employ signal-contrast enhancing competition and become sensitive to direction-of-motion
and insensitive to direction-of-contrast.

1- 13

References

Albright, T.D. (1984). journal of .Veurophyvsiology. 52. 1106-11:30.
Albright, T.D., Desimone. R., and Gross. C.G. (19S4). Journal of Neurophvsiology. 51, 16-31.
DeValois, R.L., Albrecht. D.G., and Thorell. L.G. (1982). Vision Research, 22, 54-5-5-39.
Eckliorn, R., Bauer. R.. Jordan. W.. Brosch, A.. Kruse. W.. Munk. M., and Reitboeck, H.J.

(1988). Biological clybernetics. 60'. 121-130.
Enroth-Cugell, C. and Robson. J.G. (1966). Journal of Ph *ysiology, 187. 517-3-52.
Gray, C.M., Konig, P.. Engel, A.K., and Singer. W. (1989). Nature, 338, 334-337.
Grossberg, S. (1987a). Perception and Psychophysics. 41. 87-116.
Grossberg, S. (1987b). Perception and Psy-chophy'%sics. 41. 117-1.38.
Grossberg, S. (Ed.) (1987c). The Adaptive Brain, Vol. II: Vision, Speech, Language,

and Motor Control. Amsterdam: North-Holland.
Grossberg, S. (Ed.) (19SSa). Neural Networks and Natural Intelligence. Cambridge,

MA:.NMIT Press.
Grossberg, S. and Marshall. J. (1989). Neural Netwvork-s. 2, 29-.51.
Grossberg, S. and Mingolla, E. (198.3a). Psychological Review, 92. 173-211.
'Grossberg, S. and Mingolla. E. (198.3b). Perception and Psjychophysics. 38, 141-171.
Grossberg, S. and Rudd, M.E. (1989a). Investigative Ophthalmology Supplement. 30, 73.
Grossberg, S. and Rudd, M.E. (1989b). Proceedings of the International Joint Conference on

Neural Networks, June 19. 1989, Washington. DC.
Heggelund, P. (1981). Experimental Brain Research. 42. S9-98.
Hoffman, K.-P. (1973). Journal of Neurophysiology. 36. 409-424.
Hubel, D.H. and Wliesel, T.N. (1962). Journal of PhYsiology. 160. 106-1534.
Hubel, D.H. and Wiese], T.N. (1968). Journal of Physiology. 195. 21.5-243.
Hubel, D.H. and Wiesel. T.N. (1977). Proceeding-,s of the Royal Society of London (B). 198.

1-.59.
Maunsell, J.H.R. and v-an Essen. D.C. (1983). Journal of .YeurophYsiology. 49. 1127-1147.
Newsome, W.T.. Gizzi. M.S., and Movshon. J.A. (1983). Investigative Ophthalmologgy and

Visual Science, 24, 106.
Peterhans, E. and von der Heydt. R. (1989). Journal of N\euroscience. 9. 1749-1763.
Poggia, G.F.. 2Motter. B.C.. 0Squatrito. S.. and Trotter. Y. (198.3). Vision Research. 25, 397-

406.
Sekuler. R. (197-5). In E.C. Carterette and M.P. Friedman (Eds.). Handbook of Perception,

Volume V: Seeing. New York: Academic Press.
Stone, J. (1972). Investigative Ophthalmologv. 11. 3:3S-344.
Stone, J. and Dreher. B. (1973). -Journal of NeurophYsiologv. 36.3,31-567.
Tanaka. M. 'Lee. B.B.. and Creutzfeldt. O.D. (198:3). In J.D. Mollon and LT. Sharpe (Eds4.)

Colour Vision. New York: Academic Press. 1983.
Thorell. L.G.. DeValois. R.L.. and Albrecht. D.G. (1984). Vision Research. 24. 7351-769.
Tolhurst. D.J. (1973). Journal of Phy'isiology. 231. :38.5-402.
Zeki, S.M. (1974a). Journal of Ph 'isiology (London). 236. 549-373.
Zeki, S.M. (1974b). Journal of PhYsiology (London). 242. S27_841.

1 - 14

ABOUT THE GEOMETRY INTRINSIC TO NEURAL NETS

A.J. PELLIONISZ
DEPT. OF PHYSIOLOGY AND BIOPHYSICS

NEW YORK UNIV. MED. CTR.
550 FIRST AVE, NEW YORK, NY. 10010

"Neural net" field will succeed, or fail, depending on meeting two crucial challenges. One is to discern, from
the living brain, the mathematics that is inherent in CNS function. The next is to develop the electronic or
optical technology that can suitably implement it (see Fig.l). This dual evolution is similar to prcvious
natural science-based branches of technology; electrical- and nuclear engineering. In all cases, :he basic
science has to be established first (theory of electricity and nuclear physics in the past and brain theory in
the futu:e). Based on the "basic science", a novel technology might be developed, eventualiy leading to a
new industry. A crucial problem is, that as known from the history of natural sciences, the emergence new
disciplines often necessitates a creative process of establishing the mathematics that is intrinsic to the novel
scientific problem. Theory of complex numbers and functions (in electricity) and of quantum mechanics (in
nuclear physics) are recent examples, but it is worth remembering that even classical (Newtonian) mechanics
had to be mathematically inventive (leading to the development of calculus).

There are apparent exceptions. Computer science evolved along a different path as it is not part of natural
sciences. Its mathematics (Boolean algebra of mathematical logics, see [191) was in place even before the
suitable electronics to implement it was developed. This is probably one reason why "neural nets", the R&D
of "brain like machines", often implies that the basic research including the identification: of intrinsic
mathematics is already done and, it seems, all one needs is the development of suitable technology. The
classical viewpoint even equated Boolean algebra with the mathematical language of neural nets, in which
neurons were simple binary elements [10]. Lately, since it is generally agr.ed that the brain is a massively
parallel (array) processor, arrays as vectors and matrices of real numbers (representing oints and
transformations in the regular vectorspace with Euclidean geometry) seemed sufficient [201 as the
mathematical tools of brain theory. But is it really true that mathematical brain theory is all there to base a
new industry upon? An honest answer that neuroscience can give is "'to the same extent that nuclear physics
was ready in the early twentieth century".

Brain theory, as a mathematical theory of the only true neurocompurtr (biological neural nets), is only in its
infancy. Still, it is already evident that the mathematics inherent to CNS function is as non-trivial as it is non-
orthodox. First, about thirty years after von Neumann pointed out the fundamental differences between the
computer and the brain [11], it is becoming increasingly widespread to believe that the mathematics
underlying bra;n function is not algebra 1101, not even calculus [7] but geometry [81.121,[14]. Second. it is
becoming apparent that "neural geometry" as the basis of "neural neurocomputing" transcends the
restrictions of a simple or even simplistic Euclidean structure. This presentation will demonstrate this fact
with examples taken from ncuroscience applications.

As shown in Fig,.2.. the c'assicil Cartesian orthoLonal coordinate systems [I I are demonstrably not the ones
that nature actually uses in livira brains. It is elaborated in detail elsewhere 161,1 121 that coordinate systems
intrinsic to sensorimotor mechanisms such as 'he vestibulo-collic apparatus use generalized vectors (tensors,
c.f. [31) that are typically non-orthr2onai and overcomplete !,]. Based on tensor theory, network models of
existing neural nets, such as the Ve -ýIulo-Ocular Reflex (VOR) were constructed [161,[151 accounting to
both the distributed nature of this rc,:: [121. :;nd specifically elaborated t',e learning mechanism of such
networks and in addition provided . ,tructur,,-fhinctional model of the cerebellt'm in such sen:sorimotor
transformations [171. In contrast to e dcý,aje-old tensor approach, the generation-old classical system-

I- 13

/

NEUROCOMPUTING =

Basic Science: Technology:
Brain Theory Parallel Computing

Non-
Mathematical Mhathematical Optical Electrical

Micro-hosted
Parallel Board

Algebra Calculus Geometry McorcsoG•W.• Microprocessor,

i ley (transputer)

Euclidean Non-Euclidean
von NumannNeurochipcomputers /DescartesNerci

Differential Geometryo• ...f.Cartesian Vectors •.

• Steinbuch, 1961

von Neumann parallel Metrical Fractal Chaotic

non von-Neumann
Neurocomputers

Fig.1. Neurocomputing is a new technology that has to be based on the intrinsic mathematics of biological brains

theory approach in gaze research could only produce, to date, single transformation (lumped) models, totally
glossing over the underlying biological neural networks. In a quantitative model [18] of the Vestibulo-Collic
Reflex (VCR) the non-Euclidean nature of e.g. the neck-motor metric is plainly evident in Fig.2.C. The
tensor model of such non-Euclidean geometries has received experimental supporting evidence [6], [18].
The implications of the mathematical formalism of generalized (non-orthogonal) vectors (tensors) on the
theory of associations forming the metric of the multidimensional intrinsic geometry of CNS will be
elaborated elsewhere [13].

In addition to an obvious need of pulling away from extrinsic Cartesian frames of reference and the
Euclidean geometry of the orthodox vectorspace, it is becoming evident that grossly non-metrical
geometries are also manifest in structuro-functional properties of biological neural nets. Deterministic
chaos [41 is one striking evidence. Recently, in an attempt of meeting the beautiful challenge from the
originator of a rapidly emerging mathematical discipline of fractals [91, it has been demonstrated [14] that
the structure of neurons reflects a fractal geometry (see Fig.3).

The empires of electrical- and nuclear technology were built on a foundation of basic research - not shying
away from the horrendous primary task of discerning the appropriate intrinsic mathematics from nature
herself. With enough investments at stake, the field of "neural nets" will do likewise.

1- 16

A Coordinate systems intrinsic to CNS

are non-Cartesian: non-orthogonal,
overcomplete generalized frames ow ,. cw

SI. S--14

"Sensorimotor C: €
coordinate of, ST

a CIL
transformation -roll L pitch

Vestibular canal 30-din% ional non-orthogonal
sensory frame neck muscle motor frame

Neural nets connecting sensorimotor
coordinate frames are massively inter-
connected, hierarchical (non-lumped)B

CI

: *- •. °0...

00.........."...............'....;.....

: Geometry of CNS

.... : ::. -:.,:,: space is non-I I ,,..................................: •: :.":8., .'?.'.;; :. : ;:: ::Euclidean:

. °0 metric tensor
:.0. : :::::.... .'.. .: contains non-zero

i . .: .," off-diagonals

Experimental tests confirm the tensor
model of non-Euclidean CNS geometry
by quantitatively explaining measured
deviation of muscle pulling direction
from EMG (vestibular response) [141.

P=Pulling direction V=Vestibular response
Occipitoscapularis Splenius M=Model Prediction

Fig.2. Demonstration of non-Euclidean metrical geometry intrinsic to CNS (for details, see (141)

1- 17

o I IIs's'e

I ecre, R"TetsofMn"17Havr d Unv/rsCmrde A Oiinli 69i nadFec)

. BI

A i S

Fig.3. Demonstration of non-Euclidean, pat-rnith (aracta geometry of CNS. ,B: fulhy us. i.uped and
embryonic Purkinje cells, C,D: fractal "embryonic" template and fully developned fractal dendritic tree (for details,
see [14]).'

REFERENCES

1. Descartes, R. "Treatise of Man." 1972 Harvard Univ. Press, Cambridge, MA. (Origina ina 1629 in Latin and French).
2. Eckminler, R. and C. von Malsburg. Neural Computers. Proco of them NATO Adv. Research Workshop, Springer. 1988.
3. Einstein, A. (., 1916) In: Sommerfeld A (ed) The principle of relativity. (1952) Dover, New York. p 111-164. The foundation

of the general theory of relativity: 1916.
4. Freeman, W. Simulation of chaotic EEG pa'terns with a dynamic taodel of the olfactory system. Biol. Cybem. 55: 1987.

5. Georgopoulos, A., S. AB and K. RE. Neuronal population coding of movement direction. Science. 233: 1416- 1419, 1986.
6. Gielen, C. C. A. M. and E. t. van Zuylen. Coordination of arm muscles during flexion and supination: Application of the tensor

analysis approach. Neuroscience. 17: 527-539, 1986.
7. Hodgkin, A. and H. AF. A quantitative description of membrane current and itsappiication toconduction and excitation in nerve.

J. Physiol. (London). : 1 176:500-544, 1952.
8. Koenderink, 1. J. Geometrical structures determined by the functional order in nervous nets. Biol. Cybern. 50, 43-50: 1984.

9. Mandelbrot, B. "The fractal geometry of nature." 1917 W.H. Freeman. New York.
10. McCulloch, W. S. and W. Pitts. A logical calculus of the ideas immanent in nervous activity . Math. Biophys. :15, 115-133.,

1943.

11. Neumann, J. v. 'The computer and the brain." 1958 Yale Univ. Press, New Haven, CT.
12. Pellionisz, A. "Tensorial aspects of the multidimensional approach to the vestibulo-oculomotor reflex and gaze." Reviews ol

Oculomotor Research. g. Adaptive Mechanisms in Gaze Control, pp. 181-296. Berthoz and Melvill-Jones ed. 1985 Elsevicr.
Amsterdam.

13. Pellionisz, A. "The geometry of brain function: Tensor network theory." 1989 Cambridge Univ. Press (In Press).
14. Pellionisz, A. "Neural geometry: Towards a fractal model of neurons." Models in Brain Function. Cotterill ed. 1989 Cambridge

Univ. Press.

15. Pellionisz, A. and W. Graf. Tensor network model of the "three-neuron vesribulo-ocular rcflex-arc" in cat. J. Theoretical
Neurobiology. 5: 127-15!, 1987.

16. Pellionisz, A. and R. Llinis. Tensorial approach to the geomeuy of brain function: Cerebellar coordination via metric tensor.
5: 1125-1136, 1980.

17. Pellionisi and R. Llirnis. Tensor Network Theory of the metaorganization of functional geometries in the CNS. Neurosci.
16: 245 .985.

18. Peters,. iV., A. 1. Pellionisz, J. A. Baker and E. A. Keshner. Functional morphology and neural control of ncek muscles in

1.mammals. Am. Zoology. 29: 139-149, 1989.
1.Shannon, C. A mathematical theory of communication. Bell System Technology 1. : 27, 3-4., 1948.

20. Steinbuch, K. Die Lrnmatrix. Kybemetik. : 1, 36-45., 1961.

1-18

Optimal Preprocessing Networks and a Data Processing Theorem

Donald St. P. Richardst and William B Levy:
tDepartment of Mathematics and tDepartment of Neurosurgery

University of Virginia, Charlottesville, Virginia 22903

1. Introduction
In this paper we continue (cf., Levy, 1989b) to treat the problem of constructing a neural-like network

that performs optimal predictions for very general environments. We are particularly interested in the
computations that could be implemented in a neural network to generate optimal predictions. Here we
start by defining and studying the information in X, a vector of inputs, that might be made available to
the prediction-generating neurons. (Each prediction-generating neuron generates a conditional probability
of its own future state.) The vector X can be used as the conditioning variable for making predictions.
However, it might be useful to process X before it reaches the prediction-generating neurons. We consider
how best to preserve the predictive information in X while modifying its form. That is, this paper seeks
to discover good forms for preprocessing the vector of inputs X, the conditioning variable of the prediction.
In moving towards this goal we obtain an analog of information theory's data processing theorem for a
preprocessor in a prediction network and discuss the implications of this theorem for constructing networks
that solve an optimal preprocessing problem. We identify conditions under which this theorem allows only
one type of optimal preprocessing. Because our prediction generating neurons benefit from statistically
independent X inputs,the transformation we seek also minimizes statistical dependence. Finally, we sketch
a computationally tractable algorithm to perform the desired preprocessing.

2. The data processing theorem
The data processing theorem (cf. Csiszar and Korner, 1981, p.55; Shannon and Weaver, 1949; p. 57)

states that if sequential encoding and decoding procedures are applied to data represented by a stochastic
process, e.g., a communication channel, the amount of information contained in the data cannot be increased
because of the processing. We want to formulate for neural-like networks an analog of th.: data processing
theorem. This theorem will be an analog if, whenever a representation X is transformed into a representation
Y = f (X) by a transformation f , then predictive information cannot be increased by this transformat;on.

Fot simplicity we shall assume that all random variables are discrete. In formulating an analog of the
data processing theorem for the type of neural-like networks considered in this paper, we need to measure the
amount of predictive information contained in the conditional distribution Pzly. To measure the difference
between the conditional distribution Pzly=y and the prior distribution Pz, we use the divergence (or relative
entropy) measure:

D(PziyII1PZ) ZP(Z = ZIY = Y)1 0g P(Z = ZjY = Y
P(Z = Z)

This divergence represents the information in Y about Z. The greater this quantity, the greater the difference
between the distributions Pz and Pzly=y, and hence the greater the potential gain in our knowledge about
Z as a consequence of knowing y. Therefore, D(Pzjyy[IPz) is an appropriate measure of the predictive
information about Z given that Y = y.

Averaging over all possible values of Y produces a measure

D(Pz, yIIPz) = P(Y = y)D(Pzjy=yjjPz)

of the predictive information about •7 present in the random variable Y.
We can now state our analog of the data processing theorem. This result holds when the network is

unable to affect or control the environment generating its inputs.

Theorem. Let X, Y and Z be finite dimensional random vectors with discrete components and with
Y = f(X) for some transformation f. Then predictive information about Z cannot be increased by trans-
forming X to Y; that is,

D(PziylIPz) < D(PzixlfPz).

1- 19

LM

Proof. Let g(t) = t log t, 0 < t < 1, and observe that g(i) is a convex function. Next recall that

P(Y = Y) = P(X) = Y) = .,, P(X=z).

Now
P(Z=ZIY=)=P(Z=,Y=Y) - P(Z=Z,X= Z)

P(=,I =•)= P(Y = Y) = "--'=V P(Y = Y)
P((y __=)

= •)P(Z..= 21XZ=),
{a:I(z)=p}

which is a convex combination of the values P(Z = zIX = z) because

P(X=xz)=.
{s()=}P(Y = Y)

From the convexity of the function g(t) it follows that

P(Z= zJY = y)IogP(Z = zIY = y) < P)P(Z=zIX=Z)SP(Y =Y

x IogP(Z = ZIX = Z).

If we denote Shannon's entropy for the random variable Z by

H(Z) = - F_ P(Z = z)togP(Z =),

then we obtain that

D(PzlyIIPz) = H(Z) + Z P(Y =y)(z = zJY = y)togP(Z = zIY =y)

< H(Z) + j P(X = z)P(Z = zfX = z)IogP(Z = zfX = Z)
{gs•z:A()=V}

= H(Z) + • P(Z = z,X = z)logP(Z = zIX = z)

= D(PzlxIIPz).

This result leads to a powerful observation. Note that the above inequality does not depend on the
underlying environment probabilities. This implies that the attempts to reconstruct (or estimate) the envi-
ronment probabilities or even just its distributional form, as compared to the network's own representation
probabilities, will be of no help in making predictions. Further if we were to guess incorrectly those envi-
ronment probabilities, and this would happen in the "real world" whenever an assumption of distributional
form is made about the environment, then the preprocessor could lose predictive information. This impli-
cation follows from the fact that such reconstructions (or estimations) are transformations. Therefore, the
environment probabilities should be ignored in the search for suitable transformations f. On the other hand,
the probabilities of network states should not be ignored.

Note that ifa network can control its environment, then we could create a situation in which H(XIY) = 0
and H(ZIX) = 0 but Y drives the environment to produce Z so that D(Pzly IIPz) > 0 while D(PzJx lIPz)=
0. Even so, an extension of the theorem to such a network can cover many interesting situations in which
the network is allowed to act on the evironment. Specifically, if we consider only network actions on the

I- 20

environment that are produced slowly and in a stepwise manner, then at any one such step the theorem
holds conditional upon the state into which the network has driven the environment.

The second important consequence of the theorem is the following result.

Corollary. Suppose that the random vectors X and Y take values in (0, 1)" and (0, 1)', respectively,
where Y = A(X) and P(X = z) > 0 for all z E (0, 1)'. If f is one-to-one then
(a) D(PzixlIPz) = D(PziyIIPz);
(b) n < m.

In particular, m can never be smaller than n without risking a loss of predictive information. If (a)
holds and n = m, then f is a permutation on (0, 1)".

Proof. The proof of (a) is obtained by going through the proof of the above theorem and using standard
results for the situation when equality holds in the inequalities of the theorem. The proof of (b) follows
obviously from the assumption that f is one-to-one.

If in contradiction to the assumptions of the Corollary, P(X = z) = 0 for some z E (0, 1)', then Y can
have a dimension m < n, without loss of predictive information. When m < n the transformation will not
be a permutation. Here is an example which illustrates this situation.

Example. Let the random vector X = (XI, X 2) take values in the space (0,1)2 such that the distri-
bution of X is as follows: P(0,0) = .6, P(1,0) = .4, and P(0,1) = P(1,1) = 0. Define Y = f(X) where
f: (0,1)2 -, (0, 1) such that f(0,0) = f(0, 1) = 0 and f(1,0) = f(1, 1) = 1. Then computations based on Y
are as good as those based on X, the dimension of the space has been lowered, and no information has been
lost. Note that this example does not contradict the Corollary because here we have P(X = z) = 0 for some
z E {0, 1)2. It is not difficult to similar construct examples for 7 such that D(Pzlx[IPz) = D(PziyIIPz).

In practice, a reduction of the dimension is very likely to result in the loss of predictive information.
Even for moderately large n, many configurations may never be sampled in realistic time spans, even if
P(X = z) > 0 for all z. Thus, the network will not be able to determine if P(X = z) = 0 for any z.
Therefore the only transformations that will minimize the dimension of Y and that are guaranteed to avoid
loss of information are permutations. Because our networks are large, we will search for transformations
which are "approximately" permutations.

3. Implications for our networks
Based on the results 'above, it may seem that no transformation should be applied to X before using

it to predict Z. However, this is not true because the mere existence of information in X about Z does
not imply that the prediction-generating neurons are able to utilize this information. That is, the computa-
tions that are available to a prediction-generating neuron will be constrained to some very small set of ail
possible computations while the computations needed to use all the information, D(PzIxIIPz), will often
lie outside this set. In addition other constraints, e.g., computational complexity, can prevent a network
from using information that may be present in the data. Therefore it is sometimes helpful to transform the
representations to use this information.

This computational limitation motivates transforming X so that each prediction generating neuron
makes better use of the predictive information that might be present. In particular the prediction-generating
networks that we are studying seem to produce more accurate predictions when there is a reduction in the
statistical dependence between the coordinates X,,... , X, of the conditioning variable X.

Example. Let the random vector X = (XI, X2) take values in the space {0, 1)2 such that the distri-
bution of X is as follows: P(0,0) = .18, P(I,0) = .12, and P(0, 1) = .28, P(I, 1) = .42. Define Y = f(X)
where f : (0, 1)2 --. {0, 1}1 such that the distribution of Y is as follows- P(0,0) = .18, P(1,0) = .12, and
P(0, 1) = .42, P(1, 1) = .28. In this case, the components of X are not independent while the components
of Y are independent.

In general it will not always be possible to achieve independence of the components with a permutation
transformation, but it often happens that the statistical dependence between the components can be reduced.
(This type of manipulation was recognized by Barlow (1959).) In the most general setting, statistical
dependence is measured by Watanabe's (1969) extension of the measure of mutual information as defined in
Shannon and Weaver (1949). Specifically, this means that we measure dependence between the components
X,... , X, of X by the quantity

1(X) Exlog [P(X) 1

1- 21

Therefore the smaller the value of 1(X) the lesser the statistical dependence between X 1,..., X,, with
I(X) = 0 indicating complete independence.

In high-dimensional spaces, methods for identifying permutations of {0, I}" that reduce statistical
dependence are usually difficult to implement. Indeed, the number of such permutations is 2"!/n!2", a
number which grows faster than exponentially with n. To prove these results, let us count the number of
distinct permutations which might have to be examined for X E {0, 1}". There are 2n possible values for X,
hence there are 2"! permutations of these points. However, some of these orderings will not change the value
of the measure of statistical dependence I(X). In particular, the n! permutations which are generated by
relabeling the n axes do not change statistical dependence. Also, because entropy is symmetric about 1/2,
the 2" permutations which are generated by complementing axes also do not change statiscical dependence.
Therefore the number of permutations which we need to examine is 2n!/n!2n, If we use the notation a. - b,
whenever as/b,, 1 as n - oo, then by Stirling's formula, n! - (2r)l/2nn+1/ 2e-n. Therefore as n - oo,

2n! 2n(2*-1/2)en- 2
*

"n!2-- nn+1/2 "

implying that the number of good permutations increases faster than 2".
This calculation implies that any deterministic search for the best transformation is out of the question

for solving problems in the real world. However, it may be possible to construct such a transformation
sequentially, i.e., sample by sample, under the relaxed requirement of finding a very close relative of the
optimal transformation with high probability.

4. The tight packing algorithm
We have proposed (Levy, 1989a) an algorithm for constructing a transformation f : X -. Y which

minimizes E, H(Yi) while preserving the information D(PzIVlIPZ). This algorithm, called "tight packing,"
uses the property that the sample space is much larger than the number of possible samples which will ever
be received (e.g., 2100,000 vs. 220). By transforming the samples in X to points in Y E {O, I}" so that the
points are distributed on the vertices of the smallest possible hypercube(i.e.,, the hypercube with minimal
Hamming distance between all vertices), then independence can be achieved whenever the number of samples
received is a power of 2. This procedure, however, does require a dynamically developing transformation
that progressively enlarges the size of the space into which the samples are mapped.

Acknowledgements
The version given here of the proof of the theorem is due to D. Costa; we thank him also for extensive

discussions of the ideas here. D.R. was supported in part by NSF-8802929 and WBL was supported in part
by NIMH RSDA MH 00622.

References

Barlow, H. B. (1959). Sensory mechanisms, the reduction of redundancy, and intelligence. In: Mechanisation
of Thought Processes, Vol. II (pp. 537-559). London: Her Majesty's Stationery Office.

Csiszir, I. and '7<rner, J. (1981). Information Theory: Coding Theorems for Discrete Memoryless Systems.
Academic Press, New York, 452 pp.

Levy, W. B. (1989a). A computational approach to the hippocampal function. In: Computational Models
of Learning in Simple Neural Systems. (Hawkins, R. D. and Bower, G. H., Eds.) Academic Press, New
York.

Levy, W, B. (1989b) Maximum entropy prediction in neural networks; submitted to this Conference.

Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois
Press, Urbana, IL, 125 pp.

Watanabe, S. (1969). Knowing and Guessing. A Quantitative Study of Inference and Information. New
York: John Wiley.

I- 22

Learning "Semantotopic Maps" from Context

Helge Ritter
Beckman Institute and Department of Physics

University of Illinois at Urbana-Champaign
Urbana IL 61801

USA

Teuvo Kohonen

Helsinki University of Technology
Laboratory of Computer and Information Science

Rakentajanaukio 2 C, SF-02150 Espoo
Finland

Abstract: Self-organized formation of topographic maps for abstract data, such as words, is demonstrated in this work.
Semantic relationships inherent in the data are reflected by their relative distances in the map. This is made possible by
assuming that the logic similarity relationships between words are defined by the contexts in which the words appear,
and which are again reflected in a self-organizing topological feature map. In the demonstration, the context is defined
by simple sentences, consisting of structured sequences of nouns, verbs, and adverbs. Such phrases already involve
many of the abstractions that appear in thinking, namely, the most common categories, into which the words are then
automatically grouped in our simulations.

1. Introduction

One challenge to neural network research is to understand to what extent a simple adaptive system can detect
useful abstractions and generalizations from raw data. The self-organizing feature maps earlier introduced by one of the
authors (12-61) were adressing this issue and exhibited very interesting capabilities by forming nonlinear, two-dimensional
maps of low-level sensory signals, such as e.g. phoneme spectra.

This approach was inspired by the occurrence of similar maps in the primary sensory brain areas, such as the
tonotopic map in the auditory cortex, or the somatotopic and retinotopic maps in the sensory cortices. Common to both
of these brain maps as well as certain artificial sensory feature maps earlier demonstrated, is that they almost directly
display physical properties of observations, such as e.g. intensity, direction, or frequency. It seems that the subsequent,
higher processing stages continue to build representations that are further organized according to the logical properties
of their input items ([1,91).

In this work we report on an intriguing new result, namely, that artificial higher level maps of, e.g., words, topo-
graphically organized according to semantic meaning, can be obtained by the same basic self-organizing process used
already for the simpler maps in [2-6,101, provded that the words are offered together with the contezt in w1ich they occur.
These resulting -semantotopic maps" raise the intriguing possibility that at successively higher stages of processing the
same self-organizing process might be capable of gradually building representations of increasing levels of abstraction.

We have to mention a couple of recent works in which the back propagation algorithm was used to create internal
semantic representations (Q7,8[). In contrast to these approaches, the present self-organizing maps work in an unsupermsed
mode and thus demonstrate the autonomous capabilities of a neural network to create "higher intelligence" (1111).

2. The Model Equations

The model assumes a sheet of laterally interacting adaptive neurons, connected to a common bundle of input fibers.
Any activity pattern on the input fibers gives rise to excitation of some local group of neurons. After learning, the
spatial positions of the excited groups specify a mapping of the input signals onto the two-dimensional sheet, having the
property of a topographic map, i.e. it represents distance relations of the high-dimensional space of the input signals
approximately as distance relationships on the two-dimensional neural sheet. This remarkable property follows from the
assumed lateral interactions and a very simple, biologically justifiable adaptation law given below (for details cf.[6,11]).

The activity pattern at the input is described by an n-dimensional real vector x. normalized to IlxII = 1, where n
is the number of input lines. The responsiveness of neuron r is specified by an n-dimensional vector w, of "synaptic
efficacies". and is measured by the dot product x w,. Each neuron is labeled by its two-dimensional position r in the
sheet. The group of excited neurons is taken to be centered at the neuron s for which x w, is maximal. Its extent and
shape are described by a function h,,, whose value is the excitation of neuron r, if the group center is at s. A rather
realistic modeling choice for h,, is the Gaussian

h,, = exp (- III-r - 31,2) . (1)

I- 23

During learning, each presentation of an input x will cause an adjustment in the weights w, given by

w(`) -= wtd) + e h,-. (x - w,,4). (2)

Eq. (2) can be justified by assuming the traditional Hebbian law for synaptic modification, and an additional nonlinear,
"active" forgetting process for the synaptic strengths ([6!).

3. Formation of Semantic Maps from Context

Much of higher.level processing, in particular language and reasoning, seems to be based on discrete symbols and
their logical meaning. One might think that applying the neural adaptation laws (2) to a symbol set (coded by using
vectors) might create a topographic map that displays the "logical distances" between the symbols. However, there
occurs a problem associated with the discrete nature of symbols. Unlike continuous data, symbolic items usually admit
no meaningful metric, which could be derived from their encoding in any simple way. Hence logical relatedness between
different symbols, such as e.g. words, will in general not be directly detectable from any metric relations between their
encodings, even when the symbols represent similar items. How could it then be possible to map them topographically?
The answer is that the symbol, at least in the learning process, must be presented in due context, i.e. in conjunction
with all or part of the attribute values of the item it encodes, or with other, correlating symbols.

The simplest system model for symbol maps assumes each data vector x as a concatenation of two (or more) fields,
one specifying the symbol code, denoted by xA, and the other the attribute set, denoted x., respectively.

= [[. (3)
x x X

Eq. (3) illustrates in vector notation that the encodings of the symbol part and the attribute part can form a vector
sum of two orthogonal components. The core idea underlying symbol maps is that the two parts are weighted properly
such that the norm of the attribute part predominates over that of the smnbol part during the self.organizing process;
the topographical mapping then mainly reflects metric relationships of the attribute sets. Since the inputs for symbolic
signals, however, are also active all the time, memory traces from them are formed to the corresponding inputs of those
cells of the map that have been selected (or actually forced) by the attribute part. If then, during recognition of input
information, the attribute signals are missing or are uweaker, the (same) map units are selected on the basis of the symbol
part solely. In this way the symbols become encoded into a spatial order reflecting their logic (or semantic) similaritiej.

In the following, we shall demonstrate this idea when the symbols correspond to words forming a simple text. Then
perhaps the most straightforward (and very literal!) way to define the context of a word is to take all those words
(together with their serial order) that occur in a certain "window" around the selected word. For simplicity, we shall
imagine that the content of each "window" can somehow be presented to the input ports of the neural system. We
are not interested in any particular means for the conversion of, say temporal signal patterns into parallel ones (for
this task on could employ paths with different delays, eigenstates that depend on sequences, or any other mechanisms
implemented in the short-term memory).

A sequence of randomly generated three-word sentences provided the input "text". The vocabulary is listed in
Fig.la and comprises nouns, verbs, and adverbs. Each class has further subdivisions, such as names of persons, animals.
and inanimate objects in the category of nouns. These distinctions are in part of a grammatical, in part of a semantic
nature. Generally, they cannot be inferred from any patterns used for the encoding of the individual words, but only
from the context, in which the words occur. In natural languages, such a context might comprise a rich %,aricty of
sensory experiences. In this very limited demonstration, however, we will only take into account the context provided
by the immediately adjacent textual environment of each word occurrence. It will turn out that even this extremely
restricted context will suflce to convey some interesting semantic structures. Of course this requires that each sentence
be not totally random, but obey at least some rudimentary rules of grammar and semantic correctness. This is ensured
by restricting the sentences to a set of 39 "legal" sentence pattern.4 only (Fig. lb). Each sentence was constructed by
substituting the numbers in a randomly selected triple from Fig. lb by words with compatible numbering in Fig. la,
making a total of 498 three-word sentences possible, a few of which are given in Fig. 1c.

In the first demonstration, the context of a word was restricted to the pair formed by its immediate predecessor and
successor (ignoring any sentence borders). To prevent any semantic or grammatical information from being conveyed by
patterns in the encoding of the individual words, we encoded each word by a seven-dimensional random vector of unit
length. For each word, this vector was chosen independently from an isotropic probability distribution at the outset of
the simulation. Each predecessor/successor-pair was represented by concatenating the code vectors of the two words to
a 14-diinensional code vector.

1- 24

7II

It turned out in all of our computer ex-
Bob/Jim/Mary 1 Sentence Patterns: Mary likes meat periments that instead of paying atten-
horse/dog/cat 2 1-5-12 1-9-2 2-5-14 Jim speaks well tion to each phrase separately, a much

beer/water 3 1-5-13 1-9-3 2-9-1 Mary likes Jim more efficient learning strategy was to
meat/bread 4 1-5-14 1-9-4 2-9-2 Jim eats often consider each word in its average con.
runs/walks 5 1-6-12 1-10-3 2-9-3 Mary buys meat tezt over a set of possible clauses, be-

works/speaks 6 1-6-13 1-11-4 2-9-4 dog drinks fast fore presenting it to the learning algo-
visits/phones 7 1-6-14 1-10-12 2-10-3 horse hates meat rithm. The (mean) context of a word

buys/sells 8 1-6-15 1-10-13 2-10-12 Jim eats seldom was thus first defined as the average over
likes/hates 9 1-7.14 1-10-14 2-10-13 Bob buys meat 10,000 sentences of all code vectors of
drinks-'eats 10 1-8-12 1-11-12 2-10-14 cat walks slowly ps'edecessor/ssuccessor-peirs sarrounding
much/little 11 1-8-2 1-11-13 1-11-4 Jim eats bread that wordL The resulting thirty 14-dimen-
fast/slowly 12 1-8-3 1-11-14 1-11-12 cat hates Jim sional "average word contexts", normal-

often/seldom 13 1-8-4 2-5-12 2-11-13 Bob sells beer ized to unit length, assumed the role of
well/poorly 14 1-9-1 2-5-13 2-11-14 (etc.) the "attribute fields" x. in equation (3).

Each "attribute field" was combined with

Fig.la Fig.lb Fig.lc a 7-dimensional "symbol field" x., con-
sisting of the code vector for the word

itself, but scaled to length a. The use of the random code vectors guaranteed that the symbol fields x, did not convey
any systematic information about similarity relationships between the words. The parameter a determined the relative
influence of the symbol part x, in comparison to the context part x. and was set to a = 0.2.

For the simulation, a planar lattice of 10 x 15 formal neurons was used. Initially each neuron made only weak
random connections to the n = 21 input lines of the system, so that no initial order was present. The learning step size
was e = 0.8 and the radius a(t) of the adjustment zone was gradually decreased from an initial value o', = 4 to a final
value o' = 0.5 according to the law a(t) = • (of//,)t/i.. Here t counts the number of adaptation steps.

water meat . dog horse sells visits . works . phones Mary -
beer bread

-- cat buys . .speaks------------Jim

littl eats c at .fast- seldom. . Bob--.-- -- .. -Bob
• . . m uch . ./ Jim . runs . _ dog .

slow ly - often . - . . . drinks . horse . .

. . . . eats . Mary walks-bread

poorly spea-ks..phones .hates - .beer ,.meat

"s e l l m u c h . . ." . --- -

- .runs poorly . . little . . often fast

drinks . walks . hates . likes well . seldom . . slowly .

Fig.2: "Eemsntic map" obtained after 2000 presentations of Fig.3: This map has been obtained by the same procediire
word-context-pairs derived from 10,000 random sentences of as the map in Fig.2, but with a more restricted context that
the kind shown in Fig.Ic. Nouns. verbs and adverbs are seg- included only the immediate predecessor of each word.
regated into different domains. Within each domain a further
grouping according to aspects of meaning is discernible.

After t,,,= 2000 input presentations the responses of the neurons to presentation of the symbol parts alone were tested.
In Fig. 2. the symbolic label was written to that site at which the symbol signal x = [x,, O1 r gave the maximium response.
NVe clearly see that the contexts have "channeled" the word iten•s to memory positions whoSe arrangement reflecfs both
grammatical and semantic relationships. WVords of same type, i.e. nouns, verbs, and adverbs, have segregated into
separate. large domains. Each of these domains is further subdivided according to similarities on the semantic level.
For instance, names of persons and animals tend to be clustered in separate subdomains of a common "noitn-doinaiu".
reflecting different co-occurrence with, e.g., verbs such as "run" and "phone". Adverbs with opposite meaning tend to he
particularly close together, as their opposite meaning ensures them maximum common usage. The grouiping of the verbs
indicates differences in how they can co-occur with adverbs, pe-rsons, animals. and non-aniimate objects such as e.g. fiood.

I- 25

Figure 3 shows the result of a further computei experiment, based on the same vocabulary and the same sentence
patterns as before. Howeier, in this simulation the context of a word was restricted to its immediate predecessor only
(i.e. the context now consists of a 7-dimensional vector). Even this very limited context proved sufficient to produce a
map with roughly similar properties as in Fig. 2. This shows that the displayed regularities are fairly robust to changes
in the details of the encoding as long as the context captures a sufficient amount from the underlying logical structure.

One might argue that the structure resulting in the map has artificially been created by a preplanned choice of the
sentence patterns allowed for the input. However, it is easy to check that the patterns in Fig. lb almost completely
exhaust the possibilities for combining the words in Fig. la into semantically well-formed three-word sentences. This may
make it clear that all the selected sentence patterns were really determined by the constraints inherent in the semantically
correct usage of the words, and not vice versa. Moreover, a significant percentage of the word neighborhoods extended
across borders of the randomly concatenated sentences. As t0 s concatenation was unrestricted, this constituted a kind
of "noise" remarkably well tolerated by the ordering process. Fig. 2 and Fig. 3 also show that the maps generated by
the model are not unique and that there are different, almost equivalent ways, in which a set of similarity relationships
can be displayed in a map. If uniqueness is desired, further constraints, such as e.g. boundary conditions or some coarse
initial ordering, might be used to initially "polarize" the system suitably.

4. Discussion

The results of this work show that the principle of self-organizing maps can be extended to higher levels of process-
ing, where the relationships between items are more subtle and less apparent from their intrinsic features, a property
that is characteristic of symbolic expressions. Symbols, in general, do not contain metrically relatable components.
Consequently, meaningful topographic maps of symbols must no longer display the intrinsic features, but instead the
logical similarities of their inputs. It turns out that organized mappings of symbolic data may still ensue from the same
basic adaptation laws, provided that the symbolic input data are presented together wvith a sufficient amount of context,
that then defines the similarity relationships between them. If the symbolic descriptions leave memory traces on the same
neurons at which the contextual signals converge, too, the same neurons then also become sensitized to the symbolic
signals in a spatial order that reflects their logical similarity. In the case of words, the strong correlation between local
context and word meaning approximates a semantic ordering as it is met in natural languages.

Considering the richness of language, one might suspect that the "semantic space" ought to be extremely high-
dimensional, and that only little can be gained by mapping semantic meaning onto manifolds as low as two-dimensional.
A simple argument indicates that perhaps surprisingly few dimensions may be sufficient to represent "semantic space".
Assume that each word is used to denote one of three "grade values" (e.g. "weak", "intermediate", "strong") along each
of a set of independent "semantic dimensions". Then a 12ýdimensional space can accommodate already 3V2 = 531 441
words, significantly more than needed by natural languages. If each word denotes more than three values per axis, even
fewer dimensions will suffice. This makes it very likely that a limited number of low-dimensional maps along different
(possibly nonlinearly curved) directions may be able to represent a significant amount of semantic structure.

References:

[1] Caramazza A. (1988) Some Aspects of Language Processing revealed through the Analysis of Aquired Aphasia: The
Lexical System. Ann. Rev. Neurosci. pp. 395-421
[2] Kohonen T. (1982a) Self-organized Formation of Topologically Correct Feature Maps. Biol. Cybern. 43:59-69.
[3] Kohonen T. (1982b) Analysis of a Simple Self-organizing Process. Biol. Cybern. 44:135-140.
[4] Kohonen T. (1982c) Clustering, Taxonomy and Topological Maps of Patterns. Proc. Sixth fit. Conf. Pattern
Recognition (IEEE Computer Society Press, Silver Spring) pp. 114-128.
[5] Kohonin T.. Miikisara K., Saramiiki T. (1984) Phonotopic Maps - Insightful representation of Phonological Features
for Speech Recognition. Proc. IEEE Seventh Int. Conf. Pattern Recognition, (IEEE Computer Society, Montreal,
Canada) pp. 182-185.
[6] Kohonen T. (1984) Self-Organization and Associative Memory. Springer Series in Information Sciences 8, Heidelberg.
[7] Miikkmlainen R., Dyer M.G. (1988a) Forming Global Representations with Extend,-d Backpropagation. Proc. IEEE
ICNN 88, San Diego. Vol.!, 285-292 (IEEE Computer Society Press).
[8] Miikkulainen R.. Dyer M.G. (1988b) Encoding Input/Output Representations in Connectionist Cognitive Systems. In
Touretzky, Hinton and Sejnowski (Eds.) Proceedings of the 1988 Connectionist Models Summer School. C.MU (Morgan
Kaufmann Publi.fiers Inc.).
[9] Ojemaun G.A.. (1983) Brain organization for language from the perspective of electrical stimulation mapping. BDehav.
Brain Sci. 189-230.
[10] Ritter H., Schulten K. (1988) Kohonen's Self-Organizing Maps: Exploring their Computational Capabilities. Proc.
IEEE ICNN SS, San Diego. Vol.!, pp. 109-1.6 (IEEE Computer Society Press)
[11] Ritter H., Kohonen T. (1089) Self-Organizing Semantic \Maps. Biol. Cybern., in press

1- 26

ANALYSIS OF EEG CHANGES BETWEEN FRONTAL

AND OCCIPITAL AREA IN SPEAKING PROCESS

Gang Wang. * Morikuni Takigawa. Tomoyuki Miyazaki. Taisuke Takeishi

Department of Electrorsic Engineering. Kagoshima University

$ Health Science Center. Kagoshima University

Mailing Address: No.65, Sengoku Building

6-11 Nishisengoku Cho. Kagoshima Shi. 892

Japan

There are various techniques to study the EEG activity over the

scalp. Particularly, the methods of correlation and spectral analysis

have been more and more widely used in EEG analysis to investigate

functions and structures of the brain which generates multivarikte time

series signals. But the weakness of these methods is that the direction

of the correlating influences between two areas can not be shown. The
'entropy analysi*s ' method was developed for revealing the correlation

not only in time but also in space. In our study. this method had been
used for analyzing the inter-hemisphere activity between frontal and

occipital area in speaking process.

METHODS

I. Entropy Analysis
For two time series,

X X-n X. .X1.(. .. Xk.

Y = Yk- k.Xk X,-

where. Xk- . ;. . X . Yk and X,. . Yý., denote the value of series

X and Y in past. present and future respectively. With these notation.

the generating model of time series X and Y shown in figure 1 had been

established. If the series are appro\imat.ed by Gaussian process. the
information flow from X to Y can be expressed by the covariance matri\ of

the series. Thus.

I I R(X"YYnYk y .) I I R(X"Y"XLVY) I

I (W, -- ,Yk)= - o0
2 I R(X"YnY) I I R(X"yVn X Y k .Y) I

- 27

2

I hy.\k• ..

- log [1+]

2 (hY., k.... +hyyk.,.k....)

where R(.) denotes covariance matrix and hyx denotes the impulse

response from X to Y for lag m and time origin k. hyy is from Y to Y. The

time series X. Y were fitted by two-dimensional AR model. It is known

that the impulse response can be derived from the coefficient of the AR

model directly.

2. EEG Recording and Computer Analysis

Eleven right-handed normal male subjects of age range 18-21 were

studied. Electrodes were placed on F3. F4. 01 and 02 at standard 10-20

system, each referred to linked ear reference. The EEGs when the subjects

saying a non-meaningful word and, in contrast with its. resting FEC were

recorded. Via A/D converter, the EEG signals were digitized at 6 ms

interval, and fitted by two-dimensional autoregressive. (AR) model for

each pair (F3 - 01 and F4 - 02). The order of model wasdetermined by

Akaike's AIC criterion. Based on this model. the information flow

in different direction were calculated by using eq.(1).

RESULTS

Figures 2 illustrates the information flow curve of one subject in

different conditions. Means and standard deviations of information flow

for 11 subjects are shown in table I.

In table I. the information flow in two opljo..ite directions are

F3 01 01 - F3 F4 - 02 02 - F4

REST ING 0.71 0.89±0.27 1.20± 0.42 1.01±+0.34

BEFORE SPEAK INC 1.02±0.48 0.71± 0.21 0.19±+0.08 1.75±0.46

t I

IN SPEAKING 0 I•14 0.05 1.82±+0.67 0.-42 ±-0 .1 I 6.61±-0.53

Table I. Mleans and standard deviations of information flow (bit/sec)

1- 28

Wxk

Wyk _____Yk

Pig.1 Generating model of time series X and Y. Wx. Wy

denote the soure of series X and Y.

(b it/ S)

4.0 F3 to 01 01 to F3 4 .0 -F o02 02 to F4

120 60 0 60 (ins) 120 60 0 60 1Ims'

I b it/s) (a)

4. 0 F3 t01 0 1tF3 4. 0 F4 to 0202 to c4

1.0 2. 0

0.0 a 0~
120 60 0 60 (mns) 120 60 0 60 (mns)

I b

4.0 F3 to0 01 0 1 to F3 4 .0 F4 to 02 02 t F4

0.60
120 60 0 60 iOs) 120 60 0 60 (mis

Fig. 2 Information flow curves in opposite directions

between FLO: and F4. 02. (a) resting (b) before

speak ing (,:) in speak ing

1 - 29

presented. To explicate the relations of its. mean differences were

evaluated by unrelated t test. In resting. the information flow between

F3 and 01. F4 and 02 had no significant differences. Before speaking. the

dominant direction of the information flow was found in 02 - F4 direction

(P<O.02), but not found between F3 and 01. In speaking, the dominant

direction of the information flow was in posterior-anterior both left

(P<O.02) and right hemisphere (P<O.05).

DISCUSSION

The dominant information flow was found in posterior-anterior

direction in right hemisphere before speaking. but had not been found in

left hemisphere. The information flow changes in right hemisphere were

followed by the changes in left hemisphere between frontal and occipital

area.
For right-handed normal subjects, it's usually tile case that the left

hemisphere is the 'talker' and 'doer', while the right hemisphere plays

an important cognitive role in putting the left hemisphere's activities

within their proper contexts. From the results of the experiment, the

changes between occipital and frontal area in right hemisphere were prior

to left hemisphere. In other words, when thesubjects want to say a word

but the voice had not been out, there aresignificant information flow

in occipital-frontal direction in right hemisphere. In temporal, the

changes in left hemisphere is followed.
The physiological implications of the spread direction have not yet

been established. However, it may suggest the existence of electro-

physiological activities before and in speaking.

REFERENCES

1. Cook.N.D. The brain code. Methuen. London and New York. 1986

2. Inou ye. T. . Yagasaki . A. . Talkahashi . H. and Shi nosaki . K. The dom i nant
direction of interhemispheric EEG changes in l inquistic process.

Electroenceph. Clin. Neurophysiol., 1981.51:265-275
3. Saito. Y. and Harashima.H. Tracking of information within multichannel

EEG record. In: N. Yamraguchi (Eds.). Recent Advances in EEG and EMG

Data Processing. Elsever. Amsterdam. 1981:133-146

I- 30

High-Order Bidirectional Associative Memory and Its Application to Frequency Classification

Chwan-Hwa Wu , Heng-Ming Tai , Chia-Jiu Wang and Tai-Lang Jong

* Department of Electrical Engineering, Auburn University, AL 36849
"00 Department of Electrical Engineering, University of Tulsa, Tulsa, OK 74104
**0 Department of Electrical and computer Engineering, University of Colorado at Colorado Springs,
Colorado Springs, CO 80933-7150
"0*0 Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409

Abstract
A novel encoding scb-me of a bidirectional associative memory (BAM) incorporating the high-order

nonlinearity is proposed. This method significantly improves the storage capacity and
error-correcting capability of the BAM. We discuss the memory storage capacity and the stability of
the high-order bidirectional associative memory (HOBAM) in this paper. The appl:cation of the HOBAM
to a frequency classifier is also presented.

I. Introduction

The bidirectional associative memory (BAM) introduced by Kosko [1,2] allows the associative search
for stored stimulus-response pairs (X,Y). This type of neural network is a two-layer nonlinear
feedback hierarchy of interconnected neurons and behaves as a beteroassociative memory. It has been
pointed out that the BAM serves as a vital element in intelligent systems (3) and spectral signature
recognition applications [4]. The storage capacity for perfect recalls of the BAM, however, is
limited by the number of necrons in the network. Moreover, the condition of the continuity of
association between pattern sets of the BAM must be satisfied in order to achieve reliable recalls.
This requires that if the stored stimulus patterns are close, then the stored response patterns are
close. Although there are techniques [5] available to improve its performance, the multiple training
method requires interactive tuning.

It has been reported that neural networks with high-order nonlinearity show dramatic improvement
in memory capacity and error-correcting capability in comparison with linear memory models [6-8]. In
this paper, we propose a neural network for the BAM using high-order correlations. This high-order
bidirectional associative memory (HOBAM) not only possesses merits of the BAM and the advantage of
high-order strategy, but also relaxes the continuity assumption for reliable recalls. The storage
capacity and stability of HOBAM are discussed in section II. An application of the HOBAM to the
frequency classifications is reported in section I1. The last section is the concluding remarks.

IH. High-Order Bidirectional Associative Memory

For the high-order bidirectional associative memory, one cycle of the recall process of the
kth-order model is represented by

M

Y(t+l) = sign(yS[X' X(t)]) (k)

M I

X(t+l) = sign(E XS [y' Y(t+l)]) (2)

where ' represents the transpose of a matrix. Assuming that X3 and Y3 are sets of randomly generated
vectors, then signal to noise ratio of the X to Y mapping can be derived as [7],

SNR I = N I ((M-l) (2kN! N k / (k! 2 k))}/2 (3)

1- 31

The estimated capacity MX and M are

N k! 2k Nk k 2k
x y

MXM I 2andMM
x (2k)! (SNR I xy) Y (2k)! (SNR I Y)? (4)

To guarntee a successful evolution of the system, the stcrage capacity can be chosen as

M - MIN(MX,MY) (5)k Nk\

which possesses the capacity 0(MIN(Nx N)).

Extensive computer simulations on the performance of the BAM and HOBAM have been carried out for
Nx - NY - 40. The results are shown in Figs. 1-2. Each network is presented with a number of sets of

randomly chosen association pairs and each set has M stored pairs. The successful recall
probabilities vs. the number of stored pairs are recorded in Fig. 1, which indicates that the
storage capacity of the HOBAM is higher. Fig. 2 illustrates the comparison of the error-correction
capability. In the simulation, each point corresponds to 100 sets of 10 stored pairs. Each pair is
degraded by the specified Hamming distance and used as the input patte;rn to the network. It is
evident that HOBAM has a better error-correction capability.

--...i.... i....... -7 -! ..\
0 .80

at 0.00 06. 6...........

0.40 -. Z 0.4

0.20 ... 0.20 -

0"0 0.00
.00 20.00 40•. . 0 100.00 120.00 0.00 4.00 12.00 16.00 20.00

NO. OF STORED PATTERNS HAMMING DISTANCE

Fig. 1 Plot of the storage capacity of neural Fig.2 Improvement of the error-correction
net models (Nx - NY - 40). The solid line with capability with the increase of the order.

"-*, dashed line with "+' and solid line without Plot of correct recall probability vs. the
symbol correspond to BAM, 2nd-order and 3rd- amount of Hamming distance between the input
order HOBAM, respectively, pattern and stored pairs. Symbols are the

same as those in Fig. 1.

We discuss the evolution of the system from an incomplete pair (X,Y) next. For a more clear
description, we redefine the dynamical equations of HOBAM as

$
y.(t+l) = sign (E ys [Eu u#(t)]) (6)

s j

x.(t+ 1) = sign E xs [Vs v v(tt+ 1)]k) (7)
I J

where x.= 2u.- and y= 2 v -1. Let us define that
J J J j

ort) = E us u.() (8a)
. J JJ

.0,(t) = E v v.(t) (Sb)
*J J

The condition to ensure that the system to reach a stable equilibrium state is that there exists

1- 32

S|

an a such that

a > as for all s which is not equal to a. (9)

We can always find a k such that

(as > (as)k 10)

As a result from Eq .7), y - y'. Therefore, x- x* form Eq.(S) due to the fact that e - NY.

The energy function of the system can be defined as

After a recall from X(0) 4 Y(1) - X(l),
E - (Nx + Ny). (12)

The system converges to the global minimum energy state.
If there is no maximum a, i.e. two or more stored patterns have the same Hamming distance to the

input pair (X,Y). This is the situation which human beings have to make a guess. The stability of
the system for this situation is under investigation.

IV. Application: Frequency Classifier

A robust frequency classifier is desirable for the radar signal processing in that the signals are
usually noise-corrupted. The HOBAM described above can be employed to classify the frequency of the
signals mixed with noise. The inputs of the network are the digitized sinusoidal waves with Gaussian
noise,

s(n) - sin(2xfn/N) + G(n)
where G(n) is the Gaussian noise. We have chosen N - 16 in the experiment. The outputs, S(f), of the
system are the Discrete Fourier Transforms of the inputs. The inputs and outputs are normalized in
the range [-1,1]. Because the BAM is a binary neural network, the preprocessing of signals is
required. The normalized signal is quantized into 2P levels. N-point digitized signals are
transformed into 2P by N cells of a bipolar representation (each cell is + 1 or -1) as the following
procedure. If the nth signal is positive, we assign l's to the cells in the nth-column between cell
P (including cell P) and the cell where the signal is located, and -1 to the rest of the cells in
the n-th column. Whereas the nth signal is negative, l's are assigned to the cells between cell P +
1 (including cell P + 1) and the cell contains the signal; -l's are assigned to the rest of the
cells in the same column. The stored patterns for X and Y are the bipolar representations of the
sinusodial waves without noise and their Fourier Transforms, respectively, for f 1,2,...7.

1.500 -- *: oi stat 0.100
*-O *: fina stote 0.080

1.000.C 0,060
0o.50 0+040

C- 4.\ . 0020

"0.000 0 40 / 0 V 0-000

-0500 -0 040

4, C- o\ / ' -0060
-1.000 IV -. 6

-0.080

- 1.500 -0-10 0. .2 4 6.
0 3 6 9 12 15 -10 -a-6 -4 -2 0 2 4 a T

n f

Fig. 3(a) The initial and final state, 3(n), of Fig. 3(b) The final state, S(O, of BAM.
BAM.

1I- 33

We have experimented the BAM by assigning the sinusoidal waves without noIse to X and leave Y
blank (-1 in every cell). The BAM can not recall any pair of the patterns when we train more than
two patterns to the network. As shown in Fig. 3, the input to X is the sinusoidal wave (f - 2) and
the system converges to a spurious state. For the same kind of test, the HOBAM has demonstrated the
capability to recall any pair of patterns without noise when th4 -e are seven pairs of patterns
stored. For the situation that the Gaussian noise presents, we have experimented the HOBAM for the
SNR up to 1. Every X to Y mapping is successful for 5-th order or higher HOBAM's. The results of f -
4 and SNR - 1 are plotted in Fig. 4 for an 8-th order HOBAM. The robust classification indicates
that the HOBAM is capable of making an accurate decision even when the noise energy is significantly
large compared to that of the signal.

*-*initile state 2.000
0-0O: final state

1.000 01.500

0. ' \ ' 1.00007

-1.000 0.500

-1.5005 -1.000.-
0 3 6 9 12 15 -10 -8 -6 -4 -2 0 2 4 6 8 10

nf
Fig. 4(a) The initial and final state, s(n), of Fig 4(b) The final state, S(f), of
HOBAM. HOBAM.

IV. Concluding Remarks

In this paper, we present the high-order bidirectional associative memory which significantly
enhances the BAM performance on both forward and backward information flows. Simulation results
demonstrate that the proposed neural networks increase the memory capacity and improve the error-
correction capability. In addition, the condition that the system can reach the global minimum
energy state is discussed. The application of a frequency classifier has shown promising results to
recognize signals even when the noise energy is considerably large.

References
I. B. Kosko, 'Adaptive bidirectional associative memory,' Appi. opt. 26, 1987, pp. 4947-4960.

2. B. Kosko, 'Bidirectional associative memory,' IEEE Trans. SMC , 18, 1988, pp. 49-60.
3. 1. B. Cruz, and A. R. Stubberud, 'Intelligent control of variably configured systems using
neural networks,' Proc. IEEE TENCON 87, 1987, pp. 893-898.
4. G. Mathai and B. R. Upadiyaya, 'Performance analysis and application of the bidirectional
associative memory to industrial spectral signatures,' Proc. IJCNN, 1989, pp. 1-33-1-37.
5. Y. F. Wang, 3. B. Cruz and J1. H. Mulligan Jr., 'An enhanced bidirectional memory,' ibid, pp.
1-105-1-1 10.
6. H. H. Chen et &L, 'High order correlation model for associative memory,' Proc. A iP conf Neural
networks for computing,' 1986, pp. 86-99.
7. H. M. Tai and T. L. Jong, 'Neural networks with high-order nonlinearity,' Electron. Lett. 24.
1988, pp. 1225-1226.
8. D. Psaltis At al., 'High order associative memories and their optical implementations,' Neural
Netrworks 1, 1988, pp. 149-163.

1- 34

A Neural Net Editor with Biological Applications

Vahe Bedian
Department of Biology

James F. Lynch and Fengman Zhang
Department of Mathematics and Computer Science

Clarkson University
Potsdam, N.Y. 13676

July 22, 1989

Constructing an accurate model of the nervous system of an organism, or a portion of it. is a
difficult task. Single neurons are complex and show a variety of behaviors, and networks of such
neurons become almost intractable. The experimental data on which the model rests - connections
between neurons, types of synapses. thresholds, and so on - is often imprecise or incomplete. A
computer simulation of the neural net can be a very useful tool. It can help to identify essential
parameters by comparing the behavior of the simulation with the observed behavior of the organism.
In the same way, it can also help to fill in missing information.

For these reasons, we developed a simulator to model relatively simple, well understood nervous
systems and behaviors of organisms such as the molluscs Aplysia, Hermissenda. and Pleurobran-
chaea. In [11, we applied the simulator to a model of the rhythmic feeding and choice behavior
observed in Pleurobrarzraea [5]. The network simulator is constructed around a biophysically re-
alistic neuromime capable of representing major electrical neuronal properties. such as threshold.
time constant. absolute and relative refractory periods, and accommodation.

We designed the simulation program to be as independent as possible from the neural net that
we were modeling. The specifications of the network were contained in tables in an external text
file that was read by the program. A text editor was used to make modifications to the network.
Nevertheless. even with a table-driven simulator and an interactive text editor, the procedure was
tedious. Also. there was no systematic way to do sensitivity analysis by performing a search through
the parameter space. Thus, we devoted considerable effort to the design and implementation of a
special-purpose editor that allows rapid modification and testing of networks.

The editor is a hierarchical, menu-driven system (see Figure 1). At every step. the user responds
to a prompt from the editor. All the responses are brief: single keystrokes followed by a RETURN
for menu options and yes/no queries, or short character strings for neuron numbers and names,
experiment labels, and file names. Most of the prompts are self-explanatory. but there is an
extensive HELP function available. In a number of situations, the user will want to issue a command
repeatedly, for instance, the ADD NEURON command. The editor uses the convention that such
a command is repeated until the user enters a null line, i.e. a line with RETURN as the first
character. Then the editor returns to the menu which invoked the command.

Each user response activates a new menu or performs some operation on a network file. The
logical structure of a network file is similar to the structure of the files manipulated by combinatorial
graph editing systems such as CABRI [3] and TYGES [4]. The two main categories of data in those
systems are node parameters and edge parameters. In our system. the analogous ca:egories are
neuron parameters and connection parameters.

1- 35

The neuron parameters are:

Threshold Voltage Tonic Input
Peak Spike Voltage Time Constant
Accommodation Rate Threshold for Opening Calcium Channels
Recovery from Accommodation

The connection parameters are:

Synaptic Delay Non-rectifying Electrotonic Coupling
Chemical Synapse Strength Rectifying Electrotonic Coupling

The network file also contains a description of the experiments to be run. Each experiment applies
input stimuli to selected neurons for a specified length of time.

All neuron parameters have default values, which are saved in a file. All connection parameters
have default value 0. When the CREATE NETWORK command is invoked, the user has the
option of overriding any of the neuron parameter default values. The changes may then be saved
by writing them to the default file, or they may take effect only for the duration of the command.
The user then specifies the number of neurons in the network, their names, and the number of
experiments. The new network consists of a homogeneous collection of neurons, all with the current
default values and no connections. The EDIT menu is then entered to allow the user to change
neuron parameters and add connections via the MODIFY NEURON and MODIFY CONNECTION
commands. Alternatively, the user may create a network with 0 neurons, and then repeatedly use
the ADD NEURON command to generate the neurons. ADD NEURON also allows the user to
copy parameters from the default file or from some existing neuron.

When the user is satisfied with the network, the simulator may be invoked by the RUN SIMU-
LATOR command. Various options are allowed. A sequence of experiments may be run, where the
input stimuli to the neurons are varied. Systematic search of parameter space is possible by specify-
ing a parameter to be varied, its initial and final values, and its increment value. With this option.
the simulator runs repeatedly, varying the selected parameter after each run. Output choices are
also given. Different neurons can be selected for plotting their voltage levels as a function of time.
Firing frequencies can be plotted as a function of a parameter.

The cffort expended on development of the editor has amply repa'd itself. Using the editor, we
performed a more extensive and systematic simulation of oscillator networks. Some of the graphs
for one and two neuron systems are shown in Figure 2. The complete results for these and larger
networks are reported in [2]. We anticipate further use of the editor. Modeling networks of other
reasonably well-understood organisms is an obvious possibility. We also intend to study models
of learning in such organisms. This would require relatively minor additions to the editor and
simulator.

References

[1] V. Bedian. F. Zhang, J. F. Lynch, and M. H. Roberts, A Neural Network Mod'l with Appli-
cations to Pleurobranchaea, Soc. Neurosci. Abstr., vol 14 (1988), 259.

[2] , A Neuronal Model with Network Simulation of Pleurobranchaea Feeding and
Choice Behavior, submitted to J. Theor. Biol.

[3] CABRI. an Interactive System for Graph Manipulation, in Graph- Theoretic Concepts in Com-
puter Science. G. Tinhofer and G. Schmidt (eds), Lecture Notes in Computer Science, vol. 246,
Springer-Verlag (1987), 58-67.

I- 36

[4] J. Hynd and P. D. Eades, The Typed Graph Editing System - TYGES, Proc. 3rd Australasian
Conf. on Computer Graphics, Brisbane, Australia (1985), 15-19.

(51 W. J. Davis, Neural Mechanisms of Behavioral Plasticity in an Invertebrate Model System, in
Model Neural Networks and Behavior, A. I. Selverston (ed.), Plenum Press (1985), 263-282.

NEURAL NET EDITOR

RAIN Mm

1. RUN SIMULATOR

2. CREATE NETWORK
3. COPY NETWORK
4. EDIT f•ltE ,RX
S. SAVE NETWORK
6. DISPLAY NEMORX
7. QUIT

RUN SIMULATOR3.CPNEWR
,PTIONS: ENTER FR.FrLENAME

1. RUN AS IS TO FILENAME
SELECT ,1EURONS TO BE GRAPHED

2. VARY A PARAMETER
SELECT NEURONS TO BE GRAPHED
GRAPH 'TRING FREQUENCY AS A
FUNCTI .1 OF PARAMETER? YIN

3. REPEAT LAST RUN

• 5~~. SAVE Nt'M'Ol

4 EDIT .ENIU

ADD :,EURON
2. DEL-T.E %EURON
3. MOD!"3Y NEURON

2. CRE.AT. ?IEORA 4. MODIFY C=nECTi•N
MODIFY DEFAULT PARAMETER VALUES 5. EDIT -XPERIMENT
SNTER:. 0MUNER OF NEURONS 6. DISPLAY NETWORKC 6. DIPLAIONS: OR

NAMES OF NEURONS 7. SAW ,VORX OPTIONS:
NUMBER OF EXPERIMEMTS. RUN SIMULATOR I. TO SCREE.,

'0 TO EDIT MENU 3 RET7-:.E TO MAI MU•EY 2. 10 PRINTER

4.1 ADD NEURON 44MDF ONC--*

EN'TER: NEURON NUMBER -- = RMNUZ
CPTI1.NS: TO NEURON
i. USE ZEFAULT PARAMETERS PRA~-
2. COPY PARAMETERS FROM NE VALU

EXISTING N-EURON
ENTER: nAME

4 3 MODIFY qEURON 4.5 EDIT EXPERIMENT
E:TER. NEURON NMBE.R OPTIONS:

OR 0 FOR ALL I. MODIFY EXPERIMENT
4,2 DELETE NEURON PARAMETER 2. ADD EXPERIfENT

ENE:NUO UBRNEW VALUE 3. D.ELETE ExPI?r'ENT

FIGURE 1.

I - 37

/ ,

T/

Accommodation-13 Time Constant=30

Accommodation=4 Time Constant-5

Input Input

1. Single Neuron, Tonic Input 2. Single Neuron, Tonic Input
Effect of Change in Effect of Change in
Accommodation Time Constant

Accommodation. 1,S Recovery-.Q1
Neuron 2

Recovery=.O001

Input Neuron 1

3. Single Neuron, Tonic Input 4. Two Neuron Oscillator:
On Response and Bursting
Due to Low Accommodation
Rate and Recovery

Delay=lms.

FIGURE 2.

I- 38

Using Classifier Systems to Implement Distributed Representations

Lashon B. Booker

Navy Center for Applied Research in AI
Naval Research Laboratory. Code 55 10

Washington, D.C. 20375

1. Introduction
Genetic algorithms and classifier systems have proven to be useful tools for implementing flexible problem

solving behavior, learning and search in symbolic systems (Goldberg and Holland, 1988). Because of the robust
statistical nature of these techniques, it is not surprising that they have also been applied to problems involving
neural network architectures. One type of application uses genetic algorithms to efficiently optimize the weights in
a neural network. Montana and Davis (1989), for example, show how a genetic algorithm outperforms backpropa-
gation when training a feedforward network on data from a sonar image classification problem. Another type of
application uses genetic algorithms to evolve neural network architectures whose design is especially suited for a
given task (Harp, Samad, and Guha, 1989; Miller, Todd, and Hegde, 1989).

In addition to work showing how genetic algorithms can be applied to neural networks, there has also been
research exp:oring the relationships between neural networks and classifier systems. Much of this research tries to
establish some kind of functional equivalence between layered, feedforward neural networks and specialized vari-
ants of classifier systems (Belew and Gherrity, 1989; Davis, 1988, 1989). The value of this work is that it highlights
opportunities to transfer techniques that have proven useful in one framework into systems based on the other
framework.

This paper shows how the distributed representation techniques used in neural networks and other connection-
ist systems have a natural counterpart in classifier systems. Eventually. this representational correspondence may
have important practical implications for the parsimonious design of hybrid systems having both subsymbolic and
symbolic capabilities.

2. Distributed Representations in Neural Networks

A distributed representation is one in which many representational units participate in the representation of a
single entity, and every unit helps to represent many different entities (Hinton, McClelland. and Rumelhart, 1986).
This kind of representation has been closely identified with neural networks and connectionism because it endows
networks of simple computational elements with some important information processing capabilities. Among these
capabilities are:

* Content addressable memory that allows for a "b,.st fit" retrieval given only a partial description of the desired
item.

* Automatic achievement of certain generalizations, since modifications to the constituent units of one
representation automatically affect all similar representations that share those units.

* Incremental storage of new concepts by generating new combinations of existing representational units,
thereby avoiding the need for any new units.

* Efficient use of network processing capacity through the judicious use of coarse coding techniques.

While distributed representations have many useful properties, they also have certain disadvantages (Feldman,
1988). Most of these shortcomings are related to the difficulties of representing non-arbitrary structure within and
among distributed representations. Nevertheiess, distributed representations have important implications for the
symbolic/connectionist debate about the nature of mental structures and processes (Smolensky, 1988).

Neither connectionism nor traditional artificial intelligence has provided a completely satisfactory account of
intelligent behavior. Symbolic systems are excellent at representing and logically reasoning about complex
knowledge structures. They have been correspondingly weak at capturing the flexible aspects of cognition such as
robust learning, recognizing natural categories, and formulating non-brittle problem solving strategies. Neural net-
works and connectionist architectures, on the other hand, excel at learning and pattern recognition while they do not
yet offer much in the way of structured representations and inferences. There is a clear need for hybrid systems that

I- 39

/

offer the advantages of both the symbolic and connectionist paradigms (Belew and Forrest, 1988). /'
One approach to designing such a hybrid is to start with the subsymbolic capabilities of distributed representa-

tions, and find ways to implement these capabilities using representational units that facilitate symbolic descriptions.
The essence of the distributed representation idea in neural networks is the use of numeric weight vectors as
epistemic primitives, along with methodically designed input encodings, network organizations, and statistical tech-
niques to extract patterns and map inputs into outputs (Smolensky, 1988). High-level symbolic properties are
viewed as an emergent phenomenon of the dynamics of the low level representational primitives. The classifier sys-
tem framework takes a similar view of how high level capabilities emerge from low level constructs, but with some
important differences. In the next section we indicate how classifier systems can be used to implement distributed
representations.

3. Distributed Representations in Classifier Systems
Classifier systems offer a framework for problem solving and learning designed to provide flexible represen-

tational capabilities at the basic level of concepts, relations, and the way they are organized (Holland, 1986; Booker,
Goldberg, and Holland, in press). The flexibility of classifier systems is achieved by using several mechanisms,
including

(1) A simple syntax for rules or classifiers that facilitates learning without a crippling loss of descriptive power.
(2) Pattern-directed inferences that generalize over the variations in specific input configurations.
(3) Parallel activation of several classifiers on every cycle, treating activated classifier as a set of competing

hypotheses whose credibility can be evaluated using a local credit assignment scheme (the bucket brigade).
(4) A statistical induction scheme (the genetic algorithm) that proposes new rules to improve upon current capa-

bilities to categorize inputs and solve problems.
Perhaps the most important factor contributing to the flexibility of classifier systems is the use of parallelism and
recombination as intrinsic properties of all representations. All representations are constructed from a set of consti-
tuent elements or building blocks. Because the syntax of the representation language is simple, recombining these
building blocks can be done with local syntactic manipulations that avoid the need for complex symbolic inter-
preters or knowledge-intensive supervision.

The inherently distributed nature of representations in classifier systems leads rather directly to the kinds of
distributed representations found in neural networks once we specify the building blocks to be used as basic
representational units. There are several kinds of building blocks available in classifier systems. At the lL;we.:
epistemic level are the building blocks present in the bit strings that encode all input, output, and internal messages.
The semantics of these bit-level building blocks depend on the nature of the encoding, and several encoding
schemes are available:
"* Simple feature lists where each bit designates a single feature-value pair or unary predicate. Combinations of

these building blocks denote the presence or absence of elements belonging to some subset of features.
"* Simple numeric encodings where a string of bits denotes a numeric attribute or the numeric encoding of a

symbolic attribute. The building blocks here designate hyperplanes in the space of legal numeric values.
"* Ordinal feature manifolds (Hayes-Roth, 1976) where each bit denotes some value of an ordinal attribute, and

values are coarsely encoded to allow graded comparisons. The building blocks in these strinps designate con-
tinuous ranges of ordinal values.

* Complementary feature manifolds (Hayes-Roth, 1976) where each bit designates the absence of some value
of a nominal attribute. These building blocks denote disjunctive sets of nominal values.

This variety of feature encodings gives considerable representational power to individual classifiers. These encod-
ings support generalizations in the activating condition of a classifier that represent critical sets of features, intervals
of ordinal valucs, values of tree-structured attributes, and simple disjuncts of nominal values. This set of capabili-
ties corresponds to the primitive language constructs used in most symbolic learning paradigms. It is misleading,
therefore, to characterize bit string representations as inherently weak and "low-level".

At the next level of representation, messages are building blocks for representing associations among rules
and concepts. Because the message language has a simple syntax, associations among rules can be constructed and
modified with local syntactic manipulations that avoid the need for complex interpreters or knowledge-intensive cri-
tics. We can extend this notion even further by assigning each dassifier an address or tag. :-gs can be given

1- 40

semantics in terms of distance from an input interface, and position rclevant to a coordinate system that is meaning-
ful to that interface. By identifying tags with semantic content in this way, we impose a hierarchical organization on
classifier representations and we can use tags to identify relatio: ;hips within and between levels in a hierarchy, and
relationships between hierarchies. In principle, this makes ; Lassifier systems a very powerful framework for
representing knowledge. For example, it has been shown (Forrest, 1985) that the knowledge contained in a standard
semantic network description (eg. KL-ONE or NETL) can be mapped into a set of classifiers that support the same
infonmation retrieval operations. It remains to be shown that these kinds of complex knowledge structures can be
learned by a classifier system as a results of its experiences in an environment.

Finally, we can view rules themselves as building blocks for representing complex concepts, constraints, and
problem solving behaviors (Holland, Holyoak, Nisbett, and Thagard, 1986). Rather than construct a syntactically
complex representation of a symbolic concept that would be difficult to use or modify, a classifier system uses
groups of syntactically simple rules as the representation. The structure of the concept is modeled by the organiza-
tion, variability, and credibility of the constituent rules. Because the members of a group compete to become active,
the appropriate aspects of the representation are selected only when they are relevant in a given problem solving
context. The modularity of the concept thereby makes it easier to use as well as easier to modify. Because rules are
activated in parallel, new combinations of existing rules and rule clusters can be used to dynamically represent
novel situations. Simple capabilities along these lines have been demonstrated in studies showing how classifier
systems can learn an internal model of their environment and how to function in it (Booker, 1988).

4. Discussion

Both neural networks and classifier systems use a collection of basic computing elements as epistemic build-
ing blocks. Classifier systems use condition-action rules that interact by passing binary messages. Connectionist
systems use simple processing units that send excitatory and inhibitory signals to each other. Concepts are
represented in both systems by the distributed, simultaneous activation of several computing elements. There are
important differences between classifier systems and connectionist systems, however, that stem primarily from the
properties of the building blocks they use. The interactions among computing elements in a connectionist system
make "best-fit" searches a primitive operation. The same capability is achieved in a classifier system using mes-
sages and tags to link related rules together. A directed spreading activation process is then required to efficiently
retrieve the appropriate concept. Other differences relate to the way inductions are achieved. Modification of con-
nection strengths is the only inductive mechanism available in most connectionist systems. Moreover, the pro-
cedures for updating strength are part of the initial system design that cannot be changed except perhaps by tuning a
few parameters. Classifier systems, on the other hand, permit a broad spectrum of inductive mechanisms ranging
from strength adjustments to analogies. In principle, many of these mechanisms can be controlled by or easily
expressed in terms of inferential rules. These inferential rules can be evaluated, modified and used to build higher
level concepts just like any other building blocks.

Classifier systems are therefore like connectionist systems in that they acknowledge the importance of micro-
structure, multiple constraints, and the emergence of complex phenomena from simple interactions. But because
classifier systems use rules as a basic epistemic unit, they avoid having to reduce all knowledge to a set of connec-
tion strengths. This makes it possible to enjoy the advantages of distributed representations, while at the same time
providing a non-trivial capability to represent structure within and between complex concepts. Classifier systems
therefore have the potential to occupy an important middle ground between the symbolic and connectionist para-
digm.s. In order to realize this potential, more work must be done to understand how classifier systems can dynami-
cally construct and modify the kinds of distributed representations described here. The research completed to date
on small systems and simple problems is a very promising first step toward that goal.

REFERENCES

Belew, R. and Forrest. S. (1988). Learning and programming in classifier systems. Machine Learning, 3, 193-223.
Belew, R. and Gherrity, M. (1989). Back propagation for the classifier system. Proceedings of the Third Interna-

tional Conference on Genetic Algorithms, p. 275-281, Fairfax, VA: Morgan Kaufmann.

Booker, L.B. (1988). Classifier systems that learn internal world models. Machine Learning. 3. 161-192.

Booker, L., Goldberg, D., and Holland, 1. (in press). Classificr Systems and Genetic Algorithms. To appear in

I - 41

Artificial Intelligence.

Davis, L (1988). Mapping classifier systems into neural networks. Proceedings of the 1988 Conference on Neural
Information Processing Systems, Denver, CO: Morgan Kaufmann.

Davis, L. (1989). Mapping neural networks into classifier systems. Proceedings of the Third International Confer-
ence on Genetic Algorithms, p. 375-378, Fairfax, VA: Morgan Kaufmann.

Feldman, J.A. (1988). Connectionist representation of concepts. In D. Waltz and J. Feldman (Eds), Connectionist
models and their implications: Readingsfrom cognitive science, Norwood, NJ: Ablex.

Forrest, S. (1985). A study of parallelism in the classifier system and its application to classification in KL-ONE
semantic networks. Ph.D. dissertation, University of Michigan, Ann Arbor.

Goldberg, D. and Holland, J. (1988). Genetic algorithms and machine learning. Machine Learning, 3, 95-99.

Harp, S., Samad, T., and Guha, A. (1989). Towards the genetic synthesis of neural networks. Proceedings of the
Third International Conference on Genetic Algorithms, p. 360-369, Fairfax, VA: Morgan Kaufmann.

Hayes-Roth, R. (1976). Patterns of induction and associated knowledge acquisition algorithms. In C.H. Chen (Ed.),
Pattern recognition and artificial intelligence, New York: Academic Press.

Hinton, G., McClelland, J., and Rumelhart, D. (1986). Distributed representations. In D. Rumelhart and J. McClel-
land (Eds), Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1:
Foundations, Cambridge, MA: MIT Press.

Holland, J.H. (1986). Escaping Brittleness: The Possibilities of General-Purpose Learning Algorithms Applied to
Parallel Rule-Based Systems. In R. Michalski, J. Carbonell, and T. Mitchell (Eds.), Machine Learning: An
Artificial Intelligence Approach Volume 2. Los Altos, CA: Morgan Kaufmann.

Holland, J., Holyoak, K., Nisbett, R., and Thagard, P. (1986), Induction: Processes of Inference, Learning and
Discovery, MIT Press, Cambridge, MA.

Miller, G., Todd, P., and Hegde, S. (1989). Designing neural networks using genetic algorithms. Proceedings of
the Third! ternational Conference on Genetic Algorithms, p. 379-384, Fairfax, VA: Morgan Kaufmann.

Montana, D. and DMvis, L. (1989). Training feedforward neural networks using genetic algorithms. Proceedings of
the Eleventh Ir:ernational Joint Conference on Artificial Intelligence, Detroit, MI: Morgan Kaufmann.

Smolensky, P. (1988). The constituent structure of connectionist mental states: A reply to Fodor and Pylyshyn.
Technical report CU-CS-394-88, Department of Computer Science, University of Colorado at Boulder,
Boulder, CO.

1- 42

Short-term memory capacity limitations in recurrent

speech production and perception networks

Gordon D. A. Brown

Department of Psychology
University College of North Wales

Bangor LL57 2DG
Gwynedd, United Kingdom

EARN/BITNET: ROOI@vaxa.complab.bangor.ac.uk

Introduction
Cognitive psychologists generally assume that there exists some limited-capacity speech based ti-mporary

store that is involved in a wide range of other cognitive tasks such as mental arithmetic, reasoning and counting
(see Baddeley, 1986, for review). This short-term memory has been extensively investigated by psychologists.
While recent neural net modelling work has often been concerned with short-term memory phenomena, this work
has not always been intended to account for the same phenomena as psychologists have been interested in (but see
Grossberg, 1986).

Shrater and Pfeifer (1989) show that a simple localist architecture can give rise to a psychologically
realistic serial position curve with both primacy and recency portions, and that tie architecture gives rise to human-
like performance with variations in rate of presentation etc. In their model the primary simulation result is a
separation of long-term from short-term portions of the curve; the model is not intended to reveal the internal
structure of the short-term store itself. Such recency effects, involving an increased probability of recall of the last
few items in a supra-span sequence of material to be remembered, have traditionally been taken by psychologists to
reflect the existence of a short-term memory storage system. Schneider and Detwiiler (1987) report a detailed
connectionist framework for modelling short-term memory processes, and consider at length the various different
mechanisms thought to underlie short-term memory performance. The perspective we adopt in the present paper is
rather narrower, in that we focus just on the "articulatory loop" subcomponent of STM. Other approaches to
modelling STM phenomena are represented by, e.g., Nolfi & Parisi (1987); Grossberg (1988). and Touretzky &
Hinton (1989). These contrasting approaches vary in the timescale of phenomena that they are intenoed to account
for, but none are aimed primarily at accounting for the data concerning effects on memory capacity of, e.g.,
phonemic confusability, articulatory suppression, and word length.

Several models of memory rely on recurrent nets. There have been considerable recent advances in the
ability of connectionist models to account for temporal phenomena in plausible ways (e.g. Elman, 1988; Norris,
1989; and see papers in Touretzky, Hinton & Sejnowski, 1989). For present purposes, the central general feature
of these recurrent networks is that any new input to a net must be accompanied by some context-giving
representation of the recent outputs of the net. Thus some short-term memory capacity is an intrinsic part of any
recurrent net just because it has to represent (in its state or context units) some decaying function of tl'. recent
history of the network. Under certain circumstances, it is possible to reconstruct from the state units the previous
outputs of the network. The model described below makes use of this fact to show how short-term auditory-verbal
memory capacity arises as a necessary side-effect of the mechanisms already provided for speech production and
speech perception.

The model architecture
The model depicted in Figure One incorporates both a sequence production (left side of figure) and a

sequence perception (right side of figure) net. In the present version of the model, there are 20 nodes in each oval
drawn in Figure One- thus for each of the perception and the production net there are 20 input/plan units, 20
ccntext/state units, 20 hidden units and 20 output units. Each input and output unit in the present model is taken to
re'-esent a single phoneme. At the top of the diagram, the rectangular (unimplemcnted) boxes represent relatively
per-.7heral process that would translate a phonemic level of representation into articulatory output or, on the
perce•ption side, interpret acoustic input categorically. (We ignore here the considerable controversy about whether
and how such processing might take place.)

The model is run in two distinct phases. In the first phase, the learning phase, the perception net and the
production net learn to recognize and produce the same set of sequences. At present the nets are trained with a small
(32) vocabulary of items which vary in !ength from 4 to 8 phonemes, with the phonemes being drawn from the
limited pool (20) with which the model currently operates. The items are constructed in such a way that some items
have many phonemes in common with other items (are phonemically confusable). At the end of this training
procedure, the two networks nave "long-term memory" about the sequences of phonemes that comprise the words in

I- 43

SPEHOUTPUT SPECHINPrdcinntPerception not Phoneme

ouptuisinput units level

Production net Production net Perception net Perception net

Production net

Perception not Pe Wetonrdpladn units saeuis(Thde nt

oupu unilevel

input units input lexicon

Figure One

the vocabulary, and the production net can produce a sequence of outputs in response to a constant input on its plan
units while the perception net can recognize that same sequential input and produce as output a whole-word
representation that corresponds to the original input to the production network. This information remains unaltered
during the second stage of the simulation.

Note that during the processing of each word, sequential output from the production net is copied over, a
phoneme at a time, to act as potential input to the perception net. This means that the input to the production
network's state units can be provided by the perception net input units instead of (as would normally be the case) by
the production net output units. Whenever a new output is produced, the state units are set on the following
processing cycle to be equal to that output plus (ji * the previous activation of the state units). In obtaining the
simulation results reported below, g± was set at 0.7 throughout. Thus the state units for the sequence production
net, which are necessary to provide a temporal context for the network, also potentially provide a short-term
memory for any sequence of phonemes input to the speech perception apparatus. We note that this predicts certain
patterns of interference between language production, language percepton and short-term memory; at least some of
these patterns of interference are in fact observed. (During the actual simulations, it proved necessary to include two
sets of state units, both receiving identical input from the perception net input units: one set acted as the STM, and
the other acted as normal state units. This was for the simulation-specific reasons that (a) some of the short items
were so phonemically similar that they could not be distinguished without a between-word zero-ing of the state
units, and (b) the simulations required experimentation with different values of 4I, and for computational resource
reasons it was not possible to relearn the long-term sequence production connections for each different value of gI.
Other work suggests that these are implementation-specific limitations).

The second phase of the simulation involves the retention in STM of a sequence of words (each
representing a sequence of phonemes). The input of the item sequence involves the clamping-on of sets of lexical
input n'-,des in sequence; this is analogous to the presentation of a sequence of words. For the time it is clamped on,
each worci in the input sequence acts as input to the "production" network, emerging as a temporal output sequence,
and this sequence is then input to the sequence "recognition" net and into the state units/short-term memory. For
short-term recall to take place, the sequence of phonemes must be reconstructed to enable either recall or subvocal
rehearsal or the material to be remembered. The reconstruction works in the following manner. To reconstruct the
perceived . quence of phonemes from the final activations on the state units, it is necessary to cycle backwards

1- 44

througb the following procedure:
(i) Assume that the most highly activated state unit represents the last-output phoneme.
(ii) Reconstruct what the levels of activation on the state units must have been on the previous time-slice if

the estimate of the last-seen phoneme is correct by:
(iii) Subtracting unit activation from the last-identified phoneme, and
(iv) Dividing all state activations by IL
(v) Repeat the procedure.

For this to work, it is necessary that output units should all be thresholded to either zero or one before
being copied into the state units. This was done in all our simulations with this architecture. Provided this
condition is satisfied, the method above will be able to reconstruct, from the state units, the sequence of past
outputs of the production network to an extent that depends on such factors as the phonemic confusability of the
relevant material (see simulation results below). It should be noted that the above series of computations is difficult
to carry out in a natural way within the network outlined above, because each unit must perform calculations such
as dividing its own activation by lI.

When the material is to be rehearsed subvocally, the reconstructed sequence of phonemes is simply input to
the perception net, which effectively re-recognizes the item in question and hence can re-activate, or refresh, the
phonological storage nodes over which the item is represented. This process is essentially the same whether
rehearsal or recall is to take place. Either process takes an amount of time that depends on the spoken duration of
the items in question, because a complete pass through the production and perception system is required for each
time-slice of the item to be rehearsed.

Simulation results
Interesting effects of rate of item presentation can emerge when items are presented to the model

sufficiently slowly for rehearsal of the items to be possible between the identification of individual items. In the
simulations reported below, however, the model is presented with the items at "rehearsal speed", and its ability to
recall the items, along with the errors made, is subsequently examined. For the sake of simplicity it is assumed that
all possible phonemes take the same length of time to produce, so that a word containing eight phonemes will take
twice as long to articulate as a word with only four phonemes. These simplifying assumptions are not critical to
the operation of the model.

We have run simulations to examine the capacity of the model to store sequences of items (memory -pan),
and assessed the effects of (i) phonemic confusability and (ii) developmental increases in rate of articulation. In all
the simulations reported below, the value of p± is set at 0.7.

(i) Basic capacity limitations
In the assessment of the model's memory capacity, a sequence of phonemes is reconstructed from the state

units as described above, and mis sequence is input into the sequence recognition network. The output of the
perception net is taken to reflect those items that are recallable. It is frequently observed that the model only recalls,
e.g., six or seven out of a word's eight phonemes correctly, but that this may still be sufficient to permit re-
identification of the item in question. The model shows pronounced word length effects, in that fewer long words
than short words may be recalled:

Mean no. of all long words recalled: 3.2
Mean no. of all short words recalled: 6.7

(ii) Phonemic confusabili,:' effects:
The model was tested on span for a set of short confusable items, which had many phonemes in common,

and a set of (equally short) non-confusable items with few phonemes in common. The results were as follows:

Mean no. of confusable words recalled: 3.0
Mean no. of non-confusable words recalled: 7.0

At the point back in the sequence where errors begin to appear, they are typically exchange errors. For
example, a typical trial produced the following output (each number represents a different phoneme:

Target: . .-. 8 14 9 3 11 5 1 8 4 2 9 10
Output: ... 14 9 9 3 511 8 1 4 2 910

Errors of this type in the recalled string of phonemes would typically lead to words being produced that

I - 45

were different from, but phonemically similar to, the target. However, the vocabulary of the model was too small
to permit the systematic investigation of this phenomenon.

(iii) Developmental increases in capacity
A number of authors have recently suggested that increasing rate of subvocal articulatory rehearsal is the

main factor responsible for the observed developmental increases in the short-term memory capacity of chi!dren, and
there is now considerable evidence to support this view (see Baddeley, 1986, for a review).

We have conducted simulations in which we mimic slow articulation by inputting "null phonemes" to the
state units in between every real phoneme. Thus the state units receive new input only every two time cycles,
instead of on every cycle. Although it is difficult to generalize on the basis of a small vocabulary, one result of
potential interest is that phonemic similarity effects are reduced when rate of articulation is low (Table One); this
appears to mirror findings in the developmental literature.

Confusable Non-confusable

Fast rehearsal 3.0, 6.5

Slow rehearsal 1.0 2.75

Table One

Summary
This paper has explored the properties of the temporary memory storage capacity that emerges as a by-

product of recurrent nets used to model the production and perception of speech and other sequential data. It was
shown how such nets may be interpreted as a model of auditory-verbal short-term memory. The model displays a
number of characteristics observed in the psychological literature, and in particular, shows capacity limitations that
depend on the phonemic confusability and spoken duration of the material to be remembered.

References

BADDELEY, A.D. (1986) Working memory. Oxford: OUP.
BADDELEY, A.D. & Hitch, GJ. (1974) Working memory. In G. Bower (Ed.), Advances in the psychology of

learning and motivation 8, New York: Academic Press.
ELMAN, J.L. (1988). Finding structure in time. CRL Technical Report 8801, University of California, San

Diego.
GROSSBERG, S. (0986). The adaptive self-organization of serial order in behavior Speech, language and motor

control. In H. Nusbaum (Ed.), Pattern recognition by humans and machines. Academic Press.
GROSSBERG, S. (1988). (Ed.). Neural networks and artificial intelligence. Cambridge, Mass: MIT Press.
JORDAN, M.I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. Proceedings of

the Eighth Annual Conference of the Cognitive Science Society, Hillsdale, NJ: Lawrence Erlbaum
Associates.

NOLFI, S., & PARiSI, D. (1987). One trial learning of stimulus sequences in a connectionist network. Abstract
from INNS cofference.

NORRIS, D. (1989). Dynamic net model of human speech recognition. In G.T. Altmann(Ed.), Cognitive
Models of Speech Processing: Psycholinguistic and Computational Perspectives. Cambridge, Mass: MIT
Press (in press).

SALAME, P., & BADDELEY, A.D. (1982). Disruption of short-term memory by unattended speech:
Implications for the structure of working memory. Journal of Verbal Learning and Verbal Behavior, 21,
150-164.

SCHNEIDER, W., & DETWEILER, M. (1987). A connectionist/control architecture for working memory. In
G.H. Bower (Ed.) The psychology of learning and motivation vol 21. New York: Academic Press.

SCHRETER, Z., & PFEIFER, R. (1989). Short-term memory/long-term memory interactions in connectionist
simulations of psychological experiments on list learning. In L. Personnaz & G3. Dreyfus (Eds.), Neural
Networks: From models to applications. Paris: I.D.S.E.T.

TOURETZKY, D.S., & HINTON, G.E. (1989). A distributed connectionist production system. Cognitive
Science, 12, 423-466.

TOURETZKY, D.S., & HINTON, G.E., & SEJNOWSKI, T. (1989). (Eds.) Proceedings of the 1988
Connectionist Models Summer School. San Mateo: Morgan Kaufmann.

I- 46

Implications from structural evolution: semantic adaptation
Peter Cariani

37 Paul Gore St, Boston, MA 02130 tel 617-524-0781

Syntactic and semantic adaptation: summary
An adaptive classifier consists of a set of observable distinctions (primitive features), their

associated means of measuring the world (sensors), a set of mathematical relations on those
observables (a decision function), and a means of changing the mathematical relations so as to
improve performance (training rules). In the development of neural net research, much attention
has been explicitly paid to problems associated with the form of the decision function and the
training process, but relatively little effort has been directed towards the problem of finding the
appropriate feature primitives within which the decision function operates. This is the problem of
creating new primitive features.

If we see the current adaptive devices as adapting the structure of their decision functions to
better meet the demands of the task at hand, then the resulting process can be seen as syntactic
adaptation. The decision process is seen as completely syntactic, due to the rule-governed,
completely symbolic nature of the decision function and its associated training rules.

Another type of adaptation is possible, however. There can be adaptation of the primitive
features themselves, which necessarily involves changing the physical structure of the sensors
which implement the primitive features. Because the sensors determine the relation of the symbols
in the adaptive device to the world at large, they implement a semantic function. The process of
making the structure of the sensors contingent upon their performance relative to a given task is
one of semantic adaptation.

These ideas have come out of theoretical biology, from considerations involving the role of
symbols in biological systems and the evolution of new structures and functions (Pattee, 1982,
1985; Cariani, 1989). We have in syntactically-adaptive neural nets rough analogues of ontogenetic
learning processes. We have evolution-inspired mechanisms of "neural Darwinism" and genetic
algorithms, but these all involve re-combination of pre-existing structures and functions. We have
yet to develop any analogues to the evolution of qualitatively new structures and functions over
phylogenetic time periods. In our tendency to reduce all cognitive functions to computations we
often forget that central nervous systems co-evolved with sensory organs and effector organs, that
whatever computed coordinative functions are effected must take place within whatever percepts
and actions are available. We must therefore examine the processes of sensory evolution and
structural evolution of effector organs. A device constructed according to these principles would be
semantically-adaptive, one which constructed its own sensors and effectors, thereby determining
its own feature and action primitives. As it turns out there is but one such device in the literature,
the now-forgotten electrochemical device of Pask (1958, 1959).

The semiotics of symbol-utilizing adaptive devices
The simplest way of conveying these distinctions is through a simple taxonomy of adaptivity.

Three basic functionalities will be employed by the devices: computation, measurement, and
control.Following the terminology of Charles Morris, syntactics will be defined as the relation of

symbols to other symbols, semantics will be
symbolic nonsymbolic defined as the relation of symbols to the world at
output_ outut large, and pragmatics wil! be defined as the

-cotro, usefulness of symbols relative to the purposes and
symbolc computation -n goals of their users. Computations are syntactic

input s -rffmon 5 operations since they implement rule-governed
i constru relations between symbols. Measurements and

controls are semantic operations, since they
nonsymbohc measurement nonsymbolic provide a structural linkage with the nonsymbolic

innub interaction world outside the device. The pragmatic aspects of
..._.2 - - a device involve the apparatus which steers the

device toward optimal performance. The three

1- 47

/

semiotic axes are all irreducibly orthogonal to each other, i.e., one cannot get semantic relations
from purely syntactic, computational operations (see Cariani, 1989 for extended discussion).

The basic structure of our devices, the causal
dependencies between the functionalities, will Syntactic Axis
determine what parts are plastic and which parts are C-

static. Adaptivity is the alteration of internal Coouzanon 1
structure so as to better perform in an external ,, .s -
environment. We can structure devices so that they . 'Explicate:
improve their performance with experience by/ P I symbolic
making the plastic functionalities contingent upon Pragmati Axis I
performance. The performance-dependent E' -. ,4 J
functionalities can be either in the syntactic or the M c)nt-- i

semantic realm or both. L
Three different types of devices can be "

distinguished with respect to their adaptivity:. Nonsymbolic
nonadaptive devices, syntactically-adaptive |..
devices, and semantically-adaptive devices. These .'.".::":" ' vro"
device types are a consequence of which structures
are plastic and which are fixed. Formal-
computational devices have only fixed syntactic parts, and no inherent semantics. Formal-robotic
devices have both fixed syntaxes and semantics. Because of their completely static structures, both
types are non-adaptive. Adaptive devices are syntactically-adaptive. Evolutionary devices are
semantically-adaptive, but syntactically-nonadaptive. General evolu(ionary devices are both
syntactically-adaptive and semantically-adaptive. When the organism or device has the capacity to
construct its own syntactic, semantic, and pragmatic relations, as in a general evolutionary device,
we have a situation of semantic closure (Pattee, 1982, 1985) in which the d~vice or organism
attains a degree of epistemic autonomy.

Formal-computational devices. Formal-
Comrnoon computational devices are functionally equivalent to

S.l -digital computers without sensors or effectors (i.e.jJ. .completely syntactic, with no ii:herent exiernal
ustsp, fina scats semantics). Being designed to operate as reliably as
WNW scae possible, independent of the external world, they

---------- -•-• are structurally nonadaptive. Because of theirnons,,bol,: completely symbolic nature, formal-computational
.:::::___,,____.__.-. devices can only deal with problems which are

already completely encoded into symbols. Because
of their completely nonadaptive nature, everything

that they do must in one way or another be completely specified. No new syntactic or semantic
relations are created by these devices: the best that they can do is to combine pre-existing syntactic
primitives into new combinations, as in the "mathematics discovering" program of Lenat.

Formal-robotic devices. Formal-robotic
devices are similar to formal-computational ones,
except they have fixed sensors and/or effectors ue t o, ot
which connect them directly to the world, thereby s t-
giving them inherent external semantics. Robotic T i rules
devices thus do not have to depend upon human sensors "f,,,,,0,
beings to provide the interpretations for their
symbols. Having both fixed syntaxes and
semantics, formal-robotic devices can solve ,,,o,,
problems which are not already in symbolic form,
(e.g. wetding, walking, recognizing sights and
sounds). Still, they are nonadaptive because they
do not possess any structural plasticity and hence

1- 48

cannot alter their internal structure to improve their performance.
Adaptive devices. Adaptive devices are a

different story. Adaptive devices alter their
syntactic, computational parts based upon their past ,oaur, Computation decision

experience and performance. Examples would be vecor veOr
neural nets, trainable classifiers, Boltzmann S. S
machines, genetic algorithms, and connectionist sr rules
associators. The advantages of adaptive devices lie ,rImg
in their flexibility and ability to adapt to unforeseen
situations. To the extent that a given functionality measure L
can adapt itself to the exigencies of a specific
situation, the designer is freed from having to
directly foresee and specify the appropriate
behavior. Here this adaptation is ultimately limited I '*omafcI
by the primitive features and actions available to the * :'.'..- ..-*

device. A neural net can only be as good as its nt
percept and action primitives. The behavior of the o

device is semantically bounded: it must take place
within the confines of what features and actions its
sensors and effectors caii implement. Evolutionary devices. Semantically-

adaptive devices can enlarge the confines of the
Computation semantic realm by adaptively constructing new

S. •S sensors and effectors. New sensors and effectorsf mean new primitive features and actions. The
ST rules immune system is an example of such a device:

sets of antibodies are adaptively proaued
contingent upon their ability to recognize antigens.

-- ons contro General evolutionary devices have the capability of
constructing all of their parts: they are both
semantically-adaptive and syntactically-adaptive.

lost test Some examples would be the evolution of new
sense organs and effectors in biological evolution

instruments by human beings. Like evolving
species, we radically enlarge our perceptual and
behavioral repertoires by constructing new means
of interacting with the world.

Capacities and limitations
The relative capacities and limitations of the various device types are schematically presented in

the figures below.
device type plasticitv capacities limitations

formal- fixed s reliable execution of limited to pre-specitied

computational pre-specified rules rules and states

fixed syntax reliable execution of no feedback or learningformal-robotic fixed semantics fixed percept-action from environment
corn binations

adaptive syntax performance-dependent limited to percept & action

adaptive fixed semantics optimization of percept- categories fixed by the
action coordination sensors & eflectors

general adaptive syntax creation of new percept & "'me to construct & test

evolutionary adaptive semantics action categories; perform- new sensors & effectors
ance-dependent optimiza- may be very long

-on within these categoies

1- 49

performance
general evolutionarySdevice

effect of new features

feaaare/acrion

consa r saturation adaptive dpvice

well designed
formal-robotic device

initial tai

__poorly designed
formal robotic device

tieexpenence

Designing a semantically-adaptive device
Apparently there is but one device in the literature with the explicit goal of adaptively creating

observables de novo (Pask, 1958, 1959). In the late 1950's Pask constructed an electrochemical
device apparently with the intention of physically implementing an analog learning network, which
became sensitive to other kinds of perturbations, such that it could be tuned with the appropriate
rewards. Were we to build one today, how would we go about it? One of the requisite properties
of an evolutionary device is that it contain a construction system for physically building the sensors
and effectors. In biological organisms, the transcription>>translation>>protein-folding process
serves as the construction system. A genetic algorithm could adaptively direct the physical
construction of the new sensors and effectors implementing the feature and action primitives of a
neural net (or other syntactically-adaptive device). We could thereby achieve adaptation on both
syntactic and semantic levels.

Conclusions
It is tacitly understood by practitioners of neural nets and other adaptive devices that a complex

feature space which is difficult to effectively partition may be made much more tractable by
judicious choice of alternative feature primitives. We need to keep this in mind: that biological
evolution generally proceeds by investing heavily in task-appropriate sensors and effectors and
only minimally in computation-intensive coordinations. As a complement to the syntactic
adaptation of the neural nets approach, we might well want to experiment with the construction of
rudimentary semantically-adaptive devices.

References
Cariani, Peter (1989) On the Design of Devices with Emergent Semantic Functions. PhD dissertation,

Department of Systems Science, Slate University of New York at Binghamton.
Pask. Gordon (1958) Physical analogues to the growth of a concept. In: Mechanization of Thought Processes:

Proceedings of a Symposium, National Phvrical Laboratories, November 1958, HMSO, London.
(1959) The natural history of networks. In: Self-Organizing Systems. MC Yovits & S Cameron, eds.
Pergamon Press, New York, 1960 (Proceedings of a Conference on Self-Organizing Systems, Chicago,
May 5-6, 1959).

Pauce, Howard H. (1982) Cell psychology: an evolutionary view of the symbol-matter problem. Cognition and
Brain Theory 5: 325-34 1.
(1985) Universal principles of measurement and language functions in evolving systems. In: Complexity,
Language, and Life. J Casti & A Karlqvist, eds. Springer-Verlag, Berlin.

1- 50

/i

MODULARITY OF NEURAL NETWORK ARCHITECTURE

William P. Coleman
MIEMSS, UMAB; Baltimore, MD 21201

Department of Mathematics & Statistics, UMBC; Baltimore, MD 21228

David P. Sanford
Aeronautical Radio, Inc.; 2551 Riva Road, Annapolis, MD 21401

Andrea De Gaetano
C.N.R. Centro di Studio per la Fisiopatologia dello Shock,

Istituto di Clinica Chirurgica, Universitk Cattolica del Sacro Cuore;
Via Pineta Sacchetti, 644 1-00168 Roma, Italia

Fred H. Geisler
Division of Neurosurgery, UMAB; Baltimore, MD 21201, and

Department of Neurosurgery, Patuxent Medical Group; Columbia, MD 21045

Abstract

We explore the premise that the brain should be considered as a modular system of neural networks:
that it can be viewed at different levels of granularity, and at each of these levels it forms an
interconnected system of subnetworks whose components can be taken to be black boxes, computing
outputs from inputs. At higher resolution, each such component itself forms such a system. We
use categorial logic to see what structures are possible and how they can be related to cognitive
function.

Introduction

Section II of the DARPA Neural Network Study concludes [1, 161 with a number of recommenda-
tions, one of which is that the study of advanced architectures with multiple modules should be
encouraged. This paper is an exploration of the mathematical consequences of this single assum.p-
tion.

Thus we regard a neural network as simply a black box that can compute a function, or can act
as a content addressable memory, when called upon to do so. How it does so, and even whether
it always can do so in complete generality, is irrelevant at this point. We assume that the net is
connected to itself or to other nets in a system of nets in' such a way that the output of one net
may be the input to another, so that the corresponding functions can be composed. A sequence of
inputs to the system of nets produces a sequence of outputs at the outputs of the individual nets.

Computational logic 12] is a very general theory that attempts to analyse the logic of compu-
tational and natural processes. The point of view of this paper, namely that we are studying a
system of function computations and their compositions is a prototypicl example. There is an
extended review, with many examples, in [3].

I- 51

Categories

Computational logic is based on the mathematical theory of categories [41, discovered by EILENBERG
and MAC LANE, which has been used, particularly in work deriving from LAWVERE, both explicitly
[5] and implicitly [6], to provide a foundation for logic. (There is an accessible presentation in [7].)
The automata theory books [8] [9] are also very relevant to the present work.

In this section we give a brief and informal review of some elementary notions. An obvious
example of a category is Set, the category of sets. It contains objects, namely sets, and arrows
or morphisms, namely ordinary functions between sets. An arrow goes from its domain to its
codomain. For each object c, there is an identity function ic, and for suitable pairs of arrows
f:- c d and g :b - c there is the composition f o g :b - d. These obey the obvious rules,

idof = f = fo i., and f o (g o h)) = (fog) oh, for any h : a -- b.
More generally, a category is any system of objects and arrows that obeys these rules. The

objects might be sets with some structure, and the arrows functions that preserve that structure.
Or, the category might just be a system of dots and arrows.

A functor from a category C to a category D is a mapping F between them, carrying objects
and arrows in C correspondingly to objects and arrows in D. Again, structure must be preserved:
F(i,) = ip(,), for all c E C, and F(f o g) = F(f) o F(g), for composable f and g.

A natural transformation is a way of converting one functor F : C -- D into another one,
G : C -- D between the same categories. The way to do this is by supplying a set of arrows
in D that drag the image of F across to the image of G. For each c E C one gives an arrow
c : F(c) --+ G(c) in D. This is to be done in such a way that applying these functions to the image

F(d) and F(c) of the domain and the range of any arrow f : c - d of C converts F(f) to G(f).
Thus, G(f) o a, = ad o F(f): One writes this as a: F --I- G.

Schemata

First, we try to capture the notion of a system of processes. A net in a system of nets has inputs
and outputs to and from other nets. Each of these inputs and outputs has a state. A type is the
set of states that an input or output can possibly assume. Let C be a category freely generated
from a diagram indicating a finite number of types and a finite number of arrows - "basis" arrows
- between them. C shows schematically the connectivity of the system. Let C : C -- Set be the
functor that sends each type to the set of states that it comprises, and each arrow to a function
between the corresponding sets. Thus C lets the logic of C act on Set. We call C a schema, in a
sense [10] perhaps closer to that of [11] and [121 than that of psychology or Al.

Next, we have to distinguish between a schema, which is a template according to which certain
processes can occur, and an instance in which such a process actually occurs in the system of
networks. A development of C is [2] [3] a functor from a finite totally ordered category C,
C 1 -- C that maps basis arrows of C1 to basis arrows of C. The development induces a schema
C o C 1 : C, -- Set. It is evident that a development of C corresponds to a path of C. As any
instance, or particle, of the process unfolds, it corresponds to successively longer developments.

We hypothesize that part of the semantic power of cognitive processes comes from the fact
that a development can function simultaneously in several schemata. To do so, we need a notion
of how one system of processes can be modeled by a simplified version. A model f = {F,a) of
C' : C' -. Set in C : C -- Set is given by [2] [3] a functor F C' - C, and a natural transformation
c: (C oF) --. C',

I - 52

C

C - a Set

Fta

C' Set
C11

Intuitively, we think of C' as a simplified version of C in which the states have been relabeled by
a. To discover the effect of some process f : c -* d in C' on a state c of a type C'(c), find a state
that a, sends to c, do the corresponding process F(M) on it, and then use aj to relabel again.

A conceptual schema is (21 [31 a schema C : C -. Set together with a system (C, : C, -* C)
of schemata with models between them and from them to C. A development of a process is a
development of one of the schemata CC: C, - Set.

Semantics

Some cognitive processes describe natural processes outside the mind. Some cognitive processes
describe other cognitive processes. We use the notion of 'model' to capture how one process can
describe another.

Let C : C --* Set and C' : C' -- Set be the conceptual schemata of two processes. An

interpretation of C' in C is (21 (3] a model M = (F,a), together with some extra data. For each
schema (C', : C' -* C) of C there must be given a schema {C, : Ci -- Set) and a functor
F : C', -* C1 , and there must be a function assigning to each particle of Cis a particle of Ci.

These mathematics allow us to speculatively hypothesize a theory of cognitive function. At the
lowest level, the brain has sensory process. At higher levels, it has other processes that are modeled
in sensory ones. There are also processes that capture the modeling and interpretation relations
and can decide whether one process is correctly instantiated in another. Sensory processing is a
meetirng in real time of bottom-up information, from the senses, with top-down information, from
a conceptual schema, in which we agree (in a sense) with Grossberg [131. In case of mismatch, a
different schema is tried. If no available schema matches, the information is ignored, or a schema
is built or rebuilt to fit. The successive replacement of schemata, as well as the integration of
schemata into successively more powerful models, are basic features of learning.

The fact that there is are relatively small number of schema'% available at one time is central to
the semantics. Not every brain state is possible without rebuilding the schemata, but the number
of them is large and depends on the possible combinations of schemata. The states that are possible
are semantically linked by the relationships of the schema processes that can generate them - the
brain doesn't find them by searching, but by using a pattern to generate them.

Network behavior can be viewed at any level, and the picture obtained will be correspondingly
simplified, idealized, abstracted from the sensory, but the modeling relation ensures that it reflects
the lower levels in a certain precise sense. It is always possible to look to the lower levels to recover
detail.

References

[1] DARPA Neural Network Study. AFCEA International Press, 4400 Fair Lakes Court, Fairfax
VA 22033 USA, 1938.

i- 53

[2] William P. Coleman. Models of computational processes. (To be submitted to Journal of
Symbolic Logic).

[31 William P. Coleman. Computational logic of network processes. In Martin D. Fraser, editor,
Advances in Control Networks and Large Scale Parallel Distributed Processing Models, Ablex
Publishing Company, 1989.

(4] Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag, New York,
1971.

[5] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge Uni-

versity Press, Cambridge, 1986.

[6] M. Barr and C. Wells. Toposes, Triples and Theories. Springer-Verlag, New York, 1985.

[7] Robert Goldblatt. Topoi: The Categorial Analysis of Logic. North-Holland Publishing Com-
pany, Amsterdam, revised edition, 1984.

[8] Samuel Eilenberg. Automata, Languages, and Machines. Volume A, Academic Press, New
York and London, 1974.

[9] Samuel Eilenberg. Automata, Languages, and Machines. Volume B, Ac.. 'emic Press, New
York and London, 1976.

[101 William P. Coleman, David P. Sanford, and Andrea De Gaetano. Logic of computational
processes. (Submitted to Tbeoretical Computer Science).

(11] Information Processing Systems - Concepts and terminology for the conceptual schema and
the information base, ISO/TR 9007: 1987. International Organization for Standardization.

[12] Working Document for the Directory Schema N 3318. International Organization for Stan-
dardization, Secretariat ISO/IEC JTC1/SC21 - American National Standards Institute; 1430
Broadway, New York, NY 10018, December 1988.

[13] Stephen Grossberg, editor. Neural Networks and Natural Intelligence. MIT Press, Cambridge,
MA, 1988.

1- 54

Symbolic Networks with Timers, Latches and Classifiers
May be Mapped to the Nervous System

Armand de Callata,
IBM A.K. Watson IEC. La Hulpe. Belgium (callatay at bbribml t on EARN)

Summary. A study of cybernetics and artificial intelligence mechanisms to control animal behavior has
led to select integrable devices for a detailed hybrid brain model (Callatay 1986). I have suggested that
intelligent behavior is best controlled by rhythmic, symbolic, all-or-none processors with write-once
memory (Callatay 1969). A simulation has shown that a general purpose controller for an android arm
can learn to reach a target found by a pointing device. The training time is very fast (Callatay 1986).
The kernel of this model is implemented in a radically new type of computer without ALU (Callatay
1988). The research method and its relevance for studying brains is discussed in Callataý (1989). The
first part of this paper briefly summarizes these researches. The second part evaluates how the model
may be mappird to the central nervous system according to recent biological findings.

Introduction. A symbol, as opposed to an analog value, is a value chosen among discrete pos-
sibilities. Categorization is a non-linear computation finding a winner in a competition. Categorization
selects a symbol. Categorization is described by a dynamic system bifurcating to one of its potential
attractors, depending on the external conditions. Instantiating one cell per group is a simple imple-
mentation of symbolic computation. Instantiations are changed in steps after a time interval. Thus
symbolic processors have phases or rhythms (Callata• 1969).

My research method, derived from engineering methods, is to design, simulate and study fully
autonomous learning robots having a symbolic central component. The resulting partly-conceptual
device is a conjectural brain model "Hybrid."

I briefly review the main features of "Hybrid," described with their neuroanatomical mapping.
Then I argue that the neural mapping of the all-or-none processors may be realistic.

Hybrid symbolic/analog computations. A representation in a neural layer occurs when the cell
activations normally produced by a sensory situation are generated in another way. This represen-
tation is an intention when the system can find the robot's sequence of muscular actions generating
this situation in the physical world. Conscious content is intentional and seems to be representable
by symbols. The connectionist rule of the radical behaviorists: stimulus .. response, has been
enhanced in the cognivitists' formula: stimulus & internal state -- intention . response. We must
represent intentions and will them before acting. I suggest that most vertebrates also use this for-
mula.

The first phase selecting an intention is adaptive and can be implemented with a simple per-
ceptron because stimuli are discriminated elsewhere. The second phase is a resolution analogous
to problem solving in logic programming. After each action, the controller adds in its memory an
invariant transition rule: the body must do the actions C when it is in posture A and has to go in
posture B after a time T. These transition rules use static symbols to store dynamic events. Each rule
is associated with a timer or a clock to take dynamics into account. The rules translate repetitive
physical laws in naive physics.

Some thermostats adjust their parameters from experience to minimize the oscillations follow-
ing a signal change More complex systems describable by differential formulas can adjust their
connection strengths to walk or keep equilibrium with a body having changing weights or muscular
forces. Walking is stereotyped, but successful. Insects may be controlled only by such dynamic reg-
ulators. Decerebrate cats can even change their walking or running mode (Grillner 1985). The mod-
ification of a few parameters by a wired-in mechanism (electrical or neural) is called "adjustment" to
stress the difference with generalized learning. The symbolic commands are set-points for the above
adjustable servo-mechanisms (in medulla and colliculi).

The cerebrum symbolic command is followed by a cerebellar corrective action to skillfully stop
the movement and keep equilibrium. To offset the neural computational delay, the cerebellar cortex
predicts the subsequent situation, and provides signals with a negative delay to the cerebellar nuclei.

The cortical neuron groups are recording content addressablc memories (RCAM). Rules are
documents described by keywords (inputs). RCAMs use the weighted document retrieval algorithm.
When there is no logically applicable rule, the most similar rule-document is chosen, even with
missing keywords. This non-logica; inference method is suggested as the spontaneous mechanism
of intuition. It implements "reasoning by analogy." as described by Minsky (1986).

Learning at once is implemented by irreversible all-or-none switches (latches) instead of adap-
tive connections. Adaptive learning necessarily provokes the partial forgetting of some previous
knowledge. Additive memorization keeps previous information.

What is true of an event is the whole rule associating inputs, internal states and outputs The
rule is stored in a directional lattice whose nodes are RCAMs The event, represented by an activated
subnetwork, is automatically decomposed into a structure of simple rules delimiter' by the partitions
of the neuroanatomically defined lattice. The c,,;cade, of memoriiinq classifiers gives non-logical

I-55

opportunities to group many similar simple rules. The unsolvable combinatorial explosion problem
is thus replbced by a classification problem which may have acceptable solutions (Callataý 1986).
Situations recognized and processed as similar can afterwards be memorized as different events.
This method avoids the "duplication problem" (Minsky 1986).

I have suggested a brain genesis rule based on scheduled and induced cell expressions to build
a circular directed network processor systems (DNPS) of RCAMs having the hardware property to be
a logic problem solver (Callatay 1988). Recent findings on substrate and cell adhesion molecules
(SAM and CAM: Edelman 1988) explain how each developing axon can grow on recognized glial cells.
leading axons or target dendrites.

Using the single (or non destructive) assignment in pure Lisp or Prolog ensures ihat growing
consistejit programs remain consistent. The irreversible closure of open latches implements this
fundamental feature of logic in symbolic neural networks. DNPS are logical resolvers (give results
which are proven true) in exceptional cases: when all needed rules are known, are still valid after
hierarchical decomposition and categorization, are based on prelictable events in which the relevant
input/output data have been recorded, and are such that a solution can be found in one network
sweep. RCAMs always find an action before a fixed reaction time, although not necessarily an effi-
cient one. Similarly DNPSs always solve the given problem within the rhythmic period (or find an
analogous solution), whatever the data and the redundantly stored relations.

Integration with feature extractors and servo-mechanisms. The natural feature extractors (retina,
auditory nuclei, dorsal horns, olfactory bulbs, colliculi) are much more complex than cells adding
weighted impulses. The dynamic computation in these feature extractors produces an output subse-
quently classified into symbols. Only a tiny amount of relevantly corre;ated information is extracted
from the sensory captors (compare what is seen in a briefly presented picture with the information
captured by a photography having the discriminative power of the retina).

In Hybrid the dynamic feature extractors cannot learn in real-time, due to the following difficul-
ties: Too many experimental trials are required to find which features are interesting to extract. The
reward signal used by natural selection is survival, delayed for a lifetime. Interposing an adaptive
connectionist layer between the feature extractors and the symbolic neural system jeopardizes 'he
logical consistency of the stored rules and does not seem useful.

Hybrid knowledge representation. Distributed memory can mean the coding of a datum in many
components, the redundant storage of the same datum, and different data coded in the same com-
ponent. Hybrid uses non-coded redundant representation.

On the one hand, signal piu.cessing uses sensory captors giving continuous data; thus the fea-
ture extractors must work with this high density type of inputs. On the other hand, Al programs work
better when very little knowledge is inst3ntiated. We do not use more ihan 10 concepts at the same
time, although we know 100,000 words and expressions. So, with one concept per neuron, only one
neuron per 10,000 should be concurrently active. This is not compatible with the observation that each
neuron fires on average many limes per second. The hypothesis here is that only the bursts (high
frequency sequence of impulses in an axon) are logical impulses in the central nervous system.

Predicted neural functions. The wiring of Hybrid is roughly mappable to the mammal neuro-
anatomy, but the predicted physiology is not conventional, The following lists the main physiological
functions for which a mapping, even an unlikely one, is searched:
"* a computation in steps of the weighted sum. • a synchronization of the processing wave
"* synaptic weights which are negligible before * a centrally rewarded habituation

learning, can be made permanently positive at - enabling systems for attention, command and
once and can be slightly modified after learning memorization

"• a recognizing and a (different) memorizing • a memory associating the state before and
classifier in each neural group after an event (260 ms delay'

- a central rhythmic control • neurogenesis rules building a specific network

Phasic computation of the weighted sum. The usual conceptual cell adds weighted inputs until
a threshold occurs, resetting the cell. Thus the output frequency continuously measures the weighted
sum. The output calls are activated by excitatory inputs also activating the local neurons inhibiting
these output cells. The two effects are variably compensated because the relative timing of impulse
arrival and the relative position of each synapse type on the dendrites and spines modify the cell firing
(Shepherd 1988). In Hybrid, the computation is done in steps instead of continuously. The weighted
sum is integrated for 30 ms, allowing decisions to be limed by clock signals.

Hybrid has two simple perceptrons for finding the subsequent intention (in globus pallidus and
substantia nigra) and the corrective action (in cerebellar nuclei: Thomson 1986). These nuclei receive
inhibitory GABA inputs. Because the addition of negative impulses does not provoke firing, the
inhibited nuclei can count for a long time. The subsoquent rebound burst may be proportional to the
depth of inhibition (Eccles et al. 1967, Llinas 1989)

The dendrites have mainly Ca channels. The dendritic Ca ionic concentration increases with
activity. The voltage dependent Ca channels have less efficient Ca openings than lhe Na channels,
and the dendri~es have f'w ionic plumps, ,o that the denrdritic micro-impulses last up to 10 ms (instead

1-- 56

of 11 ms), have a lower amplitude, and are usually stopped at the dendritic branches (Llinas 1979,
1989). The repetitive activation of dendrites creates "hot spots" (concentration of primed Ca channels)
from which micro impulses are initiated. The transient physico-chemical changes in the dendrites
have a lifetime longer than 10 ms and may store the integrated weighted sum. The neuron whose
dendrites were recently activated is bursting instead of firing when it rebounds (Llinas 1979).

All-or-none learning. The impulse conduction increases in epileptic areas, or in electrically
stimulated (kindled) areas. This suggests the presence of a natural mechanism of memory formation
which becomes visible when it is spatially generalized in epilepsy ("Epilepsy as a memory model,"
Goddard 1967). In long te-.n potentiation, learning occurs only after a few bursts (not after simple
firing). The associated input is best learned when it occurs after a 200 ms interval (Larson and Lynch
1986). In the hypothetical Hybrid mapping (Callatay 1986, 1989b), memory is formed only after periodic
bursts in the very few areas enabled.

In vertebrate brains, most long axons do not synapse on dendrites, but on spines. Spines make
connections with a low weight. Those with larger stalks have more weight (Koch and Poggio 1983).
The filaments maintaining the spine shape are attached togtther -nd to the membrane proteins by
fodrin, a glue protein. Ca ions indirectly destroy the glue (Lyo'ch 1986). The spines contain the fila-
ments found in muscles. The spines may also %.ontract with Ca ions. The result of these two effects
is a permanent increase of the spine diameter (Lynch 1986).

An extreme view is that the spine is fully resorbed when rr,'y- activations converge on it. so that
the synapse is permanently moved to the dendritic wall (Callati. '986), Synapses on derdritic wall
are much more efficient (Koch and Poggio 1983). Bursts increase Ca uptake (Gamble and Koch 1987).
If the Ca buffers are full, the Ca excess can kili the cell or a part of it. The reorganization can eject
or kill the subsynaptic apparatus located in each spine stalk. This apparatus is believed necessary
for spine maintenance. Old rats have more synapses on their dendritic wall than young ones (Connor
and Diamond 1982). In Hybrid, the hot spots are resorbed spines activated by bursts. A computation
has shown that up to 6% of the spines can be resorbed before interferences disturb the logic
deductions (Callatay 1986).

Neural timers. The "low-threshold voltage-dependent Ca channels" are activated by hyper-
polarization and remain activated a little later. These channels explain that cells can behave like
controllable oscillators and resonators (Llinas 1989). Synchronized brain clocks for fast rhythms (3 to
14 Hz) are observed in the inner brain. The inferior olive controls the cerebellum rhythm. The
thalamus controls the cerebral rhythm. Depending on the neuromodulators, the thalamus produce
fast rhythms (10 Hz) favoring tonic firing or slow rhythms (6 Hz) favoring bursts (Llinas 1989).

The electro-enephalotram (EEG) shows that brains have rhythms when idle. On the one hand,
EEG desynchronization occurs for conscious activities. Therefore the models computing in a Lontin-
uous or chaotic way were favored by neuroscientists. On the other hand, the skilled movements are
done according to specific rhythms synchronizing each phase relation of the limbs. Sophisticated
controls by clocks would explain our easy recognition of musical rhythms. The average evoked
potentials (AEP) may be a clue to hidden rhythmic operations. AEP are neural waves of a few pvolts
isolated in noisy EE3 of 50/pvolts. AEP shows a sequence of waves repeated for each trial, whatever
the content of the task. AEP detects that very few columns are computing. AEP is spontaneously
generated by the cortical column operations in Hybrid (figure 144 in Callataq 1986). The AEP short
waves after 300 ms (if they exist) cannot be detected due to rhythm irregularities and noise.

During sleep, action and memorization are turned off. During wakefulness, this should also be
true in most brain areas in Hybrid. A neural area cannot com rule and memorize at the same time.
The memorization phase may be locally similar to a .;Jeep transition phase. A specific enabling is
needed for generating attention and real action, and this action must be automatically followed by
memorization (during AEP P300), except if nothing is recogniied as new, like in most of our automated
movements. The computation with bursts only occurs in 0.01 % of the brain groups in Hybrid, and the
experimental EEG data do not preclude rhythms in few enabled areas.

Enabling of cer2bral columns. Attention is the first enabling level: authorization to act is the
second; memory assignment is the third. To restrict the brain areas assigned to learning, the Hebb
conjunctive learning should be further limited. To choose only one path to store each relation in a
network, a central systr , must select a restricted well-connected network for learning. The columns
have a bidirectional axor -Al netwoik to use back-propagation algorithms for cell reservation (Cal 3tay
1969, 1986). The cerebellar learning is enabled by direct climbing fibers because what should have
been predicted is known a! the period end.

The neurornodulators are distributed by long axons covering long narrow brain territories The
number of neurois producing these nPuromodulators (10.000 to 100,000) is too low to represent spe-
cific data, but may represent the categories on which attention can be focussed The neuromodulators
may act like hormones in delimited brain volumes They are not secreted where the receptors are
located (Herkenhain 1987) The lifetime of the internal chinnei ligands is much longer than the neu-
rotransmittfers, allowing a persistent enabling (say a second instead of a ins)

I- 57

Brains must have control circuits comparable to the computer ones, much more complex thar
those here sketched. "Hybrid" controls are tentatively mapped as follows (modified from Callataý
1986).

Serotonin controls attention. It produces second messengers, whose actions make the NMDA
channels significantly more effective when they are subsequently activated by excitatory glutamate
bursts (most modulators also act by cascade actions from second messengers).

"7 Acetylcholine starts the processing and memorization mode. It may activate the Ca dependent K
pumps to switch from the tonic mode to the burst mode. A cell should be enabled by several
modulators to reach a bursting threshold sufficient for acting or memorizing.

* Norepinephrine prevents habituation. It is emitted when the reward or threat is high. It may tran.
siently control the "persistent Na channels" controlling the cell resting level (Llinas 1989).

• Dopamine holds intentions. It may transform the recently bursting neurons in oscillators.

Classification. To find the most activated cell of a group, one must compare the cell activities
on an equal footing, for example by giving a reset signal with a basket cell inhibition, and subse-
quently by probing the increasing activity of all cells. Then the most active cell should inhibit the
others. The best defined categorization in biology is done in Mauthner cells to decide whether a fish
will escape to its left or right. The axon cap around the initial segment of Mauthner cell controls the
firing threshold, and is similar to those found in cerebellum, but there each local axon surrounds
hundreds of cells. The non-firing retinal horizontal cells enhance contrast by transmembrane release
of inhibitory transmitters to the non activated areas. The different states of each part of this cell permit
differentiated local actions. The chandelier axon synapses with the axon initial segment of the large
cerebral neurons. The parallel contact lines look like candles. This cell may be used for categori-
zation as it can probe the voltage of all cells of a group. The chandelier cell was discovered in 1975
and fully described in 1977 (almost all other cortical neurons were known in 1911, and described in
Cajal's book). The chandelier cell was expected ("echo cell" in Callata9 1969), as it is strategically
located to categorize. A differentiated inhibitory action, less efficient ;or the cell with the fastest
bursts, would provide a categorization.

Conclusion. It is hoped that brain analogies will be suggested by the design of controllers
experimentally testable. Neuroscientists, examining the functions of models, may find which neuronal
mappings are realist, or set-up experiments ruling out model predictions.

References
Cajal S. Ramon y (1909-1911), Histologie du Goddard G.V. (1967) Development of epileptic

Systdme Nerveux de I'Homme et des Verltbrds, seizures through brain stimulation at low
Maloine, Paris. intensity, Nature, Vol. 214, 1020-1021.

Connor J.R. and Diamond M.C. (1982) A com- Grillner S. (1985) Neurobiological bases of
parison of dendritic spine number and type on rhythmic motor acts in vestebrates, Science,
pyramidal neurons of the visual cortex of old Vol. 228: pp. 143-149.
adult rats from social and isolated environ- Herkenham M. (1987) Mismatches between
ments, J. of Comp. Neurol, 210: 99-106. neurotransmitter and receptor localizations in

de Callatay A. (1969) Brain Model with Periodic brain: observations and implications, Neuro-
Processing. Curr. Mod. Biol., 2, pp. 307-319. science, vol. 23, No. 1, pp. 1-38.

de Callata' A. (1986) Natural and Artificial Intel- Koch C. and Poggio T. (1983) Electric properties
ligence: Processor Systems Compared to the of dendritic spines, Trends in Neurosciences,
Human Brain, North Holland, Amsterdam. pp. 80-83 (March)

de Callatay A. (1988) Logic programs directly Larson J. and Lynch G. (1986) Induction of
processed in a network of content addressable synaptic potentiation in hippocampus by pat-
memories, Future Generations Computer Sys- terned stimulation involves two events, Sci-
tems, 4, 117-131. ence, 232, 985-988

de Callatay A. (1989) Can Artificial Intelligence Llinas R. (1979) The role of Calcium in neuronal
help in finding how brains may work? in functioui, in The Neurosciences: Fourth Study
Springer Series in Brain Dynamics, Vol, 2, eds. Program, F.O. Schmitt and F.G. Worden.eds.
E. Basar, T. Builloch, Springer, Heidelberg (in M.I.T., Cambridge, Massachusetts, pp. 555-572.
press). Llinas R. (1989; The intrinsic electrophysiological

de Callatay A. (1989b) Biological aspects of properties of mammalian neurons, Insights into
neural networks, Actes des Journees central nervous system function. Science, Vol.
d'Electroniques 1989, Presses Polytechniques 242, pp. 1654-1664.
Romandes (in press). Lynch G. (1986) Synapses, Circuits, and the

Eccles J.C., Ito M., Szentagothai J. (1967) The Beginnings of Memory, MIT Press, Cambridge,
Cerebellum as a Neuronal Machine, Springer, Massachusetts.
Berlin. Minsky M. (1986) The Society of Mind, Simon and

Edelman G M. (1988) Neural Darwinism, Addison Schuster, New York
Wesley. Shepherd G.M. (1988) Neurobiology, 2nd Edition,

Gamble E. and Koch C. (1987) The dynamics of Oxford University Press, Oxford.
free Ca'-iujm in dendritic spines in response to Thompson R.F. (1986) The neurobiology of learn-
repetitive synaptic input, Science, Vol 236, pp ing and memory, Science 233: 941-947.
1311-1315

51-5

Modelling of Human Neocortical Surface and Its Growth

Vinod D. Deshmukh, M.D., Ph.D., Department of Neurology, University of Florida,
Jacksonville Division, Jacksonville, Florida and V. Ramamurthi, Ph.D., Department of
Mathemraical Sciences, University of North Florida, Jacksonville, Florida.

Developmental transformations of human neocortex appear to be complex and almost
chaotic. Ihis is an attempt to make topographic measurements of its surface, to
develop a mathematical model of its transformations and to understand the probable
underlying mechanisms of its morphogenesis. As a part of this research project,
topographic measurements were made on published, life-size photographs of seven
fetal cerebral hemispheres, and twelve human fetuses.

Material:

Published, life-siie photographs of seven fetal brains from a standard textbook of
Human Anatomy were obtained. Ihis series of photographs shows the superolateral
surfaces of human fetal cerebral hemispheres at ages 21, 24, 26, 28, 30, 34, and 40
weeks. These photographs demonstrate visually, the sequential changes in neocortical
size, surface topography and the progressive emergence of characteristic gyral
pattern. By 40 weeks, most of the characteristic features of adult human neocortex,
in terms of surface topography, are evident.

For the topographic study of fetal head at different ages, a setties of published
photographs from the Photographic Anatomy of the Human Body were obtained.
This series provides a set of proportionally sized photographs of the lateral view of
human fetuses at ages 35, 40, 50, 60, 90, 120, 150, 180, 210, 240, 270 and 300 days of
fetal life. A series of measurements were made of the perimeter and area of fetal
heads at different ages.

Methods:

ihe topographic measurements were made using the "SigmaScan" scientific
measurement system (Jandel Scientific). 1 he system was calibrated for a distance of
I mm and an area of I sq. mm. 1he photograph of each neocortical or fetal specimen
was fixed on a graphic digitizer tablet. Simultaneous digital measurements of
neocortical or cephalic perimeter and area, were made. Ihe digitizing cursor (puck)
was used to trace the neocortical margins including the complex opercular border.
ihe continuous trace formed a digitized polygon for data input and analysis. ihis
digital data was then subjected to further statistical analysis and graphic presentation.

Results:

a) Fetal Neocortical Measurements:

ihe perimeter and area measurements of the seven fetal neocortical specimens are
shown in 1able I. Linear regressions (LG) were performed on the acquired digital
data. Excellent correlation was found between the neocortical surface area and fetal
age in weeks. 1he correlation coefficient was 0.98609 with standard error (SE)
estimate of 226.25524. 1he LG equation for correlati3n was:

Y= (-29 14.52712) + (191.43319) X

I- 5-

lable I

Fetal Age Perimeter Area
Weeks mm Sq. mm

21 188.40 1079.54
24 245.94 1571.75
26 250.89 1803.43
28 320.51 2677.64
30 346.76 3021.38
34 398.79 3784.35
40 432.19 4521.13

Legend: I opographic measurements of neocortical surface in
terms of perimeter and area at fetal ages 21 - 40 weeks.

Ihe correlation between neocortical perimeter and fetal age in weeks was also good. Its
correlation coefficient was 0.96979 with SE estimate of 23.55714. 1 he LG equation for
their correlation was:

Y =(-75.2981i) + (3.35271) X

ihe correlation between neocortical perimeter and area, as expected was outstanding.
Correlation coefficinet was 0.99394 with SE estimate of 149.59960. The LG equation
was:

Y (-1734.44013) + (14.01425) X

b) Fetal Cephalic Measurements:

The data of fetal cephalic measurements in terms of perimeter lengths and area are
documented in lable 2. Again excellent correlations were found between i) cephalic
perimeter and fetal age, ii) cephalic area and fetal age and iii) cephalic area and
perimeter. The correlation coefficients for these linear regressions were 0.98598,
0.97280 and 0.97550 respectively.

I able 2

Fetal Age Perimeter Area
Days mm Sq. mm

35 3.50 0.66
40 4.16 1.13
50 5.55 2.09
60 11.07 7.79
90 23.79 36.41

120 37.22 100.25
150 70.60 330.52
180 78.55 418.78
210 76.64 433.34
240 96.48 568.66
270 97.97 608.39
300 122.02 927.03

Legend: I coogrophic measurements of fetal head in terms of perimeter and
-eo of fetal ages 35-300 days.

I- 60

,/

Discussion:

As a result of the development of new technology and related software, it is now possible
to perform accurate topographic measurements, in terms of distance, area, volume,
angle etc. Once such data is collected in the digital form, it can be easily subjected to
sophisticated mathematical analysis and transformations. 1 his can be further processed
to develop a realistic model with a three dimensional reconstruction. Such realistic
modelling, based on actual structural data, can give us a better understanding of the
complex process of morphogenesis and the immense variety of neurobiological structural
transformations. The modelling of developmental stages of human neurocortex with its
complex gyral pattern is one such challenging task.

At this early stage of this research project, it has been shown that accurate topographic
measurements of complex biological forms can be made with added stat!3tical and
graphic analysis. 1 he measurements and subsequent modelling are realistic as it is based
on actual life-size photographs of fetal human brains and bodies at different stages of
growth. Excellent statistical correlations based on linear regressions between different
parameters have been shown. 1 he neocortical or cephalic area correlates well with
perimeter and fetal age. The area (unpublished data) and probably the volume of a
biological form seems to correlate better with its age and the daily chjnges in the weight
of the developing chick embryo (White Leghorn) from the reference . The gradients of
morphological transformations seem to follow a logistic or sigmoid growth curve, as all
biological growth is self-limiting at some point in time.

Our future goal in this project is to verify our hypothesis that the complex gyral pattern
of the human neocortex is due to a nonlinear dynamic or chaotic transformation of the
basic process of neocortical fissuration which causes radial and concentric infoldings of
the developing neocortical surface. It appears to be centered around the insula in the
lateral cerebral fossa, and to be related to the dynamic processes of subcortical asd
neocortical vascularization and the intracranial fluid dynamics.

Summary:

Mathematical modelling and computer simulation of human cerebral neocortical surface,
at different stages of fetal development, were performed using the "SigmaScan"
measurement program. Simultaneous measurements of perimeter and area were made of
the neocortical surfaces from published life-size photographs of 7 fetal brains and twelve
human fetuses. Excellent correlation was found between the fetal age and the
neocortical surface area. Future work is planned to model the complex and chaotic gyral
pattern of the developing human neocortex. A hypothesis of such a biological
transformation is briefly proposed.

References

I) Gray's Anaromy, 36th British Ed. Chap 2, edited by P.L. Williams and R. Warwick,
Embryology, p. 172, published by W.B. Sounders Co. 1981.

2) Photographic Anatomy of the Human Body, p. 65, C. Yokochi, University Park
Place, Iq 7 1.

3) A Guide to Vertebrate Development, 7th Ed., p. 148, Roberts Pugh, Burgers
Publishing Company, 1977.

1- 61

SIMULATION AND ANALYSIS OF A MODEL OF
MITRAL/GRANULE CELL POPULATION INTERACTIONS IN THE

MAMMALIAN OLFACTORY BULB

Jay A. Edelman and Walter J. Freeman
Department of Physiology, University of California, Berkeley, CA 94720

This report details the results of analyses What is unclear is whether neural nets
and numerical simulations of various operating under simplified dynamical schemes
embodiments of a model of mitral/granule cell can store and retrieve such patterns, and if so,
population interactions within the olfactory bulb. to what extent or degree of robustness. The
These cells form dendrito-dendritic connections design of hardware associative memory devices
in the external plexiform layer (EPL) of the bulb, which roughly mimic the olfactory bulb's
The EPL receives excitatory input from architectonics and presumed processing abilities
olfactory receptors via the primary olfactory would benefit from such an analysis, since it
nerve (PON) and the olfactory glomeruler layer, would be easier to hardware implement a more
The average level of input oscillates at the simplified dynamical scheme. From a
respiratory cycle frequency. Output from the neurophysiological standpoint, we would like to
EPL consists of pulses transmitted by mitral know what types of dynamical behavior a
axons to higher level limbic system structures. complex system of differential equations can
(Freeman, 1975) produce that a more simplified system cannot.

In the EPL, mitral cells act to excite granule The study is confined to assessing the gross
cells as well as other mitral cells, while granule temporal dynamics of EPL input response. Thus
cells act to inhibit mitral cells and other granule a lumped model of the EPL is considered (see
cells. Normally EPL activity exhibits a high Figure 1). Spatial properties of the embodiments
degree of disorder. However, an input surge to are assessed using a distributed version of the
the bulb resulting from inspiration, within a range model by others in this laboratory.
of intensity, will cause the system to bifurcate The lumped physiological behavior of the EPL
to a more ordered state, resulting in oscillations can by modeled by use of second order
of mitral and granule cell activity of equal differential equations in the following form,
frequency within the gamma range (40-80 Hz)
with the mitral cell activity leading the granule Vml + rVml1 + sVm1- kee G(Vm2)
cell activity by one quarter cycle. The cessation - k ie(G(Vgl) + G(Vg2)) + INPUT
of input accompanying exhalation causes th - m2 + r/m2+ sVm2= kee G(Vmt)
system to bifurcate back to its originai -4me G(Vmg2
disordered state. This activity can be observed g2)
by recording mitral cell spike activity or bulbar Vg k + rVgt+ SVgl= kie (G(Vm2)+G(Vmi))
electroencephalograph (EEG) activity, the latter.. ii G(V2)
which has been shown to reflect the voltage level Vg2 + rVg2+ sVg2= kei G(Vml)
of a granule cell population. (Rail, Shepard; - k ii G(Vg2)
1968)

Oscillations in the EPL have been shown to where,
vary spatially in rms amplitude. It is thought V: average voltage of a particular mitral or
that patterns of rms amplitude in the bulb may granule cell population normalized to its resting
represent conditioning responses of the animal to state value
odors and that the olfactory bulb can store k: coupling ,•',nrs between various cell
several of these patterns simultaneously by populations
adjusting synaptic strengths between mitral cell G: sigmoidal input/cutput function
populations, thereby ac'ing as an associative r: synaptic delay factor (.94)
memory. (Baird, 1986) s: voltage leakage factor (.158)

INPUT: combined PON and periglomerular
input

I - 62

THE ALTERNATIVE DYNAMICAL
Input - Output SCHEMES

Outside the brain, self-inhibition and
excitation is no longer prohibited. We wish to

m2 g2 know if self-excitation and inhibition alters the
system's dynamics. We thus can simplify
Embodiment 1 to a two-population version, each
population capable of exciting or inhibiting itself.
(See Figure 2)

Fig. 1 Embodiment 1, which uses The following pair of non-linoar ODEs is

mutual excitation and Inhibition. ml, applicable:

g1, etc. represent the mitral and granule Vm +r/m+ SVm, kee G(Vm) - kie G(Vg)
cell populations respectively. r I

+ INPUT

The left hand sides of the equations are the Vg + rVg+ sVg,, kei G(Vm) - kii G(Vg)
2nd order differential equations describing the
behavior of an uncoupled neuronal population
while the right hand side can be seen as the We will refer to this scheme as Embodiment
forcing term for the equation: the cell 2.
population's input. The coefficients of the 2nd- We would also like to know what properties
order differential equations were determined by the 2nd-order nature of the differential equations
fitting a pair of exponentially decaying terms to confer to the model. Therefore, we also studied a
the response of the cell populations to an impulse- 1st-order version of the above model:
like stimulus to the PON. (Freeman, 1975) The
first-order coefficient represents a capacitative Vm + sVm = keg G(Vm) -kie G(Vg)
voltage leak while the 2nd-order term is + INPUT
presumed to represent synaptic delay. Linear Vg + sVg - kei G(Vm) - kii G(Vg)
relationships were assumed to exist between the
amount of neurotransmitter released and We will refer to this scheme as Embodiment
magnitudes of post-synaptic potentials (PSPs) as 3. (see figure 2)
well as between synaptic input and membrane
voltage at the soma.

The non-linear term on the right hand side
represents the physiologically determined Input m Output
relationship between the average voltage value of
the soma of the neurons and the quantity of
neurotransmitter released. The sigmoidal curve
is normalized such that the resting-state values
of cell voltage and pulse magnitude are zero. The
equation of the sigmoid is:

G(V) - .869 * [1 - exp (-(exp (V)-l)/5)J 9

This sigmoid bilaterally saturates, has a
near-linear range close to the origin, and is
asymmetric with respect to the origin, having a Fig. 2 Schematic diagram for
maximal gain above the resting state. (Freeman, Embodiments 2 and 3, which use self-
1979). We will refer to this scheme as excitation and Inhibition.
Embodiment 1. (See Figure 1) Note that the
sigmoidal input-output relations introduce non-
linearities into these differential equations,
forcing us to solve the equations numerically.

I- 63

Nr

4.-

3.0

Pt 2.0 - t "

U u
t 1.0 t1

(V.) (V.)

0 .0 Ln0.
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Input step (Volts) Input Step (Volts)

Fig. 3a - Plot of amplitude of output
oscillations for Embodiment 1 for kee Fig. 3b. -- Equivalent plot for
values of 0. to 1.6. As kee Increases, Embodiment 2 As kee Increases, the
the curves first Increase In height, then curves Increase In height while the
drop to 0, and finally grow again In a Input domain moves to the left. For all
lower Input domain. For all curves: kil curves: kil a 1. kel = 2.26 kle = 1.13.

= 1. kel = 1.414 kle = .707.
Once again input consisted of voltage

steps and the output measured amplitude of the

ANALYSIS AND SIMULATION oscillations. Clear differences between
METHODS embodiments and the varying of different

connection strengths became apparent upon
The behavior of these embodiments in a comparison of thes,, ramilies of input-output

linear range was studied by performing a root- curves.

locus analysis. Currently we are performing
linear stability analysis on the three RESULTS
embodiments.

Their behavior in a non-linear range was 1. Linear domain analysis
assessed by solving the differential equations
that governed these embodiments' behavior The root loci of the three embodiments were
numerically. The dependencies of the three analyzed by varying their connection strength
embodiments' step input responses on changes in gains. Little qualitative difference of the root
connection strengths were assessed. We also loci were found for the three embodiments no
used phase plane analysis to study Embodiment 3. matter which gain was being varied. For
Currently we are attempting to analyze the more example, when kee was varied, the root loci for
complex embodiments of the model using phase all three embodiment, crossed the imaginary axis
plane and Hopf bifurcation analyses. around kee = .6 All three root loci reached a

In the input step response study, the input maximum alpha for kee values of approximately
consisted of a voltage step of varying amplitudes. 1.
Routines were developed to measure the
amplitude of the output response. A set of step 2. Non-linear domain
input/output curves, each curve corresponding to
a particular connection strength, were plotted Families of curves for Embodiment 1 were
and superimposed. This enabled us to determine much more complex than for the other two
the qualitative effect that a particular parameter models. In virtually all sets of input/output
had on the input-output relationship of the curves within this family, two distinct
system. bifurcation regions were found for values of kee

somewhere within the range of .2 to 1.0, giving
this family of curves a two-humped appearance,
that distinguished it from the other models Both

1-64

bifurcation point and saturation point were highly
sensitive to kee. DISCUSSION

Families of curves for Embodiment 1 with kii
varying as well the families for the other We found a complex dependence of
embodiments were much simpler in appearance, Embodiment Is input/output properties on kee.
with the bifurcation point, saturation point, and Such complex dependencies were not found for
amplitude response monotonically dependent on kee for the other two embodiments nor on kii for
the changing connection strength. any of the embodiments. -.

The two distinct input domains for which the
PHASE PLANE AND LINEAR STABILITY system bifurcates could allow two sub-systems

ANALYSIS (Embodlment 3) within a distributed system using embodiment 1's
dynamical scheme to perform different

Phase plane analysis associative memory tasks. Each sub-system
could be sensitive to distinct input domains.

Phase plane analysis was simplified by the Furthermore, if the more sensitive sub-system
saturating nature of the sigmoid wave-to-pulse fed into the less senstive sub-system, input
conversion. The saturation implies a maximum limited to the former could spread throughout the
firing rate of the populations, which in system, causing the entire system to bifurcate
combination with the capacitative decay results into an oscillatory mode.
in the boundedness to any solution of the Physiologically, this study suggests that
differential equations. By assessing the effect of the olfactory bulb's associative memory relies
the connection strengths on the shape of the upon an array of plastic mutual excitatory
nullclines we determined that a high kee/kie ratio connection strengths. This study's conclusions
and a large difference between kii and kei can also implore engineers to pay attention to what
cause the system to jump to an equilibrium state the brain is telling us.
where a population's output has saturated, a non- Perhaps only after studying the global
physiological or at least pathological condition, behavior of distributive versions of these
Thus the phase plane analysis suggested limits to embodiments -an we assess the virtues and
place on our settings of the four connection limitations of each of the embodiments presented
strengths. here. The present study has yielded tools with

which to attack this higher-order problem.
Linear stability analysis NOTE: Supported by National Institute of

Mental Health Grant, MH-06686
Determining the position of the signs of the

eigenvalues of the linearized system involves REFERENCES
analyzing the quantities b and c in the quadratic
formula, where Baird, B.: Nonlinear Dynamics of Pattern

Formation and Pattern Recognition in the Rabbit
x - (-b +.1- 4 bb -4c) /2 Olfactory Bulb. Physica 220, 1986, 150-175.

Freeman, W.J.: Mass Action in the Nervous
Thus if (b'b - 4c) is negative than the System. New York: Academic Press, 1975

eigenvalues are imaginary while their signs can Freeman, W.J.: Nonlinear gain mediating
be determined by the combination of signs of b cortical stimulus-response relations. Biological
and c. (Odell, 1980) Such analyses shows that Cybernetics. 1979, 33, 237-24"
the maximal gain of the sigmoid must be to the Odell, G.M. In: Mathematics Models in
right of the origin and that a family of Molecular and Cellular Biology. Cambridge
input/output curves for Embodiment 3 cannot University Press, 1980.
exhibit the complex properties that such curves Rail, W., Shepherd, G.M. Theoretical
corresponding to Embodiment 1 can exhibit. reconstruction of field potentials and

dendrodendritic synaptic intt :ctions in the
olfactory bulb. Journal of Nturophysiology,
1968, 31, 884-915

I- 65

'4

CONNECTIVITY IN THE OBSERVED PORTION OF AN AUDITORY NEURONAL
NETWORK.

Ismael E. Espinosa, PhD
Universidad Nacional Aut6noma de Mdxlco

Facultad de Ciencias, Laboratorio do Cibern6tica
Ciudad Universitaria, D.F. 04510 MEXICO

INTRODUCTION The role of auditory cortex in both sound
localization and pattern discrimination has been demonstrated
by observing that ablations of it disrupt these functions. The
results of a number of experimental and clinical investigations
in man and animals show evidence that severe deficits occur for
several auditory discriminations, among others 2 ' 9 ' 1 0 z a) Change
in temporal pattern of sounds, b) Comparison of signals
involving recent or short-term memory, c) Identification of
temporal order.

We have assumed, invoking the results of the ablation
experiments mentioned above, that sound patterns are strong
activators of neurons in the auditory cortex. We used a
combination of well developed neurophysiological techniques in
order to obtain a substantial body of data from neuron clusters
in the primary auditory cortex (Al) of the cat 4 ' 5 . The main
goal of this research was to study functional connectivity
variations as a function of modifications in the temporal
pattern of acoustic stimulation.

STIMULUS The stimuli used were six very simple melodies (3
sequential tone bursts of different frequency, around best
frequency) each one presenting a different temporal pattern and
followed by a pause of approximately one second. The neural
response to the third tone in the sequence was compared with
the response to the first tone in the sequence and also with
the spontaneous conditions.

ANALYSIS The comgarison consisted in analyzing pairs of edited
crosseorrelograms after taking into account the corresponding
shift-predictor histograms 3 . Each complete recording was
separated into 19 edited records for separate analysis. 18 of
these records corresponded to the 18 stimuli and had a maximum
edit window duration of 195 msec to avoid the next stimulus
presentation. The 19th record corresponded to the spontaneous
period between sequences and had an edit window duration of 500
msec to avoid the next sequence. These procedures made possible
the calculation and comparison of cross-correlation that was
associated with various particular stimuli. Because of the
stimulus presentation design it is possible to compare
correlation associated with physically identical stimuli that
are placed at different positions in a three-tone sequence. We
made the appropriate normalizations in the histograms and
eliminated the synchronizing effects of the stimulus by using
the shift-predictor 3 so that the simultaneous effect of the
stimulus on the neurons firing was eliminated and only direct
effects (synaptic) were left.

1- 66

RESULTS Our results show several levels of complexity which can
be summarized as follows. For spontaneous or no-stimulus
conditions (NS) there is a connectivity diagram DO. For
simplicity, let us assume only three different stimuli Si, S2,
and S3. We found evidence that each stimulus produces a
corresponding connectivity diagram, that is, stimulus S1
produces connectivity diagram DI, S2 produces connectivity
diagram D2, and S3 produces connectivity diagram D3. Moreover,
If we apply as a stimulus the sequence S$-S2 we f r-jnd a
connectivity diagram D4 (not D2) and if we apply S2-SI we found
connectivity diagram DS (not DI). Now, when we applied the
sequence SI-S2-S3 we found the connectivity diagram D6, and the
connectivity diagram D7 when we applied S2-SI-S3. It is
noteworthy that connectivity olagrams 0D1, D2, ... , D7) are
variations of DO, the connectivity diagram for spontaneous
conditions. The most interesting result is related to the
situation above where SI-S2-S3 produces connectivity diagram D6
and S2-SI-S3 produces connectivity diagram D7. In these two
cases, In which S3 is the same physical stimulus in the third
position, the history of previous tones is not. In one case we
have SI-S2, and the reversed situation S2-SI in the other case.

We have discussed elsewhere 4 the results summarized above.
Here we want to discuss subtler differences noticed in a
refinement of the analysis of our data. We have shown that
connections in the spontaneous activity diagram get reorganized
according to the stimulus: some connections stay, others
dissappear. This description gives a picture of an ON-OFF
condition for the functional connections. This is due to the
visual analysis that was performed on the cross-correlation
histograms based on the shape of such histograms. To be able of
doing a more accurate and quantitative analysis we took a +/-
25 msec window in the histograms and measured the area under
it. We found that connections that do not seem to change or
that seem to dissappear are actually undergoing gradual changes
that are function of variations in the stimulus. These changes
are not the same for all stimulus conditions but for a given
neuron pair there is a maximum for one of them which could work
as an index for a sequence classifier. We took as a reference
the crosscorrelated activity for the case when there is no
previous history of tones, and noticed that the gradual changes
occur above or below such reference level for tones with a
previous history of two tones.

DISCUSSION These experiments demonstrated how variations in
effective connectivity measured by the cross-correlograms
depend on thg temporal order in which the tones are presented,
i.e., on the recent history of stimulus. Differences in
functional connectivity due to detection of previous tone-burst
history and sequence classification may represent different
mechanisms. The former seems to depend on the interplay of
excitatory-inhibitory influences due to poststimulus effects
and could be responsible for a short-term memory system. The
latter, possibly using a transformation of that system,
classifies sequences according to the correlated firing they

I- 67

/

/

evoke. The short-term memory system is related to correlated
firing rates whereas sequence classification as defined here
requires, in addition, the presentation of patterned tone
sequences. In other words, the short-term memory property seems
to be present for any tone sequence irrespective of its
temporal patterning.

We have shown that when we infer a connectivity diagram
using the cross-correlatlon histograms shape we get different
ON-OFF diagrams according to the stimulus parameters 4 . However,
if we measure a histogram area, instead of only observing
shape, then we detect the graded nature of the functional
connection. There is a result in the literature that is very
appropriate for a plausible interpretation of our results. It
has been shown that the cross-correlation histogram is an
estimation of the magnitude of the post-synaptic potential 6 and
this is related to synaptic strength. Since what we observed
were variations in the magnitude of a fixed window in the
cross-correlation histogram, we' could say that such variations
represent changes in the synaptic strengths or weights of the
connections. This is a very important observation under the
framework of contemporary artificial neural networks. In the
context of these experiments paradigm and design of the
stimulus we have a similar situation to that'of associative
memory7. Here we cannot say anything about the architecture cf
the biological neural network since we are measuring from only
a portion of it, and we do not know either if the recorded
neirons belong to an input, output or hidden layer. In any
case, the changes in the cross-correlation histograms, as
related to modifications in the weights, remind us of the
changes required in an artificial associative memory when
several associations are stored in it. This is done using
learning algorithms with varying degrees of recall accuracy11
As before, we cannot say anything about the biological learning
rules. On the other hand, in making analysis by neuron paire we
are certainly missing collective phenomena. If we had a tool
for analyzing neuron ensambles we would possibly be able of
saying more about the collective organization of connectivity.
Also, since we only register a limited number of neurons we
need a tool for extrapolating and reconstructing the whole
network or module involved, something as the observers used in
control theory for reconstructing the state vector from a
limited number of outputs or measurements 8 . Nevertheless, the
results presented, even if very limited, are encouraging for
several reasons. First, they help to refine the knowledge about
the biological adaptation of weights and this should give hints
for improving the weight organization in artificial neural
networks. Second, they support the need of more experiments
where separable multi-unit recording is made; we would gain
much insight from simultaneous recordings of 100 to 200 neurons
which is a very small sample of neurons compared to the
thousands used in an artificial neural network but complexity
and number have to be traded off to gain in understanding.

We can suggest a network -of unknown architecture so
far- that at the neuron level can detect the stimulus as

[-68

guaranteed by the PST histograms. At the network level we can
make slices in the network hyperplane using neuron pair
crosscorrelations that show that two neurons interaction
perform some sort of redundant classification of some of the
stimulus parameters. It is likely that higher order
crosscorrelations, !f it were possible to build them, would
show classification as an emergent property of the network.
Such mechanism could work as an auto-training facility, in the
jargon of artificial neural networks. It is also likely that
the network implements short-term memory; in other areas of
auditory cortex, other structures would implement learning, we
would assume that all of these networks would be in
communication or bound together'. Finally, in the awake and
trained animal, an interaction of networks including the ones
mentioned before and actuators (muscles and visuo-motor
coordination) would implement a behavior. For instance, the
animal would learn to behave in one way when listening to
melody SI-S2-S3 and in other way when listening to melody S2-
S1-S3.

REFERENCES
I.- DAMASIO, A.R., The brain binds entities and events by
multiregional activation from convergence zones, Neural
Computation, 1: 123-132, 1989.
2.- DIAMOND, I.T. AND NEFF, W.D., Ablation of temporal cortex
and discrimination of auditory patterns, J. NeuroDhys., 20:
300-315, 1957.
3.- DICKSON, J.W. AND GERSTEIN, G.L., Interactions between
neurons in auditory cortex of the cat. J. Neurophys. 37: 1239-
1261, 1974.
4.- ESPINOSA, I.E. AND GERSTEIN, G.L., Cortical auditory neuron
interactions during presentation of 3-tone sequences: effective
connectivity, Brain Research, 450: 39-50, 1988.
5.- GERSTEIN, G.L., BLOOM, M.J., ESPINOSA, I.E., EVANCZUK, S.,
AND TURNER, M.R., Design of a laboratory for multineuron
studies. IEEE Trans. Syst., Man and Cyber., 13: 668-676, 1983.
6.- KIRKWOOD. P.A., On the use and interpretation of cross-
correlation measurements in the mammalian central nervous
system, J. Neurosci. Moth., 1: 107-132, 1979.
7.- KOSKO, B., Bidirectional Associative Memories, IEEE Trans.
Syst., Man and Cyber., 18: 49-60, 1988.
8.- LUENBERGER, D.G., An introduction to observers, IEEE Trans.
Autom. Control, 16: 596-F02, 1971.
9.- LURIA, A.R., Higher cortical functions in man, Basic Books,
Inc., 4th printing, 1973, pp. 94-122.
10.- NEFF, W.D., DIAMOND, I.T. AND CASSEDAY, J.H., Behavioral
studies of auditory discrimination: central nervous system, In
Keidel, W.D. and Neff, W.D. (Eds), Handbook of sensory
physiology. Auditor), system. Physiology. Behavioral studies.
Psychoacoustics, Vol V/2, Springer-Verlag, 1975, pp. 307-400.
11.- STILES, G.S., A quantitative comparison of the performance
of three discrete distributed associative memory models, IEEE
Trans. Computers, 36: 257-263, 1987.

1-69

/

Fast synaptic modulation provides a ubiquitous mechanism to support an
instruction-data distinction in biological neural networks

Chris Fields
Knowledge Systems Group, Computing Research Laboratory

New Mexico State University, Las Cruces, NM 88003-0001, USA

Introduction
Artificial neural networks (ANNs) are conventionally designed as special-purpose

machines that accept a single data vector as input, and calculate a single data vector as output.
This design convention reflects a tacit assumption that perceptual systems provide biological
neural networks solely with data to process, not with instructions specifying which function to
compute. Indeed Kohonen (1988, Ch. 9) has explicitly argued that biological neural networks
are incapable of accepting instructions or executing stored programs, concluding that "genuine
neural computers should not be programmable at all" (p. 268). The view that inputs to bio-
logical systems can function as instructions seems, however, quite appropriate in some cases:
Ron et al. (1989), for example, explicitly use the term "programming" to describe the effect
of inputs on the collicular saccade-generation system. Direct programmability by inputs could,
moreover, potentially solve some of the problems with learning efficiency and generality that
plague ANNs; biological neural networks might, therefore, also be expected to incorporate pro-
grammability to improve efficiency and generality.

The purpose of the present paper is to suggest that some biological neural networks func-
tion as interpreters that accept and process both data and instruction streams in real time, and
to outline an architecture which would accomplish this. Both instructions and data may be
derived from sensory input; a programmable system need not store its programs explicitly.
The instructions may specify the functions to be executed on current data, or as in the case of
instructions to the saccade system, control the acquisition of additional data. Fast synaptic
modulation provides one mechanism for implementing real-time instruction interpretation in
neural networks, just as slow synaptic modulation, e.g. the activation of NMDA receptors, pro-
vides a mechanism for slow (Hebbian) learning (Cotman et al., 1988; Gustafsson and Wig-
strom, 1988). The view that neural networks can function as interpreters allows a number of
common anatomical and physiological motifs not readily explained by conventional ANN
models - e.g. the ubiquity of neighborhood-preserving projections between layers, local modu-
latory interactions, and functionally distinct inputs to single cells - to be understood as support-
ing the modulation of data processing by signals, often transmitted from distant populations of
neurons, that encode instructions.

Architectures supporting an instruction-data distinction
Any neural network can be described as a programmable system by interpreting its input

vector space U as a direct sum U = V G W of two disjoint subspaces, a data subspace V and
an instruction subspace W. Input vectors u are then treated as sums of data vectors v and
instruction vectors w. An instruction vector may be viewed as encoding a single complex
instruction, or a sequence of simpler instructions. The functions specified by the instructions
can be studied by fixing w and varying v; conversely the range of available instructions can be

1- 70

studied by fixing v and varying w. The input lines carrying data and instruction words to a
conventional microprocessor may be viewed as encoding (binary) vectors in just this way;
hence this characterization of the instruction-data distinction applies equally to neural networks
and conventional computers.

The instruction-data distinction is gratuitous in a standard ANN in which all of the nodes,
and all of the connections, are functionally identical. This is, however, not the c. se in biologi-
cal neural networks, which typically comprise cells of functionally distinct types that have
synaps -, of functionally distinct types. While the functions computed by biologi. al neural net-
works can presumably - given the Church-Turing thesis - be computed by standard ANNs,
such emulations may not shed much light on how the functions of interest are actually ccm-
puted by nervous systems. The instruction-data distinction may prove useful in understanding
the algorithms actually employed by such systems, and their implementations ii biological
neural networks.

Figure I shows a simple, feed-forward ANN architecture designed to support an
instruction-data distinction. The data vector is processed by a set of layers, which are
separated by transmission delays to enforce sequential processing. The instruction vector is
divided into distinct components, which are viewed as names of instructions. Each instruction
name is input, together with a component of the output of the previous processing layer, to a
content-addressable memory (CAM), which encodes a full instruction. The CAMs provide
additional inputs to the units in the corresponding processing layers. The inputs from the
CAMs are assumed to gate, modulate, or otherwise control the behavior of the units in the pro-
cessing layers; hence each instruction name encoded by the instruction vector effectively con-
trols the processing of the data vector by a single layer.

In order for the architecture shown in Fig. I to be distinguishable from a conventional
feed-forward ANN, the connections from the CAMs to the processing layers must be function-
ally distinct from those between the processing layers. The principle requirement for model-
ling programmable networks is, therefore, an ability to model distinct classes of synapses.
This may be done in the conventional ANN formalism by introducing unit-specific signal and
feedback functions into the node equation (Cohen and Grossberg, 1983; Grossberg, 1998), by
introducing units having multiplicative connections that "set the weights" of the additive con-
nections in the network (McClelland, 1986; Pollack, 1987), or by introducing units that multi-
ply instead of summing their inputs (Durbin and Rumelhart, 1989). McClelland (1986) and
Pollack (1987) both motivate their formalisms as methods of achieving some degree of pro-
grammability.

Fast modulation as a programming mechanism

The requirement, implicit in Fig. 1, for a class of inputs that control the computational
behavior of a set of units is met, in biological neural networks, by synaptic inputs that effect
fast modulation of the responses of other synapses. A variety of such mechanisms have been
characterized biochemically (reviewed by Levitan, 1988). While less is known about the func-
tions of modulatory inputs in alterating the behaviors of specific cells, some pathways involv-
ing multiple modulatory synapses have been partially characterized (e.g. McCormick, 1989).
I" seems reasonable to hypo:,esize, based on the ubiquity of receptor-channel systems that can
support rmodulator, interactio;n:, :hat such interactions are likewise ubiquitous, and are of func-
tional importance.

1- 71

2

ICAM I CAM 2 CAM N

Instructons

-"Layer I -ýE ayr21 Layer N

Data Output

-- "- indicates a transmission delay.

Fig. 1: A programmable ANN architecture. CAM = Content addressable memory.

If fast modulation by secondary synapses is in fact functionally ubiquitous, and if it
indeed supports processing architectures of the general type shown in Fig. 1, then a number of
common motifs of brain organization may be seen as supporting programmability in biological
neural networks. In particular, Fig. I suggests that an organization into sequential layers, each
of which also receives secondary, modulating input from elsewhere in the system, will be ubi-
qitous. Such an organization apparently occurs in the visual system, in which layers primarily
devoted to one processing stream appear also to modulate, and be modulated by cells belong-
ing to other processing streams (DeYoe and Van Essen, 1988).

Electric circuit models appear to provide the best formalism for investigating such modu-
latory interactions, as both the individual conductances and their characteristic time constants
can be represented in such models (e.g. Wilson and Bower, 1989). A generic processing ele-
ment that can be used to study both facilitory and inhibitory interactions is currently being
developed in this laboratory.

Computational advantages of programmability
Investigation of the encoding and execution of instructions by biological neural networks

using a combined experimental and modelling strategy can be expected to yield useful design
principles for programmable ANNs. The usefullness of conventional ANNs is limited both by
the inefficiency of standard learning algorithms, which require solving global nonlinear inter-
polation problems, and by the need to add processing nodes to the system - thereby further
increasing the time required for learning - to cope with increases in the complexity of the func-
tion being computed. The development of ANN architectures that support programmablity

I- 72

addresses both of these issues: programmable ANNs would only need to learn the functions
associated with each interpretable instruction, and comp!ex functions could be executed by a
network comprising a set of layers that executed a series of instructions sequentially. A pro-
gramnmable ANN would, therefore, combine the positive features of both conv'entional ANNs
and general-purpose sequential computers.

Acknowledgement

This research was partially supported by NASA Innovative Research Program grant
NAGW-1592 to the author and J. Barnden.

References

Cohen, M. and S. Grossberg (1983) Absolute stability of global pattern formation and parallel
memory storage by competitive neural networks. IEEE Transactions on Systems, Man,
and Cybernetics 13: 815-826.

Cotman, C., D. Monaghan, and A. Ganong (1988) Excitatory amino acid neurotransmission:
NMDA receptors and Hebb-type synaptic plasticity. Annual Review of Neuroscience 11:
61-80.

DeYoe, E. and D. Van Essen (1988) Concurrent processing streams in.monkey visual cortex.
Trends in Neurosciences 11: 219-226.

Durbin, R. and D. Rumelhart (1989) Product units: A computationally powerful and biologi-
cally plausible extension to backpropagation networks. Neural Computation 1: 133-142.

Grossberg, S. (1988) Nonlinear neural networks: Principles, mechanisms, and architectures.
Neural Networks 1: 17-61.

Gustafsson, B. and H. Wigstrom (1988) Physiological mechanisms underlying long-term poten-
tiation. Trends in Neurosciences 11: 156-162.

Kohonen, T. (1988) Self-Organization and Associative Memory, 2nd Edition. Berlin: Springer.

Levitan, I. (1988) Modulation of ion channels in neurons and other cells. Annual Review of
Neuroscience 11: 119-136.

McClelland, J. (1986) Resource requirements of standard and programmable nets. In: D.
Rumelhart and J. McClalland (Eds) Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Cambridge, MA: MIT. pp. 460-487.

McCormick, D. (1989) Cholinergic and noradrenergic modulation of thalamocortical process-
ing. Trends in Neurosciences 12: 215-221.

Pollack, J. (1987) On Connectionist Models of Natural Language Processing. Ph.D. Thesis,
University of Illinois.

Ron, S., T. Vieville, and J. Droulez (1989) Use of target velocity in saccadic programming.
Brain, Behavior, and Evolution 33: 85-89.

Wilson, M. and J. Bower (1989) The simulation of large-scale neural networks. In: C. Koch
and I. Segev (Eds) Methods of Neuronal Modeling. Cambridge, MA: MIT. pp. 291-333.

1- 73

FUNCTION MAPPING AND ITS RELATIONSHIP WITH THE PSYCHOPHYSICAL
FUNCTIONS IN THE THEORY OF NEURAL NETWORKS

J. G. Figueroa, C. Flores, E. Vargas & M. Romero
£ UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO

UNIVERSIDAD AUTONOMA METROPOLITANA--IZTAPALAPA

Laboratorio de Sistemas Complejos
Ap. Postal 70-499. C.P. 04510

Mexico, D.F. MEXICO

A modern, central problem in neural network research is to
find a relationship between the formalisms at use and a general
neurocomputational theory, as it can be the problem of function
mapping using different kinds of perceptrons.

The problem of representing continuous three valued
functions by using continuous functions of less than three
variables arises from the 13th problem of Hilbert (Lorentz,
1976). This problem request the demostration that the seventh-
grade equation

x7 + xX 3 + yX2 + zX + 1 = 0 (1)

CANNOT be solved with the help of any continuous two valued
funct ion.

Kolmogorov (1957) contributes to the solution of this
problem with a theorem in which he showed the existence of fixed
functions Zpq, continuous and increasing on the interval I =
10,1) such that any continuous function defined in I can be
written as

2nI+1 n
f(xl ,xn) - E gq (Z 3pq (xp)) (2)

q=1 P=l

with gq continuous functions of a suitable chosen variable.
Some authors have simplified Kolmogorov's presentation of f.

For example:

2n+1 n
f(xl ,xn) = E g(E ap3q(xp)) (3)

q=l P=1

with qp constants. Expanding the preceeding formula

f(xl xn) = g(al1l(Xl) + a231(x2) + O + 3n l(Xn))

+ g(a132(x1) +) + * ...+ + ar,2(xn)) (4)

--.... + g(u1E2r÷+1(xl) + qnEn+l(xn)

we obtain the simplification carried out by Lorentz (1966) and
Sprecher (1964)

I- 74

In other words, Kolmogorov proves that any continuous, n-
valued function can be represented with the aid of functions of a
single variable. Following Kolmogorov's work, it is possible to
represent functions in terms of other functions; and it can be
used superposition of functions:

f(xy,z) - Ftg(x,y),h(qtx3,kCz])] (5)

or linear superpositions in which combinations of fixed functions
with variable ones are considered, such as

m
f(xyz) - I pi(x,y)giEqi(x,y)] (6)

i-1

in which Pi and qi are fixed.
Recent work (Cybenko, 1988) has demonstrated that it is

enough to use neural networks with two hidden layers to represent
sets of continuous functions.

Hilbert's conjecture, and Kolmogorov's reply, are very

important if the relationship is made with experimental work in
sensorial psychophysics. Within this framework, psychophysicians
tried to find which is the function that maps a physical
dimension into a psychological one. The answer to this question
has been the development of psychophysical functions (Stevens,
1975; Falmagne, 1985) where we know that, in general, all
sensorial magnitudes are psychologically mapped with a power
function of the type Y-aXb, a and b constants empiricaly
determined.

Nowadays, it has been found that the b exponent is given by
the sensorial modality. However, in previous work (Figueroa et
al., 1974; Figueroa et al., 1981; Figueroa et al., 1982a;
Figueroa et al., 1982b) we have experimentally demonstrated that
the b exponent is directly linked with the cognitive abilities of
the subjects, particulary with the information processing speed
in tasks that require the use of "internal" images. When the
exponent is corrected with this value of information processing,
its variability is drastically reduced. The relevance of this
kind of work is that, not long ago, it was not known "what to do"
with such psychopnysical functions. However, we can now suppose
that probably, if a superposition of functions is made -as
Kolrogorov proved-, it is possible to "represent" the physical
world in a neurocomputational system of a general kind known as
"perceptrons" with at least two hidden layers. The transformation
between the external physical event to the subject and its
internal representation is given by the previously adressed
psychophysical functions.

The relationship of the power functions in sensorial
psychophysics makes possible to find a very strong foundation of
the neu.ral networks as information representing systems.

1- 75

REFERENCES

Cybenko, G. (1988). Continuous valued neural networks with two
hidden layers are sufficient. Tech. Rep., Dept. of Computer
Science, Tufts University, march.

Falmagne, J. C. (1985). Elements of psychophysical theory, Oxford
University Press, New York.

Figueroa, J. G., Solis, V. M. Gonzhlez, E. G. (1974).The possible
influence of imagery upon retrieval and representation in
Long Term Memory. Act. Psych., 38, 424-428.

Figueroa, J. G.; M. Carrasco; G. Hernandez. (1981). EfFects of
Human Information Processing on psychophysical functions.
UNAM, VII Int. Bioph. Cong. and I Panam. Biochem. Cong.,
February.

Figueroa, J. G., Carrasco, M. y Sarmiento, C. (1982a). Magnitude
Estimation of the Psychophysical Function and its
Relationship with the Central Information Processes. Mex.
Conn. Phsyc., Mdxico, D.F. July, (in spanish).

Figueroa, J. G., Carrasco, M., Sarmiento, C. y Bravo, P.
(1982b). Distinction between Sensorial and Memory Aspects in
Visual Psychophysical Judgements or Magnitude in Humans. XXV
Nat. Cona. Physiol. Sc., Guadalajara, Jal. Mexico. July, (in
spanish).

Kolmogorov, A. N. (1957). On the representation of continuous
functions of several variables by superposition of
continuous functions of one variable and addition, Qok_.,
114,679-681.

Lorentz, G.G. (1966) Aproximation of Functions, Holt, Rienhart &
Winston, New York.

Lorentz, G.G. (1976) The 13th Problem of Hilbert, Proc. of Symp.
in Pure Math., vol. 28, pg. 419-430

Sprecher, D.A. (1964) On the Structure of ContinuCous Functiions of
Several Variables, Trans. Amer. Math. S.oc., vol 115, pg.
340-355.

Stevens, S. S. (1975). Psychophysics: introduction to its
perceptual, r1eural, and social prospects, John Wiley & o.ris.

I- 76

Pattern Recognition in Primate Temporal Cortex: But is it ART?

Paul M. Gochin. Department of Psychology, Princeton University Princeton, NJ
08544-1010.

Introdctin: Biological mechanisms of visual pattern recognition have received
considerable attention in "neural network modeling" (eg. [9]). However, it has been
information about the earlier or "more" peripheral cortical areas, particularly striate
cortex, which have served as the basis for most of these models. Early stages of
visual information processing in the brain appear to serve a preparatory function
modifying the form of incoming information for use by higher-order visual areas. It
is these higher-order areas, especially inferior temporal cortex in the primate)
which show properties desired by "neural network" modelers, such as image size and
position invariance, as well memory and selective attention. Models of high-level
vision have been suggested by visual system investigators, however these are usually
restricted to the context of the investigations and do not provide implementation
level details (eg. [25]). The objective of this report is to suggest, and support the
usefulness of adaptive resonance theory (ART)t9] as a mechanistic model of high-
level biological vision, and in addition to recommend that inferior temporal cortex
be closely evaluated as a source of information for further development of "neural
network" models.

Form vision in the primate: Processing of visual information begins at the earliest
stage of primate vision, the retina. The output of retinal ganglion cells is
luminance normalized and enhances edge contrast. Yet, the information at this
point still remains essentially a dot matrix. Already, however, a branching process
has begun separating information into channels presumably for feature, and motion
processing. At the first cortical stage of processing, striate (VI) single neurons
begin to show specialization for form (e.g., selectivity for local orientation of
edges), motion direction [12] and depth detection [21]. Neurons at the next stage,
V2 show evidence of pattern completion [11]. Form processing continues in V4
where neural responses can show limited invariance to edge location. Local
coloration appears to be represented relative to the surrounding area [1,27].

A branching in regional specialization of cortex occurs at the level of V2,
with a so-called "dorsal" stream destined for parietal cortex involved in processing
spatial information and, of particular interest here, a "ventral" stream terminating in
IT which processes form. The contrast in properties of IT neurons compared to
striate is striking. Whereas striate neurons process relatively small focal regions of
the visual field, IT neurons almost always include the central visual field with
highest acuity and a relatively large surrounding area. Striate cortex is highly
organized with a retinotopic map and repeating modules processing each point in the
visual field for a stereotyped set of parameters. IT is not retinotopically organized
and neurons dispersed throughout IT can become active for any given stimulus.
Although a small portion of IT neurons appear to be relatively selective for specific
stimuli (such as faces), the majority respond to a diverse array of visual patterns
[8]. Typically, IT neurons respond to visual patterns in a manner which is invariant
with respect to retinal location and pattern size [7,23]. Perhaps the most striking
difference between IT and striate is that IT has been shown to manifest attention
[19,22], show evidence of short term memory 12,18] and be involved in long term
visual memory [17].

I - 77

Functional similarities between ART and IT: Correspondence between theoretical
visual system components [9] such as the Boundary Contour System (BCS) and
biological subdivisions remain unclear, however, the Object Recognition System
which utilizes ART may be analogous in function with IT (in conjunction with
other brain areas). The adaptive resonance model is constructed as a multi-layer
system, each layer of which utilizes a form of "lateral inhibition" to enhance
contrast in a parameter space appropriate for that layer. These layers are then
interconnected both feedforward and feedback. Critical to the functionality of the
system is top-down influence which serves in selective attention and pattern
matching. Also critical is that some form of habituation exist so that once a
pattern has been unsuccessfully tried as a match it is not immediately tried again.
Also, a general control of "vigilance" is required to modulate selectivity of an
acceptable pattern match.

A minimum requirement for acceptance of ART as a model of high-level visual
function is that these fundamental principles be consistent with experimental
observations. The first point is that of lateral inhibition. This mechanism has its
historical origin [10] in the retina. Recently we [15] have found signs of
widespread inhibitory interactions in IT cortex. Specifically, the discharge rates of
single neurons are decreased by the simultaneous introduction of several visual
patterns, relative to the introduction of a single pattern. This occurs irrespective
of the details of the patterns, and does not require active attention to the stimulus
by the animal.

The second point is that top-down influences should be evident in IT cortex.
There is substantial anatomical evidence that connections between most visual
cortical areas are reciprocal [24]. Furthermore, physiological evidence has been
available for some time [5] which suggest top down influences in IT, i.e. that the
neural response to a stimulus can be dependent on extra-retinal factors. More
specifically, the response to an identical stimulus can differ depending on
behavioral context during which the pattern is viewed. Furthermore, it has been
shown that attention can be spatially directed, since response to a stimulus within
an IT receptive field can be modulated by instructing an animal to behaviorally
direct its attention to differing points within the visual field [19].

One of the unique features of adaptive resonance is its explicitly defined
sequential search algorithm. Critical to the successful operation of this system is a
means of temporarily locking out patterns which have already been tried. This
lock-out can be achieved with a habituation-like process. It has been
noted in several investigations of IT that neurons tend to vary their response with
successive presentation of the same stimulus [8]. We have quantitatively
investigated this phenomenon and demonstrated that most neurons in the
anesthetized animal show this property [14].

Though evidence for variation in vigilance has not yet been reported for IT,
such a demonstration has been reported for area V4, which directly supplies input
to IT. In these experiments it was shown that neural selectivity for the
orientation of bar stimuli could be modulated by the degree of attention given to
the task [25].

IT is believed to be the final stage in visual form processing [16] and a
repository for visual memory. Thus, the way information is represented in IT

i- 78

could serve as a guide for "neural networks". It seems to be common, at least
during the development of models (e.g. [9]), to employ "winner takes all"
algorithms. For many reasons this approach is ultimately not desirable, and in the
context of IT this is clearly not the mechanism employed. The simple fact that IT
can be studied by sampling a very small portion of its neurons demonstrates that a
rather large portion become activated during most visual conditions. From the
standpoint of the physiologist this raises the issue of whether IT is- simply non-
selective. Although it is clear to those who study IT that it's neurons are highly
selective, until recently there was no quantitative demonstration of the form
recognition capacity. In a recent study we have compared the ability of a single
neuron to partition a small set of complex test stimuli with a small population of
such neurons. While some single neurons were reasonably precise in identifying the
stimuli, a selected small group approached perfect partitioning. These observations
support the hypothesis that information in IT is distributed across a population of
neurons [4].

Although IT does not appear to be retinotopically organized, there is evidence
that some form of spatial organization exists. We [3] have observed that neurons
with similar stimulus selectivity properties occur in clusters. Furthermore we have
observed that neurons in proximity have a greater tendency to share input than
those more distant. We have also observed excitatory connections between nearby
neurons within IT (Both observations have also been made in striate cortex, eg.
[13]). Local clustering of stimulus properties and spatially biased input projections
are consistent with requirements for masking fields. The excitatory interconnection
between neurons does not appear to be part of the general principles of ART, but
has been employed for special purpose circuits such as in Boundary Contour System
modeling [9], and may be predicted if Short Term Memory involves a population of
neurons. Other models such as "neuronal group selection" [201 explicitly require
excitatory local interactions and localization of functions (i.e. map formation).

Conclusions: Adaptive resonance theory, more than any other "neural network"
model, embodies properties which can be directly related to actual neural networks
involved in high-level form vision. This does not mean that ART should be
considered fth mechanism of biological pattern vision, but rather that it could serve
as a base to be sculptured by biological observations.

References

1) Desimone, R., Schein, S.3. (1987). J. Neurophysiol. 57:835-868.
2) Fuster, J.M., Jervey, J.P. (1982). J. Neurosci. 2:361-375.
3) Gochin, P.M., Miller, E.K., Gross, C.G., Gerstein, G.L. (1988). Soc. for Neuro.

Sci Abst.
4) Gochin, P.M., Gerstein, G.L., Miller, E.K., Gross, C.G. (1989). (In preparaticn).
5) Gross, C.G., Bender, D.B., Gerstein, G.L. (1979). Neuropsychologia 17:215-229.
6) Gross, C.G., Desimone, R., Albright, T.D., Schwartz, E.L. (1984), in Study

Group on Pattern Recognition Mechanisms, C. Chagas, R. Gattass, and C.G. Gross
Eds., (Pontifica Academia Scientiarum, Vatican City.

7) Gross, C.G., Mishkin, M. (1977). In Lateralization of the nervous system, S.
Harned, R. Doty, J. Jaynes, L. Goldberg, G. Krauthamer Eds.

8) Gross, C.G., Rocha-Miranda, C.E., Bender, D.B. (1972). J. Neurophysiol.
35:96-111.

9) Grossberg, S. (1988). In: Neural Networks and Natural Intelligence, S.

1- 79

Grossberg Ed. MIT Press, Cambridge, Mass.
10) Hartline, H.K., Ratliff, F. (1957). J. Gen. Physiol. 40:357-376.
11) Heydt, R., Peterhans, E. (1989). J. Neurosci. 9:1731-1748.
12) Hubel, D.H. and Wiesel, T.N. (1968). J. Physiol. 195:215-243.
13) Michalski, A., Gerstein, G.L. Czarkowska, J., Tarnecki, R. (1983). Exp. Brain

Res. 51:97-107.
14) Miller, E.K., Gochin, P.M., Gross, C.G. (Unpublished observation).
15) Miller, E.X., Gochin, P.M., Gross, C.G., Gerstein, G.L. (1989). Soc. for Neuro.

Sci Abst.
16) Mishkin, M. (1972), in The Brain and Human Behavior, A.G. Karczmar and

J.C. Eccles Eds. (Springer-Verlag, New York.
17) Mishkin, M. (1982). Phil. Trans. R. Soc. Lond. B 298:85-95.
'18) Miyashita, Y., Chang, H.S. (1988). Nature 331:68-70.
19) Moran, 3., R. Desimone. (1985). Science 229:782-784.
20) Pearson, J.C., Finkel, L.H. and Edelman, G.M. (1987). J. Neurosci. 7:4209-4223.
21) Poggio, G.F., Fischer, B. (1977). J. Neurophysiol 40:1392-1405.
22) Richmond, B.J., Wurtz, R.H., Sato, T. J. (1983). Neurophysiol. 50:1415-1432.
23) Schwartz, E.L., Desimone, R., Albright, T., Gross, C.G. (1983). Proc. Natl.

Acad. Sci. USA 80:5776-5778.
24) Seltzer, B., Pandya, D.N. (1978). Brain Res. 149:1-24.
25) Spitzer, H., Desimone, R., Moran, J. (1988). Science 240:338-340.
26) Ungerleider, LG. and Mishkin, M. (1982). Analysis of visual behavior, D.J.

Ingle, M.A. Goodale, R.J.W. Mansfield Eds. MIT Press, Cambridge, Mass.
27) Zeki, S.M. (1980). Nature Lond. 284:412-418.

1- 80

The emergent self:
A phylogenetic and ontogenetic evolution of biological networks

a psychiatric point of view
Ronald Goulet, Hopital Jean-Talon

1385 Jean-Talon est, H2E 1 S6, Montr6al Que

Summary: The problem of "self'could be summarized in a way, as the problem of synchronism and
adaptive auto-organisation of appropriate behaviour in real time. This paper try to integrate new findings
in neural networks theory and neurohology, in a general neuro-bio-psychological theory of emotional
disorders. Specifically it consider new developpement in artificial reinforcement and associative learning
as genuine artificial emotional systems. Also, the recent developpements in the analysis of the style of
computation and learning that takes place in the olfactive cortex and in the hippocampus are presented as
an early stage in elaboration of a novel theory of psychopathology that could in return, be beneficial to
the study of artificial autoorganised neural networks.

1- Working as a* biological neural net physician*

As a psychiatrist, I would rather consider that the point of view that we have on human
psychopathology is the best top-down (from property to structure) consideration of the potential
weakneses of big neural networks conceived to discriminate important signs scatered in the
environment in a real time base. We think that a majonty of people in their attitudes doubt the
existence of mental disorders: mainly because of the discomfort that caused the sight of largely
damaged funtioning mind (especially for psychotic disorders). People have their own concept of these
disorders in terms of reaction to the stress of life in an exagerated manner because of some weakneses
in the moral strength of those afflicted by these problems. In fact there's not yet objective testing that
can prove the existence of medical entities that corresponds to the psychopathological disorders. But
the study of neural networks coulo solve part of the problem by considering such disorders as
dynamic's defect of the working brain. This imply mostly the study of non linear dynamic of neural
network processing in real time. Deepening our understanding of such complexity, it is even more
intriguing to consider that the human mind works so well so frequently.

If we don't understand how brain function it is not surprising in fact, that we know almost nothing about
the mechnisms implicated in his malfunction. Now, suppose, that a previously psychotic patient comes
to you and say: 'thanks for you doctor, rm now cured: since this morning, I'm functioning like
before'..during that time you are mummbling in your self: *How come tanks for me... how can I get him
back to his *sickness" so I could continue to "cure him*. Puzzling indeed : in fact, you can do almost
nothing that can surely reverse the process. After all, one solution is to to tell your patient that even
if he thinks he is cured according to your - theory' he is not, and he will surely relapse if he stops the
treatment. In fact there is statistical evidence that most psychotic disorders may relapse. But you can
use this fact to continue to 'treat ""patients' wich are sane like most doctors and therapists prefer to
do. Patient somehow knows that; and generally don't like to take medication that have sides effects or
fastidious psychotherapy in prophylaxis matter. But we have no way to identify those who can benefit
some of these prophylaxis other than relying on statistics, considering the type of disorder and the rate
of relapse with or without prophylaxis.

The artificial neural networks theory could change a bit of these inaccuracies by analysing the dynamics
of the brain. Particularily, I like to look at mental disorders as domain of attraction in a state space
that represent the evolution of the mean mental state driven by some unknown control parameters. So,
I became interested in the theoretical aspects of neural nets and neurobiology that could help us to
identify those parameters and makes us understand how they act on the nervous system.

2-The "selr as a bounding problem:

We could start to what would seem to a neural engineer as a bounding problem (like the image
invariance) in neural nets : the persistence in the sense of unicity of "self. Despite the fact that the

1- 81

II

mutiples sub neural nets and layers had relative independant functions and especially despite the fact
that in our life we are confronted with a vast variety of situations, we are reacting to them with an
alrimost imprevisible although, auto-similar variety of ways, implying a variety of instantaneous mental
sets. So the problem of sel' is a rather intricated bounding problem. We can understand also, that the
question:Who am ?" is a crucial one... but a question not to ask: as somebody always asking himself,
or worse: others : "Who am I ?'; has surely something going wrong with him.
In fact, there is a paradoxical problem in autorepresentation trying to improve ones internal way of
representation by feeding them back to themselves: that leads to the theorem of Godd1. In brief, the
implementation of a level of hidden units mapping all the representations of all other functional levels in
a network, in order to correct them, is impossible due to the paradoxe of autoreference. In fact,
autorepresentation in a redundant matter is indeterminate: like the sentence: "all the sentences in this
text, even this one, are false*. That lead Marvin Minsky to write :" ..perhaps,its because there are no
person in our heads to make us do the things we want -nor even ones to make us to want-that we
construct the myth that we're inside ourselves'(1). Now what is maintaining the myth? If the self is
like a riding bicycle standing up just because it moves forward : what makes us believe that there's a
unity and more a unicity in all our reactions?
In some way these questions reduce the bounding problem of the self to a more reachable question of
stability in the dynamic of sequential adaptive organizer of behaviour. This question find an interesting
solution in the concept of "auto-poTesis" or "gated coupling" (2). This means that at some deep level a
neural system, when it is auto-organising himself in the environment in real time, must cease to just
consider the patterns in the input as a recognition process. On the contrary, it has to become a self
sustained dynamical system (called internal dynamic) reacting to all inputs coming from internal or
external pathways : as if it could be a perturbaion of internal dynamic.In front of this perturbation the
internal dynamic could remain structurally stable or bifurcate. By this way, we can conceive that a
system without being aware of its "self", could perceive the boundary between reaction originating
from the "selir: withstanding a perturbation ; and reaction extraneous to it: when a perturbation lead
to a bifurcation.
We can consider the orienting subsystem of the ART network of Steephen Grossberg, the Olfactive
Cortex simulation of Walter Freeman : a specific cahotic density mapping, as first steps in the
implementation of neural nets that react to an input and learn to react to it globally and in agreement
with kind of internal determinant (drives). Theese studies illustrate that a kind of artificial emotional
system (defined as a neural system acting as an internal dynamic) seems to be essential to implement
autoorganised learning devices, in real time.

3-Hippocampus : a biological internal dynamic for inputs coming from the cortex

In the evolution of neurobiological natworks, at first neural systems behave like internal dynamics
without trying to discriminate in the environement other things than stimuli biologically significative.
These stimuli elicit a response specific to the needs of the individual but largely correlated with fixed
species patterns. These structures were preserved in the human brain as archaic internal dynamic,
such as automomous nervous system, ascending reticular systems and hypothalamus. They are part of
an intricated system of smalls nuclei coding for different aspect of the vital needs for the survival of
the individual and the species and modulating in cyclic matter the relative inportance of each of them by
complexely interacting systems of neuropeptides and hormones circulating in the blood as well as
released at the synapse clift. They control for example the stages of conciousness and sleep the
relative food intake, the activity level ect.This system is coupled to the hippocampus by
neurohormones but mostly by three neurotransmitter : nor-adrenalin ,serotonine and acetylcholine,
part of an ascending system driving attentional mechanisms in significative situation (pain, interest and
sorrow,fear or rage).
As far as the hippocampus is concerned: it seems that it is designed to associate the signals or cues
that are picked up by the highly discriminating cortex(coming frnm entorhinal cortex) to stimuli that
are mapped as reaction in the archal'c dynamical systems from above (from afferent fornix). The
hippocampus is a recurrent network reassessing new inputs with those who preceded them. It
feedforward outputs t- the orbito frontal cingular and temporal cortex relaying from the efferent
fornix by two nuclei : the maillary body and the anterior thalamus. The output seems to be a kind of
reaction : an error signal when it's needed destinated to parts of the cortex specialised in planning
(cingular and frontal : sequencing mechanisms) and in apprehenfion directed to new sensory
recognitions (temporal). From these parts of cortex new solution could be initiated or if impossible a

I- 82

relay from cortex : the amygdala feedforward down to the archaTc system initiating urgency
mechanism (figth-flithlt-submission ect.).
It seems that compressed and multirnodal sensorial information as input could be there classified in
terms of outcoming reaction and associated results. The CAl and SUB regions of the hippocampus acted
as a memorising comparator of these situations and their real versus predicted outcome. So. if all
works like predicted the system would not be perturbated but if something strange happens the system
could detect it and try to classify it. It could thus be: a cortical internal dynamic.
So, in this view, the hippocampus is not as much as a center of the self, but not also as litlie as a
startling reflex center. It is meerely a "oh-oh, change-o" system that react to imprevisible outcome
of situations by trying to reclassify it by means of past experiences, and by learning the new outcomes
that follow a remastering of the situation by the cortex. The physiology of this system seems to have
been disigned for it to assume a kind of curiosityfunction in the brain.

4- Dynamic of the septo- hippocampal system: a speculative model of emotional function

The dynamical physiology of hippocampus contain much information susceptible for becoming cues in the
unfolding of its computational mode:

1- One can describe the septum like a beat generator driving the neurons of the hippocampus like a
conductor drive his musicians in an orchestra : there are tree types of frequencies: 1- theta low
rhythms (under 6-7 hertz in rodents) corresponding to non ambulatory activity oriented toward drive
satisfaction 2- high rhythms (above 8 hertz in rodents) whose frequency seems to be somewhat
related to the velocity to be atteined 'Or reaching a goal in ambulatory behaviour and finally 3- an
intermediate rhythm associated by Jeffery Green(3) to anxiety and behavioural inhibition in reaction
to a novel situation. These types of rhythms could be seen as a variation of a parameter of control
transforming the whole dynamic of the network, like a phase variation in thermodynamic systems out
of equilibrium.

2-There are at this time two types of learning known to occur in the synapses of hippocampus (mostly
CA1 an SUB region associated by J. Gray to the comparator function between actual and predicted
outcome):
a) The LTP (long term potentiation) associated with reinforcement of NMDA type of glutamate re-.eptor
when in a situation of exitation of the post synaptic neuron a receptor is activated two times in a row
according to a delay corresponding to the phase of theta rhythm (200 msec)- (G. Lynch)
b) the associative learning when a first synapse can activate another one, in the same neuron when the
activation of the first correponding to a UCS (unconditioned stimulus) is followed by the activation of
the second CS (conditioned stimulus), after an interval corresponding to a fixed ISI (interstimulus
interval) (D. Avlon)

3- It seems also that the archafcal dynamical systems (ascending tegmental systems) bring their action
firstly by means of Influence in the th6ta driving activity (reticular cholinergic activating system) and
also by generating in (F.D) fascius dentata (the opening gate: of the hippocampus receiving inputs from
entorhinal cortex via perforant pathway): a lowering of the treshold in these neurons to repond to the
intermediate theta rhythm : thus providing a kind of gain control in recruiting the function of
discriminating new elements in the input. This latter function seams to be devoted to the nor-adrenergic
and the serotcninergic ascending systems relaying the hilus of F.D, (J. Gray, J.O'Keefe). These
systems are known to be habituating systems (adaptive but subject to exhaustion) and largely
implicated in depressive and manic disorders.
Now, if we postulate that the kind of convergence of this network as a cahotic nature like the one that

was recently proposed in simulating biological olfactif cortex (W. Freeman) : we can imagine this
system classifying strange situations by means of pre-empt experiences in a self-similar matter
(families of cahotic attractors usually are self-similar): meaning that the global reaction to a globally
analysed puzzling situation could be similar and much more detremined, by a certain degree of learned
or physiologically predetermined self confidence or adaptability to novelty than corresponding to the
type of novelty in the stimulus.
In the phylogenetic evolution : it seems that hippocampus had been involved in the reaction of animals to
his environment according to an increement of the discriminative abilities that enables them to consider
much more cues in an infinite variety of strategies for ensuing their goals. It is thus not surprising that

1- 83

it appears to the experimentator (J. O'keefe) like a spatiotemporal mapping for territoriality : say: an
abstract and global analysis for each animal of a plastic and ambulatory environment with whom they
became familiar considering the kind of reward and danger it could provide.

5- Ontogenesis of psychodynamical structure: from nature to nurture:
What happens to territoriality in primate and more specifically in Humans : we postulate that it became
a much more abstract aaialysis of the interpersonal environment. The position in the territory become:
the position cf the "sell" in front of others in terms of submission, leadership, friendship, love etc. So,
condense information coming in input concern mostly the mental state of others. And the reactions
bounded to it defined the self as opposed to the behaviour of others predicted in the plannings coming
from frontal cortex. We can thus imagine that reactions of human beings, to all novelty even when it
have nothing to do with interrelation, could be caracterized like on a template on primordial
rr ashinships pre-empted in infancy.

ne internal dynamic of hippocampus doe's not contain the personnality but by means of a self similar
structure could lead to perseveration in choices that maintain it. The hippocampus as proposed , here, is
implicated in the integration of novel knowledge to the previous: the stage (REM) sleep associated with
dreams and activated when theta rhythm start to burst in the hippocampus could have as principal
function to integrate in the cortex the newly learned informations to all the others by 'smoothing
away* the incongruency with a cost of forgetting something.
We are now speaking of self sturcturing dynamical system by means of better adaptation and implying
in the process loss of information: this is the growing quantity of informational complexity in the
ontogenesis; this is also the freudian notion of unconcious.
We speaked above of synchronisation with regard to the expected delay of optimal reaction : the
hippocampus does not seem to be able to assure a stability in this rtgard .In humans the frontal cortex
had greatly evolved with regard to what it was in ancestral primates. This cortex helped by the
dopamine driven striatum seems to be the synchronizing device of the brain in an adaptive and
modulated way. The hippocampus by influencing it, seems just able to activate or slow down the genral
pace of the whole system.

5- Psychopathology as weakness of self integrated adaptive neural net

It is interesting to consider that the two principal types of psychotic disorders concern the two
systems considered here as central for self-cohesion.
If we first consider the postulated gain control in behavioural inhibition of the hippocampus it is
plausible that this system is implicated when exhausted in a kind of disorder implying a behavioural
inhibition,a loss of energy, loss of adaptive capacity and concentration with continuous anxiety and
worries about the future like depression or in contrary, a loss of normal inhibition and anxiety in
dangerous situation with hyperactivity like in mania. These disorders appering to be a disorganization of
the internal dynamic system of the brain mostly the ascending nor adrenergic and serotoninergic
systems. And we can see that the pharmacotherapy that treat these disorder act on serotoninergic or
noradrenergic central systems.
The sequencing system being much more caracteristic of the human brain with his huge frontal lobes
may be more implicated in disoder of thinking particularily sequencing of thinking witch caracterise the
schyzophrenic disorders. Thus it is not surprising that pharmacotherapy most efficient in
schyzophrenia block the dopaminergic system that could stimulate the striatum (modulating the
sequencing in frontal lobes).
6- Conclusion
We conclude that considering the brain as a dynamical neural network could surely be of benefit in the
near future for the development of conceptual models in psychiatry. Considering the brain as computing
cahotic attractors could also be an interesting field: for example the mesurement of fractal dimmension
of EEG could be interesting in the assesment of mental disorders and in the follow up of treatment. It
offers also a contribution in the field of artificial thinking trying to understand why are we feeling the
external world in ourselves like we are.

References
1 - Minsky Marvin - 1985-The society of mind, Simon Shuster edit
2- Varela Franceso -1983- L'autoorganisation de I'apparence au medcanisme: Colloque de Cerisy:
I'auto-oragnisation (Paul Dumouchel et Jean Pierre Dupuy) SEUIL edit

I - 84

3- Gray Jeffery-1 983-The neuropsychology of anxiety an enquiery into functions of the
septo-hippocampal system OXFORD SCIENCE PUB.
4- O1Keefe John, Nadel L -1978- The hippocampus as a cognitive map Clarendon Press OXFORD
UNIVERSITY PRESS
5- Freeman W Yong Y Burke B Central pattern generating and recognising in olfactory bulb 1988 Neural
netwoprk vol I- no-4

I- 85

ON THE BEHAVIOR AND SIGNIFICANCE OF RANDOM NEURONAL NETWORKS

Guenter W. Gross*, Jacek. M. Kowalski, and David Golden
Department of Biological Sciences*, Department of Physics, and Center for Network Neuroscience,

University of North Texas, Denton TX 76203.

Before the recent theoretical and experimental "network revolution", neuronal networks were
considered mostly hard wired circuitry that operated on incoming sensory information for transfor-
mation into output spike patterns appropriate for the function of a particular network and organism.
Function was based primarily on morphology (i.e. circuit structure) and fault tolerance was a matter
of redundant interconnectivity (for reviews see Getting, 1988, 1989). This view has changed dramati-
cally in the last 5 years. Networks giving rise to simple invertebrate behavior were found remarkab-
ly complicated (Krasne and Wine, 1984; Selverston, 1985; Getting, 1988) which now includes the
switching of neurons from one network to another (Hooper and Moulins, 1989) Recently, Getting
(1989) concluded: "Knowledge of connectivity alone is not sufficient to account for the operation and
capabilities of neural networks". This complexity is compounded further in vertebrates where even
the most basic functions are governed by cell ensembles with highly redundant interconnectivity
displaying formidable morphological and functional plasticity.

Until recently, experimental techniques were not available to capture the simultaneity of elec-
trical events in small networks. Investigations of network activity patterns with a large number of
electrodes to obtain a representative view of the internal network dynamics could not be conducted.
Introducing many electrodes into a small volume of tissue in vivo or into slices in vitro will alter or
destroy the circuitry being investigated. In cell culture, where neuronal circuits can be grown as
monolayers, the mechanical problem of holding and positioning many conventional microelectrodes
was a serious barrier to multisite recording. As a consequence, there exists in this area such a
paucity of basic biological data that theoretical efforts cannot be adequately tested or guided.

The development of photoetchec', thin film multielectrode surfaces has provided a convenient
method for the simultaneous monitorih1 g of many neurons in small monolayer networks in culture
(Gross, 1979; Gross and Lucas 1982, Gross et al, 1986; Droge et al, 1986). The method yields networks
that grow on the electrodes, thus stabilizing the cell-electrode coupling and eliminating destruction
of cells by invading electrodes. It allows easy manipulation of the physical and chemical environ-
ments as well as observation in the living state. However, the dissociated culture approach destroys
the original circuitry and the subsequent random cell seeding generates randomized networks. Al-
though there is some evidence of preferential synapse formation in culture (Camardo et al.,1983) it is
most likely that such networks contain large and perhaps predominant random components.

Our experimental strategy for the analysis of network dynamics involves long-term moni-
toring of 64 electrodes that capture a large proportion of the signal traffic within I to 2 mm diameter
monolayer networks consisting of 100 to 500 neurons. Spontaneous, evoked, and pharmacologically
altered activity is being collected from monolayer networks derived from mouse spinal cord, olfactory
bulb, cortex, or cerebellum. Analyses are conducted with light microscopic, electrophysiological,
pharmacological, and laser surgical methods, and the subsequent application of histological,
histochemical, and electron microscope techniques. Network alteration via laser cell surgery can be
accomplished during recording to test for system homogeneity, existence of percolation thresholds,
critical mass phenomena, and fault tolerance. Specific cell and neurite elimination as well as network
alterations can be achieved with precision (min. focus diam.: lum; positioning accuracy: +/- 0.5 um).

Our theoretical strategy involves application and modification of "coupled planar rotator
models" to describe the complex spiking and bursting phenomena observed in culture. We have built a
computer model of network dynamics that uses nonlinearly coupled, nonlinear planar rotators of the

1- 86

type pii = -i " i sin 9i + 1 Jij sin ((pi - (pj) solved by a Runge-Kutta approximation to determine

the temporal evolution of each network element. We have begun with stability investigations of small
systems with several strongly interacting neuronal "rotators". From our preliminary efforts
(Kowalski et al, 1988) and from other pertinent theoretical work (Kopell and Ermentrout, 1986;
Sagakuchi and Kuramoto, 1986) we judge the coupled rotator formalism sufficiently versatile to
simulate random networks in culture. We are using three different time scales to represent the ob-
served dynamics: two are necessary to describe fast relaxational excitations in single neurons. A
third, slower, time scale emerges in a process of neuronal "tuning" to different dynamic regimes
(with different excitability thresholds, refractory characteristics, and instantaneous spiking
frequencies). This slow variable, modulating neuronal activity, may be the most significant for the
dynamics of intemeuronal communication. The resulting network models then become equivalent to
dissipative systems of bistable, nonlinearly coupled planar rotators reflecting the cyclic character of
the slow variable. Dynamics of such systems are rich and not fully understood.

RANDOM NETWORK DYNAMICS in CULTURE

A characterization of network dynamics requires systematic analyses of spatio-temporal patterns.
This is possible in monolayer cultures. Spatial patterns represent variations in the location of activity
within the 1 x 1 mm, 64 electrode recording matrix. Some regions dominate and activity spreads to
adjacent regions depending on burst intensity and other as yet unidentified factors. Temporal pat-
terns range from random, to chaotic, to periodic, arc gcnerally very volatile, but may be "locked in"
pharmacologically by blocking inhibitory circuits and possibly by interfering with the NMDA reccp-
tor complex. They may be totally or partially coupled (synchronized or entrained - the latter with
fixed or variable phase differences between bursts), necessitating a derivation of coupling functions.
Two levels of information traffic must be considered: spike patterns and burst patterns. The former
is presently deemphasized because bursting usually predominates. The latter is described in terms of
burst frequency, duration, type (i.e. spike patterns within bursts) and burst type sequence.

The following specific questions are now being asked to determine the "dynamic range" of random
networks. (a) Is regional dominance permanent or volatile and what are the conditions that enhance
of alter such dominance? (b) What factors determine synchronization and entrainment? (c) What is
the range of patterns that can be produced by the ensemble, spontaneously and under pharmacologi-
cal perturbations, and what are the most likely patterns? (d) What are the causes of spontaneous
pattern fluctuations, and what manipulations are required to "lock in" patterns? (e) How does inter-
nal (i.e. neuronal) noise and external noise (via electrical stimulation) influence the network
behavior and can it trigger changes in pattern type, or kindle quiescent networks? (f) What are the
typical network responses to controlled chemical and patterned electrical stimuli? (g) Can patterns
be stored and what are the biochemical and biophysical requirements for storage?

Summary of Important Observations from Mouse Spinal Monolayer Networks
(1) All cells in a 1mm diameter miniculture are directly or indirectly connected. Preliminary data

from burst phase shifts (between different electrodes) suggest that the number of synapses
between any two cells ranges from 1 to 6 with an estimated mean at 3.

(2) All neurons in the culture are capable of entrained bursting. Entrainment is a function of burst
intensity; whereas weak bursts or random spiking show islands of independent activity, strong
bursts tend to recruit all cells in the network into a common pattern.

(3) The most common and basic behavior of these networks is entrained bursting. Phase shifts vary
from a constant minimum of several msec (conduction and synaptic delays) to highly variable
tens and hundreds of msec (processing dynamics).

(4) There are no endogenous bursters in these cultures since all activity ceases in 12 mM magnesium
chloride. Bursting is conditional, network dcpcndcndcnt, and requires a minimum background
activity for kindling of network activity.

(5) The separate or combined blocking of the inhibitory GABA and glycinc receptors (with bicucul-
line and strychnine, respcctively) generates, after a short paroxysmal activity period, remarkably

1- 87

regular oscillatory burst patterns with 100% coupling between electrodes. Strychnine causes
burst stretching and enhances pattern regularity by reducing variations in burst frequency and
burst duration. Bicuculline is more effective for improving pattern regularity but does not
produce burst stretching (Hightower, 1988).

(6) The addition of either GABA or glycine may decouple electrodes and stops all spontaneous bursting
at approximately 30 uM. Some random spiking, however, is maintained.

(7) The GABA antagonists picrotoxin and penicillin do not enhance pattern regularity although they
are equally effective for producing intense paroxysmal firing (Hightower, 1988).

(8) NMDA responses, including typical reactions to agonists and antagonists, have been observed in
every culture implying that LTP storage mechanisms are intact. Not all electrodes respond in the
same manner and uncoupling is often seen (Gordon et al, 1989).

(9) Excitatory transmitters (aspartate, gluatamate, acetylcholine) reduce pattern regularity and may
induce uncoupling.

(10) Electrical stimulation is ineffective unless a number of electrodes are pulsed simultaneously
possibly reflecting network fault tolerance via resistance to external noise.

The Significance of Bursting
Bursting is a predominant feature of spinal cord and olfactory bulb monolayer cultures and may

play an equally important role in cerebellar and cortical cultures for which we have only pilot data.
The clustering of action potentials into identifiable "bursts" is a common phenomenon in both
invertebrates and vertebrates (Provine, 1972; Miller and Selverston, 1982; Cohen et al., 1988; Grillner
et al., 1988). Most important is the recent recognition that changes in synaptic efficacy require spike
clusters: facilitation, augmentation, and potentiation are most easily obtained with high frequency
inputs (Zucker, 1988). The mechanisms underlying long-term potentiation (LTP) clearly depend on
large local depolarizations generated by spike clusters (Brown et al., 1988). In the rat visual cortex,
LiP could be induced only in cells that showed bursting. Regular spiking cells resisted LTP
generation until low doses of the GABA antagonist bicuculline were applied to change them into
bursters (Artola and Singer, 1987). As a result of such diverse observations, bursting must be
considered a vital network phenomeon that greatly influences information processing and storage.

CONCLUSIONS

The presence of structural and dynamic fluctuations in these monolayer cultures does not 2ro-
hibit statistical descriptions that concentrate on highly probable, gross behavioral features of a large
family of macroscopically identical cultures (with identical origin, similar neuronal densities, en-
vironmental parameters, etc). The complex of these features can be called the network "macrostate",
in analogy with "reduced" descriptions in statistical physics. "Pathological", large deviations from the
expected behavior are also of interest because they relate to the stability limits of the investigated
system. The main problem is the collection of a sufficiently large experimental data base to attempt a
"thermodynamic" network description in terms of a few crucial variables. We believe that the
modified rotator model can serve as a realistic approximation of the dynamic behavior of networks
consisting of several hundred neurons. The partial entrainment phenomenon (synchronized or
almost synchronized) to a common frequency is generic for some classes of these networks.
Additionally, we have evidence of a "coarse-grained" synchronization also in transient states, before
the system reaches a steady state. Chaotic behavior is not excluded in these systems with random
interconnections ("random interaction multi diagraphs") subjected to problems of reliability and
percolation resulting from both spontaneous and experimentally-induced "site" (neuron) and "bond"
(synapse) failure.

Predictions and Extrapolations
(1) The basic signal processing dynamics as well as the biochemisty of information storage is already

present in random networks. The culture is constantly and spontaneously "learning" which
occurs randomly or chaotically in the absence of sensory feedback.

(2) The random network is probably capable of performing most CNS functions but with low

I- 88

efficiency and less reliability. Specific circuits have evolved to increase the efficiency of
realtime processing and the amount of incoming data that can be handled.

(3) Network states are determined by a complex balance of excitatory and inhibitory influences with
rapid and extensive up and down regulation of receptors and channels.

(4) Random networks enter a rapid, highly regular oscillatory phase as total disinhibition is
approached. This oscillatory behavior is a basic network characteristic.

(5) All neurons in these networks are able to store information. The random network in culture may
become one of the most powerful experimental systems for detailed investigations of biochemical
and biophysical mechanisms of cellular and network information (i.e. pattern) storage.

So far the random biological network has not aroused much interest because it was not considered
representative of the intact CNS tissue. However, it is now apparent that "order" in the nervous
system must be seen statistically and that structure and function is linked less deterministically and
much more probabilistically than had heretofore been assumed. This seems to be especially true of
small networks where synaptic weights and activity dynamics exert as much influence over network
function as specific network structure (Getting, 1988). Therefore, investigations of random network
characteristics, including most probable pattern generation, capability limits, reliability, and fault
tolerance are important to studies of network behavior and to our understanding of why specific,
highly ordered networks evolved. It is clear that network dynamics can be studied quantitatively
with monolayer cultures and it should be possible to achieve a comprehensive theoretical explanation
of the internal dynamics and self-organization of random neuronal networks.

REFERENCES
Artola, A. and Singer, W. (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature
330:.641-652. Brown, T.H, Chapman, P.F., Kairiss, E.W., and Keenan, C.L. (1988) Long-term synaptic
potentiation. Science 242: 724-728. CamardoJ., ProshanskyE., and SchacterS. (1983) Identified Aplysia
neurons form specific chemical synapses in culture. J. Neurosci. 3:2621-2629. Cohen, A.H, Rossignol, S.,
and GrillnerS. (1988) Neural Control of Rhythmic Movement in Vertebrates. John Wiley & Sons, N.Y. Droge,
M.H, Gross, G.W., Hightower, M.H., and Czisny, L.E. (1986) Multielectrode analysis of coordinated,
multisite, rhythmic bursting in cultured CNS monolayer networks. J. Neurosci. 6: 1583-1592. Getting, P.A.
(1988) Comparative analysis of invertebrate central pattern generators. In: Neural Control of Rhythmic Movement
in Vertebrates (A.H. Cohen, S. Rossignol, S. Grillner, eds.) pp 101-128. John Wiley & Sons, N.Y. Getting, P.A.
(1989) Emerging principles governing the operation of neural networks. Ann. Rev. Neurosci. 12: 185-204.
Gordon, M., Fracek, S.P., and Gross, G.W.(1989) NMDA responses of small neuronal networks in culture.
Soc. Neurosci. Abst.l 5, in press. Griilner, S. (1985) Neurobiological bases of rhythmic motor acts in
vertebrates. Science 288: 143-149. Gross, G.W. (1979) Simultaneous single unit recording in vitro with a
photoetched, laser deinsulated gold, multimicmelectrode surface. MEEE Trans. Biomed. Eng. BME 26: 273-279.
Gross, G.W. and Lucas, J.H. (1982) Long-term monitoring of spontaneous single unit activity from neuronal
monolayer networks cultured on photoetched multielectrode surfaces. J. Electrophys. Tech. 9: 55-69. Gross, G.W.,
Wen, W., and Lin, J. (1985) Transparent indium-tin oxide patterns for extracellular multisite recording in
neuronal cultures. J. Neurosci. Meth. 15:243-252. Hightower, M. H. (1988) PhD Dissertation, University of
North Texas. Hooper, S.L. and Moulins, M. (1989) Switching of a neuron from one network to another by
sensory-induced changes in membrane properties. Science 244: 187-189. Koppel, N. and Ermentrout, G.B.
(1986) Symmetry and phase locking in chains of weakly coupled oscillators. Commun. on Pure and Applied Math.39:
623-660. Kowalski, J.M., Ansari, A., Prueitt, P.S., Dawes, R.L., and Gross, G.W. (1988) On
synchronization and phase locking in strongly coupled systems of planar rotators. Complex Systems 2:441-462.
Krasne, F.B. and Wine, JJ (1984) The production of crayfish tail flip escape responses. In: Neural
Mechanisms of Startle Behavior (R.C. Eaton, ed) pp179-211, Plenum, N.Y. Provine, R.R. (1972) Ontogeny of
bioelectric activity in the spinal cord of the chick embryo and its behavioral implications. Brain Res. 41: 365-378.
Sakaguchi, H. and Kuaramoto. Y.(1986) A soluble active rotator model showing phase transitions via mutual
entrainment. Prg. Theoret. Phys. 76: 576-581. Selverston, Al. (1985) Model Neural Networks and Behavior.
Plenum Press, N.Y. Zucker, R.S. (1988) Frequency dcpendent changes in excitatory synaptic efficacy. In:
Mechnisms of Epileptogenesis (M.A. Dichter, ed.). Plenum, N.Y., pp 153-167.

1- 89

A cognitive triangular relationship
Arno J. Klaassen

Delft university of technology, department of computer architecture
P.O. box 5031, 2600 GA Delft, the Netherlands

phone: +31-15-786177; telefax: +31-15-783622; email: arno~duteca.tudelft.nl

Abstract

A design method for cognitive systems is presented in relation to the Neuronal
Group Selection theory and the Modularity of Mind philosophy. It is indicated that
these three supply each other and that their combination makes it possible to design
cognitive systems no longer suffering from the brittleness problem.

1 A design method for a 2-layer cognitive system

Cognitive systems, i.e. systems capable of acquiring knowledge from their environment, have
not been very successful so far. One reason is the fact that they are implemented as symbolic
processes, which lack flexibility because such processes can solve properly only well-defined
problems which do not involve ambiguous data [10].

Another reason is that even the most simple cognitive system is complex. Since they are
implemented as symbolic processes one gets the drawbacks of symbolic processes: they must
be programmed by hand, which is hard to do for complex systems, and are evaluated serially,
which implies a low performance for complex systems. This fact of explicitly having to
program a system forms the basis of the aforesaid brittleness problem.

A while ago neural networks seemed to be a means to solve these problems. The idea was
that a large number of small processing elements doing numerical computation eventually
would perform better than a single powerful processor doing symbolic computation. However,
a cognitive system which performs perfectly well, the neural network of the human brain,
consists of about 1011 neurons [8]. But on the other hand neural networks nowadays consist
of just a couple of neurons. For instance a relatively complex neural network such as a
phoneme recognition network consists of just 384 neurons [11].

It remains doubtful whether such a neuial network can be scaled up to a size some orders of
magnitude larger and at the same time still can be handled properly by ordinary human
beings; I mean, learning and understanding a large network is far from trivial.
In [5,61 a method is indicated to design a system that more appeals to the spirit behind
massive parallelism but nevertheless remains workable and understandable. The heart of the
matter is to split the system into two layers of which neural networks form the lowest layer
(see Figure 1). The higher layer is formed by a symbolic system.

When a theory for cognitive systems fits in this framework it is to be expected that

1. to a certain extent the neural networks involved, can solve the problems mentioned in
the beginning of this section,

2. the total number of processing elements and interconnections between 'hem is of such
an order that really can be spoker of a massive-parallel system.

1- 90

/"

//

Symbolic system

NN (NN NN

Figure 1: Archiiecture of a 2-layer cognitive .ysitem

A very interesting theory in this respect is the neuronal group selection (NGS) theory of
Edelman [1,91. According to his theory two kinds of selection events play critical roles in
shaping the development of a neural system. During the formation of the system genetic
selection among competing neural networks and their processes determine the shape and
modal connectivity of a (sub-)network. Later, during experience and interactions with the
environment etc., connectionist selection, accomplished by synaptic modifications, determines
the final behavior of the system. In the next section I will shortly indicate the essential part of
NGS.

2 Neuronal Group Selection

The NGS theory is a purely biological theory from origin [1,91. Its main intention is to give a
possible explanation for the fact that a brain is capable of development, perception, memory
and learning. According to the theory a brain is dynamically organized into populations of
individually variant networks, the structure and function of which are selected during
development and interaction with the environment by means of selectionist's and
connectionist's principles.

The units of selection are neural networks which consist of about 50-10,000 neurons,
neuronal groups. These act as functional units. Roughly the theory makes the following three
assumptions: first genetic processes lead to the development of primary repertoires of
structurally variant neural networks; second synaptic modifications lead to the development of
secondary repertoires more fine-tuned for future use (survival of the fittest); and third the
existence of feedback at all levels. Or in Edelman's own words: "During experience and after
the receipt of input signals that are filtered and abstracted by sensory transducers, by feature
extraction networks and by feature correlators in mapped reentrant (feedback, A.K.)
sensorimotor systems, certain neuronal groups are selected over others in a competitive
fashion. [... I This process, in which groups that are more frequently stimulated are more
likely to be selected again, leads to the formation of a secondary repertoire of selected
neuronal groups which is dynamically maintained by synaptic alterations." [1](pp.45-46).

This theory fits in the 2-layer framework since naturally the neural networks form the first
layer, whereas the selectionist processes and overall feedback could be under control of the
symbolic upper layer.

Readers familiar with the modularity of mind philosophy may have noticed that the way
Edelman talks about sensory transducers and neural networks indicates that NGS and the

1- 91

/

I

//

2-layer framework fit in the philosophy, which I will describe in the next section. This is
salient because it means that a design method for, a biological theory about, and a
philosophy of cognitive systems meet here.

3 The modularity of mind and neural networks

In 1983 Fodor wrote an assay called "The modularity of mind" [2]. Maybe at first sight
Fodor is not the man to embrace for a connectionist researcher since he and Pylyshyn wrote a
year ago that we should give up the idea that (neural) networks offer a reasonable basis for
modeling cognitive processes in general"[3](p.68), although they present that view a little
more cautious than I. Nevertheless I think that the philosophy that Fodor has described in his
essay is very well suitable in the light of 2-layer cognitive systems and NGS. To explain I first
will give a short outline of the philosophy of Fodor.
His theory is a new version of faculty psychology. It alleges that there have to be postulated
essentially different kinds of (psychological) faculties in case to be able to explain the facts of
mental life. Fodor proposes a mixed horizontal and vertical faculty psychology. His functional
architecture consists of input systems and a central system. The input systems with sensory
transducers are vertical faculties, although Fodor calls them 'modular'. That is to say that
they operate independently of each other and independently of the central system. This
central system exhibits horizontal faculties.
Input systems have to have a number of properties. I will mention the most important ones
by which it is obvious that neural networks possess such properties as well. Input systems are
associated with fixed neural architecture, operate fast and are domain specific. This means
that each input system just has a limited view of and an equally limited knowledge about the
world. Further input systems are in two ways informationally encapsulated. This implies that
both an input system cannot dispose at all the information of the rest of the system and that
the central system cannot obtain all information gathered in an input system. This is the
property which makes input systems vertical faculties and in fact it is the most important one
because it provides a rationale for viewing a cognitive system as consisting of two layers. The
point is that according to Fodor input systems should act as reflexes. His a priori argument
for this is that otherwise they would become too slow: in perceiving a tiger on your retina you
do not want to be bothered by information whether your grandmother likes tigers or not,
whether that demonstration against tiger fur were tomorrow or the day after tomorrow, etc..
This can be reached by just not letting pass such information to the input systems. So their
is at least limited flow of information from the central system to the input system . Fodor is
not very clear about whether their may be no feedback at all between central systems and
input systems. I think their must be at least some feedback, if only for the reason that you
cannot learn the input systems if their is no possibility to tell them whether their output was
more or less correct. Further it is a common notion in psychology nowadays that expectations
partly determine what we perceive.
On the contrary the processes in the central system are not informationally encapsulated, not
domain specific, are slow, and they reason with the information of the input systems.

I- 92

4 Prospects and Conclusion

Summed up we have the following situation:

* We have got a philosophy claiming that a cognitive system should consist of input
systems and above it a central system.

* There is a brain theory asserting that a cognitive system should consist of repertoires of
neural networks and above them forming and maintaining rules.

* And there is a design method claiming that a cognitive system should consists of neural
networks and above them a symbolic upper layer.

From the perspective of artificial intelligence this gives the opportunity to design computer
architectures for cognitive systems that may be expected to suffer less from the brittleness
problem because they have as towers of strength two theories that try to declare the cognitive
functioning of a brain . And a brain doesn't suffer from the brittleness problem.
For easy prototyping such an architecture can be implemented e.g. on a Sun by means of
Kyoto Common Lisp and the Rochester Connectionist Simulator linked together. It is also
possible to implement them on special purpose hardware as currently developed at our
university [4,7I which can be controlled by a host computer. It is even possible to make a
system consisting of VLSI neural networks and controller chips.

References
[1] Gerald M. Edelman. Neural Darwinism: the theory of neuronal group selection. Basic Books, Nay York,

1988.

[2] Jerry A. Fodor. The modularity of mind. MIT Press, Cambridge Massachusetts, 1983.

[3] Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: a critical analysis.
Cognitin, 28(l-2.pp.3-71, March 1988.

[4] Jaap Hoekstra. On the use of multiprocessor systems for neural network simulations, submitted for
publication, 1989. (available from the author)

[5) Arno J. Klaassen. On m sive.pa,,rallel cognitive irchitectures, neural networks, and the modularity of
mind. submitted for ptublication, 1989. (available from the author)

(6] Arno J. Klaassen and Jaap Hoekstra. Massive-parallel cognitive architectures based on neural networks. In
Terry Huntsberger, editor, Fifth annual computer science symposium, pages pp.13-27, University of
South Carolina, Columbia. SC 29208, April 7-8 1989.

[7] Arno J. Klaassen and Mark Korsloot and J. M. Mulder. The suitability of transputer networks for various
classes of algorithms. In M. Reeve and S. Ericsson Zenith, editor, Parallel processing and artificial
intelligence, John Wiley & Sons Limited, Chichester, England, 1989.

[8] Bryan Kolb and Ian Q. Wh;shaw. Fundamentals of human neuropsychology. W.H. Freeman and
company. New York, 2nd edition, 1980.

(9] George N. Reeke, Jr. and Gerald M. Edelman. Real brains and artificial intelligence. Daedalus journal of
the american acadamy of art, and sciences, 117 (l):pp.14 3 -1 7 5, Winter 1988.

[10J Luc Steels. Artificial intelligence and complex dynamics. Al memo 88-2, VU. Brussels. 1988.

[11] A. Waibel et al. Phoneme recognition using time.delay neural networks. Technical Report TR-I-0006.
ATR interpreting telephony research laboratories, October 1987.

1- 93

SUB-NEURAL FACTORS OF NEURAL NETWORKS
DJuro Koruga

Molecular Machines Research Center
Faculty of Machine Engineering

University of Belgrade, 27. Marta 80
11000 Belgrade, Yugoslavia

1. Introduction

During the past thirty years interest in neural networks has generated a
number of different models. The main point in our research is sub-neural
activities on a molecular level. We have made a link between sub-neural
networks based on cytoskeleton and today's models of neural networks. This
approach shows that the sub-neural network based on cytoskeleton plays an
important role in both control mechanisms of nerve cell geometry and the
neural network.

2.Cytoskeleton

Cytoskeletal lattices include protein polymer microtubules (MT), actin.
intermediate filaments and more than fifteen other proteins. The major neural
architectural elements of MTs are cylindrical polymers, which also comprise of
cilia, mitotic spindles and other organelles. MTs are intimately involved in
dynamic biological activities, but mechanisms of "real time" regulation and
control of MTs or other cytoskeletal filaments are yet completely unknown.

Of all the biological structures that participate in bloinformation
molecular processes, only a small number work on such a principle that can be
applied to the computer sciences. One of these rare biological structures is a
microtubule, a self-organized organelle usually consisting of 13 subunits.
These cytological structures create a network of protofilaments in the cell
(neuron), similar to the way In which neurons create a network in the brain.

NTs are organelles present in nearly all eucariotic cells, composed of
equimolar amounts of the two globular (- 50,000 Dalton) subunits, a and j
tubulin, each having a similar amino acid composition and a similar globular
(sphere) shape. The subunits of tubulin molecules are assembled into long
tubular structures with an average exterior diameter of - 24nm, capable of
changes in length by self-assembly or disassembly of their subunits; sensitive
to cold, high hydrostatic pressure and several specific chemicals, such as
colchicine, vinblastine etc.. The stable form of tubulin, both in vivo and in
vitro Is a dimer, and the functional unit in MT assembly is the a-9
heterodimer. MTs build, with other proteins, complex assemblies, like the
mitotic spindle, centrioles, cilia and flagela, axonemes and neurotubules, and
they intervene in the cell shape, the motillity and mitosis, and some part of
cell functional information processing.

Microtubules participate in intracellular transport, addressing, growth
form and many other dynamic activities (1]. Some experimental results link
tubulin and microtubules to bloinformation processes such as memory and
learning [2,31. They are remarkable because they play two distinct and
separable roles: as structural materials (cytoskeleton) and as dynamic
machines that operate on a molecular level. They are carbon based
3D-intelligent machines which function on the nanometer size scale. Fr6hlIch
has shown that nonlinear dipole excitations among molecular subunits of
membranes and proteins of high dielectric strength, will result in coherent
oscillations (l0-l1 to 10-' sec fluctuations), lower frequency metastable
states, coherent polarization waves and long-range order. Coherent

I- 94

oscillations of NI's and other cytoskeletal lattice subunits may derive from
intrinsic oscillations dependent on a high dipole moment and dielectric
strength, across the XT wall, or coupling with oscillations In membranes (41.

Symmetry properties of hexagonal packing of protein monomers have been
used to explain the form patterns of viruses, flagella and MTs [51. Since
hexagonal packing and face-centered-cubic packing have equal density, we used
the Oh(6/4) symmetry group to explain HT organization and its information
system. Since packing is constructed from codes for digital transmission of
information, we believe that ITs possess a code system that can provide memory
and intracellular dynamic activities [6].

Oimension

1 2 T4 M 2' 3 32 36 4 44 AS 6 e CGS,~, ,•= m

8. 6 6. 6.8 6'tt, ,/Z, j,
6,6' , 8,6#

S° ' 9'0V

I I,58* 8.l. i

. ,, 6' ". 13

The value of normalized density of the packing of subunits depends

on the dimension In which the packing Is done. Since packing Is

constructed from codes for the digital transmission of information,
dimensions 11, 12 and 13 are optimal for Information processing.Thst

means that KTs are optimal structures for Information processing In

the neuron.

3.Nicrotubules and Neuron Geometry

It has been shown in tissue cultures of neuroblastoma cells that MTs
determine neuron geometry (I]. By using immunofluroscence it was demonstrated
that the shape of the neuron In the process of differentation is related to
the microtubule organizing centre (MTOC). Having In mind these experimental
facts and theoretical results from the information theory, we believe that
MT's dynamic activity in the process of the determination of neuron geomtry
possesses fractal properties.

Mrs, as a part of MTOC and cytoskeleton, generally possess some dynamical
properties, which are similar to fractal dynamics. Centrioles possess a
nine-fold symmetry and they are constructed of nine triplets, each containing
13 protofilaments. During the process of differenciation, the first step is
the maturation of the "mother" neuron, followed by the separation of centriole
pairs and their migration to establish the geometry of the "daughter" neuron.
NTOC is Involved In the orientation, geometry, timing of division, and growth
of the neuron In the process of differenciation. MTs with other cytoskeletal
structures, determine what neurons dynamically do, when and how they do It,
and the type of neurons they are.

Neurons with their dendrites and synapses geometricallv look like
fractals. Having In mind that cytosleketon determines the geometry of the
neuron, we believe that PTs are an attractor of neurons as a fractal.

1- 95

I •l

/r

Geniculdle Cortex Cortex 0
- axoins

Schenatlc diagram:a) neurons and their cortical connections, b) sketch of a
fractal tree.

4.A Neural Network boned on a Sub-Neural Factor

We have found that the NM structure is optimal for Information processing
on a sub-neural level [61. Here we consider such nonlinear control networks in
which the neuron response depends on: the input signal, sub-neural activities,
and Its interaction with other neurons. This control model has already been
used for response analysis of the vertebrate retina (71, but we believe that
It Is a better example for the explanation of the neural network based on
sub-neural factors.

The neural control network's model based on Mrs as a main sub-neural
factor, may exist in the form:

n t -a n ta Xo + ()=NLff J+X C jXj(t-W J}+f=lblj X X {T)e slk t-Tdr)

where: t-time; n-the number of neurons in the network; m-the number of MT In
the subneuron network; f I-the external Input to the i-th neuron at time t;

X -the activity function; ao -the constant rate characterized by the fact

that the stop charge input to the i-th neuron produced an expotential approach
from the Initial value X (o) to a steady-state firing rate X with a rate

I I
constant ao; blk-Inhibition factor for the i-th MT In case b k<o; excitation

factor for the i-th MT in case bik> o; C lk-the intraction coefficient i-th

neuron J-th neuron; , j-the time lag occuring in the transfer of the activity

of the J-th neuron to the i-th neuron; ML - 1/(l+e-u).

1- 96

NEURON I cone ctions

_ _ conections

NEURON 2

Neural network of two neurons utith two MT sub-neural activities
in each of them

5. Conclusion

The symmetry theory and HT structure lead to the conclusion that the
packing of tubulin subunits Is equal to information coding. This means that
Mrs possess code systems which can provide, in the neuron, dynamic Information
activities.

Sub-neural factors based on cytoskeleton and MTs play an important role
In both the control mechanism of neuron geometry and the neural naetwork.
Having in mind that geometric neurons look like fractals, we believe that
cytoskeleton and XTs are a fractal attractor of the neuron.

From the sub-neural factor point of view we can introduce a new research
approach In the field of neural networks in which the neuron Is not Just a
simple off-on element, but an element with a history.

References

[I] P.Dustin, "Microtubules", Springer-Verlag, Berlin - New York (1978).
(21 R.Mileusnid et al., '.earning and Chick Brain Tubulin, J. Neurochemistry,

Vol.34, 4:1007 (1980).
(3) S.P.R.Rose, Early visual experience, learning and neurochemical

plasticity In the rat and the chick, Phil, Trans, R.Soc. London B.
278-307 (1977).

(41 H.FrShllch, The extraordinary dielectric properties of biological
materials and the action of enzymes, Proc Nati Acad Sci. 72-4211 (1975).

[51 R.O.Erickson, Tubular Packing of Spheres in Biological Fine Structure,
Science, Vol. 181,No.4101:705-716 (1973).

16] D. Koruga, Microtubular Screw Symmetry:Packing of Spheres as a Latent
Bloinformation Code, Ann. New York Academy of Sciences, Vol.466, 953-955
(1986).

[71 M.N.Oguztorell. G.M.Steil and T.M.Caeli, Control Mechanisms of a Neural
Network, Biol. Cybern 54:21 (1986).

1- 97

COMPARISON OF THE MOORE-PENROSE AND DRAZIN GENERALIZED
INVERSES IN BIOLOGICAL COORDINATE SYSTEM TRANSFORMATIONS

LACZKO, J6zsef, Central Res. Inst. for Physics, H-1525 Budapest, POB 49, Hungary
LE GOFF, Bertrand, CNRS, Lab. Physiologie Neurosensorielle, Paris 75006, France

Introduction

Some local properties of coordinated movements of mechanical devices can be described and investi-
gated in engineering using linear algebraic methods in [21. Such methods appear to be useful in describ-
ing local properties of coordinated actions of multicomponental biological organisms as well; in particu-
lar regarding the existence and the uniqueness of a solution selected from an infinite number of possibili-
ties. Special attention is given to the "least squares method" in solving such problems by means of the
Moore-Penrose pseudo-inverse of the coefficient matrix of a linear equation system [1]. In an earlier
publication [61 one of us [T.S.B.) brought up the possibility of nature's use of the Drazin inverse [31 as
compared to the Moore-Penrose generalized inverse. In this paper, we follow up on that suggestion and
compare the potential of Moore-Penrose and Drazin inverses in neural computation.

Functional characteristics of the Moore-Penrose and the Drazin generalized inverse

The Moore-Penrose pseudo-inverse is widely used in engineering and more recently also in biology. A
characteristic feature of the Moore-Penrose pseudo-inverse is that it provides some kind of optimal so-
lution for a system of linear algebraic equations. Although the opti-. .zation criteria might be the min-
imization of energy in physical applications, it is a more interesting question if it could be an optimiza-
tion criteria in biological applications.

The Moore-Penrose pseudo-inverse is defined for any matrix whose elements belong to the complex field
and, for some special classes of matrices, there are easy computational methods for its calculation [9].
However, there are some algebraic properties that the Moore-Penrose pseudo-inverse does not possess.
Therefore, a mathematician can theorize that it can be useful for nature to apply another types of
pseudo-inverses like the Drazin inverse [6].

The Drazin inverse is useful in solving linear difierential equation systems, which is important e.g. in
calculation of the trajectory movements. It is also applicable if the work space is not linear (but alge-
braic), where besides the vector and matrix addition another operations (such as associative multipli-
cation) are also defined, permitting, E.g. consecutive execution of linear transformations.

Application to biological systems

An important question for coordinated movements of biological and artificial organisms is how to ex-press the spatial movement by overcomplete coordinate systems, defined intrinsically by the moving
structure. For instance, how to to decompose a displacement vector into more components than the num-
ber of dimensions of the external work space? Tensor Network Theory (cf. [91) offers a common mathe-
matical language for describing coordinated movements of biological and man-made structures 181. An
even more important remaining question is, however, how to select the coordinate system. It is a chal-
lenge to biologists and neuroscientists to find the correct internal coordinate systems for biological sys-
tems and especially for underlying neural networks that control them.

Once a coordinate system is defined, one faces distinct mathematical and computational problems. In
order to decompose a vector into more components than the number of dimensions of the work space, a
linear equation system has to be solved where the coefficient matrix is singular. In such a case motor
execution has an infinite number of solutions. A customary way of selecting onc particular solution is by

I- 98

using the least squares method, applied by Tensor Network Theory, the most compact geometrical the-
Ory of neural networks.

A key operation in Tensor Network Theory for coordinating an overcomplete number of components of a
biological action is the covariant-contravariant transformation. (e.g. in a sensorimotor transformation;
[91). In this case the transformation matrix is a real-valued symmetrical matrix (the Gram-matrix of
the intrinsic coordinate system). This matrix is singular because of the overcompleteness of the intrinsic
biological coordinate system (e.g. joint coordinate-system.) Thus, the contravariant-covariant trans-
formation is not invertible. However, a subspace may exist on which this transformation (the restric-
tion of the transformation to the subspace) is invertible. Tensor Network Theory can be seen, therefore,
as raising the rather general question what is the definition of those hyperspaces in which neural net-
works express their transformations to produce biological actions?

Internal hyperspaces and the Moore-Penrose versus Drazin generalized inverses

!t appears to be a natural, although not self-evident question to examine the class of hyperspaces on
which the transformation is invertible. Taking a particular transformation, we have the following
question at hand: does exist any subspace that the restriction of the transformation to this subspace is
invertible?

When investigating the case of square matrixes, take the following linearization equation system:

Axab
where x, and b are vectors of the n-dimensional complex vector space, and A in an n x n matrix with
complex elements. (It defines a linear transformation A on the n-dimensional complex vector space).

The range space of A is the set of all vectors which can be the result of the multiplication of the matrix
A by any vector. Denote the range space as R(A).

The nullspace of A is the set of vectors by which the multiplication of the matrix A, results he 0-vector.
Denote it as N(A).

It is easy to recognize that to make the linear transformation defined by the matrix A a one to one trans-
formation it must be restricted to a subspace, complementary to N(A).

Given a scalar product in the vector space, one can define angles between vectors. In this case an obvious
complementary subspace is the one which is orthogonal to N(A). Denote it by N(A)-. This space is the
range space of the conjugate transpose matrix of the matrix A. The conjugate transpose matrix is denoted
by A'.

This suggests the functional DEFINITION of the MOORE-PENROSE PSEUDO-INVERSE:

A+VzO if Ve R(--
and A+V=(AIN(A)-)" 1 if Ve R(A)

Pellionisz applied a constructive definition of the Moore-Penrose pseudoinverse of symmetrical matri-
ces by their eigenvectors and eigenvalues. This definition is very helpful for calculating the pseudoin-
verse. A quantitative example for a neural process which implements such a transformation is elabo-
rated in 1101.

The functional definition of the pseudoinverse helps one to generalize the definition.

1- 99

If the matrix is symmetrical with real elements, then R(A)=R(A*)=R(A+) and its range space is
orthogonal to its nullspace: R(A)=N(A) 1-. In this case, the Moore-Penrose pseudo-inverse defines a
partial isometry on R(A).

In the covariant-contravariant transformation, the range space of the transformation will satisfy the
required condition. Thus one easily finds a subspace which is invariant to the transformation. It has
the following properties:

1. The restriction of the contravariant covariant transformation tot his subspace is invertible.

2) Not only the covariant but also the contravariant coordinate vector which is found by the Moore-
Penrose pseudo-inverse is the element of the subspace.

Consequently, one can define an internal subspace in which the decomposition of an external vector to
overcomplete number of components is unique: to every covariant coordinate vector of the external vec-
tor there is one and only one contravariant coordinate vector in the subspace of the covariant coordinate
vectors.

One finds not only an internal coordinate system but a distinct internal subspace which is defined by the
coordinate system. The internal coordinate system may be defined by the geometry of the skeleto-mus-
cular system in the case of movement coordination.

Unfortunately, one does not always faces real-valued symmetrical matrices. Matrices which describe
functions or transformations implemented by neural networks, e.g. matrices of synaptic efficacies of neu-
ral networks ,are not necessarily symmetrical. For a singular non-symmetrical square matrix the above
mentioned 1, 2 properties usually do not hold. It is not always true, therefore, that the matrix is invert-
ible on the range space and that the range space of the pseudo-inverse is the same as the range space of
the matrix. What kind of inverse might be used, what kind of invariant subspace might be found in
such cases?

It is suggested, in such cases, to search for an invariant internal subspace using the Drazin inverse of the
matrix.

The first definition which was given by M.P. Drazin [31 in 1958 was an algebraic definition. Here, a
functional or geometrical definition is given.

If A is a real valued symmetrical matrix then R(A) is the orthogonal complementary subspace of N(A).
This is not true for every square matrix but there always exist a non-negative integer k such that R(Ak)
is a complementary subspace to N(Ak) . This k is called the index of the matrix A.

With this notation, the restriction of A to R(Ak) is invertible on R(Ak).

DEFINITION of the DRAZIN INVERSE AD of a square matrix A:

ADv=O if vE N(Ak)
and ADv=(AIR(Ak)lv if vE R(Ak)

Let us remember that for real-valued symmetrical matrices R(A)=N(A) 1 . (The index of such matrices
is 1). Consequently, the Moore-Penrose pseudoinverse and the Drazin inverse of a real-valued symmet-
rical matrix are identical.

1- 100

Conclusion

To find a generalized inverse of transformations implemented by neural networks, Tensor Network
Theory suggests the use the Moore-Penrose generalized inverse. This is a natural way to find invariant
internal subspaces. For real-valued symmetrical matrices, quantitative examples where elaborated,
and for movement coordination graphical computer programs were written using the Moore-Penrose
pseudo-inverse 14)[51171.

As an extension of the results for non-Hermitian matrices, the application of the Drazin generalized
inverse is suggested. It was shown above that for this class of matrices the Drazin inverse or the Moore-
Penrose pseudo-inverse will yield the same result.

The relationship between partial isometry and the Moore-Penrose pseudo-inverse of Hermitian matri-
ces was examined. In the future, in order to find internal invariant hyperspaces of non-Hermitian neu-
ral transformations, the relationship between the Drazin inverse of neuronal transformation and par-
tial isometry might be important to further investigate.

References

1. Albert, A. "Regression and the Moore-Penrose pseudoinverse." 1972 Academic Press. New York.

2. Campbell, S. I. and C. D. Meyer. "Generalized inverses of linear transformations." 1979 Pitman
Publishing LTD.

31 Drazin, M. P. Pseudoinverses in associative rings and semigroups. Amer. Math. Monthly. 65: 506-
514, 1958.

4. Laczk6, J. Coordinated activation of multijointed artificial limbs. SIAM Conf. on Applied
Geometry. A47, Albany, N.Y.,1987.

5. Laczk6, J., A. Pellionisz, H. Jongen and C. C. A. M. Gielen. Computer modeling of human forelimb
muscle activation in multidimensional intrinsic coordinate frames. Soc. Neurosci. Absts. 14/2- 955, 1988.

6. Laczk6, J., A. J. Pellionisz, B. W. Peterson and T. S. Buchanan. Multidimensional sensorimotor
"'patterns" arising from a graphics-based tensorial model of the neck-motor system. Soc. Neurosci.
Absts. 13: 372, 1987.

7. Lestienne, A., P. Liverneaux, J. Laczk6 and A. Pellionisz. Tensor model of the musculo-skeletal
head-neck system of the monkey. Suppl. to Vol. 22.(Proc. of IBRO II. World Congress): S658, 1987.

8. Pellionisz, A. Brain theory: Connecting neurobiology to robotics. Tensor analysis: utilizing intrinsic
coordinates to describe, understand and engineer functional geometries to intelligent organisms. J.
Theoret. Neurobiol. : 185-211, 1983.

9. Pellionisz, A. Coordination: A vector-matrix description of transformations of overcomplete CNS
coordinates and a tensorial solution using the Moore-Penrose generalized inverse. J. Theoret. Biol. 110:
353-375, 1984.

10. Pellionisz, A. and R. UinAs. Tensor Network Theory of the metaorganization of functional geome-
tries in the CNS. Neuroscience, 16: 245-274, 1985.

I - 101

GENNET - System for Computer Aided Neural Network Design
Using Genetic Algorithms

Borut Mariei6
Zoran Nikolov

CVT9 KoV JNA, Ilica 256b, YU-41000 ZAGREB, Yugoslavia

Abstract

The problem of finding optimal neural network architecture for solving a given task
is introduced. Basics of genetic algorithms as viable optimization method are
exposed. Characteristics of implemented system for network optimization using
genetic algorithms and current status of the work are described. Plans for the
future research are presented.

1. Introduction

Currently a number of neural network models exist. However, a rather common
problem faced by neural network designers is the lack of theoretically grounded
advice on network architecture to be chosen in order to solve a given problem.
Some analysis though [1], give insight in the network architecture required to
enable formation of decision regions of a certain type. However, in multidimensional
problem spaces, it is difficult or even impossible to visualize the simplest type of
decision regions that would suffice. Hence, one still has to experiment a lot in order
to find a network architecture that yields acceptable results with minimum
computational effort. This process can be seen as a trial-and-error based one,
during which network architecture parameter space is investigated. This is usually
done with network simulators [2] designed to make this intrinsically uncomfortable
task as comfortable as possible.

2. Designing Neural Networks Using Genetic Algorithms

Thus, design process of a neural network of a given model may be viewed as an
optimization process: the most appropriate network architecture for solving a given
problem has to be found. Analogy may easily be noticed in the real world - living
beings may be thought of as systems trying to overcame the entropy by storing
the information about the given "infinite" environment in finite space and time.
Each phenotype innately possesses some knowledge which makes it more or less fit
for "life-time" learning. Evolution appears as a mechanism for phenotype inna.e
knowledge optimization. Mathematical models of evolution are known as genetic
algorithms (3, 4]. Recently an optimization algorithm of this class [5, 6], that is
suitable for execution on connectionist architectures, has been proposed. It is also
suggested to use genetic algorithms for neural network design [7]. Before
proceeding with an overview of a system that realizes that task, it is necessary to
introduce some common concepts of genetic algorithms. Basic idea of such an
algorithm is sketched in Table 1.

1- 102

Create initial population of entities to be optimized;
Evaluate entities in the population;
repeat

Choose parent entities, whose genotypes are to be used in order to forme
new ones;

Forme new genotypes;
Evaluate entities formed according to new genotypes;
According to some criteria, replace some entities in previous population

with new entities, thus forming a new population generation;
SIterminating criteria is achieved.

Table 1. The basic idea of genetic algorithm

In the neural network design context, entity is one of the possible network
architecture variations; evaluation of the network implies its testing in order to
acquire some numeric measure of its fitness for solving a given problem; network
genotype represents suitably encoded network architecture parameters; and finally,
formation of new genotypes implies using some genetic operators (such as
crossover, mutation, inversion) on selected genotypes, thus forming new ones.

3. System GENNET

CANDI system GENNET is currently designed and implemented to support
optimization of error back-propagation networks [81. It consists of two components,
Figure 1: GEN and NET. While GEN embodies the essence of genetic algorithm, NET
creates the network according to the genotype produced by GEN, and then
evaluates it.

GEN. Network designer communicates with the system through GEN. He/she may
choose from one of the three genetic algorithms [5]: iterated genetic search using
uniform combination, iterated genetic search using ordered combination, or
stochastic iterated genetic hillclimbing. Prior to the network optimization, genetic
algorithm performance may be tested on one of the three predefined two-
dimensional functions. Before starting the network optimization process, user
should define characteristics and size of the network parameter space being
searched. This is done using a simple language which enables one to specify which
parameters are constant and which are being optimized. The latter ones may be of
real (such as learning rate constants) or integer type (such as number of hidden
layers and their sizes). For each optimized parameter, its minimum and maximum
value as %ell as change resolution are specified. During its operation, GEN invokes
NET when evaluation of a network is required according to the used algorithm.
Interprocess data passing is realized via files.

CAND stays for Computer Aided Network Design, as suggested by Vladimir

l1ini1.

1 - 103

*.opt *.patreturn.zzz <

P> *.his

G E N -D data.zzz - D N E T

data flow -D zzz.nci -

control flow >>zzz.net

Figure 1. The GENNET system organization

NET. This component may in fact be used as a stand alone error back-propagation
network simulator. In this mode user may interactively create network architecture
description, create the training set, save learned weights, get previously saved
weights, test the network and change some of the learning algorithm parameters.

However, NET is able to detect if it is being invoked by GEN. In that case it creates
a network according to its description prepared by GEN. Then it initiates a
predetermined number of training sessions, each one lasting for a predetermined

number of epochs. Based on the learning history, it formes a numerical measure of
network's quality. Control is then returned to GEN.

During the whole optimization process several log files are continuously being
updated.

4. Current status and future work

Described system is implemented using C language. Currently it is being ported to
the UNIX environment on CONVEX system available at Zagreb University Computing
Center. We intend to report on some simple applications of it in the next six months.
The problem of choosing adequate network fitness measure appears to be
particularly interesting for investigation. Currently the fitness is determined on
the bases of minimum total sum of squares error encountered during fixed length
training session. However, rather frequent cases of learning curve oscillations
(which are due to inadequate learning rate constants) should also be taken into

account.

We are aware of prohibitively large time complexity of the system described, when
applied to the optimization of large parameter spaces and problems with large

training sets. That is why such a system is not seen as a replacement for the
existing ones, but rather as a subsystem of some advanced (and more distant) CAND

1- 104

system. Such a system might be used in "manual mode" offering highly interactive-
graphical man-machine interfaces, library support of various network modp:s,
expert (possibly classifier) advising system on design tracks to investigate,
information retrieval system enabling convenient access to the body of network
design know-how. However, it could also be used in "automatic mode", i.e. it would
posses capability of network architecture optimization of a sort described in this
paper.

Acknowledgement

The help of our colleagues at the Faculty of Electrical Engineering at Zagreb,
through which we are given access to Zagreb University Computing Center CONVEX
facility, is gratefully acknowledged.

5. References

[I] Huang W Y, Lippmann R P, Comparisons Between Neural Net and Conventional
Classifiers, Proceedings of the IEEEE First International Conference on
Neural Networks, San Diego, California, June 21-24, 1987, vol. IV, IV-485 to
IV-493

(2] D'Autrechy C L, Reggia J A, Sutton III G G, Goodall S M, A general-purpose
simulation environment for developing connectionist models, Simulation, vol.
51, no 1, 5-19 (1988)

(3] Holland J H, Holyoak K J, Nisbett R E, Thagard P R, Induction - Processes
of Inference, Learning, and Discovery, The MIT Press, Cambridge,
Massachusetts, 1986

[4] DeJong K, Adaptive System Design: A Genetic Approach, IEEE Transactions
on Systems, Man, and Cybernetics, vol. SMC-10, no. 9, 566-574 (1980)

[5] Ackley D H, Stochastic iterated genetic hillclimbing, PhD Theses (CMU-CS-
87-107), Department of CS, Carnegie Mellon University, Pittsburgh, PA (1987)

[61 Ackley D H, An Empirical Study of Bit Vector Function Optimization; In:
Davis L (editor), Genetic Algorithms and Simulated Annealing, Pitman,
London, 1987

[7) Bergman A, Variation and Selection: An Evolutionary Model of Learning in
Neural Networks, Abstracts of the First Annual INNS Meeting, Boston, 1988,
pg. 75

(8] Rumelhart D E, Hinton G E, Williams R J, Learning Internal Representations
by Error Propagation; In: Rumelhart D E, McClelland J L (editors), Parallel
Distributed Processing - Explorations in the Microstructure of Cognition,
Volume 1: Foundations, The MIT Press, Cambridge, Massachusetts, 1986

1- 105

SYNTHETIC CEREBELLUM;
WHAT IT MAY DO, AND HOW IT MAY DO IT.

Mahmood J. Nahvi
Electronic and Electrical Engineering Department

California Polytechnic State University
San Luis Obispo, California 93407 USA

Cerebellum as a Controller

Cerebellum plays an important role in posture and movement
control. One of its functions is to coordinate complex sequences
of motor acts such that the total movement is smooth, accurate
and without osscillation and overshoot. When this function is
lost movement is decomposed into individual segments which are
inaccurate and oscillatory. To perform the above function, in
addition to signals from higher stations of the central nervous
system, the cerebellum receives short latency proprioceptive and
extroceptive feedbacks from periphery (including auditory,
visual, and tactile information). The cerebellar cortex has a
unique morphology and architecture, with a repetitive geometrical
structure which is the same throughout the whole cerebellum [1].

As a controller in the engineering sense, it handles a large
number of control variables (related to large set of nerve and
muscle fibers) and involves several reference spaces (position/
velocity spaces in cartesian and joint coordinates , and the
spaces of neural activity at the motor unit level or higher up.)

What considerations and constraints apply to the design of a
"cerebellar controller" in a synthetic motor control system? And,
if such a controller is to be implemented by an artificial neural
network, how do those considerations and constraints affect its
architecture? The present short note touches upon some aspects of
the above questions.

Trajectory Planning or Dynamics Compensation?

Neural signals arriving at the muscles to produce a desired
movement have two functions: 1) They carry the information about
the pattern of the desired movement, and 2) They compensation for
dynamics of the muscles and the load, including the environment.
The first function comes from trajectory planning which produces
"reference commands". The second function makes the system track
the "reference commands" despite its dynamics, variations, and
interferences. When the system has negligible dynamics, the first
function dominates. The patterns of neural activities then simply
reflect the patterns of the desired motion. However, when the
system has appreciable dynamics the neural signals become
complex despite of the desired movement being simple. The complex
patterns of EMG activities recorded from muscles in a fast
extension of the loaded human arm, with the desired motion being
a smooth displacement of the hand with a simple bell-shaped speed
profile, is an example of such a case [2].

1-106

In synthetic control systems such as robotic manipulators
trajectory planning is normally done separately. The controller,
being a simple feedback servo-loop or an implementation of an
advanced adaptive algorithm including feed-forward and feedback,
is then subordinate to the trajectories. Its task is dynamic
compensation.

However, if the information at it the performed movement and
its consequences is sent back throu• several nested delay loops
built around various reference spaces mentioned previously, then
trajectory planning and dynamics compensation become coupled. In
such a case, even though the controller is subordinate to the
movement plans imposed on it from a central system, it needs to
be concerned with trajectory planning. Therefore, if a synthetic
cerebellum is to take over the movement unexpectedly, its
capabilities should go beyond that of "smoothening" the multiple
segments of the pre-planned trajectories.

Dynamics Compensation by Matching the Command to the System

Dynamics compensation does not always mean solving for the
inverse in the equation of motion. The following two inter-
related examples illustrate control signals which are not found
by inverse dynamic or its approximation. Rather, it may be said
that they have been modified to match the reference command to
the system and the environment, observing given constraints.

Example 1. In a second order system with damped oscillatory step
response a controller can produce a deadbeat step response in
finite time as illustrated in Fig.l. Other classes of modified
inputs can also move the system from an initial state to a final
state within a specified time with a smooth transition. The
choice depends on optimality criteria, desired transition time,
speed profile, constraints on magnitude of the input, its rise
time, the area under it, etc. The deadbeat effect is neither due
to approximating the inverse of the system, nor friction, nor
reversal of the input to cause active break. Rather, the
controller may be said to match the command to the system, in
open-loop form, feedback, or their combinations.

Example 2. In rapid extensions of the arm in vertical plane the
hand moves smoothly with a bell-shaped speed profile. Forearm
trajectories are also smooth and have speed profiles similar to
that of the hand. The upper arm trajectories may have three
segments and bi-modal speed profiles. As one moves from central
to peripheral points on the arm, the three segments merge
together, producing smooth curves (Fig. 2).

Generally, the triphasic activities of biceps and triceps in
such motions have been modeled by acceleration and deceleration
periods in accordance with approximation to the inverse equation.
However, the biceps activity at the peak of forearm's speed, and

1- 107

its quietness during the deceleration phase of the forearm can
hardly be interpreted by such a simple model and it is contrary
to expectations derived from it [3]. An alternative interpretation
based on the concept of matching the signa to the system can
resolve the above apparent contradiction (4].

The simple refrence commands in the above two examples have
been modified, under some constraints, into more complex control
signals to match to the system and the environment.

Retina and Cerebellar Cortex as Sensory and Motor Interfaces with
Outside: Similarities and Differences

Suppose the function of synthetic cerebellum in a sensory-
motor system is to interface its motor output to the outside
world. In a way, this function is a mirror image of the function
of a retina which interfaces the outside world to the sensory
input of the system.

Similarities:
The retina enhances the incoming sensory image, being static

or time-varying, by extracting its useful features. It produces
mappings of many-to-one nature. This helps reduce the amount of
data going to the system.

The cerebellum enhances the out-going motor images, being
static as in posture or time-varying as in an evolving movement,
by introducing necessary features in the motor commands. It
produces maps of one-to-many nature. This helps reduce the amount
of data needed to come from the system.

The above similar functions may be implemented by similar
basic neural network circuits such as lateral inhibition.

Differences:
The perception of time-varying sensory images which come to

the system may not require high speed processing. However,
generation of time-varying motor images which go out to produce
evolving movements, especially when the desired movements are
fast, should be rapid [5]. Moreover, an ability to scale the time
axis with any desired factor is a very advantageous featur for
the synthetic cerebellum. Therefore, for the purpose of time axis
generation, the synthetic cerebellum needs to employ not
computationally extensive algorithms but hard-wired circuits with
adjustable parameters. Parallels from neural network of the
living cerebellum may be useful in this respect [6,7].

References

(1] M. Ito, "The Cerebellum and Neural Control", Raven Press 1984

[2] M.J. Nahvi, "Fast movements of human arm: Reflections on
control issues", IEEE Intl.Conf.SMC. Nov. 989, Cambridge., MA.

[3] C.D. Marsden, J. A. Obeso and J. C. Rothwell, "The function

1- 108

of the antagonist muscle during fast limb movement in man".
J. Physiol. vol. 335, pp 1-13, 1983

[41 M.J. Nahvi, "Extensions of human arm in vertical plane",
parts I and II, prepared for publication, 1989

[5] M.J. Nahvi M.J. and N. A. Farahbakhsh, "Characteristics of
fast hand movement", Proc. 4-th Intl. Conf. in Electrical
Engsi.nei±Li , pp 572-581, Shiraz, May 1974

(6] M.J. Nahvi and K. Daroudi, "Propagation of activity in a
uni-directional network with feedback; Parallels with the
cerebellar cortex", abstarct, the 14th Annual Meeting.
Society for Neurosciences, October 10-15, 1984, Anaheim. CA.

[7] O.Oscarson, "Functional units of cerebellum; Sagital zones and
microzones", Trends Neurosci. vol. 2 pp 1 4 3 - 1 4 4 , 1979

idl

%.'.S., :*.-f ,..

- I * I / ,t *

1'

I;,', . •~ ...
6 J

I

IV

1- 109

Cognition and Neural Computing
An Interdisciplinary Approach

Markus F. PESCHL1

Keywords: cognitive modeling, cognition, artificial life, adaptation, Parallel Distributed Processing, Learning,

structural coupling.

1 Motivation

The symbolic approach of orthodox Al has reached its limits in the domain of cognitive modeling. This is
due to a non-interdisciplinary or - better to say - pseudo-interdisciplinary manner of investigating cognition.
To put this into a few words:

Both orthodox Al and cognitive psychology use models which are restricted to symbols or linguistically
describable behavior. NEWELL & SIMON's idea of describing cognitive processes by means of symbols is
called the "Physical Symbol Systems Hypothesis" (e.g. [NEWE 76]). This approach is quite obvious, it
expresses, however, the unreflected use of language, symbols, etc. and can withstand neither philosophical
nor epistemological arguments. It ignores, for example, the fact that our actions are controlled by unconscious
subcognitive processes ('tacit knowledge" [POLA 66]) having nothing in common with language, words,....
One only can speak of them in terms of natural language from the observer's point of view. Stated another
way, this means that we have to distinguish between the observed behavior (and how it is described) and
the way how this behavior is generated (i.e. the discrimination of the inner and outer point of view).
Orthodox Al does not make this distinction and tries to model inner processes by means of outer (linguistic)
descriptions. This seems to be one of the main reasons why the "symbolic approach" is doomed to failure
in the domain of cognitive modeling.

The aim of this paper is to show an alternative approach to investigating, modeling and finding a (more)
adequate way of explaining, describing and interpreting cognition. For that reason we have to search for a
way of modeling cognition which is neither resting on nor restrited to language (i.e. linguistic descriptions
which are mapped to symbol manipulating systems), in which language is embedded, however; in other
words: as linguistic descriptions are only categories in the obszrver's cognitive domain, the model should not
make use of language or symbols in order to describe or generate cognitive processes; so we have to look out
for an alternative approach.

2 PDP and Cognitive Modeling

Parallel Distributed Processing (PDP, "neural computing", "connectionism",. ..) represents an alternative
approach and offers some advantages in the domain of cognitive modeling, because of being close to the
natural nervous system's organization (in HI.MATURANA's sense). It is important to annotate, however,
that our cognitive model does not follow the usual PDP paradigm (symbolic input is coded as a pattern of
activations spreading through the network; the output pattern is interpreted as a code for a symbol); it is
not provided with an interface for symbolic in/output. Communication with the environment takes place
over sensors and effectors; i.e. there is only physical interaction with the medium. Language is embedded in
this way of physical interaction with the environment.

Thus our cognitive model has direct access to the medium and we are not confronted with the problem
of linguistically mapping environment to the cognitive system (as it has to be done in orthodox AI) any
more, because the interface is coded analogously (i.e. the sensors of a modality transforms the stimulus into
an unspecific signal (neural activity) being proportional to the stimulus' intensity). On the other hand the
problem of architecture and how to position sensors and effectors arises. The output of the cognitive system
is generated by effectors changing the medium or changing the system's position in the medium. This implies
the following feedbackloop: action by the effectors =changes in the environment =:,changes in the sensory

'Dept. of Epistemology and Cognitive Science (University of Vienna), Sensengasse S/9, A-1090 \&IEz, AUSTRIA, EU-
ROPE, Tel. -43 222/42760141; Fax: -43 222 4M838.

1- 110

=alteration of the inner state =*action by the effectors =:*... ad infinitum. The network's architecture itself
is highly recursive, giving rise to a system with an inner state being perturbated by the environment.

2.1 Epistemological Aspects

If we are interested in finding an adequate model for cognition, it is by far not sufficient to consider only
aspects of computer science and (mathematical) logic (as orthododx Al does). We rather have to take into
account an interdisciplinary point of view, as the investigation of topics such as knowledge, common sense,
perception, learning, language, etc: requires an mnterdisciplinary approach. The idea of this project is to
show the possibilities and implications of combining H.MATURANA's epistemological and neurobiological
concepts with the PDP paradigm. Due to the very limited space we can pick out only two of the most most
important points:

(i): The universal concept of structural coupling is the crucial point in MATURANA's theories [*IATU 78]
and can be modeled with neural networks as they are capable of adaptat;on in very small increments; coupling
to the medium or to other cognitive systems arises as a result of a sequence of mutual perturbations and
adaptations (i.e. recursive interactions).

(ii) MATURANA'S idea of knowledge and its representation [MATU 70E] is very near to the concepts of
distributed representation (e.g. [IINT 86]). We have to give up the idea of mapping the environment to
linguistic structures, but rather think of a sort of 'representaiionfree representation' (as I call it); there is
no need of an explicit (linguistic) relation between representans and representandum. As one consequence
the notion of knowledge has to be redefined as the ability of behaving adequately in a certain situation
[MATU 70E).

In short, MATURANA's approach to understanding and describing cognition represents a sound basis
for cognitive modeling covering and considering as well philosophical, epistemological, neurobiological and
empirical questions (MATURANA'S theories arise from cybernetics and system theory).

3 The Model and its Environment

The basic idea is to construct a model being 'directly' linked to its environment, without having any symbolic
instances inbetween, and using a PDP network for generating its behavior.

- Our cognitive model (C.M.) moves around in a two-dimensional plane (=fig 1) and itself has the
shape of a rectangle.

- At each time step - we use a discrete time system - C.M. has a certain velocity v (being generated by
the effectors) and a certain angle , (=fig. I).

- At the moment G.M. is equipped with four effectors being controlled by the "motor units"' activations.
These effectors are responsible for the movement, as they produce an acceleration (being proportional
to the motor unit's activation) in each of the four directions at each time step. Suming up the 'old'
velocity vector, the resulting velocity of the four accelerations and a friction term results in the new
position and velocity of the C.M. .

- So far C.M. is provided with two types of sensors:

(i) 'tactile sense': as can be seen in fig. 1 C.-M. is surrounded with 8 tactile sensors: i.e. they are like
cats' whiskers and signalize a collision with an object in the medium.

(ii) 'visual system': G.M. is equipped with a (2-dimensional) retina being studded with optical recep-
tors. each of which transforming the intensity of the light beam striking it into a neural activity
which perturbates the inner state of the cognitive system. The intensity of each light beamn is
computed by an adapted version of a ray tracing algorithm (in two dimensions) as it is well known
from computer graphics and computer animation [FOLE 82].

- The envzronment consists of boxes (at the moment); i.e. the C.H. 's task is to learn to avoid col-
lisions with those boxes having an certain light intensity (to differentiate them from the rest of the
environment).

1 - 111

Shindracei -, 4 accelerations
LZ • .; / A,

I. , •// -...

• ' - optical system and retina
so~l-- - -- - - - - -

tactical sensors

Scognitive system

Figure 1: The cognitive model and its environment.

- For the future we are planing to extend the complexity of the environment and tasks to learn. CM. will
be provided with more complex effectors and sensors (e.g. for manipulating its environment, for
'tasting', etc.).

3.1 Simulation and Architecture

C.M. may be provided with several network architectures being connected to the peripheral system (i.e.
effectors and sensors). Lateral inhibition is an important part of the architecture to obtain sharp sensory
data for further processing. As already stated, the C.M. is equipped with a recursive architecture, so that
the inner dynamics is responsible for the structure determined organization being perturbated by the signals
which are received by the tactile and optical receptors.

Learning takes place at each moment; so we do not differentiate between a learning phase and a *running
phase'. This seems to be a crucial point concering the adequacy of the cognitive model, as each interaction
with the environment and/or of the inner states with each other brings about a change in the system's

knowledge. As the activation- and weight values are continuous (e.g. ai E [0, 1]) we use the HEBBian
learning rule [HEBB 491 for continuous values, being capable of increasing and decreasing weights. We
are working on a modified version of this learning algorithm bringing better results. There are as well
weights which are changeable as weights having a fixed value (e.g. connections being responsible for lateral
inhibition).

As already stated, methods from computer graphics are used for the computation of the cognitive system's
position, of visual stimuli, etc. In eq. (1) an example for the transformation matrices is given, where (z' y' 1)
is the CM. 's new position in the (z,y)-plane, i is the rotation angle (as shown in fig. 1), Az and Ay are
the translation increments in z and y direction and (z y I) is C.M. 's old position.

(z' y')=(z y) -sin cosP 0 0 10 (0)
0 0 1 AXr Ay I

3.2 First Results

It is very interesting to observe the C.M. just after initialisation. As weights have random values movements
are quite chaotic and make think of a very young animal moving around clumsyly and 'exploring' everything.
As the C.M. is learning at each moment, movements get more planed and the number of collisions with the
boxes is decreasing. It is important to say, however, taht the (network) architecture has to be designed
in such a way that it is possible to learn to avoid the hindrances for the C.1.. There is no need of any
symbolic structure which says that it has to learn to avoid collsions with the boxes (this knowledge is learned
by adaptation).

I- 112

It can also be observed that it is very rarely for the C.M. to come into the situation of having to learn;
i.e. most of its time ..M is just moving around without colliding and thus nearly no learning the task of
avoiding the hindraces. This seems to be an important observation, because natural cognitive systems are as
well not always learning one task, but rather spend most of their time with roaming about. They relatively
seldom get into the situation of having to learn.

4 Conclusion and Perspectives

A non symbolic model for cognition has been presented. As it is directly coupled to the environment no
symbolic in/output is needed any more. This is due to the paradigm of PDP providing the possibility of
subsymbolic processing. This interdisciplinary approach which is influnced by H.MATURANA's concepts of
cognition, language, etc. has some interesting implications which can be summed up as follows:

" Behavior may be seen and investigated from two points of view: (a) the 'outer': one can observe
the C.M. in the same manner as behaviorists do; inner processes are of no interest. This is a sort of
analytical approach.

(b) the 'inner': the alternative approach could be called the synthetic or generative approach. Designing
the network architecture means building up the basis for generating behavior, which is observed as
described in (a).Thus it is possible to combine those two aspects (the analytical and synthetic) and to
investigate the influences of several architectures on the observed behavior.

" Language is embedded in the physical interactions and is seen as a phenomenon in a very complex
consensual domain. We have to investigate low level (non linguisticy interaction at first, and only
then we are capable of investigating (natural, symbolic) language (and not the other way around as
orthodox Al does!).

" The constructivist view of knowledge (which is represented in a distributed way) is placed into the
foreground, as the environment is perceived by a set of sensors which determine which sort of infor-
mation can get into the system. As the C.M. is capable of learning, architecture determines how the
environment is represented in the network (no linguistic mapping!).

For future work we think of enlarging the environment, the motorsystem and sensory, test various
architectures, etc. In a further step it is planed to simulate two or even more cognitive systems (at
once). Thus not only the interaction environment : C.M. , but also the interaction C.M. CU.M. may
be investigated ("society of C.M. s").

References
[FOLE 82] Foley J.D. & van Dam A. (1982): Fundamentals of Interactive Computer Graphics; Addison- Wesely

Publishing Company, 1982.

[HEBB 49] Hebb D.O. (1949): The Organization of Behavior; New York: Wiley.

[HINT 86] Hinton G.E., & Sejnowski T.J. (1986): Learning and Relearning in Boltzmann Machines; in Rumelhart
D.E., Parallel Distributed Processing, Vol 1, pp 282-316, MIIT Press, Cambridge, Massachusetts.

[MATU TOE] Maturana H.R. (1970): Biology of Cognition; in /l.R.Maturana & F.J. Vareln, Autopoiesis and Cogni-
tion: pp 2-60, D.Reidel Publishing Company, Dordrcclht, Boston (1980).

[MATU 78] Maturana H.R. (1978): Kognition; in Schmidt, Der Diskurs des Radiknlen KonstruktvLismus, pp 89-118,
Suhrkamp, stw 636 (1987).

[NEWE 76] Newell A. & Simon H.A. (1976): Computer Science as Empirical Inquiry: Symbols and Search; Com.
munications of the ACM, March 1976, Vol. 19, Number 3, pp 113-126

[POLA 66] Polanyi .M. (1966): The Tacit Dimension (Tmpliziies Wissen); Doubleday b* Company. Inc. (1966).Gardcn
City. New York (Suhrkamp-Taschenbuch II'i.qsenschaft. siw 54.7 (1985). Frankfurt/lf).

1- 113

MOTION DETECTION IN THE VISUAL CORTEX OF THE CAT

Stanislav Reinis and David S. Weiss

Department of Psychology
University of Waterloo

Waterloo, Ontario
N2L 3G 1, Canada

ABSTRACT

The recognition of motion in the cat is accomplished by complex cells in area 18 of the cerebral cortex. The recep-
tive fields (RFs) of the complex cells are formed by a discontinuous accumulation of subunits (active points) which
respond to a moving stimulus. Active point density is greatest in the central excitatory core of the RF and least in the
peripheral portions of the RF.

Although the RF cores of neighboring cells overlap, the distribution of their respective active points is comple-
mentary. A single active point records the position of a moving feature within a small segment of the RF. The same
feature then stimulates an adjacent active point belonging to a neighboring cortical cell within the network. The
movement of the feature is represented by the sequential activation of complementary active points and the subse-
quent interaction between neighboring cells.

Mass correlograms calculated from the multiple cell activity records illustrate the interaction between comple-
mentary visual cells. A regular oscillating activity within the mass correlogram is generated when a moving visual
stimulus activates a common RF field. A model of neuronal interactions derived from the mass correlograms shows
that the regular oscillatory pattern of the correlograms is actually caused by a rather irregular but mutually comple-
mentary firing of individual units. Mass correlograms calculated up to 1000 msec intervals show that some cells are
able to follow the moving stimulus predominantly along a short pathway while other systems follow the stimulus
along both long and short pathways. There is, however, a gradual transition between the two types of cellular sys-
tems.

INTRODUCTION

The informational content of brain activity depends on complex interactions involving the simultaneous generation
and parallel passage of spatially distributed nerve impulses. A simultaneous recording of impulse activity from sev-
eral neurons may allow an analysis of these interactions and related brain functions. In this paper, we present some
new findings on the detection of motion by neuronal systems in the mammalian cerebral cortex.

The two general models of motion recognition by the visual system are the correlation model and the gradient
model. Data presented in this paper indicate that the correlation model is the more probable system of motion detec-
tion.

MATERIALS and METHODS

Subjects. Adult cats of both sexes were used in these experiments. The animals were immobilized with pancuro-
nium bromide and anesthetized with nitrous oxide. Superficial wounds were infiltrated with a long-term local
anesthetic.

The Visual Stimulus. The animals were positioned in front of a transparent plexiglas screen covered with Albanene
tracing paper. Visual stimuli consisted of moving light bars which were rear-projected onto the screen. The light
bars were presented at a rate of 3 deg/sec, and were either 1 or 13 degrees of visual angle in length. The 1 light bar
was used to plot the RFs. The 130 light bar was used for the determination of the directional preference of the cell as
well as for the recording of sweeps from which the correlograms were calculated.

Electrophysiological Recording. Neuronal activity was recorded with tungsten microelectrodes insulated with
epoxy resin (1-2 MCI) from area 18 of the visual cortex. Pre-amplified neuroelectric signals from the cortex were
digitized and evaluated by an IBM Personal Computer. The output from the preamplificrs to the A,D converter was
adjusted so that the amplitude of the spikes produced by the cell nearest to the recording electrode was 1000 mV.
This cell was designated the leading cell of the network. The lower limit of the leading cell amplitude was 875 mV.

1- 114

In several experiments we were able to distinguish and record from a second leading cell with an amplitude
between 750 and 875 mV. Neuronal activity was also recorded from a group of units which surrounded the leading
cell(s). This background or mass activity was registered in a voltage window between 375 and 500 mV. From the
ratio of leading cell to mass activity spikes we estimated that our microelectrodes were recording potentials from 10
to 20 visual cells simultaneously.

Receptive Field Plots. The internal structure of each RF was determined within a rectangle 15 by 25 degrees of vis-
ual angle. The rectangle was centered on the tracing paper around the approximate location of each leading celi's
RF. The short side of the rectangle, parallel to the long axis of the RF. was divided into 15 1* bands. The 1* light bar
stimulus was presented along each band fifty times. The number of spikes which accumulated over the 50 stimulus
presentations were displayed as short vertical bars in the exact positions where the spikes were originally detected.
RFs were determined for the leading cell(s) as well as for the mass activity.

Leading Cell and Mass Activity Correlograms. Multiunit records for the calculation of correlograms were elicited
by the IV stimulus. The stimulus was presented in eight directions beginning with the optimal angle of directional
preference. Neuronal responses were also recotded in the absence of visual stimulation. As with the determination of
the RFs, correlograms were calculated for one or two individual leading cells and the mass activity. The position of
each spike in the multiunit record was determined to the nearest millisecond. Significant neuronal interactions
between and within each level were evaluated from the histograms of all interspike intervals up to 1000 msec (auto-
and crosacorrelograms). The histograms describing the mass activity were called mass correlograms.

Functional models of the complex neuronal interactions within the cellular systems were constructed using the
correlograms. The shapes of the mass correlograms indicated that some interspike intervals appeared more often
than others. As shown in Figure 1, the most common statistically significant interspike intervals were attributed to
pairs of real spikes in the original record of neuronal activity. Through such spikes, often common to two or more
pairs, a system of neuronal interactions was assembled which showed how the neurons within the vicinity of ,h.
microelectrode responded to a moving visual stimulus.

Figure 1. The modelling of complex neuronal
A interactions In the visual cortex. As shown in this

scheme, A is the mass correlogram calculated from C
the hypothetical record of multiple spiking. a, b, and
c represent the most common interspike intervals
which accumulated in the peaks of the mass correlo-
gram. The most common interspike intervals (abc)

I_ _ _ _ are attributed in row B to the pairs of real spikes as
"' found in C the original record of neuronal activity.

___ a Each of the spikes may, at the same time, be a
component of another pair of spikes with a different

C I I III I ILime interval. Through such spikes, which are com-
1 4 3 3 71 9 mon to two (or more) pairs, a system of neuronal

interactions may be assembled which shows how the
neurons in the vicinity of one recording electrode

interact.

1- 115

RESULTS

Internal Structure of the Receptive Fields. The internal structure of the RMs was not homogenous. All visually
driven cells fired repeatedly only when the stimulus was present at certain locations within the RF. These loci were
called active points or active subunits. The cells did not respond when the visual stimulus passed outside of the
active points.

The RF of a leading cell was composed of a central core region and a peripheral region. The density of the
active points was higher in the RF core than it was in the RF periphery. However, active point density was quite
variable. In some cells, the subunits were densely packed while in other cells the RFs were formed by a smaller
number of loosely dispersed active points.

The difference between the central and peripheral RF regions depended not only on the density of the active
points but also on the number of spikes which accumulated in the active points during the 50 stimulus presentations.
In all cases, the number of spikes in each active point was greater inside the core than outside the core. The average
outside to inside proportion of spike accumulation was 76% with a strong linear relationship between the variables
(r=0.91 1, n=48). A strong positive correlation was also found between the density of active points inside and outside
the RF. The best-fit regression equation describing this relationship showed that the relation had an exponential
character. The shapes and areas of the RMs of two neighboring cells were very similar, with the exception of the fact
that the precise locations of the active points in two neighboring cells did not coincide.

Although the areas and shapes of the RF cores of the leading cells did not differ substantially from their associ-
ated mass RMs, the density of active points both inside and outside of the RMs was much higher in the mass fields.
The number of spikes which accumulated in the active points was also higher in mass fields than in individual fields.

This increase in the number of active points obviously reflected the increased number of cells collectively pro-
ducing the mass RF. Also, active point density was very high in the periphery of the mass RE. Out of the total 35
systems studied, only 23 showed a clearly recognizable mass RF core. In the remaining 12 systems, subunit density
as well as the number of spikes outside the core were so high that the cores could not be distinguished from the
periphery.

Figure 2. A real system of interactions derived from
a single sweep across the receptive field of a visually

V C•.,:iz- ... d,.,. riven cortical cell. Only a small segment of the
,,:18 l ,complete system of interactions is shown. The most

common interspike intervals (exceeding 5% confi-
L dence limit of the correlogram) were taken from the

mass correlograms as well as from the cross-correlo-
grams between the mass activity and two leading

cells which differ in their amplitude and shape of the
spike.

A group of interacting cells in area 18 of the
cerebral cortex registers the movement of a bar of
light across a common receptive field. Each of these
cells detects the position of the bar at a number of
points within the receptive field, and subsequently
interacts with other cells which record the position of
the same bar at different sets of active points.

Mass Correlograms. The most important finding with respect to the early phase of the mass correlograms was the
existence of a very consistent 3 msec oscillatory activity among the local cell population. When activated by an opti-
mally directed visual stimulus, this rhythmic activity acquired the character of a very regular, smooth sinusoid with
some damping. When, on the other hand, the system of neurons around the recording electrode was not activated or
when it was activated by a non-optimal stimulus, the 3 msec pattern of oscillatory activity became irregular and vari-
able.

When we attribute the most common interspike intervals (exceeding 5% confidence limit of the correlogram)
to real pairs of spikes in the o- ginal record, the resulting model indicates that the firing of individual units was
rather irregular, and the rhythmic behavior displayed by the mass of cells was not accompanied by any apparent
rhythmic fliing of individual units (Figure 2).

Mass correlograms computed up to 1000 msec exhibited positive or negative slopes. An upward-going (posi-
tive) slope, increasing from the shortest to the longest interspike interval, suggested that longer intervals predomi-
nated in the record. A downward-going (negative) slope indicated the predominance of shorter interspike intervals.

1- 116

However, the correlograms could not be divided into two sharply dichotomized classes because of the wide variabil-
ity in slope characteristics. When the slopes were regressed against other RF attributes, the relationship between the
slopes of the mass correlograms and the total number of spikes accumulating in the peripheral active points was of
most interest. This relationship displayed a clear logarithmic character.

DISCUSSION

The data presented in this paper may be summarized as follows:

I) The RFs in area 18 of the cat's cerebral cortex are formed by subunits in which the cells respond to a moving
stimulus with a certain regularity.

2) The response of the subunits to visual stimulation is quite variable. Only some of the active points are acti-
vated by a moving stimulus with 100% probability.

3) Although the RFs of neighboring visual cells overlap, the actual distribution of their active points appear to
be complementary. Thus each segment of the visual field appears to be covered by a set of interacting cortical cells.

The analysis of a segment of the visual image is accomplished by several cells simultaneously. Each cell scans
very narrow, scattered portions of the visual field for the presence of a particular feature. The position of a moving
stimulus is detected by active points belonging to different cells. This successive detection may result in the percep-
tion and analysis of movement.

A minimum of two cells might be sufficient for the detection of the movement and velocity of a feature. In the
real brain, however, many cells are involved in the simultaneous detection of complex moving images. This scheme
suggests that overlapping of the RFs of neighboring visual cells is not a sign of redundancy in the cerebral cortex but
rather a necessary arrangement for the detection of motion.

The rather irregular internal structure of the observed RFs indicates that the most appropriate tokens activating
these cells are not straight lines (as there is no linear arrangement of the active points) or spatial frequencies (as the
active points are not arranged in bands) but, more probably, irregular surface textures of natural moving objects.

Our data allowed us to distinguish between short- and long-range motion detection (systems with either neg-
ative or positive slopes), but the distinction between these systems was not very precise. All long-range detectors
had clearly visible RF excitatory cores and the number of short interspike intervals in such systems was usually high
as welL Similarly, all short-range systems had active points in the periphery of their RFs and were therefore able to
detect long-range movement as well. This finding implies that the long- and short-range detectors belong into the
same class of cells, although they differ in their quantitative characteristics.

An open question still remains as to the morphological and physiological character of the active points. Func-
tionally, it appears that the active points have a phasic response, reacting best to the change of light intensity. Since
no cells responding to motion detectors have been reported in the lateral geniculate body of the cat, it is possible that
the active points are actually a product of the mutual interaction of inputs from individual ganglion cells of the retina
accomplished mainly at the level of visual cortex.

The functional interactions within a group of neurons may be made evident by studying the auto- and mass
correlograms. The study of the early portion of the mass correlograms shows that neighboring visual neurons
respond to motion by a regular, almost sinusoidal rhythm. This rhythm, however, is apparent only in the correlo-
gram and not in the original record of the multiple neuronal firings. The reconstruction of the functional interactions
between neighboring neurons involved in the analysis of motion showed that individual neurons participate in this
process in a rather irregular manner, only the system as a whole reacted in a rhythmic way. It is as if a number of
drummers decided to produce a complex rhythm by each contributing a single beat.

The described mechanisms attributed to complex cells in area 18 of the cortex may, in some way, provide
information to various motion-in-depth receptors, looming detectors and other proposed complex analytical systems,
and together with them, they may provide a versatile and robust motion analysis system.

I- 117

Using Neural Networks and Genetic Algorithms as
Heuristics for NP-Complete Problems

William M. Spears
Naval Research Laboratory, Code 5510

Washington, D.C. 20375-5000

and
Kenneth A. De Jong

George Mason University
Fairfax, VA 22030

ABSTRACT
Paradigms for using neural networks (NNs) and genetic algorithms (GAs) to heuristically solve boolean

satisfiability (SAT) problems are presented. Since SAT is NP-Complete, any other NP-Complete problem can be
transformed into an equivalent SAT problem in polynomial time, and solved via either paradigm. This technique is
illustrated for hamiltonian circuit (HC) problems.

INTRODUCTION

NP-Complete problems are problems that are not currently solvable in polynomial time. However, they are
polynomially equivalent in the sense that any NP-Complete problem can be transformed into any other in polyno-
mial time. Thus, if any NP-Complete problem can be solved in polynomial time, they all can (Garey]. The canonical
example of an NP-Complete problem is the boolean satisfiability (SAT) problem:. Given an arbitrary boolean
expression of n variables, does there exist an assignment to those variables such that the expression is true? Other
familiar examples include job shop scheduling, bin packing, and traveling salesman (TSP) problems.

GAs and NNs have been used as heuristics for some NP-Complete problems. Unfortunately, the results have
been mixed because NP-Complete problems are not equivalent with respect to how well they map onto NN (or GA)
representations. The TSP is a classic example of a problem that does not map naturally to either NNs [GutzmannJ or
GAs MDe Jong].

This observation suggests the following intriguing technique. Suppose we are able to identify an NP-complete
problem that has an effective representation in the methodology of interest (GAs or NNs) and develop an efficient
problem solver for that particular case. Other NP-complete problems which do not have effective representations
can then be solved by transforming them into the canonical problem, solving it, and transforming the solution back
to the original one.

This paper outlines GA and NN paradigms that solve SAT problems, and uses hamiltonian circuit (HC) prob-
lems to illustrate how either paradigm can be used to solve other NP-Complete problems after they are transformed
into equivalent SAT problems. The remainder of the paper is divided into four sections. The first section discusses
the GA paradigm. The second section discusses the NN paradigm. The third section provides some experimental
results and discusses the technique of solving HC problems using both paradigms after polynomial transformation
into equivalent SAT problems. The final section summarizes the paper.

GENETIC ALGORITHMS

GAs consist of a population of individuals competing on a survival-of-the-fittest basis in an environment. The
algorithm proceeds in steps called generations. During each generation, a new population of individuals is created
from the old via application of genetic operators (crossover, mutation, etc.), and evaluated as solutions to a given
problem (the environment). Due to selective pressure, the population adapts to the environment over succeeding
generations, evolving better solutions [Goldberg].

If the environment is a function, GAs can be used for function optimization. In this case, each individual in a
population is a sample point in the function space. Classically, an individual in a GA is represented as a bit string of
some length n. Each individual thus represents one sample point in a space of size 2^.

Any application of GAs involves a selection of an appropriate representation of sample points in the function
space, and the creation of a function that describes the behavior of the space to be searched. Unfortunately, many
NP-Complete problems have constrained spaces that do not map well to bit string representations. The TSP is a

1- 118

classic example of such a problem. However, a SAT problem consists of a search over n boolean variables, resulting
in a solution space of size 2r. Suppose we denote true by I and false by 0. Then each bit in a bit suring represents the
truth value of one boolean variable. In summary, the bit string representation is natural for SAT.

Given the representation, the problem is to create an evaluation function that adequately describes each point
in a SAT search space. For example, suppose we simply create a function that returns I when the expression is
satisfed, and 0 when it is not. Although the function is logically correct, the solution space that results is simply a
plateau with spikes. Any search algorithm degenerates to random search.

GAs derive their power from differential feedback. Non-solutions that are better than other non-solutions
should have higher function values (if we are maximizing). For SAT, variable assignments that nearly satisfy the
boolean expression should have higher function values than those assignments that barely satisfy the expression.
This is achieved by basing the SAT function on the parse tree of the boolcan expression. The assignment to the
boolean variables is done at the leaf nodes. The function value at the root node is determined recursively as follows.

The value of each node in the parse tree is based on the children of that node. If the node is a NOT, its value is
opposite that of its child (ie.. I - value). If the node is an OR, its value is the maximum of the children. Finally, the
value of an AND node is the average of the children. This treatment of AND provides differential feedback that
rewards better non-solutions. The result is a function space that is smoothed in the sense that progressively better
non-solutions receive higher function values.

Unfortunately, this mathematical treatment is not truth invariant under boolean transformation. In particular, it
is possible to derive anomalous situations in which a solution receives a function value less than 1. However, the
addition of a simple preprocessing step removes all anomalies. This preprocessing step consists of applying De
Morgan's theorem to the boolean expression, pushing the NOT nodes to the bottom of the parse tree. The prepro-
cessing step is linear in complexity.

In summary, we have outlined an effective GA representation for SAT problems. The individual bit string
naturally represents the 2" possible assignments to the boolean variables. The evaluation function based on the parse
tree reflects the structure of the SAT problem and has the following properties: 1) it assigns a payoff value of I if
and only if the assignment satisfies the boolean expression; 2) it assigns values in the range 0 < value < I to all
non-solutions; and 3) non-solutions receive differential feedback on the basis of how near their AND clauses are to
being satisfied [De Jong).

A later section provides experimental results of applying the GA to various SAT problems. The next section
indicates how SAT parse trees can also be used in a constraint satisfaction, neural network paradigm.

NEURAL NETWORKS

Any application of neural networks involves selection of an appropriate network representation. Furthermore,
a constraint satisfaction approach requires a specification of the domain specific constraints. These constraints must
be mapped into an energy function that adequately describes the space to be searched [McClclland). In general, these
tasks can be difficult

For the specific problem at hand (SAT), however, our previous work in GAs gives us some surprising insights.
First, the parse tree used for the GA SAT function describes a natural network representation that is perfectly
matched to the structure of the boolean expression. Second, since each node in the network is bound by boolean
constraints, an energy function can be created that fully describes the space of constraints.

In a manner similar to Hopfield nets, we let the activations of the nodes be binary [Hopficld]. The activation of
each node, then, represents the hypothesis that a particular subexpression is true. We denote true as I and false as -1.
The fixed weight on each edge represents a boolean constraint between two hypotheses. If the weight is +1, the
boolean constraint is satisfied if both nodes arc in the same state. If the weight is -I, the constraint is satisfied if both
nodes are in opposite states.

Therc are several differences between the proposed network and a Hopficld net. First, since this network is
based on a parse tree of a boolean expression it contains AND, OR, and NOT nodes. The nodes in a Hopfield net are
of one type. Second, the network is directed, with the output node being the root. Each AND, OR, and NOT node has
parents and/or children (not just neighbors). In a Hopficld net, the links are bi-dircctional and symmetric.

The asymmetries in the proposed network can be explained by a closer analysis of the constraints inherent in a
boolean network. Each node can possibly be influenced by upstream constraints, downstream constraints, and bias.

I- 119

Upstream constraints represent constraints from nodes that are closer to the root, while downstream constraints
represent those constraints from nodes further from the root. Bias provides further externally defined constraints.

Downstream constraints flow from the children of a node. Suppose that some node is a NOT node. Then its
activation should be opposite that of its child. An AND node should be true if all of its children are true. An OR node
should be true if any of its children is true.

Upstream constraints flow from the parent of a node. Suppose the parent of a node is a NOT. Then the activa.
tion of the node should be opposite that of its parent. If the parent is an AND and it is true, then the node should be
true. However, if the parent is an AND and it is false, then the node should be false if all siblings are true. Other
situations are possible, but they do not constrain the node. The situation with OR is symmetric.

Note from the above that there are two types of constraint implied. In the NOT example, nodes are con-
strained to be different. In the AND and OR examples, nodes are constrained to be similar. In other words, a connec-
tion weight of +1 enforces the idea that two nodes are both true or both false. A connection weight of -I enforces the
idea that both nodes are not the same. Note that this latter situation occurs only with NOT nodes. In fact, a NOT node
and a negative connection are equivalent, so only AND, OR, and input nodes are necessary in this paradigm.

Bias is used to provide more constraint information. For example, since satisfiability is the goal, the root node
must have an activation of 1. During the parse of the boolean expression, it is sometimes also possible to determine
the activations of subexpressions. If an activation must be 1, the node receives a high bias. If an activation must be
-1, the node receives a low bias. This information, coupled with the above upstream and downstream constraints,
constitutes the maximum information easily derivable from the boolean expression.

Given the set of logical constraints, an energy function can be derived. For SAT, the local energy for each
node is expressed:

Energy, = net, a,

neti = Uneti + Dneti + Biasi

The energy of each node (Energyi) is the product of the net input (net5) and its activation (ai). The activation
is updated probabilistically using the Boltzmann distribution and an exponentially decaying annealing schedule is
used to help avoid local optima. The net input is based on the upstream (Unet:), downstream (Dneti), and bias
(Biasj) constraints. The resulting energy function guarantees that solutions have a predictable maximum energy,
while non-solutions have lower energy.

In summary, the parse tree network appears to be a natural NN representation when used in conjunction with
boolean constraints to define a proper energy function. The next section describes the results of applying the GA
and NN paradigms to some simple SAT problems and some polynomially transformed HC problems.

EXPERIMENTS AND RESULTS

Both paradigms were initially run on two families of boolean expressions with comparison results based on
the number of evaluations needed to solve the problem. For the GA, an evaluation corresponds to the function
evaluation of one individual in the population. For the NN, one evaluation corresponds to updating the activation of
each node in the parse tree exactly once. Since both evaluations use the parse tree, they have equivalent complexity.

The first family selected consists of two-peak expressions of the form:

(AND X X.) OR (AND 7... X.)

which have exactly two solutions (all false and all true). The following table indicates the number of evaluations
needed for each paradigm. All results are averaged over 10 trials. The number of variables is n.

n 10 20 30 40 50 60 70 80 90

GA 164 696 1257 2283 2741 4060 4966 6973 10208
NN 6 13 19 40 45 61 84 101 110

To make things a bit more difficult, we changed the problem slightly by turning one of the solutions into a
false-peak as follows:

(AND X, " X,) OR (AND X, X-..1

1- 120

so that the previous all false solution is now almost correct and the only correct solution is that of all true. The
results are similar to the previous problem.

So far, the NN paradigm clearly outperforms the GA paradigm on the simple two-peak and faLse-peak prob-
lems. To generate more realistic and difficult boolean expressions and to illustrate the technique of solving other
NP-Complete problems by mapping them onto SAT problems, we defined a set of hamiltonian circuit (HC) prob.
lems of increasing complexity.

Each problem consists of a ring of N nodes labeled alphabetically. Each node has a directed edge to all nodes
ahead in the alphabet. There are roughly N2 / 2 edges. The resulting problem has only one solution (a circuit around
the ring), with a large number of partial solutions. These problems are easily transformed into equivalent SAT prob.
lems in which each variable in the equivalent boolean expression corresponds to one edge in the HC graph. If the
variable is true, that edge is in the circuit. The expression is satisfied if the assignment to the edges is a hamiltonian
circuit. The following table outlines our initial results.

n 6 10 15 21 28 36 45 55

GA 106 239 803 3559 8680 34417 174706 721525
NN 16 42 202 522 2281 20087 160981 1391601

These results suggest an intriguing hypothesis for further study: that the NN paradigm is better on smaller and
simpler problems, while GAs have better scaling-up properties and are more effective on the larger and more com-
plex problems.

SUMMARY

This paper presents NN and GA paradigms for heuristically solving SAT problems. Other NP-complete prob-
lems can be solved via polynomial-time transformation into equivalent SAT problems. This technique is illustrated
for HC problems. Preliminary experiments suggest that while both paradigms are effective, the NN paradigm may be
better for smaller problems and GAs more effective on larger ones.

Future work will explore further the limitations of these paradigms by defining even more difficult classes of
SAT problems derived from other NP-Complete problems. We also plan to explore the possibility of merging the
two paradigms, using the GA for global search and the NN as a local optimizer.

Acknowledgements

I would like to thank Diana Gordon for her valuable comments and suggestions.

References

De long, K. A. & William M. Spears (1989). Using Genetic Algorithms to Solve NP-Complete Problems, Proc.
Int'l Conference on Genetic Algorithns and their Applications.

Garey, Michael R. & David S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, San Francisco, CA.

Goldberg, David E. (1989). Genetic Algorithms in Search. Optimization & Machine Learning. Addison-Wesley
Publishing Company. Inc.

Gutzmann, Kurt M. (1987). Combinatorial Optimization Using a Continuous State Boltzmann Machine. IEEE First
Int'l Conference on Neural Networks. If1-721.

Hopfield, J. J. & D. W. Tank (1985). Neural computation of dccisions in optimization problems, Biological Cyber-
netics. 52. 141-152.

McClelland, James L. & David E. Rumclhart (1988). Explorations in Parallel Distributed Processing. The MIT
Press, Cambridge, MA.

1- 121

On the Assignment-of-Credit Problem in Operant Learning

J. E. R. Staddon and Y. Zhang
Department of Psychology, Duke University, Durham, NC 27706, USA

The way that operant reinforcement selects one activity over others --
the assignment-of-credit problem -- is taken for granted in most learning
models which are examples of supervised learning, in which a "teacher"
(reinforcement) is assumed to present explicit error information to the learn-
ing system in a way that has no obvious biological parallel. Assignment of
credit is solved for most learning theorists by the unformalized process of
temporal contiguity. Unfortunately, contiguity theory is violated by phenom-
ena such as "superstitious" behavior and instinctive drift, which are anoma-
lous either because the activity contiguous with reinforcement is not the one
actually strengthened or because activities continue to occur despite re-
sponse-independent reinforcement. These anomalies have never been recon-
ciled with contiguity theory. We show that the simplest possible contiguity
model for the assignment-of-credit problem in operant conditioning also
provides a natural explanation for supposed exceptions.

Standard effects. Positive reinforcement is defined by its selective
effects when the occurrence of a reinforcer is made to depend on the occur-
rence of a particular response (out of two or more possibilities), the re-
sponse probability should increase, and when the reinforcer is no longer
presented, or is presented independently of responding, response probability
should decline. In addition to this property of selection, reinforcement is
also sensitive to delay, and contingency.

Our model is based on assumptions that are already well accepted, even
though their effects in combination have not been fully understood: arousal
and adaptation, the idea that reinforcement transiently energizes a range of
activities; strength and competition, the idea that each activity has a certain
tendency to occur and that the strongest will win; and variability, the notion
of a repertoire of activities. These five properties are captured in two
linear discrete-time equations: We define for each behavior a variable, Vi,
its strength. The competition rule is winner-take-allh the activity with
highest strength is the one that occurs (this is the only nonlinearity). The
equations describe the changes in V values from one discrete-time instant to
the next in the absence of reinforcement, or following reinforcement.

After nonreinforcement: Vi(t+l) - aiVi(t) + E(l-ai), 0 j ai - 1, (1)

After reinforcement: Vi(t+l) - ajVj(t) + E(1-ai) + biVj(t), (2)

where Vi(t) is the strength of the ith activity in discrete-time instant t, a,
and bi are parameters that depend on both the activity and the reinforcer
and 6 is a random variable sampled independently for each activity in each
time instant. Term aiVi(t) represents adaptation or short-term memory
(STM): because ai < 1, this term reduces to zero with repeated iterations.
Term bVjV(t) represents the arousal effect of a hedonic event, which we
assume acts on a!l activities. If b, > 0, the effect is to increase Vi (a posi-
tive reinforcer); if bi < 0, the effect is to reduce Vi (a punisher). Note
that the relation a, + b, < 1 must hold if V, is not to rise without limrit in
repeated iterations of Equation 2.

Consider first the case of two or more identical activities (i.e., aL -
a2; b, - b2), which permits derivation of all the standard reinforcement
properties. In the absence of reinforcement, because the two parameters are

I- 122

the same for both activities, each activity will occur equally often, on aver-
age. If positive reinforcement is delivered for each occurrence of Activity 1,
then at that instant by the highest-wins competition rule Vi > V2 , hence the
increment to 1, bV,o must be greater than the increment to 2, bV2 . If the
reinforcement occurs frequently enough that the Increment in V, does not
decay to zero by the n-xct reinforcement V, will be steadily incremented rela-
tive to V2, so that Activity 1 will come to dominate. This conclusion holds
whichever activity is reinforced; thus the process satisfies the selection
condition.

The essential feature of the reinforcement mechanism is that reinforce-
ment always adds some increment to all activities, but the largest increment
goes to the highest-V activity.

0.8

0.7 0 A*

0.6

"6 ~~--9 4o

.2c 0.5

A *1110 U _ 11 1
0 0.4 0/ / (!- _

0.3:0|a • -• .49

0.2 -----.

0.0 0.1 0.2 0.3 0.4 0.5 U.6 0.7 0.8 (19 1.0 1.1 1
raaPof e•lr b

Figure 1 Parameter Spice. SimUlation of the effects of lis reinforcement on one of four identi-
cal (same At and b1) activities for a range of a and b values (1.1495-O.9495 in increments of 0.1).
Ordinate sbovs the proportion of tile (iterations) taken up by the reinforced activity. lote that in
the absence of any reinforcing effect each activity should take up about 25% of the tile. Each psint
in this and the next t0o figures is the average of hlis iterations. the random variable E in eqs. I
i 2 bad a rectangular distribution over the interval I - 1.

Figure 1 shows the asymptotic effects of reinforcing every occurrence
of one behavior, in a set of four, for a wide range of parameter pairs. The
reinforced behavior is always facilitated, and the proportion of time taken up
increases with increases in either parameter. We have obtained similar re-
sults for ensembles of 2, 4 and 8 identical activities.

When reinforcement is delayed, the same increasing pattern is seen,
but now the STM parameter, a, has the greatest effect: The higher the a
value, the less likely that the delayed reinforcer, when it actually occurs,
will strengthen a behavior other than the target behavior.

Contingency is the fact that the strengthening effect of reinforcement
depends on its correlation with the reinforced behavior, not just on contigui-
ty. Thus, if the target behavior is reinforced intermittently, or if it is
reinforced every time but reinforcement also occurs at other times, the
behavior will be strengthened less than if it is reinforced exclusively. Our
model has both these properties: the higher the probability of reinforcement,
the larger the proportion of time taken up by the reinforced activity.
Conversely, the higher the probability of "free" reinforcers, the lower the
level of the explicitly reinforced act.

Anomalous effects. Most anomalies arise when activities have different
parameter values. We discuss three: superstitious behavior, differential
conditionability, represented by typologies, such as the distinction between
emitted and elicited behavior, and instinctive drift.

1- 123

"Superstitious" behavior is typically produced when an animal such as
a pigeon is given periodic response-independent food reinforcement. If food
delivery is frequent enough, the animal develops various kinds of vigorous
stereotypies, despite the fact that food delivery is independent of its behav-
ior. Our model is too simple to account for the associative and temporal
properties of this phenomenon, but the model can under restricted conditions
produce apparently stereotyped behavior, even with a set of identical activi-
ties. The stereotypy is the outcome of a positive-feedback process that
resembles a suggestion of Skinner: when a (response-independent) reinforcer
is delivered some behavior will be occurring and will be automatically
strengthened; if the next reinforcer follows soon enough, the same behavior
will still be occurring and will be further strengthened, and so on, until the
behavior appears to dominate. More detailed examination shows that our
version of Skinner's process is unlikely to be responsible for superstitious
behavior, although it does account for the reliable finding of hysteresis in
operant conditioning.

The distinction between emitted and elicited behavior parallels the
procedural difference between operant and classical conditioning: elicited
behavior (salivation is an example) is behavior elicited by a reinforcer but
not modifiable by operant conditioning; emitted behavior (lever pressing is an
example) is not usually elicited by the reinforcer, but is modifiable by
operant conditioning (the rat learns to press the lever to get food). The
existence of a typology is usually a sign that we lack understanding of the
underlying process. It is interesting, therefore, that the distinction between
these two types of behavior emerges in a natural way from our model as a
consequence of the complementary relation between the arousal and STM
parameters that is forced by stability considerations.

Instinctive drift is perhaps the most striking exception to a contiguity
account of reinforcement. Breland & Breland reported several instances that
conform to the following pattern: Behavior A (e.g., a raccoon putting a
wooden egg onto a chute) is successfully "shaped" by response-contingent
food reinforcement; but after a while Behavior A is supplanted by Behavior
B ("washing" the egg between the animal's forepaws), which is part of the
animal's natural foraging repertoire. Behavior B is inappropriate in this
context because it competes with Behavior A on which food delivery actually
depends. Behavior A is contiguous with the reinforcer, but Behavior B is
ultimately the one strengthened.

A variety of naturalistic interpretations have been offered for these
effects (and for the related phenomenon of "superstition"), but they follow
from our model on the assumption that "instinctive" behaviors are character-
ized by very high a values (STM persistence). Given a set of activities with
moderate a and b values, and one activity with a very high a value (and
nonzero b), reinforcement of one of the moderate-a activities will cause it to
predominate initially (because it has a higher b value than the "instinctive"
activity). But, because increments to the high-a activity cumulate more
effectively than the (larger) increments to the reinforced activity, it may
predominate eventually, even if it is never contiguous with reinforcement.

These effects are illustrated in the cumulative records in the top panel
of Fig. 2. Each set of four records shows four activities, three with moder-
ate a and b values, one with a high a value and low b value. The Left
records show the free-operant (unreinforced) levels of the four activities
(the low frequency of the high-a activity is a consequence of statistical
properties of the model not explained here). The Center and Right paneil
show the effect of reinforcing one of the low-a activities with a probability of
0.25 or 1.O0. The increasing reinforcement probability has two effects: it

1 - 124

'(4

p(R)=0 p(R)=.25 p(R)=1

6000

a b
4000 -," .95 .04

U) .45 .2
V 2000 .45 .2
C'
C*L 0.
(n 0 50 100 I1O 200 250 300 350

TIME (iterotions/300)

300 100--_.__._.__ ____r.__-_

208

E 200150

0 -0-

0 200 400 6O 00 0004 0oo 50 100 150 200 250 .500

TIME (iterations)
Figure 2 Instinctive drift. Top panel, Leftt Cumulative records of four activities in the absenceof reinforcetent toperant levels); high-a, lov-b activity is the least frequent (see paraieter values
in the tablei. Center: ?be effect of reinforcing one of the three intertediate-a activities (a
0.45, b e 0.21) with probability 0.25. light: Iffect of reinforcing every occurrence ef the interne-
diate activity. Bottol panel: Magnified pictures of the beginning of the record in the light panel at
the top (*instinctive" and reinforced activities onll).

causes the level of the reinforced activity ("R") to increase above the level
of the other two low-a activities; but it causes a disproportionate increase inlevel of the high-a activity, which is predominant when p(R) - 1 (Right).The two bottom panels in Fig. 5 show a magnified picture of initial acquisi-tion in the p(R) - 1 condition, illustrating the transition from dominance bythe reinforced, low-b, activity to predominance of the "instinctive", high-a,activity. If a low a value activity Is reinforced, it may predominate initially,but will be supplanted by the high-a value activity, even if it has a lower"arousability" (b value).

Conclusion Both standard and anomalous properties of operant condi-tioning with positive and aversive reinforcers are consistent with a simplenon-associative assignment-of-credit mechanism. Since the operant behaviorof vertebrates is always context dependent, our model is obviously only partof the whole story, so it is inappropriate to look for quantitative agreementbetween facts and predictions. The model also does not deal with anythingthat depends on long-term memory, such as extinction and reconditioning,stimulus effects, or timing processes. Because the model does not pretend toencompass the whole process of conditioning, It is hard to know what to makeof a number of partial exceptions (e.g., the pecking response is both elicitedand operantly conditionable, intermittent reinforcement sometimes sustainsmore behavior than continuous, etc.) -- since they may reflect later stagesin the process. Such a process may therefore form the "front end" for thecomplex neural processing involved in the operant and classical conditioning
of higher animals.

1- 125

Self-Organization of a Linear Multilayered Feedforward
Neural Network

R. Stotzka, R. Manner
Physics Institute, University of Heidelberg, Philosophenweg 12, D-6900 Heidelberg,

West Germany, (email: stotzka@dhdphy5.bitnet)

Introduction: Hubel and Wiesel /1,2/ analyzed the performance of the functional architecture of
the mammalian visual system during the last 30 years. In the layers of the retina and the visual
cortex they found many different specialized cells, which are capable to process and extract visual
information. These cells perform Laplace filtering for edge detection (ON- or OFF-center neurons)
and orientation sensitiveness. Supposing, these structures are able to develop self-organized in the
prenatal phase of a mammalian, one has to find an algorithm which describes the formation of lay-
ered feature detecting cells. Linsker /3,4/ proposed 1986 a perceptual artificial neural network as a
simple model of the layered structure of the visual information processing system. His intention
was to show the self-organizing development of special cells in a linear multilayered feedforward
neural network without the presentation of special information. We simulated the Linsker model
using a reduced, less computational demanding Hopfield-like model /5/. For that model we anal-
yzed the effects of different parameter settings with respect to the outcoming structures.

The Model: A Linsker-type neural network consists of several two-dimensional layers. The
neurons in each layer are placed on a regular grid (Fig. 1). Layer 1 is the input layer and represents
the receptor cells. The cells in the other layers receive their input from their neighborhood of cells
of the previous layer.

Figure 1: The first three lay-
ers of the network are shown.
In each layer the neurons are

i:receptive fields placed on a regular grid. The
synapses and the receptive
fields of two neurons of layer 2
and 3 are indicated. Layer 1
receives random noise inputs.

There exist only feedforward synaptic connections between adjacent layers and no lateral
connections within one layer. Each cell of a layer has N synaptic bonds, which are randomly
distributed according to a density distribution, e.g. Gaussian, within a neighborhood (with radius
r) of the opposite cell in the previous layer. The size of this receptive field grows from layer to
layer. This can be described by rL/rM, where M denotes the actual layer and L the layer above. The
dynamics of the network can be formulated as follows: the inputs of the cells in layer 1 are random
noise signals. At each time step, new uncorrelated signals are presented. A neuron of layer M
calculates his activity according to the linear update rule:

N

AM a, +,Ic A (1)
j= 1

I- 126

AM is the activity of the neuron in layer M, AL. the activity of a neuron Lj of layer L, c. the synaptic
bond from M to Lj, ao and al are constants, which are the same for all cells of layer M. The initialvalues of the synapses ci, i=1,2,...,N, are randomly chosen. In each time step, a synapse i
changes its weight according to the Hebb-type learning rule:

ACi -9+ b (AM- M 0)(AL- LO) (2)

e, Mo, [.Lo and b>O are constants. If b<<1, it is possible to average over some time steps. In this
case, the gradient dcjdt can be calculated in analogy to the learning rule (2). The resulting
differential equation describes the maturation of a cell:

dci N

dc7 = -+ Q(j + k2) c. (3)Jul

Qj is the covariance of the activity of neurons i and j in the previous layer, k, and k2 are constants
dependent on the constants in equations (1) and (2). Synaptic bonds changed by Hebbian learningrules normally increase or decrease without limit. We therefore adopt a measure function, which
limits the synaptic values at -0.5 and 0.5. The cell is stable, if the synapses do not change any
longer under the dynamics of the system.

Analysis: We are interested which kinds of cells, characterized by the topology of the synapses,develop under different conditions. If the inputs in layer I are uncorrelated, the differential
equation (3) of synapse i in layer 2 is independent from other synapses j~i, j=l,2,...,N. ForIkll>0.5 and the variance of the input noise Q~i>-k 2, all synapses develop homogeneously to 0.5.Now it can be shown that the covariance function, which depends on the distance betweenneurons i and j in layer I and on r2/rI, is Gaussian distributed for N -> -. To interpret the

ssible effects during the maturation in the following layers, we define an energy function,
~ i---dcj/dt, which will be minimized by the set of differential equations (3):

N NN
E k 1 c Q.+k 2) cCi. (4)

j- 1 i-I j-1
If -Qij<k2<0, Qij+k 2 will be positive, if ci and cj are '.onds to neurons with a small distance in thelayer above, and negative, if the distance is large. If Ik1l is small, i.e., if the first term in (4) isnegligible compared to the second one, it is possible to minimize the second term of the energy
function by choosing ci and cj with the same sign for nearby cells and differcrnt sign for distant
ones. As a result of these competitive conditions we find two connected areas with different signin the receptive field of a neuron in layer 3. k, inclines the energy surface that decides which
synapses get a positive and which ones get a negative sign. Because of the symmetry of theGaussian distribution, a cell with a ON- (or OFF-) center and a OFF- (or ON-) background is
expected. But if Ik1l is large, the first term in the energy function dominates. The result is a homo-
geneous receptive field with positive or negative synapses dependent on the sign of kj. Thecovariance function Qj3 of the output of center-ON neurons of layer 3 has a Mexican hat form,
whose parameters depend on the size of the center.

Determination of synaptic bonds using an Hoprield model: Simulations of the differ-
ence equations (I) and (2) to observe the maturation of cells in higher layers are computational
expensive. The number of floating point operations per time step required to simulate the devel-
opment of one cell in layer k with N synapses is proportional to Nk-2.(N+I)+5.N+I. Normally,approximately 10,000 time steps are needed until a cell is stable. A way to avoid this problem is touse a faster algorithm to find a minimum of the energy function. We apply the Hopfield model /5/,

1- 127

since our energy function has the same structure as the energy function used in /5/. The synapses
of one neuron of the Linsker model can therefore be represented by binary Hopfield neurons with
values (0.5,0.5). This allows to simulate the maturation of the synapses of layer k without
simulating the previous k-i layers, because Qii contains all information about the signals that
passed these layers. First, the covariance function Qii of the layer above is calculated and the
synapses are distributed, e.g. with Gaussian density. Secondly, the synaptic bonds of the
Hopfield model are calculated according to

i. = +k2 (5)

Eventually, a random start vector c(O) is iterated with the Hopfield dynamics until c is stable:
N

ci(t+l) = -sign(E Ji.c.(t)+ k1) (6)
2 'j j

j=1
This model is able to calculate cells which are near-optimal in respect to the distribution of the
synapses, Qij, k1, k2 and r,/rI. In our simulations, energy minima are found after _12-N iteration
steps. This is equivalent to only <12.N.(2.N+1)+N 2 floating point operations.

Results: In the simulations of the Hopfield model we set kj=0, because our point of interest is
the topology of the developing cells, and not the sign of the different areas. We examined two
kinds of receptive fields in which 450 synapses were distributed:
a) Gaussian; the locations of the synapses were found by selecting random points with Gaussian

density in the receptive field. Because only 450 synapses were'statistically chosen, the
statistical fluctuations are relatively high and therefore there is no obvious maximum at the
center of the density distribution.

b) Centered Gaussian; a center with maximum density was constructed by multiplying the
Gaussian density function with the linear function f(r)=I-0.33-r (re]0,3], distance to the
center of the distribution).

First we examined the cells maturating in layer 3. According to our analysis we took the outputs of
the cells in layer 2 Gaussian distributed. In simulations with the centered Gaussian distribution of
the synapses we found that center-ON or center-OFF cells develop, if k2=-I is constant and r2/ri
ranges from 1.5 to 8 (Fig. 2.a). The size of the center depends on r2/rI, and if r2/rl<l.5 an
homogeneous cell emerges. By using the Gaussian distribution, the density fluctuations lead to
asymmetric cell types (r2/rl >1.5), normally half-cells (Fig. 2.b).

0

0 80
oa 00

0 009 0 o

Figure 2.a (left) and 2.b (right): Maturated receptive fields of layer 2 simulated by the
Hopfield model. 2.a shows a receptive field with the centered Gaussian distribution, 2.b the usual
Gaussian distribution. All synapses developed either to -0.5 (bright circles) or to 0.5 (dark cir-
cles). Simulation parameters: k1=0, k2=-l, r,/ri=-.

I - 128

I0

Secondly, the emergence of different cell types in layer 4 was observed. Provided that layer 3
consists only of center-ON neurons, the covariance function Qi of layer 3 has Mexican hat form.
Hence, we set k2=0 and observed the maturation of cells by ctanging r2/ri. The receptive field
with the centered distribution consists of concentric rings (Fig. 3.a) where the width of the rings
depends on r2/rl. By using the normal Gaussian distribution, the rings cannot develop around a
seed center. Due to the density fluctuations a few areas exist with relatively high density, and the
rings try to group around these points. As a result parallel stripes emerge (Fig. 3.b) with the same
width as in figure 3.a.

0* ** ___ __ ___ __

I

Figure 3.a (left) and 3.b (right): Maturated receptive fields of layer 3 simulated by the
Hopfield model. 3.a shows a receptive field with the centered Gaussian distribution, 3.b the usual
Gaussian distribution. Simulation parameters: k1=0, k2=O, rz/ri--4.

Conclusions: We showed by simulations the development of feature detecting cells in a Linsker-
type linear feedforward multilayered neural network. The self-organizing emergence of center-ON
neurons, half-cells and stripes-cells in response to random input signals has been observed. These
cells resemble the cells of the visual system and correspond to minima of Linsker's energy
function. Such minima can be found in very short time using a modified Hopfield model.
Simulations with different distributions of synapses in the receptive field resulted in the emergence
of orientation selective cells already in the third layer. This is a consequence of the statistical
fluctuations of a 2-dimensional Gaussian distribution of N elements.

References:
III D.H. Hubel, T.N. Wiesel, "Brain Mechanism of Vision", Scientific American, Vol. 241.

Sept. 1979, pp. 150-162
/2/ D.H. Hubel, "Eye, Brain and Vision", The Scientific American Lib., New York, 1988
f3/ R. Linsker, "From Basic Network Principles to Neural Architecture", Proc. Nat'l Acad. Sci.

USA, Vol. 83, Oct.-Nov. 1986, pp. 7508-75 12, 8390-8394, 8779-8783.
/4/ R, Linsker, "Self-Organization in a Perceptual Network", IEEE Computer, Vol. 21, No. 3,

1988, 105-1 17.
/5/ J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computa-

tional Abilities", P.N.A.S. 79, 2554-2558, April 1982

I - 129

TEMPORAL-SPATIAL CODING TRANSFORMATION:
CONVERSION OF FREQUENCY-CODE TO PLACE-CODE

VIA A TIME-DELAYED NEURAL NETWORK

David C. Tam t

Department of Physiology
University of California, Irvine, CA 92717

dt4@nihcudec~bitnet
t Present address: Laboratory for Cellular and Molecular Neurobiology

Neural Systems Section, Park Building 5, Rm 431
National Institute ofNeurological Disorders and Stroke

National Institutes of Health, Bethesda, MD 20892

Abstract
A multi-layered time-delayed neural network is proposed to convert from a

temporal (or frequency) coding scheme of biological neurons to spatial (or place)
coding scheme distributed in different neurons, where each neuron encodes a
different band-pass filtered frequency (or interval) of firing of the original input.
The proposed network represents an implementation of a signal processing scheme
for code conversion using time for computing and coding.

1. Introduction
One of the differences between biological neurons and artificial neural

elements (or computing nodes) commonly used in artificial neural networks is
the coding scheme employed for signal transmission. The signal encoded by the
biological neurons in vertebrates as well as most invertebrates for long range
communication is transmitted along axons via action potentials. Most action
potentials transmitted along axons have characteristic (and stereotypic) pulse
height and pulse width even though the pulse shape of the action potential may
vary depending on the type of neuron. Although graded potentials (where pulse
width and pulse height vary) are observed in most invertebrates and in the retina
of the vertebrates, this class of signal transmission will not be discussed in this
"paper. In contrast, artificial neural elements often employ either binary signal
(but not pulse signal) or continuous signal for signal transmission.

Given the stereotypic characteristic of constant pulse height and pulse
width of action potentials, the signal transmitted along an axon may be idealized
as pulse coded. The time-series of action potentials transmitted along an axon is
often called a spike train. The encoding of information via the firing intervals
(and consequently firing frequencies) is called frequency-code in neurobiology;
whereas the encoding of information via the firing in a certain ensemble of
neurons is called place-code, which is based on the locale of the neurons.

Since both frequency-code and place-code are often observed to be used in the
same structure (or sub-network) in the central nervous system, the conversion
and interchange of these coding schemes may be necessary for the system to
function properly. An idealized multi-layered time-delayed neural network is
constructed to elicit insights about plausible mechanisms for conversion of
frequency-code to place-code given a spike train as the input and output signal.

Various time-delayed neural network models, particularly those employing

Hebbian-type learning rule, have produced some seemingly obvious (yet non-
trivial) functional equivalent forms of conventional cross-correlation functions [2];

I - 130

implemented with reinforcement learning to account for delayed pairing
association in classical conditioning [3]; implemented in a hybrid model of
nonlinear weight-sum model for detecting correlations among simultaneously
recorded spike trains [4]; and implemented with analogous models of sublattice
magnetization for encoding and retrieval of temporal sequences [1].

2. The Multi-Layered Time-Delayed Neural Network Model
2.L Definitions of Input Spike Train and Interspike Interval

A spike train, x(t), can be defined as a time-series of spikes (or delta-
functions) with a total of n+1 spikes:

n
X(t) --=- 7 8(t° -j) (1)

jio

That is, at time t = rj, there is a spike occurring in the spike train given by the
delta-function, which satisfies:

1 1t)= (2)
t0, t*o

For discrete time, let us assume the time increments are quantized by At.
Without loss of generality, let us normalize 8(t) by a factor of At (or alternatively,
setting At = 1) such that the new 8(t), which we will use in this paper, becomes:

{1, for j at interval [t, t+At)
8-t 0, otherwise

The interspike interval, Ij, is defined as the time interval between any two
adjacent spikes occurring at time rj and rj. 1:

Ij = Tj - for 0 < j: <n (4)

2.2. Time-Delayed Input Relationships of the Neurons in the First Layer
Consider a multi-layered network where the k-th neuron in the first layer

has k input lines. Let xi(t) be the input signal from the i-th input to the k-th
neuron in the first layer and wki(t) the connection weight of the corresponding
synapse. The total input, Xk(t), to this neuron is a weighted-sum of all k inputs,

k
X k(t) w k At) x i(t) (5)

i= 1

II l IIAt

Input Spike Train 6 t -;

Fig. 1 Schematic diagram showing the time-delayed input relationships
The input relationships of a typical neuron in the first layer is illustrated in
Fig. 1. For simplicity, the input to the entire network is given by a single spike
train, x(t) as defined by Eqs. (1) and (3), which is then delayed by various time

I- 131

delays, c =iAt, for i = 1 to k. These various delayed inputs are then connected to
the neurons of the first layer, so the i-th input to the first layer neuron becomes:

xi(t) = x(t - iAt) (6)

Assuming that wki(t) = 1, a constant for simplicity (for all i), then Eq. (5) becomes:
k

Xk(t) = • xi(t - iAt) (7)

2.& High-Pass Filtered Output Functior" of the Neurons in the First Layer
Given the input of Eq. (7) to the k-th neuron in the first layer, if the

interspike interval of the original input spike train falls within the time-delay
window, Ij < kAt, for 0 < j < n, then

k
Xk(t) = • xi(t - iAt) > 1 (8)

i=1

Conversely, if lj > kAt, for 0 < j < n, then Xk(t) < 1. Thus, if the threshold of the
output of the k-th neuron is set at one, then this neuron will fire only when the
interspike interval, Ij, of the input spike train is within the time-delay window,
kAt. That is, the output of this k-th neuron is given by:

k
I, ifXm(t)= Xxi(t-iAt)> 1

Yk(t)= i1 (9)
=f0, otherwise

In other words, the k-th neuron can be considered as encoding only high-pass
filtered input frequency, where instantaneous frequency is defined as the
reciprocal of interspike interval, i.e., 1/(kAt). Thus, the k-th neuron will fire only
if the original input spike train contains instantaneous frequencies above this
cutoff frequency of 1/(kAt). In order to compensate for the effects of phase
differences of various delays, the neuron has a refractory period of (k-1)At.
2.4. Elimination of Higher-Order Intervals within the Time-Delay Window by the
Second Layer

Although it is customary to describe in frequency domain, it is more
appropriate to describe our network in time (interval) domain. If there are more
than two spikes occur within the time-delay window, then the neuron in the first
layer may be overestimating the cutoff interspike interval, in which case the
interspike intervals are, in fact, much shorter than the cutoff interval. To
eliminate this effect due to the intervening spikes (which results in estimating
higher-order intervals instead of the first-order interspike interval), another layer
of neurons (called first-parallel layer) is added similar to the first layer except
that the output threshold is set at two instead of one similar to Eq. (9). If the
difference between the outputs of the first layer and this first-parallel layer
neurons is computed by neurons in the second layer, it will ensure accurate
estimation of true interspike interval within the time-delay window. The input

I - 132

connections to the neurons in the second level are given by an excitatory
connection from the first layer, yk(t), and inhibitory from the first-parallel layer,
y'k(t). Thus, the output of neurons in the second layer, y"k(t), is given by:

k
1, 2 "X xi(t - iAt)>1

yjWtf = Yk(t) - yi(t) = (10)

0, otherwise

2A. Band-Pass Filtered Output of the Neurons in the Third Layer
Given the various high-pass filtered signal, a band-pass filtered signal can

easily be obtained by the third layer neurons, whose input derives from two
sources, one excitatory and the other inhibitory from the second layer. That is,
the output of a third layer neuron, Y"k(t), is obtained from the difference between
the outputs of k-th and (k-h)th neurons in the second layer.

k
1, 2k 1: xi(t-iAt)> 1

yj•'(t) ="j~t" " yit i=k-h (1
=0,

otherwise

This neuron will fire only on a band-pass filtered input spike train signal where
the band-width interval is hat, delimited by the interspike intervals of kAt and (k-
h)At (or between frequencies of 1/kAt and 14(k-h)At]). The firing of a particular
neuron indexed by (k,k-h) in this third layer can be considered as encoding the
corresponding band-limited interspike intervals of the original input spike train.
In other words, the frequency-code (or interspike intervals) of the input spike
train is converted to the firing of a distributed set of neurons in the subsequent
layers, whose locations (or indices) indicate the frequency-band (or interval-band)
of the input signal, thus the signal is encoded a la a distributed place-code
scheme.

Referes
[1] Herz, A, Sulzer, B., Kuhn, R., and van Hemmen, J. L. "Hebbian learning reconsidered:

representation of static and dynamic objects in associative neural nets". Biological
Cybernetics, Vol. 60, 457-467, 1989.

[2] Tam, D. C. and McMullen, T. A. "Hebbian synapses as cross-correlation functions in delay
line circuitry". Society for Neuroscience Abstract, Vol. 15, 1989. (in press)

[31 Tam, D. C. and McMullen, T. A. "Classical conditioning, correlation function and synaptic
weight modification in delay line circuitry: implications for cerebellar cortical function."
(submitted to Neural Information Processing Systems 1989)

[4] Tam, D. C. and Perkel, D. H. (1989) A model for temporal correlation of biological neuronal
spike trains. Proceedings of the IEEE International Joint Conference on Neural Networks
1989. Vol. 1, pp. 1-781-786.

I- 133

The Evolution of Connectivity: Pruning Neural Networks
Using Genetic Algorithms

Darrell Whitley and Christopher Bogart
Computer Science Department

Colorado State University
Fort Collins, Colorado 80523

whitley@CS.Colostate.edu

1. Introduction

Defining the connectivity of an artificial neural network so as to enhance learning speed or to use only
"necessary" connections is a difficult task that is not well understood. Most researchers r.iy on simple
heuristics, the most common being "if the net does not work, add more hidden units." We evolve the
connectivity of a feed forward neural network using genetic algorithms. The nets that are developed
display interesting properties; they are smaller, learn faster and the amount of time required for
learning is extremely consistent.

The general approach discussed here and previously used by Miller, Todd and Hegde (1989) is to
define a net that is as large or larger than necessary to do the job, and then to use a genetic algorithm
to define which combination of connections are sufficient to quickly and accurately learn to perform
some target task using back propagation. Miller et al. did this for some small nets. However, our
experiments with larger problems exposed two difficulties with their approach.

First, there is no explicit mechanism for rewarding nets that use fewer connections. This is a non-
trivial problem, since directly rewarding or penalizing a net based on the number of connections used
can give a "selective advantage" to nets that ame not able to learn; in the extreme case, a net might try
to gain reward or avoid penalities by pruning all of its connections. This paper defines a way to
reward nets that use fewer connections while at the same time selecting for nets that learn quickly and
accurately. Ways of extending this reward system are also discussed.

Second, on larger nets, the amount of time required to find a net that learns quickly and accurately
is quite significant, since it means evaluating a population of strings, where each evaluation involves
running back propagation on a single net. For a simple net which learned to compute the exclusive-or
(Xor) of its two inputs, Miller et al. used enough back propagation cycles that they could reasonably
expect to find a net that would be able to learn the task completely. But this is not practical on larger
problems because it means training the same net over and over again. A genetic algorithm requires the
evaluation of 1) an initial random population and 2) all the offspring that are generated by
recombination. Evaluation in this case means running back propagation for some number of times to
find out how quickly the net learns. This means that for a net which initially has 50 connections, it
typically would be necessary to run back propagation on perhaps 2,000 (and probably more) different
nets in order to search for a net with the desired properties.

One alternative is to use a reduced number of back propagation cycles. The difficulty with this
approach is that the resulting nets would not be able to completely learn the problem during evaluation.
Furthermore, a fast initial reduction in error does not guarantee that the net will continue to learn
quickly, or is even able to completely reduce the error for the target problem. To avoid this, we train
the net before pruning. While this might seem at odds with the objective of finding a net that learns
quickly, having to do back propagation from scratch 2,000 times (or even 100 times) is a false
economy. The real issues, we think, are the following. 1) This approach finds much smaller nets that
can learn the task. In particular this has important implications for problems where a hardware
implementation is the ultimate goal. 2) Pruning has an impact on generalization and noise tolerance
(Mozer and Smolensky 1989). 3) Since pruning does introduce error, there is selective pressure in
our approach for nets that relearn quickly.

As a side effect of our research, the previous research by Miller, et al. and discussions with Dr.
Jerry Jones at the Colorado School of Mines, we have arrived at a conjecture suggested by our
empirical results. It appears that for some nets with a hidden layer, faster learning can be achieved by
adding additional direct connections from the input layer to the output layer. At this point, this
suggestion should only be considered a hypothesis and only rigorous testing can confirm or refute this
hypothesis, but there is sufficient evidence to warrant further research along these lines. Several
hundred runs on Xor and 2-bit adders suggest that nets with direct 1/0 connections are not only
somewhat faster, but also that these nets are not as prone to becoming stuck in local optima.

1- 134

2. The Problem Encoding and GENITOR

A genetic algorithm manipulates a population of "chromosome-like" problem encodings referred to as"genotypes." The genetic algorithm uses selective pressure so that the "most fit" genotypes in this
population are allowed to reproduce via recombination more often that those which are less fit.
Although this sounds simple, it can be shown that this yields a robust and efficient search of a problem
solution space by sampling hyperplanes in an L-dimensional hypercube, where L represents the length
of a binary encoding of the problem.

The problem encoding is relatively simple. Consider the following binary string:
1101001100101101. This string would represent, in the current problem, a net which originally was
solved using 16 links. The potential solution represented by this string uses only 9 of those sixteen
links. Recombination requires two parents. Consider the string 1101001100101101 and another binary
string which we represent using x and y to represent 0 and 1. Let the second string be
yxyyxyxxyyyxyxxy. Using two "break-points" recombination occurs as follows:

-- 11010-•ff 1100101-,-01-
-yxyyx yxxYyyxy xxy -

Swapping the fragments between the two parents produces the offspring i l010yxxyyyxyl0l andyxyyx01100101lxxy.

Miller et al. defined their operators such that functional substructures are swapped during
recombination. Their "crossover" operator swapped all the links leading into some node. This in
effect only allows the strings to "break" at a limited number of positions along the encoding. While
this makes intuitive sense, thcoretically this prevents the genetic algorithm from searching across all
possible hyperplanes in the search space. In accord with the schema theory for genetic algorithms, we
allowed crossover at any position using a variation on Booker's two point reduced surrogate operator
(1987). The empirical results do not allow us to argue that either approach is better at this point,
although we '"und smaller and faster nets for Xor than the nets they typically discovered.

In a standard genetic algorithm the parents are replaced by their offspring after recombination. The
idea is that the genetic material of the parents will largely survive and remain in the population.
although the parents themselves do not. (See Holland 1975 and Goldberg 1989 for a review of genetic
algorithms.) In the GEIVITOR approach the offspring do not replace their parents, but rather a low
ranking individual in the population. In this way the algorithm is much more likely to accumulate
information about high performance hyperplanes. A theorem has been developed which suggests that
this approach does as well or better than a standard genetic algorithm at finding good genetic "building
blocks" in the form of schemata (Whitley and Kauth 1988). Another key difference is that the
GENITOR algorithm is designed to allocate reproductive trials to individuals (ie: an individual problem
encoding or "genotype") based on their rank in the population rather than directly using the evaluation
function as a fitness measure. When fitness is directly taken from the evaluation function, "selective
pressure" can fluctuate so that the algorithm converges too quickly, or the search may stagnate because
the selective pressure is inadequate. GENITOR abandons fitness values which are directly proportional
to performance and instead uses the rank of the "genotype" in the current population to assign a fitness
value. Allocating reproductive trials in this way ensures that a constant and effective selective pressure
can be maintained no matter how performance is calculated.

Genetic algorithms have also been used to set the weights in small neural networks. Our work in
this area indicates that genetic algorithms work well on smaller nets, but have difficulties after the
length of the encoding becomes large (Whitley and Hanson 1989). Long encodings am not a problem
for neural net pruning for reasons outlined below. Lawrence Davis of BBN has optimized neural nets
using a hybrid algorithm that combines recombination and back propagation; the hybrid algorithm out
performed either method alone when training a large net (500 connections) for a complex pattern
recognition application.

3. The Evaluation Function and Reward Scheme.

The evaluation function is a key ingredient of a genetic algorithm since it is used to assign a "fitness"
to the strings in the population. Evaluation in this case involves running back propagation on the net
using the connections indicated by the binary encoding. In our approach, the initial net has already
solved the problem, so we are actually pruning a developed net and finding which nets are least
affected or best able to relearn given a specified number of back propagation cycles. The more links
that are removed, the greater the probability that the functionality of the net will suffer. Thus, if the
goal is to prune the net. there must be some compensation for nets that use fewer links.

1- 135

The reward scheme used here is simple but effective. We start with some baseline number of back
prop cycles, B. For each link that is pruned from the net, we increase the number of back prop cycles
the net is allowed by some delta, D. Thus, if the genetic algorithm defines a net that has N number of
links pruned, then we allow (ND + B) back prop cycles. This means that nets with fewer links are
given more learning opportunities, but they are not actually rewarded unless they are able to exploit the
opportunity. At this point, we are using the weights that have been learned for the already trained

Milly connected net (we refer to these as the "starting weights") to initialize the pruned nets. Another
approach which we feel would be more effective, but which we have yet not implemented, is to use
the new weights that are subsequently learned for smaUer nets to initialize newly created nets. In other
words we would dynamically update the starting weights as the net is being pruned. (They might be
taken from the parent nets, for example.) A related idea we have not implemented is to set a criterion
level to stop back propagation; if two nets reduce the error to the specified level, then they should be
ranked according to the number of links used. This would create additional selective pressure for
smaller nets. In the current implementation, the nets are allowed to run the total number of back prop
cycles allocated to them, and then are ranked according to which nets have the lowest error. While
this approach does create some selective pressure for smaller nets, there is still considerable advantage
for those nets that are not too disrupted by pruning. Dynamically moving the starting weights would
give more selective advantage to smaller nets, since they would not have to relearn from the original
starting weights. In the current tests, we approximated the effect of dynamically updating the "starting
weights" by running the genetic algorithm twice. This meant that we could run the algorithm once, find
a smaller net, update the starting weights and then run the genetic algorithm using these new weights.
This also meant that we could progressively encode the problem using smaller strings--thus the
encoding length is not a problem for optimizing net connectivity.

Clearly, the aim of our evaluation function is to direct the genetic algorithm toward performing a
kind of pruning. Other pruning schemes have been developed or suggested, although these typically
involve pruning activation units rather than links (Mozer and Smolensky 1989). Bits which turn on
and off activation units could also be added to our encoding although we have not yet tried this. The
attraction of the genetic algorithm for this problem is that it exploits whatever patterns it is able to find.
Good mathematical or heuristic methods may eventually prove more efficient; studying the pruning
behavior of the genetic algorithm might be one means of developing such heuristics. One reason this
might not be the case is that the genetic algorithm is able to exploit the idiosyncrasies of each
individual problem. At this point we have no comparative data.

4. Experiments and Results

We have tested our approach by pruning a fully connected two bit adder and Xor. On Xor, we begin
with a standard net with two hidden units, with the addition of direct connections between the input
layer and the output layer. The genetic algorithm pruned this to the standard net with one hidden unit,
which is smaller than the net found by Miller et al. The adder net has four input nodes, four hidden
nodes, and three output nodes; in addition, a true node was used for learning the bias, or activation
thresholds. To begin with, all input units were connected to all hidden units, and all hidden units were
connected to the output units. The true node is connected to all hidden units and output units. In
addition to these connections, all input units were given a direct connection to each output unit-
Finally, because the minimal adder described by Rumelhart et al. (1986) has connections between
members of the hidden layer, we allowed hidden unit I to feed to hidden units 2, 3, and 4, hidden unit
2 to feed to hidden units 3 and 4, and hidden unit 3 to feed to hidden unit 4. Thus, this fully
connected net has 53 connections.

In the first run the net was trimmed from 53 connections to 37. This smaller net was further
trained using back propagation, then was used as a starting point for the genetic algorithm again. On
this second run, the genetic algorithm pruned the net further to 29 connections. Figure 1 gives the net
developed by the genetic algorithm.

Since the ability of a neural net to learn quickly can be very much depend on what weights it is
initialized with, we took the "pruned" net and ran a number of learning experiments from small
random initial weights in order to collect statistics about the net's learning ability. We wanted to show
that we had not just "gotten lucky" in being able to learn a set of weights for the reduced net. The
results were averaged over 50 runs. Surprisingly, the pruned net not only learned faster, but it was
very consistent in the number of back propagation cycles its required to learn the problem (TABLE 1).
We also noted that the pruned net uses several connections which go directly from the input layer to
the output layer. Miller et al. found the same thing in their exclusive-or network. This lead us to also

1- 136

compare a net that is fully connected with direct connections between input and output (TABLE 1,
NET B) to a net that is fully connected between the input layer and the hidden layer, and between the
hidden layer and the output layer, but which does not allow a direct connection between the input and
output layer (TABLE I, NET A). Our results, averaged over fifty runs. suggest that nets which have
links that directly go from the input to the output layer do learn somewhat faster. In hundreds of tests
on Xor and the 2-bit adder, we also found that the standard nets without direct V/O connections become
trapped in local minima about 5 to 10% of the time. The nets with the direct I/O connections were less
likely to fail to converge to a solution. This suggests that they are less likely to become trapped in
local minima. The pruned nets never became stuck, which suggests that the genetic algorithm finds
nets that that are well suited to the problems they are trying to solve.

TABLE 1: DISTRIBTUION OF TRAINING TIMES
FOR A 2-BIT ADDER

Number of
Training Percentage of Nets That
Repetition Had Completed Training

NET A NET B NET C
8,000-9,000 4% 0% 1001
9,000-10,000 4% 0%

10,000-20,000 10% 62%
20,000-50,000 34% 32%
50,000-100,000 24% 2%

Over 100,000 14% 0%
Never Converged 10% 4%

NET A: Standard Fully Connected Net
NET B: Standard Net with Direct I/O
NET C: Pruned Net

SA1PLE SIZE: 50
U m. duuIm~h~

riGZ 1. TIC PR WWD NCT
FOR Tit 2-9IT ADDER

ACKNOWLEDGMENTS
This research was supported in part by a grant from the Colorado Institute of Artificial Intelligence (CIA!).

CIA is sponsored in part by the Colorado Advanced Technology Institute (CATI), an agency of the State of
Colorado. CATI promotes advanced technology education and research at universities in Colorado for the
purpose of economic development.

REFERENCES
Booker, L. (1987) Improving search in genetic algorithms, in: Lawrence Davis (Ed.), Genetic Algorithms and

Simulated Annealing. Morgan Kauffmann.
Goldberg. D. (1989) Genetic Algorithms in Search. Optimization and Machine Learning Addison-Wesley.
Holland, J. (1975) Adaptation in Natural and Artificial Systems. Univ. of Michigan Press, Ann Arbor.
Rumelhart, D., Hinton, G. and Williams, R. (1986) Learning Internal Representations by Error Propagation.

Parallel Distributed Processing, Vol I Cambridge, MA: MIT Press.
Miller, G., Todd, P. and Hedge, S. (1989) Designing Neural Networks using Genetic Algorithms. Proceeding of

the Third Internation Conference on Genetic Algorithms. Morgan Kaufmann.
Mozer, M. and Smolensky, P. (1989) Skeletonization: a technique for trimming the fat from a network via

relevance assessment. Advances in Neural Network Information Processing Systems. Morgan Kaufmann.
Whitley, D. and Hanson, T. (1989) Optimizing Neural Networks using Faster. More Accurate Genetic Search.

Proceeding of the Third Internation Conference on Genetic Algorithms. Morgan Kaufmann.
Whitley D., and Kauth 1. (1988) GENITOR: a different genetic algorithm. Proceeding of the Rocky Mountain

Conference on Artificial Intelligence. Denver, CO.

I- 137

Biophysical Model of a Hebbian Synapse

Anthony Zadorl, Christof Koch 2, Thomas H. Brown'
'Department of Psychology, Yale University, New Haven CT 06520

2 Divisions of Biology and Engineering. California Institute of Technology, Pasadena CA 91125

Introduction

A Hebbian synapse is one whose enhancement is caused by a simple conjunction of presynaptic and postsynaptic
activity or by a positive correlation between these activities (Brown et al, 1988b; Brown et al, 1990; Sejnowski and
Tesauro, 1989). Hebbian synapses have long been postulated to mediate information storage in the mammalian
brain (Hebb, 1949). Theoretical studies have shown that powerful forms of learning and self-organization can
emerge in networks of simple processing elements whose interconnectiors are controlled by a Hebbian algorithm
(Kohonen, 1984; Hopfield, 1984; Linsker, 1988). Interest in this class of algorithm (reviewed in Brown et al, 1990)
was increased by the recent discovery (Kelso et al, 1986) that Hebbian synapses actually exist in the hippocampus, a
temporal lobe structure that has long been impli,:ated in the declarative memory system. This Hebbian mechanism
in the hippocampus was shown to be responsible for a type of synaptic plasticity called long-term potentiation
(LTP). LTP is an increase in synaptic efficacy that can be. induced by seconds or less of the appropriate stimulation
and that has been shown to last for hours, days, weeks or longer. In accordance with Hebb's postulate for learning,
the induction of LTP was shown to depend upon the co-occurrence of presynaptic and postsynaptic activity (Kelso et
al, 1986). Enough is now known about the underlying biophysical mechanisms (reviewed in Collingridge and Bliss,
1987; Brown et al, 1988a,b, 1989) to begin constructing realistic models of the process.

The induction of LTP is thought to result from a series of enzymatic reactions triggered by a localized increase in
the postsynaptic [Ca2+] in the dendritic spine (Brown et al, 1988a,b; 1989). The Hebbian mechanism is believed to
result partly from the unusual gating property of a Ca2+-permea•!e ionic channel (the NMDA receptor-gated channel)
located on the head of the dendritic spine. This channel opens to a state with a significant Ca 2+ permeability only if
two conditions are simultaneously satisfied: (1) the NMDA receptor that is associated with the channel must be
bound by a suitable agonist, such as the neurotransmitter glutamate; and (2) the voltage across the membrane
containing the channel must be made less negative in orde; to relieve a blockade of the channel by Mg 2+. The
receptor-iontophore complex was thus proposed to act as an AND-gate for the co-occurrence of presynaptic and
postsynaptic activity (Brown et al, 1988a). Because of the microscopic size of dendritic spines, it has not yet been
possible to make direct measurements of some of the biophysical and molecular events that are suspected to control
the induction of LTP at Hebbian synapses. Partly for this reason, biophysical models are valuable for gaining
insights into some of the underlying dynamics and possible computations. A previous study (Gamble and Koch,
1987) developed a model for examining Ca2 + dynamics in spines whose membranes contain classical voltage.
dependent Ca2 + channels but not NMDA receptor-gatei channels. Here we report preliminary simulation results
from the first operational biophysical model of a Hebbian synapse.

Methods

We simulated a compartmental model of calcium ":!-lux and voltage changes at the Schaffer collateral input to
dendritic spines of pyramidal neurons from hippocampal region CAl (for anatomy, see Brown and Zador, 1990).
There were four calcium compartments and two voltage compartments. Calcium entered through NMDA receptor-
gated channels located on the spine head, which was approximated by two cylinders (0.25 pim radius and lengths of
0.05 ;m and 0.25 Itm). It then diffused along the length of the spine neck, which was approximated by two
cylinders (0.05 pm radius and lengths of 1.0 pim each). The spine neck was attached to the dendritic shaft, which
acted as a Ca2 + sink of constant concentration (0.05 gM). In each compartment, Ca2 + also interacted with a
saturable first-order calmodulin-like buffer and with a saturable first-order Michaelis-Menton Ca 2+ pump. We used a
standard buffer concentration of 55 pM (110 .M in the outermost spine head compartment), a forward rate constant
of 0.05 pM'lms"1, and a reverse rate constant of 0.5 ms"1. Equation 1 was used for the Ca2 + pump:

d[Ca]p [Ca] - [Cair

dt [Ca] - [Ca]r + Kd (1)

1- 138

where d[Ca]p/dt is the change in the free Ca2 ÷ concentration due to the pump; [Ca] is an abbreviated notation for
the free calcium concentration as a function of time; the resting level of free calcium, [Cair u 0.05 ;LM; P = (Pump

Surface Density).(Membrane Arca).Kp; the maximum pump rate, Kp = 0.2 ms'l; the dissociation constant, Kd = 0.3

ILM; and the pump surface density is 5 x 10.16 p 4ol.'m"-2 . The electrical properties of the spine were modeled by
two passive RC compartments coupled by a 175 MQ resistor representing the spine neck. The spine head
compartment consisted of a 28.6 pS leak conductance in parallel with a 0.04 pF capacitance, while the lumped
dendritic compartment consisted of a 400 Mfl leak resistance in parallel with a 20 pF capacitance. Both leak
conductances were in series with a -80 mV battery representing the (inside negative) resting potential of the cell.

The model depended critically upon the description of the synaptic conductance. The postsynaptic currents were
generated by two types of ionic channels. Current generated by the non-NMDA receptor-gated channels (the "non-
NMDA current") was represented by Equation 2 (from Brown and Johnston, 1983; Brown et al, 1988a):

I(t) - (Esyn- Vm) gm t exp(-t/tp) . (2)

where Vm is the membrane potential in mV; gm = 0.9 nS (corresponding to a peak synaptic conductance of 0.5 nS);
the synaptic equilibrium potential, Esyn = 0 mV; and t, = 1.5 ms. Parameters are from experimental data

summarized in Brown et al (1988a). Equation 3 (from C. F. Stevens, personal communication) was used to
represent the current generated by the NMDA receptor-gated channels (the "NMDA current"):

!

I(t) = (Esyn- Vm)gm I + K, [Mg] exp(-0.06Vm)3 2t)])

with gm - 0.2 nS (corresponding to a peak conductance of 0.17 nS, or one third of the maximum non-NMDA
current); P1 , 0.01 ms'; 02 = 0.47 ms"1 (corresponding to a time-to-peak of 10 ms and a decay time of 100 ms);
[Mg] = 3.0 mM; Kn = 0.33 mM"; and ESYn =, 0 mV for both the Ca2 + and non-Ca2 + components of the NMDA
currenL The Ca2+ component was 2% of the total NMDA current.

Results

The model was explored by simulating both a single stimulation of the synaptic input and a train of five successive
stimulations (at 100 or 333 Hz). The resulting changes in [Ca2 ÷] were determined as a function of the presence or
absence of a depolarizing voltage clamp (-15 mV) applied to the dcndritic compartment. When the voltage clamp was
not applied, the [Ca"] in the subsynaptic compartment reached a peak of 0.16 ;.M (following I synaptic stimulation)
or 2.0 IM (following a train of 5 stimulations at 100 Hz). When these same synaptic stimulations were paired with
the depolarizing voltage clamp, the peak (Ca2 +] in the subsynaptic compartment reached 2.1 ;LM (following I
stimulation) or 78.5 I.M (with train of 5 at 100 Hz). Based on experimental studies, only the last of these four
activity combinations (100 Hz train of 5 excitations presented during an additional imposed depolarization) would be
expected to induce LTP in the Schaffer collateral synapses (Kelso et al, 1986; Brown et al, 1989). The actual [Ca2÷']
required to induce LTP at a single synapse has not been determined experimentally; nor is it known whether the
induction of LTP is an all-or-nothing event for a single synapse. In calibrating the model with respect to LTP
induction, we have tentatively assumed that--for the synaptic enhancement to occur--the peak transient [Ca2 +] must
exceed a "threshold" level of at least 10 p., and possibly a mnuch higher value. With this assumption, the model has
thus far only yielded LTP under those conditions in which the experimental results suggest that it should.

We were particularly interested in understanding the spatiotemporal specificity of the Hebbian mechanism (Kelso
and Brown, 1986; Kelso et at, 1986; Brown et al, 1988a, 1989). In this regard, the simulations suggested an obvious
role for the dendritic spine in enabling spatial or "input specificity." The location of the NMDA receptors on the spine
head, rather than on the dendritic shaft, was shown to be important for two reasons. One major effect or .ne spine was
an "amplification" of the (Ca2"'] transients. Because of the minuscule volume of "'-. spine, relatively small Ca2 +
currents cause a large change in the [Ca 2 +] when compared with the effect of a similar synapse located on a dendritic
shaft (represented as a cylinder with a 1 pim radius). In the latter case, the 100 Hz train of 5 stimulations, delivered
during the dcpolarizing voltage clamp, generated a peak [Ca 2+] response of only 0.25 IiM in the subsynaptic (dendritic)
compartment. A second major effect of the spine was the "compartmentalization" of the peak [Ca 2 +] response to
synaptic activation. This effect results largely because of the narrow spine neck, which causes the [Ca2 +] transients to

1- 139

A,

be restricted almost complctcly to tie spine region. These two cffccts--amplification and compartmentalization--help

explain how synaptically produced increases in [Ca 2+] that are above threshold for inducing LTP can be limited to just

the active synapses.

The simulations also helped to elucidate temporal aspects of the Hebbian mechanism. The long decay time course

S=0.0Imscc 1) of the NMDA current predicts that synaptic inputs separated by intervals much longer than the

membrane time constant (about 15 - 20 ms in these neurons: Brown et al, 1981: unpublished observations) can interact
to produced Hebbian modifications. We examined the temporal aspects of the Hebbian mechanism as follows. A 333
Hz train of 5 stimulations was delivered in various temporal relationships to the dendritic voltage clamp (to -15 mV).
The [Ca2 +] in the spine head was measured as a function of time for several different interstimulus intervals (ISIs).
The ISI is defined as the time between the offset of the train of synaptic stimulations and the onset of the voltage
clamp. The peak [Ca2 +] in the spine head is plotted against the ISI in the inset to Fig. 1. The time courses of the
changes in [Ca2 ÷] are plotted for 5 ISIs in the main part of Fig. I (the ISI is indicated above each curve). It is clear
that ISis up to 100 ms could in principle engage the modification process if the [Ca2+] threshold for plasticity is about
10 ILtM as we assumed earlier. This may be the explanation for the "forward-pairing trace period" that we have
discussed elsewhere (Brown et al, 1989; 1990) in regard to the role of this Hebbian mechanism in learning.

Fig. 1. The calcium ion concentration in the 100

spine head [Ca2 +] is plotted as a function of time. 10o
A brief train of 5 synaptic stimulations at 333 Hz
is presented 20 ms after the start of the simulation.
The family of curves illustrate the effect on the so
[Ca2 ÷] transients of applying a depolarizing voltage
clamp (an instantaneous step to -15 mV) in the T o
dendrite as a function of the interstimulus interval
(ISI), which is measured from the end of the train so e
to the beginning of the voltage command. Curves :
corresponding to 5 ISIs (0, 50, 90, 130, or 170 ms) r
are labeled. The small [Ca2+] transient (unlabeled) 'a o 0_____o____
that occurs in the first 100 ms shows the effect of -c 40 003 (m)-

the same train of synaptic excitations in the *

absence of the depolarizing voltage clamp. -

Comparing this with the curve labeled 0 illustrates
the dramatic effect of the depolarization on the peak 20
increase in (Ca2 +]. The inset is a plot of the peak
transient [Ca2÷] as a function of the ISI. For all
ISIs < 100 ms, a depolarizing step can increase the
peak transient to more than 10 pM. At ISIs Z 150 ,
ms, the voltage step is completely ineffective. 0 100 200 30o 400 500

lime (in.)

Discussion

We reported results from the first biophysical model of a well-studied Hebbian synapse, the Schaffer collateral input
to the pyramidal neurons of the CA1 region of the hippocampus. These synapses display an "associative" form of
LTP (Barrionuevo and Brown, 1983; Kelso and Brown, 1986) whose induction is governed by a Hebbian mechanism
that utilizes the NMDA receptor-gated channel (Collingridge and Bliss, 1987; Brown et al, 1988b; 1989). Our
biophysical model captures several key features of the known phenomenology of LTP in the Schaffer collateral
synapses.

First, it accounts for the fundamental observation that LTP is in fact "associative" in these synapses. Repetitive
stimulation of a weak synaptic input to the pyramidal neurons fails to induce LTP in that input unless a strong
synaptic input to the same neuron is also stimulated at about the same time (Brown and Barrionuevo, 1983; Kelso and
Brown, 1986). In the model described here, the NMDA receptor-iontophore complex accounts for this elemental
conjunctive operation. Second, the mio- accounts for the known spatiotemporal features of associative LTP in these
synapses. It is known that the synaptic modifications are input specific and that there is a limited temporal window

I- 140

within which associative interactions can occur (Kclso and Brown. 1986; Kelso et al. 1986; Brown et al, 1989). Two
demonstrated properties of the Ca 2+ dynamics in the dcndritic spincs--amplification and compartmentalization--help
explain the spatial specificity. In regard to the temporal specificity, the model predicts a "forward-pairing trace period"
of tens of milliseconds. There is in fact some experimental evidence for this, but the maximum ISI that will support
associative LTP is still uncertain (reviewed in Brown et al, 1989). Finally, the model is consistent with the
independence of LTP induction from its expression (Muller et al, 1988). This independence is thought to arise from
the different roles of two, pharmacologically distinct, classes of receptor-gated ionic channels on the subsynaptic
membrane--NMDA and non-NMDA (Collingridge and Bliss, 1987; Brown et al, 1989).

The results have obvious implications for further experimental analysis and for the formation of learning
algorithms. It is clear that subtle biophysical details--such as the exact location the the NMDA receptor-gated channels
(spine head versus dendritic shaft)--will have major computational consequences. As we develop more complete
biophysical descriptions of neuronal signalling and plasticity, it should be possible to abstract some of the essential
computations for inclusion into adaptive neural network models.

Acknowledgements

Supported by the Office of Naval Research. We thank Zachary Mainen and Anna Nobre for comments on the
manuscript and C. F. Stevens for sharing his evidence regarding Equation 3.

References

Barrionuevo, G., Brown, T. H. 1983. Associative long-term potentiation in hippocampal slices. Proc. Nail. Acad. Sci.
USA 80:7347-51

Brown, T. H., Chang, V. C., Ganong, A. H., Keenan, C. L., Kelso, S. R. 1988a. Biophysical properties of
dendrites and spines that may control the induction and expression of long-term synaptic potentiation. In
Long-Term Potentiation: From Biophysics to Behavior, Eds. P.W. Landfield and S.A. Deadwyler, pp.
197-260. New York: Alan R. Liss

Brown, T.H., Chapman, P. F., Kairiss, E. W, and Keenan, C. L 1988b. Long-term synaptic potentiation.
Science 242: 724- 728.

Brown, T.H., Fricke, R.A. and Perkel, D.H. Passive electrical constants in three classes of hippocampal
neurons. J. Neurophysiol. 46:812-827, 1981

Brown, T. H., Ganong, A. H., Kairiss, E. W., Keenan, C. L., Kelso, S. R. 1989. Long-term potentiation in
two synaptic systems of the hippocampal brain slice. In Neural Models of Plasticity, Eds. J. H. Byme,
W. 0. Berry, pp. 266-306. New York: Academic Press

Brown, T. H., Johnston. D. 1983. Voltage-clamp analysis of mossy fiber synaptic input to hippocampal
neurons. J. Neurophysiol. 50:487-507

Brown, T. H., Kairiss, E. W., Keenan, C. L. 1990. Hebbian synapses--biophysical mechanisms and
algorithms. Ann. Rev. Neurosci. in press

Brown, T. H., Zador, A. 1990. The hippocampus. In The Synaptic Organization of the Brain, Ed. G. M.
Shepherd, in press. New York: Oxford

Collingridge, G. L., Bliss, T. V. P. 1987. NMDA receptors: Their role in long-term potentiation. Trends Neurosci.
10:288-93

Gamble, E., Koch, C. 1987. The dynamics of free calciun, in dendritic spines in response to repetitive
synaptic input. Science 236:1311-15

Hebb, D. 0. 1949. The Organization of Behavior. New York:Wiley
Hopfield, J. J. 1984. Neurons with graded response have collective computational properties like those of two-state

neurons. Proc. Nat. Acad. Sci. USA 81:3088-3092
Kelso, S. R., Ganong, A. H., Brown, T. H. 1986. Hebbian synapses in hippocampus. Proc. Nat. Acad. Sci.

USA 83:5326-5330
Kohonen, T. 1984. Self-Organization and Associative Memory. Berlin/Heidelberg: Springer Verlag
Linsker, R. 1988 Towards an organizing principle for a layered perceptual network. In Neural Information

Processing Systems, Ed. D. Andersen. New York:American Institute of Physics, pp. 485-494
Muller, D., Joly, M., Lynch, G. 1988. Contributions of quisqualate and NMDA receptors to the induction and

expression of LTP. Science 242:1694-97
Sejnowski, T. J., Tesauro, G. 1989. The Hebb rule for synaptic plasticity: Algorithms and implementations. In

Neural Models of Plasticity: Eds. Byrnc, J. H., Berry, pp. 94-98. New York: Academic Press

1- 141

An Improved Competitive, Learning Algorithm
Applied to High Level Speech Processing.

Pedro L. GALINDO
Computer Science Faculty

Universidad Politecnica de Madrid

Thierry MICHAUX
Computer Science Faculty

Universidad Politecnica de Madrid
and

Univcrsitd de la Sorbonne Paris III

In this paper, we summarize the last results of our work on the development of Competitive
Learning neural networks.

We compare the performance of our algorithm with that of Stephen Grossberg ART], and
demonstrate how his method can be improved by modifying the attentional parameter dinamically during
learning.

We illustrate the aplication of our model to natural language, and prove that spanish leacon can
be considered as an adaptive non arbitrary system.

1. INTRODUCTION.

Competitive Learning has been a subject of an unexpected small interest over the recent years.
However, competitive models exhibit some unique capabilities, as unsupervised learning, self-organization,
inmediate good results.

There are three main models that apply Competitive Learning, those of Rumelhart(1985),
Carpenter and Grossberg (1987) and Fukushima (1988)

We have only considered in our studies the two first models, which have some claims in Natural
Language processing.(Grossberg and Stone, 1986)

Rumelhart's model is a simple, very fast competitive model. However the results gotten are
strongly dependant on the initial conditions chosen, like the number of nodes of competition in each pool,
and the number of pools.

Grossberg's model ARTI gathers real self-organization characteristics: an effective use of full
memory capacity, self-regulated optimization in search and sensibility, self-controlled growing. Its most
important property is its capacity to preserve the stability-plasticity balance, when a familiar or unfamiliar
pattern is presented. The coarseness of the categories learnt is regulated by a vigilance parameter ().

2. ART1 (FAST LEARNING) : THE MODEL.

A basic description of ARTI has appeared in Carpenter g Grossberg (1988). A slightly simplified
and modified version has been presented in Carpenter and Grossberg (1987): ARTI, fast learning. This is
our interpretation of this model.

ARTI is composed of two layers.
The first layer, Fl, called input layer, receives the external signals from input patterns.
The second layer, F2, is designed as a competitive layer. There is always just one node active, the

one that receives the largest input, meanwhile the others are inhibited. It contains a special node, called
"Master node", that creates new nodes when it reaches an active state. At the beginning it is the unique
node in F2.

Both layers are fully interconnected by assimetric connections. Competition is obtained by
massive inhibitory connections between nodes in F2.

Let I the input pattern presented at Fl. Let X the pauern of activation of Fl. Let I X I the number
of active nodes in Fl.

Signals from nodes in F1 are modulated by the weights of connections from Fl to F2.

1- 142

Let Y the pattern of activation of F2, calculated in a competitive way. Hence, the node which
receives the largest signal reaches an active state, and others get inactive. This node will be called "winner

Input Competitive

Layer Layer

FI F2 I aInput
X = Activation at Fl

- W1 Y a Activation at F2.H W ij z Connection Weights from FI to F2.H-- W~ji = Connection Weights from F2 to Fl.
Input <W, 1iz Attentional Parameter.

S~Maeter

X y FIGURE 1. ARTI MODEL.

If the winner node is the "Master node, a new node is created in F2, being fie new 'Master node".
The winner node can be considered as a new category. Learning is made by modifying the weights between
nodes in Fl and the winner node.

If the winner node is not the "Master node, signals from nodes in F2 are modulated by the
weights of connections from 12 to Fl.

At that time. FI receives, both, input signal I, and signals from F2. So, a new pattern of
activation is created in it, X'.

Let I X" I the number of new active nodes in Fl.
If I X' I / I Xi k g the winner node in second layer is reset, so signals from F2 to F1 are inhibited,

and the activation in FI is X again. This products a new iteration where a na node in F2 is chosen to win
the competition.

If I XC I / I X I >= ; reset is prevented, and learning is made by modifying the weights between
nodes in FI and the winner node in F2.

This means that the proportion I X" I / I X I must exceed the attentional parameter (L) to prevent
reset at second layer and make learning possible.

So, when ;L is low, coarse categories are learned. When p is high, rume categories are learned.

3. DYNAMIC MODIFICATION OF ;L : THE IMPROVEMENT.

3.1 In ARTI, the value of p is constant during learning. This produces that:
A) The categories learnt have the same level of generality. They are coarse OR fine, general OR
particular, depending on the value of la.
B) The categories represent clusters, that classify input patterns. A CLASSIFICATION is made.
C) The search of winner node is just the search of the nearest category to input pattern.

3.2 Our main idea was to vary the value of g during learning, from low to high values. The objective
was to try to decompose the input patterns in their basic subunits.

The results were:
A) The categories learnt are both, coarse AND fine, general AND particular, at differents levels of
accuracy.
B) These categories allow to define ALL the "subunits" in which each input pattern can be divided
depending on the input set. Hence, a DECOMPOSITION is made, NOT A CLASSIFICATION.
C) The search of winner node, makes a Morphological Analisys of input patterns, because search
is made from general to particular subunits.
D) The analisys made is only dependant on the global set of input patterns, in a non-supervised
way, just considering the context.

3.3 Different modifications of g have been made, and we obtained that sigmoid function gives the best
performance for the same process time. In our simulations, we used a variation of g as:

I I
P0 = so, p.•t + dt) =

l+ exp(- t) 1-14 + exp(. dt) * (I - g(t)) / p.(t)

4. APLICATION TO NATURAL LANGUAGE : THE CONTEXT.

Two theories exist about the structure of Natural Language.
* The traditional one conceive Natural Language as an arbitrary, sequential and symbolic system.
* The recent one has tried to prove that it was parallel, distributed and adaptive.
In our research we were most interested in the relation between the morphological and the

phonological structure. The relation between those levels has always been considered as highly arbitrary.
Our objective was to show that using a Competitive Learning model it was possibe to define a

non-arbitrary sub-level with non-arbitrary subunits.(Michaux and Galindo,1989)
We applied the model to extract the structure of regular spanish verbs. The same process is

currently applied to the whole spanish lexicon.

5. MORPHOLOGICAL DECOMPOSITION: THE RESULTS.

The goal of the simulation was to extract the inherent structure of the lexicon. To do that WITH
NO TRICKS like wickelfeatures (MC Clelland and Rumelhart, 1986) we needed to codify words in the
right way, without any structural information implicit in the codification.

We made the simplest possible codification, a matrix of binary inputs with as many rows as the
length of the longest word at the input, and one column for each letter of the alphabet. So, a bit 1 in first
row, fifth column means that the first letter of the input word is 'e'.

FIGURE 2. CODIFICATION OF THE WORD "GROSSBERG".

The input universe was a collection of eight spanish verbs, conjugated in present, past and future
for first, second and third person of singular and plural, aligned on the stress (Galindo and Michaux, 1989).

The contrast of the performances between a simulation of ARTI for a value of ig = 0.5 with the
model proposed, when 1i just reachs 0.5. is quite important. With the model proposed verbs are devided in
morphological subunits

ARTI (i-=0.5) MODEL PROPOSED (4"-.5)
a o o em reis

m s i aba temia
temia a tap vivi

viv e iamos viv
a a dur eis teme

vivi re mos amos
a a a a ara cenar
ir ia ira vivir

lat± a a iais durar
e n ra temer cena

re m s ias aban
aba is are latir

is vi abamos picar
latir e n ire tapar

ra lati emos abas
cen pic ais tapa
pic cen ian picais
dur lat abais duraba
late tapaban
reis FIGURE 3. COMPARISON OF ARTI AND MODEL PROPOSED.

I- 144

6. SOME MORPHOLOGICAL ANALYSIS : THE PROOF.

The previous paragraph show how our model can devide the verbs in their morphological
componants only wit a IL - 0.5. If we let the model stabilize with P = 0.9 we get the following results.

We will consider two examples with i' = 0.9. the inputs are the verbs picabais and durare.

INPUT = PICABAIS

1 A 1* The stress vowel, class of the verb
2 A A 2* Correlation of the stress Vowel with the next vowel
3 A B A 3' Deteminadon of the tense: imperfect
4 P I C 49 Determination of the stem
5 A B A I S 5' Composition of tense + person (2' of plural)
6 P I C A B A 6'Composition of stem + tense (imperfect)

RES 7 P I C A B A I S 7" Word recognized = stem + tense + person

INPUT - D U R A R E

1 E 10 The sress vowel
2 R E 2' Correlationof the stress vowel with the previousc one

tense = future, person = I' of the singular
3 A R E 30 Composition class of the verb + tense + person
4 D U R 40 Determination of the stem

RES 5 D U R A R E 50 Word recognized = stem + tense + person

We need to remind here that the system has no linguistic information at alL It doesn't know what
is a letter, a vowel, a consonant, a verb, a tense, or a person. The system only has determined a certain
number of classes that he considers successively before stating what is the inpuL The most astonishing is
that the system, without any kind of linguistic information, considering the different possibilities, makes
a morphological analysis and compose the stem, the tense and the person like in a conjugation. The system
has made decomposition of the verbs in morphological subunits and has learnt their conjugations.

7. CONCLUSIONS : THE FUTURE.

To summarize we can say that:
- The model proposed makes a DECOMPOSITION of each input pauem in its pans, NOT JUST

A CLASSIFICATION.
-Categories learnt represent STRUCTURAL PROPERTIES of the input patterns.
- Each category is a subunit in which the input patterns can be devided.
- The performance of the model proposed is much better than the previous ones, since it extracts

ALL THE CONTEXTUAL STRUCTURES, not only a small part.
-The search process of winning-resetting goes from general to particular, and can be viewed as a
MORPHOLOGICAL ANALYSIS of each input pattern.

- The process of analysis is learnt in an UNSUPERVISED, CONTEXT-DEPENDANT way.
- The model has scaled a level in abstraction, from phonology to morphology.
Succesive applications of the model to lexicon would permit some extention from morphology to

syntax, from syntax to semantics.

REFERENCES.

CARPENTERG.A. and GROSSBERG, S. (1987), A massively Parallel Architecture For a Self-
Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics and Image
Processing, 37, pp 54-115, 1987.

CARPENTER, G.A. and GROSSBERG, S. (1988), The ART of Adaptive Pattern Recogn;tion by a Self-
Organizing Neural Network. Computer, Vol 21, N93, pp77-90. 1988.

1- 145

FUKUSHIMA, K. (1988). Neocognitron, A hierchichal Neural Network Capable of Visual Pattern
Recognition. Neural Networks, Vol 1., pp. 119-130.

GALINDO, P. and MICHAUX, T. (1989) Implementation of Competitive Models for High Level Speech
Processing. NEURO SPEECH. Edinburgh. May 17, 18, ;L 19th 1989.
To appear in:
Speech Communication, Special issue on Neural Networks Guest Editor. R. Moore

GROSSBERG, S. and STONE, G. (1986). Neural Dynamics of word Recognition and Recall: Attentional
Priming, Learning and Resonance. Psychological Review, Vol. 93. N.I, pp 46-74. 1986

MICHAUX, T. and GALINDO, P. (1989). High Level Speech Processing By Competitive Neural
Networks: From Psychology to Simulation.
To appear in
Fogelman Soulit, F. (under press)
Neurocomputing: Algorithms, Architectures and Applications. Berlin. Springer Verlag.

RUMELHART, D. and ZIPSER, D. (1985) Feature Discovery by Competitive Learning.
Cognitive Science, 9. 75-112, 1985.

MC CLELLAND, I. and RUMELHART, D. On learning the past tense of english verbs
in MC CLELLAND, J, and RUMELHART, D. Parrallel Distributed processing
Vol,2 . Cambridge, MA. M.I.T. Press.

I- 146

MOTOR PROGRAMS AND SENSORIMOTOR INTEGRATION

J.C. HOUK, A. BARTO, L.N. EISENMAN, J. KEIFER, S.P. SINGH,
T. SINKJAER, and D. VYAS

Northwestern University, Dept. of Physiology, 303 E. Chicago Avenue, Chicago, IL 60611;
University of Massachusetts, Dept. of Computer & Information Science, Amherst, MA 01003

An experimental analysis of neural signal transmission through the cerebellum and
rubrospinal pathway (Houk and Gibson 1987) has led to the hypothesis that central motor
programs are produced by an array of adjustable pattern generators in the cerebellum (Houk 1987).
The present paper summarizes theoretical and experimental work that was stimulated by this
Concept.

We are in the process of developing an adaptive sensorimotor network that will be based on
the anatomy and physiology of the cerebellorubrospinal circuit. Our first step has been to
implement a simulation model of a single adjustable pattern generator capable of producing simple
motor programs (Houk et al. in press). In this model, the fundamental driving force for the
generation of a motor program is positive feedback in a loop between the cerebel!um and the red
nucleus. Inhibition from cerebellar Purkinje cells is postulated to sculpt motor programs out of this
tendency for sustained discharge. Motor programs are stored by adjusting the synaptic weights of
parallel fiber inputs onto Purkinje cells using training signals transmitted by climbing fibers.

Assuming that a set of synaptic weights has already been learned, the retrieval and
execution of a motor program works as follows. In a preparatory period, specific patterns of
parallel fiber signals turn Purkinje cells on and off in a bi-stable manner, in this way a spatial
pattern of Purkinje cell states is preselected before the movement begins. A motor program is
started by a trigger signal (sensory cue) that initiates regenerative positive feedback in the loop.
The amplitude and time course of the program is then governed by the inhibitory input to the loop
from Purkinje cells which serves to regulate the intensity of the positive feedback. This regulatory
mechanism is controlled in a unique, quasi-feedforward manner that avoids problems of instability
inherent to negative feedback systems. The feedforward operations are specified by the preselected
pattern of Purkinje cell states and by an internal loop that transmits an efference copy signal
representing anticipated limb position. The limited feedback operation uses sensory input that
monitors actual limb position to switch Purkinje cells to their on-states, thus terminating the
program.

Recently we have begun to explore how adjustable pattern generators might be trained to
use force signals in combination with position signals to permit adaptation to different loading
conditions. This extension of the simulation model will allow us to explore mechanisms that the
brain might use for the formation of internal models of the loading characteristics of the
environment.

A more global theory of sensorimotor integration has been proposed by including loops
between the motor tuct•e and cerebellum in the model (Houk 1989). The motor cortex is
considered to function as a combinatorial map linking a large number of potential sensory cues to a
large number of potential actions. Positive feedback in corticocerebellar loops is thought to bind
the combinatorial map in motor cortex to motor programs stored in the cerebellum. As in the
rubrocerebellar model, execution of a program is triggered when a sensory input succeeds in
initiating regenerative loop activity. The spatial and temporal features of the program are then

1- 147

controlled by inhibitory inputs to the loops from Purkinje cells in the cerebellar cortex. This model
provides a new perspective for the interpretation of certain psychological phenomena such as
reaction time and stimulus-response compatibility. The model also suggests a potential neural
mechanism for the reported mental rotation of neuronal population vectors in the motor cortex
(Georgopoulos et al. 1989).

We have begun to test the cerebellar pattern generator concept experimentally using an in
vitro brainstem/cerebellum preparation from the turtle (Keifer and Houk 1989a). This isolated
neuronal network preserves the synaptic connections between the cerebellum, red nucleus and
reticular formation. Brief electrical stimuli elicit long-duration bursts of red nucleus discharge that
appear to represent fictive motor programs. Our results suggest that positive feedback contributes
importantly to the generation of burst discharge (Houk and Keifer 1989) and further support a role
for several types of excitatory amino acid receptor (Keifer and Houk 1989b). An activity-
dependent fluorescent dye has been used to visualize the neural circuit generating motor programs
(Houk et al. 1989).

While many features of the proposed theory of sensorimotor integration remain speculative,
mechanistic aspects of the model are testable in the in vitro network and functional aspects can be
evaluated by computer simulations coupled with microelectrode recordings in awake animals.
Experiments guided in this manner by specific models may help us to understand how central
motor programs are represented in the brain.

Acknowledgement. This work was supported by ONR contract N00014-88-K-0339 and NIH
grant RO0-NS21015.

REFERENCES

Georgopoulos, A.P., Lurito, J.T., Petrides, M., Schwartz, A.B., and Massey, J.T. Mental
rotation of the neuronal population vector. Science. 243: 234-236, 1989.

Houk, J.C. Cooperative control of limb movements by the motor cortex, brainstem and
cerebellum. In: Models of Brain Function. Edited by R.M.J. Cotterill. New York, NY:
Cambridge University Press, 1989.

Houk, JC. Model of the cerebellum as an array of adjustable pattern generators. In: Cerebellum
and Neuronal Plasticity. Edited by M. Glickstein, C. Yeo, and J. Stein. New York, NY:
Plenum Press, 1987, p. 249-260.

Houk, J.C. and Gibson, A.R. Sensorimotor processing through the cerebellum. In: New
Concepts in Cerebellar Neurobiology. Edited by J.S. King. New York, NY: Alan R. Liss,
Inc., 1987, p. 387-416.

Houk, JC. and Keifer, J. Model of cerebellum as an array of adjustable motor pattern generators:
microelectrode studies using the isolated turtle brainstem-cerebellum. In: Neural Networks:
From Models to Applications. Edited by L. Personnaz and G. Dreyfus. Paris: IDSET, 1989,
p. 121-130.

Houk, J.C., Keifer, J., and Vyas, D. Activity patterns in the cerebellorubrospinal pathway of the
in vitro turtle hindbrain revealed with activity-dependent uptake of fluorescent dye. Soc.
Neurosci. Abs. 15: 612, 1989.

Houk, J.C., Singh, S.P., Fisher, C., and Barto, A.G. An adaptive sensorimotor network inspired
by the anatomy and physiology of the cerebellum. In: Neural Networks for Control. Edited
by W.T. Miller, R.S. Sutton, and P.J. Werbos. Cambridge, MA: MIT Press, in press,
Chapter 14.

Keifer, J. and Houk, J.C. An in vitro preparation for studying motor pattern generation in the
cerebellorubrospinal circuit of the turtle. Neuroscience Letters. 97:123-128, 1989a.

Keifer, J. and Houk, J.C. Burst generation in red nucleus is blocked by excitatory amino acid
receptor antagonists in the in vitro turtle brainstem. Soc. Neurosci. Abs. 15: 390, 1989b.

1- 148

• . • ~ .

COMPUTATION OF PATTERN PRIMITIVES IN A NEURAL NET FOR ACOUSTICAL PATIERN
RECOGNITION.

Paul uele

Department of Biochemistry and Biophysics,
University of Pennsylvania, Philadelphia, PA 19104-6059 USA.

This talk deals with fundamentals of pattern primitive but must also provide a measure and
analysis in neural systems and their application to the resentation of its quantitative aspects. Because of
analysis and recognition of acoustical patterns. For their threshold, neurons can combine logic and linear
further details see ref. 1,2 and3. operations within the same unit. For example, a unit

that computes the difference of two input values, A
Plattern properties, and B, fires only if A minus B exceeds the threshold

indicating a positive truth value for statement "A
Patterns can be defined as distributions of energy in larger than B" and at the same time transmits the
space and time. The distributions form quantities of quantitative value of the difference between A and B.
the three domain variables: Energy (E), Space(S) This mode of transparent computation makes
and Time (T) which exist as a seven dimensional neurons ideal elements for pattern analysis.
manifold (El, S0.3,T0 ,1). Spatial and temporal
variables such as position, length, duration, etc. are
generated by variations of energy in space or time, Representations, Measures and Transforms
defining boundaries and positions of spatial objects
or temporal events. The quantities to be analyzed, be they variables of
Any pattern can be described by and decomposed a single domain such as length or duration or more

into a set of low order relations among these complex relations must be measured and expressed
variables and may involve single or multiple in a computable form. In neuron assemblies the
domains and dimensions. The first order variables most common and efficient representation are in the
and low order relations are called pattern primitives, form of the potential (E) and- or a position in space.
Some degree of decomposition into primitives is Not only are different energy forms entering the

indispensible for the analysis, recognition and system transformed and expressed as potentials (or
understanding of patterns. In biological sensory firing rates), but quantities of space and of time as
systems it is implemented extensively at the early well as other primitives and more complex features
stages of processing. For example, in the retina and such as motion, orientation etc. are usually
primary visual cortex multidomain and represented either as values of the output potential
multidimensional primitives such as contrast, or mapped into positions (i.e, activity of individual
position, length, width, orientation and curvature of neurons) within a group of units. For example, the
boundaries, edges, lines or areas are computed and orientation of edges or lines is mapped into different
represented by the activity of different neurons or neurons at different spatial positions in the visual
neuron populations. cortex.

Relational primitives have both a quantitative and a
logic content. Statements such as larger than% Although the point (Si) representation has the
"before', "longer than', etc. describe relations largest dynamic range, in principle all other
between domain quantities and have both a dimensions of the space or time domains could serve
quantitative content (how much is A larger than B) as representation. In some cases it may be
and a binary truth value They are commonly called advantageous to transform one type of
elementary propositions? and are not to be confused representation ;n another; there is a complete set of
with Boolean statements such as "not", "and', 'or" and transforms between representations in all domains
their derivatives. and dimensions. The transformation of the output
Because of the dual aspects of the primitives, circuits amplitude of one neuron into the spatial extension of
that perform pattern analysis must not only be able activity within a set of other neurons is a simple
to recognize, i.e., make logic (binary) decisions about example. Most of these transforms are arbitrary,
the presence or absence of a particular pattern or others, such as the transform of time into potential

I- 149

are computationally very useful and often observed the amplitude changes at particular frequencies, and
in the biological system. Transform operations are temporal changes of frequency. The performance of
not restricted to single domain variables, but can be this section of the net is modeled after the dorsal
performed also on two-domain primitives such as cochlear nucleus of higher vertebrates and the
dE/dS, dE/dt and dS/d' as well as on more complex different functions of individual neurons are
features or even entire patterns, essentially identical to those of representative units in

the dorsal cochlear nucleus , although the number of
Neural circuits for extraction, representation and units is much smaller.

representational transformation of low order A second set of neurons decodes the output
primitives are relatively simple and can be designed patterns of the first set in such a way that individual
in a straightforward manner without the use of neurons respond to different phonemes within a
learning procedures. A circuit that transforms the word and in conjunction with a computer terminal
rate of motion of activity (dS/dt) from one neuron to provide a real-time phonetic printout of speech.
another into the ontput level of a third neuron such The temporal aspects of patterns are particularly
that the potential is only proportional to the direction important for acoustical patterns and particularily for
and rate of motion and not to the value of E in one speech and this discussion deals mainly with those
or both of the input neurons involves only a few aspects of the initial pattern d, o mposition that
neurons and a limited number of connections. involve time as an explicit variable""r'.

The first of the temporal pattern primitives is
Domain Normalization and Invariance the change of energy (E) with respect to time

f._.dE/dT) at constant spatial position (frequency).
Patterns often contain features that form an Positive and negative values of dE/dT are

invariant core while others are irrelevant and represented by outputs from separate neurons ("ON"
variable. The spatial pattern of activity within a and "OFF" units). This computation is achieved by a
neuron assembly may be independent of the combination of direct and delayed (low pass filtered)
amplitudes and temporal variations of this activity', a inputs of opposite polarity from frequency tuned
neural circuit that analyzes or recognizes only the units to the *ON" or "OFF units. For the *ON" units
spatial aspects of the pattern should be able to do so the excitatory connection is direct whereas the
independent of variations in the other domain inhibitory input is low pass filtered. The "OFF" units
quantities. This requires that the spatial pattern be receive inputs of opposite polarity.
normalized with respect to potential and time.
Conversely, the temporal aspects of a three-domain These ON" and "OFF" units represent not only
pattern may have to be separated from variations in the temporal boundaries of events, i.e., beginning
the potential and space domains, and end of a particular sound of a certain frequency,

but also provide a measure of time from the
temporal boundary by transforming time into an

Application to acoustical pattern analysis. exponentially decaying potential, the latter aspect
being particularly useful for computing the duration

The early stages of the higher vertebrate of sounds or silences at a later stage.
auditory system transform acoustical signals into
patterns of neural activity distributed in space and The second temporal primitive extracted by the net is
time and decompose the relations between these the change of frequency that occurs for example
variables into their pattern primitives. We have during formant transitions associated with certain
constructed an electronic analog neuron net for diphones. Since each frequency band is represented
phonetic speech recognition in which a section of the by the activity of a separate neuron group, changes of
net performs this pattern decomposition as an initial frequency appear as "motion" of activity in neuron
"step for subsequent processing'. At the input to the space, i.e., _dS/dT. We define this motion as the
net sound is decomposed into its different decay of activity at one position and increase of
frequencies by a set of band pass filters. The rectified activity at a neighboring position and compute the
filter output is fed into several hundred neurons, rate and direction of motion (increase or decrease of
each of which is tuned to a particular pattern frequency) by neural *AND" gating of the outputs
primitive such as fundamental frequency bands from neighboring 'ON' and 'OFF' units. This
associated with speech sounds - so called formants, "AND" gating is achieved by implementing a

I - 150

"NOT(NOT) function of the "ON' and "OFP units It should be noted that in our net motion,
through separate representation of, and inhibition by sequence and duration as well as more complex
their complementary output1 . The motion-tuned temporal pattern primitives are computed through
neurons are sensitive to direction, amplitude and rate hierarchical inputs from 'ONW and *OFF" units and
of motion. The range of rate sensitivity is that such units are also found at the early stages of
determined by the time constants of the "ON" and biological neural systems.
"OFF" units.

REFERENCES:
A third temporal primitive represented in the net 1. Mueller, P., Martin, T. and Putmrath, F. General

is the temporal sequence of activity between selected Principles of Operations in Neuron Nets with
neurons. This feature, although related to motion, Application to Acoustical Pattern Recognition.
does not include the rate of transition of activity from Biological Prototypes and Synthetic Systems, Vol.1,
one position to another as a variable. Thus a neuron E.E. Bernard and M.R. Kate editors, p. 192-212,
that is tuned to a particular sequence of activity in Plenum Press, New York, 1962.
two neurons will fire independent of the delay 2. Mueller, P., Principles of temporal pattern
between the two events. This is achieved by latching recognition in artificial neuron nets. Artificial
the output of the "OFF" representation of the first Intelligence, S-142, 1963, The Institute of Electrical
unit and 'AND* gating it with the "ON' and Electronic Engineers, Inc., New York.
representation of the second unit. 3. Whitehead, A.N. and Russel, B. Principia

Mathematica, Vol.l. Cambridge U. 1910.
Finally, there are units that are tuned to a 4. Mueller, P. and Lazzaro, J., A machine for

specific duration of activity. This is implemented by neural computation of acoustical patterns
summing low pass fdtered inhibition from the input with application to real time speech recognition, MP
unit and low pass excitation from its "OFF" unit to a Conference Proceedings, 151"321-326, 1986.
duration-tuned unit. If the time constant of the 5. Kaltenbach, S.A. and Saunders, Y.A. Spectral and
inhibition is larger than that of excitation, the range Temporal Response Patterns of Single Units in
of durations the unit is tuned to is determined by the Chinchilla Dorsal Cochlear Nucleus, Erp. Neurology,
difference of the time constants, the synaptic gains 96:406, 1987.
and the threshold. Supported In part by grants from ONR (#N00014)

and NSF (EET87.166845)

1

l- 151

MODELING OF SPATIAL TRANSFORMATIONS IN VESTIBULAR REFLEX
SYSTEMS

Barry W. Peterson, Northwestern University Medical School, Chicago, IL 60611.

Summary Experimental and theoretical approaches to understanding how the CNS converts pat-
terns of sensory input into patterns of motor activity are described. A key is understanding how
sensorimotor transformations can take place in the non-orthogonal, multidimensional coordinate
systems that occur in nature. Tensor network theory can describe such transformations and generate
predictions that can be tested experimentally. Experiments have confirmed the theory's predicted
input/output transformationsfor the vestibulocollic reflex but more detailed predictions of neuronal
substrates of the vestibuloocular reflex (VOR) have to be modified to account for specialized con-
nections that have evolved in this system. Adaptive plasticity of the VOR poses a challenge for
future modeling efforts.

Introduction. The goal of the experimental-theoretical efforts described here is to understand
how the brain implements sensorimotor transformations in real biological coordinate systems that are
determined by the anatcmy of sense organs and musculo-skeletal linkages in the body. Unlike the
familiar orthogonal coordinate systems utilized by engineers, these biological coordinate systems are
typically non-orthogonal and have an arbitrarily large number of dimensions that correspond to the
axes of sensitivity of sensors or pulling action of muscles. In considering such coordinate frames, it
is important to realize that a given invariant, such as a stimulus or the response that it elicits, may be
represented in two distinctly different ways. Using the nomenclature adopted by Pellionisz and
Llinas (1979,1980) in their tensorial modeling, these representations are termed covariant and
contravariant. A sensory stimulus will typically be represented in a covariant orprojectionform. As
illustrated in Fig. IA, this is found by projecting the invariant (eg the end point of a vector repre-
senting a rotation applied to the head) upon each of the axes in the coordinate frame. This is exactly
what happens in the vestibular labyrinth where the response of each semicircular canal (SCC) to a
head rotation is equal to the projection of that rotation upon the axis of maximum sensitivity of that
canal. Note that the covariant representation is always unique regardless of the coordinate frame.

A COVARIANT (PROJECTION) REPRESENTATION B CONTRAVARIANT (PARALLELOGRAM) REPRESENTATION

b Y (0.5,0.2) b Y (1.6,1.4)

X (1-.o0) x (1.0.0)
/ /

FIGURE 1. Representations in non-orthogonal coordinate frames. Two points X and Y are shown represented in a 2-
dimensional coordinate frame with 1350 angle between axes. A. Covariant representation is formed by projecting X
and Y on axes a and b. B. Contravariant representation is the components along axes a and b which, when added
vectorially, produce X and Y. 'Me actual values of coordinates of X and Y are shown in parentheses.

A motor response will typically be represented in a contravariant or parallelogram form. As
illustrated in Fig. 11B, this corresponds to those components along each axis which when summed
vectorially produce the invariant (eg the required net torque on a given body segment). Note that
this representation is not unique if the number of axes exceeds the number of degrees of freedom of
the final response. In the figure the use of two axes in a two-dimensional space results in a unique
representation but if a third axis were added, a given point could have an infinite number of
contravariant representations. One problem to be understood by modeling is how the brain chooses
a response in such cases where the number of effectors exceeds the number of degrees of freedom.
The figure illustrates another feature of contravariant representations in non-orthogonal coordinate

SI1- 152

* 4

I 4

I 4.

U * a

frames - the component along a given axis is typically not maximal for responses that are aligned
with that axis (eg Y has a larger component along a than does X). Thus we should not expect a
muscle to be maximally activated when movement occurs along the line of its best pulling action.

Motor Commands Producing Head Movement. To explore how the CNS deals with
the complexity of the spatial transformations discussed above, my colleagues and I have examined
the patterns of motor activity that underlie head and eye movements. The former are especially
interesting since there are 30 muscles that act to move the hcad whereas fluoroscopic studies (Vidal
et al., 1986) have shown that normal head movements involve perhaps 6-10 degrees of freedom.
Correspondingly, Keshner et al. (1986) found that when cats are trained to follow a moving water
tube, each animal uses a different pattern of muscle activity to generate the same set of head trajec-
tories. A different picture emerges, however, when one analyzes muscle patterns that underlie the
vestibulocollic reflex (VCR), a reflex that stabilizes the head by generating rotations that compensate
for rotational perturbations sensed by the SCCs. In this case there is no significant difference
between the motor patterns employed by different animals (Baker et al., 1985; Banovetz et al.,
1987). This stereotypy suggests that CNS processing is organized around some optimizing strat-
egy. Modeling efforts described below have shown that this strategy corresponds quite closely to
that suggested in a theoretical vaoer by Pellionisz (1984).

-. !"• I• gpr

S~~Cip i•

".....................IVestibulart, L to 4.: .H*;i::::p:: ,:: sensory frame

.

ol ., *.. ,,.go... o..
.. ..:.. Qocf.... **.• .;.

Neck motor frame VC... R
FIGURE 2. Tensor network model of VCR in the cat. The sensorimotor transformation in the model occurs in 3
stages: gPr, sensory metric tensor, cip, sensorimotor embedding tensor and gie neck motor metric tcnsor. These

tcnsorial operations are expressed in the reference frames of the VCR by matrices, which are here represented by patch
diagrams in which positive and negative components are shown by filled and open circles whose areas are proportional

to the size of the component. The CNS can implement these matrices by neuronal networks as indicated in the upper

part of the diagram where size and strength of connections arc indicated by line thickness and shading (black for cxcita-

tion, grey for inhibition). From Pcllionisz and Peterson (1988).

Tensorial Model or the VCR. We know that the VCR must transform an input
(representing the rotation the experimenter applies to the head and body) that is covariantly coded in
the coordinate frame of the SCCs into an output (activation of the 30 neck muscles) that is
contravariantly coded in the coordinate frame of the neck muscles. The model (cf: Pellionisz and
Peterson, 1988) implements this transformation in 3 stages shown in Fig 2. These are:

I- 153

1. Sensory metric tensor. This transforms the incoming covariant signal in the SCC coordinati
frame into a contravariant representation in that frame. Since the 6 canals act as 3 pairs codinl
movement in 3-dimensional space, the 3X3 matrix required for this transformation may be found b,
simply inverting the matrix consisting of cosines of angles between the 3 SCCs.
2. Sensorimotor embedding tensor. This projects the 3 independent components of the contravari.
ant SCC signal upon the axes of the 30 neck muscles. It is just a 3X30 matrix of cosines of angle,
between canal sensitivity axes and muscle pulling directions.
3. Neck motor metric tensor. The covariant neck motor signal resulting from 2 must be trans.
formed into the contravariant representation required at the output of the VCR. As at stage 1, whai
we require is the inverse of the matrix [M] of cosines of angles between axes of the coordinate
frame. Here, however, this is a 30X30 matrix which has no unique inverse. Therefore the model
utilizes the Moore-Penrose Generalized Inverse (MPGI) as proposed by Pellionisz (1984). Math.
ematically (cf: Albert, 1972) the components of the MPGI are obtained from the outer (dyadic
matrix) product of the eigenvectors of [M]. Biologically, it could be generated in a plastic neural
network by the meta-organization process described by Pellionisz and Llinas (1985). From the
point of view of mechanics, the MPGI is an efficient choice since it tends to minimize co-contraction
of muscles with opposing actions thus preventing wasteful expenditure of energy.

As shown in Fig. 3, the model succeeds in predicting the motor pattern of the VCR within
experimental error. This indicates that the choice of the MPGI as an optimizing principle approxi-
mates the kinematic selection process embodied in the VCR circuitry. The model also suggests what
some of the intermediate signals present in that circuitry could be. For instance, even though the
patterns of activity of neck muscles are contravariant and therefore do not exhibit signals that are
maximal along the pulling directions of neck muscles, the model suggests that covariant signals,
which would be maximal along those directions should be found in the CNS. We are now search-
ing for such signals in the vestibular nuclei where SCC afferents project upon neurons that send
them onward to the cervical spinal cord and other brainstem centers. It is of course possible that
other intermediate signals could appear if CNS processing is constrained by other factors as it is in
the case of the vestibuoocular reflex (VOR), which is discussed next.

FRONT VIEW

** o UP%-i o
*,. ~ ITOP VE

SIVENTER COTYPLEXUS OCC PITOSCAPULAR!S SPLENIUS

P P PULLING DIRECTION V x VEST'BILAR RESPONSE M MODEL PREDICTION

FIGURE 3. Comparison of pulling directions (P), directions of head rotation that excite maximal VCR activation
(V) and model predictions of V (M) for four neck muscles. In each case rotation di,'!ctions are expressed as unit
vectors (use the right hand rule to find rotation corresponding to each vector). The V and NI vectors have been
reflected (to -V and -N%) to facilitate comparison with P vectors.

Spatial Transformations in the VOR. The VOR is an attractive subject for studying
spatial transformations since a large amount of its output is generated by a very simple 3-neuron arc

1- 154

which includes only SCC afferents, motoneurons and a single interneuron, the vestibuloocular relay
neuron (VORN). It is also simpler than the VCR since there are only 6 extraocular muscles rather
than 30 neck muscles. Recent studies have thoroughly characterized the fashion in which the 3-
neuron arc implements the spatial transformations required in the VOR of decerebrate (Peterson et
al., 1987) and alert (Perlmutter et al., 1988) cats.

Our experimental work was spurred by a tensorial model of the VOR put forth by Pellionisz and
Graf (1987). Since they wished to model the action of the 3-neuron arc, the three transformations of
the typical tensorial model (like that of the VCR model described above) were reduced to two by
combining stages I and 2 into a single matrix. The major spatial transformations of the VOR are
between the axes of the vertical SCCs and the oblique and vertical rectus (VR) eye muscles, which
are misaligned by and degrees respectively. In the model these directional shifts occur in the
initial transformation, which should be between SCC afferents and VORNs. (Such a transformation
would occur if more than one SCC acted on a given VORN as had been reported by Baker et al.,
1984). A difficulty was that electrophysiological data suggested that a large part of the trans-
formation between SCCs and VR muscles should arise from the fact that VORNs project to VR
motoneurons on both sides of the brain rather than on one side as in the case of oblique and hori-
zontal rectus motoneurons. This projection pattern may have arisen as the CNS adjusted to evolu-
tionary changes from lateral to frontal eyes. Experimental work has provided a definitive answer.
The model is right in predicting that the transformation required for activation of oblique muscles
occurs prior to VORNs but is not correct in predicting that the transformation between SCCs and VR
muscles occurs there. This appears to rely on the aforementioned bilateral projections of VORNs.
Thus it appears that an imperative introduced by evolutionary change has overridden the predicted
pattern of transformation for this portion of the VOR.

Motor Learning in the VOR. The VOR poses another interesting challenge for neural
modeling. Its input/output transformation can be markedly altered by motor learning. My col-
leagues and I have found that the direction of the vestibuloocular eye movement evoked by a head
rotation can be changed by a few hours of pairing of head rotation in one direction with motion of
the visual world in an orthogonal direction (Harrison et al., 1986; Baker et al. 1986). Such pairing
causes the VOR, tested in total darkness, to acquire, with a time constant of -30 min, a new com-
ponent in the direction of the visual world motion. This means that terms in the transformation
matrices describing the VOR can undergo adaptive change under the guidance of visual feedback.
These changes show amazing specificity. For instance, if the pairing is done at a single frequency,
the adaptation will be turied to that frequency with the learned component of the VOR falling off like
a band-pass filter when tested at higher or lower frequencies. If the subject is trained while lying
right ear down, the adaptive response will be maximal in that position and much smaller in the right
ear down position even though the SCC activation produced by the horizontal rotation stimulus is
identical in the two cases (Baker et al, 1987). One can even train the VOR to produce oppositely
directed learned components in the two positions (Baker et al., 1988)! A challenge for the future is
to devise models that can exhibit such context and frequency dependent learning in the sort of simple
networks that are present in the VOR.

References.

Albert, A. (1972). Regression and the Moore-Penrose Pseudoinverse. Acad. Press, New York.

Baker, J., Goldberg, I., Hermann, G. and Peterson, B.W. (1984). Optimal response planes and
canal convergence in secondary neurons in vestibular nuclei of alert cats. Brain Res. 294: 133-
137.

Baker, J., Goldberg, J., and Peterson, B. (1985). Spatial and temporal response properties of the
vestibulocollic reflex in decerebrate cats. J. Neurophysiol. 54: 735-756.

1- 155

Baker, J., Harrison, R.E.W., Isu, N., Wickland, C. and Peterson, B. (1986). Dynamics of
adaptive change in vestibulo-ocular reflex direction. II. Sagittal plane rotations. Brain Res.
371: 166-170.

Baker, J. F., Perlmutter, S. I., Peterson, B. W., Rude, S. A. and Robinson, F. R. (1988).
Simultaneous opposing adaptive changes in cat vestibulo-ocular reflex direction for two body
orientations. Exp. Brain Res. 69:220-224.

Baker, J., Wickland, C. and Peterson, B. (1987). Dependence of cat vestibulo-ocular reflex direc-
tion adaptation on animal orientation during adaptation and rotation in darkness. Brain Res.
408:339-343.

Banovetz J.M., Rude S.A., Perlmutter S.I., Peterson B.W., Baker J.F. (1987) A Comparison of
Neck Reflexes in the Alert and Decerebrate Cats. Soc Neurosci. Abstr. 13:1312

Harrison, R.E.W., Baker, J.F., Isu, N., Wickland, C.R. and Peterson, B.W. (1986). Dynamics
of adaptive change in vestibulo-ocular reflex direction. I. Rotations in the horizontal plane.
"Brain Res. 371: 162-165.

Keshner EA, Baker J, Banovetz J, Peterson BW, Wickland C, Robinson FR, and Tomko DL
(1986). Neck muscles demonstrate preferential activation during voluntary and reflex head
movements in the cat. Soc. Neurosci. Abstr. 12: 684.

Pellionisz A. J. (1984). Coordination: A vector-matrix description of transformations of over-
complete CNS coordinates and a tensorial solution using the Moore-Penrose generalized
inverse. J. Theor Bio 101: 353-375.

Pellionisz A. J. and Graf, W. (1987). Tensor network model of the "three-neuron vestibulo-ocular
reflex-arc" in cat. J. Theoret Neurobiol. 5: 127-151.

Pellionisz A. J. and Llinas, R. (1979). Brain modeliing by tensor network theory and computer
simulation. The cerebellum: Distributed processor for predictive coordination. Neuroscience
4: 323-348.

Pellionisz A. J. and Llinas, R. (1980). Tensorial approach to the geometry of brain function.
Cerebellar coordination via metric tensor. Neuroscience 5:1125-1136.

Pellionisz A. J. and Llinas, R. (1985). Tensor network theory of the meta-organization of
functional geometries in the CNS. Neuroscience 16:245-274.

Pellionisz, A. J. and Peterson, B. W. (1988). A tensorial model of neck motor activation. In:
Peterson, B.W. and Richmond, F.J. Control of Head Movement. Oxford Univ. Press, New
York, pp. 178-186.

Perlmutter, S.I., K. Fukushima, B.W. Peterson, and J.F. Baker (1988) Spatial properties of
second order vestibuloocular relay neurons in the alert cat. Soc. Neurosci. Abstr. 14:331.

Peterson, B.W., Graf, W. and Baker, J.F. (1987). Spatial properties of signals carried by second
order vestibuloocular relay neurons in the cat. Soc. Neurosci. Abstr. 13:1093.

Peterson. B. W., Pellionisz, A.J., Baker, J.F. and Keshner, E. A. (1989). Functional morphology
and ne.;ral control of neck muscles in mammals. Amer. Zool. 29:139-149.

Vidal, P.P., Graf, W. and Berthoz, A. (1986). The orientation of the cervical vertebral column in
unrestrained awake animals. I. Resting position. Exp. Brain Res. 61:549-559.

1- 156

Computer Simulation of a Macular Neural Network
Muriel D. Ross*, Judith Dayhoff**, Dale Mugler***

*NASA-Ames Research Center, Moffett Field, CA 94035
"*Judith Dayhoff & Associates Inc. Mountain View, CA 94043

***University of Akron, Akron, OH 44325

Our previous research demonstrated that gravity-sensing endorgans of the inner ear
are organized as weighted neural networks for parallel distributed processing of
linear acceleratory information. This conclusion is based upon computer-assisted,
three dimensional (3-D), animated reconstructions of terminal/receptive fields of
nerves ending in the sense organs, called maculas. Findings obtained from this
research and from known physiology are now being implemented in dynamic,
symbolic computer models to simulate a functioning system, and to learn more about
the principles of organization of biological neural networks.

Our model currently encompasses only three macular nerves with their terminals
and receptive fields (Figure 1). Once completely implemented, the software will
permit us to simulate thousands of processing elements in any grouping desired. In
order to understand the basis of our model, a brief summary of macular functional
organization follows.

Sensory maculas are comprised of two types of hair cells, type I and type 11, and
supporting cells. A type I hair cell synapses only with the expanded nerve terminal
(calyx) that surrounds its body and neck. From one to five type I cells may be
enclosed by a single calyx. Type II hair cells lie outside calyces. They distribute
their output to 1-4 neighboring calyces and to nerve and calyceal collaterals. Type II
hair cells, calyces and unmyelinated preterminals are also postsynaptic to efferent
nerve endings that are collaterals of calyces and nerves.

Hair cells have tufts of 60-80 thread-like processes (stereocilia) arranged
hexagonally in rows of graded height and a single kinocilium that lies between the
two tallest stereocilia. The location of the kinocilium functionally polarizes the hair
cell. Neighboring hair cells are not identically polarized, and polarity also reverses
direction along a traceable curved line (striola). Hair cells depolarize maximally to a
stimulus in the direction of the kinocilium and hyperpolarize to a lesser degree to
stimuli in the opposite direction (AJ Hudspeth and DP Corey, Proc. Natl. Acad. Sci.
U.S.A. 74:2407, 1977). They do not respond to stimuli at right angles to the tuft (SL
Shotwellet a!., Ann. N.Y. Acad. Sci. 374: 1, 1981). The hexagonal organization likely
optimizes signal detection, as is the case in man-made detectors (DP Petersen and D
Middleton, Inform. and Control, 5:279, 1963). Stereocilia and kinocilia differ in
thickness and in height from site to site on a macula so that neighborhoods of hair
cells differ in threshold properties and in range of sensitivity to incoming stimuli.
The entire macular array, then, has an overall morphology comparable to man-made
phased array detectors (E Brookner, Sci. Amer. 252; 94-102,1985). and responses to
changes in direction or rate of acceleration are rapid.

The sac-like membranous labyrinth above the macula is filled with endolymph. a
weak gel. Interposed in this gel is a layer of crystallite particles (otoconia) that are
unequally distributed in a thickened part of the gel, the otoconial membrane. The
otoconial membrane is attached to the kinocilia and the tallest stercocilia by strands
of gel-like material, but is relatively free to move. The maculas are attached to the
bone of the skull by connective tissue. It is commonly accepted that, during
accelerations to the head, the macula follows the motion of the skull but the otoconial
layer lags behind, due to inertia. This results in bending of the stercociliary tufts in

1- 157

the direction of lag. It is possible that this concept is too simplistic, however, because
of variance in distribution of otoconial mass and because of the physics of the gel
and the geometry of the macula. It is more likely that wave patterns generated in the
gel by linear accelerations to the head are amplified or dampened by the otoconial
layer in specific ways; and that analysis of the resulting, complex waveforms by the
sensory hair cells is dependent upon tuft and macular geometries.

The hair cells communicate their information to vestibular nerves that have three
major kinds of terminal patterns: M-type, in which there is a single calyceal
terminal at the end of a myelinated nerve; M/U-type, in which there is a short,
unmyelinated preterminal segment that may bifurcate; and U-type, in which the
preterminal unmyelinated segment is often long and three branches are typical.
Receptive fields consist of all the type I and type II hair cells synapsing with the
"terminal(s) of a nerve and its collaterals. The fields tend to be rounded when there is
a single calyx. oblong when there are two branches, and highly elongated when
there are three branches. No two fields are identical in detail.

The neural network, although continuous, is more complexly organized in some
places than in others. Near the striola, all three kinds of nerve patterns are present;
in an area toward the border there are only U-type nerves with many collaterals.
Lengthening of the unmyelinated preterminal segment increases delay time before
propagation of an action potential can begin. This finding and another, that hair
cell synapses differ in number and size and are spatially distributed, strongly suggest
that spatio-temporal factors are important to macular information processing.

Figure 1. The initial simulation model. See text for explanation.

1- 158

The full meaning of the elegant organization of the endorgans still eludes us.
Maculas are geometrically organized to detect the full range of linear accelerations
in their general plane and also rotation, some range of angular stimulation, and
velocity. They are clearly segmented, possibly for feature extraction, and wiring
patterns appear to be determined through constrained randomess. Our simulations
examine these and other concepts and will be sharpened by new experimental
results.

No effort has been made to duplicate the complexities of the supramacular material
(gel and otoconial membrane) in our initial model, but a sequence of input vectors is
simulated, with time stepped forward incrementally. The simulations are run on an
IRIS 4D turbo high performance workstation. Currently, our model is two
dimensional, and stimuli are presented from left to right (or vice versa) and
randomly. Stimuli are simulated by activation of the squares of the first tier of our
model (Figure 1). The stimulus as well as responses of all active elements are
represented through color-coding (here, by shading), with blue (lightest square.
right) representing inhibition or hyperpolarization and red (darkest square, left)
representing maximal activation or depolarization. Green is neutral. The full range
of colors in this range also depict membrane activation levels for receptor cells,
calyces and spike initiation zones. Nerve impulse initiation is animated at the nerve
fiber.

Type I hair cells are in the second tier of processors (checkered circles) and type II
hair cells, in the third tier (Figure 1). Type Ii hair cells are clear circles except for
cells, shown cross-hatched, that are distributing information to neighboring calyces.
The two tiers reflect hair cell positions inside and outside calyces. The number of
hair cells is an average of those actually observed in receptive fields of the nerve
types employed in the model. Physical features of the tufts and their directional
tuning are not portrayed but are assigned values in the software for simulation.
Each line connecting a hair cell to a calyx is also assigned a scalar value that reflects
the strength of that connection. The value varies from cell to cell because the
number and positions of the synapses vary. The connection can also be assigned a
value indicating that the hair cell output is cxcitatory or inhibitory to the calyx.

The fourth tier contains the calyces (solid circles). Calyces are processing elements
that, in our model, sum excitatory and inhibitory inputs from the hair ceils. The
information is passed to a spike initiation zone, or encoding site, shown as a small,
dotted circle on the stem axon (see Figure 1). This zone is assigned a threshold value
which must be overcome for the axon to fire. Axonal discharge is indicated by color
coding of the rectangle with dashes and separately as impulse trains. Our initial
model consists of a simulated M-type nerve (left), an M/U-type (center), and a U-type
(right).

The current model. then, includes membrane activation levels, receptor cell
polar;zations, and temporal decay of membrane potentials, along with
interconnection strengths and topologies. Currently, each nerve has only a single
spike initiation zone, appropriately located relative to the calyx for each type of
nerve. A delay is required to take into account the distance between calyces and
their spike initiations zones. Later simulations will test the consequences of multiple
encoding sitcs, one for each calyx. Also, our present simulations do not yet include
calyccal collaterals (synapses from a calyx back to a receptor cell) or cffrcent
regulation. We have examined appropriate equations for incorporating each of thesc
phenomena in future simulations.

1- 159

/ /
/

Our aim here is to test the model with the elements presently incnrporated in our
simulation software, and to add other elements sequentially, to learn how each
influences nerve activity. The software is written in C and is composed in a way to
facilitate changing parameters and redesigning the layout and interconnection
topology of the network. This freedom to change parameters has allowed us to test
responses of our simple model to the following conditions: 1) all receptor cells are
excitatory; 2) type I receptor cells are exctatory and type I cells are inhibitory; and
3) hyperpolarization (inhibition) of type II receptor cells that are programmed to
have weak inhibitory connections to calyces.

A series of initial experiments were run in which we observed a variety of different
connection strengths and different input stimuli under the above conditions. In
each case we were able to examine the temporal dynamics of the resulting activation
ratterns. We observed a difference in responsiveness of the sensory neurons
between conditions I and 2 (with type II cells excitatory versus inhibitory). When
all cells are excitatory, the neurons saturate rapidly. The simulation remains more
active and stable when type I! hair cells are weakly inhibitory to the calyx. From
condition 3. we observed an activating response before the strongly depolarizing
signal reaches the hair cells. This response proved to be the result of well-known
disinhibition (inhibition of an inhibitory unit), which is net excitation. Under all
these preset conditions, random stimulation did not result in as many impulse trains
as did directionally controlled stimulation. Nevertheless, some version of multiple
stimuli will have to be incorporated into our model to mimic current concepts that
complex waveforms are the stimuli to the hair cells.

1- 160

DEFAnet - a deterministic approach to function
approximation by neural networks

Wolfgang J. Daunicht
Abt. Biokybernetik, Inst. f. Phys. Biologie

Heinrich-Heine-Universitaet Duessseldorf
D-4000 Duesseldorf, F.R. Germany

Introduction

The approximation of a given continuous real function with support in the n-dimensional
hypercube by means of neural networks has attracted the interest in both theory and appli-
cations. It has been shown that a feedforward network with a limited number of units in the
hidden layers can not only approximate, but even represent exactly any continuous function
(Kolmogorov 1957), if the only restrictions to the units' output functions are that they be
monotonous and continuous. It is also known that feedforward networks with a single type
of nonlinear output function can approximate a given function arbitrarily well (Lapedes and
Farber 1988), even with a single hidden layer (Cybenko 1989). However, a lot of problems
remain unresolved, e.g. what size of network is sufficient to approximate a given function
with a given accuracy, what can be said about its inter- and extrapolation properties, and
what can be said about the convergence of learning. Therefore in practical problems such as
the implementation of the inverse kinematics of a manipulator in a neural network (Guez and
Ahmad 1988), the structure of the network employed is often chosen somewhat arbitrarily.
The present paper proposes a deterministic approach to these problems. Based upon the
choice of a certain interpolation rule, a neural network concept is developed that allows to
determine the topology of the network required to approximate any function and allows to
find the weights of the synapses by direct calculation as well as by training.

Concept of DEFAnet

The concept of DEFAnet is based on the construction of a grid in the n-dimensional hy-
percube by subdividing it into n-dimensiunal rectangular cells by means of I1 hyperplanes
orthogonal to the v-th axis (v = 1, ,n), and the assumption that the goal function f
is defined and known at least at the corners of each cell, the grid points. The choice of
the interpolation ru!e that is to be implemented by the network is given by the condition,
that all first partial derivatives are constant inside a cell and along the edge of a cell. An
example of a function following this intErpolation rule is given in the 2-dimensional case as
an interpolation of the XOR truth table (Fig 1).

1I- 161

7-- - -. -

/

Fig. 1. Example of a function following the interpolation rule in a single 2-dimensional grid
cell (XOR surface)

The neural network is constructed in such a way as to follow the interpolation rule -
given any combination of function values at the corners of each cell - only by modifying the
synaptic weights of the last layer. To this end it is required to have all kinds of products
of relative input signals (taken to the power of 0 or 1) available, so that appropriate linear
combinations of them may be formed. If this is to be achieved by a network with neurons
summing rather than multiplying their inputs, a 4-layer feedforward network is required.
Unfortunately, using neurons with limited non-negative output (such as natural neurons), it
is not possible to generate a product directly using logarithmic output functions, summation,
and an exponential function, as the logarithm of numbers less than one would generate
negative signals of unlimited amplitude. However, the use of output functions that can be
described as shifted logarithmic functions yields linear combinations of products that can
still be employed while following the interpolation rule.

Construction and size of a DEFAnet

Based on the DEFAnet concept outlined above, the following network is proposed. The first
layer consists of n pure fan-out units. The neurons of the second layer have monotonous
output functions which increase logarithmically over the range between two adjacent grid
hyperplanes from 0 to I. The ranges of such increase correspond to the sizes and locations
of the grid cells. To subdivide a hypercube into 'l•=l(lL, - 1) cells requires

n

Z(.1. 2) = -(l - 1)

synapses as well as neurons in the second layer, as each second layer neuron receives in-put
from only one first layer neuron. It suffices to let the synapses be excitatory, non-plastic and
their weight be 1.

-1- 162

-: .f • .- ! -_ - ... -

The output functions of the third layer neurons increase proportional to the exponential
function and saturate at 1. To provide all required linear combinations of products the third
layer consists of [I'=,1/, neurons. The number of required non-zero synaptic connections
between the second and third layer isn 1-ln

"•. Z(2 - 3) = l R

Here the synapses are excitatory and non-plastic; their weights depend cn the third layer
* -neuron to which they belong, but not on the goal function.

The output function of the only fourth layer neuron is linear and not limited. If vector
"rather than scalar functions are considered, i.e. the output dimension m is greater than 1,

.K this is the only layer to increase the number of units. The number of synapses is

Z(-4) = M p

P=i

as all third layer neurons are connected to all fourth layer neurons. The synapses between
the third and the fourth layer are considered to be plastic and to have either sign. Given
the output functions of the second and third layer neurons, the varues of the last synaptic
layer can be determined by n-fold application of a set of recursive formulae. The size of a
DEFAnet and its topology of connections is completely determined by the dimensions of the
input and output signals and by the resolution of the grid along each axis. An example of a
DEFAnet topology is given in Fig. 2

Fig. 2. Example of a DEFAnet structure for n = 2, 11 = 3,12 = 3, and m = 3

Discussion

The shape of the output functions of the hidden layer neurons is derived from the interpola-
tion rule. If the interpolation rule is chosen to be less restrictive, other output functions may
be used with similar results. However, the interpolation rule chosen here shows a number of

1 - 163

useful properties, e.g. that the network function at the center of a cell equals the mean of
the function values at the corners.

In networks with output functions independent of the goal functions the achievable accu-
racy of the approximation must depend on the size of the network. In DEFAnet the number
of neurons and synapses required can be calculated from the resolution of the giid in the
input space. It may be pointed out that cells added to the grid may require as little as one
additional third layer neuron per cell in order to have the n-dimensional interpolation rule
"holding inside the whole cell.

It is obvious, that the weights of the plastic synapses can be found by learning, and U

the last neuron (layer) is linear, problems of convergence do not occur. A wide variety of
rapid learning rules may be employed, e.g the Delta rule; backpropagation of errors is not
required. Under certain conditions it may be possible to solve self-optimization problems
with DEFAnet by introducing forgetting mechanisms (Werntges and Daunicht 1988).

In all essential aspects DEFAnet is consistent with the properties of biological neurons.
Of course, one cannot expect the input space to be subdivided into non-overlapping grid cells
or the interpolation rule to be followed exactly in natural networks, but it becomes clear,
"what size of a network suffices to implement arbitrary continuous functions in a nervous
system. In fact, the size is considerably less than that indicated in articles dealing with the
existence of such networks (see e.g. Lapedes and Farber 1988). It may be noted that the
units of some layers need not to correspond to neurons. E.g., in sensory-motor systems, it
is conceivable that the first layer is represented by sensory organs.

A DEFAnet has been successfully tested in a simulation to approximate an exact solution
to the inverse kinematics of a redundant manipulator with a 3-dimensional input space, i03
grid cells and a 4-dimensional output space.

A- Supported by Der Bundesminister fuir Forschung und Technologie

References

[i] Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control,
Signals and Systems, 1989, (submitted)

[2] Guez, A. and Ahmad. Z. Solution to the inverse kinematics problem in robotics by neural
networks. IEEE Intern. Conf. Neur. Networks, San Diego, July 1988, I1, 617-624

[3] Kolmogorov, A.N. On the representation of continuous functions of many variables by

superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk.
USSR, 1957, 114: 953-956 (Russ.); AMS Transl., 1963, 28: 55-59

[4] Lapedes, A. and Farber, R. How neural nets work. Technical Report LA-UR-88-418,
Theoretical division, Los Alamos National Laboratory, 1988

[5] Werntges, H.W. and Daunicht, W.J. Effects of forgetting on the self-optimization of
redundant sensory-motor control networks. Abstr. ist Ann. INNS Meeting, Boston, 1988,
366.

I- 164

.• - -, ,/ , ,. --,• _ - -' i' . . .

1*÷

INTERNAL REPRESENTATION OF SPACE IN NEURAL NETWORKS
OF PRIMATES AND OTHER SENSORIMOTOR MAPPING MACHINES

Rolf Eckmiller, Div. Biocybernetics, Heinrich-Heine-Universitst

DUsseldorf, Universitdtsstrafle 1, 0-4000 Dusseldorf I (F.R. Germany)

Introduction
Primate brain research at the systems level emphasizes various

sensimotor brain functions such as:
visually and/or vestibularly induced eye movements,

auditory induced vocalization ("speak what you hear"),
visually induced arm pointing ("point at where you look"), or
auditory induced gesticulation and/or locomotion.

These brain functions serve to map spatto-temporal events (trajectories) in a
given sensory space (e.g. Euclidian space of visual target locations within
arm's reach or space of sound frequencies and frequency patterns) onto 'corre-
sponding' spatio-temporal events for a related motor system. These sensorimotor

* mapping operations sometimes immediately follow sensory stimulation in a reflec-

tory fashion (e.g. vestibulo-ocular reflexes), whereas others are capable of
storing the spatial and temporal parameters of the sensory events over an exten-
ded period of time before a decision is being made regarding the time of move-
ment and the selected specific motor system. The various functionally separate
areas within the thalamus, neocortex, and cerebellar cortex are unlikely to per-
form the required mapping algebraic-analytically (e.g. by solving a set of dif-
ferential equations). The available evidence suggests that the underlying mathe-

- matical mapping problem is being imbedded in the geometry and time-dependent,
layered neural net topology of the different communicating brain regions.

Various neurophysiological, behavioral, and theoretical studies

(2,3,6,8,9,11,15,17,18,20,22,23) have been performed regarding the internal spa-
ce representation in the brain by means of visually induced pointing experiments
in both trained macaque monkeys and human subjects. Especially the parietal cor-
tex (1,10), the cerebellum (16), and various regions of the precentral cortex
(12,13,19) received attention.

VISUAL TARGET INTO BLIND POINTING

POSITIONS

y
y'

Y Ij"/visual hand

sensory map motor map

Fig.l: Schema for a typical sensorimotor mapping operation.

•) Supported in part by grants from BMFT and DFG to R.Eckmiller.

1I- 165

"> < / -" , .t.. .

I -

Pointing to visual targets within the grasping space without seeing the pointing
arm (blind pointing) was recently studied in trained monkeys (7,10,14,25) and
human subjects (4,5,21,24,26), addressing several aspects of this sensorimotor
mapping operation (Fig.l). This paper describes new results on blind pointing in
normal human subjects.
Results

* Fig.2 indicates the relation between visual targets (open symbols) and corre-
sponding blind pointing positions (filled symbols; average of three measure-

*' ments) of the right hand. Each measurement sequence included blind pointing (re-

peated three times) to seven randomly presented target positions at straight
ahead (open star), 10 deg (open circles), 20 deq (open triangles), and 30 deg
(open squares) eccentricity along a horizontal, vertical, or oblique (+/- 45
deg) line. The data in Fig.2 are plotted as viewed by an external observer (30
deg R on the left). The left half of Fig. 2 refers to the oculomotor paradigm,
"which required the subject to look at (fixate) a given target (red LED) on the
inner surface of a hemispherical screen (radius: 23cm; thickness: 2.5cm styrofo-
am). The screen with a set of LEDs (only the illuminated LED was visible) was
positioned in front of the subject's eyes with the center of the hemisphere at
the nasal root.

R. Hand oculomotor R. Hand retinal

4, 6 o 4

/

3*. tR 30R

1&

Fig.2 Blind pointing with oculomotor(left) and retinal(right) paradigm.

In the oculomotor paradigm the spatial coordinates of the target are repre-
sented as cross points of the two lines of gaze, i.e., by the oculomotor control
signals (efference copy) of both eyes. The different control signals can be as-
sumed to form a neural eye position map, which is closely related to the postu-
lated internal space map (9,21,23). Please, note the significant (though highly
reproducible and characteristically different for different subjects) differen-
ces between target and corresponding blind pointing positions. One can see dif-
ferences in blind pointing gain (e.g. 30 deg downward target position yields on-
ly about 22 deg downward pointing position), translatory shifts, and even rota-
tory shifts in this typical sensorimotor mapping operation (driver reaching for

1- 166

rX' '. ' , - V ' 1.

It

cigarette lighter; pilot reaching for a panel button without looking).
The right half of Fig.2 gives data of the same subject during the retinal pa-

radigm: a green LED at straight ahead location had to be fixated constantly to
avoid any eye movements, while a red LED appeared at one of the visual target
locations (as in the oculomotor paradigm). The subject was asked to point at
this extrafoveally presented target from the outside of the screen. In the reti-
nal paradigm, visual target coordinates are represented as positions on a reti-
notopic map. The spatial information of this sensory map yields an entirely dif-
ferent mapping result. Fig.2 (right half) clearly indicates that the blind poin-
ting gain was significantly reduced in the retinal paradigm relative to the ocu-
lomotor paradigm. In some other of the 10 studied subjects, the retinal paradigm
yielded a larger gain ti-an the oculomotor paradigm for reasons not yet understo-
od. It is noteworthy that all subjects typically made the final decision regar-
ding direction an amplitude prior to a given pointing movement in that the in-
itially reached pointing position was only very rarely corrected. In other
words, subjects 'knew' already before the pointing movement that they would be

satisfied with the match of target and pointing position.
Conclusions
1) The internal representation of space may be different for purposes of percep-
tion (sensory map) versus action (motor map) and is dependent on the updating
input (sensory or motor).
2) Although movements are internally generated, their precision is dependent on
continuous 'sensory updating', w•hich was not available (with regard to vision)
during the blind pointing task. The sensory updating of internal space represen-
tations is also necessary for other sensorimotor mapping tasks as demonstrated
for example by the poor motor performance of vestibulo-ocular reflexes in the
dark or vocalization without auditory feedback.
3) Autonomous vehicles and redundant robots under neural net control require a
powerful module for internal space representation to assure sufficiently precise
multi-modal sensorimotor mapping operations in real time in the absence of alge-

braic-analytical solutions.

References

(1) R.A. Anderson; G.K. Essick,R.M. Siegel; The encoding of spatial location by
posterior parietal neuron, Science, Vol. 230, pp. 456-458, 1985
"(2) M.A. Arbib; Schemas for the temporal organization of behaviour, Human Neuro-
biol., Vol. 4, pp. 63-72, 1985
(3) M.B. Berkinblit, A.G. Feldman, 0.1. Fukson; Adaptability of innate motor

"* .patterns and motor control mechanisms, Behavioral and Brain Sciences, Vol. 9,
pp. 585-638, 1986
(4) B. Biguer, C. Prablanc, M. Jeannerod; The contribution of coordinated eye
and head movements in hand pointing accuracy, Exp. Brain. Res., Vol. 55, pp.

. - 462-469, 1984
(5) 0. Bock, R. Eckmiller; Goal-directed arm movements in absence of visual gui-
dance: evidence for amplitude rather than position control, Exp. Brain Res.,
Vol 62 pp 451-458, 1986
(6) B. Bullock, S. Grossberg; "Neural dynamics of planned arm movements: emer-
gent invariants and speed-accuracy properties during trajectory formation", In

Y1

j ,*

-- I

Neural Networks and natural intelligence, S. Grossberg (ed.), MIT Press, Cam-
bridge, pp. 553-622, 1988
(7) D. Domann, O.Bock, R. Eckmiller; "Interaction of visual and non-visual si-
gnals in the initiation of smooth pursuit eye movements in primates", Behav.
Brain Res., Vol. 32, pp. 95-99, 1989
(8) R. Eckmiller, J. Beckmann, H. Werntges, M. Lades; Neural kinematics net for
a redundant robot arm, Proc. Int. Joint Conf. Neural Networks, Vol. II, pp.
333-339, 1989
(9) R. Eckmiller; Neural nets for sensory and motor trajectories, IEEE Control
Systems Magazine, Vol.9, pp. 53-60, 1989
(10) S. Fauqier-Grimaud, C. Frenois, F. Peronnet; Effects of posterior parietal
lesions on visually guided movements in monkeys, Exp. Brain Res., Vol. 59, pp.
125-138, 1985
(11) T. Flash, N. Hogan; The coordination of arm movements: An experimentally
confirmed mathematical model, J. Neurosci., Vol. 5, pp. 1688-1703, 1985
(12) A.P. Georgopoulos; On reaching, Ann. Rev. Neurosci., Vol. 9, pp. 147-170,
1986
(13) A.G. Georgopoulos; Neural integration of movement: role of motor cortex in
reaching, Faseb Journal, Vol. 2, pp. 2849-2857, 1988
(14) R. Held, J.A. Bauer; Development of sensorially-guided reaching in infant
monkeys, Brain Research, Vol. 71, pp.265-271, 1974
(15) G. Hinton; Parallel computations for controlling an arm, J. Motor Behavior,
Vol. 16, pp. 171-194, 1984
(16) J.C. Houk, A.R. Gibson; Sensorimotor processing through the cerebellum, In:
New Concepts in Cerebellar Neurobiology, J.S. King (ed.), Alan Liss Inc., pp.
387-416, 1987
(17) M. Kawato, Y. Uno, H. Isobe, R. Suzuki; Hierarchical neural network model
for voluntary movement with application to robotics, IEEE Control Systems Maga-
zine, Vol. 8, pp. 547-561, 1988
(18) H. Kuperstein; An adaptive neural model for mapping invariant target posi-
tion, Behavioral Neuroscience, Vol. 102, pp. 148-162, 1988
(19) R. Lemon; The output map of the primate motor cortex, TINS, Vol. 11, pp.
501-506, 1938
(20) L. Massone, E. Bizzi; A neural network model for limb trajectory formation,
Biol. Cybern., Vol.xx, pp. 1-9, 1989
(21) D. Ott, R. Eckmiller; "Dynamic adaption of the blind pointing characteri-
stic to stepwise lateral tilts of body, head,-and trunk", Behav. Brain R., Vol.
30, pp. 99-110, 1988
(22) A. Pellionisz; Tensor geometry: A language of brains & neurocomputers. Ge-
neralized coordinates in neuroscience & robotics, In: Neural Computers, R. Eck-
miller, C.v.d.Malsburg (eds.), Springer, Heidelberg, pp. 381-391, 1988
(23) E. Saltzman; Levels of sensorimotor representation, J. Math. Psychol., Vol.
20, pp. 91-163, 1979
(24) J. F. Soechting, F. Lacquaniti, C. A. Terzuolo; Coordination of arm move-
ments in three-dimensional space. Sensorimotor mapping during drawing movement,
Neuroscience, Vol. 17, pp. 295-311, 1986
(25) E. Taub, I.A. Goldberg, P. Taub; Deafferentation in monkeys: Pointing at a
target without visual feedback, Exp. Neurology, Vol. 46, pp. 178-186, 1975

(26) B.T. Volpe, J.E. LeDoux, M.S. Gazzaniga; Spatially oriented movements in

the absence of proprioception, Neurology, Vol. 29, pp. 1309-1313, 1979

1- 168

CODING OF THE DIRECTION OF REACHING BY NEURONAL POPULATIONS

Apostolos P. Georgopoulos

The Philip Bard Laboratories of Neurophysiology, Department of Neuroscience,
The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

The generation and control of reaching is a function of several motor
structures. Some principles of coding of the direction of reaching by motor
cortical neurons and neuronal populations have now become evident and will be
discussed in this presentation. First, large populations of neurons in the
motor cortex are engaged with reaching. Second, this engagement is early,
starting approximately 60 ms following the onset of a visual target. Third,
the time course of the cell recruitment in the active population is very
similar for equal-amplitude reaching movements directed to different targets.
Fourth, the intensity of cell discharge is modulated with the direction of
reaching. A cell discharges at highest intensities with reaching in a
particular direction (the cell's "preferred direction") and at progressively
lower intensities with reaching movements In directions that are farther and
farther away from the preferred one. Typically, the discharge rate is a
cosine function of the angle formed by the direction of a particular reaching
movement and the cell's preferred direction. Fifth, an unambiguous,
distributed code for the direction of reaching exists in neuronal populations
in the motor cortex. The motor command for the direction of reaching is
regarded as composed of cell vectors each of which points in the cell's
preferred direction and has length proportional to the change in cell activity
associated with that particular reaching movement. The outcome of this
population code can be visualized as a vector (the "neuronal population
vector") that points in the direction of the upcoming reaching. This
population vector is an accurate and robust predictor of the direction of
reaching in space; is resistant to cell loss; it can be estimated reliably
from about 100 cells; and it predicts well the direction of reaching well
before the reaching begins (i.e. during the reaction time), and even during an
instructed delay period. Finally, when a mental transformation is required
for the generation of a reaching movement in a different direction from a
reference direction, the population vector can provide useful information
concerning the nature of the cognitive process by which the required
transformation is achieved. (Supported by USPHS grant NS17413 and ONR contract
N00014-88-K-0751.)

REFERENCES

Georgopoulos AP, Schwartz A.B, Kettner RE (1986) Neuronal population coding of
movement direction. Science 233: 1416-1419.

Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free
arm movements to visual targets in three-dimensional space. II. Coding of the
direction of movement by a neuronal population. J. Neurosci. 8: 2928-2937.

Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental
rotation of the neuronal population vector. Science 243:234-236.

- 160

RELATIONSHIP OF VISUAL SPATIAL MAP AND SACCADIC MOTOR MAP IN
SALAMANDER

Gerhard Manteuffel
Brain Research Institute (FB-2), University Bremen

D-2800 Bremen 33, Fed. Rep. Germany

The eyes of salamanders are fixed in the head such that they are
positioned obliquely to each other and to an orthogonal coordi-
nate system given by the horizontal plane of the head and the
respective vertical. The retinae of both eyes therefore represent
two independent coordinate systems. Thus, an object located
within the binocular field that is determined horizontally by the
convergence angle of the eyes, is represented differently in each
coordinate system.

In the optic tectum, the ipsilateral and contralateral topogra-
phies are arranged so that excitations from the ipsilateral and
the contralateral eye correspond (i.e. are at the same site) if
an object within the binocular field is at a certain distance
that is given by the topographic relation and can be considered
the system's horopter. This relationship is established by an
intertectal transfer mechanism (probably via the nucleus isthmi)
whereby excitation at a particular site in one tectal hemisphere
is carried to a particular site in the other hemisphere. Thus,
the z-coordinate of the environment (i.e. the distance of ob-
jects) is established by a combination of the two-dimensional
retinotopic maps in both tectal hemispheres.

It is assumed that the bilateral visual layers of the tectum,
coupled according to the properties of intertectal transfer,
trigger sites in the respective motor layers lying immediately
beneath. Therefore, a more posterior excitation in one tectal
hemisphere will result in a more anterior excitation of the other
hemisphere. However, direct excitation from the contralateral eye
is known to be stronger than the indirect input from the ipsila-
teral eye. As a result, under binocular conditions the contrala-
teral excitation may suppress the ipsilateral one by means of
lateral inhibition, providing both are not at the same site, so
that each visual hemisphere will have only one output. Under
monocular conditions, however, the ipsilateral input survives
such that both tectal hemispheres then have an output depending
on intertectal transfer (meaning that any object is then seen
located on the horopter).

The output of the tectum has been analysed by neuroanatomical
tracing (Naujoks-Manteuffel and Manteuffel, 1988). When
horseradish peroxidase was applied at bulbar levels, a specific
distribution of tectal output cells was found. Cells are
generally more numerous on the ipsilateral than on the
contralateral side, but on both sides cell density increases from
the rostral pole of the tectum up to an isthmic level and then
decreases rapidly. The distribution is also non-homogeneous in a
medio-lateral direction. On the ipsilateral side (relative to the
injection) efferent cells are clustered medially and laterally
and are sparse intermediately. On the contralateral side, how-
ever, cells are sparse medially and increase in number toward the

1- 170

lateral margin.

In salamanders, gaze direction is adjusted by the actions of the
bilateral epaxial and hypaxial neck muscles driven by their
respective motoneuron pools. These muscles allow essentially
two-dimensional head movements within a coordinate system rela-
tive to the trunk.

Bearing in mind the visual topography and assuming that informa-
tion transfer from the visual map to the motor map occurs predo-
minantly within vertical columns, it is tempting to speculate
that the lateral and medial tectal output groups are premotoric
to the hypaxial and epaxial muscles, respectively. Since dendri-
tes of tectal output cells arborize considerably over some 100
micrometers, they can receive input from more than one visual
column. As a result, the intermediate visual zone of the tectum,
that is responsive to stimuli close to the -isual horizon, will
have an efference to both the pre-hypaxial and the pre-epaxial
output neurons.

The crucial statements of this hypothesis are that the premotor
output map of the tectum is arranged in the coordinates of the
neck muscles and that the strength of muscle contraction is
determined by the number of activated (recruited) premotor cells.
It can be assumed that both the ipsilateral and the contralateral
descending pathways from each tectal hemisphere will finally
reach the contralateral motoneurons. As the contralaterally des-
cending tecto-bulbar tract is located more medially than the
ipsilateral one, it will provide a major input to the medial part
of the nucleus reticularis medius (nRM), whereas the ipsilateral
tract can be assumed to synapse mainly on the lateral portion of
this nucleus. The lateral portion of the nRM, however, projects
to the contralateral spinal cord, whilst the medial portion
projects ipsilaterally.

The bilateral visual layers of the tectum may act locally (i.e.
at the site of activation) and independently on the respective
motor maps. This action must be considered as a triggering one so
that any activity at a certain site on the visual map recruits
the respective premotor neurons, whereby the strength of activi-
ty in the visual layer determines whether or not a threshold
intercalated between both maps can be surpassed. The rationale
for this assumption is given by the fact that although tectal
neurons are excited more vigorously by some stimuli than by
others, this excitation determines only the probability of a
saccadic movement and not its precision (i.e. the turning ang-
le). It is likely that the threshold is variable and controlled
by "motivational afferents" arising from the amygdala and other
forebrain structures that project to the tectum.
According to this hypothesis, both tectal sides convey indepen-
dent outputs that may, however, differ in strength: a more poste-
rior excitation at the visual map of one tectal hemisphere will
result in a stronger premotor activity than in the other premotor
map triggered by a visual excitation located more rostrally (if
the stimulus is not positioned straight aheAd). The two output
channels (consisting of two sub-channels: the epaxial and the

1- 171

hyaxial one) are then considered to inhibit each other at some
site, so that activation finally occurs only in the more active
one.

A computer simulation of the presented hypothesis on the design
of the saccadic system reveals the typical head movements and
lines of approach to a prey found in binocular or monocular
salamanders. Most impressive, the strange approach of monocular
salamanders toward prey is precisely reproduced. Such animals do
not walk straight ahead to an object presented at a short distan-
ce exactly in front of them, but first deviate toward the side of
the seeing eye. Somewhat later, when approaching closer, they
curve sideways and eventually reach the object (Roth, 1987). This
can be explained by the type of intertectal transfer between the
visual maps of both sides. At the starting point, the tectum
contralateral to the eye receives a relatively caudal excitation
and the transferred signal to the other tectal side occurs ros-
trally. Hence, the output of the contralateral tectum is stronger
and evokes turning away from the object (toward the seeing eye).
During approach, the object will stimulate more and more temporal
positions of the retina and this results in an increasingly
rostral position of excitation on the contralateral tectum. As a
result of intertectal transfer, the other tectal side (ipsilate-
ral to the eye) will then be stimulated more and more caudally
and will therefore have an increasing output. From the point
where the ipsilateral tectal output is stronger than the contra-
lateral one, the animal turns to the side of the blinded eye and,
thus, toward the object.

REFERENCES:
Naujoks-Manteuffel,C., and Manteuffel,G. (1988): The origins of

descending projections to the medulla oblongata and rostral
medulla spinalis in the urodele Salmandra salamandra (Amphi-
bia). J. comp. Neurol.: 273, 187-206.

Roth,G. (1987): Visual behavior in salamanders; Studies of brain
function, vol. 14, Springer, Berlin.

I- 172

On the Role of Input Representations

in Sensorimotor Mapping

Lina Massone and Emilio Bizzi

Dept. of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Abstract

This paper emphasizes the role of input representations in sensorimotor mapping. We present
experiments in training a sequential network that generates aiming movements with three different
stimuli representations and we describe the corresponding behavior as far as generalization and
learning are concerned.

1 Introduction

In this paper we aim at emphasizing the role of input representations in sensorimotor mapping. We
will do it by describing some experiments performed during training of a sequential network that
generates aiming movements of a redundant limb towards targets specified as sensory stimuli. The
network is fully described in [Massone and Bizzi 1989, Massone and Bizzi in press]; its main features
will be briefly summarized in Section 2. Section 3 will address the particular problem of input
representations and will show that the network can exhibit quite different behaviors depending on
the adopted representation of the input stimuli.

2 The Network
We represented the aiming task by means of a sequential network of the type proposed by Jordan
(1986]. The network is composed of two arrays of input units (plan units and state units), one array
of hidden units and one array of output units. Due to recurrent connections from output units to
state units, this network is able to produce sequences of output signals. The state units provide
then a time-varying input to the layered network that learns the sequences. The other input to the
network derives from the plan units, which are activated by the external stimuli. The activation
of the plan units remains constant within a given sequence but varies between sequences to allow
different sequences to be learned by the same network.

In our case, the output units drove a redundant three-joint limb which moved from a fixed initial
posture to a target. The limb was schematically modeled with four pairs of antagonist muscles: the
shoulder flexor and extensor, the double joint flexor and extensor, the elbowi flexor and extensor,

1- 173

the wrist flexor and extensor. Muscles were represented
,- as springs according to a model that is described later in

this section. Each output unit activated a muscle; output
"I units were considered as motorneurons. Hence, the time

I IIsequence generated by tte network was encoded in muscle
space.

*. Plan units contained a representation of the sensory
I Istimulus. A portion of the limb workspace was d&.cretized

with a 15x15 pixel grid as shown in Figure 1; Figure I also
shows the initial posture of the limb for all aiming move-
ments. The stimulus was encoded as a narrow gaussian
distribution centered on one of the 225 pixels; any pixel
could become the target of the aiming movement. All units

Figure 1: A portion of the in the network had continuous activation functions.
limb workspace discretized with a The network's task involved generating a trajectory of
15z15 grid. The limb is in the the limb from the starting posture toward one of the tar-
starting posture, gets. Hence, the network performed a sensory-motor trans.

formation.

Aiming movements were assumed to be planar. We used a bell-shaped velocity profile for training
trajectories, which is a recurring feature of movements performed by biological systems. The duration
of movements was assumed to be constant. Consequently, the network was asked to generalize not
only the path of the limb towards the target but also the corresponding velocity profile.

The network was trained through supervised learning. To compute the sequence of muscle
activations that correspond to a trajectory of the limb from the initial to the final posture we used
a model which represents muscles as tunable springs characterized by a set of integrable functions
between length and tension at steady state (Mussa Ivaldi et al. 1988]. This model makes it possible
to compute:

"* the xy coordinates of the end-point position of the limb, given the activation of the muscles.
(This computation is a well-posed problem.)

"* the muscle activations given the xy coordinates of the end-point. (This is an ill-posed problem,
solved by applying a minimum potential-energy constraint.)

We employed the inverse transformation (from end-point position to muscle activation) to compute
the training set. The direct transformation (from muscle activation to end-point position) was used
during the testing phase.

Experiments performed during learning and on the trained network showed that: (i) the task
could be learned by a three-layer seq'lential network; (ii) the network successfully generalized in
trajectory space and adjusted the velocity profiles properly; (iii) the same task could not be learned
by a linear network; (iv) after learning, the internal connections became organized into inhibitory
and excitatory zones and encoded the main features of the training set; (v) the model was robust
to noise on the input signals; (vi) the network exhibited attractor-dynamics properties; (vii) the
network was able to solve the motor-equivalence problem.

1- 174

3 Input Representations

The network described in Section 2 was trained with three different representations for the input
stimuli, namely a local representation and two distributed ones. Only one out of the three gave
good results from the point of view of the generalization properties of the network. It is worth
noting that in our case building a stimulus representation means translating the values of the 22.5
pixels into activation values of the plan units. In the remainder of this section we will describe the
three representations as well as the corresponding network's behavior and we will try to provide
explanations for these results.

3.1 Local Coding

Local coding of the stimulus means associating one plan unit to each pixel in the workspace. In
this case the network had 225 plan units. The activation of each plan unit was simply the value of
the corresponding pixel (all values were properly normalized between 0 and 1, 0 being the value for
absence of stimulus, 1 being the value at the gaussian peek, i.e. at the target.)

With this local coding the network could learn the task (the training set contained about 15
trajectories) but its performance from the point of view of generalization was bad. The limb moved
in the right direction but it nmissed the targets of a significant amount and the velocity profile was
not bell-shaped. The network basically behaved as a look-up table.

3.2 XY Coding

XY coding refers to a distributed representation introduced in [Hinton et al. 1986). It requires one
plan unit for each row and one plan unit for each column of the workspace, 30 units in our case.
Each pixel is represented by a pair of units (one row unit and one column unit) encoding its position
in the workspace. This representation is known to have a few drawbacks, the main one being the
ambiguity arising when more than one pixel has to be represented. In fact this representation fails
to encode explicitly "wh•t goes with what". In our case, this particular problem does not apply as

* only one stimulus at the time is represented;

* although each stimulus activates more than one pixel (because of the gaussian distribution)
only one of such pixels (the target) has a value equal to 1.

Consequently, each pattern of activation across the plan units uniquely identifies one target.
With the XY coding the network could learn the task, but, surprisingly, its generalization capa-

bilities were even worst than in the case of local coding. Besides missing the target and not being
able to adjust the velocity profile, the limb often moved in the wrong direction. A possible expla-
nation for this misbehavior came from an analysis of the muscle activations in the training set. We
found that for different portions of the workspace the sequences of muscle activation were totally
different in structure. Let's consider, for example, two targets on the same row, the first one in
the top-right portion of the workspace and the second one in the top-left portion; the sequences of
muscle activation that lead the limb to those targets did not share any common structure. This fact
implies that the notion that two targets are on the same row not only does not help the network to

I- 175

understand the task, but can be highly misleading. The network builds an internal representation
for the task that is "wrong".

3.3 Coarse Coding
We achieved good generalization by coarse coding the stimuli as follows. Each plan unit had a
receptive field over the array of pixels; each receptive field contained nine piLxels and was partially
overlapped with neighbor fields. The result was a 7x7 array of plan units. The activation of each plan
unit was the sum of the values of the pixels that belonged to its receptive field. The resulting values
were then properly normalized. Besides achieving good generalization on both path and velocity
profile, learning was faster (it took about 2/3 of the trials needed in the case of XY coding.) More
detailed information about learning and generalization with coarse coding can be found in [Massone
and Bizzi 1989, Massone and Bizzi in press]. This result shows that what is important for the limb to
reach a particular target is the behavior in a neighborhood of that target, rather then the behavior
in portions of the workspace that are far apart. An other nice feature of coarse coding is that
overlapping receptive fields can partially overcome the arbitrariness of the workspace discretization
by translating a spatial discretization into continuous activations of plan units. Furthermore, this
coarse coding can be considered a good approximation of the receptive fields of sensory neurons in
the case, for example, of skin stimulation.

4 Conclusions

In this paper we showed the importance of building good representations of the input stimuli for sen-
sorimotor transformations. We presented experiments in training a sequential network that generates
aiming movements with three different stimuli representations and we described the corresponding
behavior as far as generalization and learning are concerned. Coarse coding [Hinton et al. 19861
turned out to be the best representation for this particular motor task.

References

Hinton GE, McClelland JL, Rumelhart DE (1986) Distributed Representations, in Parallel Dis-
tributed Processing, McClelland JL, Rumelhart DE Eds., MIT Press, Cambridge (MA).

Jordan MI (1986) Attractor Dynamics and Parallelism in a Connectionist Sequential Machine, Proc.
8th Annual Conf. of the Cognitive Science Society, Hillsdale, N.J.: Erlbaum.

Massone L, Bizzi E (1989) Generation of Limb Trajectories with a Sequential Network, Proc. Int.
Joint Conf. on Neural Networks, June 18-22, Washington D.C.
Massone L, Bizzi E (in press) A Neural Network Model for Limb Trajectory Formation, Biol. Cy-
bern.

Mussa Ivaldi FA, McIntyre J, Bizzi E (1988) Theoretical and Experimental Perspectives on Arm
Trajectory Formation: A Distributed Model for Motor Redundancy, in Biological and Artificial In-
telligence Systems, E. Clementi and S. Chin Eds.,pp. 563-577, Escom.

ACKNOWLEDGEMENTS

The authors wish to thank Michael Jordan for his constant support and valuable suggestions, and
for making available the basic software which implements sequential networks. Thanks also go to
Joe McIntyre and Ferdinando Mussa Ivaldi for providing the model of muscles. This work has been
supported by the Office of Naval Research Grant N00014/88/k/0372 and the Sloan Foundation.

I- 176

Learning Spatiotemporal Patterns
in A Neural Network with Lateral Inhibitory Connections

Noboru Murata, Kenji Doya and Shuji Yoshizawa
Department of Mathematical Engineering and Information Physics

Faculty of Engineering, University of Tokyo

address : 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan
e-mail address : mura%sat.t.u-tokyo.ac.jp(0relay.cs.net

1. Introduction

Animals have superior ability of conducting series of well organized motions. The ability is considered
to be supported by some flexible neural mechanisms which memorize and control spatiotemporal patterns.
In several lower animals simple types of such neural networks have been observed. These networks are called
'motion pattern generators'. Some mathematical models of the networks were proposed and it was shown
that they can memorize some simple temporal patterns (see Suzuki et. al., 1972; Doya and Yoshizawa, 1989,
for example). However, these networks do not explain complex motions of higher animals, because th,.ir
ability is restricted to generating relatively simple patterns and not enough to regenerate the memorized
pattern in another temporal structure. In this paper, a neural network model is proposed, which memorizes
spatial and temporal patterns in separate parts of the network so that the scheduling of the spatiotemporal
pattern regeneration is possible. The capability of the model is confirmed by computer simulations.

2. Neural Network Model

2.1 Structure of the Network

The network has three layers: input, hidden and output layers. Stimuli to the network are given on
the input layer. Autonomous excitations are supposed to exist on the hidden layer. The dynamics of the
excitation is changed according to the value of the weighted sum of the input stimuli through input-to-
hidden connections. Hidden-to-output connections transform the excitation patterns on the hidden layer
into desired patterns on the output layer. This two layered structure gives an easy way of memorization and
regeneration of spatiotemporal patterns (Fig. la).

The following properties are required for the hidden layer. The excitation pattern on the hidden layer
changes continuously, and the excitations at different time are distinguished from each other. The transition
from one excitation to the other takes some duration which is controlable by external inputs. As a realization,
a nerve field with lateral inhibitory connections is adopted and travelling local excitation on the nerve field
is used.

The nerve field consists of two layers of excitatory and inhibitory neurons. Each excitatory or inhibitory
neuron is connected to excitatory and inhibitory neurons in its neil-hborhood. In addition, each neuron of
the field receives input stimuli from outside. Figure lb shows these connections. Based on the computer
simulation of this kind of nerve fields, Wilson and Cowan (1973) reported that following three types of local
excitation patterns occur depending on feature of external stimuli and parameters of the field: transient local
excitation around an intensely stimulated locus, lasting local excitation around aji intensely stimulated locus
and travelling local excitation across the field. Amari (1977) analyzed these phenomena ,uathl-matically.
Only the third phenomenon is considered in the followings.

2.2 Fundamental Equations of the Network

In the followings, vectors SA(t), uA() and YA(t) denote external stimulus, inner state and output
vectors, respectively. The j-th component of these vectors represents the value of the)-th .- I;tvyr neuron
at time t. Matrix WVA B(1) denotes the connecting weight matrix, whose (j,k) component represents weight
of connection from the k-th B-layer neuron to the j-th A-layer neuron at time t. Subscripts i, ex, in and o
represent input layer, hidden excitatory layer, hidden inhibitory layer and output layer, re.sp.,ctivdly.

The input layer consists of n, neurons. Output function of the input neuron is assumed to be the
identity function. Thus,

y,(t) = u,(t)= s,U) (input to the network). ()

1- 177

a b
apatiotemporal pattern Nerve Field with Lateral Inhibitory Connections

1• excitatory neurons
output layer

transform patterns fr we. es

hidden layer 02/. Wes in

control dynamics of hidden layer 1 inhibitory neurons

input layerI

t

spatial pattern stimuli from input layer

Fig. 1. The structure of the neural network model.
a : The layered structure. b : Connections of hdden layer.

Hence, output vector yi(t) represents state of the input layer.
The hidden layer consists of n2 excitatory and n2 inhibitory neurons. Values of external stimulus

vectors are caluculated by equations

8..(t)= We.s(t)?.(t), 8i.(t)= Wi.i(0~y*~), (2)

where We*,(t) and W,..(t) are n2 x nI weight matrices of input-to-hidden connections. The components of
weight matrices W*., Wes in, Wis.. and We.i are time-independent and defined as follows:

(Wew . if j - kl < a..... (wiotews, = Win ,se
6; ={w. if j= k

(.) 0 otherwise, 0 otherwise,
i= if [7 - ki < a,.. i. = 0,

f. 0 otherwise,

where a., ez and 7ex , are constants which decide regions of interactions. Dynamics of the hidden layer are

du' +(t) _ .*(t) + ,. y,..C)_ We.isi,,C) + s(,) -h,,

"ru..- dt) (4)

dl = - ui,()) + i + Si,,(t) - hi.i,

Y.-W(t =]LIu,.(t), yi,,() = ifui,(t)], (5)

where he, and hi, are thresholds of the hidden-layer neurons, vector 1 is an n2 vector, whose components
are all 1. Function 4[-] is output function of the hidden-layer neurons, and

i- th component of iZ] = {0 otherwise. (6)

The output layer consists of n3 neurons. Inputs to the neurons are weighted sum of outputs of the
hidden-layer excitatory neurons.

"s0) = Wof.(t)y.'(t), (7)

where W,,,(i) is a n3 x n2 connecting weight matrix. Output function of the output-layer neuron is the
identity function, then input and output of the output-layer neuron are identical. Namely,

YoM = uo(') = so,(). (W)

2.3 Equations of Learning
Weight matrix l,,Vo,(t) transforms spatial patterns on the hidden layer at time i into spatial patterns

on the output layer. The learning rule for We, is defined by

r,(t) = d(t) - y(), o,,(t) = r()[y.(t) T (9)
dI

1 - 178

where d(t) denotes the desired output, and T,.. is a small positive constant. This rule is the so-called
continuous-output perceptron learning.

Weight matrix W.,,(t) decides the stimuli to the hidden-layer excitatory neurons, and controls the
velocity of the travelling local excitation. Since propagation velocity of the excitation in the hidden layer
increases with intensity of the stimuli to the neurons, W 4.,(t) is modified according to phase relation between
desired output and actual output. Modification rule for by W, 1,(t) is given by

dW.,,(t)",,(t) = (.(,())1y..(t), r-.., d = -7 ([)(0, (10)

9.(X -1 a <-X<a,
1i a <z,

-dt = -P(t) + {d(t - 6t) . yo(t) - d(t). - 0((- 6t)}, (12)
dt

where r,,i, r', 6t and a are small positive constants. Here, L'(t) deti.cts phase relation and v(t) is positive
if phase delay.

Weight matrix W,.,(t) decides stimuli to the hidden-layer inhibitory neurons. If the stimuli to the
inhibitory neurons increase, they become more excitable and their inhibitory effect is strengthened and, as
a result, local excitation area of the excitatory neurons becomes narrower. According to this property, the
following modification rule for W,., is used:

"" N dW,..(t)

r,) g(N- EYj(t))Y,'s .,' = --r 3 '(j)[?I(t)]T' (13)
j=1

where N ± a is the desired width of the local excitation area, and ri,. is a small positive constant.

3. Computer Simulation

The capability of the model is confirmed by computer simulations. The following parameters were
selected: n 2 = 200, n 3 = 1; r., = r,. = 1.0, h,, = h,: = 1.0, w,... = 0.30, w,,,. = 0.6t6, wj., = 1.0,
aeses = 5, ' = 2; o = 100.0, , = 50.0, T,3 , = 25.0, r' = 0.5, 6t = 0.5, a = 0.04, C = 0.3, N = 14,
n-l

3.1 Exercise I.

Figure 2a shows the output after learning. Weights Woex(t) and W,.,(t) are modified by equations
(9) and (13), but weight WVz,(t) not changed. Here, na = 1, (W. 2,,(0))ij = 0.6, (tV,,(0)),l = 0.3 for all j.
The dotted and the solid curves are the actual and the desired outputs, respectively. Figure 2b shows, on
the other hand, the output after modifying W~.,(f) and W,.,(i) by equations (10) and (13), and keeping
Wo, 3(t) constant.

3.2 Exercise f1.

This exercise shows the change of output according to input to the netwutk. First, for input
y/ = (0.5, 0.5)T, Wo,,(f) and IW,,,(t) are modified so as to memorize the output pattern shown in Fig.3a.
Next, Ws,,(t) and W,,,(i) are modified so as to generate the desired output patterns shown in Fig.3b
and 3c for inputs y, = (1,O)T and y, = (0,1)T respectively. In this case, a1 = 2. (WI),(0)), = 0.6,

(W,•,.())jk = 0.3 for all (j,k). Figure 4 show.. outputs from the network for unexperienced inputs. It is seen
that the network generates various temporal patterns according to the input.

4. Conclusion

A neural network model was proposed, which memorize spatiotemporal patterns and regenerate them
with various temporal structures using dynamic excitation patterns on a nerve field with lateral inhibitory
connections. The present network is a prototype model to explain the flexibility of acquiring and planning
complex motions of higher animals.

I- 179

a/

0.0
time

0 20
t.0

b output (

o 20

Fig. 2. Exercise I. Memorizing patterns.
The solid curve is the desired output d(t), the dotted curve is the actual output y.(0).

a: Learning W..(t) and W.,i(t). b Learning W.,,i(t) and Wi.,(t).

1.0

0.0
t ! time

0 20
1.0 1.

b Cwit outpu ,L c -

lime 'Ii,

0 20 0 20

Fig. 3. Exercise f. Memorizing patterns (two input neurons!.
a : Learning Wo. 8 (t) and Wi.i(t) for input y, = (0.5,0. 5)T. b : Learning W.,.(t) and
W,.,(t) for input v. = (1,o)T- c Learning W,,i(t) anid Wj.j(t) for input y, = (0,1)T.

1.0 1.0

a ouptF<_ b ouptF,--"~0 b
I'I ime 'bInd

0 20 0 20
1.o 1.0

0.0 0.0 "'"

I Ume Utim

0 20 0 20

Fig. 4. Exercise H. Outputs for unexperienced inputs.

a : Output for input y, = (0-8,0.2)?. b : Output for input Yi = (0.6,0.4)?. c : Output

for input y, = (0.4, 0.6)T. d : Output for input y' = (0.2, 0.8)T.

References

Albus,J.S. (1981): Brains, Behavior, and Robotics, McGraw-Hill.

Amari,S. (1977): Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields, Biol. Cybern.,

27, 77-87.

Doya,K. and Yoshizawa,S. (1989): Memorizing Oscillatory Patterns in the Analog Neuron Network, Proc.

of International Joint Conference on Neural Networks, I, 27-32.

Kishimoto,K. and Amari,S. (1979): Existence and Stability of Local Excitations in Homogeneous Neural

Fields, J. Math. Biol., 7, 303-318.

Suzuki,R., Katsuno,I. and Matano,K. (1971): Dypamnics of "Neuron Ring ". Computer Simulation of Central

Nervous System of Starfish, Kybernetik. 8, 39-45.

Tokura,T. and MorishitaI. (1977): Analysis and Simulation of Double-Layer Neural Networks with Mutually

Inhibiting Interconnections, Biol. Cybern., 25, 83-92.

Wilson,H.R. and Cowan,J.D. (1973): A Mathematical Theory of the Functional Dynamics of Cortical and

Thalamic Nervous Tissue, Kybernetik, 13, 55-80.

I - 180

Collective Oscillations in Neuronal Networks:
Functional Architecture Drives the Dynamics

Daniel M. Kamment, Philip J. Holmes', and Christof Kocht

t Computation and Neural Systems Program, California Institute of Technology, 216-76,
Pasadena, California 91125.

'Fairchild Visiting Professor, California Institute of Technology. Permanent address: Dept.
of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853.

Abstract:

Stimulus specific frequency and phase locked oscillations in cells tuned to similar orientations but widely separated

on the cortical surface (up to 7mm) have been reported in visual cortical areas (Gray et al. 1989). We have analyti-
cally and in simulation explored the basis for this activity by examining two neuronal architectures, representing two

extremes along a continuum that can generate oscillations with the observed properties in a robust and rapid man-
ner. Using arguments f6om the theory of dynamical systems we show that under certain conditions neural networks
with global, feedback connections can generate oscillations among the stimulated neurons with zero phase-lag. The
phae-lag among neurons coupled to their neighbours in a chain-like geometry, on the other hand, will vary with the
distance between them and the phase of substantially separated groups will drift relative to each another. It therefore
appears that feedback connections are primarily responsible for these oscillations.

Recent electrophysiological evidence supports the view that the firing patterns of groups of
neurons in the mammalian cortex exhibit stimulus-induced oscillations. Such 40-60 Hz oscillations
have long been reported in the rat and rabbit olfactory bulb and cortex on the basis of both single-
and multi-unit as well as EEG activity (Freeman 1978). Similar oscillations have been described in
visual, auditory and motor cortex (gray et al. 1989, Ecl:norn et al. 1989). In the cat visual cortex,
the firing rates of cells many mm's apart can be highly synchronized -with no noticeable phase-
shift-as long as they have similar orientation tuning. These oscillations are not stimulus-locked.
Since cells in mammalian cortex are not thought to act as Central Pattern Generators (CPG) the
question as to the origin and coordination of these oscillations arises.

We are interested in exploring the anatomical basis of this process at a functional level in
the visual cortex. In earlier work on CPG's (Cohen, et al. 1982), it was argued that, in studying
coupling effects among large populations of bursting neurons one can ignore the details of individual
oscillators and represent each one simply by a single variable: its phase. Letting Oi(t) be the phase
of the jth oscillator in a collection of N + 1 oscillators leads to models of the form:

0(1)
0- =Wj + fj (00, 01, --- ,ON)(1

where wj is the firing frequency of the j'h oscillator and the coupling functions, fj, are continuous
and periodic in each phase variable. In eq. (1) w, represents the properties of individual oscillators,
and in particular its level of excitation, while the functions fj encode the types and architecture of
the coupling.

1- 181

We consider two extreme connection geometries: in case (A) we take a one dimensional array of
oscillators with nearest neighbor couplings, interpreting each unit as a hypercolumn in the visual
cortex; while in (B) each unit is coupled to a common comparator which feeds back a function of
the average phase. In both cases it is convenient to replace (1) by its continuum limit, in which the
phase of the j4" oscillator in a chain of length N + 1 at time t is described by the variable O(x, t),
0 : z = j/N < 1. The models are of the form:

(A) a"7 az/+ Lf -e (2)

(B)= w(z) + f(9 -j•wI(s, t)ds). (3)

The two architectures are shown in Figure I along with an input pattern consisting of two "spots"
of size 6 and intensity a. This stimulus is similar to that used by Gray et al. (1989) in recent
experiments on cats.
Analysis of Model A

If the excitation is too "noisy" or the chain too long we cannot expect to find frequency locked
solutions to model (A). This makes good sense; in fact we find that the "excited" units will "break
away" and fire at a rate appreciably higher than that of the unstimulated oscillators. Ermentrout
and Koppel (1986) have studied this effect in the case that the driving frequencies spatially have
a linear gradient and show that there is a critical value of the gradient above which locking is lost
and the chain breaks into domains which fire at different rates. Our simulations reveal that the
same phenomenon of ftequency plateaus occurs with excitations of the form presented in Figure 1.

We find that even relatively strong nearest neighbor coupling cannot adequately account for the
tight, - 00, phase differences observed between active units separated by large numbers of inactive
(unstimulated) units.

Analysis of Model B

We first observe that, while we have presented model A as a linear chain, there is no intrinsic
geometry in the coupling architecture: the placement of the excited units does not affect phase
conditions, as it does in model A.

We have proven analytically and demonstrated in simulation that for small input amplitudes
that excited units will exhibit phase-coupled collective oscillations that are decoupled from the
background neurons. Not only do the excited units fire at the same rate , but they remain ezactIly
in phase regardless of their geometrical arrangement or separation. For larger amplitude input
the excited cells "break away" both in frequency and phase from the unstimulated neurons. The
analysis easily generalizes to several excitation spots, but if there are different excitation levels oi
then phase differences will appear.

It has been argued on theoretical grounds by von der Malsburg (1986) that temporal syn-
chronization of groups of neurons labels perceptually distinct objects, subserving figure-ground
segregation. We will present a hybrid of models (A) and (B) that can perform such segregation
and mimics the architecture of the early visual pathway.

I- 182

0(0, t)O(N, Q)

WX(OON

(0(0) (O(N)

X0 0O X+

FIGURE 1. (Kammen, et al.)
TOP: network geometry (A)
MIDDLE: network geometry (B)
BOTTOM: input frequency (driving input)

to the networks. See text for
details.

1 - 183

References

A. M. Cohen, P. J. Holmes and R. H. Rand, (1982). J. Math. Biol., 13, 345.

Eckhorn, R., Bauer, R., Jordan, Brosch, M., Kruse, W., Munk, M. and Reitboeck, H. J. (1988).
Biological Cybern., 60, 121.

W. J. Freeman (1978). Elect. Clin. Neurophys. 44, 369 (1978).

C. M. Gray, P. Kbnig, A. K. Engel and Singer, W. (1989). Nature, 338, 334.

N. Kopell and G. B. Ermentrout, (1986). Comm. Pure Appl. Math. 39, 623.

Ch. von der Malsburg and W. Schneider, (1986). Biol. Cybern. 54, 29.

1- 184

A MULTILAYER NEURAL NETWORK MODELLING N

THE PERCEPTUAL REVERSAL OF AMBIGUOUS PATTERNS

F. Masulli, M. Riani, and E. Simonotto
Dipartimento di Fisica - Universita' di Genova

Via Dodecaneso 33, 16146 Genova, Italy

The capability of a multilayer neural network (based on a modified BSB model) for

reproducing the stochastic dynamics of the perceptual reversal of ambiguous figures is

assessed. Computer simulation results, as well as experimental data, are well fitted by a

Gamma distribution.

1. Introduction

When an ambiguous pattern, such as the Necker cube or the Mach pyramid (Fig.1),
is observed, the same visual input can elicit two different interpretations, giving rise
to a cyclic perceptual alternation of such competitive interpretations. This repetitive
cognitive behaviour can be regarded as the basic feature of the perceptual alternation
phenomenon.

I"~ - ---

Matli Pyramid Necker Cube
Fig. I

During a prolonged observation of an ambiguous drawing 1,2) a stationary phase is
reached in which both percepts appear with some regularity, and the perceptual dura-
tions of the competitive interpretations are well represented by a Gamma distribution,
with a mean time normally ranging from few to about ten seconds . The analytic form
of a Gamma distribution is:

p(t) dt = bt- exp(-bt)dt

where r(n) is the Euler-Gamma function.
In this paper, we propose a multilayer neural network model that is able to describe

the main characteristics of the perceptual alternation phenomenon 3) and, in particular,
the stochastic distribution required.

2. A single layer model of perceptual alternation

In a previous work 3) we described a single-layer neural network (SLN) model of
perceptual alternation that was based on the "Brain State in a Box" (BSB) model
proposed by Anderson and coworkers 4,5). The SLN is the basic building block of the

1- 185

multilayer model that we present in the next section. Here we summarize and discuss
the principal characteristics of the single-layer network.

The recognition processes related to an ambiguous pattern can be modelled by
an autoassociative neural network in which the features characterizing both alternative
interpretations must be coded in the activities of the network "neurons". So the state
vector f of the network can be seen as composed of two subvectors, fA (the first I
components of f) and fB (the last m - 1 ones), associated with the features of the
two alternative interpretations, A and B, of the ambiguous pattern. Furthermore,
such interpretations exclude each other, and can never be present together; hence, it is
important that the excitation of the subvector fA should exert an inhibiting influence
on the subvector IB, and vice versa.

The connection matrix, C, is obtained by learning, through some trials, the two
competitive interpretations, A and B, using a generalized Hebb rule. The matrix con-
tains two square blocks, EAA and EBB, representing the positive autoconnections
of each subvector (iA or IB) to itself, and two rectangular blocks, IAB and IBA

IAB = IBA), which are the inhibitory connections of fB to fA, and vice versa, that is:

(EAA -IAB) (2)

-IBA EBB

In this way, the SLN is able to reinforce the features of only one interpretation, while
the features of the other are weakened; hence, when a constant input, G, representing a
static ambiguous pattern is presented, the system can reach a stable state (i.e., a corner
of the box in BSB model), corresponding to one of two alternative percepts , in which
every neuron of the related subvector is firing at its maximum rate . At this point, in
order that the system may simulate an experimental cyclic behaviour, we assume that,
once the system has reached a corner, a habituation process becomes effective for a fixed
time lag, giving rise to a continuous decrement in the components of that subvector,
which leaves the corner. As a result, the subvector representing the alternative part
of the state vector becomes dominant and further decreases the activity of the other
subvector.

The dynamical evolution of the i-th component of the state vector (i.e. the acti-
vation value of the corresponding neuron), from time t to time t + r, can be expressed
by the equation:

fi(t + r) = LIMIT (z Cijfj(t) + G1) (I - c(t)) (3)
j=1

where LIMIT is a function limiting the values of the state vector components to those
ranging between zero and one, Cij is the element of the connectivity matrix and /3G1
is the i-th component of the stimulus multiplied by a constant parameter /3 and ai(t)
stands for the habituation process. The effect of this process is to lower the input
sensitivity of the neurons. Accordingly, ui(t) is usually zero but when the LIMIT
function becomes active, it assumes the value o = or (or E (0,1)) for a fixed time lag.

I- 186

/

A plausible value of the unit time r is about a tenth of a second. In fact, to use
continuous values of the neurons' activation, that is their firing rate, one must integrate
the instantaneous activity of neurons over a suitable time interval (r).

Computer simulations of the network behaviour 3) have shown the existence of a
stable limit cycle in which the two percepts, A and B, alternate periodically; further-
more, this network exhibits considerable robustness to noise. In fact, the addition of a
biologically plausible synaptic noise does not change significantly the temporal evolution
of the SLN.

3. The multilayer model and its stochastic dynamics.

In order that the system may exhibit a stochastic behaviour, we designed a mul-
tilayer neuronal network (MLN) with a single-layer network as basic element. Such
improvement involves inserting in the model the probable redundancy of the neural
assembhes acting as "recognizers" in the brain 6); then, an ambiguous input stimulus,
G, can be shifted among such parallel recognizers, as a consequence, for instance, of eye
movements.

We designed a two layers network. The lower layer is made up of r SLNs working
in parallel, without any interconnections. The probability, p(t), that the input d is
present in the k-th SLN of the lower layer can be expressed as:

p(t) = p(ON/ON)p(t - r) + p(ON/OFF)(l - p(t - r)) (4)

where p(ON/ON) is the transition probability from the state ON (input present) to
the state ON and p(ON/OFF) is the transition probability from the state OFF (input
absent) to the state ON . We chose such transition probabilities that, on average, the
stimulus is present in only one SLN of the lower layer for every time step. When the
stimulus is not present in the k-th SLN, the input vector is the null vector.

The upper layer consists of a single basic unit (SLN). The input to the i.th neuron,
Gq(t), is the sum of the activities of the corresponding neurons in the lower layer:

G(I(t) - ft (5)

k=1

We assumed that the perceptual interpretations, A and B of the ambiguous pattern
resulting from this MLN are associated with the temporal evolution of the upper layer;
then the system perceives A (or B) if the sum pA(t) of the activities of the neurons of

the subvector IA, normalized to one, is greater than the corresponding sum ,pB(t) for

the subvector 18(or vice versa 'OB(t) > cPA(t)).

A preliminary test of the MLN behaviour , was performed, via computer simula-
tions, using the following parameter values : m = 10; r = 10; /# = 0.9; or, = 0.6 or
ao = 0.65 or co = 0.7 (for a time lag of 30 times r). The parameter 1 could assume two
values: I = 6 and I = 5 (perfect symmetry between A and B). IfI = 6, GC = 0.02 for
i < 6 and G, = 0.03 for i > 7; ifI = 5, G, = 0.02 for every i value. The connection
matrix C was symmetrical with Cj, = 0.

I - 187

When white noise (of the order of 0.4 of the connection value) is added to the
connection matrix C, the MLN exhibits a stochastic dynamical behaviour. After a
short transient period, a stationary phase is reached in which the two percepts al-
ternate (Fig 2a), and the durations of each percept, (i.e. the time interval in which
WA > VB or vice versa) are distributed around their mean values according to a
stochastic distribution that is well fitted by a Gamma distribution (Fig. 2b).

A " F .2
r

I..L4 1 ILIi

f 4Ito ISO 40) 15 26 37 40 58 Of 60 II 102 113

Time Step Reversal Time

Fig. 2a Fig. 2b

Fig. 2a Temporal evolutions of PA (continuous line) and PB (dashed line) during 240 iterations of

one run of the computer simulation, for I = 6 and a,- = 0.6.

Fig. 2b Comparison between the stochastic distribution of the reversal limes of percept B, as ob-

tained from the same run of the computer simulation as in fig. 2a, and the corresponding

Gamma distribution histogram.

The values of the parameters b and n of the Gamma distributions, obtained by var-
ious computer-simulation runs, range from 0.01 to 0.1 r- 1 and from 2 to 5 respectively.
In order to compare the simulation results with experimental ones 1,2), we point out
that, if we choose the iteration time r equal to 0.1 seconds, the mean duration times
of computer simulations are of the order of a few seconds. This choices allows both
the mean duration times and the values of the Gamma parameters to be very close to
experimental ones 1,2)

References

1. Borsellino, A., De Marco, A., Allazetta, A., Rinesi, S., and Bartolini, B., "Reversal Time Distri-

bution in the Perception of Visual Ambiguous Stimuli," Kybernetik, 10, 139-144 (1972).

2. De Marco, A., Penengo, P., Trabucco, A., Borsellino, A., Carlini, F., Riani, M., and Tuccio, M.T.,

"Stochastic Models and Fluctuations in Reversal Time of Ambiguous Figures", Perception, 6,

645-656 (1977).

3. Riani, M. and Masulli, F., "Modelling Perc-,jtual Alternation by using ANN's" , in "Parallel

Architectures and Neural Networks II", E.R. Caianiello ed., World Scientific, in press.

4. Anderson, J.A., Silverstein, J.W., Ritz, S.A. and Jones, R.S., "Distinctive Features, Categorical

Perception and Probability Learning", Psychol. Rev., 84, 413-451 (1977).

5. Kawamoto, A.H. and Anderson, J.A., "A Neural Network Model of Multistable Perception", Acta

Psychol., 59, 35-65 (1985).

6. Edelman, G.M., "Group Selection as the Basis for Higher Brain Function" in "The Organization

of the Cerebral Cortex", Schmitt, Worden, Adelman, and Dennis, eds., The MIT Press (1981).

1- 188

K

Learning from natural selection
in an artificial environment

David H. Ackley
Michael S. Littman

Bell Communications Research
Cognitive Science Research Group

Abstract

The process of natural selection is clearly a source of information about the performance of an individual
organism, but - since the signal for failure is death - it is not immediately apparent how it could be
exploited to perform learning during an individual's lifetime. This paper defines and demonstrates a
strategy called evolutionary reinforcement learning (ERL) that combines genetic evolution techniques
with neural network learning techniques to allow effective learning based only upon natural selection.
The strategy is demonstrated in an artificial life environment called AL, using computer simulations
that span four orders of magnitude in space and six orders of magnitude in time. Successful individuals
may achieve lifetimes of 25,000 steps or more, and initial populations that develop long-term viability
may descend through 300 generations or more before arriving at the one million step simulation limit.

This paper i a summary of ongoing work that will be described more ully in a future report [1].

Natural selection as teacher

Learning algorithms vary in the amount and nature of the feedback they require to function. For example,
super vised paradigms supply correct answers as feedback; the system must learn to produce them on demand.
Reinforcement paradigms supply less - only judgments of right or wrong - so the system must first discover
and then remember the correct responses. The paradigm of natural selection supplies still less - only birth
and death. How can an organism learn in such circumstances, where the only unarguable sign of failure is the
organism's own death, and the reproduction process preserves only the "genetic code," which is unaffected
by any learning performed during the organism's life?

This paper describes experiments with adaptive "agents" controlled by simple neural networks. A population
of agents struggles for existence in a simulated world in which the only feedback mechanism is natural
selection. Sufficiently healthy and well-fed agents produce offspring; less effective ones are killed in battle or
starve.

A strategy for adaptation called evolutionary reinforcement learning (ERL) is explored. The primary new
contribution of ERL is that the "genetic code" subject to evolution specifies not only an action function to
determine behavior, but also an evaluation function (6]. Changes in evaluations from step to step produce
reinforcement signals that drive individual agent learning. In simulation studies, ERL displays better
performance compared to control populations of randomly moving agents, and compared to populations
that employ just evolution.

It is important to recognize that natural selection, when viewed as a computational paradigm for search and
learning, places severe restrictions on possible adaptation strategies. There are only two circumstances in
which a strategy has decisions to make. The first situation - concerned with learning - is the choice of
behavior for a given agent at a given timestep, and the second situation - concerned with evolution - is
the passage of genetic information to the offspring when a birth occurs. Everything else is determined by
the "laws of nature" of the world at hand. For exa.-nple, death requires no action on the part of the strategy.
Also, in contrast to conventional genetic algorithms [10, 7], a strategy is not free to specify the existence
and maintenance of any particular population size. Similarly, a strategy is not free to determine who lives,
who dies, and who reproduces. The strategy influences such decisions only indirectly, via the interactions
between the (static and dynamic) properties of the world and the behavior of the agents govetned by the
strategy.

1- 189

ERL: Evolutionary reinforcement learning

At Birth

Given: A parent agent A and an offspring 0 to be initialized.

B1. Clone. Copy A's genetic code to 0. If there is one or more other agents within a prespecified distance
of A, pick the closest such agent B and go to B2, otherwise go to B3.

B2. Crossover. Modify O's genetic code by crossing with B's using two random crossover points.

B3. Mutate. With low probability mutate O's genetic code by flipping random bits.
B4. Elaborate. Translate O's genetic code into initial weights for O's evaluation and action networks.

Living at time t:

Given: A living agent A, and a new current input vector It.

L1. Evaluation. Propagate It through the evaluation network producing a scalar evaluation Et.

L2. Learning. If this is A's day of birth, go to L3. Otherwise, produce a reinforcement signal by
comparison with the previous evaluation: Rt = Et - EC- 1 . Use the CRBP learning algorithm to
update the action net with respect to the previous action Xt-i and previous input It-1.

L3. Behave. Us. the CRBP performance algorithm - a standard forward propagation followed by
stochastic output units - to generate a new action Xt based on It. Perform the chosen action.

Figure 1. Summary of ERL.

Evolutionary reinforcement learning

Evolution (adaptation of a population) and learning (adaptation of an individual) are both important natural
processes through which behavior is optimized for survival. The field of genetic algorithms [10, 7] focuses on
evolutionary issues, while much of the research into neural networks [12, 8] has focused on learning issues.
ERL is one of a number of approaches that in various ways combine these two areas, e.g. [3, 9, 13].

Figure 1 summarizes the ERL algorithm. In principle, any associative reinforcement learning algorithm
supporting multiple output bits [5, 4] could be used in steps L2 and L3; we have employed an existing
reinforcement learning algorithm called CRBP [2] for that purpose. CRBP and all reinforcement learning
algorithms require the presence of a reinforcement function which they attempt to optimize. Evolution's job
is to di.cover useful evaluation functions - functions that produce reinforcement signals that cause agents
to learn to be successful under the influence of CRBP.

World AL

Figure 2 summarizes the basic characteristics of AL. AL shares many characteristics with other artificial
environments [11, 14, 16] that have been explored. Here, we just highlight a few important aspects:

"* The agents (and carnivores) have fixed orientations in space and possess four "eyes," allowing them
to see the nearest object within a given range along each of the compass directions. Actions are also
globally oriented: two bits coding for north, south, east, and west. Fixed orientation is one of a number
of design decisions aimed at simplifying life for the agents, allowing them to make progress even with
one-layer, non-recurrent networks, and consequently allowing us to run relatively large simulations for
relatively long periods of time.

o No physical evolution is allowed. All the adaptive agents employ the same "standard chassis," and
both evolution and learning operite solely at the level of behavioral control. Although evolution of
physical structures is manifestly of tremendous importance in the natural world, our focus with AL is
on "intellectual" development.

" The "genetic code" defining an agent is fairly large - over 280 bits - compared to research efforts such
as [14, 15]. Evolution is posed a hon-trivial optimization task.

1- 190

OVERVIEW LANDSCAPE VIEW INPUT TO AGENT
AL (world) I100x ce nooatomiadal. aschton updates by type. (Closeup of lower left.hand comer) N S E W

(")Ita~etbbaddeath. Proviide shelter for agents from 6*0 0o 0
eansiavom but no food. Only one agent alowed peramo.1--- - ~ ~
Occupant kWWie fo umea dim 010 0 0
pwtWets) Geotnetic growth up 0a =wding limit. EsAM onlyb - - - 0 0 010
agents. Walkedoverbycaivorm. MinimumofSOplants&live. _

*(ca'wvorer) Controled by hand-coded FSA. Input i directon t-0 0 0 0
cloet ant directly N.S. or W no furlerthan 6 cells away. _9 _ _

Cauae damage to agents. Eat dead agents. Reproduce when A- - 0 0 0
mfficien•ly noumibed. Damaged by agents. Die f suff•ciendy _1

damaged or hungry. New one added to world evay200 steps. in trewe? 0
(agont) Cocuolled bry gauencally-coded neural network. Input is -- - e
epesemae sono(o of eIo-jectdwecslyN ,S.E&Wnoft lhr d am a

d 4 cells away (see figure). Ou•put is 2 bit coding actoo n - -h'nger f
duuciicaN.S.E or W. Eatpansand can ea t d udagerntsand
camn'ome. Reproduce when sufficiendy nourished passing gena bias -

Iisoftrijg (see seat). Damaged by carnivores, walls said other ____ -. UNIT VALUES
agents. Die if sufficiently damaged or hungry.
S(%wits) Delimiatouter edges of wordandare scattered inside. 8 4__ _ ___ -Ji- 0J
Permanent.Cam mumu damage to agents. 10 1 _. _

Figure 2. Summary of World AL.

An AL oversight routine employs "spontaneous generation" to ensure that neither plants, trees, nor carni-
vores become extinct, but agents are given no such safety net. How long can an initial population of agents
expect to survive in World AL?

Results

Simulations of ERL in AL display phenomena at several time scales. Observing at highest resolution, agents
are seen moving about or collecting in corners, feeding or starving, encountering carnivores and escaping
or not, and so on. AL is not an overly kind world: Most initial agent populations die out quite quickly.
Observing summary statistics at the xl00 time scale, in those populations that survive the most apparent
features are irregular predator-prey oscillations involving plants, agents, and carnivores, interspersed with
periods of stable or slowly changing population sizes. The few runs that survived to the one million step
simulation limit (e.g., see the xl000 views in Figure 3) generally possessed agent population sizes that
oscillated in the 30-60 range.

We compared five strategies:

B (Brownian) Non-evolving, non-learning, agents with uniform random actions,

F (Fixed) Non-evolving (no crossover or mutation), non-learning, agents with random action networks,

E (Evolve) Non-learning agents with evolution of action networks,

L (Learn) Non-evolving agents with learning based on a fixed random evaluation network, and

EAL agents with learning in the action network and evolution of both networks.

We ran each strategy 100 times, varying only the initial random seed. Runs were truncated at one million
steps when necessary - twice for strategy L and seven times for strategy ERL. The mean population
survival times were

B 6,560, F 1,562, E 1,564, L 47,529, ERL 80,707.

The distributions are highly skewed due to frequent "infant mortality" - i.e., quick population extinctions
- combined with very long tails. Figure 4 displays a cumulative plot of all the data from the 500 runs.
It appears that the strategies fall into two broad groups: E and F on the one hand, and B, L, and ERL
on the other. Strategy B does better than might be expected because uniform random actions will tend
to spread agents evenly in the non-toroidal world, whereas the other strategies in general display biased
behavior patterns, risking increased damage from walls and spot famines due to local overgrazing.

1- 191

s 5o 100 ISO 20o 80' 8'1 02 900 10o

50 100 150 200 800 850 900 950 1000

-0 50 100 150 200 800 850 900 950 1000

Steps (x 000) Stes" (xl 00)

Figure 3. ERL in AL: Species population sizes vs time for a long-term successful initial agent population
(first and last 20% of run shown).

0
1C

ERL

.2 L....ECu

I1 1 1 1 1

8l e2 e3 e4 e5 e6
extinction time (log scale)

Figure 4. Cumulative plots showing the distributions of population lifetimes generated by the five strategies.
The point marked with a diamond, for example, indicates that 60% of the strategy E initial populations
were extinct by about 1500 timesteps.

A median test verifies that strategy E differs from ERL (p < .001). In addition, above the seventy-fifth
percentile ERL pulls away from B. This is also supported by a median test (p < .005). L and ERL remain
indistinguishable up to the ninetieth percentile.

Discussion

There are many interesting issues raised by the simulation results; here we touch briefly on a few. Most
striking to us was that evolution without learning did so poorly, and that learning without evolution did so
well. The former result was jurprising since evolution without learning is the typical approach to artificial life,
and the latter result was surprising since, without evolution to improve the evaluation functions, strategy L
can never move beyond on the randomly-generated evaluation functions found in the initial populations.
We hypothesized that evolution alone has difficulty because survival in AL is no trivial matter: Most agents
with randomly generated action networks die quickly (viz. the strategy F results). Consequently, most viable

I- 192

populations that do develop descend from a single individual in the initial population, and thus all are close
genetic kin. In such circumstances, genetic recumbination has little effect. To explore this hypothesis, we
investigated variant AL world.& in which survival was easier at first and gradually became more challenging.
We found that if we slowly decreased the plant density while slowly increasing the range of carnivore vision
(world AL.1), strategy ERL did display a significant ad, intage over strategy L, indicating a benefit for
evolution at least combined with learning.

The success of learning alone was noteworthy. It is easy enough to conclude merely that the space of genetic
codes for action networks is more difficult to search than the code space fox action-plus-evaluation networks,
so that strategy L could simply "luck into" good initial populations often enough to make the difference.
However, that cannot be the whole story. After all, the code space for L is thirty orders of magnitude larger
than that for E, so one might expect it to be harder to search. Our explanation is that it is easier to generate
a good evaluation function than a good action function.

Notice, for example, that there are two output units in the action network, but only one in the evaluation
network. To specify an action in response to a particular input requires specifying two weights, but to specify
that a particular input is "good" requires only one weight. Furthermore, if the evaluation function specifies
that the energy level input is positively valued, then there is pressure towards making "eating moves" more
probable regardless of the direction of the food source. One such evolutionarily specified weight can have the
effect of specifying all eight weights involved in response to plants. The insight that strategy L highlights is
that:it can be much easier to specify goals than implementations - assuming, of course, the existence of a
search aud learning process adequate to fill in the details.

Even though AL is by necessity and by design very much a toy world, within its limited spatial and temporal
confines a wide range of phenomena occur. Population survival time is a very natural performance measure,
and obviously relevant to the human species. Evolution and learning speak to each other across the gulf of
a time scale, and with deep temporal simulations such interactions can be studied. In the field of neural
network research, where a predominant urge seems to be for learning algorithms to converge faster, this
research suggests another possible goal: to be interesting longer.

Acknowledgments

Tom Landaner, George Furnas, the Cognitive Science Research group, and other members of the technical
staff at Bellcore contributed valuable ideas and statistical help. Any errors of substance or style, however,
are due to the authors.

References

[1] Ackley. D.H., & Littman, M.S. Evolutionary reinforce. [101 Holland, J.H. Adaptation in Natural and Artificial Sys.
mean learning. In preparation, 1l9u. tems. U of Mich. Press, 1975.

(21 Ackley, D.H.. & Littman, M.S. Generalization and saeling [ill Langton, C.G. (Ed.) Artificial Life, Addison-Wesley.
in reinforcement learning. Submitted to Neural Informsa- 1989.
ton Processing Systems, 1989.

[31 Ackley, D.H. A connectionist machine for genetic hill- [12) McClelland J.L. & Rumelhart, D.E. (Eds.). Parallel
climbing. Kluwer Academic Press, Boston, I Distributed Processing: Explorations in the mucrostruc-

tures of cognition. Three volumes. The MIT Press (A
[4) Anderson, C.W.. Learning andproblem solving with mul- Bradford Book), 1986.

tilayer connectionist systems. U of Mass. Ph.D. COINS
TR 86-50, 1986. (131 Montana DJ. and Davis, L., Trainingfeepdorward neu-

ral networks using genetic algorithms,. To appear) IJCAI,
[(5 Barto, A.G. Learning by statistical cooperation of self- 1989.

interested neuron.like computing elements. Human Neu.
robiology, 4:229-256, 1985. [14] Packard, N.H. Intrinsic adaptation in a simple model for

evolution. In C.G. Langton. (ed.) Artificial .. fe, Addison-[6) Berliner, H.J., & Ackley, D.H. The QBKG system: Gen- Wesley, 1989.
erating explanations from a non-discrete knowledge rep.
resentation. AAAI.82, Pittsburgh, PA, 213-216, 1982. (151 Taylor C.E., Jefferson, D.R., & Goldman, S.R. RAM:

[7] D e a t n c tArtitcial life for the exploration of complex biologic al sys-
anGoldber, D. ene t earnh,.Apis,-eset 18, tems. In C.G. Langton, (ed.) Artificial Life, Addison-and macniune learning. Addison-Wesley, 1989.Wely19. Wesley, 1989. .

[8] Grossberg, S. Studies of mind and brain. Reidel, 1982. (16LWilson S.W Knowledge growth in an ar-ificial animal.

[91 Hinton, G.E. and Nowlan, S.J. How learninj can guide P~oe. o? an Int. Conf. on Genetic Algorithlms and Their
evolution. Complex Systems, 1, 495-502, 198 Applications. 16-23, Pittsburgh, PA, 1985.

- 193

GENETIC PROGRAMMING

Modular Neural Evolution for Darwin Machines

Hugo de Garis

Machine Learning and Inference Laboratory,
Artificial Intelligence Center, George Mason University,
4400 University Drive, Fairfax, Virginia 22030, U.S.A.

email HUGODEG@GMUVAX2.GMU.EDU

Keywords

Genetic Programming, Neural Networks, Genetic Algorithm, Modular Neural
Evolution, Agents, Society of Mind, GenNets(Neural Networks designed with the Genetic
Algorithm), Hierarchies of Neural Modules, Sequential Evolution, Genetic Programming
Software Shells, Darwin Machines, Wafer Scale Integration, Nanotechnology.

Abstract

This paper introduces the concept of Genetic Programming, which employs the
Genetic Algorithm (GA) [GOLDBERG 19891 to design both Neural Network (NN)
[RUMELHART et al 1986] modules (GenNets) and their control circuits. The GA is used
to find the weights (and their excitory-inhibitory signs), of fully connected neural networks
with feedback. Once a GenNet module performs sufficiently well, its weights are frozen,
and the module is then used as a component in more complex circuits. The outputs of NN
control circuits are the inputs to these frozen modules. Once the "control circuit plus
modules" (considered as a unit), functions as desired, the weights of the control circuit are
then frozen. This larger frozen unit can be considered as a component for a yet higher stage
of design. This hierarchical module building is similar to Minsky's "Society of Mind"
theory, where a GenNet module is equivalent to his concept of an "agent", and Genetic
Programming is related to his idea of "mind design" [MINSKY 1986, 1988]. A second
concept is also briefly introduced, namely that of the Darwin Machine, which performs
GenNet evolution directly in hardware. WSI, (wafer scale integration) (now) and
nanotechnology (later), will allow such machines to be built.

Introduction :

The conceptual problems involved in designing and controlling neural computers
with m(b,tr)iUions of processors can be discussed today. It will be impossible to program
each processor individually, and the internal dynamics and connections between
processors will be toe complex to analyse. Several conclusions and suggestions result from
this.

a) Modules of neural nets will need to be treated as black boxes. Only their
performance will be of concern. Full analysis of their internal behaviour will have
to be abandoned.

b) Neural modules will be designed by the Genetic Algorithm, using coded
chromosomes which will compete with each other to reproduce, according to the
quality of their performance.

c) These neural modules (agents) will be combined to form functional hierarchies
("agencies", a la Minsky) using neural control circuits which themselves will be
evolved by the Genetic Algorithm.

I- 194

Modular Neural Evolution

To illustrate the above ideas, a simple example of modular neural evolution is
presented. It is the two-eye, two-joint robot arm positioning simulation problem. FIG.l
shows the basic setup. The aim of the task is to move the robot arm from its vertical start
position X to the goal position Y. JI and J2 are the joints, El and E2 are the eye positions,
and JA 1, JA2, EA 1 and EA2 are the joint and eye angles of the point Y.

x

J2
J2 JA2

1 Al Y

El 1 1 1 E2

FIG. I

The modular approach is illustrated by specifying that two different neural net
modules will be evolved. The first, called the "joint module", controls the angle JA that a
given joint opens to, for an input control signal of a given strength - and the second, called
the "control module", receives inputs EA 1 and EA2 from the two eyes and sends control
signals to the joints JI and J2 to open to angles of JAI and JA2.

FIG.2 shows the basic circuit design that the GA uses to find the "joint" and
"control" modules. The joint modules (two identical copies) are evolved first, and are later
placed under the control of the control module. Each module (containing a user specified
number of neurons) is fully connected, including connections from each neuron to itself.
Between any two neurons are two connections in opposite direction, each with a
corresponding (signed) weight. The input and output neurons also have "in" and "out "
links but these have fixed weights of 1 unit. The outputs of the control module are the
inputs of the joint modules as shown in FIG. 2.

The aim of the exercise is to use the Genetic Algorithm to choose the values of the
signs and weights of the various modules, such that the overall circuit performs as desired.
Since this is done in a modular fashion, the weights of the joint module are found first.
These weights are then frozen, and the weights of the control circuit found so that the arm
moves as close as possible to any specified goal point Y. Each weight is coded (onto a GA
chromosome) with a sign, (where 0 means an excitory synapse, 1 means an inhibitory
synapse) followed by a user specified number of places after the "binary point". For
example, an inhibitory weight of 5 binary places, having value 101101 would take the
binary value -0.40625. A chromosome coding for a module of N neurons (hence N*N
signs and weights) would have a total length of N*N*6 binary positions. All weights are
expressed to the same number of places (e.g. 5).

The activation of each neuron is determined in the usual way, namely the sum of
the products of the incoming signal strengths and the corresponding weights of the
connections. The neuronal transfer function was chosen to be (2/(1+ exp(-actvn))) - 1, to
give an output with a range of -1 to +1. Weight values also ranged between -1 and +1, so
as to avoid unbounded output values. With both weights and transfer functions restricted
to the -I to +I range, output values stabilised, (usually after about 50 cycles or so for 1%
accuracy). In each cycle, the ouLputs are calculated from the inputs (which were calculated

I- 195

in the previous cycle). These outputs become the input values for the neurons that the
outputs connect to.

The Genetic Algorithm is then used to choose the values of the weights, such that
the actual output is as close as possible to the desired output. To evolve the joint module,
21 input values ranging from -I to +1 in steps of 0.1, were used. The desired output values
were chosen to be half the input values, thus ranging from -0.5 to +0.5, and were
interpreted as being the number of turns of a joint, (e.g. +0.5, i.e. half a turn, would mean
a joint angle of 180 degrees. A positive angle is clockwise).

No crossover or inversion was used in the Genetic Algorithm, [GOLDBERG
1989], since the problem of neural network design is so nonlinear. Changing one weight
influences the outputs of all the neurons. Hence the GA used only mutation (a small
probability (e.g.0.001) that each binary value, whether sign or weight, on a chromosome
would flip) and selective reproduction, (i.e. those chromosomes obtaining a superior score
compared to others in the population, reproduces in proportion to their superiority). The
quality measure used in the evolution of the joint module was the inverse of the sum of the
squares of the differences between the desired and the actual output values.

FIG. 3 shows the set of points Y used to evolve the control module. These points
all lie within a radius of 2 units, because the length of each arm is 1 unit. For each of these
32 points, a pair of "eye angles", EA 1 and EA2, is calculated and converted to a fraction of
one half turn. These values are used as inputs to the control circuit. The resulting 2 "joint
angle" output values JA1 and JA2, are then used to calculate the actual position of the arm
Y', using simple trigonometry. The quality of the chromosome which codes for the signs
and weights of the control module is the inverse of the sum of the squares of the distances
between the 32 pairs of actual positions Y' and the corresponding desired positions Y.

Jonlm oue

An e inJon
2

Aolm Module

FIG. 2

FIG. 3

FFCv1NEURFC
WEIGHTS

0 1 2 3

0 -0.96875 0.84375 -0.875 0.90625

TO 1 -0.96875 -0.78125 -0.875 -0.78125

NELRZN-
2 -0.9375 -0.71875 -0.75 -0.28125

3 -0.15625 -0.9375 0.3125 -0.65625

FIG. 4

I- 196

FIG. 4 shows an example solution for the 16 weight values of the joint module.
With these weights (obtained after roughly 100 generations with the GA), the actual output
values differed from the desired values by less than 1%. Similar solutions exist for the 36
weights of the control module, which also gave distance errors less than 1% of the length
of an arm (I unit). What was interesting was the fact that every time a set of weights was
found for each module, a different answer was obtained, yet each was fully functional. The
impression is that there may be a large number of possible adequate solutions, which gives
Genetic Programming a certain flexibility and power.

Darwin Machines :

Genetic Programming is a new programming methodology which requires a full
research program to develop it. More ambitious projects employing Genetic Programming
need to be undertaken, such as trying to design a time dependent system which balances
and walks, or a system which can detect certain kinds of objects. Such systems would be
hierarchical in nature and appropriate for Genetic Programming.

Within 5 years, it will be possible to put 10 million artificial neurons on a Wafer
Scale Integration (WSI) superchip [RUDNICK et al 1989]. Thus machines can be built to
implement GP directly in hardware.These machines have been called Darwin Machines in
this paper. Later still, nanotechnology (molecular scale engineering) [DREXLER 1986,
REED 1988, LANGTON 1989, SCHNEIKER 1989] will be able to build Darwin
Machines on a much more impressive scale.

Using Darwin Machines, Genetic Programmers will be able to specify, in a very
high level language, such things as functional requirements for GenNets, output/input
connections between modules, GA parameter values, number c! neurons per module etc.
The Darwin Machine will then perform the Genetic Programming directly in hardware and
at great speed. It is likely that Darwin Machines will be incorporated as components in real
time devices, such as walking robots, and that real time inputs will be fed directly to these
Darwin Machines for evaluation. In the immediate future however, industrialists will be
able to construct Genetic Programming Software Shells which will perform many of the
functions mentioned above, but at a slower software pace.

References :

[DREXLER 1986] "Engines of Creation: The Coming Era of Nanotechnology", K.E.
Drexler, Doubleday, 1986.

[GOLDBERG 1989] "Genetic Algorithms in Search, Optimization, and Machine
Learning", D.E. Goldberg, Addison-Wesley, 1989.

[LANGTON 1989] "Artificial Life", C.G. Langton ed., Addison Wesley, 1989.
[MINSKY 1986] "Society of Mind", M. Minsky, Simon and Schuster, 1986.
[MINSKY 1988] See the preface in [WALTZ et al 19881.
[REED 1988] "Quantum Semiconductor Devices", M.A. Reed, in "Molecular Electronic

Devices", F.L. Carter, R.E. Siatkowski, H. Wohltjen eds. North Holland, 1988.
[RUDNICK et al 1989] " An Intcrconnect Structure for Wafer Scale Neurocomputers", M.

Rudnick and D. Hammerstrom, in Proceedings of the 1988 Connectionist Models
Summer School 1988, eds D. Touretzky, G. Hinton, T. Sejnowski, Morgan
Kaufmann, 1989.

[RUMELHART et al 1986] "Parallel Distributed Processing", Rumelhart D.E.,
McClelland J.L., Vols I & 2, MIT Press, 1986.

[SCHNEIKER 1989] "Nano technology with Feynman Machines: Scanning Tunneling
Engineering and Artificial Life", C. Schneiker, in [LANGTON 19891.

[WALTZ et al 1988] "Connectionist Models and their Implications : Readings from
Cognitive Science", D. Waltz, J.A. Feldman, Ablex Publ. Co. New Jersey, 1988.

1- 197

CART CENTERING AND BROOM BALANCING
BY GENETICALLY BREEDING POPULATIONS OF

CONTROL STRATEGY PROGRAMS

John R. Koza
Computer Science Department
Stanford University
Stanford, CA 94305
Koza@Polya.Stanford.Edu
415-941-0336

Martin A. Keane
Third Millenniun Venture Capital Limited
5733 West Grover
Chicago, Illinois 60630
312-777-1524

Abstract: The paper describes a search for the time-optimal "bang bang" control strategy for the cart centering
problem and a version of the broom balancing problem by genetically breeding popuiations of control strategy
programs using a recently developed new genetic algorithm paradigm. The output of the new genetic aJqorithm
paradigm comes in the form of a computer program composed of arithmetic operations, conditional logical
operations, and mathematical functions which take the state variables of the problem as input and which produce
commands specifying how to apply the "bang bang" force as output.

1.0 INTRODUCTION
The problems of centering a cart and balancing a broom by applying a "bang bang" force from either direction are
well-known problems in control theory. The broom balancing problem has been studied extensively in connection with
neural networks (Widrow 1963, Barto eL al. 1983, Widrow 1987, Anderson 1989). The cart centering problem has
been previously studied in the genetic algorithm field in connection with Holland classifier systems (Goldberg 1983).

2.0 BACKGROUND DISCUSSION OF GENETIC ALGORITHMS
Genetic algorithms are mathematical algorithms that transform populations of individual mathematical objects
(typically fixed-length binary character strings) into new populations using operations patterned after natural
genetic operations such as sexual recombination (crossover) and fitness proportionate reproduction (Darwinian
survival of the fittest). Genetic algorithms begin with an initial population of individuals (typically randomly
generated) and then iteratively (1) evaluate the individuals in the population for fitness with respect to the problem
environment and (2) perform genetic operations on various individuals in the population to produce a new
population. Professor John Holland of the University of Michigan presented the pioneering formulation of genetic
algorithms for fixed-length character strings in Adaptation in Natural and Artificial Systems (Holland 1975).
Holland established, among other things, that genetic algorithms are a mathematically near optimal approach to
adaptation when the adaptive process is viewed as a set of simultaneous multi-armed slot machine problems
requiring an optimal allocation of future trials given the currently available information. Holland's basic genetic
algorithm has been extended to variable length sets (Smith 1980) and further extended (Holland 1986) by
embedding it into a cognitive architecture (called a classifier system) containing a population of fixed-length if-then
rules. Recent work on genetic algorithms can be surveyed in Goldberg (1989), Davis (1987), and Schaffer (1989).

3.0 HIERARCHICAL GENETIC ALGORITHMS
Populations of computer programs can be genetically bred to solve problems in several different areas of artificial
intelligence and symbolic processing (Koza 1989a, 1989b). In this recently developed new genetic algorithm
paradigm, the individuals in the genetic population are computer programs rather than fixed-length character
strings. In particular, the individuals in the population are LISP S-expressions (i.e., rooted point-labeled trees in the
plane) created from compositions of functions and atoms appropriate to the particular problem domain. The set of
functions used typically includes conditional logical operations, arithmetic operations, mathematical functions, and
particular functions appropriate to the problem domain at hand. The set of atoms used typically includes various
constants and particular inputs and sensor values appropriate to the problem domain. The search space is the ,-per-
space of all possible LISP S-expressions (i.e. computational procedures, computer programs) that can be recursively
composed of the available functions and atoms. The crossover operation appropriate for mating two parents from
this hyperspace of LISP S-expressions creates new offspring S-expressions by exchanging sub-trees (i.e. subroutines,

1- 198

sub-lists) between the two parents. The results of this paradigm are inherently hierarchical. This new genetic
algorithm paradigm has been successfully applied to example problems in several different areas, including (1)
sequence induction (e.g. inducing a recursive computational procedure for the Fibonacci sequence and various
polynomial sequences), (2) automatic programming (e.g. discovering a computational procedure for solving pairs of
linear equations, solving quadratic equations for complex roots, and discovering trigonometric identities), (3)
machine learning of functions (e.g. learning the exclusive-or function, the parity function, and a Boolean multiplexer
function previously studied as a test function in neural net, decision tree, and classifier system work). (4) planning
(e.g. developing a robotic action sequence that can restack an arbitrary initial configuration of blocks into a specified
order), (5) pattern recognition (e.g. translation-invariant recognition of a simple one-dimensional shape in a linear
retina). In this new genetic algoriihm paradigm, the sub-hypcr-spaces of similar individual LISP S-expressions grow
(and decay) in at the same near optimal rates as in string-based genetic algorithms if, and to the extent that, the
similar features involved consist of small compact "building blocks" (i.e. sub-trees, sub-routines, sub-lists).

4.0 THE CART CENTERING PROBLEM
The cart centering problem involves a frictionless push cart with mass mc that can move on a one dimensional
track. There are two state variables for this system, namely, position x and velocity v. A force of fixed magnitude F
is to be applied to the center of mass of the push cart from either the left or right direction at each time step -. The
problem is to frind a control strategy (i.e. a computational procedure, computer program, LISP S-expression) that
applies these "bang bang" forces so that, after initial random starting conditions (i.e. an initial random position and
an initial random velocity), the cart becomes centered (i.e. approximately arrives at position 0.0 with velocity 0.0)
in minimal average time.

A version of the solution for the cart centering problem (Bryson 1975) involves applying the "bang bang" force F
from the positive direction if

v2 Sign v

2 IF/m I

and applying the force from the negative direction otherwise.

The set of functions available for the cart centering problem are multiplication (*), the absolute value function
(ABS), and a greater-than function (GT). The greater-than function GT is a function of two arguments that returns
+1 if the first argument is greater than the second argument and returns -I otherwise. The set of atoms available for
this problem are the current value of position (POS) and velocity (VEL) and the constant -1. When a particular
control strategy (i.e. LISP S-expression) evaluates to any positive value at a particular time step, the force F is
applied from the positive direction. Otherwise, the force is applied from the negative direction. The mass of the cart
mc was chosen to be 2.0 kilogram and the force F was chosen to be 1.0 Newtons. These choices make the constant
denominator 2 IF/ml equal to 1.0.

Thus, a parsimonious version of this optimal control strategy would be the LISP S-expression (GT (* -1 POS) (
VEL (ABS VEL))). The interpretation of this LISP S-expression is as follows: Starting with POS and VEL as
inputs, take the absolute value of VEL and multiply it by VEL. Then, multiply POS by -1. Then, compare the first
result and second result. If the first result is greater than the second result, apply the "bang bang" force from the
positive direction. Otherwise, apply the "bang bang" force from the negative direction.

The environment in which adaptation talis place in this problem consists of a test suite of 20 initial random starting
conditions for the two state variables of the system. Position is chosen randomly between -0.75 meters and +0.75
meters and velocity is chosen randomly between -0.75 meters/seconds and +0.75 meters/second.

The fitness of a control strategy (i.e. computational procedure) is determined by evaluating the strategy against all
starting conditions in the test suite. If a particular control strategy brings the two state variables of the system (i.e.
position x and velocity v) close to the desired zero-zero state (i.e. within a tolerance of 0.001 as measured by a norm
equal to the sum of the squares of the two state variables), the fitness value of that control strategy is the time
required (in seconds). If the control strategy fails to bring the two state variables close to the desired zero-zero state
before the system times out , the control stratcgy is assigned a fitness value equal to that maximum time. Note that
the time for the optimal strategy with worst starting condition in the above region is about 4.5 seconds and the time
for the optimal strategy averages about 1.8 seconds over all the various starting conditions in the test suite. Time is
discretized into time steps (e.g. 450 time steps of 0.02 seconds). The total time available before the system times
out for a given strategy (i.e. 9.0 seconds) is thus about twice the worst time for the optimal strategy.

The process starts with the random gencration of 300 random control strategies recursively comnposed from the
available functions and atoms above. The initial population of random control strategies includes many highly unfit

1- 199

control strategies, including strategies that totally ignore the state variables, strategies that blindly apply the force in
only one direction, strategies that are correct only for particular specific starting conditions, strategies that are
totally counter-productive, and strategies that cause wild oscillations and meaningless gyrations. However, even in
this highly unfit initial random population (whose fitness averages 8.91 seconds for the starting conditions in the
test suite), some control strategies are somewhat better than others. The best control strategy for the initial random
generation averages 2.98 seconds for each starting condition in the test suite. And, in the valley of the blind, the
one-eyed man is king. The genetic crossover operation is then applied to parents selected with probabilities
proportionate to fitness to breed a new population of offspring control strategies. Although the vast majority of the
new offspring control strategies are again highly unfit, some of them tend to be somewhat more fit than others.
Moreover, over a period of time and many generations, some of them tend to be slightly more fit than those existing
in earlier generations.

At the 5th generation (i.e. after processing a total of 15G0 individuals), the best individual in the population of
control strategies was the strategy (GT (* (GT (* -4 POS) POS) (ABS POS)) (* (ABS VEL) VEL)).

The first argument of the outermost GT function (* (GT (* -I POS) POS) (ABS POS)) reduces to -POS for any
value of POS. Thus, this control strategy is equivalent to the known optimal solution. Note that this computer
program can be viewed as defining the optimal control surface.

5.0 THE BROOM BALANCING PROBLEM
The broom balancing (inverted pendulum) problem involves the elements of the cart centering problem described
above and a broom of mass mb attached to the top of the cart with a pivot so that the broom can pivot (in one
plane). The broom has an initial angle 0 (measured from the vertical) and an initial angular velocity co. The distance
from the center of mass of the broom to the pivot point on the cart is X. There are four state variables of this system,
namely, position x, velocity v, angle 0, and angular velocity ao. The constants of the system are mc=l.0 kilogram,
mb=0.1 kilogram, gravity g=9.8 meters/sec 2, time-step "r =0.02 seconds, length X =7.888 meters, and force
F=10.780 Newtons. The problem is to find a control strategy that causes the broom to become balanced (i.e.
approximately attain an angle 0.0 with angular velocity 0.0). Note that in the version of the problem considered
here, we do not require the cart to be centered when these values of 0 and o) are attained.

The set of functions available for the broom balancing problem are addition (+), subtraction (-), multiplication (),
the sign function (SIG), the square root of absolute value function (SRT), and the greater-than function (GT). The
SIG function returns +1 if its argument is positive and -4 otherwise. The set of atoms available for this problem are
the current value of angle (ANG) and angular velociy (AVL) and the constant +1. The optimal control strategy has
been computed by Keane as applying the positive force when

9 > Sign W1l -4Ii+]
and, otherwise, the negative force.

This can be expressed as a LISP S-expression as (GT ANG (* (SIG AVL) (- I (SRT (+ I (* AVL AVL)))))).

The environment for the ',room balancing problem here consists of a test suite of 12 initial starting conditions.
Angle (ANG) is chosen between -0.25 radians (-14.3 degrees) and +0.25 radians and and angular velocity (AVL) is
chosen between -0.25 and +0.25 radians/second. The norm used to compute attainment of the desired final state is
the sum of the squares of the angle ANG and the angular velocity AVL with the tolerance of 0.001. Note that the
time for the optimal control strategy with worst starting conditions in the above 1egion is about 1.5 seconds and the
average time for the optimal strategy is about 0.74 seconds. Tine is discretized into time steps (e.g. 150 time steps
of .02 seconds). The total time available (i.e., 3 seconds) is thus about twice the worst time for the optimal strategy.

Population size was 300. The time consumed by an initial random strategy in the initial random generation averages
2.9 seconds over the starting conditions in the test suite (i.e. about 4 times the average time of 0.74 seconds
consumed by the optimal control strategy).

In the process of searching for the optimal control strategy for this problem, the fourth best solution we have found
was a simple linear hyper-plane through the origin (co + 30) that performed in an average of 0,899 seconds (about
21% worse than the optimum). The third best control strategy we have found was the non-linear control strategy w
+ 30 + 203 -302 -Ow that performed in an average of 0.897 seconds (about 21% worse than the optimum).

The best two control strategies we have found were:
the non-linear control strategy(+ (* (* (* (SRT AVL) AVL) (SRT AVL)) (SRT AVL)) ANG) and

the control strategy (+ ((+ (* (* (SRT 1) AVL) (SRT AVL)) (* (SRT 1) ANG)) (SRT AVL)) (* (SRT 1) ANG)).

1- 200

Note that the former control strategy is equivalent to the control strategy e + 0o o) 34ý while the latter control
srategy is equivalent to 0 + (.•2(SIG CO) + 0 (SRT (a).
These individuals appeared in the 4th generation of a run (i.e. after processing 1200 individuals). The performance
of these two individuals was identical in the actual run and virtually indistinguishable after additional separate
testing. These two control strategies each performed in an average of approximately 0.745 seconds (which is within
less than 1% of the optimum).

REFERENCES
Anderson, Charles W. Learning to control and inverted pendulum using neural networks. IEEE Control Systems
Magazine. 9(3). Pages 31-37. April 1989.

Bryson, Arthur E. Applied Optimal Control. New York: John Wiley 1975.

Davis, Lawrence (editor) Genetic Algorithms and Simulated Annealing London: Pittman 1987.

Goldberg, David E. Computer-Aided Gas Pipeline Operation Using Genetic Algorithms and Rule Learning. PhD
dissertation. Ann Arbor. University of Michigan. 1983.

Goldberg, David E. Genetic Algorithms in Search. Optimization, and Machine Learning. Reading, MA: Addison-
Wesley 1989.

Holland, John H. Adaptation in Natural and Artifcial Systems. Ann Arbor, MI: University of Michigan Press 1975.

Holland, John H. Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel
rule-based systems. In Michalski, Ryszard S., Carbonell, Jaime G. and Mitchell, Tom M. Machine Learning: An
Artificial Intelligence Approach. Volume I1. P. 593-623. Los Altos. CA: Morgan Kaufman 1986.

Koza, John R. Hierarchical genetic algorithms operating on populations of computer programs. Proceedings of the
Ilth International Joint Corference on Artificial Intelligence (11CAI). San Mateo, CA: Morgan Kaufman 1989.

Koa, John R. Genetic computing using hierarchical genetic algorithms. Machine Learning journal. In press. 1989.

Schaffer, J. D. (editor) Proceedings of the Third International Conference on Genetic Algorithms (ICGA). San
Mateo, CA: Morgan Kaufmann Publishers Inc. 1989.

Smith, Steven F. A Learning System Based on Genetic Adaptive Algorithms. PhD dissertation. Pittsburgh:
University of Pittsburgh 1980.

Widrow, Bernard. Pattern recognizing control systems. Computer and Information Sciences (COINS) Symposium
Proceedings. Washington, DC: Spartan Books, 1963.

Widrow, Bernard. The original adaptive neural net broom balancer. 1987 IEEE International Symposium on Circuits
and Systers.Vol. 2.

I- 201

\~/°

Preadaptation in neural circuits
David G. Stork, Scott Walker, Mark Burns and Bernie Jackson

Departments of Psychology and
Electrical Engineering

Jordan Hall
Stanford University
Stanford, CA 94305

Abstract
Motivated by a recent analysis of the tailflip circuitry of the crayfish,l we simulated the

processes of evolution, development and learning in a simple 7-neuron circuit, in order to
assess the roles of these processes in preadaptation. Preadaptation occurs when a circuit
(or organ or behavior, etc.) which evolved to solve one behavioral/functional problem is
later appropriated and used for a different problem; such a process can lead to the final
circuit being "non-optimal." 2

Using limited but biologically motivated genetic algorithms, learning mechanisms and
neural equations, we programmed a Connection Machine 3 CM-2 to simulate a population of
individuals, each with a genome that leads through development to a neural circuit. Dar-
winian fitness depended on the circuit's performance on a simple behavioral task. Our two
tasks were: in the event of external stimulation of a (pressure-sensitive) sensory neuron 1)
large activity in the motor neuron and 2) small activity in the motor neuron. The fitness of
networks in population A was based first solely on task 1 ("swimming") and at a later epoch
solely on task 2 ("tail-flipping"). The fittest individuals in population A at the end of the
evolutionary scenario differed from those in population B, whose survival was based solely
based on task 2. Moreover, neural structures were found in population A which might not
have been simply predicted based on an analysis of the final task alone.

This last result lends support to the notion that "certain features of nervoks systems may
not have functional significance" and "... there is no reason why the simplest solution to a
problem should be the one actually used by the nervous system. As long as both the end
result and all the intervening stages work, elegance of design counts for little." 1 ,4' 5 Such a
viewpoint can have profound implications for simulation studies of neurobiological net-
works, and for neurobiology more generally.

Introduction
Whereas the vast majority of neural network research centers on learning or self-

organization based on input patterns (and possibly teaching signals), neurobiological
circuits (including most in lower species) posses high structure even at birth -- before
learning takes place. 6 This innate structure may profoundly affect what an individual can
and cannot learn, how fast, etc., and is due to evolutionary and development processes.
Neural network simulation research has almost completely ignored the role of phylogeny
in such nature aspects in the naturelnurture debate.

One phylogenetic process has particular import for the analysis of innate structure in
biology: preadaptation (and its closely related process exaptation).7 Preadaptation in
neurobiology describes the phenomenon whereby a circuit which evolved to solve one task
is later appropriated and used for a differert task. In order to understand the evolutionary
sources of structure in simple networks, then, we simulated the process of preadaptation.

Methods
All simulations were performed on a Connection Machine CM-2 (using C*, the parallel

extension of C), since the fine-grained, massively parallel nature of our problem precluded
realistic simulations on all but the most powerful of serial machines. Populations consisted
of 60 individuals (each containing 7 neurons) running in parallel: the component neurons
ran in parallel as well.

I- 202

• Genome representation and genetic algorithm
The model genome consisted of sequences of promoter (or controller) genes, as well as

structural genes. The structural genes represent 1) markers indicating whether a neuron
is a sensory, motor, or interneuron, 2) cell surface molecules (used for development and
initial network connectivity), 8 3) neurotransmitter type, 4) synapse receptor types. 5) cell
channel densities (used for gain and saturation points in network behavior, constants a-c,
in eq. 1 below), and other functional properties of the network. Promoter genes activate or
de-activate distributed patterns of structural genes, which might include correlations
between such aspects as cell type and neurotransmitter. At the end of any generation,
there is fitness proportional reproduction, and the genomes of surviving individuals (see
"Selection." below) undergo single gene mutation (p = 0.02/bit/generation), crossover
(75%), or direct duplication 9 to yield the genomes of the offspring.

0 Development
Initial neural connectivity and synapse strength was a function of the similarity of

neural cell surface molecular markers, 10 as encoded in the genes. We did not include activ-
ity-dependent development.

* Behavior

The equations for each neuron are based on the work of Hodgkin and Huxley:1 I
dx.

dt -=-axt .+(b- cxi)I e " zf(x')+ I I + (d - exi) ,j 7, zijf(xJ
tJGcx G ~in J j eq. 1)

where:
xi: activity in neuron i (depolarization -- mV)
f(xj): output spike rate (spikes/second) -- compressively nonlinear
a, b, c, d, e: constants: describe ion concentrations, channel densities, etc.
zij: synaptic strength (mV/spikes/sec)
at: decay constant for synapse (mV/spikes/sec 2)
Gex(in): set of neurons connected via excitatory (inhibitory) synapses to neuron

* Learning
In those simulations in which learning was permitted to occur, synapses were modified

according to a pseudo-Hebbian rule:
dz..

d-'-= - aczij + (xi- rijfxj

where r ij is a threshold value.

• Selection
For each network, the sensory neuron was stimulated briefly and the resulting activity

in the motor neuron was monitored over a sufficient time that the network relaxed to a
(nearly) quiescent state. The maximum of the instantaneous output of the motor neuron
was an index to the fitness: for task 1 (swimming), a large such maximum conveyed fitness,
whereas for task 2, a small such maximum conveyed fitness. Fitness-proportional stocl- astic
selection was used to determine which individuals would participate in the production of
the subsequent generation.

Results
The fitness function for the two populations of 60 individuals over 150 generations are

shown in Figure 1. Population A was "preadapted" -- first selected on task I (swimming),
and later on task 2 (flipping), whereas population B was selected solely on the basis of
flipping. The sharp drop at generation 76 in population A reflects the fact that swimmers
were initially ill-fit for flipping. Most importantly, the structure of the networks differed
between populations. Figure 2 shows the most fit circuits after evolution in the prcadapted

1- 203

/

population A (left) and the normal population B (right). We also found circuits in popula-
tion A that contained structures (in particular "useless synapses") that did not appear in the
fittest individuals of population B.

SwimmIng/Flipping Flipping
0.8 0.8

Swimming Flipping

0.6 Maximun 0.6 Maximum

@14
C .
U. LL

0. 02Generation Mean
0.2, 0.2

Genertion Mean

0.0- 0.0
0 100 200 0 100 200

Generation Generation

Figure 1: (left) The maximum individual fitness and the generation mean
fitness for population A, selected first for swimming and then (after genera-
tion 75) for flipping. (right) Maximum and mean fitness for population B,
selected solely on flipping. Each generation had 60 individuals throughout.

se yneuron (input) excitatory
legend: 0 sensory synapse

* motor neuron (output) inhibitory
synapse

Figure 2: (left) Circuit of (preadapted) population A (fitness = .28) at the end
of the evolutionary scenario. (right) Circuit of population B (fitness = .57). [In
both circuits, connections that are negligibly small or neurons with no effect
on the output are not shown.]

Conclusions
Our preliminary results give us confidence that simulation techniques can shed further

light on evolutionary effects in neural networks. Although our simulations lend support to
the crayfish scenario postulated by Dumont and Robertson, 1 only with further refinements
-- more realistic transmitter-receptor data, genetic representations, activity-related devel-
opment, etc. -- will we be able to rule out a competing hypothesis based on developmental
constraints.

1- 204

!/ --

f /

The f.xistence of preadaptation undermines the biological relevance of the neural net-
work arproach of analyzing just inputs and outputs and network "design constraints" since
histori(.1 factors can preclude "elegant" biological implementations of computational
probl, ins. These historical effects may be especially relevant in particularly complex
neurr' structures responding to astoundlingly complex environmental pressures, as well as
evol tionarily late processes such as language, which may have appropriated structures
"tOp Adapted" to functions other than speech or communication. 12

Acknowledgements
We gratefully acknowledge Connection Machine resources provided through both DARPA

grant DACA 76-88-C-0017 (administered by Thinking Machines Corp., Cambridge. MA) and
through RIACS, Moffett Field, CA. Thanks to Jeffrey Wine for explanations on crayfish tail
circuitry and to David Rumelhan for support and methodological insights.

References
I James P. C. Dumont and R. M. Robertson, "Neuronal Circuits: An Evolutionary Perspective,"

Science = 849-853 (1986).
2 Stephen Jay Gould, "Darwinism and the expansion of evolutionary theory," Science 216,

380-387 (1982).

3 W. Daniel Hillis, The Connection Machine, MIT Press (1985).

4 David G. Stork, "Preadaptation and evolutionary considerations in neurobiology,"
Learning and Recognition -- A Modern Approach (Y.C. Lee, ed.) World
Scientific Publishing (1989).

5 David G. Stork, "Exaptation, preadaptation, evolution and biological neural
networks," Synapse Connection 1(3), 2-5 (1987).

6 David G. Stork, review of Parallel Distributed Processing by D. E. Rumelhart
and J. L. McClelland Bulletin of Mathematical Biologyfi.. 202-207 (1988).

7 Stephen Jay Gould & E. S. Vrba, "Exaptation -- a missing term in the science of form,"
Paleobiology 8, 4-15 (1982).

8 Gerald M. Edelman, Topobiology, Chapter 7, Basic Books (1989).

9 John H. Holland, Adaptation in Natural and Artificial Systems Michigan (1975).
10 Gerald M. Edelman, Topobiology, Chapter 7, Basic Books (1989).

11 Stephen Grossberg, Studies in Mind and Brain, Chapter 4, Boston: Reidel (1982).

12 David G. Stork, "Sources of structure in neural networks for speech and language," in
Progress in Connectionism (J. Elman and D. Rumelhart, eds.) (1989, in preparation)

- 205

Optimizing Small Neural Networks
Using a Distributed Genetic Algorithm

Darrell Whitley and Timothy Starkweather
Computer Science Department

Colorado State University
Fort Collins, Colorado 80523

whidley@CS.Colostate.edu

1. Introduction

Our experiments dealing wit, neural network optimization using standard genetic algorithms indicate
that these systems, while adequate to easily solve Xor, fail to yield sufficiently accurate optimization
on other relatively small neural network problems. However, we have successfully optimized several of
these same neural nets using GENITOR, a genetic algorithm that differs in fundamer.tal ways from
standard genetic algorithms. This algorithm employs one-at-a-time reproduction and allocates
reproductive opportunities according to rank to achieve an appropriate selective pressure.

Recently, we have found that a distributed genetic algorithm can be used to dramatically speed up
genetic search while at the same time increasing the accuracy of the solutions and the consistency of
the genetic algorithm at finding high quality solutions. GENITOR 1! is a parallel version of GENITOR
which uses many smaller distributed populations in place of a single large population. One of the key
benefits of a parallel genetic algorithm is that it allows one to aggressively exploit information within a
subpopulation while not totally exhausting the genetic diversity of the entire population. Each
subpopulation will, due to inherent sampling biases, exploit its genetic material in a slightly different
way and explore the search space differently. Thus, by occasionally swapping individuals between the
subpopulations two complementary effects are achieved. First, the effects of genetic drift in the
various subpopulations are countered. Second, the variability that results globally between the
subpopulations is actually used at a local level as a source for new, yet high quality genetic material
that allows diversity to be sustained in a way that constructively contributes to the search process.

2. Foundations of Genetic Algorithms

Genetic algorithms, in their simplest form, are a global optimization method capable of robust
combinatorial optimization. The theoreticai foundations of genetic algorithms have been built on the
idea that an optimization problem can be encoded as a list of concatenated parameters that has a binary
(or sometimes symbolic) encoding.

To understand the theory behind genetic algorithms one must first understand how recombination
takes place. Consider the following binary string: 1101001100101101. In general, the string might
represent a possible solution to any problem that can be parameterized. This string could represent, for
example, a simple neural net with 4 links, where each connection weight is represented by 4 bits. The
goal of genetic recombination is to find a set of parameters that yields an optimal or near optimal
soluticn to the problem. Recombination requires two parents. Consider the string 1101001100101101
and another binary string which we represent using x and y to represent 0 and 1. Let the second string
be yxyyxyxxyyyxyxxy. Using two "break-points," recombination occurs as follows:

-- 11010",01 100101-,X 101 -

Swapping the fragments between the two parents produces the offspring Il010yxxyyyxyl0l and
yxyyx01100IOlxxy. Booker's (1987) two point reduced surrogate operator was used in the
experiments reported here.

A population of random binary strings representing the encoded parameters is first generated. The
strings, or "genotypes." are then evaluated to obtain a quantitative measure of how well they perform
as possible problem solutions. Next, reproductive opportunities are allocated such that the best strings
receive more opportunities to reproduce than those which have poor performance; this bias need not
be great to produce the required selective pressure to allow "artificial selection" to occur. To
understand how recombination on binary strings can be related to hyperspace, consider a "genotype"
that is encoded with just 3 bits. With 3 bits we have a three dimensional problem and can illustrate
the distribution of possible points with a simple cube. The front plane or face of the cube could, for
example, be defined as "all points that begin with 0." If * is used as a "don't care" or wild card match

1- 206

symbol, then this plane can also be represented by the schemata, or similarity template, 0"*.
All bit strings that match a particular schemata lie in its hyperplane. In general, every binary

encoding corresponds to a comer in the hypercube and is a member of 2L-1 different hyperplanes,
where L is the length of the binary encoding. For example, the string 011 not only samples its own
comer in the hypercube (011) but also the hyperplanes represented by the schemata 0"*, *1", **1,
01", 0"1, *11, and ***. This last schema. ***, corresponds to the entire search space and thus
provides baseline information. In terms of the sample population, however, it represents the current
mean performance, which is monotonically increasing in the GENITOR implementation.

This idea, that one point samples numerous hyperplanes. is referred to as "intrinsic parallelism"
because many hyperplanes are sampled when one bit string is evaluated. The search power of a
genetic algorithm lies in the fact that selective pressure causes hyperplanes with above average
performance to gradually increase their representation in the population. Recombination reshuffles this
hyperplane information so that new comers in the hypercube can be sampled; unfortunately
recombination also introduces a slight bias. Hyperplanes represented by bits that are physically distance
on the encoding are more likely to be disrupted during recombination than hyperplanes represented by
bits that are physically close on the encoding. Thus, some hyperplanes do not ihcrease their
representation in the population unless they are somewhat above average. Nevertheless, recombination
is largely "information preserving" as opposed to a process such as mutation which destroys
information (Holland 1975).

A standard genetic algorithm and GENITOR have previously been compared on a standard set of
tet functions (Whitley and Kauth 1988) with GENITOR performing slightly better on small problems
and significantly better on larger problems such as optimizing the neural nets described here (Whitley
and Hanson 1989). In a standard genetic algorithm the parents are replaced by their offspring after
recombination. The entire population undergoes recombination in a single generation with offspring
displacing parents. The idea is that the genetic material of the pa.ents will largely survive and remain
in the population. although the parents themselves do not. In the GENITOR algorithm two parents are
first selected from the population. Copies of the parents are then recombined, producing two offspring.
One of the offspring is randomly discarded, the other is then allowed to replace the lowest ranking
string in the population--the offspring does not replace a parent string. In this way the algorithm is
much more likely to accumulate schemata associated with high performance hvperpiaines, especially
"long" schemata represented by bits that are physically separated on the encoding. This new genotype
is then ranked according to its performance relative to the remainder of the population, so that it may
now compete for reproductive opportunities. Note that this means that fragments, or schemat., which
are commonly found in strings with above average performance will tend to increase in number in the
population. A theorem has been developed which suggests that this approach does as well or Letter
than a standard genetic algorithm at finding and preserving good genetic "building biocks" in the fo,-m
of schemata (Whitley and Kauth 1988).

GENITOR is also designed to allocate reproductive trials to individuals (ie: an individual problem
encoding or "genotype") based on their rank in the population rather than directly using the value
returned by the evaluation function to calculate fitness. When the value from the evaluation function is
used directly, "selective pressure" can fluctuate so that the algorithm converges too quickly, or the
search may stagnate becase the selective pressure is inadequate. GENITOR abandons fitness values
which are directly proportional to performance and instead uses the rank of the "genotype" in the
current population to assign a fitness value. Allocating reproductive trials in this way ensures that a
constant and effective selective pressure car be maintained no natter how pernormance is calculated.

3. Distributed Genetic Search

Genetic diversity is a key it gredient of genetic search. More diversity in the population translates
into more hyperplane informrtion to drive the search. However, by increasing the representation of
high performance hyperplanes in the population, diversity is lost. Thus. exploitation reduces the
potential for further exploration. One way to obtain and sustain genetic diversity is to use larger
population sizes. Empirical tests show that this has the desired effects, excelpt that it is usually
necessary to double population size for an incremental increase in performance Unfortunately search
time (as measured in number of recombinarm'rns) tends to double as well (Whitley and Hanson 1989).
The theoretical importance of genetic diversity has led us to explore other methods of sustaining
genetic diversity without resorting to excessively large populations.

A distributed genetic algorithm can :ctually ent-lnce search speed and accuracy witiout the
negative impact on search time produced by simply increasing population size. A distributed genetic

I - 21•7

/

algorithm allows information to be aggressively exploited within a subpopulation without totally /
exhausting the genetic diversity of the entire population. Each subpopulation will, due to inherent
sampling biases, exploit its genetic material in a slightly different way and converge to a slightly
different, but similiarly competitive solution. We have shown this to be true on a sample "ugly
deceptive" problem developed by Goldberg et al. (1989) which is known to be difficult for a genetic
algorithm because of deceptive hyperplanes in the search space. The problem has a single correct
solution and Goldberg reports that a standard genetic algorithm fails to solve this problem. When
running GENITOR in a non-distributed mode, the algorithm typically gets approximately 30% of the
bit-pattern correct; increasing the population size has almost no effect on this problem (perhaFz because
of the deceptive hyperplanes.) However, on multiple runs, GENITOR finds a different portion of the
correct pattern. Again, this seems to be the effect of different sampling biases in the initial population
and subsequent allocation of reproductive opportunities that induce different genetic drift patterns.
However, when run in parallel, GENITOR is able to take the various "distributed solutions" and,
through recombination, construct a complete solution to this difficult and deceptive problem.

By occassional swapping individuals new yet high quality genetic material can be introduced into
the evolving subpopulations. While these are only rough guidelines, we have found that with a
subpopulation of size X, swapping after 5X recombinations (in each subpopulation) works well. When
a swap occurs, each subpopulation sends its best to one of its neighbors; in our implementation, a
round-robin swap is used. Swapping should not occur too often or the effect will be similar to simply
having a single population. On the other hand, swapping must occur often enough to prevent the
subpopulations from converging toward incompatible solutions. This is particularly true in a problem
such as neural network optimization; there are typically multiple ways in which to find an appropriate
set of weighted connections and recombining disparate solutions may result in a disfunctional net.

4. Optimizing Neural Networks: Results

The optimization problems posed by neural networks provide a new and challenging test for genetic
algorithms. Previously, GENITOR has been used to optimize the connection weights in four neural net
problems; the reader may refer to (Whitley and Hanson 1989) for more specific details on how to
encode the neural net optimization problem for a genetic algorithm. The test problems are 1) the
exclusive-or (Xor) problem, 2) a 424-encoder, and 3) two versions of an adder problem. The adder
problem involves the addition of two two-bit numbers. One version of the adder problem uses
minimal connections and "reliably leads the system [using back propagation] into a local minimum"
(Rumelhart et al. 1986:343). GENITOR easily and reliably solved the minimally connected adder, but
had difficulty with the fully connected adder (Whitley and Hanson 1989). In general, it seems that the
genetic algorithm has difficulty with problems whose encoding grows too large (over 250 bits). This is
consistent with the biases known to exist in the genetic algorithm. As noted already, hyperplanes
represented by bits that are highly distributed over a long encoding are inadequately sampled by the
genetic algorithm because of a higher rate of disruption during recombination.

The graphs in Figure 1 show new parallel results for the 424 encoder and the fully connected adder
using 10 subpopulations; the behavior displayed here is typical of that obtained on other problems. On
numerous experiments the distributed algorithm has found solutions which we have not been able to
duplicate with the serial version of GENITOR, despite the fact that we have spend far more time, effort
and computer time developing and testing the serial version of GENITOR. In serial runs, we have also
used population sizes on both problems that are up to 5 times larger than the population sizes used in
the distributed genetic algorithms reported here with only very modest improvements over the smaller
population sizes after much longer search times.

S. Other Problems, Future Work

We have also shown that this approach works on a number of other difficult optimization problems.
On a 30 city, 50 city, 75 city and 105 city Traveling Salesman Problem, the distributed genetic
algorithm consistently found new best known solutions (See Whitley, Starkweather and Fuquay 1989,
for non-parallel results on these problems). As noted, the parallel algorithm also easily finds the
optimal solution to a problem that is is difficult for genetic algorithms to solve because of deceptive
hyperplane information.

Recently we have used genetic al ,orithms to define the connectivity of neural nets with positive
results. The GENITOR algorithm has not only found smaller nets, but also nets that learn much faster
and much more consistently that fully connected nets. (Whitley and Bogart 1989; cf. Miller 1989.)

I- 208

20- 3'

BIT ADDER 424 ENCODER

parallel Parallel

serial-I serial-1
seral .2 2 - senaJ-2

% %
%

%
0 10 . % 0

% % N'

%%\\

0 - 0 ,-
0 20 40 60 So 100 120 0 10 20 30

ltrials x 1000 trials x 1000

mm FIGURE 1. Graphs for parallel and seria runs of the genetic algorithm. On the adder problem, the parallel andserial-I rnus used a population siz of 1000; serial-2 shows the effects of increasing the population size to 2000.On the 424 encoder problem, the parallel and serial-1 runs used a population size of 200, while serial-2 used apopulation of 500. The sample size for the 424 encoder was 20 runs each. 'Me sample size for the adder was
10 rms for the parallel, 5 runs each for the serials.

ACKNOWLEDGMENTSThis research was supported in part by a grant from the Colorado Institute of Artificial Intelligence (CIAI).CIAI is sponsoe in part by the Colorado Advanced Technology Institute (CATI), an agency of the State ofColorado. CATI promotes advanced technology education and research at universities in Colorado for the
purpose of economic development.

REFERENCES
Boolter, L. (1987) Improving search in genetic algorithms, in: Lawrence Davis (Ed.), Genetic Algorithms and

Simulated Annealing. Morgan Kauffmann.
Goldberg, D., Korb, B. and Keb, K. (1989) Messy Genetic Algorithms: Motivation, Analysis, and First Results.

_~TCGA Report 89003. University of Alabama.
Hoillad. J. (1975) Adaptation in Natural and Artificial Systems. Univ. of Michigan Press, Ann Arbor.

_ Rumelhart, D.. Hinton, G. and Williams, R. (1986) Leaming Internal Representations by Error Propagation.S~Parallel Distributed Processing, Vol I Cambridge, MA: MIT Press.
-- Mille, G., Todd, P. and Hegde, S. (1989) Designing Neural Networks using Genetic Algorithms. Proceeding of- the Third International Conference on Genetic Algorithms. Morgan Kaufmann.

Whidey D., and Kauth J. (1988) GENITOR: a differnmt genetic algorithm. Proceeding of the Rocky Mountain
Conference on Artificial Intelligence, Denver, CO.

Whitley, D. and Bogart, C. (1989) The Evolution of Connectivity: Pruning Neural Networks Using Genetic
Algorithms. Tech Report. Colorado State University.l Whitley, D. and Hanson. T. (1989) Optimizing Neural Networks using Faster, More Accurate Genetic Search./ ~Proceeding of the Third International Conference on Genetic Algorithms. Morgan Kaufmann.

/• Whitley, D.. Starkweather, T. and Fuquay, D. (1989) Scheduling Problems and Traveling Salesmen: 'Me GeneticEdge Recombination Operator. Proceeding of the Third International Conference on Genetic Algorituns..
Morgan Kaufmann.

1- 209

mI
mo

-- 1

Using Verbs and Remembering the Order of Events

Robert B. Allen
Bellcore, Morristown, NJ

rba@bellcore.com

The connectionist language users (CLUES) paradigm is applied to several relatively complex tasks
involving actions and events in a microworld. In the first study, a network is trained to observe an object
moving, and to describe the action in the past tense if it has been completed. of a verb. In the second
study, a network is trained to recognize actions and descriptions of those actions which involve the
transfer of possession of an object. In the final study, a network maintains order information about events
"and answers questions about their relative order. Overall, these studies show that the CLUES model may
be readily adapted to even fairly complex tasks involving the perception and labeling of events.

1. The CLUES Model
The addition of a memory to a back-propagation network [1] allows processing of temporal patterns.
Allen [2, 3, 4] has proposed that temporal networks be used as intelligent agents. A particularly effective
application of this approach is the use of the intelligent agents as connectionist language users (CLUES).
The CLUES model has been employed in tasks such as generation of descriptions of objects and
answering questions about objects.

In many cases, the CLUES model includes a microworld to which the language can refer. Allen and
Kaufmian [5] applied CLUES to processing events which occur in the microworld. In particular, they
report: (a) the ability to answer questions which include verbs of possession; (b) labeling simple motions
of objects with action verbs; and (c), discriminating the order of two events which occur in the
microworld. The research in this paper extends the earlier work with three additional studies on labeling
actions and events.

Output

Hnde-------------------------
1.0 I

Microworid Vebl Statet

1.0J .4 JI

Figure 1. Temporal Network----

1 - 210

2. Overview of Procedures
As shown in Figure 1, the networks include the usual 3-layer back-propagation architecture. along with a
layer of units which maintain state information. During error correction all of the weights shown in bold,
including those between the hidden layer and the state layer, are updated. The other weights are fixed
with 0-=1.0. and p=0.5. Three-level (-1, 0, 1) encoding was used for the inputs such that when an object
was absent (Sections 4 and 5), nulls were presented. The output codes were 0/1. Network parameters
were set at l=0.01, cn=O.9.

3. Learning when to Make a Verb Past Tense
One of the greatest controversies in the connectionist literature concerns the construction of the past tense
of verbs given an encoding of their present tense (6, 7]. However another seemingly more natural
approach to the construction of the past tense follows from the CLUES model Thus, the effort here was
to develop a network which learned to generate a past tense marker when the observed action has been
completed. Essentially, this past tense model requires the network to begin learning a rule for the
construction of regular endings.

A corpus was developed in which objects could move left or right or stay where they were. In addition,
objects which move during the first time step may stop moving after the second cycle, in which case the
movement is described as happening in the past. In the example shown in Table 1, obJA moved to the
right and then stopped while ObJD stayed still. Because the probe asked about the object on the left
(objA), the correct response to the probe is that obJA moved right in the past. [5] found that actions were
more accurately labeled by a network when the 'background' was moving than when the object moved
across slots in the microworld. That approach was adopted here; however, to generate enough examples,
two objects were present in different parts of the microworld and the network was required to answer
about one or the other of them. A key aspect of the recognition task is the use of don't care cycles [2]
during which no error corrections were made. In Table I these are shown as *s in the response column.
There were 8 objects and 6 slots. There were 1506 training patterns of which 8 were saved for the
transfer tests. A (12/I)-30*-7 network was trained for 800K patterns. On the 8 transfer questions, the
network yielded 4 bit errors, with only one error on the tense bit.

Table 1. Example of Past Tense Generation Task and Coding

cycle microworld verbal input response
I obJA slotl obJD slot5 *

2 obJA slot4 obJo slot 5 *

3 obJA slot4 ObjD slot 5 * *

4 * * left objA right past

I I-I -I 1 1 1 1 1 1 1* *
2 1 1-1 -1-1-1I 1 1 1 -I * *

3 1 1-1 -1-1-1 Ill I l- * *
4 * * -l 001 10 1

1- 211

4. Transfer of Possession
Another complex class of verbs are those which require both a direct and indirect object. In [5], verbs
which describe possession were considered. It is also possible to model verbs which describe the transfer
of possession between two objects in the perceptual field. There were 8 major objects (which possessed
the other objects) and 4 minor objects. The major objects were coded in 3 bits each and the minor objects
in 2 bits. When the minor object was absent it was coded with nulls. There were three possible actions
(gave, received, and kept). Overall there were 15 verbal input terms each requiring 4 bit coding. Because
the verbal input was up to 4 words long, the entire input field was 16 bits. The output, however, required
only I bit. Three types of negative questions were employed: (a) when the other major object engaged in
the action; (b) when some other minor object was being asked about; and (c), when the wrong action is
described. Thus, to keep equal numbers of positive and negative questions only 1/3 of the negative
questions were used. Altogether there were 2509 patterns and 15 of these were reserved for the transfer
test. A (10/16)-50*-l network was trained for 900K patterns. There were errors on 2 of the transfer
questions.

Table 2. Example of Transfer of Possession Task

cycle microworld verbal input output
I olml_ 02 * *
2 o1_ o2m1 * *
3 * * o gave m, o. yes

5. Remembering Temporal Events
Remembering and reasoning about the order of events is important for both language processing and
planning [8]. In (5] networks were shown to be able to learn which of two events came first. However,
processing of temporal events often requires determining the relative order of several events. In this
section events are presented in four different time periods. On a fifth cycle the network is probed with
pairs of events and required to report which came first. In this study, one pair of time periods was not
included in the training set. Thus, in addition to the more complex pattern of events, this study also
examines whether the network can generalize to comparing pairs of intervals that were not trained.

Table 3. Example of Event Order Discrimination Task

cycle microworld probe output

I ObJB * *
2 obJc * *

3 objA * *

4 obJD * *
5 * DC after

There were 6 events or objects (A-F) which were each coded in 3 bits. The probe employed a second set
of 3-bit codes to identify the events. A typical training sequence is shown in Table 3. Because obJD
appeared in the microworld after objC, the correct response is "after". A total of 4320 patterns were
prepared; however, all 720 probes involving the relative order of events at t2 and t3 were withheld for
transfer tests. A (3/6)-60*-1 network was trained for 150K trials. On the 720 transfer questions, the net
made 7% errors. It seems likely that the network has developed a temporal representation for the events,
and is able to apply that to answering questions about the relationship of a pair of intervals that it has not
been exposed to before.

I- 212

6. Conclusion
Because the identification and discrimination of temporal intervals is a common problem across many
areas of artificial intelligence, these results have broad implications. For instance, it is possible to apply
temporal processing to connectionist models of plan recognition [9]. While the results also have clear
application to language, these results are certainly not a complete model of human language acquisition
or use. The full complexity of past tense formation has not been captured in Section 3. However, some
extensions such as the generation of tenses involving the relative order of events should be
straightforward. In addition to the cognitive issues, other networks should be explored. It would be of
interest to employ models which move away from the discrete-trials procedure employed here and use
more continuous intervals.

REFERENCES
1. Jordan, M.I., 1986, "Attractor dynamics and parallelism in a connectionist sequential machine."

Proceedings of the Cognitive Science Society (Amherst, MA, Aug. 1986), 531-546.
2. Allen, R.B., 1988, "Sequential connectionist networks for answering s;mple questions about a

microworld." Proceedings of the Cognitive Science Society (Montreal, Aug. 1988), 489-495.
3. Allen, R.B. and Riecken, M.E., 1988, "Reference in connectionist language users." Connectionism

in Perspective (Zurich, Oct. 1988).
4. Allen. R.B., "Connectionist language users." submitted.
5. Allen, R.B. and Kaufman, S.M., 1989, "Identifying and discriminating temporal events with

connectionist language users." lEE Conference on Artificial Neural Networks (London, Oct. 1989).
6. Rumeihart, D.E. and McClelland, J., 1986, "On learning the past tense of English verbs." In J.L.

McClelland and D.E. Rumethart (Eds.) Parallel distributed processing. Vol. 2. Cambridge MA:
MIT Press. 216-271.

7. Pinker, S and Prince, A., 1988, "On language and connectionism: Analysis of a Parallel
Distributed Processing model of language acquisition." In S. Pinker and J. Mehler (Eds.),
Connections and Symbols. Cambridge. MA: MIT Press. 73-193.

8. Allen. J.F., 1983, "Maintaining knowledge about temporal intervals." Communications of the
ACM, 26, 832-843.

9. Allen. R.B. "A connectionist model for plan recognition." IJCAI Plan Recognition Workshop
(Detroit, Aug. 1989).

1 213

Visual Navigation with a Neural Network
Nicholas G. Hatsopoulos & William H. Warren, Jr.

Departments of Psychology and Cognitive and Linguistic Sciences, Brown University, Providence,
RI 02912

Understanding the control of locomotion is a major problem in psychology, neuroscience, and
robotics. Among the perceptual systems involved in navigating through the environment, vision
plays a major role in controlling locomotion in animals from insects to humans. In this paper, we
focus on the information afforded by the changing structure of light at an eye due to the movement
of an organism relative to a rigid environment, known as optical flow. It is of great practical and
theoretical interest whether an organism can rely on optical flow to determine its direction of self-
motion, or heading. We present here a simple linear network, based on the known architecture of
areas MT and MST in primate visual cortex which models the low level brain process by which an
organism could determine its heading as it translates in a planar environment.

J.J. Gibson (1947)1 was the first perceptual psychologist to point out the invariant radial
pattern of optical flow emerging from translatory motion of an observer in a rigid environment.
If the temporally changing optic array is represented as a vector field of optical velocities, the
vectors form a radial pattern emanating from a center point, called the focus of outflow or focus
of expansion. This global radial pattern is a natural consequence of optical perspective and is
invariant with respect to the depth structure of the environment. Gibson claimed that this invariant
is detected by the observer and used to visually control its locomotion.

Our derivation of the optical flow produced by movement relative to an environmental element
is based on that of Rieger (1983)2 and relates the optical velocity of a point P expressed in terms
of spherical coordinate basis vectors (0, 4) to the observer's movement:

vp = acIvI + Nfl (1)

where a is a scalar consisting of a product of coefficients representing the observer speed and
distance to the point P, f/ is a unit vector in Cartesian coordinates pointing in the direction of
translation, M and N two non-square matrices of trigonometric quantities, and fl _= (fW,, Wv, W"),
the rotation of the observer. Since we are assuming pure observer translation, the rotation term
goes to zero and equation (1) simplifies:

VP = aMV (2)

The above mathematical analysis takes as givens the observer's movement parameters and
derives the flow produced by a point in the environment. The problem to be solved by the neural
network is the inverse problem: given the flow at certain points in the ambient optic array, find
the movement parameters of the observer. A two-layer linear network is adequate to solve this
problem. Algebraically, the problem can be solved by finding the inverse of M:

V7 = M-l vp/a (3)

'Gibson, J. J. (1947) Motion picture testing and research (AAF Aviation Psychology Research Report No. 7).
Washington, DC: Government Printing Office

2 Rieger, J. H. (1983). Information in optical flows induced by curved paths of observation, 3, 339-344.

I- 214

However, M is not square and, therefore, does not have a unique inverse. A second image point
must be sampled to solve for these three unknowns. The basic two-layer feedforward architec-
ture of the network was constant throughout the research described in this paper (Anderson, 1983)`
and incorporated features of recent work by Sereno (1987)'. A set of neuron-like input nodes or
cells representing the velocity field of a sample of the ambient optic array fed signals through a
fully connected matrix of weighted connections to a layer of output cells representing the direction
of heading. The input layer of nodes are modelled after the cells in the middle temporal area
of the superior temporal sulcus. For simplicity, we used a triangular tuning curve for both speed
and direction coding in the input layer instead of the gaussian-like curves found by Rodman &
Albright(1987)s. In order to determine cell activity, we implemented a product rule (cell firing rate
= speed activation x direction activation) in the network in order to match the neurophysiological
data (Rodman & Albright, 1987) which indicates no interaction between speed and direction tun-
ing. For computational reasons, we used cells with only four different primary direction selectivities
and two primary speed selectivities for most of the simulations, making a total of eight input cells
per visual field location. Also, we limited the visual field in our simulations to 20 deg x 20 deg
consisting of 4 deg x 4 deg non-overlapping input cell receptive fields. Therefore, the input layer
consisted of 200 cells, 8 cells per receptive field region times 25 receptive field regions.

The output layer of nodes corresponds to MST cells and represents direction of heading. We
decided on a topographic coding of heading in which azimuth and declination are coded conjunc-
tively and distributively. To be consistent with the input layer, We used 25 cells to form a 5 x 5 grid
representing a 20 deg x 20 deg portion of the visual field. Each cell responds maximally to a par-
ticular heading direction. Response drops off linearly as a function of Euclidian distance between
the heading of maximal response and the heading direction to be coded: The inverse mapping
from distributed coding of heading to azimuth and declination necessary during the testing phase
required an interpretive rule. The azimuth and declination are calculated by taking the average
of the azimuths and declinations of maximal response for all cells weighted by each cell's level of
activity.

Twenty five simulations were performed in all, each defined with respect to the stimulus set
used to train the network. The Widrow-Hoff error-corrrecting learning algorithm (1960)s. was used
to train the network. We present the results of two simulations which are particularly informative.

Simulation #1

The training set consisted of 400 flow fields corresponding to 400 randomly selected heading
directions. The network was first tested on the training set after learning had stopped. Average
heading error (averaged over elevation and azimuth) was about 0.83 deg. It is crucial that the
network generalize to flow fields produced by new random dot planes and new observer speeds.
The network's accuracy on 100 new flow fields corresponding to 100 randomly chosen headings was
nearly identical, about 0.89 deg. 7

"SAnderson, J. A. (1983). Cognitive and psychological computation witl neural models.
IEEE Transactions on Systems, Man, and Cyberrnetics, 13, 799-815

•rieno, M. (1987). Implementing stages of motion analysis in neural networks.
Ninth Annual Conference of Cognitive Science Society, 405-416.

-- Rodr-an,-H. R-., -A-bright,cT.-D. (1987-).Coding of visual stinuilus velocity in area MT of the macaque.
VisualResearch, 27, 2035-20,18.

$Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits, WESCON Convention, Record Part 4, 96-104
'These new flow fields may correspond to novel Iheading directions although the chances are slim that many of

them were not contained in the training set.

I- 215

Simulation #2

In simulation #2, the 400 training optical flow fields corresponding to 25 heading directions

which were evenly spaced through out the 20 deg x 20 deg visual field. Remarkably, the network

performed better on 100 novel flow fields corresponding to 100 randomly selected heading directions

(0.77 deg) than it did on the training set (1.16 deg), and more than twice as accurately on optical

flow fields for heading directions that were 2.5 deg out of phase with respect to those in the training

set (0.49 deg).
Since simulation #2 generalized so well to novel headings, tests of noise sensitivity were con-

ducted with it. Two kinds of additive, independent noise were introduced: speed and directional.

Additive noise was introduced into the optical flow field by taking each velocity vector independently

and disturbing either its magnitude (speed) or its direction according to a probability distribution

with a mean of zero and a specified standard deviation. Under various noise conditions, the per-

formance of the network was hardly affected. These findings are very similar to those of Warren et

al., 1989) s, who found that human observers perform as well with flow fields whose magnitudes are

randomly scrambled (heading accuracy of 0.9 deg) as they do with proper vector fields (0.7 deg).
Thus, both the network and the visual system appear to have abstracted the fact that it is the ra-

dial pattern of vector directions that provides information for heading, generalizin 6 over variations
in vector magnitudes.

To examine the network's noise tolerance in this radial pattern, additive directional noise was
introduced by randomly perturbing the direction of each vector from its proper orientation within

a specified envelope. A drop off in heading error was observed as a function of standard deviation
which is qualitatively similar to the results of a human experiment conducted to test this predic-

tion (Figure 1) (Warren et al., 1989). Nevertheless, heading accuracy was quite good even with a

180 deg range of uniform noise, yielding a heading error of only 3 deg. The network's tolerance of
noise again suggests that the redundancy in the global flow field is being used to solve the problem.

In order to visualize the connectivity structure of the network, the weights connecting the in-
put layer with the output layer in simulation #1 are displayed in Figure 2. The diagram shows
the weights connecting all the low speed input cells to a single output cell, where the circle indi-

cates the direction of heading to which the output cell is most selective. The orientations of the
lines represent the directions of primary selectivity of the input cells, and their lengths represent
the magnitudes of the weights; solid lines indicate positive weights, dotted lines indicate negative
weights. It is clear that the output cells have become selective to radial patterns of optical flow
similar to a class of cells that Saito et al. (1986)' identified in MST. Each output cell is maximally

responsive to a radial pattern with a particular focus.

By observing the resulting weighted connections between the input and output layers, it be-
comes clear now why the network generalized so well to stimuli corresponding to new random dot

configurations and to new observer speeds in simulation #1. The network's output nodes are acting
like a set of radial flow filters or templates. The output node whose template best matches the
novel flow field will be most activated. A stimulus correponding to a novel random dot configuration

differs from a training stimulus in that the random dots fall in different locations in the receptive

fields of the input layer so that the flow vectors registered by each receptive field vary somewhat
for a given heading direction. Novel random dot configurations produce a sort of directional noise
in the flow field. However, it is a special kind of noise that decreases with visual angle from the

aWarren, W. H., Jr., Griesar, W., Blackwell, A. W., Hatsopoulos, N. G., &, Kalish, M. (1989). On the sufficiency

of the velocity field for perception of heading. Unpublished manuscript.

'Saito, H., Yukie, M., Tanaka, K.. Hikosaka, K., Fukada, Y., & lwai, E. (1986). Integration of direction signals of
image motion in the superior temporal sulcus of the macaque monkey. Journal of Neuroscience, 6, 145-157.

I- 216

/7"

focus of expansion. Since flow vectors near the focus of expansion are not weighted very much
and directional noise away from the focus is small, a stimulus corresponding to a novel random dot
configurations will highly activate the output node corresponding to the correct heading. Moreover,
the network generalizes to new observer speeds because they do not affect the radial pattern of the
flow field. Only the magnitudes of flow vectors are affected. Since the network's output nodes are
particularly tuned to the radial structure of the flow field, variability in vector magnitude will not
greatly affect the network's performance.

In corclusion, many of the results found in perceptual experiments with humans have been
replicated qualitatively with the model. First, heading accuracies on the order of 1 deg were found
using high density, noiseless optical flow fields which is similar to the results of human experiments
done in our lab (Warren et al., 1988) 10 Second, the network's behavior in response to additive noise
in the flow fields was strikingly similar to that of humans. Heading accuracy was hardly affected
by speed noise, which is not only consistent with the human data but agrees nicely with Gibson's
radial outflow hypothesis. Likewise, the slight degradation of heading accuracy with increasing
directional noise variance matches the human data described above (Warren, et al., 1989).

There are three appealing characteristics of the neural model besides the close match with
the psychological data. First, unlike many of the other computational models, it makes no as-
sumptions about the structure of the environment, in contrast to many models that assume a
smoothness constraint. Since the network is picking up the radial invariant structure, it succeeds
in more complex non-planar environments. Specifically, the model has been shown to perform well
under various speed noise conditions that approximate complex 3D environments. Second, the
model is, on a crude level, biologically plausible. The brain contains simple velocity- sensitive
elements working in parallel. In particular, there is neurophysiological evidence that a mapping
from velocity-sensitive units to radial pattern-sensitive units exists in primate visual cortex. Third,
the model is surprisingly tolerant of noise, unlike many previous approaches. This property makes
it potentially useful for applied problems in computer vision and robotics.

4-

2

U imulation

human data

0 10 20 30 40 so s0

Nolse SO (dog.)

SOu.r e
r

'0 Warren, W. H., Jr., Morris, M. W., & Kalish. M. (1988). Perception of translationtal hending from optical flow.
Journal of Experimental Psychology: Human perceptiot, and performance, 14. 646-660.

1- 217

An Unsupervised Learning Procedure that
Discovers Surfaces in Random-dot Stereograms

Geoffrey E. Hinton and Suzanna Becker
Department of Computer Science, University of Toronto

10 King's College Road, Toronto M5S IA4, Canada

Abstract Maximize

A major goal of research on unsupervised learn- '"
ing procedures is to discover an objective function ,1,
that defines the quality of an internal representation
without any externally supplied information about IDNHDE
the desired outputs of the system. If such a function
could he found, it should allow a hierarchy of rep- IT%
resentations to be organized bottom-up in a time
roughly linear in the depth of the network. This INPUT 1 0 1 1 0 1 01
would allow niuch faster learning than supervised 1 0 01 110 10 J
procedures which are generally very slow in net- Figure 1: Two modules that receive input from ad-
works with many layers of hidden units. Following jacent, non-overlapping parts of the image. Each
(Gibson, 1950), we propose that a good objective for
perceptual learning is to extract higher-order fea- module has one layer of hidden units. The learn-
tures that are coherent across time or space. This ing algorithm adjusts the weights in each module to
can be done by maximizing the explicit mutual in- maximize the mutual information, over the ensem-
formation between parameters extracted from spa- ble of training cases, between the states of the two
tially or temporally adjacent parts of the input, output units.

Introd uction Some unpublished results of Peter Brown suggest
The intensity values in one patch of an image that a good way to implement this general idea is to
contain information about the intensity values in try to maximize the explicit mutual information be-
nearby patches, but this information is in a compli- tween pairs of parameters extracted from adjacent
cated form because the imaging process combines but non-overlapping parts of the input. The mutual
several different physical parameters to produce the information between two binary variables, a and b,
intensity of each pixel. If we could first extract is given by
important, underlying, intrinsic parameters such as
depth, reflectance, or surface orientation, we could I(a; b) = H1(a) + 11(b) - H(a, b)
then express the mutual information between neigh-
boring patches in a simpler form. This suggests that where H1(a) is the entropy of a, and H(a, b) is the en-
we could insist on the mutual information being ina sipleformandsearh fr th paametrs hat tropy of the joint distribution of a and b. The equa-
a simple form and search for the parameters that tion shows that the mutual information between twomust be extiacted to allow this. One obvious sim- variables can only be high if each variable has high
pie form of spatial coherence is for the underlying individual entropy. This is one advantage of mutual
parameters for one patch to be equal to underly- information over measures like the correlation be-
ing parameters for the neighboring patch plus some tween two variables. Mutual information forces each
gaussian noise. Another more interesting form of co- variable to convey a lot of information about the im-
herence, which would be appropriate for the depthof santd pane, i fo a pramtervale etrated age. Figure 1 shows how this objective function can
of slanted planes, is for a parameter value extracted be used in a multilayer network. The derivative of
from one patch to be the average of the values ex- the mutual information between the outputs of two
tracted from neighboring patches. We describe a local modules provides error signals that are back-
family of learning procedures that start by making propagated in order to train the modules.
an assumption about the form the coherence will
take and then try to discover parameters that are
coherent in this way.

1- 218

4I

A very simple example

Our method works well for the task of discovering
depth in an ensemble of very simple, binary random-
dot stereograrns. Each input vector consists of a one
dimensional strip from the right image zLnd the cor-
responding strip from the left image. The right im-
age is purely random and the left image is generated
from it by choosing, at random, a single global shift.
So the input can be interpreted as an approximation
to a one-dimensional stereogram of a fronto-parallel
surface at an integer depth. The only local prop-
erty that is invariant across space is the depth (i.e.
the shift). Hence, if one module looks at one area
of the two images, and another module looks at an-
other area, the only way they can provide mutual
information about each other's outputs is by repre- Figure 2: Part of a cubic spline fitted through seven
senting the depth. randomly chosen control points, with randomly lo.

We used two global shifts (one pixel rightwards cated features scattered on it, and the "intensity"
or one pixel leftwards) operating on binary image values in the two images of the surface strip. The
strips. Each pair of strips was divided into 4 by 2 images are made by taking two slightly different par.
patches with a gap of one pixel between patches. allel projections of the feature points, filtering the
Each 4 by 2 patch was used as input to a sepa-
rate module that contained a layer of hidden units projections through a gaussian, and sampling the
and one stochastic binary "output" unit, that used filtered projections at evenly spaced sample points.
the logistic non-linearity to determine the proba- The sample values in corresponding patches of the
bility of outputting a 1. Each of the output units two images are used as the inputs to a module. The
tried to maximize the sum of its mutual informa- boundaries of two neighboring patches are shown on
tion (over the ensemble of training cases) with each the spline.
of the other output units. The derivatives of this
objective function are simple to compute using two
passes through the training set (Becker and Hinton,
1989). In the first pass we accumulate the proba- The learning is rather slow for two reasons.
bility that each output unit is active, and also all First, we are not specifying desired values for the
the pairwise joint probabilities. In the second pass "output" units-we are only specifying that their
we use these accumulated probabilities to compute, pairwise mutual information should be high. The
for each training case, the derivatives of the objec- derivative of this objective function w.r.t a weight
tive function w.r.t. the output of a module, and depends on three other layers of adaptive weights-
these derivatives are then backpropagated and accu- one other layer in the same module and two layers in
mulated to determine the direction of the vector of the adjacent module. So in this respect the difficulty
weight changes within the module at the end of the of learning resembles back-propagation through four
second pass. The magnitude of the weight change layers of weights. Second, with random starting
vector is determined by a crude line search along weights, the initial gradient of the objective func-
the direction of steepest descent. tion is very small. The convergence speed is greatly

With random patterns and a small training set increased by using a "bootstrapping" method that
size there is a high probability that units will learn starts by applying the objective function between
some of the random structure in the data in ad- pairs of units in the first hidden layers of pairs of
dition to the shift; as the number of training cases modules until these units are somewhat tuned toincreases, and as we increase the number of modules the shift. Then the gradients of the mutual infor-
(and hence the size of the input), sampling error de- mahion between the output units are much bigger
creases and units become more tuned to shift. The and the objective function can be applied at that

creass an unit becme moe tued toshif.vTh and the ob etiveauntions bcan-b aprplied atotha
most shift-tuned network we tested had 5 modules layer and the derivatives back-propagated. More
and took about 500 passes for the learning to con- globally coherent information can now be provided
verge on a training set of 1000 random patterns. to the hidden units that failed to find any useful
When we present the complete set of unambigu- features in the bootstrapping phase.
ous binary patterns to a smaller network consist- WVe compared the performance of the algorithm
ing of just two modules, we usually get output units on a network with 2 modules, and 8 hidden units
that are pure shift detectors within about :300 passes, per module, on the "ccnipl.ile pattern set' with and
through the training set. vwihout 50 bootstrapping iterations. Aftfr hoot-

1- 219

strapping, units were highly shift-tuned within 50
learning iterations, and by 250 iterations the algo-
rithm nearly always found a globally optimal solu-
tion where the mutual information reached 1 bit (in
43 out of 50 repetitions). Without bootstrapping, .::..
while the top-level units always became highly shift-
tuned, only in 7 out of 50 repetitions did they con-...
verge to the global maximum.

Modules with real-valued outputs
The binary output units we used in our initial exper- ". " • ,.
iments are suitable for extracting binary features,
but they make it difficult to represent depth in more
realistic images that contain smoothly curved sur-
faces which have real-valued depths. In the follow-
ing simulations, we use images like those shown in
figure 2 and modules with deterministic, real-valued Figure 3: The activity of the output of a module
outputs that learn to represent real-valued depths (vertical axis) as a function of the disparity (hori-
(disparities) with sub-pixel accuracy. zontal axis) for all 3000 training cases using planar

We start by making the following very simple surface strips.
coherence assumption (which will be relaxed later):
There is some locally detectable parameter which
is approximately constant for nearby patches. So, gaussian function of the distance between the cur-
given two modules A and B that receive input from rent input vector and the unit's "cenler". All the
neighboring patches, we want the output of A, a, gaussians have the same variance which is chosen
to be approximately equal to the output of B, b. by hand. So the only adaptive weights in a module
We can think of & as a signal that we are trying are those from the radial basis units to the output
to W redict and a as a noisy version of that signal unit. In the experiments with curved surface strips

that is corrupted by additive, independent, gaussian each module had 8 by 2 input units connected to a
noise. If we assume that both a and b have "aussian layer of 100 radial basis units. Every module used
distributions, the information (ignoring a factor of exactly the same set of radial basis functions so that
2) that a provides about b is determined by the ratio we could constrain all the modules to compute the
of two variances: same function.

= log V(signal + noise) = log V(a) Discovering real-valued depth for pla-
V(noise) V(a - b) nar surfaces

Figure 2 shows how we generate stereo images of
So, for a to provide a lot of information about b curved surface strips. The same technique can be

we need a to have high variance but a - b to have applied to generate images of plan;r surfaces with
low variance. For symmetry, we actually optimize randomly chosen slants. Using 3000 training cases
the following function: of this simpler type of input, we trained a network

that contained 10 modules each of which tried toV V= + =lglmaximize P with the immediately adjacent mod-
I;b=I;b+l;a= (a - b) +logV(a - b) ules. Each update of the wcights involves two com-

plete passes through the training set. In the first

Some possible variations of this objective func- pass, we compute the mean and variance of each
tion are discussed in (Becker and Hinton, 1989). output value and the mean and variance of each

pairwise difference between output values given the

Speeding the learning using radial ba- current weights. In the second pass we compute
the derivatives of P for each pair of modules, andsis functions use these derivatives to accumulate dIP/dw for all

Instead of using the bootstrapping method de- weights, w, from the radial basis units to the output
scribed above to speed the learning, we used an units. Then we update all the weights in parallel us-
alternative method in which the adaptive hidden ing steepest descent with a simple line search. Af-
units of each module are replaced by a large num- ter each weight update, we average corresponding
ber of non-adaptive radial basis functions (Moody weights in all the modules in order to enforce the
and Darken, 1989). Each radial basis unit has a constraint that every module computes exactly the
"center" that is equal to a typical input vector se- same function of its input vector. After 30 weight
lected at random, and gives an output ,vhich is a updates, the output ofa typical module gave a good

representation of the disparity as shown in figure 3.

1- 220

More complex types of coherence
So far, we have used a very simple model of colier- contextually
ence in which an underlying parameter at one lo- predicted
cation is assumed to be approximately equal to the
parameter at a neighboring location. This modelIN
is fine for fronto-parallel surfaces but it is far from
the best model of slanted or curved surfaces. For-
tunately, we can use a far mor•. general model of o
coherence in which the parame:er at one location locally
is assumed to be an unknown linear function ot the -to
parameters at nearby locations. The par icular lin- ,j..,,
ear function that is appropriate can be learned by
the network.

We used a network of the type shown in figure 4 4,"
(but with 10 modules and with a contextual predic- F
tor unit for all modules except the two at the ends).
We tried to maximize P between the output of each Figure 4: A network in which the goal of the learning
module and the contextual prediction of this output is to mazimize the information between the output of
that was produced by computing a linear function of a local module and the conteztually predicted output
the outputs of one adjacent module on each side. We that is computed by using a linear function of the
used weight averaging to constrain this interpolat-
ing function to be identical for all modules. We also outputs of nearby mod-les.
back-propagated the error derivatives through the
interpolating weights. Before applying this new ob-
jective function, we first used a bootstrapping stage ules, and smaller negative weights are given to in-
in which we maximized P between adjacent pairs puts coming from the more distant neighbors. The
of modules as before, for 30 learning iterations. activity of these units is well tuned to disparity, as

shown in figure 5. Given noise-free depth values, the
After having been trained for 100 iterations on optimal linear interpolator for the surface strips we

3000 patterns, the two weights learned for the inter- used is approximately -.2, .7, .7, -.2. But with noisy
polating function were .55, .54. The output of each depth estimates it is better to use an interpolator
of these units is similar to the response profile shown more like the one the network learned because the
in figure 3, but even more finely depth-tuned. Thus, noise amplification is determined by the sum of the
the interpolating units have learned that the depth squares of the weights.
at one patch on a planar surface can be approxi-
mated by the average of the depths of surrounding Discussion
patches. Discovering how to predict one value from a lin-
Discovering coherence in curved sur- ear combination of nearby values is equivalent to

faces finding a linear combination of all the values that
always equals zero (Richard Durbin, personal com.

As we introduce curvature in the surfaces, the pre- munication). This amounts to discovering invari-
diction of depth from neighboring patches becomes ant higher-order properties by learning invariance
more difficult; at regions of high curvature, a sim- detectors that have low variance even though their
ple average of the depths of 2 adjacent patches will input lines have high variances (when weighted by
under- or over-estimate the true depth. In this case, the squares of the weights). One attractive aspect
a better interpolator would base its predictions on of this view is that the actual output of an invari-
more than two local measurements of depth, thereby ance detector would represent the extent to which
taking curvature into account. the current input violates the network's model of the

We trained a network of 10 modules on 1000 regularities in the world. This is an efficient way of
of the stereovrams of curved surface strips, using transmitting iiiformation about the current input.
the same architecture and objective function as for An invariance detector that minimizes the ratio
the planar surface task, for 30 iterations. We then of its output variance divided by the variance that
added an interpolating layer; this time, however, the would be expected if the input lines were indepen-
conte.xtual prediction of a given module was a hn- dent gaussian variahis is a real-valued, determin-
ear function of the outputs of two adjacent mod- istic version of the G-Maximization learning proce-
ules on either side. After 100 iterations, the four dure (Pearlinmutter and Hlinton. 1986) which finds
weights learned for the interpolating function were regularities by maximizing the extent to which the
-. 04, .64..65, -. 04. Positive weights are given to in- independence assumption is incorrect in pro'dirting
puts coming from the immediately adjacent nood- the .iitput of a unit. It also has an interesting rela-

I - 221

case is an example of continuity by comparing the
probability densities, under both its continuity and
its discontinuity models, of the observed output of
"its neighbor. The contribution to the accumulated
gradient is then made proportional to the probabil-

... ,.ity that the current case is a continuity case. This

the weights learned by the continuity model.

In this paper, we have used coherence across
.' space, but the same techniques could be applied to

coherence across time. The procedure we have de-
scribed has several appealing properties. First, it
builds into the objective function (and the architec-
ture) a type of prior knowledge that is strongly con-
straining but widely applicable to perceptual tasks.
Second, using the bootstrapping approach it mayFigure 5: The output of a unit (vertical axis) as a be possible to train deep networks fairly rapidly,

function of the local disparity (horizontal axis) when provided the domain is such that the very high-
trained on 1000 curved surface strips. The unit order features that exhibit very long-range coher-
learned to predict the depth locally extracted from ence can be built out of lower-order features that
one module as a linear function of the outputs of exhibit shorter range coherence.
the 2 adjacent modules on either side.

Acknowledgements

We thank Peter Brown, Francis Crick, Allan
tion to Linsker's learning procedure (Linsker, 1988). Jepson, and Barak Pearlmutter for helpful discus-
Linsker assumes the variances and covariances of the sions. This research was supported by grants from
activities on the input lines to a unit are fixed (be- DuPont, the Ontario Information Technology Re-
cause he does not backpropagate derivatives) and he search Center, and the Canadian National Science
shows that, with the appropriate gaussian assump- and Engineering Research Council. Geoffrey Hinton
tions, the information conveyed by the unit about is a fellow of the Canadian Institute for Advanced
its input vector is maximized by using weights which Research.
maxinize the ratio of the output variance divided by
the sum of the squares of the weights.

We have described the learning procedure for References
modules which each have a single real-valued out-
put. For modules with several real-valued outputs, Becker, S. and Hinton, G. E. (1989). Using spa-
the natural way to generalize the objective function tial coherence as an internal teacher for a neu-
is to replace the variance by the determirnant of the ral network. Technical Report in preparation,
covariance matrix. It remains to be seen whether n
this causes unacceptable problems with the learn- University of Toronto.
ing speed and whether it can be modified to avoid Gibson, J. J. (1950). The perception of the visual
the difficulties that arise as the covariance matrix world. Houghton Mifflin, Boston, Mass.
becomes singular.

We have also ignored the ubiquitous problem of Linsker, R. (1988). Self-organization in a perceptual
discontinuities. Images of real scenes have strong lo- network. IEEE Computer, March, pages 105-
cal coherence punctuated by discontinuities. We do 117.
not want our !earning procedure to smear out the Moody, J. and Darken, C. J. (1989). Fast learning
strong local coherence by trying to convey informa- in networks of locally-tuned processing units.
tion across the discontinuities. We would prefer a Neural Computation, 1:281-294.
module to make accurate predictions in continuity
cases and no predictions in other cases rather than Pearlmutter, B. A. and Hinton, G. E. (1986). G-
making rather inaccurate predictions in all cases. maximization: An unsupervised learning pro-
We can achieve this by letting each module use a cedure for discovering regularities. In Denker,
mixture of two gaussian models to predict the out- J. S., editor. Neural Networks for Computing:
put of a neighboring module. One part of the mix- American Institute of Physics Conference Pro-
ture model is for continuity cases, and the other ceedings 151, pages :333-338.
part is for discontinuity cases. During learning, the
module computes the probability that the current

1- 222

EXPERIMENTS ON CONSTRUCTING A COGNITIVE MAP: A NEURAL NETWORK
MODEL OF A ROBOT THAT DAYDREAMS

Larrie Hutton and Vincent Sigillito
The Johns Hopkins University Applied Physics Laboratory; Laurel, MD 20707

Phone (301) 953-6242

Howard Egeth
The Johns Hopkins University Department of Psychology; Baltimore, MD 12345

Abstract

We describe a recurrent neural network, with psychologically motivated assumptions about
the underlying architecture, that exhibits behavior consistent with that seen in living cog-
nitive systems. In particular, we find that such a system models abstract cognitive maps
of at least 2-dimensional cognitive space by showing evidence (1) of habit formation
(increasing rigidity of behavior with repeated exposure); (2) of the effects of forced
movements away from obstacles (external objects have nonsymbolic representations); and
(3) of learning to "navigate" appropriately when contextual information was changed
dramatically. Furthermore, the system is capable of showing "surprise" when there is a
large mismatch between an anticipated event and an actual event (and is thus consistent
with the neuronal model of Sokolov, 1960) and of recognizing a goal state (i.e., the system
spontaneously switches to a new task upon reaching a goal, or it "waits" for a new iiiput.)
Although the system does not employ any novel architectures or assumptions, the interpre-
tation of the system's behavior is original. Because the system can be described as a
highly nonlinear system of coupled difference equations, for example, it shows properties
characteristic of such systems (such as the appearance of spurious attractors and of ex-
treme sensitivity to initial cond;tions). These same characteristics, however, give the sys-
tem the ability to engage in "daydreaming%, to show creativity, and to "rehearse" solutions
in short-term memory.

Introduction

In this paper, we describe a method that a cognitive system might use to construct a cog-
nitive map (Tolman, 1948). The approach that we use is a bit unorthodox. We did not
start out with a problem to be solved and invent (or discover) an appropriate trans-
formation of the data, upon which an appropriate architecture was invented (or discov-
ered) to map an 1/0 relationship. Rather, we started out with an architecture that we felt
was defensible and observed the network's behavior as it trained, and was tested, under
conditions that we assumed were a plausible representation of a cognitive space. Thus our
role was as much that of a trained observer as it was that of an active designer. We feel
that this is an important role--that of observer--that is too often neglected in neural net
research. (A parallel in animal behavior might be drawn between psychologists, who spe-
cialize in experimental manipulations, and naturalists--ethologists, for example--who are
relatively noninvasive observers of animals in their natural habitat.)

We chose a model architecture that we felt satisficd the minimal conditions required of a
system that could be expected to engage in "thoughtful" spontaneous behavior. This im-
plied an input representation that was isomorphic with the output representation; that is,
a transformed representation of the input would have to serve as the sole input to the sys-
tem while it was daydreaming. (Daydreaming is defined as a free-running state in which
inputs from the external world are blocked. Defined in this way, a Hopfield net is day-
dreaming when it is engaged in associative recall. However, "associative recall" captures
neither the architecture nor the cognitive spirit of our model.) We also wanted the model
to be capable in principle of possessing 'or even better, constructing) an internal represen-
tation that permitted the solutions to problems that involve interactions in the input data.
Finally, the model needed to be dynamic in nature, changing in "meaningful" ways over

S- 223

time, to possess emergent properties that admitted to a cognitive interpretation, and to be
both resistant and sensitive to stochastic noise. The latter requirement is quite frankly in-
ternally inconsistent. Nevertheless, living cognitive systems are relatively resistant to
noise (they persist in the face of distraction), and yet they can be exquisitely sensitive to
initial conditions (they are "creative" and "inscrutable").

Methodology

The network architecture during the learning process was that of an ordinary supervised
feedforward network. Thus the net had full connectivity between adjacent layers and no
lateral connections. Although we did use the generalized delta rule, the particular learn-
ing algorithm was not especially important for our purposes, since we were more inter-
ested in what the net did after learning the I/O map than we were in how it learned the
map. On the other hand, the I/O representation itself was very important. The net had 3
input nodes, 3 output nodes, and 10 hidden nodes. The input and output vectors were
isomorphic: one node represented a normalized horizontal comronent (in a range of 0 to
1); a second node represented a normalized vertical component; the third node (not always
used) represented the "context" and--although the context nominally represented a categor-
ical variable--was also permitted to vary over the range from 0 to I. 'During recall (but
not learning), however, the net was recurrent: each output node fed back to its corre-
sponding input node, and only that node. Although we varied the amount of feedback,
we show here only the results in which the net's current output (after an initial input)
was strictly determined by its last output: i.e., the net "daydreamed" without feedback
from its environment. Because we did not want our net to become "lost in thought" as it
constructed a cognitive map of its environment, it was important that the intermediate
states in the internal representation (as exemplified by the hidden node activities) be ex-
pressible in terms of the original environmental variables. It might be said that we are
accepting Wittgenstein's (1953) premise of the impossibility of a purely private language
by assuring the recoding of an internal representation (the hidden layer) back into a
representation that is in principle and in fact a transformation of the original input vari-
ables. When the input nodes are completely determined by the previous output, and the
input and output representations are isomorphic, then the system has the following useful
properties: (1) all internal representations are directly expressible as environmental states
(thus making it possible for one cognitive system to communicate about its internal states
to another cognitive system); (2) the system can be viewed architecturally as a modified
BAM during recall (the hidden layer constitutes one layer of the BAM and passes messages
to the I/O layer through the hidden-to-output weights, and the I/O layer passes messages
to the hidden layer through the input-to-hidden weights); (3) the weights can be formed
through any defensible mechanism, including but not restricted to back-propagation; (4)
the system can easily be "tuned" to trade off sensitivity to its own internal state against
sensitivity to environmental assaults--clearly a desired result in any cognitive system.
Thus, the system might be thought of as a 13-neuron brain that thinks about its past expe-
riences after it has formed a cognitive map of its environment.

All problems described in this paper involved the same basic procedure: use back-propaga-
tion to "train" an homuncular system to follow a series of seven fixed paths, and then
"test" the system by giving it several random starting points and observing the system's be-
havior as it "imagined" its environment. (Additional training was provided in some exper-
iments to be described later.) The paths that all of our experimental systems learned
about are shown in the first figure. There were some "implied objects" in the en-
vironment as well. They are "implied" in the sense that the homuncular system (HMS)
"knows" about them only with respect to its own behavior in the region of the objects;
thus there is a behavioral rather than symbolic representation of objects in the environ-
ment. The second figure shows the implied objects explicitly. The large rectangular ob-
ject might be thought of as a forbidden zone in which the HMS was either never plceed,
or punished (by immediate removal), for being inside the area. The smaller rectangle in
the lower right-hand corner was in initial goal area; all initial paths terminated in that

1I- 224

region, as can be seen in the first figure. The secondary goal area, seen in the lower left-
hand area, was an appropriate goal state in later experiments; it was visited only as a sec-
ondary site after the initial goal had been visited.

All training sets involved from 1200 to 1600 iterations
"through the approximately 300 points shown in the first• , figure. The targets were always the next point in. the path

(sometimes this included a context dimension, for a total of
three output nodes) or, as noted below, three points ahead.
We investigated the effects on the system's cognitive map of
learning larger steps, of being punished, of being trained on

. -. " - a secondary goal with and without a contextual dimension,
and of being given information that was inconsistent with

blow soft its history (i. e., a "mismatch" between an anticipated and
_nan actual environment). The effects of the manipulations

were manifested by changes in path efficiency (did the sys-
tem learn to take short cuts spontaneously?), by gross behav-
ioral changes in the vicinity of objects or goals, by evidence

,, of chaotic behavior, and by the ability to generalize to
- 'novel situations. Our emphasis was on plausible psychologi-

",I • cal interpretation of a cognitive system that daydreamed af-
"ter spontaneously forming a cognitive map of two-dimen-
sional space.

Procedure and Results

In this section we describe the manipulation and provide a brief interpretation of the re-
sults. The reader should keep in mind that the paths shown are completely determined by
the initial training set (which determined the weight matrix) and an initial point.

Effects of Original Training

Only three initial points are shown here, but several trends
. ,are clear. First of all, the HMS learned to take "short cuts"

- ,through forbidden zones, although it still tended to respect
j the zones. Second, the HMS learned to recognize a goal

'a =state; it did not wander aimlessly once it reached the initial
- goal. Psychologically, the fixed points of the system can be-• • "•""'• regarded as goal states. Simply recognizing a goal is an im-

portant and nontrivial characteristic of a cognitive system:
it is equivalent to a system that "knows that it knows" an

answer, without an initial awareness of that answer. So our back-propagation has some of
the same properties that we see in Hopfield networks (e.g., the presence of fixed points).
Note that the HMS has generalized its goal-oriented behavior to include regions (such as
the initial point in the lower-left corner) that it had never "seen" before.

Effects of Anticipatory Training

-Anticipatory training is defined as training in which thetarget vector is a point three steps ahead of the input vector

(except near the goal). Psychologically, the system can besaid to "look farther ahead" in the same way that we our-

selves look farther ahead when we drive our automobiles at
a higher rate of speed. There are three matters worth not-

7: .ing here: (I) fewer moves are required to reach the goal
(cognitive effort is reduced); (2) even though fewer moves
are required to go around the barrier, the barrier is

1- 225

nevertheless better accommodated; (3) we see the emergence of spurious solutions. The
last item is particularly interesting from a psychological point of view. Although spurious
solutions developed without anticipatory training, there appeared to be fewer of them.
An important point here is that we have one of the ingredients for a chaotic system: ex-
treme sensitivity to initial conditions. The bifurcation that develops in the upper right-
hand corner is a good example. The HMS is sensitive to a an initial condition in which
an infinitesimally small change in the starting point results ultimately in a completely
different solution or--as in this case--to either a solution or to capture by a basin of at-
traction that was not explicitly introduced. As an abstract cognitive system, this should
be construed as a crucial feature, since it introduces the possibility of truly creative
behavior. Wrong perhaps, but creative nevertheless. And if noise (stochastic or otherwise)
in the system is greater than our power to resolve the initial conditions, then the diver-
gent solutions would appear to a naive observer as a manifestation of "free will".

Effects of Punishment

We also tested the effects of "punishing" the HMS for being
- in the forbidden region. (In this and in the following sec-

tions, anticipatory training was also in effect). Punishment
- was effected by placing the HMS slightly within the barrier

at the top and the left and then immediately moving the
HMS to a point slightly outside the barrier. The most no-
ticeable effect was to cause the HMS to go around the bar-

* - , " " . tier when it would otherwise have been drawn to the
strange attractor found in the previous figure. The effect

was to cause the HMS to in some sense "think about the world" in a different way. On
the plus side, the effect could be construed as increasing the probability of "good solu-
tions"; on the negative side, it could be construed as a loss of creativity.

Manual Context Switch

In this condition a manual switch was added, corresponding
-, to a context switch. (In this and in the following sections,

anticipatory and punishment training were also in effect).
- For the first time, a third input and output node were used.

When the third node was "off", conditions were exactly as
in the previous condition. However, an additional condi-
tion was included as well; in this condition only, which was

-..... " " signalled by the "on" state for the third node, the HMS was
. . .trained to go from the primary goal to the second goal. In

the simulation (after training) shown here, the HMS was started in the two positions
shown in the top half of the diagram with the context switch set to "off". As might be
expected, the HMS went directly to the first goal and stayed there. When the context
node was changed "manually" (by forcing the third input node to "on" after the HMS had
persisted in the initial goal), the system immediately moved to the second goal state,
where it again persisted. Thus the "meaning" of an event could be changed by changing
the context in which it was assessed; ultimate goals are a matter of circumstance.

Internal Context Switch

The results cf the previous condition suggest an interesting question: can the system learn
to change the manual switch internally? If so, the HMS might be able to "decide" what an
appropriate goal state happens to be, use its cognitive map to approach the goal, change
the goal state, and then to "imagine" approaching a new goal state. (It is the kind of thing
that humans might be imagined to do when they, for example, think about going to the
kitchen, which may "remind" them to go to the bathroom to wash their hands. We are not
going to worry about returning to the kitchen--we have only a 13-neuron brain here.) The

I- 226

* 9~training was similar to the previous condition except that
whenever an output vector resulted in entry into the first
goal state, an additional I/O vector pair was provided. The

- input vector of this new pair was the previous output vec-
. tor (this is nothing new), but the output vector was pre-

cisely the input vector with only the context node changed.
Thus, the context node effectively reversed itself if and

S... only if the HMS was in the first goal state. It can be seen
from the figure that the HMS did indeed learn to go to the

first goal, "spontaneously" change the context, and then proceed to reverse the path over
which it had just travelled to go to the next goal. Note also that a starting point near the
second goal nevertheless resulted in an initial response pattern that, as appropriate, is di-
rected toward the first goal.

Mismatch

In the final condition reported here, we introduced a delib-
erately confusing circumstance: the HMS was placed in a
region on which it had been trained to go to the first goal

S-state, but was told (by setting the context switch to "on")
that the appropriate goal was the second. How would the
system handle the conflicting Information? The most in-
teresting response came from the initial placement in the

, " -,7 - upper right-hand part of the figure. It might be said thatS.... the HMS, which was now free to change any 1/0 node on

the basis of its own cognitive meanderings, effectively decided that we had lied to it.
The first response to that initial condition was to move into the forbidden zone and to
completely reverse the sense of the context node. The HMS then began to move out of the
forbidden zone, around the barrier to the first goal, once again change the context node,
and finally to move to the second goal state, where it remained. Although this somehow
seems a "sensible" thing to have done, it must be remembered that it had certainly never
encountered this sequence before. Yet all of this happened without any external input
save the first point! it is worth noting also that the initial point nearest the second goal
state resulted in entry into the second goal state directly, bypassing the first goal state en-
tirely. Yet this too seems sensible: the context was initially set to approach a goal state
that it happened to be near.

Conclusions

The interpretation of complex systems can be as illuminating as the development of sys-
tems that are designed to solve particular problems. That such a simple dynamical system
as that described here shares, in an abstract way, the properties that we might expect to
find in the development of cognitive maps in biological systems deserves further reflec-
tion. There is nothing new here mathematically nor psychologically, but we believe that
careful consideration of such simple systems is warranted, even imperative, to develop re- .

alistic psychological systems.

References

Sokolov, E. N. (1960). Neuronal models and the orienting reflex. In M.A.B. Brazier (Ed.),
The Central Nervous System and Behavior. New York: Josiah Macy, Jr. Foundation.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189-208.

Wittgenstein, L. (1953). Philosophical Investigations. Ncw York: MacMillan.

I- 227

i~//

Directing Focus of Attention
Through Conflict in Depth Perception

Clayton McMillan
Dept. of Computer Science

University of Colorado
Boulder, Colorado 80309-0430

Gerhard Dirlich
Max Planck Institute for Psychiatry

Kraepelinstr. 2
8000 Muenchen 40

West Germany

In this paper we describe a neural network model that develops a piecewise internal representation
of the topology of an image over time. The internal representation is constructed in pan from a local
focus of attention window that moves from one focal point in the image to another to build a global rep-
resentation, and in part from existing knowledge about the object's topology. The model is part of a two
track investigation of how visual depth perception is disturbed in schizophrenic patients. The two tracks
in this investigation are as follows: 1) an empirical exploration of the various cues used in depth percep-
tion and how they interact with each other, and in parallel to this track, 2) modeling of the observed phe-
nomena. Performing visual experiments is costly and often contrary to the interests of a schizophrenic
patient. Consequently, we view the modeling as an important element of this-project. We hope to show
that it is a useful and efficient way of choosing what direction the empirical track should take.

Conflicting cues in perception of depth

The phenomenon we are currently concerned with is the perception of surface topology in a post cat-
egorical image. In particular, we are interested in how top down information and bottom up information
interact and compete with each other in the development of an internal representation. One experiment
illustrates nicely this interaction (Yellot, 1981). When presented with the image of a hollow mask, that
is, a mask of a human face seen from the inside, people perceive the mask as being convex. In reality the
mask is concave and bottom up cues provide strong information to that effect. However, people possess
the knowledge that human faces are convex and this top down information appears to override the bottom
up perception of the surface topology. Preliminary results from the empirical investigation (Emrich, et
al., 1988) show that when such conflicts exist, a subject may observe the image for a period of several
minutes before developing an impression that is consistent with his expectation of the surface topology.
In addition, eye movements appear to play a critical role in the resolution of such conflicts (Gale & Find-
lay, 1983). It has been suggested (Marr, 1982) that a small, high resolution focus of attention window
moves about in a scene collecting local perceptions that are added to a composite perception, somewhat
analogous to a blind man feeling a face with his fingers. This window is frequently but not always relat-
ed to eye movements. Interestingly, in schizophrenic patients a conflict between top down and bottom up
processing is often never resolved.

Neural network for moving the focus of attention

The neural network we describe here is a model of how this conflict directs the movement of the
focus of attention window from one fixed focal point to another until the conflict is resolved. Although
there are many visual cues used to decide the depth of a local area on a surface, we limit our model to
two: 1) light and shading, and 2) stereo disparity. The model is a five layer network that actually con-
sists of two, three layer back propagation networks. The output layer of the first network serves as the
input layer to the second (Figure 1). All units in the network assume continuous levels of activation in
the range [-1.0, 1.0] and all connections feed forward, except fo' a set of self inhibitory connections on
the units labeled Internal and a set of sigma-pi connections from the layer labeled Focus to the connec-
tions between input and Internal. Input to the network consists of two parts: 1) a pattern representing

I- 228.

Focus

Internal _ Expected

actual input expected input

Figure 1

the bottom up. actual information collected at fixed focal points, and 2) a pattern representing the top
down, expected topology of the post categorical image.

The representation of actual input is composed of a set of units that contain information about light
intensity acmss a small stip of the surface at the current focal point. If we divide this strip into four
equal squant , one unit in the input layer per square, then the activation of the first unit measures the
light intensity on the first square, the second unit the light intensity on the second square, etc. A higher
activation level indicates greater light intensity. Therefore, a pattern such as (.6, .2, .9, .6) would corre-
spond to a prism shaped object that protrudes from a flat surface, where .6 on both sides is the flat sur-
face, .2 the side of the prism farthest away from the light source, and .9 the side closest to the fight
source. This pattern of activity indicates a convex surface and holds if we assume the light source is fixed
in the upper right. Lehky and Sejnowski (1988) describe how a network can learn to decide depth using
light and shading.

In addition to the pattern for light and shading, there is an additional set of four units for determin-
ing depth from stereo disparity. This representation assumes that two points A and B have been identified
and the correspondence between two retinitopic images of those points has already been determined (Mart
(1982) describes how this might be done computationally). In our model, if the point A is represented
by the activation value 1.0 and the point B by -1.0, then the four units can be used to identify the relative
location of A and B on the left and right retinitopic images. The pattern (1, -1, -1, 1) indicates that the
poiat A lies outside the point B in both images. If we assume that A is always to the left of B on the
surface of the object being perceived, then this pattern indicates a convex surface. Similarly the pattern
(-1, 1, 1, -1) indicates a concave surface Activation levels between -1.0 and 1.0 indicate various levels of
surface depth.

The representation of expected input has the same form as the two layers labeled Internal and
Expected. If we assume that focal points on the object's surface have already been identified and are
fixed, then each unit in each of these representations corresponds to one focal point. Gale and Findlay
(1983) show that in resolving ambiguous figures a limited number of focal points, corresponding to obvi-
ous features such as the tip of the nose on a face, seems probable. In the model we describe here, we have
used patterns with four focal points, although the number can be arbitrarily large within efficiency con-
straints. Each of the units in these three layers then, represents the degree to which the corresponding
focal point in the observed image is considered to be convex or concave, where a value of 1.0 indicates a
maximally convex local surface and -1.0 a maximally concave local surface.

The layer labeled Focus has a similar correspondence between units and focal points. Focus serves
as the output to the network and its pattern of activity indicates which focal point the focus of attention
window should take input from in the next time step. The activa'.)n of these units is dictated in part by

I- 229

/J

conflicts between the internal representation and the expected rcprcsentaton, and in part by Gaussian
noise. Since the focus of attention can reside only at one point at a time, the activation of units in this

layer is winner take all. Through the sigma-pi connections to the Internal layer the Focus layer gates
input from the actual portion of the input pattern to the current focal point in the internal representa-
dion. Therefore, the model should tend to focus attention at a point where the greatest conflict exists
between expected and perceived input, but at the same time move around randomly from one focal point
to another regardless of conflicts. As the internal representation develops a more stable form and con-
flicts are diminished, random movement of the focus of attention should increase.

Simulations of conflict resolution in surface topology

The behavior of the model can be summarized as follows, then: The Expected layer receives activa-
tion directly from the expected portion of the input pattern through connections with weights equal to
1.0. One unit in the Internal layer at a time receives activation from the actual portion of the input pat-
tern, but all units receive activation in parallel from Expected. Over time an internal tepresentation ("
the surface topology is developed and conflicts with the expected pattern may arise. The unit in the
Focus layer that corresponds to a conflict point will tend to activate and gate input in the next time step
from the actual portion to the correct local surface in the internal representation. Over time activation
from expected input increases in strength and eventually suppresses conflicting input from the actual
input. In this model this was accomplished through a linearly increasing function or the net activation
from expected input.

The number of time steps required to develop a stable internal representation then, is a function of
the number of conflicts between the expected and actual input patterns. Figure 2 shows this behavior in
three different runs. In each case the curve shows the error as a function of time steps. Error is simply
the sum of the differences squared between the Internal layer and the Expected layer. As the difference
between the perceived and expected pattern diminishes, so does the error. Case I in Figure 2 shows a sim-
ulation in which the starting difference is 0.0. A small .zonflict exists at the beginning in Case 1, howev-
er, because the starting Internal pattern is random. As soon as all four focal points have been visited, the
conflict is resolved. In Case 2 a conflict exists at focal point 4 and in Case 3 at focal points 3 and 4. A
substantially larger number of time steps are spent at those points, 56, 59, and 44 steps respectively,
because the movement of the focus of attention is driven by conflict. Cases 2 and 3 show how additional
conflict increases the number of steps required to develop a stable interpretation of the surface. The irreg-
ular error curve in these simulations is due to the movement of the focus of attention. If a conflict
exists at point n, but the focus of attention is at point m, m • n, then no input is received from actual

Case 1 Case 2

S•X

Case 3
US point I5 point 2

ul •~4 point 3 "''"
3C point 4

•
2t

Caws I 2 3

timc spcnt at cach focal point
Figure 2

1- 230

input at n during those time steps. In other words, there can be no conflict when the focus of attention is
not at point n. As the conflict is resolved, the selection of focus becomes more random. Even after a sta-
ble interpretation is arrived at, however, decay of the internal representation still drives the movement of
the window to maintain the composite interpretation.

Conclusion

This neural network model represents the computational implementation of a hypothesis developed
to account for the directed movement of the focus of attention during visual perception of depth. By
weakening the connections from the expected, top down input, it can also be made to exhibit the inability
to resolve conflicting information that was observed in schizophrenic patients in the preliminary empiri-
cal section of this project. Based upon this model it has been decided that future experiments should cen-
ter around two major areas: 1) the interaction of low level cues such as light and shading and stereo dis-
parity with each other and with higher level cues such as top down knowledge, and 2) the role eye move-
ments play in the development of a composite perception of depth gathered from local perceptions over
time. The modeling in the project has helped test earlier hypotheses about the perception of surface
depth, and will be expanded upon or used as a point of departure for more complete models as empirical
results become more conclusive.

Bibliography

Emrich, H.M., Weber, M.M., Wendl, A.. Zihl, 1. (1988): Impaired Binocular Depth Inversion as an Indi-
cator of Psychosis. Submitted.

Gale, A.G., Findlay, J.M. (1983): Eye Movement Patterns in Viewing Ambiguous Figures. In: Groner,
R.. Menz, C., Fisher, D.F., Monty, R.A. (Eds.) Eye Movement and Psychological Functions: Internation-
al Views. Larence Erlbaur- Hillsdale, New Jersey.

Lehky, S., Sejnowski, T. (1988): Neural Network Model for the Cortical Representation of Surface Cur.
vature from Images of Shaded Surfaces. In: Lund, J.S. (Ed.) Sensory Processing, Oxford: Oxford Univer-
sity Press.

Manr, D. (1982): From Images to Surfaces, Stereopsis. Vision. Freeman, San Francisco. pp 111-159.

YUllot, J.1. (1981): Binocular Depth Inversion. Scientific American. Vol. 245. pp. 118-125.

Acknowledgments

This research was supported by BMFT (Bundesministerium fur Forschung und Technologie) and DAAD
(Deutscher Akademischer Austausch Dienst). Thanks to Holger Knopf for help on earlier simulation
software and to Yoshiro Myata for the use of SunNet.

I - 231

The effects of threshold modulation on recall & recognition /
in a sparse auto-associative memory:

implications for hippocampal physiology*

Valeriy I. Nenovt, 2, Walter Read'-3, Eric Halgren 2 & Michael G. Dyert
I Artificial Intelligence Lab, CSD, UCLA, Los Angeles, CA 90024

2 Brain Research Institute, UCLA & VAMC Wadsworth, Los Angeles, CA 90073
3 CSD, California State University, Fresno, CA 93740

Abstract
In this note we discuss a modification and implementation of a memory model originally proposed by
Gardner-Medwin. This is an auto-associative partial matrix model with threshold used as a content-
addressable memory. It is of the general type of the models of Willshaw, Kohonen and Anderson.
Gardner-Medwin controls the recovery of correct and spurious memories by carefully changing the
neural firing threshold. Simulation studies indicated that the original strategy for changing the threshold
allowed too many spurious neurons in multiple cycles of recall. We modified the threshold strategy so
that the computation is both more effective and more plausible neurally. The memory network can now
be used for recognition as well as recall. We report here on simulation studies of both the original and
the modified model. The biological p~ausibility of our model as well as some implications for the
significance of the cognitive evoked potentials N4 and P3 in the storage and retrieval of memories in
the human hippocampus are discussed.

Introduction: the Task
Evidence suggests that in humans memory traces for recent memories reside largely within the
hippocampal formation (HCF). Important questions in hippocampal neurophysiology are the
relationships among memory formation, recognition and recall. Electrophysiological
measurements at the scalp show evoked potential components that are correlated with the
processing of complex meaningful stimuli. It has been suggested that these components
represent a cycle of excitatory / inhibitory modulation of hippocampal intemeurons (Halgren et
al. 1983). This suggests an associative memory controlled in part by inhibition and for which
the recognition of familiarity is part of the recall process.

The Gardner-Medwin Model
The work described in this paper was inspired by an almost forgotten but very enlightening
paper by A. R. Gardner-Medwin (1976). This paper presented a mathematical analysis of an
auto-associative partial matrix content-addressable memory model. In the Gardner-Medwin
model, memory consists of N elements, which may be taken to be simple McCulloch-Pitts
neurons. Each neuron receives excitatory input and when it fires it sends out an action potential
along an axon (the output). The axon of each neuron gives collaterals which synapse to R of
the other neurons. In general, R << N. There is also an overall inhibition which sets the firing
threshold. The memory can go through several cycles of excitation and firing. Each of the
synapses is initially ineffective (zero weight). An event (a particular pattern of activation) is
learned by making any synapse between two neurons in the event effective (weight one). In a
recall task a pattern of firing on the input, which can be considered as a cue into the memory,
is given to the network and in one or more cycles of excitation and firing, a set of the neurons
will be sending output. A general problem with a partially connected network is setting the
firing threshold for recall. Gardner-Medwin proposes a method for starting the threshold low
and increasing it in later cycles based on computing Poisson tail probabilities. It turns out that

This research was supported in part by grants from the Keck Foundation, the ITA Foundation, and by a
contract with the JTF program of the DoD, monitored by JPL, and by the USPHS (NS 18741) and the
Veterans Administration.

1- 232

some of the simplifications in the mathematical analysis cause the amount of spurious recall to
be seriously underestimated.

Comparison with other work
Associative models of memory have been studied in psychology, neuroscience and computer
science in many forms (cf. Anderson & Bower, 1973; Hinton & Anderson, 1989). Linear
matrix memory models similar to Gardner-Medwin are described by Kohonen (1972, 1977)
and Anderson (1970, 1972). Kohonen analyzes the case of a partially connected linear model
and Anderson studies the problem of recognition. However, neither of these models includes a
firing threshold and so they do not deal with the resulting non-linearity. The present model is
closest to that proposed by Willshaw et al. (1969). In both the Willshaw and Gardner-Medwin
models, a memory trace is a pattern of on-off neurons. The trace is learned by setting synaptic
connections and the recall mechanism is implemented as a cycle of activation followed by firing
if the activation is above some threshold. Willshaw considers completely connected networks
(R = N or N - 1) so that the threshold is always set equal to the size of a learned pattern. In an
incompletely connected model (R < N) the problem of choosing the threshold is more
important.

Simulation studies
For a memory model intended to include recognition as well as recall, the problem of spurious
recall is critical. In order to study the Gardner-Medwin model, we implemented it on a
Thinking Machines CM-2 (Connection Machine). The memory had 4096 processors
representing neurons and each neuron had 256 potential synapses with other (randomly
chosen) neurons. Each event was a randomly chosen subset of size 10% of the total memory
(about 400 neurons) and the memory first learned 10 such patterns. To test recall, subsets of
size 10%, 20%,..., 90% of a particular pattern were given to the memory as cues and several
cycles of excitation-firing were run. The percentages of correct and spurious neurons recovered
were computed after each cycle. To test recognition, we gave the memory cues from no learned
pattern. The threshold calculation proposed by Gardner-Medwin gave too many spurious
neurons after a few cycles of recall with the number of spurious neurons larger with larger cues
(Figure 1.) so we modified the threshold function to be a sum of two components. First, the
threshold should grow proportional to the cue so that for small cues correct neurons can be
rapidly recruited but as the cue grows spurious neurons are suppressed. This corresponds to a
recurrent component of inhibition (Ir). Second, there is no optimal balance between rapid
correct recall and low spurious recall. This parameter should be settable exogenously according
to something like level of arousal of the organism. This corresponds to a general inhibition (Ig)
such as is often seen coming from the brainstem. With this threshold function, we ran the
simulations with a base value for Ig and also for values 50% higher and lower.

Recall
For the base value Ig and given a cue from a known pattern, the network recalled almost all of
the pattern after at most three cycles (more for a 10% cue). Note that with only partial
connectedness, there is no guarantee that all of an event will be recovered even with the whole
event as cue if the threshold is high. But in all these cases 99% of the event is recovered. The
number of spurious neurons grew very slowly through all the cycles computed, generally
reaching a steady state of about 1-2% of the number of number of correct neurons (Figure 2.).

Recognition
We tested recognition by giving a cue from an unlearned pattern. For the base value of Ig, we
found in every case, with cues from 10% to 90% of the size of a pattern that the cue died outi
completely in two cycles and in only a few cases were there any neurons cued after one cycle.
Thus, the memory has a simple way of knowing after one cycle that this cue is not familiar.

1- 233

Exogenous control of memory
If the general (arousal dependent) inhibition, Ig, is cut in half in recall of a known pattern,
correct neurons are recovered much faster with substantially all the pattern recovered after two
cycles. However, the number of spurious cells rises much faster than in the previous case,
rising to as much as 8% of the correct cells (Figure 3.). If, instead, Ig is increased 50% from
its base value, the recruitment of spurious cells is almost totally suppressed. However, the
recovery of correct neurons from the pattern is much slower, especially for small cues. For a
cue of size 10% of the pattern, the cue drops to zero just as in the case of an unknown event
and the memory is unable to recover a pattern (Figure 4.). For an unknown cue and the low Ig
the successive cues drop very low after one cycle but then begin recruiting cells rapidly, so that
after a few cycles and even with a small cue, more than 10% of all neurons in the memory were
involved. Thus the exogenous control can set the memory to a more relaxed or more focused
state.

Neural plausibility and implications for hippocampal functioning
A computational study (on a network level) of the basic mechanisms for learning/recall in the
hippocampal formation (HCF) led us to the implementation of this model. Numerous studies in
physiology and neuropsychology have shown the importance of this brain structure in the
formation and retrieval of memories for recent events. The original Gardner-Medwin model
and our modifications of it bear a number of structurally and functionally significant similarities
to the HCF and also a number of differences (most of them due to oversimplification). One
simplification is the hebbian type of learning used in this model which has not been identified
in the brain. In the hippocampus synaptic plasticity follows the rules of long term potentiation
(McNaughton, 1983) which are similar to the ones postulated by Hebb but with a constant
component (Marr, 1971).

An important similarity between our model and the HCF is the extensive and random
connectivity between neural elements. Similarity between the HCF and our model however,
extends beyond the level of connectivity to some aspects of functionality including the general
inhibition and the recurrent feedback inhibition. Another important similarity is the
modifiability of the neuronal firing threshold. The existence of modulatory processes which
facilitate recall has been recently hypothesized (Halgren & Smith, 1987). Electrophysiological
manifestation of these processes can be recorded as event related potentials (ERPs) on the
scalp. In gene; a! ERPs are generated by quasi-synchronous activation of spatially organized
populations o2 synapses. Two specific ERP components have been correlated with cognitive
processing -- t'le N4 and the P3. They are generated in the HCF during memory formation and
retrieval as well as in the association neocortex. Across a large number of psychological tasks,
the N4 is correlated with associative activation to complex meaningful (or potentially
meaningful) stimuli (words, faces) and the P3 with cognitive closure (Kutas & Hillyard,
198A). The N4/P3 sequence has been suggested to represent a cycle of excitatory/inhibitory
modulation of hippocampal interneurons (which in turn inhibit the hippocampal pyramidal
cells) (Halgren et al. 1983). A functional analog of these hippocampal processes in our model
is the sequence of falling/raising threshold. The network behavior which we observed while
modulating the threshold during recall supports the hypotheses that the N4/P3 complex has a
physiological significance rather than being simply an epiphenomenon measured on the scalp.
In the brain, the most likely sites ,enerating the N4/P3 are cholinergic or monoaminergic
synapses which receive input from the brainstem. Thus, the emergent recognition behavior of
the modified Gardner-Medwin model discussed here is yet a:'other evidence for its neural
plausibility.

Stmmary
In a partially connected pattern associator, Gardner-Medwin suggested a method for choosing
the tb-eshold dynamically to keep down spurious recall. Simulation studies showed that the
problem of spurious recall was more serious than originally estimated. We modified the

I- 234

threshold function to make it more effective and neurally plausible and extended the model to
include recognition as well as recall. We believe tiat this model provides a basis for studying
the hippocampus.

Figure 1. Figure 2.

2 slO *
0 slO

'44 '44

0 1-o .2 Xso
*0 _______2_

0 2 4 6 8 10 12 cycle 0 1 2 3 4 5 6 7 8cycle

Figure 3. Figure 4.
ýa2- ' - or'..0 K. OmOO

I .Oslo 0lo• slO

A n2O 8 Ar m20
A s2O 6 A s20

04 *m30 4 +m30
o 2 Xs30 b 2' Xs30

0 1 2 3 4 5 6 7 8cycle 0 1 2 3 4 5 6 7 8cycle
References
Anderson, JA. (1970). Two models for memory organization using interacting twaces. Math Biosci, 8:137-160.
Anderson, J.A. (1972). A simple neural network generating an interactive memory. Math Biosci, 14:197-220.
Anderson, J.R. & Bower, G.H. (1973). Human associative memory. V.H. Winston, Washington, D.C.
Gardner-Medwin, A.R. (1976). The recall of events through the learning of associations between their parts.

Proc. R. Soc. Lond. B, 194:375-402.
Halgren, E. & Smith, M.E. (1987). Cognitive evoked potentials as modulatory processes in human memory

formation and retrieval. Hluman roi _Qgy, 6:129-139.
Halgren, E., Wilson, C.L., Squires, N.K., Engel, JiJr., Walter, R.D. & Crandall, P.H. (1983). Dynamics of the

human hippocampal contribution to memory. In: Neurobiology of the hipoocamnus. (Seifert, W., ed.),
Academic, London. pp. 529-572.

Hinton, E. & Anderson, J.A. Eds. (1989). Parallel Models of Associative Memory. Lawrence Erlbaum,
Hillsdale, NJ.

Kohonen, T. (1972). Correlation matrix memories. IEEE Transactions on Computers, C-21(4):353-359.
Kohonen, T. (1977). Associative memory: A system-theoretical approach. Springer Verlag, Berlin.
Kutas, M. & Hillyard, S.A. (1984). Brain potentials during reading reflect word exoectancy and semantic

association. Nature, 307:161-163.
,Mar, D. (1971). Simple memory: A theory for archicortex. Phil. Trans. R. Soc. Lond. B, 262:23-81.
McNaughton, B.L. (1983). Activity dependent modulation of hippocampal synaptic efficacy: Some implications

for memory processes. In: Neurobiologv of the Hionocampus. (Seifert, W., ed.), Academic, New York. pp.
233-249.

Willshaw, D.J., Buneman, O.P. & Longuet-Higgins, H.C. (1969). Non-holographic associative memory.
Nature, 222:960-962.

1- 235

Expertise acquisition through concepts refinement in a self-organizing
architecture
Philippe G. Schyns

Dept. of Cognitive and Linguistic Sciences, Brown University, Providence,
RI 02912, USA

1.Introduction.
People often differ dramatically in the knowledge they have about the objects of a given domain in the world.
Although we know that expertise develops through the repeated interaction with a specific part of the environment.
how the differences between an expert and a novice reflect in their conceptual system is still an important issue in
Cognitive Science. The purpose of this work is to show how a simple self-organizing architecture can give an account
of expertise acquisition through the refinement of a conceptual representaion.
How the conceptual system of experts and novices differ has been given a careful theoretical investigation in Murphy
and Wright (!985). Among the possible accounts for the conceptual organization of experts they consider, two are of
primary importance for our work, they will be briefly described hereafter.
The first theoretical hypotheses states that the difference between the conceptual system of an expert and a novice
might just be a quantitative one. As experts are able to make finer segmentations between the objects of their domain
of expertise. they must have a more specific representation of the categories composing the domain.These more friner
representations would be made out of a larger number of low-level concepts.
The second hypotheses stresses a qualitative difference in the categorical representation of experts and novices: Experts
might have more differentiated concepts than novices. Experts might perceive more similarity (vs. contrast) for
different exemplars of the same (vs. different) category than novices would do. So the categorical judgments made by
experts might be more accurate, with less inter-category overlap, than those made by novices.
Of course, as Murphy and Wright (1985) point out, "... the first two possibilities need not be mutually exclusive.
Experts may have both more differentiated ... and more specific categories than novices."

2. Kohonen's self-organizing architecture.
In this work, to model concept acquisition, we have used a variant of the self-organizing procedure described in
Kohonen (1982, 1984). The prototypical Kohonen architecture is composed of a n-dimensional input vector fully
connected to a two dimensional output map. This architecture is linked to a discriminant function, an adaptation rule,
and a neighborhood topology that shrinks with time. The overall result of the system is to achieve a vector
quantization of the input space according to a Voronol tessellation (Kohonen, 1988). We have slightly modified the
standard architecture to make it less unbiological, and the results obtained are, in general, similar to Kohonen's
although less robust. Our architecture and its appendices will be summarized in the following paragraphs.

2.a. discriminaut function.

Oo (t) = maxi (miT (t) i (t))

At time t, select the output unit o for which the inner-product of its weights and the input vector is the maximum.

2.b. neighborhood topology and updating rule.
Kohonen has suggested to update the weight vector afferent to the winning units as well as the members of a certain
neighborhood topology. In order to achieve a convergence of the ordering of the map, the neighborhood size has to
shrink with time. Here, we propose an implementation of this constraint that might have some biological flavor:
Each output unit has local, fixed, excitatory connections with its neighbors. The local connection strength between
two output units, lc(x,y), is given by a Gaussian function of the Euclidian distance between a particular output unit
and its neighbors. If the distance exceeds a given value, the connection is non-existent.
With these little modifications, the learning rule becomes

Wi(t+l)=wi(t)+i(t)*I[(l-Ioi (t) I))*lc(oi,ow)] fori in No
wi (t + 1) = w((t) for i not in No

The weights afferent to output unit i will be added a fraction of the input i at time Lt This fraction will be computed
by multiplying the inverse of the activation of the absolute value of the output unit oi and the value of the local
connection between the considered output unit and the winning output unit, Ic (oi , ow).If there is no local
connection between the winning unit and the considered output unit, the weight vector remains unchanged.

I- 236

With this scheme, when the activation of the winning output unit will tend to its maximum, the modification of the
weights will tend to 0. For this reason, and the gaussian local connections, we neither need a gain parametr nor a
topology structure that reduce with time. The learning rule take them implicitly into account. By so doing, we can
wchieve a topological ordering of the map from global to local as in Kohonen (1982, 1984, 1988).

3. The experiment.
&L Parameters of the architecture: In this experiment, the input vector had dimensionality 100 and was fully
connected to a two dimensional map of 10 x 10 output units. The maximal distance for the local connection was 2.83,
and the sigma of the gaussian function had been set to I_5.

.. Stimulh We constructed a taxonomy of four different categories each composed of three subcategories. This
make a total of twelve prototypical sinuli. Each element of the input vector encodes the presence or absence of a
particular component of meaning by bing respectively "on" or "off" - I or .1 -. In oer order to be able to interpret
the results later on. we have represente the prototypes as simple drawings on a l0 x 10 array (cfr. figure 1).

Figum 1: Prototypes from category 0, category 1, category 2, category 3.

At each iteration of learning, the network was fed with a normalized distortion from one prototype. These distortions
were made out of noisy features added to the initial prototype. The noisy features could be located anywhere on the
contour of the drawing, and their size was given by a random value ranging from I to 10. In order to prevent the
prototype to be composed of necessary and sufficient features, each of the units with a white, "on, value was
effectively turned on with a probability of 0.75. This last constraint should prevent the exemplars of being defined by
singly necessary, and jointly sufficient, features
We assigned a different probability to each category - respectively 0.65, 0.2. 0.1. 0.05 for category 0, 1, 2, 3 -.

Underlying this distribution of probability is the reasonable hypothesis that the most (vs. least) frequent categories
should the ones for which the network should built the most (vs. least) refined categorical representations. Once a
category was chosen according to this distribution, a subcategory was evenly chosen and the exemplar was computed
from the prototype of this subcategory.

4. Results.
Previous simulations related to the organization of conceptual maps have given the following qualitative results. From
now on, we will consider the activation states of the map as the codes built by the system to represent the category
input space on a two dimensional representational space.
4.a. Global organization into conceptual regions: With learning, the output map gets organized into
contrasted regions that respond mostly to exemplars drawn from particular categories. When one region is activated by
the presentation of an exemplar from a paricular category, the activation of the other conceptual regions is a function
of the similarity (measured by the vectorcosine) between the exemplar and the other categories. The topographical
proximity of categories on the map encodes their similarity.
4.b. Local organization inside a conceptual region: In a conceptual region, the organization follows the
same principle than the previous ones but one level down: in each conceptual region different patterns of activation can
be observed depending on the subcategory the exemplar is coming fora. When a particular subregion is mostly
activated, the activation of the other subregions is a function of the vector cosine between the presented exemplar and
the prototype of the other subcategories.
4.c. Prototypical organization inside the conceptual subregions: Each of the subregion is organized
according to the same principle. One unit. usually around the center of the subregion, will respond mostly to the
prototype of the concerned subcategory. The other units composing the subregion will respond mostly to specific
distortions of the prototype according to the 'ollowing general rule: the less similar the exemplar is from the
prototype, the further away from the unit that respond maximally to the exemplar will be the unit that responds
.maximally to the prototype.
4.d. The organization of the map proceeds from global to local;The categories are represented before the
subcategories. This is due to the global to local organization of the learning rule.
To summarize, going from global to local, the map is organized first into different, contrasted, conceptual regions.
Then, inside each region, a differentiated pattern of activation can be observed for each subcategory of the category
considered. Each of these differentiated patterns of activation will be centered on a unit. The distance of this unit from
the center of the subregion will be an inverse function of the similarity of the exemplar presented with the prototype
of the subcategory considered. These results hold for all categories of an equiprobable distribution.

I- 237

The activation of each output unit is a function of its afferent weights and the sample excmplar. So, the knowledge of
category organization must be included in the weights underlying the output units. They have to pick out the generalfeatures that arc characteristics of the categories and the specific features that characterize the subcategories. To see this, "
after the network had been presented differcnt numbers of patterns, we saved the values of the weights of each output
units. The learning rule proceeds so that the weight vector of the winning unit and its neighbors rotate in direction of
the presented input. We should be able to have a clear account of the filtering done by the weights on the inputs. Since
each subcategory is characterized by having some particular features, we should be able to see if some weight vectors
have been able to pick them out, and if so, with what strength.
The next figure shows the weights afferent to each output unit after 0, 10 , 50, 1000 iterations of learning. The
connection strength is coded with levels of grey: black and white mean respectively maximally inhibitory and
maximally excitatory connection.

" I I

,i•rk 'll

Ft ft 0, 05 00 ti o

system shuld Fgure 2o Thke wucghtse asegmnt t•on eachoutunith aftemars 0, 10, 50,m100 iterationsrne t.I

1- 238

should also be observed that with time the relevant feature get more and more distinct, white or black. The irrelevant
featurs with respect to the underlying structure of categories. are simply not picked out.
To synthesize these first observations, we can say that the weight vectors notice more and trare of the features that
characteuize a category. As a result, the output developed on the map should get more and more contrasted, allowing
amother layer, added on top of the cwurent archiecture, to name these representations more accurately and more easly.
These observations are true only for the most frequent categories. What about the others?
The learning rule has the interesting side effect that the representation of each category on the map is attributed a
number of output units that is a function of the distribution of probability of the categories. This can be observed on
the previous figure. where category 3 has been allocated a smaller number of output units than category 0 for example.
Now, the bigger (vs. smaller) the number of units dedicated to the representation of a category, the more (vs. the less)
the underlying weights will be able to pick out the relevant features that discriminate among the members of the
category. On the previous figure, we can see that, for category 3. the weights have not been able to pick out any of the
features characteristics of the subcategories, while for category 2, the weights have picked out two out the three
subcategories. So, the map won't be able to represent the different subcategories of category 3 by differentiated output
patters. Each subcategory will have a similar output pattern. This is of course contrasted with the output map
obtained for category 0 where each subcategory is cearly differentiated (cfr. figure 3)

S ". S *

4-l

tO-'0 j 0t

Figure 3: output on the map for exemplars from the three subcaegoris of category 0 (ft) and 3 (right)

5. Conclusion

In this short paper, we have shown that a self-organized network could display various degrees of expertise in different
conceptual domains. We have shown that the characteristics of this expertise acquisition reflect in the hierarchical
conceptual organization of a system both as a quantitative and a qualitative difference. Here, the quantitative difference
is due to the extraction of relevant features by the network that enable the system to have more concepts, thereby
allowing finer discriminations in the domain of expertise. To the contrary, such discriminations are not possible for
the categories the system is a novice of. The qualitative difference in the conceptual representation is related to the
contrast between the features in the weights: the more the features are contrasted, the better will be the contrast of the
conceptual representation on the output map.
So far, our work has concentrated on a suitable self-organized representation for categories. Others have worked in
concept learning using different architectures to name the representations of categories (Knapp & Anderson, 1984;
McClelland & Rumelhart, 1985; Anderson & Murphy, 1986). In the future, we will add another layer to the
architecture and model some psychological effects related to the acquisition of a lexicon.

6. References
Anderson, I., A., Murphy, G. L (1986). Psychological concepts in a parallcl system. Physica, 22D, 318-336.
Knapp, A., G., Anderson, J. A. (1984). Theory of categorization based on distributed memory storage. Journal of
Experimental Psycholog3 : Learning. Memory, and Cognition, 10, 616-637.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological cybernetics, 43, 59-69.
Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer.
Kohonen, T. (1988). The neural phonetic typewriter. IEEE Computer, March, 11-22.
McClelland, J., L., Rumelhart. D. E. (1985). Distributed memory and the representation of general and specific
information. Journal of Experimental Psychology: General, 114. 159-188.
Murphy, G., L., Wright. 3. C. (1984). Changes in conceptual structure with expertise: differcnces between real-world
experts and novices. Journal of Experimental Psychology: Learning. Memory. and Cognition, 10, 144-145.

1- 239

s/

POSSIBLE MECHANISMS OF EXPERIENCE-DEPENDENT SYNAPSE
MODIFICATION IN THE VISUAL CORTEX

Mark F. Bear
Center for Neural Science
Brown University
Providence, Rhode Island USA

The cat visual cortex has proved to be a valuable experimental model for the purpose

of determining how neural networks modify according to experience. Neurons in the

primary visual cortex, area 17, of normal adult cats are sOarply tuned for the orientation of

an elongated slit of light and most are activated by stimulation of either eye. Both of these

properties -- orientation selectivity and binocularity -- depend on the type of visual

environment experienced during a critical period of early postnatal development (reviewed

by Frdgnac and Imbert, Physiol. Rev. 64: 325; 1984). For example, monocular

deprivation (MD) during the critical period [extending from approximately 3 weeks to 3

months of age in the cat] has profound and reproducible effects on the functional

connectivity of striate cortex. Brief periods of MD will result in a dramatic shift in the

ocular dominance (OD) of cortical neurons such that most will be respo'--ive exclusively to

the open eye.

The consequences of binocular deprivation (BD) on visual cortex stand in striking

contrast to those observed after MD. While 7 days of MD during the second postnatal

month leave few neurons in striate cortex responsive to stimulation of the deprived eye,

most cells remain responsive to visual stimulation through either eye after a comparable

period of BD. Thus, it is not merely the absence of patterned activity in the deprived

geniculocortical projection that causes the decrease in synaptic efficacy after MD.

Gunther Stent, in an influential 1973 paper (Proc. Natl. Acad Sci. USA 70: 997),

suggested that the crucial difference between 1MD and BD is that only in the former case are

cortical neurons active. According to this "learning rule", postsynaptic activation is

necessary for all synaptic modifications and the sign of the change (+ or -) is dependent on

the concurrent level of presynaptic activity. However, subsequent work suggested that the

generation of action potentials in a cortical neuron does not ensure that ocular dominance

modifications will occur after MN. To reconcile these data with the Stent model, Singer (In

FO Schmitt and FG Worden (eds) "The Neurosciences Fourth Study Program,"

Cambridge, MA: MIT Press, pp 1093-1109; 1979) introduced the idea that there is a

critical level of postsynaptic activition that must be reached before experience-dependent

modifications will occur, and that this threshold is higher than the depolarization required

for somatic sodium-spikes.

I- 240

This hypothesis was recently tested in a study by Reiter and Stryker (Proc. Natl.

Acad Sci. 1988). They infused continuously the GABAA receptor agonist muscimol into

striate cortex as kittens were monocularly deprived for 7 days. With the muscimol still

present in cortex, they mapped the cortex to determine the extent of activity blockade. They

found that all cortical cell responses were eliminated within several millimiters of the

infusion cannula, even though LGN fiber activity was readily demonstrated. When the

muscimol wore off, they performed an ocular dominance assay in the zone of cortex whose

activity had been blocked. They observed an unexpected ocular dominance shift toward the

deprived eye; that is, most neurons were no longer responsive to stimulation of the retina

that had been more active during the period of MD. These data suggest that patterned

presynaptic activity can lead to either an increase or a decrease in synaptic strength,

depending on whether or not the target neurons are allowed to respond.

The results of this study are inconsistent with the Stent-Singer model because

synaptic modifications were observed in the absence of demonstrable postsynaptic activity.

However, they are compatible with an alternative theoretical solution to the problem of

visual cortical plasticity, developed by Leon Cooper and his associates at Brown University

(reviewed by Bear, et al., Science 237: 42; 1987). According to this theory, the efficacy of

active synapses increases when the postsynaptic target is concurrently depolarized beyond a

"modification threshold", 0. However, when the level of postsynaptic activity falls below

0, then the strength of active synapses decreases. Thus, "effective" synapses are

strengthened and "ineffective" synapses are weakened, where synaptic effectiveness is

determined by whether or not the presynaptic pattern of activity is accompanied by the

simultaneous depolarization of the target dendrite beyond the modification threshold, 0.
An important feature of this model is that the value of the modification threshold is

not fixed, but instead varies as a non-linear function of the average output of the

postsynaptic neuron [the time over which postsynaptic activity is averaged can be inferred

to be in the range of several hours]. This feature provides the stability properties of the

model, and is necessary to explain why the low level of postsynaptic activity caused by

binocular deprivation does not drive the strengths of all cortical synapses to zero.

Analysis and computer simulation have shown that virtually all of the available data

on the experience-dependent modification of striate cortex can be explained by this simple

learning algorithm (Bienenstock, et al., I. Neurosci 2: 32; 1982; Clothiaux, Bear and

Cooper, unpublished). While this is satisfying in its own right, the critical question

remains as to whether this form of synaptic modification has a neurobiological basis.

Recall the following three distinctive features of the theory.

I - 241

(1) The sign of the synaptic modification depends on whether the postsynaptic

depolarization is greater or less than 0.

(2) The rate of the synaptic modification depends on the concurrent level of presynaptic

input activity.
(3) The value of 0 varies with the average activity of the neuron.

This leads to the following 3 questions that we have begun to address experimentally.

(1) When input activity is high, what distinquishes postsynaptic depolarizations greater

than 0 from those less than 0?
(2) When postsynaptic depolarization is less than 0, what distinquishes high from low

input activity?

(3) What is the molecular basis of the sliding modification threshold?

My lecture constitutes a status report on our efforts to answer these questions.

I- 242

/

CHAOS IN THE BIODYNAMICS OF PATTERN RECOGNITION BY NEURAL NETWORKS
Walter J. Freeman and Yong Yao

Department of Cell & Molecular Biology, University of California at Berkeley. CA 94720

Abstract: Through an appropriate choice of the approaches zero, and a broad power spectrum. The
values of its parameters, a distributed olfactory widespread spatial coherence shows that this activity
model maintains a low dimensional global chaotic manifests a chaotic attractor in the nonlinear
attractor with multiple "wings". The central part of cooperative dynamics of the neural system (1(2].
the attractor is its basal chaotic activity, which simu- This report describes computer modeling of
lates the EEG activity of the olfactory system under the olfactory system and aims to determine the role
exhalation. Each of the wings may be either a near- of chaos in the process of pattern recognition. The
limit cycle or a broad band chaos, which simulates model is distributed, and it is described by sets of
the EEG activity under inhalation. The reproducible coupled nonlinear differential equations [31-(41. It is
spatial pattern of each near-limit cycle is determined a natural extension of the lumped olfactory model
by a template made in the system. A novel input [5] and a distributed bulb model (61. The lumped
with no template activates the system to activity olfactory model showed how to generate a EEG-like
without a reproducible spatial pattern of either near- chaos; the distributed bulb model showed how to
limit cycle wing or a broad band chaotic wing. Pat- classify patterns with Hopf bifurcation. The layers of
tern recognition in the system may be considered as the system are simulated with distributed arrays of
the transition from the basal state to a wing or from elements, the correlatoon rule is applied, and the
one wing to another, as demonstrated by computer long connections with delay are structured so as to
simulation. The computer simulation also shows that yield chaotic solutions in the steady state and in
the adaptive behavior of the system is scaling invari- bursts caused by inputs on simulated inhalations.
ant, and it is independent of the initial conditions at The connections and boundary conditions are
the transition from one wing to another. These pro- modeled on the functional anatomy. The values of
perties enable the system to classify an uninterrupted parameters in the model are identified by computer
sequence of contiguous stimuli at an interval of 200 experiments under the insights from neurobiology.
milliseconds per each stimulus. Using this chaotic
system, we have obtained decent results for classify- 2. AN ASSOCIATIVE MEMORY NETWORK
ing sets of industrial data, which are not solved as Our computer simulation shows that the distri-
well by other methods tried. buted olfactory model acts like an associative

1. INTRODUCTION memory (see Fig.1). The difference between the
associative memory studied here and others in the

Physiological studies have been made of the literature is that the former is of chaotic dynamics,
dynamics of the olfactory system during learning by which is much closer to the functions we found in
animals to discriminate odors under reinforcement, the biological systems.
The neural activity has been recorded in the form of
electroencephalograms (EEG). For each odor that is
discriminated a characteristic spatial pattern has
been found when that odor is presented, which can
serve to classify that EEG segment. The time series
of the EEG shows a brief episode of high amplitude 0 ý'. , 11
oscillatory activity called a "burst", during the inha- - .
lation by which the odor is taken in. It has a degree 1

I•ov

of regularity that might suggest convergence to a I
near-limit cycle attractor, if the odor is discriminated , i'
by virtue of prior training. Otherwise the burst is h Ii

aperiodic. So also is the time series of the EEG ýi.v.%1•
between the inhalations and at rest, which is called ,i I,•*,
the basal state. This basal state appears to be 6,.
chaotic, because the digitized EEG has a Gaussian a) The spatial amplitude pattern corresponding to the
amplitude histogram, an autocorrelation that rapidly input Patt A =(I 0 0 1 0 0 1 0). i.e. the input is

I- 243

given to all the template Patt A channels; Fig.l. The output waveforms from the 8 channel
array of G-cells. The stimulus inputs are added in

Rhm ithe period 400ms to 8OOms. Different inputs give
, ' rise to different spatial patterns. The "on" channels

have high DC offsets, while the "off" channels have
low DC offsets. By retrieval it means that the Fig.la

lJ• kL I iand Fig.lc, and Fig.lb and Fig.ld have the same
high DC offset channels and the same low DC offset

• I o~channels, respectively.

V\~ 3. INDEPENDENCE OF INITIAL STATES

An artificial system can be returned repeatedly
to a particular initial condition. However, this is

,h a ,nonsense for a living animal. It is found that the
convergence of the olfactory model is independent

b) The spatial amplitude pattern corresponding to of its initial conditions. The system comes back to

the input Patt B =(0 1 0 0 I 0 0 1). If the trace with its basal state whenever the input is terminated. The

a high DC offset is considered "1", otherwise "0", inputs drive the system back and forward among the

the array of the traces in Fig.la gives rise to the wings and the basal state.

vector (I 0 0 I 0 0 i 0), i.e. Patt A. The array of the
traces in Fig. I b is Patt B.

WIMhOU STIMMLAU

0) Pa't A is retrieved by the input (0 0 0 1 0 0 I 01,

"- ' "Fig.2. Each of the pictures is the phase portrait of a
WIITSnThJs "tmitral cell" against a "granule cell". It is composed

. of 2000 points and its time duration is 10OOms. The
top left plot (from 500ms to 1500ms) and the bot-

l ow tom left plot (from 2500ms to 3500ms) appear like

.I..•• each other, which corresponds to the phase portrait
, I. ! .Iof the basal state. The top right (from 1500ms to

400., INU 800 Ah~l2500ms) is the phase portrait of Pat! A, while the
S).itl-,I,1! -bottom right (from 3500ms to 4500ms) is the phase

' ý.f ''ej.0j"O' lr 4. portrait of Patt B. Patt A and Patt B are defined in
•IT ,ý I -WrfIOUSI1M STIMUS Fig.l. Patt A is presented during 1500ms to 2500ms,

d) Patt B is retrieved by the input (0 000 1 0 0 0). and Patt B is presented during 3500ms to 4500ms.

I- 244

/q

4. SCALING INVARIANCE of the linear region is the measurement of the corre-

Fig.3 shows the scaling invariant property of lation dimension of the time series.

the distributed olfactory model. This is crucially 2 Spectrum cde)
important for practical applications and for the plau-
sibility of the model. As we can see, the system
jumps to a high-level chaotic activity from its low
chaotic basal activity when a stimulus is given, and
it returns to the basal activity when the stimulus is
terminated whatever the number of its channels.

[2 20 0

b) The power spectrum of the time series fluctuates
on a straight line. which implies a "I/f noise".

"The spectrum analysis and the correlation
analysis provide similar results with respect to the
time series of the model (see Fig.4).

Fig.3. The first trace is from one of the four G-cells
in a 4 channel case; the others are 8 channel, 16 6. INDUSTRIAL DATA RECOGNITION
channel, and 32 channel cases. The system dimen- Let us consider an industrial data recognition
sions of these cases are 58, 98, 178, and 338, problem (8]. There are 20 phase vectors in 64
respectively. Here there is no template built into the dimensional feature space corresponding to 20
system. However, this scaling invariant property also screw-driver heads. The classification results by
holds for the system with templates. using a minimum distance classifier is listed in

Table I.
5. FRACTAL AND 1/f NOISE

Apex; No involvement of the models
Physiological experiments show that the spec- with the geometrical method

tra of brain waves are broad with low and variable input # class 0 D-bad DOood labeled 0

peaks consistent with 1/f noise [1], and the correla- 1 8.32 28.76 0

tion dimension of the waves is fractal [7]. 2 0 13.12 13.56 0
3 0 6.92 29.76 0

16 4 0 10.92 27.76 0
5 0 11.12 15.36 0

. 6 0 19.92 13.56
S7 0 9.52 27.96 0

t2- & 0 7.12 29.9% 0
9 0 14.72 18.36 0

S10 0 21.72 11.76 1
1 1I 27.72 6.16 1

a12 I 25.52 6.36 1
13 1 29.12 5.16 I

S-14 1 24.92 7.36 I

15 1 8.92 26.16 0
16 8.52 28.56 0

17 22.32 9.16 1

2 1I 13.32 25.36 0
'2 2 1 8.92 28.96 0

:LION ' 20 15.32 23.36 0

Fig.4. The time series consists of 2,500 points sam- D=3.6l SD-bad=0.70 SD good=1.36

pling from the basal activity in Fig.l. a) The slope 08Ot0 for the bad. 50% lotu the good

1- 245

|/

The results are substantially improved after the corresponding properties of the olfactory system. In
feature enhancement with the olfactory model (see two important respects the model fails to do so.
Table [I). First, in the model the response component that best

serves to describe the convergence to a reproducible

Apes: Using the olfactory model spatial pattern is the baseline shift, whereas in
with the geometrical method bulb's output it is the amplitude of the burst oscilla-

input class # D.bad D..good labeled T tion and not the baseline shift. Second, whereas in
I 0 6.35 628.55 0 the bulb the transition time required to go from an
2 0 67.48 389.19 0 interburst state to a burst state is only a few mil-
3 0 6.88 622.57 0 liseconds, in the model the transition often required
4 0 7.14 621.40 0

5 0 2.72r 578.83 0 up to 50 msec.

6 0 52.21 401.00 0
7 0 11.55 670.96 0 REFERENCE
8 0 5.38 617.93 0
9 0 6.77 618.99 0 [1] Freeman, WJ. (1975), Mass action in the ner-

20 0 7.72 583.80 0 vous system. New York. Academic Press.
2 I 68.023 285.62 0 [2] Freeman, WJ. (1987), Analytic techniques used12 1 75.33 285.80 0

13 1 1180.63 124.51 1 in the search for the physiological basis of the EEG.
14 1 1356.28 194.72 1 in "Methods of analysis of brain electrical and mag-
Is 1075.30 100.92 1 netic signals, EEG Handbook", AS. Gevins and A.
16 1 1015.71 90.85 I Remond (EDS), Elsevier Scienc- Publishers.
17 1 1559.51 280.66 1
is 1 1091.19 107.37 1 [3] Yao, Y. and Freeman, WJ. (1989), Model of
19 I 1013.78 91.43 1 biological pattern recognition with spatially chaotic
20 1 1021.81 93.64 1 dynamics. Neural Networks in press.

D=23.45 SD.bad=2.23 SD-good=3.34
100* for the bad, 80% for the good [4] Yao, Y. and Freeman, W.J. (1989) Pattern recog-

nition in olfactory systems: modeling and simula-
tion. An oral presentation in the 1989 Int. Joint

7. CONCLUSION Conf. on NMural Networks, Washington D.C. (see the
Out computer simulation results provide sup- Proceeding of lJCNN89).

port for the following properties of the distributed (5] Freeman, W.J. (1987), Simulation of chaotic
olfactory model. First, with the change of its "adap- EEG patterns with a dynamic model of the olfactory
tive" parameters, the model can store different pat- system, Biological Cybernetics 56: 139-150.
terns. These patterns are retrievable by using partialinformation. Second, there is a global chaotic artrac- [6] Freeman, WI., Yao, Y. and Burke, B. (1988),

infomaton.Secnd, her isa gobalchaticattac- "Central pattern generating and recognizing in olfac.
tor in the system. Its stability is shown by the repro- "Central atternenatin and re N Neac
ducibility of its geometric form in state space. The tory bulb: a correlation learning rule" Neural Net-
attractor may be described as composed of a central works 1: 277-288.
part and multiple wings. The transition back and [7] Freeman, W.J. (1988) "Strange attractors that
forth between the wings and the central part stands govern mammalian brain dynamics shown by trajec-
for phase transition in the sense of physics and for tories of electroencephalographic (EEG) potential",
pattern recognition in the sense of neural networks. IEEE Trans. CAS-35, 7:781-783.
Third its scaling is an invariant property, which [R-1 Yao, Y., Freeman, W.J., Burke, B. and Yang, Q.
implies the plausibility of the model. A fourth is the (1989), Pattern recognition in a layer-distributed
independence of initial conditions, which implies neural network: an industrial application. Submitted
that each wing has its own basin. This may make it to Neural Networks.
possible to do successive pattern recognition as well
as pattern completion. A fifth is that the olfactory Acknowledgement: Support from grants AFOSR-
system reveals a spatial coherence across the array, 87-0317, MHO6686 from NIMH and Cray Sponsored
which is expressed in the reduced dimension of University Research and Development Grant Pro-
activities are much lower than the number of the gram is gratefully acknowledged. The authors wishto thank Dr. Shawn Buckley from Cochlea Corpora-
related elements. The dimensions are fractal and tion in San Jose, California for kindly providing the
may vary with the complexity of on-going behavior.
In the above five respects the model simulates the

I - 246

Feature Linking by Synchroniiation in a Two Dimensional Network

G. Hartmann, S. Drue *)
Fachbereich Elektrotechnik, Universitat Paderborn

Pohlweg 47-49, D4790 Paderborn

Abstract
By our simulations we can show, that large numbers of neurons can
be synchronized by a fully distributed mechanism. We used a
network with exclusively local interconnections. A two dimension-
al example shows, that an exploding number of meaningful combina-
tions between neurons can be linked by a constant number of
interconnections per neuron. There are first hints, that this
interconnections may be learnt.

Introduction
Models for feature linking by temporal codes have been proposed
by several groups (1], [2), (3], and neurophysiological experi-
ments [3], (4], (5] are supporting this concept. Synchronisation
between neurones, representing similar or matching features,
provides a powerful tool for neuronal information processing.
This mechanism is not restricted to processing of continuous
lines as in our example.

The Synchronization Mechanism
Our model neurons are of the well known type, described by French
and Stein [6). In detail, the incoming spike signals are multi-
plied by a synaptic weight and temporally integrated by a leaky
integrator. The signals of all the integrators are summed up to
yield the membrane potential, which is compared with a dynamic
threshold. As soon as the membrane potential exceeds the thresh-
old, a spike is generated, and the threshold is increased by a
fixed step. The threshold decayes exponentially to its normal
value within a refractory period.
To explain the synchronizing mechanism, we restrict our two-
dimensional network to a chain for a moment (fig. 1). The neuro-
nes are driven by afferent signals at feeding inputs. The synap-
tic weights at these inputs are relatively small and the time
constants are relatively long. As a result, a simple spike will
not cause a major change of the membran potential and activation
will result from the temporal integral over many spikes. In
addition to the afferent signals, each neuron receives signals
from its next neighbours (fig. 1) at trigger inputs. The synap-
tic weights at these inputs are higher and a single spike may
increase the membrane potential significantly. So a neuron may be
stimulated by a single spike at a trigger input if its membrane
potential is close to the threshold. In other words, a neuron can
only be triggered, if it receives signals also at its feeding
inputs. A neuron, however, will not be activated only by trigger-
ing-signals independend of the rate. This is due to a very short
time constant at the triggering inputs, preventing significant
temporal integration.

This work was supported by a BMFT-Grant.

1- 247

/ ~/ I

Now we can try to understand the behaviour of the simple network
in fig. 1. Suppose, all neurons of the chain receive feeding
input and neuron 1 happens to be active first. It will triqqer
neuron 2, and after a short delay of ims, neuron 2 will send a
spike to neuron 3 etc. This situation is explained by fig. 2a and
one can easily see the cumulation of delays. The total delay may
be reduced, if a neuron in the middle of the chain happens to
fire first, and if neighbours are triggered at both sides (fig.
2b). But these simple examples do not take into account the
stochastic nature of the system. A neuron may fire input-driven,
it may fire due to stimulation by its neigbour, or it may be in
its absolute refractory period during stimulation. In fig. 2c,
neurons 3, 6 and 10 are firing input driven, all the other neuro-
nes are firing due to stimulation. Neuron 3 triggers its neigh-
bours 2 and 4, neuron 2 triggers neuron 1, and neuron 4 would
like to trigger its neighbour 5. But neuron 5 has been triggered
just before by 6 and so it is in its absolute refractory period.
Simularly, a neuron can never be re-triggered by that neighbour,
which was triggered by it before.
In a chain with n neurons, i neurons will fire input-driven and
s=n-i will fire due to stimulation. From each of the i input
driven neurons, two wave fronts of triggering signals are start-
ing, travelling up and down the chain. A wave front stops, as
soon as it collides with another front, travelaing in the oppo-
site direction (fig. 2c). The mean number of neurons, triggered
by one wave front is n/2i, which is obvriously independent of the
number n of neurons in the chain. This number n/2i multiplied by
the delay between triggering signal and output spike, is a good
measure for the time interval, within which all neurons of a
chain are firing.
We adjusted the parameters of our model neurons to values com-
patible with biological neurons. The total input rate, summed up
over all feeding inputs of one neuron was 200 spikes/second. The
increase of membrane potential was adjusted to 4 mV per spike at
a feeding input and 10 mV per spike at a trigger input. The time
constant was 30 ms at feeding inputs and 2 ms at trigger inputs.
The delay time between a triggering spike and a stimulated spike
was adjusted to lms. With these parameters, we immediately a-
chieved good synchronization (fig. 3). With different parameter
settings we could show, that the synchronization effect is not
limited to a small parameter space.

Continuous Contours: an Application of Synchronization
To show the computational power of synchronized networks, we
decided to simulate a two-dimensional network, representing a
small visual field. This visual field was subdivided into 16x16
subfields, arranged in a hexagonal grid (fig. 4). For each
subfield there was a complete set of detector neurons with orien-
ted receptive fields. These detectors are described more precise-
ly in previous publications (Hartmann [7)). In our simulations we
have simplified the feeding inputs and we have also reduced the
complexity of the detector set by omitting detectors with highly
curved receptive fields. We have added, however, the interconnec-
tions, necessary for synchronization.

I- 248

Suppose a bright line is running through subfield A, B, C, D, E,
F, G in fig. 4. The line shall fit to the receptive fields of
neuron 1, 2, 3, 4, 5, 6, and 7, so that these neurons are excit-
ed. As in our chain configuration, neuron 1 and 2, 2 and 3, and
all the other adjacent pairs shall be mutually intbrconnected. As
we have seen in the last chapter; all the neurons of this chain
will synchronize their spikes.
Now we change the input pattern to a slightly different contour,
encoded by the neurons 1, 2, 8, 9, 10, and 7 (fig. 4). In this
case neuron 2 must be connected with neuron 8 instead of neuron
3, and similarly neuron 7 with neuron 10 instead of neuron 6.
There may be other lines, requiring connections between neuron 2
and 1i or 12 or 13. Generally spoken, each neuron in a subfield
must be mutually connected with two groups of fitting neurons in
two adjacent subfields.
As all neurons with "fitting" receptive fields are mutually
linked now, also those neurons will always be connected, which
are activated by any arbitrary continuous line. But the above
discussed chain is just a subset of the co.'3lete interconnection,
and so we only have to prove, that the al§itional connections
will not disturb the synchronization of the chain. We have to
discuss two cases. Firstly, a neuron with full interconnection
will not only send triggering spikes to its active neighbours in
the chain, but also to inactive fitting neighbours. But a trig-
gering spike can not excite a neuron without sufficient feeding
input, and no neurons outside the chain will be synchronized.
Secondly, a neuron with full interconnection can not only receive
triggering spikes from its neighbours, but also from its neigh-
bours outside the chain. These outside neighbours, however, are
not active and so they will not influence synchronization.
We have simulated this two dimensional network and presented
different continuous lines activating up to 137 neurons. Syn-
chronization was as good as in the case of simple chains. The
synchronization was not significantly influenced, when we simu-
lated spontaneous activity of "outside neighbours".
Self organization of synchronizing networks could start with a
full interconnection between all neurons of neighbouring
subfields. According to the Hebbian rule, weights of connections
between those pairs of neurons would decrease, which are never
driven simultaneously by a continuous stimulus.
References:
(1] von der Malsburg, C.: The correlation theory of brainfunction. Internal

report 81-2, Dpt. Neurobiology, Max Planck Institute for Biophysical
Chemistry (1981)

[2] Koenderinck, J.: The concept of local sign. In A. J. van Doom et al.,
Eds. Limits in Perception, VNU Sci. Press. 495-549 (1984)

[3] Eckhorn, R. et al.: Feature linking via stimulus-evoked oscillatiors:
Experimental results form cat visual cortex and funcional implications
from a network isdel. Proc. IJCNN89, IEEE, 1.723-1.730 (1989)

[4] Freeman, W. J.: Mass action in the nervous system. Academic Press New
York (1975)

[5] Gray, C. M., Singer, W.: Stimulus specific neuronal oscillations in the
cat visual cortex: a cortical functional unit. Soc. Neurosc. abstr. 404.3
(1987)

[6] French, A. S., Stein, R. B.: A flexible neuronal analog using integrated
circuits. IEEE Trans. Biomed. Eng., 17, 248-253 (1970)

[7] Harcmann, G.: Processing of continuous lines and edges by the visual sys-
tem. Biol. Cybern. 47, 43-50 (1953)

1 - 249

trigger ig,_W. The synchronizing
inputs snchrorlizing connections in a chain of

feeding conections neurones.

,neuron# 0 inpu~t driven *stimulated Fi.2 The synchroniza-
11 tion mechanism in a chain
10of neurones. Without

9 input driven activity of
8 the stimulated neurones,

delay would cumulate
proportional to the

6 length of the chain
5 (a,b). With input driven

1ý activity, wave fronts
3 start from different

2 points of the chain and
stop at refractory neu-

I /(a) (b) (fc) Nil) rcnes (c) , (d).

p.- 10 ms--4 7efractorg timne

Nei

30 __________________ Fi.3 Result of a sim-
____________________ ulation with 34 neurones.

____________________________Notice, that the whole
______________________________assembly is and remains

20 ____________________________synchronous after three
____________________________spikes, when the stimulus
____ ___ ___ ____ ___ ___ ____ ___ ___ is presented.

0 0.1 0.5 Is

51deview C DFig. 4: The synchronizing
W I connections in a two di-
COOto viw 3mensional assembly of

&-osymoti 8neurones. Only part of
neurones is shown for

H clearness. Also for
2 1) clearness, the two con-

9 5 E nections between a pair
/ of neurones are symbo-

B / lized by one (box top
mutua G Ileft). Similarly mutual

0 conrect connections betweenQ groups of neurones are
s~moot/ Fsymbolized (box bottom

1 - 250

SOME SIMILARITIES BETWEEN SINGLE-CELL RECORDINGS OF THE MOTOR
CORTEX AND NEURAL NETWORKS: BROAD TUNING AND (POSSIBLY) TASK-

MODULATED CHANGES IN NEURONAL OUTPUT

Larrie Hutton and Vincent Sigillito
The Johns Hopkins University Applied Physics; Laurel, MD 20707

Phone (301) 953-6242

James Sims
The Johns Hopkins University Space Telescope Science Institute

Baltimore, MD

Abstract

A neural net was trained to produce a 2-dimensional output vector that either matched an
input ,ector or was displaced from it by 900. The behavior of the elements of the system
paralleled the output of neurons in the motor cortex of monkeys engaged in a task
requiring directional judgments in 2 important ways: (1) neurons from both the neural
network and the motor cortex acted as broadly tuned orientation detectors; and (2) the
time-dependent changes in activity of the output neurons of the neural network reflected
the time-dependent changes in the angle encoded by the population vector of cells in the
motor cortex. In addition, we found that the amplitude of the response from output
neurons was modulated by the task requirement even though the hidden nodes continued
to retain their directional specificity.

Introduction

The neural representation of an input vector, and the pattern of neural activity generat'.d
as an organism responds to that input, are classic problems in neuroscience. In this paper
we describe some parallels between the activity observed in individual neurons of the
motor cortex of a monkey engaged in a visual-motor task, and the activity of individual
neurons at the hidden and output layers of an artificial neural network.

The development of the neural network model was inspired by the work of Georgopoulos,
ec al. In one study (Georgopoulos, Schwartz, and Kettner, 1986), rhesus monkeys were
trained to place their hand in the center of a sphere and then, when a light indicated the
appropriate position, to move their hand to one of eight points that were strategically
located on the interior surface of the sphere. The monkeys were able to accomplish this
simple task quickly and accurately. What is important for our purposes is that single-cell
recordings from the motor cortex indicated that a large number (224 were sampled) of
neurons were active preceding the behavioral movement, that these neurcns were quite
broadly tuned (i e., the frequency of firing for any particular neuron was a function of
the angle of movement, but increasing deviations from the angle of maximum activity
still resulted in substantial but declining firing rates), and that trigonometrically
combining the individual activities resulted in a population vector that accurately
predicted *he final direction of the animal's arm.

In a later, related study (Georgopoulos, Lurito, Petridcs, Schwartz, and Massey, 1989),
rhesus monkeys were trained to move their arm in a direction counterclockwise and
perpendicular to a line defined by the current position of the animal's hand and a
stimulus light. Singlc-ccll rccordings from the motor cortex indicated that the combined
population vector, as before, accurately predicted the final movement. In addition, the
changes in the population vector during the time between the stimulus onset and
movement (i.e., the reaction time) provided physiological cvidcncc for the mental rotation
model of Shepard and Cooper (1982).

1- 251

In the first of the two current expcriments, we trained a supervised neural network toperform a simple task: reproduce a 2-dimensional input from a distributed representation
in the hidden layer (which corresponded to cells in the motor cortex) that had been built
up during a training procedure. Because the input and output representations were
isomorphic, this seems like an easy problem. In fact, it is easy to show that this "problem"
can be solved without a hidden layer at all if the network is linear and the inputs are
linearly separable. The fact that we had a third, "context node" for both the input and
output representations, however, required the use of a hidden layer. The third node was
used to indicate the presence or absence of the task variable: if that node were "off," the
target output was identical to the input vector, and if "on" to rotate counterclockwise by
900.

Our hypothesis was that the broadly tuned neurons seen in the animal studies would
emerge here as broadly tuned feature detectors in the hidden layer of the experimental
network, and that the broad tuning would persist with changes in the number of hidden
nodes.

A second experiment was conducted in an attempt to replicate the "mental rotation" aspect
of the second Georgopoulos, et al. (1989) experiment. In the second experiment, we used a
recurrent network during the testing phase.

Method

We trained an ordinary multilayer feedforward network (Rumelhart, Hinton, and
Williams, 1986) using back propagation to learn to predict a 2.5-dimensional output vector
given a 2.5-dimensional input vector. (The "half-dimension" is the context node that
indicated the presence or absence of the task variable. We avoid using the term "3-
dimensional" because that would imply three spatial dimensions, which we did not
investigate.) Two of the three elements of the input vector represented the horizontal andvertical components of a modified unit vector that was normalized and centered at (0.5,
0.5). Two of the three elements of the output vector (and therefore the target vector aswell) were interpreted in the same way. Thus, (0.0, 0.5) would represent a half-unit vector
pointing directly to the left, and the point (0.146, 0.146) would represent a half-unit
vector directed to a point 1350 counterclockwise from the vertical. These values were
chosen so that neither the input vectors nor the targets used during training would fall
outside the "unit square universe."

The third input node (the half dimension) was used to represent a task-specific context.
When this node was 0.0, the net was trained merely to reproduce the input at the output
level. When the context node was set to 1.0, the network was trained to move to a point
900 counterclockwise from the input. Without exception, the third target node was always
identical to the third input node.

The training set for the conditions above consisted of 32 patterns--16 with the context
node turned off and 16 with the context node turned on. Thei 16 points in each of the
two major conditions were fairly evenly-spaced points (approximately 22.50 apart) on the
modified unit circle described above. We investigated the behavior of the network with 1,
2, 4, 5, 8, 16, 32, 64, and 128 hidden nodes.

In a second experiment, the context node was ignored. The target was always a point
22.50 choscr to the goal (which was, arbitrarily, the 00 point) from the current point.
Details of this procedure, which involved a recurrent feedback loop during the testing
phase, can be found in Hutton. Sigillito, and Egeth (1989).

I- 252

/

Results and Discussion

The results are summarized in the first figure, in which we show the outputs of the
hidden nodes in the 5-hidden node case for both the no-task (left half of figure) and task-
imposed (right half) condition. The 10 (5 hidden nodes per condition, times 2 conditions)
bottommost figures are the uutput values (after the logistic function had been applied to
the respective activations) for each of the 5 hidden nodes. The topmost pair of figures
are the arctan transformations of the transformed output neurons. The horizontal axis
ranges over an angle slightly larger than the full unit circle (i.e., it begins to double over)
to more clearly show the peaks for each hidden node. Note that the horizontal axis is
presented twice, once each for the two major conditions in the first experiment.

It might be noted that the hidden nodes arranged themselves approximately equally
around the unit circle: one hidden node was "dedicated" to an angular area centered
approximately evcry 700. We found that was not true in general: as we increased the
number of hidden nodes, they tended to space themselves out unequally.

Hidden Node Activities (motor cortex)Ht* No .3 Three significant features are evident from
the first graph. The first, as noted, is that

the hidden node neurons are very broadly
tuned: although there are regions of relatively
high activity, no neurons were quiescent at
any point. Second, note that the effect of the$;•/'•/task variable was to modulate the activity of

S. -a hidden node across* its range, but not to
shift the point of maximum sensitivity.
Although this is not too surprising in

_____,,____ -_,,..__ retrospect, this observation was not reported
, . in the motor cortex studies. If a similar

.= . 5'-•C'C,. ' finding is verified, that may imply that
individual neurons in the motor cortex are integrating both position and task information.
Third, although the hidden nodes are "fuzzy" distributed representations, they can be (and
are) accurately integrated by the output neurons (see the top two lines in the first figure)
across more than one context. Thus, the internal representation is in principle available
to any output vector that can exploit that representation. Here we formed the internal
represei'ation through the delta rule. There is of course no reason why an unsupervised
network (competitive learning or a Kohonen network, for example) could not have been
responsible for forming the weights between input and hidden layers.

Hidden Weights The second figure shows the effect of

increasing the number of hidden nodes. Each
point represents the horizontal and vertical
weight component for one hidden node in a

, " .particular condition. (For example, there are
S.. . . ., four points shown for the 4 hidden-node

- * condition. Each of those points represents the
I X . weights from the horizontal and vertical

"- . input node for one of the four hidden nodes.)
"The figure shows data for conditions with 4,

"' ", .~ 5, 8, 16, and 32 hidden nodes; all were run for
"-, "- 1200 iterations. Although we expected the

..." , tuning to sharpen, this did not happen. The
standard deviations for the weight vectors going to a particular hidden node from the two
input nodes did not change in a systematic way for the cases (4, 5, 8, 16, 32, 64, and 128
hidden nodes) that we checked. If there is any trend to be discerned from our data, it is
that increasing the number of hidden nodes (and thereby more closely approximating the
situation found in the motor cortex) actually broadens the tuning curves. The second

!- 253

I

figure also indicates that most of the hidden nodes are relatively uncommitted to a
particular orientation. (The "degree of commitment" can be estimated by the magnitude
of the vector emanating from the center, at which point the horizontal and vertical
components are respectively zero.) We also found that a larger number of hidden nodes
required a much larger number of input presentations to learn the task. With 4, 8, and 16
hidden nodes, the proportion of variance accounted for in the target data approached
100% within 100 iterations; with 128 hidden nodes, the network had not learned when we
stopped at 1200 iterations. It is reasonable to distinguish between producing an efficient
representation, which our network needed to do, and recruiting an existing representation,
which would be the case for a biological neural network. On average, our hidden nodes
were less active (but neither consistently silent nor consistently active) if they were
members of a larger hidden layer.

The effect of training to make gradual movements on the unit circle to a predetermined
point produced two interesting results. First, the system, which recurrently fed back its
own output as the sole input to the network (after being given an initial position) learned
to move to a fixed point (the goal) regardless of its initial position on the unit circle.
Second, initial positions outside the unit vector quickly resulted in movements back to the
unit circle and subsequently toward the fixed point to which training had been directed.
Thus, the net showed evidence of "habit formation" that permitted more rapid solutions to
dynamic tasks.

Conclusions

The network described here clearly is too simple to capture the details of movement in
any task approaching the complexity of even very simple motor tasks. Nevertheless, there
are nontrivial similarities between the output of individual neurons in the motor cortex
and the output of individual nodes in the hidden layer of our simple network: the broad
tuning, the effective recruitment of a large percentage of the available cells, and the
gradual changes in the output representation as an input vector was "mentally" rotated to
an ultimate destination. We also found that the effect of introducing contextual
information was to modulate the activity of directionally sensitive neurr'ns in the hidden
layer of our neural network. It would be interesting to see if this effect is found for
neurons in the motor cortex of monkeys who are engaged in appropriate tasks.

References

Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., and Massey, J. T. (1989).
Mental rotation of the neuronal population vector. Science, 243, 234-236.

Georgopoulos, A. P., Schwartz, A. B., and Kettner, R. E. (1986). Neuronal population
coding of movement direction. Science, 233, 1416-1419.

Hutton, L., Sigillito, V., and Egeth, H. (1990). Experiments on constructing a cognitive
map: A neural network model of a robot that daydreams, APL Technical Report,
RMI.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal
representations by error propagation. In Rumelhart, D. E., and McClelland, J. L.
(Eds.), Parallel Distributed Processing (pp. 318-362). Cambridge, MA: MIT Press.

Shepard, R. N., anld Cooper, L. A. (1982). Mental Images and Their Transformations.
Cambridge, MA: MIT Press.

1- 254

Neural Computation in a Vertebrate Adaptive Reflex System

W. T. Rogers, S. C. Dembinski. E. B. Gravest, K. M. Spyer*. A. R. Moser, and I. S. Schwaber

E. I. DuPont Co., Computational Neurobiology Group, Imaging Systems Department and
Engineering Physics Laboratory, Wilmington DE 19880-0357,

tCollege of William and Mary. Williamsburg VA. and
tRoyal Free Hospital, Dept. of Physiology, London, England

Introduction
The premise of this work is that computational principles evolved by biological systems are applica-

ble to engineering devices. Our approach is based on detailed neurobiology, and we have chosen to study the
baroreceptor vagal reflex. We experimentally determine facts of neural architecture and connection, and the
biophysics of neural computation. These facts become models, and are run as computer simulations. Based on
observation of real and simulated neuronal networks, it is our conviction that the brain is a highly nonlinear
dynamical system that "computes" by virtue of its time-dependent traversal of state space; we analyze and in-
terpret network function in these terms. Inasmuch as the model network incorporates the present knowledge
of the baroreflex, we are using results of the simulation to guide new biological experiments. Thus, by con-
tinually refining our model of the reflex, we aim to distill the computational essence of the network.

System Description
The mammalian baroreceptor vagal reflex is of interest because it performs non-linear, analog, dynam-

ical, adaptive signal processing, and is accessible to detailed experimentation. Three factors make this an ideal
model system: (1) anatomical and functional access to inputs and outputs via peripheral nerves, (2) a relative-
ly small number of neurons comprising the system, and (3) effective in vitro as well as in vivo experimental
prepamrons.

In vertebrates, heart rate and contractility are under beat-to-beat regulation via the vagal baroreflex.
Anatomically, the reflex circuitry lies in the brainstem, principally within the Nucleus Tractus Solitarii
(NTS). First order neurons (cells incorporating stretch receptors in the major blood vessels) convey blood
pressure and pulse rate information via peripheral nerves directly to second order neurons in the NTS. Neu-
rons within the NTS project to the Nucleus Ambiguus (NA) which contains most of the output neurons to
the heart. Altogether, there are perhaps several hundred neurons comprising the baroreceptor vagal reflex.

Biological Experiments
The anatomy of the reflex forms the framework which guides the rest of the experimental approach.

The majority of the reflex circuitry lies within restricted levels of the brainstem, near the level of the obex
[1,2]. Anatomical studies [31 have refined the location of the first order inputs to a distinct subdivision of the
NTS. Within this subdivision, we are determining the pattern of connection of first order to second order neu-
rons, and the size and extent of the second order population.

Based on the anatomical information, we are conducting electrophysiological experiments to charac-
terize the biophysics and functional responses of second order neurons. The electrophysiological experiments
are performed in an in vitro NTS slice preparation [4]. The biophysical characteristics measured include (a)
resting membrane potential. (b) membrane resistance, (c) membrane time constant, and (d) voltage-dependent
ionic conductances (such as post-inhibitory rebound currents, delayed rectifier currents, etc.). Network archi-
tecture and dynamical behavior are obtained from analysis of the time variation of intracellular events in re-
sponse to various artificial stimuli. In particular, the fibers which encode blood pressure and heart rate [5] are
accessible to stimulation in the slice using an extracellular electrode. Figure 1 shows intracellular recordings
from an individual dorsomedial NTS cell. The upper trace shows response to stimulation of input fibers.
while the lower trace shows response to :ntraccllular depolarization. The excess of response in the case of ex-
trinsic as compared with intrinsic stimulation is a network property, and analysis can, in principle, yield con-
nectivity and dynamical information on the reflex network.

1- 255

III

Figure 1. Intracellular re- . ' ' 1' ' i ;..
cordings from the NTS slice.
Upper trace: stimulation of
fibers in the tractus solitari-
us with bipolar electrode.
Lower trace: intrinsic depo-
larization to threshold. Time
scale is 10 ms per small tic.
Insets show the same data
on an expanded time scale.
Note the difference in thetwo recordings, particularly
within the first several hun- t 1 1 1 1 . 1 F
dred milliseconds poststimu- "-' t"
lus.

Simulation
Simulation determines the computational meaning of biological data in .' network model. Indeed,simulation allows us to extract computationally relevant aspects of network structure and funct-on. Further,

some experiments are infeasible in a biological preparation.
Simulations are written in an object-oriented language (C++), which proviCzs for the encapsulation

of the behavior of individual objects in a convenient way. Within this paradigm, arbitrarily complex collec-tions of interacting objects are easily assembled. In our case, the basic objects are Neurons and Synapses.
Since the second order cells we study receive primarily somatic inputs (as noted above), we presently use a sin-gle-compartment model [6], with intrinsic voltage-dependent sodium and potassium conductances generatingaction potentials (Fig. 2). Synaptic conductances take the same numerical form, but depend on a presynaptic

action potential rather than intrinsic
membrane potential for initiation. All Neuron Synapse(s)
conductances are assumed to follow a

te time course upon initiation [7].V
Simulation starts with build-

inrg up instances of objects whose intrin- -sic parameters correspond in a statisti- $i
cal sense to their biological counter- GGNa K
parts. The coupled differential
equations describing the ensemble of ob-Sjects;is then automatically solved by up- / -Tyr Tv~a7 K
dating the state of each element. We Na i"
drive the biological and simulated sys-
tems in similar ways and look for corre- Figure 2: Circuit diagram of an individual model neuron.spondence of behavior. An example of Excitatory vs. inhibitory synapses differentiated by the
such a simulation is seen in Figure 3. sign of the V..
In this case, the purpose of the simula-

1- 256

Wio was to determine the influence of the amount of interconnectivity within the various neuronal pools.
The integrated activity of the second order pool was monitored as a function of the number of random synap-
tic contacts between second order neurons, as well as the number of synapses connecting the second order pool
to a discrete population of inhibitory interneurons. Afferent to second order synapses were held constant at a
ratio of 1.

Analysis
Out results strongly suggest that biological neural networks compute by virtue of their nonlinear dy-

namical properties. Individual neurons (simulated as well as biological) are intrinsically highly nonlinear due

II II I I I I I III I I I

Figure 3. Simulation of Intraceltular activity.
Simulated network consists of 200 afferent neurons, 200 2nd order neurc -s, I10% of which are sponta-
neously active, and 30 inhibitory intemeurons. Total of 4600 synapses. 4000 of which are lateral con-
"nods within the 2nd order pool. Upper trace is simulated "ield potentia'. Lower traces are intracellu-
lar recordings from randomly chosen 2nd order neurons. Each small tic on the horizontal axis is 10 ins,
and on the vertical axis is 10 mV. Simulated aff erent shock applied approximately every 200 ms.

to active processes inherent in their membrane biophysics. Dynamical behav'ic of an ensemble of such devices
is dominated by the high dimensionality of the state space created by their coupling.

We are trying to characterize the dynamical behavior of neurons using methods from the field of cha-
os. In particular, phase plots, such as seen in Figure 4, permit visualization of the time evolution of the state
of the system. Loops in phase space correspond to post-synaptic potentials; in general clockwise. loops belong
to excitatory post-synaptic potentials (epsp's), while counter-clockwise means inhibitory (ipsp) events.
While the two phase plots seem qualitatively similar, they are different in important respects, indicating to
some extent lack of correspondence between the dynamics of the simulation and the slice. The phase space tra-
jectories developed in such a signal can be quantitatively described by the dimensions and entropies of their un-
derlying attractor (8). The order-2 information dimension (D2) of a slice neuron is 2.5 0.2 and that of a
model neuron is 3.1 0.2. Eý for several model neurons was found to be indetermninate. We,. -r' currently
refining the simulation parameters to improve quantitative correspondence.

Discussion and Conclusion
This paper discusses our initial efforts to understand computational principles, mechanisms, and archi-

tectures found in the vertebrate brain by modeling and simulation of a neuronal sy'stem of ir.'--rmodiate com-
plexity: the baroreceptor vagal reflex. We propose that, unlike most artificial neural netwoi.. irnplcmcnta-
tions, the brain is a highly norlinear dynamical system that "computes" by virtue of its dmc-depcndcnt tra-
versal of state space. Many network models created with the goal of undcrswnding thcir biological
counterparts are highly abstract, and succeed in elucidating limited aspects of bioltgical systemns. Thc present

1- 257

".4.06* .

~-$. 4A.. 6-5• ;

Figure 4. Phase plots of (left) 2nd order NTS neuron electrophysiologically recorded in the slice, and
(right) a simulated 2nd order neuron. In both cases, the vertical axis is the intracellular membrane poten-
tial at time t+,r, while the horizontal axis is the same potential at time t, where T is chosen to be 1.0 is. The
simulation parameters are described in the caption of Fig. 3.

alternative is to model biological systems with a significant degree of realism, and via computer simulation
and VLSI emulation, elucidate the essential features of brain function within the context of specific function-
al circuits.

In general, any neuronal network constantly receives many parallel inputs, and continuously maps
themn to a set of parallel outputs. The relationship between inputs and outputs is often complex, and a task in
emulating biological networks is to first rind this relationship, and then understand the dynamical computa-
tional mechanisms underlying it. Once this is achieved, simulation provides a powerful method for investigat-
ing mechanisms and principles of computation not heretofore possible. With insights thus developed, we be-
lieve that systems can be constructed in silicon that embody dynamical properties similar to the model neuron-
al system.

References
1. Schwaber, J. S. Neuroanatomnical substrates .. i cardiovas;cular and emotional -autonomic regulation. In:

Central and Peripheral Mt.chanisms in Cardiovascular Regulation. A. Magro, IV. Osswald, D. Reis and
P. Van/wutte eds. Plenum, 1986, 353-384.

2. Cox, G. E., Jordan, D. Moruzzi, P, Schwaber, J. S., Spyer, K. M., and Turner, S. A. Amygdaloid influenc-
es on brain-stem neurons in the rabbit. 1986. 1. Physiol. 381 (Lond) pp. 135-148 (1986).

3. Bradd J., Dubin J., Due B.. Miselis R. R., Montor S., Rogers W. T., Spyer K. M., Schwaber J. S., Mapping
of carotid sinus inputs and vagal cardiac outputs in the rat, Soc.for Neurosci. Abstracts (1989), in press.

4. Dekin M. S., Getting P. A., and Johnson S. M., In Vitro characterization of neurons in the ventral part of
the Nucleus Tractus Solitarius, J. Neurophysiol. 58(1), pp. 195-229 (1987).

5. Abboud F. M., and Chapleau A. W., Effects of pulse frequency on single-unit barorecceptor activity during
sine-wave and natural pulses in dogs, J. Physiol. 401, pp. 295-308 (1988).

6. Shephard, 0. M., Neurobiology, 2nd ed., Oxford Press, 1988, pp. 134-138.
7. Traub R. D., Miles R., and Wong R. K. S., Model of the origin of rythmic population ascillations in the

hippocampal slice, Science 243, pp. 1319-1325 (1989).
8. Albano A. M. Ct. al., Ulsers and brains; Complex .lystems with low-dimensional attractors, in Dimensions

andrEntropiesiof Chaotic Systems, ed. G. Maycr-Kress, Springer-Veriag,1986, pp. 23 1-240.

1 - 258

IDENTIFICATION OF SYNAPTIC CONNECTIVITY

USING A HIDDEN MARKOV MODEL

Xiaowei Yang * and Shihab A. Shamma t
Systems Research Center *t, and Electrical Engineering Department *t,

and the University of Maryland Institute for Advanced Computer Studies t
University of Maryland, College Park, Maryland 20742

Abstract: A hidden Markov model is employed to identify the synaptic connectivity in neural
networks. This new approach can substantially reduce the computational burden involved in the
conventional correlation methods, and is suitable for either nonstationary or stationary neuronal
firings. In the first phase, a postsynaptic spike train is used to estimate hidden parameters of
the model such as the initial state probabilities and the state transition matrix, where the state is
a variable representing the accumulated membrane potential. The optimal state path (the mem-
brane potential process) is then estimated using a modified Viterbi algorithm, again, based on the
post-synaptic spike train. In the second phase, a presynaptic spike train is transformed into a con-
tinuous postsynaptic activity. This activity becomes the standard against which the hidden Markov
model estimate of postsynaptic activity is compared. The results of this comparison determine the
connectivity parameters.

1. Introduction

Correlation analysis of simultaneously recorded spike trains provides the information necessary
to measure the internal structure of the biological neural networks. The conventional methodo-
logy used for this purpose includes cross-interval histograms, cross-correlation histograms, cross-
covariance histograms and joint post-stimulus-time (PST) histograms (1]. By carefully choosing a
normalization procedure, one can use the joint PST histogram to quantitatively measure the synap-
tic connectivity between a pair of neurons for a given model [3]. Nevertheless, the computational
complexity involved is very large. The object of this paper is to present more efficient algorithms
for computing pairwise connectivity.

In this report, we propose a new two step approach to determine connectivity in biological
neural networks, an approach which can tremendously reduce the computational burden. This
method, which is universal for stationary or nonstationary firings, uses a hidden Markov model to
estimate the inten-ity process (membrane potential) of a doubly stochastic process (spike train) so
that the synaptic connectivity between a neuron pair can be readily revealed.

Many signals can be modeled as probabilistic functions of Markov chains in which the observed
signal is a random variable (or vector) whose probability density function depends on the current
state of an underlying Markov chain. Because the current state of the underlying chain can not
be determined by observation, such models are called Hidden Markov Models (HMMs). In other
words, an H1MM is a doubly stochastic process associated with an underlying Markov chain which
is not observable, and each state in the chain is associated with a probabilistic function.

Our major concern here is to use the 11MM to model a neuron so that we can estimate the
membrane potential (state) from the observed firing sequence and, hence, identify the connectivity.
In the first phase, we use a hidden Markov chain to model the behavior of the neuron so that the

1- 259

membrane potential sequence can be estimated based on the observed postsynaptic spike train.
In the second phase, we analyze correlations between the estimated membrane potential and the
presynaptic spike train to obtain the connectivity information. This procedure is described in
Fig. 1, where {TI, T2,.. .} is the presynaptic spike train and {Yo, Y12, ", YT-1) is the postsynaptic
firings; V, represents the membrane potential and h(t, a) is the synaptic connectivity with V, and
h(t, s) denoting the estimators of 1t and h(t, j), respectively.

T1 .T2 ,..- J ({Y0'Y 1 .' " -

SynaPse SigmoldaI Vt Sd
ht.t 31 Generatornulction

A fA
g-l lMarkov

Model

Figure 1. A systematic diagram of the identification scheme.

2. A Hidden Markov Model for Neurons

In order to analyze the observed spike train, discrete time bins are imposed so that the train
may be represented as a point process. The bin width is chosen to be very small so that the spike
train is converted into 0-1 process.

Let T be the length of the observation sequence. The membrane potential is discretized into
N levels on Q = f go, qj,. - .", qN-t). Therefore, a Markov chain of N states is associated with the
discrete 0-1 process {YoY 1, --,, YT-. }. Since the membrane potential in extracellular recording is
an unobservable quantity, the Markov chain is hidden. Denote by Xt the state of the chain at time
t, the state transition probability distribution matrix is expressed as A -{aii}, where

a= P,(Xt+= qlXt= q,) (1)

with the initial state distribution
S= P,(Xo = q,). (2)

Let bi(k) be the observation probability distribution in state j, then

bj(k) = P,(Yt = kIXt = qi). (3)

Since the spike train is represented as a doubly stochastic process, the outcome depends fully on
the current state, namely,

T-1

P(Yo, 1,...,Y-T.I IX07,. .X.,XT- 1) = f PT(Y Xt) (4)
t=o

with Sex', k=O
Y= kX) =

S- -, k

1- 260 !

.. 3

where the state of chain Xj = f, V7 dr represents the accumulated membrane potential with to

denoted as the occurrence instant of the previous spike. Formulas (4) and (5) imply that the
outcome sequence is generat -t based on information about the membrane potential process received
via a "memoryless channel". 1 he complete derivation of the doubly stochastic point process neuron
model can be found in [4].

Our purpose at this stage is to find a path of the membrane potential process, or equivalently,
to find the state path based on a given pattern of the spike train process. We can establish this
by using the Viterbi algorithm [2] for finding the best state path, if the criterion is to individually
optimize each state.

Let a realization of the membrane potential process be (Xo,X, ... ,X...1) =

(qjq 1 , *,', q,.._). The Viterbi algorithm can be used to find the best state path (i;, i,, T-i)
in the sense of

P,(Y,X = (qq,qq,, ,",qi 1 .,)) 2: Pr(Y,X), V X E q T . (6)

Before the Viterbi algorithm is implemented, the hidden parameters, {(ri} and (aii), have to be
estimated. This estimation is carried out by the forward-backward procedure and the Baum-Welch
revstimation formulas (2]. We found that the forward-backward procedure can be implemented by
an artificial recurrent neural network.

The general Markov chain has essentially a full state transition probability matrix. However, the
Markov chain structure of our neuron model is a left-to-right model. During the interval between
successive spikes, the state evolves monotonically from a low level to a high level until a spike is
triggered. Immediately after the spike, the state returns to the lowest level qo. Thus the transition
matrix has the form

(oo ao, a. o.N-.1
A • 10 all a11 N-1 (

aN-.,O 0 a.,N-.lN-

Since Xo = 0, we have qo = 0. This implies bo(Yt = 0) = 1, i.e., the neuron does not generate
spikes at Xt = qo, which reflects the absolute refractory effect.

Because a spike in the postsynaptic neuron (described as Yt = 1) means that the accumulated

membrane potential at the next instant returns to the resting level (described as Xt+l = 0), the
Viterbi algorithm should be modified for this application.

3. Identification of Synaptic Connectivity

Let us denote by {TI, T2 ," ") the observed presynaptic spike train with Tk representing the time

of the occurrence of the k-th spike. The associated counting process N(t) represents the number

of spikes in the time interval (0, t]. Let At be the time bin width. Then a discrete version of the

state can be described as

X1= VkAt (8)
k=O

I- 261

J /

so that

X, + (h(t, Tk))At, Yt = 0
X = (9)

0, Ye--1

where the sigmoidal function g(u) is quantized to take values on {0, ql/At, q2 /At, ' , qN-l/At}.
Since the accumulative nature of Xt, the value of the largest state level qjV-i is not fixed, rather,
it has a dynamic range of [qN-l, oo). This means that whenever Xt 2_ qjv-i, Xt is considered to
be at state qN-i.

After the optimal state path is determined by the modified Viterbi algorithm, the membrane
potential sequence is evaluated as

N(Q)
9(•• ~tTk) XlatX for Yt = 0, t = 0, 1,.. -. ,T - 2. (10)

At (10
k=1

Suppose that the connectivity has a specific form, for instance, h(t, s) = we-(t-), where the time
constant a is sufficiently large. Then we can identify the connectivity parameters by the estimators

lb =E IXTk+1- XTk

k:YTh=g at

and

T -log wg1(."-. (12)

where Ti, = max(Tk : Tk < t + 1). This example suggests that the nonlinearity g can reduce the
number of computations required. We are now investigating whether this method can be generalized
to estimate pairwise connectivities for larger groups of neurons.

Acknowledgments

We wish to thank Dr. James W. Fleshman for his valuable comments and suggestions. This
research was funded in part by a grant from the Whitaker Foundation.

References

[l] G.L. Gerstein, "Functional association of neurons: detection and interpretation," In: F.O.
Schmitt (ed) The Neurosciences Second Study Program, Rockefeller Univ. Press, New York, 1970,
pp. 648-661.
[2] L.R. Rabiner and B.H. Juang, "An introduction to hidden Markov models," IEEE ASSP Mag-
azine, Jan. 1986, pp. 4-16.
[3] X. Yang and S.A. Shamma, "Identification of connectivity in neural networks," Tech. Res. .7
Report, Systems Research Center, University of Maryland, TR-89-36, 1989
[4] X. Yang, "Detection and classification of neural signals and identification of neural networks,"
Ph.D. Dissertation, Electrical Engineering Department, University of Maryland, 1989.

I- 262

Pattern Recognition and

Analysis of Network Dynamics

I IIIII It" I II' = , ,

WHY TWO HIDDEN LAYERS ARE BETTER THAN ONE
Daniel L. Chester

Dept. of Computer and Information Sciences
University of Delaware

Newark, DE 19716

1 Introduction
With the introduction of the back propagation algorithm by Rumelhart, Hinton and

Williams [5], the feedforward neural net has become a popular architecture for practical
applications. This architecture, consisting of an input layer, one or more hidden layers and
an output layer, is widely believed to be more powerful than perceptrons, which have no
hidden layer. This belief was strengthened when several people ([2], [4]) pointed out that a
net with two hidden layers can compute any continuous mapping. Building on a result by
Irie and Miyake [3], Funahashi [1] proved that any continuous mapping can be approximated
by a net with one hidden layer, assuming only that the transfer function computed by a
neuron is nonconstant, bounded, continuous and monotone increasing.

One might interpret this result to mean that one hidden layer is sufficient for any
practical purpose and there is no need for more than one hidden layer. This interpretation,
owever, is wrong. Funahashi assumes that the function to be approximated is given and

that an unlimited number of neurons are available. Both of these assumptions are violated
in most practical applications of feedforward nets. This paper shows that when a net is
trained on a finite sampling of points in the domain of a function to be approximated, the
resulting net may be very different from the nets referred to in Funahashi's theorems. And
even if it were similar, the number of neurons in a net with one hidden layer might have to
grow without bound to improve accuracy, while a simple net with two hidden layers might
achieve any level of accuracy with just the adjustment of a few parameters.

For our purposes we will assume that a neuron with n inputs computes a function
4,(aDTX + b), where a and b are scalars, X is a vector in (Euclidean) n-space, D is a unit
vector in n-space and 0 is a nonconstant, bounded, monotone increasing function. (Note
that continuity is not assumed.) In a multilayer net, the input layer just provides th, input
X. The neurons in the first hidden layer compute on this input, producing a vector of
outputs, which is the input to the neurons in the next hidden layer, and so on. Without
loss of generality we can assume that the output layer just forms a linear combination of
the neural outputs in the last hidden layer. Thus, the function computed by a net with one
hidden layer can be represented by

N
y(X) = d + ci~i(aDTX + b,)

where N is the number of neurons in the hidden layer and d is a scalar. (Note here that
each neuron can have its own transfer function 0. They need not be all the same.)

Feedforward nets are usually trained by presenting them with sample inputs and
corresponding values called targets indicating the desired outputs. If X is a sample input,
the corresponding target will be denoted by t. A finite set of input-target pairs is usually
called a training set. These sets may be constructed by hand in simple experiments (e.g.,
the classic XOR problem), but the more interesting case is when training sets are constructed
from empirical data, when the desired function is unknown (e.g., stock prices as a function
of various parameters). (The fact that the data is empirical raises the issue of noise in the
data, but that will be ignored in this paper.)

Suppose a net computes a function y and c is any number > 0. For any given training
set, we shall say that the net c-computes the set if for each input X in the set, ly(X)-tI < c.

1- 265

2 The Illusion of Accuracy
What kind of net will we get if we train it on a given training set? Consider the case

when the net has one hidden layer and no restriction is placed in advance on the number
of neurons in the hidden layer. We first consider the case when the input space is one-
dimensional. Let us say that a net c-interpolates a training set if it f-computes the set
and, assuming x, is the smallest input and xk is the largest input in the set, the output y(x)
for the net satisfies Iy(z) - hil < f for x < x, and jy(x) - tk4 < f for x > xk. It is obvious
that if there are only two input-target pairs in the training set, only one neuron is needed in
the hidden layer and for any e > 0 the parameters a, b, c and d can be found to c-interpolate
the set. Suppose that for any e > 0 and any training set having k > 2 input-target pairs
there are nets with one hidden layer that e-interpolate the training set. Then for a given
training set S having k input-target pairs, there is a net N1, that E/2-interpolates the set.
The function computed by P/k can be assumed to be

k-!

yk(x) = dk + Z cio,(aix + bi).
i=i

Assuming without loss of generality that the input xk+i, with corresponding target tk+l, is
larger than xk, there is a net with one neuron in its hidden layer that f/2-interpolates the
two-pair training set which pairs tk with input Xk and t k+l with input xl+1. Let the function
computed by this net be represented by

y(x) = d + ck4k(akx + bk).

Then this net can be combined with Xk to form a net ,Vk+l that c-interpolates the training
set formed by adding the k + 1st input-target pair to S and computes the function

k
yk+i(X) = dk + d - tk + E ci¢i(aix + bi).

Thus, by the principle of induction, we have proven that for any f > 0 and any training
set containing k > 2 input-target pairs, there is a net that c-interpolates the set and which
contains k - 1 neurons in its one hidden layer.

The multi-dimensional case can be reduced to the one-dimensional case by noting
that for a given finite set of points, a line can always be found onto which the points can
be uniquely projected. If these points are the inputs in a training set S, the corresponding
targets can be paired with the projections of the points on the line to make a training set
S' with one-dimensional inputs. For any e > 0 there is a net with one-dimensional inputs
that c-interpolates S'. Assuming, without loss of generality, that the map from the input
space to the line is the function DTX, this net can be transformed into the required net with
multi-dimensional inputs by substituting DTX for x in its functional description. We have
thus proved the following

Theorem 1 For any f > 0 and any training set containing k input-target pairs, there is a
net having one hidden layer and k - I neurons within that layer that c-computes the training
set, that is, if y is the function computed by the net, then for any input X in the training set
with corresponding target 1, Iy(X) - tj < f.

If a feedforward net that has been trained on a particular training set is only given
inputs that appear in the training set, the net can calculate the targets to any required
degree of accuracy; the above theorem states that one neuron for each input-target pair in
the set is sufficient to do this. As a practical matter, however, a table lookup would be a
more efficient way to compute such a set if that many neurons are needed. A neural net is

1- 266

potentially worthwhile, however, if the number of neurons in it is much less than the number
of pairs in the training set and the net is going to be applied to new inputs not in the training
set.

The above theorem suggests that the input-target pairs in a training set can be
computed to any required degree of accuracy, but this accuracy is an illusion as soon as
new inputs not in the set are fed to a net. The theorem says nothing about what values
will be returned on such inputs, and, as will be shown, any value can be returned when the
net has only one hidden layer. Let us call a training set a pinnacle set if its inputs are
two-dimensional, one input is [0, OJT for which the corresponding target is 1, all other inputs
are outside the unit circle and their corresponding target is 0. We will show that for all
e > 0, all pinnacle sets can be f-computed by a net having a single hidden layer that consists
of two neurons. Moreover, there will be inputs outside a pinnacle set, and outside the unit
circle, for which the net will evaluate to 1, no matter how the inputs in the pinnacle set are
arranged.

Suppose a pinnacle set S and e > 0 are given and two neurons have the same transfer
function 0. Let b be such that 0(b)-0(b+l) is maximal. Let c be such that c(0(b)-0(b+1)) =
1. Now let D be a unit vector pointing in the direction of a line passing through [0, 0]' but
not through any other input in S. Finally, let Y be the net constructed from these two
neurons and described by

y(X) = c(O(aDTX + b) - ¢(aDrTX + b + 1)).

Note that y([0,0]T) = 1 and for large aDTX, y(X) approaches 0. Since the line associated
with D does not pass through any input in S other than [0, 0]', the scalar a can be increased
until Y c-computes S. But notice that for any input X on the line perpendicular to D,
DTX = 0 and hence y(X) =1 everywhere on that line. Thus, no matter how the inputs in
S are arranged, or how many there are, Y can be adjusted to E-compute S and yet there
will still be a ridge where the output of Y rises from near 0 all the way to 1. So even if our
intuition tells us that the only reasonable smooth functions that compute the input-output
pairs in S are those that peak at [0, 0 T and are 0 everywhere outside of the unit circle, YN
will be nowhere close to approximating any of them. Hence the accuracy that appears to be
achieved by tuning Y until it c-computes a training set is illusory.

3 The High Cost of a Single Hidden Layer
Let us call a smooth function peaking at [0, 0]T and evaluating to 0 everywhere outside

of the unit circle a pinnacle function. If two neurons are not enough to approximate a
pinnacle function, how many neurons must be added to do so? To find the answer, consider a
net Y having one hidden layer. Each neuron in the hidden layer has an associated direction
vector D. All the neurons with the same vector D (or -D) can be lumped together and
thought of as computing some univariate function f applied to the projection of X onto the
line having direction D. Thus the output of Y can be described by

k
y(X) = d + Z f,(DTX)

i=1

where k is the number of distinct lumps of neurons. Each function f, has the characteristic
that it varies when its argument is somewhere near 0, but approaches a limit as its argument
approaches either +co or -oo. Since each direction Di is distinct, if X is sufficiently far
out from the line having direction Di while still being nearly perpendicular to it, the local
variation in y(X) will be due to the variation in fi and not to variations in the other functions.
Letting maxvar be a functional that evaluates to the maximum variation in a function, we
note that

k
1 < rnaxvar(y) • Zmaxvar(f1)

i=-

i - 267

Consequently, the largest value of niaxvar(fi) must be at least I/k. If, for a given e > 0,
we want this to be < e, k must be at least l/e. But there must be at least k neurons in the
hidden layer of Y', so there must be at least /I neurons in a single hidden layer if the net
approximates a pinnacle function to within e of the required values.

4 The Advantage of a Second Hidden Layer
The advantage o0 a second hidden layer may now be seen; while increasingly better

approximations to pinnacle functions can only be achieved by adding more neurons to a net
with one hidden layer, a net with two hidden layers can approximate pinnacle functions with
arbitrary accuracy (at the center and outside of the uinit circle) with just four neurons in the
hidden layers. Let D1 , D2 and D3 be three unit vectors in 2-space that point in directions
120* from each other and suppose that four neurons have the transfer function 4, such that
the output range of 46 is [0. 1]. Three of these neurons can be put in the first hidden layer
and the fourth can be put in the second hidden layer so that they compute the function

3

Y(X) = 0(a(.5- 0 4(a(DTX - .1))))

where a is an adjustable parameter. For any e > 0, a can be made large enough so that for
most of the points X in the equilateral triangle defined by DTX < .1, i = 1,2, 3, the neurons
in the first layer output 0 approximately, while for most of the points outside of that triangle
one or more of them outputs I approximately, so that y([0, 01T) - II < f and for any point
X outside the unit circle, Iy(X)I < e.

5 Conclusion
The problem with a single hidden layer is that the neurons therein interact with

each other globally, making it difficult to improve an approximation at one point without
worsening it elsewhere. With two hidden layers it is possible to have some of the neurons in
the first layer partition the input space into small regions (e.g., the equilateral triangle above)
and other neurons therein compute the desired function within those regions; then for each
region a neuron in the second hidden layer can combine the outputs of corresponding first
hidden layer neurons so that it computes the desired function within that region and outputs
0 everywhere else. In this way the effects of the neurons are isolated and the approximations
in different regions can be adjusted independently of each other, much as is done in the
Finite Element Method for solving partial differential equations or the spline technique for
fitting curves.

References
[1] Ken-ichi Funahashi. On the approximate realization of continuous mappings by neural

networks. Neural Networks, 2(3):183-192, 1989.

[21 R. llecht-Nielson. Kolmogorov mapping neural network existence theorem. In IEEE
First International Conference on Neural Networks, pages 111(l 1-13), 19S7.

[3) B. Irie and S. Miyake. Capabilities of three-layered perceptrons. In IEEE International
Conference on Neural Networks, pages 1(641-648), 1988.

[4] T. Poggio. Visual algorithms. In 0. J . Braddock and A. C. Sleigh, editors, Physical and
Biological Processing of Imnages, pages 128- 135, Springer-Verlag, New York, 1983.

[5] D. E. Rumelhart, G. E. [linton, and R. J. Williams. Learning internal representations
by error propagation. In David E. Rumelhart, James L. McClelland, and the P)lP Re-
search Group, editors, Parallel Distributed Processing, chapter 8, pages 318-362, The
MIT Press, Cambridge, Massachusetts, 1986.

I - 268

S, //

On the Optimality of the Sigmoid Perceptron

Bill Home and Don Hush
Dept. of Electrical and Computer Engineering

University of New Mexico
Albuquerque, NM 87131

Introdu n

In this paper we show that a second order perceptron with sigmoid nonlinearity can
implement the exact form of the a posteriori probability for the two class Gaussian problem.
Further, we show that if the weights of the perceptron are chosen to minimize the mean squared
error performance criterion, the mapping that results is exactly the a posteriori probability. This
has two important implications. First, this means that the sigmoid perceptron can be trained to
implement the optimal Bayes classifier. That is, for the two class Gaussian problem, minimizing
the MSE is equivalent to minimizing the classification error. Second, unlike other perceptron
models, the sigmoid perceptron, in computing the a posteriori probability, provides a statistically
accurate measure of the confidence in the classification assignment.

The relationship between neural networks and a posteriori probabilities has been
discussed by Asoh and Otsu (1]; however, we are not aware of any formal proofs like those given in
this paper.

2.Q Background

For a two class classification problem, Bayes classification rule is given by,
P(to)I 30 ' P40214xP(1~~(.)zx (1)

"02
where P(oi Ix) is the a posteriori probability that a given data sample x belongs to class woi. The a
posteriori probability can be viewed as a measure of confidence of class membership.

Simplification of (1) often leads to linear or quadratic discriminant functions. Linear
discriminant functions are of the form,

d (x) = w rx (2)

where x is an augmented data vector given by x - (xI x2 ... xn 1)T and w is a vector of sczlar

weights. A decision boundary is formed when dWx) - 0 which partitions the pattern space into two
regions with an n-dimensional hyperplane.

Similarly, quadratic discriminant functions are of the form,

d(x)= xtAx+ bx+ c (3)
where x is not augmented, A is a symmetric matrix, b is a vector, and c is a scalar bias weight. A
quadratic decision boundary is formed when d(x) - 0. Although (3) is quadratic in x it is linear in
the weights and thus can be expresses in a form similar to (2) given by,

d (W) = w Tz (4)
where,

z=(X2 X~x..xx A .. X2 T
....I I. X2 ... X. X- 2"... (5)

and,

w=(All (A 12 + A21) ... (AIn + A n) A 22 ... A., bi b2 ... b, c)T

For the sake of clarity it will be necessary to use both the form in (3) and in (4) for quadratic
discriminant functions during the foregoing discussion. Note that the appropriate equation can be
identified by the notation being used.

This work was supported in part by Sandia National Laboratories, Albuquerque, New Mexico,
under contract number 05-8801.

1- 269

The most common nonlinearity used in perceptrons today is the sigmoid function,

f(x)= [I+ e-']-I

Justification for using this function is that it is computationally convenient, motivated by
biological systems, and simply that it is a continuous function that closely resembles a hard
limiter. All of these may be true, but the goal of this paper is to show that this function has
important stati3tical properties as well.

We will defne the sigznoid perceptron as a second order perceptron [2, 3] which computes
a single output, u, from a vector of inputs, x. The transfer function is given by,

G(x) = f(x T A x+b x + C)
or equivalently,

U(x) = f (W7 Z)

--where f(.) is the sigmoid function.
The mean squared error criterion function is given by,

J(w,x) = E{ (r(x)- x)l
Its gradient is given by,

V. J(w,x)= E (r (x) - u(x)) u(x) (I - u(x))z} (6)
where,

r(x e

X e6)

3.0 Two Class Gaussian a posteriori Probability

The conditional probability density function of a Gaussian function is given by,
P~1) -(- Tc-1'(x m ,](7)

(2=) aICIl

where n is the dimension if the data, mi is the mean and Ci is the covariance matrix for class aoi.
For the two class Gaussian problem we can apply Bayes Rule to determine the a posteriori
probability of class one as follows,

-1P(e, 1) p(x Io+() -I P(C) p(x I&,)] (8P~azl)=P(o1,)p(xlo 1l)+p(eo2)p(xla 2)= I+ p(:o1)p(xl-w1)] 8

substituting (7), yields,
P(W -x)=r 1 + exp-r-, T -(=L LC2' C (x-m)+ -(x-m |) x-

2 2(X1 1

This equation corresponds to the form of a sigmoid perceptron where,

A 4 - c[')

b =I ~m I- C2 M2

the 2 =.(C2 'm2~mT~ 1 -In [P(0)2) 1C2I1]+ 1ItP(aI) I CI] _MCTC, -

When the covariances are equal, the problem reduces to a first order perceptron. Note also that
these weights, when used in equation (3), provide optimal classification.

I - 270

A& BRyesiam Weights and the Expected Squared Error Criterion Function

The previous section showed that a second order perceptron has the correct form for

computing the a posteriori probabilities in two class Gaussian classification problems. This

section shows that minimizing the expected squared error criterion function results in the weights

given in (9). To check the first order necessary condition, we must set the gradient with respect to

the weights equal to zero and solve for the weights. Substituting for z(x) in (6) gives,

V.J(w,x)= P(o 1,) E{[I- u(x)] u(x)[1- u(x)] z Ix e (0}

+ P(oai) E{ - u(x)u(x)[1 - U(x) 1 x e 0)2 }

substituting the sigmoid yields,
V J(wx)f P(w)E +e-W 2)zIxe 0) -P(O))E (r)z xe

P(03E ew3 2 3 0' T2}

"" "" P()e2-'" Pp(xI ,1)-PC() 2)e -w 3 P(x', 2)
(I z dxdx 2 ... dx(

This integral evaluates to zero when, P (0) 2) P (X 1 W) (0P(W) p(x I c)

So that, -l
[1 + erw =+ P(°)2) p(Xl1C2

1+ (w])p(x I)j

which is equivalent to the expression in (8). Thus, when the weights of the perceptron are set

according to (9), the integral evaluates to the zero vector satisfying the first order necessary
condition.

Next, to show that this value is actually a minimum (as opposed to a maximum or saddle
point), the second order sufficient condition must be proved by showing that the Hessian is positive
definite. Differentiating (6) gives,

V2wJ(Wx) 2E{[r(x) 2u(x) 2r(x)u(x)+ 3u(x)2](x) U(x)zzr

Substituting for r(x) gives,

V~,J~~x)=2E{[1IWx)+ 3u(x)] x)1u)]z xea}

-2E{[2u(x) +3u(x)¶u(x) [I- u~x jzzT Ix r=w2

Substituting the sigmoid and simplifying yields,
V~wJ~w'x=-2P(°•1e72 r % 4 ,,rI•

•w -~~ 2P()2)E E zzl W)0l(+ e wr's)

-2P(w2) El 4wi E~ew: zz 2
G (+ e-_r.)4

which can be expressed as,

I- 271

VJ(w,x)-2f f ... Jfa(x)zzT p(x) dx~dx2 ... dx. -2E { a(x)zz} (1

To show that this matrix integral is positive definite, we must show that,

7 CJ..J(x) zz7 p(x) dxdx, ... dx i=f..a(x)(grz)zp(x) dx~dx... dx.>0

Since iiT z defines a manifold of dimension less than x, 4 T z is almost never zero for an
arbitrary vector 4. Since we know p(x) is never identically equal to zero, the problem reduces to
showing that a(x) is never identically zero. a(x) in (11) can be written as,

erv3I[P(oad p(x I wde-wr &(ewT3- + P(0h2)P(X1 W2)(I -2ew?3)
a(x) P (xlI)X

P((P) p(x Ipx)

I+ 2 2 I+ ewr)4

Using the result in (10), this expression simplifies to,
a) e_2w r a | [P iIX) %I]2
a~x) --- •. =[PCa~llx)P(02tx)]

(1+ e," .)
which we know is not identically zero for all nontrivial problems. Thus (11) is always positive
definite satisfying the second order sufficient condition.

We have shown that minimizing the Mean Squared Error (e.g. by using back-
propagation) for a second order perceptron with sigmoid nonlinearity is equivalent to minimizing
the Bayes classification error for the two class Gaussian problem. This solution corresponds to the
perceptron computing the exact a posteriori probability of class membership giving the optimal
measure of classification confidence.

-0 Acknlawleediements

The authors would like to thank Peter Dorato for his assistance in developing some of the
proofs presented in this paper.

La Reernces

(1] Asoh, H. and Otsu, N. (1989) "Nonlinear Data Analysis and Multilayer Perceptrons",
Proc. IEEE Int. Joint Conf on Neural Networks, June 18-22.

[21 Giles, L. and Maxwell, T. (1987) "Learning, Invariance, and Generalization in High-
Order Neural Networks", Applied Optics, v. 26, n. 23, pp. 4972-4978.

[3] Giles, C., Griffin, R., and Maxwell, T. (1988) "Encoding Geometric Invariances in
High-Order Neural Networks", Neural Information Processing Systems, pp. 301-309, Ed:
D. Anderson, AIP, N.Y.

I- 272

Recognition of Spatio-temporal Patterns
with a Hierarchical Neural Network

Takayuki ITO Kunihiko FUKUSHIMA
Visual Science Research Division

NHK Science and Technical Research Laboratories
1-10-11, Kinuta, Setagaya-ku, Tokyo, 157 Japan.

1 Introduction

We discuss here a model which has an ability to recognize spatio-temporal patterns like
formant patterns of speech signals. Many factors such as difference of speakers, speed of
speaking, and noise in surroundings, disturb the aspect of speech signals and they make the
speech recognition very difficult. Several neural networks have been developed for recognition
of speech and show good performances([],[2] but they seem not to have overcome these factors
fully yet.

We propose a model which recognizes spatio-temporal patterns with an ability to tolerate
shift in frequency, deformation in shape, and noise.

2 The Structure of the Model

Fig. I shows the structure of the model. The model is a multi-layered neural network in which
each layer consists of several one-dimensional arrays of neurons along spatial (or frequency)
axis. We call the array a "cell-plane". In Fig.l, rectangles drawn with broken lincs represent
the layers and thin rectangles with thick lines represent cell-planes. The model has two
sub-networks, temporal feature extraction sub-network and recognition sub-network.

2.1 Temporal feature extraction Sub-network

The temporal feature extraction sub-network extracts several kinds of features which are
specific to temporal patterns such as onsets and offsets of signals, or frequency modulated
(FM) portion in the formant pattern. Neurons arranged along spatial or frequency axis
(vertical axis in Fig.1) analyze temporal signals in their own position or frequency and
extract these features. These kinds of neurons has been found in the early auditory neural

"Present address: Department of Biophysical Engineering, Faculty of Engineering Science, Osaka Uni-
versity, Toyonaka, Osaka 560, Japan

1- 273

Temporal Feature
Extraction Recognition

0 P1 TI p2 T2 p3 T3 p4
,. -. s'1 ,,.'

""A "- -N - •.

INPUT !ON ,!• , tJ.# - ., i

!O L" .FFI
~N1

i !i •. !* !* , * i 2.i1

" "" 1*1 I I-

! ! ! ! .- I.-' L.

Figure 1: The structure of the model.

pathway[3],[4], and, based on these physiological data, we have proposed a neural network
model which can extract these features from voice signals[5].

In this model, we use a simplified version of the model which extracts just onset and offset
of input patterns (Another feature, FM portion will be extracted later in the front end of
the recognition sub-network).

2.2 Recognition Sub-network

The recognition sub-network has similar structure to that of a neural network model of visual
pattern recognition "Neocognitron"[6]. The input layer is an array of delay-lines which acts
as an narrow window to the flow of spatio-temporal patterns, which is denoted by "D" in
Fig.1 (the width of the window is three time-units). Then follows a structure in which two
types of layers are alternately connected in cascade.

2.2.1 P-cell

One of the two types of layers is a feature extraction layer named "P-cell layer", neurons
in which extract spatial local features at each moment. All neurons in a cell-plane have
identical connections. This makes it possible that at least one of the neurons extracts the
local feature corresponding to the connections whichever spatial position the feature appears.
This type of cell is similar to an S-cell in the Neocognitron.

Neurons in the first P-cell layer have connections of size 3 by 3 between input delay-line
layer, which can extract local slant lines or frequency modulated signals in spatio-temporal
patterns.

I- 274

2.2.2 T-cell

Another type of layer is a temporal summation layer named "T-cell layer", which has the
same number of cell-planes as those of the preceding P-cell planes, corresponding one to one.
Neurons in this layer has two functions.

One is to receive responses from neurons of the preceding P-cell plane. Because of these
connections of neurons, responses of preceding P-cell plane will be blurred in the T-cell plane,
which enables a succeeding P-cell to tolerate positional errors of local features extracted in
the preceding P-cell layer.

The other function is to prolong the responses of P-cells with adaptive decay time. It
is realized by extra connections between a T-cell and preceding P-cells in other cell-planes.
A T-cell shows constant decaying response when the P-cells in other planes have not been
showing any responses. If the P-cells have been showing any responses, to the contrary, the
T-cell will show bigger and therefore prolonged response because of these extra connections.
Because the response of the T-cell itself gates the input from those connections and therefore
this enhancement of response happens only when the T-cell itself has been showing some
response.

3 Computer simulation

Fig.2 shows a set of training patterns which are moving continuously from right to left and
the time course of responses of five neurons in the final layer after finished training. The
network was trained layer by layer from lower to higher, presenting the patterns twice for
each layer. The learning algorithm used here is a "winner-take-all" rule on which connections
of a neuron showing the maximal output will be reinforced and all other neurons in the same
cell-plane will get the copy of them. Fig.2 shows that each of the five neurons in the final
layer correctly responds to each of the five patterns.

Some examples of responses for deformed patterns are shown in Fig.3. The neurons in the
final layer show correct responses to the patterns although they are prolonged or shortened
in time domain, or are shifted in frequency (spatial axis), or are contaminated with noise.

...............:: .!|.............. af. f:::::::::::::: ::: : ::I:::....

N. ..

...s**.:....... ..U • . i|. •............ *:: : :: : : ::::::::::::::::::

T........... °... ..S............................. • : :::::::::::::

0 .
U

P
U
T T IME -

Figure 12: Training patterns and responses of the five neurons in the final layer,

1- 275

..."'. I""' ."."' " ..'...".........................:'

N :"-" 0.. ...:..:.::::..... o ,, ,, ,....................

U : :: 0........... 0' . .:.. ..:: : . : : : I: :: ': :,: ::: ::

S... l:: ::........................
S......
...................... I

0
U - -
T
P
U
T TIME-

Figure 3: Responses of the model to deformed patterns.

4 Discussion

The model shows an ability to recognize spatio-temporal patterns even though they are
shifted in frequency, distorted in shape or contaminated with noise compared with training
patterns. The prolonged responses of neurons in T-cell layers and integration in the suc-
ceeding P-cell layer endows the network with the ability to recognize temporal patterns even
with a very narrow window. Instead these mechanisms might cause a problem of confusing
the order of appearing local features. In most cases, this confusion is avoided because the
network extracts temporal features such as onsets, offsets, and frequency modulated portions
of signals, which detect the cause and effect of signals.

We think that the flexible recognition ability of this model is suitable for speaker indepen-
dent speech recognition.

References

[1] A.Waibel. Modular construction of time-delay neural networks for speech recognition.
Neural Computation, l(1):39-46, 1989.

[2] J.L.McClelland and D.E.Rumelhart. Parallel Distributed Processing I,11. MIT Press,
1986.

f3] Y. Katsuki N. Suga and Y. Kanno. Neural mechanism of the peripheral and central
auditory system in monkeys. J. of the Acoustical Society of America, 34(8):1396-1410,
1962.

[41 M. Nomoto. Discharge pattern of the primary auditory cortex in cats. ipn. J. Physiol.,
15(5):427-447, 1988.

[5] Takayuki Ito and Kunihiko Fukushima. A neural network model extracting features from
speech signals. Systems and Communications in Japan, 19(3):32-45, 1988.

(61 Kunihiko Fuktishima. Neocognitron: a hierarchical neural network capable of visual
pattern recognition. Neural Networks, 1(1): 119-130, 1988.

I- 276

CLUSTERING TAXONOMIC DATA WITH NEURAL
NETWORKS

Behzad Karngar-Parsi J. Anthony Gualtieri
(enter for Automation Research Code 635

University of Maryland NASA GSFC
College Park, MD 20742 Greenbelt, MD 20771

1 Introduction

Clustering is an important problem in many field, such as image analysis, astrophysics, biology, etc. By
clustering we mean partitioning N points (or objects) into K groups, such that the members of each group
are more similar to one another than to those of other groups. The problem ca-a be stated more formally if
the objects are represented as points in a D-dimensional metric space: Partition N points among K clusters
such that the sum of within cluster variances is minimum. Since there are approximately K N/K! ways
of partitioning N points into K clusters [1], when N is large finding the best solution through exhaustive
search becomes impractical. Therefore, many heuristic techniques have been developed to tackle this
problem (see [51).

In this paper we present a method for solving the clustering problem with a neural net and investigate
its performance. The intuitive motivation for studying the feasibility of neural nets for solving this problem
is that clustering involves collecive decision making, as the points must decide among themselves how best
to partition themselves, and a neural net with its many connections among the neurons provides a technique
for this. Another reason is that by using an analog neural net we embed a discrete optimization problem
in a continuous space, the state space of the analog network. This embedding generally helps in finding
better solutions.

Our approach here is similar to the Hopfield and Tank solution of the Traveling Salesman Problem
(TSP) [4]. This approach has been criticised [11]. We have also found that neural nets are ill-suited for
solving the TSP for which the network must satisfy strongly conflicting constraints [7], but in solving the
clustering problem, where costraints are much easier to satisfy, the results have been quite successful [6].

Here we apply our neural net algorithm to clustering Anderson's data (tabulated in [21) on three species
of Iris. There each Iris flower is characterized by four attributes, the width and length of petals and the
width and length of sepals. This 4-dimensional data set is frequently used as a test of clustering algorithms.
We compr.re the neural net results with those obtained with an often used K-means algorithm proposed
by Forgy [3].

2 The Neural Net

We want to partition a set of N points in a D-dimensional space into the best K clusters - best in the
sense that sum of the squares of the distances of the points from their respective cluster centroids (i.e.
sum of within cluster variances) is minimized. We formulate the problem in terms of minimizing an energy
function, which can be mapped on a neural net.

The energy function will consist of two parts: (i) constraint terms which make certain a point, at the
end of the search, belongs to one and only one cluster;, and (ii) the cost term which is the sum of the
residuals and is the function we actually wish to minimize. We assign K neurons to each data point,
i.e. the network has a total of n - K x N neurons. We denote the neurons by two indices (p, i), where

1- 277

p = .,... ,K and i = 1,... , N refer to clusters and points, respectively. The activity VY of neuron (p, i)
then represents the strength of the hypothesis that point i belongs to cluster p. The energy of a neural
net that can solve this clustering problem can be written as (for more details see (61)

A N XX B K) + CK N
J!" ==FE) V- + j Ep -IZ E R i p

Here the coefficients A, B, and C are positive constants. The A- and B-terms together enforce the
constraints (or syntax). During the network's search for a solution all points belong to all clusters because
in general all neurons are partially active, i.e. 0 < V, < I. However, at the end of the search the network
must reach a state that unambiguously decides which point belongs to which cluster, i.e. if point i belongs
to cluster p then V. -= I and the rest VY, = 0, q $ p. When a valid solution that satisfies the syntax is
found the A- and B-terms become zero, and the energy E reduces to just the C-term, which is the cost
and is the function we actually wish to minimize. Therefore the deep minima of E correspond to good
solutions, and the deepest minimum to the best solution. Here Rpi denotes the square of the distance of
point i from the cen' roid of cluster p (i.e. the residual) and is given by

D N N
R?- = E(zai - Xep)' with X0 p = E Zz.,v,/E vi, (2)

a=1 i=1 i=1

where x.r are the coordinates of point i, and Xp are those of the centroid of cluster p. Here we have
chosen the Euclidean distance as the metric, but one can define any metric one wants.

The network dynamics, obtained from -8E/DV,,, are described by

dup 1 K K

qfp q-1

Here u - is the input signal of neuron (p, i), r is the self-decay time of the neuron and 4, is the ey-ernal
bias. For the gain function of the neurons we have taken the standard sigmoid function which is

Vp, = i(1 + tanhM-), (4)
Uo

where uO is the steepness of gain.

3 Results and Discussion

To simulate the performance of the network in finding solutions we choose an intial state at random and
let the network evolve according to the equations of motion (3). Since the energy of an analog neural net is
Lyapunov the network evolves towards states of lower energy and stops eventually once it finds a solution.
Among the variety of techniques for solving initial value ordinary differential equations (e.g., see [81) we
have used the Euler method.

For simulations we let r = 1, so that the convergence times are measured in units of r. We have chosen
the following values for the parameters of the energy function: A = B = 1, C = l/R.,,, all Ij = 1. These
parameter values are obtained from analyzing the stability of valid solutions. Scaling the parameter C
with the average residual R.,,, is necessary to ensure good solutions, because as the network evolves, the
residuals become generally smaller and the cost term becomes less effective in driving the network toward
good solutions. This rescaling of parameter C keeps the cost term of the same order of magnitude as
the syntax terms. The results are not overly sensitive to these parameter values. However, the network
appears to be more sensitive to the steepness of the gain function, uo. The results we give here are with
uo = 0.01.

I- 278

In computationally hard problems one usually finds several solutions and then takes the best one as the
solution. Since with a neural net one cannot still guarantee finding the best solution (although it enhances
the chance of finding good solutions or the best solution), one has to run the network several times. The
results given in the Table below are obtained from 100 trials. K-means refers to Forgy's iterative algorithm
[3]. We have used the 4-dimensional Anderson data on three species of Irises [2].

Neural Net K-means
K Best Ixz. Synt% Time Best x2., Iter
2 100 152.3 100 0.9 100 152.3 6
3 100 78.9 85 2.4 78 93.7 9
4 92 58.1 93 1.5 7 65.3 11
5 7 49.1 78 3.0 0 54.4 9

The results obtained with neural net are consistently better than those found by the K-means algorithm
in two respects: (i) The network finds the best solution more frequently (Best column in the Table is the
percentage of the 100 trials yielding the best solution), and (ii) the average sum of within cluster variances,
X2, are significantly lower for K = 3,4,5 for the neural net indicating that it has a better chance of
finding good solutions. For K = 2 the clusters found are well separated and both methods find identical
solutions.

The Time column in the Table gives the average convergence times in units of r, the characteristic decay
time of neurons. These are order of magnitude estimates, because they depend on various parameters such
as the time step size in Euler method, and the convergence criterion. Note that the convergence time of the
network should not be compared directly to the average number of iteration for K-means. For example,
when K = 3 the convergence time of 2.4 requires 2400 network updates (since time step was 0.001), while
K-means needs only 9 iterations. Hence, the neural net algorithm is much more expensive to run on regular
machines than the conventional K-means. They become practical only when they are mapped on analog
VLSI neural nets, which are expected to have processing time r = 10-3 to 10-a sec [9].

The Anderson data consists of 150 samples, 50 samples from each of the 3 Iris species. In Figure 1
we show two 3-D projections of the unclustered points and in Figure 2 we show the best cluster found
by the network for K = 3, also as 3-D projections. The data points in Figure 2 are connected to their
respective cluster centroids. The samples from one of the species are well clustered, but the other two
clusters are close to each other and there is partial overlap between them. Because of the overlap correct
classification of the samples has been problematic. For example, Fisher [21 uses the information about the
original data to define a different metric, and Tukey and Tukey [101 use the projection pursuit technique,
both with limited success. Our method, too, fails to find the true clusters, for the reason that the true
clusters have X2 = 89.3 which is not the optimum solution found by the network with X2 = 78.9. To find
the true clusters one has to have additional information about the shapes of clusters. In the absence of
such information we have assumed the simplest shape possible, i.e. convex compact clusters as reflected in
the metric (2). In case shape information is available one can add additional terms in the energy function
to encourage clusters of a particular shape.

Another important question is: How many clusters? We had found previously [6] that the percentage
of times the syntax is satisfied is a a good indicator of the presence of background noise. Our motivation
here was to see. if there exists a trend in the syntax percentage as we vary the number of clusters. There
does not appear to be such an indicator. However, efforts are under way to incorporate the number of
clusters directly into the energy function.

References

(11 W. Feller, An Introduction to Probability Theory and Its Applications (John Wiley, 1959) Vol. 1, p.
58.

I- 279

(21 R.A. Fisher, The use of multiple measurements in tazonomic problems, Annals of Eugenics 7, 179
(1936).

131 E.W. Forgy, Cluster analysie of multivariate data: efficiency versus interpretability of classifications,
Biometric Soc. Meetings, Riverside, California. Abstract in Biometrics, 21, 768 (1965).

141 J.J. Hopfield and D.W. Tank, Neural computation of decisions in optimization problems, Biological
Cybernetics 52, 141 (1985).

[S1 A.K. Jain and R.C. Dubes, Algorithms for Clustering (Prentice-Hall, 1988).

[6] B. Kamgar-Parsi, J.A. Gualtieri, J.E. Devaney, and B. Kamgar-Parsi, Clustering in parallel with neural
networks, submitted to Biological Cybernetics (1989).

171 B. Kamgar-Parsi and B. Kamgar-Parsi, On problem solving with Hopfield neural nets, submitted to
Biological Cybernetics (1989).

(81 M.V. Mascagni, Numerical methods for neuronal modeling, in Methods in Neuronal Modeling, edited
by C. Koch and I. Segev (MIT Press, 1989), Ch. 13.

191 C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, 1989).

(101 P.A. Tukey and J.W. Tukey, Data-driven view selection; agglomeration and sharpening, in Interpreting
Multivariate Data, edited by V. Barnett (John Wiley, 1981) p. 215.

[11] G.V. Wilson and G.S. Pawley, On the stability of the Travelling Salesman Problem algorithm of Hop.
field and Tank, Biological Cybernetics 57, 63 (1988).

Fig. 1

Fig. 2

I - 280

Reproducing Infinite Boolean Sequences:
an Application of Hidden Markov Models

to Connectionist Learning

A. Kehagias
Division of Applied Mathematics

Brown University
Providence, RI 02912

E-Mail Address: st4018430brownvm.bitnet

Abstract 7

Given the first few terms of an infinite sequence of O's and l's, build a network that reproduces the
rest of the sequence. To accomodate this learning task, a framework is developed for learning, general
enough to include learning of finite-length input, finite-length output as well. The similarities between
the finite and infinite learning tasks are considered and parallels are drawn to the speech recognition
problem. Several properties of infinite length learning are obtained, using Hidden Markov Model theory.

1. Introduction: Consider the following learning problem: build a network that, given the first few terms
of an infinite sequence of 0's and I's (call such a sequence a Boolean sequence), will output the rest of the
sequence. The network, will be trained on one or several finite (but possibly quite long) valid sequences.

This problem is similar to a standard connectionist learning problem: given input/output pairs train a
network that will, when presented with an input, produce the correct output. In this paper I will propose
a learning framework that accommodates both the finite and infinite case; also stochastic and deterministic
learning by connectionist networks (henceforth CN) can both be tretated. I will argue that the stochastic
case is more general and interesting.

An apology is due: because of the very limited space, I have only presented the general rationale behind the
theory and some of the theoretical results, but without proof. The proofs and very encouraging computational
results will be reported separately.

2. Learning by Computing Probabilities: The pattern learning problem can be phrased as follows:
given a learning universe L C U x Y (i.e. a set of input/output pairs (u, y)), build a network (and train
it) that, when given an input u E U, will output the 'correct' y E Y.

The concept of 'correctness' is generally not unambiguous and, in fact, this is an advantage. E.g., given
an input, it is possible that more than one outputs would pass as 'correct' in some sense. Also, given an
unambiguous training set T = {(u, y)}, such that we can build a network that will reproduce the training
pairs exactly but will generalize poorly [Huy]. In fact, the power of generalization that CN's exhibit can be
partly attributed to their tolerance of errors.

Let us then change the learning problem so that more than one correct answer is possible. The entity to
be learned is a conditional probability measure P(y I u) , where u is a U-measurable random variable y
is a Y-measurable random variable, U is a a-algebra on U, Y is a a-algebra on Y. u, y are the input and
output random variables; the idea is that, given some input, the output is a random variable with probability
conditioned on the input. This prompts the following:

Definition 1 Given random variables x, y, z on an appropriate probability space. x and y are said to be z
input equivalent iff Prob(x I z) = Prob(y I z).

I- 281

3. Network Architecture: We will consider connectionist networks, that is, networks of numbers of
simple, identical, interconnected units. The building units will be Stochastic Threshold Units (STU).
These units have the following input/output law:

Prob(y = 0 1 u = u) = Prob(7 > u).

Here j7 is a random variable distributed uniformly in [a, b]. By proper choice of a, b we can get deterministic
output. A network built of such units accepts an input u and produces output y with probability Q(y I u).
As the output is exclusively 0/1, call such a network a Boolean CN. The network is, in general, stochastic.
Of course, nothing precludes that Q is a trivial measure, concentrating mass I to one element y and zero to
all others (deterministic case). It is useful to think of the connectionist network itself as equivalent to the
conditional probability measure Q(y I u).

4. Learning Finite Output: The finite input/output problem has been studied by many researchers.
usually as a deterministic problem. (But see [Bar], [Pea], [Lin], [Sol] for probability learning approaches.) In
essence we want to learn a Boolean function from a subset of its graph. The introduction of deterministic
Linearly Graded Units (LGU's) offers more flexible solutions but still an exponentially large number of
units and exemplars, is needed for perfect learning [Huy]. Once again, the argument for stochastic learning
presents itself: if exact learning requires oversized networks, learning the statistical properties of the output
(which ispossible on a smaller network) is preferrable. Indeed, I submit that the most succesful case of discrete
input/output learning is done by connectionist methods but outside the traditiunal connectionist research
community. The example I have in mind is speech recognition by Hidden Markov Models (henceforth HMM)
[Lev). Here exact learning of the input/output relationship is out of the question (because the input/output
function is unknown and the training set is too large for exact, deterministic learning). The HMM modellers
have resorted to a probabilistic model, which can produce rich input/output behavior with few connections
exactly because each unit can produce probabilistically many different outputs. On the other hand, I
have argued elsewhere [Kehl that the HMM is exactly analogous to a connectionist network and can be
implemented as one. Set the intial state of a HMM to u and let it run for a finite time N. The state
sequence of the underlying Markov Chain y = Yl,-..,YN is a random variable. By identifying sequences of
outputs of a Boolean CN with the (finite) number of states of a HMM, we can easily prove the following:

Theorem 1 To every Hidden Markov Model corresponds a u input equivalent connectionist network of
STU's.

As for the training algorithm: back propagation is an option. the backward-forward 1t.1MM algorithm is
another '. In fact any kind of descent algorithm that utilizes gradient information will benefit from a
forward-backward derivative-computation. This follows from the staged character of the architectures we
have proposed and the use of Lagrange multipliers optimization [Kehl. It is also true of time-evolving
networks which we will use for the infinite output case.

5. Learning Infinite Output: Consider the infinite output case. The STU-networks that we have been
considering can be in an on or off state. It follows that the complete state of an M-unit network can be
characterized at any given moment by an IN-long state vector of O's and l's, indicating which units are on
and which off. Evolution of the state vector in time is described by the network acting on the initial state
vector 2. Time is not of great importance in the finite case, because the network is static. f|owever. if we
want an infinite output, we must build an infinitely large network or else trade space for time and obtain the
output sequence as the output of a time evolving network3 . The problem of learning an infinite sequence is
the following: we are given the initial part of one or more valid sequences and we want to build a netwoik
that when presented with the beginning of a sequence will produce correct (infinitely long) output. The
natural way to think about the problem is that of building a network that will accept an input and then
will run on its own until infinity, producing output. This is like a dynamical network where we specify the

lGener.slization of the Backward-Forward algorithm to CN's is possible: r-soalts will be rmported elsewhere.
2
Another" usefid state-network characterization is the onre hased oin the state probal.hity vector. Thiq will not be presented

here. for brevity.3
Such networks are called recurrent: they have been coinsidered iii the literature [Piiij. hit iu•all.v olty a;s tIey evolve to

a steady state, that is, as all units settle downt to either 0 or I otitpitt for all time.

I- 282

/N

initial conditions 4. In the proposed general framework, the input is the initial states. The learning task is,
in general, to learn a probability measure P(. I u), where u is the input. It would be nice if the output y,,
at time n depended on a finite number of past outputs.

Prob(y,. = r I y,.-I = aj,....,Yj = On-1) = Af(fi am,)()

Here f is a Boolean function of m arguments. This is a highly desirable situation, as we can take this

sequence as the output of a STU-network with, at most, However its also conceivable that

Prob(y. -- r I Y-1 = o,...,Y = -) =(... -)(2)

The network as described by equation (1) is an m-th order Markov chain, equivalent to an HMM, which
can be trained by the powerful Backward-Forward algorithm. It can also be implemented as a STU-network
with at most 0(2"') units. We will also use the term Boolean Dynamic Network. The next question is
whether the sequence is determinstic or stochastic; consider the case where we are given a finite part of a
sequence and must compute the next terms. We do not know whether it is stochastic or deterministic. Of
course the following fact is true:

Theorem 2 For every deterministic Boolean dynamical network with output ll, y2,..., 3 N such that YN+l,

YN+2: ... is periodic'.

However, the period may turn to be exponentially long, so given a relatively short training sequence lack of
periodic behavior does not determine whther the inifinite sequence is deterministic or stochastic. That is,
we may see any finite substring of O's and l's followed by either a 0 or a 1; this would still not show that
the sequence is stochastic. In short, we have no basis to decide whether the sequence is deterministic or
stochastic and the reasonable assumption is to try to model it as stochastic.

Definition 2 A aggregate of a stochastic process {X,,,} is another process {Y,,} s.t. Yn = f(XY).

A HMM is a aggregate of a Markov chain; the output of a connectionist network is a aggregate of the state
vector and, since the state vector is a Markov chain, the output of the connectionist network is the observable
of a Hidden Markov Model.

Definition 3 A Boolean stochastic process is a probability measure on the set of sets of infinite sequences
of O's and 1 's (call every such sequence a realization of the stochastic process), that is, P(x = sis 2....).

With each realization we can associate a number s in the interval [0, 1]; we do this by taking s = .sis2...
in binary notation. 6 The measure P is thus well defined on dyadic intervals and can be extended by
Kolmogorov's Theorem on the Borel sets in [0, 1]. Hence the stochastic process x is equivalent to a a random
variable x taking values in [0, 1], or, which is really the same thing, to a probability measure on [0, 1]. As
the CN produces a stochastic process depending on the initial conditions, by the same process as the one
outlined above, we have a conditional probability measure P(. I u) associated with each input u.

Now we can apply the same steps as in the finite learning task: we must find a probability measure Q(- I
that will approximate P(. I .). Many approximation schemes are available, but it is useful to establish first
that an arbitrarily close approximation is possible.

Theorem 3 Given a Stochastic Process, that is, a measure on [0, 1], it can be weakly approzimated by a
sequence of Hidden Markov Models.

"4
We can go up one degree of generality: Imagine an infinite input as well an infinite output, This would correspond to a

network where we have input at every time instant. We can certainly build such a network. I do not give details here, for lack
of space, but also because it turns out many of the properties of the input network will be similar to the no-input network.
However there are interesting peculiarities, too. Roughly, the no-input network corresponds to a free dynamical network and
the input network corresponds to a control network.

$There is a subtlety here: the actual evolution will depend on the initial conditions. So for different initial conditions the
network may get attracted to a different periodic sequence .This is similar with limit cycles in real-valued nonlinear dynamical
systems, as well as with non-ergodic Markov chains.

6
The correspondence is not one-to-one. However, for all interesting cases, we can turn it to one-to-one by dropping out

realizations of probability 0.

I- 283

/

/
/ Given that there exist HMMM's and hence CN's that can approximate a stochastic Boolean sequence arbitrarily

close, how does one go about finding them and, probably most important, how does one train them? I have
used several schemes; one, call it structured, is the following: the training sequence is used to estimate the
joint probabilities of z1, Z2, ... , z,+, , for some prechosen m; then from these the transition probabilities
P(Zn+,m I xn+m-1 ... , z,,) are computed. It is easy to implement a CN that has 2m + m STU's and the
above computed transition probabilities. The training of such a network consists in updating the estimates
of the transition probabilities as new data is collected; when these probabilities are known the weights of the
connection can be immediately computed. In this respect it is important to have ergodicity of the teaching
sequence, or else samples from all the ergodic elements. This architecture yields large but easily trainable
networks; yet output is pretty good even with rather small values of m. Another possibility explored is less
structured architectures where a more or less random choice of connectivity is made and then weights are
computed by some backpropagating algorithm. The actual criterion used was either cross entropy between
desired and actual probability function, or the following weighted quadratic criterion:

F (P(z,,) - Q(z,,)) 2

fl=1

Results were again quite good, with no noticeable differences across learning algorithms and criteria.

One last point must be raised: we are essentially looking at high order sequences and attempt to approximate
them by aggregates. This alleviates certain problems (estimation, size of networks) but, inevitably, produces
some faulty sequences. The degradation in terms of spurious sequences being produced by the approximating
network can be quantified in terms of the entropy H of the model as compared to the entropy of the original
sequence. This is the subject of the following Theorem; remember that an approximation is a aggregate of
the original sequence.

Theorem 4 Ifa stochastic process x is a aggregate of a stochastic process y, then H(x) _> H(y). If y" - y,
then H(y.) I H(y).

This is yet another way of saying that there are approximating networks that will approximate the original
sequence arbitrarily well.

6. Conclusion: I have presented an outline of a framework for learning that involves infinitely large learn-
ing universes. The basic idea is that as the learning(and training) universe get large it is not feasible to
jearn deterministically, especially when it is not clear that the objects being learned behave deterministi-
cally. Therefore stochastic learning methods are proposed; several theoretical results indicate that stchastic
learning is feasible and practical. Computational results are also very encouraging, but were not presented
for lack of space.

REFERENCES

[Bar] Barto A.G. et al., Pattern-Recognizing Stochastic Learning Automata, IEEE SMC, Vol.15, No.3, May
1985.

[Huy] Huy, K.A. and Horowitz, M.A., Generalization in Connectionist Networks that Reali:e Functions,
Proc. of the Pittsburgh Connectionist School, Morgan Kauffman, 1988

[Kehl Keh, Ath., Optimal Control for Training: The missing Link between Hidden Varkov Models and
Connectionast Training, Brown University, Div. of Appl. Math. Preprint, 1989

[Lev) Levinson, S.E. et al., An Introduction to the Application of the Theory of Probabilistic Functions of a
Markov Process to Automatic Speech Recognition, Bell Sys. Tech. J., Vol. 62, No.4. April 1963

[Lin] Linsker, R. Self-Organizzng in Perception Networks, IEEE Comptiter,Vol.21,No.3, March 1988

[Pea] Pearlmutter,B. and Hinton G., G-Mazam:zataon: An Unsupervised Learning Procedure, Neural Net-
works for Computing, AlP Corf. Proc. 151, 1986

[Pin] Pineda. F., Generali:ataon of Back-Propagation to Recurrent Neural Networks, Phys. Rev. Let..
Vol.59, No.19

[Sol] Solla. S. Accelerated Learning Ezperiments in Layered Neural NVetworks, Complex Systems. Vol. 2.
1988

1- 284

/

GRAMMATICAL INFERENCE AND
NEURAL NETWORK STATE MACHINES

Y.D. Liu, G.Z. Sun, H.H. Chen, Y.C. Lee
Laboratory for Plasma Research
Dept. of Physics and Astronomy

and
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742

C. Lee Giles
Air Force Office of Scientific Research

Recently, much attention has been paid to the studies of recurrent
neural networks to perform sequential data processing tasks [1] [21 [61
such as sequential symbol predictions, isolated and continuous speech
recognition, and robotic arms control etc. In general, it is believed
that a recurrent neural network is much more powerful than a network
without recurrent connections due to its ability to form internal states
and to form transition loops among states. These internal states hold
informations about the past history of the input strings and allow the
recurrent neural network to react in accord with the full history of the
input string regardless of its length. In this regard, the recurrent
nueral network is acting like a sequential state machine [3] In models
with discrete neuron states as in the McCulloch-Pitts threshold unit,
the number of states is always finite and a neural network is equivalent
to a finite state machine. Recurrent connections would then allow the
finite state machine to have loops which would endow it the ability to
process sequential data of arbitrary length. In the case of analog
neurons however, it is not yet clear how many internal states could be
represented by a fixed number of neurons. It neverthless is a crucial
question needs to be answered to allow us a decision on the number of
neurons and weights needed to simulate a particular state machine. On
the otherhand, it is well known from the theory of computing (4] that
finite state machine is but the simplest kind of a hierarchy of
sequential machines. These more sophiscated machines contain a finite
state machine as a controller with an additional infinite memory tape or
stack.

The language recognized by a finite state machine is called a
regular language. Other more involved language such as context free and
context sensitive language would only be recongnized by a push down
automaton or a Turing machine.

In this paper, we would like to discuss the possibility of using
recurrent neural networks to conduct the task of regular grammar
inference [5]. That is, from a finite set of positive and negative
examples, the neural network has to learn the task of recognizing the
legality of new examples, usually of arbitrary length. It is
interesting to note that in case the neural network learned the
inference task the generalization power would in effect be infinite
since the size of the training set is finite and the test set could be
infinite. This is usually the case after we quantized the learned

1- 285

weights and the internal states to obtain the finite state machine from
the neural network.

As an example, let us consider the dual parity problem. A binary
string of arbitrary length is considered legal and therefore accepted by
a finite state automaton if it contains an even number of O's and an
even number of l's. Otherwise it is an illegal string. The task for
the neural network is to learn from a few examples to recognize the
legality of new strings.

It is obvious that this problem cannot be handled by a feed forward
network since it can only accomodate a time window of fixed size and
thus cannot handle sequential patterns with various length. In a
recrurrent network, the iteration of the neurons can be viewed as
transitions among internal states represented by the activity patterns
of the neurons. Starting with a fixed initial state, the network is
iterated with an input string presented sequentially through a few
additional input neurons to the recurrent state neuron. At the end of
the input string an end symbol is presented and the activity of a
particular state neurons is taken to indicate the "acceptance" (or
rejection) of the input string if this activity is close to "1" (or
"0").

Using second order connections, the recurrent formula for the
neurons can be written as

5t+1 StI()$iS I 5.k WiJk sit I t

where S is the activity of the Ith neuroni at time step t, Ik is the kth
component of the input symbol at time t, and g is the sigmoid function
for analog soft neurons. In our system, we use three state neurons and
three input symbols (0,1 and "e" the end symbol).

An online real-time learning algorithm for the network similar to
that of Williams and Zipser [6] was derived in which the weight change
(error prediction) is propagated forward and updated at every time
step. At the end of the input sequence, the predicted error is compared
with the actual error obtained chrough the classification information
and updating of the connection weight made only at this time. This
procedure therefore departs significantly from other works that trained
state machines with supervision at each time step.

In our opinion, we are training the neural network to self organize
into a finite state machine structure (transition rules and internal
states unknown beforehand). This is significantly different from
simulating a given finite state machine by providing information
regarding the number of states and their transition rules. As a matter
of fact, there is a well-known receipe to construct a neural network to
simulate a given finite state machine [3). However, we should note that
the constructed neural network is of higher order type as indicated in
Eq. (1). We can show that networks with only binary connections cannot
simulate "all" finite state machines. It is the main reason why we
choose higher order network for our grammatical inference task.

1- 286

For the training samples we begin with all the binary strings
shorter than a length of 4 digit. There are 30 of them. After these
were learned, we tested the system on some new strings with longer
digits. Usually, this first round of learning is not perfect. We found
a few incorrect recognitions of strings in length 6,7,8 etc. These
strings were then added to the training set for the second round of
training. After three or four rounds of training, the total number of
training patterns would be accumulated to around fifty and the learned
network performs almost always perfectly (systematically testing strings
of length up to 20). Usually each round of training requires less than
500 sweeps of presentation to converge.

Since we use analog neurons and weights, it is actually impossible
to conclude that the trained recurrent network would not make errors in
its recognition os an arbitrarily long strings (with length >> 20, there
are more than 10 binary strings with length 20). However, after we
quantized the internal states to I bit acuracy, we found a discrete
finite state machine with four states as shown in Fig. 1. Furthermore,
if we also quantize the weights to 1 1/2 bit per weight, we found the
network state machine remains intact. The learned network is rather
robust indeed.

0

1~ M0 2 Fig. 1: A four state

Machine learned from
examples, state I is
both the start and the

1 1 final state.

As mentioned earlier, there is no guarantee that a recurrent
network with "binary" connection weights would learn a finite grammar.
As a matter of fact, one can easily show that the 4 state machine in
Fig. I cannot be implemented with the "binary" network. Nevertheless we
found that a binary network did learn to recognize the dual parity
string. The machine has 16 states. It enjoys much less fault tolerance
and requires much longer time to learn (about 4 or 5 times longer).

As a curiosity, we also tested the inference of nonregular grammars
on the recurrent neural network without any external stack or tape
memory. An example is the problem of parenthesis checking. The
parenthesis checking problem is a problem of context free grammar which
cannot be solved in general by any finite state machine. Nevertheless
if we limit the length of the string then a finite state machine may be
expected to handle it. Using the neural net with the same topology as
for the dual parity problem, we found it can recognize almost all
strings up to length 10 (with only two errors). However the internal
states structures are vey irregular. We cannot extract a finite state
machine from it.

I- 287

In conclusion, we have trained recurrent neural network to do
inference on regular grammar. A real-time learning algorithm can lead
the network to form a finite state machine automatically. Second order
connections are most natural for this problem since a constructive
reciepe exists for a second order neural network to simulate any given
finite state machine. First order network is not able to implement
certain finite state structure and is also more difficult to train in
general. Much more work are needed to clarify the question regarding
the following: How large a finite state machine can be implemented in a
given network? How many different finite state machine can be
implemented in a given network topology? How to deal with inference
problems with more sophiscated grammers such as context free and context
sensitive grammers? etc. As for the last question we have constructed a
neural network push down automaton to recognize simple context free
grammar as reported in a separate paper [7].

Acknovledgment:

This work is sponsored in part by AFOSR and NSF.

References

(1) Jordan, M.I. Attractor Dynamics and Parallellelism in a
Connectionist Sequential Machine.
Proceeding 8th Annual Conf. Cognitive Science Soc.
531 (1987)

(2) Elmour J.L. Finding Structure in Time (CRL Technical Rep 8801)

La Jolla, Univ. of Calif, San Diego, Center for
Research in Language (1988).

(3) Minsky M.L. Computation: Finite and Infinite Machine,
Prentice-Hall, N.J. (1967).

(4) Hopcroft J.E. and Ullman, J.P.
Introduction to Antomata Theory, Languages, and
Computation, Addison Wesley (1979).

(5) Fu K.S. and Booth T.L.
Grammatical Inference: Introduction and Survey
IEEE Transactions on Pattern Analysies and
Machine Intelligence, Vol. 8, P.343 (1986).

(6) Williams R.J. and Zipser D.
A Learning Algorithm for Continually Running
Fully Recurrent Neural Network ICS Report 8805,
Institute for Cognitive Science, Univ. of
San Diego (1988).

(7) Sun G.Z., Chen H.H. , Giles C.L., Y.C. Lee, and Chen D.
Connectionist Pushdown Automata that Learn
Context-Free Grammars.

1- 288

A Comparison of a Neural Network Based Estimator and Two
Statistical Estimators in a Sparse and Noisy Data Environment*

Reza Shadmehr t and David Z. D'Argenio2

'Dept. of Computer Science & 2Dept. of Biomedical Engineering
University of Southern California

Los Angeles, CA 90089-0782

Gorman and Sejnowski [3] demonstrated that a learning algorithm such as back-propagation in a multilayered
neural network (NN) can be an alternative to traditional pattern classification techniques. In their study, a trained
network's performance was compared with that of a nearest neighbor classifier, and they found that the NN
could classify input signals somewhat better than the latter technique. Since the probability of correct classifica-
tion for the nearest neighbor technique can be used to obtain upper and lower bounds on the Bayes probability of
correct classification [1]. the performance of the network may have approached that of a Bayes decision rule,
which is an optimal classifier. This hypothesis is interesting since Bayesian estimators require a priori
knowledge regarding the underlying statistical nature of the classification problem, and simplifying assumptions
must be made in order to apply such estimators in a sparse data environment. A comparison of the two tech-
niques would b.e valuable since NNs have the advantage of requiring less restrictive assumptions in representing
an unknown system, making them potentially easier to apply in a sparse (and usually noisy) data environment.

It is in such an environment where we have compared the performance of a NN estimator to that of two sta-
tistical techniques: a maximum likelihood (ML) estimator, and a Bayesian maximum a posteriori probability
(MAP) estimator. The estimation problem was that of predicting model parameters of a pharmacokinetic system
(e.g., systems that define absorption-elimination dynamics of drugs in patients). In this area, Bayesian estima-
tors have been successfully applied (6], partially due to the fact that a prior distribution of the unknown parame-
ters is generally available.

In addition to the parameter estimation problem, the estimators were asked to predict the noise present in each
of the measured data samples. We compared the noise model developed by the NN with that of the ML and the
Bayesian estimators. Our results show that the NN's performance in both the parameter estimation and the noise
estimation problems was better than the ML estimator, and was comparable to the optimal Bayesian estimator.

Estimation Problem
In the process of acquiring FDA approval for a new drug, it is necessary for the developer to suggest a phar-

macokinetic (PK) model that relates dosage to the drug's response in the patient (e.g., a compartmental model
that describes the dynamics of drug uptake and removal in various organs). One objective of such a model would
be to estimate how much drug a physician should administer (and at what intervals) in order to achieve a given
drug concentration in the blood stream of the patient. The distribution for the parameters of these PK models are
calculated from data in a large number of patients. The developed population model is then used to regulate initial
dosage to new patients after the drug has been approved by the FDA.

For many drugs that can produce life threatening toxicities, a patient's dosage regimen is often adjusted based
on feedback from blood samples. This feedback is used for estimating the PK model parameters of the patient,

Supported by Nlt1 grant P41-RRO1861. R. S. is supported by a Doctoral Fellowship in Computer Science from i.B.M.

1- 289

given the prior distribution of parameters from the FDA approval studies. In the clinical setting, the particular
patient's model parameters must be estimated from a limited number of blood samples: sampling procedures are
generally expensive, and are influenced by errors associated with the drug assay techniques. In summary, the
estimation problem is to predict the PK model parameters of a given patient based on a sparse set of noisy sam-
pled data, in order to keep the plasma concentrations of a drug at a desired level.

Because of the sparse nature of this estimation problem, nonlinear state estimation algorithms are thought to
be unsuitable [2]. However, Bayesian methods have been proposed 16] and successfully applied 17]. In our
approach, we view the NN as an estimator which maps the noisy sampled data from a particular patient into that
patient's PK model parameters. We also require the network to estimate the noise present in the sampled data. In
what follows, a NN estimator is developed and its performance evaluated for a specific drug (theophylline, a
bronchodilator) and clinical application (continuous intravenous therapy).

Pharmacokinetic Model

The PK model considered here has two parameters, a distribution volume V (liters), and an elimination clear-
ance CL (liters/hr). Input to the model is the rate of drug dosage r(t) (mg/hr). Model outputs are drug concentra-
tion x(t) (gg) in the patient's body, and concentrations in the patient's blood y(t) (Ag/ml).

dxt) CL xt
-- ,=-x(t) + r(t) y(t) = x(t)

dt V

Above model is used to describe the plasma concentrations following an initial loading (ri) and maintenance (r2)
infusions of the drug. It is assumed that in the drug-approval studies, the distribution of the two model parame-
ters V and CL are found to be log-normal with the mean, u = {,i), i=l,2,,u = 35, u2 = 2.7. respectively, and
covariance, = {(o }, i=j=l,2, tIo = 125, o.22 = 1.72, coz = w,12 = 7.34.

For a particular patient, we would like to produce a concentration of 10 I~tg/ml at 30 minutes after the initial
infusion of this drug, and keep this concentration constant for 24 hours. In order to calculate the dosage regimen
for this patient, it is initially assumed that the patient's PK model parameters reside around the mean values of the
population distribution. Based on this assumption. infusion rates of r, = 700 mg/hr over the interval of 0 < t <
30 minutes, and r2 = 27 mg/hr for 0.5 < t < 24 hours are selected.

To estimate the patient's actual PK model parameters, two plasma samples are taken and the drug's concen-
trations are measured by an assay technique. This technique adds an error term to the true concentrations of the
drug: Measurements, z(t1) and z(t2), are related to the true concentrations of the drug, y(t,co) (pg/ml), as follows:
z(t) = y(to) + e(t), where a = [V CLUT, and e(t) is the error. The measurement error is assumed to be Gaussian
with zero mean and a standard deviation of o',a) = 0.15*yQt,a). It is assumed that the samples are taken at tj =
1.5 hrs and t2 = 10.0 hrs. Given samples z(tl) and z(t2), the problem is to (I) estimate this individual's model
parameters, and (2) estimate the noise prescnt in each sample.

Estimation Procedure

Two traditional statistical approaches are used to solve such estimation problems for sparse data systems:
maximum likelihood (ML) estimation and a Bayesian procedure which calculates the maximum a posteriori prob-
ability (MAP). The first is based on Gauss's suggestion that " ... the most probable value of the unknown
quantities will be that in which the sum of squares of the differences between the actually observed and the com-
puted values ... is a minimum." For the notation defined above, the ML estimate, q4fL, is defined as follows:

2~4L= a= M M zt yta) + In (a)

=i = al (a)

The second estimator, MAP, is a Bayesian point estimator which can be calculated in a computationally
straightforward manner, given that certain distributional assumptions are met [21. For the system model and

1- 290

error variance described in the previous section. the MAP estimator is given by afgAp below, where v= (vi . i =
1,2, and 0 = i=j=-l,2, and vi = In jui - Oiil2, i = 1,2, where Oy = In (owi/pijpij + 1). Q1 = 1,2. Details of

above procedures are given in [2].
0•€•, r [(z(ti) - y(ti, a))2 2 na• a

aMAP arg mn nOM,~ (~a)2-- 2

+ [In a- vITO-t [In a- v] + 211n ai
i-I

A NN estimator was also designed and trained for this problem. The network was of the standard feedfor-

ward variety, consisting of three layers: two input units, seven hidden units, and four output units. The number
of hidden units was arrived at empirically based on the change in the performance of the network as a function of
the number of hidden units. The inputs to the network were the data samples z(11) and z(t2). The four outputs of
the network consisted of estimates of the PK model parameters ý and Ct for an individual patient, and estimates
of the actual value of the data samples (noise-free) A(tl) and y(t2).

The training procedure for the NN estimator was as follows: From the log-normal population of V and CL, a
training set of 150 pairs of model parameters were selected. For each parameter pair (representing one patient in
the pre-approval studies), and for the given r, and r2 and assumed PK and noise model, data samples z(tl) and
z(t2) were given as input to the network. The errors in estimating model parameters and noise components of the
sampled data were fed back using the back-propagation algorithm [5]. Both parameters of this algorithm were
adjusted empirically based on rate of decline and asymptotic value of the sum of the absolute error. Increasing
the size of the training set provided no appreciable improvements in estimatic-i performance of the network.

Performance of the Estimators

To evaluate the performance of the trained NN estimator with that of the ML and the Bayesian (MAP) estima-
tors, a test set consisting of 1000 measurement & parameter vectors was generated. The training and test sets had
similar means and variances. To quantify the performance of these estimators, we calculated a prediction error
term (pei) for each estimation point in the test set, e.g. for V, pei= (0i - Vi)*100/Vi, i=l, ... , 1000, where Oi
and Vi are the estimated and true values for the i-th entry in the test set. Performance of the estimators over the
entire test set was expressed as the mean and root mean square of the error (Mpe and RMSpe, respectively) for
each predicted variable. Mpe reflects the bias of the estimator, and it is given below:

yKt1) xyQ CL V
Table 1. Mean prediction error
as a percentage of the actual NN 0.6 2.3 3.8 4.7
value of the parameter, for the ML -1.1 -3.0 3.4 2.5
three estimators. Bayesian 0.8 1.5 6.1 1.0

Results from Table 1 indicate that: (1) Biases of the three estimators were small for all variables, and (2) Biases
were not significantly different among the three estimators (ANOVA p > 0.05). Since the mean error term is in-
fluenced by the cancelling effect of under- and over-estimation, we also examined the RMSpe. The results are
plotted in Fig. 1. Based on this measure, the NN consistently performed better than the ML estimator, and ap-
proached that of the MAP estimator, which is an optimal classifier in terms of probability of correct classification.

We also compared the performance of the noise models developed by the NN and the Bayesian estimator.
This is reflected in the Mpe of y(t1) and y(t2) in table 1, and RMSpe of y(Q) and y(t2) in Fig. 1. There appears to
be little or no differences in the performance of these two noise models. We have plotted in Fig. 2 the 95%
confidence interval for the three estimators: the error associated with the predicted value of a parameter will be
bounded by this interval with a probability of 95%. This measure of performance is useful because it indicates
how bad the worst predictions of these estimators were. For example, for CL, ML's worst estim.ates were about
±100% off the actual value. This compares with the NN's worst prediction errors of about ±60%, which is very

I- 291

so

A- MLm-.M-- MAP

MAP
w - l

30-

V

lii li!I ,,5 ---4
20 - -0~o

oEL EU.100 J-5 0 0' ;0 100
CL V YOO) XY) Prediction Error (%)

Figure 1. RMS of the error associated with predicting the FIgure 2. 95% confidence interval (see text) of the four
variables, expressed as % of actual value, for the estimators, variables by the three estimators.

similar to the Bayesian estimator's errors (Fig. 2). The entire test set and the predictions of the NN and Bayesian
methods are plotted in Fig. 3 for the parameter V.

Arguments can be made that the process of supervised learning in a NN is a form of describing a Bayesian
estimator. We have provided some evidence here that for the particular application of estimating parameters in a
sparse and noisy data environment, the NN's performance approaches that of the optimal Bayesian MAP
estimator. We now point out a potential advantage of the NN over Bayesian methods: More realistic kinetic
models would require multiple compartments and a larger number of parameters. With only a few data samples
available from such a system, significant simplifying assumptions are required in order for the Bayesian estimator
to be constructed. It may be possible however to train a NN on simulations from a more complete model, while
still producing estimates of a few unknown parameters that are of interest to the developer.
[1] Cover, T.M. & P.E. Hart (1967). Nearest neighbor pattern classificaton. IEEE Trans on Inform. Theory, IT-13. 21-27.
[2 D'Argenio. D.Z, & D.C. Maneval (1988). Estimation approaches for modeling sparse data systems, IFAC Modelling and

Control in Biomedical Systems, Italy, 61-67.

[31 Gomnm. R.P, &TJ. Sejnowsid (1988). Analysis of hidden units in a layered network trained to classify sonar targets. Neural
Networks. 1. 75-89.

[41 Mallet. A. (1986). A maximum likelihood estimation method for random coefficient regression models. Biomvtrika, 73:645-56.
151 Rumelhart, R.E., G.E. Hinton & RJ. Williams (1986). Learning internal representations by error propagation, Parallel

Distributed Processing, Eds: D.E. Rumelhart & I.L McClelland, 318-362. MIT Press.
[6j Sheiner. L. B. H. Halkin et al. (1975). Improved computer-assisted digoxin therapy: a method using feedback of measured

serum digoxin concentrations. Ann Intern Med, 82:619-627.
[71 Vozeh. S.. G. Kewitz. & F. Follath (1980). Rapid prediction of steady state serum theophylline concentration in patients

treated with intravenous aninophylline. Eur J Clin Pharmacol, 18:437-447.

100 100o-

.. .so.' so- .

-0 . 6. ' ,. •.: '
Sao i.:.. ."' ""Figure 3. Predicted vs. actual values

> "; ,•'' .•"of the parameter V (Volume) for the
40• neural network (NN) and the Bayesian

(MAP) estimators.S20. 20 •

NN MAP
0 1

040 20 40 60 00 1;0 0 20 40 6o 80 1;0

Actual Volume (L)

1- 292

Neural Networks Models for Linear Programming

Jean-Christophe Culioli and Vladimir Protopopescu
Engineering Physics and Mathematics Division

Charles L. Britton, Jr., and Milton N. Ericson
Instrumentation and Control Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6364

Abstract: The purpose of this paper is to present a neural network that solves the general Linear
Programming (LP) problem. In the first part, we recall Hopfield and Tank's circuit for LP and show
that although it converges to stable states, it does not, in general, yield admissible solutions. This is due
to the penalization treatment of the constraints. In the second part, we propose an approach based on
Lagragrange multipliers that converges to primal and dual admissible solutions. We also show that the
duality gap (measuring the optimality) can be rendered, in principle, as small as needed.

1. Introduction. The contribution of neural networks to Optimization Theory has been mainly
dedicated to NP-complete problems so far, and in particular to the Travelling Salesman Problem (1] (see
also [2] for an excellent account). Here, we consider "simpler" problems, like Linear Programming (LP)
and its variants, for which low-order polynomial algorithms are already available [3]. Although some of
these simpler problems are combinatorial by formulation (like the Assignment Problem [4]), their struc-
ture is inherently continuous and seems well adapted to a neural network solution.
The only attempts we are aware of, concerning continuous optimization problems are Hopfield and Tank's
circuit for LP [5], its application to Analog Decoding [6], the work of Jeffrey and Rosner [7] for the so-
lution of variational problems, and our recent application of sigmoidic functions to general optimization
problems[8,9]. In the next Section, we give some properties of linear programs. In Section 3, we recall
some background on Hopfield and Tank's LP network and discuss its connection with standard optimiza-
tion methods. We note that it converges to stable states which are not, in general, admissible solutions of
the problem. In Section 4, we propose a new network that, in handling the constraints, relies on duality
instead of direct penalization. This network always converges to primal and dual admissible solutions,
and the associated duality gap can be rendered as small as desired.

2. Linear Programming. We intend to solve the LP problem

min<c,x> subject to Ax > b,

where c and z are vectors in R1, b is a vector in R"', and A is an m x n matrix, with m < n. The
brackets < .,. > denote the scalar product in R/. We assume that problem (1) has a bounded solution
z* and, for the purpose of the forthcoming derivations, that the rank of A is m. We define the operation
[.]- : [y]- = y if y < 0, [y]- = 0 if y 2! 0, and apply it componentwise, if y is a vector. In the
following, a vector z such that Az > b will be called admissible for (1). It is common, when dealing with
LP problems to introduce their dual problems. The dual problem associated with (1) is

(2) max < b,p> subject to ATp = c, and p !0,

where AT denotes the transpose of matrix A. Note that we have also denoted the scalar product in Rn
by < .,. >. The fundamental result of duality is (for a proof, see [10]):
Proposition 1. If i is admissible for (1) and j is admissible for (2) (that is ATiI = c, • Ž 0), then the
duality gap 6 :=< c,i > - < b,0 > is positive. If 6 = 0, then i is a solution of (1), and P is a solution

Of (9).

1- 293

3. Hopfield and Tank's Neural Network for Linear Programming. The neural network
proposed in (5] for the solution of(1), contains n neurons with internal states ui, output values z: = g.(ui),
and time response r. We denote them as neurons (ui,zi), (i = 1, ..., n). The function g is assumed
linear and increasing (g%(u) = Au, A > 0). We also have m neurons (with no time response) with
internal state yi = - Ajz: - bi and output values tb, = (y') 2 . There are no connections within the set

of {(ui, x))} neurons nor within the set of {(yi, 0j)%. neurons. On the other hand, each (uj,z 1) neuron is
connected, with connection strength Aji, to the neuron (yi, Oj). The dynamics of the ((ui, xi)}i neurons
is given by the equation (that we directly write in vector form for the whole set)

du(3) 'a = -c - AT[A - bi-.

An energy functional is associated with (3)

(4) E(z) =< c,z> +-II[Az - b]-i + 1-•lZ:11.
2 2Ar

We now prove the convergence of the network and address the optimality of the procedure.
Proposition 2. The functional E(x) is a Lyapunov functional for (3).
Proof: E(z) is bounded below since it contains a quadratic term in 11z:1. Also, we have

dE(z) dz b" dx 1 dr
-=< , > + < A[Ax- b-,. > +A1 < ,

T dz du dz. duV2
--< c + A "[Az - b]- + - z,_ -• >= -< -t,7-_ >= _;k1W <_ O.

A di dE(x) lt du

Thus E(z) is decreasing along the trajectories of (3) and dl = 0 implies that d- = 0.

The network driven by (3) is designed to solve the problem min E(z), where one attempts to satisfy
the constraint by penalization. We will show that, in general, this does not imply that the network solves
the original problem (1). Let (6,1, ý, ,) be a stable state. Then 2 is solution of the fixed point equation

(5). + AT[Ai - b]- = 0

We can state
Proposition 3. Two necessary conditions (on Ar) for i to be admisible are

(6) Ar"< - , and ArAc<-b.
11cil2

Proof: Indeed, if f is admissible, then we get I = -Arc from (5). Since the solution z* is such that
< c,x" > < < c,x > for every admissible z, we must have < c,z" > _< -ArIjc1l 2. By applying the
matrix A to (5) and by using the admissibility of i, we get the other condition. l
Corollary. In general, the solution of (5) i not admissible for (I).
Indeed, since Ar is strictly positive, whenever < c, z" > is positive or equal to zero, one cannot obtain an
admissible i. Even if < c,z" > is negative, the second condition of (6) implies Ar < Ac, b > < -j1bj 2 ,
which is not satisfied whenever < Ac, b > > 0. Counterexamples can be easily constructed.

4. A Primal-Dual Neural Network for Linear Programming. We now propose a neural
network named Primal-Dual because it provides admissible primal (1) and dual (p) vectors . Moreover,
we will show that the duality gap can be made as small as desired. We consider n neurons of the type
(u,x) and m neurons of the type (v,p). We assume that

(7) x = R Gx(u), p = q.(v), with A > 0, R> 0, GA(u) > 0, gp(v) > 0, g•(V) > 0,

I- 294

where R is a large bound on lizil which has not to be known precisely. Although the following derivations
do not use their explicit form, the functions G. and g, can be chosen as GA(u) = tanh(Au) (with A not
too large in order to prevent instabilities) and gp(v) = L. The latter choice of g, was proposed in [6].

It may have, however, a natural tendancy to produce numerical difficulties.
The evolution equations of these neurons are assumed to be

du d__PE =(8) .-•--c +A T p, v-• -= - +A
dt dt p~r

The main differences between (8) and (3) are the following: (i) the neurons (u, z) have no time
constant, and the relation between u and z is not totally linear, (ii) the constraints are "softly" penalized
by the output values of the neurons (v, p), (iii) unlike the neurons (tk, y) of the Hopfield and Tank model,
the neurons (v, p) have an explicit evolution as independent state variables, and have a time constant.
These differences do not affect significantly the feasibility of an analog implementation [11].
We now address the convergence of the network and the optimality of its fixed points.
We choose the Lyapunov functional

(9) E(x,p) =< c,z :> - < p, Ax - b > +1Pr "

Convergence: E(z,p) is bounded below because IzxII is bounded by V./R and E contains a quadratic
term in I1p~l. It decreases along the trajectories of (8). Indeed,

dE C~T dx dp~b. (U)±i2 a2<0S=< c - A p, w> - < ;, Ax - b - -L>= -- G1_EgV)(_ O
dj dtt dd

Thus, dEf) = 0 implies ±- = 0 and L = 0.
dtdt dt

Consequently, the network defined by (7) and (8) converges to a stable state (i, t, i, p).
The admissibility and optimality of the fixed points is addressed in
Proposition 4. The fixed point i is admissible for (1) and the fixed point P is admissible for (2). The

associated duality gap 6 =< c,z > - < b,p > is equal to E . Moreover, if the rank of A is equal to m,

p is bounded and the duality gap has a magnitude of order 0(-L).

Proof: From the fixed point equations, one gets A! - b = p > 0. Thus 2 is admissible for (1). Also,
In.

we have ATP = c and since P = g,(6) 2_ 0, p is admissible for (2). If we multiply ATp = c by 2, we getI

<,• > - < bp >= -_11p112 .

If the rank of A is equal to rn, then (AAT) is an m x m positive invertible matrix. Its eigenvalues (ordered

by increasing size) al,.... am are stricly positive, and from ATP = c, one gets 01 < Itcl < M <+00.

Thus, < c,t > - < b,p >< 1M2.
at

'Ur

Application. In order to get an approximation of the optimal cost, < c,z* >, with an absolute
M 2

precision e , one can choose pu = -2. One might expect, however, that due to the form of g,, some

bifurcation behavior can appear (See [9] for typical examples). It will thus be advisable to start the
network with a moderate p and increase it progressively to the value u,. This procedure would bear
some analogy with an "annealing" technique [1,9].

I- 295

5. Conclusion. In this paper, we have studied two neural networks models for Linear Program-
ming, the Hopfield and Tank network, and the Primal-Dual network. We have shown that the Primal-Dual
network converges to admissible solutions and can be used to get a very good approximation of the op-
timal cost. Throughout the paper, we also addressed some implementation issues. Extensive numerical
simulations and analog circuit implementation will be our next focus [11].

Acknowledgements

This research was partially sponsored by the U.S. Air Force Wright Aeronautical Laboratory un-
der DOE Interagency Agreement, DOE-1570-1579-AI, by the Office of Basic Energy Sciences and the
Exploratory Studies Program of Oak Ridge National Laboratory, U. S. Department of Energy, under
contract # DE-ACO5-84OR21400 with Martin Marietta Energy Systems, by DARPA under contract #
1868-A037-Al, and by an ORNL Postgraduate Research Appointment administered by Oak Ridge Asso-
ciated Universities.

References

[1] J. J. Hopfield and D. W. Tank, ""Neural" Computation of Decisions Optimization Problems",
Biological Cybern., vol. 52, pp. 141-152.

[21 A. B. Kahng,"Travelling Salesman Heuristics and Embedding Dimension in the Hopfield Model",
Proceedings of the International Joint Conference on Neural Networks, Washington D. C., June
1989.

[31 N. K. Karmarkar, "A New Polynomial-Time Algorithm for Linear Programming", Combinatorica
4, Dec. 1984.

[4] J. C. Culioli, V. Protopopescu, C. Britton, and N. Ericson, "A Neural Network for Explicitly
Bounded Linear Programming", this Conference Proceedings.

[5] J. J. Hopfield, and D. W. Tank, "Simple "Neural" Optimization Networks: an A/D Converter, Sig-
nal Decision Circuit, and a Linear Programming Circuit", IEEE Trans. on Circuits and Systems,
Vol. CAS-33, N. 5, May 1986.

[6) J. C. Platt and J. J. Hopfield, "Analog Decoding Using Neural Networks", Proc. of the AIP Con-
ference, Snowbird, UT 1986.

[7] W. Jeffrey and R. Rosner, "Neural Network Processing as a Tool for Function Optimization", Proc.
of the AIP Conference, Snowbird, UT 1986.

[8] J. C. Culioli and V. Protopopescu, "An Algorithm for Linear Programming That is Easy to Imple-
ment", Applied Mathematics Letters, Vol. 2, N. 2, pp.125-129, 1989.

(91 J. C. Culioli and V. Protopopescu, "Bifurcating Optimization Algorithms and their Possible Appli-
cation-, ORNL/TM-10976, Nov. 1988.

(10] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1964.
(11] J. C. Culioli, V. Protopopescu, C. Britton, and N. Ericson, ORNL Technical Memo, in preparation.

1- 296

On The Amari-Takeuchi Theory of Category Formation

Morris W. Hirsch
Department of Mathematics

"University of California Berkeley, CA 94720
September 19, 1989

Ameri and Takeuchi (1978) presented an interesting theory of category

formation for a single perceptron-like unit under the influence of changing

environmental input and Hebb-like unsupervised learning. The present paper is a

more rigorous foundation for a version of their theory, together with further

analysis of the categories that can develop.

Our unit has n input lines and a weight vector WEIR". There are m input

patterns XER', c-=I ... ,m. The output is g(W.X 0.- Ga) where g is a sigmoidal

function and 0a is a threshold (or bias) which can depend on the input. (This might

arise from an inhibitory signal passed to the unit from another unit aroused by Xa,

whose weights are constant in time.) In contrast to Amari and Takeuchi, we assume

g Is continuously differentlable, with positive derivative. For definiteness we

assume g(x',=o(Yx) where a(x) is a standard sigmoid such as the logistic function,

and "Y>O is a system parameter called the gain. The limiting values of g(x) as x --

+cc or -no are respectively I and 0. (For Amari and Takeuchi the gain is infinite,

that is, g is the discontinuous Heaviside function. This makes Equation (1) below

easy to analyze; but (2) is then very difficult; moreover it is unclear whether (2) is

a good approximation to (1).)

The weights evolve as follows. At presentation of the k'th input Xa let the

weight vector be Wfk-1). After the output is computed, the weight changes

according to the vector differential equation

'dW/dt = -W + g(W.Xa--OGt)Xa , k-I ! t •, k. (1)

where the system parameter X>0 is the learning rate. The new weight is W(k).

We assume successive inputs are chosen according to an infinite sequence ci(k) aking

values in (1, ... ,m), k=l, 2, -.. Piecing together solutions of (I) for successive k

gives a continuous W(t), 0<t<ao.

I- 297

The basic assumption on the input sequence (X,(k)) is that in the long run

the proportion or k such that a(k)-j approaches a limit p, 0 g p, _< 1, for each

,m. The a(k) may be chosen either deterministically or stochastically. Tn

the latter case, for many stochastic processes ({x(k)} some form of the Law of Large

Numbers, or an Ergodic Theorem, implies the existence almost surely of the limits

p. Amari and Takeuchi require a deterministic sequence for their application to a

model of development or feature detectors in the retinal cortex.

The key to analyzing equation (1) is to use the Averaging Theorem: Given

T>O and t >0 there exists ,O>O such that if 0<,\.:'Xo then the solution to (1) is

within e of the solution with the same initial value to

jdW/dt - -VV + 57. pog(bXct-Ox)XcQ, k-I r t g k. (2)
xt-I

for 0•tT/X . (The proof requires that g be continuously differentiable.) From

now on we study (2). identifying * with W. Note that if p=-0 then Xa does not

appear in (2). Thus inputs that are sufficiently infrequent have no effect on the

long-term development of the weight vector. We might as well assume all pC ">0.

Equation (2) is of gradient form: the right band side is the gradient of the

"energy" function

m

E(W) - -,,,W,2 ,- G(W Xa-O8X)

i=1

where G(x) is any antiderivative of g(x). It follows that every solution converges

to an equilibrium, and under plausible "generic" assumptions almost every solution

tends to some stable equilibrium, i.e. a local maximum point for E. It is easy to

see that W(t).Y -* 0 exponentially for any solution W(t) and any vector Y

orthogonal to all the inputs.

Suppose a solution W(t) of (2) converges to a stable equilibrium W*. It is

important to realize that the weight is not really frozen at W.; in reality it

changes according to system (1) as the different inputs are presented. But the

actual solution W(t) to (1) is close to W. for long periods of time; and it can be

proved that for high enough gain it is as close as desired stor all sufficiently large

times t.
1- 298

Insight into (2) is obtained by introducing the recall variables ua,,=W.Xa.

Define a symmetric mXm matrix T by T Oa ==XCa-X/, and sigmoids goL(x)-pog(x--a).

Dotting both sides of (2) with X0 gives the system

m

-duo/dt = -u,6+ -- Toga(uaL), --=1, ... ,m. (3)

This describes the activation dynamics (not the weight dynamics!) of the well known

class of recurrent additive nets with symmetric weight matrices. The "net"

corresponding to (3), with activations u6 and weights T,,B, is only conceptual; but

that does not prevent us from applying the crucial Theorem of Hopfleld (1984): If

the gain 'I is sufficiently large then for any stable equilibrium u of (3), g•.(ua• is

close to one of its limiting values. In terms of (2) this says: For sufficiently high

gain, if W* is a stable equilibrium then g(W*-Xot) is close to 0 or 1, for every a..

This can also be proved directly from (2). Notice that when m<n, (3) has fewer

equations than (2).

From now on we assume very high (but not infinite!) gain and very low

learning rate X. For each stable equilbrium W*. of (2), Amari and Takeuchi define

the category S(W*)=S to be the set, possibly empty, of those Xa such that

g(W*.X)--I. Thus XaES means that when the long-term memory state is W. then

the unit fires whenever pattern Xat is input. We may say that in this case the unit
"recognizes" Xa.

A category represents a possible mode of long-term development of the unit;

Amari and Takeuchi interpret a category as a feature detector. Different initial

values of W and different thresholds 0 a may lead to different categories. It is

likely, but not known, that different stable equilibria can determine the same

category. In any case, in functional terms it is the categories, not the stable

equilibria, that characterize the developed network.

Amari and Takeuchi analyze the structure of categories in terms of various

parameters. Analogs of some of their results can be obtained in the present setup.

Here however we present a new result expressing a set-theoretic property of the

set of all categories, under the special assumption, biologically plausible, that the

components of the vectors XY are nonnegative.

1- 299

This makes (2) (also (1) and (3)) into a cooperative system: Denoting the

right hand side of (2) by F(W), we have WF/8W, Z 0 for ipj. Using the order-

preserving properties of the solution flow of a cooperative system (Hirsch 1982,

1989), the following result can be proved:

The union of two categories is contained in a category: the Intersection

of two categories contains a category.

As a consequence, if there is a long-term memory state W. recognizing Xa,

and another recognizing X9, then there is one recognizing both Xcx and X0. if
every input pattern is recognized by some W. then the set comprising all inputs is a

category, and so is the null set. In any case there is a unique maximal category and

a unique minimal one.

Units of the type considered here can be cascaded to form a reed-forward net

in which each unit develops its own category or those signal patterns, from earlier

layers of the net, which it recognizes.

REFERENCES

Amari, S. & Takeuchi, A. 1978: Mathematical theory of category detecting nerve

cells. Biol. Cybern. 29, 127-136

Hirsch, M. W. 1982: Systems of differential equations that are competitive or

cooperative. 1: Limit sets. SIAM J. Math. Anal. 13, pp. 167-179.

Hirsch, M. W. 1989: Convergent Activation Dynamics, to appear in Neural

Networks, September issue.

Hopfield, J. J. 1984: Neurons with graded response have collective computational

properties like those of two-state neurons. Proc. Nat. Acad. Sci. USA 81, pp.

3088-3092.

I - 300

STATE EVALUATION FUNCTIONS FOR NEURAL NETWORKS AND
POSSIBLE LYAPUNOV FUNCTIONS

Youichi Kobuchi
Deparnment of Electronics and Informatics

Faculty of Science and Technology
Ryukoku University, Seta

Oe-cho Seta, Otsu-shi, 520-21 JAPAN

Hopfield[31 was the furst to show that there is a Lyapunov function for a given symmetric neural
network which operates asynchronously where each component model neuron is basically that of
McCulloch and Pitts[51 or its continuous counterpart. It corresponds to the "energy" of the
network which decreases as time elapses.(See, for example, Feldman[1].) We examine the alleged
proposition that the neural networks should have symmetric weights to have Lyapunov functions.
For that purpose, we start by defining a state evaluation function which is a mapping from the set
of state configurations into the set of real numbers. Then the difference function of such state
evaluation function is introduced and conveniently characterized. An application of the properties
of difference functions reveals that there is a slightly extended class of asymmetric neural networks
which have Lyapunov functions.

I. State Evaluation Functions and Their Difference Functions
Consider an arbitrary network composed of n elements each of which takes one of the two states

(0,1). A generic configuration is denoted as s = (S,s2,.....Sn) where si is in (0,j) for i E Nn

and Nn { 1,2,...,n). We first assume that there is a function E(s), called a state evaluation
function, from (0,1)n to R where R is the set of real numbers. Note that the framework here is
quite general that we are not concerned with any particular network dynamics at present. Let J be a
subset of Nn • Then sj denotes a configuration such that sj = (S'j,S'2,....S'n) where s'i = F -- 1 -

si if i is in J and s'i = si otherwise. For any J, K Q Nn let J @ K = { i e Nn I (i r J and i e K)

or (i = K and i e J)). Now we define a difference function as follows: For J a Nn, let AEJ(s)
E(s) - E(sj). In passing, note that AEj(s) is a kind of state evaluation function with parameter J.
A basic relation which must hold among these difference functions is that AEj(s) = AEi,(s) +

AEKOJ(sK) for any J , K Q Nn. In fact, this relation is shown to hold if it holds for any J • Nn
and any singleton set K e Nn. The relation also turns out to be a sufficient condition for the
existence of a function E(s)such that aEj(s) = E(s) - E(sj). That is, consider a family of state

evaluation functions AFj(s) from (0,1)n into R with parameter J Q Nn such that the above relation
for AEj(s) holds. Then define a function E(s) : (0,1 }n -.. R by E(s) =- FI(s)(s) +C where C is a

constant in R and I(s) denotes the set of integers i such that si = 1 : I(s) = (i e N, I si = I where
s = (s1,s2,...,Sn)). Note that AFt(5)(s) is a function of s since the parameter part I(s) is also
determined by s. Now we can reduce the basic relation still further to obtain the following
theorem.

Theorem 1. Let AEk(S) : (0,1)l --4 R be given for each k e Nn. The following preservation
conditions are necessary and sufficient for the existence of a function E(s): (0,1)}n -4 R such that

AEj(S) = E(s) - E(sj) where AEj(s) - AEj,(sj,) for Jr = {jlJ2,..Jr-), J1 = t and J = Jm+l

For any j and k in Nn, AEj(s) + AEk(sj) = AEk(s) + AEj(sk) (2nd order condition),

tAEk(s) + AEk(sk) = 0 (1st order condition), and

I- 301

AxE-1c) =0 (Oth order condition).

The theorem says that the preservation conditions of order less than or equal to two are sufficient
for the basic relation to hold. The state evaluation function E(s) can be a Lyapunov function for a
network with certain dynamics such that AEk(s) is nonnegative whenever s changes to sk.

2. Neural Network Definitions and Searching for Lyapunov Functions
Using the above theorem, we examine what are the conditions for neural networks to have

Lyapunov functions, if any. Assume that there are n McCulloch-Pitts neurons numbered I
through n in a network, and also assume an asynchronous operation for the time being. Let si(t)
be the state of neuron i at time t, taking the value I or 0, and let s = (s,(t),s2(t),...sn(t)). If we
write the weight connecting i toj as wji. and the threshold value for i as Oi, the next state of
neuron k can be defined as follows:

Evaluate dk(s) a wkjsj(t) - Ok , then sk(t+l) becomes 1 if dk(s) is positive, and 0 if it is

negative. We have assumed as in Goles [2] that for every i, Z wqsj - 8i * 0 for any sj e 10,1) i,j

= 1,2,...,n. The state transition rule means that sk changes to 3, if and only if i dk(s) < 0 where
Sk = sk - ki" . In order to have a Lyapunov function E(s) for this network, it is necessary that E

value should decrease when s changes to sk, which implies §k dk(s)< 0. That is, the difference

function can be appropriately expressed as AEk(s) = fk(- 9 dk(s)) = - k fi~dd(s)) where fk is a
sign preserving function. Then the preserving conditions in the previous theorem yield the
following relations.

For any I and k in N.,

si(fk(dk(s)) - ft(dk(S) - wki-I)) = jfA"(di(s)) - f1(dA(s) - waj)) (2nd order relation), and

fk(dk(s)) = fk(dk (s) - i- wW (Ist order relation).

Now we analyse these relations in general terms. From the 1st order relation, we have the
following necessary condition because fk is a sign preserving function as required.

dk(s)(dk (s) - ik wk) > 0.

From this inequality, we can have a condition on wkk under which a network under
consideration behaves just like a network where wk = 0. Conversely, wkk = 0 trivially
ensures the 1st order relation. In short, the 1st order condition requires something like a point-
wise stability. We call the property wk- = 0 (k = 1,2,...,n) as zero-diagonal condition.

In the above expression, the 2nd order relation is required for every possible s. It can be
easily seen, however, that the relation holds if it is satisfied for the cases where sk = st = 0. If
we write sk and sl component of s as s(sk, sd) then the relation can be rewritten as

fk(dk(s(0,0))) - fk(dk(s(0,0)) + wki) = f1(di(s(0,0))) - fQ(dt(s(0,0)) + wik)

To be more concrete, we consider the case where each fk is a linear function, i.e., ft(x) = ckx
for a positive constant ck. Then we have ckwAi = clwtk. The relations cwkJW = ciwt (k, I =
1,2,...,n) can be written in matrix form as CW = WtC where W = twirj and C is a diagonal
matrix whose i-i element is ci for i = 1,2,...,n. Since C = Ct, this means that CW is
symmetric. We call a matrix W quasi-symmetric (with respect to C) if CW is symmetric for
some diagonal matrix C. A diagonal matrix is said to be positive if all of its diagonal elements
are positive. We give several characterizations of quasi-symmetric matrices.

1- 302

Lemma. Let W and C be a matrix and a non-singular diagonal matrix, respectively. Then
the following conditions are equivalent.

(1) CW is symmetric.
(2) W = C'IU for some symmetric matrix U.
(3) W = VC for some symmetric matrix V.
(4) W = BSA for some symmetric matrix S and non-singular diagonal matrices B and A.

To sum up, we have shown that, under the linear assumption, neural networks must satisfy both
zero-diagonal condition and quasi-symmetric condition with respect to a positive diagonal matrix in
order to have some noncontradictory energy function.

3. Lyapunov Functions for Quasi-Symmetric Neural Networks
Here we calculate the desired Lyapunov function for a neural network satisfying zero-

diagonal condition and quasi-symmetric condition with respect to a positive diagonal matrix C
= [ci]. For a given s = (ss2,....,Sn), let I(s) be the set of index i such that si = I as introduced

before. Then AEI(s)(s) = E(s) - E(si(s)). By definition, Sl(s) = 0 = (0,0,...,0) and let E(0) be
the reference value in evaluating E(s). More simply put, assume that E(0) = 0 and define E(s)
= AEI(s)(s). Let wkl = SkSiWkl for kI = 1,2,...,n then we have

E(s) = AEI(s)(s)

= AEi(s)+ gj
idl(s) ijel(s)

n n

= zEj(s) si + ci~rsisj

n nI

-" cdjsi + ciwijsisj.
i~ I 2j=l

n n n

Substituting di - wijsj - 0i we have E(s) =- ciwijsisj + cisi0i .

Multiplying by two, for notational convenience, we have a desired Lyapunov function as

below.

Theorem 2.

Let a connection matrix W be a zero-diagonal and quasi-symmetric with respect to a positive
diagonal matrix C whose i-i element is ci for i = 1,2,...,n. Then under asynchronous operation
mode, the following function is monotone non-increasing.

n n

Ea(t) =- X ciwijsi(t)sj(t) + 2Y cisi(t)Oi

Following an argument in Goles[2], we can also show that the following is a Lyapunov function
for synchronous quasi-symmetric neural networks.

n T

E$(t) = - ciwijsi(t)sj(t" 1) + I ci(si(t) + si(t- I))0i

I- 303

In fact, we have
n n

E5(t) - E.(t-1) =- • cidi(t-l)(si(t) - si(t-2)) where d,(t- 1) = • wjjs(t-l) - 0,.
iml j-I

If di(t-l) > 0 then si(t) = I which means si(t) - si(t-2) 0. If di(t-1) < 0 then si(t) = 0 which
means si(t) - si(t-2) • 0. In both cases, we have cidi(t- l)(si(t) - si(t-2)) 2! 0 because ci is positive.
Thus E,(t) is a monotone non-increasing function of t and we have then that the cycle lengths of the
corresponding global state transition are at most two.

4. Concluding Remarks
It has been known 131 that there is a particular Lyapunov function for asynchronous model neural

networks with zero-diagonal and symmetric connection matrices. Our questions are: why these
restrictions are necessary and why that particular form for Lyapunov function. To answer these
questions we first characterized the existence of state evaluation functions through the properties on
their difference functions. Then we have shown that there is a class of asymmetric neural
networks which have Lyapunov functions. The class is called quasi-symmetric because the weight
matrix W should be such that CW is symmetric for a positive diagonal matrix C. The result was
obtained by assuming linear functions for the definition of difference functions. The other
possibilities have to be examined in order to see if there wee other classes of neural networks that
have Lyapunov functions.

The analyses of possible forms of energy functions for asynchronously operating neural
networks done here are also relevant when we want to speed up the network operation. That is,
the formulas for the energy difference given here enable one to decide easily when it is possible to
carry out parallel state transition keeping an energy function decreasing.

We have also shown that quasi-symmetric neural networks have Lyapunov functions under
synchronous operation mode.

Although the class seems to be still rather restrictive, it has been shown elsewhere that an
interesting class of neural networks with effector and receptor parameters has common elements
with it[4].

References
[II Feldman, J.A. (1987) Energy Methods in Connectionist Modelling. in Pattern Recognition
Theory and Applications (Eds. Devijver, P.A. and Kittler, J.) Springer-Verlag 223-247.
121 Goles, E. (1987) Lyapunov Functions Associated to Automata Networks in Automata
Networks in Computer Science (Eds.Fogelman, F., Robert, Y., and Tchuente, M.) Manchester
University Press.58-81.
131 Hopfield, J.J. (1982) Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proc. Natl. Acad. Sci. USA 79, 2554-2558.
[4) Kobuchi, Y. (1989) Asymmetric Neural Networks with Effector and Receptor Parameters. in
Mathematical Topics in Biology. RIMS Report No. 678.Kyoto Univ. 85-100.
[51 McCulloch, W.S. and Pitts, W. (1943) A Logical Calculus of the Ideas Immanent in Nervous
Activity. Bulletin of Mathematical Biophysics 5, 115-133.

I- 304

An Orthogonal Projection Type of Associative Memory

Kiyotoshi MATSUOKA
Division of Control Engineering, Kyushu Institute of Technology

Sensui-cho 1-1, Tobata, Kitakyushu, 804 Japan

1. Introduction
Associative memory has been one of the main subjects in the history of

artificial neural networks. In its basic paradigm, a given set of pairs of
patterns (s(",y("m) (m-l,..,M), sometimes referred to as prototype
patterns, are stored in the form of strength of connections linking
neuron-like elements (neurons), and when the network is given a noisy or
incomplete pattern of s(') as a key pattern, it produces or recalls, 7
ideally, the corresponding output y(C)*

From the viewpoint of the principle of the association, associative
networks can be classified into two types, the correlation type and the
orthogonal projection type. It is well known that the latter type of networks
have a desirable associative ability than the former type, but, in
conventional models, the weights of connections cannot be determined by local
calculation as correlation calculation for the prototype patterns, requiring
inverse or pseudoinverse calculation. Although the connection weights can also
be determined by learning based on some error correction paradigm, some
sophisticated mechanism may be required to embody this in hardware.

This paper proposes a new model of associative networks in which the
orthogonal projection operator is implemented in a particular structure of
cross connections between neurons. As a result, this network has several
advantageous properties compared to conventional models from practical points
of view.

2. Proposed Model
If prototype pattern vectors s"' (m1l ...) are linearly independent,

the optimal associative mapping for the pairs (s`'),y(`)) (m=l,..,M) is
given by

y = Y(STS)-'S T s = YSs (1)
[Kohonen 1987]. Here, s and y are a key (input) pattern vector and an output
pattern vector, respectively. y[y(1) yCy(M], SE[s(1) .. ,s(M)]. "+-

represents the pseudoinverse of a matrix. Obviously, (1) can be realized by a
two-layered network with feedforward connections as shown in Fig.l.

The same mapping can be embodied by a dynamic network shown in Fig.2
(solid lines). It consists of four layers; input, recognition, supplementary
and output layers. The function of the input neurons is only to sense external
signal s and transmit it to the neurons on the recognition layer. The
recognition neurons, whose number is the same as that of the prototype pairs,
receive the signals from the sensing layer and from the supplementary layer
with certain weights, and send the output x to the supplementary layer and to
the output layer. The supplementary layer with the same number of neurons as
the input layer receives the signal from the recognition layer and negatively
feeds the output v back to the recognition layer. The output neurons sum up
the signals from the recognition neurons and emit, the output y.

The recognition neurons are integral elements and the others are all
static linear elements. The network equations are

rdx/dt S Ts - STv (2)
V= Sx (3)
y = Yx. (4)

I- 305

Here, r is a time constant that specifies the response time of the
recognition neurons. (In case that, for the recognition neurons, we adopt the
familiar elements with time lag of first order, we have only to add
self-excitation to them; :dx/dt+x--STs-Slv+x.] x, v, and y converges, for
constant s, to the following stationary state:

X(00 = S's (5)
v(0o) = Ss (6)
y(0) = S's = YS'v(oo) (7)

If the time constant, r, is small enough for the network state to converge
quickly to the stationary state, this network may be considered to have
virtually the same characteristic as (1). (6) shows that the final pattern of
the supplementary layer v(oo) becomes the orthogonal projection of s onto rI.,
the space spanned by s") (m=l,..,M). From (7) one can see that the orthogonal
component to n. in s, possibly noise, is eliminated by this operation.

An interesting aspect of this network is that the neurons on the
recognition layer behave as the so-called "grandmother cells" for the
prototype inputs. Indeed, substituting s=ssm' into (5) leads toS(o = ,, (8)
where 8 ") is the vector the m-th element of which is unity and the others
are zeros.

The total number of the connections of this network is M(31+J) (K, I, J:
numbers of the neurons in the recognition, input (supplementary), and output
layers). If M is much smaller than I and J, the connection number is smaller
than that of Fig.1 (IJ).

3. Properties of the Model
Although, as far as the stationary state is concerned, the present network

is mathematically equivalent to the forward-connection network (Fig.1), there
exists several important distinctions between them from practical points of
view.

Property I In order to obtain the connection weights of the network, no
(pseudo)inverse nor correlation calculation is necessary. They can be
determined directly from the prototype patterns without any calculation.

Property 2 As a result, addition or deletion of some prototype patterns is
made by local modification of the connections. Suppose that the prototypes
(S•),y-) (m=l,..,M) have already been memorized and then another pair of
prototype patterns (s•('*,y "*)) is newly presented. In the present model
the new network can be constructed simply by adding a new recognition neuron
and connecting it to the other neurons with appropriate weights, requiring no
modification for the old connections. In the model of Fig.l, on the other
hand, the old weight of every connection needs to be altered completely again.

Property 3 The signs of the connections can be fixed if all components of the
patterns to be memorized take nonnegative values. In (I) the components of YS
" take positive as well as negative values in general. As for the present
model, on the other hand, the connection weights from the supplementary layer
to the recognition layer are all nonpositive, and the other connection weights
are all nonnegative. This property is convenient when one tries to design the
network in hardware.

Propprty_4 Suppose that it is known that some elements of the input, say the
j,....JN-th elements, has an defect. Then, the optimal estimation of y
based on the remaining data becomes

I- 306

y = YS's' (9)
where S' and s' are the matrix and the vector which are obtained by removing
the j,,..,ji-th rows from S and s, respectively. (9) can easily be
realized by setting the values of the ji,..,j,-th elements of the input
and supplementary layers at null. In the network of Fig.1 the connection
weights need to be altered to achieve this.

Property 5 The orthogonal projection operator, SS*, itself has no function
to eliminate the noise component in s which is parallel to Hl.. However, if
the patterns to be recalled are binary, i.e. yj ')=+-, the performance
of the network are considerably enhanced by adding binary threshold elements
to the output layer (Fig.2, dotted lines, top). The characteristic of the
threshold elements under consideration is

y', = g(y) = 1 (Y>0) 0 (y,=O) -1 (y,<O),
where y' is the output pattern of the threshold elements. Namely, the outputs
of the linear elements are rectified to take +1 or -1 by the threshold
elements. This network has an interesting property. Just after the input is
presented to the input layer, the output becomes with x(O)=O

y' = g(y) - g(YSTst) = g(YSTs) (0<t r), (10)
For t-oo, on the other hand, v approaches

y, - g(YS*s). (11)
These relations imply that the single network works as a correlation type
network as well as an orthogonal projection type network, depending on the
time when the output is observed.

Property If the prototype inputs are binary, i.e. si ")= ±1, the network
can be modified to a feedback type of network, which is a variation of the
model proposed by Personnaz et al. (1985) to hetero-associative memory. It is
obtained by adding the threshold elements to the supplementary layer and
connecting them back to the input terminal (Fig.2, dotted lines, bottom).
Here, the nonlinear elements do not only function as threshold elements but
also as sampling and holding elements, which hold the output of the
supplementary layer at g(u(kT)) during time interval kT-t((k+l)T
(k--0,l,2,..). The network equations are

rdx/dt = STyv - Sv (12)
v = Sx (13)
v' (t) = g(v(kT)) (kT:t((k+l)T) (14)
y = Yx. (15)

In this network, the key pattern is given as the initial values of the
threshold elements; i.e., v' (t)=s (05t<T).

If T is large enough (or z is small enough) and, thus, u(t) converges
nearly to a stationary state for v-g(u(kT)) during each interval, v(kT)
evolves approximately as

v((k+1)T) = g(SS÷v(kT)) . (16)
This is just the same as the model proposed by Personnaz et al. (1985).
If v converges to some s", y converges to the corresponding prototype
pattern y(m).

4. Conclusion
We have derived a novel associative memory that performs optimal

associative mapping (orthogonal projection), and have showed that it has
several advantageous properties from practicaJ points of view.

References
Kohonen, T.: Sc/f-Organization and Associative Moewry (Second ed.)

I- 307

Springer-Verlag (1987)
Matsuoka, K.: An associative network with cross inhibitory connections. (To

appear in Biol. Cybern., 1989)
Matsuoka, K.: A Model of orthogonal auto-associative networks (To appear in

Biol. Cybern.)
Personnaz, L., Guyon, I. Dreyfus, G.: Information storage and retrieval in

spin glass like neural networks. J. Phys. Lett. (Paris), 46, L359-L365 (1985)

S S+0 >y I

s Yi Fig. 1 Two-layer network.

0- yj

INPUT OUTPUT
LAYER LAYER

Q

OUTPUT ,

LALER

Fg. 2

RECOGNITIONINPUTE LAYER ,.i__, I

SUPPLEMENTARY • i•_

LAYER

Fig. 2 Proposed model.

1- 308

An Efficient Algorithm for Annealing Schedules
in Boltzmann Machines

Robert Richards
Stanford University, Sweet Hall, 3rd Floor, Stanford, CA 94305

Abstract - An efficient algorithm for annealing schedules in Boltzmann machines is developed and demonstrated. A
current deficiency of Boltzmann machines is the difficulty in determining good annealing schedules, consequently
empirical determinations have been applied in practice. Theoretically no finite length annealing schedule guarantees
that the optimum determined is the global. However, different schedules yielding the same probability of finding the
global optimum can vary by orders of magnitude in computational effort. The algorithm developed here takes
advantage of properties of Boltzmanm machines known to be important to annealing schedules but often ignored.

1. Background

The Boltzmann machine (BM) offers a generalized computational approach that can be applied to the basic
research issues of search, representation and learning and has a rigorous mathematical formalism. It can also be
considered a model for a massively parallel implementation of the simulated annealing algorithm [Aarts & Korst,
1989a] which can be used to solve combinatorial optimization problems. Optimization is performed by the units
which make up the BM attempting to reach a maximal consensus about their individual states, subject to the
constraints set by the connection strengths, the connections having been learned for a particular problem. The units
adjust their states (0 -> 1 or vice versa) to the states of their neighbors, i.e. the units to which they are directly
connected [Aarts & Korst, 1989a].

To adjust the states of the individual units a probabilistic state transition mechanism, which is a function of the
randomness, T, is employed. Randomness is necessary to avoid local optima. The randomness is described by the
randomness parameter, which starts at high randomness (i.e. perturbations that cause a better solution are chosen with
virtually equal chance as those that cause worse solutions) and is slowly decreased to zero randomness (i.e., only
perturbations which cause better solutions will be chosen). When the randomness reaches zero the optimization is
complete and a local optimum has been reached. The local optimum's degree of optimality is highly dependent on the
path used from high randomness to zero randomness. This path is termed an annealing schedule.

A weakness of Boltzmann machines is that the proper path from high randomness to low randomness, has been
difficult to determine. Many attempts have been forwarded both theoretical and empirical [Van Laarhovcn & Aarts,
1987], however much room for improvement still exists. Theoretically no finite length path will guarantee that the
optimum determined is the global optimum [Geman & Geman, 19841, however, annealing schedules having similar
probabilities of discovering the global optimum may vary by orders of magnitude in computational effort required to
complete the annealing process. To help ensure that a global optimum has been found, multiple runs are made to see if
a better result is forthcoming.

Merit of an annealing schedule is determined by the probability of determining the global optimum given
equivalent computations.

2. Annealing Schedule

In order to avoid local minimum or to escape from one, the Boltzmann machine allows for jumps to
configurations of higher energy as long as the randomness parameter is greater than zero. An algorithm with this
property was introduced by Metropolis [Metropolis, et al, 19531 to study average properties of thermodynamic systems
and has since been applied to problems of constraint satisfaction [Kirkpatrick et al, 19831. A form of the Metropolis
algorithm that is suitable for parallel computatio- has been adopted for the Boltzmann machine [Hinton, Sejnowski &
Ackley, 19841.

The transition rule is shown in Equation Set 1.
At high randomness, the BM performs a search of the coarse overall structure of the space of global states, and

will find a good minimum at that coarse level. As the randomness is lowered, it respond to ever smaller energy
differences and will find one of the better minima within the coarse-scale minimum it discovered at high randomness.
Kirkpatrick [Kirkpatrick, et al, 1983] has shown that this way of searching the coarse structure before the fine is very

I- 309

If the energy gap between the on and off states of the kth unit effective for combinatorial problems.
is AEk then regardless of the previous state, set sk.=l with The problem lies in finding efficient

probability, annealing schedules.
1 As has been noted by Kirkpatrick

probability(sk(t) = 1) = (2.1) and others there are properties that can be
"A, k exploited in the search for better annealing

I + Exp T schedules. Most important of these is die
specific heat, cp, and the "heat output", Q,

where; Tt-I , Randomness parameter at time t-I see Equation Set 2 for definitions.

sk w Activation of unit k - value is I or0 3 Properties ofan Illustrative

The energy gap between the on and off states of the kth unit Boltzmann Machine
is AE., and is calculated by assuming the kth unit is on and then To gain a understanding of the

taking the negative sum of the weights of all connections to other problem to be solved, quantitative values
units which are on, that is, of the important properties of an illustra-

tive Boltzmann machine are determined.

A = - connected to k wjk sj 1. (2.2) To see how energy and specific heat of the
Boltzmann machine change as a function

At low randomness there is a strong bias in favor of states of the randomness, measurements were
with low energy, while at high randomness the inclination toward made for the simple annealing schedule of

making the move towards lower energy approaches that of a fair T(t+l) = 0.99T(t), see Figure 1. Note that

coin toss. the energy values have been scaled so the
Equation Set 1 lowest possible energy is 1. It can be seen

that at higher randomness values that the
energy fluctuates greatly.

As mentioned, the specific heat gives
an idea about how slow or fast the random-

,2 ness should be decreased. The effect of the
,E 2 -_ ("E) specific heat is not immediately clear from

c (T) =---------- -.......-- (sum over all unitsl (2.3) Figure 1. After an area of high specific
p heat, it is the peak of the energies that is

T-2 changed, that is the peaks of the energies
will never reach there previous peaks again.where; LE The average of the energy squared at For example, at randomness values higher

randomness T than 1.3 the peaks do not seem to be de-

XE} 2 a The square of the average energy at creasing significantly from the starting ran-
randomness T domness of 2.5, however after the high spe-

E a The energy of unit k cific heat near 1.3 the peaks are never again
as high as they were before the region of

"-7-j connected to wk sj sk' high specific heat.

This is a global property of the Boltzmann machine which is 4. The Algorithm
proportional to the rate at which entropy -disorder - decreases as
the randomness decreases [Smolensky, 1986]. The foundational works of all Boltz-

mann machine annealing schedule research

Q = I CpT (2.4). include; 1) the research by Metropolis
P[(Metropolis, et al, 19531 where the

Equation Set 2 stochastic relaxation technique was first
developed. 2) The application of the
stochastic relaxation technique developed

by Metropolis to problems of combinatorial optimization by Kirkpatrick [Kirkpatrick et al, 19831, this optimization
technique was termed "simulated annealing". 3) The two papers that introduced the Boltzmann machine neural
network model, by Hinton, Sejnowski and Ackley [Hinton & Sejnowski, 19831,(Hinton, Sejnowski & Ackley. 19841.

1- 310

30,
Energy

* Specific Heat

Thewa papers estabA
lished the Boltzmnann W 20- -
machine model as one "
which could implement I U

A

simulated annealing o'1"' z2 i A
mization in massive paral- '8 a E 0

lelisrn. A0
This development bhite the recen -A,, ," .• ,

advances made by Aarts, ,
Korst and Van Laarhoven 0 __ _

[Aarts & Korst, 1989b], 0.0 1.0 2.0
[Van Laarhoven & Aarts, Randomness, T
1987). The algorithm is as
follows with the develop- Figure 1: Specific Heat's Effect on Energy
ment shown in Equation
Set 3.

The main assumption is that quasi-equilibrium holds. Quasi- T
equilibrium states that for a small enough change in randomness, if T Tt
the original vector of configurations at randomness Tt, q(Tt). is in t+ 1 Tt* (47)

equilibrium or quasi-equilibrium, then at randomness Tt+1,IJT(t)

q(Tt+l), will be in quasi-equilibrium. That is q(Tt+l) is f c0 + 3T P[c(t)

.sufficiently close' to the true equilibrium at Tt+1.

II q(Tt) - q(Tt+,) 11 <E (4.1) The only parameter which can not be
determined is the constant 13. By increasing

for some small positive value of and for all t greater than zero. e a faster annealing schedule will result but

With this assumption Aarts and Korst [Aarts & Korst, 1989b] have w a lower probal ing the

shown the following holds, with a lower probability of finding the
Tt global optimum.

Tt+3 T* (4.2) 5. Numerical Results
E(t) - Eopt Annealing schedule algorithms that

Of course, the weakness of this equation is that the function's utilize specific heat have been demonstrated

optimum needs to be known. To alleviate this problem a best to be advantageous in the simulated
estimate is made of E(t) - E which is bounded above by [Van annealing literature [Van Laarhoven &

Laarhoven, 1989], Aarts, 1987]. The benefit of considering c p
E(t) - Eopt<5 <E(t)> - Eopt + 3Tt N(c (4.3) grows as the difficulty of the problemop t oblp

Were <E(t)> is the expected energy, and is defined as, increases. Not surprisingly, past
f0T(t) comparisons have used more difficult

Einf - c (4.4) problems. The comparison here uses the

The best estimate for the Eopt term is then, relatively simple BM mentioned above, and
the proposed algorithm is compared with

En]* J Cp'T. (4.5) the simple but highly efficient schedule,
Eo -EiTt = a TV. In this schedule a is a

Substituting (4.5) into (4.3) and taking the 5 as an equality yields, constant, having a similar effect as 13 in the
E(t) - Eopt = JoT(t) cp aT + 3 Tt C P(t). (4.6) proposed algorithm. The results of these

two schedules is displayed in Figure 2, note

Substituting this into (4.1) yields the annealing schedule algorithm, that the logarithms used in the curve fit are
shown in equation (4.7). to the base 10. Even with the minimal cues

present for the proposed algorithm to ex-

Equation Set 3 ploit, a consistent improi ement is found.

I - 311

6. Conclusions ___ _

71h alorthmprsenedy 1-5|5.34 + 5,4.288*LOG(x) R^2 =0,959
The algorithm presented

heme is advantageous over s0
empirical schedules and is
shown to be better than a
highly efficient algorithm 60
which does not use the
Boltzmann machine's global
properties to benefit. Theory 0 a

provided the guide in the pro-
posed algorithm's develop-
ment. From this has come the " 20 8 New Annealing Schedule
first algorithm to not only * T = constant T Annealing Schedule
utilize specific heat, but also
heat output. Of course, only 0

further investigation will de- Cycles
termine if this theoretical
approach is the best in Figure 2: Comparison of Proposed Annealing Schedule and Good
practice. Empirical Schedule

As with all annealing
schedule algorithms the
proposed algorithm leaves a parameter for the user to vary (13). Unfortunately as with previous algorithms the correla-
tion between the values of the parameter and the probability of discovering the global optimum are not known a prior.
However, for any probability of discovering the global optimum the proposed algorithm will use the least cycles.

The greatest virtue of this algorithm is its general applicability to all Boltzmarm machines. While a particular
empirical annealing schedule, such as the Tt+ I = a T, example used above, may be efficient for certain BMs, there is

no guarantee that it will be efficient for others. Just as neural networks are adaptive, the proposed annealing schedule
algorithm will tailor itself to maximize its efficiency for every particular Boltzmann machine.

References

Aarts, E.H.L., and Jan H.M. Korst, (1989a) Computations in Massively Parallel Networks Based on the Boltzmann
Machine: A Review. Parallel Computing. Vol. 9. pp. 129-145.

Aarts, E.H.L., and Jan H.M. Korst, (1989b) Simulated Annealing and Boltzmann Machines: A Stochastic Approach
to Combinatorial Optimization and Neural Computing. New York, N.Y: John Wiley & Sons.

Geman, S. and D. Geman, (1984) Stochastic Relaxation, Gibbs Distributions and the Baysian Restoration of Images.
IEEE Transactions of Pattern Analysis and Machine Intelligence. 6, 721-74 1.

Hinton, G. E., and T.J. Sejnowski, (1983) Optimal perceptual Inference. Proc. IEEE Conference on Computer Vision
and Pattern Recognition. Washington, DC.

Hinton, G. E., Sejnowski T.J., and D.H. Ackley, (1984) Boltzmann Machines: Constraint Satisfaction Machines that
Learn. Technical Report CMU-CS-84-119. Carnegie-Mellon University.

Kirkpatrick, S., C.D. Gelatt Jr., and M.P. Vechi, (1983) Optimization by Simulated Annealing. Science. 220, 671 -
680.

Metropolis, N., et al, (1953) Equation of State Calculations by Fast Computing Machines. Journal of Chemical
Physics 21, 1087-1092.

Smolensky, P., (1986) "Information Processing in Dynamical Systems: Foundations of Harmony Theory," ch. 6 in
Parallel Distributed Proccssing. Volume 1: Foundations. Rumelhart & McClelland (Ed), MIT Press,
Cambridge, pp. 194-281.

Van Laarhoven, P.J.M., and E.H.L. Aarts, (1987) Simulated Annealing: Theory and Applications. Boston, MA: D.
Reidel Publishing Company.

Van Laarhoven, P.J.M., (1989) Theoretical and Comnputational Aspects of Simulated Annealing. Amsterdam, The
Netherlands: CWI Tracts.

I- 312

ON THE LEARNING POWER OF NETWORKS WITH A
BOUNDED FAN-IN LAYER

(extended abstract)
Haim Shvaytser

David Sarnoff Research Center, Princeton, NJ 08543-5300.
Email: haim%sarnoff©Princeton.edu

Abstract
We analyze the learning power of networks with one hidden layer and the additional con-

straint that each node in the hidden layer can have at most a constant number of connections.
We give conditions which guarantee with high confidence that the following training strategies
are optimal: (a) Fixing the connections and weights of the hidden layer nodes and training the
output node with the perceptron algorithm. (b) Choosing the connections of the hidden layer
nodes at random and training the output node with the perceptron algorithm. We also show
that networks of this type are capable of learning (in the sense of Valiant) nontrivial classes of
boolean formulae in conjunctive and disjunctive normal forms.

1 Introduction

Models of neural nets can be characterized by the net topology, node characteristics, and learning
algorithms. The simplest model of this type, the perceptron, has only one node with trainable
weights. The perceptron power to express complicated functions of its input has been analyzed by
Minskey and Papert in [8].

Multi-layer neural networks (see, e.g., [9]) were suggested as natural generalizations of percep-
trons. Even though they are superior to perceptrons in computing complicated functions, they
appear to be much harder to train. Recent results point out some inherent difficulties in both
the loading problem [4,2] (determining weights for correct classification of the training examples)
and the generalization problem [1,6]. This suggests that networks should be designed with some
"hardware constraints" to enable efficient learning. The constraints that we consider here are:

Each node in the hidden layer can have at most k connections with non-zero weights,
where k is a constant independent of n, the number of input variables.

We call networks that meet these constraints k-fan-in networks. An example is shown in Figure 1.
Notice that the constraints do not imply that the connections are hard-wired. Both the connections
and the coefficients are to be determined during the training. The question that we consider here is:
can a k-fan-in network be trained efficiently, and learn (in the sense of Valiant) non-trivial classes
of boolean functions?

We observe that potentially any network can be considered as a k-fan-in network by taking k
to be the maximum fan-in of a hidden layer node. However, since the asymptotic complexity of
our techniques is proportional to nk, they are impractical for large values of n when k is not a
constant. We show that if the network computes Boolean functions then:

* There is a k-fan-in network with a hard-wired hidden layer of o(nk) nodes and with fixed
(non-trainable) weights that is as powerful as any k-fan-in network.

* With high confidence, the same computation power can be obtained with randomly chosen
connections of o(nk log n) hidden nodes with fixed (non-trainable) weights.

e These networks are capable of learning (in the sense of Valiant) k-CNF and k-DNF formulae
by using the perceptron algorithm.

I- 313

Figure 1: A 2-fan-in network. At most 2 incoming connections to nodes in the second layer

2 Representation power

We denote the input variables by zI,. z,,, the values of the hidden layer nodes by yt, '", -, yi,
and the value at the output node by z. (See the example in Figure 1.) The values of these variables
are either 0 or 1. As usual, each node computes a weighted linear sunmmation and a threshold.
The boolean functions that are computed by the network can be expressed in an algebraic form as
multilinear functions.

Claim 1 If y = 1 whenever F,,ý=j az: > b and 0 otherwise then y can be ezpressed as a multilinear
function of degree no greater than k of the variables {zIt,.-.,z}.

Proof. See [8]. Example: zX + X2 > 0 * y = z1 + X2 - :T12 a multilinear function of degree 2, and
Z1 - O.Z2 + 0.5Z3 > 0.1 * Y = z1 + Z3 - XIZ3 - z 2 Z3 + XZ12Z3, a multilinear function of degree 3.

Claim 2 kfan-in networks compute functions of the type L&(l, -... , z,) > 0, where Lk(xl,..., x,)
is a multilinear function of degree bounded by k of the variables z,... , z,.

Proof: (sketch) It follows from Claim 1 and the fact that the node z computes a linear function
of its input before thresholding.

Remark: Therefore, k-fan-in networks are no more powerful than the order-restricted perceptrons
of Minskey and Papert [8].

We conclude that no k-fan-in network can be more powerful than a network in which the set

Y3 i s Y,, spans the vector space of all multilinear functions of degree bounded by k. We denote
by 4(n, k) =]=o (n) the dimension of this vector space. (For a constant k, 1(n, k) • nk.)

Claim 3 Let N11 be a network with m = 4(n, k) nodes in the hidden layer, such that (a) there are
hard-wired connections from each node {yi) to a different subset of X1 , .. ,z,, of size bounded by
k. (b) All the hidden layer connections have weights 1 and thresholds 0. Then NHl is as powerful

as any k-fan-in network.

Proof: (sketch) Since the dimension of the vector space of all multilinear functions of degree
bounded by k is 4(n, k), it is enough to show that the functions yl,', *, yo(.,k) of NH are linearly
independent multilinear functions of degree bounded by k. If yj is connected to {Xi,, ', ,,.}

I- 314

(r < k) then y= 1 if and only if IErz0j > 0. (It is easy to see that in fact, y = zil V... V zir.)

The proof follows from Claim 1 and the fact that the functions y, defined as above are linearly

independent.

Remark: Other choices of threshold values are also possible. The simplest choice is: i=j zi >
r - 1, since then we have yi = i ... " zi,. However, Choosing 0 as threshold allows us to choose

the same threshold for all nodes in the hidden layer.

The computation power of the network NH in Claim 3 appears to be the result of its carefully

chosen hidden layer connections. In choosing these connections each node has to know the connec-

tions of all other nodes. Therefore, choosing the connections for NH cannot be done in parallel. In

the following claim we describe a reliable distributed technique for choosing the connections.

Claim 4 Let NR be a network with (1 + e)kl(n, k) log n nodes in the hidden layer. The connections

and weights of NR are determines in the following way: each node chooses at random1 a subset

of at most k variables and forms connections with weights of 1 and threshold of 0. Then, with

probability of at least 1 - 0(1/log2 n) NR is as powerful as any k-fan-in network.

Proof: (sketch) It is enough to show that with probability of at least 1 - 0(1/log2 n) each subset of

{..,... , zn} of size bounded by k is chosen at least once. This is an instance of the coupon collector

problem (see, e.g., [3] page 225). The expected number for getting all subsets is §(n,k)(1 + 1+ •+

""+ 4 §y) " s(n, k) log'P(n, k), and the variance is 1:1-P(n, k) 2 - §(n, k) log §(n, k) + O((n, k)).

Claim 4 follows from the Chebyshev inequality, using the fact that i(n, k) ;. nk.

3 Learnability

We have shown in the previous section that when the number of hidden layer nodes is large enough,

k-fan-in networks can be trained by (a) Fixing (or randomly choosing) the connections and weights

of the hidden layer nodes. (b) Determining the weights of the connections of z, the output node,

by some training procedure. Since there is only one node with trainable weights we can use the

perceptron learning algorithm. This guarantees (see, e.g., [8]) that whenever a solution exists, the

training converges after only a finite number of mistakes. Unfortunately, this does not guarantee
efficient convergence.

From Theorem 11.1 in (8] it follows that if there are weights wl..., wm such that z = 1

whenever T, wiyi > 0 and 0 otherwise, and F'!nl wiyi > 6 > 0 for all positive examples, then

the number of mistakes of the perceptron training procedure is bounded by:

Wm= w IZ" m Y? I

62

Thus, the efficiency of the perceptron algorithm depends on the size of 6.

3.1 Learnability in the sense of Valiant

Valiant [10] suggested a complexity based definition of learnability. A class of concepts is learnable in

the sense of Valiant only if there is a learning algorithm that runs in polynomial time 2 independent

'All subsets (of size bounded by k) have the same probability.
"2The polynomial growth is with respect to some "natural" parameters of the concept class, such as n, the number

of input variables and the co ncept size.

1- 315

of the probability distribution of the examples. In this model, the perceptron does not always
learn fast enough, because 6 may be shrinking exponentially fast. However, as was observed by
Littlestone [7], it is possible to prove learnability in Valiant's sense for specific concept classes.

By using the results of (1] one can compute a number N(e) such that if a network produces
correct classification for N(e) examples chosen from an arbitrary probability distribution it will
correctly classify at least a fraction of 1 - e of the examples with confidence approaching certainty.
This guarantees learnability in the sense of Valiant whenever N(e) is polynomial. In the case of
k-fan-in networks N(e) is always polynomial.

Claim 5 Let N(e) be the number of ezamples that are required for valid generalization (see [1])

then the perceptron learning procedure requires no more than N(e). at'iiŽ examples.

Proof: (sketch) This number of examples guarantees that at least one run of N(e) examples are
correctly classified.

Corollary: A concept class in learnable in Valiant's sense by a k-fan-in network whenever the
separation 6 in Equation I is inverse polynomially related to n, the number of input variables.

3.2 Learnability of k-CNF and k-DNF

Boolean functions can be expressed in disjunctive normal form (DNF) and conjunctive normal form
(CNF). DNF/CNF functions with bounded size of terms/clauses (k-DNF/k-CNF) are learnable in
the sense of Valiant, while generalizations in certain directions lead to computational intractability
[5]. Littlestone described in [7] a set of transformations that transform k-DNF and k-CNF into
linearly separable functions. It is easy to see that the resulting functions can be computed by a
k-fan-in network, and the separation 6 is inverse polynomially related to n.

References
(1] E. B. Baum and D. Haussler. What size net gives valid generalization. Neural Computation, 1(1):151-

160, 1989.

(2] A. Blum and R. L. Rivest. Training a 3-node neural network is NP-complete. In Proceedings of the first
workshop on computational learning theory, pages 9-18. Morgan Kaufmann, 1988.

[3] W. Feller. An introduction to probability theory and its applications, volume I. WILEY, 3d edition
1970.

[4] J. S. Judd. Complexity of connectionist learning with various node functions. Technical Report 87-60,
Department of Computer Science, University of Massachusetts at Amherst, 1987.

[5] M. Kearns, M. Li, L. Pitt, and L. G. Valiant. On the learnability of boolean formulae. In Proceedings
of the nineteenth annual A CM symposium on theory o/ computing, pages 285-295, May 1987.

[6] M. Kearns and L. Valiant. Learning Boolean formulae or finite automata is as hard as factoring.
Technical Report TR14-88, Aiken Laboratory, Harvard University, 1988.

[7] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm.
Machine Learning, 2:285-318, 1988.

[8] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. The MIT press,
1969.

[9] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing. MIT press, 1986.

[10] L. G. Valiant. A theory of the learnable. Communications of the A C.11, 27(11):1134-I1.12, 198.1.

1- 316

Colored Noise Annealing Benchmark by Exhaustive Solutions of TSP
Harold Szu, Naval Research Laboratory, Code 5756, Washington, D.C. 20375-5000

Abstract: The shortest distances can be stochastically determined in a polynomial time for the Travelling

Salesman Problems (TSP), employing the color noise generated by the fat-tail Cauchy probability density, T/n

J2 + X2), which must be quenched with an inversely linear cooling schedule:T= To/ (1+ t) [Phys. Lett. Ain,

157, and Proc. IEEE a 15381. The quenching of Cauchy colored noise must be consistently used in every iteration

t-steps both in generating new states and in visiting some of the states only after passing a Cauchy acceptance

criterion. Such an algorithm is known as Fast Simulated Annealing (FSA) [AlP Conf. Proc. V. 1 p.421

Snowbird 19861. The FSA is t/log(t) faster than the Gaussian white noise simulated annealing algorithm being

already better than the Monte Carol method held at a constant noise temperature. The performance of FSA is

absolutely calibrated by comparing with the results obtained by a brute force search through all possible TSP

solutions. The complete energy spectra that consist of all round-trip distances are computed for 4 cities up to 10

cities. While the FSA used about ten minutes or less to find global minima, the exhaustive search through

hundred thousand possible cases had used several hours of CPU time on a Mac II (e.g. five hours for ten cities

implies 50 hours for 11 cities). The shortest tours agreed with those found by FSA. FSA is superior because

search for global minima required sampling less than 1%, with another 2% sampling to verify the stability.

Thus, the traditional random sampling should be replaced with the better FSA algorithm, and with the best

parallel Cauchy-neural network Machine useful for Image Processing [Szu, Scheff,"Simulated Annealing

Feature Extraction from Occluded and Cluttered Objects,"IJCNN-90, Wash. D.C., Jan. 15-18,19901.

KEYWORDS: Simulated Annealing, Cauchy Machines, Travelling Salesman Problem, Random Sampling

1. Cauchy Machine: Neural networks for computing can mimic the liquid-solid phase transition which

promises the minimum energy crystal state. Metropolis et al. [1 studied the phase transition by a numerical

annealing algorithm in 1953, which had been recently adopted by Kirkpatrik et al. (21 for a VLSI circuit layout

optimization in 1983. Then the neural network embodiment in Boltzmann Machine had been simulated by

Hinton and Sejnowski[3l. A sufficient condition for the convergence was proven to be too slow to be useful; the

temperature T(t) must be slowly cooled down to the zero degree according to the formula T= To/ log (1+t) of

Geman and Geman[41. Thus, in the interest of speeding up the annealing process and yet still finding the global

minimum, Szu [51 applied the Cauchy colored noise to similarly derive the annealing schedule T= To/ (1+ to

insure the complete search space available at all temperatures. This is known as the Fast Simulated Annealing

(FSA), as opposed to the Gaussian white noise annealing known as the Classical Simulated Annealing (CSA).

Since then the FSA has been studied for the termination formula: AE At = Order(1) in nonconvex optimizations

[61, and applied to the N-dimensional bearing-fix problem [7,81. Although the one-dimensional optical neural

network embodiment of the FSA had been already referred to as a Cauchy Machine 191, the VLSI design was not

completed. This shortfall is not because of any intrinsic property of the electronics versus the optics; but rather

because a new Cauchy against-force acceptance criterion, which was not derived until recently [101, turns out to

be local and thus can be distributed to each neurons taking the full advantage of parallel computing.

The total input firing rate -i being summed at the ith tree of dendrites with thousands of concurrent

channels with the dentrite weights WiJhas been propagated by ions and peptides through synaptic gaps to

receivers, from thousands other neurons with output firing rates i_

Ui =a j Wij vi +0, (1)

The total output vi is transferred from the total input ui Eq(2a) after passing the ith (axon hillock) threshold

9i. Recently, to model interconnect growth or prunin. that is useful for dynamic reconfigurable layer nets, the

author has extended the McCulloch-Pitts neuron to include the independent protein-actin-driven activity[14l.

vi = 1/(1 + exp(ui/ T (t)); Tij = 1/(1 + exp(Wij/ T (t)) (2a,b)

To adopt Eq(2b)for a binary interconnect as the control parameter T-*0, the author must furthermore generalize

the Hopfield-like energy E(vi) to include E(vi,Tij), a second set independent variables: the axonic weights

"Iij(e.g. in a top-down design fashion for the mini-max pattern clustering energy). In order to prove the

convergence of the parallel asynchronous dynamics in the Lyaponov sense (141:
dE/dt 0 0(3a)

the following Hopfield hard-wired Eq(3b) coupled with Rumelhart soft-wired learning rule: dWij /dt=

3E/aWij must be slightly generalized by a brittle-wired Eq(3c) to include the transfer "rom Wij to Tii Eq(2b)

dui /dt= - aE/avi; dWij /dt= - alE/6Tij (3b,c)

Proof of Eq(3a): By the fact (energy gradient)2 > 0, and the following chain rules:

dE/dt =(@E/avi)(dvi/dui)(dui/dt) + (@E/aTij)(dTij /dWij)(dWij /dt)

I- 317

we eliminate the above time derivatives in favor of the energy gradients using the righthand sides of Eq(3b,c).
Only the positive nature of the transfer function slopes Eq(2,ab) is required for the absolute convergence. Q.E.D.

Using stochastic and cooling nature of neurons, n-,ral networks have been referred to as Boltzmann
Machines (31, demonstrated by the celebrated Net-Talk. Unfortunately, the learning is slow, and for the
Gaussian white noise model, one can not integrate the Metropolis acceptance criterion to an elementary function,
which gives, by using steepest descend approximation for the energy gain=(Enew - Eold) incured by neuronic
decisions, the famous energy landscape up-hill acceptance criterion:

PT= 1a1(+ exp(gain/T)]
Such an energy landscape formula works all right on a conventional serial machine for one neuronic decision at
one time. Efforts have been attempted by Hinton and Sejnowsd to circumvent this shortfall, interpretating
Eq(2a) as a local decision rule for individual Hopfield-like neurons in order, to derive a specific hidden layer
probabilistic learning in terms of weights(c.f Appendix of ref.[31). Fortunately for Cauchy neurons, both the
output vi and the axonic weight Tii are locally set to be one only if random numbers generated within (0,11 are
less than acceptance functions computed also locally:

PT(ui) = =(1/rT) Jd X I[I+((X-uj)/T) 21 = (V/2) + arctan(uj/T(t)) /n (4a)

0
PT(Wij) = (1/2) + arctan(Wj1 IT(t)) /x (4b)

Eq(4a) is integrated using the identical Metropolis formula[ll for the Cauchy state generating probability
GT(x'l x'=x + X) = [T/n(T 2 + I X 12)] (4c)

The random variable X is the distance between the old x and the new x', or for uniform angle between ±V+2
X = T tan (0) (4d)
Proof of Eqs(4cd): Using dtan(0)/dO = 1/(0+tan(0) 2), we replace tan(0) with X/T giving Eq(4)) Q.E.D.

Moreover, the temperature is stepwise reduced [5-8]from an arbitrary initial temperature TO:
T(t)= To/ (1+ t). (5)

Both random walks and random flights (long jumps) are responsible for the Cauchy variance divergence, which
however turns out to be exactly integrable for the Metropolis new state acceptance criterion, Eq(4a,b).
2. Factorial Number Representation: A good mapping of a 2-D TSP on to a 1-D search space should preserve a
neighborhood smoothness relationship. A smoothness spectrum would be desirable for a gradient descent
method often used for a heuristic search technique. While a good mapping is desirable for a local gradient
method, it is not needed for a semi-local FSA technique except a lower initial temperature To and thus earlier
termination time in reaching the ground state within the spectrum resolution.

A good coding scheme must be 1-1 unique. Because the combinatorial nature of the TSP, a factorial
number base system is adopted for the simplicity: (A) The real line x is sampled by the set of real integers x,
using the function: lnt(); (B) Then, integers are made periodically in the module base set of (N-1)!, using the
function: Mod(,); and (C) Such an integer number can represent a state of a valid tour since a factorial base set is
related to the tour order permutations. Thus, one represents the integer in term of the factorial number base
system by calculating the most significant numbers denoted by index(.

xnew=Zn indexn x n! (6)
sequentially for all n beginning with N-I downto 0. For example, if five cities denoted by #1, #2, #3, #4, #5, and
xold= 0 = (#1,#2,#3,#4,#5) indicates the tour order that city #1 is visited first, etc., then one finds

xnew= 15 = OxO! + lxl! + lx2! + 2 x 3! + 0x4! = (#1,#4,#3,#5,#2)
The representation index=(O, 1, 1, 2, 0) is obtained with respect to the base set(0! ,1!, 2!, 3Y, 4!) sequentially
decoded from the most significant bit first: (1) At step 1, the city at (l+0)-th position is the city #1 that is pick
up to move 0 (meaning no) step to the left, and the rest is (in this case is not) push down, which is identical to:
(#1,#2,#3,#4,#5); (2) At step 2, the city at the (2+2)-th position is read off by adding 2+2 !o be the present
city#4 that is pick up and move to the left by 2 positions, and the rest, city #2 and city#3, are push down,
resulted in (#1,#4,#2,#3,#5); (3) At step 3, the city at the present (3+l)-th position is now the city#3 tiiat is
pick up and move I position to the left, and the rest, city #2, is push down, resulted in (#1,#4,#3,#2,#5); (4) At
step 4, the city at the present (4+l)-th position is now the city #5 that is pick up and move I position to the left,
and the rest, city#2, is now push down yielding fin,'lly (#1,#4,#3,#5,#2). [cf.Appendix A for 24 possible
clockwise and counter-clockwise tours for 5 citis:5x4x3x2/5=241
3. Applications: The FSA can reduce the running time from 5 hours to ten minutes for 10 cities on Mac II.

1- 318

3.1 Exhaustive Search Technique: Exhaustive search techniques are useful, before the computational time
limit, benchmarks calibrating the performances of other heuristic techniques. Results from 4 cities upto 10
cities are given in Figs.l. Divide n! by n possible home city, we take clockwise tours different from the counter
clockwise tours for the sake of easy book keeping in the FSA.
3.2 Fast Simulated Annealing Search Technique: Since Cauchy Machire is based on the local force field,ui
rather the total energy, then the dlecoupled processors can be much faster than the serial simulation. Fig.2 has
the search, the accept, and the energy plotted against the time steps giving correct answers.

Appendix A Table for all 3 city 24 tours obtained by the coding scheme Eq(6)
State fcity tour factorial-base State #city tour factorial-base
Wx (orders) (representation) Wx (orders) (representation)
0 (#1,#2,#3,#4,#5), (0,0,0,0,0) 12 (#1,#4,#2,#3,#5), (0,01,101,2,0)
1 (#1,#2,#3,#5,#4), (0,1,0,0,0) 13 (#1,#4,02,#5,#3), (0,1,0,2,0)
2 (#1,#2,04,#3,#S), (0,0,1,0,0) 14 (#1,#4,03,#2,#5), (0,0,1,2,0)
3 (fl,#2,#4,#5,#3), (0,1,1,0,0) 15 (*1,*4,#3,#S,#2)o (0,1,1,2,0)
4 (#1,*2,#5,0l3,#4), (0,0,2,0,0) 16 (#l,#4,#5,02,03), (0,0,2,2,0)
5 (#1,#2,#S,#4,#3)0 (0,1,2,0,0) 17 (#1,#4,#5,#3,#2), (0,1,2,2,0)
6 (#1,#3,E2,#4,#S), (0,0,0,1,0) 18 (#1,#5,#2,#3,#4), (0,0,0,3,0)
7 (E1,#3,#2,#5,#4), (0,1,0,1,0) 19 (#1,05,#2,#4,#3), (0,1,0,3,0)
8 (#1,#3,#4,02,*S), (0,0,1,1,0)1 20 (#1,#5,#3,#2,0l4), (0,0,1,3,0)
9 (#1,#3,04,#5,#2) (0,1,1,1,0) 21 (#1,05,#3,#4,#2), (0,1,1,3,0)

10 (#1,#3,#5,#2,#4), (0,0,2,1,0) 22 (#1,*5,#4,02,#3), (0,0,2,3,0)
11 (01,#3,#5o#4,#2), (0,1,2,1,0) 23 0#1,#5,04,03,02), (0,1,2,3,0)

[I1I N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, J. Chem. Phys. Vol.21. pp18-1092, June 1953.
121 S. Kirkpatrick, C. Gelatt Jr, M.P. Vecchi, "Optimization by Simulated Annealing," Sci., 220, 4398, May 1983.
U[31 C. E. Hinton, T. J. Sejnowski, ln:PDP Ed by Rummelhart.McClelland MIT Press, 1986, Ch. 7,pp.282-317
141 S. Ceman, D. Ceman,, IEEE Trans. on Patt. Anal. Mach. lnt.,vol. PAMI-_6 pp. 721-741,Nov% 1984.
[51 H. Szu, "Fast Simulated Annealing," Neural network Conf. Proc.AIP, Vol. iJIL pp.420-425,, Snowbird LIT, Ed.Denker, 1986.
161 H.Szu, "Nonconvex Optimization," SPIE Vol. 698L pp.59-65, 1987
(71 H. Szu,R. Hartley, "Fast Simulated Annealing," Phys. lett. A, VoI.i22. pp.157-162, June 1987.
181 H. Szu, R. Hartley, "'Nonconvex Optimization by Fast Simulated Annealing," Proc. IEEE, Vol. 71 pp.1538-1540, Nov. 1987.
[91 K. Scheff, H. Szu, "1-D Optical Cauchy Machine Infinite Film Spectrum Search," ICNN-87, p. lli.-673,San Diego 1987
[101 Y. Takefuji, H. Szu, " Parallel Distributed Cauchy Machine," IJCNN-89, p.1-329, D.C. , June 18-22,1¶989
[111 J.J. Hopfield, D. W. Tank, "Neural Computation of Decisions in Optimization Problems," B~o.Cyb., 52. pp. 141-152, 1985.
[121 D. W. Tank, J.J. Hopfleld, IEEE Trans.Circ. Sys., Vol. CAS-3_. No.5, pp.533-541. May 1986.
[1315S. Foo, H. Szu, " Solving Large Scale TSP by divide-and-conquer, " IJCNN-89, p. 1-507, D.C., June 18-22, 1989
1141 H. Szu, "Reconfigurable Neural Nets .. ,'IJCNN.89, pp. 1-485-496, Washington D.C. , June 18-22,.1989

1151 H. Szu, S. Foo,"Space-Scanning Curves for Spatiotemporal Representations, ..." IJCNN-90, Wash. D.C., Jan. 15-18,1990.
1161 H. Szu, K.Scheff,"Simulated Annealing Feature Extraction from Occluded and Cluttered Obiects,"IICNN-90, Wash.

Traveling Salesman Distance Spectrum for' 10 cities
distance 2.77822 at State -362879

Min. distance- 2.69067 at State - 45359
7

Ener-gy Level

4.5

3.25

90720 l814i0 272160
3 61ý 8State Space of Ualid Tours

1 - 319

Low I pot:. vw46 iEM Imi141 dU'Ike. bNes. I.44 Seem LOW! S IM~

ow6 4611 " Lm vi

90-6

Low,_ _ __ _ _ __ _ __ _ _ 4 am stýMd Im - n" I so a-4 o

WImm,

Met.

"G: ~ ~s"

'446.

SI- vm6 Sm.On -o '. .o

soefw-4...- a l-fes II W A1

osess

fleet

has.

Lee.

Nonlinear dynamics of analog associative memory neural networks

F. R. Waugh, C. M. Marcus, and R. M. Westervelt
Division of Applied Sciences and Department of Physics
Harvard University, Cambridge, Massachusetts 02138

Parallel dynamics is essential for fast computation in large artificial neural networks. Networks
of two-state neurons, often studied because of their formal resemblance to Ising systems, must be
updated serially to prevent oscillation and as a result perform computational tasks slowly. In
contrast, networks of analog neurons with a smooth graded response can be updated in parallel
with guaranteed convergence to a fixed point.

In this paper, we analyze the dynamics of discrete-time analog associative memory neural
networks updated in parallel. Using global stability analysis, we derive phase diagrams describing
the network dynamics as a function of the fraction a of stored memories and of the gain or
maximum slope P3 of the neuron transfer function. We show that, for a range of values of a
and A, such networks can function as reliable and stable associative memories. The results also
suggest the possibility of "annealing" a network deterministically by varying the gain so as to
decrease the likelihood that the system becomes trapped in undesirable local minima. Numerical
investigations confirm both the phase diagrams and the analog annealing concept. Details of the
results presented here will appear in a subsequent publication.1

The network we study is the iterated map described by the N coupled nonlinear equations 2

(N
x,(t + l) = Fj Tix(J , i = I,..., N (1)

where xi (t) denotes the output of neuron i at time step t and Fj is the neuron transfer function,
which may be different for each i. In Ref. 2 we proved two general properties of the dynamical
system (1). First, if Tj is symmetric and if all F) are single-valued, monotonically increasing
functions rising less rapidly than linearly for large arguments, then all attractors of (1) are either
fixed points or period-two limit cycles. Second, if the system obeys the condition fli < I 1/Amin I
for all i, where fli > 0 is the maximum slope of Fj and ;Ldn the most negative eigenvalue of TY,
then all period--two limit cycles are eliminated and convergence to a fixed point attractor is
guaranteed.

In this paper, we apply these results to two well-studied models of associative memory, the

I- 321

Hebb rule3 and the pseudoinverse rule.4 , 5 For the Hebb rule, the connection matrix is given by

ON

while for the pseudoinverse rule, it is given by

N1 - , i*j; Tr=O (3)
ju, v=l

CUV 17,Cip i V(3b)
N =1

In Eqs. (2) and (3), the 4ilu are random, unbiased binary variables (4? e {-I,+I} for all i and

p). We choose F5(x) = tanh (fx) for all i and consider the dynamics of (1) for large N. Using
the results of Ref. 2 and the eigenvalue spectra of the matrices (2) and (3a),5 , 6 we find that
period-two limit cycles are eliminated from the system (1) for both learning rules when

P < I/a (4)

and that the origin is the only attractor of the system for the Hebb rule when

and for the pseudoinverse rule when

S< 1/(I - a). (6)

We also derive the maximum storage capacity of the system-as a function of P for both learning

rules by examining the dynamical stability of the memory recall states. For the particular choice of
neuron transfer function given above, the maximum storage capacity agrees with the results from

the thermodynamical treatment at temperature 1/f. 7

We use these results to compute the phase diagrams shown in Figs. 1(a) and 1(b). Figure 1(a)
shows the phase diagram for the system (1) in the limit of large N when Fj (x) = tanh (fix) and
Tij is given by the Hebb rule (2). In the region marked "origin," the system possesses a single
fixed point attractor at its origin (xi = 0 for all i). The boundary delineating this region arises
from the condition (5). In the region marked "sg," the system converges to fixed points with
negligible overlap with the stored memories ("spin glass states"). In the region marked "recall,"

1- 322

/I

fixed points appear which have macroscopic overlap with a single stored memory ("recall states").
Because the basins of attraction of the recall states are large, the system works reliably as an
associative memory in this region. The boundary separating the spin glass and recall regions is the
maximum storage capacity (see above). Finally, in the region marked "osc," period-two limit
cycles ("oscillatory states") appear along with recall and spin glass states. The boundary
delineating this region arises from the condition (4).

Figure 1(b) shows the analogous phase diagram for the system (1) with the pseudoinverse
matrix (3a). The regions marked "origin," "recall," and "osc" have the same meaning as in Fig.
1(a). Their boundaries are given by conditions (4) and (6) and by the maximum storage capacity;
the boundaries arising from condition (6) and from the maximum storage capacity are coincident.
The system does not exhibit a spin glass region.

Figures 3(a) and 3(b) show typical results of numerical investigations of networks of 100

neurons. Each figure represents an average over 20 matrices Ty. For each matrix, 13 was varied

from P =- 0.3 to 8 _= 90.0. For each value of P, the system (1) was started at 50 random points
(xi(0) e {-l,+1} for all i) and iterated until convergence to a fixed point or period-two limit cycle.
The vertical axes of Figs. 3(a) and 3(b) represent the fraction of iterations which converged to the
origin, recall states, spin glass states, and oscillatory states; the bars across the top of the figures
indicate the corresponding regions of the phase diagrams. For both learning rules, the data agree
well with the phase diagrams. The relatively low number of spin glass states in the recall region at

low values of 13, furthermore, suggests the possibility of annealing the network deterministically

by starting 13 at the lower boundary of the recall region and increasing it to the upper boundary
while the network iterates. 8

One of us (F.R.W.) acknowledges support by the U. S. Army Research Office as a JSEP

Graduate Fellow. This work was supported by the Joint Services Electronics Program, contract
N00014-89-J-1023, and by ONR contract N00014-89-J- 1592.

References

1. C. M. Marcus, F. R. Waugh, and R. M. Westervelt, to be published.
2. C. M. Marcus and R. M. Westervelt, Phys. Rev. A 40, 501 (1989).
3. D. 0. Hebb, The Organization of Human Behavior (Wiley, New York, 1949).
4. L. Personnaz, I. Guyon, and G. Dreyfus, J. Physique Lett. 46, L359 (1985).
5. I. Kanter and H. Sompolinsky, Phys. Rev. A 35, 380 (1987).
6. A. Crisanti and H. Sompolinsky, Phys. Rev. A 36, 4922 (1987).
7. D. J. Amit, H. Gutfreund, and H. Sompolinsky, Ann. Phys. 173, 30 (1987).
8. F. R. Waugh, C. M. Marcus, and R. M. Westervelt, to be published.

I- 323

0.20 0.8
(a)(b)

0.15 0.6
sg

a .1 origin osc a 0.4 origin osc

0.05/ 02
recall recall

0.00 0.0
.1 1 10 100 .1 1 10 100

Figure 1. Phase diagrams (a) for the Hebb rule and (b) for the pseudoinverse rule. See text
for details.

origin sg recall osc origin recall osc
1.0- 'r•- (a) 1. ::: •(b))

o 0.6 Wcn 0r 0.6i
0

S0.4- 0.4-

0.2 0.2

0.0 0.0

.1 1 10 100 .1 1 10 100

Figure 2. Results of numerical investigations of the system (I) (a) for the Hebb rule with

a=o0.05, and (b) for the pseudoinverse rule with a=0.10. Diamonds indicate the origin,
squares the recall states, triangles the spin glass states, and circles the oscillatory states. See
text for details.

1- 324

MODELING OF FAULT-TOLERANCE IN NEURAL NETWORKS

Lee A. Belfore, II Barr W. Johnson James IL Aylor

University of Virginia
Center for Semicustom Integrated Systems

Department of Electrical Engineering
CharlotesviUe, Virginia 22901

Phone: (804) 924-7623

Abstract - Neural networks are finding a wide range of engineering applications in areas such as adaptive
control, machine vision, and pateuri recognition. In order to use neural networks in applications requiring high
reliability, a method for fault tolerance analysis must be developed to allow the prediction of a network's
performance in the presense of faulty elements. This paper presents an overview of an analytic technique for
assessing the fault tolerance of neural networks. The basis of the technique is developed through an analogy with
magnetic spin systems using statistical mechanics. A Markov model is created using the statistical mechanics
analogy, and the results are compared with simulations. The primary example presented in this paper is an
autoassociative memory.

K•y Words - fault tolerant computing, fault tolerance analysis, neural networks, redundancy, VLSI

This work was supported by the Virginia Center for Innovative Technology Development Center grant to the
Center for Semicustom Integrated Systems.

L Introduction

As neural networks emerge as viable solutions to many engineering problems, some shortcomings exist in
their engineering analysis. Among the many engineering design goals is fault tolerance. Without some analytical
technique for accurately assessing fault tolerance, the usefulness of the neural network in certain high reliability
applications is questionable, even though the neural network may actually have the appropriate fault tolerance
prpere. This paper provides an overview of results using an analytic technique for the assessment of the
performance of faulty neural networks which was developed in (Belf891.

Many researchers address the fault tolerance of neural networks in a qualitative fashion, however little work
has been done to analytically assess the performance of neural network in the presence of faults fJack86, Fuku75,
Litz75, Pere86a. HoptS2, Cart88]. The networks appear to be fault tolerant, however previous research either
assumed system learning will provide fault tolerance or simply stated the network to be fault tolerant without any
further analysis. The research presented in this paper has taken the position that it is important to be able to assess
the performance of the neural network in the absence of learning since it may not be possible for relearning to occur
in the network during the time following a fault.

2. Overview of the Analytical Technique

A statistical mechanics analogy can be made between the Ising magnetic spin system and a model for a neural
network [Litt74, Shaw74, LiU75, Lizt78, Pere84, Pere86a, Pere86bJ. The magnetic spins are analogous to the state
of the neuron, either firing or not firing, and the magnetic interactions are analogous to the interconnections between
neurons. Each neuron will have a firing transition probability defined by

pi (j0 VV) =1 .] (1)

-- T j--

where VI is the initial state from which transition probabilities are computed, V,1 is the initial state of neuron j, wii is
the interconnection weight from neuron j to neuron i, E indicates the neuron is to fire, Oi is the threshold for neuron
i, and T is the parameter adjusting the randomness of the transition.

1- 325

"The fault polynomial representation developed in CBelt39] and summarized here allows one to describe the

behavior of the neural network in terms of state transition probabilities in the presense of faults. The fault
polynomial representation includes all outcomes of possible faulty behavior and averages their effect with respect to
a degree of faultiness. Faults in this model are represented by the a£sence of weight connections between neurons.

The smallest building block is each neuron in the network. A fault polynomial repesentation for each neuron
is generated by considering the probability of the neuron transitioning to either firing or nonfiring states. This
representation is generated by looking at each possible degree of faultiness for the neuron. Each neuron has k,
inputs and can have I f ki inputs faulted, and the coefficients for the fault polynomial are generated by
taking a cumulative sum of th robabiliups of the neuron transitioning to a firing. The divisor polynomial
coefficients are, therefore, O J here = which is simply, the number of possible ways that

neuron i can have f faulted weight connections. The nonfiring transition probabilities for a neuron are computed
similarly.

The degree of each term in the fault polynomial representation corresponds to the number of weight faults
inserted at the input to each neuron. Suppose there are faults inserted, and we want to know the average behavior
of the neuron in the presence offf falts. We need to average together all possiblp a of there being!f faults. If

the neuron has k' inputs, them are If I cases of the neuron havingf faults, where is the number of combinations

of f inputs chosen faulty out of ki possible inputs. Therefore, taking an average of [V] neuron transition

probabilities is necessary. Since we are taking the cumulative total of the neuron transition probabilities for there
being f faults, we can extract the neuron transition probability if we also keep tack of the number of outcomes of
there being f faults. The coefficients of C(r) are computed by summing over all outcomes of neuron i having f
faults. Specifically,

= - p (MIf VO e(neuroni withffauf's (2)

where pi(Ilf,V',Q is the probability of neuron i firing given a particular trial ý of a level of faultiness f from
sating state Vt. The cumulative polynomial for this case would take the form

Cir Cif (3)

The coefficients of the divisor polynomial can be computed, knowing the number of inputs to each neuron i, as

Thus, the divisor polynomial is simply

D(r) = D ir/. (5a)

=A01fI rl.(5b)

The average probability of neuron i firing given a starting state Vt is given by

pi(ilf ,V')-= . (6)

Thus, to get the neuron firing probability for all degrees of faultiness f , the cumulative polynomial is divided, term
by term, by the divisor polynomial. The fault polynomial representation for a neuron not firing is developed
similarly by considering nonfiring probabilities instead of firing probabilities in the above development.

If the individual neuron transition probabilities are considered independent, the transition probabilities to the
neural system states are composed of the product of transition probabilities over all neurons to their respective
states. It can be shown that the fault polynomial representation for the network is determined 5y a product of the
fault polynomial representations of the neurons (Belf89]. The assumption of independence for the neuron transition
probabilities is justified by considering that the neuron makes its transition based only on the input at a particular
time and the statistics of that particular neuron. In order to generate the transition probabilities from one state to
another state and more importantly the Markov transition manicies, the fault polynomial representations for each

1- 326

state transition are computed. Thus, the average faulty behavior for the system is captured for specific state
-ansition probabilities.

3. Analysis of the Fault Tolerance of a Neural Network Implementation

An autoassociative memory was chosen for analysis because of the simple storage algorithm and regular
strucwte that makes it straight forward to analyze. The storage algorithm used in this analysis is a modified form of
(Hopf821 and is as follows

Vv= s$ $j for ij=lN (7)
got

where Sf is the il bit of the sh pattern being stored in the memory and w4, is the interconnection weight from the
output of neuron i to the input of neuron j. The patterns stored in this network are S' and
S2=90,3,MM , The fault polynomial representation was applied to the autoassociative memory with these
patterns stored, and analytical results are compared with simulated results.

Applying the fault polynomial representation and approach to the autoassociative memory is a straight
forward process. First. the performance has to be defined. For the results presented here, the performance is
measured by

r(f ,h) p (S- I V' e (states Hamming distance hfrom S') .L), (8)

which is the probability of resulting in one of the stored patterns S' given an initial state V1 that is a Hamming
distance h from the stored pattem S andf faults. For the 8 neuron neural system, Figure 1 shows the performance
plotted, as the solid curves, for different- Hamming distances from either S' or S2. The horizontal axis represents the
level of faultiness in the neural system measured by the number of weight connections removed. The vertical axis
represents the performance of the neural system measured by the probability of resulting in S'. Figure 1 has four
plots corresponding to Hamming distances of 0, 1, 2. and 3 from one of the stored pattemrns. A temperature of T=1.0
was chosen to show the behavior at a temperature that is large enough to capture the random behavior yet small
enough so that the system functions intuitively. Figure 1 has a number of interesting features, foremost is the
smooth degradation of the performance as the number of faults is increased.

The simulations performed used neurons whose form is identical to that used in the analysis performed. This
approach has two motivations. The first is an informal verification of the analytical approach. If all the neuron
parameters are identical, the simulation results should agree favorably. The second is a demonstation of the fault
tolerance of the autoassociative memory.

The parameters used in the simulations are summarized in Table 1.

parameter value
temperature T=l.0
transition relation Boltzmann pdf with neurons having outputs of 1 and -I
iterations 5
initial states for each hamming relation, bits chosen in a uniform random fashion
faults for fault level, faults chosen in a uniform random fashion
simulations per data point 512

TABLE 1. Boltzmann Simulation Parameters

Figure 1 shows the results of the Boltzmann simulations as the data points superimposed on the analytical
results, and as expected, the analytical method accurately predicts the simulated results.

4. Summary

In summary, this paper presents the analysis of the fault tolerance of neural networks using a statistical
mechanics model. Simulated results are compared with analytical results showing that the analytical model does
indeed conform to the simulation model.

1- 327

1.0.

0.9 -

0.7 . .7

0.6 4

0.5

So0.2

0.i. !
0. 1

0.01~
Number of faults

Figure L Analytical and Simulated Results using Boltzmann Neurons

5. References

(BeMfS9] Lee A. Belfore, I. Modeling of Fault Tolerance in Neural Networks, Ph. D. Dissertation, August, 1989.

(Fuka75] Kunihiko Fukushima, "Cognitrn: A Self-organizing Multilayered Neural Network," Biological
Cybernetics, voL 20, 1975, pp. 121-136.

CHopf821 LJ. Hopfield, "Neural networks and physical systems with emergent collective computational abilities%,
Proceedings of the Natonal Academy of Sciences USA, VoL 79, April 1982. pp. 2554-2558.

[(ack861 L D. Jackel, R. E. Howard, H. P. Graf, B. Sraughn, J. S. Denker, "Aritficial neural networks for
computing," I. Vac. Sci. Technol. B., voL 4, no. 1, JaniFeb 1986, pp. 61-63.

[Lin74] W. A. Little, "The Existence of Persistent States in the Brain," Mathematical Biosciences, vol. 19, 1974. pp.
101-120.

[fitt75 W. A. Little and Gordon L Shaw, "A Statistical Theory of Short and Long Term Memory," Behavioral
Biology, voL 14, 1975, pp. 115-133.

(Litt78] W. A. Little and Gordon L. Shaw. "Analytic Study of the Memory Storage Capacity of a Neural Network,"
Mathematical Biosciences, vol. 39, 1978, pp. 281-190.

[Pese84] P. Peretto, "Collective Properties of Neural Networks: A Statistical Physicas Approach." Biological
Cybernetics, voL 50, 1984, pp. 51-62.

[Pere86a] P. Peretto and 1. J. Niez, 'Long Term Memcry Storage Capacity of Multiconnected Neural Networks,"
Biological Cybernetics, vol. 54, 1986, pp. 53-63.

(Pere86b] P. Pereto and 1. J. Niez, "Stochastic Dynamics of Neural Networks," IEEE Transactions on Systems.
Man And Cybernetics, vol. SMC-16, no. 5, September/October 1986, pp. 73-83.

(Shaw74] Gordon L. Shaw and R. Vasudevan. "Persistent States of Neural Networks and the Random Nature of
Synaptic Transmission," Mathematical Biosciences, vol. 21. 1974, pp. 207-218

I- 328

NEURAL NETWORKS WITH PERIODIC OUTPUTS
tAPPLICATION TO THE RECOGNITION

OF TEMPORAL SEQUENCES OF PATTERN
P.Bourret

*Department of Computer sciences
UNIVERSITY OF MARYLAND + ONERA-CERTiDERI
COLLEGE. PARK 2 Avenue E.Belin

MD 20742 BP 4025

USA 31055 Toulouse CEDEX FRANCE
I Introduction
In the past few last. years the interest in learning and recognition of temporal sequences of patterns has
increased.[PINE87],[DE-LH87J,[DOYA89J0[UCH189I.Hopf bifurcations have been use to achieve limit cycle
attractors [BAfR891;some other have tried to process temporal patterns by means of "leaky integrator',
which are neurons which have continuous outputs.But. in each case the exhibited results are not very

efficient.The aim of our paper is to give a framework for temporal sequences recognition by examining
several interesting properties that we have experimentally shown on a very small network which consists

of only five nodes.After the presentation of this network and its properties we show that using an assem-
bly of ' uve nodes networks" (5NN) and given a set of possible inputs, we are able to recognize each of
these inputs.Moreover we also show that. another set of 5NN enables us to determine what the previous

input was using a recursive method.
I1 The "5NN" architecture and its aetivation rule
The architecture is very simple and is shown in figure I

19 a a At
I]-;A I-

b b

FIG7URE I
The activation rule is a slight, generalization of the competitive activation mechanism fREGG871.
Let ai () be the activity level of node Ui at time t and 'rij the strength of the link between Ui and
Ui .{aj E 0.1i).The activation rule is based on: the following differential equation:

do, . ,, a,(I)a t

k

With the constraint: .gi --0 which inmplies that (I a,)- -(, 2 for sonte constant C,"

P X
Because of constraint 2 h and b' must not equal I.O.The equations. of whirh the -clutionsI are the coor-

dinates of the equilibrium points of a 5NN. can he written ak.- follow-s

db
I a b "#, 0 3

A a b' *Mw -- 04
d2

1- 329

- +(me 8 ÷+ d 441 +) (- + ,Val

4. , • s . , .~

+ -I)d (1-d4)+(+0, X-d)!71"-7-t a-'•'ve • +od +Md

*+L'a' .pa'

Given 06 ,0, we can easily compute #, ,9, .0, in such a way that there is an equilibrium point out of
the planes 0, =1.0& =1.9d =-IO =1,0. =I.For this purpose we can solve the two folowing systems,in
order to get a particular solution.

System I

a I + 7 , -1 =0181

a, -1=0o91
8 +Va 4 +pd'

Vd, ps 1 010
s +-vat a +pal

which gives the values of s.a,a* which are used to solve the system II.
System 11

a -- •me = 0 12la

-- -ý-0. ---01121

S+Va . =01131

which gives 9, .0. .Oe
When 0, .9, .1, are computed the differential equations which are defined in equations 3! through V7 are
used to compute the next. state of the "5NN-.
IllProperties of the -5,A'
An extensive experimental study of the "5NN- behaviour enables us to claim the three following proper-

1) Given the parameters (A .p)of a '5NN" and its starting point s(O).,q0).a'(0.b(O).b(0)l . three of it...
nodes oscillate between two extreme values which are different for each node wherea;s the two other nodes

remain constant.The sets of oscillating nodes are either s.a.b or s.a*.b'
Sda (o1 b(0

2)the set of oscillating nodes. is determined by the value of r (0)- d' di
M ,) . ••b (0)) -'

di dt
If r(O) I then A.a.h oscillates., whereas s.a ,h oscillates when r{O) [IMoreover r(t)-l ha.' the
same sign as r(OOI for the samne inputs #b .Otl
3)r(O)= I is a manifold which split the hlvpercruie of dimension 7 into two partrs.'l., h.% per;tuIe is dehil",d

by the vctiviov value of each node.lf the starting node i., on one side of t he manifoId th,- pointis whiich
represent the states of ihe -15NN" stat on this side until the inplsts are rh;inged-A more detailled report or
the experimentlly ob-erved properties. of the "5NN" ca;In he foumd in BOI'HR)

It' Inptts sequtenre deierinnittinn by, an a.q.ettbly of
(;ien a finite ,et o orf po,,ihle input., {(fA'f// i)..... () it Is possible to deftim., p) m\ " -.ilth tIltt if

2." k h.ere is ,nl on,, .,oihlle input renm:tini,• iw .ch that the, trj,.rrury projct ion ot ih,. Illit. (:0.f1 of

1- 330

the "5NN" states is not reduced to a single point.Thus, with enough well chosen "5NN" it is possible to

identify without a doubt what the input is.(see Figure i1).

The search of the previous input is not so simple.lt is based on the definition of a "5NN" which allows

oscillations of a set of nodes for two and only two pairs of inputs among those which are allowed.First we

can remark that the constraint 121 implies that sa.b,a',b' cannot be too close to 1.0 because Log(I-

s),Log(l-a),..would overflow.Sothere is an e ,computer dependant, such that s.a.b.a',h': 1-f [141.Thus we

can deduce that s.a,b.a',b'>• [151, where I stands for I -e K 0q2.With r such that ab' > 1-17

Ko=Lo9 (l--,o)+Log (1-bo)+Log (1-ao)+Log (I-bo)+Log (1 A 0).

a ri(O) I ri(O) <. I

t

lb

r-10) I r2(0) -1
FIG URE 11

thteither rkl(0) -- rk'(0) -,I and rk'(0) -I for all 1l# i~jýWk~or that r,,'(0) I and rj(O) I and rk' (0) -1 for
allgi~JI171 ;then the only the only possible input previously sent. before the present one O0h 6v is

.6OyThe search of solution ,pace of inequalities I61.ýI7! is done in the following manner.

dbi'

dt d

iLet I (f.Lw he an upper (lower) bound of f.Then we have:

for all 1 ý i~j L ((-ý 2 L. (('(I t,) 16.
dt di dt dt

for all 1 34 ij U*(________ d)2) L do! 'I) (t (L db' (I IV
dt 2 dt dt di

do' do'
The comptutat ion of iL d o (- (-)i calculated by deternmininug the tipperC andl lower hound., of !

dt
S.a1.a,.h.h given in 14! and 15 Then the derivatriVeS with respect to v' and p of

, ~ do' d, U(db (-*do ' ~(b ier)i -~aid P Thua we can maximize
I U((d, ~)2)artliea

nilninmize) r1 (O).In fact we only prov'e that if the~re has heen a previous~ input then it r0111(not hle different

fromt (#h .#,/).Thecrefore our assenthlN of SN N can only he used when we- know hlow nian~ tnpits have

alrr-ad% he applied to the networkj,('ee Figure 111)

V (Con rlu.q1ion

It is riot obvious~ hovi one can finid a 5N\ whichb. vi en a #.t (of inputr, will hiave it, ratio r(O) I for otllv

two gi~vl cInp it;t..\(.tl;ill~v what we hav. dollt'. i., to dleintn ;i #-I of' 5%A anid look for a vit (of inpu~t- uchr

I- 131

that any pair of these input-; may only be recognized by one of the 5NN.A lot of others problems have
arisen which cannot he detailed here.especially the determination of fand I for a given computer and its
software.At last the properties which have been presented in section III should be mathematically
proved.We hope that some readers will be interested by the amazing properties of our .5NN and will help
us to solve some of the remaining open problems, the most important of which is:C"an a 5NN learn to
have three oscillating node" for two given inputs and a different set of oscillating nod"s for the n-2 other
input~s?

lob~ jo ob24: 16o I o InPUt=9 A 304;

I I I

Sit (0)=8. (t)
___0_=._(__A jIM IH S42.Al 29 2

104 20 0 to, 16:tbt I 2e ISET OF $NN OF DETERMINATION

FIGU RE [III

Referentes
iBair89' B.Baird A Bifuircation Theory Approach to Vector Field Programming for Periodic
Attractors.Proc I-J(N N (onf. Washinigton Jutne S9.
Bour89' P.Bourret Neural Network with Pe#riodlic Output Technical Report CERT DERI (to appear

Septemnber 149)
'Dova8q K.Dova.S%.)ioshizawa Mlemoriz ing Oscillator%. Patterns in the Analog Neuron NetworkProc
I.CNN (onf.Washingion -litte 8A
Dh9Deha ehene.JF (hangeoix.JP. N~ia~la:Neral Net works that learn temporal squieuiice hý

st-leet ion.Prov. Nat. Acad. of 'ite.IA ol 84 tpp272 7-2731

Pinte87 F.Pineda (;rneralization of harkpr-opag~itimn to recurrent Neural3 Networks, Phs.yý Review Letter

ReggA7 T1R# tg;gia ropert j e- of :1 comlpel it toll2 Ihsed act1 at ioii ill ft iironiri tietir liet2work. Pror I t hit onti

onl Neural Nert~urk 19s7
Urhi8Q vrrl hivns .~i~hrY'otiAg .Moditie-d 1,#eak% Integrator Nerwork ror I'tttporail P'at-

tern Pruce--ing.IPror Hl(NN (orif W~ashinugtoni Jitui WC)

1- 332

AN ASYMMETRIC SPIN-GLASS MODEL OF LONG-TERM MEMORY IN A
DYNAMIC NETWORK ARCHITECTURE

Valerio Cinagalli, Massimiiano Giona

Faculty of Engineering, University of Rome *La Sapienza*, Via Eudossiana 18, 00184 Rome, Italy

Gianfranco Basti, Antonio Perrone

Pontifical Gregorian University, Piazza della Pilotta 4, 00187 Rome, Italy
Eros Pasero

Department of Electr. Engineering, University of Rome %Tor Vergata*, Via 0. Raimondo, 00173 Rome, Italy.

ABSTRACT

We are studying a particular dynamic architecture of neural network founded on the neurophysiological evidence

and on the aspin-glass oriented* modelling. The key-concept of our model is to distinguish among the coding

function of the input at the level of short-term memory (by a small and fast variance on the fixed weights etracting
dynamic invariants), the long-term storage of the codes (by a learning on the weights) and the recognitionfunction
(by a matching process between new codes and learned codes). In this way, we can make the net capable of
reckoning with non-steady inputs without failing in the coscillatory catastrophe. or in the (noise catastrophe,*
during the learning phase on the weights (LTM). In this paper, after a general presentation of the architecture, we
discuss a 2D asymmetrical spin-glass model of LTM. The main property of this model is its capability of making

stable, under given conditions, unstable equilibrium points of a chaotic dynamics (chaotic filtering).

L FAST CODING IN SHORT-TERM MEMORIES

In the classic paradigm of static neural networks, the coding function of the input is generally devoted to the LTM
connection weights, acting as a sort of agate•o on the STM activations.

Generally, the learning of the LTM traces and/or the self-organization capacity of the net follow an Hebbian rule.
Many problems arise when such an architecture must reckon with non-steady inputs. The radical solution would be the
attribution not only of a buffering function to the STM as in Grossberg's ART architecture (1], but the auribution also
of a coding function to it, so that the LTM has to learn and/or to recognize only pre-processed codes. But if we want to
ascribe a pre-processing function to a layered STM extracting in real time, step by step, even more general dynamical
invariants from the continuous statistical input, we need another variable in addition to the activations and the weights
of the classical models.

The neurophysiological evidence suggests the hypothesis that each neuron could be considered as a coincidence
detector in the time domain [2]. A network of coincidence detectors could thus exhibit another form of fast cell
assembling, different from the Hebbian one, called synaptic patterns. Different synaptic mechanisms, related to the
releasing of the mediator at the dendritic spine [3-4], could grant the the capacity of the synapse of defining and
continuously modifying a temporal window* within which all the impinging stimuli can be considered as simultaneous.
This further control on the strength of the transmitted impulse for every cycle could thus allow the fast establishment
of good timing relationships among cells. In the meanwhile, it could furnish us with the supplementary variable that
we are searching for. Finally, the metastable character of the net could grant the immediate resetting of the memory for
the next detection. To sum up, if we want only a dynamic STM storage in the net to perform input driven coding
operations, we must suppose a net with fixed synaptic weights s and fast variable synaptic strengths w. On the contrary,
if we want a static LTM storage, we must also modify the permanent synaptic weights s.

At present, different examples are already available of this dynamic preprocessing of the input at the STM level in
the mammalian brain. For instance, the multilayered structure of the mammalian visual cortex grants very naturally the
extraction of position invariants of the input features by the simple loss of retinotopy of the stimulus among successive
layers of the visual cortex [2]. Moreover, the evidence of a synchronization in phase (after a chaotic state during the
resting phase for the resetting of the STM) of the oscillato!,7 behavior of the cells within the same column of feature

detectors or among homologous columns in the primary visual cortex of the cat, might be a way to establish relations
between features in different parts of the visual field [4-7].

I- 333

2. ASYMMETRIC SPIN-GLASS CONTINUOUS MODELS OF DYNAMIC STM AND LTM
Our STM model requires that the synaptic weights arefired, and only their strengths are fast variable within a finiterange. Essentially this architecture can be modelled in a continuous form by considering that each weight J# in thenetwork is a random (Gaussian) variable with a given mean (e.gJ = 0) and a specified variance [fJdji. H. Sompolinskyand his colleagues [8) recently proposed a modified Hopfield model incorporating such a condition and constituted byN non-linear oscillators interacting via random asymmetric couplings. The dynamics of the net consists of N coupled

first order differential equations:

hi---h 1 + NJ-S j= + i ((h d
Jul V .1 Jul

whereJj is the synaptic efficacy (i.e., Von der Malsburg's synaptic weights s), hi is the local field associated to eachneuron: - - < h, < -;, O(x) is a non-linear gain function defining the input (hi) - output (Si) characteristic of theneuron: *(x) = tanh(gx). Such a dynamics, governed by the dimensionless control parameter gJ, shows a chaoticbehavior for gJ >1. Particularly, with N M10O, as gJ is increased above unity, the system pass through different limitcycle attractor, till for gJ>2, the system falls in a chaotic attractor. Such an architecture shows a (metastable) temporalcoding of the input (limit cycle) made progressively invariant by a sequence of layers obeying to Eq.(1) (see above,Sect.l 1). In this way, the periodic final output of this aglobal STM. is a compressed code ready to be learned (if it isstable fora sufficient long time) and/or recognized by a *global LTM* [9,101. This global LTM [11] is another Hopfieldasymmetric net having this time a modified Hebbian rule:

d Jj (t)
-d-- f-J(+ Si(1) , 1)I i(S J ()

TSi (0 T-- S, ft- c) d r
o j-rd (2)

The correlation functionf in (2) makes the net capable of switching off the learning for unstable inputs (transition tochaos). The net is thus able to distinguish dynamically between successful (recognition or learning) states (=limit cycle.time independent states) and unsuccessful states (=chaotic, time dependent states). This use of the chaos as a *safetydevice, preserves very naturally the LTM traces from the *oscillatory catastrophe,.

3. A STUDY OF TIlE FILTERING PROPERTIES OF THE TEMPORAL CORRELATION INAN ASYMMETRICAL 2D SPIN-GLASS MODEL OF LTM
We have studied a bidimensional asymmetrical spin-glass model of LTM that, under given conditions, can makestable unstable equilibrium p-,its of a chaotic dynamics. We defined this property as chaotic filtering (12-13]. Thedependence of the stable output of the net on the correlation with a series of precedent states is the main characteristicof our net We define this characteristic as the inner dynamic memory of the net.Let be Sq'/ q M M N (Z) the state of the spin at the time step (n), where M (Z) is the bidimensional matrix of the

states andX= 4-l, 1 .
If we indicate with ijapd)the connection weights of our 2D net, then the state dynamics is given by:

(+'"(()3)s.n+i= Tij I H (S]()

where

+ I if j(4) l 0Tij[X I I if
(4)' JqiX 4,t <0 (4)

with

HNmem (n) W) Ny -Is (n .k)

K=O (5)

I- 334

H is the filter operating the time correlation with dimension Nmem. The dynamics of the weights is given by the

following asymmetrical evolution including a modified Hebbian rule:
(a) ineNnv (a))(A) f t C ,. ' (S]< V

_(a÷) •JlJ V f C- 1 (S)
S = (6)

ji. g.",-I + NH j (S if i. C, 4I c S (s ("))I v

where Cij w Ns'a is the following correlation:

Affe o I SR) () (7)C# I, = I Si .

V is the correlation threshold and fis the sigmoidal function:

+z)- +e-XIT (8)

whereTis the temperature of the system. The presence of the term Hirjv'm(S(n)) makes asymmetrical the learning rule.
The properties of the time-correlation typical of this kind of dynamic filtering (i.e.,schaotic filtering*.) [12-13] depend

on the dynamics of the state evolution as well as on the dynamics of the weights. The filtering grants the stabilization
(i.e., a learning) fora sufficientextensionof the dynamic memory (Nmem). On thecontrary, with an insufficient memory,
the asymmetrical term predominates, so that the net exhibits a chaotic behavior. The metrical parameter d("+') :

d = S (9)

represents a measurement of the difference between successive outputs of the net. In the Figures I and 2, the temporal
evolution of this parameter is represented for different memory dimensions (Nmem) and N=7. For a sufficiently high
dimension, the output is stable, for a low dimension, the output is chaotic. The chaotic behavior is enhanced in the

C Nmem = 8
,•\ • Nmem = 10

/ Nmem = 20

Fig.l. d vs. time for different Nmem Fig.2. As Fig.l. Irregular case for Nmem = 4

Figure 3 describing the evolution, for a memory of dimension 1, of a typical parameter of this net: the spatio-temporal
correlation parameter z

-N .ij - SiJ (10)

In this net, the correlation is indeed a function not only of the time. but also of the position of the interacting spins.
To sum up, with respect to the other classical learning rules, the essential feature of our model is the presence of an

inner memory granting a dynamic processing of the information. Moreover, it is this same characteristic that grants the
self-stabilizing property of the net. In particular, it can avoid the oscillatory catastrophe in presence of too oscillating
inputs, by the presence of the term Ciy,,N'' of Eq.6. Its function in our model is very similar to that of the correlation
integral of Parisi's model in Eq.2. Nevertheless, there are two main differences: 1) the chaotic filtering is something
more than a simple correlation; 2) the net is always asymmetrical also after the learning.

I- 335

4. DISCUSSION AND PERSPECTIVES

Genm.--:y, the comprehension of the cognitive function of a chaotic dynamics in a neural net is today blocked within
an insupeanable dichotomy. 1) If we suppose that the incoming stimulus is insetted into the initial conditions of the
dynamics, we obtain an high selective power of the net, but we loss any categorization property of it, owing to its strong
dependence on the initial conditions. 2) On the other hand, if we insert extrinsically the input in the control parameter
switching the dynamics from a chaotic to a stable state, we obtain a sort of categorization property (similar inputs are
mapped into close limit cycles), but in such a case we do not obtain any appreciable advantage with respect to more
classical models such as a static Hopfield net. The necessity of an external teacher is requested in both the cases.

On the contrary, in our maps, owing to their self-filtering
capacity, it is granted that similr inputs are mapped in very
similar ways, though they are inserted into the initial con-
ditions of the dynamics. Indeed, the mapping or the self-sta-
bilizing function of the map corresponds here to an extrac-
tion of some essential invariant of the ongoing dynamics.
In this sense, it is obvious to expect that two correlated maps
of this type receiving a similar input will oscillate in phase

Fig.3. Chaotic behavior of z vs. n(Nmem= 1, N=7) only when they detect the same invariant. The synchroniza-
tion of the oscillating behavior of the neural feature detec-

tors of the mammalian brain (see above, SecLl) could have thus in the chaotic filtering properties its more natural
explication.

At present, we are studying a more sophisticated version of the model presented here, that is, a net exhibiting a
non-autonomouv evolution depending on the oscillation of its capacity of dynamic memory (Nmem).

REFERENCES

[1] S.Grossberg. "Nonlinear neural networks: principles, mechanisms and architectures", Neural Networks, vol. 1,
pp.17-61, 1988.

[2] C.Von der Malsburg & E.Bienenstock, "Statistical coding and short-term synaptic plasticity: a scheme for knowledge
representation in the brain". In E.Bienenstock (Ed.), Disordered System and Biological Organization, NATO AS I
Series, Vol. F20, Berlin-Heidelberg-New York, 1986, pp.247-27 1.

[3) W.Singer, "The role of acetylcholine in use-dependent plasticity of the visual cortex". In M.Steriade & D.Biesold
(Eds.), Brain Cholinergic Systems, Oxford-New York, 1989. In Press.

(4] W.Singer, "Self-organization in cognitive systems". In Eccles J.C. & Creutzfeldt 0. (Eds.). The Principles ofDesign
and Operation of the Brain. Proceedings of the Study Week Organized by the Pontifical Academy of Sciences,
Vatican C~ity, October 19-24, 1988, Vatican City and Berlin-Heidelberg, New York, 1989, In Press.

[51 C.M.Gray, P.Koenig, A.K.Engel & W.Singer, "Oscillatory responses in cat visual cortex exhibit intercolumnar
synchronization which reflects global stimulus propereties",Nature, Vol. 338-6213, pp.334-337, 1989.

[61 C.M.Gray & W.Singer, "Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex". In
Proceedings of the National Accademy of Sciences USA, vol. 86, pp. 1698-1702, 1989.

[7] M.Livingstone & D.Hubel, "Segregation of form, color, movement and depth: anatomy,physiology and perception",
Science, Vol. 240, pp. 740-749, 1988.

[8] H.Sompolinsky, A.Crisanti & HJ.Sommers, "Chaos in random neural networks", Physical Review Letters, Vol.6 1,
259-262, 1988.

(91 G.Basti & A.Perrone, "On the cognitive function of deterministic chaos in neural networks". In Proceedings of
IEEE/INNS IJCNN-89. International Joint Conference on Neural Networks, Washington D.C., June 18-22, !989,
Vol.1, Washington, pp.657-663, 1989.

[10] G. Basti & A.Perrone, "Time-dependcnt short-term memories in neural networks". In ProceedingsofSecondltalian
Workshop on Parallel Architectures and Neural Networks, Vietri sul Mare, April 26-28, 1989, London, 1989. In
Press.

[I1 G.Parisi, "Asymmetric neural networks and the process of learning", Journal of Physics A: Mathematics General,
Vol.19, pp.L675-L680, 1986.

[121 M. Giona, "Recursive filtering of chaotic maps". To be published.
[131 G.Basti, V.Cimagalli, M.Giona, E.Pascro & A.Perrone, "Fast coding in short-term memories of a dynamic network

architecture", submitted to IEEE NIPS-89, November 27-30. 1989, Denver, Colorado.

1- 336

Sensitivity of Layered Neural Networks to Errors in the Weights
Maryhelen Stevenson Rodney Winter Bernard Widrow

Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055

Abstract

An important consideration when implementing neural networks with either limited precision digital
or analog hardware is the sensitivity of neural networks to weight errors. In this paper, we derive an
approximation for the sensitivity of layered feed-forward networks of Adaline elements (threshold logic
uaits) to weight errors. It is shown that for large networks with small weight errors, the probability that
an output neuron makes a decision error can be approximated by

P E L 2 r' L I P 2

where L is the number of layers of the network, and I& is the normalized weight error or the "weight

perturbation ratio." The probability of error increases with L and with V/i but is essentially inde-
pendent of the number of weights per neuron and of the number of neurons per layer, as long as these
numbers are large, on the order of 100 or more.

1 Introduction
The input-output function realized by a neural network is determined by the values of its weights. When
using analog hardware to store the desired weights, an important issue is that of weight sensitivity; how
sensitive is the input-output mapping of the neural network to weight drift? In this paper, we investigate
this question for neural networks with Madaline structures (5].

The Adaline (adaptive linear element) [5] (also known as a linear threshold unit) is the basic building block
of the Madaline (many Adalines) network. Figure la shows an Adaline with n variable inputs: z1, X2,..., n.
The inputs take on binary values of either +1 or -1. The bias input, zo, is fixed at a value of +1. Associated
with the Adaline are n + 1 adjustable analog weights: wo, w1 ,..., w,,. The weights of the Adaline scale the
corresponding inputs, the scaled inputs are summed, and the weighted sum is input to a threshold device.
The threshold device outputs a -1 for negative inputs and a +1 for positive inputs. The output of the
threshold device is the Adaline output. In geometric terms, the Adaline output is +1 if the angle between

the input vector X A [zo ... z,,] and the weight vector W = [wo ... wni] is less than 90" and -1 if the angle
between these two vectors is greater than 900.

x - (ias Input) Inputs first-layer second-layer third-layer

10.10to Otpt rs

seon lye second !ayer

ADAINEMAD AL INE

Figure 1: (a) The Adaline (b) A three-layer Madaline

A layered network of Adaline elements (a Madaline) is shown in Figure lb. The inputs to the network
are presented to each of the Adalines in the first layer. The outputs from the first-layer Adalines then serve

I1- 337

/

7

as inputs to the second-layer Adalines, and so on. The Adalines of the final layer (in this case, the third
layer) are called the output Adalines. Their outputs are the outputs of the network.

2 Effects of Weight and Input Errors on the Adaline Output
As stated in the previous section, the angle between the input vector and the weight vector determines the
output of the Adaline. Changes in either the input vector or the weight vector can cause the angle between
these two vectors to change. In this section we report some recent findings regarding the probability that
the Adaline output changes state as a result of errors in either the weight vector, the input vector, or both.

Consider an Adaline with weight vector W and input vector X. We first discuss the effects of errors in
the weight vector on the Adaline output response. For this purpose, we consider a perturbed weight vector
Wp which can be expressed as the sum of the original weight vector W and a randomly oriented perturbation
vector AW: Wp = W+ AW. Using the concepts of higher dimensional geometry (3, 6,1, 2], it can be shown
that the probability of change in the Adaline output state as a result of the weight vector perturbation AW
is given by 4 Oww, where Oww, is the angle between W and W.. Given the length of the perturbation vector

IAWi, the expected value of this angle is approximated by the weight perturbation ratio, -IA . Hence, the
probability of change in the Adaline output state due to a randomly oriented weight vector perturbation
AW is approximated as:

P(Adaline Error) = -I (1)

As intuition would suggest, errors in the input vector have the same effect as errors in the weight
vector[4]; intuitively, this is because it is the angle between these two vectors that determines the Adaline
output response. Thus, the probability that the Adaline output changes state due to a randomly oriented
input vector perturbation AX is given by:

P(Adaline Error) 1 - X (2)wIXI
When both input errors and weight errors are present, we can define an equivalent net perturbation

ratio. This equivalent net perturbation ratio is approximated by the square root of the sum of the squares of
the input perturbation ratio and the weight peturbation ratio[4]. The probability that the Ad.4 ine output
changes state due to an input vector perturbation AX and to a weight vector perturbation AW is given by:

1~~~ + Ix\ (IAWI\2I
P(Adaline Error) - -(net perturbation ratio) - I -I _1- I (3)

"\IXI + \'W-M /

The approximations made in this section are valid for large numbers of Adaline inputs and small weight
and input perturbation ratios.

3 Effects of Weight Errors on a Madaline Output
We now investigate the sensitivity of a network of Adalines to changes in the weights. Consider a Madaline
network with n, first-layer Adalines, n2 second-layer Adalines, ... , and nL Lth-layer Adalines, where L is
the number of layers in the network. Suppose the weight vector associated with each Adaline of a multilayer
network is perturbed in a random direction by an amount which results in a weight perturbation ratio,)awl

Then the probability that a first-layer Adaline makes an error, PEI, is given by: PEI ; ;1 " Assuming
the weight vectors of the first-layer Adalines to be independent, the expected number of first-layer Adalines
which make decision errors is n, PEI. The input perturbation ratio corresponding to k out of n + 1 binary-

valued (±1) inputs being in error is V-+. Substituting niPEI in place of k results in an input perturbation

ratio for the second-layer Adalines of:

(_- 1 4nn.Iye PEI (4)2 ,2 .J a y e r V ni + 3 3

1- 338

The probability of error for a second-layer Adaline, PE2, is found by substituting this expression for the
input perturbation ratio in Equation 3.

I /(IWI' 'I i, Wl 4 IwI
" PE2• • %'T•" + 4PEt I -T -l+ l-'I(5)

T2I IWI~&
Continuing to propagate the probability of error from one layer to the next in this fashion, it is found that
the probability of error for an output of a Madaline with £ layers of Adalines is approximately:

PEL Ž I_1 f 1 + - 1 + IwI + ±-JŽWl (6)
71W lATA-W I .. jAWj-

where the number of square roots in this approximation for PEL is L - 1. For small weight perturbation
ratios, ']1 is much bigger than I and Equation 6 can be approximated as:

1lAWl (_4 1Wl * - - 4 [-Iz W]- 21L

PEL ,-•"--'W , 4I-WI T = 1 l-'I (7)
r 1W! V AWI ;72 L4 1 WI.

This last simplification has the advantage of resulting in a closed-form expression and is a good approximation
to Equation 6 for values of lf-• < 10%.

4 Simulation Results
Two computer simulations were written to obtain experimental results for comparison with the theoretical
results of the previous sections.

The purpose of the first simulation was to experimentally determine the relative frequency of Adaline error
as a function of various combinations of weight and input perturbations. To do so, a reference weight and
input vector were randomly generated. The reference vectors were then perturbed by randomly generated
vectors of the desired length. The outputs of the reference and perturbed Adalines were compared to
determine whether or not the perturbations resulted in an Adaline decision error. The experimental frequency
of Adaline error is computed based on data from 18000 such trials.

The experimental results from the first simulation are compared with the theoretical results (Equation 3)
in Figure 2a. The results shown are for an Adaline with 99 variable inputs (100 total inputs). The continuous
curves illustrate the theoretical results whereas the data points depict the experimental results. Each curve
shows the probability of an Adaline decision error as a function of weight perturbation ratio for a specific
input perturbation ratio (given in terms of the number of input errors). The comparison indicates that
agreement between the theoretical and experimental results is good. From results not shown, we see that
good agreement holds for Adalines with as few as 9 inputs and for weight and input perturbation ratios as
big as 50%. The derivation of Equation 3 assumes a largi- number of Adaline inputs as well as small weight
and input perturbation ratios.

The second simulation found the experimental frequency of error for a Madaline output as a function
of the weight perturbation ratio. A randomly generated weight vector was assigned to each Adaline of
a reference network. A perturbed network was then generated from this reference network by adding a
randomly oriented perturbation vector of desired magnitude to each of the Madaline's weight vectors. A
randomly selected input vector was then presented to both networks and their outputs were compared. The
experimental frequency of error is based on over 4000 such comparisons.

The results of the second simulation (for a Madaline network with 99 Adalines per layer) are compared
with the theoretical results of Equation 6 in Figure 2b. Again the continuous curves represent the theoretical
predictions and the data points depict the experimental results. The four curves shown correspond to
networks with one, two, three, and four layers of Adalines. The experimental and theoretical results are in
close agreement for weight perturbations as big as 50%. For networks with fewer numbers of Adalines per

I- 339

(a) Adamin with 99 variable Inputs (b) Madalne with 99 Adalines per layer

UUS

weighbt perurbatim ratio weight perfwbato. ratio

Figure 2: Comparison of theoretical and experimental results. Continuous curves illustrate theoretical results,
data points depict experimental results. (a) Probability of Adaline decision error vs. weight perturbation ratio
for various input perturbation ratios. (b) Probability of Madaline output error vs. weight perturbation ratio for
networks with various numbers of layers.

layer, the experimental results for small weight perturbation ratios (less than 5%) start to drop below the
theoretical results predicted by Equation 6. If more accuracy is desired for the smaller weight perturbation
ratio., a more complicated approximation[4] can be used.

5 Conclusion
In this paper, we have presented the results of our analysis on the sensitivity of a Madaline's input-.ouput
mapping to errors in the weights. We have presented a simple formula which approximates the probability of
a Madaline output error as a fucntion of the weight perturbation ratio and number of layers in the network.
This approximation is independent of the number of Adalines per layer; simulation results showed that for
networks with 99 Adalines per layer, the approximation accurately predicts the performance of the networks
for weight perturbation ratio. between 5% and 50%. As the number of Adalines per layer increases, the
approximation improves for the smaller weight perturbation ratios and maintains its good performance for
weight perturbation ratios as high as 50%. In a forthcoming paper, we present our theoreiical results in
more detail and present a more precise approximation for the probability of a Madaline output error as a
function of the weight perturbation ratio.

References

(1] P.S. Glans, Statistical Extrapolation in Certain Adaptive Pattern-Recognition Systems, Ph.D. dlissertation, Dept.
Electrical Engineering, Stanford Univ., May 1965.

[2] M.E. H/off, Jr., Learning Phenomena in Networks of Adaptive Switching Circuits, Ph.D. dissertation, Dept.
Electrical Engineering, Stanford Univ., June 1962.

[3] D.M.Y. Sommerville, An Introduction to the Geometry of N Dimensions London, England: Methuen &: Co.,
1929.

[4J M. Stevenson, R. C. Winter, and B. Widrow, Weight Error, and Output E~rrors in Layered Neural Networks, to
be published.

[5] B. Widrow and R. G. Winter "Neurai Nets for Adaptive Filtering and Adaptive Pattern Recognition," IEEE,
C'omputer, pp. 25.39, March, 1988.

[6] R. G. Winter, Madaline Rule II: A New Method for Training Networks of Adalines, Ph.D. dissertation, Dept.
Electrical Engineering, Stanford Univ., Jan. 1989.

This research was sponsored by SDIO Innovative Science and Technology Office and man-
aged by ONRt under contract #N00014-86-K-0718, by the Department of the Army Delvoir
R{D&•E Center under contrar.t #DAAK 70-89-K-O001, and by a Hughes Aircraft Co. fellow-
ship.

- 340

/,m

AN IMPROVEMENT ON SIMULATED ANNEALING
AND BOLTZMANN MACHINE

Lei Xu
Lappeenranta University of Technology, Department of Information Technology

BOX 20, 53851 Lappeenranta, Finland
Premanent address: Dept. of Mathematics, Peking University, P.R.China

Abstract. A method is proposed for improving the performance of the commonly used
simulated annealing(or SA for short) techniques. It produces the better solutions and can
reduce the computer time. The similar improvement is also made on Boltzmann machine.
The advantages of such an improvement are shown by computer simulation on attributed
graph matching problem.

1. Introduction. SA not only has many applications[l][21, but also has many variants and
extensions 13]. SA and its variants have also been used to simulate the networks' dynamics
of the symmetrically interconnected neural networks. Boltzmann machine and its variant
are such examples [4]. In this paper, a method is proposed which can improve the perfor-
mance of SA and its variants. It can guarantee to always yield a better solution than that
yielded by those original SA methods. It is useful especially in the following cases (which
are often encounterd in actual applications) :
(1). The time spent on each temperature is not long enough to let Metropolis Sampling(or
MS for short) process reach its equilibrium state. (case(l) is only suitable for the station-
ary annealing way as used in [1][4], but not for the nonstationary annealing way as used
in [3] where temperature decreases at each step).
(2). the speed of the annealing is too fast.
(3). The temperature specified for stopping the annealing process is not low enough.

In these cases, the original methods will usually find a bad solution, while the im-
proved methods can still obtain a quite better one. In addition, The improvment also
supplied a simple but effective way to decide when a MS process can be finished to start
another MS process(only for the sationary annealing way) and when the whole annealing
process can stop such that time cost is reduced but the solution is still satisfactory.

Furthermore, the method is introduced into Boltzmann machine for improving its
performance for combinatorial optimization use. The advantages similar to the ones given
above are again obtained. In fact, the method probably gives a general strategy which
is also suitable for improving some other neural network methods which relate to SA or
even some stochastic combinatorial optimization methods. Finally, computer simulation
on an attributed graph matching problem is briefly introduced to show the advantages of
our method in comparision with the original ones.

2. An Improvement On Simulated Annealing Methods.

Where It Needs to Be Improved. It is intereseting to relate SA methods to the
classical iterative improvment algorithm (or IIA for short) which iteratively chooses a po-
tential state s' and compares its cost E(s') with that E(s) of the current state s, and
then replaces s by s' according a accepting rule of AE = E(s') - E(s) < 0. With

This work was supported by Tekes Grant 4196/1988 under Finsoft project

1- 341

UA, the current state will never reach a state which is worse than those reached before,
and the current soultion updating(or CSOU for short) sequence [E(s) I is a monotonically
unincreasing sequence, as a result, the current state is easy to be stack at a local minimum.

However, with SA methods, a' is permit to replace a with probability P($') even
when AE > 0 (this could be considered as a generalized accepting rule of the above men-
tioned), this P(al) deponds on AE and a parameter T (called temperature). The smaller
AE and the higher T gives the larger P(s'). In order to reach a global optimal state, T
should start at a high value and gradually decreases to a very low value in a way which
imitates the annealing process of a physical system. As a result, the current state has
a chance to escape from the local minimum, but in the same time, [E(a) I is no long a
monotonically unincreasing sequence. Theoretically speaking, when T is slowly reduced
by a strict cooling schedule and T -+ 0 , the final current solultion will be the global
optimal one with probability one.

But, practically, it is difficult to decide how high T should start and how low T sould
stop. Furthermore, for the stationary annealing way, it is also difficlut to decide when a
MS process at each T reaches its equilibrium and how slowly T should decreases from one
to the other; or even for the nonstaticnary annealing way, although there is a theoretical
formula (e.g., (3) in [31) which indicates how to reduce T at each step, it is too slow to be
practical. Instead, some fast cooling schedule are usually used. Because of these reasons,
actually, the final current solution is probably worse than some solutions it ever encoutered
before. This explains why the solution by SA methods sometime is even worse than that
by some heuristic methods, and it also interprets the curve phenomenon in Fig.7d of ref.
12).

How It Can Be Improved. With both IIA and SA methods, the current state up-
dating (or CSTU for short) track has two functions simultaneously. one is as the searching
control track to indicates which states are searched, the other is as the CSOU track to
indicates how the current solution is renewed. With HA, the CSTU track acts as a bad
searching control track since it is easy to be stack at a local minimum, but it acts as a good
CSOU track since its current solution is the best one of those ever met before. Oppositely,
with SA methods, the CSTU track acts as a good searching control track since it can
"escape from a local minimum, but it acts as a bad CSOU track since its current solution
can be worse than those ever met before.

However, for SA methods, it is not neccessary to bundle up the two tracks. We can let
the CSTU track be only as the searching control track so that all its good characteristics
are retained, and construct a good CSOU (E(S)] on which the current solution E(.S) is
updated(i.e., S is replaced by s') only when E(s') < E(S) so that the current solution is
always the best one of those ever met before. This change only increases very few addi-
tional computer cost , but brings the following advantages:

(1). As stated above, not only all the good features of the original SA methods can
be retained, but also the better final solution can be obtained.

(2). The track [E()] supplies a way to stop the annealing process through checking
if E(.S) remains unchanged for the po successively reduced T's.(if so, stop)

(3). For stationary annealing way, IE()] also supplies, at each T, a way to stop the
MS process to start a new one through checking if E(.S) remains unchanged for the qo

1- 342

p/

succesive steps. (if so, start a new MS)

An algorithm for improving the conventional SA [1] is given as follows:

(Initially, randomly choose a state a as the current state, set T, Tmin, m. Let
p = 0,q = 0,j = 0, a = s,E = E(s), Es = E, Et = E.)

step 1: If j > m, goto step 6. otherwise, j = j + 1, randomly make a small pertur-
bation As which results in a new state s + As with AE = E(s + As) - E(s)

step 2 : If AiE > 0, generate a random number f which is a sample of the uniform

distribution over [0,1]. If e(-E/T) < ý, goto step 1.

step 3 : a + As replaces a as the new current solution, E *-- E + AE.

step 4 : If E < Es , then Es +- E, S - a + As, q = 0. Otherwise q - q + 1.
step 5 : If q < qo , goto, step 1.

step 6 : If Et < Es , then Et 4- Es , p 0, if not, p *-p+ 1.
step 7 : If p < po and T > Ti,,i, reduce T by some means, let q = 0, j - 0. goto

step 1. otherwise, the current E(S) is taken as the final solution, stop.
Where Tm.,, is a given threshold for the minimum T and jm is also a given threshold

for the maximum time of a MS at each T. The two thresholds togather with qo and po
control when a MS at each T finishes and when the whole annealing stops.

3. The Improvement On Boltzmann Machine. The symmetrical interconnected neural

networks has been applied to many combinatorial optimization problems [5]. In such net-
works, a global state is considered as a set of binary neurons ci's with its enery E as
given in formula(I) of Fig.2. The E is governed by an additive STM equation which re-
laxes the network Usually, it hopes that the networks could be relaxed to the state of its
global minimum energy, for this end, Hinton [4] developed Boltzmann machine in which
SA technique is used to avoid the local minimum of E in the following way:

Select a neuron ci, calculate its energy gap AEi (i.e., the difference between the en-

ergy of the two global states, with ci off and on repectively) by formula(2) in Fig.2. and

let the neuron ci take value c = 1 with probabilty pi = 1/(1 + e-AEd/T) Then, select
another neuron and repeat the same process untill the equilibrium is reached. This process
starts at a high temperature T, and with T gradually decreasing to a low enough value,
the process stops with the current networks' global state being taken as the state of the
global minimum energy.

In Boltzmann machine, its CSOU track is also identical to the CSTU track. So the

improvement similar to that given in sect.2 could be also obtained by constructing a new
CSOT track as follows : In addition to a binary matrix A which indicates the current
global state of the network, another binary matrix B is used to record the global state
of the current minimal energy. Initially, A = B both record a randomly chosen global
state, and then A will be updated once each neuron ci changes its value according to
probability pi, but B is updated by B = A only when the energy of the current global
state is lower than the energy of the state recorded in B. In this way, a montonically
unincreasing energy sequence of the current solution is obtained. When the whole process
is stoped, the current state recorded in B could be taken as the final solution. Similarly,
the three advantages mentioned in sect.2 are still true here.

I- 343

3. Simulation Examples. Attributed Graph (AG) have been widely used in computer vi-
sion. In 161, we used the methods of SA and Boltzmann machine to solve the AG matching
problem. Due to the limited space, here, we only briefly mention an example which is
done by the improved Boltzmann machine in comparision with the original one(both in
the stationary annealing way). The details and more examples are refered to [6].

As shown in Fig.1, two AGs, G and G', each has 8 nodes vi's with attributes avus
and 10 edges vivi s with attributes ae13 's. The end is to set up an one-to-one correspon-
dence between the nodes of G and G' so that the total cost E, as given in formula(3) of
Fig.2, is minimized. In the formula, uqj's are 0-1 variables, uq = 1 denotes that vi of G
corresponds to V of G' and its cost is (avi - av,) 2. u•'uij = I denotes that edge vivt of

G corresponds to edge vivk and its cost is (ae.i - aek). In effect, the formula is just a
version of formula(l) of Fig.2 and each U,, is just a neuron.

By the original Boltzmann machine with the starting T = 2000, the final T.in =
0.01, and T is reduced by T 4- 0.96T, when the annealing process finaly stops after
119194 steps, a bad and unfeasible (there are one-to-many correspondences) solution with
cost E = 1125 is obtained. However, by the improved Boltzmann machine with the
same parameter set, the annealing process finaly stops after 11253 steps at approximately
T = 800 (due to the new stoping way, see sect.2), the global optimal solution is obtained
with cost E = 0.5, so the example shows that the improved Boltzmann machine can get
a much better solution with much less cost.

REFERENCES
"[1] S.Kirkpatrick et al, Science, Vol.220, No.4598, 1983, pp6 7 1-680 .
[2] E.H.L.Aarts et al, Philips J Res. Vol.40, No.4, 1985, pp193-226.
[3] M.Goldstein, et al, Proc. of IEEE ICNN88, ppi1267-1I273.
[4] G.E.Hinton et al, Tech. Rep. No.CMU-CS-84-119, may, 1984.
[5] J.Hopfleld et al, Biological Cybernetics, Vol.52, 1985, pp141-152.
[6] L.Xu and E.Oja, "Improved Simulated Annealing, Boltzmann Machine and Attributed

Graph matching", Tech. Rep., Lappeenranta Univ. Tech., May, 1989.
N N N

7~ = -0.5 C.wijci +- ~Oc. (1

: 3 where 0, is a threshold associated to neuron c,.

9 u3 4 2. U E, Wqc, -9, (2)

V 's 8 3 KN N
;, 3~~. \ •s. 4, , ,

2 8V64~ I = a 2..A.,, - 1)2 + E((Uq - i

8 6 ,=I =, ()

3's 3. Z e;;(avi -a GUj)' .(3)
te 1 2 V 4 g 2 3 ' 1.j.

V i.4 2 G1 Ka~

Fig.1 Fig.2

I- 344
Fi..

I N l 'I ' f I l' l I•-•FII I g .1 ,• I

PROG(;RAMMING NEURAL NET uORKS: A Dynainic-Static ModeC
Yong Yao, and Qing Yang

Department of Physiology. University of California, Berkeley, CA. 94720

We propose a dynamic-static model of neural net- gible. This kind of FSnet is called a dynamic-static
works (DSnet). The circuitry of the modce is neural network (DSnet).
presented. Theoretical analysis shows that the set of
the equilibria of the DS-net is associated with the 2. A Dynamic-Static Model
set of the minima of a certain energy function. The Fig.I shows a DS-net with one dynamic sub-
energy function may be more general than that of network and one static subnetwork. The left subnet-
the Hopficld-Tank network. Applications of the work is dynamic with a bypass RC circuit, and the
DS..net have been made to solve linear program- subnetwork on right is static. R, simulates the
ming as well as quadratic programming problems. tansmembrane conductance. C, simulates the

1. Introduction transmembrane capacitance. 1(0) is the external input

Using neural netwvorks to solve optimization to the dynamic subnetwork, while Its) is the external
problems has been pioneered by Hopfield and Tank input to the static subnetwork.

[111[21. In an appropriate neural network, the _
dynamic processing from its initial state to its final it 12 i& c12'
state may be considered as a computation for a cer- __

tain optimization problem. The final state is one of
the solutions of the problem. From this concept, we
are going to develop a more general model which : 21 : . in1
includes Hopfield-Tank model as a special case. The - - _ - - -- 1 r......- -

C1 C2 C.main property of our model is to associate the set of ul i:' 11U2 *,, I it 12 IM I
the minima of a certain optimization problem with R I R I
the set of the equilibria of the model. I SI S2 41

In a earlier work [31, a fast-slow neural net- IL
work model (FS-net) was discussed. The idea of the
FS-net is to introduce different time scales, i.e. the L

network is composed of several subnetworks, some
of them have faster dynamics than others. This idea V, V2 1 1; 2 1 ,7
was suggested by analyzing the dynamics of a real
brain. For instance, the process of recognition is Fig.l The circuitry of a dynamic-static neural
usually much faster than the process of learning in network (see the context for the details).
the brain. The time scales of the changing of In Fig.1, D•. Sk are nonlinear elements of the
synapse weights and the changing of axon hairs DS-net. They may be referred to "neurons". The
might not be identical, e.g. those changings are neuron Di and the neuron Sk may be of different
treated by using different differential equations in functions. But Dl.D 2,...Dv are identical. S1.S,,...Sw
[4]. Although in the brain it is not necessary that are identical. The functions f, and g are used to
physically those subnetworks with different time denote the input/output relationships of the D-type
scales are separated since the brain is of three-
dimenision. For example, in an olfactory bulb, Stel- neuron and the S-type neuron, respectively. That is

late cells, which are considered as supporting neu- Vi = f(u,), and Vk = g(1k). T, rep-esents the
rons, are embedded into the network composed of synaptic strength from D, to D,. WIV, , ,(S),
Mitral cells and Granule cells [5]. It is plausible to have the similar meanings to T,,. Thus the matrices
consider that the time scale of the Mitral-Granule T, W, Hi'), and Hs.(S are the connection matrices
cell network is different from that of the Stellate cell from D to D, S to S. S to D, and D to S, respec-
network. In this paper, we discuss a particular case tively. Mathematically, the DS.net can be described
of the FS_nct. In this case the time scales of the fast by the following differential-algebraic equations
subnetworks are considered as infinitc. That is, the
dynamic processing of the fast subnetworks is negli-

I- 345

du JR, N M <0)d dE = if and only if dt~- =0. (6)

N This shows the function E in (3) is an energy tunc.
1, as 11(5) V, I,JS + W~, V. (2) Lion of the DS-.nct under the above conditions. The

Jul1-1equilibria of the DS-.nct and the minima of E are
Although generally the collective behavior of the equivalent. In other words, fhe neural network in
DS.,net is unknown, the network can be proved to Fig. 1 may be used to seek the minima of the funic-
be of Lyapunov-type *if it satisfies the following tion E.
conditions: T is symmetric. H(D) equals to the tran- The similar proving procedure may be applied
spositiaon of Ht5). W is a zero matrix (i.e. there is no to show the DS-net in Fig-l is of Lyapunov-sype
feedback from the static subnetwork to itself). the under the conditions: T as T', H (D) =0, i.e. the
I/O relationship of the D-type neuron, i.e. the func- dynamic subnetwork is symmetry and independent
tion jr. is a strctly monotonically increasing func- of the static subnetwork, f is a strictly monotoni-
tion, and f and g are integrable. cafly increasing function, and f and g are integr.

To see this, let Us consider the following func- able. In this case the energy function is chosen to be

1/N YE ~l2~,V, V, - 1,(D IV.
E 1/ lIX T, V, Vj - :I,M)II Vit ~

#-11-I Jul N 'V.

t"+ 1: l/RsJff-(v)di (7)

+ 1Rff 1 r~d - Gu (3) . 0
.I 0 Since under the conditions the equation (1) is

where the function G (:) is defined by reduced to be
G() ig(.r)dx. Since V, f f(u,), =-+L ,V I (ui8)

0 dt Re Jul

dE NaE d1', and

=t -7cdV u, ' N

ZZN dll/ U' T' V) i't 'R,-X7v I(

Notice V1 dg(,, His) = (H 01 , where 'denotes saidui di

the transposition of a matrix, d = df du, we This yields the conclusion (6). For summary-

have d ddiing. we have the following theorem about the
DS-net

dE NdV, _C dit, Theorem: Let the functions f and g be integrable.
-dt di~ and f is strictly monotonically increasing. The

IV f ue DS-net in Fig.l is of Lyapunov-type if either of the
du-~ , () (5) following two sets of conditions is satisfied: (i)

~ du~ diT = T', H(D) - 1 t)~and W =0;, (ii) T =T', and
Furthermore jr is supposed to be monotonically H (D) = o.
increasing. i.e. dfE. is positive. This yields Remarks: (i) Thiere is no restriction to be

4:added totefnto ogaatethe DS net to
A dynamic systemn is called Lyapunov.type if there exit be of Lyapunov-typc provided g is integrable. g is

function so that the value of tie function is strictly decreas- mainly related to the static properties of the net-
ing along with every dynamic flow of the system except at work, while the Lyapunov-type property is related to
the equilibria of the system. The function is catted the en-thdyaiprcsngBuinheexsciosw
ergy (or Lyapunov) funticon of the system. tn terms of th tednmcpoesn.Bu ntcnxetosw
definition. there i% nut ansy kind of oscillation in a Lyipunov will find that an appropriate choice of the [unction g
system. plays an important role to implement constraints in a

constrained programming problem.

1- 346

tiit The DS-net includes the llopfield-Tank (11), we also show the DS-nCt under these condi-
network as a special case. i.e. when At = 0. In lions can bue used as a linear programming network.
addition as it was pointed out in (2) that the That is. a stable output of the network is a solution
Hopfield-Tank's linear programming network does
not belong to their general model, this network can of the linear programming. Notice G(I,) = Jg(:)d:.

be deduced 'ront the DSnet model (see the next According to the definition of the function g, we
section). have

3. Linear Programming 0 ifl,Ž0
A linear programming problem can be G(I,) = (17)

described to attempt to ntinimizc a cost function i<

#(V) = ArV (10)

subject to -At -A2 -I -t112 .11M

EVŽB,. j=l.2...M or Et1 E2M

A - E T V - B_ 0 . (1 1) E t I It, ' 1 t1 1 2 .. 'M

__________ t~ I 12 11IA
where V is a N-vcctoe variable. A is a N-vector, E -- "
is a NxMt matrix. and It is a Al-vector. lit Fig.l, let U2 t " [IF 12 It

T=O, t=0, 4 S-_8 1,(D)=-A, ,,S)=ll•S)Ea, Ri1

f be an appropriate sigioid curve, g be the follow- . SI S
ing function: s s'

0 f:>O
0W if:<0 (12) -/"-

where y is positive and large enough (see [61 for the Vt V2 Vt V2

detail discussion about the choice of the parameter Fig. The circuitry of a linear programming
y. In this case, S is a nonlinear negative resistor), neural network. Here D is a near-ideal amplifier, S

Under the setting of the parameters, the equa- is a nonlinear negative resistor defined by (12),
tions (M)-(3) are reduced to be which is different from that in [2].

du, u, . Since y is assumed to be large enough, It (1=1.2,
C, A, + ME,,v,. (13) .M) must not be less than zero in order to minim-

ize the function E. This implies that the constraint
I V/- B = ErV - Bt. (14) (1l) is satisfied. On the other hand, if the gain of the

sigmoid curve f is high enough, the middle term on
V v. . the right side of (15) can be neglected [1]. That is

E = YA, V, + Y IIR, ff -i)dv - Y G(m,)
-1 minE =minAT (18)
.v v. . subject to the constraint (I1). The linear program-

= ATV 11tR,f -'(v)dv- XG(I,) (15) ming neural network is sketched in Fig.2 which is
,' , /=similar to that in [2). The differences between the

Substituting (14) into (13), we have network presented here and that in (2] are the non-

di, u, %f linearity (12) and the matrices !t(D) and H"t). In [21.
-- = -.... A, + YE,1g(E1V-B,) (16) = 1 and H()) = (H(s))T = - E. Mathematically,

dt R ,, == I is not sufficient.

Since the condition (i) of the theorem are held
under the setting of the parameters, the equilibria of 4. Quadratic Programming
(16) are equivalent to the minima of the function A quadratic progrý.mming problem can be
(lS. Then as long as we can show the equivalence described to attempt to minimize the following cost
between f 15) atid the linear proranmling (10) and function

- 347

/

0 V)= ArV+ I/2VrGV (19) Since the connection matrix of T is symneintc, the

subject to matrix HW0) equals tie transposition ot the nairLx
11(s), and no connection fronm the dynamic subnet-

ETV-D Z 0. (20) work to the static subulctwuck, the network will con-

where G i6 a NxN symmetric matrix, nd verge to one of the minima of the lunction (23) in
terms of the theorem. On the other hand. with the

V. A. E. B have the sinilar meanings to those in the same reason as in the linear programming case, the
linear programming. In Fig.l. let minimization of (23) is equivalent to the quadratic

A1.=_ N , - AN. ,(s)_ , ,•L 8 oprogramming problem (19) and (20). Fig.3 shows

t - , - . =the circuit implementation of a quadratic program-

W,,=O, (JI,'j0))N,.=- (E~k)NXM, ming neural network.

Notice: (i) Because of the limitation of the space the
(T ~,)N.•=- (G,,)NN (H,!S)),,#=- (EA)N,,I . simulation results are not presented here. (ii) The

concept of FS-net can be applied to somewhere else.

-A• , A2 .AN .ttt 4n2 .1W For instance, the fast subnetworks may be used to
store different characters with the same codes so that

of, 1•-1: _1V there are not two different characters sharine a same
,-tI q.i2 -i•.Mt code in the main subnetwork (3]; In the implementa-

'.1./ -(; ~.. .E-1"12 -k.- tion of the dynamic tunneling algorithm [61. the
S- - . minimization phase can be accomplished by the fast

% "subnetwork, while the slow subnetwork can be usedI" i 12[lU: I A to assign new starting points to the fast subnetwork.

M, Acknowledgement: Support from grants MH06686
/ [I and AFOSR-87-0317 is gratefully acknowledged.

L. -J
REFERENCES

1[) J.1. Hoplield "Neural networks and physical

V1 v2 ¢' systems with emergent computational abilities"
"Proc. Nail. Acad. Sci. USA Vol. 79 19S2. pp

Fig.3 The circuitry of a quadratic progra:m- 2554-2558.

ming neural network. The neurons D and S arc as [2) D.W. Tank and I.). Hoptield "Simple 'neural'
the same as those in Fig.2. optimization networks: an A/D converter. sig-

Further if the neuron D, (i=l,2...N) is chosen to be nal decision circuit, and a linear programming
circuit" IEEE Trans. CAS.33. No.5. 1986

an appropniate sigmuid curie, and the neuron S(pp.533-541.
k=l,2...NI) is defined by (12). Then the equauon

(1)-(3) is reduced to be [3] Y. Yao "A neural network model of CA.AM

and its application to handpnnted Chinese
dC. , - - character recognition" Oral presentation at the

d-t f - V- - A, E, (21) First IEEE Int. Conf' on Neural Networks, San
Diego. 1987 (see ihe Proceedings. Vol. II-

i4 vEEI, -8, = ErV - 8,. (22) 309-316).

1=1 [4] H. Szu "Reconfigurable neural nets by energy
v vV convergence learning principle based on

E = 1/2 Y E G,, V, V,+ XA, V, extended McCulloch-Pitts neurons and

synapses" Proc. of the First Int. Joint Conf. on

+ V MG(IIpp.4S-44 / (.Neural Nerworks. WVashingtnon D.C. 1989 Vol-!+ I IR,[Jf-'(v)d%- - G1)

rANV 12VrGV. (51 W.I. Freemnan "tas action in the nervous sys-
tems" Acadcrnc Pre'ss. New York 1975.

v1 tb6 Y. Yao "Dyianf:, tunnelhma, algorithni for

"l E I.'R,1 - r - •; (23) global optimi/mion" trEE Ir'in. CatS. ,N,, 5.

-I U I I,•089 tit press

- 348

//

Theories on the Hopfield Neural Networks with Inequality Constraints

Shigeo Abe Junzo Kawakami

Hitachi Research Laboratory, Hitachi, Ltd.
4026 Kuji, Hitachi, Ibaraki, Japan

Introduction

The Hopfield neural networks [1], whose convergence characteristics have been
clarified [2). are well suited to solving a combinatorial optimization problem,
provided it has no inequality constraints.

In this paper, inequality constraints are introduced into the Hopfield model, and
the convergence characteristics for the extended model are clarified. Then the
algorithm to determine the weights in the energy function is discussed. Finally,
convergence of an ill-conditioned problem such as a transportation problem is
shown to be improved by the introduction of the inequality constraints. The results
are also verified by computer simulations.

Problem Formulation

Let the inequality constraints be expressed by
n n

dk I wixi or Zwixi k d where d > 0. xi = 0. 1. (1)
i=1 iffi1

By introducing variable y, the two equations in (1) become, respectively,
n n

dy-Zwixi=O, l0 y!0 ordy-Zwixi=O, y 1. (2)
i=1 i

Now a combinatorial optimization problem with inequality constraints can be
formulated as minimizing the energy E' expressed by

E' = lI2xt 7" x + bt x (3)

with the constraints:
n

dtyi "wijxj =O. 1 >yi 20,oryi j1 for i =1,....k (4)
iff 1

where x, b are n-th variable and input vectors, respectively, and T' is an nxn
symmetric coefficient matrix.

Adding the square of (4) divided by 2 to (3) gives

E = 1/2(x, Y)t T (J +btx (5)
VtD y

where y is a k-th vector, T = T' + W, and1W 2 : onwi....2,0
rdlvý,l

dkwkl
W= L, ' 2d "- dk2] d1l4ln...dkWkn

.wlilwin ZWoin2 kd~l . kk
The Hopfield model for (5) is given by

xi = 1/2(1 + tanh ui), yi = 1/2(1 + tanh vi) for 1 _ yi 0 0. 1 + exp(vi) for yi-> 1 (6)

1- 349

d --l il -II (7)
dv/d) LV1DJIJ 10)

Elgenvalue Analysis

Eliminating u and v from (6) and (7) gives

2(l-xl) 0

Z 2(1-xn)xn 1 (8)

dyldt AJYi J
0 fYk

where fYly) =2(l -yi)yi for 1 ayi 0, (yj - 1) for yj 1.
The solutions obtained by integrating (8) are singular points of (8) given by

(i) xi = 1, 0. and yj = l, 0, or l;
(ii) the solution of Tx + Vy + b = 0, and Vtx + Dy = 0; and
(iii) combination of (i) and (ii).

The singular point (ii) is given by
y =.D"lVtx, and(T-VD"Ivt)x+b=7"x+b=O.

Thus the following theorem holds:I Theorem 1 If, for singular point (ii), y satisfies I a y 0 or yi> l for 1 !5i V k, x
corresponds to the singular point without inequality constraints.

The desired solution is

xi =l1, 01= I.... .n, 1l2!yj aO0 or yj L , j=,...

To derive a linearized equation of (8) around the above solution, substitution of

x=x'+c. ci =1,0. and y=y+e, 1>eja0orej> I

into (8) 8iv s
I2(2cl -1)(Tc +VI/ie+ bi) 0

dx'Id: tx (9)

r ld2 0Y.ol 0
dy'ldt= y' - Vtx" (10)

f (ek)dk 2 f(ek)

Thus the eigenvalues concerning x are given by

c,i = 2(2ci - 1)(T7"c + Vie + bi) i = I....n (1)

Since the coefficients of y' are negative, the solution (c, e) is stable if

cji < 0 i = !.....n (12)

holds. This means that y is a dependent variable vector and does not influence
convergence of the solution. The following theorem can be easily derived:

I- 350

Theorem 2 If vertex c- (c I.....cn) satisfies inequality constraints (2), the
eigenvalues given by (11) are the same as those without inequality constraints.
Namely:

I = 2(2ci - 1)(T'ic + bi) i = 1.....n (13)

Let the solution that satisfies equality constraints be c and the solution c(i) be the
one with the i-th element of c converted from ci to l-c[. Then if all vertexes c, and
c(i) satisfy constraints all the theorems shown in [2] hold. Further the following
theorem can be derived:
jTheorem 3 Let T'ii = 0, for i = 1,...,n and vertex c satisfy inequality constraints.
Ten if, for energy E given by (3).

E'c< Ec(for i= 1,....n (14)
holds, vertex c is stable.

Determination of Weights

Let the energy be given by

E = A x) + B g(x) 2 + C h(x,y) 2 (15)

where f(x) is an objective function, g(x) are equality constraints, h(x,y) are
inequality constraints, and A, B, C are weights.

So long as the solution satisfies the inequality constraints, they do not influence
the stability of the solution as seen from theorem 2. Thus, the method to determine

A weights A and B is the same as that without inequality constraints. Namely
(1) Convert xi2 in f(x) and g(x) 2 into xi. Let f(x) and g(x) 2 be thus converted.
(2) Determine B so that

A flc(i)) + B g(c(i)) 2 > A fic)

holds for arbitrary vertexes c and c(i).
Weight C is determined so that the solutions that do not satisfy the inequality

constraints are unstable.

Convergence Improvement of Transportation Problem

Introduction of inequality constraints can improve convergence for a problem
which does not require inequality constraints. One example is a transportation
problem in which a commodity must be transmitted from one point to another in a
network with minimum distance.

The energy function of the transportation problem is given by
n n n

E = A/2 £(Ji + 1-(bj[- bij))2 + BI2Z X bijbji + D/2 Z Z (bij + bji) Cij (16)
i=1 je N(i) i= lie NGi) i= lye N(1)

where the first term specifies that the summation of the flows into and out of a node
is zero, the second term inhibits simultaneous flows from i to j and j to i, the third
term is the objective function and

1i: injection to i-th node (1: start point, -1: end point , 0: all others), b/j: flow
from node i to j(l: with flow, 0: without flow), Cij: cost from i to j, n: the
number of nodes, and A. B, D: weights.

"Since no inequality constraints exist, the problem can be solved by the Hopfield
neural networks. Weights A, B, and D can be determined as follows: When the output
of any one neuron is changed frcm I to 0 or 0 to I for any feasible solution, the
energy for the first and the second term in (16) increases, respectively, by A and B.
Thus let A = B. Then the minimum increment of the energy, undei the above
condition, for the first and second terms in (16) is A, and the maximum decrement of
the third term is D max Cu. Therefore, weights A and D be chosen so that

1- 351

A > D max Cij (17)
ST"ART

holds. For this problem, all the elements of input vector b in
(3) are positive, if the adjacent nodes are not selected as the
start and end nodes. This means that the origin 0 becomes a 2.2

stable point. This can be avoided if the inequality constraint 2
is introduced:.

* 3.S

Z Zb•j 1 (18)
i- lie NJ4) G)z.

thus the energy is E'= E + F/2 (y.- Z Lbij) 2 . y > 1. (19) 1.S

1= i/e NO()
According to the eigenvalue analysis the origin becomes EN

unstable if ft I A NETWORK MODEL

F>D max Cij 2 (20)

P1 -01 FEASIBLE
SOLUTIONS OBTAINED I 0.8

.0.8

0. 1 1 2

WEIGHT A WEIGHT F

FIG. 2 CONVERGENCE TO OPTIMAL FIG. 3 CONVERGENCE IMPROVEMENT BY
SOLUTION INEQUALITY CONSTRAINT(A = 3.0)

Consider the network model shown in Fig. 1. Assuming D = 1, weights A and F
should be. respectively, larger than 2.5 and 1.25 from (17) and (20). Figure 2 shows
the convergence to the optimal solution without the inequality constraint by
varying all the initial values from 0.05 to 0.95 with the increment of 0.05. The

convergence region is very small. 'When the initial values are selected as smaller
than those for the optimal solution, the solution converges to the origin. Figure 3
shows the convergence to the optimal solution with the inequality constraint and A =
3.0. The convergence is improved drastically. Without the inequality constraint the
optimal solution for A = 3.0 cannot be obtained.

Conclusion

The convergence characteristics of the Hopfield neural networks with inequality
constraints were clarified. Determination of the weights in the energy function was
derived. The result was tested for the transportation problem and significant
convergence improvement was obtained.

References
[1t J. J. Hopfield and D. W. Tank, "Neural Computation of Decision in Optimizing Prob-

loms," Biological Cybernetics. 52, pp 141-152, 1985.
[2] S. Abe, "Theories on the Hopfield Neural Networks," Proc. JCNN-89, pp n-5u7 -1-

564, June 1989.

1- 352

Adaptive Junction: A Spatio-Temporal Neuron Model

Yoshiaki Ajioka, Yuichiro Anzai and Hideo Aiso
Department of Electrical Engineering, Keio University

3-14-1 Hiyoshi, Kohokuku, Yokohama 223 JAPAN

ABSTRACT Adaptive Junction is a neural network that can discriminate simple spatio-temporal pat-
"terns. In this paper, we show how Adaptive Junction can discriminate signals moving along either vertical
or horizontal direction in the two dimensional plane.

1. Introduction
In this piper, we describe a neural model called Adaptive Junction for discriminating simple spatio-

temporal patterns moving along either vertical or horizontal direction in the two dimensional plane. We
believe that construction of such models are among important steps towards realizing mental actions such
as thinking, reasoning and association by neural networks.

2. Definition of spatio-temporal patterns
Spatio-temporal patterns are defined in the following way. Consider two lamps, lamp-A and lamp-B.

Either lamp may be completely off (with an activation value of 0), maximally bright (an activation of 1),
or at some intermediate brightness. The brightness of a lamp may be changed exponentially with a time
constant r.

Now, consider the two lamps to be at an intermediate brightness level with the value of 0.5. Next only
lamp-A is mi.ximally bright and lamp-B is turned off. This state (lamp-A at I and lamp-B at 0) remains for
T seconds. Then, lamp-A is turned off and lamp-B is maximally bright, remaining so for T more seconds.
This pattern of lights (a gradual change from both neutral, to only lamp-A bright, to only lamp-B bright)
will be called the spatio-temporal pattern AB (or pattern-AB).

3. Network
In the above example, consider the case where we must distinguish four patterns (as defined above):

pattern-AA, pattern-AB, pattern-BA and pattern-BB.
The network of Adaptive Junction has three layers: (1) the sensory layer (S-layer), (2) the response layer

(R-layer), and (3) the teaching layer (T-layer). The S-layer consists of sensor neurons (S-neurons), which
correspond to the lamps discussed above. In the current situation, the S-layer has two neurons, SA and SB.
The R-layer consists of response neurons (R-neurons), which respond what the input pattern is. Thus, the
R-layer needs response neurons RAA, RAS, RBA and RBB. For example, if the pattern in the S-layer is
pattern-AB, only RAB is excited while the other R-neurons are inhibited. Finally, the T-layer consists of
teacher neurons (T-neurons), which supply teacher signals used for supervised learning.

The connections of the network are set up as
follows: (see Figure 1)

* The output of each S-neuron is connected to
any R-neurons.

9 The output of each R-neuron is connected to
any P neurons, but there are no self-loops. S

* Each R-neuron has a connection from its cor-
responding T-neuron.

Overall, the network does not have any hidden
unit.

Fig.l A network of Adaptive Junction.

1- 353

,/ ==

//'

4. Neuron model
The input-output relation of an R-neuron in our model is formulated as follows. For the R-neuron j, netj

and Oj are defined by the equations:

neti(t) = wiO,(L) (1)

r80,(i) = -O,(t) + f(neti (t)) (2)

where, wui is the weight from a neuron i to j, O represents the output of j, and f(-) is the sigmoid function.
In addition, S-neurons and T-neurons output the time-lag signal of the input.

5. Learning rule
The ?,ade for updating the weight tvwj per unit time of the simulation (t << r) is defined by the following

function:
Aj,(t) = %.ej~i('(netj(t)Oji)o,((3)

where Y1 is the learning rate, which is a small, positive constant, and e, is the estimation value, derived
using the following equations:

=j(t) = (Tj(t) - Oj(t)) + C,(t) - f(,(etj)) (4)

c(t) = T(t) + d (t)(5)

where Cj is called the criterion value and is equal to the input of the T-neuron j. Finally, Tj represents the
output of the T-neuron j.[l1(41[51(6](S8

"6. Simulation
Here, let us describe examples of simulations for the model, particularly which show how Adaptive Junc-

tion can discriminate signals moving along either vertical or horizontal direction of the two dimensional
i - plane.

Suppose that nine S-neurons, named A to I, are laid out along two dimensions as shown in Figure 2. A
signal is made to appear, and move, by firing only one S-neuron at a time, as shown in Figure 3. In all,
there were twelve patterns used. A signal might move to left along one of three rows (e.g., pattern-IHG),
from top to bottom along one of three columns (e.g., pattern-BEH), or from bottom to top along one of
three columns (e.g., pattern-GDA). The task for Adaptive Junction is to discriminate four directions that
the signal moved to. The simulation results for this problemare shown in Figure 4.

OA 000 000 000

GH IA B C

Fig. 2 S-neurons laid out Fig. 3 Spatio-temporal pattern-ABC: A white circle corresponds
along two dimensions. to an exciting neuron, and a black circle to an inhibitory neuron.

I - 354

0@0

00ý
direction R-layer

HN .

S-layer T-layer
(a)pattern-BEH (down)

.100 0_
000__

direction ft-layer

S-layer T-layer

Fig. 4The results of the discrimination of spatio-temporal patterns:Each graph shows the activation of

a neuron changing with time. The first row of the graphs or ft-layer and T-layer shows the !irections,

and others show the feature detections. The columns correspond to up, down, left 'Ind right directions,

respectively. -

1- 355

/ 7. Discussion
Adaptive Junction is successfully able to discriminate among the four directions created via the twelve

patterns. However, during the simulations the following were noted:(a) Adaptive Junction can not discrirn-
inate the four directions using only four R-neurons (one corresponding to each of left-wards, right-wards,
upwards, and downwards). Thus, Adaptive Junction needs neurons for "feature detection" in R-layer. (b)
When the direction of the input pattern is obvious even though the full sequence of input patterns is not
yet given, Adaptive Junction is able to decide on the correct direction.
These results support our previous hypothesis about the number of feature detection neurons and the be.
havior of Adaptive Junction. As such, by adding more S-neurons to Adaptive Junction, it may be able to
discriminate the directions of a signal's movement.

8. Conclusion
In this paper, we presented a spatio-temporal neuron model, Adaptive Junction, and showed that it can

"discriminate the direction of a signal's temporal movement along one of two spatial dimensions. Although
it is necessary to add R-neurons, i.e., teacher signals, for feature detection, and to initialize all the neurons
before learning and perception, we suggest the following:

1. Adaptive Junction runs on real time, not on step time.

2. The network and the learning rule have very simple structures.

3. Adaptive Junction needs only the same number of memory elements as neurons, different from various
types of recurrent networks[9] etc.

.- ,

4. If the input signals are fixed, the output signals are also fixed, that is, Adaptive Junction has stable
states. [2][3)[7)

References

[1] Y.Ajioka et al. :Neural network for the discrimination of time-series patterns -Adaptive Junction-, EIC
Technical Report, MBE88, pp. 197-202, 1989

[2] Y.Ajioka,Y.Anzai:A study of supervised signals and the discrimination on Adaptive Junction, EIC Tech-
"nical Report, PRU89, pp. 23-30, 1989

-" [3] Y.Ajioka,YAnzai,H.Aiso:Discrimination of two dimensional spatio-temporal pattern on Adaptive Junc-

tion, submitted to Japan Imaging Technology '89

[4] K.Doya and S.Yoshizawa:Memorizing Oscillatory Patterns in the Analog Neuron Network, IJCNN, Vol.
"1, pp. 27-32, 1989

[5] M.Fujita:Adaptive Filter Model of the Cerebellum, Biological Cybernetics, pp. 195-206, 1982

[6] M.I.Jordan:Attracter dynamics and p3rallelism in a connectionist sequential machine, Proc. of Sth Annual
Conference of the Cog. Sci. Soc. , pp. 531-546, 1987

[7] F.J.Pineda:Gcneralization of back-propagation to recurrent neural networks, Physical Review Letters,
Vol. 59, pp. 2229-2232. 1987

[8] D.Rumelhart&L.McClelland:PARALELL DISTRIBUTED PROCESSING, Cambrige, MA, MIT Press.
Vol. l&2, 1986

, -[9] R.J.Williams and D.Zipser:A learning algorithm for continually running fully recurrent neural networks,
Neural Computation, 1989

135

- I - 356

COMPETITIVE LEARNING WITH MODIFIABLE THRESHOLDS
"FOR VISUAL PATTERN RECOGNITION

Dimitrlos Bal-aktarls
University of St.Andrews - Computational Science -North Haugh - FIFE KY16 9SS- Scotland

TEL: (0334) 76161 ext. 8106 - e-mail : jlm%uk.ac.st-and.cs

ABSTRACT
In this paper we describe a method for implementing connectionist theory on visual pattern
recognition. Our basic cerrnectionist model is based on a modified competitive learning
weight modification rule. In this work we have usedthe modifiable threshold technique from
our previous work on the Dynamic Performance Training Algorithm. The resulting basic net-
work provides the required stability and it performs succesfully for a character recognition
task. Finally, a method based on parallel scanning of a digital image along with the use of the
basic network is discussed.

1. INTRODUCTION
Several attempts have been made to apply the powerful properties of parallelism and fault tol-
erance which neural networks demonstrate, for pattern recognition(11[21131141181. The neural
network we consider here has a layered architecture and is ruled by the competitive learning
(winner-take-all)[5]weight modification rule. We describe how this synaptic modification rule
is applied for pattern recognition tasks and we demonstrate how information persistence
problems appear when certain conditions of the training data are not met. Then, we borrow
the modifiable threshold technique from the Dynamic Performance Training Algorithm[6]
and we explain how information persistence problems are resolved. Having described the
construction and training of a primary network we propose a method for recognizing
overlapping patterns regardless of their position on an digital image(position invariant). The
theoretical discussion of this work is coupled with simulation results. The set of patterns used
in our simulations consist of the capital letters of the English alphabet represented as bitmap
images(see figure 1).

2. COMIPETITIVE LEARNING AND INFORMATION PERSISTENCE PROBLEMS
First let us give an outline of the set of patterns where the network will be applied. Assume a
finite number of two-dimensional patterns each having a fixed size of NxM. Each pattern
consists of on and off elements and it is translated into a K = NxM size vector of I's and - l's
when it is encoded in the network(figure 1(A)). Alternatively we can also include a density
measure for the patterns where each element is allowed to vary within a range of possible
density values(figure 1IB)). In this case the corresponding vector representation Is no longer
binary but consists of real numbers. The simulation results described in this paper were
achieved using this second form of representation.

Figure 1.

(R) (B)
OEOE * 1Ea fatern is represented

I]EIH 2 as x tmap.

Corresponding vectors

": Char[BJ (1-••5I-.-IS1 5 1 5.-l 5- 1 -5.5•555.5.2.-.1-1.2.2.-i.-Il2•2.- 1 1.21

0 0- 357

1 0 ..4

Consider a network whichconsists of two layers of units. The input units layer and the output
units layer. Competitive learning networks support local knowledge representations. That is.
for a number of patterns to be encoded in the network an equal number of units should be made
available In the output layer. The number of units in the input layer depends on the size of the
data. For every element of the vector(figure 1) an input unit should be made available. Every
input unit Is connected to every output unit with a link which has a weight value. The network
Is asked to store the patterns and then to be able to recall them. The storage of the patterns Is
achieved by the modification of the weights. The weights are modified according to the
competitive learning scheme described in 161. This training scheme is expected to assign one
output unit to every pattern to be encoded. It is questionable here whether this encoding
scheme Is efficient. For example if we want to encode 2000 patterns then we have to use 2000
output units. Ii s not within our intention to discuss this issue any further, however it should
be noted that distributed representations(7] would certainly require an even larger number of
units for the same purpose. Assume that we completed the weight modification phase and we
want to use the network. The following algorithm shows how this is done:

- Present the pattern to be recognized to the input units.
- Calculate the activity of every unit in the output layer as shown in (1).
- Find the winning unit among the units of the output layer.
- Calculate the activation of every input unit(i) as follows:

* Activation of input unit (I) = activation of the winner-unit weight of the connection between I
and winner-unit.

The activation of every input unit could now be translated back into a bitmap representation.
-- Alternative uses of the network emerge from the fact that there is only one winner-unit for

every pattern. One may want, after the winner is found, to propagate a signal to a next layer or
through a mapping table to initiate a process. For example. in the case of alphabetical
characters, we may assign the ascii value of the character to the corresponding winner-unit
and create in this way an ascii file. The computation of the activation levels of each unit
depends on locally available information and therefore the activation level of all the units Is
computed in parallel. In addition to parallelism the bias of a particular output unit to a
particular pattern, expressed by the weights, allows the network to find the correct winner-uniu
even if the pattern presented has noise or it is corrupted.
The network functions properly under the assumpt!on that every pattern is assigned to only
one winner unit. It is simpleto prove that this is not always the case. Consider the following
example. We have two patterns (1.1.1) and (1.-I.1) and a network with three input and two
output units. Initially the weights are set to zero. We clamp the first vector at the input units
and we calculate the activation of each output unit. Since the weights are zero, both output
units have activation equal to zero. We choose the first unit to be the winner. We increase the
weights on the connections between the winner-unit and the input units by 10. We clamp the
second pattern (I.-1. 1) at the input units and we calculate the activation of the output units.
The first unit has an activation of 10 while the second has an activation of 0. According to the
competitive learning synaptic modification scheme the winner-unit is the first output unit.
The network failed to assign the second output unit to the second pattern. If we allow weight
modification according to competitive learning information about the first pattern will be
lost. In order to avoid this, an Information persistence mechanism has to be found.
We introduce for every output unit a threshold value. Every time we modify the weights on a
particular output unit we compute the activation level that the unit would have with the new
weights and we assign the resulting value to the threshold. We augment the conditions under
which a unit Is a winner-unit by requiring its activation level to exceed or to be equal to Its
threshold. Consider the previous example. The activation level of the first unit after the
modification of the weights. is 30. We set its threshold value to 30. When the second pattern is
clamped at the input units, the first output units activation level is 10 but because it is under its
threshold level It cannot be assigned as the winner. Therefore the second unit is assigned as
the winner, since It meets the restrlctlons(intially threshold values are set to a negative
value). It is obvious that setting the threshold value of a unit to its activation level reduces the
fault tolerance properties of the network drastically. A unit will only be a winner if the com-

1- 358

. -- ::..,o / ~ ~... ... -
" /I

plete corresponding pattern is available. For this reason the threshold value should be a
percentage of the activation value. Again consider the example we discuss. If the threshold
value of the first unit is set to 20 informatIon will still be encoded properly and will also allow
33% fault tolerance.

3. A NEURAL NETWORK MODEL FOR CMARJACER RECOGNITION
We choose our domain to be the set of patterns representing the capital characters of the
English alphabet(figure 2).

S~NO URSTUV. A Y
As we mentioned earlier we need an output unit for every pattern. Therefore the network has
26 output units. Each character Is represented in a 5x7 grid. The size of the input vector is
35(5x7) and therefore the number of input units is 35. A full connectivity pattern is ap-
plied(figure 3).

SInhibitory cluster
that contains 26

y000

~. ~00000,- nt
nitunitsuP~

S"tp'-" u 0 00 0 00
outu unit,. 89888o

8 00088888"
During the weight modification phase each pattern was presented to the input units. For every
pattern an output unit was assigned as a winner and the weights were modified as described
"earlier(2.) together with the provision of setting the threshold value of every output unit
appropriately. Threshold values were set to 80% of the activation value of every output unit.
This means that during evaluation noise up to 20% will be eliminated by the network. Further
refinements on the threshold values of specific units would allow greater fault-tolerance for
specific patterns. We tested the network with several noisy patterns and the network
responded with the correct pattern in all of the cases where the error was less than 20%. Some
examnples of the patterns we tried are shown in figure 4.

g I I o MM n ID 0
o- 000

4. RECOGNIZING OVELLA]PING PATTERNS ON A DIGITAL IMAGE
So far In our discussion, we constructed a basic network that re,'gnizes the patterns presented
to it during training. Unfortunately, the networh: is only able to recognize a character when it

!- 359

0 11

" "" 0"' -.•

• ~0 OH 00//'-""'_ :• ' "• - ''••r," '•-"
•.~ ~~ r- mb ... a '. .. ,.. :••-

Is presented in the specified format at the input units. S.Grossberg and GACarpenter In their
work on Adaptive Resonance Theory (AR11181 describe a three stage preprocessor that trans-
forms the input data into the required form for the final network ART218] to recognize them.
The basic network we described can be used in the same way ART2 is used at the top of the pre-
processor The first stage of the preprocessor is responsible for extracting the pattern from the
Image. In the case were two patterns overlap each other extraction of one pattern. although it
is desirable. it is not possible. In order to solve this problem we take a rather different ap-
proach where scanning of the image Is performed in parallel. The method requires a fine-
grain parallel architecture computing device in order to perform efficiently. Assume a digital
image of size NxK pixels. Also suppose that the size of our original patterns Is LxM. Assume
that we have trained the appropriate network to recognize the patterns. We assume that the
patterns in the Image are of size LxM. The algorithm is based on the Idea of examining every
possible area of the image where a pattern could exist. Every search area has size LxM. The
total number of possible search areas Is (N-L+I) x (K-M +I). Using a copy of the basic network
descilbed In (3.) for every search area the computation could be done in parallel for all the
search areas. Given (N-L+1) x (K-M +1) computing agents. the computation is performed in one
machine cycle. Furthermore, the method takes full advantage of any degree of parallelism
available. The main advantage of the method is the ability of recognizing patterns even when
they overlap each other. Figure 5 is one of the test images we used for testing the algorithm.
The example given in figure 5 has some noisy
characters like A.Q. and 0 and overlapping
characters like H and L. The method we
described together with the basic network did
recognize all the characters of the image.

6. FUfRTHER ADVANCES
This method requires that the characters on
the image have to be of the same size as the
characters upon which the basic network was
trained as well as that they have to be in the up-
right position. These are severe limitation
towards the implementation of the model for a
real-world pattern recognition task. Our
current research is concentrated on these

"* problems.

REFERENCIES
- r" [111 Aleksander Igor (1986). Adaptive pattern recognition systems and Boltzmann machines

A rapprochement Pattern Recognition Letters, 6. 113 - 120.
121 Longstaff I.D. , Cross J.F. (1987). A pattern recognition approach to understanding the
multi-layerperceptrorL Pattern Recognition Letters. 6. 315 - 319.
[31 Fukushima K., Miyake S., Ito T. (1983). Neocognitron : A Neural Network Model for a
Mechanism of Visual Pattern Recognition. IEEE Transactions on Systems. Man ant
Cybernetics. Vol. SMC-13. No5. 826 - 834.
.41 Bairaktaris D. (19891. A Connectionist Model for Pattern Recognition. To be appeared at
Parallel Computing '89. Proceedings, Amsterdam: Elsevier.
[51 Rumelhart D.E.. Zisper D. (1986). Feature Discovery by Competitive Learning. In
Rumelhart. McClelland and the Parallel Distributed Group . Parallel Distributed Processing
Processing, Volume I :Foundations. pp. 151-193. A Bradford Book. MIT Press.
161 Bairaktaris D. (1989). Dynamical!y Performing Neural Networks A Winner-Takes-All
ModeL Technical Report. University of St.Andrews. Computational Science (also submitted to
Neural Networks).
171 Hopfield. J.J. 11982). Neural Networks and Physical Systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the United States
of America. 79. 2554-2558.
181 Carpenter GA., Grossberg S. (1988). The ART of Adaptive Pattern Recognition by a Self-
Organizing Neural Network. IEEE COMPUTER, March 1988. pp 77-88.

1 360

S~A SPATIO-TEMPORAL NOVELTY DETECTOR USING

FRACTAL CHAOS MODEL/

J.M. BERTILLE and J.C. PEREZ
IBM France

Function 1510
B.P. 1021

34006 MONTPELLIER Cedex
FRANCE

I. INTRODUCTION

A major difference between humans and machines is the capabilities of
the former to naturally store a great amount of knowledge, always immediatly
at hand, and to use it to detect consciously novelty emergence in a great
variety of situations.

In this paper we shall first recall the Fractal Chaos model previously
presented in the INNS 1988 Boston Conference ./BER88a/. Then we shall
explain the use of this model as a spatio-temporal novelty detector. To
illustrate this property we shall finally present an application: loop detection
in dynamical signal analysis (analog signals).

II. THE FRACTAL CHAOS MODEL

The Fractal Chaos model is a dynamical system with a discrete timo,
discrete space and continuous states. It is a nonlinear model, which consists
of succesive parallel procedures on a network. In the present paper we will
use the following diffusively coupled model:

Xn+l(i,j) = (1-e)f(x (i,j)) + e/4 (f(x (i-1,j)) + f(x (1+1,j)) +
f(Xn(ij-1)) - f(xn(I,J 1 Y))) ?A)

where n is a discrete time step
(i,j) represents a network site (I,j=i ... ,N-system size)
and e is the coupling strength within the range (0,1).

The function f(x) is a nonlinear mapping, the logistic map, that is:

f(Xn) = 1 - anxn 2 (2)

where xn represents the state of the function at time n within the range
(-1,1), and a is the nonlinearity parameter of the function at time n within
the range (0,2). The evolution of a is governed by the following equation:

an+l(i,J) = an(i,J) + c * LD(i,j) (3)

where c represents the updating rate of the array a and LD(IJ) is the local
difference between the state of site (l,j) and the states average of its four
neighbours.

I- 361

Here we apply a two-dimenslonnal periodic boundary condition on the
network, that Is, each site communicates via a Von-Neuman neighbourhood.
Thus, the network (an N*N array) can be viewed as a torus.

This model and Its properties have been investigated elsewhere
(/PER88/,/PER89/,/BER88b/ and /BER89/). Here we shall only summarize the
main features It provides:

(a) The use of a highly nonlinear transformation realizes an elementary
component with an Infinity of possible responses depending on the
disturbances the site receives from the external environment. In the case of
the logistic map, the fractal may reach a single attractor which can be a
fixed point, a limit cycle or a chaotic attractor depending on the value of the
nonlinearity parameter a.

(b) The use of a recursive function provides a component capable of
integrating the history of its coupling with the external environment.

(c) The coupling of several maps gives to the system an exponentially
Increasing number of attractors depending on the nonlinearity parameter set
a, the coupling strength e and the size N of the network. These attractors
are all potentially reachable. The choice of a particular attractor lies on the
coupling history of the system, that is, on the "inputs" or disturbances we
have submitted It to. Note that the attractor depends on the initial conditions
but also on the particular system context. Further analysis have been done
showing that these attractors may be hierarchically structured /KAN89/.

In fact, the points (a) and (b) shows that the system dynamics can be
viewed as a model of autonomous behaviour /VAR80/. All these points lead to
a system that has the capability of compressing a great amount of information
while creating its own internal dynamical representations (unsupervised
learning) summarizing the spatial distribution (communication process) and the
temporal organization (context dependance) of the external disturbances.

This system can Just be viewed as an Illustration of the high
dimensionnal chaotic phenomena properties:

- data compression and history Integration
- great selective power essentially due to the property of sensitive

dependance on initial conditions
- spontaneous information and order generation.

Now let us focus on the problem of novelty detection in dynamical
signal processing.

I11. THE NOVELTY DETECTOR

Here, we will introduce the problem of novelty detection by
considering a very simple example (Fig 1).

Consider a 3*3 array of sensors observing a process and providing
our net with analog values within the range of (0,1). At each discrete tmne
step these sensors will send disturbances to our system. In this example we
have N=3, the sensors correspond to the inputs x given to '.._ network.
During an a priori unknown time interval the successive Informatlons provided
by the sensors are not related with each other. Suddenly, the process
becomes cyclic with an a priori unknown period T (Fig 2). The problem
consists then, to analyse the behaviour of the process via the sensors
informations and to detect in real time the cycle apparition in order to advise
the process supervisor.

L 1- 362Li

"The system compresses the sensors Informations In its nonlinearity
array a (Fig 3) and then acts Just as a recall memory ("dAJ& vu"), that is:

If the external disturbances have been already sufficiently seen by the
system, that is, no novelty appears in these informations, the system then
has nothing to learn and the a array remains constant.

On the other hand, If these disturbances present some novelty
according to the system past then the latter one has to adapt itself to this
new configuration. This adaptation involves the modifying of the a array
which becomes unstable.

In fact, all the supervisor has to do is to observe the net behaviour.
When this behaviour becomes stable (a array), it has to determine more
precisely which attractors path the system passes through In order to check
what is going on and to take the appropriate decisions. The figure 4 shows
an example related to the detection of a cycle with period 72.

Figure 1

Random signals Periodic sequence

"Figure 2

Figure 4

Loop uith period 72

-,lea L->MI '
V',S I It V" AW

Detection I -77

Figure 3

Loop detection with unpredictable period

I- 363

IV. CONCLUSION

In this paper, we have presented a simple novelty detection application
dealing only with loops Involving the whole set of sensors. We think that this
kind of model can also deal with much more complex structures such as
embedded sequences, sequences involving subsets of sensors...

This could be an Issue to by-pass the very well known problem of
Artificial Intelligence : the way to handle embedded levels of knowledge
(meta-knowledge) /HOF80/. We have studied the model capabilities to
dynamically generate hierarchically organized attractors, and our conviction is
that these hierarchical structures are closely related to the system history so
that with finer observation tools we could detect much finer organization
among the environment disturbances.

Another emergent feature appears within the model's nonlinearity array
(a array). This internal memory like component shares some interesting
properties with optical holograms. This array is created via the competition of
two antagonist pz..cesses : an autonomous chaotic process In each fractal
(data compression in the time dimension) and an autonomous communication
process involving the whole network (data delocalization in the space
dimension). So in fact, as In a hologram, we mix together on the same
support spatlo-temporal Information. As a result, each site of the network
Integrates a kind of summary of the whole system dynanrics.

Fractal Chaos model offers a lot of interesting perspectives. Actually
we focus our reseach on the embedded levels of knowledge in order to realize
the coupling of Fractal Chaos with an Expert System, and later to realize an
Informal Expert System acquiring its knowledge from experience based
learning.

V. REFERENCES

/BER88a/ J.M. Bertille and J.C. Perez : "Fractal Chaos: A new neural
network holographic model", INNS 1988 Boston Conference, "Neural
Networks", PERGAMON JOURNALS

/PER88/ J.C. Perez : "News ways towards Artificial Intelligence: Pluri-
discflinarity, Self-organization and Neural Networks", MASSON 1988
Paris (french)

/PER89/ J.C. Perez : "The New Cybernetics of Fractal Holograms", MASSON
Paris, to be published (french)

/BER88b/ J.M. Bertflle and J.C. Perez : "The Fractal Chaos Neural
Holographic Model: Theoric Backgrounds and Industrial
Applications", NEURO-NIMES Conference 1988, EC2 Paris, (french)

/BER89/ J.M. Bertille and J.C. Perez : "A new neural network family: the
Fractal Chaos holographic model and its industrial applications",
CONVENTION IA Conference 1989, HERMES Paris, (french)

/KAN89/ K. Kaneko : "Clustering, Coding, Switching, HlerarchifRal Ordering,
and Control In Network of Chaotic Elements", to be published

/VAR80/ F. Varela and H. Maturana : "Autopolesis and Cognition", BOSTON,
D. REIDEL, 1980

/HOF80/ Douglas R. Hofstadter : "Godel, Escher, Bach: An external golden
braid", Ed VINTAGE Books, New-York, 1980

I1 364

Additive Automata and Associative Memories *

M. Ceccarelli, A. Petrosino

Centro di Studio sui Calcolatori Ibridi, CNR

Via Claudio, 21

1-80125 Napoli, ITALY

R. Tagliaferri

Dipartimento di Informatica ed Applicazioni

Universiti degli Studi di Salerno

1-84081 Baronissi (Salerno), ITALY

SUMMARY

The aim of this paper is to analyze the dynamics of a class of boolean nets, Additive

Automata [3], on the basis of laws of the theory of Cellular Automata [8,11], and present
I

a learning rule for such class to accomplish Associative Memories. We shall refer to the

deterministic and discret model of neural network presented by Caianiello in 1961, [1],

which has been adapted to accomplish Associative Memories [2,4,5]. In particular, in the

model under consideration the function computed by each neuron can been seen as the

direct correlation of some characteristic stimuli given in input. In formula
=tr - (1)

kEKi

where • E {-1, 1} is the state of the i - th unit at the time t, r is the synaptic delay

and Ki g {1,...,N}. The dynamics of this class is similar to that of Additive Cellular

Automata. In fact after a simple transformation (1) becomes

t+r 2 E X (2)

* This work was supported in part by CNR, Progetto Finalizzato "Sistemi Informatici

e Calcolo Parallelo", by NIPI 40 % and by IIASS.

1- 365

where z E {O, 1) ,1 <i < N, which written in vectorial form is

2 = E (0, 1) (3)

where A is a matrix with aij = 1 if j E Ki, a,, = 0 otherwise. This formulation yields a

very simple solution of the "Inverse Problem", i.e. given a priori a set of state transitions

of type (3), to determine the additive automaton which accomplishes them. It can be

obtained as follows:

A =2 M'M-' (4)

where M is an N x N matrix whose columns are linearly independent states, M` is the

next-state matrix, and the inverse of M is calculated in algebra modulo 2.

The main feature of an iterative dynamical system as that described above is the

existence of tr-ansient and cyclic states, which are easily outlined from the permutation

matrix PN such that

0' = P

where Ok,h =• -bJ mod 2, 0_ O k < N-1, 0 < h < 2 N-l, Ocontainsall the

N-component binary states and 0' is the next-state matrix. It has been shown that the

characteristic equation of PN is given by

,\no - 1)-i = 0 (6)

where ni, i > 1, is the number of cycles of length 1i and no the number of transient

states. Let be r = rank(A) and rn the least integer such that rank(A,") = rank(An+l) ,

we have the following properties:

i) the number of transient states is

no = 2 N - 2 mr-(m-1)N1

ii) any state reaches a cycle in at most m steps;

iii) the attraction basin of the 0 state has cardinality

2 N
=2rn (1v-r);

2 mr-(m-I)N =

iv) the cardinality of each attraction basin is a multiple of 2 m"(N-r);

v) the cyclic lengths divide k = maz{i : n1 5 0}:

1- 366

A study in the case l= 1 has been developed to accomplish Instantaneous Associative

Memories (I.A.M.), defined as dynamical systems such that

PN=

For the class under consideration the following holds:

Theorem

A necessary and sufficient condition to obtain an I.A.M. is that r = N - v, with

r = rank(A) and v = rank(A + I).

For these systems we have determined a learning rule which permits the net to storage

an input state x(). It looks as, set P) = 0 and r! (A) the j - th row of matrix A:

A(') = A('-1) + (A('- 1_)€P + + (A))(('- + (7)

where the operations are intended modulo 2 and, set z(i) = A('-')_x(+ x(), p()

presents only one non-vanishing element in the j - th position such that z3 0 0 for j • K,

K being the set of indices of the components choosen as characteristic stimuli in the input

pattern x('). Some results are shown to validate the correcteness of this rule. This learning

rule permits the storage N states or their associations with only N 2 bits. Furthermore the

matrices A(W are processed to obtain structured attraction basins.

The last section is dedicated to the interesting case -+' ±e, for some fixed j. The

rule for this class is as follows:

AM =()v(1)T (8)

A('- + (i > 2)
2

where -k 1 is a predefined operator. The computational complexity of (8) is linear in

the number of neurons in the most significant cases, [81, using a suitable representation of

matrix A called "columnar".

Finally, the paper opens the way to a study of applications of these rules, e.g. in the

field of Pattern Recognition.

REFERENCES

[11 Caianiello E. R., "Outline of a Theory of Thought Processes and Thinking Machines",

J. Theor. Biological, 1, 209, 1961.

I- 367

[21 Caianiello E. R., "Neuronic Equations Revisited and Completely Solved", in Brain

Theory, Springer-Verlag, 1986.

[31 Caianiello E. R., Marinaro M., "Linearization and Synthesis of Cellular Automata:

The Additive Case", Physica Scripta, Vol. 34, 1986.

[41 Caianiello E. R., Marinaro M., Tagliaferri R., "Associative Memories as Neural Net-

works", in Cybernetics and Systems, Kluwer Academic Publishers, 1988.

[5] Caianiello E. R., Marinaro M., Tagliaferri R., "The Inverse problem for Linear Boolean

Nets", in Neural Computers, Springer-Verlag, 1988.

[6] Ceccarelli M., Petrosino A., Tagliaferri R., "Convergence and Processing in Learning

for Neural Nets. The AAM Model", Proceedings of Second Italian Workshop on

Neural Networks '89, World Scientific, 1989.

[7] De Benedictis A., Tagliaferri R., "Self-associative neural nets: some examples and

properties", Internal Report, 1989.

[18 Guan P., He Y., "Exact Results for Deterministic Cellular Automata", Journ. of

Statistical Physics, 43, 463, 1986.

[9] Petrosino A., Savastano F., Tagliaferri R., "A Learning Rule for a Class of Linear

Neural Nets", submitted to EURASIP, Lisbon (Portugal), 1989.

[10] Widrow G., Hoff M. E., "Adaptive switching circuits", IRE Wescon Convention

Records, Part 4, pp. 96-104, 1960.

[11] Wolfram S. ed., "Theory and Applications of Cellular Automata", Physica, 10D, 1984.

1- 368

On the training of a multi-layered Neural Net
C. B. CHITTINENI
Du Pont Company

600 Eagle Run Road
Newark, DE 19702

Abstract

An iterative algorithm for the training of a multi-layered Neural Net is presented in this paper. The
algorithm is based on Taylor's series expansion and the prinicple of minimum disturbance.
Conditions under which the algorithm converges are derived. Furthermore, the use of apriori
information and handling of noisy observations are discussed.

1. Introduction

In recent years there has been increasing interest in the problem of learning a general input-output
relation using layered Neural Net. Iterative algorithms with error back propagation based on mean
squared error minimization are proposed [1-3]. For some special classes of nets such as Boltzman
Machines [4], some theoretical results have been obtained for a qualitative understanding of their
long run behaviour. Very few general results have been obtained on the convergence properties of
the training algorithms. The objective of this paper is to present a training algorithm for multi-
layered Neural Net and study its convergence properties. Also discuss approaches for taking into
account apriori information and handling of noisy observations.

2. The training algorithm

In this section, after presenting the basic network equations, we derive a training algorithm and
analyze its convergence properties.

2.1. Basic Network equations

A Neural Net with a hidden layer is shown in figure 1.

input i Wji j Wkj k
pattern input hidden output

layer layer layer

Figure 1. A layered Neural Net

The basic equations describing the net are
Netj = Wj Oi andj = f (Netj) (2.1)

1- 369

Where Wji are weights and O1 are responses at input-layer.
Similarly for the output layer k,

Netk - I Wkj Oj and Ok = f (Netk) (2.2)

2.2 The training algorithm and its convergence properties

The weights are adjusted iteratively so that the net responses will be equal to the desired responses.

At iteration r, the corrections A~Wrj to the weights Wrj are chosen so that the desired responses dk

will be equal to the estimated responses. Using the principle of minimum disturbance, the
correction terms are obtained as

A~r. -A (2.3)

Wherek k. " =dk")/ -~ -_ank. ;Wk. k.~

Where W, is a weight vector, = dk - Ok(Wrk and

=(_9~ *... ..~!)T. The effective correction weight vector at iteration. r is
;Wrk. kl aWrk2 rk

computed as an average of correction weight vectors for all the training patterns.
Treating the net responses as a function of {Wr!i), we obtain

J1
Adr = iZZ Oi Wkj f` (Netj) f` (Netk) AWri (2.4)

Using the principle of minimum disturbance, the correction terms AV! can be shown to be

Wi-d r/(.. J2) (2.5)
J1 J j i Pi

Whei Adr - •ldr r = =, f, (Netj) Wkj (Netk) and Ad r = OiWkf'(Netj) f` (Netk)

kkI 'ji k k~i j ~jf
AWEri. The individual pattern based corrections are combined to yield a overall correction term. At

r th iteration, for the jth component of weight vector, equations (2.3) and (2.5) are of general form
+I r r/ 2

Wrj, =WV!j+ Sj. ~i~ 1,0ir)] (2.6)

r r r
Where SJ is the step size and A = di - X,50 IN WO. At the convergence of (2.6), we have

1 1

(D prT)T (d2 prT) W = (ID2 rT)T D2 d (2.7)

I- 370

S.r .Er 2

Where Dr isa diagonal matrix with diagonal elements D r = I / 2 ,Wr is a weight vector and
1 1

OF is a matrix. If [(D2[fT)T (D21"T)] has full rank then the weight vector W converges to a
unique solution. But that solution depends on the initial weight vector. In general, this will more
likely be the case if the number of patterns is far greater than the number of pattern components.
Let S be a diagonal matrix. We can write

Wr+t Wr+Sp3rDrer (2.8)

Let the diagonal elements of matrix Er contains the eigenvalues Xi and let the columns of matrix Tr
1 1

contains the correspoading eigenvectors of S2 pr Dr prT S2. Then (2.8) reduces to
1 1 1

ur+l = (I - Er) Ur + TrT S! r Dr2 Dr d (2.9)
Intenns of the components of vectors Ur, the recursions are decoupled and are split into one
dimensional recursions. Let the first m eigenvalues be non zero and let the remaining eigenvalues
be zero. Then we can write

r+l r r r r+l r
U (I- X)U0+c for<1• <5mandU0 =U for 0>m (2.10)

1 1 1
r

Where c, is the d th component of MTT s 2 X Dr2 Dr 2d. The above equation can be expressed

interms of initial guess as Url U r- r r
U =[(1-XI)JU '+ Is (Ir'i]+cl (2.11)

s= t=0 S=t+

hence, for convergence the eigenvalues should lie in the range o : X1 < 2.

2.3 Use of apriori information

The apriori information about the Solution vector in solving the estimation problem can be taken
into account as follows. Suppose apriori we know that the solution weight vector W is close to
vector Wo and the covariance of W is given by Co. Now the problem can be formulated as finding
W by minimizing

(W - Wo)T Co"1 (W - W0) subject to the constraints o(W) = d. Fixed point
interative solution of this optimization problem is

Wr + Wr + Co F (FTCoF)" I [FT (Wr. Wo) . (0 (Wr) - d)] (2.12)

Where F=--
aw

2.4 The case of noisy measurements

When the measurements are contaminated with additive noise, the system of equations (2.4) can be
written in the form

A x +n=y (2.13)

1- 371

Where x is the weight or parameter v'ctor, n is noise and y is the observation
vector. Using the statistical approach, an estimate for x can be obtained as

A
S=0 x AT (Afx AT + On) Y (2.14)

Where Ox = E (xxT) , On = E (xnT) and E (xnT) = 0

If the covariace matrixes Ox and On are diagonal with equal diagonal elements lu andu,

2 2"
respectively and y = an / ox, then x can be obtained as a solution of the system of equations

(ATA +yI) A = ATy (2.15)
X

Let y be the noise to signal ratio. Let g= AT y. Then an estimate for y'can be obtained as
E (gTg) tr (ATA) - E (yTy) tr (ATA ATA) (2.16)y E (yTy) tr (AAT) - NE (gTg) (

Where N is the number of data observations. Also in terms of number of weight vector
A A A

components m, noise vector n = (y - y) where y is the estimate of observation vector y, the noise

to signal ratio can be estimated as
2 tr (ATA) E (yTA)Sn (217)

a (N - m) E (yTy)- N E (yT)A

3. Conclusions

In this paper, we presented a training algorithm for layered net based on Taylor's series expansion
and the principle of minimum disturbance. We have shown how the algorithm converges and
presented the conditions of its convergence. We discussed the use of apriori information and
handling of noisy observations in Network training.

References

[I]. R. P. Lippman, "An introduction to computing with Neural Nets", IEEE Trans.
ASSP Magazine, pp 4-22, April 1987.
!2]. B. Widrow, and M. E. Hoff, "Adaptive Switching Circuits", 1950 IRE
WESCON-CONV. Record, part 4, 96-104, August 1961.
(3]. C. B. Chittineni, "Iterative Methods for the training of Pattern Classifying
Machines", MSEE Thesis, IISC., Bangalore India, ;968.
[4]. Sussmann, "on the convergence of Learning Algorithms for Boltzman machines",
Rutgers University Center for Systems and Control Technical report, SYCON-88-03, New
Brunswick, NJ, 1988.

I - 372

Classitron: A Flexible Generalization of the Perceptron
Tomas B. Co

Process Modeling and Control Center
Lehigh University, Bethlehem, PA 18015

1 Introduction

The perceptron is an important pattern classification structure devised by Rosenblatt (1962) but is limited
to solve only linearly separable problems (Minksy and Papert, 1988), i.e. cases where the n-dimensional
feature space containing both positive and negative instances can be separated by a single n - 1-dimensional
hyperplane. Several modifications of the basic perceptron structure have been proposed in order to allow
effective separation of non-linearly separable problems including: multi-layer perceptrons (Rumelhart, et
al., 1986), 0-,nachines (Nilsson, 1965), multithreshold perceptrons (Takiyaina, 1978) and decision-
tree layered perceptrons (Koutsougeras and Papachristou, 1988). All three methods have problems in
their architectural designs, however: how many hidden nodes, what nonlinear 4k-transformations, and how
many threshold levels the devices should contain prior to learning the classification problems, respectively.
Although the decision-tree perceptrons address the problem of architecture through structural fexibility, the
learning rules depend on the minimization of certain entropy measures; this turns out to be a very difficult
problem by itself.

In this paper, we propose a different structure that unifies the three modificat;ons of the basic per-
ceptror structure we have cited above, and we refer to this new structure as the classitron. The classitron
structure involves the introduction of a nonlinear mapping box located between the summing junction and
the threshold box of the perceptron (see Figure 1). This structural change allows us to decompose the learn-
ing procedure into two parts: the first part involves the adjustment of the weights, W, while the second part
involves the construction of the nonlinear mapper, f. Consequently, we obtain two important advantages:

1. The search for the vector of weights is efficient. A sufficiently smooth objective function can be
formulated such that the search space is only n - 1-dimensional and compact, where n is the number
of input nodes.

2. The structure is flexible. If the problem is linearly separable, we can simply set f(.j) = r - w, where w
is the scalar input to the nonlinear mapper ai.d r is the threshold value. Otherwise, the functionality
of the nonlinear mapper can be constructed using direct (i.e. noniterative) algorithms.

2 The Classitron

Assume that the n,,mber of input nodes is fixed and, without loss of generality, we have only one output
node. The problem can then be formulated as:

The Classitron Problem: Given a set of n-dimensional training instances,

L,'={(hU2,U ... Un Ui=

Uni

which can be partitioned into two disjoint sets,

P P{Pi,.. k. P c U PK}k)={N , N . an...k}C and P n.%' 0

I- 373

VARIABLEWEGTS

"" SUMMING NONLINEAR THRESHOLD
JUNCTION MAPPER

INPUT

Figure 1: Th.- classitron structure.

find the vector of constant weights, W, and the nonlinear functional, f, such that

f(Pi1W)>O and f(NjW)<o fora <i <k , I <ij _m-k (1)

Implicit in the problem formulation is the sequence in which the problem can be approached. Observe
that the arguments of the nonlinear mapper, f, are the scalar inner P:oducts, UlW. Thus we could search
for the vector of weights first and then construct the nonlinear mapper afterwards.

2.1 Evaluation of the Optimal Vector of Weights

Let us begin by obtaining the set of constraints on W. For the problem to be meaningful, we must have, for
all i and j,

P t W $ N'W or [(P, - N,)'W12 > 0 (2)

and we refer to this condition as the Linear Projectability Condition. Some of the constraints, however, are
redundant, thus we need to satisfy only an essential (non-redundant) set of constraints, '?'EssW $ 0, where
*DEss can be obtained from {P6 - N2) such that no two elements of 4 Ess 'are scalar multiples of each other.

Having obtained OEss, we can define a scalar function,

J(IV)= 171 w (3)
*E ESS

which is equal to zero if and only if any constraints in (2) are violated. Further, the square of this function
increases with increased separability. Here, we use the naive notion that a line containing two classes of
instances is more separable if instances of the same class are closer together (i.e. formation of clusters) while,
at the same time, instances of different classes are farther apart. An optimization problem that exploits this
notion of separability to get the desired vector of weights, IV, is

max 2 (wV) (4)
w

I- 374

Since the orientation of W is more important than its magnitude, we can choose the form of W to be

COSalCOSQ COSa3* "COSkn-2 Co5Qn- .1
CO8aIOSC0 2COS03•*•COcfn-2 sinafn-

W= n>2 (5)

cosai sin&a2
sin a,

which has the property: IIWI12 W'W 1 1. The necessary conditions for the solution of the optimization
problem, (4), then becomes

k: f \# / 0 j= ,...-,n-1 (6)

Here, we have recast the problem to that of finding ai which in turn allows us to restrict the search
domain to be a closed and bounded region: - - < a, !5 -. Thus we know where the global maxima reside.
It is important to recall, however, that this optimization is done only for maximal separability, i.e. it is not
always necessary to obtain a global maximum.

2.2 Construction of the Nonlinear Mapper

Having obtained W, we can rearrange the set of projected instances in ascending order

UPROJECTED = {p...... Uo,) where, pi = U,'W and pi >_ 1j if i > j

Now for i ranging from 1 to m - 1, gather a set of points, ak, that lie in the middle of pi and pi+ , where
pi and pJ+t are not both positive or both negative projected instances, and collect these points into the set,
E. Next, if 1A, is a positive projected instance, set a parameter X = 1, otherwise set X = -1. TIe nonlinear
mapper can then be constructed as

f(W) = X rl (o - W) (7)

Theorem 1 : Given a W that satisfies the Linear Projectability Conditions, (2), then the nonlinear
mapper, f, defined by (7) together with W, solve the Classitron Problem.

Proof: The value of f is zero only at points included in E and changes sign as it passes through these
points. Thus (1) is satisfied with the possible exception of reversed inequalities. The value of X assures
the correct sign for the leftmost projected instance. This in turn guarantees that the correct inequality is
achieved throughout. Since W satisfies the Linear Projectability Condition, such a set E could always be
constructed.

QED~

Example 1: For the 3-input parity problem, we have

P= 0 , I 0 , 1 and jV 0 1 0 1

I,0I30 7)

1- 375

Then we get, 4ES=I(0) -(0) ()(, (,) ,)
1 0 0 1 -

and J = (Wl)(W 2)(w3)(w,+w 2 +w3)(Wx+w 2 -w3)(wI-w 2 +W 3)(-wx+w2+W 3), where w, = cos a cos a.
W2 = cos a1 sin 0 2 and w3 = sin a,. A global maximum for J2 can then be obtained by numerical means to
be at = tan'-(V2/2) and a2 = r/4. Finally, we have f(w) = -(_ -)(-w)(2 -_).

3 Discussion

We have obtained a flexible generalization of the perceptron which unifies its existing modifications. If the
problem happens to be linearly separable, obtaining the globally optimal vector of weights via the classitron
procedure will result in a perceptron. Otherwise, a higher order polynomial mapper defined in (7) is used to
separate the positive from the negative projected instances. It can be shown (Co, 1989) that an equivalent
layered perceptron network exists for every classitron. Also, changing the form of the nonlinear mapper
to square pulse instead of polynomial results in a multiple threshold structure. Lastly, if we fully expand
the polynomial in (7), then the various additive terms determine the 4-transformations required by the
4-machines. This fact is due to the shift from Sigma-Pi structures (Rumelhart, et al., 1986) to Pi-Sigma,
i.e. we have focused on locating the roots of the polynomials instead of the coefficients of the polynomials.

In certain cases where the other methods are more advantageous, the classitron can quickly determine
both structure and initial conditions for these methods. At present, the learning procedure is nonincremental,
and future work will include an incremental learning version to accomodate noisy data and forgetting of
obsolete data.

4 References

Co, T. (1989). Classitron: A New Structure for Pattern Classification. (Submitted for publication).

Koutsougeras, C. and C. A. Papachristou. (1988). Training of a neural network to pattern classification
based on entropy measure. Procedings of the IEEE Internaltional Conference on .Veural ,Vetworks, San
Diego. Pt. 1, (pp. 247-254).

Minsky, M. L. and S. A. Papert. (1988). Perceptrons: An Introduction to Computational Geometry,
(Expanded Edition). Cambridge, MA: MIT Press.

Nilsson, N. (1965). Learning Machines: Foundations of Trainable Pattern Classifying Systems. New York,
NY: McGraw Hill Inc.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms.
Washington, DC: Spartan Books.

Rumelhart D. E., G. E. Hinton and R. J. Williams. (1986). Learning internal represen tations by error
pr,•pagaLtion. h I D E. ltuxcllhart, J. L. McClelland ani('l)W I{'searcl, (C;rotip ([Ed,.). 'arallcl Dis-
tnbuted Processing: Explorations in the .1Iicrostrncture of Cognition (Vol 1: Foulnztxons. Cambridge,
MA: MIT Prcss.

Takiyama, R. (1978). Multiple threshold perceptron. Pattern Recognition, /0, 27-30.

I- 376

GLOBAL MINIMA WITHIN THE HOPFIELD HYPERCUBE
Bruce R. Copeland

Center for Manufacturing Research and Technology Utilization
Tennessee Technological University

Cookeville, Tennessee 38505

ABSTRACT
This paper examines the behavior of the Hopfield network when the connection matrix is negative

definite or semi-definite with global minima inside the hypercube of allowable variable space. The original
Hopfield circuit is compared with the modified circuit which is in wide use. Using the original Hopfield
equations of motion the minima are displaced inward slightly. If the connection matrix is negative definite
the error is exactly determined. It is shown that a large class of problems, least squares estimation, have
negative semi-definite connection matrices.

INTRODUCTION
The model that Hopfield proposed in 1984 il] has been used extensively for combinatorial optimization

problems, but its application to other problems has been infrequent. However, this network lends itself
exceptionally well to another general class of problems. If we have a negative definite or semi-definite
connection matrix then the network will converge to the global minimum within the hypercube of the
constrained variable space. This paper will discuss several issues related to this problem.

The original Hopfield model is described and compared to the modified model that is in common use.
It is shown that the modified model has no error, however the modified equation of motion cannot be
implemented in analog hardware. Since most researchers are only simulating the differential equations on
sequential digital machines, the modified version is best. However, they cannot make the claim that it can be
implemented in an analog parallel form. If we want real-time operation, then the error due to the Hopfield
approximation must be studied.

This paper will discuss the use of the Hopfield model for possible real-time applications where the desired
result is analog within fixed limits. Thus in this case we want the net to converge to an interior point of
the hypercube, rather than a vertex. It is also shown that a negative semi-definite connection matrix always
results from a least squares estimation problem.

It should be noted that analog real numbers (as opposed to binary on/off numbers) can be represented
as outputs of the Hopfield net quite simply without resorting to the number representation scheme of Takeda
and Goodman [31 or other binary representation schemes. By scaling the asymptotic limits of the transfer
function to the actual variable limits the output of the net will be the optimum constrained values. This
result has also been observed by Matsuda and Akimoto [2]. Equivalently, the variables can be scaled between
the asymptotes with appropriate scaling of the other parameters. The method chosen will depend on the
implementation. The latter method is appropriate for analog implementation, the former is simpler for
digital simulation.

ORIGINAL VS MODIFIED HOPFIELD MODEL
Hopfield proposed his model by considering real neural nets and implementing the important properties

of these nets in an analog RC circuit with active nonlinear elements (operational amplifiers). Each neuron
is composed of two amplifiers: one inverting and the other normal (or non-inverting). Each neuron is
potentially connected to every other neuron in the circuit through some resistance. This particular circuit
results in the following equation of motion

du

where the subscript i refers to the ith neuron. Ci is the input capacitance, ui is the voltage input, Vi is
the voltage output and 1i is some fixed input current. The resistance connecting the jth neuron's output to
the ith neuron's input is Rp The magnitude of 2ii is given by 1/R1i and its sign is negative if connected
to the output of an inverting amplifier and positive otherwise. 1/Pi = ', 1/Ri, + 1/p where p is the

input impedance of the amplifier. The output of the neuron is given by Vi = gi(u•) where g% is some
sigmoidal ftinction. Hopfield used a hyperbolic tangent function, but in this paper the logistic function
V= 1/(I + e`"-) is used.

1- 377

He then showed how this equation of motion would minimize a Liapunov function of the form

E= ! -jZT iViVi+ Z(1/R,) jg1(z -dz , i Vi (2)
0 i i d i

where Vo, = gi(0). These equations will be referred to as the original Hopfield equations. Hopfield noted
that in the high gain limit the integral term would be zero. Thus in the high gain limit the Liapunov function
can be written as

E.m F 1:T~jViVj -L1 Ii (3)I 3

where the subscript m refers to the modified energy function.
Normal usage of the Hopfield net involves constructing a Liapunov function in the form of equation (3).

It has been shown numerous times that Em is minimized by the modified equation of motion

du(- = E i i+ ii. (4)
d t

However, this equation can no longer be implemented in the analog form proposed by Hopfield, although some
digital parallel array may be feasible. It is important to note that most researchers are simply numerically
integrating the equations of motion on digital serial computers, while claiming the power of analog parallel
processing. Thus they use the modified equation of motion without regard to its implementation.

THE HOPFIELD APPROXIMATION ERROR
The modified energy equation (3) can be rewritten in matrix form as

A. V'tj-jb (5)

where b and v are nxi vectors and T is an nxn matr:x. The classical approach to finding the value of v that
minimizes a cost function of this form is to take the partial derivative of Em with respect to v and set the
result equal to zero. Thus

aE,,E,=-Tv - b = 0. (6)
a',

The points in n-space, v, which solve this equation are critical points and define either a minimum, maximum
or saddlepoint. If the Hessian of Em is positive semidefinite

aŽ = V - 2! 0 (7)

then the v that solves (6) minimizes E,. Thus if T is negative semidefinite, any v that solves (6) is a global
minimum of E. If T is negative definite, and thus invertible, then (6) can be solved explicitly to give

v., = -T-(8)

This approach has three major limitations. First, if there are constraints on any of the variables then (8)
may give an unrealizable solution. This can be dealt with only by fixing the variables whose constraints have
been violated at their limit, reformulating the problem in terms of fewer variables and repeating the problem.
An optimum solution is still not guaranteed. Second, T must be inverted which is time consuming for large
matrices. If the matrix is ill conditioned or very large (n on the order of 100) then numerical problems can
cause inaccurate results. Third, if T is not invertible then the problem cannot be easily solved.

Assuming that the minima lie within the variable hypercube, we can take a similar approach with the
unmodified energy equation. In vector notation equation (2) can be written as

i t
Eh = vT - v'b + G-'(v) (9)

2

1- 378

where
wh~~~~ 01ti =-Jg1 (x) dx.

Differentiating Eh0 p with respect to v gives

Cl = -Tv - b + R(v) (10)

where

RMu R1 [, ... A,.J

Setting this result equal to zero and solving for v gives us the value of v which minimizes Eh,., which we
will denote as vh,. Thus

0 = -Tvo, - b + R(v,,,p) (11)

The difference, or error, between this result and the value which minimizes Em is given as

V• = mVn + Wr,, (12)

Substituting equation (12) into equation (11) gives

0 = -T(tm + vi,,) - 6 + R(Vhop) = -Tvm - b - Tvter + R(Vho,) (13)

Since -TVyo - b = 0 from equation (6) we have

0 = -Tv, + R(viw) or (14)

v, = T-1 R(vhp) (15)

if T is invertible.
This simple result can aid in understanding the error. There are three sets of variables that can be

modified: g'" , 1/R1, and T- 1. By decreasing any of these factors, we can decrease the steady state error. By
increasing,Aj, the slope of gi we decrease the slope of g-I and thus decrease the error. This result is the same
as Hopfield's, since in the high gain limit E = Ehop. The two terms 1/R, and T-I interact. By decreasing
T-' we increase T thus increasing 1/A. since 1/Ri = 1/p, + F, T7i where pi is the input impedance of
neuron i. So effectively we can minimize the error only by increasing pi or Aj.

LEAST SQUARES ESTIMATION
Determining a set of real-valued (as opposed to on/off binary) variables that minimize a cost or energy

function is a common need in engineering and other fields. In many cases this function is quadratic with
respect to these variables. If the cost function is put in the form of the Hopfield energy equation quite often
the connection matrix T is negative semi-definite. An example is minimizing the errors in a least squares
sense. If there are constraints on the values of these variables then the Hopfield net is an excellent choice.

The general problem addressed in a least squares minimization is to find the vector v that minimizes

S= !(Av - k)'(Av - k) (16)

where A is an mxn matrix, v is an nxl vector, and k is an mx1 vector. Multiplying the terms gives an
equation of tle form

V (V'A'Av - W,' A'k + kk) (17)
2

Since minimizing E' also minimizes E' - Vtk the problem is to find v such that

E= ,(v'A Av- 2vA'k) - V'AAv- v'A'k (18)
2 2

1 - 379

is minimized. This can be rewritten as -i!t,'Tv-u'b (19)
2

where T = -A'A is a symmetric negative semi-definite nxn matrix and b - A'k is an nxi vector. This is
the proper form for the Hopfield network with the connection matrix given by T and the set of input bias
currents given by b. By appropriate scaling of either the sigmoidal function's asymptotes or by scaling T
and b to give per unit values of v the constrained solution can be found by an n neuron Hopfield net.

EXAMPLE
A simple example of a two neuron net with a negative definite connection is presented. The optimum

solution lies within the allowable variable space. The solution is found using both the original and modified
equations of motion. This error equation is applied. A simple Euler integration was performed with step
sise of 10". The following parameters were used: A, - 104, Ci = 1.0, p = oo, R, = 1/3,

T= 2 (1) ; b 1-0 (0) ui,,,ti. = 4.0O)Z10-4.
The converged values for the modified method, %rn and the original method, Vh.,, are

M (= 0.0050) in 926 iterations; v (p = 0.0065) in 750 iterations.
Ur = 0.9950/ inVh 0.9935)

The modified method converged exactly to the minimum. Applying t'.e inverse logstic function g-(v) =

-1/A In (1 - v)/v we find

R(Vuh,) = (-5.0294) z10- 4 and T-1R(Vhop)= (-0.0015)

which is correct, demonstrating the validity of the result.

CONCLUSIONS
The Hopfield network is exceptionally well suited to quadratic minimization problems, such as a least

squared error. Since the network '-,, be imp!emented using analog components for fast, stable results, it
lends itself well to problems requiring real-time operation. Both negative definite and negative semi-definite -

connection matrices will give optimal solutions if the modified Hopfield equation is used. If the original
equation, or a real analog circuit, is used a small error results, but this error can be easily reduced. An
exact solution to the error is given if the connection matrix is negative definite and the solution lies in the
allowable region.

Solutions using the original equation of motion are displaced towards the center of the allowable region.
If the connection matrix is negative semi-definite (thus with an infinite number of solutions) this can be an
advantage since the network will converge to one of the solutions close to the center of the allowable variable
space.

Only one neuron is needed for each real-valued variable; there is no need to use large numbers of neurons
to represent such a variable. Scaling can be accomplished either through changing the asymptotic limits of
the sigmoidal input/output relation or by scaling the variables and associated equations.

If the Hopfield net is to be used in a real-time application it will have to be implemented in hardware.
The error introduced by the finite input impedance and finite slope of the op-amps has been discussed at some
length in this paper, but other design issues such as component tolerance, sensitivity to asymmetry of the
interconnection network, and finite output impedance will all need to be addressed before the Hopfield net can
be fully implemented in hardware. This paper demonstrates, I believe, that this effort would be worthwhile.

REFERENCES
[il Hopfield, J. J. "Neurons With Graded Response Have Collective Computational Properties Like Those

of Two-State Neurons,* Proc. Natl. Acad. Sci. Vol. 81, pp. 3088-3092, 1984.
[21 Matsuda, S. and Akimoto, Y. "The Representation of Large Numbers in Neural Networks and Its

Application to Economical Load Dispatching of Electric Power," Proceedings of the International Joint
Conference on Neural Networks, Washington, D.C. June, 1989, Vol. 1, pp. 587-592.

(31 Takeda, M. and J. W. Goodman,"Neural Networks For Computation: Number Representations and
Programming Complexity," Applied Optics, Vol. 25, No. 18, pp. 3033-3046, Sept. 1986.

1- 380

_______________________ _______________

A Neural Network for Explicitly Bounded Linear Programming

Jean-Christophe Culioli and Vladimir Protopopescu
Engineering Physics and Mathematics Division

Charles L. Britton, Jr., and Milton N. Ericson
Instrumentation and Control Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6364

Abstract: The purpose of this paper is to describe a neural network implementation of an algorithm
recently designed at ORNL [1] to solve the Transportation and the Assignment Problems, and, more
generally, any explicitly bounded linear program.

1. Introduction. In a companion paper [2], we study two general neural network models for Linear
Programming. Here, we introduce a different model. This model applies only to explicitly bounded
linear problems, i. e. problems for which a priori bounds are available for the optimization variables. In
particular, it is well suited to the Transportation and the Assignment Problems (TP and AP). Due to the
very structure of the explicitly bounded linear problems, the architecture complexity of the network is
much simpler. For example, a K x L AP will require only K + L neurons and K x L connections, instead
of K x L + K + L neurons and (K x L)(K + L) connections for the Primal-Dual model studied in [2]
or for the circuit proposed by Hopfield and Tank in [3]. The neural network proposed here could also be
used to solve the Analog Decoding problem proposed in [4]. In the next Section, we will briefly describe
the TP and AP models. In Section 3, we present a network that implements a solution of a slightly more
general problem, via a parameterization of the primal variables with respect to the dual variables. We
also discuss a possible implementation. Some simulations results are given in Section 4.

2. Two Examples of Explicitly Bounded Linear Problems. The TP can be formulated in
the following way: we have to ship some goods from k different sources twith stocks Si, i = 1, 2, ...K, to L
destinations with associated demands Dj, j = 1, 2,..., L. A transportation cost cijzij is associated with
the shipment of the (positive) quantity zxi from the source Si to the destination Di. One assumes that
there is no loss during the process, i.e. for every source i, F-izXi = Si, and also that the demand is met for
every destination, that is E, zi- = D. This defines a "balanced" TP: 'Zij = , Dj = ", Si. It is
possible, at the price of adding shadow sources or destinations, to transform any unbalanced problem into
a balanced one. The problem of minimizing the cost of the transportation leads to the linear program:

(1) minE cqXiiz,, subject 0o zXi >0 , 'q = Si, zXii = Dj
ij j i

The AP has the same mathematical formulation as the TP, except that each stock Si is equal to 1 and
each demand Dj is also equal to 1. A typical application is to assign K jobs to L machines, with operation
costs [cii]. As noted before, one can assume, without loss of generality that K = L. The AP can be
viewed as a combinatorial (0,1)-programming problem. However, it has been shown [5] that it can be
expressed as a continuous linear program with 0 < zxj < 1. T)'ere exist several algorithms of complexity
O(K 3) dedicated to solving both problems (see for example [6,7]). From their above formulation, one can
notice that explicit bounds an the optimization variables are available (0 < xij < min{Si, Dj,} =: Xii).
We now introduce a generic problem that is somewhat more general that the TP and the AP, but preserves
their fundamental properties. We seek for the solution of

(2) min <c,z> subject to Az = b, z > 0,

where c and z are vectors in R", b is a, vector in R', and A is an m x n matrix, with m < n. The brackets
< > denote the scalar product in R/. We assume that the problem (2) has a bounded solution z" and,
for the purpose of the forthcoming derivations, that the rank of A is mn. We also assume that the entries
of A and the entries of b are positive. This implies that one can compute an explicit bound X"a for the

I- 381

\K

variable z. One choice is X"° with entries X?""' = min, b 0, thismaxi {a,,] 0 Note that if Xt'- =
implies immediately that zx = 0, and we can remore this variable from the original problem. We thus
assume in the following that all components of XmaI are strictly positive.
The dual problem associated with (2) is [81

(3) max < b,p> subject to ATp<_ e,

where AT denotes the transpose of matrix A and the scalar product in R' is also denoted by < .,. >. By
definition, a vector z such that Az = b, z > 0 or a vector p such that ATIO < c will be called admissible.
The fundamental result of duality is (for a proof, see (8]):
Proposition 1. If i is admissible for (2) and 0 is admissible for (3) then the duality gap 6 :=< c,* >
- < b, Ap> is positive. If6 = 0, then i is a solution of(2), and is a solution of(S).

3. The Parameterized Neural Network Model. To solve problem (2), we propose to param-
eterize the primal variables z in the following way

(4) Z=XmZ*eg.(c- ATp), g.(y) := 2

where the function g9 is applied componentwise on the vector c - ATp, and the operation "." denotes
the Kronecker product of vectors, that is (YI, Y2, .-. , Y.) * (z1 , z 2,...., z) := (yzI, y 2 2 y--,1 zf.)
With this parameterization, we wish to solve in p the equation Az(p) = b which now writes AX" *
gA(C - ATp) = b. To do that, we consider the variables p as input-states of neurons with output states x
(the implementation will be clarified in the next Section) and assume the following dynamics:

(5) dp(5) d _ -(Az(p) - b).

dt

The sigmoid function g% has two useful properties that we shall take advantage of in the future derivations.
Namely,
(i)V-A > 0, VY, gVy) = -j9.%(Y)9A(-Y) < 0,

() > o, Vy _> o, y gA (.Y) < 2.

We now address the convergence of the network.
Proposition 2. If p in system (4-5) is bounded, then the network converges to stable states (i,p) which
are admissible solutions of (2) and (3).

Proof: We introduce the Lyapunov functional E = -•IAx - b112. The functional E is bounded below
(it is positive) and above, because z given by (4) is bounded. We study the variation of E along the

dE dz dz dx ~d
trajectories of (5). We have -d = =< A- Ax - b >=< -, AT(Ax - b) >= -<d, A do->. From (4),

t dt' di' dt T
dz A T A pC

we = X A (c - ATp) * g(Arp - c), which leads todegt 2- di

dE A ma Adp rAdpA>
d < -- 2 <Arp)og,(Arp-c) ATdt A dt

We can rewrite this as = - < DAZ ATIE >< 0 with D(t):= diog(Xm•eg,%(c-ATp).og(ATp-

c)), a strictly positive diagonal matrix. Thus E is decreasing along the trajectories of (5). lfp is bounded,
then each entry of the vector gx(c - ATp) o g,(ATp - c) is bounded below by a strictly positive constant.
The matrix A(t) := ADAT is, at any time t, an m x m positive definite matrix, with IIA(t)[I > a > 0,

dE
which implies LE < -AaE. Then E converges to 0 and the trajectories of p and x converge to fixed

points P and I such that AI = b, 1 = Xm'" 9A (c - ATp). Also, by construction of XA-ma, and due to
the factor 2 in the definition of 9, the satisfaction of the constraint A(X"' * g,(c - ATp)) = b implies
that c - ATrI is positive. I

I- 382

Remarks.
1. Although we had to assume a "boundedness hypothesis" for p in the theoretical derivation, it appears
that in practice, this condition is not very restrictive. It is always possible to limit the iterates of p in a
ball of radius R in a computer implementation (which, for R large enough does not perturb the system),
but it proved unnecessary.
2. The assumption rank(A) = m, needed for the proof of convergence (strict positivity of A(t)), can also
be relaxed in the numerical tests. In particular, in the case of the TP or the AP, m = K + L but the
rank of A is K + L - 1. This fact did not seem to alter the simulations either.

Now that we have obtained admissible solutions for (2) and (3), we need to evaluate their associated
duality gap 6.

Proposition 3. The duality gap associated with i and P is positive and bounded above by -, where M

is a positive constant which depends on the data A and 6.
Proof- The duality gap is positive since ! and p are admissible. We have

6=< c,1 > - < b,p >=< c-ATp3,f >=< c-A T,Xma**gA(c -AATP) > .

By using property (ii) and the Cauchy-Schwarz inequality, we conclude 0 < 6 < 2 v '-IIX M
4ýII

Ae

In order to do some comparison with "standard implementations", and address the complexity of
implementation, we define the vector z := c - ATp. With this notation, we can write

(6) z = gA(z), -d = AT(Ax - b). it

System (6) defines a neural network comprising n neurons with input states z, output states z, activation
functions g.% and thresholds -A T b. Neurons (zj1 ,zx,) and (zj 2,zx,) are connected with a connection
strength equal to - -• AjiAi 2 " In conclusion, the only difference between the network (z, x) and
Hopfield and Tank's network (u, V) is the absence of a time constant r. However, it is not necessary to
consider so many neurons and connections. The system (4-5) is naturally expressed as

(7) dp -(A(X
m 0 * gx (c - Arp)) - b),

dt

for which we are led to an implementation whith only m neurons. In the case of the TP or the AP, the
implementation is even more simplified. In both cases, n = K x L >> m = K + L. Also, due to the
matricial structure of these problems, we can denote the vector z by zii (with xaz!'! = 1), and associate

dual variables pi and qj to the rows and columns of the constraints equations (pi ... j= j 1 and

qi '"i = 1) respectively. With this notation, the system (7) reduces to
j=l i=k

(8) d - -(Z g~d-cj +pi +qj) - 1),7 g.\(-cii + pi +q)-
j=1 i=1

The corresponding neurons pi and qj are somewhat different from the "standard neurons" of Hopfield
and Tank. They include some "feedback" and a whole vector of internal thresholds (a row or a column
of the cost matrix [cj]) in the activation function. Their interconnection is however very simple: each
neuron pi is connected to itself and to all the neurons qi. The same is true for the neurons qj. The
connection strength are equal to -1 and the external thresholds are all equal to -1.

4. Numerical Application. We report the test of the numtrical simulation of (8) for Assignment
Problems with K = L rangint from 10 to 100. Note that this cornsponds to 102 < n < 104 and
20 < m < 200, i. e. fairly large problems. The entries of the matrix tcij] ,vere generated using a uniform

distribution law on [0, 11. The simulation of equation (8) was performed with a step size I= The
A

I- 383

parameter A was taken equal to 10'. We had the following results (compare the duality gap with an
optimal cost of approximately I):

K=L I0 20 30 [40 150 75 100
6 10-7 210-4 101ji 210- 1 710- 210' 3 10'
iterations 240 170 100 90 1 110 70 60

One notices that the number of iterations needed to reach a stable state is not increasing with the
number of variables. On the other hand, the duality gap deteriorates with the dimensions. as predicted
by the above analysis. We have also simulated the network with A = 104 (and c - 10-'). We noticed
the following improvement of the duality gap:

K = L 30 50 75 100
6 10-3 10-4 10-" 2J10-

iterations 820 960 490 4 0

5. Conclusions. We have presented a neural network model for solving explicitly bounded linear
programs. Its low architectural complexity is due to the parameterization of the primal variables (z)
with respect to the dual variables (p) which applies very well to matricial problems like the TP and the
AP. The theoretical work presented here and many computer simulations seem to prove its applicability.
We are now in the process of designing an analog circuit implementation.

Acknowledgements

This research was partially sponsored by the U.S. Air Force Wright Aeronautical Laboratory un-
der DOE Interagency Agreement, DOE-1570-1579-AI, by the Office of Basic Energy Sciences and the
Exploratory Studies Program of Oak Ridge National Laboratory, U. S. Department of Energy, under
contract # DE-AC05-840R21400 with Martin Marietta Energy Systems, by DARPA under contract #
1868-A037-AI, and by an ORNL Postgraduate Research Appointment administered by Oak Ridge Asso-
ciated Universities.

References

(1] J.-C. Culioli and V. Protopopescu, "An Algorithm for Linear Programming That is Easy to Imple-
ment", Applied Mathematics Letters, Vol. 2, N. 2, pp.125-129, 1989.

[21 J.-C. Culioli, V. Protopopescu, C. Britton, and N. Ericson, " Neural Networks Models for Linear
Programming", this Conference Proceedings.

[3) J. J. Hopfield , and D. W. Tank, "Simple "Neural" Optimization Networks : an A/D Converter. Sig-
nal Decision Circuit, and a Linear Programming Circuit", IEEE Trans. on Circuits and Systems,
Vol. CAS-33, N. 5, May 1986.

[41 J.-C. Platt and J. 3. Hopfield, "Analog decoding Using Neural Networks", Proc. of the AIP Confer-
ence, Snowbird, UT 1986.

(51 J. von Neumann, "A Certain Zero-Sum Two-Person Game Equivalent to the Optimal Assignment
Problem", in H. J. Kuhn and A. W. Tucker (eds), Contribution to the Theory of Games, Vol. 2,
Annals of Mathematics Study N. 28. Princeton University Press, 1953, pp. 12-15.

[6] N. Christophides, Graph Theory. An Algorithmic Approach., Academic Press, London. 1975.
[7] F. Bourgeois and J.-C. LaSalle,"An Extension of the Munkres Algorithm for the Assignment Prob-

lems to Rectangular Matrices", Communications of the ACM. algorithm 415, December 1971,
Vol. 14.

(8] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1964.
(91 J.-C. Culioli and V. Protopopfscu. "Bifurcating Optimization Algorithms and their Possible Appli-

cation", ORNL/TM-10976. Nov. 1988.

1- 384

LANGEVIN EQUATIONS AND THE FORMAL FOUNDATIONS
OF NEURAL NETWORKS

J. G. Figueroat, M. Romero, E. Vargas & C. Flores
t UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO

UNIVERSIDAD AUTONOMA METROPOLITANA--IZTAPALAPA

Laboratorio do Sistemas Complejos
Ap. Postal 70-499. C.P. 04510

Mexico, D.F. MEXICO

Statistical Mechanics offers an interssting theoretical
framework for the study of the neurocomputational systems,
because it allows working with large sets of interactive
elements. In this work we consider the application of certain
formalisms of Non-equilibrium Statistical Mechanics in the study
of neurocomputers. Particularly, we propose that the formalism
that describes Brownian Motion is convenient for studing certain
kind of systems, exemplified by the SAM (Bidirectional
Associative Memory). This work considers a two-layer network
(input and output), interconnected by a synaptic weight matrix.

In the formal derivation of the generalized relaxation
equations (Zwanzig, 1961; Mori, 1965) it was found that a set of
arbitrary properties of complicated (statistical) systems can be
described by analogous equations of the generalized Langevin
equations of Brownian Motion. The evolution of the arbitrary set
A - A1 , ... , AU} of dynamical variables is described by the
vectorial equation:

DtA = ig-A(t) - dr K()-A(t--r) + F(t) (1)

where Q and K are well defined frecuency arid memory matrixes,
while F is the random force vector. These equations, frecuently
obtained by spin relaxation methods, can be derived from
Liouville equation through the projection operator formalism of
Quantum Mechanics.

We can assume that the SAM network (Kosko, 1987) is a
highly stable system, we considered that this neural network is a
system at equilibrium, only disturbed during the recognition by
the patterns we intend to be recognized by the net.The
convergence shown by the SAM is considered as a relaxation
towards equilibrium. Brownian Motion is a phenomena that can be
explained within this theoretical framework, making its
application feasible.

In order to apply the dynamical equations (1) to our
particular problem, we consider each neuron's state at the input
layer as a continuos dynamical variable. Then the set of states
in the input lIayer makes a set of dynamical variables
A=(a ,ar} described by eq. (1). Applying the same reasoning
to the output layer, represented by 9={b , brn, we obtain
two sets oF equations:

I- 385

rt

DtA - i Q-A(t) - K K(r) A(t-0) + I(t)

(2)
itt

DtB = i Q-BDt) - dyo L(,)-B(t-,r) + J(t)

We identify I and J as the input and output initially
presented to the net and that has to identify as one of the
training patterns. Q is the frecuency matrix that describes the
oscilatory motion of A and B around equilibrium state. We ask for
an exponential decay of the activity at the state fields FA and
FB when the last two terms do not exist, we impose the condition
9-i-I, where I is the unitary matrix. Then the first term of each
equation becomes -Ai(-Bj) for all i,j.

The second term can be obtained if we analyse the time
scales at which the net functions. Even though if the input and
output neurons could have internal(inner) structure, it is not
relevant for our analysis because in order to study it, we would
have to use an smaller time-scale than the one given by the
response time of the neuron. Being the second term of (2) a
convolution of the form

It

I (t) - dr K(0)-A(t-r) (3)
10

the temporal evolution of A depends of the previous states of the
system, not just upon the one in which it currently is. Because
it is obvious that the former state is associated with the values
that the system has in the opposite field (FB in this case), we
consider this term as the one representing endogenous feedback.
The easiest way to represent it in this case is as an adding term
of all signals in the opposite field, such as E S (bj)-mij. S(hj)
is the signal that each neuron of the output field sends back to
the input field. mij is one of the elements of the synaptic
weight matrix that represents the union (interconnection) of both
fields. We make the identification

rt

I = t drK(T)-A(t -r) ---- > E S(bj)mij (4)
•0

Finally, we change the notation from Ai to ni (arid Bj to
bj). Then, considering all the previous arguments, we rewrite the
dynamical equetions in scalar form as:

Dtai = -ai + E S(bj)-mij + Ii
J (5)

Dtbj = -bj + E S(ai)-mnij + Jj
i

1- 386

St7

being the ones reported by Kosko (1987).
This relationship and way to analyse the BAM model shows

that it is possible that some of the formalisms currently at use
in neural networks are grounded in more general theories of
Statistical Mechanics.

REFERENCES.

Amari, S. I.; Yoshida, K. & Kanatani, K. I. (1977). A
Mathematical Foundation for Statistical Neurodynamics. SIAM
J. Appl. Math. q 33 , #1.

Byorfy, L. (1981). The Rate of Convergence of kn-NN Regression
Estimates and Classification Rules. IEEE Trans. Inf. The.
IT-27, #31 362-364.

Kosko, B. (1987). Adaptive Bidirectional Associative Memory.

APPl. opt., 26, 23.

Mori, H. (1965). Prop. Theor. Phys. (Kyoto) 33, 4231 34, 399.

Romero Bastida, M.; Cervantes Orozco, A. & Figueroa Nazuno, J.
(1989). The Mathematical Fundations of Neurocomputers. VI
National Meeting of A.I., 57-73, (in spanish).

Rumelhart, D. E.; McClelland, J. L and PDP Group. (1986).
Parallel Distributed Processing, vol. 1, MIT Press.

Zwanzig, R. Ann. Rev. Phys. Chem. 1965, 16, 67.

1- 387

CLASSIFIER VOTING IN THE NEURAL NETWORKS

MICHAEL L. GARGANO

A I G Research and Development
70 Pine Street (8th Floor)
New York City, New York 10270

and
Pace University, New York City

Consider a neural network in which input patterns are
presented as sensory data to a set of neural
classifiers. Each sensor is linked to a neural
classifier. Each neural classifier determines as its
output that result which is most strongly suggested by
the input pattern. An arbitrator then combines the
outputs of the individual neural classifiers and
develops an output condition which it considers
representative of all the individual neural classifiers
(see figure 1).

Let the set of conditions be Cond = { C1, C2,...,Cm).
Assume the output of each classifier is a permutation of
the elements of Cond. This permutation reflects that

V •classifier's preference ordering as to which condition
seems the most appropriate output, next most appropriate,
and so on. If classifier j has output preference (Cjl,
Cj2 ,Cjm) then classifier j considers Cjl most
appropriate, Cj2 next most appropriate and Cim least
appropriate as its output based on the input presented to
it through sensor i. The arbitrator is now presented with
preference orderings from each classifier and must combine
all these preferences in a "reasonable " way.

As an example, consider a classifier which has to order
the elements of the set Cond = (Cl, C2, C3) (see figure
2). There are six binary output nodes each representing a
preference ordering of Cond. The output of classifier j
is a winner-take-all permutation which is then passed to
the arbitrator.

The arbitrator must accept a permutation from each neural
classifier and in a reasonable way choose one condition as
that output most representative of the entire system. We
will consider in this paper five well-known voting
methods. These are:

1. Majority rule.
2. The Borda count.
3. The Condorcet method.
4. The Runoff method.
5. The Eliminate the loser method.

1- 388

'.4N

c C
0 0 0

-4 -4 -P4

04- 0 00-

0..

9~ M H4 F4 9- 4-

4.)
-4-

f-4 N .I

-4 -4 -4 Dt

-P-4 -.4 ".4 1
-.,4 -4q. 0 4.)

0 0 0A 01 -4

P.4 P-4 o-4 C'4.4 $4.

0 0

W- 4 o IA -

to 0(A

-4-

v-4 N0

4.) 4J)

1 - 389

The main concern of the arbitrator is developing a
result through the use of social choice theory. The
neural net engineer should pick a voting method which will
give desirable results. Voting, however, is not as
straight forward as one might hope and the subject of
social choice poses some very difficult theoretical
problems. Kenneth Arrow's Impossibility Theorem shows
that by using an axiomatic, normative model of social
choice no "nice" voting schemes exist. Therefore, none of
the five methods mentioned is "best".

The purpose here is to make the neural net engineer aware
of the fundamental problem of voting schemes and to give
some simple examples of voting methods.

Now let us assume we have a neural network system with 31
classifiers and five conditions so that Cond =
(CI,C2,C3,C4,C5).
Suppose that:
Ten classifiers output the permutation (C3,C1,C2,C4,C5);
Seven classifiers output the permutation (C5,C2,C1,C4,C3);
Six classifiers output the permutation (C4,C5,C2,C1,C3);
Five classifiers output the permutation (CI,C4,C2,C5,C3);
Two classifiers output the permutation (C2,C5,CI,C4,C3); &
One classifier outputs the permutation (C2,C4,CI,C5,C3).

We now consider the actions different arbitrators might
take.

1. Majority Rule Voting
The arbitrator simply counts first place votes. C1

gets 5 votes; C2 gets 3; C3 gets 10; C4 gets 6; and C5
gets 7. The winner and output of the arbitrator is C3.
Notice, however, C3 is very low in the ratings of the
other 21 classifiers.

2. Borda Count Voting
Calculate for each condition Ci its Borda Count

defined as the sum, as n ranges from 1 to m, of (m-n+l)*(#
of votes in position n). C1 gets a score of 107; C2 gets
106; C3 gets 71; C4 gets 92; and C5 gets 89. The winner
and output of the arbitrator is C1 which has the highest
Borda score.

3. The Condorcet Method
Here the arbitrator chooses that condition which

can beat every other in a head to head contest. C2 beats
C1 (16 to 15); C2 beats C3 (21 to 10); C2 beats C4 (20 to
11); and C2 beats C5 (18 to 13). Therefore, C2 is the
Condorcet winner.

1- 390

4. The Runoff Method
First, the arbitrator chooses those two conditions

with the largest number of first place votes. Here, C3
and C5 with 10 and 7 first place preferences respectively
are chosen. Next, the arbitrator pits C3 and C5 in a head
to head contest. Since C3 has only 10 votes to C5's 21
votes the arbitrator chooses condition C5 as the
appropriate output.

5. The Eliminate the Loser Method
First, the arbitrator chooses that condition with

the lowest number of first place votes and eliminates it.
Here C2 would be eliminated. This procedure continues
until only one choice is left. Here Cl would be
eliminated next, followed by C5 and finally C3. This
leaves C4 as the winning condition.

It is interesting to note that in this particular example
each method yields a different result: C3 for Majority
Rule; C1 for Borda Count; C2 for the Condorcet Method; C5
for the Runoff Method; and C4 for Eliminate the Loser.
Thus we see that these different arbitrator mechanisms are
independent of one another.

As was stated earlier, the purpose of this paper is to
make the neural net engineer aware of the theory of social
choice. There are many interesting ideas, as well as,
much research literature in this field which may be
worthwhile for neural net engineers to to consider when
building their neural nets.

References

1. Social Choice Theory - An Introduction; Kelly, Jerry
S.; Springer - Verlag 1987.

2. For All Practical Purposes - Introduction to
Contemporary Mathematics; Part 3 by Lucas, William F.;
Project Director Comap Garfunkel, Solomon; W.H. Freeman
and Company 1987

1- 391

Incomplete Learning Paradigms
In Neural Network Computing Models

(Extended Abstrac)

David B. Hertz
Guolin Deng
Koushik Baru

Intelligent Computer Systems Research Institute
University of Miami

Coral Gablcs, FL 33124

Abstract
Learning (human, animal, or machine) by example seems to take place when pieces of some

pattern are perceived more or less simultaneously. The computational properties of the resulting
combinations result from the collective action of the many parts linked together in a network. Most neural
network learning paradigms are essentially learning from examples, either provided by a teacher (supervised
learning), or by the environment (unsupervised learning). In this paper we describe some neural network
learning paradigms and investigate the incompleteness and complexities of those paradigms. We postulate
that for any intelligent system, in order to learn anything, it must be able to compute everything. We
examine the relationship of this postulate to certain neural network models.

1. Introduction.
The issue of learning is central to the study and application of advances in artificial intelligence.

The capability to 'learn' may be the most important factor separating the so-called intelligent machines from
the more conventional ones. Theories of learning are important because models derived from them are
relevant to building learning devices that can change their output behaviors in some rational remembered
fashion in response to environmental inputs. Our objective in this paper is to examine what the learning
processes proposed in certain neural network computing models cannot achieve.

It is appropriate at this point to formalize a definition of learning. The easy way out would be to
borrow from the abundant psychology literature and come out with a definition from the psychologist's
point of view. However, most psychologists' definitions of learning lack tne appropriate mathematical
structures which are essential it we hope to investigate the incompleteness of the learning capabilities of
popular neural network models. In addition, there is the greater danger that we might be entrapped in a
generalized description of the learning process which might be impossible to model with the c'.rren'ly over-
simplified neural network computational paradigms. For example, psychologists deal with the higher level
cognitive processes of the brain, e.g. learning by discovery, learning by being told, learning by analogy,
learning from examples, some of which are extremely difficult to simulate on any current computer models
which can at the best to mimic the low level congniuve processes of the brain. Among all those learning
strategies described by the psychologists, only learning from examples has been successfully modeled thus
far.

Both Valiant and Baum have formalized a mathematical structure for learning by examples and
have investigated it in depth. In particular, developments have been made in the definition of plausibie
learning protocols and in the investigation of classes of concepts that can be recognized computationally,
using such protocols, and exploring the class of concepts that can be learned in a reasonable polynomial
number of steps.

According to Valiant, there are'specific classes of concepts that can be learned via protocols that
allow for specific kinds of information supply. The protocol involved in learning by examples recognizes
the availability of typical data that positively exemplify each concept. The positive examples are assumed
to follow a fixed (but unknown) probability distribution. Computational models that can learn by examples
under these conditions make use of algorithms that make a polynomial number of calls to a routine which
generates the examples (called EXAMPLES in Valiant's work)

Classes of concepts that can be characterized by bounded conjunctive normal form (k-CNF)
expressions, can be learned by example in this context. This class of representations (k-CNF) are used in
representing boolean functions and can thus be easily incorporated into computational model; of learning.

Baum recognized that although any boolcan function can be expressed in CNF, not all classes of
concepts characterized by CNF could be learned in reasonablc time. Simply, a class of such functions can be
learned in exponential time, with the algorithm making a polynomial number of calls to the examples

1- 392

.n

routine. Thus if the class contains more than 2" distinct functions (for I < c s 2), it can not be learned in
polynomial time. For practical reasons, this limitation constrains the classes of functions which can indeed
be learned by example in a reasonable (polynomial) amount of time. The classes that can be learned in
polynomial time are those with 2 P(n) functions for any polynomial p.

Moreover, it can be stated reasonably that most of the neural network learning paradigm futictions
are essentially learning from examples. Such examples might be provided by a teacher (,=upervised learning),
or by the environment (unsupervised learning).

As for the relationship between the learnability and computability, we can postulate that: for any
intelligent system, in order to learn anything, it must be able to compute everything.

In this paper, we will discuss several most popular learning paradigms in neural network
computing models and investigate the incompleteness and complexities of those learning paradigms.

2. Neural Network Computing Models.
The neural network devices can be defined as follows:
D = ((A. P) I A is a network of computing units (neurons), P is a programming procedure).
The parameter A defines the special classes (or "architectures") of networks of computing units; P

defines procedures by which a specified architecture may be programmed.
From the structure point of view, neural networks can be defined as single-layer or multi-layers.

The neural elements can be distinguished as input units, ouput units, or hidden units.
From the connectivity point of view, the neural networks can be specified as feedforward neural

networks or feedback neural networks; the connections can be specified as fully connected, locally
connected, or sparsely connected.

The mathematical representations of neural elements may be defined as networks of linear threshold
functions (LTFs) or semi-linear activation functions (SAFs).

A given LTF vi may be defined as:
vi = sgn (7- wij vj + ti)

where wij represents the strength of the connection between the ith and the jth LTF, ti is a
threshold value.

An LTF is a limiting case of a more general class of functions, the SAFs which take the form:
vi = g (wij vj + ti)

where g is a monotonically increasing, differentiable function, and ti is termed the bias.
For example, the logistic fbnction employed by Rumelhart takes the form:

vi =
I + e BY.•(w ijvj + ti)

in which ti is the bias and B i. a parameter,
From the view point of the power of the computational approach, we need to investigate and

discuss the following four aspects for any given neural network computing device D(A, P):
(1) Define A, i.e. define the special architectures of neural network computing device.
(2) Define P, i.e. define learning procedures by which a specified architecture may be learned.
(3) Computability, i.e. examine the class of functions that learnable by D(A, P).
(4) Complexity, i.e. examine time and space complexities that with respect to the class of functions that are
learnable by D(A, P).

3. Special Learning Paradigms.
3.1. Single-layer Perceptrons.

Single-layer perceptron is one of the simplest and probably the best understood types of
feedforward neural network models. The single-layer perceptron generated much interest when it was
initially developed in the 1950s by Rosenblatt because of its ability to learn to recognize simple patterns. It
can be trained using the perceptron convergence procedure or the LMS (Least Mean Square) algorithm to
classify a continuous-valued or binary-valued input vector into one of two classes. Therefore, it can be used
as classifier and for adaptive signal processing.

However, only linearly separable functions are learnable by the single-layer perceptrons. Some
examples of the linearly separable functions are: Boolean AND. OR functions, and "at least I of N", "at
least k of N" functions.

I- 393

I .

A case in point for the limitations of the single-layer pcrccptron is the computation of the Boolean
function XOR (exclusive or) which is not a linearly scparable function. Therefore XOR can not be
computed by the singlc-layer perccptron.

From the complexity point of view. the time to learn an arbitrary linearly separable function
grows exponentially with the number of inputs. The time t is bounded by:

"2N< t<NN
where N is the number of inputs to the perceptron.
However, it has been proved that the time to learn the "at least k of N" function grows only

polynomially with the number of inputs. The time I to learn this function is bounded by:
t< N

3

where N is the input size.
It has also been proved that the time t to]carn the "at least I of N" function is bounded by:

t< N2

where N is the input size.

3.2. General Feedforward Neural Networks.
The structure of the general feedforward neural network device is demonstrated in Fig. i.

O~psi,

V. 'A. 1. ,y , ,f ,,. .,,
S.........

iar ------- mims
-

The ge edow r h I. WWII fc•w a - w,, .

The general fedforward neural networks are characterized by multi-layer neural networks whose
connections exclusively feed inputs from lower layers to higher layers. In contrrast with feedback neural
network, a feedlorward neural network operates only until its inputs propagate to its output layer.

In 1967. Minsky showed that the general fccdforward neural networks possess the same
computational power as the Turing machines. Therefore, we can say that the general fetdforward neural
networks are the complete computing devices in tcrms of the computability under the Turing machine
computing models, or the Kleene recursive function computing models, or the von Neumann computer
programming models.

We list some simple examples of functions that learnable by the fecdforward neural networks and
the spacial complexities as follows:
(a) Parity testing function.
Spacial complexity: need 0(n) hidden units and O(n 2) connections: where n is the input size.
(b) Symmetry testing function.
Spacial complexity: need n input units, I output unit, 2 hidden units, and 2n+2 connections: where n is the
input size.
(c) Encoding function.
Spacial complexity: need n input units, n output units, 1og 2n hidden units; where n is the input size.

'd) The function for discriminating between alphabetic characters.
From the incompleteness point of view, some functions that can not be computed under the

Turing machine computing models probably can not be learned by the feedforward neural networks either.
For instance, we can show that, it is impossible to build a fccdforward neural network device to compute
the function 11, which for any two functions fi and fj that lcarnablc by the fcedforward neural networks as

- 394

the inputs to n; if fi is identical to f1, then rl will output 1, otherwise ' will output o. i.e. we define " as
follows:

1 if fi = fj, and fi, 1fj are learnable by fecdforward neural networks.

](fi fJ)= {
0 otherwise.

Then 1] is not learnable by any feedforward neural network device.

3.3 General Feedback Neural Networks
The feedback neural network is an extremely significant part of the neural network learning tool

kit. However in contrast to the feedforward model it requires additional consideration to deal with the
learning from examples function. The learning function for backward propogation that parallels the
Rumelhart logistic function is:

(tpj - Opj) Opj(I - Opj) output layer

Opj(I - Opj) X-pk wkj hidden layer
The local processing element j must have access to the connection weights to both the forward

(wkj) and backward (wij) connected to it. This brings the problem that the weights are external and must be
shared among the processing elements so that the connection weights can be updated according to:

Awji (n + 1)=1I (8 pj Opi) + a Awji (n)
where 11 is the learning rate and a is the momentum.
And finally under a number of circumstances, the back propagation learning process is subject to

the arrival at a processing element of both forward and backward propagating signals simultaneously. This
can reduce the number of learnable classes significantly.

4. Conclusions and Discussions.
Examples present available information from which learning is potentially possible to one or

another of the various neural networks. Learning means that, at some time in the future, when a progr-;i -
faced with particular examples it will respond with suitable input/output replications, within a
preconfigured time frame, in a statistically measurable fashion. The time frame for the programmed
computations (polynomial, exponential) and the statistical error measures give a basis for judging
learnability.

At present, programs that require polynomial computation steps for non-trivial learning are
available. Learned and remembered patterns that can fill gaps (e.g. visual or aural) are governed by linkages
of individual remembered parts. Analogies to the brain are somewhat murky, and certainly chemical. Since a
single neuron can receive up to 200,000 signals on its dendritic tree, a given single sensory pattern
probably uses only a small fraction of the sites available to it. Incomplete learning is likely to be
continuous in the chemical structure, but opportunity to add to, and reinforce is equally powerful.
Paralleling the forms of chemical activity in an electronic structure may be the next step for going beyond
the present limitations on programming learnability, since these processes probably operate in the
equivalent of polynomial time.

References.
(1] Valiant, L. G., A Theory of the Learnable, Communications of the ACM, Nov. 1984.
[2] Baum, E. B., Complete Representations For Learning From Examples, 1487.
[31 Egecioglu, 0. et al., Computable Functions and Complexity in Neural Networks, "Real Brains,
Artificial Minds". edited by John L. Casti, 1987.
[4] Alkon, D. L. and Rasmussen, H., A Spatial Temporal Model of Cell Activation. Science, Vol. 239,
Feb. 26, 1988.
[5] DARPA, Neural Network Study, 1988.
[6] Rumelhart, D. E., et al., Learning Internal Representations by Error Propagation, Parallel Distributed
Processing, Vol. 1, MIT Prcss 1986.

1- 395

A Performance of Neural Network Classifiers for the I-Class Classifier Problem

Don R. Hush and John M. Salas
Department of Electrical Engineering and Computer Engineering

University of New Mexico
Albuquerque, NM, 87131 USA.

ABSTRACT

This paper compares the performance of four different classifiers. lbe classifiers included in this
sudy are the multi-layer perceptron (MLP), high-order neural networks (HONN), localized receptive fields
(L0M. and the learning vector quantization (LVQ) method. The performance of each of these methods is
studied for the 1-41 problem. "bis problem is used to represent a class of problems called "1-class
classifier" problems. In these problems the classifier is required to from a decision boundary that com-
pletely surrounds a class of data. The classifiers are compared in terms of their minimum classification
error, computational complexity, learning rate, number of training samples required, and sensitivity to net-
work size. Our results show that the localized receptive field model provides the best overall performance
for this problem.

L Introduction

This paper presents a comparison between four diffeirn! nonparametric classifiers. The multi-layer
perceptron (MLP) is without question the most commonly used neural network classifier, and thus provides
a useful standard for comparison. Tbe high-order neural network (HONN) model can be viewed as an
exienion of the ML? network. Most conventional methods which perform nonparametric classification ame
based on the "distance classifier" concept. The k-nearest neighbor (k-NN) classifier is a well-known exam-
pie. The learning vector quantization (LVQ) method considered here is also a distance classifier, and in
most problems provides better performance than the k-NN method at a greatly reduced computational cost.
Finally, the localized receptive field (LRF) model can be viewed as a combination of the LVQ and MLP
models. These classifiers are compared in terms of their minimum classification error, computational com-
plexity, learning rate, number of training samples required, and sensitivity to network size.

2. ThW I-lasw Classifier Problem

The class of pattern recognition problems dealt with in this paper are called "I-class classifier" prob-
lems. In the simplest case these problems are characterized as having a single class of data to be recognized.
All other patterns are to be recognized as not belonging to this class. For example, we may be interested in
recognizing a particular type of vehicle in an image. There may be several other types of vehicles in the
image and some may look very similar to the one we are interested in. However, our information about the
other vehicles is incomplete. In a sense this can be viewed as a 2-class pattern recognition problem; one
class being target and the other non-target. However, our information about the non-target class is incom-
plete. In such cases the only alternative is to design a classifier that forms a decision boundary that com-
pletely surrounds the target class. All patterns that fall within the boundary are classified as target, and all
of those outside the boundary as non-target.

The specific pattern recognition problem chosen here is the 1-41 problem. The I-,l problem is a
two-class problem in which both class distributions are Gaussian with zero means. The covaliance matrix
for the first class is I (the identity matrix) and for the second is 41. If the classes are equally-likely, and we
assume a zero-one loss function, then the Bayes classifier for this problem takes on the form: if
d(x) = xx - 1.85n < 0 then assign x to class w1 , else assign to class ">. x is the pattern vector, .;' is the
transpose of x, and n is the dimension of x. The decision boundary, described by the equation d(x) = 0, is
an n-dimensional hypersphere of radius r= 41.85n. In this paper we will be presenting results for the case

This work was supported in part by Sandia National Laboratories, Albuquerque, Mew Mexico. under contract number 05-

1- 396

S./ ./

where n mg. Results for other dimensions ame similar. With n =8 the Bayes classification error rate is
approximately 9%. This problem is characteristic of the 1-class classifier problem because it requires that
the classifier form a decision boundary that completely encloses one class. The advantage of choosing this
problem is that it is well defined so that we have an -xact measure of optimal performance with which to
compare.

3. Multi-Layer Perceptron, MLP

The multi-layer perceptron network is probably the most widely used neural network classifier. The
back-propagation algorithm is used to train the network (Rumelhart, McClelland, & Williams 1986). When
comparing the computational complexity of the different methods in this paper all comparisons will be
made relative to the complexity of a MLP node. With n =8 each node in the first layer requires 8 multipli-
cations, 8 additions, and I sigmoid operation.

The classification results for 2-layer (I hidden layer) perceptron networks are shown in Figures 1 and
2. The horizontal axis represents the number of hidden layer nodes, N1 , and the vertical axis the percent
classification error. Results am shown for training sets of sizes 400 and 3200 samples per class. A
significant improvement in performance is noted as the number of training samples is increased. The
curves alro show a significant improvement in performance as the number of first layer nodes is increased
beyond N, =5. This performance begins to level off around N1 =20 nodes which would be the optimal net-
work size for this problem in terms of the trade-off between performance and computational complexity.
The best performance is near 11%, which is still approximately 2% above the Bayes error for this problem.

4. High-Order Neural Networks, HONN

The basic architecture of high-order neural networks is the same as that of MLPs except that they are
allowed to form higher order terms (correlation terms) at the input to each layer (Giles & Maxwell 1987).
In this paper the high order terms are created only at the first layer, not between layers. In addition we
aeate only second order terms. All n (n +i)12 second order terms ar formed. Thus, the HONN model used
here can be viewed as a MLP net with n+n(n+l)/2-dimensional data vectors which are formed from the
original n-dimensional data as follows,

X1 opJY = [xt,x 2, ""xxi, 14, 2 .2,X ,X 2,XtX 3, (1)

Because of the increased dimensionality of the input vector the computational complexity of a first layer
node in the HONN model is approximately l+(n+l)/2 times that of an ordinary (linear) MLP node. Train-
ing for the HONNs is the same as for the MLP. Learning is often faster with the HONN model, however,
because fewer nodes/layers ame required.

The classification results for the HONN model are also shown in Figures 1 and 2. In this case the
horizontal axis represents the complexity of the nodes in the first layer relative to a MLP node. The first
point on each of the four curves corresponds to a I-node 1-layer HONN net, while the remaining points are
for 2-layer nets with one node in the second layer. The best performance is achieved with a single node,
and approaches the Bayes error as the number of training samples is increased. The reason for this is that
the second order terms at the input allow the net to form a hyperspherical decision boundary with a single
node. Even though the computational complexity of a HONN node is higher than that of a MLP node it is
less than that of -20 MLP nodes, so in this problem the HONN model provides a more efficient solution.

As the number of nodes in the HONN model is increased the classification performance deteriorates.
This suggests that the HONN method is very sensitive to the size of the model selected. As expected, how-
ever, as the number of training samples is increased the oversized networks are forced to learn the correct
classification.

5. The Learning Vector Quantization Method, LVQ

The LVQ method is described in (Kohone. 1988). When the LVQ classifier is cast into a neural net
architecture it can be viewed as a 2-layer net. The first layer (hidden layer) contains one node for each
representative pattern. The function of each node is to compute the Euclidean distance between the input
pattern and the corresponding representative pattern. These distance values are then fed forward to the

I- 397

second layer node which then selects the smallest of its inputs and makes the appropriate class assignment.
The computational complexity of an LVQ node is approximately equal to that of a NLP node.

The classification results for the LVQ method are shown in Figures 1 and 2. Again the horizontal
axis represents the number of first layer nodes (i.e. the number of representative patterns). The results here
am similar to those for the MLP classifier. The performance begins to level off at around N1 =20 nodes.
The classification errors, however, are slightly worse than those of the MLP. Also, we note an improve-
mewt in performance as the number of training samples is increased, similar to the previous two methods. (
6. Localized Receptive Fidds, LRF

The Localized Receptive Field, LRP. model is similar to LVQ in the sense that the first layer nodes
perform a similar function. In (Moody & Darken 1988) the first layer nodes are trained with the K-means
algorithm. The function of each node is then to compute a receptive field response function which is a
monotonically decreasing function of the distance between the input pattern and the node representative.

The LRF model used here works as follows. Rather than compute a receptive field response function
at each first layer node we simply feed the Euclidean distances forward as we did in the LVQ method. Sub.
sequent layers then function as a MLP. That is, rather than restrict ourselves to a single second layer node
we allow for several nodes and several layers beyond the first. These subsequent layers are trained with the
back.propagation algorithm. Because the first layc: nodes are equivalent to LVQ nodes, and nodes in sub-
sequent layers are simply MLP nodes, the averaf. computational complexity of a LRF node is approxi.
mately equal to that of a MLP node.

The classification performance results for the LRF method is shown in Figures 1 Pnd 2. All results
are for 2-layer nets with one node in the second layer. Once .gain the horizontal axis represents the number
of nodes in the first (unsupervised) layer. Optimal performance is achieved in this case with a single node
in the first layer. In addition this classifier comes much closer to the Bayes error than any of the previous
methods. A single node in the first layer is sufficient here because the Euclidean distance which is fed for-
ward firom this node carries second order terms which can be properly weighted by the second layer node to
form the desired hyperspherical decision boundary. The perfornance of this method is approximately con.
stant as N, is increased beyond the optimum, and improves slightly as the number of training samples is
increased.

7. Summary

In terms of classification performance the LRF method gave the best results. The second best is the
HONN classifier whose performance is very close to that of the LRF model for a large number of training
samples. The MLP and LVQ methods rank third and fourth in classification performance. Both of these
methods solve this problem by placing a large number of linear decision boundaries around the inner class,
and then connecting these boundaries. The MLP classifier connects these boundaries in a smooth continu-
ous fashion while the LVQ classifier connects them in a piecewise (discontinuous) manner. Clearly any
approach that builds up a decision boundary in this manner will perform worse than one that implements it
directly in parametric form as in the LRF and HONN classifiers.

The LRF classifier not only provides the best classification performance but is also the most efficient
method. It should be noted that the HONN method can be made just as efficient if the linear and cross
terms in Eq. (1) (which are not needed in this problem) are removed. The computational complexity of the
MLP and LVQ methods is an order of magnitude more than either the LRF or HONN methods because
they require several first layer nodes to adequately solve this problem. This effect 6 even worse in higher
dimensional problems. The LRF and HONN methods will never require more than one first layer node to
enclose a region of the decision space while the number of nodes required in the M1LP and LVQ methods
will continue to grow as the dimension of the problem increases.

The learning algorthms for all methods in this study can be viewed as gradient search algorithms
applied to a nonlinear optimization problem. As such it is extremely difficult to make meaningful quantita-
tive comparisons of the learning rates. Qualitatively however we can make some very strong statements.
The slowest learning algorithm by far is the back-propagation algorithm used to train the MLP classifier.
This is a well.known limitatior of this approach. Even though the same basic algorithm is used for

1- 398

learning in the HONN method, learning is faster because this method requires fewer layers and fewer
nodes. Two forms of learning are used in the LRF model. An unsupervised algorithm, e.g. K-means, is fol-
lowed by a supervised algorithm, namely back-propagation. The unsupervised learning algorithm is gen-
erally very fast relative to back-propagation. As with the HONN method, the supervised learning phase
which uses back-propagation is faster for LRF than it is for MLP because fewer nodes/layers are required.
The LVQ learning algorithm is the fastest of all. The fundamental reason for this is that learning is per-
formed in only one layer. Because of this the nature of the optimization problem is greatly simplified.

As expected, all four methods give an improvement in performance as the number of training sam-
pies is increased. This improvement is largest with the MNLP and LVQ methods and smallest with the LRF
method. This suggests that the MLP and LVQ methods require the largest number of samples to produce
accurate generalizations and that the LRF method requires the least. This happens prianrily because the
LRF method has the fewest number of free parameters (weights) and the MLP and LVQ methods have the
most.

All networks, regardless of their structure, will perform poorly if their size is too small. A more
interesting question, and the one of concern here, is what happens to the performance when the optimal net-
work size is exceeded? In the MLP and LVQ methods the performance changes (improves) very gradually
as the number of first layer nodes exceeds the desired operating point (near N1 =20). In the LRF method lit-
tle or no degradation is noted as the optimal number of nodes is exceeded. However, in the HONN method
a significant degradation in performance is observed as the optimal number of nodes is exceeded. Thus,
this method is very sensitive to network size selection.

& References

Giles, C.L, & Maxweil, T. (1987). Learning, invariance, and generalization in high-order neural networks.
Applied Optics. 26, 4972-4978.

Kobonen, T., Bama, G., & Chrisley, R. (1988). Statistical pattern recognition with neural networks: bench-
marking studies. In Proceedings IEEE 2nd International Conference on Neural Networks, 1, 61-68.

Moody, J., & Darken, C. (1988). Learning with localized receptive fields. In Proceedings of the i988 Con-
nectionist Models Summer School, 133-143.

Rumelhart, D.E., McClelland, J.L, and Williams, R.J. (1986). Learning internal representations by error
propagation. In D.E. Rumelhart & J.L. McClelland (Eds.), Parallel Distributed Processing. Cam-
bridge, MA: MIT Press.

35- . ,LP method --.. LP mhod
... io,,.to 4*,

.---. LVO method .--. N.O method

30 - -- • m•t-hod 30 : HO-MR me1ho0

.- ~......... q * , i , q,

T o 10 • •' o ' '• .. '

0 1 20 ?0 40 5s so 70 60 90 100 0 10 20 30 40 so 50 t 87 0 0• 100

N i (? •.=) t i (MLP)

•gure 1 - Perforrnonce Compcrison: N=400, n=8 Figure 2 - Perforrncnce Compariscr: N= 5200. n=8

- 399

A Synchronous Equivalent To Asynchronous

Network Dynamics

Yoshio Izui' and Alex Pentland

Vision Science Group, The Media Laboratory
Massachusetts Institute of Technology

20 Ames St., Cambridge MA 02139

Abstract

We show that the dynamical behavior of an asynchronous neural network can be closely
approximated by a synchronous network whose dynamics take into account the Hessian of
the energy function. Thus the advantages of asynchronous networks - biological realism,
improved convergence speed, and lack of oscillation - may be achieved using a synchronous
machine with only small additional effort.

1 Introduction

Understanding the behavior of asynchronous networks is a topic of considerable interest for
several reasons. First, of course, virtually all biological neural networks appeas to be asyn-
chronous. Further, in some networks this asynchrony is critical to the correct functioning
of the the network. An example is the Hopfield network [(1 which can show sharp, random
oscillations when using synchronous state updates unless paramecers are adjusted carefully,
but which is stable when updates are applie i a.synchionouslv (2j. An intuitive understand-
iug of this oscillatory behavior s that asynchronous updating 'auses smaller changes in the
states space. so that sharp variations in n.twork energy can re more accurately tracked.

The problem with investigating isvnchronous networks, however, is that they are very
expensive to simulate because very small rime st-ps must be employed. In this paper we
prove thlit asynchronous operation may `)e closely approximatd by considering the Hessian
of the network's energy function when computing the state npdate function. This result
allows the asynchronous behavior of a netvwork to be ,.inulated at approximately the same
cost as simulating its sviichronous behav tor.

2 Approximation of asy~ichronous operation

T h e ýt a ip d m p ; p t i'a* n o f a n i i pl i ip t w o r k m za h e ,s so i a t e d w i t h i i a n e n e r y f in ic t io n

£ whil'h rontrols the bhavior I, n,,twork over tiniv acroring, to rthe followinio fcqiarioii:

S(1)

l , , .- I ,l- \Iy.h I- ''tirt, (",r , " -I-. Ja'ptkantithi .\m a,:L--aki.
Flyogo •;I ,J ;;apa

[40y)

where W is the state vector of the network. In synchronous operation equation (1) is
calculated for all components weights Wi at each time step, while in asynchronous operation
only one weight (and the system energy E) is updated at each time step.

We will approximate the behavior of asynchronous networks by using time averaging.
Let the time step for each weight in the asynchronous networks be a random variable with
mean At, so that on average every weight in the network is updated every At increment in
time. We will then define a larger time interval AT = KAt, and times Ti = Tj-. + AT,
where K is a arbitrary number. The goal of this paper, then, is to define a synchonous net-
work with time steps T, whose behavior matches that of the asynchonous network averaged
over K time steps.

2.1 Asynchronous State Update Equations

We first define the first and second order derivatives of E at (asynchronous) times tk to be

CE 92 E
Ak = 5W W=W(th) B& OW 2 W=W(t&) (2)

and define that all subscripts of A, B, and t are taken to be modulo K, where we omit
subscript j of weight W for simplicity.

We will next note that the first order derivative at time t.k+l can be obtained by using
the first order derivative at time t1 and second derivative at times t ..-. tk as below:

Ak+1 = Ak + BkAWk (3)

= Ak(1--1BkAt) (4)

=AiXl 1 - i7BIAt) (5)

Assuming that AT is small, and thus that At is also small, then at time T. the K-time-
step time-averaged first derivative is

K
OWW=(T)= I- 1: Ak (6)

.9W W=W(T/)

= il(l - 7BAt (7)

Kk=t 11=1

•"-E 1 - AtEBt (8)k=k

Al ("AT B,(9

I 1 ;AT 0 2 E

1 -402 1TV- UW IT0)

1- 401

Thus the time-averaged state update equation for an asynchronous network is

dW (qAT(1 E
dt WW(T,) 2 -W2qAw)

2.2 Synchronous Second-Order State Update Equation

A more sophisticated version of the update function in equation (1) takes into account the
curvature of the energy surface by employing the Hessian of the energy function [3]:

dW (2dW= _j7(V2E)- 1VE (12)

As is conventional in employing this update function, off-diagonal terms of V2E are
assumed to be zero and we write Wj to indicate the j"h component of W. Thus the second-
order update equation for each weight j is simply:

dWW
d T = -77 -2-(1 3

a w;

When the second derivative is small, however, AW3 becomes unstable, and so it is
common to use either the following "stabilized" second-order update function:

dT 71 + 2 (14)

or its first-order Taylor expansion about 82E/W.2 = 0,

dT 7 5-iw- -P avWT (15)

Equations (14) and (15) are functionally equivalent given that]p0 2E/aW.l << 1, and
in particular are equivalent given the choice of p used in the following section.

2.3 Equivalence of Asynchronous and Synchronous Rules

Equation (15) is a synchronous second-order update rule that is identical to the time-
averaged asychronous update rule of equation (11), as can setting p = 1iAT/2 in equation
(15). The only assumptions required to obtain this equivalence is that the time step AT is

small enough that the approximations of equations (8). (9) and (15) are valid.
Investigating equation (15) reveals the source of the advantages enjoyed by asynchronous

update rules. It can be seen that in the first stages of the convergence process (where the
energy surface is normally concave upward) 0 2E/DWH2 is negative and thus larger updating
steps are taken, speeding up the overall convergence rate. On the other hand during the
last stages of convergence (where the energy surface is concave downward) 0 2E/1W 3

2 is
positive and thus smaller updating step are taken, preventing undesired oscillations.

1- 402

3 Summary

We have proven that the asynchronous operation of neural network may be accurately ap-
proximated by a synchronous network whose update rule incorporates information about
the curvature of the energy surface. In addit. , simulation using synchronous and asyn-
chronous Hopfield networks to solve the traveling salesman problem has experimentally
verified the equivalence of these two types of network.

Thus, for example, if asynchronous operation is difficult to implement because of hard-
ware restrictions (as is true of most computers) then the synchronous update rule of equation
(15) may be used instead. Or, if computation of Hessian, or O2E/8W• is expensive _ad
asynchronous operation is cheaper, one can use an asynchronous operation instead.

Finally, use of equation (15) can allow synchronous networks to enjoy the speed and
stability advantages associated with asynchronous operation. Using curvature information
contained in the Hessian matrix allows improved convergence speed, especially in algorithms
such as back propagation. It is also important for preventing unwanted oscillations within
the network, as can easily happen in, for instance, Hopfield networks.

References
(1] J.J. Hopfield and D.W. Tank. (1985). Neural Computation of Decisions in Optimiza-

tiom Problems. Biol. Cybern. 52, 141-152.
[2] M. Takeda and J.W. Goodman. (1986). Neural networks for computations: number

representations and programming complexity. Applied Optics, Vol. 25, No. 18, 3033-
3046.

[3] S. Becker and Y.L. Cun. (1988). Improving The Convergence of Back-Propagation
Learning With Second Order Methods. Proc. of the Connectionist Models Summer
School CMU, Pittsburgh, 29-37.

I- 403

L\

Bounding Analysis of a Single-Layer Feedforward Neural Network
For a Binary Hypothesis-testing Problem

Garry M. Jacyna, Member, IEEE
Manene B. Lazear, Member, INNS

Mitre Corporation
Signal Processing Center

7525 Colshire Drive
McLean, VA 22102

Research effort in the field of artificial neural networks often focus on application issues rather than on
theoretical performance prediction. That approach fails to address important issues related to modeling limitations,
robustness at low SNRs, optimality criteria, and optimal performance bounds. The wodk presented here focuses on
the theoretcal detection performance of a single-layer linear feedforwazd neural network, It is our contention that
an understanding of the linear network will aid in the analysis of general nonlinear networks. Tbeefore, a simple
one-layer network of linear processing nodes was examined.

Performance bounds for a single-layer feed forward neural netwotk were examined for a binary hypothesis-
testing problem. The network consisted of V input nodes, N + I adaptable weights or interconnections (including
the bin weight), a summer, and a I-bit quantizer. Each input node was linearly filtered by a set of weights
which ae adaptively computed from a supervised set of examplars. Known classes of signal were presented to the
network where die output node was constrained to a value of ± I consistent with the input signal class. Weights
were updated using a vanation of dhe least-mean-squares (LMS) algorithm bhed on a set of training sequences
which reflect both the noise-only class (Ho) and the signal-in-noise class (H1). The bias weight is used to modify the
decision boundaries. This would be referred to as an adaptive threshold in classical detection theory. We addresed
two distinct problems: steady state detection performance and dynamic detection performance.

Steady-State Detection Performance

It is well known that network performance is a function of the amning schedule. We first examined the
conmncton between baining and detection performance assuming that dte number of training sets is infinite. This
is the classical Weiner problem for steady-state weight vectors.

The summed output y(k) of the network is

y(k) = u,(0) X.(k) (I)

where w(k) is the weight vector, X(k) is the corresponding training vector, the index k references a particular
training set and the superscript T denotes a vector transpose operation.

We consider the following binary hypothesis-esting problem:

H, : r(.)=sk)+.V(k) (2)

Hn: () = N (k) (3)

Here, s(k) is a deterministic but unknown signal vector and N(k) is a zero-mean multivariare Gaussian random
vector with autocorreclation matrix R_,.

The optimal set of weights can be derived as a solution to the Wiener problem and shown to be equal to:

=(I - 2p) -Ip (I - p) JRI%,

I +p(1 -
(4)

1I- 404

.* I p(l -p)SR7t s (5

Hfet ir,* is the optimal bias weight. ti- is the optimal reduced weight vector, p is the training set probability, RN
is the noise autocorselation matrix. and s is the determiinistic but unknown signal vector.

Wet next derived the following expressions for the probability of detection (Pd) and the probability of false
alum (Pta) for a deterministic but unknown signal in zeo-mearý buidlimited white Gaussian noise:

Pd =erfc. 1~(l+03)/} (6)

Pfa erfc.{(!0_) IOW (7)

where

Here ois the ratio of the training noise variance to the input noise variance. P is the total A~gnal power
(.,;T.%) ~ I - '2p)lp (I - p), and erf c. (x) is defined as the modified complementary error function.

We then examined the dependence of Pd and Pfa on the training set probability p. Three cases were considered:
p = 1/2, p> 1/2, and p< 1/2. If the traning sets am equally represented then p nl/2 and il-O0so that the probability
of a miss (P..) is equivalent to the probabtlity of a false alarm. Ibis is the classical Mini-Max Criterian. For
unknown prior probabilities and known costs, the optimal strategy is to minimize the maximum Bayesian risk.

For p > 1(2, d < 0 and from (7) we conclude that the resulting Pfa is less than the false alarm probability for
p - 1/2. As expected, the detection probabiity is also smaller. Figure 1 depicts the fase alarm probability as a
function of the nput SNR for various values of th training set probability p.

Ws P. we

em..........
................. . .

0 ~ ~ ~ ~ 6 0 i I is a

FiWxe 1 Pobability of Palm Alai= (Pie) vIS SNR for various Training Set Probabilities

It is assumed that n - 1. For p y' 1/2, Pigure 1 also suggests that the false alarm probabilities can be upper
bounded by a function which only depends on the training set probability. More specifically:

Pfa < e rie. (\/:;l;). (9)

This relationship between the maximum Pta and the train~ng set proability has a more classical analog. The classical
Neyman-Pearson Criterian designs for a constant Pta when neither the Bayes' costs nor the prior probabilities are
known. For our problem, the maximum Pfa can be specified apriori. However, it can also be shown that the
resulting Pd is degraded if the maximum Pfa is reduced.

These results are intuitively appealing. If p > 1/2 then class fl,~ dominates the training schedule. It is reasonable
to expect that the Pfa can be reduced it more noise-ontly training data is used. This appears to be the case. Similarly,

1- 405

if p < 1/2, then class H, dominates. We expect an increase in the Pd since more signal is present. Additionally,
the Ifa degrades since less noise-only data is used. To achieve a desired upper bound on the Hia the training sets
should be structure in the ratio p: 1-p, where p is determined from (9). That is, for N training sets, the H,, taining
seu should be aRLied .NO . X., times and the HI hainn, usts should be applied N, •z• N (I - p) times.

PFIgV 2 inlumes fte dome agreemet between theory and am-ulatio for p - 1/2:

U ~ ~ ~ -..--.•""

las,

lai

0 ."... .

0 I 4 41 a 3 II I i 14 Ut 14

as 11M~kN011 a

P, Imp 2 SNR vs Pd ad 10% I Convargeac

The simulation was peformed for a single node litear neural network model uasng the LMS weight update

algorthm. Over 10" training sets were used to reduce the effects of weight misadjustment. We also assumed that
it - 0.0001. Discrepancies in the Pfa values at low SNRs are reflective of the total number of training sets.

Dynamic Detection Performance

We next addressed the e'ffects of training sequence length on network detection performance. The weight
vector is a random variable related to the distribution of the training data. Under Gaussian assumptions, the first
two moments of the random weight vector can be determined as a function of the learning rate parameter p, the
number of training sets M. and the first two moments of the training data. These expressions were then used to
compute the Misadjustment Error (ME). This is known to be a function of the learning rate parameter and the
number of components in the data vector. It relates the fractional increase in excess MS error to the optimal
(minimum) MS ewor at a given SNR. It is a monotonically decreasing function of the number of training sets.

The Miszdjustment Error is computed by detenrining the excess error. , - ,,, When p - 1/2, this error

is equivalent to

E.xces Error = Trocr {RCo,'(w)} . (10)

where the Trace(A) denotes the trace of the matrix A. T7his is a generalization of the result quoted by Wktrow. For

our binary hypothesis-testing problem, the Excess Error takes on a more simplified form:

E.rcess Error -t 2j,,i (I + ,'ff + s s/2). (11)

By definition, the ME is derived by dividing (10) by the minimum MS error to get:

,11IE IA'a".. (12)

This equation is valid provided that the input SNR is much smaller than the corresponding number of input nodes N.
We can relate the Misadjustment Error to the number of training sets M. If the MS error is conditioned on

the mean weight vector ii (k), then:

, A ' +2 1 i (A) -{ ,t.") , .'}M11 . (13)

This implies that the conditional MS error is formed by ensemble averaging over all training sets for a fixed

weight vector.

I - 406

This error can then be related to the average adaptation time by determining the corresponding eigenvalues of
the dua covariance matrix. We assume that the noise is a bandlimited white process. This implies R,, = u•. I.
Under the assumption that f. > I:

Ama, 9 2 (2 + SNR) /2. (14)

Ami 1(4 +SNR)

with N-I eigenvalues of the form:

All O' *•. (16)

It is obvious that the learning rate parameter p must be less than the reciprocal of twice the largest eigenvalue A,,,,.
The largest time constant corresponds to the smallest eigenvalue. This time constant determines how quickly

the network adapts. It is related to the learning rate parameter by the following expnrssion:

1na 2+SNR
4PA 2p (4 + SNR)(

Finally, using (12). the maximum network adaptation time can be related to the Misadjusunent Error.

NIV2+SNR) (18)
2l E 2M (4 + SN R)"

We can also relate the number of tmining sets (M) to T,,,.,. by recognizing that Al C T,°:

M -2NuRV (2 + SNR) (19)
MIE(4+SNR) (

Approximately 20N.Y. training sets are required at high SNR to produce a Misadjustment Error of 10%.
A more important measure of performance is the fractional false alarm error (PFE) which expresses the

fractional increase in Pfa relative to a fully tined network. It can be shown that this error is also a monotonically
decreasing function of the number of training sets and a function of the learning rate parameter, the number of
components in the data vector, and the corresponding SNR. If we again assumae a bandlimited white noise process
then the following expression for PFE can be derived.

PFE t oNe, (4 + SNR) (20)

where SVR = srs/.N >> SNR, and o is the ratio of the training noise variance to the input noise variance. It
can be further shown that the maximum network adaptation time is a function of the fractional false alarm error

L N4• (2 + SNR) (21)
I6PFE

The total number of training sets (M) is approximately:

,\ (2 + SNR)A I z (22)
4PFE ,

assuming that M11 • 4"I,,. The average number of training sets is approximately 30,.%e'.V. if PFE 10%, SNR
= lOdB, and ,, = 1. Additionally, PFE = 100% implies approximately 3.V . training sets. Average adaptation
time scales linearly with SNR.

1- 407

Input Representation and Output Voting Considerations for
Handwritten Numeral Recognition with Backpropagation

J.S.N. Jean Y.C. Chan
Department of Computer Science and Engineering

Wright State University, OH 45435, U.S.A.

Abstract

In this paper, several input representations and output voting methods are examined to
improve the recognition rate of feed-forward neural networks when applied to handwritten nu-
meral recognition. Input represertations discussed include a normal image input, an encoded
(compressed) input, and a combined input. Neural networks are trained and tested for each
representation on the same database. The resulting error rates on test data are 22%, 25.4%
and 10% respectively. It is concluded that the incorporation of neighborhood information helps
reduce the error rate. With the three neural networks in hand, an output voting mechanism can
be readily applied. The resulting system has 88.8% correct recognition rate, 7% rejection rate,
and 4.2% error rate. If an extra averaging operation is performed, then the recognition rate is
increased to 93.2% with 6.8% error rate.

1 Introduction

Mu!tilayer feed-forward neural networks have been shown to be promising for handwritten numeral
recognition [3] [5]. For such an application, the recognition rate is a very important performance
criterion. In this paper, we propose methods to improve the recognition rate. We first show that the
recognition rate can be increased with proper input representation which preserves neighborhood
information. Then another technique, output voting, is applied to further improve the recognition
rate.

2 Input Encoding

To facilitate the simulations, a database of 1000 digits was created. It contains 100 examples of
each digit, written by 10 different people. For each person, the first five digits were placed in the
training set and the remaining 5 were placed in the test set. Each digit is coded as a 16 x 16 binary
image. Some digits used are shown in Figure l(a).

To perform the recognition, the popular backpropagation algorithm is adopted to train a neural
network with 256 input units, 20 hidden units, and 10 output units. The resulting error rates for
the traing data and test data are 10.2% and 22%, respectively. One interesting phenomenon we
observed is that, for some input data, all the 10 output values can be fairly low. In other words,
these input data, even if they do look like digits, are considered to match none of the ten digits.
This is due to the loss of the neighborhood information during the input of the 16 x 16 data to
the neural network. More specifically, the relative position of any two pixels in an image cannot
be preserved since, from the point of view of each input neuron, all the other input neurons make

1- 408

56789
O12390 1 2 3f

Figure 1: (a) Handwritten digit examples, (b) Encoding of a 16 x 16 image.

n-.ý difference. Therefore a slight position shift on an image would cause a similar effect as a big
distortion would do. This of course is not a desirable property of an input representation.

Experiments with Input Encoding Another input representation we tested is an encoding
scheme where each 16 x 16 image is encoded as four 6-digit strings [4]. The strings denote the
number of black blocks when the image is viewed (and counted) horizontally, vertically, diagonally,
and anti-diagonally. To compact each string into 6-digit long, redandancies within each string are
removed by neglecting the initial zeros and the repetitive part and then appending some extra
zeros. For example, Figure 1(b) shows a digit '2' whose horizontal view string before compaction
is '0012211111111100'. This string can be compacted as '121000'. The vertical view string (from
left to right) before compaction is '0002233333332000' which can be compacted as '232000'. Note
that this input representation is shift-invariant and "roughly" size-invariant.

To perform the recognition, a neural network with 24 input units, 20 hidden units, and 10
output units is used. The resulting error rates are 6.2% for training data and 25.4% for test data.
Compared to the previous scheme, the result is quite impressive since the number of input units
has been reduced from 256 to 24.

Experiments with Combined Inputs Although the encoding process is not invertible and
therefore is not totally information preserving, the encoding does preserve some partial information
about the neighborhood relation which was lost using the 16 x 16 representation. In fact, the
previous two neural networks do present quite different kinds of errors. To explore this property, a
new input representation which simply attach the encoded strings to the 16 x 16 representation is
adopted. The resulting neural network has 280 input units, 20 hidden units, and 10 output units.
The error rates are 0.0% for training data and 10.6% for test data. When the number of hidden
units is increased to 40, the error rate becomes 10.0% for test data (still 0.0% for training data).

3 Output Voting

In software development, it is usually difficult to discover all the bugs of a software system. To
enhance software reliability, researchers have developed various methods to mask the effect of bugs.
For example, N independently developed software versions, followed by a voter, can be used. Any
bug which exists in less than half of the versions will not influence the system at all [2]. A drawback
of this approach is the high cost of developing and executing the N software versions. Moreover,
programs may have the same bug even when they were independently developed.

If a neural network is considered as a software system and recognition errors as design bugs, N
versions of neural networks probably can be used together to mask recognition errors and therefore

I- 409

7
77

Table 1: Error rates for various systems.

Training Data Test Data
16 x 16 Image Input 10.2% 22%

Encoded Input 6.2% 25.4%
Combined Input 0% 10.6%

Cex 4.2%
Voting + 1% rejection + 7% rejection

Voting & Averaging 0% 6.8%

to improve the recognition rate. At first thought, it seems that the N neural networks can be easily
developed by either using various number of hidden units or simply using different sets of initial
weights during the training process. To check this out, we performed simulations and found that
(1) neural networks with different number of hidden units possess similar recognition errors and
(2) although different initial weights do lead to different sets of final weights, they still have quite
similar recognition errors. Up to this point, the neural network seems to extract the information
in a quite consistent way.

Then we tried to develop neural network versions with different input representations.1 We
inspected the recognition errors associated with the previous three networks (without input encod-
ing, with input encoding, and with combined input) and performed a simple voting based on the
three estimated digits, each from one neural networks. The majority of the three values are used as
output. If the three estimated digits are totally different, then a rejection is issued. For test data
set, this leads to a system with 88.8% recognition rate, 7% rejection rate, and 4.2% error rate.2

(For training data, the system has 99.0% recognition rate and 1.0% rejection rate.)
In stead of issuing rejection signals, an alternative approach is to apply an averaging operation

on the output neuron activations of the three systems when they are totally disagree (see Figure 2).
In this case, the activations of three output neurons, each from one system, is averaged. The
result is 10 averaged values from which the final estimated digits is produced with a winner-take-all
operation. For test data, the final system has an error rate of 6.8%, significantly lower than that of
any of the three subsystems (see Table 1). For training data, the system has a prefect recognition
rate, 100%.

4 Conclusion

In this paper, input encoding and output voting methods are considered to reduce the error rate of
the feed-forward neural networks. It is shown that the error rate is reduced when local neighborhood
information is incorporated and output voting mechanisms are applied. Since the three neural
networks are trained with the same backpropagation algorithm, the developing cost of the three
versions is fairly reasonable. Furthermore the implementation of the three neural networks is
quite straightforward with parallel processing techniques. Therefore we believe the three-version
approach is justifiable for the problem, especially when the improved recognition rate can not be
achieved otherwise.

2A corresponding notion in software fault tolerance is called data divesity [I].
23.8% of the errors were generated when exactly two systems agree and the remaining 0.4% errors are produced

when all of the three systems agree.

I- 410

I

1616 4 Strings

Eno- (Eg C24 Digits)

Vablue Ves Values

Figure 2: The system with output voting and averaging.

References

[1J P.E. Ammann and J.C. Knight, "Data Diversity: An Approach to Software Fault Tolerance,"
in IEEE Transactions on Computers, pp. 418-425, April 1988.

[2] A. Avizienis, "The N-Version Approach to Fault-Tolerant Software," in IEEE Transactions

on Software Engineering, pp. 1491-1501, December 1985.

[3] I. Guyon et al., "Comparing Different Neural Network Architectures for Classifying Hand-
written Digits," in IJCNN89, pp. 11-127-11-132.

[4] S. Watanabe, PATTERN RECOGNITION (HUMAN AND MECHANICAL), John Wiley
Sons, 1985.

[51 K. Yamada et al., "Hindwritten Numeral Recognition by Multi-layered Neural Network with
Improved Learning Algorithm," in IJCNN89, pp. 11-259-11-266.

1- 411

\\

II~lI

SeJong-Net: A Dynamic Visual Pattern Recognition Neural Net

Yillbyung Lee and A-Yeun Chung
Department of Computer Science
Yonsei University, Seoul, Korea

I. Introduction

The main difference between the neural net model described here called
Sejong*(Sglective Judgement gf Mumerous graphemes)-Net and most of the
pattern recognition neural nets designed so far lies in that the input of
Sejong-Net is not of a static visual pattern but of a dynamic one. Thus
the extraction of temporal features through multilevel transformations of
2-dimensional visual input is taken as an equally important problem as the
extraction of spatial features. We may think that problem solving
becomes more complex as we manage more data. But, in general, more types
of data may lead us to help solve a given problem more easily. Our own
experiences as a machine of visual pattern recognition confirm this.

Moreover, we think the process of static character recognition can be
treated as a special case of dynamic character recognition through
scanning selectively over strokes according to writing order of a
character. It might be considered a case of "analysis-by-synthesis".
Hence Sejong-Net might be considered as a more general model of problem
solver for the tasks of visual pattern recognition.

II. Overall Structure and Functions of each layer

Sejong-Net is composed of multiple layers of 2-dimensional arrays with
different discrete densities (See figure 1). Each layer may contain
several planes, each extracting different features. Signal flows
unidirectionally from input layer to output layer(feed-forward) and
operates between two adjacent layers except when the system has access to
data in the past. Details of the structure and functions of each layer
are described as follows:

* IN layer and IN i layer: Each element of IN(I.•ut) layer can have a
binary value and indicates whether input exists currently at each position
in coordinates. (Currently mouse is used as an input device.) IN layer
is represented by a 33x33 2-dimensional array. Each element of IN I
layer marks whether there was input before one unit time at each position
in coordinates, and we may consider this as a faded image.

TRACE layer: Each non-zero element of this layer reprasents the order of

positions written over the input character. This sequence may also be
thought of as the sequence of tracing static character through time.

* REC layer and REC I layer: Elements of REC(photoRECepter) layer
represent spatial information of points entered into IN layer as the
strength of steady state as well as represent the time of their appearance
as the strength of transient state. Each element in this layer may be
considered as an artificial photorecepter in the retina. We define
REC 1[i,j,k]=REC[i,j,k-1J, and this represents the state of REC(i,j,k] at
one unit time before.

I- 412

* SSF layer: Elements of SSF(Simple spatial Feature) layer extract various
simple local spatial features. Elements of this layer can be considered a
simple cell in the visual brain of an animal. Current filters for these
features reflect basic local features used in structural recognition of
Hangul - the Korean alphabet. SSF layer consists of sublayers called
planes each of which extracts a given local feature and is composed of a
33x33 2-dimensional array with integer values.

* STF layer: Elements of STF(_imple Temporal Feature) layer represent
temporal changes in the respective positions of the visual image. This
layer may be considered as a set of transient amacrine cells or a set of
ganglion cells of on-off type in the retina of an animal.

* •F layer: Elements of CSF(Complex Spatial feature) layer represents more
complex spatial features constructed from features gathered from SSF
planes. An element of this layer may be considered as a complex cell.
CSF layer is composed of a set of 17x17 2-dimensional arrays.

* CTF layer: Elements of CTF(Complex Tempo-"l Feature) layer represent
termination of a stroke gathering their information from the STF layer.
It consists of 17x17 2-dimensional array of integers.

* STR layer: Elements of STR(STRoke) layer combine elements of CSF layer
and of CTF layer and then discriminate a particular stroke by indicating
the start and the end of the stroke and the different types of
connectivity. It consists of a set of 9x9 2-dimensional arrays.

* GA layer: Elements of GRA(GRApheme) layer combine recognized strokes at
various positions in the previous STR layer and then organize a particular
Crapheme. Hence, based on information of positions of strokes and
writing orders, GRA layer recognizes a single/double vowel or a
single/double consonant in Hangul.

* SYL layer: Elements of SYL(SYLlable) layer combine recognized graphemes
in sequence to recognize an initial consonant, a vowel and a final
consonant(if any) in Korean writing system, to find the syllable last
entered. This layer is the final output layer.

III. Operations of Sejong-Net

* REC layer: Each element of REC layer with real value is updated as
follows.

REC[i,j] (-- w, * REC[i,j] + w2 * IN[i,j]+ w3 * (iN[i,j] - INIli,j]

,where IN 1[i,j,k] = IN(i,j,k-1]

Here, w, is decay rate and indicates that the responses to visual input
stimulus decrease with the lapse of time.

* SSF layer: Current features extracted from SSF layer are SS, SE, SW, NE,
NW, EE each representing different local features. Filters used for
detecting these features are shown in figure 2. For example, each
element of SS plane computes its value as follows

1- 413

SSF5 3(i,j] o- I (Wss, e5s
, where 11(x, ess) = j x if x >= (ss,

0 otherwise.

W.3= E.FILTERSSI j. * REC(i,j]

"* STF layer: Element of STF layer is computed as follows

STF [i,j] 4-- 02 ((REC[i,j] - REC-I[i,j]), esT,)

,where 0 (x, esrF) = I if x)=esrF
0 otherwise.

"* CSF layer: Elements of SS plane in the CSF layer is computed as follows

CSFss[iJ] (-- 01 ({Wl * SSFss[iJ] - (wi/5) E SSFk(i,J]), eSTF)

• CTF layer: This layer has the information of terminal points (start
point, end point) and middle point searching the STF. If the value of
element is "1", it mean-, a start point. If the value of element is "2",
it means a middle point. If the value of element is "3", it means aii end
point.

* STR layer: Combines elements of CSF layer and terminal points of CTF
layer and then find out a particular stroke.

IV. Results and Conclusions

SEJONG-Net is implemented in C language on IBM PC/AT. The sytem is able
to recognize written Hangul graphemes(1O simple vowels, 11 complex vowels
composed of simple vowels, 14 simple consonants and 16 complex consonants
composed of simple consonants) entered with mouse fairly well. We are
training the system with characters written by different writers. It
takes about 4 seconds to recognize the input. Figure 3 shows some
intermediate layers during a simulation.

We are planning to try it with other written alphabets as well as
expanding it so that it recognizes static character images.

"Sejong" is also the official name of the king who invented and
publicized the use of Hangul - the Korean alphabet system. We thank Prof.
M. A. Arbib of U.S.C. who suggested the name.

I- 414

figure 1: overall Structure of Sejong-Net>

5SF CSF

IN IN-1 REC STR GRA SYLS33x33 17XI?

dynamic
input
device

2733x33 33x3 Sx9 S5x

33x33 33x33 17x17

TRACE
33x33

(figure 2: SSF local feature>

South-South South-East South-West

North-East Narth.Wost East-East

(figure 3: intermediate stages of simulation - when "7" is written

CSF layer CTF layer

00000000000000000 00000000000000000

00000000000000000 00000000000000000
00021111111 130000 00000000000000000
00021111111113000 00000000000000000
00041344441613000 00001222222220000
00044444442113000 00000000000020000
00000000021135000 00000000000200000
00000000021135000 00000000000200000
00000000021130000 00000000002200000
0000000021I1350000 00000000002nl00000
00000000213350000 00000000022000000
00000000443500000 00000000030000000
00000000445500000 00000000000000000
00000000000000000 00000000000000000
0 00000000000000000 00000000000000000

00000000000000000 00000000000000000

,wee1,2,3,4,5,6 repre'ent SS, SE, SW, ,where 1,2,3 represent the start, middle,

•,whe , EE respectly, the end point respectly.

I- 415

Hangul Recognition using Neocognitron

Yillbyung Lee, Tae Cheon Kim and Ei-n Jin Kim
Department of Computer Science
Yonsei University, Secoi, Korea

1. Introduction

In this paper, we report on the initial results of applying a modified
neocognitron as a pattern recognizer for Hangul-the Korean alphabet.
Our network has sucessfully classified all 21 vowels(10 simple vowels and
11 complex vowels composed of 10 simple vowels) and 30 consonants(14 simple
consonants and 16 complex consonants composed of 14 simple consonants) with
considerable deformation or shift in position separately for now.
Figure I shows a set of Korean graphemes. And we are working on a model
that is able to recognize Kor,.an characters(syllables) consisting of one
vowel together with one or two consonants.

Our modified neocognitron consists of an input layer U0 consisting of
photoreceptor array, 3 U. layers consisting of S cells and 3 Uc layers
consisting of C cells. Figure 2 shows the overall structure of the
network. The numbers "I x I x K" below the rectangulars on the figure
means that "I x I" refers the array of cells and "K" refers the number of
planes on a given layer. Basically structures and functions of each
cells, planes and layers are the same as in Fukushima's neocognitron[1]
except when explicitly mentioned otherwise.

2.Training

A learning with a teacher process has been used to reinforce the
modifiable synapses. Training have been performed step by step from
lower layer Uj1 to highest layer U,3. After finishing the training of
lower layer, the higher layer has been trained.

Layer U.1 is trained to extract line components of different
orientations. Each cell of this layer has a 3 x 3 receptive field.
The training patterns are shown in figure 3. 20 training patterns have
been used for training the layer U.i. 8 half-line components are added
to the 12 training patterns of Fukushima[2]. These half-line components
are meant to extract the basic spatial features of termination(31.
These training patterns are useful in general because these are common
basic components to all classes of visual patterns.

Figure 4 shows the training patterns used to train the planes of the
layer U,2 for Korean vowel recognition. A cell plane is trained with 4
training patterns. These 4 training patterns have been made by shifting
one pixel in each direction. The cell at the center of the cell plane
to be trained is appointed as the seed cell. Good selection of training
patterns is most important for the layer Us2 among all the layers. So,
We need to know the structure of Korean graphemes. For example, Korean
vowel graphemes -usually consist of half-line components and "T"type
components of various right angles and horizontal line or vertical line.

1 - 416

Hence, the training patterns for this layer have been made from deformed
examples of these basic components.

Figure 5 shows the training patterns for the layer Us3 for Korean
vowels. The standard Korean vowel patterns are used for training this
layer. Because most of the distortions in shape of the input pattern
have absorbed during the process in the previous stages, it was aot
necessary to train the deformed patterns.
3.Results and Discussions

Three level neocognitron was built and trained to classify the Korean
vowels and consonants respectively. This network is modelled in PACAL
on IBM PC/AT. Input image is presented by file or by a mouse
interactively.

Figure 6 shows typical test vowel patterns. Most of patterns
recognized incorrectly in thick box are " " and " ". These two
Korean graphemes have two horizontal components and one vertical line and
one "T"*type component. This phenomenon is considered tc be the result
from generalization, which is one of the properties of neural networks.
The difference between the two graphemes is the relative position of
"T"type components. If the relative position of these graphemes in
certain Korean character(syllable) is considered, two graphemes would be
discriminated rather easily. Otherwise, it is a difficult job even for
us human to distinguish the two.

One Korean grapheme has been recognized in 13 minutes on IBM PC/AT.
For the recognition of a Korean character, we constructed a modified
neocognitron model with backward path and it consists of larger input
image. Hence the processing takes longer. Furthermore training
takes for hours upto half a day. Implementation or purchase of a
parallel hardware coprocessar, appears to be justified for the simulation
of this type of model on a PC. As the number of training patterns of
the layer Us2 increases the speed of processing slows down. But the
capability of recognition has been improved. Most of process time has
been spent processing the layer Us2 . Good selection of the essential
training patterns for the layer U,2 would reduce the overall training and
processing time substantially.

We implemented neocognitron with backward path for the purpose of
recognizing Korean syllables in C on microVAX. Futher work is needed to
get equivalent performance for the recognition of Korean
characters(syllables). Since a Korean character consists of two or
three graphemes, selective attention which is one of the properties of this
newer model as described by Fukushima[4] is very useful for the recognition
of a Korean character.

References

1. K.Fukushima, S.Miyake and T.Ito, "Neocognitron A neural network Model
for a mechanism of visual pattern recognition," IEEE Transactions on Syst.
Man Cybernetics,SMC-13(5), pp. 826-834 (1983).

2. K.Fukushima, "Neocognitron : A hierarchical neural network capable of
visual pattern recognition," Neural Networks, Vol.1, pp. 119-130 (1988).

1- 417

3. D. Marr, "Vision" Freeman NY (1982).

4. K.Fukushima, "Neural network model for selective attention in visual

pattern recognition and associative recall," Applied Optics, Vole.26,
No.23, pp. 4985-4992 (1987)

UsUs2
Uc c2

U0c

7x7x
4 2 3X3x21. 1~x21~

I9x19x20 IlXllXl6 Ilxllx7Z

(Figure 2 Schematic diagram of neural network model which is used
in this study ("IxIxK" means that "Ixi" refers the array of cells
and "K" refers the number of planes)

simple vowels (10)

complex vowels (11)

-~ 4LE~E -94

7 LI ~ [~simple consonants (14)

~ L.JLUJ J LJcomplex consonants (161

-n

Figure 3 Training patterns
used to train layer Uil

Figure 1 K~orean characters >

1- 418

C [Dur 01 01[: C- C%:ur C- 0- Trinn Pl95g3 n FEt PatRns

Training patts ud t t Ce C 5, C- Ee 1to 111 tn ME o

< Figure 6 : Siguree4aTraining patterns wihaercgie

corrctl orincrretly(te pttensthec aore recognitiond

9 992 M_ In M! El E

incorrectly are in the thick box)

ElI- -419

//

A New Neocognitron Structure
Modified by ART and Back-Propagation

Dapeng Li and William G. Wee
Department of Electrical and Computer Engineering

University of Cincinnati
Cacinnati, Ohio 45221-0030 U.S.A.

1. Introduction

In artificial neural networks, models such as back-propagation[7j, Adaptive Resonance
Theory (ART)[11, and the neocognitron[2,3,4] have been studied extensively. Back-propagation
networks have been also used in many practical applications. The ART systems and neocognitron
systems are analogous to the human visual system. Each of them has capabilities and limitations.
It is our expectation that these structure-rich models will have the capability of solving complex
visual pattern recognition problems, such as these handled by the human visual system. Here we
are presenting a new model that uses a neocognitron system as the basic structure. It incorporates
ART to add on-line learning capability and back-propagation to add noise handling capability.

The neocognitron was chosen as the basic structure for several reasons. The neocognitron
has a modular structure that enhances the flexibility of the system. The output of each module in
the neocognitron brings a clear interpretation of feature abstraction making it suitable for the
structural or syntactic vision pattern recognition. In addition, the neocognitron can handle the
position shifting of patterns. The structure of the neocognitron has a well defined gain control
system that can be used to recognize deformed patterns, overlapped patterns, and incomplete
patterns. The neocognitron also has a stronger biological foundation than other neural models[6].
However, the present neocognitron system does have some shortcomings. The training algorithm
of the neocognitron will only perform supervised off-line learning, and so can only operate on
well-prepared training patterns.

The training algorithm of ART is unsupervised on-line learning. In ART, the on-line
learning is carried out by the matching of an input pattern and an expectation pattern. These two
patterns are matched through correlation with the bottom-up weights of long term memory (LTM)
and the top-down weights of LTM. The learning activity is determined by the matching result. If
the two patterns are matched, the learning will enhance the proper set weights of the LTM.
Otherwise, the unmatched input pattern will be stored as a new pattern in the weights of the LTM if
space can be found[I]. The fundamental mechanics of this matching process also exists in the
structure of the neocognitron, where matching is obtained by this comparison of corresponding Uc
and Wc planes. The output of the planes is used to control the gain parameters of neurons.

In the neocognitron, one Uc plane corresponds to one training patternm[5. For similar,
closely resemblant patterns, a separate Uc plane has to be assigned to each training pattern. In
practical applications, the number of separate planes and processing time becomes prohibitively
large and makes implementation impossible. On the other hand, a back-propagation structure has
the ability to learn very closely resemblant training patterns using a three layer structure.
Incorporating the back-propagation learning capability into a neocognitron system so that one plane
can correspond to a class of closely resemblant patterns is a major step towards making the
neocognitron system practically applicable.

Therefore, it is clear that a neocognitron structure imbedded with ART and back-propagation
has the potential to be far superior to the original neocognitron model alone. In sections 2,3,and 4,
a new network model is defined based on the former analysis.

1- 420

2. New Model Description

Due to space limitations, mapping functions[4] are not included in this presentation, and the
following formal language description is adapted:

Notations: <name>__ the component of the structure;
bold ___ terminal;
<x>k~y>... either component x or y;

____defined as;
© 9) __ concatenating;

____ interactive connecting;
* _______inversely;

Abbreviations:
LTM___ long term memory;
SIM___ short term memory;
F _____forward path;
B _____backward path;

other names' definition come from the neocognitron [4].

The original neocognitron model is described formally as follows:

<Network> :: <Mcdule>I<Network>©<Module>
<Module> ::= <Forward-path>®9<Backward-path>
<Forward-path> ::= <Usv-plane>©<LTM><FSTM>
<Backward-path> ::= <Wsv-plane>©<LTM><BSTM>
<Usv-plane> ::= <Neuron-plane>
<LTM> ::= <Excitatory-synapses><Inhibitory-synapses>
<FSTM> ::= <Us-layer>©<Uc-layer>
<Wsv-plane> ::= <Neuron-plane>
<BSTM> ::= <Ws- layer>©'<Wc- layer>
<Excitatory-synapses> : =weights-array
<Inhibitory-synapses> :=weights-array
<Us-layer> :: <Neuron-plane>k<Neuron-plane><Us-layer>
<Uc-layer> ::= <Neuron-plane>I<Neuron-plane><Uc-layer>
<Ws-layer>::= <Neuron-plane>I<Neuron-plane><Ws- layer>
<Wc-layer>:: <Neuron-plane>I<Neuron-plane'c>Wc-layer>
<Neuron-plane> ::= neuron-array

The new model is described formally as follows:

<Network> ::= <Module>I<Network>©<Module>
<Module> : := <Forward-path>®D<Backward-path>
<Forward-path> ::= <FLTM>©<FSTM>
<Backward-path> ::= <B LTM>©Oc<BSTM>
cFLTM> ::= Back-propagation-net
<FSTM> ::= <Us- layer>©<Uc-layer>
<BLTM> ::= Back-propagation-net
<BSTM> ::= <Ws-layer>©'<Wc-layer>
<Us-layer> :=<Neuiron-plane>I<Neuron-plane><Us-layer>
<Uc-layer> :=<Neuron- pl ane>k <Neuron -pfane><Uc- layer>

1- 421

<Ws-layer = <Neuron-plane>nNeuron-plane>zWs- layer>
<Wc-layer>::= <Neuron-plane>l<Neuron-plane><Wc-layer>
<Neuron-plane> ::= neuron-array

The difference between the formal descriptions of the original neocognitron and new model
is that the new model replaces <Usv-plane><LTM> with <FLTM>, and <Wsv-plane><LTM>
with <BLTM>. The new components of the FLTM and BLTM are back-propagation networks
embedded in the neocognitron system. The inputs of a module in the new network are signals put
on two terminals. One is on the input layer of the FLTM of the forward path. Another is on the
Wc-layer of the backward path. The outputs of a module in the new network comprise both the
neuron states of the Uc-layer of the forward path, and the neuron states of the Ws-layer of the
backward path. An important modification of the new model is that the input signals come from
more than one of the prior modules. It means that the different levels of the abstraction can be
considered together at one time to extract features. For example, to recognize the letter "Q", one
feature "V' is on feature level 1, and another feature "0" is on level 2. These two features on
different levels can extract the third feature "Q" when a "\N occurs at the bottom right comer of the
"0". Figures 1 and 2 show one module of the new model and the neocognitron.

IM.

S.,,. ,,.,,) ,.s,0

Figure I. One Module of Neocognitron Filture . One mndule or the new model

3. Training Strategy

The training algorithm of the new model assigns values of weights in the FLTM and BLTM
components. Notice that the FLTM and BLTM are both back-propagation networks, so the
training algorithm of the model is similar to training back-propagation networks. The detailed
structures of FLTM and BLTM Aill be discussed according to the back-propagation structure.

The input layer of the FLTM is a window, which will move around on the output planes of
the prior modules. The hidden layer (or layers) of the FLTM will be designed differently than the
input and output layers. In an example system, the hidden layer has 2/3 as many elements as the
input layer has. The output layer of the FLTM is a vector, and the number of elements in the
vector is as equal to the number of Us-planes in that module. Each element of the vector assigns
values to Us neurons on the corresponding Us-plane. The training target always has only one
non-zero element, which indicates the class to which a training pattern belongs.

The structure of the BLTM is an inverse back-propagation of the FLTM. The input layer of
the BLTM is a vector connected by the Ws-planes. The hidden layer is as same as the FLTM. The
output layer of the BLTM is a window to show the expected feature pattern of the input vector.

The training procedure is carried out module by module. On each module, the training of

the FLTM and BLTM is executed concurrently. The input of FLTM is the target of BLTM, and the
target of FLTM is the input of BLTM.

I - 422

4. The Recognition Strategy

The recognition procedure of the new model is based on the neocognitron and ART
systems. When a random pattern is placed on the input of the network, the pattern will be
transferred module by module to the Uc-layer of the last module. In the last layer, the decision will
be made by the network to either give a recognition result and stop, or send an expectation pattern
back through the backward path.

In each module, the states of the Uc and Wc planes will be compared and matched. When
these states are matched, the network will adjust the gain parameters according to the neocognitron
strategy. Otherwise the input pattern mismatch will be considered a new pattern. The training
procedure for this new pattern will start if the network has an empty plane for it. Actually, the new
pattern will open a new category in the network. The criterion of matching decides the sensitivity
of the network. In the example system, two planes are considered matched if 90% of their
elements are identical.

5. Conclusion

This new model has the following advantages:

"• enhanced training strategy comparing with the original neocognitron model
"* on-line learning capability
"* each plane corresponds to a class of patterns instead of one pattern
* have the same shifting tolerance and modular structure of the origianl neocognitron
model

"* better feature extraction ability since input signals come from different modules

The advances made here have opened up some exciting new avenues for research, and have

enhanced the flexibility and power of the neocognitron neural network.

6. References

[1] Carpenter, G.A. and Grossberg, S. (1988), The ART of Adaptive Pattern Recognition by a
Self-Organizing Neural Network, IEEE Computer, March, 1988, pp. 77-88

[21 Fukushima, K. (1988a), A Neural Network for Visual Pattern Recognition, IEEE Computer,
March 1988, pp. 65 -7 5 .

[3] Fukushima, K. (1988b), Neocognitron:A Hierarchical Neural Network Capable of Visual
Pattern Recognition, Neural Networks,Vol. 1, No.2, pp. 119-130.

[4] Fukushima, K. (1986), A Neural Network Model for Selective Attention in Visual Pattern
Recognition, Biological Cybernetics,Vol.55, pp.5-15.

[5] Li, Dapeng and Wee, William G. (1988) Feature extraction using Neural Networks, poster
paper on the first Annual Meeting of International Neural Network Society, Boston, 1988

[6] Li, Dapeng and Wee, William G. (1989) Physiological foundation of Artificial Neural
Networks in Pattern Recognition, Proceedings of Beijing International Symposium for Young
Computer Professionals, Beijing, 1989

[71 Rumelhart, D.E., Hinton, G.E.,and Williams, R.J. (1986), Learning Internal Representations
by Error Propagation, Chapter 8 of Parallel Distributed Processing, Vol.I,
Cambridge,MA:MIT Press 1986

1- 423

SEGMENT REVERSAL AND

THE TRAVELING SALESMAN PROBLEM

Raymond Lister
Basser Department of Computer Science

University of Sydney NSW 2006
AUSTRALIA

ray@basser.cs.su.oz

Abstract
A neural network architecture for solving traveling salesman problems is presented, that encodes
a simple form of the Lin and Kernighan rearrangement technique. It has produced high quality
solutions for 30, 50, and 100 city problems. It has only 0 (IogN) interconnect.

Introduction
Hopfield and Tank (H&T) introduced the analog NxN permutation matrix for solving the
Traveling Salesman Problem (TSP) with N cities (1985). We first introduce MCRotA, another
matrix based approach. Then we modify it to form MCRevA, which implements the Lin and
Kernighan technique.

The Matrix Column Rotation Architecture (MCRotA)
MCRotA uses a discrete permutation matrix, initialized to any legal solution. The only type of
change allowed, column rotation, preserves legality. Every unit that is off defines a unique
column rotation. Let u, be such a unit, and let uik be the unit that is on in that row. If k<j, uij
defines a column rotation to the left, in which the values of units in columns k +1 toj will "shift"
to the column on their left, and the value of units in column k will be written into column j. If
k>j, u1, defines a column rotation to the right. Figure 2 illustrates a rotation on the path shown
in Figure 1. A column rotation effectively moves one city to a new position in the path. In any
permutation matrix representing a legal solution, there are N2-N units that are off. These units
represent all possible movements of city i to position j.

Since column rotation preserves legality, the energy function need only represent the distance
between cities. A low energy arrangement of the matrix is found by applying rejection-less
move simulated annealing (RSA) (Greene and Supowit, 1984). Consider a solution s in the
solution space of a TSP with N cities. Traditional simulated annealing iteratively nominates a
neighbour of s in the solution space, s', and replaces s with s' with probability p, a function of
the difference in energy AE between s and s'. RSA considers the set of all neighbours of s, S' =
(s), and makes a weighted random choice from S' to replace s, with the bias for each si given
by its respective pi. With MCRotA, S' = (s!: I•N< -N), and the column rotation defined by
each inactive unit gives a unique sý.

MCRotA can be implemented efficiently with only 0 (logN) connections per unit, without
signal multiplexing. Only 0 (logN) time is required for all units to
calculate their respective pi, negotiate which unit should switch on, and make the column
rotation. (However, the time complexity of the cooling schedule has not been determined.) If
units can communicate asynchronously, global synchronization is not required.

I- 424

i/

(a) (b) 1 2 3 4 5 6 A
A B A l 0 0 0 0 0

B 0 0 0 1 0 0

F C C 0 0 1 0 0 0
O'nD 0 1 0 0 0 0

E D E 0 0 0 0 1 0

F 0 0 0 0 0 1
Figure la-b. a A traveling salesman's path. b A (discrete) permutation matrix for that path.

(a) (b) 1 2 3 4 5 6
A A 1 0 0 0 0 0

B 0 0 0 0 0 0
F C C 0 1 0 0 0 0DO 0 0 1 0 0

_ _ D E 0 0 0 0 1 0
F 0 0 0 0 0 1

Figure 2a-b. a The path from Figure la after city "D" has been moved between cities "B" and
"E". b The matrix for that path, with columns 2-4 of the matrix in Figure lb rotated left.

MCRotA was evaluated on the same 30 city problem studied by H&T, on which they reported
poor results. H&T also showed the best known solution for this problem, which was found using
the Lin and Kemighan (L&K) algorithm. In 100 consecutive runs, MCRotA found that solution
96 times (cooling schedule: starting temperature = 5.0; cooling rate = 0.99; 30 changes per
temperature; stop when all pi truncate to zero, after about 1300 temperature iterations).

It may seem surprising that MCRotA should outperform H&T's approach, since it is
conventional wisdom that analog matrix approaches are superior. One problem with H&T's
approach is highly active or inactive rows and columns. Some workers have overcome this by
modifying the energy function (Brandt et al, Szu, Van den Bout and Miller). In a sense,
MCRotA implements the perfect penalty function.

The 100 runs of MCRotA gave 4 different solutions (see Figure 3). The path shown in Figure 3b
crosses itself, which is suboptimal. To remove this crossover, MCRotA would need to
move all the cities from one side of it to another. There would be no obvious gain until all cities
had been moved. For N=30, the probability of this happening proved reasonable, but the
probability decreases rapidly as N increases (see Figure 5a). The afore-mentioned analog
approaches with modified energy functions were only demonstrated on small problems, and
would probably suffer the same scaling problem.

The Matrix Column Reversal Architecture (MCRevA)
MCRevA is the same as MCRotA except that it reverses instead of rotates the columns. A
column reversal is illustrated in Figure 4. Column reversal can remove any crossover in one
step. It is the simplest type (k=2) of path rearrangement used by Lin and Kemighan (1973).
MCRevA can also be implemented efficiently with only 0 (logN) connections per unit, and
requires only 0 (togN) time to choose and make a reversal.

I- 425

(a) (b) Wc (d)

D4.2 D=m4.42 Dm 4.39 Dam4.34

Figure 3a-d. The solutions found in 100 runs on a 30 city problem. a was found 96 times. This
is the same solution found by the Lin and Kemighan algorithm. d was found twice.

Figure 5b shows a typical MCRevA solution on a 100 city problem. Table I shows the overall
performance of both MCRotA and MCRevA on this problem, five 50 city problems, all from
Durbin and Willshaw (D&W), and H&T's 30 city problem. MCRotA and MCRevA were both
run 100 times (cooling schedule: starting temperature = 5.0; cooling rate = 0.9; changes per
temperature = number of cities; stop when all pi truncate to zero). The number in brackets is the
number of times the best solution was found. Both approaches find consistently the best known
solution to H&T's 30 city problem (found originally with the L&K algorithm, not H&T's
network), but MCRevA is better than MCRotA on the larger problems. MCRevA compares
favourably with the best solutions found by D&W in many trials using k=3 path rearrangement
from the L&K technique (which would require 0 (N3) units).

Conclusion
MCRevA outperforms MCRotA (and more conventional analog matrix approaches) because it
implements a domain specific heuristic (segment reversal). We conjecture that neural networks
will not achieve very high performance on many other optimization problems unless they
incorporate problem specific heuristics.

References
Brandt, R, Wang, Y, Laub, A, Mitra, S 'Alternative Networks for Solving the Traveling

Salesman Problem and the List-Matching Problem' IEEE International Conference on
Neural Networks, San Diego (1988), pp 11-333 to 11-340

Durbin, R and Wilishaw, D 'An analogue approach to the travelling salesman problem using an
elastic net method'Nature 326, pp 689-691 (16 April 1987)

Greene, J, and Supowit, K 'Simulated Annealing without Rejected Moves', IEEE International
Conference on Computer Design, New York, 1984, pp 658-663.

Hopfield, J and Tank, D "Neural" Computation of Decisions in Optimization Problems' Biol.
Cybern. 52, pp 141-152 (1985)

Lin, A and Kernighan, W 'An Effective Heuristic Algorithm for the Traveling-Salesman
Problem' Oper. Res. 21, pp 498-516 (1973)

Szu, H 'Fast TSP Algorithm Based on Binary Neuron Output and Analog Neuron Input Using
the Zero-Diagonal Interconnect Matrix and Necessary and Sufficient Constraints of the
Permutation Matrix' IEEE International Conference on Neural Networks, San Diego
(1988), pp 11-259 to 1-266

Van den Bout, D, and Miller, T 'A Traveling Salesman Objective Function That Works' IEEE
International Conference on Neural Networks, San Diego (1988), pp 11-299 to 11-303

I- 426

(a) (b) 1 2 3 4 5 6
A B A 100000•CB 0 1 0 0 0 0

F C 0 0 1 0 0 0
DO 0 0 1 0 0

E E 0O 0 0 0 1 0
F 1 0 0 0 0 0 1

Figure 4a-b. a The path from Figure la after segment DCB has been reversed. b The (discrete)
permutation matrix for that path, with columns 2-4 of the matrix in Figure lb reversed.

(a) D= 8.39 (b) D= 7.84

Figure Sa-b. a A typical run of MCRotA on Durbin and Willshaw's 100 city problem. b A
typical run of MCRevA on the same problem.

authors num. author's MCRotA MCRevA
cities best best average worst best average worst

H&T 30 4.26 4.268 (45) 4.404 4.849 4.268 (69) 4.286 4.434
D&W1 50 5.84 5.866(1) 6.237 6.917 5.836(16) 5.915 6.136
D&W2 50 5.99 5.995 (1) 6.443 6.895 5.995 (6) 6.106 6.396
D&W3 50 5.57 5.575 (5) 5.977 6.579 5.575 (15) 5.657 6.048
D&W4 50 5.70 5.698 (4) 5.967 6.476 5.698 (9) 5.808 6.078
D&W5 50 6.17 6.179 (2) 6.443 6.804 6.167 (4) 6.353 6.640
D&W6 100 7.70 7.830(1) 8.392 8.989 7.706(1) 7.844 8.100

Tabje 1. Performance of MCRotA and MCRevA over 100 runs on a variety of problems
authored by Hopf'eld and Tank, and Durbiri and Willshaw.

I- 427

Stability and Temporal Pattern Recognition
TERESA B. WDERMIR*

Neural Systems Engineering Group
Imperial College, London SW7 2BT, England

email: JANET tbl%winge@sig.ee.ic.ac.uk

ABSTRACT
The aim of this paper is to discuss the influeace of the stability property in the

generalization of a neural net and consequently in the performance of the net to solve a
specific task. The task we are working with is the recognition of temporal patterns and the
model employed is an artificial neural net based on RAM as digital neurons(Aleksander,
79]. Some ways to control the stability of the net are presented. Experiments were done
with differcat methods of controlling the stability and some of them are presented here.

1. INTRODUCTION

There are different types of neural nets. The study of neural nets were largely ori-
ginated in 1943 with the McCulloch and Pitts model of neuron (McCulloch-Pitts, 431. They
proposed a neuron model implemented by threshold logic gates, where variable input
weights play a role analogous to that of synapses in natural neurons. The model used here is
based on a different model called the RAM neuron model. The RAM model is based on the
simple operations of a look-up table which is best implemented by random access memory
(RAM) and where the knowledge is directly "stored" in the memory (the look-up tables) of
the nodes during learning. Some advantages of this model are: (1) it is straightforward to
implemented in hardware; (2) learning is not unreasonably slow and (3) error-correction
requires only a global success signal.
The most important property of a pattern recognizer is generalization. Generalization is the

ability to classify patterns others than those in the training set. RAM-nets having feedback
connections between neurons have been successful with some temporal pattern recognition
tasks [Ludermir, 89] but feedback machines are more sensitive to input errors than feedfor-
ward machines. However RAM-feedback nets are inherently stable adaptive structures [Fer-
nandes, 85]. They are able to recover from input errors naturally and capable of recognizing
input sequences independent of its initial state.

2. STABILITY AND GENERALIZATION PROPERTIES OF NETS WITH FEEDBACK

The type of net used in this work consists of a layer of identical RAM type digital neu-
rons, where each of them has n-address terminals, i connected to an external matrix of
binary elements and f connected to the output terminal of others neurons through clocked
delay units (n= i+j). The RAM type digital neuron is represented in the figure 2.1.

illdill

2

Figure 2.1 RAM type digital neuron Figuire 2.2 Sequential Digital Neural Net
rhe structure of a SDNN (Sequence Digital Neural Nerwork) is represented in the figurc

Supporloed hy CNPq (i-,aziian tese:rch CouncIl) granti n) 20,3296,80-CC

I- 428

2.2 where binary vectors x(t), r(t), r(t-1) and d(t) represent respectively at time t, the state
of input matrix, the response, the delayed response and the 'desired' response of the neu-
rons. The input and feedback connections are randomly generated. The SDNN is trained to
anticipate its inputs, i.e. d(t)=x(t+c*), such that r(t)=x(t+a) during test phase. During the
training phase the net is fed with kEA (where A is the training set) with one (or more)
RAM(s) in the write mode and the memory position is changed M.[A (t),A (t)]=d.(t) (Ax
and Ar are input and feedback component respectively) for all RAAs in the write mode.
The stability property of the net is responsible for the increase of generalization. Thus it
has direct influence on pattern discrimination and identification. Three types of misclassifi-
cation can come from the generalization of the net. 1) rejection by doubt (intersection of two
or more generalization sets); 2) unknown rejection (a pattern k E L fall outside the generali-
zation set); 3) error (a pattern fall within the generalization set of another category).
The stability of RAM-nets mainly depend on two parameters: a) neuron memory contents
and b) feedback connection.
a) The stability can be controlled by distribution of O's and l's in the neuron memory. The
greatest the difference between the number of zeros and ones in the neuron memory less
will be the possibility of changes in the neuron output, in consequence the net will be more
stable. There are two different ways of controlling the memory contents. 1) direct control:
The distribution of zeros and ones is made randomly based on the difference L between
zeros and ones and 2) adaptive control: The distribution of zeros and ones is made through
training with any training strategy. These were first used by Fernandes in [Fernandes, 85].
b) Feedback connection influences the recover of a input error through time in a net. If we

have a small feedback connection the error propagation through time is going to be reduced
and the recover phase will be small. Thus the net is more stable.

3. INFLUENCE OF STABILITY IN GENERALIZATION AND IN PATTERN RECOG-
NITION

A classifier based on the probability p(kELk/f) that the input sequence kELk given
that the response f occurred when k was fed into the net 0< =p(RELk/f) < =1 was used.
Al~hough the ideal would be p(kELk/H)= 1 for all symbols in the sequence kELk , this does
not generally happen. What happens is that p(kELk/f) changes randomly near 1 for
sequences x in Lk and near 0 for sequences k not in Lk. In consequence, a measure is
required which considers p(kELk/H) for all input symbols in the same sequence k. The meas-
ure that is being used is the continuous average

Sk(t)= a , p(xELklr(t)),k= 1,2and0:5S < = 1.
tf1i

The measures we used to analyse the results are the size of state sets in each class of
sequences fed into the net, the percentage of error recovery of the input sequence and
sequence distinction. We do not wish neither that states sets of each class being large (for
saving process time and memory) nor that the common states being in large quantity (for
better distinction). The percentage of error recovery of input sequence has its importance in
'he states which occurs with a input sequence. Once the hamming distance between the
responses of the sequence R E L fed into the net in training and the responses of the
sequence V' E L fed into the net in testing is zero (h(t)=h[r(t),r'(t)] =0) all the responses
will be the same.
Experiments were done to distinguish different geometric forms, such as triangles, squares

and circles. The nets used were MNDS(32,2,2), MNDS(32,2,3), MNDS(32,2,4),
MNDS(32,2,5) and MNDS(32,2,6). The distribution of O's and l's in the neuron memory
were controlled by direct control and adaptive control as described in the last section. The
input patterns x correspond to a sequence of eight tracking movements.
In the figure 3.1 below we show the percentage of error recovery of input sequences for

experiments with five different nets. As we can see in the figure when the feedback connec-
tion increases the percentage of error recovery of input sequences decrease. With

I- 429

MNDS(32,2,2) there is no difference between a direct control of stability with high value of
L and adaptive control because the feedback connection is small and as consequence the net
is very stable. With MNDS(32,2,3) the net with direct control with L=O, that is half of the
memory contents is zero and ha!f is one, is not able to recover from input error at all
because the net was made unstable from the very small difference between the number of
zeros and ones and also from the increase of the feedback connection. From MNDS(32,2,4)
as the net is not very stable because of the high feedback connection only the adaptive con-
trol is successful in making the net t.i be able to recover from input errors.

1~00

40

40 * I

o2012 4 S ?1 3 51I 2 3 4 S €t 2 3 4 5

Figure 3.1 Recovery Percentage Figure 3.2 State Sets Size
It is important to observe that nets with high differences between the number of zeros and

ones in memory of RAMs proceeding from direct control of stability not always result in a
high input error recovery of the net. The reason for this is because this increase in the

'• •• differences between zeros and ones were done randomly.
In the figure 3.2 we show the state quantity in each class of sequences for experiments with

five different nets. The maximum number of states by class is the number of sequences fed
into net times the number of symbols in each sequence: 50OX50=25.000. With
MNDS(32,2,2) when using adaptive control we have smaller states set, that is less computa-
tion is necessary to discriminate sequences in different classes, than when using direct con-
trol. With MNDS(32,2,3) the size of the state sets are closer with adaptive control and direct
control with high value of L. From MNDS(32,2,4) we have very big state sets with direct
control while with adaptive control we still have a reasonable size. The size of states set will
have effect upon sequence discrimination as we will see in the next paragraph. Experiments
in which the size of the state sets are big we have no discrimination among •ie sequences
belonging to different classes.
Below we show in the figure 3.3 the discrimination capability of the net for experiments
with five different nets. The discrimination capability of the net is illustrated by the differ-
ence between the values of Sl(t) from sequences in the class we want to recognize and the
values of Sl(t) from sequences not in the class we want to recognize. When such values arc
negative it means that there was an intersection between the values and the number means
the size of the intersection. With MNDS(32,2,2) and MNDS(32,2,3) were possible to distin-
guish the sequences with all ways of controlling the stability of the net because the nets are
stable in all cases and the state sets are not very big.
It should be noticed that with MNDS(32,2,2) there was not to much difference in the input

error recover between th(. two methods ..f stability control and the size of the states sets
with adaptive control was smaller thau with direct control meaning that the adaptive control
is much efficient in sequence discrimination. However with MNDS(32,2,3) the size of the
state sets are closer with adaptive control and direct control with high value of L, the input
error recovery was similar and the discrimination power between the two ways of control-
ling the stability of the nets are also the same. From MNDS(32,2,4) we have values of S1 (t)
very close to each other mainly in the cases where the stability control was direct with L=0.
With high value of fecdback connection the net is not very good in discriminating sequences.
When we increase the feedback connection the net will rcmembcr of a input error for a

longer time and we have a less stable structure. The percentage of input error recovery will

1- 430

N\

deteriorate. We are going to have big state sets and consequently in some cases we are going N

to have difficult in temporal pattern recognition.
With unstable net the recognition of pattern is difficult also because small vari3tions

between the prototypes (patterns in training set) and pattern in the test set will result in a
completely different response sequence f. An unstable net will generate more unknown
rejection whilst a very stable one will generate more rejection by doubt (net is not able to
notice the differences between patterns) and error with the generalization.
With more stable nets we have more number of patterns not in the training set being recog-

nized which implies in a bigger generalization. But we need to have limit in the size of the
generalization set. Big generalization sets generates more mistakes with the generalization.

5.

s 2- -a adapflawe
- dirct L.O
U. d&ecl L.37.5%

lo -I,

-2

Figure 3.3 Sequence Discrimination

4. CONCLUSION

A study of the relation among the inherent stability property, the generalization and
temporal pattern recognition was made. The main ideas behind this methodology are: (1) the
use of a feedback RAM- net; (2) probabilistic classifier to temporal pattern recognition; (3)
different methods of stability control and (4) the use of different parameters to analyse the
results. Three parameters (size of state sets and their intersection, the percentage of error
recovery of input sequence and sequence distinction) have been presented.
The main strengths of the method are that: (1) a response of a RAM-net with feedback car-
ries information about the order of appearance of its input patterns; (2) the RAM-net is
capable of recognizing patterns independently of its initial states even in the presence of
input distortions and (3) the generalization emergent from these nets.
Many aspects of this methodology remain to be investigated since alternative training stra-

tegy were not explored. In addition probabilistic logic neuron [Aleksander, 881 could be
adopted instead of RAM. The probabilistic logic neuron can avoid knowledge being
overwritten in the training phase and introduces some non determinism into the system.
REFERENCES

[Aleksander, 79] A!eksander, I. & Stonhain, T.J.: "A Guide to Pattern Recognition

using Random Access Memories".IEE J Comp & Digital Tech 2(1), 29-40, 1979.

Aleksander, 881 Aleksander, I.: "The logic of connectionist system" in R. Eckmiller,
Chr. v.d. Malsburg, eds. Neural Computers. Berlin: Springer-Vcrlag, 189-197, 1988.

[Fernandes, 851 Fernandes, C.G.:"Stability Properties Inherent to Digital Neural Net-
works", COGNITIVA 85, Par's, 1985.

Ludermir, 891 Ludermir, T.B.:"A Feedback RAM-Network for Temporal Pattern
Recognition", Neural Systems Eng Report, Imperial College, Dept of Elec Eng 1989.

McCulloch-Pitts, 43] McCulloch, W.S. & Pitts, W.:"A logical calculus of the ideas
imminent in neural nets". Bull. Math. Biophys. 5, 1943.

1 - 431

- j ~AN ADAPTIVE STRATEGY TO DESIGN THE STRUCTURE OF
FEEDFOR WARD NEURAL NETS

B. malakooti a Y. Zbou
Bystms Eagimeriag Depftaext amA Center (wv Asteastie uar lutBiigea Bystems
Resunk Cane Vestea Reherv University, CeUMazi OAls 44106

INTRODUCTION
VW~ is the alalata uber of u~ts (aoims) ni tW maler of Ulcs (AMl topolgy) to rte"nt a guohlkt4 feet-

fom i wu trd& Nal ml Net (AMq ? It tkis Waer we &witvp a attleioibt t1At starts witk o uk ad abdvpdwy ixusm s
its uits util the uamu topology is 60hirnd. Fwtuimoft, we eatal the Solud to aqat its.I Wien tie sto of ftwiia
poterm chawge periolaly, it., it cai solM adptive peobkas. Mhi jw AFM ommtw is hemr callet adaptivt topology.

A& ANN Is a systes of hiteronaecel elements zodlekd after tie kUsa kaLn I is W Mciu by the id topolog,
mob uwitz ami vti&h training rmls. Then ae sewen! ilroacks in mokelig aml sol'ving MN [Rosenbhe, 1959-;
uliesky & Papet, 1IM; Ko.bonsn, 1984; Hoprull & Tog, 198; Veag & P'biakood, 189.

Among the wuejos topics, the topology adaptivity of a ANN is at impottamt isu sinc 6m4 am! at
topologies in not sikable for noklixg the MrAl over time I~kýd et al 1988). Thet topic of adptive topology asS ut yet beta
ikse ytzaAayi heIuu.Tispp mis an atl logy for the topology abrapitiy. The mw metkoklogy
pmdwes ax adatm se Mgy to equal a ANN whle mumisx the preiou iMmoxato stated Ai the ANN. The godl of tie
mpiac topology is to otaja a sekaLle strvtem for a ANN n nepimab ali atoA local zaxima is ftniiag.

Almost ny decision &*akig al optlaketiox pmbka Is chuarteretze by coaflitlig mutiple objcives (aitet*. For
~pht, in selecting the best pautmee fur a awburn, some coaffist*a objectmine a prodwt rafte, cot of operao, vAn

tvalky of pem4wts. hn section 3, we itzmoawae low MODM pobkea tan be forAlee mAu solved by ow batv
zetiodology. Yuthlarao, we show low the pmblka is solved, whena the cisoia aakees prefenre of the set of ftwang
eunpits (patterns) at changel.

Ow kaimaioa is basel oz tie sez-iar~ feeforwarl ANN [Rumelhaet, 1986). ha scmdo 2, we will dicis two
topics: (1) Abaptmv 9trWey for topology seliettion; (2) One.imeanoul Beumk for Leaming Rate. B"se ox the two apects, mn
algorkla for the adaptiv sbtrtgy is developed ilk the section. hn tie thit section. the MA&KAv Strategy is applied to solve
mU41t~ ererica decisiox makig (MCDlqI pnmbhn ebie #Adpiv ftbbag sets. The conclastoa Is gfmixe section 4.

2. ADAPTIVE STRLATEGY
To prese the Ahapiv Straegy Jh this section, weft 6m buodve the mari otatioz for FeW vtowa luau Mats

(FANN). Thea the theoWtWa basis for the Adaptive Straegy is estiblished.
2-I1. Matrix Notation for FANN

Let Xip - 13p I... 21J, 7,p - iyp I... ypa , T'p - [tpI... tpu)ml oepTp -Ypbketheikp*ctor, owpii
vector, tupt vector, and acor Vector, ttspectmely, for I Special ftmraiin attr p-

ha the pape, the following evihition fuctiox is usek
P a

where P is tit nuhlerof buling patterns.
Defik~omI(veigit ma=rix an mkhsoli Vecor)

The Veight Matix Ws~) ald the Threshold Vector RM in lefimi as (& nx its) matrix Wl ni-tuple vecor.

1 - 432

whi, 4%j, (*1 ... a, , 1.a)is tie aigm gOwnadAw konk1r to odo oa 0 iyr ki ý ~j= ...

&I) i k tmo~lAs* tie fhowkon kywL IE (1, 2, ... , r); r is tieat ik kW uh.h aANN; als E (1, 2,
1-1). VnMkn~l, tit anaettr manix V consists of 0l the VdgM larMicts ad tit Tkeshol Victor.

flu ow -s, ijnsevd~lk Ma ke IeSribe UeM:
AarajawtIM1Tha n aetmu'n ftuctiis of the (cia ((t), wo ti ellusi utn

Forvu4 PatI (Patui Propgai*I
My"E~ [Dack-yopagmii ly vsmg GDR)

2-1. Theory of Adaptive Surtcy
As v, kww, an of the citisal feawes in lbologaim mwul us is ~ab"'. The following zahptmr stiegy can be

vol to imsip a, FANN wiak the Matim pmy hn tkis sebswton, a 'ýieo oon~itiox for the optia. AMN
repwexeagoik is tstalbished whik is tit theortical basis for ow aqadvt strategy.
DAfiaide.2 (StiajOWY M~ix VS)
T1e Sudomr! Mwiz VS tL a FANN is a slecla lnmater awnm V when AVIPS = 0 w A1M = 0 for mytR l S a&L 1,
Lt., w fatheCkr ceg in V can ke mai bring the trainimg jhse
DMAiz600.7 (hpw Matriz IRI aAOupe 1Mrix OUT)
The eleaems of Iapt Matrix IN a de fflA is a&U possibll inpvs liakel to the oupt ezs, amA the Ovipt Matrix OUT for dth

ikoVI uk of AFAM is WMe ly tuewcor
=ur ouT(I)jil

X1the elmet:

th

(b) IN. ,j if the lj Lhnode showed in IN is linked
OUT =to the b output node;

Ii, 1.0 otherwise.
PROPOSITION I: (siffrev coahiox for an optimal maaW4

IFthere xtsts a ftbomuy matn Vs ia a FAII aW th Ovqvi Matri OUT7Y Us rank P, then Vs is mn optimad
MAtrix for the b thiweptu of theFANW, i.e., 71(tbyp) 2 -) W 0.

Ykawt (available in the full paper).#
CwomiAry. To savol hsvig a local aimin zer in a FANN, A tulat P weights hail to be lUhkel to the oltit ulis.

Bmsei on the siffeieVa vommkio in the proposition, tit A~ptwe 9tvveg is Aescrib4 as folow:
ADAPTIVESTRATEGY: (for the fixednaand m)

leadw the us ailer ox the first laer e~eal to (a WPn1);bsds these u&s, then me mk owp alif is. Connect 0l
tth "aaxaPa i))nts aAn AL inpt Uits to the a o*pVt Uits so that the Asiam aua nbfr Of hinks to the owpVi uits
is ohtiaiu& Be 2.
(2). fl~vm4S&ýy
Use the Gemml Dth Rule (G3DR) to trsia the FAHN uatil a statiomy -ari VS is obtaixei If E(VSJ 0, stop (wet have mn

optima ANN mrefsetadoio); otlerwise, go to Maptive Otep (3).

1 - 433

(3). A��p
� ugs to tbm otpt nks vkkzem eti�jbms i
(a) ibm q.veMa*�a is �i o�dma1 or (I) tim my p�ta� m mik)h (Le. P � .kapd). Tima s� iw.1 amA p to Tmaiaq

.p(2). *
�kupem�rnuZ
Nih ar�ima1 MUI ims coai�eA to ibm o$iaal eomA�i; Ibm ANN impowA by ibm Ak$iw aitegy en mae ibm

- �
Awel! (available in full paper)
2-3. Iliuuziv�xmpIeu

h Ga ., �.. mayb. m �vinm w Ga pafos d ow A�pdw baling. lb - emmnpin b mba
bow Rm�e (iguj. lb. - XOB. Thu i�ml u� ba mup�d - a haul ininr. Nw ow add two
wd urn Ga iqmn w Ga m�mn m�t wiGasa adiq mm. Aim 330) p.m�, w alibi. Ga i.mwd ANN. fm lb.

� a dow Gaa Ga added ud�ib Ga iz�uwJ ANN zgm� dim o,�l � . lb .. im - ulmwa i. Fig. 4
lb inaa� e�ln oymm Ga maim at ANN �I* Ga cydmi a.�mg mi witham Ga oydml uu� . lb

- �ll XOB. k u �wu Ga ANN widi o,�l s.w�q ow mgymm� Ga ap�1 pa� m yii*ly (a..

KgJ).
lb Gad �l. da�w, Ga ow ANN be adepeiw w Ga �pm at a�uq pamim. lb aeigiimi ANN 3m Gui.

aim w mpr Ga 30 **� pa. Lear, Ga mmdiv at swim a lemumed w 5w m upuuw Ga 60 Suing pa�m. lb
�m - Mg. 6 �w Ga meg Ga Adep'dw baag 3' veGa Ga. Ga vegiGa inGad �.mm Ga h�
3. Umg Adapiyc Simlegy ii MCDX

h ICDM po)has [ste Cimakoag & aimes, 1983J, ibm ke�a a*u�s jftfvae fumtloa Is m44 to �pise�
ibm Atrium m*w vima timiem my a�su�iws to be roasibmul. Thww, ibm roasbwtiom cC ibm puIu�e (wtia is �Ue

�ak. Ia this stetion, � wili &swi). low to use MW to oMaim tim (wutioa whim mow pattaas am awihik.
Tim basis poreAut a olbimiW ibm geu(mea ftutioi is to Pt a Imliomal ftima�a5hip between ibm &si�4 ow�w

Ta�ia�Wyeetor 1=111.. .Xmjbast4ofttbmo)5�Ptloa4sh((T1,X 1 J, (r�Z�J, ... , (Ip X1)}. Tim esu'a'Iarnls
thsaaease¶4Z-2).

Bwewr, miii ibm tniaiag piteras en be obtainii � ii. same time in ibm uwein oC MCDM Tbmrefose 'em en
s ibm aMatap cC wiaq edapliw st1�ag� a�ar ibm piiuas am imeftastA (P imeftasIs), ibm Mapiiw �rMegy can cope wt� ibm

4. CoacIurna2.�
TbmA�ipiiwbw4ewh�pe4hlbmpapvcaabeus.4 htbmskuioawbmnrnamaot sum lowlo cons*rar ibm

imkislFMWorwbmxw, am (iWtbm cbmagia�pMteas. hbollskaiioas, ibm Maptiw �itefy en pve an effirie� ANN
ft3ftseMM�a ix terms cC uiamu sr�um, cYolliaf rim local minima aM flaiiiq ibm best solvim. Tim svrkiei
o�oa poviki a ibm paper grims a pikilme to Insiga sash an ANN. Tbm iiwbetive maples slew that ibm slapirim

stsvqy algw�lm is Ea�iw on bath ecuptal dogs aM ahtainiaq ibm bm�t solVi�a. Tim an1xstx�a maple in
MCDM �kates that ibm Mqii'im SbUe�y iS me&(in ibm real usaiA problems.

REFERHNCE:
1. Aoki, CMV, 8�keUz, & Philip. P�ei�ip�ua Aak � '�isE�.Aa�rkia. pp.56-64, 1988.
2. Cbmako�,V.& EaimesY.YalrhJAtM 1,3 ai2V rk�7 4 a &�dA.�'f New Ywk 1983.
3. ��p&II, 32. aM Teak, DV., 'Mu W.'a,�viz LViWzii7a a C�z�ket�,z Avikm/, �L

Cuhv.. Vol.52. m.2. ppl4S, July 19�

I - 434

4. IorlawA T.,'A&rxib0Aa AM A~vxib Mha7P, yboir Verbas Y ork. 1984
5. bzsky, u a~pert, B., ew$uz9, (exipuki ed~oz). Cambrile: ZM3T Prtss. 1988
6. Rosuakft, R.,'Azjv#kw 4VJI~.VpLwW9, 14w Yott. 8witn Books. 1959.
7. Rumdlut, D.EAzA MeClati 31., PA%&l rbivaa FA~wm*yAwjaa A 4k Mmvwtw 4W' C~zbaq

8. Vag J. & WA~aooti B. 0* rTa&W1A~tk iIM1J*=1A~vrh; Pv~o~~ of UM1~. ii3V-39, 1989.

L. 0.500Original ANN

0.250Im proved ANN

0.000 *000 000 2000 3000
Numb~er of Presentation

Figure 4. The Results by Adding the Connection to Output Unit

0 C

057-j - REGULAR ANN

ANN WITHi ONE-DErIEN510N 5EARCffMG7-----
(n 0.017100-

NUMBER OF PRESENT0PON
Figure 5. The Results from O'ne-dimension, Searching

0 _ _ --. _Regu1-jr ANN

CD
~innra-----,aot've ANN

0 uuC0 N~ir f reenaton200 300
Fiure6 The Results by Using Adaptive Strategy

1- 435

/r

Multiple Descent Cost Algorithms for Standard Pattern
Self- Organization

Yasuo Matsuyama

Department of Information Science, Ibaraki University,
Hitachi-city, 316 Japan (FAX: 294-37-2223)

Abstract Multiple descent cost algorithm for standard pattern self-organization is pre-
sented. This algorithm contains the author's variable region vector quantization which
already generalizes the plain vector quantization. The multiple descent cost algorithm can
be interpreted as a four-layer machine, where a lot of parallelism exists. Indications to
further logical analysis are given.

I. Introduction A multiple descent cost algorithm is a composition of cost-decreasing
mappings with different characteristics. These mappings cooperate to decrease the com-
mon cost. Therefore, the multiple descent cost algorithm is different from simple cascades
of descent cost mappings. During the decrease of the cost, this algorithm self-organizes
a set of standard patterns. The novel features are variable grouping of source data and
various useful combinations of optimal and suboptimal mappings. Therefore, this paper
extends the author's variable region vector quantization [NIAT87, 88, 89] which already
includes plain vector quantization as a special case. The multiple descent cost algorithm
can be processed in a massively parallel way.
2. Preliminaries Let xi, (i = 0,..., T - 1) be a finite set of vectors. The index i may
stand for discrete time for time-series or scanned lattice of images. Each vector xi is an
M-dimensional tuple in RM. When xi, (i = 0,...,T - 1) is used to design a standard
pattern set, say C, it is called training data. If the data is processed by using the designed
standard pattern set C, then it is called source data.

The data elements xi,(i = 0,...,T - 1) are grouped into supervectors vi,(j =
0,. .. , J - 1). Let the class for vj be G. Denote that class of such grouping patterns
by U. Then, vj(un), (j = 0,..., J - 1) forms a partition. This grouping is done by looking
at a standard pattern set to be self-organized: C[k 0,..., kQ-I] -- I1Q'= q)[kq], where{4)[q =jcl(k]1, (q) "q RKL., Q-

- {(~)k0]. N. c t...[k -1]}, eRqL (q 0 ,... Q -1), q- K,0 "" Q-~k -- 11 ,ER (= 0, --Q- 1) q=0 Kq =I

and EQ=0 kq = M.
The cost function defines similarity of two patterns:

D[ko,...,kqI;;mI = Ej"0 mino<.,<N dg({vj(u.)}•-t, w~lQ-oc,)[k,), {vj(u)}J-')).
O<q<Q

Here, dg(., .) is the cost function for the arguments in the class i. The mapping w : Co x
g .- g warps a standard pattern to match to the form of Vj(iUm). This includes the nearest
neighbor decision for generating the partitions:

.nQ..,(Um) I 1-dg(j(um)}jw(fi c$, {jvj(u,)}.4-'))
q=O

Q-i
•dc(vj(umw)}'- (wI c1 [kj,

q=O

(n o , . . . , n Q -j) :A : (l o . . ,l -) } .

The process of generating this partition is expressed by It = 0 o 6. That is.

-436

rII)[k = { " {An Q,...,nQ_ a(1m)I=0 •

0 is the nearest neighbor decision.
descent cost grouping ¢0 with respect to the standard pattern set q=0)[kq] is

to find u' such that D({xIT-1, r-t _ D({fX4j i}r•Q-t j Anr =0 q=0 rn[~lu• i< cq= [q0 ~).A

important special case is the optimal grouping 0* to obtain u*L which achieves the minimum
cost. Another extremal case is the identity mapping 00. Denote the class of mappings for

grouping by (D. This is a finite set. Let 4) be a subset of -0 which approximates 0*.
A descent cost partial update of the standard pattern set with respect to the p-

th subpattern set CtP)[kp] is to find rlQ= C(q)[Q with D({ {X}IT', HjQ-1 6 q) [Q I u'

Ti- d- q]u) where = kq + 6pq. Denote such a mapping for the update

of the p-th subpattern set by

OP(fl d,)[kql, u') = H C(,)[k'].
q=O q=O

(p : updated}

From A,...n, (urn), we generate a coarser partition:

Bn,(uI) = U A , tu'), (np 0 ,...,Np- 1).
{all except for np}

Using this partition {Bn,(urn)}YIVIo, an important special case to update the standard

pattern set is obtained. That is, 0; is a mapping to find the generalized centroids of

Bn,(urn), (np = 0,..., Np - 1). This gives dP)[kp + 1] = {c'op)[kp + 1],...,cN.-.[kp + 1]}.
Denote the class of mappings for descent cost update of standard patterns by p,, (p =

0,..., Q- 1). Let ýYp be a finite subset of TP, whose elements are used to approximate 0;.

A mapping scheduler selects mappings from (P, {9} and T., (q = 0, ... , Q - 1) so that

the total cost is decreased. This selection may be either sequential or parallel. If the change
of ordering of some part of the schedule does not affect the speed of the cost reduction
nor the grouping pattern, then the scheduling can be executed in parallel with the same
performance.

If the mapping scheduler selects the mappings autonomously without relying on outside
intelligence, the entire algorithm is an unsupervised learning.

3. Multiple Descent Cost Algorithms The following is the basic design algorithm
for the standard pattern set.
[Basic Design Algorithm]
Mapping Scheduler

The mapping scheduler knows the set of mappings (P, T1 q, q E {0,...,Q- 1} and their

finite subsets 4), Tq, q E {0, ... ,Q - 1}. The scheduler has either a fixed or adaptive
mapping selection rule which is predetermined. In the adaptive case, the scheduling may
depend on the cost, its decreasing speed, and the previous pattern set etc. as long as the
independence of the outside intelligence is maintained. The mapping scheduler is settled

to select every member of D and T,, q E {0,.. .,Q - 1} infinitely often. The scheduler
has the following phases:
Initial State

The training set Jxj}T-j a positive constant c and the following initial states are given;

standard pattern set -= Cdq)[0], grouping pattern it0 and the initial value of the cost

O[k0,... , kQ_,,] = D[O... 0,0] = D[old] =oc.

1- 437

The infinity is replaced by a large number in numerical computation.
Mapping Selection for Grouping

The mapping scheduler picks up 0 from 4 or from $\4', and then apply 0 o 4 to
q=O u,)'in order to yield u' Then, go to Stopping Check.

Stopping Check
Ifevery element in 4' and *-q, q E {0,..., Q-1} is selected since the previous Stopping

Check, then let D[newJ = D[ko,..., kQ_,], which is the current cost. Then, compute and
check the inequality

(D[old] - Dfnew])/D~new] <~ e.

If this inequality holds, then exit from the iteration, and adopt both l'q=0 dq)[kq] and Urn

to be the final l1Q-0 q) and u, respectively. If the inequality does not hold, then replace
D(old] by D(newf, and go to Mapping Selector for Standard Pattern Set. If there is still
an unused element in $ or in *-,q q E {0,... Q - 1} since the previous Stopping Check,
then simply go to Mapping Selector for Standard Pattern Set.
Mapping Selector for Standard Pattern Set

A mapping 0q is selected from Tq or from I\4fq, q E {0,... Q - 1} according to the
mapping scheduler's rule. Then, this 'Pq is applied to generate

Q-t Q2-1

Op(1i 61)[kq, u') = 1i C(q)1k'j.
q=O q=O

{p:updated}

The index k' is increased by one to yield k' = kp + 1 whenever bp is applied. Then, go to
Mapping Sefector for Grouping.
This algorithm converges for any e > 0 after a finite number of stopping checks.

In the Basic Design Algorithm, a composition mapping 0 o 4 is always inserted be-
tween subpattern updates of Op and ?Pq so that the descent cost property is maintained.
This is called concurrent subpattern update. Under specific circumstances, consecutive
applications of 0q's still assure the descent cost property. A sufficient condition frequently
met in applications is the blockwise additive cost. There is a further special case to the
concurrent subpattern update:
[Design Algorithm for Concurrent Subpattern Update: Bang-Bang Switching by Cost
Watcher]
Step I

Let {x:}i' be the training set which obeys to the blockwise additive cost and let

m = 0. Let nq']Q= C()[0] and u0 be initial patterns. Let DO[old] = oo and D4[old] <
(1 + 6)DO[new]. Let c > 0, 6 > 0, and let two positive integers J and N be fixed design
parameters.
Step 2

Check to see if
(D•[old] - DO~newj)/DO~newj < 6

holds. If "no", then go to Step 4. If "yes," then update DO[old] - D[new], and apply 0o6"
to (I1Q-o Cql)[k7], ui,) in order to get i", and Dolnew]. Then, update Dý.new]- DO[new],
and go to Step 3.
Step 3

Check to see if
(Dr[olrH] - <

1- 438

off-

holds. If "no," then go to Step 4. If "yes", then exit the loop and adopt (I-T,' C(q)[kq], it')

to be (fI -' dq), u).i

Step 4
Update the cost Djoldj -- Dp[new]. Then, apply I'Q - to (I'l-t C(q)[kq], urn) to

get r'[=0 C(q)[kQ] and Dp[new]. Then, let m := m + Q and go back to Step 2.
For simplicity of the description, we used 0* and 4*, (q = 0,..., Q - 1). If the exact

optimizations 0* and 4', (q = 0,...,Q - 1) are computationally expensive, they are
replaced by approximation sets:
[Design Algorithm for Bang-Bang Switching: Finite Set Approximation for 0* and •b•]

(i) Instead of using 0*, a finite set of descent cost grouping functions 4ý can be found.
Apply every member of 4ý. If necessary, repeat this process until the cost reduction
is saturated.

(ii) Similarly to the above, find a finite set of descent cost pattern update functions
'q, (q = 0,..., Q - 1). Apply every member of 'q, (q = 0,..., Q - 1). If necessary,

repeat that process until the cost reduction is saturated.
The bang-bang switching of finite set approximation is quite effective in raw data

processing. The methods contain a lot of fine-grained data parallelism and coarse-grained
parallelism for the mapping administration.

The self-organized standard pattern sets via above algorithms are used to 'rocess
source data. This uses the basic pattern processing algorithm which is the version f the
design algorithms without the standard pattern update.

4. Applications For applications, image processing is focused here. Time-series can
also be processed by the multiple descent cost algorithms. Figure 1 illustrates the grouping
of pixels. Here, the class Q is a set of convex quadrilaterals. Round bullets are pixels
recovered from the standard pattern set. Alteration of the quadrilateral shapes corresponds
to the warping w. When the multiple descent cost algorithm is applied on images, a
quadrilateral mesh reflecting outlines is obtained. This can be used for further alteration
of facial action [AIZ87]. The importance here is that the mesh pattern is self-organized.

5. Parallelism The multiple descent cost algorithms in this paper can be interpreted
as four-layer networks with parallel computation. "Sequential update" [LUT89] is also
obtained for our multiple descent cost algorithms. We expect neurocomputation to perform
the data processing "From raw data to predicates and action" [MAT88, 89] or "Fast
signal processing and logical analysis" [1OP89]. This is promoted by combination of
"heterogeneous parallelisms." An example is found in [MAT88, 89].

Acknowledgements The author is grateful
to Messrs. H. Nakajima, A. Matsuno of lHi-
tachi Process Computer Engineering, Co. for Xo XI x2
their discussions. Graduate students Messrs. I, I
T. Moon, 1I. Wada and Y. Masuda receives IV i4
thanks for their programming assistance.

References [MAT87] Matsuyama, Y., J. of / - ,
IEICE, Japan, Vol. J70-A, No. 12, pp. 1830- -
1837 (1987): translation; Info. & Comm. Eng.
of Japan, Vol. 71, No. 12, pp. 49-61 (1988).
[MAT88] Neural Networks, Suppl. 1, pp. 36 Vj(lik) :1 I.,,_ : :
U1988). [mAT89] IJCNN89, Vol. II, pp. "
597. [LUT89] Luttrel, S.P., IJCNN89, Vol. XT-1

TI, pp. 495-498. (1989). [11OP89] llopfield, Original image
J., IJCNN89 tutorial note 7 (1989). [A1Z87] Fig. I Quadrilateral mesh patter
GLOBECOM87, pp. 45-19 (1987).

I- 439

Towards reducing the hardware complexity of feature detection-
based models

Bassem Medawar and Andrew Noetzel
Polytechnic University

333 Jay St. Brooklyn, NY 11201

Abstract
A model for feature detection-based pattern recognition is
presented. It attempts to improve on the hardware complexity of
existing models. Traditionally, feature detection has been
implemented with brute force duplication of template-based
feature detectors, offering little scalability. This model
eliminates the need to duplicate complex feature detectors using
instead operators to transform patterns.

1. Introduction
It has been shown [1] that the brain uses feature detection, in
its visual pattern recognition task. Many researches have
attempted to capture the brain's pattern recognizing capability
in abstract models. In their attempts, some have tried to remain
faithful to the biological principles underlying the functioning
and organization of the brain [2]. Others borrowed from the brain
the most important principles and tried to cast them in any model
that could be demonstrated to work [3,4]. The model in this
paper follows the latter approach.

The work done by Fukushima will first be examined, representing
earlier models of its class. A new model, which attempts to
overcome their limitations, will then be described. Finally the
paper will conclude with a description of future improvements to
the model.

2. Earlier work
Models which loosely follow the brain's architecture, have done
so based on the following elementary principles:
a) The neuron (as a threshold element) is the building block of

those models.
b) The neuron's output can be viewed as a boolean corresponding

to on and off activation states, or as a positive (bounded)
real number representing the activation rate of the neuron.

c) The pattern recognizing network is layered.
d) Each layer contains feature detecting cells with increasing

level of conceptual complexity, the higher the layer level.

Many models in the neural network literature applied those
principles. Focus will be centered on Fukushima's model, because
it is the most elaborate and has been shown to work with a
(relatively) large retina of 128x128 pixels [5].

Fukushima's Neocognitron model (3,6] has layers with two levels
each. The lower level is made up of groups of template marchers.
The higher level neurons take their inputs from groups at the
lower level that recognize the same object at different

1 - 440

positions. The net effect is feature detectors tolerant of
displacement and slight distortion.

Fukushima's neocognitron suffers the following problems. First,
hardware is not amiable to large scale implementations: in one
case [6], a simple 19x19 retina, 4 layer network implementation
required over 40 thousand cells, excluding non-responding ones.
Second, each learned template is duplicated in many positions
after being trained in only one position: this is problematic for
hardware implementations as well as being biologically
implausible.

3. The model
This model [fig. 1] is based on the premise that instead of
taking the feature detector to the pattern (multiplying the
number of feature detectors), we bring the pattern to the feature
detector (multiplying the pathways.) As the example of the
neocognitron shows, duplicating complex feature detectors is
costly, in terms of number of cells. What we hope to achieve is
a reduction in the overall number of cells.

The retina is thus divided into several marginally overlapping
receptive fields (RF's) of uniform size. Simple'hard-wired
operators provide a many-to-one mapping from the RF area to the
feature detector. Those opprators are divided intc classes. For
instance, on the lowest layer, the classes are displacement,
scaling, and rotation. On higher layers, the classes include
positional and set operators. Each class has its variations
within each RF, depending on where the operator maps from, and
the degree of the mapping. For example, the displacement class
has variations which corresponds to the direction and the amount
of the displacement.

On the next level, within a layer, feature detectors take their
input from the output of the operators weighed by the optimal
feature pattern. The output of those feature detectors
represents the degree of success with which a particular operator
maps into the optimal feature. From this large pool of feature
detector outputs within a receptive field, the best variation and
degree for each class is selected. Then, the optimum values
across the layer from each RF are combined to choose the best
class of operators. This choice represents the consensus as to
which class of operators best maps into some feature.
The consensus is then fed back to lower levels, allowing each RF
to reset its own image of the retina according to the new
transformation. Notice that while the application of the
operator class is enforced upon the layer, each RF implements the
transformation in a way that generates optimal mapping.
After one class is selected within a layer, the class is then
inhibited allowing another class to win in a second round. The
process is then repeated until a threshold of desirable outcome
is exceeded. The feature with best degree of success, can thus
be said to have been recognized.

I- 440A

ax cass7

SRF2 .mg

Logicf

FfM _2:: f- R

Fe .i t 2•)

S~Feature set

E•3zziH/

s°c""l=•&P-• RF image
Logic

Retina

Figure 1. The model: One layer

Having recognized a feature for each RF on the first layer, the
output of the first layer is fed into the second layer. A
similar process of transformation and recognition is carried out
in the second layer. Finally, on the topmost layer, a feature
detector which conceptually represents an object is selected and
the whole process terminates.

4. The r-,el's weakness
Simulatii g this model necessitated additional hardware that was
not originally envisioned. While its design premise is simple,
the number of cells required to implement it is proportional to

I- 441

the number of RF's, the number of classes, the number of
variations within a class, and the number of features within each
layer.

The model does not lend itself to a nice and simple mathematical
model to support it, and mathematical properties of the model are
not practical to implement. For example, while it is
mathematically sound to say that two features are different if
one can not be generated from the other by applying any sequence
of operators in any order. This property taken to the extreme is
not practical to use in order to incorporate self-organization
into the model. While that the model can be augmented with
learning rules that change the weights on the feature detectors,
it fails to address how a whole new class of operators can be
learned.

The model has been shown in practice to fail under certain
circumstances: the wrong sequence of transformations is applied
leading to either faulty recognition or no recognition at all.
This is a result of the lack of communication between neighboring
RF's.

5. Conclusion and future work
A feature detection-based model was presented that was designed
to address the limitations of previous models. The moeel was
developed from an innovative idea. Although the model achieved
its objective of lesser overall hardware complexity, it had few
limitations of its own.

Currently, work is in progress on a new model. This model
incorporates communication between neighboring RF, coupled with
hill climbing techniques to pick the best transformation to apply
within an RF image. In effect, this will result in a reduction
in the number of pathways as only few transformations will be
implemented at a time.

References
[1] Kuffler S. W., Nicholls J. G., and Martin A. R., From Neuron

to Brain, 2nd Ed. Sinauer Associates Inc. Publishers,
Sunderland, MA, 1984.

[2] Linsker R., Self-Organization in a Perceptual Network. IEEE
Computer, March 1988, pp. 105-117.

[3] Fukushima K., and Miyake S., Neocognitron: A new algorithm
for pattern recognition tolerant of deformations and shifts
in position. Pattern Recognition, Vol. 15, No. 6, pp. 455-
469, 1982.

[4] Widrow B., Adaline and Madaline - 1963. IEEE ist
International Conference on Neural Networks. Vol. 1, pp.
143-157.

[5] Menon M. M., and Heinemann K. G., Classification of patterns
using a self-organizing neural network. Neural Networks,
Vol. 1, pp. 201-215, 1988.

[6] Fukushima K., A neural network for visual pattern
recognition. IEEE Computer, March 1988, pp. 65-74.

"I- 442

PARSIMONY IN NEURAL NETWORKS
William S. Meisel

Speech Systems Incorporated18356 Oxnard Street
Tarzana, California 91356

(818)881-0885

INTRODUCTION
Decision trees and neural nets have been used as a form of piecewise-linear discriminant functions

in pattern recognition [e.g., Breiman et al 1984, Meisel 19721. Decision trees are sometimes assumed
to have an advantage in that they can be executed very efficiently on a sequential computer. Neural
networks are benerally assumed to be designed for highly parallel systems, although currently most are
simulated on sequential processors. Parameter estimation for decision networks tends to be sequential
- one node at a time -- as well, while parameter estimation for neural networks tends to be parallel --
all paiameters estimated simultaneously. Information measures are often used in deriving decision
trees [e.g., Quinlan 1986]; they are beginning to be applied to neural networks [Bishsel and Seitz
1989]. Since decision trees can be formulated as neural nets, neural net criteria and methods can be
applied to decision trees. In this paper, we show that decision trees and fully parallei neural networks
are the extremes of a spectrum of neural networks that differ in a systematic way.

A decision tree can be viewed as a special case of a "parsimonious" neural network, one that can be
evaluated exactly for most cases with the calculation of only a fraction of the neural elements. A highly
parsimonious network usually corresponds to a less-distributed recognition algorithm; in a
parsimonious network, elements tend to "specialize" more, allowing a targeted use of samples, making
possible some efficiencies in parameter estimation. The case for a distributed parallel system is strong
[Rummelhart and McClelland 1986]; but where networks are simulated and where data and/or where
computer time for network derivation are limited, parsimony can be advantageous.

This paper provides an algorithm for fully determining the output of a neural net without evaluating
all of the elements in the net; it is applicable to two-layer neural nets. The average number of first-levcl
neural elements which must be evaluated, expressed as a fraction of the first-level elements present, is
a measure of the parsimony of the network. Parsimonious neural nets have been successfully applied
in a commercial speech recognition system, the Phonetic Engine@, which evaluates neural nets for
phoneme classification in real time on a single microprocessor [Meisel et al 1989].
NETWORK REPRESENTATION

In this note, we consider a two-layer neural network. The input is x = (x1, x2 ..., xx). These
va.riables are inputs to Y neural elements with outputs yl, Y2, YY:

yi = Fi (wex') , (la)

x
where w-x' = wil xl + wi. x, i.e., x' = (Xl,x2,....xX,1). (Ib)

i=I

An example of Fi is

fif x ->pi

Fi(x) = F (x;•ili2) =f (x) if xil< x <- i2 (2)

if
-I •.f X < N•2

where f(x) is monotonically increasing and takes values in [-1, I]. Ideally, f(x) is continuous, f(.ii)
= -1, and f(ki2) = I , making y a continuous function of x. However, f(x) = 1 and O3il = Pi2 = 0 is
the important special case of a "hard-limiter." We assume in this paper only that Fi is chosen so that
lyil -< 1. The region (Pi I, N32) can be viewed as the region of uncertainty. We allow for the possibility

I - 443

that the uncertainty region will be different for different neural elements and not necessarily
symmetrical. The output layer has Z elements with output zi, z2, ... , zz:I I if ai * y c ai Ilaill

0 otherwise (3a)

Y Y
where ai = (ail, ai2. ...,aiy) ,Iaill laiji, ai • y = aij yj (3b)

j=1 j=f

An additional assumption is -1 : ai < 1 (3c)

Equation (3c) does not constrain the generality of the decision function since -Ilaill g ai • y :5 naill,

given that lyil < I.
- PARSIMONIOUS NETS

As ai approaches 1 with fixed aij, there will be fewer values of y which cause zi to be I [Meisel
" 1968]. In fact, if ai =1, zi in equation (3) will be I if and only if yj = I for all j where aij = I and yj =

-I for all j where aij = -1. As a rule of thumb, the closer Min ai is to 1, the more parsimonious the
net.

The output values zi can all be evaluated without necessarily evaluating all the neural elements yj.
The algorithm for doing so is based on observing that the output value for zi may be determined
without calculating all values of yj. Suppose YK is known. Then

K-I Y
Sai • Y5 Y, laijl + aiKyK + 1 laijl =' lK

j =1 j = K+I (4)

since aijyj can get no larger than laijl.
If Ki < a Ilaill, then equation (3) produces zi = 0, irrespective of the values of yl, YK-1, YK+I,

Similarly
K-I Y

ai y >-X laijl + aiKYK - Y laijal a Mi (5)
j =1 j = K+1

If Mi Ž-2 ai 1aill, then zi =1. Thus it may be possible to calculate the full output of a two-layer
neural net, formulated as in (l)-(3), without calculating all the intermediate neural elements yj. It is
convenient to re-write Mi and Ki as follows:

K,= 11aill + aiKYK - aiKl (6)
Mi -laill + aiKYK + laiKi (7)

We apply this idea iteratively, as follows:
Initialization

Initialize Mi(k) and Ki (k):
M(0) =-II aill; i = 1 ... Z (8a)

SKi(0) = 1 aill ; i =1 ... Z (8b)

Initialize sets F(k), T(k), and J(k):
F(O) T(O) = 0 (8c)

J(0) = 1 1,2,...,Y) (8d)

Start wi~h k =1 :wrd increment k by I until stopping rule is met.

For each k,
List :he ,,,;ut nodes not yet fully evaluated:

1- 444

/"

R(k)={ 1,2,...,Z) - T(k-1) - F(k-1) (9)

Find the neural element K not yet calculated which will affect the most zi, that is, set K equal to
the j for which there are the most non-zero values of aij for i e R(k). If more than one j
satisfies this condition, arbitrarily choose the smallest.

Find those output elements with a value now fully determined, the set T for those determined
as 1 and the set F for those determined as 0:

Mi(k)= Mi(k-1) + aiKYK + IajKI , i e R(k) (10)

Ki(k)= Kj(k-l)+ a iKYK-laiKi , ir R(k) (11)

T(k) = T(k-1) u {i I Mi(k) ! atillaill , i r R(k)) (12)

F(k) = F(k-1) u i I Ki(k) < aillaill, i r R(k)) (13)
Update the set of first-level elements not yet evaluated:

J(k) = J(k - 1) - (K (14)

S.tQJpn.grule If F(k) u T(k) = (1, 2, ... , Z), stop. (15)

Result. zi = 0 for i e F(k) ; zi = I for i e T(k) (16)
This algorithm will not always result in evaluation of the minimal number of nodes possible for an

arbitrary network. For example, suppose we have a net as follows: zj = 1 for 2yl + Y3 Ž- 2; z2 = 1
for 2y2 + Y3 2 2. Then, zj is determined entirely by yI; Z2 is determined entirely by Y2. The variable
Y3, being in both equations, would be evaluated first by the algorithm, although it need not be
evaluated at all. This is a pathologic case since the third element could be removed from the network
without any effect, but it shows that the algorithm cannot deal with an arbitrary network optimally.
MEASURING PARSIMONY

Let us assume that N(x) is the minimal number of first-level elements which must be evaluated to
fully determine the output of the network given x. The parsimony of a two-level neural net can be
measured as the expected value of N(x) divided by the number of first-level elements. An example is
given in the next section.
DECISION TREES AS PARSIMONIOUS NETS

Decision trees [e.g., Breiman et al, 1984; Quinlan 1986] are an important special case of neural
networks in general and of parsimonious decision networks in particular. The two-level network of
equations (1), (2) with the hard-limiter case, and (3) corresponds to a decision tree if parameters a; are
chosen properly and if ai=l for all i. Figure 1 illustrates a binary decision tree and its equivalent as a
decision network.

For any given tree structure, an equivalent network is constructed by associating a neural element
with each decision node. That element is connected only to elements which are in the path to the
equivalent terminal node. The weight for each connected element is 1 if the path was taken due to a
"yes" answer, and -1 if taken due to a "no" answer. The threshold of the output element is l1aill.

Then, if a given terminal node is reached by the path requiring that decision nodes 1, 2, and 3 are true
and nodes 4 and 5 are false, that terminal node is represented by an output element:

Z I ify 1 + y2 + y3- y4 - y5_>5
0 otherwise

By the nature of this construction, only one zi will be I at a time, corresponding exactly to the terminal
node of the equivalent tree. For networks to be equivalent to decision trees, it is fully general toconstrain aii to the values 1, 0, and -1.

In figure 1, if the question-, in decision node 1 (with weights Wl) is answered "no," then the
equation for decision node 3 is never calculated. Similarly, if the algorithm of (8)-(16) is applied to the
equivalent network for the same x, network element 3 will not be computed. More generally, in a
symmetrical binary decisicn tree with 2n terminal nodes (n-l levels), only n decision nodes out of 2n -
I decision nodes are evaluated to m-ke a decision. Thus, in a nine-level tree, only 9.8% of the nodes

I- 445

are evaluated. (Since in this case N(x) = n for all x, the parsimony is 9.8%.) If the equivalent
network were evaluated fully, over 90% of the work would be redundant.

A classical decision tree making firm decisions can be most effectively calculated in the usual way;
equations (8)-(16) add nothing to this case. The major relevance of this special case is the clear
example it provides of the efficiencies possible.
FUZZY DECISION TREES

Decision trees can be allowed to make fuzzy rather than firm decisions at each node, (i.e., to use a
non-zero uncertainty interval rather than a hard limiter); the interval (Pil,pi2) for node i can be
considered an uncertainty interval. We can use the algorithm: If for a sample x, yi = 1, evaluate the
right descendant node only; if yi = -1, evaluate the left descendant node only; otherwise, evaluate
both descendant nodes.

Decision trees are generally constructed node by node from the root node. When this is the case,
we should avoid evaluating paths through the tree that are "ruled out" by an earlier node with a zero
score for the path; ruled-out nodes will not have been estimated with appropriate samples. In general,
it is possible for the algorithm (8)-(16) to choose a ruled-out path for a fuzzy tree. This problem can
be avoided as follows: If yj = 0, then ai'y can get no larger than llaill -laijl. If we choose

Naili- Min lai)l
ai > ii il" 30 (18)

then no "ruled out" paths will be chosen. If aije (-1,0,11, then of course Min laijI over non-zero aij is
1. Equation (18) is fully determined by the structure chosen for the second level of the net. In using
neural net techniques to get decision tree parameters, the aij can be chosen to be a particular structure
and held fixed while the wi are optimized.

REFERENCES
Bichsel, M. and Seitz, P. (1989). Minimum class entropy: A

maximum information approach to layered networks, (D
Neural Networks. Vol. 2, pp. 133-141.

Breiman, L.. Friedman, J. H., Olshen, R. A., and Stone, 7 . 1 0 ,,.,. (
C. J. (1984). Classification and Regression Trees.
Belmont, CA: Wadsworth International Group. a • . -

Meisel, W.S. (1968). Variable-Threshold Threshold
Elements, IEEE Trans. on Computers, Vol. C-17.
No.7, pp. 656-667. (a) A .ow wi.blow u=• ,m.

Meisel, W.S. (1972). Pieccwise Linear Discriminant
Functions, Chapter 7 of Computer-Oriented
Approaches to Pattern Recognition, Academic Press:
New York. 37

Meisel, W.S., Fortunato, M.P., and Michalek, W.D. (D (' ott.o
(1989). A Phonetically- based Speech Recognition ' [[. 1•o
System, Speech Technology, Apr/?ay 1989. pp. 44- 1W
48.

Quinlan, J. R. (1986). Induction of decision trees, I
Machine Intelligence. Vol.1, pp.81-106.I "so *t [-- 10 "bf"=

Rummelhart, D.E., and McClelland, J.L. (1986). Parallel
Distributed Processing, Vol. I & 2. MIT Press: a1 "1o ,{Cambridge, Mass. 1 y ,21

Iz'm a r .*, d, c~| .ho :oy or ou'•wlh I La'n ..,iy.)

Figure 1: A decision tree and an equivalent network.

1- 446

AN OPTIMAL SELF-ORGANIZING PATTERN CLASSIFIER
A. MEKKAOUI, P. JESPERS

Microelectronics Laboratory
Place du Levent 3, B-1348 L.L.N. BELGIUM

1. INTRODUCTION*

Most applications of neural networks are classification problems in which an analog or binary input pattern
should be assigned to one of m possible classes. Unfortunately for most of these classifiers it is very difficult to
tailor their behavior when performing in a noisy non-controlled environment. It is also very difficult (if not
impossible) to provide a rejection mechanism, which poses serious problems in real-world pattern recognition
applications where it is preferable to reject totally unknown patterns rather than accepting poor matches.

This paper reports on the design of an optimal parallel pattern classifier whose ability to reject noise is
controlled externally and in which a rejection mechanism is provided. The term optimal is used in the sense that
classification is based on the maximum normalized correlation criterion, which is the same as the minimum
Euclidean distance one for normalized inputs. A method to improve the system sensibility to noise is also

The work described herein is a part of a more global project dealing with the silicon implementation of a neural
net based pattern recognition system. This explains out approach to solve certain problems at the implementation
level rather than at the "equation level".

Throughout the paper N2(x) denotes the euclidean norm of vector x, bold characters indicate vectors and
matrices. Note that the indices I,2,...j,...,m used to denote the output cells do not necessarily reflect their physical
positions. i.e., output cell j codes class j patterns but is not necessarily located at the jth physical position.

Because the proposed network is highly inspired from the ART architectures developed by Carpenter and
Grossberg [(],121 a brief introduction to the principle lying behind, is first presented in section 2.

2. ART SYSTEMS:

Figure 1. shows a block diagram of a typical ART system. The net accepts an n-input pattern and classifies it in
one of the m possible classes. It should have developed during the learning process, in a form of weights, codes for
the m classes. Each code can be considered as a representative prototype (a kind of mean) of a set of patterns
forming a cluster.

Suppose that after a certain time the system has learned k patterns and sees a new stimulus at its inputs. Ideally
we want the system to behave as follows: if the new input belongs to some already learned cluster the net must
recognize it and adapt its weights accordingly, to take into consideration this new observation. If the present pattern
is completely different from all the stored exemplars, a new code must be created for it. The weights are, then
adapted to consider this input as the center of a new cluster. In the ART nets this is done by the following
mechanism:
The input pattern L presented to a first layer where some computation takes place. The result of this computation
is send via a bottom-up pathway to the second (output) layer where cell j computes its activation by:

n
aj= Ypibij (1)

i=-1

Where PI .Pi.....Pn are the outputs of the input block, and blj,....bkj bnj are the bottom-up weights to the
output cell j. Its output is evaluated by:

oj-d if aj>ak , Vk~j (2)
=0 else.

Where d is some maximum value. This a winner-take-all system. Only the node with the greatest activation
becomes maximally active and all the other are shut-off. The fact the jth output cell wins the competition can be
interpreted as a hypothesis making that the actual input belongs to the jth class. Once the competition is complete
top-down signals reaches the first layer where they interact with the input signals to provide the reset system with a
meaningful information to enable it to confirm or disconfirm the choice made. If the mismatch between the
bottom-up pattern and the top-down one exceeds a certain threshold value, depending on the vigilance parameter, the
reset sub-system sends an inhibiting signal to the second layer vi get the winning cell out of competition, so that a

I - 447

new cell would become active. The search of a good choice continues in the same manner. Whenever the reset sub-
system confirms a choice, the search procedure stops and the weights are updated accordingly. The system is said to
be in a resonant state (hence the name ART). A cell whose weights hold a learned pattern is said to be a coded cell.
When the system uses up all previously coded cells without achieving resonance a new previously uncoded cell is
chosen and no search is engaged. For a thorough description of ART systems the reader is referred to (I] and [2].

In the next section a description of the proposed system is presented.

3. A SELF-ORGAN!ZING PATTERN CLASSIFIER:

Though inspired from the ART system, it is, in fact, totally different and much more simpler. The model
consists of three sub-systems (layers): the input layer is composed of n cells each of which receives a component of
the n dimensional real valued input vector (pattern). The output layer has m output lines, each one represents a
given category (class) of patterns. In normal operation onl:" one output line is active(ON). The jth cell is active
only when the pattern present in the input layer belongs to the jth class. The reset sub-system plays the role of a
watching agent. It sends an alarming signal whenever the wrong output cell becomes active. In figure 2 a complete
3-input 2-output network is depicted for illustration purposes.

The input layer has the sole role of normalizing the inputs and clipping noise spikes by passing the normalized
components through a nonlinear function. Let ii be the input to cell i and Pi its output. Pi is related to ii by:

Pi =Ft• (3)

Where i=(il ...ii,..in) and F is a nonlinearity expressed as:

F(x) = x if x_<9 (4)
= 0 if x>O

At the output layer each unit evaluates its activity by equation (1). The unit with maximum activation represents
the class to which the actual input is likely to belong. The output of the cells in this layer is oetermined by a
competitive process. See equation (2). The reset layer receives this information and conmpare (in some suitable
metric) the input pattern with the pattern held by the winning output cell. A reset signal is issued whenever this
comparison is negative, i.e, The difference between the input pattern and the storr - rode exceeds a certain threshold,
depending on the value of the vigilance parameter, p. p is comprised between 0 - - , 1. The closer it is to I the more
vigilant is the system; conversely when it closer to 0 poor matches can be accepted without issuing a reset signal.

For the model we propose here, the reset signal is issued only in the case where the present stimulus is seen for
the first time and no good match is found. This mean that any previously learned pattern will access its code
directly without any search. This is due to input normalization and appropriate le.aing equations, as explained
below.

Bottom-up weights (bij's) are updated, in case where the p input belongs to the jth class, according to:

bij=(1-a)bij + api (5)

With 0<<a< 1. Equation (5) indicates that the weights to the jth output cell tend to replicate the patterns of class j.
The parameter a indicates how much past experience is to be taken into account in updating weights. If it is closer
to 0 more importance is given to experience, on the other hand when it is close to 1 more emphasis is put on the
present observation.

When a pattern of class j is present at the input, the inequality:

n n
aJ=iYpibi j > ak= Fpibik (6)

1=1 i=l

is always verified for any k, kth cell being already coded, because the set bij holds class j patterns and is maximally
correlated only with those patterns by virtue of the normalized correlation. But we are not guaranteed that:

n n
aj= Xpibij> au= Xpibiu (7)

i=l i=l

1- 448

where the biu's represent the weights to any uncoded output cell which still maintain their initial values and hold
no pattern. The inequality can be assured by imposing proper initial values for the bottom-up weights. This can be
achieved by setting them as indicated by (8):

1
bik < -L i=-,....n and k=l,...,m (8)

n being the dimensionality of the input pattern as usual. Equation (8) guarantees that N2(bu)<l which in turn
makes (6) valid for coded and uncoded cells. bu=(bl u,...biu,..bnu).

The top-down weights tij serve for a comaparison purpose and are local to the reset sub-system. All dj's are
initialized to 0 and are updated, whenever a choice is confirmed, according to equation (5).

In order to assure that no reset occur when a cell is selected for a first time to code a new class, a test is provided
at the implementation level to see if the corresponding tij's were ever updated. This is accomplished by having a
flag register, fj, associated with each set of tij's: an "ON" fj indicates that the tif's were updated at least once. A
rejection case occurs when all the fj's are ON along with the reset signal. (This scheme is not shown in fig. 2.)

4. A VARIABLE VIGILANCE CLASSIFIER!

A serious limitation of most neural classifiers is their sensibility to noise, specially in cases where the
difference between the closest prototypes is less than the noise it is wished to reject [31. If this level is low the
system confuses between the closest, but different, patterns. On the other hand if it is high the net tends to consider
as different two noisy versions of the same pattern.

We propose here a method to cope with this difficulty. We assume that the system would operate in two phases:
a leaming phase and a normal phase. It is also assumed that we dispose of a set of sample prototypes.
In the learning phase the vigilance parameter is set so high that different codes are generated for the closest
prototypes. At the limit one can set this parameter to the maximum. Then the prototypes are presented to the net
which would generate a code for each prototype. No more than one pass is required for the learning phase. During
the normal mode the net is used as a classifier where the vigilance parameter is set to achieve any desired level of
noise tolerance. Entering the normal mode, plasticity (adaptativity) is not shut-off. The weights bij and tij are
updated after each recognition of a jth class pattern. This enables the system to keep pace with its environment.

In the jargon of "neural" associative memories the system just described looks like a memory with m fixed
points. Each one having a basin of auraction whose size can be controlled at will.

S. CONCLUSION!

We have proposed an unsupervised (self-organizing) artificial neural network whose function is to optimally
classify binary and analog valued patterns.

When successfully implemented as an analog integrated circuit(s) this system would be well suited for real time
pattern classification and vector quantization applications.

REFERENCES-

[1]G. Carpenter, S. Grossberg. "A Massively Parallel Architecture for Self-Organizing Neural Pattern recognition
Machine". Computer Vision Graphics and Image Processing, vol. 37, 1987, pp. 54-115.
[21G. Carpenter, S.Grossberg, "ART2: Self-Organization of Stable Category Recognition Codes for Analog Input
Patterns", Applied Optics, Dec. I, 1987, pp. 4919-4930.
[3]R. Lipmann. "An introduction to computing with neural nets", IEEE ASSP Magazine, April 1987, pp 4-22.

I- 449

Reset signal
OUTPUT BLOCKJ

RESET o-owBotmu
BLOCK weights iwights

INPUT BLOCKJ

INPUT

Fig. 1. A block diagram of a typical ART system

02 01012
t2 1:t22 t23 tIl t12 t13 Maximum circuit

ol al 02
Inhibit Inhibit a2

Crteio p2cuato p3R iglnESETmlto

parameter)#

I n p u ts
Fig. 2. A 3 input 2 output network for pattern classification
Generalization to n inputs m outputs should be obvous.

y
An Wdustable analog multiplying coefficient.y-wx. In case where x ts not shown it Is C . A switch. A Is connected to 8 only if C is active (ON)

assumed to be unity.
A

J- 450

"/!

Probability-based Neural Networks

John H. Murphy

Westinghouse Science & Technology Center
1310 Beulah Road

Pittsburgh, PA 15235

Abstract

This paper introduces a new class of neural networks based on the integration of three technologies:
artificial intelligence, neural networks and probability theory. This approach has realized the Adaptive Probabilistic
Reasoning System (APRS) - a probability-based neural network for adaptive knowledge processing. This approach
combines probability theory and optimization methods and forms the theoretical foundation for unifying expert
system and neural network technologies. APRS is based on the Probabilistic Reasoning System (PRS PRS is a
mathematical formulation of an inference engine for expert systems. Because of its structure, the knowledge can be
located and interpreted in the resultant probability-based neural networks.

1. Introduction

To meet the military's need for a high-speed, mathematically-sound reasoning engine that could be applied
to both expert systems and neural networks, we developed a new class of processing elements which explicitly
process integers instead of floating point numbers. These processing elements were specifically developed for use in
the PRS to produce expert system inference engines which can be verified and validated. Accordingly, these
processing elements work with probabilities. To exploit this technology, the probabilities are converted into
integers by scaling and truncating. The resulting processing elements can operate at very high speeds.

The probability-based neural network: is rigorously based on classical probability theory; propagates
probabilities rather than unstructured real numbers; possesses an inference engine which can be both validated and
verified; has columns of binary decision trees instead of layers of processing elements; maintains its knowledge in a
localized and interpretable (nonholistic) form; uses high speed algorithms.

Our interest in parallel computer architectures is focused on solving high-speed decision analysis problems.
To accomplish this task, the architecture must be able to handle a mixture of parallel and serial processing.
Conventional von Neumann-type serial processing computers are based on an instruction-flow architecture. PRS
utilizes a data-flow architecture which is ideal for a parallel processing system. This multiprocessor architecture
accommodates serial processing by reusing available computational resources.

The PRS decision processing element performs arithmetic on probabilities. When used in this manner, the
inputs and outputs are constrained to lie in the closed interval from zero to one. The simplest form of this device
multiplies a pair of linearly transformed input signals.

The current focus is on developing and applying computer systems which adapt to their environment.
Westinghouse's program has concentrated on adaptive knowledge processing systems. An adaptive knowledge
processing system interfaces with its environment - receives information from it, and transmits information to it.
The system contains within itself a body of knowledge - "the knowledge base." Knowledge is represented as a set
of "IF...THEN" production rules. These rules govern how information from the environment is to be processed -
what conclusions are to be drawn from it, what actions are to be taken. An expert system performing deductive
reasoning is a simple knowledge processing system. An adaptive knowledge processing system must also do
inductive reasoning. Specifically, it must use the information from the environment to refine and modify its
knowledge base. It must continuously modify its set of rules to improve its performance and better conform to its
changing environment. An adaptive knowledge processing system learns.

There are two distinct kinds of structures for processing knowledge - expert systems and neural networks.
An expert system uses a knowledge based approach to solving problems. Its knowledge is basically static. It works
either to determine the consequences of given input conditions, or it works to determine what input conditions are
required to produce a specified output. Thus, an expert system is strictly deterministic - its function is strictly
deductive. The knowledge base of an expert system is constructed by the very slow and expensive process of
knowledge engineering. 1.2 In contrast, a neural network solves decision analysis problems in an entirely different
manner. It begins with a large network of massively interconnected processing elements. The processing elements
are very simple. Knowledge is imbedded into the network by adjusting the weights applied to the signals between

1- 451

pairs of processing elements. This knowledge is basically dynamic.
There is one characteristic of conventional neural networks that is undesirable - their solutions are

inherently holistic. In conventional neural networks the knowledge is not localized, as it is in expert systems, but
generally dispersed thrughout the network. Holistic or gestalt knowledge is not reducible, in any obvious way, to a
simple set of production rules. Dispersion of the knowledge makes functional interpretation, verification, and
validation very difficult. This means that conventional neural networks are not readily translated into expert system
structures. This makes them unsatisfactory for most practical applications.

A dilemma exists. Expert systems and neural networks are two apparently incompatible structures for
knowledge processing. They each offer a partial solution to the problem of constructing a truly adaptive knowledge
processing system, but only a partial solution. On the one hand, expert systems are comprehensible but hard to
train; and neural networks can be trained but are hard to comprehend. Can this dilemma be resolved? Can the two
structures be combined into an integrated system which can be both trained and interpreted?

An adaptable system is needed which reveals its internal operations. If the following scenario were feasible,
we would have such a system: first, train a neural network to derive its holistic solution; second, convert the holistic
solution into a set of production rules for a knowledge base; and third, use this knowledge base to implement an
expert system. Unfortunately, the above scenario is unfeasible because the conversion step - going from a holistic
solution to a set of interpretable production rules - is particularly onerous and difficult to execute.

2. The Probability-based Neural Network Paradigm

The goal is to develop an adaptive knowledge processing system which is logically consistent and does not
require close supervision by a perceptive individual. This implies that the central feature of such a system must be
an inference engine which handles probabilities. PRS is the ideal candidate; it is an entirely consistent realization of
an expert system inference engine which ran be verified and validated. It is mathematically consistent, it exhibits
rigorous logical performance, and it will not exhibit spurious, unanticipated or untrustworthy behavior.

The development of PRS was motivated by the need to realize real-time control systems - a task for which
state-of-the-art expert systems were unsuited. Those systems lacked a calculus for carrying out "uncertainty"
propagai.on that was based on sound mathematical principles. They use ad hoc propositions that are arbitrary and
inconsistent. PRS is based on probabilities - a major departure from the principles of artificial intelligence.

In creating the PRS, we had to overcome the problem generated by interdependence among the variables.
This problem is handled in conventional expert systems by resorting to strong and unrealistic assumptions. In the
PRS, these assumptions are avoided by using a new, explicit and precise measure of independence - the 1-factor

I(A, BIC) P{AIBC} CP1 A I C (1

where P is a conditional probability measure and A, B, and C are events; - and its counterpart the K-factor
K(A, B, C) - I(A. B IC) (2)

I(A, B)
which is a symmetric function of its arguments.

In PRS, there are two crucial formulas for manipulating probabilities - one for sequential updating

P{H E'} =(I(H, E'I E).P{H I E} - I(H, E' I E)PH I E) P{EIE'}+I(H,EiE)PHI E) (3)

and one for paraLlel updating

P[H I E'F'} = K(H, E', F') P(H (E'}P{HIF} (4)P{H}(4"

where H, E, E', F, and F' are e.ents. These formulas are general forms of the inference formulas used in

PROSPECTOR, a classic expert system?
The processing elements assume constant conditional probabilities and are woven into a network as

follows. Start by considering a rule-based expert system to be a collection of decision trees. Each of the decision
trees is composed of a collection of processing elements which carry out the sequential and parallel updating on the
measuresof belief.

Recall that in implementing any expert system, one must face the problem of the knowledge acquisition
bottleneck. Currently, the programming of knowledge into expert systems is performed manually at a great cost.
To accomplish our goal, automatic knowledge acquisition was identified as an potentially low cost alternative.

A wide variety of possibilities were considered for automating knowledge acquisition within expert system
technology. Among the numerous techniques for inductive reasoning considered were: various stati.tical techniques,

1- 452 1

such as CART (classification and regression tree analysis); 3 artificial intelligence techniques like the ID3 and C4
algorithms of Quinlan; 5 and neural network techniques. We concluded that the neural network technology might be
useful because such networks could be made compatible with expert system technology.

Our development brings together two technologies - expert systems and neural networks. The expert
system d-sign is used as the basis for the neural network. We then train the network. When trained, all the
interconnections are probabilistic IMPLIES and hence expressible as production rules. The result is a system which
completely bypasses the knowledge acquisition bottleneck and, at the same time, avoids a holistic solution. The
new network is easily trained - like most neural networks; and is based on production rules - like most expert
systems. Since the product performed by the probabilistic AND is inherently nonlinear, any of a number of
optimization techniques might suffice as learning algorithms.

Once the neural network is trained, we reap the benefits of the foresight in starting with an expert system
skeleton - the trained network is c the same time a working expert system. We can extract a set of production
rules from this probability-based n,',ral network, and we can interpret these production rules. This capacity for
interpretation is an inherent property of expert systems and hence of any probability-based neural network.

For a typical neural network, there are three classes of algorithms to discuss:
* linkage algorithms - these algorithms determine the strength of the connection between

processing elements.
* processing element algorithms - these algorithms tell how to combine information from two

or more linkages.
* learning algorithms - these algorithms provide the network with the ability to adapt to

changes in the environment.
In this paper, we examine the linkage and processing element algorithms of a new class of neural networks - the
probability-based neural network.

The linkage algorithm determines the strength of the connection between the processing elements.
Conventional neural netwcrks perform a simple weighting of the signals on the linkages. Probability-based neural
networks perform a more complex function - the implication transformation found in expert systems.

In conventional neural networks, the linkage algorithm determines the linkage output signal y by
multiplying the linkage input signal x by a weight A.

y- A x (5)
The linkage weight A can be either positive or negative depending on whether the connection between the
processing elements is excitatory or inhibitory, respectively. This algorithm allows one to reason with weighted
information - a classical method of decision making.

Probability-based neural networks utilize a simple implication function or linear transformation. The
algorithm for simple implications determines the linkage output signal y by multiplying the linkage input signal
x by a weight A and adding an offset B.

y = A.x + B (6)
The linkage offset is necessary to work with probabilities as implied by equation (3). Without it, B - 0, this
algorithm reduces to the conventional neural network algorithm, equation (5).

The processing element algorithm describes the method of combining signals from two or more linkages.
Conventional neural networks perform a threshold or sigmoid function on the sum of the incoming signals. In the
probability-based neural network, a product is performed.

Early neural nets, such as Perceptron 6 and MADALINE, 7 determined the output signal 0 by summing the
incoming signals yi and performing a unit step function U if this sum is above a threshold value e.

0 - U(Zyi - 9) (7)

Later neural nets, such as backpropagation, and the Boltzmann and Cauchy machines, 8 use the differentiable sigmoid
function because it allows them to use classical optimization techniques for learning. The output signal 0 is
obtained by applying a sigmoid function to the incoming signals Yi.

0 = { I-e -(IYi-E)/T}- (8)
where the threshold value is 9 and the normalization factor is T.

The probability-based neural networks use a processing element algorithm which determines the output
signal 0 by multiplying together the incoming signals Yi as implied by equation (4).

0 = fl Yi (9)
This is ideal - it is nonlinear; it is simple to compute; it is differentiable. The introduction of the linear offset in
determining the interconnection strength allows one to validate and verify its performance. This approach to
building a neural network is remotely related to the classic sigma-pi units in that multiplication is utilized. 8

I- 453

/

Figure 1 - Adaptive Probabilistic Reasoning System Paradigm

Linkage Processing Output
Algorithms Element Information

Algorithm

Trinn Trnnofmamaion

P2 Lein;..'..."1 •.___•

n T g Th aransformation .

R Contxlpersyien

In summary, the probibased nraled netrk stwork, APRS, integrates neural network and expert system
technologies. It is a new approach to neural networks which can be validated and verified and used for decision
making in autonomous operations. It is therefore a ideal candidate for potential military applications. Its paradigm

is simple as illustrated in Figure 1. Its attributes include:
"" The linkage algorithm is a linear trans formation.
"" I e processing element algorithm is a product function.
"" The probability-based neural network is nonholistic, since this network has an expert system

architecture - i.e. made up of collections of binary decision trees.
"" The probabli ty- based neural network has a knowledge base, since it is fundamentally based on

the Probabilistic Reasoning System P an expert system.
"" The probability-based neural network stores knowledge as symbolic rules which allows a

Wrained network to be interpreted and understood, and thereby verified and validate(

4. References

1. E. A. Feigenbaum, "The art of artificial intelligence: themes and case studies in knowledge engineering,"
Proceedings pl5--83, 1158-1169 (1977).
2. E. A. Feigenbaum, "Expert systems in the 1980s," in State of the art report on machine intelligenceA,a Bond,
ed. Pergamon- nfotech,Maiden head(981).
3. Richard 0. Duda, Peter E. Hart, Nils J. Nilsson, "Subjective Bayesian methods for rule-based inference systems,"

Proc. of 1976 National Computer Conf. AFIPS, o e075-1082 (1976).
4. Leo Breiman, Jerome H. Friedinan, Richard A. O1shen and Charles 1. Stone,Classification and Regression Trees,

Wadsworth International Group, Belmont CA (1984).
5. 1. R. Quinlan, "Inductive knowledge acquisition: a case study," in Applications of Expert Systems J.R.
Quinlan, ed. pp157-73. Addison-Wesley, NY (1987).
6. Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan '
Books, Washington D.C. (1962). /
7. B. Widrow and F. W. Smith, "Pattern Recognizing Control Systems," Computer Information Sciences (COINS)/
Symposium (1963).

8. D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing. Explorations in the Microstructure of
Cognition Volume. 1: Foundations, MIT Press, Cambridge, MA (1986).

1.

I- 454

Fault-Tolerance of Optimization Networks:

Treating Faults as Additional Constraints*

Peter W. Protzel and Michael K. Arras

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665

Abstract Although it is widely accepted that artificial as well as biological neural nctwo,'cs exhibit a certain
degree of fault-tolerance, the underlying mechanism and the relation between the fault-tolerancz and the functional
characte.'istics are still poorly understood. This paper investigates this relationship by lookirt., -t two examples of
netwoxs that solve optimization problems, the Assignment Problem and the Traveling Salesman Problem. While
the principal structure of both networks is very similar, :he difference of the performed tasks and the -edundancy
of the problem representation in one case leads to distinctive fault-tolerance characteristics. The reasons ;or the
performance degradation in the presence of faults are discussed, and numerical results for large-scale fault-injection
experiments are presented. It can be shown that the simulated faults act like additional constraint.i for the problem,
but do not impair the network dynamics in converging to the best solution possible under these constraints

1. Fault-Tolerance and Problem Representation
Fault-Tolerance is a qualitative, general term defined as the ability of a system to perform its function according

to the specification in spite of the presence of faults in its subsystems. This definition is very unspecific and a
system that is said to be fault-tolerant does not necessarily tolerate any number of faults of any kind in any of its
subsystems. A specific way to quantify fault-tolerance is to determine the performance degradation in the presence
of certain faults in certain subsystems, given that some measure of performance exists. In this paper. we compare
the performance degradation for two examples of Artificial Neural Networks (ANNs) that 'solve' optimization
problems, the Assignment Problem (AP) and the Traveling Salesman Problem (TSP). The main characteristics of
both model problems are briefly summarized below. Our goal is to understand qualitatively how a certain fault
affects the dynamics and the 'result' of the network, and to assess the performance degradation quantitatively in
a statisticaily relevant manner.

The TSP is to find a closed tour of minimal tour length for a certain number of cities n. The distance between
any pair of cities is given as input data. We use a modification of Hopfield's and Tank's (H&T's) [2] original
solution method (Brandt et al., 1988 [1]) that produces consistently valid tours, which is seen as a prerequisite for
a fault-tolerance evaluation. For a problem with n cities to be represented by the ANN, n2 'neurons' or units are
arranged in form of a quadratic matrix with the output of a unit Vxi representing the 'hypothesis' that city X is in
position i of the tour [2]. A solution represents a valid tour if the ANN converges to a permutation matrix with only
one unit Vxi.I in each row and column. This problem representation is redundant in the sense that the same tour
can be mapped orto the network in 2n different ways because the starting point and the direction are free variables.

The Assignment Problem (AP) or list matching problem is to find the one-to-one assignment or match between
the elements of two lists that has minimal cost given the cost for each individual pairing [I]. The problem is again
represented by an ANN with n2 units in matrix-form with the only difference to the TSP that the output of a unit
Vxi now represents the hypothesis that element X of the first list should be assigned to element i of the second
list. To produce a valid solution with an one-to-one match the ANN again has to converge to a permutation matrix.
Thus, with identical constraints, the only difference between the two ANNs is a quadratic cost function for the
TSP mapping onto ad6itional interconnections versus a linear cost function for the AP mapping onto the external

"This rcscarch *as supportc' by the National Aeronautics ind Space Administration under NASA Contract No. NASI-19605 I
,4hilc the authors werc in residcncc at ICASE.

- 455 Q

a) no faults b) 1 stuck-at-" 1" c) 2 stuck-at-" I"

68 68 93 38 52 6868 93 38 52 @ 6868 93 38 52©@

4 6 53 67038 4(3 53 67 1 38 J6 53 67 1 38

® 42 68 59 93 84 Q42 68 59 93 84 7 68 59 93 84
532(a 65 42 70 91 53 10 65 4270]91 53 10 65 42 091

76 260 73 33 63 76 26 Q 73 33 63 76 26 0 73 33 63
75 99 37 @ 98 72 75 99 37 @ 98 72 75 99 37 @ 98 72

Figure 1. Cost matrix for an exemplary Assignment Problem with 6 elements and different solutions
of an ANN (circled elements) solving that problem: global optimum (a) and performance
degradation (b, c) after injection of stuck-at-"I" faults (shaded squares). Note that (b, c)
are still optimal solutions under the constraints imposed by the faults.

current. Additionally, the problem representation for the AP is not redundant, that is, a particular solution has a
unique network representation.

Two different types of faults are used in our simulations that correspond to the highest failure rates of a hardware
implementation: a stuck-at-"O" or stuck-at-")" fault occurs when the output of a unit (operational amplifier) is
permanently pulled to the ground potential or the highest potential, respectively. The fault-locations were randomly
selected with one important exception: Two simultaneous faults in the same row or column are prohibited. This is
because two stuck-at-"l" faults in the same row or column would preclude a valid solution. Figure 1 illustrates the
behavior of an ANN solving a simple AP with 6 elements. The values shown in the quadratic matrix represent the
cost-matrix and the circled numbers correspond to the solution of the ANN, which is the global optimum in Figure
Ia. In Figure lb one stuck-at-"l" fault is 'injected' at the position marked with the shaded square, and this fault
determines that particular assignment of cost 70 to be part of the overall solution. It can be seen that the network
still converges to a valid solution with a performance degradation corresponding to the higher, overall cost of the
solution. Figure Ic shows a similar behavior of the ANN after injecting two stuck-at-"l" faults.

Interestingly, by analyzing the solutions in Figure lb and c we found that the network still converged to the best
solution possible under the constraints imposed by the faults. Thus, the injected faults act as additional constraints
and do not affect the 'ability' of the network to find the (redefined) global optimum. Stuck-at-"0" faults preclude
a particular solution and have no effect at all on the AP unless the fault location coincides with an active unit that
is part of the solution. In that case we could observe the same phenomenon, that is, the network treats the fault as
an additional constraint and converges to the 'next-best' solution.

An ANN solving the TSP shows a similar performance degradation under the presence of faults, but there
are two important differences. First, the redundant problem representation reduces the effect of a fault, because a
single stuck-at-"l" in position (X,i), for example, determines only that city X has tr end up in position i of the
tour, which does not yet limit the solution space. Only when two stuck-at-"I" faults appear in adjacent columns
(e.g. in positions (X,i) and (Y,i+l)), then this determines a link between city X and Y and acts as a new constraint
for the remaining tour. The other difference is that the fault-free performance of an ANN solving the TSP is lower
and usually suboptimal. Thus, we have seen cases where two stuck-at-"l" faults in adjacent columns determine
to include a link between two cities into the tour that was part of the optimal solution not found by the fault-free
network. This actually means that a performance increase after fault-injection is possible under certain conditions.

2. Large-Scale Fault-Injection Experiments
One problem in assessing the performance of optimization networks is the considerable performance variation

for different problem instances and sizes, and, for the TSP, also the dependency on the random initialization. In
order to obtain statistically relevant results it is necessary to simulate a sufficient number of different problem
instances for different sizes and different random initializations. Another problem is the lack of an appropriate
performance measure that is independent of a particular problem and of the problem size, and relates the solution
of the ANN to reference values of interest. Therefore, we defined a solution quality q as a performance measure
that relates an ANN-solution of cost c for a particular problem instance to the average cost value c,,, of a sufficient
number of random trials and to the optimal value copt such that q=(c,,e- c)/(c,,.- cpt) [41. Thus, q is a normalized

1- 456

a) Problem Size n=10 Cities or Elements

1.0 . A A a ,

o0.6 " -: .

.2 0.4 TSP: * AP: a -. -.

o 0.2 - stuck-at-"O" faults -

stuck-at-"1" faults --

0.0 1 1 1 1
0 1 2 3 4 5 6 7

No. of Injected Faults

b) Problem Size n=20 Cities or Elements

1 A.. 0 A. A- A AA

2 0.8 - . . " ":" ": . .. , _..

0.6 -

.2 0.4 TSP: * AP: •

o 0.2 - stuck-at-"O" faults

stuck-at-"1" faults
0.0 1 I 1

0 2 4 6 8 10
No. of Injected Faults

c) Problem Size n=30 Cities or Elements

1.0 "a* -..A A A . A A a

0*--0

030.6 -

C
2 0.4 TSP:. AP:6

Lo 0.2 stuck-at-"O" faults
stuck-at-"1" faults

0.0
0 2 4 6 8 10 12

No. of Injected Faults

Figure 2. Performance degradation of an ANN solving the Traveling Salesman Problem (TSP) and the Assignment
Problem (AP) after fault-injection for different problem sizes. The values are averages over 10 different
problem instances for each size with additionally 10 different random initializations ead, for the TSP.

1- 457

factor with a value q.1 if a given solution c is optimal (c-cx) and a value q-0 if the answer has the quality of
an average random tour (c=c,,).

The definition of q requires the knowledge of the optimal solution values cv, which can be obtained for the
AP by using a conventional textbook algorithm [5]. Since the TSP is an NP-complete problem, values for the
global optimum are generally unknown, but the Lin-Kernigham algorithm [31 provides excellent reference values.
A possible event c<co can be recognized by a value q>l. A test-set for the TSP included 10 different, randomly
generated city-distribution for each problem size n-10, 20, and 30. Values for c., were obtained by generating
105 random tours for each city-distribution. A similar test-set with 10 different, random cost matrices for n-10,
20, and 30 were generated for the AP. The fault-locations were also randomly selected with the same locations
for stuck-at-"l" and stuck-at-"0" faults.

The numerical results in Figure 2 confirm our conjecture that stuck-at-"0" faults have practically no effect on
the AP performance while stuck-at-"l" faults result in an almost linear performance degradation with respect to
our performance measure. The redundancy of the problem representation for the TSP is reflected in a relatively
slower performance decrease as the number of faults increase. With the number of stuck-at-"l" faults approaching
the number of cities or elements, the performance for both the TSP and the AP approaches zero, which corresponds
to the random average (Figure 2a). This is because the randomly selected fault-locations eventually predetermine a
random tour. A more detailed interpretation of the results and a complete description of all the necessary information
to recreate the results can be found in a forthcoming technical report.

3. Conclusion
None of our simulations failed to converge to a valid tour because of one or more injected faults. The only 'total

failure mode' for both examples seems to be the occurrence of two simultaneous stuck-at-"1" faults in the same row
or column preventing a valid tour, which was expli itly excluded in our experiment. The most interesting result is
the observation that the faults act like additional constraints and do not seem to impair the dynamics of the network.
Preliminary results indicate that the conditional performance of the network in the presence of faults might not
change at all, that is, that the network still finds the optimum under the additional constraints imposed by the faults,
or at least a good but suboptimal answer of the same average quality q as in the fault-free case. This also implies
that it is possible to predict the fault-tolerance for particular problem instances. For example, the performance
degradation for the AP in Figure 1 becomes predictable by analyzing the cost-matrix under the assumption that the
network will always be able to find the best possible solution under the constraints of faults in certain locations. Since
the fault-tolerance is often seen as one of the key benefits of an ANN-hardware implementation, the predictability
will become a crucial criterion for real-world applications with provable reliability requirements.

References

[1] Brandt, R. D., Wang, Y., Laub, A. J., and Mitra, S. K. Alternative networks for solving the traveling salesman
problem and the list-matching problem. In Proceedings of the IEEE International Conference on Neural
Networks, San Diego, CA (July 1988), pp. 11-333-340.

[2] Hopfield, J. J., and Tank, D. W. "Neural" computation of decisions in optimization problems. Biological
Cybernetics 52 (1985), 141-152.

[3] Lin, S., and Kernigham, B. W. An effective heuristic algorithm for the traveling salesman problem. Operations
Research 21 (1973), 498-516.

[4] Protzel, P., Palumbo, D., and Arras, M. Fault-tolerance of a neural network solving the traveling salesman
problem. ICASE Report No. 89-12 / NASA Contractor Report 181798, ICASE / NASA Langley Research
Center, Feb 19E9.

[51 Syslo, M. M., Deo, N., and Kowalik, J. S. Discrete Optimization Algorithms. Prentice Hall, Inc., Englewood
Cliffs, NJ, 1983.

I- 458

Sampling Learning, Recall, and Filtering in Stable, Adaptive Neural
Systems with Graded Response

Bernd Schurmann
Siemens AG, Corporate Research and Development

Otto-Hahn-Ring 6, D-8000 Monchen 83

I. Introduction

Stable, adaptive artificial neural systems possess remarkable properties which are subject of
this contribution. First, the underlying model is discussed, Next, macroscopic measures for the
global dynamic behavior of neural nets are introduced, followed by a discussion of learning and
recall. Subsequently, typical results of a computer experiment are presented, followed by their
theoretical explanation.

I! Theoretical Foundations

The starting point is a fully connected one-layer network with q nodes. The activity zk of node
k, k = 1,..,q, is described by [1,21:

dzk/dt a zk(t) = -CkZk + E, wsk(t) S(z,(t)1 + Kk (2.1)

with the real valued function zk C (- -,-). The change of zk with time arises from (i) a decay term
with constant Ck, (ii) an internal input term with weights wsk of the units connected with node k
and output signals S (zs) of these units, and (iii) an external input to node k consisting of the
component Kkofa pattern vector K assumed to be constant with respect to the relevant time
scales of the network. It is assumed that K scales with the number of nodes, i.e.

Kk = q-sgn (Kk) . (2.2)

The pattern vector K may contain noise, i.e. K may consist of a systematic and a stochastic
part:

K = Ksyst + Ksh• (2.3)

Therefore, eq.(2. 1) in general is a stochastic differential equation. For the signal function we use

S(z) = tanh (z/T) . (2.4)

The system is asymptotically stable, if[31

Ilk wsk = Pswks , (2.5)

wk =-Ask Wsk + S (z,) S (zk), s < k. (2.6)

The quantities Pk, p,, and Ask are real and positive. The change of wsk with time arises from (i) a
decay term with constant Ask, and (ii) a Hebbian learning term. The weights Wk are calculated
from (2.6) for s < k and subsequently from (2.5) for s > k.

The expression
q

L(t) = E Pk [S(Zk) (CkZk - Kk) -Ck fk S(Wk) dk] - EpkwskS(Zs) S(zk)
k=l s,k

+ (1/2) E u1, Akw 2 k. s<k (2.7)
s,k

1- 459

is a Lyapunov function for the system (31, i.e.

L = (grad.L) • z + (gradwL) w < 0. (2.8)

Eq.(2.8) is satisfied, if

gradzL = -a z, gradwL =-3w, (2.9)

with proportionality constants a and 3 > 0. The network can be structured into several layers.

IlI. Macroscopic Observables

Large sized neural nets call for observables which quantify the current global state of the net.
The Lyapunov function is such a measure, as well as the direction cosine, originally introduced for
2-state systems (4]. For models with graded response the direction cosine is modified to

a'v1(t) = Ek S[Kk(vu] S [zk(t)l / ([E S2 (Kk(v))lR [E S2 (zk(t))l&} . (3.1)

It describes the overlap of the v-th pattern vector K'v with the current state vector z(t) of the
system.

IV. Learning and Recall

The network should store an as large as possible number of patterns to be retrieved. Success or
failure depends on the learning method. A suitable procedure is "sampling learning": Samples of
pattern distributions with centers Ksyst't, v= 1,..,m are offered to the net, with samples from the
v-th distribution for a time Stv' where a - 1,2,..,c, and c = number of presentation cycles. The
learning time is given by

tlearn = EaEv Stva. (4.1)

The intervals St,' are determined by use of (3.1). As soon as a'v(t) = 1, Stv' is fixed. By means of
(2.9) one obtains

< w> = (/P) < gradwL: > (4.2)

The brackets stand for averaging over the pattern centers. It is assumed that the noisy
background in the patterns has been averaged out during the times stv'. Learning is finished
when wn<w> = 0, or <L> = const. (4.3)

The second relation holds if the fluctuations < (L- < L >)2 > are sufficiently small which is tacitly
assumed. From (4.3), c can be fixed. Thus finally tlearn is fixed.

In the recall phase, the weights wsj remain constant. The recall ability depends (i) on the initial
value z(0) of the activation state vector, and (ii) on the storage capacity r = mL/q. It is ap-
propriately characterized by the direction cosine (3.1).

V. A Computer Experiment

We exemplify the behavior of stable adaptive neural nets by pattern pair recognition. The
details of the simulation in short hand form are: 2-layer net; 7x7 nodes per layer; weights
nonzero only between layers (cf. [51). Input patterns: 7x7 matrices, displayed in pixel array. Clean
patterns (pattern centers Ksyst) : zk ! -52 = "white" and zk -52 "black". Noisy patterns
(pattern samples K"): add random numbers e (-60,601 to the clean patterns with activities -52
and 52, respectively. Graphic displ.a.y in 6 shades of grey by dividing interval (-60,601 into 6 parts.
Choice of constants: Ck < Ask causes node activities to change faster than weights ("short term
memory" vs. "long term memory"); Pke- 1 introduces multiple time scales into system [31), in

1- 460

particular lake; 1 enhances time scale differences between nodes and weights. We choose Ck =
2.0, Ask = 1.0, and Pk c (0.5,1.01. Eqs.(2. 1) and (2.5) are discretized with time step 0.1.

10 pattern distributions are offered to the system. It should store and retrieve the
corresponding clean patterns K3y~tv. Note that the storage capacity exceeds the Hopfield limit of
r-,0.15 considering that the net is not fully connected. In Figs. 1-4 some results of the simulation
are displayed. Figs. 1-3 are based on a simulation with a highly nonlinear signal function
(T = 0.02 in (2.4)). Fig. I shows snapshots of the learning phase. After having learned the pair
(V,X), at each time step samples from a new pattern distribution are presented which possesses
(7,2) as pattern center. The net stores the clean patterns though it "sees" only noisy versions: In
addition to storing, it filters. Fig.2 shows an example from the recall phase. The net sees at each
time step the same noisy pattern and relaxes to the clean state. Fig.3 exhibits a more difficult
task: Essentially only one pattern half is presented as input, and the net should associate the
other half. Here, it becomes even more clear that recall and filtering in the learning phase are
completely different processes: For recall the only essential point is the correspondence of the
stored patterns to minima of the Lyapunov function. Fig.4 illustrates the behavior of a linearized

/ network (T = 20.0 in (2.4)). Figs.4.a and 4.b show a snapshot of the learning phase. It is seen that
the filtering ability persists in the linear case. The recall ability, however, is completely lost, as
Figs.4.c and 4.d clearly show.

These results can be understood as follows. First to the filtering property. We linearize the
signal function (2.4), i.e. S(z) - z/T. Insertion in (2.1), using IKkI q (cf. (2.2)), and
I(l/T)MEswskz1 4 IKji, (2. 1) becomes

-k Ckzk +Kk. (5.1)

Eq.(5.1) is of Langevin type with a "friction" term - Ckzk and a "stochastic force" Kk. Averaging
over the pattern distribution with center Kk"', (5. 1) becomes

k -Ckik + Kk" (5.2)

where the bar denotes averaging. For large times,

ik - Kk'q/Ck, (5.3)

and hence the activations are proportional to #he clean patterns. The filtering ability persists in
the nonlinear case.

In the recall phase,

k= "Ckzk + Z£wsk'"m S(z5) + Kk, (5.4)

where the wskiwr are the weights obtained at the end of the learning phase. The pattern K here is
a constant noisy pattern whose clean version is to be recognized by the net. For large times,

zk(-) = Ckz {-swskm'"r S[z,(ao)l + Kj (5.5)

If the signal function S is sufficiently nonlinear, the net will behave as an associative memory. In
contrast, in the linear case

zk(o) "Kk/Ck, (5.6)

i.e. the net will, up to a proportionality constant, only reproduce the constant noisy pattern offered
and not relax to the clean pattern. Precisely this behavior is illustrated in Figs.4.c and 4.d. Thus
in contrast to filtering, the nonlinearity of the net is indispensable for storing in the learning
phase and hence for recall as well.

1- 461

%,-

(a) (b) (a) (b)

WON= ~ 77: mum

- 2 -91 0 Um1 .33 WE *i -: u j U~ n -- now

1% nou~ on a men mam

I~u IIN.a*3N n NE0N

LaNin pase Rec I"W alln phse

(C) (d) (C) (d)

A~= anno ?~ N 0' a f'lmI l
-on'. au RW. U .. LU ma -10

0-711 ar ME a 7Pl F. U 1 on -

0I L '1 NEN0ai
on No a aL No 0 0

(a) (b) (a) (b)

IL... ~ :uu £ 2 IUA map aunau

atNM WEui onm M=mu 'a so 0 0
m um~ *urnu g= 0 0-in 6 n 1

a .** a j I . 3
a' 1.0 a ad~ so

-n X ME!kk'~m

9= .. NnierMdl.F~4 iermdl
Recal phs.()() erigpas.()(ealpae

(1.J.J Hpied roc Nat.0 Acad.4 Sai. USAW j38818)

[4. l.Amr ud .OaWnNEuRal Newok ial 63198)
[51. B. Kosko, Appie OMtic 26, 497(18)

0:I - 462

Self-learning Simulated Annealing

Enrique Carlos Segura . Bruno Cernuschi Frias
Centro de Ingenierfas de la Computaci6n y del Procesamiento de la Informaci6n

Flacultad de Ingenierfa - Universidad de Buenos Aires
Mailing Address: Casilla 8 - Sucursal 12(B), (1412) Buenos Aires - Argentina

1. Introduction
h this work, a new "cooling schedule' for the Simulated Annealing (SA) is proposed,

introducing a variable parametrization of the search process.
The SA, commonly applied to the minimization of functions with many local minima

(over a continuous space or a discrete one of great cardinality), is based on the analogy
between that problem and the models of statistical mechanics that study the behaviour of
systems of particles with many degrees of freedom at thermal equilibrium, for which, accord-
ing to the model, the probability of being in the state s is given by the Gibbs distribution:

r(s)=exp -T{kT}
where c is the energy associated to that state, and k is the so called Boltzmann constant.

The SA works like thus: starting in a state z, a new state zp is generated; if it reduces
the value of the function, it is accepted as the new state of the system, if not, it will be
accepted with probability:

r(z) expt

now being T the control parameter of the process ([11,'21).
Most of the classical cooling laws, proposed on the basis of theoric results of conver-

gence, include knowledge about the particular problem to be solved, but fail in introducing
information about the search process; other proposals, which use as control parameted an
estimate of the distance of the current value of the objective function to the minimum, solve
partially the problem of getting information about the process, but fall in lack of knowledge
about the problem. We are interested in combining the advantages of both groups, manag-
ing information about the problem and, at the same time, about the evolution of the search.

2. The Algorithm
Basically, the classic SA works like thus:

- Choose z) E X;
x= zo;
Update (T);

- While (certain stop condition is not true){
Choose zp E N(z) /* a neighbor of z
Generate a random number ai U[O, 11

I- 463

/* from the uniform distribution in jO, 11, /
If (f(zp) _ f(z) or a < exp{-(f(zp) - f(x))/T})
X = ZP;
Update (T);}

where f: X -, R+ is the function to be minimized (maximized), X may be continuous
(a subset of R'1) or discret (as in the case of combinatorial problems, e.g. the Travelling
Salesman Problem), and N(x) is the set of neighbors of z in X, defined, in the continuous
case, as

N,(x) = {y E X: Ilx - 3ii = r)

and, in the discret case, as the set of states that may be generated from z by means of some
defined change (for instance, in the TSP, interchanging two cities, or removing a city from
a place and inserting it in another place).

The update function determines the way in which the control parameter T (the "tem-
perature") !s updated at each iteration of the process. The classical cooling laws ([3],[4])
are exponentially slow. The rule we will obtain here does not depend on the time (i.e. the
number of steps); we will see, however, that it contains, in a certain way, the same type of
information about the problem as the laws mentioned above.

The two main problems of the "classical SA' are: a) The tendency to get stuck during
long times in local minima with deep "valleys": it is the consequence of an early descent of
the temperature (freezing) or of a too little value for the initial parameters; b) The tendency
to "wander" across the state space: it occurs when the lowering of temperature is too slow
or when the initial one is to high.

In order to avoid both problems, we must bind the probability of accepting a candidate
when it does not improve the solution, i.e.:

exp{-(f(zx) - f(z))/T) E (a(x), b(z)) C [0,11 (2.1)

In order to determine the way in which a(z) and b(x) depend on z or, more precisely,
on f(z), we must consider that they have to be reduced as f goes to zero, but avoiding a
behaviour like showed in Fig. 1. We propose:

a(z) = a[l - e-f(zfzi) b(z) = e1-f e-IfxP 101

where a y P wil be input parameters and f'in is an estimate of fain, the absolute minimum.
This brings the behaviour showed in Fig. 2.

Fig. 1 1 Fig. 2

I- 464

In order to estimate fj'n, we must introduce a new parameter, a certain coefficient h E (0,1)
which will be applied to the current value of f.

We may rewrite (2.1) as:

T(z) &n a(z) < f(z) - f(zp) < T(z) In b(x)

Suppose we know a Lipschlitz constant forf, defined, in the discrete case, as:
L-max max f(z) - f(y)0

ZEX IYEN~s)J

and, in the continuous one, as:

If(z) - f(y)I < LIIz - yll Vz,y E X

It holds that:
f(x)- f(xp) > -Lr

(in the discrete case, r = 1). Then, the lower bound in (2.1) holds if:

-LrL(z) > (2.2)

With regard to the upper bound, it will be impossible, in general, to ensure it, since
If(zp) - f(z)f may be arbitrarily small. Nevertheless, it would be desirable to approach as
much as possible the situation of Fig. 3.

Fig. 3 -Af

that is, among the candidates that do not improve the solution, only those with small
increases are accepted with a high probability. This implies that in (2.2) we must choose
the equality:

T'Cx) = -(L)
in a(z)

From all this, the update function would work thus:
Update{

If (f(z) < fm~i)
f~n = h. f(z);
T(z) = na ;

}
I- 465

3. Experimental results

a. Our first application was to the minimization of the continuous function given by:

f(z, Y) C a 2 + dy2 - C cos(z) - f cos(6y) + e + f

with c =1, d =2, e= 0.3, f= 0.4, =3rr, 6= 4 (taker from [5]).
This function has an only absolute minimum f(0, 0) = 0.
Using the Mean Value Theorem it is easy to find a Lipschitz constant L = 35 for the

square jzj !5 5, jyj < 5. Although this may seem very restrictive (we ought to be sure
that the minimum is within that square), we will see how that value is still too high for the
optimal behaviour of the algorithm. In fact, we begun running the program with L = 35,
r = 0.1, a = 0.6 and zo = (-3,5), i.e., a point on the edge of the square in which the
validity of L was ensured. This did not work well: the search was wandering, purely random;
there was not freezing. Then we decided to try with smaller values for L. With L = 5, the
cooling was smooth and fast; at 800 iterations, we reached the value f = 1,6 x 10-4 in
(z, y) = (.0033; -. 00037) and the descent continued.

Then we tried to solve the same problem with the classic SA, with a cooling schedule
of the form c

T(n) log +) (3.1)

Trying with different values for c, the result was the same in a certain moment, the search
got stuck in a local minimun.

Finally, we applied the law

T(f) exp (4L(3.2)
f/

i.e., generalized SA (as proposed in [51). There was no problem of getting stuck in local
minima, but now we observed the opposite problem: there was not freezing, so the only way
in which the search was relatively successful was keeping memory at each iteration of the
mizzimum value obtained for the function.

Then we changed slightly the function by adding a constant to it, so the minimum was
now f(0,0) = 5. We applied our method with the same values as in the former case and
h = 0.99. The results were satisfactory, although not as good as in the first case; the cooling
was indeed "in stages; therefore, periodically it was observed some wandering. However, the
current value for f never exceeded the minimum found in more than the difference between
that minimum and the absolute one. A value of f = 5,0014 in (z, y) = (.0053; .0056) w7-3
obtained at 900 iterations.

The application of the other two cooling laws ((3.1) and (3.2)) produced behaviours
similar to those in the first case.

b. Then we applied our algorithm to a discret problem: the TSP. This is a classical NP-
complete problem, which consists of the following: given a set of N cities, how to visit every
city once and only once, returning to the starting point and minimizing the total tour length.
It is a problem of over- exponential complexity and no deterministic algorithm is known that
solves it in polynomial time; so it is an ideal candidate for an stochastic optimization method
and, in fact, it has been the classical problem for testing the performance of SA.

I- 466

We toqk a map with 100 cities arranged in a quadrangular lattice with side length equal
to the uniti, considering the Euclidean distances between the cities. The optimum tour has
clearly length 100. Here the performance was best than with both (3.1) and (3.2), but the
difference was less significative. While a 50000 iterations the value of the function with (3.1)
was 110,,5 and with (3.2) it was 109,93, with the "self learning" version the value reached
at the sae number of iterations (with h = 0.7, L = 1, a = 0.5) was f = 108.52.

4. Conclusions.
From the simulations we deduce that the algorithm really makes a sinthesis of two

sources of knowledge: the inherent properties of the problem and the evolution of the search-
ing process.

Although the practical results are best than those obtained with other cooling laws, we
must not some divergencies between theoretical prescriptions and practical facts, specially
concerning the parameter L. In 3.a the theoretic value found for L was L L 35; but the
value with which the algorithm worked was 5, in 3.b, the theoretic value was L - 26, while
the optimal performance was obtained with L = 1. This problem is analogous to that of the
schedules of the type 3.1 the theoric value of c that ensures the convergence to the optimum
is unapplicable because it makes the search exponentially slow. The most familiar case is
the curve proposed in [21

T(n) rL (4.1)
log(n + no + 1)

where L is the Lipschitz constant, r is a measure related to the radius of the graph (in the
discrete case) and no is a parameter which controls the initial temperature. The condition
(4.1) warrants the strong ergodicity of the Markov Process associated to the SA; but aetting
the temperature at that value turns the process virtually a SA at constant temperature and
produces, therefore, a purely random search. Just like the problem pointed out in 3.

References.
[1] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.H. and Teller, E., Equation

of state calculations by fast computing machines. J. Chem. Phys., Vol.21, No 6, 1087-
1091, 1953.

[2] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Optimization by Simulated Annealing.
Science, Vol.220, 671-680, 1983.

[3] Geman, S. and Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of Images. IEEE PAMI 6, NO 6, 721-741, 1984.

[41 Mitra, D., Romeo, F. and Sangiovanni-Vincentelli, A., Convergence and finite-time
behaviour of Simulated Annealing. Adv. Appl. Prob. 18, 747-771, 1986.

[51 Bohachevsky, I., Johnson, M. and Stein, M., Generalized Simulated Annealing for func-
tion optimization, Technometrics, Vol.28, NO 3, 209-217, 1986.

1- 467

ASSOCIATIVE MEMORY SYSTEMS

Patrick X. Simpson

General Dynamics
Electronics Division

P.O. Box 85310, MZ 7202-K
San Diego, CA 92138

INTRODUCTION

Binary and bipolar valued correlation (Hopfield) associative
memories have an inherent storage capacity limitation that
logarithmically decreases as the dimensionality increases (cf.
McEleice, et al., 1987; Amari & Maginu, 1988). We present a
refinement of earlier work (Simpson, 1989) that circumvents this
storage capacity limitation by employing a system of associative
memories that partitions the ensemble of data patterns into
orthogonal pattern sets and stores the resultant sets into
individual memories. By employing this encoding scheme we can
drastically improve the capacity performance of each individual
memory from logarithmically decreasing to linearly increasing with
increasing dimensionality.

The motivation for this work was the storage capacity bottleneck.
There are several VLSI and optical implementations of the Hopfield
associative memories that are not being used because their storage
capacity is too low. Our system presents an alternative in that
we can now use current associative memory implementations as
components of a slightly more complex system that will provide far
greater storage capacity.

ASSOCIATIVE MEMORY SYSTEM ENCODING AND RECALL

The encoding algorithm performs the partitioning and encoding of
the ensemble of data patterns in a single pass through the data.
The recall algorithm operates in a nearest neighbor fashion by
selecting the best response from the ensemble of memories.

Viriables:

Assume an ensemble of m data patterns A = (Al, A2,., A) where each
Ak is an n-dimensional bipolar valued row vector Ak = (akl, ak2, *1
akn). A can be partitioned into M orthogonal sets A = (al, q2,
%_), where M will be no larger than 2n/n. Each orthogonal set a,=
(ahl' *h2" "' ChB0 is encoded into its own associative memory WhI
where 3 is the number of orthogonal patterns in ,.. The variables
used during the encoding and recall process are 6he following.

Ak kth pattern, Ak -
m number of patterns
Wh hth associative memory (n-by-n matrix)
M number of associative memories
r flag signalling proper/improper encoding of Ak

I- 468

E" orthogonal energy (see appendix for definition)
X temporary n-element pattern vector
T temporary n-by-n associative memory matrix
A input pattern presented to each Wh during recall
Xh stable pattern recalled from Wh given A
A index of the memory with the best response

Functions:

The recall operation for each associative memory is represented as
a function. This operation, described in detail by Hopfield (1982)
and McEleice, et al. (1987), is guaranteed to be stable for any
arbitrary number of patterns in a finite number of iterations. In
general, we assume a synchronous update procedure the employs a
bipolar step funceion. This operation is defined as a function by
the following:

recall(W,A) associative memory recall function that is
passed an n-by-n associative memory matrix
and a vector A . (-l,+l) and returns the
resonant pattern X. See Hopfield (1982) for
details.

Encoding Algorithm:

The following algorithm begins with one n-by-n associative memory
W1. As more memories are needed they will be added therefore the
ensemble of associative memories W = (Uw, W2, *, W.) will grow as
needed. The entire partitioning and encoding process *-ý.es place
in a single pass through A.

M = 1, k = I

while k < m do

T Ak, F = FALSE, h = 1

/* Store Ak in first Wh that has orthogonal energy */

while h < X and F = FALSE do

r = TRUE, Wh = Wh+T

if IAkWhAkT - El > 0 then

Wh = Wh-T, r = FALSE, h = h+l

else

h = M+1

endif

endwhile

I- 469

/* If r = FALSE then store Ak in a new assoc. mem. */

if F = FALSE then

M = X+1, WH = T

endif

k = k+1

endwhile

Recall Algorithm:

The recall operation requires selecting the appropriate memory from
which the response pattern will be drawn. Knowing that each memory
is constructed orthogonally will be used to determine which
associative memory is most appropriately selected for the response.
The following recall algorithm will select the best responss
pattern, X., given an arbitrary input pattern, A, in a single pass
through the associative memories.

A = 1

for h = I to M do

1 h = recall(Wh,A)

if (IAW;,AT-XWXwI + IX÷WX,-E*I)

< (JAWhA'-XhWhXhI + IXhWhXh-E'I) then u = h

endfor

CONCLUSIONS

By utilizing an ensemble of associative memories we are able to
store far more patterns in each associative memory which means much
more information is being stored per connection. As an example,
using the criteria of McEleice, et al., a single associative memory
could perfectly store 11 randomly selected 100-dimension bipolar
patterns -- yielding a storage density of 11/1002 = 0.0011 patterns
per connection. On the other hand, an associative memory system
could store as many as 100 patterns per associative memory --
yielding a storage density of 100/1002 = 0.01 patterns per
connection. This is an improvement in efficiency by a factor of
almost 10 for only moderately large patterns. As the
dimensionality increases, the improvement is even more dramatic.
In addition, an associative memory system does not require complete
retraining when a new pattern must be incorporated into the
existing knowledge base. New patterns can be encoded immediately
and efficiently -- a feature several existing neural networks lack.

1- 470

APPENDIX: ORTHOGONAL ENERGY

When all the patteron stored in an associative memory are members
-• of an orthogonal set then there is a simple expression that

describes the energy of the system.

Assume that the dimensionality of the patterns being stored is
even. The correlation association associative memory is
constructed using the equation

m
W = •ZA,, (A-i)

k=1
where each Ak is an n-dimensional bipolar valued row vector Ak 6
(-l,+2)". The energy of this system is defined as

E S -AWA , (A-2)
where A c (A,: k = 1, 2, ... , m). We can rewrite equation A-2 as

m
E =-A (E AkTAk) AT

k=1
m

=- E AAkkTAkAT

k=1

- AATAkAX - E AATA AT, (A-3)
J<>k

which yields the orthogonal energy relationship
z = -n 2 . (A-4)

As might be expected, the energy of a system with all patterns
stored orthogonally is only dependent on the number of dimensions
in the system and not the number of patterns stored.

REFERENCES

Amari, S-I. & Maginu, K. (1988). Statistical neurodynamics of
associative memory, Neural Networks, 1, 63-74.

Hopfield, J. (1982). Neural networks and physical systems with
emergent collection computational abilities, Proceedings of the
National Academy of Sciences, 79, 2554-2558.

McEleice, R., Posner, E., Rodemich, E. & Venkatesh, S. (1987). THe
capacity of the Hopfield model, IEEE Transactions on Information
Theory, IT-33, 461-482.

Simpson, P. (1989). Bidirectional associative memory systems,
Heuristics, Vol. 1, no. 2., pp. 50-59.

1- 471

EQUILIBRIUM UNIQUENESS AND GLOBAL EXPONENTIAL STABILITY
OF A NEURAL NETWORK FOR OPTIMIZATION APPLICATIONS

S. I. Sudharsanan and M. K. Sundareshan
Department of Electrical and Computer Engineering

University of Arizona
Tucson, AZ 85721

1. INTRODUCTION:

In the recent past, several innovative results have appeared in the literature that demon-
strate the use of neural networks in providing a computational architecture of choice for
handling complex optimization problems. A number of very versatile networks have been
reported to perform optimization in various applications.

The key to the successful application of a neural network to solve optimization problems
lies in its convergence properties. Analysis of the qualitative properties of Hopfield-type
networks (and their generalizations), in particular their stability properties, has been in-
vestigated in a number of articles [1-3]. Most of these results, however, are developed in
the context of using these networks as associative memories. There exist some very fun-
damental differences in the types of qualitative properties that one would be interested in
examining in order to serve as guidelines for tailoring the neural network which is intended
for eventual use either as an associative memory or for optimization purposes. In partic-
ular, for problems of designing a neural network to serve as an associative memory, the
analysis of the recall abilities of a set of stored vectors in the state space is of importance
and consequently the synthesis question is one of adjusting the network parameters such
that the network has multiple equilibrium points corresponding to the desired vectors to
be recalled from the memory. Also, the stability conditions of interest are only of a local
nature that ensure asymptotic convergence to an equilibrium point when the network is
started from an initial state in the vicinity of that equilibrium point.

On the other hand, for neural networks that are intended to be used for solving op-
timization problems, construction of the network with a unique equilibrium point that
corresponds to the global optimum of the objective function is highly desirable, to prevent
convergence to the local minima which may generally be far from the global optimum
conditions. In this case, conditions for the global asymptotic stability of the network that
ensure convergence of the solutions starting from any initial state to the unique equilib-
rium point , and also an estimate of the exponential convergence rate, are of particular
importance. The synthesis question of interest then is one of selecting network parameters
such that the network possesses a unique equilibrium point and an exponential convergence
with a specified rate to this point (i.e. exponential stability with a prescribed degree [4])
is ensured. In this paper, we shall report the results of a qualitative Paalysis aimed at ob-
taining such conditions for a neural network that can be programmed to solve optimization
problems.

2. NEURAL NETWORK MODEL:

We consider a modified Hopfield-type neural network structure whose application to
solving least squares estimation problems has been demonstrated recently [5]. For an N -
neuron network, the dynamics are described by

dui 1 N
- -- -li+ E" t ij9(Uj) -- bi ,i = ,2,... ,.N (1)

j=1

I- 472

where ui is the input to neuron i, tii = tji is the synaptic interconnection strength between
the i-th and the j-th neurons, and bi is the external bias input. Further, ai > 0 is
an RC-time constant and g(ui) is a monotonically nondecreasing function specifying the
input-output characteristic of each neuron in the form

flui, lui <5 B

vi = g(u)= .PB, ui > B (2)
-,8B, ui < -B

where 03 and B are finite positive constants. The equilibrium points of the dynamical
equations (1) and (2) correspond to the minima of an associated energy function

E = E(t, -) -(3)

where 6,j is the Kronecker delta. E in (3) indicates the usefulness of the network described
by (1) and (2) for quadratic optimization problems.

It should be mentioned that networks of this type have been shown to be realizable
by analog electronic circuits with g(ui) being realized by an amplifier. This model differs
from the network proposed by Hopfield in g(.) being a piecewise linear function rather
than being a strictly increasing sigmoidal function.

3. QUALITATIVE ANALYSIS:

Of fundamental importance in the synthesis of a network for optimization applica-
tions is the establishment of conditions for characterizing the equilibrium conditions and
for guaranteeing convergence to a steady-state equilibrium following a transient regime.
Specifically, we are interested in the following questions: Are the solution trajectories
starting at different initial states remain bounded for all times? How can we guarantee
the existence of equilibrium points at certain desired operational ranges? What are the
structural conditions that ensure an unique equilibrium point? What types of relations
between the network parameters ensure exponential convergence to -,n ._wabrium condi-
tion irrespective of the choice of initial conditions to start the network? Answers to these
questions will be summarized in this section in the form of theorems. Proofs of these will
be omitted due to page restrictions.

Theorem 1: For the network described by (1) and (2), a solution for any specified
initial condition (i.e. ui(to)) exists and is unique.

Theorem 2: The solution of (1) starting at any initial state ui(to) is bounded for all
t > to.

It is evident that the locations of the equilibrium points in RN and their characteristics
are determined by the interconnection pattern of the neural net (i.e. by the parameters
t,,) as well as by the parameters ai and the constants /3 and B defining the neuron input-
output characteristic. For the sake of simplicity in stating the following results which
provide a characterization of the equilibrium points of the network defined by (1) and (2),
consider the compact set S C RN defined by

S={u: -B<ui_<B, i= 1,2,...,N}, (4)

I- 473

where u E R 8 u = [ul,u 2 ,... ,UN]T. We can now state a theorem which confines the
equilibrium points of (1) to a desired operational range corresponding to the linear region
of the input-output function g(.) with slope / > 0.

Theorem 3: Let the following condition hold:

N
B 1-ai#F ItijI -ailbi1>0 Vi=1,2,...,N. (5)

Then the equilibrium points of (1) lie on or inside S.

As mentioned earlier, for neural networks intended to be used for solving optimization
problems, establishment of conditions that ensure an unique equilibrium point that corre-
sponds to the global optimum of the objective function is highly useful. This is due to the
fact that if the network is programmed to be asymptotically stable, then starting from any
feasible initial state, the network will converge to the same stationary point solution in the
solution space. The following result enunciates the conditions for an unique equilibrium
point for the network under consideration.

Theorem 1: If the equilibrium points of the network defined by (1) and (2) are in S
and the matrix W E RNXN given by

W=A-O3T

A = diag [.-., ... -] and T = [tij~iJ=,,2,...vN , is nonsingular, then the network has[Ot 2 ON'

a unique equilibrium point.

Having obtained the conditions that ensure the existence of a unique equilibrium point
in a desired operational range of the network, what remains is to tailor the parameters
such that exponential convergence to this equilibrium point is guaranteed from any feasible
initial condition. Towards this end, we will give the following definition and an exponential
stability result.

Definition: The equilibrium point x* = 0 of the dynamical system

it(t) = f(X(t)), f(0) = 0,

where x(.) : R * •N and f : ?N ...-+ RN, is ezponentially stable with degree 17 if every
trajectory starting at any feasible initial state x(to) = xo E RN satisfies the condition

IIX(t)II < 7rlXoiexp(-,(t - to)) V t > to (6)
where 7r and 1r are positive constants independent of the initial conditions (to, xo) and 11.11
is the £2 -norm.

Theorem 5: Let ý be a number selected in the range 0 < '• • 1/& where a = m~cq. Then
the equilibrium point u? of the neural network described by (1) and (2) is exponentially
stable with degree ý if the vector h(.) : RN _.. RN defined by

h(C) =[hi() h2(ý),... -, hN (ý)]T

=I[6," "', N]T, &iER? V i=1,2,-..,N
N N (7)

hi(= tijX(ý) = tij[I,[g + uý) - g(u)]
j=1 j=l

I- 474

//

can be factored in the form Sh(•) = [U(•) - S(•)]P4 (8)

where P E RNxN a P = diag[pIl, 22,"',PNN] with pii = 0.Sa,/(1 -- •r), U RN ... ,

RNXN is an arbitrary skew-symmetric matrix, S : RRN -- RNxN is an arbitrary symmetric
matrix that satisfies the inequality

CT[+ 2PS(C)P]C _ 0 V C ER(9

I being the N x N identity matrix.

4. DISCUSSION OF RESULTS:

(A) The various results presented in this section serve as useful guidelines for synthe-
sizing a neural network with desired properties. The conditions enunciated, although only
sufficient, are not overly restrictive and could be used in a number of ways. In particular,
they can be used to develop systematic construction procedures for selecting the network
parameters to yield a globally exponentially stable network whose unique equilibrium point
corresponds to the global minimum of an appropriately formulated objective function in
an optimization problem. An illustration of this approach to construct explicit algorithms
for programming the neural network to solve two estimation problems (viz. parameter es-
timation by a recursive least squares procedure and maximum a posteriori state estimation
in a dynamical system with noise corrupted outputs) is given in [51.
(B) It should be noted that the present result for exponential stability is valid irrespective
of the size of the network (number of neurons) and holds so long as the interconnection
pattern satisfies the required condition.

REFERENCES

[1] M. A. Cohen and S. Grossberg, "Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks," IEEE Trani. Syst. Man,
Cybern., vol. SMC-13, pp. 815-826, 1983.

[2] 3.-H. Li, A. N. Michel and W. Porod, "Qualitative analysis and synthesis of a class of
neural networks," IEEE Trans. Circuits Syst.., vol. CAS-35, pp 976-986, 1988.

(3] A. N. Michel, J. A. Farrel and W. Porod, "Qualitative analysis of neural networks,"
IEEE Trans. Circuits Sýst., vol. CAS-36, pp 229-243, 1989.

[4] W. Hahn, Stability of Motion, New York: Springer Verlag, 1968.

[5] S. I. Sudharsanan and M. K. Sundareshan, "Neural network computational algorithms
for least squares estimation problems," Presented at International Joint Conference on
Neural Networks, Washington D.C., June 1989.

I- 475

A/

CONNECTIONIST FINITE STATE MACHINES. Claude Touzet and Norbert
Giambiasi . L.E.R.I., Parc Scientifique Georgcs Besse, F-30000 NIMES FRANCE

Sequential problems like speech understanding or speaking, robotic control,
trajectory recognition, begin to be explored by increasing number of researchers
in neural networks.

Lot of previous connectionist approaches have treated problems of sequential
nature by a spatio-temporal transformation (for example, the use of a window of 7
characters in NETtalk to handle the context). Others approaches really implement a
notion of state, in terms of automata's state (1), but in most cases, the state can not
be easily manipulate or observe (2, 3).

In this paper, using the definition of a finite state machine, i.e. the quintuple
Input, State, Output, state function, output function (4), we are investigating
neural systems exibiting finite state machines behavior.

First, we present the formal definition and description of a neural network seen
as a synchronous sequential machine. In addition, in many practical situations,
the synchronizing clock pulses are not available, we present the basic model of
neural network for asynchronous sequential state machines too.

Based on multi-layered neural nets and backpropagation learning algorithm, we
then introduce :

(a) A neural network model of the state machine : the connectionist state
machine.

(b) A neural network model of the synchronous sequential machine : we have
designed a specific neural memory device, counterpart of a bistable in the
digital domain, used in the feedback loops.

(c) A neural network model of the asynchronous sequential machine.
(d) Implementions of Mealy and Moore connectionist machines.

In the third part, experiments on sequences storage and recall with
connectionist state machine are described. The model of a connectionist state
machine ables to store a sequence of patterns shows two sets of inputs : inputs of
the pattern and inputs of the state and two sets of ouputs : outputs of the response
and outputs of the next state. Recurrent connections allow the state to be update
6i.e. the next state becomes the state for the next pattern presen!.'-ion). Using
SACREN*, a neural network event driven simulator, simulations show that this
model can remenber multiple sequences.

In conclusion, we illustrated that based on this approach further developments
may give reasonning capabilities to neural networks.

References

[1] T. Kohonen, "Self-Organization and Associative Memory", 2 nd Edition,
Springer Series in Information Sciences, Vol 8, Springer Verlag. Berlin 1987, 'ch. 1.
pp 16-21.
[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Internal
Representations by Error Propagation," in "Parallel Distributed Processing
Exploration in the Microstructure of Cognition," D. E. Rumelhart, J. L. Mac Clelland
and the PDP Research Group, Vol 1 :Foundations, Cambridge : MIT Press, 1986, ch. 8,
pp 318-362.
[31 S. I. Gallant, "A Neural Network Model for Sequential Task," First INNS
Meeting, Boston, 1988.
[4] Koavi, " Switching and Finite Automata Theory," McGraw-Hill, 1978, part 3.

*Developed under ANVAR contract n0 A8801006JAL.

I- 476

Phase Space Diagrams: Towards a Useful Characterization of Network
Behaviour.

Ronan Waldron
Department of Computer Science

Trinity College, Dublin
Ireland

Abstract

A taxonomy of neural networks, as dynamical systems, is introduced. The approach is a synthesis of current .iapunov methods,
and mom general dynamical system analysis methods. The combination allows for the application of an extensive battery of
mathematical techniques to the theoretical study of network dynamics, while at the same time ensuring that the results are as
a.cess ble as possible.

1 Introduction

Neural network activity is conventionally displayed by selecting a hopefully relevant instant in time, and
then plotting a two dimensional projection of the network structure. The particular values of the nodal
activities are often plotted as black or white squares, of varying areas. Several of these diagrams will
give a 'complete- description of the network's history. The central problem with this approach is the
difficulty of visualising, and hence understanding, the network's dynamics. Given that a neural network
is essentially a dynamical system, a comprehensive view of its dynamics, for all values of exogenous1

variables is desirable.
Our central concern in this paper will be with the provision of a broader perspective on the study of

network dynamics. The approach will be from the normal time series and configuration representations
of network behaviour, to a phase space representation, and so a taxonomy of network structures. It is felt
that this pictorial classification of networks will make the design of architectures much more accessible to
the uninitiated, and so will bring the common-place understanding of neural networks that much closer.

2 Time Series, and Configuration Space.

A network's configuration at any one time may be identified by an n-tuple of numbers--the activities of
the nodes in the network at that time. These n-tuples may be viewed as the coordinates of a point in
n-dimensional Euclidean space. This space is the configuration space of the network. A typical system
will have the dynamics encoded as a set of differential equations. For example, see the simple network
below:

dx'i(t) N

dt Aixi +ZY.Iij Zij

dz.i (t) - -D 1 j z, + E.'rx (2)

dt

'Exogenous variables, also referred to as constitutive parameters, are those values, usually constant within a simulation, that
define the particular system.

1- 477

Dij and Eii are signal functions. The set (.rd(t), -i, (t)) defines the network configuration at any one time.
The configuration space may be viewed as a vector space, and the point denoted by .F. To capture the
temporal behaviour of the network, as a whole, the gradient of the vector may be plotted as an arrow in
the vector space. The gradient is given just by Equations I and 2. The need for carrying out a simulation
for each set of initial conditions is done away with; the network's dynamics may be understood by
looking at the diagram as a whole.

The, utility of this mechanism for large networks, with some thousands of endogenous2 variables,
appears to be limited by the dimensionality of the space. This is a problem intrinsic to the study of many
dimensional phenomena. There are many different approaches to reducing the complexity at hand. The
first such approach we consider is the Liapunov method (see [2] for a detailed review).

The Liapunov method is a method for the global analysis of network dynamics. The function provides
a single variable that describes the behaviour of the system as a whole. The principle of minimization
of the Liapunov function enables us to see the global dynamics of the network. The problem of the high
dimensionality of the space is now circumvented. We may plot the Liapunov function against time, as a
simple two-dimensional plot, and so watch the global behaviour. In this case, the system has been greatly
simplified, and can readily approach the problem of the global behaviour of the network. For example,
the Liapunov method for content addressible memory networks allows the visualisation of the network as
a flow, into a set of vortices, or attractors. The vortices define a set of equivalence classes on the space
of initial conditions. To ensure error-free memory is equivalent to ensuring disjoint equivalence classes.
To ensure rapid access, is to ensure strong attractors, or equivalently, deep vortices.

For an illustration of the two different kirds of information conveyed, see the diagrams. Figure 1
shows the timeslice of the network after some thirty cycles. The convergence of the synaptic weights
can clearly be seen, as can the contrast enhancement. The same network is displayed in Figure 2, but
this time a small section of the trajectory through configuration space is displayed.

Figure 1: A Snapshot of Network Activity.

2
Endogenous variables are variables internal to the system. As such they would include all the nodal activities, and synaptic

weights.

I- 478

Figure 2: A Segment of a Trajectory in Configuration Space.

3 Network Dynamics

There are several ways of approaching the problem of understanding network dynamics. The simplest is
to simulate a discrete system of equations that either constitute the network in question or that approximate
the continuous dynamical system under investigation. Models of real neural systems are constrained to
be continuous, and hence our central concern in this paper is with these. To understand the complex
dynamics of a large system, it is inefficient to take the initial conditions as the exogenous variables, as
then each particular system within a class requires many simulations, one for each set of initial conditions.
A configuration space diagram of the system overcomes this problem, as it simultaneously displays the
dynamics of the network for all initial conditions.

The configuration space approach is intrinsically based on the temporal evolution of the system in
question. To model the behaviour as a function of time requires the solution of the system of equations
that link the activities. This is invariably impossible, once non-linear mechanisms have been introduced.
Numerical simulation has a limited generality. The same problem appears in the solution of even simple
physical dynamical systems. To attain a picture of the global behaviour of the system. a common approach
is to transfer the problem to phase spaced. Phase space is a multi-dimensional space, with the coordinate
axes defined by the set of all variables on which the future state of the system depends. For example, in
the above case (.r,(f). E,,:(t), z,,(f). 1is(t)) would be sufficient. This set gives the entire dynamics of the
system, as if it were a physical dynamical system. Time does not appear explicitly in this formalism. It
is the topology of the space that enables us to describe the motion. If we identify the Liapunov function,
for example, as the linkage relation between the endogenous variables, then we may solve the system for
the orbits.

The obvious question is what is the utility of transferring to the phase space? The variables do not
represent the actual state of the network, and so simplifications creep in. The signal functions may be
non-linear, but this drops out of the system of equations, once they are rewritten for phase space. The
powerful aspect of this sort of representation is the ability to study complex continuous dynamical systems.
To understand the continuous dynamics fully, we must understand the properties of the phase space as a
continuous medium. This can be achieved by the standard topo!ogical approach of mathematical analysis.
We will then have the computer siimulation, giving the layman a clear picture of the dynamics, and a

For an intuitive inlroduction to phase spaces. see I 11.

I- 479

detailed, mathematical gaurantee of the validity of the picture. This overcomes the ever present problem
with simulating networks--there are always points, or degrees of accuracy, which have been ignored
possibly with catastrophic results.

4 Phase Space As a Taxonomic Mechanism
A central problem in neural network research, and in its application, is that of the design of a particular
network for a given application. At present, the bulk of the work has to be done by an expert, who is
familiar with every aspect of a diverse range of paradigms. The difficulty of training a programmer, for
example, to this level of expertise makes neural network applications as yet uncompetitive. To facilitate
the design problem, a taxonomy of the various paradigms is suggested.

The basic idea follows from the work described abovc. The constitutive parameters, referred to above
as exogenous variables, also define a multi-dimensional Euclidean configuration space. The reason for
introducing the somewhat more obscure terminology for the two classes of variables was to highlight
just this parallel. A particular paradigm may be encoded into a Cartesian product of the exogenous
configuration space, and the endogenuous phase space. This diagrammatic representation is accessible to
the layman, comprehensive, and verifiable mathernatically.

If the network's central features may be captured in a single function, or in a general topological
property of the phase space, then the necessity for the representation of the network at that level of detail
is done away with. The illustration above of the visualization of content addressible memory as a flow
towards a set of vortices hopefully serves to indicate the power of this method:

5 Conclusion
Much rigorous mathematical treatment of neural network dynamics has been done. The inaccessibility
of the results to the general audience limits the utility of this approach. No one will dispute the merit
of having a mathematical proof that a network does in fact do what it seems to do. It is felt that the
introduction of phase space diagrams will make this kind of analysis much more accessible.

If a rigorous taxonomy is possible, by means of the phase space representation of the system, then
the design of complex networks may be achieved by the synthesis of a selection of the mechanisms,
characterised in the diagrams.

The utility of a small number of functions which characterise the dynamical behaviour of a network is
evident. It is felt that the topological properties of the phase space are sufficiently succinct to encapsulate
much information in a compact fashion. More work remains to be done on characterising the topological
aspects of various network models. However, as a mechanism for understanding the complex dynamics
of the networks, it is felt that it will prove to be invaluable.

References

[1] I. Stewart. Does God Play Dice? The mathematics of chaos.. Basil Blackwell, Oxford, England,
1989.

[2] S. Grossberg. Non-Linear Neural Networks: Principles, Mechanisms and Architectures. Neural
Networks, 1:17-61, 1988.

I- 480

Disproof of Two Conjectures on Capacity of Hopfield Associative Memuries

Xin Wang

Department of Mathematics, University of Southern California

Los Angeles, CA 90089

Abstract. In this paper, we disprove the following two conjectures: for a Hopfield associative memory

of n neurons, (1) it is impossible to have a number of memory patterns between 2n + I and 2" - 1 [71; and

(2) the maximal number of learning patterns which can be memorized as the only memory patterns is cn 2

for some constant c > 11111.

I. Introduction
The neural network we consider is a system of n interconnected neurons with possible states 1 and -1,

connection weight matrix W and zero threshold. The network updates its states asynchronously (i.e., only

one neuron i is chosen randomly with a equal probability to update its states at each time), according to

the following rule: if x is a current state of the network and zj denotes the next state of neuron i, then{ +1 if E Wiz, >0
X Zi= if Ei Wuj~j = 0

-I if EY Mixy < 0

= sgn(Wr),

Such a network is considered as a model of associative memory in the following sense. We use the

n-hypercube 8" {-1, 1}n as a pattern space with each vector being a pattern. A pattern v is called

a memory pattern if v is an equilibrium state of the network, i.e., v = sgn(Wv). A memory pattern v is

said to be recalled from a pattern z if, starting at x, the network will be led to (equilibrium state) v. We

will denote the neural network AM(W) as the associative memory with weight matrix W, the set of all

equilibrium states M(W) as the set of all possible memory patterns of AM(W), and the attraction domain

A(v) of a memory pattern v as the association set of v, i.e., the set of all possible patterns from which v can

be recalled (see [3,51).

One goal of using a neural network as a model of associative memory is that, given a set of m learning

patterns , m (1 : m _< 2"), to construct weights W such that the network has all l , ..., v,, as memory

patterns and each association set A(v,) is as "large' as possible.

One way to construct the weight matrix was proposed by Hopfleld 191 and other people. That is, using

the Hebb rule,

W = vv - mI =VVT - Mln
j•= I

(where In is the n x n identity matrix) for learning patterns V = [Uv,..., vm 1. (We will also denote AM(V)

for AM(W), and M(V) for M(W), provided V and W have the above relation.)

'Since order of vi's in V does not affect the formed weight matrix W, we can put V in a vector form.

I- 481

A very basic question of such a Hopfield memory is about its memorizing capacity. One probabilistic
capacity is the number K such that any set of less than K learning patterns will be memory patterns with
probability approximately 1. The capacity K of a Hopfield memory of n neurons was shown empirically to
be 0.15n [91 and was proved probabilistically to be of order n/log(n) [101. And an upper bound of K was
proved to be 2n for random learning patterns [21 and to be cn2 (for some constant c) for correlated learning

patterns 161.

Based on these results, people started to make conjectures on non-probabilistical capacity m - there
exists some set of m learning patterns which are memory patterns. There are two conjectures: for a Hopfield

memory of in neurons, (1) it is impossible for m to be between 2n + 1 and 21 - 1 17]; and (2) the maximal m
such that some set of m learning patterns V are only memory patterns without introducing any eztraneous
memory patterns (V = M(V)) is less than cn2 for some constant c greater than 1 [111.

In this paper, we will first study some properties of the Hopfield memory and then show that for some
in, the capacity m can be between 2n + 1 and 2" - 1, and further number m of learning patterns as the
only memory patterns without introducing any extraneous memory patterns can be of ezponent order of n.
Therefore, we disprove the above conjectures in general.

The followings are some mathematical notations and definitions used later in this paper (11,3,4,5]).

For any z, z' 6 Bn, we will denote by -z the complementary pattern of z, by 6(z, z') the Hamming
distance of z and z', i.e., the number of components where z and z' differ. Two patterns z and z' are
orthogonal if their inner product zTz, = E-z-x• = 0. If z and z' are orthogonal, then 6(z, z') = n/2.
Therefore, if there are some orthogonal patterns in P, then n must be even.

An iomeiry on BI is a map r B" -- B" preserving the Hamming distance, i.e., 6(rx, rx') = 6(z, e)

for any z, z' E B".

For a set of patterns v1,...,Vm, we denote V as both the matrix V = [V ...- , Vm and the set V = {v.i" =

I,..., m}. We will use Im and 0m to denote the m x m identity and zero matrices, respectively.
A memory pattern v is said to be a k-attractor if itr neighborhood ball with radius k (in the Hamming

distance) is in its association set A(v). In other words, v ?s a k-attractor if and only if v can be recalled from

any pattern z with 8(v, z) :5 k.

IL. Some Properties of the Model.

Lemma 1. If Bn [v,..., v2-] is an n x 2" matrix whose columns enumerate all vectors in Bn, then

the outer-product of Bn is

BRBn = 2"In.

Lemma 2. Suppose that learning patterns V = [Vj, ... , Im] are orthogonal. Then any patterns which

can expressed as linear combinations of V are memory patterns of AM(W), W = VVT - ml.

The following lemma which is used in proof of the next lemma is due to [5]. See also [3].

Lemma 3. A necessary and sufficient condition for v to be a k-attractor in a AM(W) is given as follows:

Vi,Vj1 , ... ,j (with ji,...,jk all different)

,v ((w),- 2 wi,,,,;, > 4 .

1- 482

lemma 4. Suppose mrn, (n is a multiple of in), and

I. 0. .

l,, I,,, ... 0,,J

for some t > 0. Then for any pattern v, v is a memory pattern in AM(W), if and only if

O , forsome u E B'.

Hence (i). the set of all memory patterns of AM(W) is M(V) = {[UT'..., UTrJT Iu C B.) of in the matrix

form,[

1 Em

(ii). the number of memory patterns IM(V)I is 2";
(iii). every memory pattern is an exact k-attractor where k - ln/2m - 1/21.

Theorem 1. (Isometric Preservation of k-attractors). Let r be any isometry on B0. And let V

i,,..., t,,] are learning patterns and V' = v(V) = frvi,...,ru,, be the image of V under the isometry r.

Consider two AM(W) and AM(W'), where W = VVT - ml and W' = VVT - ml. Then, an pattern v is
a k-attractor in the AM(W) if and only if r(v) is a k-attractor in the AM(W').

Corollary 1. If V and V' are two isometric sets of m learning patterns. Then the numbers of memory

patterns of the AM(V) and AM(V') are equal, i.e., IM(V)I = IM(V')I.

Theorem 2. If m is such that the Hadamard matrix 2 HM = [ul, ... , ut](U, E Sm) exists and mrn, then

the AM(V), where

0,, 4., 4. ,,

= U ... "'" u] n/m (henceW m=m 0),,

H. Ul .. ,, m I, .n

has 2' memory patterns, and each memory pattern is exactly an [n/2in - 1/2j-attractor.

M. Disproof of the Conjectures.

There is an inductive way to construct Hadamard matrices H,,8,31, when in = 2q for q 1, 2,...:

2 -1 1 H H2 ,-, -H 2 1-1

2 A Hadamard matrix H,. is an orthogon.l m x m matrix with entries 1 or -1. For construction and properties of

H., see 181.
I- 483

Theorem 3. Let

and V' = M(V) be the set of all memory patterns of the AM(V). Then V' are the only memory patterns in

AM(V') without any extranenous memory patterns, i.e., V' = M(V'). And moreover V' are n/2rn - 1/2J-

attractors. 3

Corollary 2. For some n it is possible for a Hopfield memory of n neurons to have a number of learning

patterns of up to exponent order of n as the only memory patterns without introducing any extraneous

memory patterns.

Proof. If we take n = 2+', rn = 24 = n/p for some p > I and V as in the theorem, then M(V) are the

2"' = 2"/P learning patterns which are the only memory patterns ([p/2 - 1/2J.attractors) in the Hopfield

memory AM(M(V)) without any extraneous memory patterns.

Acknowledgement. The author thanks Dr. E.K. Blum for his valuable guidance to this research.

References
[1] P. Baldi. 'Group Actions and Learning for a Family of Automata'. J. Computer and System Sciences.

Vol. 36, 1988, 1-15.

[2] P. Baldi, S. Venkatesh. 'Number of Stable Points for Spin Glass and Neural Networks of Higher Orders'.

Phys. Rev. Lett. VoL 58, 1987, 913-915.

[3] E.K. Blum. 'Mathematical Aspects of Out-Product Asynchronous Content-Addressable Memories'.

U.S.C. Sept. 1988.

[4] E.K. Blum, X. Wang. 'Mathematical Properties of Out-Product Asynchronous Associative Memories'.
submitted to the NIPS, Nov., 1989.

[5] M. Cottrell. 'Stability and Attractivity in Associative Memory Networks'. Bsol. Cybern., Vol. 58, 1988,

129-139.

[6] E. Gardner. 'Maximum Storage Capacity in Neural Networks'. Europhy. Lett., Vol. 4, 1987, 481-485.

[7] K. Haines, R. Hecht-Nielsen. 'ABAM with Increased Information Storage Capacity'. IEEE Conf. on

Neural Networks, San Diego, VoL II, 181-189, 1988.

[8] M. Hall, Jr. Combinatorial Theory. 2nd Ed. Wiley-Interscience Series in Discrete Mathematics. 1986.

[91 J.J. Hopfield. ONeural Network and Physical Systems with Emergent Collective Computational Abili-
ties'. Proc. Nat. Acad. Sci. USA, Vol. 79, April, 1982, Biophysics, 2554-2558.

[10] R.J. McEliece, E.C. Posner, E.R. Rodemich, S.S. Venkatesh. 'The Capacity of the Hopfield Associative

Memory'. IEEE TPans. Information Theory, Vol. IT-33, No. 4, July, 1987, 461-482.

[11] P.D. Wasserman. Neural Computing: Theory and Practice. Van Nostrand Reinhold. 1989.

3Briefly the theorem says M(M(V)) = M(V). Any I! r ,;.- patterns V of such property is called idempotent in
14], where a general condition for V to be idempotent is given.

I- 484

Generalized Neural Network Model And Its Properties

X. Xu
W. Tsai

Computer Science Department
University of Minnesota
Minneapolis, MN 55455

ABSTRACT

This paper proposes a neural network which generalizes Hopfield's model. In other
words, Hopfield's model is a special case of our model. Various properties of the model
are studied. The generalized model is more powerful. both in theory and practice (Xu.
Tsai. & Huang, 1988. Xu & Tsai. 1989). It is also easier to formulate some application
problems in the proposed model than in Hopfield's model.

1. Introduction

Among many neural network models, Hopfield's model (Hopfield, 1982, f984) is particularly attrac-
tive because it has been demonstrated that it can potentially solve computationally difficult problems
such as traveling salesman problem (Hopfield & Tank, 1985). This paper introduces a new neural network
model which generalizes Hopfield's model. In other words, Hopfield's model is a special case of the pro-
posed model. Various properties of the new model is studied. It is contended that the new model is more
powerful and in many cases easier to use for solving practical problems.

2. The Proposed Model

A neural network is a collection of neurons interacting with each other. The behavior of a neural
network is completely determined by the specification of the interaction. By specifying different interac-
tions among neurons, one gets different neural networks.

2.1. Interaction Level amrng Neurons

This section introduces the concept of interaction levels.

Let Vi denote the state of neuron i, suppose Vi E [0, 1[, the interaction level specifies how vi
depends on other neurons' states:

Interaction Level p: At this level, other neurons' states in the network influence Vj in the form

N N

....................V2

where ti2.., E R.

Hopfield's model has interaction level 0 and 1 only, and this may cause some limitations.

I- 485

2.2. The Proposed Binary Model
In this model. V E A0, 1}, for i -1 ..1, N, where N is the number of neurons in the network, and

neuron interactions are on level 0, 1, 2.... to K-1, K< N. Let Vi (t) denote the state of neuron i at
momer, t, and each neuron updates randomly in time its state according to the following equation:IVN N

V, (t+l)- sgn(. .. V ... V ...N+

21-1 'K-1-1
INN N"•• 'ti ,,vi, (t)vi.(0)+ ti, vi, (0)+ I, , i .. N

where s9n is defined as follows:

sgn (z)W {0 < 0

where 1i is the threshold value of neuron i. Furthermore, ti, ... i, = tr(,I. i,, with u(ii1 • ip) denot-

ing a permutation of ii, .. ip,. This means that interactions on all the levels are symmetric, and all
"diagonal" elements of t (t with two or more subscripts equal) are non-negative.

Like the Hopfield neural network, the above neural network has the property of converging to
stable states.
Theorem 1: Let (V VN) denotes the state of the network, if the neural network updates its state
sequentially, i.e., no more than one neuron is allowed to update its value at any time, then the neural net-
work will converge to a stable state (dependent of the initial state).
Proof: Due to the space limitation, the detailed proof is omitted, the idea is to construct the following
function:

K 'K

1 NN N

The function E is called the energy function of neural network or the Lyapunov function. To prove the
theorem, one only has to show that the function E is non-increasing, and show that when E stablizes, so
do the neurons' values (for detailed proof, see (Xu, Tsai, & Huang, 1088)).

The above theorem is a successful generalization of the one for the Hopfield neural network. But
on many other aspects, properties are more difficult to establish than just applying the same methodology
(from Hopfield's network). As an example, let us examine the oscillating cycle length in parallel updating
mode, i.e., when all neurons always update their values at the same time.

It is well known that for Hopfield's network, the oscillating cycle length is at most 2 in parallel
updating mode. We introduce an example to enlight the difference introduced by more complex interac-
tions among the neurons.
Example 1 Consider a neural network with n + 2 neurons, those neurons are numbered from I to n, a
and b, as shown in Figure 1. The double-arrow line indicates an interaction of level 1 between the neu-
rons, and the values above them indicates the interaction strength or weights. Those arrow lines incident
to the square box represent an interaction on level 2, which involves neurons 1, a and b. Also suppose
that the threshold value of each neuron is as following:

ti =-n + 1.5 -i, i ==1...n

t= t6 = 0.5

and the level 2 interaction strength

I- 486

0.7

+ Figure I

If the neural network starts from an initial state (1, 0 0) (i.e., neuron I has value 1, and all other neu-rons having value 0, the last two bit is for neurons a and b), then by parallel updating, we will have thefollowing oscillating cycle:
.tU,)0, (0 1. ...' o) (,...(oo,1, ,) (0, ... ' 0,1,).V.

which is of length ni +~ i. The example used only one interaction of level 2, and it increased the cyclelength to 0(n).

2.2. Thes Proposed Continuous Model
In this case, neuron state is a continuous variable instead of being binary, i.e., Vi E [0, 1J. It is akind of binary model simulated in an analog way. Each neuron's state is determined by the following dif-ferential equation:

dulN IV

-- "' +Xa "ai - K-ii Ij 'K-1 +

1 NN N
ti~i i Etiiivi+ I,), i N

with u1 G (Vi), where G is a strictly increasing function, with G2 (1) - o and G (0) =-oa Otherconditions are the same as in the binary model except there are no restrictions on diagonal elements of t.Theore~m 2: The above continuous neural network always converges to stable states.

Proof: Like in the binary c~ise, we consider the following energy function:

E- fl 'oG (v) dv #. -N i.. . V

41,2vilsvi2 - Eivi

It can be shown that dE<0 and when -E.0, ---. 0 and ---.- 0.dtdt dt dt

I1- 487

3. Applications in Optimization
There are many attempts to use neural network (Hopfield's model, mostly) to solve optimization

problems. The generalized neural network provides a more powerful mean. For example, the generalized
neural network has been successfully used to improve the performance of Hopfield's network for Travel-
ing Salesman Problem (Xu & Tsai, 1989). This may be the first time a neural algorithm has produced
competitive results compared with the ones obtained by conventional heuristic algorithms on TSP. The
new model is also easier to use to formulate some optimization problems into neural network frame.

As an *illustrative example, consider the 3-Satisfiability problem, which is a well-known
NP-Complete problem (Garey & Johnson, 1979):

Given a set of boolean variables U = (VI, ..., VN,VI, .I. 14), and given a set C of 3-clause on U, C
= (c ... , cM), with c =- X, + X. + XV, where Xi, X, and Xh are from U, the question is that if there
exist an assignment of the boolean variables such that all clauses have "TRUE" value.

This problem can be stated in an equivalent version, i.e., if there exists an assignment of the
boolean variables such that all clauses have "FALSE" value, where the clauses are now in the form ci =
x x xk.

Formulating the problem (of the second versioni in the new neural network model is straightfor-
ward, let Xi denote Vi with i < N, and X i denote Vi - I - Vi, then the following function represents
the object function to be minimized:

E XXjXk
(sij.k)g7

by (i,j,k) E C it really means that X1XiX1 E C, note that I - Vi has been used instead of V.

The neural network is not difficult to specify, there are exactly N neurons, each neuron corresponds
to a boolean variable, so by Vi we mean either the boolean variable or the corresponding neuron, then the
neuron updating function is as follows:

Vi,. (t+1) - sn(- F,] Xy (f)Xk (9) + E ; (tXY ())M
ViXjChW VjXJXkW

where by ViYiXX EC we denotes the membership of the clauses in the set C, while by Xj (t)Xk (M) we
denote the states at time t of corresponding neurons.

Note that 1-Satisfiability and 2-Satisfiability are in P, but 3-Satisfiability is NP-Complete. Formu-
lating the 3-Satisfiability problem in original Hopfield's model is very complex.

4. Reference

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability, New York: W. H. Freeman
and Co.

Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational
abilities" Proc. Nail. Acad. Sci. U. S. A. 79, pp. 2554-2558.
Hopfield, J. J. (1984). "Neurons with graded response have collective computational properties like those
of two-state neurons.", Proc. Nail. Aad. Sci. U. S. A. 81, pp. 3088-3092, May.

Hopfield, J. J., & Tank, D. W. (1985). "'Neural' computation of decisions in optimization problems", Bio-
logical Cybernetics, pp. 141-152, July.

Xu, X., Tsai, W. T., & Huang, N. K. (1988). "A generalized neural network model", CSci TR 88-30,
Department of Computer Science, University of Minnesota.

Xu, X, & Tsai, W. T. (1989). "Effective neural algorithms for traveling salesman problem", CSci TR
89-50. Department of Computer Science, University of Minnesota.

I- 488

Effects of neuron properties on the performance
of associative memory networks

Hiro F. Yanai and Yasuji Sawada
Research Institute of Electrical Communication

Tohoku University, Sendai 980, JAPAN

1.Introduction

Model neural networks have been used as mathematical models
of the central nervous system of biological systems, and also
investigated with an aim to discover the principle of parallel
information processing. For the sake of understanding the central
nervous system of a biological system, i.e. brain, there are some
ways we can take. One is to try to understand the brain by
collecting experimental facts obtained in the field of biology or
physiology. Another way is to examine it from the macroscopic
viewpoint based on psychological facts. However, it is important
as well to analyze model neural networks constructed from well-
defined elements to grasp essential functions of the brain.

For the development of the research of neural networks,
first, one should make clear the ability of homogeneous neural
networks. One must find out what property of components(neurons,
synapses) affects what part of ability of a neural network
system. In fact, it is known that the property of, pmeons affects
the ability of auto-associative memory networks 1 ',". Secondly,
by examining how the shortcomings of a homogeneous network are
overcome in a structured network, the principle of information
processing of a neural network may be clarified.

In the present paper, we mainly pay attention to the first
aspect. We use discrete model neural networks with correlation-
type synaptic weights. In section 2, the relation between
associative recalling ability and self-connections of neurons is
investigated for the network with fixed synaptic weights. In a
broad sense, self-connections are considered parameters
determining the response characteristics of neurons. In section
3, we see how the behavior of a neural network system is affected
by the individual property of neurons to learning signals. There
we discuss the robustness of a system to learning signals
(environment) for unsupervised learning. The improvement of
performance by the presence of adaptation mechanism is presented.
This would be an attempt to accept an adaptation property as a
paradigm for the behavior of neurons in unsupervised learning.

2. Relation between associative recalling ability and response
property of neurons

Consider a neural network consisting of N neurons and with
feedback to itself. From the state of neurons xi(t) at time t,
the state at t+1 is calculated by

xi(t+1) = sgn[-Ewijxj(t) + bxi(t)], (1)

I- 489

where xi(t)=-1 or 1, w., is a synaptic weight from j-th to i-th
neuron, b is a self-connection of a neuron, and

sgn[u]= -1, u<0,
1gn, u10.

By constructing synaptic weights

wij = (1/N)3 smismj
m

from patterns to be memorized sI, S2 , ... , sM(sm.=- 1 or 1), the
network behaves as an auto-associative memory. When b>O, neurons
have hysteretic properties. Given pattern ratio r(=M/N) which is
a measure of loading to the network, associative recalling
ability for this type of network is known to be the best for b

If we construct synaptic weights

wij = (1/N)3sm+lismj,
m

the network can work as a sequence-associative memory. If each
component of consecutive memory patterns is generated randomly
and independently, recalling ability is the best for b=0.
However, in general, if each component of patterns is generated
by the rule Probtsm+1. L sm*i=p, recalling ability is shown to be
the best for b;-q by numerical experiments, where q=1-2p. Fig.1
shows examples of these resuJts. From the state x(t) at time t
and the pattern to be taken s at that time, direction cosine is
defined by at=(1/N)E-istixi(t). Fig.2 shows an experimental
result to see the best value of b. There a 2 0 is plotted against b
starting from a 0 =1.

1

a 20

i0 0I

03

0 20 0 20 0 -0.2 -0.4

time t b
b=0 b=-0.2

Fig.1 Effect of self-connection for Fig.2 Effect of self-con-
sequence association. N=500, M=70, nection. N=500,M=70,q=0.2.
q=0.2. a 0 =1. Ten trials.

1- 490

To interpret the experimental results for sequence
association, we have derived an equation for the single-step
transition of directi n cosines by using the method of
statistical neurodynamics). When a single sequence of length M
is memorized to the network, we have

at+, = 1[(1+at)(+q)F (1+Q)at+b (+at)(-q)F((1-Q)at-b)

+(4 at)(1+q)F((1+Q)at-b)(1a)(1q)F(
(1Qrt- +-a)1)F(1-Q)at4.b)-]'

G= ./r+2q2 (r+at 2)/(1 q2)

where

Q=q(1+q2)/(I-q 2), r=M/N, F(u)=• _ •--rdt.
-LAC

When qp0 and at=l, for example, a +Iis maximized for b -q, and
the best value of b increases with r. Note that b<0 corresponds
to refractoriness of a neuron, and for this case eq.(1) is a
version of Caianiello's neuronic equation4

3. Learning with adaptive neurons --- robustness to learning
signals

In this section, we see how the outcome of unsupervised
learning is affected by the adaptation(in a similar sense as
habituation) of neurons. There are some models proposed for the
adaptation of a network as a system(e.g., ref.5). But our concern*
is the effect of adaptation of individual neurons on the system.
The behavior of the network is described by

zi = sgn[ui], ui = wijxi - hi

and the learning equations with adaptation(of thresholds) are

Tdwij/dt = -wij + Pzixj, (2)

T'dhi/dt = ui, (3)

where (>O, and ', T• I1 (adiabatic approximation). As an example,
unsupervised learning for Bidirectional Associative Memory
(BAM) '-type network is considered here(see Fig.3). Learning
signals(patterns) are presented repeatedly to a representation
layer as a vector x, and at the same time the synaptic weights
between the two layers and thresholds hi are modified according
to eqs.(2) and (3) until they reach equilibrium. Thresholds of
neurons in a representation layer are fixed at zero, and neurons
in a hidden layer have adaptation property. As is well known,
correlation(Hebbian) -learýing network is sensitive to similarity
between learning signals ". In the case where learning signals
are such that Prob[xm.=-1]=p., there occurs total loss of signal
information for piN0.ý(Fig.4ea) presents this fact). If there are
adaptation properties in neurons, however, the network is robust

1- 491

x1 z

0x 2 z 2 U

C)
0

I..'

0
xN zN 0 5 0 5

iteration

representa- hidden (a) non-adaptive (b) adaptive
tion layer layer Fig.4 Effect of adaptation property

(R) (H) for BAM-type network. N=200,M=10,pi=
0.3 for all i, P=10. R-+-H: 20 connec-

Fig.3 BAM-type network tions per neuron, H-->R: full connection

to unfavorable learning signals(Fig.4(b)). Finally, we should
mention that it is essential for this network to have sparse
forward(R-->H) connections.

4. Summary

For correlation-type model neural networks, we have shown
that associative recalling ability as a system is greatly
affected by the property of individual neurons, i.e., hysteresis,
refractoriness and adaptation.

References

1)Yanai,H.& Sawada,Y.: Associative memory network composed of
neurons with hysteretic property, Neural Networks, to appear

2)Yanai,H.& Sawada,Y.: Integrator neurons for analogue neural
networks, IEEE Trans. Circuit and Systems, to appear

3)Amari,S.& MaginuK.: Statistical neurodynamics of associative
memory, Neural Networks 1, 63-73(1988)

4)Caianiello,E.R.: Outline of a theory of thought-processes and
thinking machines, J.Theoret.Biol. 2, 204-235(1961)

5)Kohonen,T.& Oja,E.: Fast adaptive formation of orthogonalizing
filters and associative memory in recurrent networks of
neuron-like elements, Biol.Cybern. 21, 85-95(1976)

6)Kosko,B.: Bidirectional associative memories, IEEE Trans.
Systems,Man and Cybern. 18, 49-60(1988)

7)Amari,S.: Neural theory of association and concept-formation,
Biol.Cybern. 26, 175-185(1977)

I- 492

NEURAL NETWORKS FOR MAXiMUM LIKELIHOOD
ERROR CORRECTING SYSTEMS

JAR-FERR YANG, CHI-MING CHEN, AND JAU-YIEN LEE
DEPARTMENT OF ELECTRICAL ENGINEERING

NATIONAL CHENG KUNG UNIVERSITY

TAINAN, TAIWAN, R. 0. C.

ABSTRACT
In this paper, the neural networks for the soft-decision error correction systems based on the solution

of maximum likelihood are presented. The match filtering structure of the combined detections and
error correcting neural networks is suggested to further improve the correcting performance. Considering
imperfect functions of demodulator, equalizer, and synchronizer, two simple learning algorithms, the
least mean square error (LMS) and the waveform reshaped averaging (WRA) methods, are employed to
adjust neural weights for achieving robust error correcting systems. Simulations of the proposed coding
neural networks comparing to hard-decision error correction system are presented.*

I. INTRODUCTION
Conventional error correcting systems build on digital logic design have been employed for

improving the reliable performance of digital data transmission and storage systems. For the
limitation of logic design, the optimal bit detection has to be completed and sampled prior to the error
correction systems. This is so-called hard-decision coding I1l. In order to improve the correction
performance, the soft-decision concept has been introduced by increasing the quantization levels of the
signal set to achieve a M-ary coding techniques at the expense of highly increased system cost and
complexity [1,2]. Furthermore, this conventional logic error correcting system perform adequately only
under the assumption that the supporting systems and itself are in good conditions. There are however
instances such as imperfect functions of demodulator, equalizer, and synchronizer or deficient
components of coding circuit systems, etc. where such an assumption is not valid. In this case, the
performance of error correction systems decreases dramatically or fails to function properly.

Artificial neural systems technology recently has earned a lot of attention for many researches and
applications since Hopfield and Tank's publishes [3,41. Neural networks have been recognized as a
greatest potential technology in areas where many hypotheses are pursued in parallel and high
computation rates are required. Error correcting is one of the techniques which need highly parallel
processing at high speeds for critical tasks as memory read checking. At the same time, the native
learning behaviors of neural networks can adapt themselves to operate acceptably even in the
conditions of imperfect functions. The Hamming nets [51 and their realized neural circuits [61 ebulliently
initiate the neural system technology to the applications of error correction coding.

In this paper, we propose an error correcting neural network for soft-decision error corrections system
which is based on the solution of maximum likelihood (ML) in Section It. Furthermore, the optimal
detection neural network based on the concept of match filtering of coded waveforms is employed to
further improve the performance of conventional coding in Section III. In order to restore the
degradation of neural systems operating in ill-behaved conditions, two simple learning algorithms,
least mean square error (LMS) and the waveform reshaped averaging (WRA) methods are suggested to
adjust neural weights for achieving robust error correcting systems in Section IV. Simulations of the
proposed coding neural networks comparing to hard-decision error correction systems are presented in
Section V.

II. MAXIMUM LIKELIHOOD ERROR CORRECTION CODING NEURAL NETWORKS
Consider the case in which the unquantized output of the demodulator is fed to ',ie (n,k) code

decoder. Thus, each binary waveform is demodulated by the optimum demodulator by the optimum

This Research was supported by Taiwan International Standard Electronic Ltd., Taiwan, Republic of
China.

1- 493

pr

demodulator (a match filter followed by a sampler) and a codeword is represented by a sequence of n
random variables. Let Sii denote the binary waveform of the i-th bit of the j-th codeword. Each binary
decision variable can be written as

(1) Z, = ,Sij + Nii

and i=1,2,...,n and j=1,2,...2 k . The variables (Nij} are the samples of the additive Gaussian noise with
zero mean and variance (noise power) No /2. Thus, the density function of random variable Zi is

(2) Pn(Z I Sij) = 1/(2tNo}exp{-(Zij - Sij) 2/No)

Once a codeword random variables Zi, i=l,2,...,n is received without the knowledge of j of transmitted
codeword. The decoding process consists of choosing one out of the 2 k possible transmitted sequences.
Under the assumption of memoryless channel which Nij are independent for all i and j. Likelihood
function of j-th codeword is then given by

(3) L =[P•(ZI I SOi) = 1/(nNo (zi - Si,)2/No

For simplicity, the log-likelihood function instead of likelihood function in Eq. (3) is employed for the
decision of possible codeword with maximum value among all codewords. Excluding the irrelevant
terms in Eq.(3) for decision making, the optimal decoding criterion based on the solution of maximum
likelihood becomes that the codeword corresponding to the maximum value among*

n
(4) ,= ZiSij- Si9/2

i=1

j=1,2,...,2k is selected [21. It has been shown that this soft-decision approach presents higher reliable
than that achieved by hard-decision error correcting scheme [2]. That is, the decoder can take
advantage of the additional information contained in the unquantized samples that represent each
individual binary transmitted waveform.

Figure I shows the soft-decision neural network consisting of a decoding (D-) net, a likelihood (L-)
net, and a maximum picking (M-) net. The L-net which calculates the likelihood functions in Eq.(4) is
composed of 2k neurons and n input nodes. The offset 13 of the j-th neuron is equal to the sum of Sij2/2,
i=1,2,...,n. The weights Wij = Sij connect the i-th input node to the j-th neuron for i=1,2,...2k and
j=1,2,...,n to calculate the log-likelihood function Lj in Eq.(4). The M-net which was discussed in [1]
selects the maximum output neuron from the 2k possible outputs of the L-net. The D-net decodes the
maximum output of M-net into the corresponding k-bit message codeword for the completion of the error
correcting.

For the antipodal signals set, Sij = + f if the i-th digit of the j-th codeword is 1 and Sij = - V if

the digit is 0. The all offsets become constant 15= n/2 which can be ignored. Then the likelihood
function in Eq. (4) can be further simplified as

n
(5) L= Zisign(Sij)

i=1
Thus the weights in the L-net are Wij = sign(Sij) = +1 if the ith digit of the j-th codeword is 1, and Wij=
sign (Sij) = -1 if the digit is 0. In this case, this neural network is identical to Hamming nets and circuits
suggested in [5,61.

1- 494

III. MATCH FILTERING ERROR CORRECTING SYSTEM
Soft-decision error correction system can improve the performance of hard-decision error correction

system. However, both approaches need an optimal bit-demodulator which is a bit-waveform match
filter followed by a bit-sampler. The difference between these two approaches is that the former uses
the unquantized value of the sampler but the latter uses the quantized one. It is intuitive that the
correction performance will be further improved if the whole waveform of the corresponding codeword
are employed instead of sampled by a bit-sampler. This received waveform signal of the j-th codeword
is given by

(6) Z(t) = SP(t) + N(t), to <t<to +nT

where T is the duration of digit symbol. The likelihood function (21 of the j-th codeword after
introducing any orthonormal signal set followed by the similar derivations in Section 11 is finally given
by

.OT Sj/ 7 j

(7) Lj Z(t)Sj(t) dt - 1/2f S,2(t) dt

Thus, the likelihood function is equivalent to match filtering which is the optimal detection of the
codeword waveform. The implementation of match filter can be approimated by

n-I mn
(8) L1 = Z(i,q) Sj(i,a) - Sj2(i,q)/2

i= q=1

where Z(i,q) and Sj(iq) are the signal of Z(t) and S(t) sampled at to + iT + q(T/m). When a waveform
antipodal signal set is sampled once (m=1), Equation (8) is equivalent to Eq. (4). This case can be seen in
baseband digital transmissions which their equalizations as well as their bit and frame
synchronizations are assumed perfect.

The match filter error correction neural network which has the same configuratiorn as shown in
Figure 1 is composed of nm input nodes and 2k neurons in the L-net. The j-th neuron output is

n-1 in

(9) rj j + Wiq, jZiq

i=0 q=1

The optimal weights Wiq,j = Sj(i,q), i=1,2,...,n and q=1,2,...,m, connect the signal Ziq = Z(i,q) of the
(i,q)-th input node to the j-th neuron with offset

n-1 m

(10) j= Sj2(i,q)/2
W~ q_-1

For the general antipodal signal set, these offsets i 3j, j=1,2,...2k become constant which can be ignored.

IV. LEARNING ALGORITHMS FOR ROBUST CODING NEURAL NETWORKS
Although the aforementioned error correction neural networks have better correcting performance

than traditional logic systems, these neural systems with learning capability as well as logic systems
perform adequately only under the assumption that there are no imperfect functions of demodulator,

1- 495

equalizer, and synchronizer and no deficient components in the decoding systems. In this section, the
native learning behaviors of neural networks were further utilized to adjust the weights of the L-net for
enhancing the neural correcting system operated acceptably even in case of imperfectness.

First, the least mean squared error (LMS) criterion [7] is used as a learning rule of neural systems.
During the learning period, the j-th transmitted codeword is assumed known for neural systems, the
desired output of the j-th neuron is obtained by substituting Z(i,q) = Sj(i,q) into Eq. (8) as

n-I m
(11) Ljiopt t Sj2(i,q)/2

W) q=_

The mean square error of the output of the j-th neuron is defined as

(12) 01~ = Eoe,121 = E~frj-Ljoptj2]

where ej = rj - I.o1t is the error between the desired and the actual outputs of the j-th neuron. The LMS
learning algorithm [81 can be simplified in terms the current error ej and data Ziq as

(13) Wiq,j(p+l) = Wiqj(p) - 2g•jejZiq(p)

where Jj > 0 is the convergence factor and index p denotes the p-th iteration step of the learning process.
For assuring the convergence of the LMS learning algorithm, the bound [81 of convergence factor has to be
chosen in

(14) 0 < Pj < l/Ljopt

In Section IV we have learned that the optimal weights have to be the transmitted waveforms
themselves. If the weights are updated by adding the received signal waveforms, then they will
gradually converge to the received waveforms which is the optimal ones. So, the waveform reshaped
averaging (WRA) method is suggested as a learning algorithm for neural systems. The WRA learning
rule is given by

(15) Wiqj(p+l) = (1 - zj) Wiqj(p) + ajZiq(P)

where 9 is an averaging (or forgetting) factor. For truly arithmetic average, the non-constant factor aj=
l/p, p=1,2,... can be used [9].

V. SIMULATIONS
For the purpose of verifying the aforementioned error correcting neural networks, the simulation

results of hard-decision logic system, soft-decision neural network, and match filtering neural network
with and without learning are presented in this section. Without loss of generality, the (7,4) Hamming
code and antipodal signal sets are employed in the following simulations.

After 80000-codeword runs at various signal to noise ratios (SNR), Figure 2 shows the codeword
error probabilities of hard-decision, soft-decision, match filtering for signals with square antipodal
and raised cosine waveforms. These results are simulated in the cases of perfect equalization and
synchronization. The soft-decision neural correcting system is better than the hard-decision logic
system. The match filtering neural correcting systems (with m=9) outperform both hard- and soft-
decision systems which are the bit-detection and bit-sampled of the waveformed signal. The
performance of square waveform match filtering neural correcting system which needs the infinite
bandwidth of transmission media is better than that of the raised cosine match filtering one.

For the raised cosine match filtering neural system, Table 1 shows the numbers of error codewords
after 80000-codeword runs at SNR=Odb in the conditions for: (a) perfect synchronization; (b) 2T/9-time-
delay unsynchronized (unsync) without learning ability; (c) unsync with 10-iteration LMS (p = 0.005)
learning; (d) unsync with 10-iteration WRA (a = 0.1) learning. The results show that the imperfect

I- 496

I

(2T/9 delay) synchronization deduces the correcting performances dramatically. However, both
learning algorithms mostly recovered the ill-behaved synchronization. The WRA learning rule has
better improvement of performance than that of the LMS learning rule for compensating unsynchronized
problems.

Algorithms perfect sync 2T/9 delay unsync with unsync with
I . unsync LMS learning WRA learnin

Codeword 0.0002 0-5034 0.0354 0.0069
--error rate I ITable 1. The codeword error rate of neural error correction networks

V. CONCLUSION
In this paper, the maximum likelihood error correction neural network systems are presented. Two

simple learning algorithms, least mean squared error (LMS) and the waveform reshaped averaging
(WRA) methods, are also suggested to adjust the proposed neural weights to acquiring robust correcting
capabilities. In other words, these neural correcting systems with learning capabilities not only
increase the correcting performance but also elaborate the applicability for the whole digital data
transmission systems. The WRA learning algorithm has better correction performance than the LMS in
imperfectness of synchronization. However, the LMS learning algorithm has its own potential for
imperfect equalization error correction system which will be discussed in the future publication by the
authors.

REFERENCES
[11 S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall,
Inc. Englewood Cliffs, New Jersey, 1983.
[21 S. Senedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1988.
131 J. J. Hopfield and D. W. Tank, "Neural Computation of Decision in Optimization Problems,"
Biological Cybernetics, Vol. 52, pp. 141-152, 1985.
[41 J. J. Hopfield and D. W. Tank, "Computing with Neural Circuits: A Model," The Science, Vol. 233,
1986.
[51 R. P. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP Magazine, April,
pp.4-22, 1987.
[61 Y. Takefuji, P. Hollis, Y. P. Foo, and Y. B. Cho, "Error Correcting System Based on Neural Circuits,"
Proceedings of International Neural Symposium, 1987.
[71 B. Widrow, J. M. McCool, M. G. Larmimore, and C. R. Johnson, Jr., "Stationary and Nonstationary
Learning Characteristics of the LMS Adaptive Filter," IEEE Proceedings, Vol. 64, pp. 1151-1162, 1976.
[81 B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, Inc. Englewood Cliffs,
New Jersey, 1985.
[9) K. C. Sharman, "Adaptive Algorithms for Estimating the Complete Covariance Eigenstructure",
Proceedings IEEE Int. Conf. Acoust., Speech, Signal Processing, 1986.

1- 497

d ~digit of the
d£ d~ k codeword I

H neuron #

Figure ~ ~ ~ ~ Mxiu N.xmmlklioderrcrectionr erakyse

L _j

I.I

hi1SA WnOSm

% a

o-*

00~ -d) (b) 2

Si2n*2 to Mateo Ratio (dB)

Figure 2. Simulated performances of error correcting
systems: (a) hard-decision logic; (b) soft-decision neural
network; (c) raised-cosine and (d) square-waveform matched
filtering neural systems.

1 - 498

A New Kind of Associativc Memory Network Model

Hong Fcnip Yin Ju Wci Tai

Institute of Automation, Academia Sinica

P. 0. BOX 2728, Beijing, China

ABSTRACT -- A new kind oJ associative memnory network model which is more similar to human
associative memory cnmpured wvith foupjeld nct and other model is proposed in this paper. T"he learning
algorithm eJthe model is based on Pereepiron. The nodes in the network connect with each other, but the connec.
tions are not sjrnmetry Under some conditions, the number oj samples which can be stored in a net is given
theoreticalljy and samples to be memorized can become the stable attractors aj the nonlinear djamical neural
system. For the purpose that the net has ability to escape krom a non-sample attractor to attain a sample
attractor when the system operates d)nomically. a deepening Impression learning algorithm is given. In order to
achilee the ability that arbitrary numnber oJaam plEs con be stored in a net. an augmented node method Is also pro.

vided. In aict. the linear insepurable problems in patteres classijcation can be solved bythe method.

1. Introduction

It is very important to investigate the principal of associative memory. It is well known that ability of
associative memory characterires the feature of human brain. People can recall clearly the things that have
been forgotten. In recent years, artificial neural network is provided as a satisfactory tool for simulating
associative memory. From a distorted image or a part of image, a clear and complete image can be obtained in
the network by associative principle. The Ilopfield net is one of the neural network models which has capacity
of simulating associative memory(1i 21 . But there are some limitations of the given models. A new
associative memory model as well as the learning nlgorithm It proposed In this paper. The shortcomings ex-
isted in other neural retworks can be overcome by this approach. A nd the theoretical proofs are also given.

2. The principic of associative memory

Hopficld net has two major limitations when used as an associative memory. First, the number of sam.
ples that can be stored and accurately recalled is limited. If a large amounts of samples are stored, many
non-sample attractors will be produced, but samples may not be the attractors of the network. Hopfield
showed the number of samples(M) can be stored in the net is less then 0.1 5 times of the nodes number(N) in

the net when the samples are generated randomly. Another limitation of lHopfield net is that it can not distin.
guish sample from many similar versions. When a sample is considered as a initial state of the net, the result of
the association may be not itself but another similar sample.

The new neural network model proposed in this paper is more similar to the procedure ori human

associative memory. The model is also a net that nodes connect each other, but the connections are not sym-

metry. That is, there are two weights between two nodes i and j, w, is the weight which send informatiou

from i to j, ir,, is the weight through which I receive information from j, two are different. The behavior of

such net is also similar to Hopfield net and is described by a nonliucar dynamical system. For an arbitrary ini.
tial state, when the time is long enough, the states which can be attained in system can be attained are called
attractors of the dynamical system. If an attractor ih a sample, we call it a sample attractor, otherwise, it is cal.

led non-sample attractor.
IF a pattern X(0) iS a iuitial state of the system, after k steps, the state or the system is X(k), then the

evolution equation is

x (k+ l)J (iw,,x,(k)). (i)

1- 499

Where J (x)is a step function

,+I x)UO
-- I X<O

Finally, the net move to an attractor, if the attractor is a sample attractor, we consider that the sample Is
associated by the pattern X(0).

The procedure of neural net memory is completed by the following Pcrccptrou algorithm[31. The compo.
nents of the sample vectors may be two values +1 or -i. The samples are arranged circularly.

X(O), XV) I(t), ...
where X(Mn + k) is same as the k-h sample vector. For X1'.), the weights correcting algorithm is

W,,(I +- 1) -- WA +) q- (X'd(1) -- J W A) W.'X , 0)))x , (t) (2)

When all weights do not change for all samples, it is considered that the learning process is end. About
such neural net model, there is theorem given following:
Theurem I: For a given M samples, and each sample is composed of N components. If the vectors constructed
by any N-1 components of M samples are linearly independent in N-) dimensional Euclidean space, and M
< N, then the Iearninjl process be above method is certainly convergent,and all samples can become the sta.
bin attractors of the dynamical net system. That is, if a set of samples are well distributed in the vector space
and the number of samples is less then the number of the net nodes, the net can memorize all of them.
proof: (omitted)

Theorem 1 indicates that the number of samples that can be stored in a net Is almost as same as the num-
ber of net nodes. If the samples are well distributed in the space, the conditions in.theorem I can be satisfied
easily. At this point, all samples can be memorized by the nets. Comparing with Hopfield net, although such a
net with same uodes is two times large as flopfichl net, the ,,jiher of" ample that can be stored in such net is
thre, tims.. l..cr then Ilopfield net. It can Plso distingiish vcry similar patturris. Somc problems existed in
Hopfield net can be solved using in net. The ikarning process is vcry similar to som. human behaviors to
memorize some pieces of information through reciting over and over again.

3. A method for enthancement of associative

Experiment results explicated that, when large amounts of samples are stored in the net, many non-sam.
pie attractors are also produced. As input patterns have some errors with. samples stored in net, the associative
results are often non-sample attractors, which make recall failure. A method to solve such problems is pro-
posed.

This method is consistent with such psychological phenomenon of deepening impression. After some
samples have been remembered, people often repeat again more times. So the impression of the samples Is
deepened. From the view of neural net system, in this time, there are some difference between the sample
attractor and non-sample attractor. So through the procedure of recalling, it can be tried to escape from
non-sample attractors and to attain the sample attractors. Where the algorithms are corrected as follows:
The learning algorithm:

When x '() w J (E W)) and E'Wa)(1> 7'

W,,,(+ 1) = w,,0)

Others, correcting weights
W h(t + I) = I,,Y) + Ixr1)xQ)

Where T> 0 is an impression threshold. The above learning algorithm implicates that the samples are not
only the attractors of the net. For a threshold T , when the net attains a sample attractor, all values of the
nodes received is also larger then T. But for non-sample attractors, such conditions are often not satisfied.
Based on this fact, the recall can escape from non-sample attractors. A molion equation is given in following:

The initial input pattern is ,(O) , after k stcp, the state of system is ,(k) , let

s, -- .,x (K)

I- 500

Then, x (4,+ I) + 1,it e 0 S# i; x (k +)--I wizen S,< - .

whe", - 7'< so < T

+ 1 triils probability (V + s)/ 2T

-I with probability (T - s,)/ 2T
SO when thc net attains& a Sample attratctor, it no0 Iourcr mlovc. WVlilc attaining a tioti-samnple attractor, it

continucs its motion. Such a miethod is similar to Simiulated Annealing mecthod (SA). When a randomor disturb.
asuet is happened, the states of the c nt cart escape foni unexpected attractois. The method also differs from
SA in some aspects. First, the aimed state of SA is only one, but this method many have many Aimed states.
W~hen attaining a aimed state, the net njo lonircr moves, but SA continue movingc. The case ira n tate ist th'n
aimed state can not be decided by SA itself. Otlici methods are also needed to decide whether or not the
associative results are the samples in lloprield net. itneed not in this nect.

4. An augmented node miethod for memory of* frbitrary number samplcs

Theorem I explicates that the number of samplcr, that net cai be stored in a miet is limited by the number
of net nodes. The number of iiet nodes is as same as the number of sample components. So when time sample
components are few, the neural nict can only store few samples. This is a very large limitation in solving many
real problems.

To solve such problems, an augmented node method is proposed. One uode is augmented for one sample.
For sample vectors X I, K2, ... , X the augpmented sample vectors are

A', -X (A ,+1,-l.., -1, +1)

Y. -X, 1 , 1

XM=(X, -1, -, 1, +-1, +1 I
Besides, tile original nodes of the net not only connect with each other but also connect with all or aug.

mented nodes. An augmencted node also connects with, all original nodes, but does not connect with other
augmented nodes. A threshold node is also added. The state of the threshold node hats value +1 and does not
change. The helinvior of the net can be described as, when the net move to a sample attractor, only one aug.
mented node is excited, the other augmented nodes are inhibited. The net hase N + M + I nodes. For this net,
we have following theoreml.

Thearen: 2: If a neural nset is constructed by above method, then the learning process according to (2) is
conlverg~ent.

proof: (omitted)
T~he aur~mentcd node of a sample tias obvious psychological meanitng, it represents the concept or the

sample. Whe~n a sample inputs to the net, Its augmented node is excited. When at concept node is excited, the
sample represented by the node can be associnted. The original nodes and augmented nodes represent differ.
eat informationl respectively in two layers.

Whenr the augmented itodcs connect with each oilher, another associative memory is formed in concept
layer. For example, characters aire the concepts of thme images, words are the concepts of the characters. Sen.
tences can be considered as a kind of concepts or words.]in this way, information represented int dil~rencrt layer
can be connected closely.

Certainly, this niethod can also solve thie linen, ifiscparnablc problems in, pattern classification. Such prob.
hems are difficult problems, which had inhibited the development of the neural net rcsearehl4l. XOR problems
can not be solved dit ectly by Perceptr on.

There are no connections between two input miodes in solving classification problems, The net hans tlizce
Layers: input node layer, augmentecd niode layer and outpitt miode layer.

When learning, the net first learn the weight, between the input layer and augmernted layer, and then de.
cddes time weiplhts which connent wvith, outl'ut iindc!;. For ani input patrn.crl the hinormration is pm opagtild to
augmentced layer at first, then output nodes pioduce the output values according to all the receiving informa.
ti on.

1 - 501

5. The simulation results

Here the computer simulation results are showed. I0 two valued images to be memorized are showed in
figure 1. Each image has l Ox 10 components. By Ilopfield net to store them, when the 10 samples sie used as
initial inputs, it can be seen that only "'8" and `9" attain themselves and become the stable attractors of the net.
The associative results of other samples are '8l" and '9' sample or other non-sample attractors. That are
showed in figure 2.

Using the nets proposed in this paper to store the same samples, the learning algorithm is convergent.
That is, all samples can be remembered in the nets. When samples arc used as initial inputs, all can move to
themselves in one step. Using the samples with noise as initial inputs, they also associate to their original sam.
ples as showed in figure 3. If the initial inputs are arbitrary patterns as showed in figure 4., the associative re-
suits may be non-sample attractors. Some times they may be limited cycles.

By using deeping impression net to store the samples, in which the input patternr is the same as above, it
man be seen that all associative results are the samples as showed in figure 5.

36 samples are also stored in a net. 0 12 3 4

OI234 SEISI
SE'Ies €EBEJEJE

Fig 1. Fig 2.

I023 03HHH 03BE1

5EI'!HLIIIBL BLILB2
Fig 3. Fig 4. Fig 5.

6. Discussion

In this paper we proposed an associative memory model and several methods, the model has some prom.
ising properties of Hopfield net, Perceptron, Back-propagation and Simulated Annealing etc., and overcomes
some shortcomings of them. The number of the samples can be stored in a net is proven theoretically. The sat-
isfactory simulating results are also gotton. The model is similar to human associative memory and thinking
way in some aspects. The method for enhancement of associative memory can make net escape from
non-sample attractors and attain sample attractors. A net can store arbitrary number samples when the aug.
mented node method are used. The method has also solved the linear inseparable problem in pattern classifi-
ation. The model and methods enhance the ability of neural nets so that they are able to solve more real prob.
ems. In fact, memory is the base of intelligence. So the research on associative memory is also an important
aspect of exploring intelligent behavior.

REFERENCES
11 J. J. Hopfield, 'Neurons with Graded Response Collective Computational Properties Like These
Two-State Neurons', Proc. Nail Acad. USA, May 1984.

[21.1. J. Iopfield and D. W.Tank, 'Computing with Neural Circuits: A Model' Science, 233 ,1986.
[31F. Rosenblatt, 'The Perceptron: A Perreiving and Recognizaing Automaton ', Project PARA, Cornell

Aeronaut. Lab Rept. 85-460-1, 1957.
[4] M. Minsky and S. Parpert, PERCEPTRONS. Cambridge, MA, MIT Press, 1969.

I- 502

Neural Network for Image Representation
using Back Propagation

Tatsuhiro Yonekura Shigeki Yokoi Jun-ichiro Toriwaki

Faculty of Information Engineering, Engineering Department
Nagoya University Furocho,Chikusa-ku,Aichi, 464,Japan

Abstract
This paper presents a method of representing image data in terms of a basis

pattern set called "primitives" which are B.P.learned by neural networks. The
main feature of this network lies on the way of providing the sample pairs
(sample input and associated supervisory data),that is, inputting the pulse signal
to a single unit of the input layer, to associate with the supervisory image pattern
to appeare in the output layer. In this way, the several image data can be
compressively stored in connection matrices. The coding scheme of representing
pattens in connection matrices is theoretically analyzed . Although there have
been already a few network models proposed for the same purpose (image data
compression and 2-D signal transform by using non-orthogonal function sets) by
G.W.Cottrell et,al and J.G.Daugman respectively, we discuss in the proceedings ,the
advantages of our present model regarding the feature extraction as well as the
learning speed of images.

1. Introduction
The neural-net proposed for 2-D signal data compression by G.W.Cottrell et.al},

shown in Fig.l, is referred as an auto-association (or self-association) network
because of its self-mapping scheme of input/output responses. The property of
this network is (I)a capability of 2-D signal encoding is obtained in the
connection between the input layer and the hidden layer, whereas that of
decoding is obtained in the connection between the hidden layer and the output
layer,therefore.(2).being able to be used as a compressive transmission system of
image data.

Issues on them are, however, (1)not being good in data compression rate as that
of the singular value decomposition 3), (2)not able to be used for feature extractor
because the network does not keep the image data in it and so, the internal
representation of the network hardly gives a description of the images.

Thus, our goal is to establish a computational model which analyzes and
compresses the 2-D signal data by representing it in terms of some suitable
elementary patterns which the network itself may organize internally.

Now, the present paper,
I). introduces a method of transformation of pattern signal into the form of
network's connection matrices using multi-layered network,
2). shows that a sequence of images are expanded in terms of a basis pattern set
which is organized by the network itself, and finally
3). demonstrates some experimental results indicating the feature extraction
capability of the network.

2. Pulse Pattern Network
The general architecture of our neural network for signal transform is shown in

Fig.2.
We may have now three layered neural network, with M units on the input layer,

N units on the hidden layer and IX x YI units on the output layer.

1- 503

Input layer Output layer

[XxYjunits [Xxylunits

Hidnlayer,

Fid.1 Auto-association network for data comp ression
N images are used for both input and supervisory signal to the neural net.

Input layer Output layer

21 units [XxYlunits

Hidde.n layer
Pulse signal 1unit

Fig.2 Pulse Pattern Network for image transform

A certain input unit is stimulated whei a corresponding image
is shown asa supervisory signal.

Let us deal with a set of M images : Fm(x,y), where m-l,2M; to be used as a

supervisory signal , each of which is associated with a "pulse" signal(

stimulation at maximum level on a certain unit) of input layer, so that each unit

of the input -layer can be fired to recollect a corresponding image. That is, the

Pulse-Pattern Network (PPN) is defined as a multi layered network whose training

sample pairs (input and supervisory data) are given as follows;

INPUT a pulse signal (a single unit stimulated at maximum magnitude)

SUPERVISORY : an image to be associated with the unit in the input layer.

In order to learn the pulse-versus-pattern correspondence, back propagation

algorithm 4) is applied.
We may be able to associate each input unit with any image in the image set by

using this scheme. Let us give a brief explanation on this mechanism.

3. Theoretical Background
Now we shall discuss some properties of the network by analyzing the internal

representation of the three layered PPN. Our concerns are

I), how is a set of images represented in the network?
2). and what does PPN have to do with an auto-association network?

Provided that we have a set of M images (Fm(x,y): m=l,..M; x=l,..X; y=l,..Y), each

of which has the size of [XxY] . Also we have a network with M input units, N

hidden units, and [XxY] output units (see Fig.2). Moreover, let Hn(x,y,t) (where, n=

1- 504

O.L..N; x-l....X; y-l,..,Y) denote the output pattern appeared when only the 'nth
hidden unit is excited (assume that all other hidden units are inhibited) and
especially HO denote the pattern when no hidden unit excited, at the time when t
steps of back propagation training are done. Since the i/o response of each unit
employs sigmoidal function

I
f(x) -(t

I + exp(-x)

By the definition, HO,..Hn are expressed as a function of the connection weight
Wn(x.y), between the hidden unit no.'n' and the unit on the grid(xy) of the output
layer ,with the exception of WO(x,y) being the threshold of the unit on the
grid(x.y).

1
HO(x,y.5)=(2I + exp(WOx, y))

1
Hn(x,y,t) = 1

1 + exp(WO(x, y) - Wn(x, y))
In more general case where each unit of the hidden layer outputs the value An,

where 0 < An 51. the pattern appeared on the output layer C(x,y,t) is also written
in terms of Wn(x.y) as follows,

1
C(x,y,t)=)1 + exp(WO(x, y) - Wn(x,y) x An)

n

By substituting Wn(x.y) of Eqs.(2) and (3) in Eq.(4). we have
1

C(x,y,i) N (5)
1 + XHO(xy,t) n.1 (1-HO(x,y,f))x1Hn(x,y,0)

For simplification, rewriting this in a symmetric form regarding C(x,y),HO(x.y)
and Hn(xy), we have,

rl-C(x,y,)) 1_ 1 HO(x,yt) .1-,, L r-Hn(x,y,t) - 1 - HO(x,y, l)

where, the function g(x)-ln(x /(l-x)) for O<x1l, can be aprroximated by (4x-2) by
using Taylor expansion, neglecting terms higher than the third order. Thus we
have

N
C(x,y,t) - I1O(x,y,i) = (An x (Hn(x, y,*) - HO(x, y,1)))...(7)

ri1

Now Eq.(7) indicates that the general output pattern C(x,y,tj can be
approximately represented by a linear combination of En(x.y,t) - Hn-HO which is
the contribution of the hidden unit no.'n' to the output layer, subtracting the bias
pattern. Training by back propagation insures the total error e(t), total sum of
(F(x,y) - C(x,y,t)) 2 over all (x,y). decreases as t increases. Now we call these
En(xy,t) with HO(x,y,t), as 'primitives', in which way we could say that any
supervisory pattern shown in the output layer must be represented in terms of
primitives which are to be optimized as it learns.

Secondly, each coefficient An, of the primitive En in Eq.(7) is expressed by the
input signal and the input-hidden connection weights

.1

where Pn is a threshold of the hidden unit no.'n', Pmn is a connection weight
between the input unit no.'m' and the hidden unit no.'n', and X(m) represents the
external input to the unit no.'m" of the input layer. In the case of PPN. we can

I- 505

assume that it is the only time when Fm(x,y), the sample image no. 'm', is shown
that no other input unit than no.'m" is fired at maximum of I(others are all 0).

Therefore, in the PPN, the coefficient Anm of the primitive En. being used to
recollect the sample pattern no.'m' is written as,

Anm = (9)
1 + exp(Pn - Pm n)

This indicates that the coefficient Anm depends only on the connection weight
between the input no.'m' and the hidden no.'n' so it cannot be corrupted by
unnecessary competition whereas the auto-association network can (i.e. in case

of auto-association net, the coefficient A'nm is represented as a function of the
product sum of Fm(x,y) and P(x,y)n over all grid(i,y) of the input layer, using the
same notation). So, there exists a linear mapping T: Pm,n->P(x,y)n , provided that
the organized primitive set (En) is identical between the PPN and auto-
association, which we show in the proceedings.

Some experimental results of image transform in terms of primitives are also
shown with their learning speed of data compression for both PPN and auto-
association network in the proceedings (we've already acquired some results
showing that PPN gets less error by 30 thru 50 % than auto-association does for
the same image data with the same number of units and learning steps over a few
hundreds).

4. Conclusion
I). we proposed a computational model namely Pulse Pattern Network (PPN) for

image representation using back propagation. The usage of the layered network
is quite different than that of a multi layered 'Perceptron', since PPN is trained
for recollection of the pattern data rather than for perception.
2). we analyzed the internal representation of PP'N which learns recollection, so
we could introduce an idea of primitive referring the basis pattern set (though
they are non-orthogonal nor complete, as Gabor wavelets(2)) organized by the
network.
3). The clustering (or feature extraction) capability of PPN is also shown by a few
experimental results in the proceedings.

Researches are to be made as to the following subject
1). theoretical study for the capacity of the multi (three or more) layered PPN.
2). application work for feature extraction of images using PPN.
3). analysis of the relationship between the two schemes(Perceptron-like network
and PPN) , i.e, how Perceptron and PPN should interact each other to represent
and/or recognize the pattern effectively (these two are sometimes referred as
the bottom-up approach and the top-down approach (5)(6)(7), so this is actually the
problem of bottom-up / top-down interaction).

References
(I). Cottrell,G.W., Munro.P. and Zipser.D. : "Image Compression by Back Propagation: An
Example or Extensional Programming", ICS Report 8702 J1987)
(2). Daugman.J.G.: "Relaxation Neural Network for Non-Orthogonal Image Transform" ICNN
1988 vol.1 pp.547-560 (1988)
(3). Bourland.H. and Kamp.Y.: " Auto-Association by Multilayer Perceptrons and Singular
Value Decomposition",Biol. Cybern.59, pp.291-294 (1988)
(4). Rumelhart.D.E. and McClelland.J.L.: "Parallel Distributed Processing", Vol.I, Chap.8, MIT
Press,(I1986)
(5). Omori.T and Nagase.T.: "Image Understanding by Neuron Network - representation and
operation or internal image-" IJCNN 1989 vol.2 pp.235-240 (1989)
(6). UlIman. S. :"Visual Routines; where bottom-up and top-down meet" in 'Pattern Recognition
by Humans and Machines", vol.2, no.6, pp.15 9 -2 18 Academic Press,(1986)
(7). Grossberg.S.:'Neural networks and natural intelligence". Chap.6, MIT Press,(1988)

I- 506

Learning Theory

Neural Representation of Information

Shun-ichi Amari

Faculty of Engineering, University of Tokyo
Bunkyo-ku, Tokyo 113, Japan

It is interesting to know how information is represented in the brain. There
have been considered two different types of representations. One is a localized
representation, in which a signal is represented by an excitation of neurons at a
localized position of a neural system. THe self-organizing formation of a cortical
map, the learning vector quatizer, etc. are such examples. The other is a distruibuted
representation, in which a signal is represented by a distributed excitation pattern of
a neural system. The associative memory model is a typical example of the
distributed representation. We have an intermediate one, a sparsely encoded
representation which is a distributed one but the number of excited neurons are
relatively few.

It may be of no sense to discuss which the true representation is. We believe
that both representations are used in the brain in a modified manner. Neural
networks have ability to represent information in either manner, in particular to
create such representations by learning or self-organization. The important thing is
to elucidate the characteristics, i.e., capabilities and limitations, of both types of
neural information representations and to show their merits and demerits. We
summarize the theoretical studies on these subjects and give some new results.
These are useful not only for elucidating neural memory mechanisms but also for
designing neural pattern recognition systems.

In order to show characteristics of automatic formation of localized
representation of signals, we show a model of a simple self-organizing nerve field.
Such a model was proposed by Willshaw and von der Malsburg [1976]. A revised
model was mathematically analyzed in detail by Amari [1980, 1983], Takeuchi and
Amari [1979] and by others, and a simple but powerful model was proposed by
Kohonen [1982, 1984]. A self-organizing local representation provides with a
convenient prepocessor of a large-scale pattern recognition system. It is important to
study 1) metrical properties and 2) topological properties of such a representation.
We show how the resolution of a localized representation is determined in such a
map. At the same time, it is shown that such a model has an amplification property
that frequently applied signals become to occupy a larger part of a neural system to
represent them. The topological property is much more interesting : How is the
topology of a signal space kept in its map (localized representation) in a neural
system, when their dimensionality is different ? Takeuchi and Amari [1979] proved
an interesting property that an automatic quantization emerges mnder a certain
condition in the map, even when both signal space andi neural sysLem nave a

I- 509

continuous structure. The Kohonen map does not have this property, because of the
lack of dynamics of the neural system.

The correlation type associative memory is a learning distributed
representation studied for long years. A signal is represented by an attractor of a
recurrently connected neural network. One interesting problem is the information
capacity of such a representation : How many attractors can be formed without
confusion in a network of n elements ? Another interesting problem is the areas of
the basins of attraction and its dynamical prociss of recalling. It is also interesting to
know the effect of encoding a signal into a distributed excitation pattern to be
consolidated as an attractor.

It was known that, for a random encoding, the capacity is nI(2logn), if exact
recalling is required (McEliece et al. (19871). The capacity is about 0.15n, if
approximate recalling is permitted (Hopfield [1982], Amit et al. (1985], Amari and
Maginu [1988]). The strange behavior of dynamics of recalling process was analyzed
by Amari and Maginu (1988]. A capcity of about 0.27n is obtained by Morita [19881
by modifying the recalling dynamics. It was also shown that a cascaded neural
system has a larger capacity of 0.27n (Meir and Dc..ma-ny [1987]). Amari [1988]
showed that a recurrent net has also a larger capacity of 0.27n, whcn a number of
sequences of patterns are memorized in a recurrent network as state transition
sequences instead of attractors.

It was known that the information capacity increases drastically (Palm [19801),
if a sparse encoding scheme is used. However, the basin of attraction is small in this
case. Amari [198,] showed that the information capacity is n2/{24(logn) 2} in a sparse
encoding case and that the basin of attraction is sufficiently large, if an activity
control mechanism is added.

A temporary or working memory is required to have a huge information
capacity, because it is required to keep any signals temporarily as steady states. To
this end, it is known that a randomly connected symmetric network has a capacity of
about 2°3 . On the other hand, a basic competition model of Amari and Arbib [1977]
has a capacity of,,C,, because it can store any pattern in which k neurons are excited
out of n. It is another interesting problem how to encode signals in the case of a
working memory and how to compare one signal with others. Recent physiological
findings of Miyashita [1988] are suggestive in this respect.

The present paper discusses these problems from a theoretical point of view.

References

S. Amari and M. A. Arbib, Competition and cooperation in neural nets. Systerns
Neurosctence (J. Metzler ed.), pp.119-165, Academic Press, 1977

- 510

S. Amari, Topograhic organization of nerve fields. Bull. of Math. Biology, Vol.42,
pp.339-364, 1980

S. Amari, Field theory of self-organizing neural nets, IEEE Trans. Systems, Man
and Cybernetics, Vol.SMC-13, Nos. 9 & 10, pp.7 4 1-748, 1983

S. Amari, Associative memory and its statistical-neurodynamical analysis. Neural
and Synergetic Computers, ed. H. Haken, Springer, Series in Synergetics, 42, pp. 85-
99, 1988

S. Amari and K. Maginu, Statistical neurodynamics of associative memory. Neural
Networks, Vol.1, No. 1, pp.63-73, 1988

S. Amari, Characteristics of sparsely encoded associative memory. Neural Networks,
2, in press

D. J. Amit, H. Gutfreund and H. Sompolinsky, Storing infinite numbers of patterns
in a spin glass model of neural networks. Physical Review Letters, 55, pp.1530-1533,
1985

J. J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities. P. Nat. Acad. Sci. U.S.A., vol. 79, pp. 2445-2458, 1982

T. Kohonen, Self-organized formation of topologically correct feature maps. Biol.
Cybern., 43, pp.59-69,1982

T. Kohonen, Associative Memory and Self-Organization. Springer-Veri ag, 1984

R. J. McEliece et. al., The Capacity of the Hopfield associative memory. IEEE
Trans., Inf. Theory, IT-33, pp. 461-482, 1987

R. Meir, and E. Domany, Exact solution of a layered neural network memory. Phy.
Rev. Lett., 59, pp. 359-362, 1987

Y. Miyashita, Neural correlate of visual associative long-term memory in the

primate temporal cortex. Nature, vol. 335,817-820, 1988

M. Morita, to appear

G. Palm, On associative memory. Biol. Cybern, 36, pp. 646-658, 1980

A. Takeuchi and S. Amari, Formation of topographic maps and columnar
microstructures. Biol. Cybernetics, Vol.35, pp.63-72, 1979

D. J. Willshaw and C. von der Malsburg, How patterned neural connections can be
set up by self-organization. Proc. Roy. Soc, B-194, pp.431-445, 1976

I - 511

Adjoint-Operator Algorithms for
Learning in Neural Networks

J. Barhen N. Toomarian S. Gulati
Center for Space Microelectronics Technology

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109

Abstract: A new methodology for neural learning of nonlinear mappings is presented.
It exploits the concept of adjoini operators to enable a fast global computation of the
network's response to perturbations in all system parameters.

1. Introduction

A considerable effort has recently been devoted to the development of efficient computational methodolo-
gies for learning. Attention has largely focussed on the back-propagation algorithm because of its simplicity,
generality and the promise that it has shown in regard to various applications [6,8]. More recently, Pineda
[5] has derived a generalization to back-propagation for recurrent networks. In a similar vein, Williams and
Zipser [9] have presented algorithms for learning tasks with temporal dependencies. Pearlmutter [4] has
proposed a similar technique which minimizes an error functional between output and targeted temporal
trajectories. In a significantly different approach, Barhen, Gulati and Zak [2,3] recently introduced neural
formalisms to efficiently learn nonlinear mappings using a new mathematical construct, i.e., terminal at-
tractors [10]. Terminal attractor representations were used not only to ensure infinite local stability of the
encoded information, but also to provide a qualitative as well as quantitative change in the nature of the
learning process. In particular, they imply loss of Lipschitz conditions at energy function minima, which
results in a dramatic increase in the speed of learning.

"The development of learning algorithms is generally based upon the minimization of a "neuromorphic"
energy-like function. A fundamental requiremens. of all pre-'iously mentioned methods is the computation of
the gradient of this objective function with respect to the various parameters of the neural architecture, e.g.,
synaptic weights, neural gain, etc. In the present paper we introduce a new methodology for their efficient
analytical computation, as a single solution of a set of "adjoint" equations.

2. Adjoint Operators

Consider, for the sake of generality, that a problem of interest is represented by the following system of
N coupled nonlinear equations

(= 0 (2.1)

where 0 denotes a nonlinear operator [Il]. Let f and 0 represent the N-vector of dependent variables and the
M-vector of system parameters, respectively. We will assume that generally M >> N and that elements of
f5 are, in principle, independent. Furthermore, we will also assume that, for a specific choice of parameters,
a unique solution of Eq. (2.1) exists. Hence, fl is an implicit function of P. A system response, R, represents
any result of the calculations that is of interest. Specifically

R = R(5,p) (2.2)

i.e., R is a known nonlinear function of p and 0 and may be calculated from (2.2) when the solution 0i in Eq.
(2.1) has been obtained for a given P. The problem of interest is to compute the "sensitivities" of R, i.e.,
the derivatives of R with respect to parameters p,, p -" ,. ,M. By definition

dR 9 R01 OR 0(._ -+ -. -(2.3)
dp. Opt 00 Op5

I - 512

Since the response R is known analytically, the computation of OR/ap, and OR/aOi is straightforward. The
quantity that needs to be determined is the vector Oi/Op,5 . Differentiating the state equations (2.1), we
obtain a set of equations to be referred to as "forward" sensitivity equations

- " - ,(2.4)

To simplify the notations, we are omitting the "transposed" sign and denoting the N by N forward sensitivity

matrix 8@/8a by A, the N-vector fi/Op, by Og and the "source" N-vector -O@/Op• by $j. Thus

A'i = "1 (2.5)

Computatikn of the response gradient using the forward sensitivity equations would require solving a system
of N nonlinear algebraic equations for each parameter p,,, since the source term in Eq. (2.5) explicitly
depends on p. This difficulty is circumvented by introducing adjoint operators. Let A* denote the formal
adjoint of the operator A [1,7,12]. The adjoint sensitivity equations can then be expressed as

A* = 1 i'. (2.6)

By definition, for algebraic operators [12]

P (AV O = M" " = M (" ') = W'! • W (2.7)

Since Eqs. (2.3), can be rewritten as

dR _ OR OR (2.8)

if we identify

-•
=

ORO " " f" (2 .9)

we observe that the source term of the adjoint equations is independent of the specific parameter p,. Hence,
the solution of a single set of adjoint equations will provide all the information required to compute the
gradient of R with respect to all parameters. To underscore that fact we shall denote OP as 0. Thus

dR OR
- + 0 • P. (2.10)dpp Opp

3. Applications to Neural Learning

We formalize a neural network as an adaptive dynamical system whose temporal evolution is governed
by the following set of coupled nonlinear differential equations

Un + IC, Un = ETnrn 9(Ytm urn) + (3.1)
m

where u. represents the mean soma potential of the nth neuron and Tnm denotes the synaptic coupling
from the m-th to the n-th neuron. The constant ien characterizes the decay of neuron activity. The
sigmoidal function g(.) modulates the neural response, with gain given by y,; typically, g(7z) = tanh(-yz).
The "source" term, In encodes component-contribution by the presented attractors ka of the k-th training
pattern via the expression

kI = ['an g(0. u.)] ' ifnESx
0 ifnESUSY(3.2)

I- 513

The topographic input, output and hidden network partitions Sx, Sy and S1 are architectural requirements
related to the encoding of mapping-type problems. Details are given in [2]. In previous articles [2,3,101 we
have demonstrated that in general, for 6- = (2i + I)" and i a strictly positive integer, such attractors have
infinite local stability and provide opportunity for learning in real-time.

To proceed formally with the development of a learning algorithm, we consider an approach based upon
the minimization of a constrained "neuromorphic" energy-like function E given by the following expressionE~~f, E E w. T.2 +`. n

1 + EZZ. krc (3.3)
2 m i n

where the constraints are of the form,
= . - 9(7n fin) ifn ESxUSy
0 if'n E S, (3.4)

Typically, a positive value like 2 is used for a. The weighting factor Wnm. is constructed in such a fashion, as
to favor locality of computation. The indices n, m span over all neurons in the network. Lagrange multipliers
corresponding to the k - nth constraint are denoted by h An. The superscript - denotes quantities evaluated
at steady state. The proposed objective function includes contributions from two sources. First, it enforces
convergence of every neuron in Sx and Sy to attractor coordinates corresponding to the components in the
input-output training patterns, thereby prompting the network to learn the underlying invariances. Secondly,
it regulates the topology of the network by minimizing interconnection strengths between distant synaptic
elements to favor locality of computation.

Lyapunov stability requires an energy-like function to be monotonically decreasing in time. Since in our
model the internal dynamical parameters of interest are the synaptic strengths Tii of the interconnection
topology, the characteristic decay constants ici, the gain parameters 'y and the Lagrange multipliers kA,,
this implies that

E=Z ~ dE. E+ ~ +Z;AE+dE <0 (3.5)

One can always choose, with rr > 0
dE

"Td = (3.6)

where rr introduces an adaptive parameter for learning, [see, e.g., [2,3]) Similar expressions can be con-
structed for k and j, e.g.,

dE dE
K, = d-E and N = rd Et, (3.7)

with r,,, r, > 0. Then, substituting in Eq. (3.5) and denoting by B tensor contraction, one obtains

V•xE E A < rr (TE E)TTE) + r.(VýE BVýE) + r,(7,ED VE) (3.8)

Without loss of generality, one can assume r = rT = = r,. The equations of motion for the Lagrange
multipliers '`% must now be constructed in such a way that Eqn. (3.8) be strictly satisfied. In addition,
when the constraints are satisfied, i.e., as 'r,. - 0 in Eqn. (3.4), we require that 'i, - 0 V I. We have
adopted the following analytical model for the evolution of A,

A + 1/(A + 0) (3.9)
where IH = VTE-DVTE + VýEBVýE + .,EýBVvE and A = VXEeVAE and 0 is an arbitrary
positive constant. It is straightforward to prove that this model fulfills the above requirements.

1- 514

In relating adjoint theory to the neural learning algorithms, we identify the neuromorphic energy-like

function, E in Eq. (3.3), with the system response R. Let P denote the following system parameters:

P = (T11,...TVN, I CI-'"C' I 71,...' NI ...} (3.10)

The adiabatic solution to the nonlinear equations of motion (3.1), for each training pattern k, k = 1,... K
is given by

hi,.(•,p) = _ AKi"n + 9 Tnm g(7rn khi.t) + kj. = 0. (3.11)
m

So, in principle k ii. = 1. [fT, k, ', ka,,...]. Using Eqs. (3.11), the forward sensitivity matrix can be
computed and compactly expressed as

k' I• 6n n. fm
Okirgr Mn+ L--nm Tn

= k%, 6.m + 7m h'-m T.'n (3.12)

where jm represents the derivative of gm with respect to urn. The adjoint sensitivity matrix is

kAn,. = . m6m + 7n k•. T. (3.13)

Using Eqs. (2.9) and (3.3), we can compute the adjoint source,

Sn= - n kr-1 'y, (3.14)

The system of adjoint equations can then be constructed using Eqs. (3.13) and (3.14), to yield:

E ['in6.n + Tmr . .] &ir = - •. ru-1 ' g (3.15)
m

Notice that the above system, (3.15), is linear in k. Furthermore, its components can be obtained as the
equilibrium points, (i.e., ti -i 0) of the concomittant dynamical system

-Rn Vn = I tn [ZTmn &vm + tn hrau-] (3.16)
m

To proceed with our derivation of learning algorithms, we differentiate the steady state equations (3.11) with
respect to each parameter, p,,, to obtain the forward source term, OsM

"03k - ([-kii I 6p,.., + [6i, g(1j i'j)]6bp.., + [Tni k, +iii+2In I) (3.17)

Substituting Eq. (3.17) in (2.10), and recalling that our abstract response corresponds here to the energy
function E, yields

dE = O k 5 . ' .jk (3.18)

dp,. +p ki

The explicit energy gradient contributions for parameters p. = T, k, j, immediately result

dE = Wij Tij - E k i g(.Y kiij) (3.19)

dTjk

dE •, k (3.20)

k n

i- 515

dE hr_ #kI
d7, -Z Ai br~-1 kii kiii + EE fT,, ki kiii + %~ (3.21)

hth

Substituting Eqs. (3.19)-(3.21) into Eqs. (3.6) and (3.7), we then obtain the complete learning dynamics.

4. Conclusions

In this paper we have presented a new theoretical framework for learning continuous nonlinear mappings
using artificial neural networks. Central to our approach is the concept of adjoint operators which enables
a fast computation of energy function gradients with respect to all system paramters using a single solution
of the adjoint equations.

Acknowledgements

The research described in this paper was performed by the Center for Space Microelectronics Technology,
Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by agencies of the U.S.
Department of Defense, and by the Office of Basic Energy Sciences of the U.S. Department of Energy,
through agreements with NASA. We wish to acknowledge discussions with M. Zak and F. Pineda.

References

[1] R.G. Alsmiller and J. Barhen, "The Application of Adjoint Sensitivity Theory to a Liquid Fuels Supply
Model", Energy, 9(3), 1984, 239-253; and references therein.

[2] J. Barhen, S. Gulati and M. Zak, "Neural Learning of Constrained Nonlinear Transfornations", IEEE
Computer, 22(6), 1989, 67-76.

[3] J. Barhen, M. Zak and S. Gulati, " Fast Neural Learning Algorithms Using Networks with Non-
Lipschitzian Dynamics", in Proc. Neuro-Nimes '89, Nimes, France, 1989 (in press).

[4] B.A. Pearlmutter, "Learning State Space Trajectories in Recurrent Neural Networks", Neural Compu-

tation, 1(2), 1989, 263-269.

[5] F.J. Pineda, "Dynamics and Architecture in Neural Computation" Journal of Complezity, 4, 1988,
216-245.

[6] D.E. Rumelhart and J.L. McClelland, Parallel and Distributed Processing, MIT Press, Cambridge, MA,
1986.

[7] N. Toomarian, E. Wacholder and S. Kaizerman, "Sensitivity Analysis of Two-Phase Flow Problems",
Nucl. Sci. Eng., 99(1), 1987, 53-81.

[8] P. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences",
Ph.D. Thesis, Harvard Uihiv., 1974.

(9] R.J. Williams and D. Zipser, "A Learning Algorithm for Continually Running Fully Recurrent Neural
Networks", Neural Computation, 1(2), 1989, 270-280.

[10] M. Zak, "Terminal Attractors for Addressable Memory in Neural Networks," Physics Letters A, 133,
1988, 218-222.

[11] If differential operators appear in Eq. (2 1), then a corresponding set of boundary and/or initial con-
ditions to specify the domain of p must also be provided. The learning model discussed in this paper
focuses on the adiabatic approximation only (steady state networks). Nonadiabatic learning algorithms
will be discussed in a forthcoming article.

(12] Adjoint operators can only be considered for densely defined linear operators on Banach spaces. For
the neural application under consideration we will limit ourselves to real Hfilbert spaces. Such spaces
are self-dual. Furthermore, the domain of an adjoint operator is determined by selecting appropriate
adjoint boundary conditions [11]. The associated bilinear form evaluated on the domain boundary must
generally be also included.

I- 516

A Method To Establish An Autonomous Self-Organizing Feature Map

Russel E. Hodges and Chwan-Hwa Wu

Electrical Engineering Department, 200 Broun Hall, Auburn University, Auburn, AL 36849

Abstract
A set of nonlinear differential equations is developed to adaptively govern the learning rate

and the radius of the bubble for the Kohonen's Self-Organizing Feature Map (SOFM). This set of
equations not only preserves the features of the Kohonen's SOFM, but also autonomously accelerates
the learning process for 'familiar" inputs. The behavior of the set of nonlinear differential
equations is presented. The performance of this autonomous SOFM is measured and compared to that of
Kohonen's SOFM.

INTRODUCTION

Kohonen's Self Organizing Feature Map (SOFM) is a widely used vector quantizing neural
network paradigm [1-3]. The short-cut algorithm [1,4] requires that the functions governing the
learning rate an neighborhood radius are provided by users. However, the optimal set of functions
are different for various applications. Therefore, the SOFM paradigm depends upon human supervision
to achieve the optimal performance.

The goal of this study is to obtain an autonomous vector quantizer based on Kohonen's SOFM.
This vector quantizer is adaptable, based on the relationship between the weights and input, to any
distribution of input data and any size of map. Therefore, the SOFM can approach an autonomous
neural network for suitable applications. The approach presented in this paper is based on an
intuitive sense to describe the set of nonlinear differential equations which can handle the
learning process autonomously.

The Kohonen SOFM Paradigm

Kohonen's Algorithm creates a vector quantizer by adjusting weights from common input nodes to
L output nodes arranged in a two-dimensional grid as shown in figure 1 [1]. Using the user-specified
equations for the learning rate and bubble radius, continuous-valued input vectors are presented
sequentially in time without specifying the desired output. After enough input vectors have been
presented, the SOFM can cast the weights of the nodes according to the probability density function
of the input vectors. Moreover, the slowly decaying learning rate is able to allow weights to be
organized such that the topologically close nodes can interpolate weights among themselves.
Therefore, the weights of nodes are ordered in a topological manner.

ooooooooo0

fig. 1. General 2-D node arrangement for the Kohonen self organizing map

Developing an Autonomous Model

The approach to be used in developing the autonomous vector quantizer is to specify the basic
physics that occur in the vector quantization process. With the physics specified, a system of
differential equations that govern the learning rate and neighborhood radius will be constructed
using the specified constraints.

I- 517

Physics of the Autonomous SOFM

We believe that a set of differential equations to self-organize the network adaptively should
be developed based on the current state of the nodes and their relationship to the input vector. An
important element of the vector quantizer is that when an input vector is applied to the network,
the connection weights in the bubble adjust to decrease the vector distance between the input and
the connection weights of the neurons within the bubble [4.. This distance decreases geometrically
until the differential equations governing the updating of the weights have converged to a
satisfactory degree. In addition, the connection weights of the neurons inside the bubble are
adjusted to form the interpolation effects. These include two effects of the learning process:
First, the weights of topologically close nodes can affect each other by the excitation of a number
of close input vectors. Secondly, the adaptive radius of the bubble can provide a smooth transport
of the weights to form a topological order. After a basis of the SOFM is established, the learning
process should be accelerated adaptively toward the simple recognition and updating process. Instead
of an even amount of processing for every input vector as Kohonen's SOFM, a true neural network is
believed to be capable of performing the learning process faster after the basic knowledge is
acquired. Based on the physics described above, a system of nonlinear differential equations (5]
governing the learning rate and bubble size adaptively is presented in the following.

Development of the Governing Differential Equations

Define the following terms:

R(t): Neighborhood radius at time t
a(t): Learning rate at time t
d(t): Minimum distance between the input vector and all of the connection vectors at time t

The system of differential equations will first be given followed by an explanation of
the dynamics of R(t) and a(t).

da(t) a- oY(e- e"I1/y tanh(l+ay)/1R 2(0) - ae -] a (1-a)

dt

dR(t) = y -(z- a) e -Ila (-y) a 2C -o"2 (1-b)

dt

where y - d/d(0) and a - R/R(O)

a(t) is usually taken to be a monotonically decreasing function of time. For the construction
of the differential equations a is forced to start from zero and increase rapidly in an oscillating
manner. The effect of this oscillation is to "shake' the connection weights to give a smooth
interpolation effects for the connection weights within a certain neighborhood. a continues to
increase until a balance point is achieved. This balancing point is a function of the present value
of a(t), R(t), and d(t). Once a(t) has reached its maximum value, it begins to decay in a near
exponential manner. a(t) decreases to a very small number and then approaches zero asymptotically.
The actual behavior of a for the first input vector to the SOFM can be seen in figure 2.

R(t) is taken to be a monotonically decreasing function. The rate at which R(t) decays depends
on the present state of R(t), a(t), and d(t). As d(t) becomes smaller, R(t) should decrease faster.
This ensures that the nodes within the initial bubble are not all shifted too much toward the input.
As 0(t), increases R(t) should decrease at a faster rate. This ensures that the right interpolation
effects are maintained for the updating of the nodes. As a(t) decreases, the rate at which R(t)
decreases is reduced. This also helps to establish the interpolation effect to transport weights of
nodes in a topological order. The present value of R(t) is used to further decrease R(t). This
produces the exponentially decaying effect of R(t). R(t) can be seen in figure 3.

The adaptive acceleration of the learning process can be pictured from aY and e-(I'y) as follows

1- 518

(not limited to these two terms). After a rough frame of the SOFM is established, d(t) is not so
large as that of the early phase to establish the SOFM. Since y and a are normalized, and a has
almost the same magnitude for a new input vector as that of the a in the early phase of building the
SOFM, d(t) can be reduced rapidly due to the same learning rate. This causes 01and - to grow

faster than during the early phase to establish the SOFM. Consequently, R is reduced faster. As seen
from Eq.(1), the combination of € 1 1Yand e causes a to decrease faster due to the fact that the
former has a more significant effect than that of the latter. Thus, the subsequent feed backs
between a and R can make the learning process accelerate.

1.) *-1/?: This term contributes to the average decreasing trend of a(t) before allowing d to
become zero.

2.) e-: This term contributes to the average increasing trend of a(t) as R(t) is decreasing. The
effect of this term becomes insignificant as R(t) approaches approaches zero due to the
interactions of the other terms.

3.) tanh(l+a-y): This term helps to stabilize a(t) during the increasing phase.

4.) ae': This term maintains a bound on how large a(t) is allowed to become. This function
also establishes the decay of a.

5.) oY: This is an adaptive term to control the learning rate and radius based on the current R
and d.

6.) e'('-a): This term tends to decrease R(t) faster for larger a and vice versa.

7.) •0: When R approaches zero, this term diminishes the changing rate of R. Therefore, R(t)
can never become a negative number.

8.) e"'(': At the early phase of establishing the SOFM, this term provides a time period such
that the radius is appropriate for the weights to be organized in a topological

2 order. When d becomes small, this term helps to decrease the radius faster.

9.) o e : This term contributes to the decay of R.

A set of initial conditions that work well for the system of equations are:

a(0) = 0

1/4
R(0) N [NN/x] where N and N are the number of nodes in the x and y direction respectivelya y

The results of the simulation are shown in figures 1-4. Figure I compares the processing times
of the autonomous SOFM and Kohonen's SOFM as the number of training vectors increase. The speed of
the autonomous SOFM is superior to that of Kohonen's SOFM because thousands of input samples are
required to form an organized feature map. The adaptive acceleration can be observed after 40
samples are presented. Figure 2 shows a typical a(t) for one training sample. Figure 3 shows a
typical R(t) for one training sample. Figure 4 shows the weight distribution after 5,000 uniformly
distributed training samples are applied to the map. Note that the initial distribution of the
weight vectors is centered in a small box in the middle of the map. The performance is comparable to
that of the Kohonen's SOFM.

This particular set of differential equations can work relatively well for all the cases
tested. There are other terms that could be added to enhance the overall performance. A problem with
this particular set of differential equations is in the rate of convergence. As a(t) becomes very
small, the rate at which a(t) converges to zero decreases as well. For the simulation presented, the
stopping criterion for a training sample was that the rate of change of d(t) approaches zero. With
a(t) converging to zero slowly this criterion took a large number of iterations to reach for the
first few thousand training samples. A possible solution to this problem is to add some
nonlinearities into the equations that take into account the derivatives of a, R, and d. These
nonlinearities can be used to enhance the overall performance of the differential equations and are
under investigation.

I- 519

Concluding Remarks

An autonomous SOFM which is able to control the learning process adaptively is presented. A set
of nonlinear differential equations is developed to govern the learning rate and the radius of the
bubble adaptively based on the current state of the network and their relationship to the input
vector. This set of equations allows the network to preserve the features of Kohonen's SOFM. In
addition, acceleration of the learning process is observed after the basis of the network is set up.
The speed of learning of this paradigm is superior to that of the Kohonen's SOFM. We believe that
the behavior of the system is closer to that of human beings.

References
1. R.P. Lippmann, 'An Introduction to Computing with Neural Nets," IEEE ASSP Magazine, 1987,
pp 36-54.
2. T. Kohonen, Self-Organization and Associative Memory, Second Edition, Springer-Verlag, 1988.
3. T. Kohonen, 'Self-Organized Formation of Topologically Correct Feature Maps," Biol. Cybern.. 43,
1982, pp 59-69.
4. T. Kohonen, 'The "Neural' Phonetic Typewriter,' Computer 21, 1988, pp 11-22
5. R.L. Devaney, An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, 1986
6. T.Kohonen, 'Self-Organizing Feature Maps,' ICNN 88, Technical tutorial seminar, 1988.

Accumulated Processing Time for' Alpha VS. t for a Typical Training Sample
Old Algorithm and New Algorithm

190 o0120

171 0 108

152 0006

1_I33. 0084

• 114 0072

v 95 06

E 76 0048

"57 0036
38 0,02'4

is 0012
0) r)000 . . .

0 15 30 456 75 o 9 o0 ,1 o ,2 ,35 0 100 30 40 50 6 70 80 90 00

training samples t

fig. 1. The straight line corresponds fig. 2. a(t) for a training sample.
to Kohonen's algorithm. The other curve
corresponds to the new algorithm.

R VS. t for a Typical Training Sample

4000 I(=0

3600
3200 0800

2 800

2400 0 600

or 2000

1600 0400

, 200

0800 0200

0400E

0 000 - - 0000
0 10 20 30 40 50 60 70 860 0 100 -02000000 0200 0400 0600 0800 1000 1 200 100

fig. 3. R(t) for a training sample. fig. 4. Final weight distribution. (5000 inputs)

1- 520

Exnectation Driven Learning with an Associative Memory
by G.Lukes, B.Thompson and P.Werbos

National Science Foundation and SYSCON1

Washington, D.C. 20550

Introduction

Supervised learning requires an explicit target paired with each input. When explicit targets are
not available, internally generated targets are required. Expectation Driven Learning (EDL)
generates internal expectations that provide these targets for any supervised learning method. A
system which incorporates EDL must be provided intrinsic measures of value. Expectations are of
these measures of value and provide targets for learning after eech action (i.e. real time learning).
In our experiments, the automaton (which moves on a two-dimensional grid) has expectations of the
minimum future cost of actions leading to a goal state; learning occurs when expectations in the
associative memory are modified. In these experiments, we vary the degree of generalization in the
associative memory and note the effect on learning. EDL is well suited to problems where a model
of the environment may not be available and must be acquired or refined through experience.

Overview of the Method and Prior Literature

Expectation driven approaches to reinforcement learning and utility maximization over time have
received attention from many authors. Werbos (1989b) has argued that this problem is central to
understanding human intelligence as well as a number of important engineering applications. For
example, Jordan (1989) and Kawato (1989) have shown how trajectory-following problems in
robotics can be solved by maximizing a complex utility function which includes terms to represent
distance from the desired trajectory, the smoothness of the motion, and so on.

To maximize utility across future time, one needs some way to account for the link between
present actions and future results. Neural network literature describes two ways of doing this. One
way is to obtain an exact model of the external environment and use backpropagation through time
to account for that link. This method has been used in the Nguyen and Widrow (1989) truck backer-
upper, in Kawato's and Jordan's robots, and in the Werbos (1989d) model of the natural gas industry.
The other approach is the adaptive critic approach.

The term "adaptive critic" was coined by Barto, Sutton and Anderson (1983), but it aptly
describes a larger family of methods. An adaptive critic method is any method which includes the
adaptation of a "critic" network -- a network which produces a kind of global evaluation of how well
the network is doing. By this definition, Klopf (1982), Grossberg (1988), Werbos (1977, 1989a and
b), Sutton (1988), Williams (1988), and Holland (1975) may all be seen as adaptive critic methods.
(See Grossberg (1982, 1988) and Werbos (1989a) for discussions of the requirements of large scale
problems. Lakoff (1987) discusses the induction of higher order categories.)

Anderson (1987) explores the use of backpropagation with adaptive critics. Werbos (1989b), in
defining Heuristic Dynamic Programming (HDP), allows for any supervised learning network but
does not give actual simulations. Booker (1988) demonstrates a classifier based system. In Sutton
(1988), temporal difference methods provide results for a similar class of problems. The remainder
of this paper will discuss the adaptive critic, the associative memory we use as a critic network, and
the experimental results, in that order.

The Adaotive Critic and Dynamic Programming

In dynamic programming, the user supplies a utility function 2, U(X), which is a function of the
vector X (X describes the state of the external environment). The user then solves an equation, the
Bellman equation, which yields another function J*(X). This second function, JI, has the following
property: by maximizing J" in the immediate future (i.e. t+l), you automatically pick the strategy
of action which maximizes the sum of U over the long-term future.

1The views expressed here are personal views of the authors, not those of NSF, nor SYSCON.

2 In our notation, vectors are underlined, scalars are not. Thus U(2) is a function, U, of a vector, X, that returns a scalar.

1- 521

Heuristic Dynamic Programming (HDP) was first formulated as a neural-network approximation
to dynamic programming in Werbos (1977). We have implemented Action Dependent Heuristic
Dynamic Programming (ADHDP), where the costs are on the actions (or transitions), not on the states
(as in standard HDP). ADHDP is particularly good for dynamic systems where costs are incurred
by taking actions, instead of being intrinsic to a state. We start from the following simplification
of Howard's (1960) version of the Bellman equation for an absorbing Markov chain, similar to the
simplification found in Werbos (1989a):

J(X(t)) - Min E(U(X(t),U(t)) + J*(X(t+l))) (1)
u(t)

where U(t) is a vector representing the choice of actions at time t, where E() denotes the expected
value, and where X(t+l) depends -- of course -- on the choice of action u(t). In our automaton, the
action U(t) has a direct cost, U; thus we seek to minimize the sum of U over time. Note that U
depends on both X(t) and IL(t). Both X(t+l) and U may also be affected by random noise.

For our purposes, it is more convenient to use a critic that estimates a different function, J',
defined as follows:

J'(X(t), U(t)) E(EU(X(t), U(t)) + J'(X(t~l)) (2)

Combining this with into equation 1, we arrive at the following recursive equation:

J'(X(t), u(t)) - E(U(X(t), u(t)) + Min J'(X(t+l), U(t+l))) (3)
u(t+l)

ADHDP, as implemented for this automaton, is defined as adapting a critic network whose output
is an approximation of J' (equation 3). In the automaton, the choice of actions _q(t) was limited; we
worked with only eight possible moves (like a King's moves in chess). Therefore, we chose to
represent J'(X(t),u(t)) by the vector '(X(t)), where 1' has eight components corresponding to the
eight possible moves.

As the system explores the state space, information required to make more accurate estimates of
equation 3 will accumulate. Sutton (1988) and Werbos (1989c) have proven theorems about the
consistency and convergence of very similar adaptive critic networks.

The Associative Memory

We have used an prototype based associative memory for our critic network, which was
inspired by the work of Kanerva (1988) and of Albus (1981), though analogies to Kohonen (1988)
and others are possible. Like a production rule, each prototype 9 has a left hand side (L.,), that
corresponds to the conditional, and a right hand side (E._) that corresponds to the result. The two
primary operations with the associative memory are reading from the memory and writing to, or
updating, the memory.

We read from the memory by presenting an input pattern (L) to the left hand side. The
prototypes that will participate in the retrieval are selected by equation 4 (there are NL elements in
L). This equation determines the strength of each prototype with respect to the current input
pattern. The result, R_, of a read operation is just the weighted sum of the right hand sides (equation
5). The constant C is the threshold that selects which prototypes will be used in storing or retrieving
a pattern.

We update the associative memory by presenting both an input pattern (L) and a target
pattern (e_). First we do a read (as above) to determine R. Then we calculate the new right hand
side for each prototype by equation 6.

I 1 (i;l< i< NL) IL -Loi(- n C
to~ 0=tews (4 - strength)

1. 0 otherwise

R_. = R (5 - retrieval)

I- 522

a - - (6- update)

E to

The associative memory is structured as follows:

X(t) -> 0t), (t+l) (7)

with X(t) on the left hand side, and _U(t) and J(t+l) on the right hand side. Please note that for our
experiments X is a vector of two components, <x,y>, that locate the automaton on the two
dimensional grid. I and I_ are both vectors of eight components, (e.g. <j lj2,j3,j4,j5,j6j7,j8>), each
element of which corresponds to one of the eight different moves. When the associative memory is
initialized, the left hand side is a uniform distribution of the possible values of 2 ± C (to account
for edge effects). I and _U are initilized to small, non-negative, random values.

Exoerimental Results

In our experiments, the associative memory has 800 prototypes. We vary the access constant,
C, (see equation 4) so that the associative memory reads from and writes 'o 10, 15, 20 and 30 percent
of the prototypes. The automaton environment is a 10 X 10 two dimensional grid. An epoch is
defined as a walk from a randomly selected cell on the edge of the grid to the goal state at the center
of the grid. A minimum of five steps is required for each epoch. Each step can be in one of eight
directions and incurs a local cost equal to ten times the euclidean distance between the two states.
Actions off the edge of the grid are legal, and take the automation to the opposite edge.

The automaton tries to Comparison of Different Access Constants
discover the lowest cost path to the
goal from each edge state. It does Averaged over six runs each

this by learning accurate estimates ssR (T*osads)
for the minimum sum of future 5o

costs (J') associated with alternative
actions from each state. The 40o

automaton is given no model of:
direction; the relative distance to
between two states; the relative 30
differences or similarities between
alternative actions; and the relative 20 20%

position of the goal from its current - 0o
state. The automatio-. is also unable
to store the sequence of states it has 10 "
visited. It is, therefore, unable to
recall past sequences it has tried, ,
identify a previously visited state, 25 50 75 100 15o 200 300 400 500

or recall the past history of a Epochs
specific state. The automaton is
only able to read from the current
state. It uses the results of that read to select one-of eight moves and update the estimate J' for the
previous state. While the problem is simple for a human with a well developed model of direction
and distance, it presents a very difficult machine learming problem; the automaton must induce a
model based only on local cost information in forward time.

The results (see graph) illustrate the advantage of greater distribution across prototypes
(generality) during the initial phase of learning, and the advantage of less distribution (specificity)
during the final phase of learning. In addition, the performance of the more distributed memories
was degraded by an inability to escape local optima. Given the associative memory and action
selection rule, local optima are formed whenever the estimate of J'(X(t),u_(t)) for the optimal action(s)
is falsely higher than the correct estimate of J'(X(t),u_(t)) for all nonoptimal actions. In this case,
developing more accurate estimates of the nonoptimal actions for a state will not lead to the
exploration of an optimal action. Bad estimates will then be filtered back to states on paths which

1- 523

must pass through these suboptimal states on their way to the goal.
Because of the radi"a nature of the problem, local optima were particularly hard to avoid near

the goal. Neighboring cells toward the edge of the grid have a far greater similarity in J' values for
the same action than do neighboring cells at the center (around the goal). Generalizing across
increasingly different distributions of J' makes the memory more susceptible to being trapped in local
optima. Current research is exploring a variety of mechanisms for dynamically altering the access
constant and modifying the distribution of prototypes over the state space to overcome these
problems.

References

Albus, J. S. (1981). Brains. Behavior, and Robotics. Peterborough, NH: Byte Books.
Anderson, C.W. (1987). Strategy Learning with multilayer connectionist representations. In
Proceedings of the Fourth International Workshop on Machine Learning., p.103-114. Irvine, CA:
Morgan Kaufmann.
Barto, A.G., R.S. Sutton, and C.W. Anderson. (1983). Neuron-like adaptive elements that can solve
difficult learning control problems. IEEE Transactions on Systems. Man. and Cybernetics 13: 834-
846.
Booker, L.B. (1988). Classifier Systems that Learn Internal World Miodels. In Machine Learning
3: 161-192.
Grossberg, S. (1982). How the Brain Builds a Cognitive Code. Studies of Mind and Brain.
Drodrecht, Holland: Reidel Press.
Grossberg, S. (1988). Some Psychophysiological and Pharmacological Correlates of a
Developmental, Cognitive, and Motivational Theory. The Adaptive Brain, part one. Netherlands:
Elseview Science Publishers B.V.
Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann Arbor The University of
Michigan Press.
Howard, R. (1960). Dynamic Programming and Markov Processes. Cambridge: The MIT Press.
Jordan, M.I. (1989) Generic Constraints on Under Specified Target Trajectories. In Proceedings
of the International Joint Conference on Neural Networks (IEEE, June).
Kanerva, P. (1988). Sparse Distributed Memory. Cambridge: MIT Press.
Kawato, M. (1989). Computational Schemes and Neural Network Models for formation of
multi joint arm trajectory. In MSW, op. cit.
Kohonen, T. (1988). Self-organization and associative memory. New York: Springer-Verlag.
Klopf, A. H. (1982). The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence.
Washington, DC: Hemisphere.
Lakoff, G. (1987). Women. Fire, and Dangerous Things: What Categories Reveal about the Mind.
Chicago: Chicago Press.
Nguyen, D., Widrow, B. (1989). Truck backer-upper. an example of self-learning in neural
networks. In MSW, op. cit.
Sutton, R.S. (1988). Learning to predict by the methods of temporal differences. In Machine
Learning 3: 9-44.
Werbos (1977). Advanced Forecasting Methods for Global Crisis Warning and Models of
Intelligence. General Systems Yearbook. (Appendix B).
Werbos (1989a). A Menu of Designs for Reinforcement Learning Over Time. In Neural Networks
for Robotics and Control. Editors: Miller, W. T., Sutton, R. S., Werbos. Cambridge: MIT Press.
Werbos (1989b). Backpropagation and neurocontrol: a review and prospectus. In Proceedings of the
International Joint Conference on Neural Networks (IEEE,June).
Werbos (1989c). The consistency of HDP applied to a simple reinforcement learning problem. In
Neural Networks, forthcoming.
Werbos (1989d). Maximizing long-term gas industry profits in two minutes in Lotus using neural
network methods. IEEE Transactions Systems Man and Cybernetics. March/April.
Williams, R.J. (1988). Toward a theory of reinforcement-learning connectionist systems. Tech. Rep.
NU-CCS-88-3, College of Computer Science, Northeastern University, Boston, MA.

I - 524

N N%

The Real-Time Classification of Temporal Sequences with an
Adaptive Resonance Circuit

Albert L. Nigrin*
Duke University Computer Science Department

109 North Building, Duke University, Durham, NC 27706
aln@cs.duke.edu

1 Introduction

Adaptive Resonance Theory has been used to explain many psychological experiments [2,3,4]. It has also
been used to construct networks (see ART1 and ART2 in [4, ch6][1]) that learn to classify binary and
continuous spatial patterns. In this paper, we present a network that uses the framework of Adaptive
Resonance Theory to perform the stable classification of temporal patterns in real-time. [5]

The problem is as follows: How can a network discover the significant chunks that are present in a
temporal pattern of inputs? For example, humans learn to segment sentences of continuous speech into
distinct words, even without any clear breaks between words.

In order to deal only with temporal considerations, we have abstracted the problem as follows: Instead
of presenting the network a slowly fluctuating continuous pattern, we present a sequence of items at a
constant rate. The network must discover the longest sequences that occur repeatedly.

Consider the following sentences. The letters were presented to our network, one at a time (even
across sentence boundaries) and the sentences were repeated at random.

FBIABCDNOEG
HJKFBILMPNO
QFBINOSTUV

The lists FBI and NO occur in several contexts. After fewer than 10 presentations, the network learned
to recognize these sequences as significant chunks.

The network classifies lists quickly, even when the number of different lists to be classified is large.
Extensive simulations have shown that the number of training set iterations needed to classify multiple
different lists, rises at a slower than linear rate when compared with the number of lists.

Higher level structure has also been learned. (The above example does not contain enough context
to perform a correct generalization, however.) By increasing the number of layers in the network, it is
possible to learn lists of lists, etc. Simulations show that the training time needed to learn these higher
level classifications rises linearly with the number of levels in the network.

To provide a a flexible learning system our network satisfies the following criteria.

1. All STM and LTM interactions occur in real-time. The continual presentation of items eliminates
the possibility of either off-line processing or long equilibration times.

2. The network solves the stability-plasticity tradeoff. The formation of new categories does not erode
previous classifications made by the network. Furthermore, until the capacity of the network is
exceeded, the network retains the ability to form new classifications, in response to new patterns.

3. The model performs both fast and slow learning. Fast learning provides classification in as quickly
as 1 trial, while slow learning allows the model to generalize across multiple different examples.

Before the network can begin to classify an item sequence, it must transform the sequence into a
spatial pattern of activity. The architecture that automatically performs this transformation is discussed
in section 2. Section 3 presents a two layer network that can self organize in response to single list
presentations. Section 4 showns how a network (possibly cascaded to learn higher level abstractions) can
learn to classify lists, even when they are embedded in longer lists (sentences).

"This research was supported in part by ARO under grant DAAG-29-84-K-0072.

I1- 525

2 Transforming temporal patterns into a spatial patterns

This section demonstrates how to transform sequences of items into spatial patterns. We use a diminishing
pattern of activity across network cells to reflect the order in which the items were presented. Figure I
shows the activity pattern across network cells, after the presentation of various lists.

AB ABC CBA

ssA s sc SA s C

Figure 1: Activity pattern across cells SA, sB, and sc after presentation of lists AB, ABC and CBA.

Assume there are n different items vi, v2, .. , v.. Item vi is presented to the network, by supplying a
constant level of input to cell s, for a fixed tirme period. The transformation from an item sequence to a
diminishing activity pattern is obtained through the use of a feedback on-center off-surround architecture.
Each cell obeys the activation equation:

dds, = -As, + (B - si)[f(S) + Ih - s "(sj) (1)

where si is the activity of the ill cell in the architecture (The same symbol refers to both to the name and
activity of a cell), A is a constant representing passive decay, B is a constant re'presenting the maximum
activity of each cell, 1j is external input and f(s) is a sigmoid function that is linear in the cell's desired
range of activity. It was proved that upon removal of external input, the relative activity of the cells
remains constant (if their activities are in the linear range of the function f) [2, ch8I.

The diminishing activity pattern is obtained as follows: The presentation of item vi causes aj to reach
an activity level, much less than B, that is relatively independent of the number of items previously
presented. Then, during the presentation of successive items, si's activity rises due to the positive
feedback term (B - s,)f(s,) (until the total activity of the fiell saturates). Earlier items are represented
by larger activities since the activity of their respective cells rises for longer periods of time.

The total activity in the field can fluctuate within a large range and is entirely dependent on the
number of items that have been presented. To eliminate this dependency, we normalize the length of
the vector representing the activity of the s field. Normalization is accomplished with a feedforward
on-center off-surround architecture, composed of t cells, where each t cell obeys:

di
d= (I - i)f 2,] - ~ ~,)2] (2)

3 Two layer Network for classifying non-embedded lists

In this section, we will show how to classify lists when they are presented one at a time. The network
that performs this classification is composed of two fields, FP and F F2)P transforms the incoming
temporal pattern into a spatial pattern, using the architecture of the previous section (shown in figure
2a). F() classifies the spatial patterns across P", into different categories.

The FC2) field is composed of many repeated copies of the circuit shown in figure 2b. Each copy of
the circuit (a cell packet) represents one list. Bottom up input enters F(2) at the b cells, where it is gated
by LTM weights. This gated input is then sent to the competition level composed of c cells (The activity
equation for the c cells is of the same general form as equation 1 except f is instantiated to produce
winner-take-all dynamics.). Finally the output of the b and c cells are combined multiplicatively at the e
cell, which sends inhibitory signals to other c cells in PD.

Fa) cells learn to classify patterns by modifying their LTM weights to become parallel to the FP")
activity pattern they are coding. Furthermore, F(2) cells automatically change their threshold and gain
functions to reflect the size of the pattern they are coding (equations not shown).

1- 526

Changes in the LTM weights at the b cells are driven by the activity of the c cell ([51[4, ch7]), as shown
in figure 2b. The LTM learning law is a variation of the following:

d
dji~j ((CI') 2 (-z,, + ?CS' (3)

where z9) refers to the activity of the ijh cell of type z at level FW, e is the learning rate and zji is the
LTM weight from tq) to b'.

The output of the b cell is not a straight linear sum as in I. = - Et)zji. Otherwise later items
would have an increasingly small influence on the output of the cell. Consider the case where the pattern
tj = 2ti. 1 exists across (tl, t2 , t3 , W4, in response to the presentation of a 4 item list. To classify this pattern,
the LTM weights on some cell, bP, are modified so that zji = 2zj.,,i. When the full list is later presented,
the contribution from the last item is only 1.1% of the total output of bq (14z4, = .01 x " 4')zJ). The
presence or absence of the last item has a negligible effect on the value of Ig.

To remedy this, we multiply the gated sum lg* by an efficacy term I,' when computing the output
of b0 (b9 = Il*•). Ix increases as a cell's inputs better match its LTM weights and is computed by an
equation similar to: Ii' = FI(C1 + C2 min(l, Z)) where Zjj = Zji/_,vk zki, T = t~l)/ vk t•), and C1 and
C2 are constants. Since the Ix term can vary greatly, depending on the number of inputs that activate a
cell, the output from the b cell must be normalized before it affects the c cell (This is done by a scheme
that is not shown here).

from TO Neot Layer c, e,

ToNero Layer cin ar other + W

cas s T cellss s a + +~

External Input From Previous Field Prevous Layer

(A) (B) (C)

Figure 2: (a) Network to transform temporal patterns to spatial ones. (b) Network to classify spatial
patterns of the previous field. L77M connections are indicated by shaded boxes. All other connections are
non-modiflable (c) Combining a) and b' to create a circuit that both classifies patterns and maintains the
temporal order of the classification. The 1 cell acts as a latch that activates for a brief period once its c cell
exceeds threshold. Slight modifications allow feedback to provide context for lower level classifications[5].

We will now discuss stability of the LTM weights. In ART1 and ART2, a mechanism was designed
to compare the F4 feedback pattern at F(l), with the activity pattern at F(1). If these patterns differed
sufficiently, the active F(2) packet was reset[4, ch6][1]. Our mechanism differs for the following reasons:
(1) If a new pattern is similar to many previously classified patterns, the network will reset many times
before trying to form a new category. This is not acceptable in a real time environment. (2) When lists
are embedded in sentences (as in the next section), erroneous mismatch will occur if additional items
are presented before the list is fully classified (unless stability is sacrificed by allowing looser mismatch
criteria). (3) By shutting off the offending F(2) packet, information is lost about the content of the input.

Our mechanism solves the stability plasticity tradeoff in a manner similar to the mechanism behind
Masking Fields[4, ch7][5]. Our network implements the following guidelines: (1) A packet representing
some pattern, z, can emit enough inhibition to prevent oWher packets from classifying patterns of size less
or equal than z, but cannot emit enough inhibition to prevent other packets from classifying patterns of
size greater than z. (2) When incoming input does not match the LTM weights at a cell, learning at that
cell ceases, and lateral inhibition is reduced, to allow other packets to code the pattern.

For example suppose bi has coded ABC. If ABCD is later presented, 1i can not send enough lateral
inhibition to stop other cells from learning ABCD (by guideline 1). If AB or CBA is presented, the
inhibition emitted by 1 is reduced sufficiently to once again allow other cells to learn these patterns (by
guideline 2).

I- 527

4 Multilayer network for classifying embedded lists

In this section, we show how to cascade fields to provide higher level concepts. The fields are constructed
by combining the circuits shown in figure 2a and 2b to form the circuit in 2c. The same homologous
circuit is used at each level of a hierarchy. The type of information represented by a cell packet depends
only on the field where it is located. For example, packets at F(l) represent items, packets at F2) represent
lists, packets at F3) represent lists of lists, etc.

Modifiable feedback connections are added from Pi) to FP) and feedback learning is accomplished
via outstar learning, as in ART1 and ART2 [1,41. The bottom up and top down LTM weights become
roughly symmetric. Thus, those s6-1) cells that provide a large amount of input to a particular F(i packet
receive large amounts of feedback when that F' packet is active.

Information is processed in the following way. Patterns across t cells in F") activate FPi) cells, where
competition occurs at the c layer. The competing c cells send feedback to only those portions of the Fi-1)
pattern that are being considered for classification. Once the activity of a cell ca.) exceeds some threshold,
classification is considered to have occurred, setting off the following:

1. Cell SY) is activated and maintains temporal information as shown in section 2. This allows cells at
FPi*' to classify patterns across FP).

2. Cell e•° is shut off by inhibition from cell l

3. Once q) is shut off, lateral signals from ej no longer inhibit other c cells. This allows other packets
at F(i) to classify the remaining (or evolving) pattern at F('-').

4. Cell ,•.' no longer sends feedback to Fi-1). Using the mechanism of the gated dipole[2,3,4,5J, s cells
at F('-') that previously received large feedback signals from turn off once feedback ceases. Only
those portions of the F(-s) activity pattern not yet classified (that consequently never received large
feedback from F()) remain active. Other F(i) packets compete to classify this remaining pattern.

FI5O0OCcells I O cells ctcli,
Activation Paten at A Activation Pattern L.jjat F, Activatiom Patterti t Fj

Expectancy Pattern Expectancy PatternfT] Expectancy Pattef
I0= 0 latE, "01 -00 ltFP0

Activation Pattern | jijJ Activation Patternr A"vation Pattern

(a) (b) (c)

Figure 3: (a) Signals from FPi-' activate packets at F(i). (b) Active F(i cells emit large feedback to Fi-t).
(c) 3(4-) cells that are part of a classified pattern are reset when feedback from F(') is abruptly terminated.

References
[11 Carpenter, G.A. and Grossberg, S. "ART 2: Self-organization of stable category recognition codes for

analog input patterns", Applied Optics, vol. 26 pp. 4919-4930, Dec. 1987.

[21 Grossberg, S. Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition
and Motor Control. Boston: Reidel Press, 1982.

[31 Grossberg, S. The Adaptive Brain vol. 1 & 2, North-Holland: Elsevier Science Publishing, 1987.

[41 Grossberg, S. Neural Networks and Natural Intelligence. Cambridge, MA: MIT Press, 1988.

[51 Nigrin, A. The Real-Time Classification of Temporal Patterns with an Adaptive Resonance Circuit. Ph.D
Thesis, In preparation.

1- 528

A Neural Model of Interpolation or
Interpolation with Blobs

Alexander Shustorovich
Advanced Computing Laboratory,

Eastman Kodak Company.
Rochester, New York 14653-5815

L Introduction.
When we speak about interpolation we usually mean interpolation with splines. We are in a "piecewise

polynomial" paradigm. There are good reasons for that: "One uses polynomials for approximation because they
can be evaluated, differentiated, and integrated easily and in finitely many steps using just the basic arithmetic
operations of addition, subtraction and multiplication." ([1], p. 1). Also very important is the fundamental pro-

b
perty that ".. the complete cubic spline interpolant ... minimizes f[f "(x)]2 dx over all twice differentiable func-
tions f which agree with g at ",. • ••, %t." ([1], p. 63). In addition to that, the elegant mathematical theory

of B-splines is very well developed and computationally relatively cheap.
There are, though, some problems with splines, and the most important among them is the fact that some

piecewise polynomial interpolants "do not look right". Sometimes what people would draw is very different
from the computer-provided curve. This happens because people do not minimize fJ' 12 when they draw curves
through data points, and also they do not react to jumps in the second derivative unless it changes its sign - con-
cave segments are easy to distinguish from convex ones, but humans cannot do much more than that. The
deficiences of the standard technique and the interest in how humans perform the task motivate the attempts to
use the neural modeling approach to interpolation and curve fitning.

2. Sigmoids and Blobs.
Usually individual neuron response is modeled with some kind of sigmoid function. By far the most cram-I

mon among them is the logistic curve S(x)= l+e_,•, . It is easy to see that it is zero for large negative values

of x, increases as x increases, S(0)=112, and S(x) becomes equal to one for large positive values of x. Also, it
is symmetric, S(-t) =1-S (t), and it is smooth with the derivative monotonically increasing from zero to its
maximum at x =0 and monotonically decreasing to zero for larger values of x. Later in this text such functions
will be referred to as sigmoids.

It is possible to combine two sigmoids (actually two copies of the same function) to model bell-shaped
sensor responses. Consider b(x)=S(x+1/2)-S(x-I/2). This function increases from zero to its maximum
b(0)=S(1f2)-S(-1/2), and then symmetrically decreases back to zero. If we model evenly distributed sensors,
this means that two neighboring neurons should combine their individual responses to provide a blob whose
maximum is at a point halfway between them.

In this Section and the next we shall discuss only the case of uniform knot sequences, that is, xi =i for all
integers from some interval. For the beginning let us consider only very steep sigmoids equal (or approximately
equal) to zero for x<-1/2, rising on [-1/2, 1/2] and approximating one for x2 1/2. With this condition
b(x)=S (x+112)-S (x-1/2) is nonzero only on [-1,1].

Let us denote bi(x)=b(x-i). This blob is a translated copy of bo(x)=b(x). Also, we will need sigmoids
w times dilated, S,(x)=S(x/w). These sigmoids rise on [-w,w], and the corresponding blobs
b'(x)=S,(x+lI2)-S.(x-l12) are nonzero only on [-w-1/2,w+l/2]. The blob support has the length 2w+l.
Again, b,'(x)=b(x-i) is a translated copy of the b"(x) and its maximum is now at x=i instead of x=O.
Interpolation with blobs means that, given an arbitrary (smooth) function g(x), we want to construct a sum
B (x) = ,ci b•(x) which agrees with g (x) at points (x•), that is, at integer points in our case.

The first property of blobs to mention is that if we add them together, their sum is equal to one:
N N

kb. -•(x)= Z' ($S,(x-k+l/2)-S.(x-k-1/2))=S.(x+N+l/2)-S•,(x-N-1/2)

4:=-N k=-N

I- 529

/

and for any value of w for sufficiently large values of N, this sum converges to I. For any x the first value
becomes equal to one and the second to zero as N increases. If we are interested only in the interval (0, m]. it is
enough to consider only blobs with their supports intersecting [0,mJ, that is, biw(x) for -w-I/2Si <w+l/2.

The consequence: the coefficients (c,=l) provide us with Ecjbj(x,)= I for all j.
i-0

In mathematical terminology the sequence of translated blobs provides a partition of unity. The same pro-
petty holds for B.splines, but there is one very important difference between these two constructs: it is impossi-
ble to dilate B-splines and blobs directly (the partition of unity will be ruined), but it is very easy to dilate
corresponding sigmoids before they are combined to produce blobs. We shall use this flexibility in Section 5.

It was proved in (2] that any bell-shaped function providing the partition of unity can be represented as a
blob, that is, as a difference of two shifted copies of an appropriate sigmoid. That is why all smooth B-splines
can be considered particular cases of blobs.

The next problem we shall try to solve with blobs is the approximation of the straight line g(x)=x. It is
especially easy if the support width is equal to 2; as b,(i)=l and bj(j)=0 for all iiej, it follows that the
coefficients should be equal to blob indexes, c1=i. But if we look at the graph of this "approximation", it is
completely unsatisfactory; the resulting curve goes along the straight line in waves.

The way to deal with this difficulty is to use wider blobs. If we use blobs made of dilated sigmoids, the
approximation converges to the linear function, and this effect does not depend on the choice of any particular
sigmoid. Figure I represents a sequence of approximations for w--0.5, w=0.7, w=l.5, and w=2.5. The last
curve (w=2.5) in Fig. I is impossible to distinguish from the actual straight line, and the support width neces-
sary for this level of approximation is only 6. It is important to keep in mind that all finite-support and also
standard logistic sigmoids provide absolutely the same effect in simulations. The formal proof of this invariance
can be found in [2).

3. Mathematical Formulation of the Problem.

We need to find (cj, i =0," - •, m so that icibi(j)=gj for all integer points j, 0<j <m.
i=O

Let us denote po=b(O), p,=b(1), • • •. For our example from the previous Section with w=2.5, we have
p3=p4= •... =0. We have to calculate the values of the sum at m + I integer points.

As we do not consider blobs to the left of zero and to the right of m, B(O)=copo+ clp 1 +c 2P 2, wlere P0
is the input of bo(x), Pt - of bl(x), P2 - of b2(x). Also, B(l)=cop,+c1 po+c 2p1 +c 3P 2. Here, p, is the input
of bo(x) coming from the left of x=l; po. of bl(x) itself; pl, of b 2(x); and P2. of b3(x). All the B (j) are com-
puted in this manner, and as B(j) should be equal to g,, we have a system of m+l equations with m+l unk-
nown coefficients c1 . In matrix notation G = [P]xC, where C is the vector of the coefficients, G is the vector
of the function values and the matrix [P] consists of shifted lines (P2. P1, PO, Pt, PA2 with Po along the main
diagonal and zeroes instead of pi for j 2 3, which is the result of the choice cf our blob width. Matrices of this
structure are called the Tdplitz matrices and they can be inverted. As we can calculate C =P)- 'xG, the solu-
tion is unique.

It is necessary to mention that the problems of end effects are very much the same as with splines. To
produce a nice-looking approximation on [0. m] we have to provide some information (or guesses) about the
behavior of the modeled function g for several points to the left and to the right. The symmetrization
g-.j =2go-g, and g,., =2g., -g,._4 works well enough.

4. Interpolation Model for Non-Uniform Knot Sequences.

Up to this point our model was very simple; it used uniformly translated copies of the same blob. But
what happens if the knot sequence is not uniform? It seems possible to stretch the analogy to splines, but after
several days of making my colleagues draw curves through simulated data points, I became certain that people
do not model the function itself, they model its derivative. This is thtu approach discussed in this Section.

Let us denote xo, x, 1. x,, as the increasing seqvence of x-coordinates and go, g, ", g., as the

g, -g.i1corresponding sequence of y -coordinates of the data to be interpolated. Let us denote also A, = g - i = I.
X -530

1- 530

.•. m. We are interested in interpolating the values of A.. After that we will integrate the resulting curve to
fit the set of (A., gj.

At first, for the sake of simplicity, let us consider only xi =i, but now we will use blobs "hanging" over

midpoints. b(,(x)=b(x-i+ 1/2). As before, we want to find (ci), i=I, .. •, m, such that for D(x)=Zcibi(x)

X, 1+112

every ID(k) dx equalsA. for all i=1, m. Let us"denoteF Jb(x)dx. It is easy to see that (as

X y j D(x)dx =cl bi(x)dx +C2 b2(x)d d + • , b. L+) do =

SiI

As fbi(x)dx= J b&()dx, we conclude that ~D(x) dx= c 1F0 + C2 F,+ - - + c.1,F~.-=,= . Also,
2 2 2 2

I =clIb(x)dx+C2 Ib 2(x)dx +b''dz- cF 1 +C 2 FO+c 3 F,+C4 F 2 + ... cFm 2 =A2 ,

etc. Finally, we have a system of m equations with m unknown coefficients (c, }. In matrix notation it is
[F]xC =A. The matrix [F] is symmetrical and even for the logistic sigmoid all the F6 , F7 , • • • are virtually
zeroes. The inverse matrix always exists and the solution to our problem is C [F]-'xA. All we have to do
after this is to calculate the modeled function values from the necessary level g(O)=go with the help of integra-
tion, that is, just adding the values of the obtained model for the derivative.

1
For non-uniform knot sequences let us consider scale factors s,- I. .' and let us use the piecewise

linear function xi =k(i), mapping 0, 1, .• , m into x0, x1,. , x.. This function is continuous though it is
not smooth. If we consider g(xi)=g(t(i))=(gx4)i, we can apply the algorithm described above to model the
derivative of the function gxk, which differs from the piecewise derivative of g only by a factor of (xi-xi-1).
That is why, after we evaluate the derivative of 8 ×x, all we have to do is to multiply it by si on each of the
intervals [x-,,xi]. Of course, this means that the model for the derivative of g will not be smooth, but as we
integrate it to calculate the values of g itself, the model for g becomes smooth.

Sure enough, we have problems with end effects again and we need three or four extra points to the left
and to the righL I calculated these additional values for the first difference using symmetry, A&.,i =24,,-A,.,
but of course this depends on the information about the function.

The inverse matrix (F]-f and the blob-values were calculated only once; the remaining arithmetic con-
sisted only of addition, subtraction and multiplication. The calculations took the same time for all sets of pairs
((x,rg,)). Computationally, interpolation with blobs is cheap.

In my simulations I worked with a menu of blobs produced by different sigmoids and also directly used
the Gaussian which is not a blob-function, but becomes very blob-like if it is sufficiently wide. Corresponding
variations in the exact shape of the interpolants were always negligible compared to the effect of changing the
support width.

S. Interpolation Model with Variable Blob Widths.

Before this approach can be used in practice, we have to learn how to choose the blob width. If we insist
that the monotonic curves should look nice, we have to use blobs with a support of not less than 4 (as for cubic
splines). The exact behavior of these curves somewhat de)ends on the choice of the particular sigmoid, but for
all practical purposes the variations are negligible. The problem is that if the sequence (g•) is not monotonic,
the "inertia" of the wide blobs' cross-influence makes the interpolant overshoot compared with what people
would draw. In this respect, unfortunately, blobs are similar to splines.

If we model the derivative instead of the function itself, the same difficulty manifests itself in a different
way: the use of narrow blobs provides us with slightly smoothed piecewise l;near interpolation, while using wide
blobs results in very smooth (and overshooting) curves.

Humans are nonlinear in their approach to interpolation: given the same kints [xi) and two sets of y-
values, (p•) and (q1), they would draw nice curves P and Q, but their curve for the set (pi +qj will be very
different from the sum of the curves P and Q.

I- 531

The obvious consequence of this nonlinearity is that linear procedures will never guarantee natural-looking
results. That is why the best results so far were achieved with a modification of the derivative model in which
the blob width to be used at any knot depended on the local behavior of the modeled function.

In the first version of the program I used a simple set of rules to adjust left and right half-widths
separately: the basic support width was equal to 5, near all local extrema it was reduced to 4 or even 3 if the
ratio of the derivatives was greater than 2; on monotonic segments it was reduced to 4 if the ratio of the deriva-
tives was greater than 2, and the support width would become 2 at the points where the left or right derivative
was equal to zero, or even 1 if the derivative was zero for two or more adjacent segments.

For this model the matrix (F] is no longer symmetrical and depends on the data seL Nevertheless, it still
has very few non-zero elements along the main diagonal and it can be inverted, One matrix inversion per data
set does not seem to be too expensive. Figure 2 contains several examples of interpolants calculated with this
model. Future improvements in quality of the interpolants are expected with the next version of the model with
continuous support widths instead of the discreet.

6. Conclusions.

A neurally inspired approach to interpolation is proposed in this paper. Its characteristic feature is the
introduction of blob-functions, that is, pairwise differences of two sigmoid curves. These blobs demonstrate very
interesting properties which permit their use instead of B-splines. Three models of interpolation with blobs V'ere
discussed, and the existence and the uniqueness of the solutions proved. Corresponding algorithms were
described that are computationally cheap and can be easily implemented in parallel architectures. On the whole,
this approach provides an unusual perspective on interpolation, and fits many seemingly idiosyncratic properties
of splines into a more general picture. We are still far from understanding the human interpolation process, but
these first results seem to be very encouraging.

7. References.
[1] C. De Boor, Practical Guide to Splines, Applied Mathematical Sciences, Vol. 27, Springer-Verlag, New

York, 1978.
[21 A. Shustorovich, The Invariance of Overall Sensor Response to the Choice of Sigmoid Neural Response

Curves, Technical Report 245127E, Eastman KODAK Company, 1988. Poster at UCNN-89, Washington
D.C., June 1989, Proceedings, Vol. 2, p. 583.

8. Figures.

Fig. 1.

L___ \, /J
Fig. 2.

1- 532

/U

MRIII: A Robust Algorithm for Training Analog Neural Networks
David Andes

Naval Weapons Center, China Lake, CA 93555
Bernard Widrow Michael Lehr Eric Wan

Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055

Abstract

Like many training algorithms for artificial neural networks, the backpropagation technique assumes com-
plete a priori knowledge about both the network architecture and the transfer characteristics of the computing
devices. This is reasonable if the network is to be constructed with floating-point hardware. If, however, the
implementation is to be analog, often the assumed knowledge will not be available in any precise form. Thus,
there is some needfor a method which is analogous to backpropagation, but better suitedfor analog circuitry. In
this paper we introduce Madaline Rule III (MRIII), a new training rule which serves this purpose. Like back.
propagation, MRIII trains differentiable neural networks by steepest-descent. Consequently, when applied to
simple feed.forward topologies with known characteristics, both algorithms achieve equivalent solutions. MRIII
does not need prior knowledge about the network, so it is relatively immune to the effects of neuron-to-neuron
variations and unknown or non-ideal component characteristics. Thus the new algorithm performs well when
applied to analog neural networks, including networks comprised of unconventional components, and those with
unusual or recurrent interconnections.

1 Introduction
MRIII is essentially a generalization of Madaline Rule II (MRII) [6, 7, 8] to allow the adaptation of networks built
from Adalines with differentiable activation functions rather than hard limiting quantizers. Although it is an
extension of MRII, the new rule is also closely related to the backpropagation technique, as both are supervised
steepest-descent algorithms which iteratively adapt the weights of a neural network toward a local minimum in
the mean-square-error surface. The difference between backpropagation and MRIII lies primarily in the methods
used to determine the gradient estimates. Backpropagation uses a priori knowledge about the characteristics
of the network's computing elements to calculate the gradient estimates directly. In contrast, MRIII training
relies upon gradients which are determined by explicit measurements. This process involves simply perturbing
the values of either the network's weights or node activation levels and measuring the ratio of the change in the
network's instantaneous squared output error to this perturbation. Both backpropagation and MRIII determine
the appropriate weight adjustments directly from the gradient estimates.

Because MRIII does not require prior knowledge about the network characteristics, it is an ideal method
for training analog structures which do not have precisely known characteristics. In fact, David Andes and his
research group at the Naval Weapons Center at China Lake, California have already developed a working analog
system which uses the new algorithm. More recently, Intel, in collaboration with the Naval Weapons Center, has
developed a commercial analog neurocomputing chip which can be trained by MRIII [1].

For our initial discussions about the algorithm, we consider only feed-forward networks. We also assume that
all networks are composed of sigmoidal Adalines, that is, neurons that compute an output y = f/(EL zwi) =
f(WTX) = f(s). Here W is a weight vector, X is the corresponding input vector, and f is any differentiable
nonlinear function, most often the sigmoid function, f(s) = tanh(s). The binary Adaline, used with MRII
systems, is shown in Figure la, and the sigmoidal Adaline used with MRIII is illustrated in Figure lb. More

rv general neuron types and network topologies will be discussed below in Section 3. In all networks we will assume
that the weights are initially set to small random values.

2 Madaline Rule III
Like the MRII technique, MRIII can be interpreted from the standpoint of the minimal disturbance principle. In
this paper, however, we develop a more natural interpretation of the algorithm in the context of gradient descent.
There are two basic MRIII procedures, a node-by-node version and a weight-by-weight version. In this section
we will discuss the former. The weight-by-weight variant is discussed below in Section 3.1.

The node-by-node version of the MRIII algorithm is a simple procedure. A training pattern is presented to
the input of the network and a measurement is taken of the squared response error, (I = IEkI2 = IDk - Yk 2 .
Here, Y, = [yl,,y2, yL,]T is the vector of neuron outputs in the final layer, Dk = [dt,,d,,, . dL,]T
is the corresponding vector of desired responses, and Ek = Dk - Yk = [ei.,e2•. el]T is the vector of
response errors in the output layer. After this measurement, a small perturbation 6 is added to the summing
junction of one of the Adalines and the squared response error is again measured. From this, we calculate

I- 533

(. 1 (. 11k
14 feyesgn(sk)

~~(, -. ~,

(a) (b)
Figure 1: Adalines (a) Binary, (b) Sigmoidal

in AIE,..= IEp.,o.or6dm.A Iý Junp.vrurbod.,, the square error fluctuation due to the perturbation of
the mth neuron during training presentation kP.

As shown below, At2, can be used to determine the appropriate weight change for the selected neuron.
After updating the weights of the perturbed neuron, another neuron is selected, perturbed, and updated in a like
manner. We thus progress through the entire network, successively perturbing and adapting each neuron. After
the final node has been adapted, we present a new binary pattern and repeat the procedure. As with most other
stochastic training procedures, patterns are presented in a random, noncyclical order.

The appropriate weight updates are easily determined by appealing to the backprop,,6tion technique. Back-
propagation, as presented by Rumelhart et al [41 performs gradient descent on the mean-square-error surface in
weight space by the rule Wk+1 = W& - /•', where, as before, Vt is the error gradient estimate in weight space
based only upon information extracted from the current training presentation. If we fix all weights in the network
and adapt only those of neuron m by backprop, we find:

w, = Win,, - pAVk = Wm% -, k__ = W n O,, - A"k8Wm&(1
aw as",,

We can effect backpropagation in an unusual manner by adding a small perturbation 6 to the summing junction

of neuron m, and observing the resulting change in network output error. Accordingly, -k = A "
Substituting into Eq. (1) yields

W,.+ " W,, A . a8Ws,,, (2)2 OW, ..x.
W..- p (Am) , A. (3)

- m' Wi&(j Xm&. -(4)

This is the node-by-node version of the MRIII rule. We see that MRIII produces essentially the same weight
changes as those determined by backpropagation, except MRIII adaptations occur one neuron at a time. It should
now be clear that MRJII differentiates by signal perturbation, while backpropagation differentiates by using a
priori knowledge about the derivative of the sigmoid.

Because parallel analog implementations of backpropagation require both forward and backward signal paths,
backpropagation networks require considerably more circuitry than MRIII-based networks 2 . This complexity
comes in addition to that brought on by the accurate derivative relationships that must hold between the forward
and backward paths of an analog backprop network. Furthermore, the control circuitry is correspondingly more
complicated in the backpropagation system,

The primary weakness of MRIl! in comparison to backpropagation involves training speed. Because each
weight update changes the response error, it will typically be necessary to recompute the unperturbed network

1 •we use AE-, to denote the response error perturbation vector, Epergurbed,, - Eunperfurbed, . we can develop an alternate

expression for the squared error perturbation: At2, = , E_,I2 = IE_. + 4EJI - IE-,1I = 2E- ,aE., + .aE,,I2 -_
2E AE ,,, . Thus, for small error perturbations, we can approximate aec,, by 2Eý AE ,, twice the dot product of the error

vector and the error perturbation vector. In comparison to the approach mentioned above, this method of computing Ae, generally
requires fewer multiplications, and may in some cases be simpler to implement.

2
Assuming the implementation determines backward errors with parallel analog hardware.

I- 534

response after each neuron is adapted. Otherwise the weight changes can interfere with the effects of the node
perturbations and contaminate the measured derivatives. The required number c! ,,-pnrtrbed computations
can be reduced, however, if we adapt weights only after several measured gradients have been accumulated in
memory. Thus, to complete one training presentation, MRIII requires an average of something between one and
two complete forward passes through the network for each summing junction in the structure. Backpropagation,
in contrast, requires only one forward pass and one backward pass to complete one adaptation of all weights.
In implementations where these computations require more time than that associated with weight updates and
other overhead, MRIII can be slower than backpropagation by a factor as large as the number of summing
junctions in the network. This relationship holds for implementations on both serial and parallel machines. In
most current experimental analog systems, however, adaptation time is dominated by operations associated with
weight updates rather than forward signal flow through the network. Furthermore, in a forthcoming paper, we
discuss a number of enhancements that can be used to improve the speed performance of MRIII.

3 Using MRIII to Adapt Other Topologies
One of the advantages of the MRIII algorithm is its ability to adapt the weights of recurrent networks. MRIII can
also be modified to allow the adaptation of networks composed of neurons which differ from the simple sigmoidal
Adaline presented in Section 1.

3.1 Networks Comprised of Unusual Neurons
In some cases, it may be desirable to adapt neurons that have forms which differ from those discussed above. In
such instances, it may be possille to find the proper form for the MRIII algorithm by replacing X,,, in Eq. (4) by
the correct expression for from Eq. (2). Even this technique is not always feasible. Perhaps no accurate

expression to describe the neurons will be known. For instance, it may be necessary to adapt neurons that
integrate pulses, or process frequency multiplexed signals. Here, a "weight" may actually be a parameter which
controls the characteristics of an adaptive filter or the frequency of a local oscillator or multivibrator. Along
these lines, we may wish to adapt the weights in a recurrent network which is intended to oscillate in normal
operation'. Although the MRIII approach discussed thus far cannot be applied directly, it is possible to apply a
similar methodology to these problems. Specifically, we can sequentially add the perturbation 6 to each weight
in the network, rather than to each node. Here the adaptation rule for weight j of neuron m during training
presentation k can be stated as follows:

wmi•+,= ni Wmjl, - awmi" (5)

This is the weight-by-weight version of the MRIII algorithm. For networks where the node-by-node method is
a viable option, this version of MRIII will in the worst case be slower by a factor which is proportional to the
average number of weights per Adaline.

3.2 Recurrent Topologies
If we wish to apply MRIII to a recurrent network in a nonoscillatory system, we must wait for the •network
state to settle before we make any measurements. After the continuous or discrete-time network has settled, the
unperturbed error can be measured. In the spirit of the feed-forward procedure, a perturbation 6 is then applied
to one of the network's nodes or weights, and after the output again settles, the error is remeasured. Adaptation
can then be performed according to one of two the MRIII rules stated in Eqs. (4) and (6).

Unlike feed-forward networks, it is possible for recurrent networks to have nonanalytic input-output charac-
teristics, including oscillatory behavior. During normal adaptation, such problems occur rarely, but if they arise,
it is necessary to correct the oscillation or discontinuity before continuing with the adaptation procedure. This
correction can be achieved, for instance, by reducing weight magnitudes slightly or by proceeding immediately to
a new input pattern without adapting the weights.

Recurrent networks can also be adapted by simple variants of the backpropagation rule. Pineda [3], shows
this for continuous-time networks. Implemented on a digital computer, this technique requires rather costly
numerical integration. A purely analog implementation of this technique would depend upon an analog ancillary
network that must be able to accurately track changes in the original network. Rumelhart et al [4] present a

3 0f course, such networks would require some sort of postprocessor to provide the system output and error signals.

I- 535

backpropagation variant for discrete-time networks (now referred to as backpropagation through time) which can
be used to train recurrent networks to converge to a desired value after a number of iterations. This approach,
however, requires extra memory and a considerable amount of processing. Pearlmutter (2] has studied continuous-
time versions of a more general variant of this technique that allows state trajectories to be followed through time4.

The MRIII technique has the advantage that it offers a very simple method that allows one to implement true
gradient descent on arbitrary discrete or continuous-time recurrent networks. It should be pointed out, however,
that Pineda's method and MRIII both implement gradient descent only after the network's activation values have

" .. stabilized to a fixed point, while the backpropagation through time methods are more general in the sense that
they can operate whether the network state is stable or dynamically changing. In a forthcoming paper we will
present a simple approach that uses MRIII in conjunction with backpropagation to make the backpropagation
through time algorithm a feasible method for training analog networks.

4 Discussion
In comparison to analog implementations, digital implementations of neural networks offer numerous advantages
which can include amenability to software modification, weight portability, floating-point accuracy and dynamic
range, and relative immunity to temperature extremes and noise problems. Nonetheless, analog, or partially
analog circuitry can provide enormous advantages over digital circuitry in terms of cost, packing density, power
usage, and in some cases, speed. The dynamics of continuous-time analog circuitry, might also provide some
computational advantages, particularly when time dynamics are required in recurrent networks. Indeed, the
potential advantages of analog implementations are so attractive that a majority of researchers in the field believe
that analog circuitry is naturally suited to neural network implementations [51.

Thus, despite the strengths of purely digital approaches, there are strong indications that analog neural
networks will play a significant role in future applications. It should be clear that when gradient descent is
appropriate for training such systems, MRIII offers many strong advantages over backpropagation. MRIII offers
a simple technique for adapting recurrent networks and it provides a method for adapting neurons which have
unknown characteristics. MRIII might be used, for instance, to train complicated neural models which are based
upon biological nervous systems. Also, in contrast to backpropagation, MRIII is relatively immune to the effects
of nonideal components and voltage offsets, both of which are ubiquitous in analog circuitry. These characteristics
make MRIII a viable approach for training real analog neural networks.

Acknowledgements

This research was sponsored by SDIO Innovative Science and Technology Office and managed by ONR under
contract #N00014-86-K-0718, by the Department of the Army Belvoir R D & E Center under contract #DAAK70-
89-K-0001, by NASA under contract #NCA2-389, and by Rome Air Development Center under contract #F30602-
88-D-0025, subcontract E-21-T22-SI.

References
[(1 M. Holler, e al. "An electrically trainable artificial neural network (ETANN) with 10240 "floating gate" synapses," Proceedings

of the International Joint Conference on Neural Networks, vol. II, Washington, pp. 191-196, June 1989.

(2] B. Pearlmutter "Learning state space trajectories in recurrent neural networks," Proceedings of the 1988 Connectionist Models
Summer School, Morgan Kauffman: San Mateo, CA, pp. 113-117, June 17-26, 1988.

[3] F. J. Pineds, "Generalization of backpropagation to recurrent neural networks," Physical Reviewe Letters, vol. 19 no. 59, pp.
2229-2232, 1987.

(41 D. E. Rurnelhart, G. E Hinton. and R. J. Williams, "Learning internal representations by error propagation," in Parallel
distributed processing, D. E. Rumelhart and J. L. McClelland, eds., ch. 8. Cambridge, MA: M.I.T. Press, 1986.

[5] 1. Sage. ed. "Advanced implementation technology," in D.4 RPA Neural Network Study.. pt. VI, Fairfax, VA: AFCEA Interna-
tional Press, pp. 345-377, 1988.

[61 B. Widrow, R. G. Winter, and R. Baxter "Learning phenomena in layered neural networks," Proce.dings of the IEEE First
International Conference on Neural Networks, vol. I1, San Diego, pp. 411-429, June 1987.

[7] B. Widrow and R. G. Winter "Neural nets for adaptive filtering and adaptive pattern recognition," IEEE Computer, pp. 25-39.
March 1988.

[8) R. G. Winter, Afadaline rule I1: A. new method for training network, of adalines, Ph.D. dissertation. Dept. Electrical Engineerinit.
Stanford Univ., Jan 1989.

4 When discretized by the Forward Eeier approximation, if T awnl At are set to one, ann constraints at internmediate times are
removed, Pearlmutter's main result is equivalent to that of Ritmelhart et al.

1- 536

• I*

Orthogonal Extraction Training Algorithm
Harold K. Brown
David F. Lange

John L Hart

Department of Electrical Engineering
University of Central Florida

Orlando, Florida 32816

Abstract
When large amounts of input data, such as that from a video camera, are in put to a neural network, the
first layer is needed to reduce the raw data into a unique representation which is particular to the training
set. Further, in certain applications, basic features of the training set may not be well understood or so
complex that it becomes impractical to construct the required feature set. For these conditions, the
Gram-Schmidt Orthogonalization procedure [1,21 canbe utilized to develop an orthogonal vector set which
is constructed from the basis function and unique to the training set as well. This technique is tested using
individual alphanumeric characters placed in a 12 x 12 pixel array. After training the network, additional
images containing random noise are presented to the neural network. Preliminary results show good
recognition rates.

1 Introduction
Applying neural networks to real time imaging problems is critical to many applications, but at the same time
imposes certain constraints as listed in Table I. To address these constraints, studies have concluded that non-
iterative training may be the only feasible approach to solving the problem which is addressed by the algorithm
presented here. The algorithm constructs an orthogonal vector set from the input basis functions based on the
training set forming an n-dimensional space. The input vector is then expanded using the orthogonal vector set.
The resulting vector is then projected into this n-dimensional space for further analysis. Next, an approximation is
made to estimate the nearest neighbor and thus establish a match. Finally, the output is generated using a single
layer perceptron.

A) The network must be able to train in real time.

B) The number of input permutations is far greater than the number of trainingsets.

C) The hardware used for training must be the same as that for normal operation
such that the system is upwardly scalable.

D) No prior knowledge of the training vector set is known.

Table I. Neural networking system constraints for real time image recognition
training.

This technique meets the needs of each one of the constraints listed above. To meet the speed requirement, the
training algorithm utilizes only a single pass. The number of inputs is scaled down considerably after the ortho-
gonalization of the input. The upward bound on the number of orthogonal functions is the lessor of the number
of input basis functions (pixels) or the number of training sets. The actual size of the n-dimensional space can be
further reduced by training only when an undesired output is generated, thus adding new orthogonal functions only
when required.

1- 537

Once the input has been expanded with the basis function, the n-dimensional vector is projected to a coordinate
that is characteristic of the input. An estimate is made to the nearest neighbor in the decision space. The result of
the estimate is used to map the associated output. If the output is in error then the n-dimensional decision space
is increased by one by generating an additional orthogonal vector, adding a new unique vector, or adding both to
the decision space for future nearest neighbor comparisons.

In an attempt to develop very fast neural networking training algorithms which have the ability to train in real time
and still respond to arbitrary training sets, alternative training methods to the back propagation technique and other
iterative training algorithms are being developed. As shown in the results below, good outcome can be obtained
by this method. The primary penalty appears in the system memory requirements, but in certain applications this
is acceptable. It is believed however, that improvements to the training algorithm can be made to reduce the
probability of requiring an additional basis function for a given training vector. These improvements are expected
to result in decreased memory requirements with little impact on the overall training time.

2 Orthogonal Extraction of Basis Function
The furst layer utilizes a modified perceptron structure. The connection weights to this layer are determined using
the Gram-Schmidt orthogonalization procedure. Equation 1 is employed to calculate the weights.

tXIn t-t-)
1

-i t-11-e1
lw1 ' - ! 1i 0-(/--o/ tl

I- I - [F Xt 1 ,j ,,•
_ L -O j-0

for rn =0... t .V 1"-1 (1)

The notation for V . is such that the index t refers to the training set, I refers to the layer number, -. refers to

the node number, and mn refers to the interconnect from node n proceeding to layer I - 1, node m To calculate
this result, first a feed forward is performed which is described by the summation terms contained within the inner
parentheses. If the feed-forward output is treated as a feed-back input and the feed-forward input treated as the
feed-back output, the same operation can be used to calculate the outer summation. The only remaining operation
involves the subtraction of the or.ginal input and subsequent normalization. Thus ,he same hardware can be utilized .
for most of the tring.

Figure 1 shows a graphical representation of the process
implemented by Equation 1. Vector B represents the already A

constructed orthogonal vector set. When a training set is /-

input, vector A, the projection of vector A onto vector B is /
subtracted from vector A. The result is the A' vector which
is the new orthogonal vector which is added to the /
n-dimensional decision space. If there were more than one
initial orthogonal vector this process would be repeated until
the input training set was reduced to zero or all of the
projections to the orthogonal vectors were subtracted out. Figure 1. Extraction of orthogonal vector A'

from A after projection to B is subtracted.

In- 538

3 Mapping of Input Into Decision Space
The second layer deviates from the perceptron in that an additional offset is included and each connect has a sigmoid
associated with it as computed in Equation 2. There may be supporting evidence that actual neurons have such
complex structures [4] although this process is not fully understood at this time. Further it can be shown that the
training can be mapped to a perceptron with a slight modification of the sigmoid activation function.

t_ ,.-il, for XU-a•.,<SN• ' 1 + l..,('X," "' ,
S,., I(2)

W b i for Xi- ca,)>i• 1 ~~+ L . .

SWhen binary Lmage data is input to the neural network (i.e. each pixel is represented by a 1 or 0) the sigmoid can
be linearized without serious degradation to the system. Equation 3 illustrates the forward computations used in
the results section. In addition, each term is clamped except for the nearest neighbors.

- - a j) t -f•tnn. for Xj-an.< '1
SS 2_ (-i) for X,-- < (3)

The training is performed algebraically giving equal weight to each of the nearest neighbors and clamping beyond
them. After a feed forward cycle is complete, a winner takes all function is used as input to the last layer.

4 Output Mapping
In the examples shown in the results section only a simple OR-ing function is required. For a given desired output
a connect is made from the second layer to the third. With the second layer being a winner take all and only one
of the outputs are to be active the LMS algorithm reduces to a single pass operat-on.

5 Results

To verify the accuracy and speed associated with the single pass feed-forward Orthogonal Extraction Training
Algorithm (OETA), several tests have been adopted for characterization. Testing was performed over three
separate character data sets. The first set included five hand generated characters A through E built on a 7 x 12
binary pixel grid and overlaid and left justified onto a 12 x 12 pixel array (Fig 2). However, both the second and
third character sets were derived from standard IBM character patterns based on 7 x7 binary pixel grids and overlaid
into the center of a 12 x 12 pixel array. The hand written set has features that are more distinctive than the IBM

4A, character set.

-4.. + +

S4""* + +++ +
,+ 4.+ + + 4.. +

't t t tt4 tt 4. ++ 4

+I + +.

I4.4 4.4. ÷*4. *

Figure 2. Handwritten character set showing typical inputs Figure 3. The 'E' character was recog-
with 5% noise and without. nizcdasa'D'character. A2%errorrate.

539

The network trains to each character contained in the specified set. Following training, the test program randomly
selects a character in the set for evaluation, adds a fixed percentage of random pixel noise, and then presents the
noisy data to the network for evaluation. The test procedure is repeated 200 times for each noise level in 5%
increments ranging from 0% to 30%. By the time 30% noise is added the characters are barely recognizable.
Recognition success rates are then plotted against the noise level for the purpose of qualitative analysis as shown
in Figure 4. Figure 2 illustrates the hand written character set and representative inputs with noise that were
recognized correctly. Figure 3 illustrates one sample that failed to be recognized correctly even though the character
features were ascertainable. Such failure in recognition occurs about 2% of the time.

Figure 4. Presentation showing the per- 100 1
cent success in recognizing a character as 90
a function to percent noise. The delta so
marked line plots the results of the hand- W
written character set and the square 1 70

marked line plots the results of the IBM u 60
Ucharacter set. It should be noted that the 5

IBM character set is made of fewer pixels 0
than the hand written set. This plot shows 40

that noise does not degrade performance 30

until the character integrity is effected. 0 11M Atphabet
120

0 0 io 1,5 20 25 30

Other tests were conducted after training with randomly selected characters from the character set which also
included 5% noise. The success rate drops considerably when training is conducted with noisy data. This is in
cortrast to back propagation trained networks where the recognition usually improves when training with noise 131.

6 Conclusion
Overall this technique gives good results while meeting the constraints outlined in Table I. Additional efforts need
to be focused on why the low level error rate persists on good images. Also the technique needs to be evaluated
for larger systems where the ratio of input permutations to training sets is much L.-rger. Further evaluation is
required to verify how the technique performs when the second layer training is mapped to a perceptron.

7 Acknowledgments
This research was supported in part by grants from PM Trade (contract #N61339-88-G-0002 order 0009), the
Institute for Simulation and Training at the University of Central Florida, and the State of Florida High Technology
and Industry Council. In addtion, the efforts of Joseph E. Madden are greatly appreciated for his support in

r iproducing this paper.

8 References
[11 Hart, John, Lange, David, Meehan, Stee, and Brown, Harold K. (PI), "Ouarterly Report on Progress for

A Neural Network Database Generator", Report for Project Manager for Training Devices (N61339-88-
G-0002 Order 0009), University of Central Florida, Orlando, Florida, November 11, 1988.

[2) Szu, Harold and Scheff, Kim, "Gram-Schmidt Orthogonalization Neural Nets for O.C.R.", International
Joint Conference on Neural Networks, IEEE Press, Washington D.C., 1(547-555), June 1989.

[3] Gerrity, Francis J., Georgiopoulos, Michael, and Papadourakis, George, 'A Study of the Generalization in
Multi-Layered Feed Forward Neural Networks', Florida Al Research Symposium, date unknown.

[41 Sejnowski, Terrence, 'Neural Computation', Plenary Session for IJCNN, Washington D.C., June 20, 1989.

I - 540

//

A Model of the Neural Network Based on the Local
Interaction Hypothesis and Two-Stage Modeling of

Long-Term Enhancement

Hiroali Kitano
Center for Machine Translation

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

Abstract

In this paper, we propose a model of the neural network based on physiological studies involving long-term
enhancement and local interaction. Modification of weights in the neural network is caused by sustained stimulus,
and involves two distinct stages. Each represents Protein Kinase C translocation and altered protein synthesis by
messenger RNA. The Local Interaction Hypothesis is modelled to simulate postsynaptic activities of conditioning.

1. Introduction
In this paper, we propose a model of the neural network based on various physiological studies. The focus of
the model in this paper is associative learning due to Long-Term Enhancement (LTE). In designing the model,
we have taken into account physiological studies of, but not limited to, pyramidal cells in the CAI region of the
hippocampus, because they are identified as the group of cells which accounts for associative learning. Neural
activities involve complex biochemical processes, some of which are not yet known, so that complete simulation
is beyond our capability at this time. Instead, we take the more simple approach of designing a neural network
model taking into account the effects of some major biochemical processes. Since we are interested in associative
learning, we have focused on the LTE due to the Protein Kinase C (PKC) translocation, the altered protein sythesis
by messenger RNA (mRNA), and the Local Interaction Hypothesis[Alkon, 19891. In a subsequent section, we
describe physiological studies we have taken into account in designing our model. Then, we describe our model.

2. Neural Realities

Neurons are biochemical apparatus. The excitation and inhibition of individual cells and the propagation of electric
pulses are due to the biochemical reactions of neural systems. In designing an artificial neural network, physiological
studies on how postsynaptic potential is changed and how sensitivities of postsynaptic membrane are changed and
sustained are of primary importance, because these directly affect the basic architecture of the model.
Postsynaptic Potential:
Elevation of the postsynaptic potential is caused by an inflow of Ca2÷ as observed by researchers including (Alkon,
19841. There are two types of excitatory postsynaptic potential: a fast excitatory postsynaptic potential (fEPSP) and
a slow excitatory postsynaptic potential (sEPSP)t. The fEPSP is caused by an inflow of ions due to glutamate (GLU),
a kind of neurotransmitter, binding Kainate and/or Quisqualate (KQ) receptors to open ion channels[Collingridge
and Bliss, 19871. This process transmits presynaptic potential to postsynaptic potential by changing postsynaptic
membrane permeability. The fEPSP is very rapid (on the order of a few milliseconds). The sEPSP is caused when
the Mg2÷ block of the N-methyl-D-aspartate (NMDA) receptor is reduced by depolzrization due to a high frequency
stimulation, and an influx of Ca2* is obscrved[Collingridge and Bliss, 19871. This process activates the Ca2

*-
dependent process. Also, there is a cyclic AMP (cAMP)-dependent process of sensitivity modulation[Nathanson

t We do not discuss slow inhibitory postsynaptic potential (sIPSP) in this paper.

1- 541.

and Greengard, 19771 (Greengard, 1976f]Greengard and Kuo, 19701. However, whether this cAMP-dependent
process contributes to persistent change in sensivity is at this point unclear.
Long-Term Enhancement:
We consider presynaptic and postsynaptic reasons for the induction of LTE2. The presynaptic explanation is that a
sustained increase of neurotransmitter release induces LTE. Postsynaptically, LTE is due to a Ca2* influx through
a NMDA-sensitive and voltage-sensitive channel, and maintained by persistent PKC translocation from cytosolic
PKC to membrane-associated PKC(Alkon and Rasmussen, 1988][Malinow et. al., 19881. Elevation of sensitivity
by this process sLarts minutes after the stimuli is given and lasts for weeks. When LTE is sustained for a longer
period this is due to the alteration of protein synthesis by mRNA[Nathanson and Greengard, 1977]. There is a
hypothesis that this change in the synthesis of protein is due to cyclic-AMP-dependent phosphorylation of nuclear
proteins[Greengard, 1976].
Local Interaction:
[Alkon, 1989] proposes a hypothesis that postsynaptic change of sensivity involves extensive local interactions.
His hypothesis is based on the observation that membrane-associated PKC increased in CAI cell bodies, and to a
lesser extent in dendrites, immediately after the paired stimuli are introduced, but three days later, PKC is found
maximally in dendrites and less in the cell bodies. He further claims that the specific spatiotemporal domain affects
promotion of PKC translocation and causes postsynaptic change. The hypothesis claims that, when conditioning
occurs, postsynaptic sensitivity modulation is most affected by a nearby site.

3. Models of Associative Learning

In this section, we d ..cribe a mathematical model of an artificial neural network based on physiological studies
discussed in the previous section. First, we describe a basic model with a simple local interaction. Then, we
augment the model and incorporate a configurational factor. Finally, the modelling of LTE is discussed.

3.1. Local Interaction

The Local Interaction Hypothesis is adopted to simulate concentration of PKC in the postsynaptic membrane
affected by nearby sites during a specific spatiotemporal window. In implcmenting the hypothesis, we introduce
a configurational matrix which defines physical and chemical proximity between synaptic sites. The basic idea is
to increase the weights of synapses when there is coincidental stimuli within a specific spatiotemporal window.
The configurational matrix defines a spatial region as that where such weight modification can be triggeredL The
temporal window is defined as the modification which takes place when paired stumili are within a certain time
interval. There are two wpys to model this hypothesis. First, a basic model assumes that in the presence of paired
stumili each weight involved is modified, and the output function employs a conventional threshold function. This
model is expressed as equations (1) and (2).

o, 3 E w -aj-h (1)
Aws = wisa + E twjjajwaakcjjk (2)

k =7w ,awAakcjk (3)

where oi, wij, aj, h, c, y, wlij, cAk and N, are the output level of the i-th node, the weight between the i-th and j-th
node, the activation level of the j-th node, the threshold value, the learning parameter for unconditioned stimuli,
the learning parameter for conditioned stimuli, the weight between the i-th and j-th node due to PKC translocation,
a configurational factor between the i-th and j-th node in the presence of stimuli from the k-th node, and the
configuration factor due to the PKC translocation, respectively. Unlike the Hebbian Learning Rule(Hebb, 1949],
weight can be changed without firing; it can be changed if stimuli are introduced. The term (waj represents a
modification of weight whenever the stimuli are introduced. This term involves both presynaptic and postsynaptic
change. In the equation (2), the second term of the right hand side shows a local interaction at conditioning.
This term represents postsynaptic modification. The weight is strengthened by paired stimuli at nearby sites. The
temporal window can be incorporated into the model using equations (4) and (5) by using 1(t) which defines a

2
Morphological explanation is ignored in our model since its nature and comformity to computer simulation is not known.

I - 542

temporal window of local interaction for the PKC translation.

6%,3 - cwai + y J 7(t)cjjkwjajwjakdt (4)

-d~ J -t(f)wqjajwjaakc4,idt (5)

Another way to model the hypothesis is to further speculate that, in addition to the basic model, fEPSP can be
modulated in the presence of paired stumri.

oj- E w#,:a+ZE Ew~ajWikakCk - h (6)
Aw -- ew~aj (7)

dcAcj - wVwajWi&kakCqA (8)

The equation (7) represents a basic modification of synaptic weight where the more the stimuli are given, the stronger
the weight will be. This equation applies solely to each synaptic weight. The local interaction is represented in
the equation (8). The configurational matrix is modified only when paired stimuli are given. As a result of weight
modification, the network will learn association of stimuli, say A and B, where A is the conditioning stimulus and
B is a conditioned stimulus which usually flows through the network as simulated in (Vogl et. al., 1989]. After the
training, when the stimulus A alone is given, the B will be produced as an output of the network.

3.2. Long-Term Enhancement
We simulate two stages of LTE. We assume that LTE, %3 and c3,, are due to the PKC translocation, and the
"sustained LTE, as represented in * and cL, is a result of increased protein synthesis by mRNA altered by PKC
and cAMP dependent processes.

W4 " w+ W4 (9)
S= cjk+ (10)

Modification of weight is initially recorded on Wq and qs' and transferred into vv/4 and ct, respectively.

L4 7/c4k (12)

C and Y7 are parameters for converting PKC-based LTE into mRNA-based LTE. Although PKC-based LTE may decay
as a result of dispersion, mRNA-based LTE is long lasting. We assume that the mRNA-based LTE is weakened
by cell and dendrital tree loss in the cell population. Equation (13) and (14) roughly simulate loss of cells and
dentrital trees in the cell population.

(t) = w~to)e-0-°) (13)

4t= #) 4to)e-0(-' (14)

We expect that this two-stage modeling of LTE will provide our model with a capability to learn only common
features of the data set and ignore uncommon features. Although the possibility of making generalizations from
data by this type of learning scheme is not evaluated in our model, we assume that the two-stage modeling provides
"some filtering capabilities.

4. Discussions and Conclusions

In this paper, we proposed a model of an artificial neural network based on the Local Interaction Hypothesis
and the two-stage modeling of LTE. The Local Interaction Hypothesis is incorporated into the model using the
configurational matrix and a temporal function of weight modulation. The two-stage modeling simulates the lasting

I - 543

period of LTE due to PKC translocation and altered protein production by mRNA, and decay of LTE due to chemical
dispersion and the loss of cell bodies and dendritic trees in the cell population.

As pointed out in [Alkon, 19891, a learning rule based on the Local Interation Hypothesis should be different
from Back Propagation(Rumelhart, 1986] and the Hebbian Learning Rule[Hebb, 1949]. We believe this is a
reasonable conclusion when modelling the pyramidal cells of the hippocampus because neither Back Propagation
nor the Hebbian Learning Rule conform to biological observations of actual neurons in the CAI region of the
hippocampus. Back Propagation assumes a reverse flow of information which causes change in the synaptic
weight. Such, reversed flows in real axons are unrealistic in a real neural system[Crick, 1989]. The Hebbian
Learning Rule increases the connections of neurons that are fired at the same time. However, in hippocampal cells,
there is evidence that cells do not follow the Hebbian Learning Rule, Instead, it could seem that local interaction
may be a dominant learning rule in the CAI of the hippocampus.

There are several biochemical processes our model has ignored. First, we have not modeled inhibition by an
antagonist[Morris et. al., 1986]. Blockage of NMDA sites with aminophosphonovaleric acid (AP5), which is a
NMDA antagonist, does not affect synaptic transmission, but prevents the induction of LTE. Such a role of an
antagonist needs to be incorporated in a future model. Neurogenesis or neural darwinism (Edelman, 1987] is an
important theme in learning, but is not discussed in this paper, mainly due to the fact that we are not sure about the
mechanism and phenomena of neurogenesis in the hippocampus. Recent discovery regarding the RNA transport
in dendrites [Gordon-Weeks, 1988] has not been incorporated in our model because the detail of the phenomena
are not well understood. Application of our model to the Frequency Modulation Neural Network (Kitano and
Tomabechi, 1989][Tomabechi and Kitano, 19891 is another future issue.

We need to explore the mathematical and experimental properties of the model. (Vogl et. al.. 1989] proposed a
model of an artificial neural network based on the biological observations by Alkon, and claim that their network
learns more efficiently than Back Propagation. Since our network shares basic learning fcatures with their network,
investigation of the efficiency of learning is one important topic in the evaluation of our model. A computational
experiment to evaluate the learning capacity of our model is now in progress.

Acknowledgements

The author would like to thank members of Carnegie Mellon community for fruitful discussions. Lyn was, again,
a patient proofreader of my paper.

References

LA4lko, 19891 Alkot. D.L, -Memory Storage and Neural Syntrta.' Seca.f:c Aneicae, July. 19*9.
tAlkan. 19141 Alk•n. D.L. 'Caleiwn-Mediated Reduaion of Ionic COm'cra: A Biophygical Memory Trame" Scence. Vl. 226. pp1037-1041, 1914.
(Akan ad sRamnusse. 19811 Alkon, D.L and Ramnme. It. "A Spadal-Tamportl Model o CclI Activation." Sie.me. VoL 239. pp99-1005, 19*9.
[Colangridie and Bl.m. 19171 Collingridg G.L and Brin. TV.P. "NMIDA Rccepom - Thou' Role in Lano-Tearn Potenitiati" Tree, in Newaircience. VoL 10,

No. 7, 1917.
(Crick. 19291 Crick. R.. 'The Recent Exctement about Neuald Netweoc," Nan, VoL 337, ppl29-132. 1959.
[Edelman. 19171 Edelman. G.M.. N ,wal Dw-n.mw i 7w Theory of Newl GCrup Selection. New York. Banc Bocks. 1917.
lGodon-aWeels. 1981 Goodon.Weeks. PR.. "RNA Transport in Dedntc," Tra•./ in Newocim,,es. VoL 11I. No. 8. 19*9.
'Greengmad. 19761 Greengard. P.. "Posaible Role for Cyclic Nuclotides and PhoelphoryLa-ed Membrane Proteins in Pouynsaptic Acions of Nea'onnnumetter."

Namau,. Vol. 260. pplOl-IO., March i1 1976.
[Greengard and Kuo. 19701 Greengard, P. and Kuo. JF.. "On the Mechanism of Actcon of Cyclic AMP," Ad*. Bioeunt. Pr•ycopharmacol. 3:237-306. 1970.
[felab, 19491 Hebb. D.O., The Organizatio of BeAvior". A NearopsycholoSical Theoy. New York:Widcy. 1949
timeo and Tomabechi. 19891 Kiiino. Kred Tonabechi. H.. T7. Freqwn7y Modwdaruwi Newal Nrirork Th7ory. Manuscnpt. Caurneie MeloIi Univeaity. 19*9.
[Malinow at. &. 19881 Malinow. R., Madison, D.V. and Tiien. R.W. "Perristent Protemn Kinase Acivity underlying LoUng-Tet•r Potenuauon," Naaur.. V-L. 335.

ppS
2
0.2

4
. 1988.

(Morns a. al.. 19961 Morris. R.G.M.. Anderson. E_. Lynch. G.S. and Baudry. M.. "Selecuve Impairr•ent of Leaming and Blockage of Long-Term Pc•t•.ucsn by
an N-methyl.D-aspsnate Receptor Anaugonist, APS," Nanwe, Vol. 319. pp

7 7 4
-

7 7
6, 1996.

[Natfinson and Greengard. 19771 Nathanson.]A. and Urocrtgard. P. 'Si=nd Me.saargere in the Brain." In The Biology of the Brain. LUras. RR. (a.d). Frronan.
1977.

liRumelhac., 19361 Rumeihart. DE., ".earming Internal Revprm tntion by Error Propagation," In P.rallel Da.rnbued Procemtsmg, Rumelhssi. D E. and McClelland,
J.L (Eds.). 1986.

[Tomnabechi and Katano. 19991 Tomb3aechi. II. and Kntano, ff., "Beyond PDP: the Frequency Modulauon Neural Netorik Arclutecture," In Procudaifs of Au
lJ*rmastonal Jo#At Cofr/er•rce on Arificial Intelligence (IJCAJ-89), 19*9.

(Vogl ca. &L. 19891 Vogl. PT.. Alkon. DL and BlackweIl. K.T.. "Dyamircally Stable Associative l•eammig (DYSTAL); A Biologicallv Mouvatrui Araicial Neural
Network." In Proceedims of Me lAtntwuomal Joint Conference on Neurat Nentorlk.r 1989.

- 544

I /

Tree Net: A Dynamically Configurable Neural Net
John A. Nevard

Department of Mathematics
University of California, Los Angeles

Los Angeles, CA 90024

1. Description of the Algorithm
We consider the basic pattern recognition problem of constructing a machine or algorithm to partition

a given set of patterns into two previously specified disjoint subsets. We use the notation

I - {-1), P = , SC P, n = IS, S = SA U S, SA, Sadisjoint,/
and

f:•P-- I satfies (z)={,1 ZESA/I Z IE Sa

so that P is the pattern space, S a given subset of patterns, and f is the characteristic function for S in P.
Then, an effective realization of f by a network of "neurons" is sought. We will denote such a network by
N(f). Here, the simplest model of a neuron, namely that of McCulloch-Pitts [1], will be sufficient, so that
a neuron v with fan-in k may be represented as the function &,: R" -. I given by

5(zl, zk) = H(,(z) - 0),

where

•z z. . H--) 1 z < 0
11• •=-',, .>0,

and w, , w&, and 9 are the adjustable weights and threshold of the neuron. By "effective realization" we
mean a learning procedure that, given IS, efficiently constructs a reasonably sized network which implements
f on S.

Intuitively, at least, the demands for efficient construction and reasonable size are at odds with each
other: A network implementing !, having n(b+ 1) connections is trivial to construct, while, for most f's,the
problem of finding the smallest network implementing f is, very probably, impossibly difficult. Thus, a
learning procedure that could balance these two requirements might be inherently more efficient than many
of the learning schemes in use where the architecture of the net is fixed before the difficulty of learning a
specific problem is known.

The procedure is based on the idea that while fIS may be a difficult problem, it is always possible to
write S = Sc U SD (Sc n SD = 0), and usually easier to solve the problems of implemen-ting f'lc and fISD

separately. Let

-1 zESc
~''Ll ZESD

and suppose that, somehow, we have available N(g), N(IISc) and N(fISc). Let s: P3 -I be the function

a(zI,z2,Z3) = ifz =-1Z3ifzil
Z3 if Z, = 1

and let M = N(s), a net of fixed size (a version having two hidden nodes and six connections is easy to
construct) which we may assume to be given. Then N(f) can be constructed as shown in figure 1. Although
all the nets except M operate in parallel (conceptually), the structure can be seen as a tree, with N(g)
acting as a parent node to the two subtrees N(fISc) and N(fISD). It will be useful here to make the usual
distinction between internal nodes and leaf nodes; the algorithm will construct them quite differently, as
detailed below.

As it stands, we now have a template for a class of learning procedures which can be filled in to yield
an exact algorithm by specifying how N(g), N(fISc) and N(fISD) are to be constructed. Unfortunately,

I- 545

'-V -

/
/

given g. fJuSc and /ISo, our task appears hopeless, because there is no reason to suppose that N(g) is any
easier to construct than N(f). To avoid this impasse, we replace N(9) in figure 1 by N(?), i.e., a random
network, which partitions S into two subsets which we continue to call Sc and So, and implicitly defines the
function it computes, namely g. We may well be able to do better than the random network N(?), and we
will address this below, in a preliminary way. For now, N(?) will almost certainly have divided the problem
into the two strictly smaller problems of computing N(f ISc) and N(f /SD).

Since these are smaller problems, we could apply the above procedure recursively to each of these
problems, and end up with a net which is indeed N(f). The serious drawback is that it will have 0(n)
connections, and, at least from a priori considerations, will be virtually incapable of generalization. Instead
of a completely recursive approach, then, at each stage a 'local" learning algorithm is applied, i.e. to the
problem of constructing N(/ISc) and N(U IS,). If, after a certain number of presentations t = t($Scl, b) the
algorithm has not succeeded, then the main procedure is applied recursively, partitioning Sc and SD and
continuing. This is a flexible scheme, since the choice of local learning algorithm at each stage is essentially
arbitrary, as is the function t(ISc1,b). (For example, the purely recursive scheme, considered above, fits
into this framework by choosing t(ISc1,b) = 0 if IScI > 1.) As mentioned above, we can view the net as a
tree, and it is now clear that internal nodes act to partition the patterns, while external nodes do the actual
classifying.

The choice of the perceptron algorithm [2] [3] used here as the local learning algorithm at each stage
"was made to keep the size of the final net as small as possible, and to reduce the number of intermediate
decisions. For instance, Back Propagation [4] fits into the above framework easily; the McCulloch-Pitts
neurons, chosen only for simplicity, can be replaced by differentiable neurons. Then, however, at each stage,
the architecture of the subnets must be chosen by some criteria, and rarely is a minimal net size achieved.
Perceptron learning, on the other hand, trains a single neuron, and has the well-known property that if a
one-neuron solution exists, it will be found [2]. On a purely practical level, although Perceptron learning
is notorious for slowness, its inner loop is so simple that it often ends up outperforming more sophisticated
algorithms whose convergence properties are not so well understood.

An optimal method for constructing N(?) would have to determine a partition of S into Sc U SD,
where ISc" and fISo are easy to learn, and then proceed to actually construct a net which effected the
given partition. This is more difficult than the original problem-instead, we will settle for an N(?) which
partitions S into approximately equal-sized subsets, IScI : IS I, with no other constraints on how Sc and
So are chosen. Then, we may define N(?) to consist of the single neuron represented by v(z) = H(w. z-
where w E S is chosen randomly and # is adjusted to be the median of {w • zjz E S). Clearly, N(?) will
partition S into two sets of approximately the same size. Geometrically,

Sc = { zE S I 11z- Žll > r),

So = f = E S I IlX -wii < r),
where r = r 0),

The net can be trained incrementally, as the number of patterns grows. Suppose the net N, = N(fIS1)
has been constructed, and we wish to construct N2 = N(5ls1us0). If N, consists of one node, then we
merely continue training with the perceptron algorithm (or whatever local learning algorithm is being used)
using S, U 52. On the other hand, if N1 has more than one node, S1 U S2 will be split into two subsets,
and the splitting will continue down the tree until a leaf node is reached. At this point, the local learning
algorithm continues at the leaf node, applied to the particular subset of S 1 U S2 that has filtered down from
the splitting nodes. Since the splitting nodes' weights are fixed after the first time they are adjusted, the
tree may become unbalanced using this technique; in practice, however, this was not a problem. For instance
(see below), only once did a tree trained incrementally on a total of 3000 patterns split the patterns as many
as three times.

When the algorithm is working on a leaf node, and the number of presentations of patterns reaches
t(ISI, b) without successfully separating the patterns, the algorithm discards the weights of that node, con-
structs a partition node in its place, allocates two additional nodes which can be thought of as the children
of the partition node, and appends the small fixed-size net Al, so that its inp'zts are the outputs of the three
nodes. The patterns are partitioned by the partition node, ard the appropriate subsets are then used to
train the two child nodes.

1- 546

J

2. An Example: Handwritten Character Recognition
As an example intermediate between "toy" problems and practical applications, a net was built to

recognize the handwritten block capital letters A through Z. For ease of entry (using a mouse), the letters
were first input as 60 x 68 bit-images, and then scaled to 15 x 17 images. Thus, for this example, P = 1255.
The patterns were then shifted so that their centers-of-mass coincided with the center of the 15 x 17 rectangle.

Since classification of letters is a multiway rather than binary decision, we need a "forest" in place of
a single tree. Here, 26 subnets, operating (conceptually) in parallel, were constructed using the algorithm
described in the previous section, with the ith net trained to return 1 if the pattern was identified as the
ith letter of the alphabet, and -1 otherwise. Two criteria were used for judging if the net's response was
correct: A pattern was considered an "exact match" if the appropriate subnet returned 1, and all other
subnets returned -1. Alternately, it was a "best guess" if the appropriate subnet responded more strongly
than all other nets (even if that strongest response were negative).

Because of the nature of the algorithm, learning a given set of patterns was not considered complete
until the resulting tree achieved 100% exact matches. For simplicity, t(ISI, b) = 20000 was used. A set of 1311
patterns was used to build the first tree, requiring 83 minutes on a Macintosh Plus before all patterns were
correctly identified. The incremental building process described above was used to continue the learning,
producing 11 trees in all, the last having been trained on 2984 patterns. 520 new patterns were then used
to test the generalization capabilities of the trees. As figure 2 shows, the percentage of exact matches rose

.. "from about 63% for the first tree, to almost 77% for the last tree. The percentage for best guesses, although
considerably better than that for exact matches, rose more slowly, from 82% for the first tree to 88% for the
last tree.

An encouraging feature of the algorithm is that the size of the net seems to grow slowly, although
more data is needed before anything definitive can be said. Here, for instance, the total number of nodes
(distributed among the 26 subtrees) for the first tree, trained on 1311 patterns, is 76, whereas the last
tree, trained on 2984 patterns, has 98 nodes. The distribution of those 98 nodes among the 26 subtrees is
also interesting, the subtrees for certain letters having only one node and thus operating as perceptrons,
while most letters require one splitting node and two perceptron nodes. The letter B (presumably hard to
distinguish from E's and R's and to a lesser extent A's) ended up with seven nodes, three splitting nodes and
four perceptron nodes. The algorithm, then, seems to have the desirable capability of recognising learning
difficulties, and allocating more resources where they are needed.

3. Conclusion
Recent results have shown that learning to classify a given set of patterns using a net with fixed

architecture is an NP-complete problem. It seems inevitable then, that practical learning algorithms will
have to be capable not only of adjusting weights in a given architecture, but of adjusting the architecture of
the net, if the problem seems to demand it. The method presented above is a beginning attempt that has
the virtues of simplicity, flexibility and quite high efficiency. The node-adding criterion used here, of defining
t(ISI,b) as a constant, can doubtless be improved, but even as it stands, the method's efficiency is such that
nets having 25000 connections can be built on a machine like the Macintosh Plus in about two hours.

4. Bibliography
[1] McCulloch, W. S. and W. Pitts (1943) "A Logical Calculus of the Ideas Immanent in Nervous Activity,"

---/ _Bull. of Math. Biophys. 5, 115-133.
[2] Rosenblatt, F. (1959) "Two Theorems of Statistical Separability in the Perceptron," in Mechanisation

of Thought Processes. Proceedings of a symposium held at the Natural Physical Laboratory, November
1958. 1, 421-456. London: HM Stationery Office

[3] Minsky, M. and S. Papert (1969) Perceptrons. Cambridge, MA: MIT Press
[4] Rumelhart, D. E., G. E. Hinton and R. J. Williams (1986) "Learning Internal Representations by Error

Propagation," Parallel Distributed Processing, Rumelhart and McClelland, eds., 318-362. Cambridge,
MA: MIT Press

I- 547

Figures

Fi I

. .. N(./ISc) Nl(Il~p)

. N (g)

x

/"* F ig pu re 1

DEGREE of GENERALIZATION

100

Sgo-
"R 80
R
E 70"

S..........

R
"RTE 50Iii*E S

P 40
0
N 303
E20 I ,
S 20- Exact Match
% 10 sooe t Gu•ass

00 ca

1300 1500 1700 1900 2100 2300 2500 2700 2900
NUMBER of PATTERNS

Figure 2

"1I- 548

INFORMATION STORAGE MATRIX NEURAL NETWORKS

"R. L Waterland and N. Samardzija
Engineering Physics Laboratory, E. I. du Pont & Co. (Inc.).

PO Box 80357,
Wilmington, DE 19880-0357

Abstrac
This paper presents a new neural network model that incorporates feedback. The model resembles a binary

Hopfield net but requires neither symmetric connections nor orthogonal stored memories. We have developed a
complete theory of the fixed points of the model and their basins of attraction. A novel feature of the model is direct
control of the speed of convergence to stored memories and flexibility in tailoring the basins of attraction.

Introduction

Connectionist models feature an interconnected structure, expressed as a connectivity matrix, imposed upon a set
of elementary neurons. Typically, each neuron applies a clipping- or sigmoid-type nonlinear transformation to a
weighted sum of its inputs and adapts to its environment according to a learning rule. Most algorithms [1,2,3] are
based on this description, with the main distinction being the learning rule imposed.

We choose to divide learning rules into two classes, local and global. Local learning is based upon an iterative
. procedure while global learning is based upon a non-iterative rule. An example of global learning is the Hopfield

outer product rule [3].
In this paper a new algorithm based on a global learning rule is presented. The method describes a dynamical

," system with feedback which is not restricted to the symmetric connectivity matrix of the Hopfield structure. The
model incorporates a discrete time, finite step architecture that operates on binary strings, and can easily be
"implementated in VLSI hardware.

The Network Architecture
Assume there are n elementary neurons, with the strength of the connection from the i-th output neuron to the

j-th input neuron given by component aij of a real nxn connectivity matrix, A. The state of a neuron is represented
by a real number in the range [-1.0,1.0] and the collective state of the system of neurons is an n-component vector in
the real vector space, 9tn . Matrix A is selected to store memories in the network, each memory being an n-bit
binary string containing symbols 1 and -1. These memories are elements of the code Cn which contains 2 n n-bit
elements each with a representative in tn, e.g. the string 11-1 e C3 has a representative X = [1. 0 ,1.0 ,-1. 0]T in 03.
Each element of Cn defines a vertex of the Hamming cube in 9tn.

The dynamical system presented relates vectors X(k-1) and X(k) that lie within or on the surface of the Hamming
"cube. Specifically, the dynamics takes a vector X(k-l) and maps it into a vector X(k) according to the prescription

X(k) = q(A X(k.l)) (1)

where A is the connectivity matrix and q is a clipping-type nonlinear vector function. If yi is the i-th component of

a vector Y e 9tn, then q(Y) = (ql(yi).q2(Y2),...,qn(Yn)]Twith

qi(yi) = Yi if ;yi < 1
= sign(yi) if lyi I> 1 (2)

For a given connectivity matrix A, the mapping (1) is iteratively applied to an initial vector X(I) r Cn to produce a
sequence of iterates [X(1), X(2), X(3),...). In the next section we will show how to encode memories in A so that
this sequence of iterates is guaranteed to converge to one of the memories.

Learnine and the Information Storage Matrix
We select m target vectors YI, Y2,.Y3YmE Cn with m< n requiring them to be linearly independent.

These vectors span an m-dimensional subspace of 9n called the target space. The question is: how does one store
information in and extract information from such a space?

I- 549

Augment the m target vectors Yi with (n-m) vectors Zm+,I Zm+2,.... Zn E gin' called the slack vectors.
The Zi must not be elements of the code Cn and the set YI..... Ym, Zm+ . Zn must form a basis for 90
The target and slack vectors are arranged as the columns of an nxn non-singular matrix T = [Y . Ym, Zm+1.....
Zn]. Define a real nxn diagonal matrix A = diag (XI,.2 Xm, em+l, Bm+2,..., On) and form the matrix
,

A-TATI
(3)

A and A are related by a similarity transform; the column vectors of T are the eigenvectors of A and the diagonal
elements of A are the associated eigenvalues [4], i.e.

AT= TA (4)

In fact, given T and A, equation (4) can be solved directly for A by using the Gauss-elimination algorithm or by
applying the 8-rule of perceptron learning.

There is an additional requirement on the eigenvalue matrix A. The m diagonal elements of A corresponding to
the Yj and the (n-m) elements corresponding to the Zi must satisfy the conditions,

Iil > 1.0 i= I in
10il < 1.0 i=m+l,n (5)

This eigenvalue assignment establishes a saddle topology in 9n. Any matrix A satisfying these requirements is
called an Information Storage Matrix and may be used as a connectivity matrix of the neural network.

Operation of the Network
Each initial state of the system is a binary string which has a representative X(D in qtn. Applying relation (1)

iteratively to X(I) produces a sequence of states each lying within or on the surface af the Hamming cube. It can be
shown [5] that this state sequence must evolve towards the target space, i.e. the ,,erates of any initial state must
move towards the desired memories.

The outlined procedure requires the initial state to evolve on a saddle in 9tn with 'downhill' directions pointing
directly at the stored memories and 'uphill' directions everywhere else.

1.0

0.0

"Figure 1: A combined 3-d and contour plot of a saddle in SR2. Stored memories, represcnted by black circles, lie at
the vertices (-1,-) and (1,I). Dynamical flow is represented on the contour plot by the arrows. The flow is always
towards the memories

1- 550

* t

:::'./ " .--I
', I

Figure I illustrates the type of surface upon which a state evolves. The only stable fixed points of the dynamical
system lie at the vertices of the Hamming cube corresponding to the stored memories.

AIn EamIk: a 1-bit Feature Extractor
Consider the ,mp! menin a 4-bit code D4 represented by the eight real vectors,

(1.0,1. 0 ,1.0,1.0]T, (1.0,l.0,1.0,-1.0]T, [I.0,1. 0 ,-..0,I.0]T, (1.0,1.0,.1.0,-10]T, (1.0,-. 1.0I.0I.O]T,
(1.0,-1.0,1.0,-1.0],T (1.0,-I.0,-1.0,1.0]T and (1.0,-1.0,-1. 0 , 1 .0T. Choose YI = [I.0 ,1.0 ,1. 0 ,'I.0]T and 2 =

[1.0,.1.0,-1.0,I.0]T as target vectors and Z 3 = (0.0, 0.0, 1.0, 0 .0]T and Z3 = [0.0, 0.0, 0.0, 1.01T as slack vectors.

In this case the matrix T is given by
(1.0 1.0 0.0 0.0.

S1.0 -1.0 0.0 0.0 .

= -1.0 -1.0 1.0 0.06

' -1.0 1.0 0.0 1.0,

Take the eigenvalue matrix to be A = diag (X1,.12 , 0.5, 0.5) with 1XI11, IX21 > 1. In the particular case, X1 = 3.0
X2 = 2.0 we have

2.5 0.5 0.0 0.0)

0.5 2.5 0.0 0.0

-2.0 -0.5 0.5 0.0
0.0 0.5)

\-0.5 -2.0 0.0 0.5 .. j,

representing a non-symmetric connectivity pattern in which each neuron connects to itself. Applying the procedure
to all elements of the code D4 produces the following basins of attraction,

Code elements Code elements
f(1.0, - .0 . 0 T10

I(1.0, 1.0, 1.0, 10]' (1.0, -1.0, 1.0,)1 0].Basin ofY 4- -" Basin of Y2 ..
BsnoY, (1.0, 1.0, -1.0 L.of (1.0, -1.0, -1.0, 1.0]" aino Y2

(1.0, 1.0, -1.0, -1.0]f [1.0, -1.0, -1.0, -1.0]T J

are attracted to target are attracted to target
YI = (I.0,l.0,-1. 0,'1.0]T Y2 = [1.0-1.0,-1.0,1.0]T

The neural network is operating as a I-bit feature extractor - it separates the code according to the sign of the second
bit.

This is an elementary Information Storage Matrix Network. Other types we have considered include multi-bit
feature extractors, Boolean logic elements and cascades of elementary networks. All are possible, and can be directly
implemented with present-day VLSI hardware.

Learning in the Network
The learning parameters in the proposed model are the slack vectors Zi and the eigenvalues Xi and 0i. These

parameters can be used to tailor the domains of attraction of the model so that a particular function is executed [5].
The effect of increasing the Xi is generally to change the mean rate of convergence to the desired solutions. For

example, consider the 10-bit complementary code D10, with two targets Y1 and Y2 and eight slack vectors, e 3 to

e 8 where ej is the j-th column vector of the 10xl0 identity matrix. Take 0i = 0.5 for the slack vectors and vary X1

and X2 in the range 1.1 to 3.0. For each pair of values (XI, X2), apply the method to all 512 elements of D10 and
compute the mean number of iterations required for convergence to the appropriate target. Figure 2 is a plot of the
mean number of iterations vs. (X-I X)2). If one eigenvalue is held fixed while the other is increased the mean is a
decreasing function. When both X1 and X2 are close to unity, the mean becomes large although still is bounded by

I- 551

S.., .- .J.,
- " " " ... r-- " . . .:::

4. When both X1 and X2 are larger than 2.0, the mean number of iterations is 1, i.e. every element of the code
converges in I step! However, if the cigenvalues are made too large numerical instabilities may begin to appear.
We have found that eigenvalues less than 5.0 give good results.

3.4

'I

LS 1.0 I

1.S 1.5 ,
: 2..02.0 tio :

"3.0

Figure 2: Mean number of iterations for convergence of all 512 elements of DI 0 as a function of %I and X2

The eigenvalues control the slope of ti:e variolis sections of the saddle in 9n. In contrast, the slack vectors are
the means of moulding the saddle. If more slack vectors are included, there is more freedom to shape the domains of
attraction, but there is a trade-off between the number of slack vectors and the capabilities of the model. When T is
determined solely by target vectors, no learning is possible through the slack vectors. In contrast, with only a few
target vectors there are correspondingly few possible decisions for the network to make, We have addressed these
limitations elsewhere (5].

Conclusions
The model presented can perform a wide variety of useful operations often applied in signal processing and

control. In particular, the algorithm is well suited for implementation of Boolean operations. The network is
guaranteed to converge to storcd memories for all initial states. Construction of the connectivity matrix requires
"O(n3) floating point operations. A useful feature is that the network's execution speed can be controlled directly.

Refrences

[I] Rumelhart, D. E., Hinton G. E. and Williams R. J., "Learning representations by back-propagating errors".
Nature, 323, pp. 533-536 (1986); Pineda F. J., "Generalization of back-propagation to recurrent neural
networks", Phys. Rev. Lett., 59(19), pp.2 22 9-2 23 2 (1987).

[2] Anderson, j. A., "Cognitive and psychological computation with neural mode!s", IEEE Trans. System,
Man and Cybernetics, SMC-13(5), pp. 799-815 (1983); Golden R. M., "The 'Brain-State-in-a-box' model is
a gradient descent algorithm", J. Math. Psychology. 30, pp. 73-80 (1986); Rumelhart. D. E., Hinton G. E.
and McClelland J. L., Parallel Distributed Processing, Vol. 1, pp. 66-68, MIT Press (1986).

[3] Hopfield, J. J., "Neural networks and physical systems with emergent collective computational abilities",
Proc. Natil. Acad. Sci. USA. 79, pp. 2554-2556 (1982): Hopfield J. J., "Neurons with graded response have

* collective computational properties like those of two-state neurons", Proc. Natl. Acad. Sci. USA, 81, pp.
30S8-3092 (1984).

14] Gantmacher, F. R., The Thcorv of matrics, Vol. 1, Chelsea, New York, 1977.

[51 Samardzija, N. and Waterland, R. L., submitted for publication.

S- 552

W 1 .-77 ýw - , - I . .I

NEURAL NETWORKS IN STATISTICAL CLASSIFICATION
Dr. Andrew K. C. Wong (Member IEEE)

Dept. of Systems Design
University of Waterloo

Waterloo, ON N2L 3G1
E-mail: akcwong@ever.waterloo.EDU

John. 0. Vieth (Member IEEE)
Dept. of Systems Design

University of Waterloo
Waterloo, ON N2L 3G1

E-mail: vieth@ever.waterloo.EDU

1. INTRODUCTION

Both Discrete-Valued Data Clustering Algorithm (DECA) [1] and feature space
transformation (FST) methods [2,31 evolve from the early work involving discrete valued data
analysis. These methods, based on low order approximations of high order probability and
statistical pattern recognition concepts, have been introduced to overcome major difficulties
encountered in clustering and classification of both ordered (ordinal) and unordered
(nominal) discrete-valued data. They both exhibited favorable results in experiments
involving stochastically simulated data as well as actual clinical data for medical diagnosis [4].

Many of the earlier classification systems based on probability and information measures
were not sufficiently tolerant to noise scattered throughout the entire data set and exhibited
poor performance under such conditions. To overcome this problem, the concept of Event
Covering has been introduced [5,6] which is capable of ignoring events that are statistically
irrelevant for classification. By Event Covering we refer to the process of selecting only
those subsets of joint events defined in an incomplete probability space that are relevant for
use in the particular classification decision. The event covering process resembles association
of events on the basis of statistical weights, with class discrimination based on the magnitude
of the sum of weights of the active associations.

A refined approach to Event Covering has been introduced for inductive learning of
classification rules and/or patterns from time-dependent or time-independent data that is
subject to noise and uncertainty [7]. Experimental results indicate that this classification
scheme is very well suited to reai world applications. Unlike conventional techniques in
Artificial Intelligence, these involve weighted decision rules which are difficult to
accommodate under currently established architectures. However, there do exist some
alternative architectures, such as Artificial Neural Networks. (ANNs) under which this latest
technique can become very useful.

2. LEARNING CLASSIFICATION RULES

Consider a problem domain consisting of entities representing objects or events and a set of
classes into which these can be divided. Consider also that an entity can belong to only one
class. Given a set of training data, probabilistic inference techniques can be used to
inductively acquire a set of classification rules. To illustrate this, suppose the training data
contains L entities that represent a sample space S. Suppose also that each of these can beassigned to a known class C = cp where p = 1,2,3... P. Suppose that N distinct attributes

Aj, j -= 1,2,3... N can be defined to describe any entity in the sample space. Each attribute
can take a value which is either ordinal or nominal such that:

val. E domain(A.) = {v, k Ik = 1,2,3... KJ}
Thus any entity can be represented by an n-tupple consisting of a set of attributes with
particular values.

To simplify network implementation, we will represent the entities in a binary form. The
number of bits required to represent A will be K . We may describe any entity in the

I- 553

sample space S by a tupple X - I x 2x ,x3 ... X.K } where NK - K. Let us also define

xi E (0,1), where x, -1 represents the case where a value v. k is observed in the entity and
-0 otherwise. We may also describe the class to which an entity belongs by the p-tupple

C- clI~c2,c3... c. Y.

A supervised learning process can be applied when the entities in the training set have
a-priori determined class membership. Using a widely accepted scheme such as Error Back-
Propagation, the training process would consist of several iterations of comparison between
the input n-tupple and the desired output class representation, while incrementally adjusting
the 'weights' in a given network of arbitrary structure. We propose a non-iterative
approach to deriving a set of "weights' that can be instantiated in a rigorously defined
network structure.

We begin the training process by examination of each of L entities in the training set, to
count the following quantities:

opk : number of n-tupples in class co with attribute A. having value vJk
ok : total number of n-tupples with attribute A having value v1 k

op : total number of n-tupples in class c
epk : expected number of n-tupples in cp with vi k when A and cp are independent.

For each p - 1,2,3... P, there are NK possible 'opk's and "epk's, N possible 'ok's and a
single "op'.

Having determined these numerical quantities, we will use a statistical technique to
determine which of the outcomes of the jth attribute (v, k) are actually correlated with class
c . In other words, which of the bits xi in the nk-tupple X are relevant for classification.
We use the adjusted residual [71 in the form:

dpk - (opk - epk) / V/(epk'(1-op/M)(1- ok/M))

where M - 7k opk < L due to possible missing data and epk - ok'op/M. Instances of

and cp for which the adjusted residual has a magnitude of 1.96 or greater (95th percentile of
a normal distribution) are assumed to have genuine correlation and are thus valid for
classification.

Using only attribute values which are relevant for classification, it is possible to derive a set
of weighted decision rules such that the hypothesis with the greatest associated weight is
selected. We define the weight of evidence provided by x, in favour of the entity
(nk-tupple) being a member of the class cP as opposed to not being a member of class cP as
follows (71:

W(C=-c /Cc Ix,) -I(C-c :x - I(C~c P :x)

where I(C-c :x,) represents Mutual Information [2,8]. It is clear that the weight of evidence
depends only on the relative frequency of selected events in the training set and is not
dependent on any assumptions as to the underlying probability density function for the data.

We can express the weight of evidence in terms of the cardinal quantities that we have
defined:

W(C=c P/C•pcx) = log (opk*(M-op) / op*(ok-opk))

This is a logarithmic function with the property that its value dccreases to zero as the

1- 554

interdependence between the class and the value of the attribute decreases. The weight of
evidence decays rapidly as values and classes are less correlated. The classification process is
accomplished by finding the maximum, over all classes (cP of

W(C-c= /Cc P IX) = W(C-c= /Cic IxP) - wcP

We will refer to this formulation as the affinity of the input vector X to the class CP

3. NETWORK IMPLEMENTATION

In figure 3-1 we illustrate an exemplary implementation of an Artificial Neural Network
(ANN) that is programmed using the weights of evidence.

cl c2 c3 c4

L L OUT lef-SHLOGIC

L L

L L L L L L

- ,- Maxium_.elect

Lci L C2 L 3 Lc4I

xl x2 x3 x4 x5

Figure 3-1 Network Topology

The entity or object to be classified, described by an nk-tupple X, is input to the network
via xl through x5. The first layer, programmed with normalized weights of evidence,
evaluates the relative affinity of the entity to each class. These weights are normalized such
that 0•!wc :51 . The subsequent feed forward layers, adapted from [9,10], determine which
entity to class affinity is greatest. The output of the network is the p-tupple C (cl through
c4) representing the most likely class for the entity.

The network implementation presented here is capable of only fisrt-order associations. For
problems in which classes are not linearly separable, another layer of neurons can be added
at the input to allow for higher order associations. We have been investigating this idea,
however we consider these developments to be beyond the scope of this introductory paper.

4. EVALUATION AND CONCLUSIONS

In order to evaluate the performance of our classifier, we have chosen a medical diagnosis
example. This involves real data recorded from patient examinations [11]. Each patient
record consists of 12 attributes, each having between two and four unique values. Each
patient has been diagnosed by a physician as belonging to one of four disease groups. It is
important to note that a substantial number of records 1-re incomplete and others had been
incorrectly completed, introducing noise into the data. We randomly selected 75% of the

1- 555

records as a training set and used the remaining 25% to test trained network. We repeated
the set selection, training and testing proceedure 10 times and averaged the results (see table
4-1 under OURS). The 'Failure to Classify' category represents the case where no output
was active, indicating an ambiguous choice between equal affinities.

As a benchmark comparison, an independent researcher in our laboratory [12] implemented
a Back-Propagation network and trained it on the same medical data. She used a similar set
selection, training and testing scheme. Classification was considered correct when the only
output active above the 0.9 threshold represented the a priori class for the entity. Any other
cases were considered incorrect. The average of the 10 trials are presented in table 4-1 under
BPN. After trying several variations, we decided that this is the best that can be done with
Back-Propagation learning for this example problem.

TABLE 4-1 EXPERIMENT RESULTS

Class Correct Incorrect Reject
OURS BPN OURS BPN OURS BPN

Chest (1) 100% 85% 0% 15% 0% NA

Cardiac (2) 96% 84% 4% 16% 0% NA
Abdominal (3) 87% 64% 110% 36% 3% NA
lNeurological (4) 96% 87% 10% 13% 4% NA

Given the results of these experiments as well as speed of training and rigorously defined
topology, we conclude that this statistically derived ANN implementation is worthy of
further consideration and application.

5. REFERENCES

1. Wong, A. K. C. and Wang, D. C. C. (1979). 'DECA: A Discrete Valued Clustering
Algorithm', IEEE Trans. Patt. Anal. Mach. Intell., PAMI-1, 4, 342-349.

2. Wang, D. C. C. and Wong, A. K. C. (1979). 'Classification of Discrete Data with
Feature Space Transformation', IEEE Trans. Auto. Control, AC-24, 3, 434-437.

3. Chiu, D. K. Y. and Wong, A. K. C. (1984). 'A Probabilistic Inference System', Proc.
IEEE Conf. Pattern Recognition, 303-306.

4. Chiu, D. K. Y. and Wong, A. K. C. (1986). "Synthesizing Knowledge: A Cluster
Analysis Approach using Event-Covering', IEEE Trans. Sys. Man & Cyber., SMC-16,
2, 251-259.

5. Wong, A. K. C. and Chiu, D. K. Y. (1987). 'An Event-Covering Method for Effective
Probabilistic Inference', Pattern Recognition, 20, 2, 245-255.

6. Wong, A. K. C. and Chiu, D. K. Y. (1987). "Synthesizing Statistical Knowledge from
Incomplete Mixed-Mode Data', IEEE Trans. Patt. Anal. Mach. Intell., PAMI-9, 6,
796-805.

7. Chan, K. C. C. and Wong, A. K. C. (1988). 'Learning From Examples in the Presence
of Uncertainty", Proc. Intl. Comp. Sci. Conf. '88 Al Theory & Applications, Hong
Kong. 369-376.

8. Osteyee, D. B. and Good, I. J. (1974). 'Information, Weight of Evidence, the
Singularity between Probability Measures and Signal Detection', Springer-Verlag, Berlin.

9. Lippmann, R. P. (1987). 'An Introduction to Computing with Neural Nets', IEEE
ASSP Mag., April 1987.

10. Martin, T. (1970). 'Acoustic Recognition of a Limited Vocabulary in Continuous
Speech', Ph.D. Thesis, Univ. of Pennsylvania.

11. Pao, Y. H. and flu, C. II. (1984). 'Processing of Pattern-based Information: Part I:
Inductive Inference Methods suitable for use in Pattern Recognition and Artificial
Intelligence'. In Tou, J. T., Advinces in Tnformatiou Systems Sciences, vol. 9, Plenum
Press.

12. McAndless, E. A. (1989). Univ. of Waterloo, Dept. Systems Design Eng., Private
Communication.

1- 556

/

EEROR FUNCTIONS TO IMPROVE NOISE RESISTANCE AND
GENERALIZATION IN BACKPROPAGATION NETWORKS

Javier R. Movellan
University of California at Berkeley

e-mail: Movellan@garnet.berkeley.edu

This paper explores the relationship between the error-function used in BP and the statistical
properties of the learned solutions when the teachers are contaminated by noise. If we know
precisely the form of the noise distribution, the best error function is the negative likelihood.
For instance, when the noise is Gaussian, the sum of squared errors, is the most efficient,
when Laplace, the absolute error is best, and when Bernoulli, the cross-entropy error is the
most efficient. In most practical situations we do not know precisely the form of the
underlying noise distributions, and therefore we need error functions that perform well under a
wide range of noise (robust error functions).

A backpropagation network (BP) can be seen as a function 9l = r7 (x ; w) that relates
inputs (z) to output unit activations (ji). In this paper uwe use the "hat notation", common in
statistics, to emphasize that BP networks are statistical estimators. The objective in BP is to
estimate a "teacher function". yi u(x). In most applications, this teacher function is
probabilistic or contaminated by noise. This can be modelled by adding by adding a random
vector c,, to the teacher function: yi = p(xi) + ci , where the noise vector q is independent
identically distributed (iie) with probability distribution Fxi, symmetric with zero mean.

L'et us define the following:

1- Sampling distribution of the solutions: The probability distribution of the solutions that we
wodd expect to obtain if we drew an infinite number of samples from the contaminated
teacher function and calculated the learned solutions for each sample.

2- Mean squared error of the sampling distribution of the solutions (MSET): The average
expected value of the squared differences between the learned solutions and the expected values
of the teachers. Notice that if the learned solutions are unbiased, MSET becomes the variance
of the sampling distribution of the solutions. MSET can be used to measure noise resistance.
Learning is resistant to a type of noise if the learned solutions are not very affected by the
noise contamination of the teachers, or where the MSE is small. Analogous definitions can
be used to study the sampling distribution of the generalizations over a set of inputs that did
not appear in the training sample.

BP learning is an statistical estimator. In statistics there are three major classes of
estimators [1]. "L-estimators" are based on linear combinations of order statistics. (e.g., the
trimmed mean), "R- estimators" on rank tests (e.g. the Hodges-Lehmann estimates), and
"Al-estimators" are defined by the optimization of an error function. BP learning is a
generalized M-estimator. Instead of estimating points, it estimates contingencies.

3- The generalized M-estimates, j(x) = 7(x-,i) for p(x), based on the error function p and the
sample S, are given by the values of w that minimize

o p(Yij 9i)
j=l 1=l

These estimates are determined implicitly by the set of differential equations
o n ~j =

E E - (yi ;J) -o
2=1 i=1

I- 557

with P(yij ,)

= a

We refer to this derivative as the "%-function" or marginal error function. This function can
be seen as an attentionol filter. It modulates the influence of an exemplar on the learned
solution. The learning rule is the gradient descent solution to the above equations,

"W(t+l) =W'(g) +c$€0•"(
(t+1) (1) (t) - -_(t)

where £ is the iteration index, and i is the stepsize of the descent. Notice that to implement
the gradient descent rule we only need to know the ,P-function. Instead of proposing a p.
function and calculat:ng its derivative, we can directly propose a %./function, which will
implicitly define an error function. Figure I shows some possible error functions for Al.
estimation. Their formulas are in the appendix. We were particularly interested in Tukey's
'a-function. This function mapps a human attention phenomena, known as the discrepancy
effect (2]. Normal individuals orient more readily to stimuly that are moderately discrepant
from expectations. Higly predictable, and higly unpredictable events fail to elicit orienting.

FIGURE 2FIGURE I Tl ALSI RBE

ERROR FUNCTION MARGINAL ERROR FUNCTION THE BALLISTIC PROBLEM

PC-9)

..... 558 S"~-" Out~put d ",,

N,•'•q~r4CY...(,9p)

I - 558

SiminulatLioniis

'The purpose of these smiulations is to comipare the error resistance and generalization
properties of BP learning witlh different cry-or functions. Commonly anl estimator is
considered robust if it performs well, (e~g., has small USE T and small UISE 0G) on the
following three benchmark distributions: Gaussian, Contaminated Gaussian, and Slash.
The following p-functions were investigated: Least Squares; Absolute value; Ifuber's; Tukey's
biweight. These error functions and the corresponding *I-functions are shtown in Figure 1 and
in the appindix. In addition we investigated the performance of least squares compounded
with weight, decay, (e.g.. the weights of each unit decay exponentially each trial). Several
investigators claimt that the use of wueight decay in BP improves generalization. Weight
shrinkage, as well as robust error functions indirectly improve generalization by resisting
iioi5C.

The architecture used wans the logistic 3-layers, network (input-hidden-output) with 6
hidden units. Thc problem was a version of lthe ballistic prediction task .Figure 2 shows
schematically the task-. The network is presented withi the initial velocity ,v, and angle, 0, and
it must predict where the projectile will fall. The uncontaminated teacher function is the
solutioni to the classical Newutonian equations of mnotion. Fig9ure 3 shows the shape of the
uncontayninaiaed teacher function. The network had to learn 25 input combinations, (e.g.,
initial speed and angle conditions). The teacher function determines tMe uncontaminated
teachers, (e.g.. udhcyrc the projectile falls). Before presentation to the netwuork, these tenchers
luave Colnflauiltatied 1118/1 alne of thie thracc be~itchonark noises. The vietwork ions tilmt,,nnil to lt:;n iii
until stopping criterion ivns attained . The learned solutions were then compared to the
uncontaminated teachers. We also tested solutions to a set of 36 generalization points, that is,
36 input combinations for which the network had not been trained. The sampling, learning.
testing process was repeated 30 times for each: of the 3 by 5 noise v.s. learnzing rules.

Table 1 Figure 4

R~OBUSTNESS OF THE~ EflMOR FUNCTIONS H.m~'-F~n~~

or 17% 46% 44% 50% 63%

RES5ISTA NCE

or 50% 65% 75% 51% 89%
CENFRA LIZATION

_________________________L S.

1t110 h iST r~SS
or G4% 85% 43% 74% G&%
SPEED Hu U 2-"

SE is tbe squured error ruocfloo

'AD is squared error vith weight decay
AE is Aibsolute erwnr luaction

The MSE of the sampling distribution of the solutions for a training and a generalization sct
were estiniated. A commion ineasure of robustniess is tile worst case scenario for thc three

1 - 559

benchmark noise conditions. Table 1 shows robustness of resistance to noise, of
generalization, and of speed for the 5 error functions. The details of how these indexes were
calculated are in [2]. Clearly BP with the squared error function is not robust. Weight decay
was very beneficial for noise resistance, generalization, and especially for speed of
convergence. Absolute error was more resistant and produced better generalizations than
squared error, but was slower. Huber's function was commensurate to squared errors plus
weight decay. The best performance was obtained with Tukey's function, which greatly
improved robustness of noise resistance, and generalization.

Robust error functions and human estimation

Our goal was to estimate the T-function used by humans in a simple estimation task. The
task was to fit a horizontal line to an array of points. This can be modeled with the simplest
BP net, e.g., a single unit with linear activation function and a constant non-zero input.
Our approach was based on the fact that for this problem, the *- function is proportional to
the influence function. The details of the study are in [2]. Figure 4 shows the results for two
subjects. If subjects were minimizing the squared error, the *l-function would be linear. It can
be seen that the *.functions are non-linear and of the robust to noise type.

Appendix

Define u = . ,where e = y- it , c is a constant, and S is a "scale parameter". In
Huber's function c=2, in Tukey's c= 9. The scale parameter for each unit was calculated
using S+ 1 -= St + .01 (abs(e) - St).

Huber's T-function is:
'k(u)= u; when abs (u) < 1; *I(u) = 1; when abs(u) > 1 I

Tukey's function is:
ly(u)= u (1-u2)2 ; when abs (u) < 1; *f(u) = 0; when abs(u) > 1

REFERENCES

[1] Goodall, C.(1985): M-Estimators of Location: An Outline of the Theory. in Hoaglin, D.C.:
Mosteller, F. & Tukey, J.: Exploring data, tables, trends, and shapes, New York, John Wiley.

[2] Rodriguez-Movellan, JR (1989) Computational aspects of contingency detection: New
options from connectionism. Doctoral Dissertation. Department of Psychology, University of
California, Berkeley.

I- 560

Incremental Backpropagation Learning
from

Novelty-Based Orthogonalization

Ken Otwell

Martin Marietta Laboratories

1450 South Rolling Road
Baltimore, Maryland 21227

Abstract

Current neural network training techniques for hetero-associative pattern learning require a com-
plete set of exemplars to be presented cyclically until the network weights converge to a common solution.
In contrast, the recurrent novelty filter, a varient auto-associative system, can asymptotically converge to
each pattern in sequence without disrupting performance on prior ones. In this paper we illustrate how
the incremental orthogonalisation properties of the recurrent novelty filter can be integrated with back-
propagation of error in a feedforward system to provide incremental learning in hetero-associative systems
as well.

Introduction

Weight adjustment based on backpropagation of error is an effective procedure for training complex
multidimensional stimulus/response ssociations in feedforward netwoIrks [1]. The basic learning
algorithm, popularized as the "generalized delta rule," [61 implements a gradient-descent procedure whose
convergence depends on the cyclic presentation of a complete set of associations. Theoretically, response
errors are accumulated for an entire presentation cycle, or "epoch," prior to weight adjustment; however,
in common practice small adjustments are often made after presentation of each association with minor
deterioration of optimal convergence.

In contrast, the novelty filter provides a mechanism for a single layer of nodes to habituate to
known activation patterns and thus transmit only what is "novel" in any new pattern [2,31. In effect, a
novelty filter memorizes a given set of activation patterns and is thus able to generate an orthogonal pro-
jection from new patterns. In fact, the recurrent or feedback version of the novelty filter is "a continuous
counterpart of the Gram-Schmidt [orthogonalisation] algorithm," [41 and is thus incremental, i.e., it can
be trained on each pattern in iiolation until it converges (asymptotically) without disrupting the perfor-
mance on previously learned patterns in the case that the pattern vectors are linearly independent. Even
when linear dependence is present, the training algorithm tends to minimize the RMS error during
crosstalk.

We have previously reported how the nonrecurrent, nonincremental version of the novelty filter can
accelerate standard backpropagation learning (5]. In this paper, we illustrate how the recurrent version of
the novelty filter can be combined with backpropagation to provide a mechanism for incremental learning
of pairwise pattern associations. This is accomplished by creating a novelty filter within the input to each
layer of the feedforward network and using the novelty term in place of input activation in the backpro-
pagation training equations. In other words, after the feedforward network has converged to a
stimulus/response association during incremental training, the novelty filter at each layer is trained on its
input activation pattern. During training of subsequent associations, the novelty filter provides only the
orthogonal components of the input vectors for feedforward weight adjustment. The unfiltered activation
values are utilized in all cases for feedforward activation transfer. With these modifications, backpropaga-
tion can be used to train stimulus/response associations in sequence, as they are discovered, rather than
concurrently as in current practice. In the remainder of the paper we define the integrated network
equations and present the results from several simulations.

I- 561

}m

{ .-

W F

Figure 1. System Model for Single Layer with Novelty Filter

Orthogonallsed Backpropagatlon

We use a two-layer fully connected feedforward network in our idealised backpropagation model.
Each layer consists of 1) an input vector, taking elements from the reals between 0 and 1, exclusive; 2) a
recurrent orthogonalising filter on the input vector; and 3) an activation transformation function to gen-
erate output. (Many authors include the input buffer and refer to the network as a three-layer system.) A
system model for a single layer with 4 inputs and 4 outputs is illustrated in Fig. 1. Feedforward activa-
tion transfer is governed by the common sigmoidal function:

ako'" - f = [i +)(1)
i $

where aI i* is the activation value on input line i (the output of node i in the previous layer), each wto is
an element of the feedforward weight matrix W, / is the sigmoidal "squashing" function, and ak*h is the
output activation on line k. Output activations are thus also real-valued quantities between 0 and I,
exclusive. The novelty term for each element of the input vector is governed by the following recursive
equation:

a i = alin + yu..a. (2)

where ai is the "novelty" recursively generated from , ," and the weight matrix M with elements uii. M
converges to produce a sero novelty vector for each input vector in sequence by the following equation:

a,, /at = -,,a,a 3 . (3)

For ease of digital simulation we use the overall novelty transfer matrix (P which can be derived, in
matrix notation, as follows:

S-- X + Mi -- (I - M)-lz -- (D (4)

where i is the novelty vector resulting from activation vector z. Thus, instpad of utilizing training
equation 3 in our simulations, we compute P directly by the Gram-Schmidt orthogonalization algorithm:

(DI = (DI-I - iljTA/ lij2. (5)

The "memoryless" 00 is thus an identity matrix, whereas the matrLix Mo would contain all zeros.

I - 562

Table 1. Percentage Correct Training and Recall for Incrementally Trained XOR

Number of Hidden Nodes 2 8 16 24

Percent Correct
(1000 trials each) 0.0 33.1 82.7 99.6

Table 2. Percentage Correct Training and Recall for Incrementally Trained
Blocks World State/Legal-Action-Set Pairs

Number of Hidden Nodes 30 60

Percent Correct 8.0 42.0
(50 trials each)

To train associations in sequence, "as they are ,ncountered," the generalized delta rule is modified
to produce the "incremental delta rule:"

Atoik - -qVka (6)

8klat = akout(1 - ako)(tk - akout) (7)

kbulaaat = akout(1 - akOut)bjwk (8)

where tk is the target value at output node k, Sk is the error at node k, and -q is the gain.

Simulation Results

We have tested our simulation extensively on two disparate problems, the XOR ("exclusive-or") and
a larger problem drawn from the blocks-world planning domain. The XOR problem is a minimal non-
linear pairing that demonstrates the robustness of the approach while highlighting its primary shortfall:
many "superfluous" output lines (or hidden nodes) are often required in the first layer to ensure success.
Table 1 illustrates the percentage of successful incremental training trials for different sized hidden layers.
One bias input line was provided for each layer with a constant value of 0.9. An error range of -t 0.05
around target activations of 0.1 and 0.9 were used in all trials.

The number of iterations required to train each association increases with the number of previously
trained ones due to the decrease in the available representation space and thus the decrease in the magni-
tude of the novelty vectors. This may be compensated for by increasing the gain as a function of time.
We used an initial gain of 5 and increased it by a factor of 1.5 between examples in the reported XOR
trials. We also discovered that the range of the initial random weights has a tremendous impact on suc-
cess; we used evenly-distributed random values between -5 and +5 in these trials. The two-bit XOR pat-
terns were trained in increasing numerical order requiring training cycles ranging from 1 to 20 on the first
association to over 200 on the fourth for the 24 hidden node case. (A limit of 500 cycles was imposed.) As
a control, we also attempted to incrementally train the XOR problem using the standard generalized delta
rule, which always resulted in zero percent correct recall from prior learning for even much larger sized
hidden layers.

The blocks world problem was designed to generate the set of legal actions from each legal domain
state. Each input line to the first layer corresponded to a state proposition and each output line from the
second layer corresponded to an action proposition (local coding). We used a 3-block, I-table, and 1-arm
version of the blocks world, giving 16 inputs, 18 outputs, and 22 legal states, and thus 22 pattern associa-
tions to be learned. The results are presented in Table 2.

I- 563

Discussion

To our knowledge this is the first reporting of incrementally trained hetero-associative learning in
neural networks. Further analysis is required to fully understand the behavior and limitations of this
approach. An obvious problem is the large number of nodes required to ensure success -- much more than
a nodes are required to learn n associations. This might be due to the interaction of the error surfaces
from successive associations. It appears that once an error minimum has been discovered for one associa-
tion, a "valley mir'mum" must exist in its error surface for the system to follow when converging to a
minimum in, the error surface of the next association, and overlapping valley minima of those two must
be followed for the next one, etc. The large number of bidden nodes seems to provide the wrinkled error
surface required for following the overlapping valley minima for many successive pairings. On the other
hand, the results reported above are slightly pessimistic since many of the failures were only marginally
outside of the error tolerance.

The catastrophic failures that did occnr were of two types: saturation and erasure. In saturation
failures, the first layer developed linearly dependent output activation patterns for multiple associations
and the novelty at the second layer went to zero, preventing convergence for some associations. In all
cases, because the number of associations was greater than the number of input lines, the first layer
novelty went to zero before all associations were presented. However, since the feedforward activation is
unaffected by the novelty filter, the first layer was frequently able to continue generating linearly indepen-
dent output vectors despite not being able to adjust its own weights. Thus, convergence of later associ:n-
tions depended solely on weight changes in the second layer. In erasure failures, the training of later asso-
ciations erased the learning from earlier ones. In these cases the system was able to converge on each asso-
ciation in sequence, but could not correctly recall earlier ones. During erasure failures the error was fre-
quently observed to increase before finally converging, which always indicated that earlier learning was
being erased or "forgotten." The likelihood of an association being erased appeared to decrease with the
recency of its being learned; however, at this time no analysis has been performed for confirmation.

Perhaps larger systems or systems trained on patterns with greater regularity will be capable of a
greater degree of generalization for compatible, if not predictable, new associations - and thus will
develop shorter valley minima to traverse. A potential, only slightly anthropomorphic explanation of
erasure comes readily to mind: the system based the earlier associations on incorrect features which were
later contradicted. To quote Robert Hecht-Nielsen: "Clearly, more research into error surfaces is needed
[lj."

References

[1] Hecht-Nielsen, R., "Theory of the Backpropagation Neural Network," in Proc. International Joint
Conference on Neural Networks, Vol. 1, pp. 593-605, June 18-22, 1989.

[21 Kohonen, T., and E. Oja, "Fast Adaptive Formation of Orthogonalising Filters and Associative
Memory in Recurrent Networks of Neuron-Like Elements," Biological Cybernetics 21, pp. 85-95,
1978.

131 Kohonen, T., Self-Organization and Associative Memory, Chapt. 4, Springer-Verlag, New York,
1984.

141 Oja, E., "S-Orthogonal Projection Operators as Asymptotic Solutions of a Class of Matrix Differential
Equations, SIAM Journal of Mathematical Analysis, Vol. 9, No. 5, pp. 848-854, October 1978.

[51 Otwell, K., "Accelerating Back-Propagation Learning with Novelty-Based Orthogonalization." In
Proceedings of the LASTED International Symposium .- Expert Systems and Neural Networks,
August 16-18, 1989.

(61 Rumelhart, D.E., Hinton, G.E., and Williams, R.J., Parallel Distributed Processing: Explora-
tions in the Microstructure of Cognition, Vol. 1, Chapt. 8, J.A. Feldman, P.J. Hayes, and
D.E. Rumelhart, eds. The MIT Press, Cambridge, MA, 1986.

I- 564

Backpropagation Improvements Be-sed on Heuristic Arguments

Tariq Samad
Honeywell SSDC

1000 Boone Ave. N.
Golden Valley, MN 55427

1. Introduction

The backpropagation learning rule (Werbos, 1974; Rumelhart, Hinton and Williams, 1985)
for multi-layer feedforward networks is a gradient descent procedure for minimizing a squared
error criterion. The rule is defined as:

& Aw -- °i8j (1)

oi' (ti - oi) for output units j

j= oj' YV~jkk for hidden units j (2)

k

where wv. is the weight from unit i (the 'source unit") to unit j (the 'destination unit"). Other
terminology is as in (Rumelhart, Hinton and Williams, 1985). Usually, sigmoid activation func-
tions are used with backpropagation:

j -1ell (3)

1+e

While Eqs. (1-2) are derived mathematically, they can be explained on the basis of heuristic
arguments. Such an explication can provide an intuitive understanding of backpropagation.
Moreover, as this papee shows, it can help identify variations and extensions of backpropagation
that are superior in a number of ways to the original rule-faster learning rates can be achieved,
derivative computations can be dispensed with, and simpler unit activation functions can be
used.

2. Backpropagation Heuristics

Several heuristics, implicit in Eqs. (1-2), are given below:

H1. If the error in the destination unit is positive (negative), the weight should be increased
(decreased).

H2. The magnitude of th'. weight update should be proportional to the error in the destination
unit.

H3. The magnitude of the weight update should be proportional to the value of the source unit.

- H4. The magnitude of the error assigned to a unit should be inversely proportional to its degree
of saturation.

1- 565

H5. The a.ssignment of a unit j's error to unit i should be proportional to the error in j and to
the magnitude of the weight wij.

Hi, H2 and H5 (a credit assignment heuristic) are obvious. 11H is a consequence of the
requirement that weight changes caused by one training pattern not interfere strongly with the
response of the network to other training patterns. The effect of a weight update is proportional
to the source unit value. A large update to a weight w,, will affect response to network inputs
that produce a high value for unit i more than to inputs that produce a low value for i. If the
weight update is inversely proportional to the source unit value at the time of the update, there
will be a high degree of interference between different training examples. Heuristic H4 is useful
because changing the output of a unit that is close to saturation (i.e., near 0 or 1) requires
extremely large weight changes. The derivative of a unit output with respect to its net input is
an indication of how distant the current value of the unit is from saturation.

3. Variations and Extensions

Eqs. (1-2) are just one possible implementation of HI.1. Good results have been obtained
with a number cý alternative implementations. In addition, the heuristics can be refined. For
example, note th .t the justification given for H4 is relevant only for hidden units; output unit
values must be ariven to their target values (within some predetermined tolerance) irrespective
of their degree of saturation. An alternative to H4 is H4':

H4'. The magnitude of the error assigned to a hidden unit should be inversely proportional to
its degree of saturation.

There is another reason for scaling errors by derivatives in the original backpropagation
rule: it implies a simulated-annealing-like weight update procedure in that error terms, and
therefore weight changes, are larger initally than later on in the training process. H4' does not
capture this benefit for weights to output units.

The credit assignment heuristic c• n also be refined. The assignment of a unit j's error to
another unit should depend on how many different units source unit j. The greater the fan-in of
unit j, the less the error that should be attributed to any particular source unit.

H5'. The assignment of a unit j's error to unit i should be proportional to the error in j and to
the magnitude of the weight w,,, and inversely proportional to the fan-in of unit j.

Implementing these heuristics requires modifying slightly both the weight update rule and
the error term formulae:

A wj = 'lois8/N) (4)

'0.25(t, - oj) for output units j

ow,,(8,/NJ for hidden units j (5)

k

SI1- 566

where N. is the fan-in of unit j. The factor 0.25 (the maximum value of o,') tends to make the
magnitudes of the error terms for hidden and output units somewhat equivalent. The Results
section shows simulation results for Eqs. (4-5) for a variety of problems. Substantial improve-
ments over Eqs. (1-2) are consistently obtained.

Next, let us consider an alternative measure of unit saturation. Instead of o, in Eq. (2) or
Eq. (5), we use the following function:

o0 0.0-s o,:50.25

f (oj) 0.25 0.25-oJ:50.75 (6)

1.0 - oj O.75. o:5 1.0

This function has a value of 0.25 when a unit has an output in its "central" region, and
drops linearly elsewhere. The fact that the derivative need not be computed implies that unit
activation functions that are not continuously differentiable can be used. For example, a linear
threshold function can be used instead of Eq. (3):

(1.0 net,2-4.0

oj 0.125 X net. -4.0--net,-4.0 (7)

0.0 netY_-4.0

This is significantly easier to compute than the sigmoid. The next section shows simulation
results using Eqs. (6-7) (with Eqs. [4-51). Again, the results are significantly better than for the
original rule. The results for sigmoid units and with derivative computation are better overall,
but for at least some applications, not by a large enough margin to compensate for the added
computation.

It should be noted that we have only tried one possible linear threshold activation function,
and only one possible heuristic measure of unit saturation. Further research may well uncover
better functions yet. At any rate, the above results demonstrate that neither derivative compu-
tation nor continuously differentiable activation functions are necessary for backpropagation
learning.

4. Results

Simulation results are tabulated below for a number of problems using the original back-
propagation learning rule and the two extensions discussed above. In all simulations, no momen-
turn term was used, initial weights were randomly assigned in (-1.0,+ 1.0), and an output unit
value was interpreted as a 1 (0) if it was above 0.75 (below 0.25). Weights were updated after
every training example. The backpropagation extensions differed in two other ways from the ori-
ginal rule. First, weight adjustments were made even for network responses that were correct
(by the above criterion). Thus, 1.0 and 0.0 were used as the actual t. values in Eq. (2). Second,
"expected source values" were used (Samad, 1988, 1989). 10 trials were performed for each
experiment. The number of converged trials and the average number of iterations through the
training set (over the converged trials) are reported. The results shown are the best ones
obtained for each problem/rule.

I- 567

It should be noted that the extensions discussed here require little or no additional compu-
tation or memory (indeed, they may result in some savings). This is in contrast to some of the
other extensions to backpropagation that have recently been reported (Jacobs, 1988; Fahlxian,
1988). These other extensions can be used in concert with the ones described in this summary
for presumably faster learning yet.

Further details on rules and experiments can be found in (Samad, 1989).

SNet Structure Equations Used

and 1,2,3 3, 4, 5 4,5,6,7

Problem #Conv. 1 Average #Conv. Average #Conv. Average

4-2-4, Encoder/Decoder 10 157 10 14 10 19
8-3-8, Encoder/Decoder 10 215 10 36 10 53

16-4-16, Encoder/Decoder 10 242 10 49 10 55
10-5-10, Encoder/Decoder 10 258 10 17 10 18
2-2-1, XOR 8 573 10 71 9 406
3-4-1, Parity3 9 522 10 327 9 479
10-10-10, 10 Binary 10 176 10 56 10 72
Random Associations __

References

Fahlman, S.E. (1988). Faster-learning variations of back-propagation: an empirical study.
Proceedings of the 1988 Connectionist Models Summer School, D. Touretzky, G.E. Hinton, and
T.J. Sejnowski (Eds.). Morgan Kaufmann Publishers.

Jacobs, R.A. (1988). Increased rates of convergence through learning rate adaptation. Neural
Networks, Vol. 1, No. 4, pp. 295-308.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams (1985). Learning Internal Representations by
Error-Propagation. ICS Report 8506, Inatitute for Cognitive Science, UCSD, La Jolla, Ca.

Samad, T. (1988). Back-propagation is significantly faster if the expected value of the source
unit is used for update. Neural Networks, Vol. 1, Supp. 1. (Abstracts of the First INNS Meet-
ing.)
Samad, T. (1989). Backpropagation Extensions. Honeywell SSDC Technical Repori, 1000 Boone
Avenue North, Golden Valley, MN 55427. (In preparation)

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Ph.D. Thesis, Harvard University Committee on Applied Mathematics.

I
l l - 568

LEARNING COMPLEX MAPPINGS BY STOCHASTIC APPROXIMATION
D. Sbarbaro
PJ Gawthrop

Department of Mechanical Engineering
The University, GLASGOW G12 8QQ

Scotland / U.K

ABSTRACT

In this paper, an alternative to the Back Propagation Algorithm, based on the stochastic
approximation approach, is presented. This is applied to learn complex mappings between
variables, like coordinate transforms and inverse dynamic robot estimation . Several simula-
tions show that the algorithm achieves good results in few iterations.

1. Introduction

One of the more important capabilities of a Neural Network (NN) is the learning of a nonlinear
mapping between inputs and outputs. Some authors have treated the problem as a discrete system
(Albus, 1977) (MacClelland,1988) , and others has shown that the network can produce a mapping
among continuous signals (Psaltis, 1988) (Josin ,1988)(Bassi,1989). It is thus possible to capture the
structure and parameters of a nonlinear dynamic system in a single and simple representation. This
kind of nonlinear identification is very important because most systems found in practice are non-
linear to some extent .

In general, nonlinear processes can only be adequately characterized over the whole operating
range by nonlinear-models (Unbehauen,1988). The choice of the model structure is one of the major
difficulties in dealing with identification of nonlinear systems ; this choice is vitally important since this
will influence its application in prediction and control.

In this paper, a new algorithm to learn a mathematical mapping that represents a nonlinear
dynamical system is presented . It is shown that this algorithm can approximate a function Y-F(X)+e
given a set of examples [YX] . where e is the residual error. Several simulation showing the perfor-
mance of the algorithm are presented.

2. Stochastic approximation algorithm

The network is considered as a nonlinear function described by
Y, =F (0°X.)

where

V4' is the nominal parameter vector. X. is a set of input vector and Y. a set of output vector and

F is a nonlinear function composed of sigmoid functions

Considering a Taylor expansion around 0 0

R. =hlo (2)

hM/"(oo, ,x)=- a and R. =Y.-[F (0 ,X.)-- (0 •X.) T 0oa0°

The exponential weighted least square estimate for 0 is given by the equations (Albert, 1967).

0.+I=0.+a. [Y.-F (0.,XX)] (3)

a, =B + h.

where

B " is the pseudoinverse of B.

B ,,=kB ,_l+hh T(4)

I - 569

The algorithm involves linearization , and so the approximation error is smaller near to conver-
gence. For this reason, old information corresponding to estimates of 0 far from the convergence point
is discounted according to the exponential forgetting factor X

In practice, problems of illconditioning can arise , for example , when certain units are saturated.
In order to avoid these effects on the inversion of Bn ,a pseudo inverse (Moler ,1977) is taken.

When an input pattern is applied to the network, the activation of each unit is determined
using the sigmoid activation function

Oj=f(YwjO4 +wjO) where f(x)=-1

To apply the algorithm it is necessary calculate hn

for an output unit , =O (5)

for a internal hidden unit . dfi =o0 (l-Oj)Z'k wki Oi 0,- Oi (6)

the summation is over all nodes in the layer above node j , then

h.= [dio dl di 4]r

where N is the number of units and n is the number of inputs of the last unit.

The algorithm can be summarized as

step I Set weights and offsets to small random values

step 2 Present an input and desired outputs

step 3 Calculate actual outputs and derivatives by equations (5) and (6)

step 4 Adapt matrix , equation (4)

step 5 Change weights, equation (3).

step 6 if (residual error)2 < e then stop

step 7 repeat by going to step 2

Steps 4 and 5 are not found in the classical Back Propagation algorithm.

3. Some examples

3.1. Coordinate transform

For a perfect manipulator the cartesian endpoint position is given by

x=L1cos(0 1)+L2cos(01+02) , y=L sin (01)+L7.sin(01+02)

where

[x.y] position in the plane ; L 1,LL2 length of the segments and 01,02 joint angles

These simulations show that it is possible to produce this kind of transformation using the struc-
ture shown in figure 3.1.1. The evolution of the error measured in meters is shown in figure 3.1.2.

3.2. Inverse model estimation of a cylindrical robot

The cylindrical robot consists of 3 differential ordinary equations: a rotation 0 , a vertical transla-
tion z , and a radial translation r. The dynamical model of this robot is (Tourassis ,1987)

D (q)4+II (q .q)=F (t)

the coordinate vector q =[0 z r]T

the inertial matrix D(q)&diag VJ+j(r) M (mR+mL)l

I - 570

thecouplingvecto, H(qq)=(2 arr)'6* Mg -1 aLrI 2]ar 2 ar
the external joint forces/torques F(t)=[F, F, F,]

where j(r)=(mR +mL)r 2-mRR , (ý)- 2 (mR+mL)r-mRR

at

and the parameters are mR , the mass of the radial link. m the mass of the payload which is con-
centrated at the tip of the radial link. M , vertically translatekmasses . R , the length of the radial link,
and J , the constant inertia of the vertical column

This relatively simple model preserves all the inherent coupling and nonlinear characteristics of a
robot dynamic.

In the simulation only the nonlinear relation between 0 and r is considered.

From the structure of the robot, the following dependencies are known

F,=f(',O,) and F4=g(0,i,0,r)

with this knowledge we reduce the system to NNs with 4 inputs rather than a NN with 2 outputs and 6
inputs.To estimate the inverse dynamic of the robot, the scheme shown in figure 3.1.0 was set up.

The NN was trained using a training region composed of several trajectories generated using
cubic polynomial in the first quadrant. Then the system was simulated using the NN and given a refer-
ence trajectory.

The figures 3.2.2 a) and b) , show the evolution of the errors for a NN with 15 units during the
training stage. The results of the simulations are shown in figure 3.2.3 , each surface representing the
error against the initial coordinate for the estimation of the torque and final position.

4. Conclusions

A new algorithm that adjust the weights of a NN acting as a nonlinear mapping function has been
proved .This algorithm uses a pseudoinverse to avoid illconditioning.

The results show a satisfactory performance of the algorithm as well as its fast convergence.

The NN produces a good generalization (interpolation) in the region that was trained. Outside this
region this characteristic is lost.

More work is necessary in order to know the number of units required to match a certain struc-
ture.

5. References

1 A.E Albert and L.A Gardner, Stochastic approximation and nonlinear regression, The MIT pres,
1967.

2 J.L MacClelland and D.E Rumelhart, Exploration in Parallel Distributed Processing, The MIT
press, 1988.

3 C. Moler , J. Little and S. Bangert, PRO-MATLAB user guide, The Math Works Ltd, 1987.

4 V.D. Tourassis and C.P Neuman Robust nonlinear feedback control for robotic manipulators
IEE Proc. Pt D, vol 132, No 4 ,134 - 143.

5 M. Kortmann and H. Unbehauen, Two algLorithms for model structure determination of nonlinear
dynamics systems with applications to industrial process, IFAC Symposium on identification on
system parameter estimation(preprints), vol 2 (1988), 939-946.

6 D. Sbarbaro , Learning internal representation using stochastic approximation, Control Eng.
Report 89.4, University of Glasgow, 1989.

7 L. Josin, Neural Space generalization of a topological transformation, Biological Cybernetics, 59,

283 - 290.

I- 571

/i

/

8 D. Psaltis A. Sideris and A Yamamura, A multilayered neural network controller. IEEE Control
System Magazine, April 1988,17 .21.

9 J.S Albus, Data storage in the cerebellar model articulation controller (CMAC). Trans. of the
ASME, J of dynamic system , measurement and control, sept 1975, 228-233.

10 D. Bassi and GA Bekey Decomposition of neural networks model of robot dynamics A feasibil-
/ry study In W.Webster editor, Simulation and Al. vol 20 ,8 - 13.

Sr t.

)o~ ~ ~ dgr 3.1. Evolut•*m0 ion o ah merror ae 1

figure31.1.Structuretoestimate the ilverse cdynamic of a cylindrical robot a)b)dfg- 3-.2.2 Error for a 15 hidden units NN
a) error between real external joint torque and estimate
b) error between rea external joint fomee and estmate

r/
a) b)

figure 3.2.3 Error for different staing point. and fIed ending point
a) sum square error for external joint torque
b) rum square error for external joint fonrc

1- 572

/

/

BACK-PROPAGATION LEARNING
WITH COARSE QUANTIZATION OF WEIGHT UPDATES

P.A. Shoemaker
M.J. Carlin
R.L. Shimabukuro
Naval Ocean Systems Center
San Diego, CA 92045-5000
USA

With the extensive work and advances in connectionist or
neural-network-like computational models in recent years,
interest has arisen in implementation of such models in large-
scale analog integrated circuitry. Implementation of modifiable
weights is an important step which is required if a programmable
or adaptive network is to be built, and a number of workers have
reported efforts toward this end in analog circuitry [1,3-5,8,9].
However, iterative "learning" algorithms simulated on digital
computers typically specify graded weight update values which can
be represented to a high degree of precision, and it may be very
difficult (and costly in terms of silicon) to compute and impose
such weight updates with anything close to the same precision
when efforts are undertaken to implement analog "learning"
networks. Such anticipated difficulties suggest investigation of
adaptive algorithms which might be inherently better suited for
implementation.

Accordingly, we have considered learning procedures in which
weight modifications during each update are very coarsely
quantized, into two or three states. Such an approach may be of
use, for example, when weights in circuitry are represented in an
analog manner in the charge domain. This is the case with
floating-gate MOS devices, which have been investigated for
nonvolatile storage and representation of weight values (3,4,9],
and with dynamic memory employing MOS capacitors [1,5], which
have been used in conjunction with CCD-like structures to move
charge about (8]. In both cases, the total charge integrated
onto a floating gate or capacitor plate (or the difference in
charge on two such structures) is used to represent a weight
value in the circuitry. Moving a fixed quantum of charge onto or
off of such a structure might be accomplished with simple
switches and fixed current or voltage pulses, and would be far
easier to do in parallel across an entire network than imposing
charge increments with a continuous range of values and a
different value at each weight circuit.

A precedent for the use of coarsely quantized weight updates
is found in the work of Peterson and Hartman (G], who have
studied the so-called "mean field theory" learning algorithm, a
deterministic approximation to the Boltzmann machine (2]. They

1- 573

report that quantizing weight updates into two states improves
performance of the algorithm on problems involving extensive sets
of training data. Weight modifications across the network are
all of the same magnitude and retain only the sign of the desired
update as it would ordinarily be applied.

The learning rules which we have examined are simple
variants of the well-known back-propagation algorithm [7]. The
"neuron", outputs and back-propagated "delta" terms are computed
in the usual way in a three-layer, feedforward network, and are
used to decide which of the two or three possible increment
values are to be applied to each weight. Each learning procedure
is iterative and uses a training set with updates applied on a
pattern-by-pattern basis, in strict analogy with standard back-
propagation. The learning rules have been evaluated in sets of
simulations and performance has been compared with that of
standard back-propagation. In all cases, momentum or other
"memory" terms were omitted from the learning rules and learning
parameters were held fixed throughout each learning trial in our
initial studies. Three small benchmark problems were used in
these evaluations. One consisted of mapping sixteen orthogonal
32-component vectors to a one-of-sixteen output code, a second
was based upon a training set composed of 40 pairs of arbitrarily
chosen 15-bit vectors, and a third constituted identification of
the parity of a set of fourteen four-bit binary numbers. Bipolar
rather than truly binary "neuronal" activation functions and
input vectors were used in the networks. Convergence was defined
such that each output component for each training pattern was
required to deviate from its target value by less than ten
percent of the total output range.

Weight and bias updates were quantized into two states
according to the rule

AWij = n Sgn(SiOj) (1)
ABi = n Sgn(6i) ,

where Si is the delta term associated with the ith unit, O0 is
the output of the unit, 4Wi is the update to the weight
connecting the jth to the ith unit, ABi is update to the
adjustable bias or offset of the ith unit, and n is a positive
constant. Consistent convergence could be obtained with this
rule on the problem with the orthogonal set of input training
vectors (which was computationally the easiest of the three), in
a total number of iterations roughly comparable to standard back-
proptgation. Convergence could also be obtained on the parity
problem, but it was typically more than an order of magnitude
slower than in the fastest standard back-propagation trials.

Convergence was not generally obtained for the arbitrary bit-
string mapping problem.

A second approach was taken in which updates were quantized
into three states according to the rule

I - 574

AWij = n Sgn(iOj) (IOji e and ISi > e2)
= 0 (IOji < el or i il < C2) (2)

ABi = ri Sgn(di) (1 5 il 1 E2)
= 0 (lIil < E2) ,

where c1 and £2 are positive constants. By the inequalities in
(2), the quantities £1 and £2 define a "dead zone" for each
weight in which no update occurs, as well as regions in which
either positive or negative increments are made.

Simulations with this learning rule showed that it is capable
of convergence upon all three benchmark problems, for significant
ranges of the parameters n , £1, and £2. Coarse searches were
performed for both standard back-propagation and this "trinary"
rule to identify parameter values and hidden layer size for which
convergence seemed to be both rapid and consistent. Parametric
studies were then performed in which the learning rate n and the
number of hidden units were varied individually about this point,
for both standard and trinary rules. In addition, the parameter
£2 was varied for the trinary rule, and £1 was set to 0.33. The
other parameters assumed values in the ranges n = 0.005 to 0.15
and £2 = 0.005 to 0.12 for the trinary rule, and n = 0.005 to 0.2
for standard back-propagation. A set of five learning trials,
each starting from a different initial random weight set, was
performed at each set of parameter values. This study
demonstrated that the trinary rule converges in significantly
fewer iterations than standard back propagation on all three
problems. Convergence times for the two rules in the best-
performing networks differed by a factor of three to four for the
orthogonal input vector and arbitrary bit-string mapping
problems, and four to ten for the parity problem.

Over the ranges of parameters studied, more individual
instances of non-convergent learning trials occurred for the
trinary rule than for standard back-propagation, particularly for
large values of the £2 or n parameters or in networks with small
hidden layers. However, most of these non-convergent cases
occurred because the networks reached terminal states in training
in which all delta terms fell into the dead zone which specifies
zero weight update. This problem is readily circumvented by
initiating the learning trial with a smaller value of £2, or by
reducing £2 adaptively during training. This has been
demonstrated in further simulations.

We have also investigated in additional simulations the
properties of the learning rule subject to some constraints which
might be expected in real implementations operating on real data.
The response of networks to noisy data has been examined by
corrupting the input training patterns with random, zero-mean,
normally-distributed additive noise of different variances. It
has been found that networks trained with such noise imposed upon
the exemplar patterns misclassify patterns with novel noise far

1-575

less often than do networks trained upon the uncorrupted data.
We have also investigated the effects of imposing random offsets
upon the delta terms computed by the network. If the delta
feedback system were implemented in an analog circuit, such
offsets could never be completely eliminated. Results show that
the learning rule is tolerant of offsets whose standard deviation
is a significant fraction of the c2 parameter. Convergence
typically slows as the variance is increased, but occurs fairly
consistently until the standard deviation reaches values near
E2/2 or greater. Another constraint which might be expected in
analog hardware is soft limiting or saturation of the weights.
As a weight grows in magnitude it would become more difficult to
make an increment of the same sign as the weight, due, for
example, to opposing potential if accumulated charge represented
the weight value. We have simulated this effect in conjunction
with the trinary rule, and found that convergence is not
necessarily precluded or slowed.

Acknowledgments
This work was supported by the Office of .Naval Technology

under progrrx element 62234N, project RS34M40.

References
(1] Furman, B., & Abidi, A. (1988) Neural Networks 1,
Sup. 1, p. 381.
[2] Hinton, G.E., & Sejnowski, T.J. (1986) In Parallel
Distributed Processing, Explorations in the Microstructure of
Cognition, Vol. 1, pp. 282-317. D.E. Rumelhart & J.L.
McClelland, Eds. MIT Press, Cambridge.
[3] Holler, M., Tam, S., Castro, H., & Benson, R. (1989)
In Proceedings, International Joint Conference on Neural Networks
1989, Washington, Vol. II, pp. 191-196. IEEE, New York.
[4] Hu, V., Kramer, A., & Ko, P.K. (1988) Neural Networks 1,
Sup. 1, p. 385.
(5] Kub, F., Moon, K., & Mack, I. (1989) In Proceedings,
International Joint Conference on Neural Networks 1989,
Washington, Vol. II, p. 614. IEEE, New York.
(6) Peterson, C., & Hartman, E. (1989) Explorations of the
mean field theory learning algorithm. Neural Networks, in press.
[7] Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986)
In Parallel Distributed Processing, Explorations in the
Microstructure of Cognition, Vol. 1, pp. 318-362. D.E.
Rumelhart & J.L. McClelland, Eds. MIT Press, Cambridge.
(8] Schwartz, D.B., Howard, R.E., & Hubbard, W.E. (1989)
IEEE Journal of Solid-State Circuits 24, pp. 313-319.
(91 Shoemaker, P.A., & Shimabukuro, R. (1988) Neural
Networks 1, Sup. 1, p. 409.

1- 576

i ilI

Ur

CONNECTIONIST PUSHDOWN AUTOMATA
THAT LEARN CONTEXT-FREE GRAMMARS

G.Z. Sun, H.H. Chen, C.L. Giles, Y.C. Lee and D. Chen

Laboratory for Plasma Physics Research,
Department of Physics and Astronomy

and
Institute for Advanced Computer Studies

UNIVERSITY OF MARYLAND,COLLEGE PARK,MD 20742

Recently, much efforts have been made to construct neural network models of sequential ma-
chines (1), (2), (3), (4), (5). Most of the existed models use recurrent neural network (or time-
delayed feedback network) to simulate the internal state transitions. The basic structure of neural
network models of state machine is introduced and studied in reference (5). Using second order
connection weights, the recurrent formula of the state transitions can be written

s1+1 = g (EZwkistl+ei) (1)

j,k

where S! is the activity of the ith neuron at time step t, Ik is the keh component of input pattern
at time step t and g can be sigmoid function g(z) = 1/(1 + ezp(-z)). The task of the model is to
train the weights Wiji from the classification information of a given set of training patterns such
that the errors would be minimum and the formed state machine can be used as a classifier for new
patterns. This process is actually the grammatic inference in terms of neural network methodology.
The work done in (5) has shown successes of this model in dealing with regular grammars. The
trained neural network state machine can recognize testing sequences nr any length correctly.

In this paper we would like to extend this neural network model to deal with context-free
grammars, for example , to learn the parenthesis balance checking or the anbn grammar. The
difficulty is that, in order to learn context-free grammars, one needs external stack memories in
addition to the state transition rules. Otherwise, we can at most train the network to recognize
the sequential patterns up to a certain length, and this length is proportional to the network size.
Although in practice we have to have a stack of finite length, after the whole system is trained this
length should be adjustable in order to fit the different lengths of testing patterns. In this sense a
state machine coupled with a stack (i.e. a pushdown automata) can learn context-free grammars,
but a state machine itself can not. Although some researchers claimed that they had trained the
neural network machines that learned context-free grammars, what they really did was to train the
network to learn a subset of a context-free grammar (containing patterns of limited length). After
training, the results can not be generalized to arbitrarily long sequences.

An interesting work of William and Zipser (3), using similar technique, tries to couple an external
tape to the connectionist state machine to learn a parenthesis balance checking problem. However,
in their scheme the transition behavior of the tape and the state machine and their coupling are
all given in advance. Therefore, they are only simulating a known Turing machine. No grammatic
inference task was attempted. In grammatic inference we do not have informations about the
particular transition behavior of the target machine, the only thing we know is the classification
information of training patterns.

The purpose of this paper is to develop a neural network model of pushdown automata for the
task of grammatic inference. For this purpose, we need to couple a stack to a state machine. The
major outstanding problems are: 1) how to construct this stack memory, 2) how to couple this
stack memory to the state machine and 3) how to determine the objective function such that its
optimization will lead to a self-organization of the entire system based only on the knowledge of
classification information of the training examples.

Our the connectionist pushdown automata are composed of two parts: a neural network state
machine and a continuous valued stack. The state machine part is an extended version of tie
finite state macnine as in (5). It consists of a group of neurons Si,i = 1t,.....Ns, representing

1- 577

the internal state, another group of neurons h,,i = 1,2,...,Nt, as input lines and some other
neurons Ri, i = 1,2 ... , NR, as readings from stack, and still some other neurons Ai,i = 1,2,...,NA
representing the output actions (push or pop the stack). The state neurons are connected by one
time step delayed feedback weights. At the same time, second order (and also third order for some
cases) feedforward connection weights between the state neurons, input symbols, stack readings
and output actions would implement the state transition and the stack actions. The recurrent
updating formula can be written

j.k w S(Ra n If)k + 0!, and A_, 1 = f(wjks•(e + (2)
"j,k j,k

where (R ED I)k = Rk(if 1 < k < NR) or Ik(if NR + 1 < k <_ N1 + NR) and f(z) = 2g(z) - 1.
From this formula it is seen that given initial state S1, stack reading RI and first input symbol i1,
the new state S2 and action A2 are generated. After action A2 is performed on the external stack,
we read from the top of stack with a new reading R2 . Using R 2 together with S2 and 12, we can
repeat the procedure until the end of the input string.

The stack part is simply a normal stack but with continuous value of memory and actions. We
will see that this continuity is necessary for the gradient descent learning algorithm. For simplicity,
we first consider the simplest action of deterministic pushdown automata. We assume three types
of actions so that only one action neuron is needed: push (A > 0), pop (A < 0) and do nothing
(A = 0). We also assume that each time we push only the input symbol into the stack. In this case
we can use the same representation for stack readings R' and input symbols IV (so that NR = NI).

To illustrate how the continuous stack works, we consider a binary input string "aababe". We
use three neurons and unary representation: I=(1,0,0), (0,1,0) and (0,0,1) for string symbols "a",
"b" and end symbol "e". Initially, stack is empty, so the reading is R' = (0,0,0), and P' = (1,0,0)
represents the first input symbol "a". Suppose that we use four neurons to represent internal states
and assign initial state to be S' = (1,0,0,0). After an iteration of Eq.(2), new state S 2 and new
action A2 are obtained. If the action output is A2 = 0.6, we push a symbol "a" with length=0.6
into the stack. It can be represented as (0.6,0,0) and the next reading R2 would be (0.6,0,0).
If A = -0.3 it pops an empty stack. When this happens we need an learning algorithm to deal
with it. After several pushes and pops, the stack memory stores the continuous symbols and may
look like (from bottom to top): (0.32,0,0), (0.2,0,0), (0,0.7,0) and (0.4,0,0). Each time we read the
stack from the top with depth=l. So, the next reading would be R' = (0.4,0.6,0). If the action
A-+1 = -0.86, we pop (0.4,0,0) and (0,0.46,0) from the stack, this leaves the stack with (0.32,0,0),
(0.2,0,0) and (0,0.24,0). The next reading should be Rt+' = (0.52,0.24,0) and so on.

The design of this model is mainly determined by the following considerations. Firstly, in the
limit of saturation (neuron outputs approach 1 and 0, or 1 and -1 for action neuron), this continuous
stack should approach the normal discrete stack behavior. Secondly, before the saturation limit, the
analog values of representations can have a meaningful probabilistic interpretation. For example,
Rt = (0.1,0.89,0.01) means that the reading from the top of the zack at time t is not oae discrete
symbol, the probabilities to be symbols (l,0,0),(0,1,0)and (0,0,1) are 0.1, 0.89 and 0.01 respectively.
When the stack length is less than 1, the reading may be R' = (0.1,0,0), this means that the
probability to be (1,0,0) is 0.1 and the probability to read empty stack is 0.9. Thirdly, whenever
the connection weights lVijk have an infinitesimal change, the change- of states, stack storage,
actions and stack readings should all be infinitesimal. This continuity is a crucial condition for the
gradient descent learning algorithm to be meaningful and is also the main reason for us to employ
the continuous stack instead of the discrete stack. It is seen -from the above model of stack that all
of these requirements are satisfied.

For optimization, the objective function we chose is the scalar error measure of the end state
and the stack length. According to the theory of pushdown automata, either the end state or the
stack length alone can be sufficient criterion to determine the acceptance of input strings. We used
the combination of the two in the hope of speeding up the learning process. We tried different error

1- 578

measure functions. One of those that numerically work well is defined as

0 if target = 0 and ST >- LT
er = target - (STs - LT) otherwise; (3)

where target = 1 for legal string and target = 0 for illegal string, SNT and LT are respectively
the output value of the (Ns)gh state neuron and the total stack length at time T (the end of input
string). LT can be evaluated recursively through

Lt+1 = Lt+At. (4)

The total error function to be minimized is the summation of er 2 over all training patterns. In
testing or classification later on, the quantity v = ST - LT will be evaluated at the end of each
sequence (usually we feed an end symbol to the network), an input pattern is classified as legal
string if v > 0.5, otherwise illegal. It can be seen that for legal patterns (target=1) minimizing
the error will lead to the case where the last state neuron output to be 1 and the stack length to
be zero. Similarly, for illegal patterns, minimizing the error will decrease the state neuron output
and increase the stack length, but if the value of v is already negative, we do not need to make
corrections.

By imposing the "on-line" learning algorithm the weight perturbations (predicted errors) are
propagated forward (stored in a stack-like matrix memory) though the recurrent formula and the
final correction is made at the end of input patterns. These recurrent relations can be derived in
terms of chain rule of the derivative of the error function. They are

P+* Ns 2 N1 a S!, Ns 8R'
S= hj l(S,

1){6jSý(Rt + t j +k R' (I)k' -i- + L)= 9,,(s,, E wi,,A:,(a C Ek+w, 1Wj
OWiJk j'=1 kv=1 j1=1 k'=1

(5)
where for simplicity we combined the notations of Si, and At in one, i.e. the (Ns + 1)th component
of t is A', so that function hi(z) represents derivatives g'(z) for i=1 to Ns and f'(z) for i = Ns+1;
similarly we combined W1 and W1 in one such that Wijk represents Wik for i=1 to Ns and Wik for
i = Ns + 1.(note that we assumed NA = 1 and NR = NI), Up to now the recursion is not complete
until we express M by -ar. Since the current stack reading depends on the whole history of the
stack, no simple recurrent relation can be found. But, after some trainings when action values are
large enough (> 0.5 for example), each reading Rt may not contain much information of the past.
To the first order approximation, we write

SEt M~t, 8At' M.. aRAt 8A' 6
OR ~ ~ ~ ' -± OgOA 8ý,O - 61 A') (6)

wWijk E OAT' OWijk - OA' OWijk = (6 k'- 6 k')aW-jk

where A and r are the ordinal numbers of neurons that represent the top and the bottom symbols
respectively in reading R', for example, after the execution of the action At the stack is (from
bottom to top): (0.2,0,0), (0,0.7,0) and (0,0,0.15), then we have r' = 3 and r' = 1. Now, the
weights update formula is

aSs 9LT

ZAWijk = , r("I - (7)

At last, to treat the case of popping empty stack, we make correction of weights to increase the
stack length if the input pattern is legal, otherwise we do not bother.

We have simulated the neural network pushdown automata numerically to learn several context-
free grammars. The results are encouraging. For the parenthesis balance checking, w- used three
state neurons. The fifty training patterns include all possible strings up to length four and some
longer strings up to length eight. After twenty sweeps of training, the network formed a perfect

I - 579

pushdown automaton. This can be seen either from the state and stack analysis or from the nu-
merical test with novel patterns, no recognition errors have been found for all possible strings up to
length twenty and some strings of length around one hundred. The basic behavior of this pushdown
automata is that the state part do not need to do anything, only one state is needed in addition
to the start state (1,0,0) and end states. The learned transition diagram is shown in Fig.l, where
the notation (a,b,c) beside the arrows indicates that this transition occurs when the input symbol

IC is "a", the reading from the stack is "b" and the action neuron has output "c".

Fi. 1La rn1) n(0, 1g,

4 3 (0,1,-)

43Q (0,0,-I)

Fig. 1. Learned neural network pushdown au- Fig.2.Learned neural network pushdown automaton
tomaton for parenthesis balance checking where for 1"01 grammar, where the four states (1), (2),
the numerical results for states (1), (2), (3) and (3) and (4) are (1, 0, 0, 0), (0.96, 0.10, 0.12, 0.16,
(4) are (1,0,0), (0.9,0.2,0.2), (0.89,0.17,0.48) and 0.68), (0.99, 0.99, 1.0, 1.0, 0.99), (0.05, 0.01, 0.01,
"(0.79,0.25,0.70). State (1) is start state. State (4) 0.60, 0.92). End states are not shown. Before feeding
is legal end state. Before feeding end symbol a le- end symbol, state (3) is the right final state for legal
gal string must end at state (2) with empty stack string.

We also successfully trained 1" 0" grammar. Five state neurons are used. We first chose 27 short
strings to form the training set. After 100 sweeps of training we tested and found 6 recognition
errors up to length eight. We added these patterns to the training set and trained another 100
sweeps. Then we tested again and found 8 errors for up to length nine. After this procedure had
been repeated five times, the neural network pushdown automata was almost prefect. We tested all
2097150 patterns up to length twenty and some patterns up to length 160 and found no recognition
errors. Using quantization of the neuron output values, a perfect pushdown automata can be seen
and the transition diagram is shown in Fig.2.

Further numerical and analytical studies are being undertaken. We believe that this successful
model of pushdown automata demonstrated the power of connectionist strategy.

Acknowledgement
This work is supported by AFOSR and NSF.

References
(1). Robert B. Allen,Adaptive Training for Connectionist State Machines, paper presented at ACM
Computer Science Conference, Louisville, Feb. 1989.
(2). M.I. Jordan, Attractor Dynamics and Parallelism in a Connectionist Sequential Machine, Pro-
ceedings of the Cognitive Science Society, 531-546, Amherst, Aug. 1986.
(3). R.J. William and D. Zipser, A Learning Algorithm for Continually Running Fully Recurrent
Neural Networks, ICS Report 8805, Oct. 1988.
(4). D. Servan-Schreiber, A. Cleeremans and J.L. McClelland, Encoding Sequential Structure in
Simple Recurrent Networks, paper presented at IEEE Conference on Neural Information Processing
System, Denver, Colorado(1988).
(5). Y.D. Liu, G.Z. Sun, I1I.. Chen, C.L. Giles and Y.C. Lee, Inductive Inference and Neural
Network State Machine, submitted to IEEE Conference on Neural Information Processing Sys-
tem, Denver, Colorado(1989). See also the paper Grammnatic Infcrence and Neural Network State
Machine in IJCNN-90-Washington D.C..

1- 580

MULTIPLE THRESHOLD PERCEPTRON USING GAUSSIAN FUNCTION

Kaveh Ashenayi*, Heng-Ming Tai, Mohammad R. Sayeh**, Mohammad T. Mostafavi**
Department of Electrical Engineering

*The University of Tulsa
Tulsa, Ok 74104-3189

"*Southern Illinois University at Carbondale
Carbondale, IL 62901-6603

'Department of Computer Science
The University of North Carolina at Charlotte

Charilote, North Carolina 28223

ABSTRACT

A new multi-threshold perccptron capable of handling both binary and analog input is presented and discussed. The
modified perceptron replaces the sigmoid function with the Gaussian function. The modified perceptron is used to
solve the XOR problem. It requires fewer number of iterations to converge to a solution than that of a muld-layer
network using back propagation.

INTRODUCTION

An artificial Neural Network (NN) is a computational structure based upon simplified models of human brain (I].
The hallmark of NN is massive parallelism and interconnectivity between a large number of relatively simple
processing units, often called neurons. Neural networks have been utilized to solve problems ranging from pattern
recognition/classification to security assessment for electric power systems (2-4].

The single-layer perceptron is one of the first NN developed. It is capable of handling both binary and analog inputs
(5]. The original perceptron convergence theorem and weight adjustment procedures were developed by Rosenblatt
(see reference 5). It was shown that using the procedure developed by Rosenblatt single-layer perceptron can only
classify linearly separable input patterns [6]. Therefore, problems such as XOR problem where the input patterns
can not be classified into two distinct groups can not be solved using single-layer perceptron [7,81. This limits
utility of single-layer perceptron. One possible solution is to use multi-layer perceptrons.

Using multi-layer perceptron architecture and "Back Propagation (BP)" [9] many shortcomings of the single-layer
perceptron can be overcome. This procedure is effective and allows for efficient use of multi-layer perceptrons.
But the procedure does not guarantee convergence to the global minima at all times. Also, it requires a large
number of training iterations in order to converge (see reference 9).

Because of the problems associated with BP (10] it is of interest to modify the weight adjustment procedure and/or
the model developed by Rosenblatt to enable single-layer perceptron to solve problems such as XOR problem. In
this paper a modified perceptron is presented. The modified perceptron is a multiple threshold perceptron which is
capable of solving problems such as XOR problem. Unlike the previous efforts (11) in developing multiple
threshold pereeptron our perceptron is capable of handling both binary and analog input. Also, the procedure
requires fewer number of iterations (compared to BP) and based on our experience it always converges to global
minima.

Proposed Modified Perceptron

As it was stated a single-layer perceptron utilizing Rosenblatt's procedure is only capable of classifying input
patterns into one of two categories. Therefore, an alternate approach is needed if the input patterns are as shown in
Figure 1.

As is evident, if we are to correctly classify patterns of Figure 1, we require at least two hyperplanes in order to
divide the two dimensional space of Figure 1 into three distinct regions. Therefore, the modified pcrceptron must be

1- 581

able to form two decision boundaries (see Equation 1). Figure 2 illustrates decision boundaries in the two-
dimensional space.

ftoion o

Figure 1. Example at Input Patterns Figure 2. Decision Boundaries Required
That are not Linearly Separable

yt = O/W 2 -(W1 /W2) X
(I)

Y2 = "2/2 - (Wl/W2) X

where Wi represents weight, 0i represents thresholds of function, and X represents the input pattern

Note that both decision boundaries have the same slope. However, they have different intersection points with the
vertical axis.

Two values are very useful when studying a pereeptron with two hyperplanes. These are width and angle (see
Figure 2). These variables provide a measure of performance that can be used for comparison purposes. Slope of
the decision boundaries is equal to tangent of "angle' (see Equation 2). When W2 is negative we must add 180o to
the value obtained.

angle = tan-I(W 1 /W2) (2)

The variable "width" represents the distance between the two decision boundaries. Using simple geometry (see
Figure 2) it can be shown that the variable width is equal to

width = (02 - Ot)/(Wt2 + W2 2)0.5 (3)

There arc a number of functions that satisfy the requirements specified. Gaussian, double Sigmoid, and some
piecewisc linear functions all satisfy these requirements. The double sigmoid function correctly forms the required
decision boundaries. However. it is unstable when the input patterns are not symmetric about a hyperplane passing
through the origin. Figure 3 shows both symmetrical and non-symmetrical patterns in the two dimensional space.
The piecewise linear functions can not be used because their derivative is not defined for all values of input.

The Gaussian function presents the best choice in that its derivative is defined for any possible value of input. Also,
it is capable of correctly classifying patterns that are not symmetric about a hyperplane passing through the origin.

The modified procedure utilizes the Gaussian function fG, given below, in place of the sigmoid function uscd by
Roscnblatt.

fG(ot-E) {l/[o(2x)0°5J) (EXP[-0.5[(cr-p)/A)2-eJ) (4)

1- 582

where

Y = variance of the Gaussian function and gt = mean of the Gaussian function

After each iteration the weights are adjusted as follows

w(t) + 11(d . y(t))x(t) if slope of fG is positive
w(t+l) - (5)

w(t) - il(d - y(t))x(t) if slope of tO is negative

SIMULATION RESULTS

A computer program was developed to simulate the behavior of the modified perceptron. Results of the simulations
indicate that use of Gaussian function as the non-linearity function allows the single-layer perceptron to correctly
classify three distinct classes of input patterns.

Using learning rate (il) of 0.5 both BP and the modified perceptron were used to solve the XOR problem. The
modified perceptron converged to the global minima in less than 60 iterations while BP required more than 550
iterations.

Figures 4 and 5 illustrate results obtained using the simulation program. The program was used to simulate a
network utilizing the modified perceptron to solve the XOR problem of Figure 1. Figure 4 demonstrates the number
of iterations required as a function of (r, and Figure 5 shows variations in the number of iterations required as a
function of i1. As is evident the network is capable of solving the XOR problem more efficiently compared to BP.

REFERENCES

1. S. Borman, "Neural Network Applications in Chemistry Begin to Appear," Chemical & Engineering
News, pp. 24 - 28, April 24. 1989.

2. K. Ashcnayi, S. Singh, and M. R. Sayeh, "Pattern Classification Using Associative Memory," paper
presented at 31 St. Midwest Symoosium on Circuits and Systems, Aug. 11-12, 1988.

3. H. M. Tai and T. -L. Jong, "Information Storage in High-Order Associative Memory With Unequal Neural
Activity," paper presented at 1989 International Joint Conference on Neural Networks,
Washington DC, June 18-22, 1989.

4. D. J. Sobajic and Y. H. Pao, "Artificial Neural-Net Based Dynamic Security Assessment for Electric Power

Systems." IEEE Transactions on Power Systems, Vol. 4, No. 1, Feb. 1989, pp. 220 - 228.

5. R. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York, 1959.

6. H. D. Block, "The Perceptron: a Model for Brain Functioning. I," Reviews of Modern Physics, 34, pp. 123
- 135, 1962.

7. M. L. Minsky and S. A. Papert, Perceptrons, Expanded Edition, MIT Press, Cambridge, Mass., 1988.

8. R. P. Lippmann, "An Introduction to Computing With Neural Nets," IEEE ASSP Magazine, pp. 4 - 22,
April 1987.

9. D. E. Rumelhart, J. L. McClelland, and The PDP Research Group, Parallel Distributed Processing
Explorations in the Microstructures of Cognition Vol. 1: Foundations, MIT Press, Cambridge, Mass.,
1988.

I- 583

10, M. L Brady, R. Raghavan, and J. Slawny, *Back Propagation Fails to Scparatc Where Pcrceptron
Succeed," IEEE Transactions on Circuits and Systems, Vol. 36, No. 5, pp. 665 - 674, May 1989.

11. R. Takiyama, Multiplc Treshold Pcrceptron." Pattern Recosnitio, Vol. 10, pp.27 -30, 1978.

Tesl IT6s12

obgIon2 IQ~l

bg anO

Figure 3. Symmetric and Non-Symmetric Input Patterns

i.~OE3 M Interatlons 1

Ucorrect

0.0 9.20 9.40 0.66 Mee 1.0

Figure 4. Number of Iterations Required to Solve XOR Problem as a Function of a

2. 0OE

1.60E3 I
a.OIE I

S I correct 4

* '4.OrC2 o"dams4

9.0 9.20 8.40 9.60 0.e 1.0 'O

ni

Figure 5. Number of Iterations Required to Solve XOR Problem as a Function of 11

1 - 584

A Hybrid AlgoritIn for Finding the Global Minirnn of Error
Functlon of Neural Networks

Norlo Bobo
Faculty of Engineering, Tokushima Universivt, 770, JAPAN

Abstract: Recently, back-propagation method has often been applied to adapt
artificial neural networks for various actual pattern classification problems.
However, one of the most important limitations of this method is that it some-
times falls into a local minimum of the total error function of neural network.

In this paper, a hybrid algorithm which combines the back-propagation
method with the random optimization method of Matyas (its modified algorithm)
is proposed to learn the weights and parameters involved in a neural network.
It is shown by several computer simulation results that the proposed hybrid
algorithm can be successfully utilized in order to find the global minimum of
the total error function of neural networks in a comparatively small number of
steps.

1. INTRODUCTION
In recent years, neural network computing has been studied quite extensive-

ly by many researchers and various fruitful results have been obtained. In
pa-rticular, the back-propagation method (BP method) proposed by Rumelhart et al
is one of the most stimulating products and has given great impact to the de-
velopment of this area.

However, this method has also several problems to be solved. Among those,
the following problem might be particularly important: "It sometimes falls
into a local minimum of the total error function."

In the first part of this paper, we propose a hybrid algorithm which com-
bines the BP method with the random optimization method of Matyas (its modi-
fied random optimization method) in order to find the global minimum of the
total error function in a small number of steps.

In the latter half of this paper, several computer simulation results using
this hybrid algorithm for pattern classification problems are given.

2. HYBRID ALGORITRI- FOR FINDING A GLOBAL MINIM! OF THE TOTAL ERROR FUNCTION

In this section, we propose a new combined algorithm of the BP method and
the random optimization method in order to find a global minimum of the total
error function E(w) in a small number of steps.

First, let us briefly refer to the BP method and the random optimization
method.

2.1 BACK-PROPAGATION METHOD

Recently, Rumelhart and McClelland [1] have proposed the BP method as a new
algorithm for finding weights of multi-layered network. This method has at-
tracted great numbers of researchers working in the field of computer, arti-
ficial intelligence, and neuro-science. It has been applied to various inter-
esting actual porblems. However, the BP method has several problems to be
solved. One of the most important problems is the potential for falling into
a local minimum of the total error function E(w).

2.2 RANDOM OPTIMIZATION METHOD

1- 585

It is well known that the random optimization method of Matyas [2] ensures

convergence to a global minimum with probability 1 on the compact set [3],(41,

[5). This algorithm can be described as follows:

STEP 1. Select an initial point w(0) in the search domain X and let
k - 0. Let M be the total number of steps.

(k) (k) (k)
STEP 2. Generate Gaussian random vector &(k) If W(k)+ X.E x,

go to STEP 3. Otherwise, go to STEP 4.

STEP 3. If E(w(k)+ (k))< E(w(k)), let w(k+l) . w(k)+ •(k)

If E(w (k)+ (k) > E(w(k) let w(k+l) . w(k).

STEP 4. If k - M, stop the total calculation. If k < M, let k - k+l
and go to STEP 2.

In 1981, Solis & Wets [5] proposed the modified random optimization method in

order to find a global minimum of the objective function in a small number of
steps. Since this method differs from the original random optimization method
only in STEP 3, we abbreviate another part of steps.

MODIFIED RANDOM OPTIMIZATION METHOD (STEP 3)

(i) If E(w(k)+ &(k))< E(w(k)),

let w(k+l) w (k) + &(k) and b(k+l) = 0 .4&(k) + 0.2b (k)

(ii) If E(w(k)+ & (k)) > E(w(k)),

let (k+l) - w(k) - r(k) and b(k+l) = b(k) - (k).

Otherwise, let w(k+l) . w(k) and b (k+l) . 0.5b(k) (b(0) 0)

2.3 HYBRID ALGORITHM

We shall propose a new hybrid algorithm that makes use of both the merits
of the random optimization method and the back-propagation method. An outline
of this hybrid algorithm is described in Figure 1. Let us explain it briefly.

First, parameter training is carried out using the BP method. When the
decrease of the value of the total error function becomes smaller than a speci-
fied value El, we change the overall descent algorithm from the BP method to
the random optimization method of Matyas (modified random optimization method
) in order to prevent it from falling in to a local minimum of E(w). If the
decrease of the value(p the total error function becomes larger than a
specified value E(w()G, we change the overall descent algorithm from the
random optimization method to the BP method. The same procedures are repeated
several times. When the total number of steps exceeds a specified number M,
the overall calculation is stopped. [6)

3, COVER SIULATION RESULTS

In this section, two computer simulation results are presented in order to
demonstrate the effectiveness of our proposed hybrid algorithm.

Example 1: In this example, we consider a rather simple pattern classi-
fication problem in which 64 training patterns consisting of all of the possi-
ble combinations of "0" and "I" are the inputs of the neural network as shown

I- 586

Determine the values of C, G, C, El, L, and P
Let k O.
Determine the initial weight vector w(0).

(0)
Calculate the value of the total error function E(w(). Let El - E(wv0)).

Let E2 - El, kl - 0, and E = 0.

Let k - k+l and p - O.

H tUpdate the weiaht vector w(k) by the BP method and
calculate Esm Let E cnd + EpS

E2 E, k 0 LL EYes

T l Yes

obEl < t or k w M ?e1

Yes

Ik1 - k1 + 1i

No
• k1 - L ?

Yes

E2 - 587

1ip
SUpdate the weight vector w (k) by the random optimization method.

Let E be the current value of the to tal error function E(w M j.

Eo < lN9

Eo l < C Yes N

Figoure 1

in Figure 2. The objective in this example is to train weights of the neural

network in such a way that the network responds with the output 'T' when the

numbers of the input are even or zero or else it responds with the output "0".

Here, the value 0.1 and 0.5 have been used for parameter n of the BP method and

the value 0.01 and 0.005 have been used for the variance of & of the random

optimization method. Figure 3 shows the computer simulation results.

Example 2: In this simulation, we consider prediction of SO. density at
noon in Tokyo using the informations obtained at 10 a.m. In parhicular, our

objective is to construct a neural network which emits output 'T' (alarm) when

the So 2 density exceeds 8 pphm and emits "0" when the SO 2 density does not ex-

ceed 8 pphm. In order to construct such a neural network, we have carried out

parameter training using the data obtained over the previous two weeks in order

to forecast SO 2 density daily for one week in the future. Since we have not

1- 587

1(u) 1(u)

8.0;

5..

number of steps 20000

BP method (ri * O.1) BF method (r• 0.5

1(w) E(W)

5.0 5.O0

Figure 2
20000 20000

iatyas' method Hatyas' method
Variance - 0.01) (Variance - 0.005

8 .01

.o0 5.0
enough space in this paper, we
abbreviate details of the simu- I I
lation results. They will be I

presented in my talk at the
conference. 20000 2 0ooo

Acknowledg-Tft Hybrid Algorit'h Hybrid Algorithm

The author would like to thank
Mr. T. Totori for his kind assis- Figure 3
tance in preparing the manuscript.

References:
[1] D.E. Rumelhart and J.L. McClelland, Editors, Parallel Distributed
Processing, MIT Press, 1986.
[2] J. Matyas, Automation & Remote Control, Vol. 26, pp. 246-253, 1965.
[3] N. Baba et al, Information Sciences, Vol. 13, pp. 159-166, 1977.
[4] N. Baba, JOTA, Vol. 33, pp. 451-461, 1981.
[5] F.J. Solis & J.B. Wets, Mathematics of Operations Research, Vol. 6, pp.
19-31, 1981.
[61 N. Baba, Int. J. Control, Vol. 37, pp. 929-942, 1983.
[7] N. Baba, Neural Networks, Vol. 2, 1989 (to be published)

1- 588

AUTOMATIC EVOLUTION OP NEURAL NET ARCHITECTURES

A.W. Bailey
Physical Sciences Inc.

Research Park, P.O. Box 3100
Andover, MA 01810

ABSTRACT

Algorithms have been developed for self-constructing feed-forward neural
nets. The network produced in an example problem is compared with a conven-
tionally constructed net. A fast back-propagation training algorithm is
discussed.

1. INTRODUCTION

Conventional neutral nets use an architecture that is static. Modifi-
cation of the net during training is limited to alteration of the synaptic
connection weights and the neuron thresholds. While it has long been noted by
workers in automata theory that neural nets can, in j,•inciple, be self-
constructing, 1 in practice design of an optimal net configuration for a given
problem has been a trial and error process. In a back propagation feed-forward
net, a number of layers are chosen, each with a number of neurons and with some
degree of synaptic interconnection. Typically, a number of neurons are
assigned to three or four layers and each neuron output is fed to all neurons
in forward layers. If the configuration proves inadequate, a new configuration
with more hidden layer neurons is tried. For small problems with a relatively
few inputs and a modest number of neurons, this trial and'error procedure might
be acceptable. For complex problems, this procedure is unacceptable. For
example, machine vision with high-resolution video would involve hundreds of
thousands of inputs. Full synaptic connection to all forward neurons would
require billions of synaptic connections. The synaptic connection tree must be
limited to a more reasonable size. The development of an optimal net can be
automated and incorporated as part of the training procedure of the net,
thereby avoiding a trial and error procedure.

A neural net can be grown by adding and removing synapses and neurons
until the net works as desired. This technique allows optimized neutral nets
to be created whose complexity is matched to the nature and amount of the
training data. One technique for doing this has been described by Tenorio and
Lee. 2 Herein is described a different, independently formulated, technique.

2. THEORETICAL APPROACH

It is assumed that we are dealing with a conventional, non-time dependent,
feed-forward neural net. Two terms can be defined to guide the evolution of
the net. These will be called the synapse "importance,"

I aD p]2
Ikl = • Z(1•kiJ]

PD

and the synapse "effectiveness,"

I- 589

D 2

piP W-

Important synapses are those that strongly affect the pattern errors, Dpj, when
their weights are altered. Effective synapses are those that strongly alter
the global error when their weights are altered. An important synapse may not
be effective due to cancellation of terms: increasing the synapse weight may
decrease the absolute value of some deviations and increase the absolute value
of others. Effective synapses will be the ones zont are most effective for
training the net and thus are desirable. Synapses that are both ineffective
and unimportant are candidates for removal from the net if this can be done
without an excessive degradation of the training state of the net resulting
in a large increase in the total error. The increase in the global error from
an alteration of the net by adding or removing components will be referred to
as the "trauma". These new parameters, "importance", "effectiveness", and
"trauma", provide the basis for the construction of neural net evolution
algorithms.

A synapse would be a desirable addition if it would have a large
effectiveness and so aid in training the matrix to its desired state. The
effectiveness is well defined and non-zero for synaptic connections between
existing neurons even when those connections are not currently part of the net.
These "virtual" synapses are candidate for inclusion in the net.

A synaptic connection with a high importance but a low effectiveness is
one for which an alteration of the weight lovers the error of some patterns but
increases it for others. Such a situation implies that correlation of the
signal with that from another important synaptic connection could produce a
significant correlation.

A synapse is a candidate for deletion if both its importance and its
effectiveness are low and the trauma to the net is not excessive. The trauma
to the net can be minimized by increasing the self-activation of forward
neurons to reflect the average input signal from the deleted synapse.

A neuron is ineffective as a switch when it is either always on or always
off, regardless of the input pattern. In this case, the importance and effec-
tiveness of the synapses leading to the neuron will become small and tney can
be deleted. The neuron will then have a constant output that is set purely by
the neuron self-activation, regardless of input pattern. The neuron can be
deleted and the lost current compensated by altering the self activation of the
forward neurons.

3. FAST BACK PROPAGATION TRAINING TECHNIQUES

It has been noted by researchers that training can be accelerated by
associating a "momentum" with the changes in the weight coefficients. This
allows the direction of change of the weights to cancel where different
patterns direct the weight changes in different directions and reinforce in the
direction of common improvement. 3 This technique reduces the time to train an
XOR from many thousands of iterations down to a few hundred.

This concept can be expanded by forming an analogy to a damped oscillator:

I- 590

V + by + kv = 0

The weight, w, is subject to a damping force, bw proportional to its velocity
and to a restoring (learning) force, kw, proportional to the difference between
the best estimate of the proper weight and the current weight. In order to
average over all the values of a training set (i.e., a low-pass filter), we
must have b < 1/n, where n is the number of distinct patterns in the training
set. b = 1/(2n) is a good choice and agrees well with the observation that
retaining 90 percent of the old momentum helps to efficiently train an XOR gate
(n . 4). The restoring force, kw, should be set to be slightly higher than
critical damping, k = (b/2) 2 , for fastest convergence. Using this technique it
has been possible to reduce the time to train an XOR down to as little as 74
training set iterations. This compares favorably with much more computation-
ally expensive schemes such as quasi-Newton methods. 4

4. EXAMPLE PROBLEM

A simple trial was conducted of these algorithms by growing a neural net
to map the digits 0 through 9 as described by the seven segment calculator
display to the binary representatioh~s of the numbers (Figure 1). A simple
FORTRAN neural net code was written for the test, using fast back propagation
and computing the importance and effectiveness of the synaptic links. After
every 50 iterations of the training set, the state of the ntt was investigated
and neurons and synaptic links were added or deleted based on the importance,
effectiveness, and trauma of the alterations.

The simulation was started with no hidden units and the input and outputs
fully connected. The simulation ended with a fully trained four layer neural
net with 7 hidden units and 73 synaptic links, as shown in Figure 2. The
second layer grew first, then the third. If this layer by layer growth proves
to be the rule, it may imply easier training for multilayer nets, as the layer
nearest the outputs trains fastest. The system converged to a global error of
below 0.01 after a total of 604 iterations of the training set.

1 1.

2 1 2 0 80 8 9 10 11
4 3 0 9•1-- 4 * -BNN 10"

5j 6 5*51 6 5 11e 8's 4's 2's l's

7 70

CALCULATOR INPUT OUTPUT BINARY
DIGIT PATTERN PATTERN REPRESENTATION

B-1922

Figure 1. The Seven Lines Used to Represent a Digit on a Hand Calculator
Are Used as Inputs to the Net Which Produces the Binary
Representation of That Number

1- 591

Q o

INPUT FIRST SECOND OUTPUT
LAYER HIDDEN HIDDEN LAYER

LAYER LAYER

8-1923

Figure 2. Final Net Configuration. Neuron numbers are assigned in
order of their creation.

A fully connected three layer net with 7 hidden neurons and 105 synaptic
links was simulated for comparison. It converged to the same level of error in
490 iterations of the training set. The total computational work was slightly
less for the growing net, as it had fewer connections, particularly in the
early stages of the simulation.

5. CONCLUSIONS

Automatic evolution of neural nets based on synapse and neuron effective-
ness and importance is practical. It allows easy generation of optimized
multilayer back propagation feed-forward networks.

6. REFERENCES

1. L.P.J. Weelenturf, "An Automate-Theoretical Approach to Developing
Learning Neural Networks," Cybernetics and Systems, Vol. 12, 1981,
p. 179-202.

2. M.F. Tenorio and U.T. Lee, "Self Organizing Neural Networks for the Identi-
fication Problem," Neural Information Processing Systems, 1988, p. 57-64.

3. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning Internal Repre-
sentations by Error Propagation," in Parallel Distributed Processing, Vol.
I, p. 318-362, ed. by D.E. Rumeihart, J.L. McClelland, MIT Press, 1986.

4. R.L. Watrous, "Learning Algorithms for Connectionist Networks: Applied
Gradient Methods for Nonlinear Optimization," IEEE Firs.. International
Conference of Neural Networks, Vol. II, p. 619-627, San Diego,
21-24 June 1987, ed. by. M. Caudill, C. Butler.

1- 592

® ®-

Optimization Methods for
Back-propagation: Automatic Parameter

Tuning and Faster Convergence.

Roberto Battiti
Computation and Neural Systems Dept.,
158-79 California Institute of Technology

Pasadena CA 91125
Computer address: robsrtohanlst. caltech. .du

Abstract

Standard back-propagation learning (BP) is known to have slow convergence properties. Furthermore
no general prescription is given for selecting the appropriate learning rate, so success is dependent on a trial
and error process. In this work a well known optimization technique (conjugate gradient with inexact linear

searches) is employed to speed up convergence and to select parameters. The strict locality requirement
is relaxed but parallelism of computation is maintained, allowing efficient use of concurrent computation.
While requiring only limited changes to BP, this method yields a speed-up of one or two orders of magnitude
for medium-size networks.

Comparisons are done with BP using optimal parameters and with a version of BP employing learning
rate adaptation. This last method is in itself interesting, since it converges in a number of iterations close
to that of optimized BP, with no need for parameter optimization.

1 Introduction.

In back-propagation learning (see [6]) the search direction d, is given by the negative gradient of the energy,
while the step along this direction is proportional to d, with a fixed constant c chosen by the user (learning
rate), as follows:

d. = -VE(w.) (1)

wn+l = wn + (dn (2)

Now, it is well known from the optimization literature that pure gradient descent methods tend to be
very inefficient [3]. A case in which this happens is when "the search space contains long ravines that are
characterized by sharp curvature across the ravine and a gently sloping floor" [6]. The situation can be
ameliorated in part modifying the search direction with the introduction of a momentum term a, leading
to the following rule:

d, = -VE(w,,) + (-) A w,-! (3)

A recent overview of other heuristics employed to accelerate back-propagation has been presented in [5].
Unfortunately up to now there are no good general prescriptions for selecting the parameters defining the
optimization strategy (like or c). It is usually left to the user to find a good or optimal combination of
these parameters that leads to avoidance of local minima and fast convergence times. This process of meta-
oplimtization (optimization of the optimization method) leads in general to a sizeable waste of computational
resources.

1I- 593

/

Thle focus or this work has been on transferring some meta-optimization techniques usually left to the user
to the learning algorithm itself. Since this involves measuring optimization performance and correcting some
parameters while the optimization algorithm is running, some global information is required. Parallelism of
computation is nonetheless maintained, resulting in efficiency close to 100% when the algorithm runs on a
parallel computer.

It all cases the "standard" back-propagation algorithm is used to find the values of the energy and the
negative gradient for a given configuration. The differences are in the definition of the search direction
and/or in the selection of a step size along the selected direction.

In the first method proposed the search direction remains equal to the negative gradient but the step
size is adapted during the computation. In the second one both the search direction and the step size are
changed in a suboptimal but apparently very efficient way.

In both cases the network is updated only after the entire set of patterns to be learned has been presented
to it.

2 The "bold driver" method (BD).

This strategy has been suggested independently in [9] and is here summarized for convenience before using
it in the test problems. The proposed heuristic is to start with a given learning rate and to monitor the
value of the energy function E(w,) after each learning cycle. If E decreases, the learning rate is increased
by a factor p. Vice versa if E increases, this is taken as an indication that the step made was too long, the
learning rate is decreased by a factor o, the last change is cancelled and a new trial is done. The process of
reduction is repeated until a step that decreases the energy value is found.

ileuristically, p has to be close to unity (say p ; 1.1) in order to avoid frequent "accidents", because the
ýcomipitation done in the list back-propagation step is wasted in these cases. Regarding the parameter 0 a
choice of o - 0.5 can be justified with the reason that if the local "ravine" in the search space is symmetric
on both sides this will bring the configuration of the weights close to the bottom of the valley.

The performance of this apparently "quick and dirty" method is close to and usually better than that
obtainable by optimizing a learning rate that is to remain fixed during the procedure.

3 Conjugate gradient with inexact linear searches (CG).
Let's define the following vectors: gn = VE(wn), pn = w. - w.-I and yn = gn - g.-I.

Shanno ([7]) reviews several conjugate gradient methods for function minimization and suggests one
method that "substantially outperforms known conjugate gradient methods on a wide class of problems".
In the suggested strategy the search direction for the n'th iteration is defined as'

d, = -gn + Anpn + Bny, (4)

where the coefficients An and B, are combinations of scalar products of the vectors defined at the beginning
of this section, as follows:

An (I (1+ yn'* Yn) pn'g + Yn'gn (5)
Pn "Yn / P yn Pn Yn

B_ = p "g' (6)
Pt, Yn

Every N steps (N being the number of weights in the network) the search is restarted in the direction of
the negative gradient

lCorrectioai of the search direction based on previous steps is in part reminiscent of the use of a momenentum term introduced

in 161, with the added feature that a definite prescription is given for the choice of the various factors.

1- 594

Successive approximations to the minimizer w* of E(w) are generated using one-dimensional minimiza-
tion along the search direction:

e, = min E(w,-I + e d.) (7)

w.+ = w,, + fn di (8)
The one-dimensional minimization used in this work is based on quadratic interpolation and tuned to back-
propagation where in a single step both the energy value and the negative gradient can be efficiently obtained.
A small number of energy evaluations is sufficient. Details on this step are contained in [1].

Two example problems and the obtained results are described in the two following sections. A similar
optimization approach, using Polak-Ribiere optimization, is presented in [4]. They also obtain a sizeable
speed-up with respect to standard back-propagation, although they do not optimize its parameters for the
comparison.

4 Test: the parity function.

Recently Tesauro and Janssens [8] measured optimal averaging training times and optimal parameters set-
tings for standard back-propagation with momentum term. In order to benchmark the two proposed meth-
ods, the same network is used (n input units, 2n hidden units, one output).

The results of 100 simulations for each problem show first that back-propagation with adaptive learning
rate produces results that are close to those obtained by optimizing parameters in back-propagation with
fixed learning rate, second that the inexact conjugate gradient method brings a sizable speedup on both
previous methods. Results are in table 1. Since the number of local minima is small in this case, only data
regarding correct convergence are shown.

(patterns] BP BD CG speedu, (,D/C()

av. cycles (st.dev.) av. cycles (st.dev.) av. cycles (st.dev.)
2 24 (N/A) 46(11) 16(8) 2.8
3 33 (N/A) 57(17) 22 (10) 2.6
4 75 (N/A) 137(57) 68(58) 2.0
5 130 (N/A) 213 (115) 93(69) 2.3
6 310 (N A) 616(835) 199(127) 3.0
7 800 (N/A) 875 (359) 371 (300) 2.3
- 8 2000 (N/A) 4310 (3088) 700 (368) 6.1

Table 1: Results for parity problem.

5 Test: the dichotomy problem.

This problem consists in classifying a set of randomly generated patterns in two classes. It has been demon-
strated in [2] that an arbitrary dichotomy for any set of N points in general position in d dimensions can
be implemented with a network with one hidden layer containing [NId] neurons. In this test the pattern
coordinates are random values belonging to the [0-1] interval.

A dichotomy problem is defined by the number of patterns generated. The dimension of the space and
the number of inputs is two, the number of middle-layer units is rN/2] by the above criterion and one output
unit is responsible for the classification.

Simulation runs have been made starting from small random weights, with maximum size r equal to 0.1.
Correct performance is defined as coming within a margin of 0.1 of the correct answer.

'l'h- capability of the network does not avoid the problem of local ininima. In fact the re.sults show that
their number is increasing as a function of the dimension of the search space (i.e. the number of weights
in the network). Average results for different test runs (the random number seed is changed) are given in
table 2. Cases for correct solutions or local minima are shown separately.

1- 595

I pattrrns I BD cc I speedup (H[)/CG)

6 cases: av. cycles (3t.dev.) cases: av. cycles (st.dev.)
correct 124: IG40 (1458) 115: 44 (56) 23.6
loc.iin. 4: 9032 (10403) 13: 49 (74)
!o

correct 104: 5044 (6870) 90: 204 (368) 24.7
Ioc.min. 24: 3923 (4914) 38: 404 (1005) ,
16
correct 106: 1324,5 (10572) 94: 29,5 (513) 44.8

loc.mnn. 22: 14116 (11960) 34: 755 (1605)
20
correct 111: 23293 (16792) 87: 3o (433) 61.3
oc.,min. 17: 41000 (28583) 41: 1632 (3021)

correct 44: 46265 (20761) 36: 710 (418) 65.1
oc.xmn. 20: 59843 (16555) 28: 180O (1300)

correct 4: 157296 (36837) 13: 1347 (600) 116.7
loc.mdn. 4: 211292 (59424) 51: 4307 (2159)

100
correct 0: 0: N/A
Ioc.mjn. 8: 1435950 (560974) 64: 12645 (4161).

Table 2: Results for dichotomy problem.

Acknowledgments.

Work supported in part by DOE grant DE-FG-03-85ER25009, the National Science Foundation with grant
IST-8700064 and by IBM.

References

[1] R. Battiti, "Optimization Methods for Back-propagation: Automatic Parameter Tuning and Faster
Convergence", Concurrent Computation Tech. Rep. 714-B (Caltech,Pasadena,CA 91125,1989).

[2] E. B. Baum, "On the Capabilities of Multilayer Perceptrons", Journal of Complexity 4 (1988) 193-215.

[3] P. E. Gill, W. Murray and M. If. Wright, Practical Optimization (Academic Press,1981).

[41 A. If. Kramer, A. Sangiovanni-Vicentelli, "Efficient Parallel Learning Algorithms For Neural Net-
works", Advances in Neural Information Processing Systems Vol. 1 75-89 (Morgan Kaufmann, CA,
1988).

[51 R. A. Jacobs, "Increased Rates of Convergence Through Learning Rate Adaptation", Neural Networks
1 (1988) 295-307.

[6] D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Vol. 1: Foundations, (MIT Press,1986).

[7] D. F. Shanno, "Conjugate gradient methods with inexact searches", Mathematics of Operations Re-
search 3 - 3 (1978) 244-256.

[8] G. Tesauro and B. Janssens, "Scaling relationship in back-propagation learning", Complex Systems 2
(1988) 39-44.

[9] T.P. Vogl, J.K. Mangis, A.K. Rigler, W. T. Zink and D. L. Alkon, "Accelerating the Convergence of
the Back-Propagation Method", Biological Cybernetics 59 (1988) 257-263.

I1- 596

The Tempo-Algorithm Learning in a Nea Network with Variable Tme-I layu
Ulrich Bodenhausen, Department of Biophysics,

Philipps-University Marburg, Renthof 7. 3550 Marburg, FRG

Abdtct
"Mhe artificial neural network proposed in this paper is a generalization of the

Rechculation network propoed by Hinton and McClelland (6]. The network contains groups
of m--linea units arranged in a closed loop. The connections between the units of the
gmerallzd network can be adjusted in weight and time-delay by two separate learning
prooedres. The purpose of thin network is content-addressable storage of pattern sequences.
During learning, the "hidden" units learn to detect specific phase differences between the
activations of the "visible" units and vioe versa. Simulations of an asymmetric network show
that the hidden units can learn temporal relationship. between pattern sequences.

L Iroductin
Connectionist networks have become an important approach to artificial pattern

recognition and other applications [I] - (4]. Supervised gradient-descent learning procedures
such as Back-Propagation have been shown to construct interesting internal representations
in "hidden" units that are not part of the input or output of a connectionist network [1], (5].
A criticism of Back-Propagation is that it is neurally implausible because it requires the
units to use different input-output functions for the forward and backward passes. The
Recirculation learning procedure was designed to overcome this criticism (6]. This procedure
adjusts the weights in a network module consisting of two layers of units arranged in a
closed loop. The network can work as a content-addressable memory or an encoder network.
The units of the first layer are called "visible" units. The input vector is the state of the
visible units at t = 0. In the standard Recirculation network the connections have a fixed
time-delay of one; thus, the signal reaches the hidden layer at t = I and is back to the
visible layer at t = 2. The output of the content-addressable memory is the state of the
visible units at this time. The basic idea of the generalization of the Recirculation learning
procedure described in this paper is that the time-delays of the connections can be adjusted
by a separate delay adjusting procedure.

Other time-delay neural networks (TDNN) have been proposed by Tank and Hopfield (7]
and by Waibel et al. E8]. Waibel et al. use a generalization of the Back-Propagation
network for phoneme recognition.

The basic advantage of TDNN is that they can learn the temporal relationships between
patterns (for example: N patterns). Tank and Hopfield and Waibel et al. realize this ability
by N connections with the time-delays 0, .. . N-i between two units. The time-delays of
these networks are fixed. The basic idea of the network proposed in this work is that a
network with less than N connections between two units can learn the relationships between
N patterns, if the time-delays are adjusted by a delay adjusting procedure.

Each hidden unit receives weighted information about the activities of the visible units at
some specific times in the past.That means that the hidden units learn to represent features
that are distributed in time and space.

I - 597

2. The TempoLeuarng Procedure
The Tempo-learning procedure adjusts weights and time-delays in networks of the type

illustrated by Fig I. Each visible unit has one directed connection to every hidden unit and
each hidden unit has one directed connection to every visible unit. With fixed time-delays
of one and no adjustment of the time-delays, the network reduces to the standard
Recirculation network.

AU B 1. pattarn-s~qua', to be learnied

weights

delays
2. Pattmrn-sequuMr, to be learned

2rt output_ ___

LAU The Tampa-Network.

1 B Thin fixrr illustrates the type of pattern-sequences the Tempo-network was tested
with. The network (9 VU, 25 HU) had to learn the word "COST" (consisting of the
patterns "C" at t - 0. "0" at t = 1. "S" at t a 2 and "T" at t - 3) and the word "IS".

The purpose of the generalized network is encoding and content-addressable storage of
pattern-sequences. Each sequence consists of a definite number of frames. For example, the
picture of a letter (see Fig. 1B) or the spectral coefficients of a time-window could be one
frame. The number of units in the visible layer is equal to the number of pixels or the
number of coefficients of one frame. The output of the network starts one timestep after
the input of the last frame.

The activation functions of visible and hidden units are smooth monotonic functions
with bounded deriatives. The logistic function is a very popular possibility.

The conditions under which a Recirculation network approximates gradient descent are [6]:

1. The visible units are linear.
2. The weights are symmetrical (wij = wji for all i. j).
3. The visible units have high regression.

The Tempo-learning procedure requires the same conditions as the Recirculation learning
procedure. "Regression" in a Tempo-Network means that

YI(t) Yi(t - n) * (0 - • Yi(t)

with)X: regression. 0 :c X < I
Yd(t): state of the ith unit at time t

n- number of patterns of the pattern-sequence.

The learning rules for weights and time-delays are the derivations of an extended
error-measure. The behaviour of the network can be described as follows: The hidden units
learn to detect "correlated" activities of the visible units. "Correlated" does not mean that
the hidden units detect phase coincidence. Rather, they detect soecific phase differences
between the activations of the visible units. On the backward paw.. the visible units learn
to detect specific phase differences between the activations of the hidden units. The network
consists of two layers of "adaptive correlators" in the sense described above. Other models
based on correlated activity are (3] and (9).

I- 598

3. Sinulhtilo. wih the Tempo-Network
All results shown in this paper were obtained with an asymmetric network. It was

chosen because a symmetric network is not biologically plausible. Although the visible units
have to be linear to derive the learning rules, a network with uniform units was chosen.
So the visible units use the same non-linearity as the hidden units. Although the network
hba to be time-continous for the derivation of the learning rules of the time-delays, a
time-discrete network has to be simulated on a conventional computer.

Each weight- and time-delay update was performed after each training sequence. All
weights in the network are started at small random values uniformly distributed in the range
-0.5 to +0.5. All time-delays are initialized randomly between 0 and 5. During learning, the
learning rates El (weights) and E2 (time-delays) are constant. After learning, both are set
to zero.

I applied the Tempo-learning procedure to a network with 9 visible units and a variable
number of hidden units. Two-dimensional patterns consisting of 9 pixels were used to show
the performance of the network (Fig IB). Each pixel is assigned to one visible unit. All
pattern-sequences consist of 5 frames. In each case two pattern-sequences were learned.
The examples (Fig. 3A) show that the Tempo-network is able to learn pattern-sequences
and to substitute missing frames of incomplete test-sequences. Fig. 2 shows the distribution
of the time-delays.

A B C
I t'', cmwc~ t iýw t1r). eerwoe t Ionse Lao"/• Cew te t Irs

I t

1 a 3 4 5 - i 6 3 4 S i " -d.Ia6 -

ft 2& Tbe distribution or the time-delay. before learning (A). after the second (B) and
after the sixth delay update (C). C nearly shown the final state. The line with the peak at
a time-delay of 5 represents the aum of the delays of a forward and the appropriate
backward connection (Tji * Tij). The other two lines represent the distribution of the forward
connections Tji and the backward connections Tij, respectively.

3.1 eAin in a Tempo-Network
The reconstruction-error was computed after each learning cycle to show convergence

of tie Tempo-network. The weight and time-delay updates were computed after each training-
case. My investigations concentrated on varying the number of hidden units, the learning
rate of the weights (El) and the learning rate of the time-delays (E2). In each run the
pattern-sequences "COST" and "IS" had to be learned. The main results are:

1. More than 11 hidden units are needed for convergence.

2. The learning rate of the weights can't be chosen independently from the learning
rate of the delays and vice versa. This behaviour can be explained by the interaction
of the weilsht and the delay adjusting procedures. If the weights are changed "slowly",
the delays have to be changed "slowly", too. Otherwise weights or delays are adjusted
"egoistically" and the other variable can't be adjusted.

3. With the right choice of the parameters El, E2 and X, convergence can be achieved
after less than 50 learning cycles (Fig. 3B).

1- 599

A B

Fg 4A. The performance of the network. The previously learned sequences are illustrated
by Pig. 1B.
1F. 4B: The reconstruction-error a. a function of the number of training cycles (El - 1.5.
E2 - 0.7.) - 0.4. 25 hidden units).

4. Couhmi
The network proposed in this work is a new approach to processing of

pattern-sequences. Networks with time-delays have been shown to learn temporal
relationships between patterns (7], (8]. The basic idea of this paper is that the number of
connections in time-delay neural networks can be reduced by the implementation of learning
rules for time-delays. The present realization of this idea (the Tempo-network) is restricted
to one directed connection between each visible unit and each hidden unit and vice versa.
With a sufficient number of hidden units it can learn the temporal relationships between
patterns and work as a content-addressable memory of pattern-sequences.

Although the Tempo-network can work as a content-addressable memory with an
interesting internal representation of the stored information, it caa't work as an encoder
network because the number of hidden units has to exceed the number of visible units. The
number of hidden units needed for convergence can probably be reduced by using another
type of unit (for example non-linear leaky integrators) and/or increasing the number of
connections between the units (two or three instead of one). The type of delay-adjusting
procedure may also be a useful generalization for other networks.

Mcfanc=.:
[1] Rumelhart. D. E. , McClelland. J. L. 1986, "Parallel distributed processing-. Vol. 1 & 2.

MIT-Proes (Cambridge 1986)

(2] Hlnton, G. E. 1987, " Connectionist learning procedures -, Artificial Intelligence

(3] Eckhorn, R.. Reltboeck. H.J., Arndt M.. Dicke. P. 1989, "Feature Linking via Stimulus-
Evoked Oscillations". Proceedings of the UCNN Washington D.C.. 1989, Vol. 1. pp. 723 - 730

(4] Sejnowski, T. J. . Rosenberg, C. R. 1987, 'Parallel networks that learn to pronounce
english text ". Complex Systems, Vol. 1, pp. 145 - 168

(5] Rumelhart. D. E. , Hinton. 0. E. , Williams, R. J. 1986, -Learning representations by
back-propagation", Nature. Vol. 323 (9). pp. 533-536

(6] Hinton, GE., McClelland, J.L. 1987, - Learning Representations By Recirculation ",
Manuscript in preparation. Carnegie Mellon University, Pittsburgh. PA

[7] Tank, D.W.. Hoprield, J.J. 1987, " Neural computation by concentrating information in
time ", Proc. Academy Sci. Apr. 1987, pp. 1896 - 1900

(8] Waibel. A.. Hanazaws. T., Hinton. G. E.. Shikano. K.. Lang. K.J. 1989, - Phoneme
Recognition Using Time-Delay Neural Networks ". IEEE Transactions On Acoustics,
Speech. And Signal Processing, Vol. 37. No. 3

(9] Malsburg. C.v.d.. Bienenstock. E. 1987, " A Neural Network for the Retrieval of
Superimposed Connection Patterns ". Europhysics Letters. 3 (11). pp. 1243 - 1249

-6W00

Stepsize Variation Methods for
Accelerating the Back-Propagation Algorithm

J.R.Chen and P.Mars
School of Engineering and Applied Science

University of Durham, South Road, Durham, DH1 3LE U.K

Abstract:

In this paper we discuss results on improving the convergence speed of the back-propagation algorithm,
and introduce an adaptive stepsize technique and a differential stepsize method to accelerate the conver-
gence speed of th'e back-propagation algorithm. Simulation results are presented which illustrate the improved
convergence.

1.Introduction

The recent revival of research activities in neural networks was significantly influenced by the publication
of [1]. With the learning algorithm called the back error-propagation, it was shown that the Multi Layer
Perceptron (MLP) can perform interesting computations[l]. Unlike the perceptron analysed by Minsky[2]
which can only solve linear separable problems, the MLP , theoretically , can divide the input space into
arbitary shape, provided that there are enough hidden units. Thus MLP methods have been applied to
several complex pattern classification-like problems, such as that reported in [3]. However the main drawback
in applying MLP networks to many real problems is the slow convergence speed of the back-propagation
algorithm.

While the back-propagation algorithm is a kind of gradient descent algorithm, error surfaces for learning
problems frequently possess some geometric properties that makes the algorithm slow to converge. The
stepsize of the algorithm is sensitive to the local shape and curvature of the error surfaces. For example, a
small stepsize will make the algorithm take a very long time to cross a long flat slope. On the other hand,
a large stepsize will cause the iteration process to bounce between the two opposite sides of a valley rather
than following the contour of its bottom. Even if a satisfactory stepsize for one stage of the learning process
is found, this does not ensure it will be appropriate for any other stage of the same learning process. On
the other hand, the premature saturation of the network units also causes problems for the convergence of
the algorithm. Thus in the following we introduce an adaptive stepsize back-propagation algorithm and a
simple method for circumventing the premature saturation.

2.Previous Research

There has been some research on improving the convergence speed of the back-propagation algorithm,
such as that mentioned in [4](5][6]. In [4] the authors suggested Conjugate gradients, Quasi-Newton algorithm
and other more sophisticated algorithms. They are also called second order methods. According to our
knowledge, the convergence speed reported in [1] on the XOR problem is the fastest among the existing
algorithms. However all these algorithms are much more computationally expensive, especially when the
scale of the problem is large, so that in many cases it is impractical to use them. In order to reduce the
computation cost of the second order method, a kind of approximation technique has been introduced into
the Newton's algorithm[5]. The authors used a diagonal matrix to approximate the Hessian matrix. This
makes it possible to derive a back propagation algorithm for the second order derivatives as that for the
first order derivatives. But the applicability of this new algorithm depends on how well the diagonal Hessian
approximation models the true Hessian[5]. Only when the effects of weights on the output are uncoupled
or nearly uncoupled, can the diagonal Hessian represent a good approximation. We have implemented this
Newton-like method in our back-propagation simulation program. At this stage we have not found it to
exhibit any advantage over the ordinary back-propagation algorithm. This may be due to the use of sub-
optimal learning parameters. Just as was mentioned in [5], we found the learning parameters are more
critical in obtaining reasonable behaviour with this Newton-like algorithm than with the back-propagation
algorithm. Another attempt to use a second order method to improve the convergence property of the
back-propagation algorithm was introduced in [6], which is called Quickprop. It uses the difference between
two successive 2 as a measure of the change of curvature and uses this information to change the stepsize
of the algorithm. E is the output error function, and w represent weights. Using this method a significant
improvement on convergence speed has been reported in [6].

In [7] another kind of adaptive stepsize algorithm was introduced. According to this algorithm, if an

1- 601

update of weights results in reduced total error, the stepsize is increased by a factor • > I for the next
iteration. If a step produces a network with a total error more than a few percent above the previous value,
all changes to the weights are rejected, the stepsize is reduced by a factor 0 < 1, the momentum term is set
to zero, and the step is repeated. When a successful step is then taken, the momentum term is reset.

As is well known in adaptive signal processing theory, the direction of the negative gradient vector may
not point directly towards the minimum of the error surface. In adaptive filter theory, this kind of bias can
be measured by the ratio of the maximum eigenvalue and the minimum eigenvalue of the auto-correlation
matrix[8]. Recently an adaptive stepsize algorithm which gives every weight a stepsize which can adapt
separately has been proposed[9]. This is only a rough approximation, as it will be noted that these stepsizes
adapt on the direction of each weight rather than on the eigenvector direction as required[8][9J.

In the back-propagation algorithm, the update of weights can take place after presenting all the train-
ing samples to the network or after every presentation of a training sample, they are called batch mode
back-propagation and online back-propagation respectively. Generally speaking, online back-propagation
algorithms converge faster than the batch mode back-propagation[51[6], and batch mode back-propagation
is more likely to fail to converge on a large training sample set[lO]. The algorithms described above are
all batch mode back-propagation, because for the second order method it can only use batch mode. In the
following we introduce an adaptive stepsize online back-propagation algorithm. It is considered to represent
an advance on existing algorithms.

3.Adaptive Stepsize Back-Propagation

In designing an appropriate algorithm the following factors should be considered. First the momentum
term cannot be set to zero, as the update occurs for every presentation of a new training sample. If the
momentum term is set to zero, there exists a risk of losing past experience. Generally speaking. a large
training sample set requires a large Y7 value (ry is the stepsize for the momentum). This fact has been
confirmed by computer simulation[l 1]. Thus the adaption is restricted to the gradient term. We used the
following form of adaptive stepsize algorithm:

a) = at- 1)(1 - ~)~) (a

M(t) = ulf(t - 1) + u2 AE(t) (1.b)

AE(t) = E(t)- E(t - 1) (1.C)

o(t) is the stepsize for the gradient term in the update formula in the back-propagation algorithm. It is the
stepsize at moment t. E(t) is the summation of squared di:crepencies between the desired output and the
actual output at time t. It can be calculated as following:

N p

E= -0(d ,-o)2 (2)
k=1 i=1

AE(t) is the decrement of the E(t). f(t) is a filtered version of AE(t). Actually (L.b) is a first order low-pass
recursive filter, which can smooth the significant changes in _AE(t), making the algorithm more stable. ul
and u2 are the parameters used to control the adaptation. For small ul and big u 2 , the adaptation is fast,
but it is also more likely to be trapped in oscillation. For big ul and small U2, the adaptation is slow, bit
it is more stable. Thus the parameter selection involves a trade off. In our simulation, we used ul = 0.9
and u2 = 0.3. The term (1 - f(t) ,E,'/7) also controls the adaptation of the stepsize. If f(t) is positive,
that means the tendency of E(t) in the near past is to increase, so 1 - f(t) V/I 7 jt < 1, the stepsize will be
decreased. A similar analysis shows that if the tendency of E(t) is to decrease, the stepsize will be increased.
When the E(t) is very small, that is the network has almost learned, the adaption will be very weak, which
stablizes the algorithm. The square root is used as compensation, it can amplify the small E(t) to avoid the
premature termination of adaptation.

We now present some simulation results to show the advantage of the adaptive step size algorithm. In
the diagrams shown, the E defined in (2) are plotted as a function of iteration times for different learning
problems. They are called learning curves, and can be used to evaluate the convergence property of the
learning algorithm. Their maximum are normalized to 1. In Fig-I we show comparative simulation results
of the non-adaptive back-propagation algorithm and the adaptive algorithm for the 4-4-1 parity problem. It
is clear the adaptive stepsize has improved the convergence speed, just as we expected. In our simulation we

1- 602

find that the improvement on the complex problem are more impressive than that on simple problem. The
reason may be that since adaptation is a dynamic process, it needs a finite time to be effective. For simple
problems, the learning process is very short, the adaptation process has not sufficient time to play its role.

hus there is only a small effect of adaption on simple learning problems.

4.Differential Stepsize Back-Propagation

Although the adaptive stepsize back-propagation algorithm has improved the learning speed to some
degree, it cannot cope with the premature saturation of the network units. We have noted in our simulations
that MLP neural nets are often trapped in a very flat valley or so called local minima, in which area the
convergence speed is very slow which corresponds to the flat line intervals on the learning curves of Fig-i.
This cannot be solved by an adaptive stepsize technique, because the reason for this phenomenon is that
the absolute value of weights are growing so fast as to make the units, especially hidden units, prematurely
saturated. There is a term like s(1-s) in the update formula for the back-propagation algorithm, in which
s is the output state of the unit. It is quite clear that if s is close to 1 or 0, whichever output is desirable,
almost no update will be passed backward through that unit. This kind of phenomenon is also known as

the flat spot[6]. In (6] the author suggested to change the sigmoid-prime function s(1-s) to s(l-s)+0.1, so it
can avoid the flat spot. But according to our simulations, this change often causes the weights to grow so
fast as to lead to floating point overflow on the digital computer. Although some weight-decay term may
be used to counteract this[6], it makes the algorithm more complex. We have used a very simple method to
cope with the flat spot.

A straight forward idea to circumvent the flat spot is to remove the term s(l-s) from the update formula
for the output layer, and set the stepsize for the update of weights between the hidden layer and the input
layer smaller than that for the weights between the upper layers. We denote the stepsize for the update
of weights between the output layer and the hidden layer as a 2, and the stepsize for the update of weights
between the hidden layer and the input layer as or, then a 2 > al. We call this the differential stepsize
back-propagation algorithm(DSBP). In our simulation, we used a, = 0.1a2. The simulation results are
shown in Fig-2, and it is very clear the convergence speed is improved considerably.

In [6] the Quickprop algorithm was claimed to be the fastest learning algorithm among the existing
algorithms. In order to compare our DSBP with the Quickprop, we have run 30 simulation trials on the
10-5-10 encoder problem. The termination condition for the simulation is that the discrepancy between
the desired output and the actual output for every output unit and every training sample is less than 0.1.
The average training time for this problem by DSBP is 23.5, with a standard derivation of 3.27. This is
only marginally slower than the Quickprop algorithm, for which the average training time is 22.1. However
although the Quickprop plus a hyperbolic arctan error function algorithm can reach the same solution
with an average training time of 14.01, it is much more complex than DSBP, and a weight-decay term is
needed. The results for the simple DSBP algorithm represent a considerable improvement on the standard
back-propagation algorithm, which gave an average training time of 129 iteiations.

5.Conclusion

From the above discussion, it is clear that the adaptive stepsize technique can improve the convergence
speed of the back-propagation algorithm. It is obvious that the degree of improvement for a complex learning
problem is greater than that for simple problems. We consider that the potential of the adaptive stepsize
technique lies in the area of real large scale application problems, such as Net-Talk[31, in which the training
sample set is very big, and the training process may last for a few days. From the simulation results shown
above, we can also conclude that the DSBP method we used to circumvent the premature saturation or flat
spot is effective. It is also surprising that such a small change to the algorithm can produce such a significant
improvement, and confirms the importance of concentrating on a theoretical understanding of the dynamics
of the back-propagation algorithm.

References

[1] David E.Rumelhart, James L.McClelland, Parallel Distributed Processing Vol-I The MIT Press 1987

[2] Marvin L.Minsky, Seymour A.Papert, Perceptrons Expanded Edition The MIT Press 1988

[3] T.J.Sejnowski, C.R.Rosenberg, Parallel Networks that Learn to Pronounce English Teri Complex System
1 pp 14 5- 16 8 1987

I- 603

[4] A.R.WVebb, David Lowe, M.D.Bedworth, A Comparison of Nonlinear Optimisation Strategies for Feed.d-
Forward Adaptive Layered Network Royal Signals and Radar Establishment Memorandum 4157 1988

(5] Sue Becker, Yann le Cun, Improving the Convergence of Back-Propagation Learning with Second Order
Methods Proc 1988 Summer School on Connectionist Model, Carnege-mellon Univ, pp 29-37

(61 Scott E.Fahlman, Fast-Learning Variations on Back-Propagation : An Empirical Study Proc 1988 Sum-
mer School on Connectionist Model, Carnege-Mellon Univ, pp 38-51

(7] T.P:Vogl, J.K.Mangis, A.K.Rigler, W.T.Zink and D.L.Alkon, Accelerating the Convergence of the Back.
Propagation Method Biological Cybernetics vol-59 pp 25 7- 263 1988

[8] S.Haykin, Adaptive Filter Theory Englewood Cliffs, NJ, Prentice-Hall 19$6

[9] Robert A.Jacobs, Increased Rates of Convergence Through Learning Rate Adaptation Neural Network
vol-I ppl95-307 1988

[10] P.J.Lloyd, Guidlines for Implementing Problems on a Multi.layer Perceptron Network
RIPRREP/1000/27/88

[fil G.Tesauro and B.Janssens, Scaling Relationships in Back Propagation Learning Complex System vol-2
No.1 pp38-44 1988

at

a~, a,,

Na no a W0 B P Sa . % al, .. %

Learning curves for the 4-4-1 parity Learning curves of the 10-5-10
problem. Broken line stands for the learn- encoder problem. Solid line stands for
ing curve of non-adaptive algorithm. The the learning curve of the differential step-
initial random value of weights are within size b;ack propagation algorithm(DSBP).
the range(-0.5, 0.5), w-seed=5697, The initial random value of weights are
th-seed=8-161, a = 0.4, q = 0.9. within the range(-l, 1), w-seed=4581, th-

swwd=S18953, o = 0.5, q = 0.9. But for
the DSBP a1 = 0.06, a, = 0.6.

1-604

An Accelerated Learning Method with Backpropagation

Sung-Bae Cho and Jin H. Kim
Computer Science Department

Korea Advanced Institute of Science and Technology
P.O.Box 150, Cheongryang, Seoul 130-650, Korea

sbcho@csd.kaist.ac.kr (Internet)

ABSTRACT : Backpropagation is the most widely used learning technique of neural
network because of its simplicity and robustness. The slowness of its learning,
however, is the major obstacle for its application to real-world problems.

In this paper, an accelerated learning method which is based on the iteration for
solving nonlinear optimization problems is proposed. This technique not only
accelerates the rate of convergence, but also induces convergence in some cases if the
iteration diverges. Experimental results are evaluated and its superiority relative to other
methods is discussed.

I. Introduction
The learning of neural networks is the systematic adjustment of connection weights so that the

output of the network approximates the desired output. This process can be formulated as a
nonlinear optimization since the response computed by neural network is typically a nonlinear
function of the connection weights [7,8]. In recent years, backpropagation algorithm has appeared
as one of the most efficient learning procedures for multi-layer neural networks. The main reason
of the success is on its simplicity. Backpropagation learning algorithm which is basically a gradient
descent search method, however, is too slow to apply for the real-world problems.

Researchers have tried several different approaches to speed up the convergence of
backpropagation learning. One approach is to use more elaborate search methods. Most of these are
variations of Newton's method, and require the computation, or approximation of second partial
derivatives [4,5,6]. Others have tried a systematic, empirical study of learning speed in the
backpropagation algorithm from finding the heuristics for achieving faster rate of convergence
[2,3]. Thus, many algorithms that has been proposed for rapid learning use the approximated
high-order derivative of the error function, which provides the information about the shape of the
weight space, and the rate of convergence is dramatically increased. These methods, however,
require much computation, and are inclined not to scale up very well as the problem size increases.
Therefore, it is necessary to develop faster learning methods, which require a moderate amount of
computation and have a good scale-up property.

In this paper, the backpropagation method is reformulated in the context of nonlinear
optimization, and a new accelerated learning technique is proposed. In addition to speed up, it is
capable of producing solutions even in those cases where the iteration of backpropagation may be
divergent. The learning process of this method consists of two stages; acceleration stage and
attention stage. In acceleration stage, early steps of the learning, search process moves the network
quickly across the solution space, and in late attention stage, focuses the search direction slowly
and accurately toward a minimum.

II. Backpropagation Revisited
Neural network can be considered as a mapping between a set of input and a set of output.

Mathematically speaking, a neural network represents a function F that maps I into 0; F:I -> 0, or
Y = F(X) where Y in 0 and X in I. In the backpropagation learning, the mapping relationship is
described by Y = F(X; WMI, WOM) to indicate that F depernds on the values of the weights WMIfor
connections between input and hidden layers, and WOM between hidden and output layers [7].

The function to be solved by backpropagation is similar to that by nonlinear optimization, and
backpropagation, in this sense, is simply considered as an iterative scheme that are performed by
the network itself in order to solve the nonlinear optimization. In general, the iterative methods of
optimization find a desirable direction of search, and then the objective function is minimized along
the direction of search [9]. The goal of it is to find the connection weights (analogous to the
unknown parameters) to minimize the total error function which can be made explicit in terms of

I- 605

the difference between the actual and desired outputs of the network to the set of input terms. The
following table compares the backpropagation approach with the general nonlinear optimization.

Nonlinear
optimization Backpropagation approach

Objective - (2

function [., a.1 ,-, w1. x Jy
Function

to be f(x)= 0 - E(W) = -E(W) = 0
solved

a

Iterative 0. W•(n+1) = W"(n) +11 -nE(w)
formula aut=x= x

w" (a+ D = o W•(n) +r 1-----•n E(W)

III. Accelerated Learning with Aitken's A2 Process
Backpropagation is thought of as an iterative gradient method for solving nonlinear

optimization problems. In optimization problems, the more information about the objective function
yields rapid convergence. The gradient methods, we claim, utilize not sufficient information in
approximating its minimum. The trend of successive gradient vectors may provide information
about the error surface, which is useful for speed up convergence of the searching process. In this
context, we propose an accelerated learning method which is based on a second order gradient
method known as Aitken's A2 process [10].

Let {wn) be a linearly convergent sequence of values converging to some point p; that is, for
en = Wn -p,

--~L = c <1I. (1)

.->- e.. I
To investigate the construction of a sequence fw)-, which converges more rapidly to p, suppose
that the iteration w. = g(wn.1), n=I,2,3,..., satisies

w.•, - p = c(w. - p), (2)
W"2 -p = c(w,., - p); (3) (V., 4. 2) Y=W

and solving equations (2) and (3) for p while
eliminating c leads to

-w w.÷2- 2w. + w.-

(Wn,.I - wn)2 S(W)
W.- n-2- 2,, W.(W.

W"c)

(W") I Y=g(w)

= A2 Wn.! p W. %%.2 Wn

<fig. 1> Graphical representation of repeated substitution
In general, the original assumption (2) will not be true; nevertheless, it is expected that the

sequence (wn}-, defined by
W = o- (wr., - w.) (4.)(w--W1-

Wn+2" 2Wn+1 + w(,

converges more rapidly to p than the original sequence {wn}*. The point w* is a better

I- 606

approximation of p than w. or wn+, is. Graphically, the solution of w = g(w) amounts to the
problem of finding the point of intersection of the curve y = w and y = g(w), and w" is the solution
of the linear interpolant to g(w) at wn, wn, 1. If g(w) is approximately a straight line between wn
and p, then the secant s(w) is a very good approximation of g(w) in that interval; hence the fixed
point we of the secant is a very good approximation of the solution p. In this way, the better
approximation is found in each iteration.

This process, which is called the Aitken's A2 process, accelerates the convergence of any
sequence that is linearly convergent, and gives quadratic convergence without evaluating a
derivative. Moreover, Aitken's A! process not only accelerates convergence but also converts
divergence into convergence in some cases. It is easy to verify that ifwn + lp +... + pn,
then

A2(wn) = (1 - p)-i.
Therefore, the Aitken's A2 process gives immediately the limit of this particular sequence when it
converges and assigns a meaningful value even when it does not.

Since the weight updating formula of the backpropagation algorithm is considered as wn =
g(wn.1) for n=1,2,3,..., the backpropagation using Aitken's A2 process achieves more rapid rate of
convergence in theory. Experiments, however, show the infinite iterations in this method. That is,
after some fast convergence, this method doesn't converge any more. The reason of oscillation is
the overshooting of the minimum point, which is due to the nonlinear convergences of
backpropagation algorithm in some interval.

Gradient descent used for backpropagation algorithm is known that its convergence is linear
[9]. In practice, however, the latter half of the convergence process may be nonlinear according to
the problems, and the necessary condition for Aitken's method may be not satisfied. So does not
operate the straightforward application of the Aitken's method to the backpropagation. In most
problems, however, the early stages of the learning satisfy the condition (1), though their
convergence is even nonlinear, because the backpropagation method initializes its weights very
small.

Therefore, the learning is composed of two parts; acceleration part and attention part. In the
beginning of the learning process which satisfies (1), the Aitken's A2 process with
backpropagation accelerates the rate of convergence, and at the moment of oscillation due to its
violation of (1), the standard backpropagation focuses the search direction slowly and accurately
toward a minimum.

The last point to be considered is how to find the transition point between acceleration process
and attention process. If it requires too much effort, the advantage of acceleration method is
overrided. Fortunately, the oscillation point may be easily found by local computation, which uses
only the ratio of previous and current total.error.

IV. Experiments and Results
The XOR problem [1] which is the most popular benchmark is used for our experiments.

With the 25 trials randomly initialized and terminated when the total error is less than 0.04, the
average trial over all the runs was 334 epochs with standard deviation 148 when the
backpropagation with momentum is used. The proposed method, however, requires 159 average
epochs with standard deviation 48.

Therefore, the new method not only requires less number of iterations than others, but also is
more stable in the sense that the difference between the worst and the best case is small; besides,

three non-convergent cases out of four in the standard backpropagation converge to the solution in
the proposed method. We also compared the proposed method with the backpropagation with 0.1
added sigmoid prime [3]. It turns out that this method is superior to standard backpropagation in
many cases, but somewhat unstable because it has a large difference between the worst and the best
case. <fig. 2> through <fig. 4> shows the shape of convergence in the case of the usual, the best
and the worst, respectively.

V. Concluding Remarks
In this paper, we propose the new speedup method for the learning, which is based on

Aitken's A2 process. Experiment with the XOR problem confirms the improvement of the

I- 607

proposed method.
The simplicity of form and quadratic convergence of the Newton-Raphson method have made

it very popular in the speedup technique of learning, but the need to evaluate a derivative is
sometimes a serious drawback. The proposed method, on the other hand, which avoids the
computation of a second derivative but retains quadratic convergence is therefore very useful in
many cases. In addition, even if the backpropagation does not converge, it converges in some
cases, and generates a search direction more consistently in the direction of the solution.

Cases of 1.200,o0
Max Min Average S.D. oscillation 41. Waadard SP

1,000.0" & 0. 1 addedSP

BP 899 231 333.57 148.45 4 0.000-1.Uf ~s~o

BP 6.oe,.1
SigprLire+o.1 545 191 271.88 109.34 0

~~~1~~*~~ - - -4.o0.-1,

New method 257 61 159.29 48.49 1 2.00.I

".2.71i.20E 1"
0 too 200 3;0 400

0 of epoch

<table 1> the numbr of epochs with 25 trials <fig. 2> # of epoch vs. total aoro (usual case)

1.200-O 1.20**. 0 S• • •a,•m'd 8 0.1 add~ed SP•

1.00 20 40 . 0. 1 1dded0SP 1.000+00 20- 300w mthoJ

9 .4w mew hodeoc

8.000- 1 -0.00-1 -

4fg. 3> *of epoch vs. total enor (best case) <fig. 4> # of epoch vs. total error (wornt case)

References
(1] Ruinelhart, D. E. and McClelland, J. L., Parallel Distributed Processing :Explorations in the Microstructure of

Cognition, NUT Press, 1986.
(2] Jacobs, R. A., "Increased Rates of Convergence Through Learning Rate Adaptaion," Neural Networks, Vol. 1,

pp. 295 - 307, 1988.
[3] Fahlman, S. E., "An Empirical Study of Learning Speed in Back-Propagation Networks,* Technical Report

CMU-CS-88162, June 1988.
(41 Parker, D. B., "Optimal Algorithms for Adaptive Networks :Second Order Backpropagation, Second Order

Direct Propagation, and Second Order Hebbian Learning," Proceedings of the IEEE International Conference on
Neural Networks, Vol. 11, pp. 593 - 600, 1987.

[5] Parker, D. B., "A comparison of algorithms for neuron-like cell," Neural Networks for Computing, pp. 327 -

332, 1986.
[6] Becker, S. and le Cun, Y., "Improving the Convergence of BackTPropagaton Learning with Second Order

Methods," Proceedings of the 1988 Connectionist Models Summer School, pp. 29 - 37, 1989.
[7] Angus, J. E., "On the connection between neural network learning and multivariate nonlinear least squares

estimation," Neural Networks, Vol. 1, No. 1. pp.42 -47, January 1989.
[8] Watrous, R. L., "Learning Algorithms for Connectionist Networks : Applied Gradient Methods of Nonlinear

Optimization," Proceedings of the IEEE International Conference on Neural Networks, Vol. II, pp. 619 - 627,
1987.

[9] Luenberger, D. G., Linear and Nonlinear Programming, Addison Wesley, 1984.
(10] Conte, S. D. and de Boor, C., Elementary Numerical Analysis, 3rd Ed., McGraw.Hill, 1980.

1- 608



ALGEBRAIC ANALYSIS OF NEURAL NETWORKS APPLICATIONS
INDEPENDENT OF GLOBAL NETWORK ARCHITECTURE

William H. Clingman
W.H. Clingman & Co.

700 N. Pearl St., Suite 300
Dallas, Texas 75201

Donald K. Friesen
Department of Computer Science

Texas A & M University
College Station, Texas 77843

ABSTRACT

This paper is an extension of earlier work of the authors on the algebraic analysis of learning paradigms
in neural networks. The technique is to map the stepwise convergence of the neural network toward a
goal into a learning automaton with certain convergence characteristics. Such automata have been
studied by the authors and their algebraic structure analyzed. From this structure, a lower bound can be
assigned to the number of steps in the goal-seeking process. The authors previously reported
applications to a three layer neural network with a back-propagation learning paradigm. In this paper,
these results have been extended to any general purpose network whose training paradigm has certain
local symmetry properties.

INTRODUCTION

The authors have been developing a theory of learning automata that is applicable to studying
goal-seeking systems of many types. The stepwise convergence of such systems to a goal state can be
mapped into training sequences of an appropriate learning automaton. The state transformations of the
automaton that enable the learning process form a semigroup that is characteristic of the automaton.
The authors have derived elsewhere (1,2) relations between the characteristic semigroup structure and
convergent properties of the automaton training sequences. For certain special cases enough information
can be derived about the semigroup to establish lower bounds on learning times. If a real-world
system, such as an artificial neural network, can be mapped into one of these learning automata, then
similar lower bounds would apply to the number of steps required for the system to reach its goal.

Previously the authors applied this theory to a three layer, feed-forward, neural network that is
trained by back-propagation (2). In the present paper, the applications are extended to general purpose
networks, where the global architecture and training paradigm are not specifically defined. The theory is
used to relate the local structure of the network to global, worst case learning times.

CONCEPTS AND DEFINITIONS

A learning automaton is a 5-tuple D=(I,S,h,F,g) where I is a finite set of inputs, S is a set of
states, h:lxS -- > S is the state transition function, F is a family of subsets of S, and g: S --- > F
associates with each state, x, a subset of acceptable states which must include x. Two other functions
are associated with the automaton. These are f: LxS -- > 0 and dz (t)= {f(t,x): x E g(z)} where L
is a set of tests and 0 is a set of test results. L is a subset of I. The function, f, gives the result of
a test and dz gives the subset of acceptable test results if z is the goal state.

A training sequence, T(x,y), for D is a sequence of states ($1,$2, "I Sn) where S1 = x, Sn is
in g(y), and Sj+1 = h(i. S.) for some i. in I. The distance, R(x,y), from x to y is the minimum
number of states for which Ihere exists a training sequence of that length from x to y. The learning
time of D is the maximum value of R(x,y) for x and y in S.

I- 609



A traininf alkorithm for D is a function q. from S onto T, a subset of inputs, such that the
sequence of states (x=S, 5S2,...S,5), where Si., = h(qz (S.), S.), j=1,...,n-1. is a training sequence
T(xz) for all x in S. trainint set for D is a subset, T of inputs such that any function from S
onto T is a training algorithm for any goal state in S. A limited training set for D is a subset, T, of
Inputs such that any function from S onto T is a training algorithm for a specific goal state, z. The
5-tuple Dz(l')= (A1,,S,4, F,g) is a specialization of D if I' is a subset of I, A, is the set of all finite
strings over P, and 4 , X S -- > S, where (Iz(t*, S )=Sn and t = (t1 t, ... tn) E AI, and S.

h(ti. S 1 )if f(ti, i d (ti) and Si = S._ 1 if fft1, Sj._) e d2 (ti). tet A' 10 be the subset
of finite stnngs ovr I" that contain each member of I' at least once. The learning automaton D is

reneral pupose if for any z and I', any subset of A', is a limited training set for Dz(l') with goal z.
The following theorem has been established previously by the authors and is the basis for

applications in this paper.

MAIN THEOREM

If D=(I, S, h, F,g) is a general purpose learning automaton and f(tj, h(t.,S1 )Jfqti, h(tiS 2 )1 iff
f4tiS 1]=qtt,S 2I where Ni is the number of values of fit1 , s] for s e n ý equals ýhe number of
inputs in I, then the characteristic semigroup of D is a finite group, G, with the following structure:

1. If Gx is the subgroup that leaves an initial state x invariant then G=[QI"Q2 " .. QM] . GxM
where Q. is homomorphic to the cyclic group CN, and Q CN if GX is trivial.

If G is commutative then G = [CNI x CN X .7XCNMI.

APPLICATION TO GENERAL NETWORKS

The first step will be to make a discrete approximation to the neural network training paradigm.
Within this approximation network training sequences map into training sequences of an associated finite
learning automaton. The second step will be to relate the learning time of the latter to its local
structure.

Let S" = the complete set of values for all weights in the network. Let I' = a finite set of
training inputs. Let Z = the set of all integers. Assume that in a discrete approximation to the
training paradigm there exists an h' : Z x I' X S" --- > S" which is a one-to-one mapping of
S" onto S" for each member of (Z x I') and such that if t is a training input and if the network is
in state r, the next state is Igiven by h.[tm, ,rj where m is an integer. In this notation h'[tJ , r I =
h'It, h'[tJ-1 , r 11 and h'[t- , r I = h - I t,r 1. One can think of h' as providing a set of
infinitesimal or incremental transformations out of which all others can be generated to a first
approximation.

Now consider an initial state, X0 , for the network. Let S' = the set cf all states generated
from X. by successive application of h'. Let S be a finite subset of S'. We will now define a finite
learning automaton, D={I,Sh,F,g}, into which can be mapped network training sequences that remain in
S. In applying the theory the subset S is chosen so as to include those network training sequences that
one wishes to study.
If I' = (tl, t2 .. ,tM) then let 1 = (tl,t2 , ..tM ,tM+1 ..t2M) where t;+M is defined as follows:
h'(t.+M, x) =h'(t.- 1, x) for all x in S'.

'"Now consider the set h'(t.,5) = V(t.) and t. F I. Since for all t. in I, h' (t1,x) is an invertible

transformation of S' , IV(tj)I = 191. Also tV(tM ) - S = IS - V(tj)I . Let B. be a one-to-one map
from V(t.) onto S that leaves (V(t 1 ) n s) invariant and if x E (V(t-)-S) then •i [h' (ti,x)] = x. Let
h: I X 9 -- > S be defined as h (t., x) = B.[h' (t%, x)] for x in 5 and t: in I. The transformations
defined by h are invertible transformations of Si that 1 ave the property that if y = h (ti, x) and x and
y are in S then y = h (tj, x).

Then D is a finite learning automaton. The characteristic semigroup generated by the elements
of I is a finite group determined by h. Let Q be the maximum order for the elements in I.

It is assumed that between any yo and Ym in S the network has a training sequence generated
by h and within S. Let L(yo,ym) equal the minimum length of all such sequences. Then Network
Training Time over S is the maximum value of L(xy), as x and y range over 5, divided by Q. The

1- 610



factor Q is introduced because in using h' to train the network instead of h many steps, up to Q, are
combined into one. There is then a corresponding sequence in D of no greater length. Let LT (D) be
the learning time of D . Then LT (D) .< Q * [Network training time over S)

It is desirable for the network to be general purpose. The only constraint is that the training
sequences are to lie within S. (1) Starting with any initial state , x, in S (2) any subset T of training
inputs is selected and (3) any desired outputs for these are selected. Let g'T (z) be a set of states in
S and including z which has these desired outputs and let dz (ti) be a set of desired outputs for ti in
T. It is further assumed that (4) the order of presentation of the training inputs does not matter as
long as each is presented sufficiently often and t. is not presented if f(t ,s) E dz (t.) or if h (tjx) J S.
A network is a ffeneral Purpose network over Si under these four conditions a goai state within g'T(z)
Is reached in a finite number of steps.

The network is general purpose over S iff D is a general purpose learning automaton. This
results from a one-to-one correspondence of training sequences between the network anif D.
Conditions (1), (2) and (4) for the network are equivalent to the requirement that any subset of A T is
a limited training set for Dz (T), a specialization of D. By conditions (2) and (3) z and T may be
chosen arbitrarily.

Next we wish to relate the learning time of D to its local structure. Consider a single, fixed
unit in the network which has inputs, an output, and a subset of the adjustable weights. Let Su be
the set of all values for this subset. Let 9 be the set of all values for the remaining weights. There
is then a mapping, p: S -- > S where p(r) has the same unit weights as r and a similar mapping
A+S --- > S. Each element of '11 x S) defines a transformation of Su. Let lu = (I x t). Then
hu,:l X Su - --- > S is defined as follows: p[h(t,x)J = hu [(t,ý(x)), p(x)]. Let gu (z) = p[g(p- 1

(zO)- If g (y) = {y0, then g4z) = {z}. In order to classify states in Du according to output two
new functions C: S X I -- > 2 and C S X I -- > 2 " are introduced. C (x,t) = {y E S :f(t,y)
- f(t~x)}. Then Cu is defined by p[C xt)y = -c-u p(x), (t,(x))].

Every training sequence in D maps into a training sequence in Du. Also for any two states, x
and y, in Su there will be states x' and y' in S such that p(x') = x and p(y') = y. It is
assumed that the learning time of D is not infinite. Then there will be a training sequence, T(x',y')
in D of finite length. This will map into a training sequence, T(x,y) in Dug of no longer length. Since
x and y were arbitrary it follows that the learning time of Du is less than or equal to that of D. LT
(Du) < LT_(D )

Let Iu equal the set of equivalence classes of members of I that effect the same transformation
of Su. Now consider a special case meeting the two conditions: (1) the projection of each member of
Iu into S equals 9 and (2) Cu[x' ,t'X1 = Cu[x' ,t' 2] if t'1 and t'2 belong to the same equivalence class

of Iu. Condition (1) means that for any state of the global network and any of the possible
transformations of Su there is a global input in I that will effect that transformation. Condition (2)
means that_the output of Du depends only on its state and the ejuivalence class of the input.
Let Du = {lu, Su, hu, Fu, gu}. LT (Du) = LT(Du). We will call a Du meeting conditions (1) and
(2) a local structure. A local structure is characterized by having a local input that determines in
conjunction with its state the output and incremental state transition.

An example of a local structure is an input unit that is an artificial neuron whose single output
is given by .•(t , w) where I is an input vector in TU and - is a weight vector in Su. The incremental
updating of w , effected by h, would also deend only on t and w. An example of the latter would be
a generalized delta rule where A w = m "qT, "rI is a small constant, and m is an integer that depends
on the global network state and input. In this case the incremental transformation would be given byd;, = T

If D is general purpose and Du is a local structure, then Du must be .eneral purpose. This
can be seen as follows. Choose an arbitrary goal z' and arbitrary subset T' of IU. Then there is a z
in S such that p(z) = z'. Each member of T' is a subset of (I x ). Let TuC_ I be the union of
the projection of each of these subsets onto I. Let x' be an arbitrary initial state in D u" Let ( r'°)

to .. and the

21..be a sequence of states in Su, generated by the input sequenc inb tt 2  .) n hrelation r'j - hn (tt'., r'. where r' = x'. Then there will be a corresponding sequence of states
ro, rl, r2 , )in S and a sequence in T, (tV, t2 , ... ) such that p( rj) = r'j, rj = h (tj,rj_,), and

j I- 611



(t ,r ) is in the same equivalence claws of I as t' The existence of (t1 , t2 , A) is insured by
condition (1) in the definition of local structure Aor Du.

Choose the sequence (t'1 , t' 2 1 ... ) so that the elements are from T' in any desired order, the
only constraint being that Cuir'. , t'.] 5 Cu z',t'.]. The sequence (t1 , t2 , ...) will then have the
property that all of its members are from a subset of T and C Jr, 1, týj C [z, t. This follows
from the definition of Cu and condition (2) in the definition of local structure for D.-

Since D is general purpose there will be an mn such that rm = z. Thus r'm = z' and D is
also general purpose. It may be possible to pick a Du that is not a local structure and show directly
that it is general purpose. In any event, it is assumed below that Du is general purpose.

The final step is to impose the further orthogonality condition: Cu (hu (ti, Si), til = C
uh (t.,S2 ), t.J iff C iS. ,ti) = Cu IS., tI1 Then the main theorem can be invoked to deduce the

structure for the characteristic group oa Du. II is a finite set. Let M = Ilul. Let NI equal the
number of different values for Cu (x,ti) as x ranges over Su.

As discussed previously by the authors (2), the group structure of Du in general will contain a
large cyclic group of order (N1 N2  - NM). Let N be the average size of Ni. Then if the training
inputs are repetitivelyLresented to the network in a fixed order, the network will have a worst case

training time of IP N / Q1 where P = IlI
A special case can arise when hu (t1 , hU (t2, x)) = hu(t 2 ,hu (tl, x)) and N - N -

NM=N. Then if the training inputs are repetitively presented to the network in a random order, the
network will have a worst case training time of IP M N/Q] (2).

A second special case is when hu(ti, hu (t2,x)) 4 hu (t2 , h (t1 , x)) and M = 2: Then the
network will have a worst case training time of JP (N1 + MY2) qJ independent of the order of
presentation of training (2).

SUMMARY

These results on the training time for the global network depend only on the presence of the
orthogonality condition in son,e subset of the network. This is provided that the finite approximation to
the network with incremental training is general purpose.

One local structure in which the orthogonality condition is easily satisfied is a single neuron
whose output depends on a linear sum of weights. That is, At *) determines the output, where 0 is
the weight vector and 1 is the local input. Let 8.. be the incremental adjustment in wi when the
training input is tj. If the 0.. are constants, it is easy to verify that the orthogonality condition holds
and that the transition function is commutative. This is the case, for example, when a delta rule is
used to modify the weights. Then the first special case discussed above will apply or the worst case
training time will be exponential in M. .b .4

Now assume that 8.. is a function of (t. w W) but that tk •0 is a constant if k i j. In thisS~II
case, the orthogonality condition still holds gut the transition function will be in general non-
commutative. Then the second special case will apply.

REFERENCES

1. Clingman, W. H. and Friesen, D. K., "Aigebraic Analysis of Goal-Seeking Automata," Texas A&M
University Computer Science Department Technical Report, TAMU-89-001, College Station.

2. Clingman, W. H. and Friesen, D. K., "Algebraic Analysis of Goal-Seeking Systems", Texas A&M
University Computer Science Department Technical Report, TAMU-89-002, College Station.

1- 612



Extrapolatory Methods for Speeding Up the BP Algorithm

Hasanat M. Dewan Eduardo D. Sontag
Department of Computer Science SYCON-Center for Systems and Control

Rutgers University Rutgers University
New Brunswick, NJ 08903 New Brunswick, NJ 08903
dewan@paul.rutgers.edu sontag@fermat.rutgers.edu

August 8, 1989

Abstract

We describe a speedup technique that uses extrapolatory methods to predict the weights in a
Neural Network using Back Propagation (BP) learning. The method is based on empirical obser-
vations of the way the weights change as a function of time. We use numerical function fitting
techniques to determine the parameters of an extrapolation function and then use this function to
project weights into the future. Significant computational savings result by using the extrapolated
weights to jump over many iterations of the standard algorithm, achieving comparable performance
with fewer iterations.

1 Introduction

In this note we describe some extrapolation techniques that appear to speed up convergence in back.
propagation (BP). Numerical analysis techniques are often used in order to make BP more efficient than
straightforward gradient descent, and recently it has been proposed that stiff ODE solvers be used in-
stead of discrete approximations [1]. Our remark here is that in addition to these techniques one may be
able to exploit the particular form of the differential equation being solved (or its discretization). More
precisely, if one uses a sigmoidal response r4-! for neurons, then a rough and nonrigorous analysis sug-
gests that weights tend to grow logarithmically after many iterations, while they tend to behave as 1/t
for intermediate values of the number of iterations, t. The logarithmic asymptotic behavior is suggested
by an approximation of the differential equations (2], while the form 1/t is apparent from empirical
observations of the way the weights change as a function of time. We use these observations as a basis
of a speedup technique that uses extrapolatory methods to predict the weights in a network at a future
time, given the weights up to the present. By extrapolating the weights, it is possible to economize on
the iterations required by BP before an acceptable set of weights result. We use the general form

w(t) = a+ bit + clogt

and variants where either b or c are forced to be zero. The parameters are fit via least squares techniques,
and this function is then used to predict future weights. We then feed the projected weights back into
the BP simulator and continue iterating. The phases of extrapolation and iteration are alternated until
a satisfactory set of weights are obtained.

For simplicity, we base our experiments on a standard BP simulator, but the same technique could be
used with any variants such as those using stiff ODE solvers. Although this work is empirical in nature,
the simulation results are very encouraging, frequently affording considerable savings in computation
time.

I- 613



2 Weights as a Temporal Function

If the growth of the weights follow a logarithmic trend, given by the equation wut) a + 4l4st where
a and b are constants and t represents time cr the number of iterations, then for large t the expression
t(w(t + 1) - t(t)) would have to approach a constant since

t(w(t + ) - w(t)) = t( -Wtt) - w t)

(tt+t (tt1) - t t

On the other hand, if the hyperbolic function o(t) = a+ I approximates the weights, then the expression
t2 (w(t + 1) - w(t)) should approach some constant for large t, since

t2 (w(t + 1) - -(t)) = teu(t + 1) - (Z t2 w(t) = t = -b(t+1)-t ( 2-

To verify these possibilities, we set up a 2-2.1 (2 input, 2 hidden, 1 output unit) network to learn the
XOR problem. The BP algorithm was allowed to run for some time after the network classified the four
inputs for XOR correctly. Any output unit is considered to have classified correctly if the desired output
is I and the sctivation is greater than 0.5, or if the desired output is 0 and the activation is less than
0.5. Some typical graphs for the products mentioned above are shown in fig. I as a function of t.

8 trw(t+l)-w(t)i vs t: Wt. HI-12/XOR 3 0 0f^2[w(t+l)-w(t)1 vs t: Wt. HI-12/XOR

~ .. .............. I . .........................

4 . .......................... .+

00 . ................................................ . . 0 0 0

0 5000 0 5000
Iteration t Iteration t

Figure 1: Growth of Weights may be a Log or Combined Hyperbolic-Log Function

It appearm from the graphs in fig. 1 that the product t9w(t+1).t(t)) approaches some constant value
as t becomes large, hence the growth of the weights may indeed be logarithmic. However, the product
t2(w(t+ l)-w(t)) is asymptotically a straight line. Thus, for some constants B and C, tetw(t) = B+Ct.
Dividing by t' and integrating both sides, we get w(t) = A + Blt + Clogt. Thus the weights seem to
follow a combined hyperbolic-logarithmic evolution. Near zero, this is mostly hyperbolic, while for large
t it is logarithmic.

In fig. 2'we show typical weight curves from the XOR example, superposed with the hyperbolic-
logarithmic functions that approximate them. The actual data is shown in solid lines, while the functions
are shown in dashed lines. It is easy to see that the functions approximate the actual weights quite closely.

I- 614



Actual and Estimated H1-10 Actual and Estimated HI-Il
Si Function:'a+bA/+clgt

Actual: solid !
0 Estimate: dashed .. .......0~ ~ ~ ~~~~~ ."E tm t ~ a hd i........- ............... .. ............ .................. i................

"Fut Interval: 200-600

.... ........ .. .................. ............... c u l" s t di
.... ... ... ... ... ... ... ...-2 .... ..... ... unction: a+b/t+cl6gt

Actual: solid

Fit Interval: 150-750
-4 1 , 0-.- - .-"" - .•

0 200 400 600 800 0 200 400 600 800

Iteration t Iteration t

Figure 2: Some Actual and Estimated Weights from Hidden Layer to Input Layer

3 Experiments with Various Networks

3.1 Extrapolation Procedure

Briefly, the extrapolation procedure consists of first obtaining a value t, of t for which a given network
learns a certain problem. This is the 100% learning point, indicated by the fact that all output units
match their desired values according to the following criterion: An output unit is considered to have
classified correctly if the desired output is 1 and the activation is greater than 0.5, or if the desired
output is 0 and the activation is less than 0.5. For our experiments, we obtained t, by averaging over
several runs of training the network in question. However, this gueasing operation can be somewhat
automated by noting that as a rough approximation, t, can be considered to be directly proportional to
the sum of number of input and output units, while it is inversely proportional to the number of hidden
units, and then developing some heuristics based on these observations. It should be mentioned that
wich heuristics can only provide approximate values of t,, and will not perform well for every problem.

After obtaining t,, we set the extrapolation starting point to ta = 0.5t.. We then fit the hyperbolic
function w(t) = a+ b/t to typically 20 iterations of actual weight data starting at t,. Once the constants
are determined, we use the hyperbolic function to extrapolate the weights to t. = 2.0t,. The weights
thus obtained are then fed back into the BP simulator, and it is allowed to run until it maps 100%
correctly. We keep track of the total number of actual simulator iterations. This is denoted by t.. It
is frequently the case that t. < t., indicating computational savings in training the network. The ratio
(t, - t.)/t. is a measure of the improvement obtained.

At this point, the network has learned the training data. However, the normalized error per output
unit may still be quite high. To reduce this error, we perform the following steps repeatedly: the
combined hyperbolic-logarithmic function w(t) = a + b/t + clog t is fit to approximately 20 points of
weight data and the the weights are extrapolated for an aditional interval in the range 2.0t, to 3.0t,. The
weights are then fed back and the simulator restzrted for 0.25t0 iterations, and the process is alternated
until the error per output unit (a measure of convergence) reaches the desired value.

3.2 Test Cases

Our first test case is a 2-2-1 network, learning the Excusive OR function. Tl'e next test case is a 3-3-3
network which maps its binary inputs to their two's complement. The last case is a 3-2-8 network that
learns the 3-to-8 decoding function for binary inputs.

1- 615



4 Summary of Results

The results obtained by following the extrapolation procedure outlined above u applied to the three
tat cases is shown in the two tables below. The first table summarizes for three networks, the percent
improvement in terms of actual iterations of BP that was obtained in mapping inputs to outputs 100%
correctly by using extrapolation. For the same three networks, the second table shows the normalized
error per output unit at the iteration when all outputs were correct (Le at t.), the normalized error at
4 .0t, obtained by extrapolating from t, for an iterval of 3.0t,, and a percent reduction in the normalized
error per output unit.

Network t' t' t*. Improvement
2-2-1 XOR 300 150 162 46

3-3-3 Two's Compl 813 407 647 20
3-2-8 3 to 8 Decoder 1468 734 1221 17

Network Normalized Error Normalized Error X Reduction
per Output Unit per Output Unit in Norm. Error

at t" at 4.0t,
2-2-1 XOR 0.1499 0.0321 78

3-3-3 Two's Compl 0.0293 0.0127 56
3-2-8 3 to 8 Decoder 0.0319 0.0121 61

5 Conclusion

We have shown that extrapolatory techniques may substantially increase the speed of learning and the
speed of convergence in networks using the BP algorithm. This provides motivation for constructing
parametrized BP simulators with integrated ability for extrapolating weights using specified functions
and heuristics. It is observed from our experiments that the particular extrapolation function can affect
the acceleration of learning to a considerable degree. Discovering the extrapolation functions that work
best requires further work.

References

(1] A. J. Owens and D.L. Filkin, Efficient Training of the Back Propagation Network by Solving a
System of Stiff Oridinary Differential Equations; in Proceedings IJCNN, 1919, pp. II37813:7489.

[21 Eduardo D. Sontag, Some Remarks on the Backpropagation Algorithm for Neural Net Learning,
SYCON Report 88-02, Rutgers Center for Systems and Control, Dept. of Mathematics, Rutgers
University, July 198$.

[31 W. M. Kolb, Curve Fitting for Programmable Calculators, Syntec Inc., Bowie, MD 20716.

(41 J. L. McClelland and D. E. Rumelhart, Ezplorations in Parallel Distributed Processing: A Handbook
of Models, Programs, and Ezxerises, MIT Press, 1988.

1- 6"16



Accelerated Back Propagation using Unlearning based on Hebb Rule

MASAFUM HAGIWARA

Dept. of Elec. Eng.
Facul. of Sci. and Tech.

Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama

223 Japan

Ahstnct Accelerated Back Propagation using Unlearning based on Hebb rule (Hu-BP) is proposed.
The concept of "unleaming" is founded on a biological assumption and is used for learning of the
Boltzmann machines. However, the unlearning has not been considered associated with the back
propagation. The proposed Hu-BP is very simple, effective, and that it can be used combined with other
acceleration methods. According to the simulation, the convergence time using the proposed Hu-BP is
reduced at least by two figures compared to the networks using a simple back propagation.

.ntroduction

Back propagation learning algorithm is the most popular learning paradigm, and has been used to
perform a variety of input-output mapping tasks for recognition, generalization, and classification [ 1-4].
However, its high performance results are attained at the expense of training time, which is a major
obstacle for training [5]. So, it is very important to shorten the training time of the back propagation.

There are several ways to accelerate convergence:
(1) Model a steeper error surface without flat spots[51.
(2) Carefully choose the parameters such as the step size, the momentum, and so on [5].
(3) Use a concept of"Artificial selection of hidden units"[6].
(4) Define an appropriate learning strategy[51.
However, methods (I)-(3) are seemed to be rather difficult to optimize theirparameters. Method (4) canbe
used combined with the other methods including the proposed method because it is about learning
strategy.

In this paper, I propose an accelerated Back Propagation algorithm using Unlearning based on
Hebb Rule (Hu-BP). The concept of"unleaming" is founded on a biological assumption and is used for
learning of the Boltzmann machines [ 1 ]. However, the unlearning has not been considered associated with
the back propagation and its easy application to the back propagation tends to cause divergence of the
networks. The proposed method is very simple, effective, and that it can be used combined with other
methods. According to the simulation, the convergence time using the proposed method is reduced at least
by two figures compared to the networks using a simple back propagation.

Following this introduction, the proposed algorithm Hu-BP is explained in Sec.2. In Sec.3,
computer simulation results are shown.

2. Back-propagation algorithm using unlearning based on Hebb rule (Hu-BP)

According to Ref.f 11, Crick and Mitchison have suggested that a form of reverse learning might
occur during REM sleep in mammals. It was based on the assumption that parasitic modes develop in large
networks that hinder the distributed storage and retrieval of information. In learning algorithm of the
Boltzmann machines, positive Hebbian learning occurs in phase(+), and negative one occurs in phase(-).

In the proposed Hu-BP, positive learning corresponds to the error back propagation, and negative
one corresponds to the Hebbian learning.

Now, I derive the Hu-BP algorithm using energy function.
The cost function of the back propagation is defined as

I- 617



Elm)

where, p is an index over case, andjis an index over output units, o is the actual state of an output
unit and t is its desired state.

In the proposed Hu-BP algorithm, an energy function

E2 "- 1; wj1 oo 1 + T ejol (2)

is included in the cost function, where wji is the weight from the i-th to thejj4h unit, Oj is the state of the

fjth unit, and 0j is a threshold. Here, the cost function of the proposed algorithm is defined as

E - q El - Wm) E 2  (3)

where, m is the number of learning sets. The rule for changing weights can be calculated as in Ref.[ 11.

a wjE (4)

Thus we can get

Awj,- q bi ol - PWm oj ol

[ Y y(Wm)- j 1(n0/ 1( (5)

where, rl is a learning constant, 8j is the same parameter used in Ref.[ 11. The first term component in
Eq.(5) corresponds to positive learning, and the second one corresponds to negative learning by Hebbian
learning. y(m) is a decreasing function, because the unlearning component should be decreased as time
increases.

3. Simulation results

In this section, we show computer simulation results to demonstrate the effectiveness of the
proposed Hu-BP algorithm by comparing to the networks using the simple back propagation.

The following simulation conditions are used.
1) Three layer network is used.
2) Momentum a is zero in order to make clear the

performance difference and reduce the influence
by this parameter.(Parameter a is a constant
which determines the effect of past weight B G D
changes on the current direction of movement in A B c D E F G I H i

weight space.) K H D O SP
3) The number of input units is 15.
4) The number of output units is 20, namely 20

patterns which are shown in Figure I are usedfor learning and recognition. Fig.l 20 learing pauems used for simulation.
5) The range of sigmoid function output is

between- l and 1.

1- 618



6) True recognition is regarded as the state where
every sign of each output unit is same to that of
the corresponding desired output.

7) The maximum number of learning sets is
100IM (200000 times lear.,ing in total).

8) The functionY(m) is
:m<30 ± Cony. BP Ref.161 Hu-BP

0.1 Learning times (sets) 3186 444 146
(Improvement ratio) (1.0) (7.2) (21.8)

0.2 Learning times [setsi 1306 247 112
Ic[int(m/1S)]-I :m_30 (Improvementratio) (1.0) (5.3) (11.7)

(6) 0.3 Learning times [setsI >10000 351 134
(Improvement ratio) I() (>2&5) (>74.6)

0.4 Learning times [setsi 6334 716 138
where, m is the number of learning sets (one (Improvement ratio) (1.0 (8.9) (48.0)

learning set is one time learning of each pattern, so it
mears 20 times learning). (a) 20 HIdden units

Table I shows the results of simulations. In
the cases where the conventional back propagation n Conv. BP Ref.[6] Hu-BP
algorithm is used, only half of the trials can be 0.1 Learningtimes (sets) >10000 912 113

converged. On the other hand for the proposed Hu- 0 (Improvement ratio) H-) (0-1.0) (>88.5)
BPeall of the trials can be converged. This fact Learning times (sets) 2257 621 113
BP, ab (Improvement ratio) (1.0) (3.6) (20.0)
means that the Hu-BP algorithm can not only reduce 0.3 Learning times [setsI >10000 1546 125
the learning time but also have an effect of avoiding (Tmovement ratio) ( 2- ('6.5) ('80.0)
local minima. 0. Learning times [sets] '10000 1199 141

It also can be seen that the convergence time 10 1(:.vementrat3) (- (83 (>70.9)
using the Hu-BP is reduced at least by two figures
compared to the networks using the simple back (b) 30 Hidden units
propagation. And it is noteworthy that the variance
of the convergene time by the Hu-BP is very small: Table 1 The times of learning.
all the trials using the Hu-BP are converged within
one hundred and some.

Figures 2 and 3 show the relations between learning times and recognition ratio characteristics,
where 11=0.1 and the numbers of hidden units are 20 and 30, respectively. From these figures we can see
that the recognition ratios of the conventional BP increase very slowly. On the other hand, those of the
proposed Hu-BP are very quick. And they are temporarily decreased at many points by unlearning. The
reason of this phenomenon is that the network causes perturbation to find a global minimum quickly.

100 10 0

8D 8D
60 6Converge 40(3186 [sets])

40 1(146 [sets])

0 0

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Learning times [setsl Learning times [sets]

(a) Hu-BP (pq)osed) (b) conventional BP

Fig.2 Learning times vs. recognition ratio characteristics (20 hidden units, n =0.1 ).

I- 619



100

4C) (113 [setsi)2D
0

0 200D 400D 6000 8000 10000
Learning times [sets)

(a) Hu-BP(Pqoesd)

IOD

OD100

0 2000 4000 6000 8000 10000
Le.aning times [sets]

(b) Conventicmal BP
F'g.3 Lea.ning times vs. recognition ratio cmtaitics (30 hidden unit! -0.1).

4. CMIuowm

Accelerated back propagation using unlearning based on Hebb rule (Hu-BP) has been proposed.
The concept of"unlearning" is founded on a biological assumption and is used for the learning of the
BoitznInn hes. The proposd Hu-BP algorithm utilizing unlearning is very simple and effective.

According to the simulation, the convergence time using the Hu-BP is reduced at least by two
figures compared to the networks using a simple back propagation. And it has an effect of avoiding localminima.The proposed Hu-BP algorithm can be used combined with other acceleration methods.

ACKNOWLEDGEMENT The author would like to thank Prof. Masao Nakagawa of Keio university.

REFERENCES

[11 DE..Rmeait, J M cClelland and the PDP Resea Grch : Go alel Distibuited Processing, MITPress,
1986.

[2] RtP.Goinan and TJ.Sejnowski :"Analysis of lhdden units in a layered network trained to classify so=r
targets", Neural Networks, vol.1, 1, pp.75- 89, 1988.

[31 A.Waibel, Tlnazawa, G.Hinton, KShilmno, and KJIiang: "Phonerne recognitica using time-delay neural
networks", IEEE trans. Accoust., Speech, Signal Processing, vol-37, 3, pp.328-339, March 1989.

[41 D •guym and B.WkIrow ."Mhe tuck badker-upp. an example of self-leaming in neural networks, Proc. of
UCNN'89, HI p.357-363,June 1989.

[5] H.Sawai, A.Waibel, P.Haffner, MAiyatake, and K.Shikno :"Parallelihn, hierarchy, scaling *in ym-dela
neural networks for spotting Japanese phonemnes/CV-syllables", Proc. of UCNN'89, HI p.81-88, June 1 89.

[6] M.Hagiwara and M.Nakagawa"Supervised learning with artificial selection", Proc. UCNN89, II
p.61 1, June 1989.

I - 620



Self-Organizing Autoassociative Dynamic Multiple-Layer Neural Net for the
Decomposition of Repetitive Superimposed Signals

M.H.Hassoun, J.Song, S-M Shen
Department of Electrical and Computer Engineering

A.R.Spitzer

Department of Neurology

Wayne State University, Detroit, Michigan 48202

ABSTRACT
A multi-layer self-organizing neural network-based technique for the automatic identification and extraction of
repetitive superimposed pulses in noisy signals is proposed. No a priori knowledge of the shape or amplitude of the
pulses is assumed. The signal is composed of the superposition of an unknown number of statistically independent
asynchronous pulse trains and noise. The identification of the underlying pulses is accomplished through a novel
unsupervised learning technique based on the back-error propagation learning rule. During the learning phase, a
multiple-layer autoassociative neural network is modified (weight amplitudes and number of neurons) such that a
nominal representation is discovered for each underlying pulse. In a second phase (the retrieval or extraction phase),
direct feedback between input and output is added to the trained network and the resulting dynamic network is used to
map activity segments of the raw signal into their nominal or filtered representations. This is accomplished by
iterating the network until it converges to one of its local minima representing learned pulse shapes.

1. INTRODUCTION
This paper reports on a neural network architecture and an associated learning strategy that combine the

following concepts: back error propagation in multiple-layer neural nets (Amari, 1967; Werbos, 1974; Rumelhart,
"Hinton, & Williams, 1986). self-organization through constrained autoassociative learning (Kuczewsk, Myers, &
Crawford, 1987), generalization through the adaptive generation of hidden-layer bottlenecks (Rumelhart, 1988;
Kruschke, 1988; Chauvin, 1989; Hanson & Pratt, 1989; Mozer & Smolensky, 1989), and concept formation by
means of convergent network dynamics (Amari, 1977; Hopfield, 1982; Hassoun, 1989).

The primary goal of the proposed neural network is the unsupervised recognition and decomposition of signals
with superimposed repetitive pulses, as shown in Figure 1. The network has no a priori knowledge of the shape or
amplitude of the underlying signal pulses. The network only assumes that all pulses to be learned have a
pronounced peak, an estimated pulse duration upper bound, and a repetitive pulse pattern. (Figure 2 shows an
example of three consecutive pulses used in the simulations reported later in this study.) Furthermore, the pulses are
assumed to be asynchronous and nonperiodic. Finally, the diagnosed signal is assumed to last long enough so that a
rich set of isolated and superimposed pulse wavefoims is generated. Physiologic signals (EMG, ECG, EEG, etc.) and
vehicle electronic sensor signals, in the presence of noise and undesired radiation coupling, are examples of the above
signals.

Section 2 presents the proposed neural network architecture. Section 3 discusses the adaptive self-organizing
algorithm employed. In Section 4, the net's learning capability and performance are reported based on a set of
simulations. Conclusions are presented in Section 5.

2. NETWORK ARCHITECTURE
The problem at hand represents a difficult class of problems in signal processing and pattern recognition. This

problem demands several processing stages: locating potential pulse activities within the given signal, discovering
the number of different pulses (classes) present and their underlying nominal shapes (a pulse may be distorted and/or
noisy in addition to being superimposed with other pulses), and using the nominal pulse shapes as templates or
library vectors in order to classify signal activity segments according to some error (or distance) measure. In this
work, we propose a three-layer (two-hidden and one-output layers) self-organizing neural network that is capable of
capturing, representing, classifying, and reconstructing noisy superimposed pulses. No initial pulse representations
are assumed; the proposed network relies only on the repeCt"ve nature of a set of unlabeled signal activities.

Sampled signal segments (activity vectors) of forty samples each are used as inputs to the three-layer network.
Activity vectors are selected such that signal peaks are aligned at the same position within the window of forty

1- 621



samples. Here, we assume that the signal duration covered by the forty activity vector samples represents an upper
bound on all pulse durations present in the raw signal. An unlabeled training set consisting of all activity vectors
with pronounced peaks is constructed. This is achieved by generating one forty-dimensional sampled training vector
for each pronounced peak (peak amplitude exceeding 0.25) in the signal in Figure 1, with the peak amplitude located
at a fixed location within the training vector. Here, prior knowledge about the sharp positive peaks of the underlying
pulses is used effectively in locating and aligning potential pulse occurrence; this in turn reduces the computational
load for shift invariance that would otherwise constrain the learning in the neural network.

4

FIGURE 1. A signal of three superimposed pulse trains. Pulse occurrence is random.

4-- -p
0

.L

1 20 40 to so 100 IM•

FIGURE 2. Three underlying pulse waveforms (pl, p2, and p3) of the signal in Figure 1.

Having identified a suitable training set, we now turn to the required neural network size and architecture. A
multiple-layer neural network with two-hidden layers and one ortput layer is used. The first (from input) and second
hidden layers have dimensions H and J, respectively, and employ neurons with sigmoidal activations operating over
the activity interval [+1,-l]. The output layer has L-=40 neurons with linear activations.

The choice of net architecture is closely related to the nature of the problem at hand. The network is applied in
two phases: a learning/self-organizing phase and a retrieval phase. In the learning phase, activity vectorsare presented
one by one to the network (first interacting with the H-dimensional hidden layer) and a self-organizing learning
strategy is used (this will be described in the next section) in order to capture the shapes of the underlying pulses.
During this phase, the network minimizes its available neurons at the two hidden layers and forms a bottleneck at
the second hidden layer (center layer). According to our training strategy, the neural network self-organizes such that
the first layer acts as a feature discovery layer. The second hidden layer acts as an encoder which generates an efficient
compact code (internal representation). Finally, during this phase, the output layer is constrained in a way such that
an approximate mapping between the internal representation vectors (inside the cube [-l,+ 1lJJ) and the sampled pulse
space R40 is realized; i.e., the output layer is intended to reconstruct pulse waveforms.

In Lhe retrieval phase, all learning is inhibited and the network is used to map training activity-vectors (as well
as signal activity vectors not used during training) into their nominal superposition-filtered pulse waveforms (this is
reminiscent of Amari's concept-forming nets). This is done by utilizing a dynamic architecture consisting of the
trained three-layer net with a direct feedback connection from the output layer to the first layer. An investigation of
the dynamics of the retrieval network reveals that stable internal representations lead to fast convergence to
pulse-shape states having wide basins of attraction. (This will be shown in the simulations of Section 4.) This
translates into having a network that starts with a corrupted (usually due to superposition) activity vector as its
initial state and, later, dynamically converges to the closest pulse-shape state representing an underlying learned pulse
waveform.

3. AN ADAPTIVE SELF-ORGANIZING STRATEGY
How is it possible to self-organize in a multiple-layer net? Kuczewsk, et al. (1987) and others have explored

self-organization in multiple-layer networks through the use of the back-error nronagation (BEP) learning algorithm.

I- 622



Here, a multiple-layer neural network wid, a hidden-layer(s) bottleneck is used in an autoassociative learning mode
employing the BEP algorithm. Input and target vectors are assumed identical (autoassociative learning) and are
presented to the network simultaneously. In this configuration, and assuming an optimal number of hidden neurons,
the network will evolve internal features represented in the middle layer that can be used to reconstruct the original
training patterns.

In the present problem, a similar self-organizing strategy is used. However, a direct application of the BEP
algorithm will fail to discover an internal hidden representation which will generalize from superimposed input
pulses into underlying pulse-shape representations, not to mention the excessive training time of the standerd BEP
algorithm. Another problem with the above self-organizing strategy is the difficulty of estimating the number of
hidden neurons necessary for generalization. This latter problem has been recently addressed by several researchers
(Rumelhart, 1988; Kruschke, 1988; Chauvin, 1989; Hanson & Pratt, 1989; Mozer & Smolensky, 1989) who have
looked at modifying the cost function in the BEP procedure such that the network is constrained to discover a
minimum number of generalizing hidden units. These techniques have used various penalty criteria for the
elimination or suppression of redundant and/or slowly training units; weights (Rumelhart; Hanson & Pratt),
activations (Chauvin), and energy (Mozer & Smolensky) based penalty criteria were employed.

In this work, we propose a BEP-based self-organizing/generalizing training strategy which addresses the above
problems and is well suited for the problem at hand. First, consider the three-layer net signal/weight/error diagram
shown in Figure 3. Here. xk and yk = xk represent the input and output activity vectors, respectively, o represents a
layer's activation vector, and 8k is the familiar back-propagated error vector due to the (xk,yk) training pair. The
indices i, h, j, and I correspond to input, first hidden, second hidden, and output signal components. The weights in
all hidden units are updated according to the original BEP algorithm (with no momentum term): first hidden layer.
Awih = PShXi and second hidden layer:. Awhj = pSjoh, where p = po(Pm)k, 0 < Po <1, Pm very close to but less
than 1, and k is the training pattern number. The local update rule for the output layer weights is given by: Awjl =

PSlOj + Opwjl with P < Po.

• i h- 1..L.2.--.Hn

j. .. l.2Z-
•~1 1. 7= , _, .L

~k k

k k k

FIGURE 3. A three-layer neural network signal, weight, and back-propagated error diagram.

From the above weight update equations, it is seen that two modifications to the BEP algorithm have been
incorporated: exponentially damped learning coefficients and output layer "forgetting" effects. The damping in the
learning coefficient is very crucial in balancing learning against the emphasis of last-learned patterns (which could, in
our problem, be undesirable highly-superimposed activity vectors). It also has the added advantages of learning
"annealing" and allowing an initially relatively large learning coefficient to be used which accelerates the learning
process. On the other hand, the forgetting effects at the output layer are very important in enhancing the learning of
repetitive structured patterns as opposed to superimposed patterns and/or noise. This latter strategy also helps in
realizing a more accurate mapping (reconstruction of pulse-shape patterns) between the second hidden layer and the
output layer. It also has desirable effects on the generalization and self-organization of the hidden layers, indirectly
through the propagation of more accurate Is from the output layer.

The only remaining problem that we have addressed is that of generalization through the dynamic optimization
of hidden layer neurons. Here, we introduce a new strategy for hidden unit elimination based on back-propagated error
magnitude distributions. This strategy allows for the elimination of undesired hidden units according to their history
of error generation. The strategy also allows for unit elimination in networks with multiple hidden layers. More
specifically, it allows for selective hidden layer reduction based on a prior knowledge of the hidden layer
functionality; e.g., in our problem we employ the proposed unit elimination strategy such that both hidden layers are
optimized, with the first layer being less constrained than the second layer, which leads to a gradual bottleneck in
realizing feature extraction/encoder combinations layers. The following is the strategy we have employed for hidden

1- 623



layer size minimization:

L DOvWd e •ral.inng at Inlte grew" o K vectors eack, wih K being 3. Computs tb. mens and oftadelrod de•iatios for tb. KfcIulatlb
a mall fracUtn at tihe ttal training me un. mer lgnsls:

1I. Use lbe .NEalgorimtm as modified above and train the not with te a,. ) for 2nd hidden layer and (p. (F4 for 1st hidden layer

fir, td ofK sample. Set km to K.
4. One amro J (ftran nd bkddem Layer) Is deleted Wr

L2. 11d1i0 all Network weights flied, ceaepale the accumulaled
crew signals for ail bedden lroses ej >J + n.r ad e,> eanu for s L

, /S. O "oner" b (frass lt bidde. laye") bI de.leled

e,= 16 .j l12, .... J for 2nd hidden layer neuronskP4 C, > pm + I'S*H and eh > ews for all i and no deletions amnudea
and in step 4.

•b ; h : 1, 2 ...... H for 1st hidden layer neurons g. After deletions, pdate lbt. etark weights by kaning the presen mt
I 2K of X pattrens. uing the prapased Learning ulguniitmas. Set ko . ka + K.

tp t tba nmt - thle nmber otIraining cyclea met, wt na Go To Z.

The first thing to note about the above redundent-hidden-unit elimination algorithm is the utilization of the
accumulated back-propagated decision error signal 8 over a sample subset of the training set. This differs from
earlier-proposed penalty criteria for hidden-unit elimination. Here, a hidden unit is eliminated based 1) on a short
history of its contribution to the output mapping inconsistencies and 2) on its behavior compared to all other units
in a given hidden layer. Due to the nature of the training activity vectors, the choice of K in step 0 above is flexible.
The larger K is, the more representative is the value of the accumulated error e in step 2. (One extreme is to choose
K = m, the number of training vectors. However, this might not be possible in situations where only a fraction of
the training vectors are available at a time.) The unit elimination recipe is then given in steps 4 and 5. Here, one
unit in a given hidden layer is eliminated, after each K-vector presentation, if and only if it has the largest
accumulated decision error e in that layer and if e exceeds a threshold determined by the distribution (mean and
standard deviation) of all units' accumulated decision errors in that layer and a preset vigilance parameter (the 1.4
value used in the inequality of step 4). The above algorithm is also capable of realizing a gradual bottleneck when
more than one hidden layer is used. This is accomplished according to step 5 above, where unit deletions may only
be performed if no such deletions occur in the next higher level hidden layer. Another factor affecting the size of
lower-level hidden layers is the magnitude of the associated vigilance parameter (set to 1.8 for the first hidden layer in
our simulations). The vigilance value is set larger than that of the next higher-level hidden layer as seen in steps 4
and 5 above. This strategy allows the network to establish the desired cascade of a constrained feature extraction layer
followed by a more constrained encoder layer/botleneck.

4. NETWORK PERFORMANCE AND DISCUSSION
The performance of the above dynamic multiple-layer neural network and its proposed self-organizing training

algorithm is evaluated using simulated signals of superimposed repetitive pulses of various degrees of complexity.
Here, we report on the decomposition of one particular signal which is shown in Figure 1. The signal in Figure 1
represents the first segment of 1800-time units of a simulated 8000 time unit signal. This signal is constructed as
the superposition of three pulse trains. Each pulse train is constructed from one fixed pulse waveform that repeats
with a restricted random frequency. The three pulse waveforms used are labeled pl, p2, and p3 and are shown in
Figure 2. The overall superimposed signal (refered to as the raw signal) of Figure I has a total of 192 pronounced
signal peaks which are used to locate and align the activity-vectors of Section 2. An unlabeled training set of 192
activity-vectors is used in the following simulations. Visual inspection of the training set reveals the presence of 68
clean (nonsuperimposed) pulse waveforms: twenty-four, twenty-two, and nineteen waveforms belonging to pl, p2,
and p3, respectively. Therefore, the training set has about 64% distorted (superimposed) pulse wavcforms, each
involving two or three pulses. It is to be noted here that the visual idcntification of the 68 clean pulses is made easy
because of our prior knowledge of the shapes of the underlying pulses; this prior knowledge is not made available to
the network. The network is supposed to discover these underlying pulse waveforms as part of its learning phase.

The network described in Section 2 is used. This initially had six neurons in the first and second hidden layers,
respectively. An input window size of forty (+1 for bias) is used, with the lcftmost activity-vector peak centered at
the thirteenth input bit. The output layer has forty neurons with linear activations (slope =1). Only feed-next
connections arc allowed during the learning phase, with biases of +1 applied to all units. Initially, all weights arc set
randomly in the interval [+l The BEP-based learning algorithm of Section 3 is used for training the network.

I- 624



The following parameters were used: learning coefficient p = .35(.995)k, number of learning cycles = 5 (a total of
192*5 = 960 presentations), K = 30 (i.e., 192/30 -= 6 training vector subgroups), and output layer weight decay
factor = .05.

During the first cycle in the learning phase, the network eliminatut three units from the second hidden layer,
and thus reduced its neurons to three. In the second learning cycle, only one unit was eliminated from the first
hidden layer. The learning proceeded from the second cycle to the fifth with no further hidden unit elimination.
Learning stopped after the fifth cycle and the trained network was used in the dynamic retrieval phase as described in
Section 2. Here, all 192 training activity vectors are tested and mapped by the trained network into *closest"
underlying representations. Figure 4 (a-h) shows typical instances of pulse identification and reconstruction (the
dashed graph corresponds to the input activity vector and the solid graph corresponds to the retrieved pulse
waveform). In this simulation, the network has discovered four internal representations; three representations
corresponded to the three underlying pulses, respectively, and one representation corresponded to a falsely identified
pulse. In terms of network dynamics, each representation is manifested as a strong stable point in the R4 0

dimensional state-space. We were very impressed by the stability and speed of convergence of the retrieval network.
The above simulation was repeated over thirty times, each time with new weight initialization and/or different
learning parameters and K values (e.g., Po =.15, .3, .4; K = 30,40, 50). In most cases, the network discovered the
five-three hidden layer arrangement and led to network dynamics comparable to the above. In some cases, the network
learned two out of three representations (two pulse representations were merged into one) and one or two additional
false representations (attractors) which attracted less than 10% of the activity-vectors. The network was also able to
generalize and form meaningful internal representations when initialized between five and ten neurons/hidden layer. In
all cases, five learning cycles seemed to be sufficient.

0@
Ii

(a) ( (c) (e) (g)
I,
I,

I I '

I " 1 |

I I I I I

(b) I(d) - ( (I V

FIGURE 4. Typical instances of pulse identification and reconstruction. The dashed graph corresponds to the input
activity-vector and the solid graph corresponds to the retrieved pulse waveform.

The quality of the reconstructed pulse waveforms (see Figure 4) and the classification/decomposition abilities of
the above network are highly dependent on the complexity (degree of superposition of pulses and correlation between
underlying pulse-waveforms) of the raw signal and the way the activity-vectors are represented at the input layer. In
particular, one can easily notice the high degree of correlation between the three pulses of Figure 2, especially when
aligned at their peaks. This alignment is important in the above simulation in order to alleviate difficulties with
shifted signals. However, this same alignment strategy makes the underlying pulse waveforms highly correlated,
which in turn affects the accuracy of the reconstructed pulse waveforms and the ability of the network to generalize.
Despite these negative effects, the proposed network was still able to discover and resolve between all three pulse
waveforms, and give relatively good reconstructions.

I- 625



/

S. ONLUSIO
We have proposed a multiple-layer neural network for the identification and extraction of repetitive

superimposed pulse signals, assuming no a priori knowledge of pulse shapes or repetition frequencies. The proposed
network combines BEP learning, self-organization, constrained generalization, and concept formation processes in
order to discover, decompose, and classify pulse waveforms from a set of unlabeled superimposed activity-vectors. A
new hidden-unit elimination recipe was also provided and was shown to be effective in realizing generalizing
hidden-layer bottlenecks. We have also demonstrated very interesting multiple-layer net dynamicswhich were applied
in superimposed pulse waveform decomposition through the dynamic retrieval of closest pulse shape matches.
Overall, the proposed processing strategy is robust against network and learning parameter initializations. Finally,
the proposed neural net and its associated self-organizing learning strategy can be very easily extended to problems
involving the clustering and identification of unlabeled continuous-valued training vectors representing class features
or actual sampled signals. Such extensions will be the subject of future work.

6. ACKNOWLEDGE

This work was supported in part by a grant from the Whitaker Foundation.

7. REE~RENCES

Amari S. (1967). A theory of adaptive pattern classifiers. IEEE Trans. Elec. Com., EC-16, 279-307.

Amari S., (1977). Neural theory of association and concept formation. BioloRical Cvbernetics, 26, 175-185.

Chauvin, Y. (1989). A back-propagation algorithm with optimal use of hidden units. In: Advances in Neural
Information Processing 1, David S. Touretzky, ed., San Mateo, CA: Morgan Kaufmann, 519-526.

Hanson, S. J. and Pratt, L. Y. (1989). Comparing biases for minimal network construction with
back-propagation. In: Advances in Neural Information Processing 1, David S. Touretzky, ed., San Mateo, CA:
Morgan Kaufmann, 177-185.

Hassoun, M. H. (1989). Dynamic Heteroassociative neural memories. Neural Networks, 3(3).

Hopfield, 1. J. (1982). Neural networks and physical systems with emergent cotlective computational abilities.
Proceedings of the National Academy of Sciences of the U.S.A., 79, 2445-2558.

Kruschke, 1. K. (1989). Creating local and distributed bottlenecks in hidden layers of back-propagation
networks. Proceedings of the 1988 Connectionest Models Summer School, D. Touretzky, G. Hinton, and T.
Sejnowski (eds.), San Mateo, CA: Morgan Kaufmann, 120-126.

Kuczewiski, R. M., Myers, M. H., & Crawford, W. J. (1987). Exploration of backward error propagation as a
self-organizational structure. IEEE First International Conference on Neural Networks, v. IT, 89-95.

Mozer, M. C. and Smolensky, P. (1989). Skeletonization: A technique for trimming the fat from a network
via relevance assessment. In: Advances in Neural Information Processing 1, David S. Touretzky, ed., San
Mateo, CA: Morgan Kaufmann, 107-115.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. Nature, 323, 533-536.

Rumelhart, D. E. (1988). Parallel Distributed Processing. Plenary Session, IEEE International Conference on
Neural Networks.

Werbos P. (1974). Beyond regression: New toolfor prediction and analysis in the behavioral sciences. Ph.D.
thesis. Harvard University.

1- 626



Numerical Analysis and Adaptation Method for Learning Rate of Back Propagation

Junichi Higashino, Bart L. de Greef, Eric H. J. Persoon

Philips Research Laboratories,
P.O.Box 80,000, 5600 JA, Eindhoven, The Netherlands

Abstract: Back Propagation (BP) normally requires two parameters: learning rate it and momentum a. Although
these parameters play a very important role, few systematic selection rules have been reported. The authors have
found two experimental facts. One is that the number of required iterations N is proportional to (l-ct) / q1, and the
other is that it can be normalized in terms of connectivity determined by the number of connections between a layer
and not only its preceding layer but also its successive layer. If they are properly chosen, the number of iterations
can be greatly reduced. A successful adaptation method for determining the learning rate has been obtained.

1. Introduction
Back Propagation (BP) requires a lot of repeated training calculations. In addition, since characteristics of its

algorithm are not well understood, some empirical rules must be incorporated when setting parameters, in particular,
learning rate Tl and momentum ot. Having failed to select these parameters properly, BP requires iterations more than
necessary or even fails to converge. It is therefore essential to clarify the basic properties of BP and to obtain a
systematic rule for adjusting the parameter values, not only to realize a promising method but also to build a large.
scale network for a practical system.

Since BP, including several variants, is basically a gradient method (steepest descent), it needs a step size
or learning rate which can be determined using either fixed or adaptive values. Methods using fixed values were
presented by Rumelhart[l], Sejnowski(2] etc., but no systematic rule for the selection of T1 was given. Methods
using adaptive 11 were developed by Dahl[3], Vogl[4], Jacobs[5] etc. Dahl's method makes use of linear search for qI,
which is a typical one dimensional optimization method, but needs several iterations to determine an optimum T1

value. Methods of Vogl and Jacob, which are empirically derived, update il value without linear search. In addition to
these steepest descent methods, it is also possible to incorporate other mathematical methods. Makram-Ebeid[6]
presented an acceleration method using conjugate gradient method. Parker[7], Watrous[81 and Ricotti(9] introduced
quasi-newton methods. These optimization methods are very powerful to reduce the number of iterations, however, it
does not always imply to save computational time since BP should train a lot of different patterns.

For the practical applications we have studied with much larger scale networks (image recognition) than
usual bench-mark problems such as XOR, we have observed a similar phenomenon to local minima. Errors at the
output layer hardly propagate to the inner layers, when only one q1 value in a network is used. We have found that it
is able to overcome this problem by changing hidden layer's ri value. In order to clarify the role of hidden layer's 71,
we determine some basic properties through numerical simulations. Then we present a practical adaptive method for
the learning rate.

2. Basic Properties of Back Propagation

2.1 Brief Description of BP
A multi-layer network model is designed so that a node belonging to a layer sums up outputs from the

previous layer and propagates this summation to the following layer after applying a sigmoid function. That is, the
output Oj of a node j is given by

1
Oj=f(netj) 1 +Ie'ntj . netj = Zi Wji.O j ( 1j

where Oi is an output value of the previous layer and Oj is a bias value of the node j.
The basic idea of training is to adjust every weight to minimize the energy defined as the summation of squared
output errors between actual output Opj and desired output Tpj, corresponding to an input pattern p. The updating
rule of weights is given by

AWji(n+l) = Ti-Sj-Oi + a.AWji(n) (2)

Sj = (Tpj - Opj)-f '(netj) for the output layer, Sj = 1k 5k'Wkj-f '(netj) for the hidden layers

where 71 and a are parameters called learning rate and momentum, respectively, and n is the number of iterations.
The most important aspect of BP is to be able to modify internal weights using the chain rule.

Present affiliation: Central Research Laboratory, Hitachi, Ltd. Kokubunji, Tokyo 185, Japan.

1- 627

-x



2.2- Network Topology and Input Patterns
We have selected the exclusive-or ("XORn", where n is the number of nodes in the hidden layer. 2-n-I

networks) task for a fully-connected network, and "IMAGE* ("IMAGEnxn". where nxn nodes are arranged in two
dimensional array, and each node in the hidden layer has 5x5 connections to the input layer, IlOx10-nxn-4 networks)
task that classifies simple geometrical figures, such as lines or blocks, for a partially-connected network, which is
especially important for image recognition applications since the number of inputs, or pixels, becomes so large
that it is impractical to connect to every node in a previous layer.

2.3 Relation between Parameters and the Number of Iterations
The relation between q and N (the number of iterations required for convergence) is shown in Figure 1 for

the task XOR2. It should be noted that both axes are logarithmic. Several lines have been plotted in the figure for
different values of a (0.0, 0.2. 0.4, 0.6, 0.8, 0.9, 0.95). In all cases, when 11 is small N is inversely proportional to
q, and when 71 reaches a certain value N becomes a minimum. As 7i further increases, N increases very rapidly. This
relation is quite natural if one accepts for the fact that BP is basically a gradient method in which the number of
steps is inversely proportional to the size of each step. Besides, N is also inversely proportional to 1 / (1 - a), we
can conclude the relation

1-o.

N- -4 (3)
We have confirmed that this relation also satisfies other examples. It is therefore desirable that Tj takes as large a
value as possible within the range in which the gradient approximation is correct, and a is as near to 1 as possible
before instability occurs. As 0.9 is usually used for a, one can expect to get ten times faster convergence than with
a = 0.0.

2.4 Ti in Hidden Layers
We observed the number oi iterations in which Tioutput was a constant and Tihidden was a variable. Figure 2

(XOR) and Figure 3 (IMAGE) show the results. In both cases the relation

N 9 d (4)N 11• hidden

holds. Moreover, it is worth mention;ng that the optimal rlhidden which gives a minimum number of iterations N
depends on the network topology. That is, for XOR2, XOR8 and XOR32 (Troutput = 5.0, 1.25 and 0.3). N reaches a
minimum for q values near 0.3, 2.0 and 30.0 respectively, and for IMAGE2x2, IMAGE3x3, IMAGE5x5 and
IMAGEIOxIO (Tloutput = 2.5, 1.1. 0.4 and 0.1), the optimal Ti values are near 1.0, 10.0. 100.0 and 1000.0.

3 N 3N N
IMAGE5x5

0.0 1,000 XOR2 100 IMAGEIOxIO.
1,000 XOR8

300X 30
300 IMAGE2x2

".9' IMAGE303

0.95 100. ' , ,, _ _,

100 0.1 1.0 10.0 Tihidden 0.1 1.0 10.0 100.0 71hidden

0.3 1.0 3.0 TI Figure 2. Ilhiddcn-N relation, XOR Figure 3. iThiddcn-N relation, IMAGE

Figure 1. il-N relation, XOR2

2.5 Normalized Parameter 71
As we have seen, for IMAGElOxIO, the hidden layer's Ti could be increased up to about 1000.0 without

causing instability. The reason is that Tj of the basic BP equation (2) contains a different dimension than only that of
a coefficient. Here we present a method which dissolves this dimension and normalizes the learning rate. The basic
concept of this method is to normalize 1i depending on the number of node connections. When weights are updated
during the convergence process, the difference change in the summation netj of a nodej becomes

Anetj = £i dWji'Oi = Zi T"'Sj'Oi 2  (5)

where a,= 0 is assumed for simplicity.
Aneti

Ti - (T1  - Op).E 01
2 .f 'net) for the output layer (6)

1- 628



Aneti- 1 k 5k'Wkj'Zj Oi 2 .f '(netj) for the hidden layers.

Equation (6) clearly shows that the value of TI should be changed depending on the number of nodes connected to node
j. In addition to this summation Zi, another summation Ik should be taken into account.

We now define the connectivity,
1 MI or M= T (when Mk is a constant M). (7)

Ek Mk I
where I is the number of connections between node j and its preceding layer, K is the number of connections between
node j and its successive layer and Mk is the number of connections between node k in its successive layer and the
current layer. That is, comparing (7) with (6), K and I correspond to the summations Ek and Zi, respectively, and a
weight Wkj can be thought to have a value in inverse proportion to Mk since if the number of connections is large,
the corresponding weight should be small. Also, when the node belongs to the output layer, we can suppose that
M=K=1, since each output has a one-to-one correspondence to the desired outpuL We can thereby rewrite qi using the
connectivity (7) as Ti = IO0X , where qO0 is called the normalized il. Using this connectivity, we could rewrite the X-
axis of Figure 2 and 3 as Figure 4 and 5, where the optimum range is almost same, regardless of the number of
hidden nodes. 100 N

IMAGE2x2

IMAGER3x

S300. \\ xo30
X0R32 IMAGERx5

IMAGEIOxO 0

0.01 0.1 1.0 Tlhidden 0.1 1.0 10.0 Ylhidden

Figure 4. normalized Tlhidden-N relation, XOR Figure 5. normalized lihidden-N relation, IMAGE

3. Adaptation Method
We described how the normalized 1q could be obtained. However, the remaining problem is how TI can be

optimally adapted. This chapter describes an adaptation method that adjusts the learning rate, depending on
characteristics of tasks, through a convergence process.

3.1 Algorithm
The basic idea of this adaptation method is to make T1 as large as possible within the region guaranteed by a

gradient approximation. The magnitude of Anetj in equation (5) determines whether or not the gradient approximation
is correct. We use Anetj , not AOj, so that it prevents too much deviation in the saturated region of the sigmoid
function. If the absolute value of Anetj, lAnetjl, is smaller than a certain value, a step is regarded as correct and TI is
increased. Conversely if lAnetjl is greater than the value, a step is regarded as incorrect and TI is decreased. In practice,
we adopted a method in which the maximum lAnetjl within a layer determines the corre'-tness, since every node in a
layer has the same connectivity. This method is summarized as follows.

1. Forward Propagation: get outputs.
2. Backward Propagation: update all weights.
3. Forward Propagation: check the maximum deviation of IAnetjl and determine K at each layer,

If lAnetjlmax < X then K = Kl, else K = K2.
For instance, let us assume a network with one hidden layer. If the coefficient K is KI at the output layer and KC2 at
the hidden layer, il of the next iteration will be TIO(n+l) = ilO(n).Kl-K2. We used KI = 1.1, K2 = 0.9. it is reasonable
to adapt TI of each layer independently. However, we did not use this independent way but the coordinative way, since
we had observed that the independent way tended to cause Tl for the hidden layers to become unstable.

3.2 Simulation Results
Figure 6 shows the behavior of TI in terms of the iteration number in the case an XOR2 network where the

iterations started with the initial value T10(0) = 0.001 and a = 0.9. The convergence process was terminated after 133
iterations with 71o = 5.6. The behavior, in general, is such that TI becomes large during the first several iterations,

I- 629



then decreases and remains constant (l0 = 1.5) until after about 90 iterations, followed by two peaks around iteration
number 100 and 110. ibis peak can be explained by the fact that the gradient approximation is still correct even if
Ti is very large, because patterns other than pattern "10" begin to produce proper output. However, the larger the
error pattern "10" begins to produce, the more Tj is decreased and thereby stabilized. Finally, four pattern begin to
give proper outputs and 11 increases, and then the convergence process terminates.

This adaptation method requires three parameters, KI, K2 and X. The effect of xl and xc2 is expected to be
small, since 11 is stablized quickly. However, the determination level X. is crucial, since if too large a value is
selected, '1 also becomes too large, although the gradient approximation is already incorrect. On the other hand, if too
small value of X is selected, 11 seldom becomes large. The influence of X is shown in Figures 7, where XOR was
used with a= 0.9. Again, we observe the relation that N is inversely proportional to X. The momentum effect,
indicated by equation (3), is also observed. As a result, it can be said that the essence of this adaptation method is
"that the vague parameter 71 of BP is substituted by the well-characterized parameter k.

8.0 - TIO 1,000 N XR

XOR8
6.0- X0R32

300
4.0

2.0
100

50 number of iterations n 150 0.03 0.1 0.3 .

Figure 6. behavior of adaptive 1. XOR Figure 7. X-N relation. XOR

4. Conclusion
We have clarified some basic properties of BP corresponding to convergence and derived an effective

adaptation method based on the most primitive formulations. Through computer simulations, we have observed two
experimental facts.
- The number of iterations N is proportional to (1-a) /11 within the region in which a stable convergence is
obtained, and in the case of a network with one hidden layer, N is proportional to 1 / N .
.. 1 can be normalized in terms of connectivity determined by the connections between a layer and not only its
preceding layer but also its successive layer. This is a remarkable characteristic of BP where errors at output layer are
propagating layer by layer.

Finally, we have shown that the essence of this adaptation method is that the vague parameter Tj is
substituted by a well-characterized parameter k.

References
[1] RumelhartD.E., HintonG.E.. Williams,R.J., Parallel Distributed Processing: Explorations in the Microstructure

of Cognition. Volume 1: Foundations, Chapter 8. The NET Press, Cambridge, Mass, 1986.
(2] Sejnowski, T. J., Rosenberg, C. R, "Parallel Networks that Learn to Pronounce English Text," Complex

Systems 1, pp.14 5-1 6 8, 1987.
(31 Dahi. E. D., "Accelerated learning using the Generalized Delta Rule," ICNN'87, pp.11523-530. 1987.
[4] Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., Alkon, D.L., "Accelerating the Convergence of the

Back-Propagation Method," Biological Cybernetics, 59, pp.257-263, 1988.
[5] Jacobs, R. A.,"Increased Rates of Convergence Through Learning Rate Adaptation," Neural Networks. Vol.1,

pp.295-307, 1988.
[6] Markram-Ebeid, S., Sirat, L.A., Viala, J.R.,"A Rationalized Error Back-Propagation Learning Algorithm,"

IJCNN'89, pp.11373-380, 1989.
[7] Parker, D. B.,"Optimal Algorithms for Adaptive Networks: Second Order Back Propagation, Second Order Direct

Propagation, and Second Order Hebbian Learning," ICNN'87, pp.1I593-600, 1987.
(8] Watrous, R. L.,"Learning Algorithms for Connectionist Networks: Applied Gradient Methods of Nonlinear

Optimization," ICNN'87, pp.11619-627, 1987.
(9] Ricotti, L. P., Ragazzini, S., Martineli, G.."Learning of Word Stress in sub-optimal Second Order Back

Piopagation, Neural Network," ICNN'88, pp.1355-361, 1988.

- 630



INTRODUCING EFFICIENT SECOND ORDER EFFECTS

INTO BACK PROPAGATION LEARNING

D. M. Himmelblau

Department of Chemical Engineering
The University of Texas, Austin, Texas 78712

1. Introduction

An extensive literature within the area of artificial neural networks has already developed on the topic of
learning via the backpropagation algorithm (1,2]. Within this general subject a few investigators (3,4,5,6,7,8,9]
have examined how to enhance the learning rate by adding second order effects, i.e., curvature, to the first order
(gradient) optimization procedure. However, in none of the cited references is it precisely clear how the introduction
of second order effects influenceo the calculation of the 8's in the generalized delta rule, and how the different choices
for approximates to the second order derivatives might be calculated. Here we show specifically how the backpropa-
gation algorithm can be modified by taking into account second order derivatives, and list two procedures, one for
serial and the other for parallel computation.

2. How the Second Order Effects are Introduced

In this section we sketch how the second order effects evolve for the adjustment of the weights on the con-
nections of the artificial neural network. Figure I shows a typical three layer artificial neural network comprised

OUTPUTS
k I ... OUTPUT LAYER

SW

2 2.........m HIDDEN LAYER

INPUT LAYER

INPUTS

Figure 1. A feed forward artificial neural network

of one input layer, one hidden layer, and one output layer together with some of the notation to be used.

Let Epk = (tpk - ypk) be the error for pattern p in an output node calculated by taking the difference between
the target value tpk and the output of the node Ypk in the output layer. We want to minimize the sum of the squares
of the errors

2 ER k k p Ypk)
1(1)

P k p k()

- In what follows we will suppress the subscript p to simplify the notation and consider just one pattern presentation.

Minimization of F in general is composed of a two phase interative calculation:
1. Calculation a search direction.
2. Calculate a step length (move some distance in that search direction before returning to phase 1).

Application of unconstrained Newton's method (as described in most books on solving nonlinear equations and
optimization) gives the classical relation for updating the weights on the connections in the output layer of the net

1- 631



(k.1)_ k 1k), I fk) i4  klWk -W -Wk H H(wk

where the superscript (k) designates the iteration number, and (suppressing the (k) to keep the notation simple)

wkn Iwl k w2  W.,k WOk,] is the vector of weights associated with the connections entering node k in the output
layer plus the weight associated with the threshold; H (w k) is the Hessian matrix (matrix of second partial derivatives

ofFwith respecttothewik)ofF(wk); and VF1Wk)+=F/aw,1 aF/aW2 k ... aF/aw. aF/asw T] is the gradient
of F(wk). Alternately, instead of Equation (2), a set of linear equations could be solved for Awk if the inverse
Hessian matrix is not used

VF (wJ. H (w )Jlw k (2a)
A related relationships is sometimes used termed the damped Newton method in which the following set of equations
is solved for Aw.

AF (w J - (iW + Ca ]&Wk (2b)

or AWk =-14i1Wk)+cxJ1 VF(Wk) )
where ca is a positive scalar and I is the identity matrix; a is adjusted by comparing the actual and predicted value of
F. From the viewpoint of Equation (2b) or (2c), Awk is a compromise between the Newton direction and the
steepest descent direction as adjusted by the weight oL

Newton's relation gives both the search direction and the step length, the later being unity (X = 1), but other
values of X. can be chosen, such as minimizing in a search direction or using a trust region, as explained in the
literature on optimization. In equation (2) or (2a) a scalar k would then be inserted before H-1 or H. Also, we will
not actually use the Hessian matrix itself, but only an approximate thereof obtained from elements in the gradient or

values of the elements of Aw, so that we would replace the symbol H-1 by H -1. or H by H.

For one interation for one pattern p for one node k in the output layer, from Equation (2) or (2a) the correc-
tion for a weight is

A X F(w•}

Aw~ X h k (3)* a WjkO

where h,,k is the proper element of H IWk) associated with the output layer. To compare Equation (3) with the

usual backpropagation development, let H I i so that hjlk = i, and let X = 'n. Curvature is introduced by the
weighted sum of the gradient elements. If as usual aF/owij = (aF/auk)(auk/awiJ) and Uk = w k Yj + W81 ,

and we define Sk = aFfi ui, then.7

Awjk X1 hSk 8 kyj (4)

The delta for onc node in the output layer would be calculated as
S.... S -= a•D (w j ýl aYk

8k ak ý uk)=I tk- YJOUO(5)
where aYkJ'Juk = f(uk) because Yk is a function of the node input uk: Yk = f(uk). For a hidden layer

all__ - (allwd \( ul =_ 8jyj

and by use of the chain rule several texts show that

k

so that

1- 632



Aw{ Z hs8 8

If the input-output expression for a node is the sigmoidal function yj = 1/(1 + e-uJ), then the deltas are
calculated as:

OWpUt layer: Sk (tk- Yk Yk (l- Yk)
hidden layer: yj -yj) , SkWj k

k

3. Evaluate of the Elements in H or H'I

The evaluation of the elements of H - (w), or H (w), for each layer can be accomplished in innumerable
ways as explained in the literature on nonlinear programming. In particular the BFGS secant update relations are
generally favored (the argument Wk or wj is suppressed)

T

/
/ =__ H - H•00) lA [,,W +i _ Aw¶Aw1 )) H &,](~~ Wg)w(Ag)aw (•w g (8)

where Ag(k) = AF(w(k+l)) - AF(w(k)). The elements in all the vectors and matrices in Equations (8) and (8a) can be
calculated from known values at stage (k).

The suggested procedure for serial calculations is

* strwtteurnvaleofwtcFw 1f ~)lHo =I
* calculate twO') by the equations above
* evaluate •(wO[)) and calculate AIg(k)

• terminate if tolerance is achieved, and if not

H update byEq.(8)toget[H(k +l )]-la

For paxaTel calculation there are four variants of the updatig relations for H or H- 1 as indicated in Table 1 [10, 11 ]

1- 633



Table I Updating H or H" for Parallel Calculation

Matrix Stored Unfactored Matrix Stored Factored

Update H H(k+l) = H(k) + rank-two update J(k+l) f L(k) + rank-one update
H(k) stored L(k) (lower triangular) stored

H0 ') = L(k)(L(k))T

Upd=ae H- I (Hk+l]- 1 = [H(k)- 1+ rank.twv update M(k+1) = M(k) + rank-one update
(H(k)]- I stored M(k) stored

[H(k)] .I = M(k)(M(k))T

The four methods yield the same results in exact arithmetic, and although they differ in the number of arithmetic
operations involved, in practice none appears to be superior to the others. By parallelizing the linear algebraic
computations and or performing parallel evaluations of the objective function concurrently as described in references
[10] and (11], an increase in the speed of calculation by a factor of almost 20 (at the expense of additional processor)
can be achieved.

Acknowledgement

This work was supported by E. I. Dupont.

References

1. Werbos, P. J., "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences", Ph.D. " -

Thesis, Harvard University, Cambridge, 1974.
2. Rurmelhart, D. E., G. E. Hinton, and R. J. Williams, "Learning Internal Representations by Error Propagation",

Chapt. 8 in Parallel Distributed Processing, Vol. 1, ed. D.E. Rumelhart, J. L. McClelland, et. al., MIT Press,
Cambridge MA, 1986.

3. Hoskins. J., "Speeding Up Artificial Neural Networks in the Real World", paper presented at the Washington.
D. C. ICNN Meeting. June, 1989.

4. Kollias, S. and D. Anastassious, "Adaptive Training of Multilayer Neural Networks Using a Least Squares
Estimation Technique", Proceed. IEEE Conf. on Neural Networks, San Diego, July 24-27, pp. 1 383-390, 1988.

5. Kung, S. Y. and 1. N. Hwang, "An Algebraic Projection Projection Analysis for Optimal Hidden Units Size
and Learning Rates in Back-Propagation Learning",Proceed. IEEE Conf. on Neural Networks. San Diego, July
24-27, pp. 1 363-370, 1988.

6. Ricotti, L. P., S. Ragazzini, and G. Martinelli, "Learning Word Stress in a Sub-Optimal Second Order Back-
Propagation Neural Network", Proceed. IEEE Conf. on Neural Networks, San Diego, July 24-27, pp. [355-
361, 1988.

7. Watrous, R. L., "Learning Algorithms for Connections and Networks: Applied Gradient Methods of Nonlinear
Optimization", Proceed. IEEE Conf. on Neural Networks, San Diego. July 24-27, pp. lI 619-627, 1987.

8. White, H., "Some Asymptotic Results for Back-Propagation", Proceed. IEEE Conf. on Neural Networks. San
Diego, July 24-27, pp. III 261-266, 1987.

9. Parker, D. B .. "Opumal Algorithm for Adaptive Networks: Second Order Back Propagation, Second Order Direct
Propagation, and Second Order Hebbian Learning", Proceed. IEEE Conf. on Neural Networks, San Diego, July
24-27, pp. [1593-600, 1987.

10. Byrd, R. H., R. G. Schnabel, and G. A. Schultz, "Using Parallel Function Evaluations to Improve Hessian
Approximation for Unconstrained Optimization", Annals Oper. Res., 14, 167-193, 1988.

11. Schnabel, R. B., "Concurrent Function Evaluations in Local and Global Optimization", Computer Methods
Applied-Mech. Engr., 64, 537-552, 1987.

1- 634

I



A NOVEL, ONE-STEP, GEOMETRICAL, SUPERVISED LEARNING SCHEME

Chia-Lun J. Hu
Electrical Engineering Department

Southern Illinois University
Carbondale, IL 62901

ABSTRACT

When the input-output digital mapping relations are given for a
two-layer Hopfield net which has hard-limited signal functions,
the connection matrix can be solved in one step in terms of the
given mapping relations. This solution is obtained by means of a
novel discrete geometrical method applied to the N-space which is
the state space of the neural system containing N neurons. The
condition that solution exists for a given mapping is discussed.
Numerical examples verifying the theoretical predictions are
given. The geometrical method used here is simple, practical in
designs, and it provides more perceptions to the physical insides
of the learning mechanism.

I. INTRODUCTION

Supervised learning of a neural net generally requires an
iteration process that minimizes the difference between the true
outputs and the targeted outputs. The most common mathematical
tool people used to achieve this minimization is the gradient
descend method. Rumelhart, Einton, and Williams [l( derived the
most well known delta learning rule based on this gradient
descend iteration approach. Widro,., al et, [2-4] derived another
very efficient learning rule that forces Wij tc change along the

most efficient path for reaching the equilibrium state. This
rule is commonly known as the -idrow-Hoff rule. Barto, et al,
[5-7], Williams [8], and Widrow [9] have also derived separately
another class of very similar learning rules that Williams called
it the reinforcement learning, while Barto, Widrow called it the
reward-penalty algorithT. In place of the back-propagatingi• errors, this scheme uses a reinforcement signal, derived from the

degree of eliminating the least square errors. The scheme
r utilizes this reinforcement signal to award or to penalize the

weighting coefficients to achieve the learning purpose.
While most of the learning studies are concentrated at the

derivation and the performance of various learning r'iles, Widrow
has addressed a very important point in the learning process.
That is, the learning of new in"'.mation should not disturb the
old informations learned [2]. In the Widrow-Hoff learning rule,
this disturbance is minimized because of the smallest 6W this

rule provides for reaching the learning equilibrium. Also in
[2], another important concept is addressed -- the use of the
state-space geometrical method to analyze the change of mappings
in the learning process. Geometrical method is also used very

1- 635



/i

intriguingly by Mark, Oh and Atlas [10] in the study of a novel
associative recall convergence property. In the present article,
we also adopt the geometrical approach to analyze a novel
learning process. This method appears to be very simple, very
perceptive, and very practical in designs. In the following,
section II will be devoted to the formulation of this supervised
learning problem. In section III, we will solve the problem, and
in IV, the general properties will be summerized.

II. A ONE-STEP SUPERVISED LEARNING MECHANISM

For a Hopfield net with all d.c. components separated, the
controlling equation between the input pattern and the output
pattern is the following:

~ ~~j'10L1~1 Jn-1 to N (1)

where U. is the j-th component of the input pattern, and Rn is
Jn

the n-th component of the output pattern. anj is the connection
matrix element. Sgn is the sign function which gives +1 or -1
value depending on the argument being positive or negative. N is
the number of neurons. Now suppose there aze M input-output
pairs of patterns to be learned. Then the total error of the
unlearned system is:

A-I 2.#
~ (2)

where Rmn and Vmn are the n-th compoents of the true output and

the targeted output in the m-th mapping pair. Substituting (1)
into (2), and forcing E to vanish by adjusting aij, we have the
following equation.

= U M 1 t toM. (3)

Umj and Vmn here are the components of the targeted input output
mapping pair defined in the following.

Input pattern: [U mj: m=l to M, j=l to N, U m=+l or -1.1 (4-1)
output pattern: {V mn: m=l to M, n=l to N, Vmn=+l or -1.1 (4-2)

Since Umj, V mn take only +i or -1 values, if we multiply -1 to
those equations in (3) which have Vmn=-l, we will obtain the
following equation.

W mnj a nj > 0, m=l to M and n is a fixed number. (5)

I- 636



In (5), Wmnj=VmnUnj=+l or -1 (6)

as determined by the given mapping in (4). We see now that to
learn the required mapping relations in (4) is just equivalent to
finding the solution of anj from the simultaneous inequality

equations in (5).

III. METHOD .OF SOLUTION AND NUMERICAL EXAMPLES

We see that the left hand side of (5) is the inner product of two
N-dimensional vectors of fixed mn indices. One is a given vector

Wmn , the other is the unknown vector an which is the n-th row of

"the connection matrix [a nj1. For a fixed n, we have M

inequalities to solve in (5). From an N-dimensional geometrical
point of view, solving (5) is the same as finding a vector an

such that when it is "dotted" to any of the given vectors Wmn
(m=l to M) , the result is always greater than zero.
Consequently, we see now that

the condition that th- solution a exists is that all W-vectorsn

form a "convex cone" in the N-space. If this is met, then an is
just any vector falling within that cone . ................ (7)

The general solution o& a is ANY positive, linear combination of
n

all the W-vectors, or,
an= (m=lto M bmWmn, with [bmP70 and n=l to N.... (8)

When the targeted mapping pairs in (4) are given, Wmn can be

calculated frTr (6). Then [a nj] can be solved from (8).

Following this method, five numerical examples are studied with
five different mapping relations given. The first four give us
legitimate solutions wnich lead us to some interesting properties
as summerized in the following. The last example does not give us
any legitimate solution because the W-vectors computed from the
given mapping relations DO NOT form a CCNVEX CONE as stated in(7).

IV. CONCLUSION

The summery of the general properties derived from this
geometrical one-step learning process i- the following.

1 - 6~37



1. Learning more information will not destroy old informations
already learned.

2. Maximum number of informations (or mapping pairs) can be
learned is 2 N-l where N is the number of neurons.

3. If the given mapping violates the condition stated in (7),
that mapping is illegal and can not be learned.

4. Learning can be saturated. The connection matrix in this case
is just equal to the unit matrix.

REFERENCES

(13 Rumelhart, D.E., Hinton, G. E., Williams, R. J., "Learning
internal representations by error propagation," Parallel
distributed processing: Explorations in the microstructures of
cognition, Voll, D.E. Rumelhart, J. L. McClelland (eds.), MIT
Press, 318-362, 1986.

[2] Widrow, B., Winter, R., Baxter, R., "Learning phenomena in
layered neural networks," Proceeding of IEEE First International
Conference on Neural Networks, San Diego, CA, Vol. II, 411-429,
June 21-24, 1987.

[3] Widrow, B., Hoff Jr., M., "Adaptive switching circuits," IRE
WESCON Con. Rec., pt. 4, 96-104, 1960

(4] Widrow, B., Sterns, S.D., & tt __iqnal Processino,
Prentice Hall, Englewood Cliffs, NJ, 1985.

[5] Barto, A.G., Jordan, M.I., "Gradient Following Without Back-
Propagation in Layered Networks," Proceeding of IEEE First
International Conference on Neural Networks, San Diego, CA, Vol.
II, 629-636, June 21-24, 1987.

(6] Barto, A.G., "Game-theoretic cooperativity in networks of
self-inrerested units," in Neural Network for Computing, edited
by J. S. Denker, American Institute of Physics, New York, 1986.

[7] Barto, A.G., Anandan, P., "Pattern recognizing stochastic
learning auto-eta," IEEE Trans. Systems, Man, and Cybernetics,
15: 360-375, 1985.
[81 Williams, R.J., "A class of grdient-estimating algorithms for
reinforcement learning in neural networks," Proceeding of IEEE
First International Conference on Neural Networks, San Diego, CA,
Vol. II, 601-60", June 21-24, 1987.
[9] Widrow, B., Sterns, S.D., Adagtjy9_iqnal Processing,
Prentice Hall, Englewood Cliffs, NJ, 1985.

(101 Marks II, R.J., Oh,S., Atlas, L.E., "Alternating projection
neural network," IEEE Trans. Circuits and Systems, 36-6, 846-857,
June 1989.

1-638



Speeding Up Back Propagation

Yoshio Izuil and Alex Pentland

Vision Science Group, The Media Laboratory
Massachusetts Institute of Technology

20 Ames St., Cambridge MA 02139

Abstract

We prove that the convergence speed of the back propagation learning algorithm is
dependent on the sharpness D of the sigmoid function used to define the network's en-
ergy function. When using the simple gradient method for updating weights the time to
convergence is T, = C1 D, while for the momentum method the time to convergence is
T2 = C 21D//D (note that normally C2 < CI). Thus a simple modification of existing code
can markedly improve convergence speed.

1 Introduction
7

The use of back propagation in feed-forward neural networks has become very popular in
experimental applications [1]. The slow convergence speed of back propagation, however,
has proven to be a major obstacle in practical applications (21. As a consequence researchers
have investigated several methods of speed-up, including use of second-order update rules
[3] and dynamic parameter adjustments [4]. Most of these methods have the disadvantage
of being substantially more complex, and in addition often must be "tuned" to fit the
particular application.

In this paper we prove that the coDvergence speed of the back propagation method de-
pends directly on the sharpness of the sigmoid function used in defining the energy function.
Thus a simple, general and yet surprisingly powerful method of speeding up the convergence
is simply to increase the sensitivity of the sigmoid used to compute the energy function. In
our simulations we have obtained up to eight-fold speedups of the momentum update rule
in this manner.

2 Convergence Speed

2.1 Review of Back Propagation

Back propagation functions by minimizing an energy function E that involves a non-linear
function g(z) of the connection weights; g(z) is sometimes called the transfer function
between nodes. Normally g(z) is the sigmoid function, g(x) 1/(1 + e-Do) where D is
the sharpness of the sigmoid function. In most treatments D = 1 and is therefore dropped
from the sigmoid's definition.

'Current address is Industrial Systems Lab., Mitsubishi Electric Corp., 8-1-1, Tsiikaguchi, Amagasaki.

Hyogo 661 Japan

1I- 639



The energy function associated with a D-sharpened sigmoid function is,

E P K (g (D)W 2kig (DIWJV.P) d,) (
p--! k=1 j=l i=1

where Vyr is i-th component of the p-th training data, d• is the k-th component of p-th
desired output data, and Wi, and W2k& are weights between input and hidden, and hidden
and output layers, respectively.

In the back propagation method this energy is minimized either by a simple gradient
method,

dt D OW,,i (2)

where n = 1, 2 and q may be thought of as the "gain" of the system. To more closely
model biological systems, as well as to minimize the effects of shallow local minima in E,
one may alternatively use a momentum method,

d2W + __ - E (3)
dt2  -) dt D DW 1,i

where (1 - a) may be thought of as the damping within the system and 3 as it's gain.
Note that the D in equation (2), and (3) only serves to cancel the D's appearing the

the energy function, equation (1). Thus changing the sharpness D does not change the how
system of weights will evolve over time - i.e., D does not affect the path in weight space

- but rather only changes the rate at which they change.

2.2 The Gradient Descent Update Method

We start with the simple gradient descent method of.updating the weights. First, let us
- --k; = dW!,. The convergence

define Wji = DW11 i, W2k, = DW2k,, and z dj = k, ii

time T, can be obtained by first re-writing equations (2) to obtain an expression for dt, and
then by integrating dt:

T, =dt= 2 (4)S,,9E

-ZE )2

17, ( ,) + Ek.j ( O-$2h,)

where

ds = Edfj) + (~fV2))
JV i k,.

Once 17 and initial values are determined, then the integral part of equatiou (4) is a
constant. Thus the convorgence time T, is invwrsely propor*ional to D, the sharpness of
signioid fuinction.

Note, however, that these equations describe a continuous system whereas computer
simulations employ a finite difference scheme that uses discrete time steps. Thus as D

1- 640



//

becomes large at some point the validity of the finite difference approximation breaks down.
The effect of this breakdown is, to a first approximation, to introduce a large amount of
noise into the energy function. The value of D at which breakdown occurs is a function of
the maximum weight velocities achieved in the particular network under consideration.

2.3 The Momentum Update Method

The more complex momentum update method may be similarly treated. The convergence
time T2 is

T'2 = di I ds' (6)
T dt /A 1 + A 1 2 + A 21 + A 2 2

where

ds' = I (d-Zl) 2 + (d ii Z1 )2} 2 + (dfki&)} (7)

and for n = 1,2,

= D + (8)Aý (s)- D d

Ad= .Z t ) (9)

If we assume that /3D >> (1 - a), i.e., that the gain of the system times the
sensitivity of the sigmoid function is much larger than the amount of damping in the system,
then the damping may be ignored to achieve the following approximation:

d F, -= (1 ) D OE 1 L9E (0dIV; =-_(1 - ) - OD - -E ;: -O (0
Sd j ivIi OWZiji 3  z 2i, 81vlji

The solution of (10) is

/'Ef OE

zij, = • Cii - 8E/p dW :j) (11)

where C1jj be a constant. Equation (6) may then be simplified as follows:

1 ds

T2 ' '2 M13 ~ ( 11  f afr (12)) ~ -A j'ia~k dI"1j ... &j.~jf'9 A~

where ds is as in equation (5).

We may simplify ,'quation (12) still further by noting that

1- 641



£~ EEE j (13)

We first use this relation to obtain Ei,,i.,, the energy at the initial state,

= i C1,, + c2kj (14)
Sj,i ki

assuming the standard initial values zi-j = =i = 0. We can then use equations (14)
and (13) to reduce our expression for T2 to the following:

T2= 1 r veds (15)

7D J ,.,,t'a V2,3( S,. - E)
Thus for the moment method the convergence time is proportional to the inverse of

* square root D, the sharpness of sigmoid function.

3 Summary

We have obtained closed form solutions for the convergence time of the back propagation
method using either the gradient or momentum update methods, assuming that a sigmoid
function is employed as the transfer function between nodes.

The main results are that T, the time to convergence, is equal to C1 /D when using the
gradient method and C2 /v"D when using the momentum method where D is the sigmoid
function's degree of sharpness. In our simulations we have successfully employed values
of up to D = 100, which has produced an eight-fold speedup when using the momentum
update rule. Note that despite the fact that D has a greater effect upon the gradient rule
than upon the momentum rule, C2 is so much smaller than C1 that even for large values of
D the momentum rule still converges faster than the gradient rule.

The primary consequence of this result is that a simple modification of most existing
back propagation code - increasing the sharpness D of the sigmoid function - can yield
a substantial increase in convergence efficiency. Care must be taken, however, to choose
D small enough that the finite difference calculations used to approximate the change in
system energy E still accurately approximate the underlying continuous energy function.

References
[1] Rumelhart. McClelland and the PDP Research Group. (1986). Parallel Distribuxted

Processing Vol.I. MIT Press.
[2] Robert Hecht-Nielsen. (1989). Theory of the Backpropagation Neural Network. Proc.

of the IJCNN. Washington D.C., 1593-1605.

[3] L. P. Ricotti, S. Ragazzini, G.M Artinelli. (1988) Learning of word stress in a sub-
optimal second order back-propagation neural network. Proc. of the IEEE Second
Annual ICNN. San Diego, 1355-4361.

[4] R.A. Jacobs. (1988). Increased Rates of Convergence Through Learning Rate Adap-

tation. Neural Networks, 1, 295-307.

1- 642



/ .. ...

Explanation-Based Learning and Relevance
Bruce F. Katz

The Beckman Institute for Advanced Science and Technology
University of Illinois; Urbana, IL 61801

INTRODUCTION
The problem of relevance is crucial to tractable learning procedures. Features of high importance
"are often hidden in a sea of largely irrelevant distracters. To consider every feature is costly, and
moreover, a large number of training examples may be required before it is realized that a particular
feature has no bearing on the a set of outcomes. One solution is to have the teacher present the
learner with a set of hand-picked events, such that the positive examples differ minimally from the
negative examples (Winston, 1970). Needless to say, such a procedure is not always possible in
unsupervised or loosely supervised environments.

Recently, non-connectionist learning theory has suggested an alternative approach to this problem,
which it has termed Explanation-Based Learning (DeJong & Mooney, 1986). In the classical
formulation of the EBL problem (Mitchell, Kellar, & Kedar-Cabelli, 1986), one is given a set of
domain rules, a training example, and a goal that can be inferred by the application of the domain
knowledge to the example. An explanation structure is then constructed, with the input features at
the leaves of this tree, and the goal node at the top. This structure may then be generalized using
goal regression or other related techniques (Mooney & Bennet, 1987). The resulting structure is
tlen be "flattened", so that a new rule is formed with the left hand side being the generalized
"example, and the right hand side the original goal. If the left-hand side is readily observable, then
one will have a quick and easy way of predicting the goal concept given the appropriate inputs,
without the need to produce what may be an extensive inference chain. To take a simple example,
let us assume one has access to two rules: a) that all professors are absent-minded, and b), that all
absent-minded people misplace things. Suppose one sees Professor X misplacing his glasses.
After forming an explanation of this event with the help of a) and b), one emerges in the end with
the general rule that professors will tend to misplace things. One may question the role of the
example in the above, since, from a strictly logical point of view, it is unnecessary. The standard
response to this objection (Mitchell, Kellar, & Kedar-Cabelli, 1986) is that the example indicates
which type of knowledge it may be profitable to chunk; the full deductive closure of one's current
knowledge is not readily computable given spatial and temporal limitations.

"EBL, then, differs primarily with SBL in that it is a knowledge intensive approach. It eliminates
features irrelevant to the classification task not by noticing their joint occurrence in both positive
and negative examples, as there is typically a small number of positive examples, but by noting
which features are necessary for the generalized explanation. E.g., in the above example, the fact
that Professor X's specialty was medieval history was not part of the explanation structure, and

:- - was therefore deemed irrelevant. Another nice effect of EBL is the optimization of the knowledge
base via its compression, resulting in faster response times on similar training events. Previous
papers (Katz, 1989a, and Katz, 1989b) have shown how a relatively simple connectionist system
can achieve the same sort of optimization. This paper will concentrate on the way in which this
neural network model can bring prior knowledge to bear in determining relevance.

ARCHITECTURE
Refer to figure 1, Panel C for this description of the system architecture. Input nodes are activated
"by features in the environment. These inputs are buffered by another layer, with one node for each
corresponding node in the input layer. Unlike input nodes, which are clamped on or off by the
environment, nodes in the input buffer may be affected by top-down control. This will prove
important in the mechanism for EBL.

Activation flows from the input buffer to sets of nodes in one or more hidden layers. Solid lines
represent symmetric excitatory connections, while shaded lines represent syrmAmetric inhibitory

1-643

1 )



7.

connections. In addition, the dotted boxes in the figure are shorthand representations for sets ofmutually inhibitory nodes at the same layer. Nodes in these layers also have excitatory connectionsto themselves. This sub-architecture has been shown to produce winner-take-all networks(Rumelhart & Zipser, 1986), that is, the node in the set receiving the most activation will reachmaximum value, while all others will be driven to zero activation. Activation spreads in parallel inall directions until one unit in the output layer "wins" and becomes the decision. The relaxation"process is described more fully in the next section.

Output

Hidden Layer

Input Buffer

Input
Figure 1. Achieving EBL in a neural network architecture

INFERENCE and LEARNING* I Inference is accomplished by the spread of activation. The activation of a unit is a weighted sum ofits inputs, as in (1). In this equation, ai represents the net activation level of unit i, wij is the
"weight between units i and j, and oj is the output of unit j.

ai = Z wij oj (1)Weights may be either positive (excitatory), or negative (inhibitory), and are unbounded. Incontrast, the output of a unit is held between 0 and 1 by the sigmoidal function in equation (2). Inthis formula, T is a free parameter representing the "temperature" of the network, and e is a
constant thrcshold. Activation spreads until the network reaches a steady state.

..oi / 1 + exp(- (ai - 0)/T)) (2)

Learning is accomplished by (3), a Hebbian associative rule modified to allow the the decrease inweight strength between two disassociated units. In conjunction with the winner-take-all decision-" procedure, this rule is able to classify sets of linearly separable examples. No learning is permitted
directly from the input layer.

6 Wij = .oi oj- 8 oi- ojl (3)

EXPLANATION-BASED LEARNING IN THE MODELFigure 1 is a highly schematic view of how EBL is accomplished in the model. Panel A represents
the state of the network before relaxation. Note that the input buffer is a veridical representation ofthe input vector. Panel B represents the network after relaxation. Descending inhibition hasturned off the two rightmost units in the input buffer (the threshold in equation 2 can also be* iadjusted so that merely the lack of excitatory confirmation also results in a dampened unit.). Thenetwork has "decided" that these features were not crucial in the determination of the final decision,or in the final activated state of the intermediate units leading to this decision. Unlike symbolic
techniques, where relevance is determined by the explicit computation of a proof structure, in this

1 - 644



I +

model it is an emergent property of top-down attentional control.

Panel C represents the state of the network after learning. No correlations are made between data
that was originally present in the input buffer, but turned off during relaxation (no direct learning
is permitted from the input layer to other layers). Existing connections between units active at
relaxation are strengthened, and new connections may also form. These "bypass" connections can
be seen in C as new lines between the input buffer and the activated output node. These new
connections, along with strengthened old ones, cause the network to relax at a much faster rate
given a similar input pattern.

Figure 2 shows in more detail how input feature relevance may be determined in such a network.
In this simplified diagrana of the network used in the experiments described in the next section,
only two input features are shown, one relevant, and one irrelevant. In this case, the hidden unit
clusters correspond to items of functional significance. Prior learning with other examples has
enabled the connections to the hidden layers to form, but not the connections from the functional
units to the output decisions.

Processing up to the point shown in the network indicates that the object has a flat-surface, and is
red. The flat-surface, along with other features (not shown) such as the fact that the surface is a
comfortable temperature turn on the can-sit-on(yes) and can-lie-on(yes) units. Since weights are
bi-directional, this reinforces the original input. If these weights are large enough, this input is
maintained in the input buffer at relaxation, which will then develop a strengthened connection with
the indicated object. The color(red) unit, however, is not maintained in the input buffer during the
relaxation process. This is because the higher-order functional unit it is connected to, attracts-bull,
did not receive sufficient activation from other lower-order units (not shown), such as the fact that
the object is flexible enough to be waved. Recall that the threshold in equation 2 can be set such
that a positive input alone is not sufficient to fire the corresponding unit in the input buffer. Thus
previous knowledge, encoded in the form of functional information, can serve to reduce the
am-,ount of input features, and thereby simplify the resulting inductive task.

OBJECT
"couch sofa chaise
0 0 o Output

can-sit-on can-lie-on liftable attracts-bull
yes no yes no yes no yes no.•. •i ,,==] [ . o j•...... ,HiddenI Inu

Input
B u f fc r

"yes no white yellow redInu
flat-surface color

Figure 2. Determining relevance by the functional significancc of the inputs

EXPERIMENTAL RESULTS
In the first set of experiments, the potential usefulness of the suppression of irrelevant features to
learning was demonstrated. A network was created similar to that pictured in figure 2 with five
sets of input features and three higher-order functional features. The task of the network was to
correctly classify each of six randomly presented examples, two for each category of sofa, chair
and chaise. Connections from the input buffer to the hidden units were hard-wired, but no
connections were made to the decision units. In addition, a varying number of binary input

1- 645



features were added to network. The value of the feature, off or on, was determined randomly at
the start of each relaxation cycle. The threshold was set such that these extraneous features were
not suppressed by the lack of descending confirmation, to measure the deleterious effect of their
addition. The graph in A of figure 3 summarizes these results. The number of sweeps through all
examples before perfect recognition increased roughly linearly with the the proportion of irrelevant
to relevant features.

In the second set of experiments, the number of irrelevant features was held constant (at 2.5 times
the number of relevant features) but their threshold was varied. The graph in part B, figure 3
shows these results. As the threshold increases, the activation value of the feature at relaxation is
lowered, and the more the network "ignores" these features. An pleasant (and unexpected) result
was that the activation of the irrelevant unit at a threshold of 1.5 (when the network performed
almost as well as if the irrelevant attributes did not exist), was approximately .80. That a unit can
be maintained at a high level of activation and not affect learning is important since it is not known
a priori whether the unit is relevant of not. Therefore one would like to suppress it as little as
possible and yet not have it perturb the learning process if it is indeed irrelevant.

!A B

99

mean 7 7
sweeps
till
no error 5 5

3 3
0 1 2 3 4 .5 1.0 1.5 2.0

proportion of threshold
Irrelevant to
relevant features

Figure 3. Experimental results

DISCUSSION
The importance of eliminating irrelevant features to assist learning has been discussed and has
demonstrated in a simple connectionist system. In addition, it has been shown how varying the
threshold of units in the input buffer can effect a trade-off between top-down and bottom-up
influences during the learning process. The ultimate goal of this research remains similar to those
of the EBL researchers working in a non-connectionist framework; viz., determining how one
brings prior knowledge to bear on future inductive tasks.

REFERENCES
Deiong. G., & Mooney, R. (1986). Explanation-Bascd Learning: An alternative vicw M.. Learning 2.
Katz, B.F. (1989a). Integrating learning in a neural network. Proceedings of the Silth

International Workshop on Machine Learning.

Katz. B.F. (1989b). EBL and SBL: A neural network synthesis. To appear in Proceedings of
the l1th Annual Conference of the Cognitive Science Society.

Mitchell, T.M., Kcllcr, R.M.. & Kedar-Cabelli, S.T. (1986). Explanation-bascd generalization: A

unifying view. Machine Learning 1.
Mooney, R. & Bennet, S. (1986). A domain independent EBG. Proc. of AAAI..
Rumelhart, D.E., and Zipser, D. (1986). Feature discovery by competitive learning. In

Rumelhart, ct. al. (Eds.), Parallel Distributed Processing. Vol. I. MIT Press.

1- 646



Merging Hebbian learning rule and least-mean-square error algorithm
for two-layer neural networks

Sang-Ho Koh, Soo-Young Lee, Ju-Seog Jang, and Sang-Yung Shin
Department of Electrical Engineering

Korea Advanced Institute of Science and Technology
P.O. Box 150 Cheongryang, Seoul, Korea

Introduction
"Learning algorithm has been one of the major research areas in neural networks.

* While Hebbian learning rule has been employeed for fixed learning neural networks[l],
gradient-based least-mean-square (LMS) error algorithms have been extensively studied for
adaptive learning.[2] However the most popular error-back propagation algorithms is notori-
ous for enormous learning time. In this paper we propose a new LMS learning algorithm
based on Hebbian learning rule for two-layer networks.

Formulation
"Let's consider a two-layer network as shown in Fig. 1. The input layer, hidden layer,

and output layer are represented by x, y, and z, respectively. In general different node
numbers may be assigned to each layer.

, z

x A y Bz

Fig. 1 Two-layer neural networks with Hebbian learning rule, i.e. Aj, r !r. yj and

Bk = X :
S

Suppose M sets of input x' and output z' (s = 1, 2 ...... M) need to be learned.
Provided corresponding hidden layer value y' were known, one might determine interconncc-
tion matrices with Hebbian learning rule as

M

Aji= , ()

and

I - 647

x. ;, ,.., ----------



M
Bkj= ' k4. (2)

s-1

The hidden layer y' (s 1, 2, .... M) is selected to minirnize output error defined as

M
E Iz _ z(x)I 2, (3)

where z(x') denotes the- output vector corresponding to input x" and its kth element may be
represented as

Zk(X') = f[ Bkj g(1 Aji X)] (4)
Ji

with proper nonlinear functions f(.) and g(.) for output and hidden layer, respectively. It is
worthy noting that both A and B are functions of y' (s = 1, 2, .. , M) and, from Eq.
(3), the error E may be minimized for appropriate choice of :ridden layer y9. We adopted
the steepest descent method for the minimization as

yf[n+l] = yftn] - T j = 1, 2, . . , J , s = 1, 2, . . , M . (5). ~ayj

Here y,[n] denotes the nth iterative solution of the jth element of hidden layer vector y-.
-9 is an learning coefficient affecting convergence of the iterative learning.

For auto associative memory, i.e. x' = z' (s = 1, 2, ... M), one may feedback the
output into the input for improved recalls, and the two-layer network becomes similar to
bidirectional associative memory (BAM) presented in Ref. [3] except the iterative learning.

7 •Error Correction Performance

Error correction performance of this model is demonstrated by computer simulation.
Ten images are learned in 6 x 8 node autoassociative memory, and error correction proba-
bilities are plotted versus Hamming distance, i.e. number of different bits uith a stored
image, in Figs. 2. Results of (pseudo) randcm images are plotted in Fig. 2(a). and those of
highly correlated images, i.e. numbers "0" to "9", hi Fig. 2(b).

In the figures 1000 input images are randomly generated to satisfy required Hamming
distance with each of the stored images, fed to this model and the 2-layer perceptron model.
and their overall convergence characteristics are collected. For small Hamming distances

, -. the 2-layer perceptorn model has slightly higher error correction performance which may be
resulted from higher degree-of-freedom of the perceptron model, Le. whole elements of the
two interconnection matrices instead of hidden layer vectors. However, for larger Hamming
distances, the feed back nature of this auto-associative model greatly improves error corrcc-
tion performance and this new model works much better than the other. Correlation of

"4.,-, stored images greatly decreases error correction performance as shown in Fig. 2(b). In this
' ,care optimization of bit-significance may be used to reduce the correlation.[4]

1- 648

. °._ £. - I.,-



1.0 0 0 a 0 x a 1.2 .

0

- x - 0
"0 0. , .' 0 .8 x

"- X

0 .0 0
0I

o I .-- X
C0 0.

(. 0.4 X . 0

0 1
.- o:The Proposed Model .. c:he Proposed Model

x:2-layer Perceptron x x:2-layer Perceptron

!X

0.'0.0 -4--4-I. -
0 1 2 3 4 5 6 7 8 9 10 0 2 3 4 5 6 7 8 9 10

Hamming Distance Hamming Distance

(a) (b)

Fig. 2 Error correction probabilities versus Hamming distance.
(a) (pseudo) random images, (b) highly correlated images

Conclusion
In this paper we proposed a new adaptive learning algorithm for two-layer neural net-

works. In this model the two interconnection matrices are determined by Hebbian learning
rule, and the output error is minimized by the steepest descent iteration for the hidden layer
vectors. For auto assoeative memories excellent error correction performances of this model
are demonstrated by computer simulations.

Acknowledgement : This research was supported by the Korea Science and Enginecring Foun-
dation.

References
[1] J.J. Hopfield, "Neural networks and physical systems with emergent collective computa-

tional abilities," Proc. Nad. Acad. Sci. USA, Vol. 79, pp. 2554-2558, 1982.
[21 D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning representations by back-

propagating errors," Nature 323 : 533-536
[3] B. Kosko, "Bidirectional associative memories," IEEE Trans. Sys. Man and Cyber.,

Vol.18, pp.49-60, 1988

1I- 649



[4] Soo-Young Lee, Ju-Seog Jang, Jin-Soo Park, and Sang-Yung Shin, "Modification of theHopfield model and its optical implementation for correlated images,"
SPIE Pro. 963 Optical Computing, pp.504-511, 1899.

I- 650



Modular Neural Networks:
Combinina the Coulomb Energy Network Algorithm and

ite Error Back Propagation Algorithm

Won Don Lee'. Kyunghee Lee*, Jon gwook Jang"

IDepartment of Computer Science College of Natural Sciences
ChungNam National University, Daejeon, KOREA

-Electronics and Telecommunications Research Institute
Daejeon, Chungnam, KOREA

ABSTRACT
Multi-layer feed-forward networks can be splitted into single-laver modules and can

be trained separately if the requirement of fixing the target values in the error back-
propagation(EBP) is relaxed. We propose a general form of the energy function for such
networks, and show how this algorithm can be naturally combined with EBP algorithm.
We also show that coulomb energy network fits the form of the modular neural net-
works and a demonstration is given in recognizing a Korean consonant.

INTRODUCTION

There are some problems in the error back propagation(EBP) algorithm which is
used extensively as a neural network learning algorithm [Rumelhart et al., 1986]. First,
since it uses a descent method to find an energy minimum, it can somntimes trap into a

* local minimum instead of a global minimum. Second and more serious problem comes
from the fact that the algorithm adjusts the synaptic weights of the hidden layers by
observing input and the corresponding output values. Because weights of the hidden
layers are adjusted through propagation of errors between desired output and actual output
values for a given pattern, hidden layer learning is done indirectly compared with the
direct output layer learning. Therefore, when we apply the EBP algorithm to a complex
network, there can be a danger that hidden layers might not have inductive capability to
capture input patterns effectively. The first problem might not be a serious one depending
upon network structures, but the second one is important in that it is directly linked with
the problem of increasing network efficacy.

The energy function in the EBP network is described as

E = JE(p) = 11 (t(p,j)-o(pj))2

i i•P P J

where t(pj) and o(p~j) are the target and the actual j-th bit values of the output, respec-
tively, when input pattern p is entered to the system. The reason that EBP adjusts the
hidden layer weights indirectly through propagating errors is that the target values of the
output patterns are already determined as fixed points.

If we relax the requirement of the fixed target values in the output space, then it
becames possible to adjust the weights in the middle layers directly. The riequirement in
such a network would be the property that patterns belonging to the same class be

* i attracted together, and those belonging to different class be repelled each other. There
can be no more "hidden" layers, as we can dircctly adjust the weights in the middle layers.

1- 651



Since this algorithm does not rely on the propagation of errors through layers, the system
becomes "modular" in the sense that each single-layer module can be trained indepen-
dently. Multi-layer system can be made naturally by layering trained layers one by one(See
Figure 1).

u4a 0 0

P 0. - -cop-~ min~ .
U 0 0A~ 0.~

0T 0 Ldyering

In general, module i is a single-laver network whose input cones from the output of

the module (i-1), and whose output becomes the input of the module (i+1). Therefore,
the learning of the whole system is done sequentially by first training the first module,
and then training the second module until the last uppermost module is trained. Training
each module separately can have advantage besides those already discussed just because it
is easier to train a simple single-layer module than to train the whole multi-layer network
at once.

The general form of the modular neural network energy function would be:

E OC 7 M II, x ,x) + I" M (xI , xJ
pairs of pairs of

same class diff. class

where MI and M, are some measure functions to determine the distance between recoded
output patterns X.'and X.. As we can see. there is a separate measure function for pairs
of output patterns belonging to the same class, and another for pairs of output patterns
belonging to the different class. For simplicity, we only consider the dichotomy system.
The measure functions are constructed in such a way that the total energy is minimized as
output patterns of same class are attracted each other and output patterns of different class
are repelled each other. When we do this, the resulting vectors will be grouped together
in the output space, and there may be more than or equal to one group in the space in
general for each class. There has been attempts to make such an enegy function [Psaltis
and Neifeld1988], and one of them is the coulomb energy network [Scofield, 19881.

The energy function of the coulomb energy network is

M M

E I (2 . sign,(Xi, XJ) I x-xl'
i=lj=,l

Here. sign(X., X.) is '-' when patterns X., X. belong to the same class, .and '+' when
patterns belong to afdierent class. After defining specific measures, then it is easy to find
learning algorithm by gradient descent method:

I - 652



8.,=- "r E/%

where eta is the learning rate. In the coulomb energy network, this becomes

80" = (+1-) i IX() - X(@+1) A-(L2) (P +(t),P(tI+))

where negative sign is for subsequent patterns of the same class, and the positive sign for
patterns of different class, and A., is defined as

A",,, (t), p(t+1)) - (X(t) - X(t+1)) • ala..,(X(t) - X(t+1))

COMBINING MODULAR NEURAL NETWORK ALGORITHM

WITH EBP ALGORITHM

When single-layer modules are trained sequentially from the lowermost to the upper-
most to make a multi-layer network, then for a given pattern, a specific output value will
be assigned by the converged weight set. Although the target output values are not fixed
by the designer, the system automatically fixes the target values during the learning pro-
cess. Therefore, after training the modules by the modular learning algorithm, and mak-
ing a multi-layered system, we can further train the system by the EBP algorithm by
exploiting the fact that target output values are fixed after modular learning phase.
Further learning by EBP algorithm can be useiul when the designer wants the output
gathered around a certain point. In this way, modular neural network learning algorithm
and EBP learning algorithm can be combined naturally.

The combined learning algorithm can be described as follows:

Phase 1:
(a) Train single-layer modules from the lowermost to the uppermost

sequentially by modular learning algorithm.
(b) Make a multi-layer system by layering modules.

Phase 2:
(a) Observe and set the target values for each class.
(b) If the output value of a pattern is far from target values of the class,

then set the target value for that pattern as the one closest to it.
(c) Use EBP algorithm to move the output value to the target value

determined in (b).

SIMULATION

To demonstrate the combination of the moduar neural network algorithm with EBP
algorithm, we set up a network for recognizing Korean consonant -"7". The input consists
of 16 bits, and the two middle layers 8 and 4 bits respectively, and the output 1 bit. In
Figure 2(a), the training input patterns along with the output values after phase 1 learning
is shown. Here we used coulomb energy network with L=2 for each module. Noisy test
"-7" patterns along with the outputs of the network with the weight sets learned in phase
1 are shown in Figure 2(b). Note that the output of some test patterns are not close to
target value('1'). In Figure 2(c), the output values of the patterns in Figure 2(b) are
shown after phase 2 learning by EBP algorithm. This shows that those patterns which
were not close to the target value become closer to it('l').

1- 653



Training Output Test Output Output
Pattern (Phase 1) Pattern (Phase I) (Phase 2)t Ji11 0001 0001 0001 0.897342 1111 0001 0001 0011 0.871588 0.914869

1110 0010 0010 0010 0.888008 1110 0010 0010 0110 0.866925 0.931059
0111 0001 0001 0001 0.892196 0111 1001 0001 0001 0.903699 0.928059
0000 i111 0001 0001 0.893201 0000 111 0001 0011 0.865227 0.906250

"-7 1110 0010 0010 0000 0.908003 1110 0010 0010 1000 0.426068 0.834320
0000 0111 0001 0001 0.878635 0000 0111 1001 0001 0.589643 0.810455I 0000 111000100010 0.861448 1000 1110 00100010 0.871759 0.921667
0111 0001 0001 0000 0.895743 i111 0001 0001 0000 0.901857 0.935792
0111 0001 0001 0010 0.868973 0111 0001 0001 0011 0.865518 0.900577
1110 0010 0010 0100 0.894385 1110 0010 0010 1100 0.348479 0.790407
0000 0000 0000 i111 0.172287 0000 0000 0000 1111 0.176576 0.176535
1000 1000 1000 tll 0.087116 1000 1000 1000 1111 0.08r216 0.079293
1000 1000 1111 0000 0.076874 1000 1000 1111 0000 0.078625 00755500100 0100 0111 0000 0.0872_48 0100 0100 0111 0000 0.089311 0.101868

i 1111000 1000 1111 0.089773 1111 1000 1000 1111 0.09-149 0.092205
O01 010001000111 0.080508 0111 010001000111 0.082409 0.072183Not 1110 1010 1010 1110 0.101767 1110 1010 1010 1110 0104827 0.186210
0111 0101 01010111 0.081790 0111 0101 0101 0111 0.083782 0.076785
1111 1001 1111 0000 0.083144 1111 1001 1111 0000 0.085262 0.097414
1110 1010 11100000 0.090545 1110 1010 11100000 0.092984 0.148327
0111 0101 0111 0000 0.111303 0111 0101 0111 0000 0.114273 0.160169
0000 1110 1010 1110 0.080612 0000 1110 1010 1110 0.082599 0.089475
00000111 0101 0111 0.096213 00000111 0101 0111 0.098586 0.105523
1111 1001 1001 1111 0.091624 1111 1001 1001 1111 0.094128 0.099939

(a) (b) (c)

Figure 2 : Experimental result for demonstrating the combination of modular neural net-
work algorithm(a~b) and the EBP algorithm(c).

DISCUSSION
We have described a general form of the energy function for modular neural net-

works and shown that the coulomb energy network fits the form. We have also proposed
a general scheme to combine modular neural network algorithm and the EBP, and demon-
strated the experimental result. By relaxing the requirement of the fixed target values, thewhole feed-forward networks can be splirted into single-layer modules to be trained
separately. This helps to control the middle layer weights directly and therefore increases
the chance of making complex systems. EBP is shown to be helpful to train the network
further after each module is separately trained by the modular learning algorithm.

REFERENCES
Rumelhart.D.E., Hinton.G.E., Williams.R.J.: Learning internal representationc by error pro-pagation, in D.E. Rumelhart and J.L. McClelland (Eds.), Pa.'allel Distributed Processing,
MIT Press, 318-364(1986).

PsaltisD., NeifeldM.: The emergence of generalization in networks with constrained
representations, Proceedings of the IEEE International Conference on Neural Networks.
Vol.1, 371-381(1988).

Scofield,C.L.: Learning internal representations in the cc..;Iomb energy network. Proceed-
ings of the IEEE International Conference on Neural Networks, Vol.1. 271-276(1988).

1- 654



ANALYSIS OF DECISION CONTOUR OF NEURAL NETWORK
WITH SIGMOIDAL NONLINEARITY

Ho Chung Lul
Institute of Systems Science, National University of Singapore

Kent Ridge, Singapore 0511.
BITNET: ISSLHC@NUSVM

Abstract

The decision contour of multi-layer feedforward neural networks with sigmoidal non-
linearity is analysed. Unlike the linear threshold case, the decision boundary can be a
curved surface. Moreover, a family of contours can be obtained, each corresponding
to a particular output value. The contour typically consists of straight line segments
joined by a smooth rounded surface. It is also possible to identify which hidden unit
is affecting which part of the contour. In addition, networks with a %ingle hidden layer
are found to be capable of forming disjointed decision regions.

1 Introduction

A linear classifier can be implemented using simple neural network with thresqhold nonlinearityl ].
By joining several linear classifiers together with AND/OR logic, Lippmaun observed that a
network with two hidden layers can form arbitrarily complex, disjointed decision boundaries[I].
Recently, Makhoul et al. reported that networks with one hidden layer can form disconnected
regions[4]. Other researchers also analysed neural networks using the geometric approach and
suggested alternative learning algorithms[7,6]. However, all these results were based on the lin-
ear threshold function. On the other hand, the smooth sigmoidal nonlinearity is widely used for
the popular Backpropagation algorithm. This paper analyses the formation of decision contour
for the sigmoidal nonlinearity. In this case, a family of decision contours emerges, each contour
corresponding to a particular output value. The contour typically consists of linear segments. Un-
like the threshold case, segments are joined together by smooth, rounded smirfaces. Eiperimental
results indicate that complex, disconnected decision regions can be formed by a network with a
single hidden layer.

2 Theory

Consider the followinq sigmoidal nonlinear function:

[1 = + tanh(2 )I (1)

Notice that as T --+ 0, f(z) approaches the threshold function. Thus the results of the following
analysis also apply for the threshold nonlinearity as a limiting case. For the rest of the discussion,
T is taken to be 1/2 for clarity.

The output z of a simple two-layer (input and output) network is:

N N

where wu are the connection weights from input nrit ri, 0 is the bias and N ik the dimension of
the input space. At any output value z0 E [0, 1j, we have

N
z= 2 i + tanh( wzi + 0)] (3)

1- 655



x b2

II
z

Figure 1: Neural network with one hidden layer.

which is equivalent to
N

EwtV, = 7 (4)

where 7 = arctanh(2zo - 1) - 0. Thus the decision contour is a linear hyperplane in RN for each
zo. For a two-input, one.output network with one hidden layer as shown in Fig. 1, we have from
eq. 4

U

E wiu, =,y (5)
i=1

where M is the number of hidden nodes in the network, Wi is the weight between the 0'6 hidden
node to the output node, and the response of the i" hidden node ui is:

S= 2[1 + tanh(a.i + by + P,)] = j[I + tanh(4,)I (6)

where a; and bi are weights from the input units to the i" hidden node. Subitituting eq. 6 to eq. 5
and after simplifying, we obtain

M

SW, tanh(4,) = (7)

Thus the greater the magnitude of JW.I, the more influential this hidden node will be on the overall
network response. Notice that tanh(.) is a monotonic increasing function bounded between -I and
+1. Its range can be roughly partitioned into two 'satuation' regions, (when 1j ". 5, tanh(ý) - 1
and is insensitive to f) and an 'active' region in between them. In other words, if tanh(4j) is in
the saturation region, then W, tanh(4) _+ -W,. Hence, for those (z,y,) coordinates which satisfy
eq. 7 and all but one of the tanh(4i) term are in the saturation region, eq. 7 ran be approximated
by:

;g• tanh(6j) ý_- a (8)

Eq. 8 describes a straight line, whose slope is determined by (-ae/b,). Hence, when only one hidden
node is in. its active region, it dominates the shape of the decision contour and the contour becomes
a straight line. In fact, it can he considered that ench hidden node induces n -et of straight lines at
different response levels to graduately separate the input space into two partk The output node
then combines !he regions together, through the weights WI and the output hin- P, to form a proper

1- 656

I I II I II



decision boundary to separate the input patterns. This is not unlike the threshold nonlinearity
case. In the present case, however, every output value zo E [0, 11 defines A decision contour. The
family of these contours forms a smooth decision surface.

When more than one hidden node enter the active region, they interact with one another to
form a smooth, rounded contour. The analysis is more complex but the function in eq. 7 is a
well-behaved function and high-order derivatives exist. Let us consider the siope of the contour m:

dy = = Wa)sech2 (4)

dz ~ Wibijech2(&)

Notice that sach(z) E (0,11 for r E (_-oo, o), so seCh 2(r) E (0, 1] also When the i'4 node
becomes dominant, we have from eq. 9:

dy _ WiaiseCh 2 (ý.) - a,

dr - Wibisoch 2 (4i) =- bi

which reiterates that the trajectory is a straight line with slope (-ai/bi). Notice that the slope is
basically a cantinuous function, except for those points where the denioninator is zero '. When
the dominance starts to shift from node i to node j, the slope move gradually from (-ai/bi) to
(-aj/bJ). As a result, the trajectory is a smooth, continuous curve which connects the two straight
lines together.

It is therefore possible to identify which hidden unit is responsible for which part of the contour.
The overall influence, however, depends also on the magnitudes and signs of Wi, their relative
strength against one another, and against the output bias 0. When IW&I is comparatively much
smaller, the node can be eliminated without affecting the contour. Thus the parameters {ai, bi and
9•) determine the slopes and placements of straight lines while {Wi} deterui.in their orientations
and relative strengths.

3 Experiments

A neural network software package from MeClelland and Rumelhart[5] was used in these e.rpcri-
ments. The software was further enhanced by a color graphic package which displayed the network
structure and the decision region(3J. Information such as weights, biases, neural responses aun
decision contours are all color-coded for ease of visualization. However, the code to implement the
Backpropagation algorithm was not modified. Several network structures similar to Fig. I were
used. Input data were manually generated and were confined within the imnit square bounded
by (0,0), (1,0), (0,1) and (1,1). Fig. 2 and 3 depict the results after training. Training data are
represented by symbols '+' and 'x' in the unit square. A '+' means that the ILarget output should
be '1' whereas an 'x' corresponds to a target value of zero.

In Fig. 2, the 1+' data are concentrated at the center of the unit square, while the 'x' symbols
are scattered along the perimeter. The decision contours clearly reveal that, for low output values,
the main components are four straight line iegments. For high output values, the hidden units
interact with one another to form an oval shaped contour. Fig. 3 shows that the same network
topology is capable of forming complex, disjointed decision regions. The data set in this case
consists of two disjointed '+' sets at the upper left and lower right corners of the unit sqiiare. They
are surrounded by the 'x' data. Again the contours consist of mainly straight lines, joined together
with rounded corners. Fnther analysis of the network parameters shows tbnt hidden units 2, 3, 5
and 6 (unit I = top) are mainly responsible for the formation of the decision surface.

It should be noted tht while the multi-layer neural network is capable of forming complex
decision regions to separate patterns, the Backpropagation learning algorithm may not always be
able to find the right solution. It depends heavily on the initial conditions. A more thorough set of
experiments have been done to study the effectiveness of different network configurations against
five sets of manually generated patternf21.

'In this ca-e, we can consider I/rn' de/dy, which . n a nooth i•inctio, within this ,,;ghhnrhnoed.

I- 657



Conclusion

The decision contour of neural networks based on sigmoidal nonlinearity is analysed. For networks
with one hidden layer, the contour becomes a linear segment when a single hidden node is in the
active' region. When more that one node is active, the contour is a smooth, continuous curve.
Experimental results show that complex, disjointed regions can be formed on networks with only
one hidden layer. However, the popular Backpropagation learning algorithm may not be able to
construct them reliably.

Acknowledgement

The author would like to thank Dr. K.P. Choi and Prof, Teh for their valuahle comments.

References

it] Richard Lippmann. An introduction to computing with neural nets. IRRR ASSP Magazine,
4(2):4, 1987.

[21 H. C. Lui. Decision boundary formation from the back-propagation algorithm. In Proceedings
of International Symposium on Computer Architecture and Digital Singa! Processing, Hong
Kong, 1989.

131 H. C. Lui and Melvin Cheong. Graphical visualization of multi-layer neural network. In
Proceedings of the later Faculty Seminar on Neuronet Computing, page 33, Netinal U. of
Singapore, 1989.

[4) John Makhoul, Amro EI-Jaroudi, and Richard Schwartz. Formation of discounnected decision
regions. In Proceedings of International Joint Conference on Neural Network, page 455, IEEE,
1989.

[51 James L. McClelland and David E. Rumelhart. Explorations in Parallel Distributed Processing:
A Handbook of Models, Programs, and Exercises. MIT Press, Cambridge, MA, 1988.

[6) U. Ramacher ar,,I Wesseling M. A geometrical approach to neural network design. In Proceed.
ings of International Joint Conference on Neural Network, page 147, IEEE, 1989.

[71 Pal Rujan and Mario Marchand. A geometric approach to learning in neural networks. In
Proceedings of International Joint Conference on Neural Network, page 105, IEEE, 1989.

1- 658



S.... .. ...... ..... ...• ..•. ... ..... .... .. ..... .... ..... .' N.• k0-... ... ' • '
V r

C -"• '

Figure 2: Neural network topology and decision contour.

.............. ct,

I- 5



A Learning Algorithm based on Prediction

Akihiko MA CHIZA WA
Communications Res. Lab. MPT

2-1, Nukui-Kitamachi 4-chome, Koganei-shi, Tokyo 184, JAPAN

1. Introduction

Animals extract necessary information from a lot of indiscriminate outside infor-
mation with their neural systems. Linsker presented a learning algorithm which
preserves maximum information. 1 Its neuron can not extract information. There are
some learning algorithms of neural synapse. Although, conventional algorithms need
either teach signals (desired output) or no teach signals, biological neuron can learn
both with teach signals and without teach signals. This article presents a new learning
algorithm which extracts information based on Wiener's information. The algorithm
can learn both with teach signals and with no teach signals. From simulation results,
with teach signals the neuron model has performance to categorize patterns and with no
teach signals connections of synapse are formed like retinal neuron.

2. Information extraction

Signals are divided to two parts (Fig.1); one is possible to be predicted with oth-
ers, and another is impossible. Let X1 ,X 2 "'', JX as information sources, and from
information theory,

H(X,)+H(X,)+ +H(X.) >_ H(X1,X 2, X n " ,X,) (1)

with equality only if the events are independent. Though, the information quantity is
usually defined as Shannon's entropy 2 , Wiener said the part which could not be
predicted was real information. 3 We consider the information extraction based on

signals H(X,) •. H( Yj)

possible to be impossible to be Neural

predicted predicted Network

real information H(X. H( Yin)

Fig.1 Wiener's information. Fig.2 Neural network architecture.

1- &•o
I-i



Wiener's information definition. Total information H(X1)+H(X2)+ ' ' +H(X,) is
divided to real information H(X1,X 2, • • X,X) and other redundant information.

Let the predictive value i of zi as weighted sum without itself given by,

-~z (2)
j-i

and the predictive error yi is given by

Yi = -Zi

=Eujz (3)
j-1

3. Learning Algorithm

The weights wi=f{wij} are defined as minimizing mean square of predictive error

to extract information,

I= rmin E[ yi2] (4)
Wi

and larger weights are suitable to transmit more information,

C rmin 1 (6)

Therefore the neurons ledrn minimizing (4) and (5) eq. simultaneously with gradient
method.

E = E[ aI + e3C (7)

The neurons learn with no teach signals when all weights wij varies freely.

bw*,=---[ c,1 + 13C
Ow3i

2,3wi,;
=4 2zx ,wikk (8)

k { -'E(Wk)2}2

k

The other hand, the neurons learn with teach signals when one weight wi, is large and

fixed.

I 23wij6 2atxJF, wikxk" •Wi)}

k (joh)
bwij= 0 (j=h) (9)

1- 661



4. Simulation results

4.1. With no teach signals

A neuron has 15x15 (height x width) synapses, training data is a set of variety
parts of a gray scale picture (Fig.3(a)), and no teach signals are desired. After learning,
a center-surround neuron shown as Fig.3(b) is formed. Fig.3(c) shows an output of an
array of such neurons. This artificial neuron is similar to V2G known as biological reti-
nal neuron model4 shown in Fig.3(d),3(e).

4.2. With teach signals

The task is categorizing three input patterns (size: 4x4) shown in Fig.4 and
activating three output neurons for each pattern. Presented algorithm has almost same
categorizing performance to Widrow-Hoff algorithm, 5 because of similar evaluation func-
tion.

(a)'
,•:, Fig.3 Simulation results with no teach signals

(a) input picture (b) a neuron after learning

(c) output of neuron array (d) a retinal neu-
Sr • ron (e) output of retina

I (b) (d)

S.... • • • • a..

(C)~ (e)

L I~

1- 662



S '. Fig.4 simulation results with teach signals.

4x4 input patterns to three categories.

5. Conclusion

This article presents a new learning algorithm which extracts information based
on Wiener's information. The neuron makes its output minimum to predict one input
with others. This principle contribute to not only information extraction but also bio-
logical energy saving. This article, though, discusses a learning algorithm for only one
neuron. Competitive learning and self-organization are future studies.

References

1. LINSKER, Ralph, "From Basic Network Principles to Neural Architecture: Emergence of Spatial-
opponent Cells," Proc. Nall. Acad. Sci. USA, vol. 83, pp. 7508-7512,8390-8394,8779-8783, Oct.
1986.

2. SHANNON, C. E., "A Mathematical Theory of Communication," Bell Syst. Tech. J, vol. 27, pp.
379-423, 623-656, 1948.

3. WIENER, Nobert, in Cybernetics, 2nd ed., John Wiley & Sons, Inc., New York, 1961.
4. MARR, David, in Vision, W.H. Freeman and Company, New York, 1982.
5. WIDROW, B. and M. E. HOFF, "Adaptive switching circuits," Cony. Rec. of Inst. Radio Eng.,

West. Elec&r. Show and Cony., vol. Part 4, pp. 96-104, 1960.

L1- 663

L._.-Mr



A SYSTEM IN CONTROL OF ITS KNOWLEDGE THAT PROVIDES
ALTERNATIVE AND DIFFERENT SOLUTIONS FROM ONE INPUT SET

By
Oscar Martinez and Craig Harston

Computer Applications Service
6207 Forest Trail

Signal Mountain, TN 37377

Abstract

This is an associative neural network that can store a large number of
associations and can provide many solutions to an individual input
pattern. Responses are controllable making the system very powerful.
The sensitivity of the input is measured in the system exposing several
matches stored on memory. The system does not look for a matching
solution to the input, instead the input is used as a clue to finding
many solutions. The system can provide enormous reduction of the memory
size, and shows control of its knowledge.

Introduction

We still find many limitations for what neural networks can do:

1) Neural networks are limited to an optimal goal and that is to find
an exact match to the given input. Finding the exact match does
not always mean getting the right answer. We could have an
incomplete or noise input misleading the search for a response.

2) Saturation is another problem that limit the number of
associations that can be stored in memory. Saturation also forces
us to increase unnecessarily the size of the memory in order to
increase the number of associations even for a small fixed size
application.

3) Most neural networks do not grow as intelligent systems, because
they do not make use of their knowledge. They do not show to the
user the relations among similar experiences that occurred during
the training.

We have a system which capacity is m = +.6n (figure 1) where n is the
number of neurons ( m has been determined by experiments). Since it is
possible to store several associations in a amall memory, many of them
could have similar patterns, so finding the best match may not be the
right solution. The goal is to find all the possible answers. The
system provides the necessary information for us to make a decision.
The right answer always depends on the type of application for which
the system is used. For example: in medicine, we need to find
information about symptoms and diseases. Instead of just having a
confirmation of a disease by giving the symptoms, the system could also
list the consequences that could follow from the current condition of
the patient.

SYSTEM IN CONTROL OF ITS KNOWLEDGE

Informative Associative Network Development

The system was designed to provide more than one correct answer to a
given input pattern in an organized manner. The memory is built using
the outer product of a vector with itself.

vector Z(n)
matrix T(n,n)

1-664

6"11



T T. + ( Z, * Z. )

Memory-Input interaction

We are measuring all the levels of reactions between each input neuron
and the memory finding different frequencies.

We know that neurons react at different levels or intensities of
stimulus producing a greater or smaller interaction (excitation) among
them. These stimulus levels are controlled in the system and reflected
in the output.

Martinez-Harston (MH) Frequency

The calculated interaction between memory and input is called MH
frequency. For every output neuron there is a MH frequency calculated
in the first recall. Some neurons may have the same MH frequency. The
MH frequency is stored in the output neuron array. A duplicate of these
values are sorted and stored in tables (figure 2).

MH Frequency Table: The tables are used to control the output
responses. All the MH frequencies are stored in an ascending or
descending order to control how high or low we want the intensity of
the stimulus to be. As a result, the frequency values are stored in
two tables.

REDUCTION TABLE: The best solution corresponds to the highest
frequency in the table. The alternative best solution follows the
highest frequency in a descending order.

AMPLIFICATION TABLE: The best solution corresponds to the lowest
frequency in the table. The alternative best solution follows the
lowest frequency in an ascending order.

Bypassing the memory

After storing the MH frequency values in the tables, it is unnecessary
to recalculate the MH frequencies because the input is not changed.
Response time is almost zero for every output neuron, since we only
have to compare the value in the output array with the one given from
the frequency table (figure 2).

THE HIDDEN OBSERVER

Different Answers

The system can find different responses at two different recalls even
when the input is the same,

There is a weak side that shows the reaction of neurons that have been
less involved than other neurons during the learning process, but they
do stimulate the system for a response. However, there is also a
strong side that shows the reaction of neurons that were more active in
the process of learning. Figure A and B show two different responses
for a single input.

The Hidden Observer

A similar behavior has been found in our brain. (5) "According to the
researchers, it 3eems to be a prime example of a mental dissociation,

I- 665



two parts of consciousnesses split off from one another".

"Even more intriguing are a small but growing number of studies that
show that during hypnosis the brain's right hemisphere becomes more
active in relation to the left hemisphere, perhaps because the left
aside is somehow inhibited (Banyai, Mesaros and Csokay, 1985;
Edmonston, 1985; Gruzelier et al., 1984, 1985; Karlin, Cohen, and
Goldstein, 1984 ...

REFERENCE

(1) 3. A. Anderson, "A simple neural network generating an interactive
memory," Mathematical Biosciences, vol. 14, pp.197-220, 1972.

(21 T. Kohonen, "Correlation matrix memories," IEEE Transactions o
Computers, vol. C-21, pp.353-359, 1972.

E31 S. Grossberg, "A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine," Computer Vision.
Graphics. and Image Processing, vol. 37, pp.S4-115, 1987.

[41 3. Hopfield, "Neural Networks and Physical Systems with Emergent
Collective Computational Abilities," Proceedings of the National
Academy of Sciences, vol. 70, pp.2554-2558, 1982.

"E51 Camille B. Wortmam and Elizabeth F. Loftus, "Studying The Hidden
Observer" , Psychology, pages 328-329, 1988.

(61 Ed Reitman " The Hebb Learning Rule," Experiments in Artificial
Neural Networks, pp. 46-53.

INPUT RESPO2NSE
Noroal factor.0.000000

3 0 12 3 4 01 : 3 4 Orlzr'al:1 ,a7'0 recall

FEUNYTABLE RESPONSE

RE DUC T ION R.auCtIORi $ACtor22.09Q699

tables3 90 1 2 3 4 Recall with
21.•099699 reouctij20..^99700S32 0 10 |freawoeny

AlM 'PLIFICAT IONRESNS
ta- le-I - Amolify $aCto'l7.166767

12~2. 125100 Fecal! .1t?12 r.166767 0 1 3 4 amolfy

37.625100 f*ecýEnCv::I13 13.1•66767

22,2250099

in this *,amaol 35.500C99 23 3
a .8 15

FIGURE I IIuPE

1- 666



FREQUENCY TABLE
AMPLIFICATION INPUT

8 Strong Path 8 RESPONSE
0 1 2 3 4 Normal factor=O.O00000

-•tab~le=1 00 1 2 3 4
4.000100 0 Corresooni
4.888989 1 0 to figure I
5.600100 2 1 association #11
7.333433 2

FREQUENCY TABLE
AMPLIFICATION INPUT RESPONSE
2 Weak Path 3 Amplify factor=l.375100

-tablelz - 01234 01234
1.375100 Correspond
1.500100 0 30 to figure I
2.300100 1 1 association #13
2.375100 2 2

This is example #1 of two different answers from
two different recalls using the same input.

FIGURE A

FREQUENCY TABLE INPUTP
REDUCTION RESPONSE

I Strong Path 2 Reduction factor=8.555255
01234

-table#=3 0 1 23 4
24.428270 0 Correspond
8.555255,. *3 0 33 to figure 1
4.636064 I association #9
0.199700

FREQUENCY TABLE INPUT
REDUCTION RESPONSE

a Weak Path 2 Reduction factor=2.374700
01234

-table#=3----. 0 1 2 3 4
24.166367 0 Corresoond
2.374700 1 0 m 0 to figure 1
1.749700 2 1 33 3 association *7

This ;s examole *2 of two dii;erent answers from
two ci4erent recalls using the same inout.

FIGtRE B

j- 667



/

FAST QUADRATIC SEPARATION USING A
SINGLE-LAYER INTERCONNECT MODEL

Jack L Meador
Electrical and Computer Engineering

Washington State University
Pullman Wa. 99164-2752

ABSTRACT
This paper details a performance comparison between a single-layer axo-axonic neural network and a

two-layer backpropagation network. The axo-axonic interconnect model used is based upon axo-axo-dendritic
connections between neurons. This kind of interaction is modeled as a multiplicative dependency between neu-
ron inputs. These dependencies allow for the single-layer representation of input pattern classes that are separ-
able by a generalized quadratic function. Even though the single-layer axo-axonic model is computationally
more complex than conventional single layer networks, the specific results reported suggest that it is less com-
plex than a multi-layer network using backpropagation. It not only requires fewer computations per epoch, it
also converges in fewer epochs.

Introduction
Neurobiological research has established the existence of several kinds of synaptic junctions. That which

is the most studied in artificial neural networks is the axo-dendritic variety where the axon of the pre-synaptic
neuron excites the dendritic membrane of the post-synaptic neuron. Another variety known to exist is the axo-
axonic synapse. In this case, an axon process terminates upon another axon process instead of a dendrite.
When the former process releases neurotransmitter, the effectiveness of an axo-dendritic synapse associated
with the latter process is modulated. Axo-axonic synapses have been documented in a wide variety of natural
neural circuits [1,21. Another type of connection is the dendro-dendritic synapse. Sigma-pi units [3] and product
units [4] for multi-layer networks are inspired by this third kind of synapse. Even though a more detailed model
of natural networks would ultimately include the effects of all three kinds of connections and perhaps others, -

the focus of this work is strictly upon a combination of axo-dendritic and axo-axonic varieties.

Interconnect Model
An axo-axo-dendritic synapse between two inputs is modeled as a multiplicative modulation of one input

by the other [5]. Given two inputsxj and xk, axo-axonic control of xj byxk can be expressed by the second-order
term:

dojxj (I + aij~rk)(I

Where aijk represents the strength of the axo-axonic synapse from xk to xi and d,1 represents the axo-dendritic
synapse strength between xj and receiving neuron i. This equation expresses the accentuation or attenuation of
xj's effectiveness upon the receiving neuron when xk is active. The axo-axonic synapses are constrained such
that aik > -1 for greater biological plausibility.

The axo-axonic model employed here accounts for all possible axo-dendritic and axo-axo-dendritic con-
nections. The computation performed by a second-order I-input network can be expressed as:

! I
oi = E..[wixj +÷dij(I + •aijkk) xj (2)

j.1 k-1

Where the w,1 represent axo-dendritic connection weights having no axo-axonic influence. The dij represent
axo-dendritic connection weights controlled by the axo-axonic connections ajk, 1 < i < N. N and I are the total
number of neurons and inputs respectively. All connections expressed by this equation are depicted by the
two-input single-neuron pattern associator illustrated in Figure 1.

1-668

IiI



al 2 l 2

a12

X2 d

Figure 1. A two-input single-output axo-axonic interconnect model.

Equation (2) can be rewritten in the form of a second-order generalized polynomial by collapsing connec-
tion weight products into single variables:

A a 
no•= F, Dijj + E2 EA~jk~x (3)

j-1 J-lk-l

where Dij=wij +dij and Aijk =daijao. For any combination of Dij and Aijk, dij =Aijk/aijk and wij =Dj-Aijklaijk.
This means there will always exist some combination of w,d and a for every possible choice of Dij and Aojk. It
follows that equation (3) may be used in place of the earlier expression without loss of generality.

Adaptation algorithm

In this experiment, adaptation of axo-axonic connections was based upon a LMS procedure similar to that

uwed for single-layer linear pattern associators. Weight changes are correlated to the error between trial output

and target training data. A gradient descent in weight space is guided by a sum-square error measure. It can be

shown that gradie,.. descent is performed when the coefficients of equation (3) are adapted according to the fol-

lowing rules:

A Di; = -,7(T-o,)xj (4)

A Aijk = -q(T, -Oi)XjXk (5)

j7 is the learn'ng rate, T1 represents the i' element of an output training pattern, and Oi represents the network

response to the corresponding input training pattern.

A simulation of a single neuron network described by (3) using these adaptation rules has successfully

converged to XOR solutions from a variety of initial states. Hyperbolic and elliptic solutions typically result.

Figure 2 shows convergence to a hvpZrbolic solution over a pt:iod of 50 epochs. Each line represents the deci-

sion boundary where Oi = 0.5 and is labeled by the epoch number from which the weights were obtained.

The activation function has thus far been assumed to be linear. This assumption however, does not pre-

clude the use of a nonlinear activation function. It has been found that linear activation is sufficient to learn the

XOR association upon which current simulation data is based. It has yet to be established whether there exist

problems for which a nonlinear activation would offer better results, although such problems are expected to

exist.

I- 669

K



2-

1.* ..'"" "

x, o- 5o0 . .(0

-2 -1 0 1 2

X2

Figure 2. Convergence to a hyperbolic XQR solution.

Experimental Results
Figure 3 provides a tabular comparison of simulation results obtained using an established backpropaga-

dion simulator (BP) [6J and a 2nd-order axo-axonic simulation (AA). Both were configured as 2-input single-
output networks. Mean convergen~ce times (in epochs) and convergence probabilities (%) were observed. Each
observation was based upon twenty simulations with the convergence probability given as the percentage of
those trials which converged to a solution. The mean convergence time corresponds to the number of epochs
required for convergence, averaged over the simulations which met convergence criteria. Solutions needing
more than 4,000 epochs to converge to 0.01 total sum square error were recorded as nonconvergent. Simiula-
tions of both networks were performed with initial connection strengths uniformly distributed over 1-1, 11, pat-
terns presented sequentially, zero momentum, and weight update by pattern. The networks were trained to
perform a standard XOR classification to evaluate their relative performance with a quadratically-separable
problem. The XOR problem is perhaps the simplest pattern association problem to require a nonlinear solu-
ion such as this.

Learning rate (qi) 0.125 0.25 0.5 1.0 2.0

2-layer Back2 2967 1503 830
propagation (BP) 0% 0% 90% 70% 85%

Single-layer 29.6 13.1 3.0
Axo-Axonic (AA) 100% 100% 100% 0% 0%

Figure 3. Mean convergence time (epochs) and convergence probability (%) observed for various
learning rates using a backprcpagation and axo-axonic network. (*see text)

As the table shows, the convergence time for the axo-axonic simulation is significantly less than that of the back-
propagation network. The best result obtained using the AA network requires two orders of magnitude pawcr

1- 670

prpgtoNB) 0% 0 0 0 5



epochs than the fastest BP result. It has also been found to converge much more consistently for learning rates
below some "stability threshold." While conducting these experiments, BP was observed to fail convergence
many times by falling into a local error minimum. (BP convergences for ,7_5 0.25 all occurred in greater than
4000 epochs, so are counted as nonconverging by the previous convergence definition.) AA was observed to not
converge only when the learning rate (rq) was chosen to be too large. With q7 too large, the system becomes
unstable and connection weights tend to infinity. The stability threshold was found to occur somewhere
between i7=0.6 and n=0.7 for the XOR problem. With all observed learning rates below this threshold, AA was
found to always converge. AA was never observed to become stuck in a local minimum.

These results are especially interesting when considering one relative advantage provided the BP pro-
gram. The multilayer configuration virtually requires that activation biases be allowed to adapt -- fixing the
biases at zero, for example, can cause BP to never converge to an XOR solution for a 0,1 pattern set. The BP
XOR simulation uses five neurons and six connections arranged in two layers. AA on the other hand, is
configured as a single neuron having six connections in a single layer. Activation biases for AA are fixed at zero
offset, so the AA results are obtained with fewer degrees of adaptive freedom. Even with adaptive biases, AA
would be computationally simpler, since it employs fewer neurons. At least for the XOR problem, the axo-
axonic network exhibits better performance in terms of fewer epochs to converge, fewer computations per
epoch, and more consistent convergence.

Future Directions
Much work remains to better understand the mechanisms by which axo-axonic connections lead to this

level of performance, and to understand what the limitations of these mechanisms aye. Preliminary indications
from related experiments suggest that convergence improvements will also be observed for other problems hav-
ing the same dimensionality. Experiments with higher dimensional networks and practical data are also
planned.

Many other issues also need to be investigated. The utility of a nonlinear activation function needs to be
better identified. The concept of higher-order axo-axonic networks needs to be developed. Higher-order net-
works could include the use of higher-order axo-axonic connections (axo-axo-axo-dendritic, for example), and
the investigation of multi-layer extensions to this model. The generalization ability of networks based upon this
model is also an open question suitable for future investigation.

Conclusion
A performance comparison between a multi-layer backpropagation network and a single-layer axo-axonic

network has been presented. The results obtained show that (for the XOR problem) the axo-axonic intercon-
nect model exhibits a higher convergence rate and better convergence probability than a simple backpropaga-
tion network. These results indicate that the axo-axonic interconnect model provides an interesting and poten-
tially highly productive avenue of future investigation.

References

[11 Shepherd, G.M., The Synaptic Or,,3nization of the Brain, Oxford University Press, 1979.
[2] Hawkins, R.D., and Kandel, E.R., "Is There a Cell-Biological Alphabet for Simple Forms of Learning?"

Psychological Review, Vol. 91 No. 3, pp. 375-391, 1984.
[3] Rurnelhart, D.E, G.E. Hinton, and RJ. Williams, "Learning Internal Representations by Error Propaga-

tion," Parallel Distributed Processing Vol. 1, pp. 352-353, 1986.
[4] Durbin, R. and D.E. Rumelhart, "Product Units: A Computationally Powerful and Biologicaliy Plausible

Extension to Backpropagation Networks," Neural Computation, Vol. 1 No. 1, 1989.
[5] Meador, J.L., "Nonlinear Separation in a Single Neuron Pattern Associator Using an Axo-Axonic Inter-

connect Model," IEEE Conf. on Neural Information Processing Systems, 1989 (In review).
[61 McClelland, J.L., and D.E. Rumelhart, Explorations in Parallel Distributed Processing, pp. 121-159,

1988.

r- 671



A PERCEPTRON BASED AUTO-ASSOCIATIVE MEMORY
A.MEKKAOUI, PJESPERS

Microelectronics Laboratory
Place du Levent 3. B-1348 L.L.N. BELGIUM

1. INTRODUCTION:
The perceptron concept is the oldest and the most studied neural paradigm. After the pioneering work o!

Rosenblatt [1] this model has induced a lot of enthusiasm among researchers interested in building brain-like
machines.

The power of the perceptron method lies in the existence of a convergence theorem by which one can
determine the coefficients of the separating hyperplane equation whenever the classes are separable (2].

In this paper we propose a method to realize an auto-associative memory, where use is made of the perceptron
theorem to determine the connection matrix W. The proposed method allows an arbitrary number of patterns to
be fixed points. The issue to address then, is the size of attraction basins of these memory points which get
smaller and smaller as more fixed points are added. When the memory is overloaded the size of the basins tends
to zero but the reference prototypes are never washed out.

Throughout the paper the term convergence is used to indicate convergence to the correct expected state. Bold
characters represent vectors or matrices. The terms exemplar and prototype, associative and auto-associative, are
considered as synonymous. x1 denotes the transpose of vector x.

2. THE ASSOCIATIVE MEMORY PARADIGM:
A "neural* associative memory is usually implemented as a network of n mutually interconnected

units(neurons). Each neuron receives n binary signals (xO0xl.....Xn-l) and emits a binary output signal by
evaluating a non-linear function f of the weighted sum of its inputs. The state transition of each unit can be
written as.

n-I
xi(t+ I) - f( lWijxj(t))

The system state-transition can be written as:

x(t+l) = Tx(t)

x=(x0,xl,...xn. 1)t and T being a nonlinear operator defined by

Tx = f(Wx)

W= (Wij) denotes the connection matrix of the net. Wij is the weight from unit j to unit i. Our aim is to find a
matrix W such that for every pattern x, we want to store, the following is to hold:

x = Tx

An x for which the above equation holds is said to be an equilibrium state [4] or a fixed memory point [51 or
more expressively a reference pattern f6]. Not only we want the x patterns to be fixed points but we want to
achieve large attraction basins B(x) as well. Amari [4] defines B(x). the attraction basins of an equilibrium state
x, as the set of those states each of which fail in the state x after N state transitions. Formally:

B(x) = (x0 / TNxO = x) N <-

In practice this translates to: Any reference pattern x can be associatively recalled from any vector x0
belonging to the set B(x). It this property that makes an associative memory attractive for pattern recognition
applications. The xO vector may represent a noisy input pattern to be recognized and x the non-distorted pattern
to which the system converges after a finite number of transitions.

From the above one can infer that both the number of equilibrium states that can be achieved and the size of
the attraction basins are important capacity criteria. The former is sometimes refcrred to as the absolute capacity
criterion. A common measure of th-'s capacity is the ratio m/n, m being the achievable number of fixed memory
points.

1- 672



Recent papers have reported different upper bounds of the m/n ratio. McEleice et-al (7] reported a figure of
1/(4logn) for the Hopfield network. Hopfield reported an experimental value of around 0.15 (8]. For the same
network Amari (4] reports an upper bound of l/(2logn-log(logn)).

3. A PERCEPTRON BASED ASSOCIATIVE MEMORY:
The proposed network is similar to the well known Hopfield one except that self-connection is allowed and

weight symmetry is not imposed.
The key idea of this method is.to consider each unit as a two-class machine receiving input from all other

units and from itself through feedback. Each element in the network represents one bit in the input pattern,
Le,unit i represents bit i. Unit i (noted ui) is assigned the job of separating input patterns into two classes. Class
I contains patterns in which bit i is "1" and for which the ui must be ON. On the other hand class 2 contains the
patterns in which bit i is 0" and consequently ui must be OFF. For example, in a four bit net ul will classify
the pattern 1010 as belonging to class 1 while it will classify 0110 as class 2 pattern; on the other hand u2
classifies the first pattern as being of class 2 and the second one as of class 1.

It can easily be shown that these two classes are linearly separable. And use is made of a perceptron
convergence procedure to determine the weight matrix. The procedure is applied to each unit in turn. The W
matrix is determined column after column.

One way to see that these 2 classes are linearly separable is to consider each pattern as located on a corner of
an n-dimensional hypercube. It is obvious that the vectors having a "1" at the ith position will be on the same
side of the hypercube and the existence of a non-trivial separating hyperplane is obvious.
Determining the weight matrix by applying a perceptron procedure to each unit ensures That the network
never fail to converge to a stored exemplar if it is presented undistorted. This is true even if all the 2n possible
patterns are stored. This is an important advantage over Hopfield associative memory where cross-talk is always
present whenever the number of stored patterns exceeds a certain limit. The ratio m/n achieved by this method is
2n/n. This measure of capacity is to be taken with care because it does not give information on the size of the
attraction basins of the equilibrium states. In fact the greater the number of stored patterns is the smaller the
attraction basins of individual memory points are.
In order to achieve good atraction basins, the method has been improved by adding to each prototype its 1-bit
distant (in Hamming sense) neighbors that are not prototypes themselves. Then an attempt is made to classify
each pattern and its added neighbors as being the same exemplar. Assume, for example, that we have the two
patterns 110 and 001 to store. After addition of the pattern neighbors we will have to classify 110, 010, 100 and
111 as being of the same category: ul and u2 will then classify all these patterns as being of class 1 (110 has a 1
at its first and second position), while unit 3 will classify them as being of class 2.

This technique seems to be a kind of noise prediction. The considered neighbors will play the role of traps
where distant input patterns are likely to go, during the relaxation process, before settling down on the right
corner of the hypercube. Personnaz et-al have introduced a similar principle which consists in imposing
intermediate state transitions as a way to tailor the size of the basins (9].

One might suspect that the added patterns may violate the linear separability condition. In the simulations a
test is provided bywhich the added patterns causing such a problem are not considered. A possibly better solution
is to use a procedure that converges when the set is linearly separable and is optimal when it is not [3],[10],[1 I].
Another problem that is likely to occur is the fact that two different exemplars may have the same neighbor. We
have taken the decision to classify such a pattern with the exemplar that have the greatest binary magnitude. This
has improved the degree of attractiveness considerably. In the next section the simulation results are presented.

4. SIMULATION AND RESULTS:
We have experimented this method by using the simple fixed increment algorithm [10] with a fixed threshold

of 0. The units having boolean nonlinear transfer function. The net updates asynchronously and in a
deterministic manner.

Figure 1 shows the obtained convergence rezults for a 25 bit network. In case of wrong convergence the
output patterns are found to be close to the expected result. A plot of the % error versus noise is reported in
figure 2.

Figure 3 shows the performance of this method as compared to the Hopfield net and to the simplex method
described in (12]. This comparison considers a 12-bit net with 3 stored exemplars.

This method has been used for a practical pattern recognition problem. The input are 25-bit long binary
vector representing digitized alphanumeric characters. After training, patterns corrupted by random noise were
presented to the network for recognition. See Box 1. The results obtained are more than encouraging despite the
extreme simplicity of the algorithm used to train each unit in the net.

I- 673



Finally, we should mention that in these simulations we have never observed limit cycles not a relaxation
process that "ok more than six cycles.

S. CONCLUDING REMARKS:
We have proposed a simple idea to implement the auto-associative paradigm. We don't expect the idea to be

used as suchl Allowing variable threshold will certainly improve the performance. The appli'nation of the
convergence procedure to each unit makes the learning process very slow, consequently the on line learning of
this method is out of question. But it may not mater if the learning is done once per applicatio.

REFERENCES:
(1] R. Rosenblatt, Principles of Neurodynamics. New York. Spartan Books (1959).
(2) M. Minsky, S. Pape, Perceptrons: an introduction to computuional geometry. MIT press, (1988)
(3) B.Widrow, M.E Hoff, *Adaptive switching circuiLs", 1960 IRE WESCON Cony. Record. Part 4, 96-104.
August 1960.
[41SI Amari, "Stastical Neurodynamics of Associative Memory', Neural Networks. Vol 1, 63-73. (1988)
[5JH. Bourland, C.i. Wellekens. *Neural Neiwork Models and Application to Speech Processing, Lecture given
at the Vrije Universiteit Brussells (VUB) April 1988.
[61T. Kohonen, Associative Memory : A system-theoretical Approach. Springer-Verlag Berlin Heidlberg New-
York 1977.
[7]McEleiceRJ, Posner, E.C, Rodmich, E.R. Venkatesh, S.S, The Capacity of the Hopfield Associative
Memory",IEEE Trans. Irfo. Theory, IT-33, 461-482.
[8) JJ. HopfieJd. "Neural Networks and Physical Systems with Emergent Collective Computational Properties'
proc. Nail. Acad. Sci. USA, Vol. 79. 2554-2558, April 1982.
(9]Personnaz et-al, *Neural Networks for Associative Memory design". in Computadonal Systems: Natural &
AWficial, Ed. HMaken , springer 1988.
(10) R.O Duda. P.E Hart, Pattern CloashJcation and Scene Analysis. John Widey & Sons, New York (1973).
[11) J.T Tou, R.C Gonzales, Pattern recognition principles, Addison-Wesley co., Reading. Mass, (1974)
[12) M. Verleysen, P. Jespers, *Neural networks for high-storage CAM: VLSI circuit and learning algorithm.*
To be published in the IEEE JSSC, June 1989, Special Issue On ESSCIRCT8 Conference.

so T T- 2-paiis

oo ~~ 3\N2I -paeerns
1350 ; .e 32-pau rrs

*o" 4 - Noise I%1
0 10 20 30 40 50 60 70

Figure 1. %convergence vs introduced noise.
Noise is expressed in rerms of % bits randomly inverted.

1- 674



.4-pecns

1- I 4 16-pierns
-~32-peanem

Mi'

o V - -- -Noise )
0 10 20 30 40 50 60 70
Figure 2. %aimr vs %noise introduced in the input patterms.
Note the 32-peatns cane, though the % convegaece was
Foor, the %aror remains low.

100

at I~&=~±*ZZ - simplex
S...... Hopfield

i::*i:itO .•- \ 1.

10 - - -

0~ %Noise
0 10 20 30 40 so 60 70
Figure 3. Companson of HoprieKd simplex, and the proposed methods.
Results for The Hopfield and the simplex metheds are from [12J.

STORED EXEMO~ARS.

:sia•y M. Each bit bit in di Th cneqed to penuti
ariginal pas"M is imaverad Smnle Cycl.
with a probability of 0.25.

WirsyA.Each bitbitin the The c uhn nuafta
wosgrial palarn is itwetAd I st "r 2nd cycle.
withi a probability of 0.25.

BOX 1. Associatlve memory for character recognition

1- 675

-V



Acceleration of Back-Propagation through Learning Rate and Momentum Adaptation.

Ali A. Minai & Ronald D. Williams
Center for Semicustom Integrated Systems

Department of Electrical Engineering
University of Virginia. Charlottesville, VA 22903

1. Introduction
The potential of highly parallel distributed systems for pattern recognition, control and artificial intelligence

has long been recognized, but with the recent development of realistic training algorithms, artificial neural networks
(ANN's) have really come into their own. Feed-forward ANN's have been intensively studied and models abound
in the literature. By far the most popular training procedure for these networks, however, is the back-propagation
algorithm M71. Basically a gradient descent procedure, back-propagation has been quite successful, but there are
several problems. The most important of these is slow speed. The research presented here is one of the many
attempts at alleviating this difficulty.

2. Back-propagation Fundamentals
Consider a feed-forward network of neurons with transfer characteristic oi =fi(neti), where neti is the net

input to the ith neuron. Define an error metric E. for an input/output pair p. and the overall error as

E = S:E,, (1)
P

Then, in order to minimize error, the weights need to be modified as
aE4w51 = -T i-w- (2)

where wi1 is the weight from the jth to the ith neuron, and -n is a learning-rate parameter. The calculation of the par-
tial derivative for multiple layers requires the backward propagation of error at the outputs - hence the name
back-propagation.

Since back-propagation uses only local gradient information, 1i must be kept very small to prevent jumps to
undesirable areas of weight space. However, this slows the process down considerably, especially over long flat
"plateaus" which, as Hecht-Nielsen [3] and others have suggested, abound in most ANN search spaces. The ques-
tion, thus, is how to reconcile the opposing imperatives of stability and efficiency.

3. Speeding Up Back-Propagation: Methods and Previous Work
Basically, there are two ways to approach the problem of speeding up back-propagation: analytically incor-

porating more information about the error surface into the algorithm, or using heuristic methods thzt work most of
the time. The former approach has had its most prominent success in second order back-propagation [6,13], where
second order gradient information is used to guide the search for a suitable minimum. These methods, while cer-
tainly useful, are difficult to implement and often produce little real-time speedup. This has led to the development
"of several "intuitive" heuristics that produce empirically acceptable results. These include attempts to damp local
oscillations by the use of a momentum term [8). varying the learning rate (5, 11, modifying neuronal characteristics
[12], trying line-search techniques (21, controlling the sequence in which training examples are presented (4], using
different error metrics [I I], controlling problem difficulty [10]. and incorporating statistical information into the
training procedure (9]. Of these, momentum has been so universally successful that it is now an integral part of
almost all back-propagation networks. It modifies the basic learning equation to be:

Awi.) = -__Ew + AW,,(t-1) (3)

vhere gi (momentum) is an inertial parameter that damps out local oscillations and provides additional acceleration
(13].

Si:,• -. ~676



4. Varying the Learning Rate: the Delta-Bar-Delta Algorithm

Jacobs, in [5], introduces a method, called the delta-bar-delta (DBD) algorithm, for varying the learning rate
in response to local gradient information. The four basic aspects of this scheme are: 1) Each weight (i.e. each
dimension of the search space) has its own learning rate. 2) These learning rates are varied based on error surface
information. 3) When the error surface gradient aE/awi has the same sign for many iterations, the corresponding
learning rate is increased, since this indicates that a minimum lies ahead. 4) When the error surface gradient flips
signs for several consecutive time steps, the learning rate is decreased, since this indicates that a minimum is being
jumped over. Based on these heuristics, the scheme for modifying learning rates is:

"mq(t +0) = TWOt) + ATIO(t) (4)

1 •: if 8ij(t-1)8j(t)>o
!'allij(t) = o0(t) if•0i(t-l)8jj(t)<0 (5)

0 otherwise

8i(t) = •W•(t) (6)

sij(t) = (l-0)80(t) + 080(t-1) (7)

x,. * and 8 are parameters specified by the user. The quantity 8(t) is basically an exponentially decaying trace of gra-
dient values. The reason for increasing learning rates additively is to prevent them from becoming too large too
rapidly, while that for the exponential decrementing is to keep the rates positive at all times, and to allow rapid
',ecrease [5].

5. Problems with the Delta-Bar-Delta Algorithm

The DBD algorithm was tried on several problems, and was found to be excellent for increasing learning
speed. However, some serious limitations were noticed. The first is that the algorithm does not use momentum,
even though results cited by the author indicate that momentum does give further speedup [5]. The reason is that
momentum, along with a varying learning rate, can sometimes cause the search to diverge drastically. One possible
solution is to keep the K factor very small, but this leads to slow increase in il and little speedup.

Another related problem is that, even with a small 1c, the learning rate can sometimes increase so much that
the small exponential decrease is not sufficient to prevent wild jumps. Increasing 0 exacerbates the problem instead
of solving it because it makes return from bad search-space areas difficult. Making 0 small, on the other hand, lets 7I
get out of hand. The heuristic algorithm presented here tries to overcome these problems to a certain extent.

6. The Extended Delta-Bar-Delta Algorithm (EDBD)

Several changes were made to the DBD algorithm to make it more robust ez'd efficient. These are as follows:

(1) The learning rate increase was made an exponentially decreasing function of I 9(t) I instead of being a con-
stant ic. This meant that learning rate would increase faster on very flat areas but slower on areas of greater
slope. Standard DBD overlooked this, increasing T1 by a constant even when the slope was quite steep. The
new scheme allowed the use of higher increment factors where it really mattered.

(2) Momentum was used as a standard part of the algorithm, but was varied just like the learning rate. Thus,
momentum was increased on plateaus and decreased exponentially near minima. The DBD criterion was used
for this purpose too, but the increment factor was again a decreasing exponential function of I8(t) I.

(3) To prevent either the learning rate or momentum from becoming too high, a ceiling was defined for both at
which they were hard-limited. This further facilitated the use of large increments, since their effect was not
unbounded.

(4) Memory and recovery were incorporated into the algorithm. Thus, the best result seen until the current time
step was saved. A tolerance parameter X was used to control recovery. If the error became greater than X
times the lowest seen so far, the search was restarted at the best point with attenuated learning rate and
momentum. To prevent thrashing, this was done stochastically, so there was a small probability that the
search would restart at a totally new point.

1- 677



The equations for the EDBD algorithm can be written as follows:

I Aw#(t) = -Thit)awE.) + l4tj(t)Awj,(t-I) (8)Awt = (8)(t

7i(t+1) = MIN[p. -,qhj(t) + Athj(t)] (9)

r K1eXp(-Y, ~i 6,,) ) r C..exp(-Y,, I8i(t) I) if 8j,(t-l)8ij(:)a0
t IP (t + ) = Ms,,,lj(t) i+fft(t-1)S((t)<0 (11)

10 10 otherwise
wher Sj,(t) and 6iQ) are as in equations (6) and (7). ,,and p...,~ are specified by the user.
Note that EDBD reduces effectively to DBD with appropriate parameter settings.

7. Results

The EDBD algorithm was tested on two problems: a simple binary one (Exclusive-OR), and a more complex
real-valued one (Quadratic Function). The algorithms are characterized by their parameters as follows:

SDM: ijg; DBD: ThLg.0,0
•1 ~~~EDBD- qq,~..t.¢'y~c,¢,,rX

where % is the initial value of ij, and SDM is the standard back-propagation algorithm with momentum, included
here for comparison. All algorithms were run in a "batched" fashion, each epoch representing a complete pass
through the training set. Weights were modified at the end of each epoch. All hidden neurons had sigmoid transfer
functions. r.,,=0.10.=0.3 and y.,=l.0 were used for all experiments. Each graph represents data averaged over 20
independent runs including failures. For each individual run, all algorithms started at the same point.

7.1. The Exclusive-OR Problem (XOR)

A network with one 2 unit hidden layer and a linear threshold output unit was used for this problem. The set-
tings were "=-K=O.095 and "1=0.1. These were taken from [5). The DBD algorithm was tried both with q;=0.9)
and without momentum. In the former case, 10 out of 20 runs failed to converge in 2000 epochs, while all con-
verged in the latter. EDBD performed better than both using Tn, 1 = 10.0, p,,--'0.9, and all runs converged to 0 error
(figures 1 & 2). The "Performance" figures give #converged/#did _not converge. All figures are for 2000 epochs.
The recovery feature was turned off in this case by setting X very high.

"7.2. The Quadratic Function Problem (QUAD)

Here, a network with 2 hidden layers, of 2 and 1 units respectively, and one linear output neuron was trained
to approximate the quadratic function

y = Px(l-x); P = 3.95, 0.0 <x< 1.0 (12)

given 20 data points. Unlike binary problems, real-valued ones like this have error-spaces that are extremely sensi-
tive to minor weight changes, and require deft parameter manipulation. Several parameter values were tried for
both DBD and EDBD, with the latter producing clearly superior results. Indeed, it was found that DBD was able to
operate well only in a very narrow range of K and 0. The upper limit on K was about 0.1, beyond which the algo-
rithm either get trapped on a plateau or diverged to extremely high errors, depending on 0. EDBD, on the other
hand, proved much more robust, operating better than the best of DBD with K as high as 1.0, thus making parameter
settings far ;ess critical (see figure 6). No EDBD runs diverged, though descent did become more erratic with
increasing K. Sometimes the search got stuck on a plateau at an error of O.13, though still moving downhill. Longer
simulations give reason to believe that these latter situations are not permanent, and do lead to good solutions, albeit
slowly. Some of the results from this experiment are shown in figures 3 to 6. The "Performance" figures represent:
#succeeded/#stuck at_0.13/#stuck at 0.27/#diverged, since two very large plateaus exist at error = 0.27 and 0.13.
A solution with error less than 0.02 is counted as a success. All figures are for 10000 epochs. Tests with novel data
points showed excellent generalization for both algorithms.

1- 678



References

1. J.P. Cater, Proc. of the Ist ICNN, vol. I, pp. 645-651, 1987.

2. E.D. Dahl, Proc. of the Ist JCNN, vol. H, pp. 523-530, 1987.

3. R. Hecht-Nielsen. Proc. of the 1989 IJCNN, vol. 1, pp. 593-605, 1989.

4. J.C. Hoskins, MCC Tech. Rep. # STP-049-89, January 1989.

5. R.A Jacobs, Neural Networks, vol. 1, pp. 295-307, 1988.

6. D.B. Parker, Proc. o.f the 1st ICNN, vol. I, pp. 593-600, 1987.

7. D.E. Rumneihart, G.E. Hinton, and R.J. Williams, in Parallel Distributed Processing: Ex~plorations in
the Microstructure of Cognition, ed. D.E. Runelhart & J.L. McClelland, vol. 1, pp. 318-362, 1986.

8. i.L McClelland & D.E. Rumelhazt (eds.). Explorations in Parallel Distributed Processing: Models,
Programs and Exercises, MIT Press, 1988.

9. T. Samad, Neural Networks, vol. 1, Supp. 1, p. 216.,1988.

10. F.J. Smieja and G.D. Richards, Complex Systems, vol. 2, pp. 671-704, 1988.

11. S.A. Solla, E. Levin, and M. Fleisher, Complex Systems, vol. 2, pp. 625-640, 1988.

12. W.S. Swxncueta and B.A. Hubennan, Proc. of the 1st ICNN, vol. 11, pp. 637-643, 1987.

13. R.L. Watrous, Proc. of the 1st JCNN, vol. 11, pp. 619-627, 1987.

IFIGURE 1 FIGURE 2

XOR (2D rim) XOR (20 maxs)

"* DOD- 1.0. 0-0. 0.095.0.1. 0.7 . DOD. 1.0. 0.9. 0.095. 0.1. 0.7

"* EDBDD 1.0. 10.0. 0.9.10.0.0.095.0.1.1.0.0.1.0.3.10. 0.7 .~ii * WOO: 1.0. 10.0. 0.9. 10.0.a095. 0.1. 1.0. 0.1. 0.3,to. 0.7

"* 5D?4 1.0. 0.9 RMS .50)4:1.01 0.9

Pedounanw DBD-t20)0 . E28D-(20$MJ Eaw PodlamtO DBD(0010I) . EWBD'(2C

0- 0
Epoch (X 2.000 0pc X200

OL7 FIURE3a7-FIGURE 4

~~~~QUAD (20 no)QAD(Dtur)

.DOD: 1.0.0M9. 0.005.0.2.0.7 .SOM: 1.0. 0.9 .DOD: 1.0.0.9. 0.05.0.1.0.7 .DBD:12.0, 0.0.0.05.0.1.0.7

.ED8DI..0. 10.0.0.9. 10.0.0.005.0ý.1.2.0. 0.2..3. 1.5.0.7 *EDBD:1.0. 10.0.0.9.,10.0.0 05.0.1.12.0.0.1.0.3,1.5.07

Pufoamunce: DODK7/CVf03M0) ED8-I)S0120E0) Pesfton. noc: DOD-(6/141V)M EDBD.(8/I2AW)0
Mininuan ,ramnc: DODD without monawnmw..4/16(0WO

RMS

0 _______________________
0-

IEpoch (X 10,000) Epoch (X 10.000)

0060 0.6

a7- ______________________ 0.7-
FIGURESFIGURE 6

QUAD(20ranQUAD (20 f=n0

*DBD: 1.0.0C.9.0.5.0.1.0.7 .SDM: 1.0, 0.9 *DBD: 2.0. 0.9, 0.05. 0.1.0.7 .SD,%: 1.0. 0.9
EDBD1.0 100. .9.0.00.50.11.00.10.31.50.7EDBD:1.0, 10.0. 0.9.20.0,12.0, 0.5. 1.0.0.1.0.3.12.5. 0.7

Pafonmnuce: DBD-(4f/M4/0) . EDBD.(10/10)000) Pedofonancc: DOD-(9/516") . EDIID-(9tl 100$)
NInimnum

RMS
Ermc

0 ________________________ 0-
Epoc (XI O.DO)Epoch (X 10.000)

0060 0.6

1 - 679

BACKPROPAGATION LEARNING WITH HIGH-ORDER FUNCTIONAL
NETWORKS AND ANALYSES OF ITS INTERNAL REPRESENTATION

Akira Namnatame
Department of Computer Science

National Defense Academy
Yokosuka, 239 JAPAN

ABSTRACT: We obtain the necessary conditions of the networks architecture for learning
the structures of continuous mappipgs. We propose a new network architecture, high-order
functiona! networks with some nonmonotonic functionals as input units. It is shown that
high-order functional networks trained with backpropagation can generalize and infer the
highly nonlinear structures of continuous mappings. Nonlinear mappings can be
characterized by the features of their extremums and curvatures. It is shown the
combination of the input units with nonmonotonic functionals and the hidden units makes it
possible to realize a proper internal representation for extracting those features.

I INTRODUCTION
It has been widely recognized that inductive inference capability or generalization is a

fundamental issue for machine learning, and there has been a great deal of theoretical and
experimental work done on inductive learning in symbolic Al [6]. A connectionist learning
may provide an alternative method for inductive learning and provide a number of important
properties not found in symbolic Al. The process of inferring general regularities requires
the construction of complex mappings, which utilizes internal representation, from a high-
dimensional input space to a lower dimensional output space. We choose a set of
continuous mappings as a task domain for learning. Depending on how a continuous
mapping to be encoded in the network, some architecture models can be utilized. It is
shown that conventional models are inadequate to represent the continuous nonlinear
mapping. We propose a new network architecture and show it can generalize a highly
nonlinear structural relation defining a given continuous mapping.We also investigate the
internal representation capability of a new network architecture.

2 REPRESENTATION & GENERALIZATION OF CONNECTIONIST MODELS
The internal representation of a multi-layer network is believed to capture high-order

correlations which embody the invariant relationships between the input data and the output
data. However, those innate properties can be only realized only if the representation model
and the corresponding network architecture that fit the task domain for leArning are
appropriately designed (61. As the task domain for learning, we choose a set of continuous
mappings defined D-((x,y); x E K, y- F(x)), where K is a compact set of R. We
assume the function F(x) is a class of C2 with many extremums. Nonlinear mappings can
be characterized by the number and position of their extremum and the curvature.We
denote th~e set of those extrmums by G that contains S elements.We consider the following
specific functions defined on K-[O, 11 as the test cases:

Case 1; F(x)- 0.5 + 0.3sinlO7rx, (2-1)
Case 2; F(x)=(1 +4x-4x 2)(1. 1 +cos47rx)(l. I +sin31rx) (2-2)

3 NECESSARY CONDITIONS OF AN NETWORK ARCHITECTURE
It is known that any continuous function can be approximated to arbitrary precision by a

three-layer neural network [3). However, there is no systematic method how such a
network should be constructed. A basic and commonly used model of representing
continuous pattern in a neural network is to encode input and output variables by
continuous input and output units as shown in Fig.la [5) and we term this network

I- 680

architecture as a first-order network. We denote the output from each hidden unit (that is
input to the output unit of the network) by fi(x), i=1,2,...,k. The network output function
f(x) is then given as f(x)- 1/[1+ exp(- Ewirf(x) + eo)]. We now obtain the necessary
conditions for the forms of each fi(x) in order to learn the structure of F(x).

Lemma 3.1: In order to learn the structure of the function F(x) with a multi-layer
network, it is necessary that each fQ(k) satisfies the following conditions:

(i) For any x r K: sgn (F(x))- sgn({witi(x)) (3-1)
(ii) For any extremum xs e G of F(x): Ewi ri(xs)=O (3-2)
Proof: If f(x),the output function of the multi-layer network, approximates F(x), its

derivative should be close to that of F(x). The derivative of 1(x) is given as f~x)-
f(x)(l-f(x))Ewif'i(x).Since for any xeK,0<f(x)[l-f(x))}<I/4,we have sgn{F'(x))==sgn

(t~x))- sgnjgwifi(x)). At the extremum x5 of F(x), we should have Ewifi(xs)=O.

The derivatives of fi(x) can be assumed to be linearly independent functions.
Therefore,a necessary and sufficient condition for (3-2) with S>k (i.e., the number of the
hidden units is less than that of the extremum) is for any x, & K satisfying F(xs)=O

Ifi(xs)=o (3-3)
These results imply that it is necessary for the network to acquire the proper structures of
the hidden units satisfying the conditions in (3-1) and (3-3). That is, each output function
of the hidden units should be nonmonotonic and the value of its derivative evaluated at each
extremum of the function to be learned should be zero. The linlitation of a first-order
network architecture stems from the linear input to each hidden unit resulting in a
monotonic output function of each hidden unit.

4 LEARNING WITH AN ARCHITECTURE WITH HIGH-ORDER FUNCTIONAL
NETWORKS
In order to avoid the limitation of the monotonic transformation of a first-order

network, we should implement some nonmonotonic functions as the inputs to the network.
We consider a three-layer network with some nonmonotonic functional units
(gl(x),g2(x),...,gn(x)) as input units as shown in Fig.2, termed as a high-order functional
network.The advantage of a high-order functional network will be only realized only if how
such nonmonotonic functional units should be selected that may fit to a given task domain.
We choose a set of Chebyc,.-v polynomials. The i-th order Chebychev polynomial gj(x)
defined on 0_< x S I is given as

gi(x) [cos [i arccos(2x-l)} + 1]V2. (4-1)
Such Chebychev polynomials are given as gl(x)=x,g2(x)=(2x- l) 2,g3(x)=x(4x-3) 2.

In order to evaluate the learning capability of a high-order functional network, we
constructed the three-layer network with Chebychev polynomials input units up to the fifth
order and four hidden units for (2-1) and up to seventh order Chebychev polynomials input
units and four hidden units for (2-2). We trained each network with the arbitrary chosen
training examples (120 training examples for (2- I) and 50 training examples for (2-2).) The
training cycle for each case was 2,000. The network outputs after training when presented
any value x in [0,11 with the interval of 1/500 are shown in Fig.3. This result
demonstrates the representation and generalization capability of the high-order functional
network. The high-order network learns and infers highly nonlinear structures of the
continuous mappings with a small set of the training examples. It is a relatively long history
of supervised learning of implementing high-order terms as input units [2][4].The two-
layer network, termed as a high-order flat network, as shown in Fig. 1(b) can eliminate the
need of hidden units and provide extremely rapid learning. We trained a three layer first-
order network with 15 hidden units and a high-order flat network with 7 high-order input
units for Case 2 in (2-2).(The training cycle was 10,000 for each case.) The network

1.-681

outputs after training are shown in Fig.4(a)(b). These results show the networks with the
traditional architectures that do not satisfy the conditions of Lemma 3.1 can no longer
generalize the structure of a complex continuous mapping. Especially, the traditional
approach of high-order flat networks puts less emphasis on the utility of the internal
representation of the networks.

5 ANLYSES OF INTERNAL REPRESENTATION CAPABILITY
In this section, we show a high-order functional network provides excellent generalization

by specializing the selection of the structures of hidden units. If the output function of each
hidden unit is in forms of generalized step functions defined byfi(x)- ts~) x F.N(xsj) (5-1)

- (0, 1) Otherwise
where 4sj(x) is defined over the neighborhoods N(xsj) of some extremum xsj of the

learning function F(x) and satisfies t)'sj(xsj)-O. Then those functions satisfy the
conditions of Lemma 3.1. The output function of each hidden unit of the high-order
functional networks that were trained with the training examples of (2-1) and (2-2) are
shown in Fig.6(a)(b). The high-order functional network realizes the internal network
representation by acquiring the proper structures in the forms of (5-1). The roles of the
hidden units and nonmonotonic functional input units are characterized by capturing the
features of the number and the position of the extremum of the learning function. The role
of the nonmonotonic input units is alho characterized to capture the curvatures of the task
function. Let d be the minimum absolute value of the radius of the curvature at the
extremum of the learning function F(x),i.e., l/d*-Max F"(xs). At the extremum x3 of
F(x),we have F"(x5)-f"(xs)-f(x s)(1-f(xs))}wig"i(xs). Therefore, the curvature of the
network function f(x) at its extremum is essentially determined by the curvature of gn(x)
,the nonmonotonic input unit with the highest order. The absolute value of the curvature of
Chebychev polynomial with the n-th order at its extremum is given by g"n(x)-n 2/2x(l -x),and the required order of the nonmonotonic functional input unit n* can be roughly

estimated by n* - (d*/2) 1/2 (5-2)
Each hidden unit receiving the functional inputs up to the n-th order from the input units
can represent roughly (n-1)/2 extremums of the learning function. Therefore the number
of the required hidden units k* is also estimated as

k*- 2S/(n*- 1) (5-3)

6 CONCLUSION
We showed the first-order multi-layer networks and the high-order flat networks without

hidden units that are commonly used in the previous researches are inadequate to generalize
and to learn the nonlinear structures underlying the continuous mappings. We proposed the
new network architecture,high-order functional networks,with some nonmonotonic
functionals as input units. It was shown the three-layer networks with some Chebychev
polynomials as input units can learn and generalize complex nonlinear structures of
nonlinear continuous mappings. The internal representation capability of a high-order
functional network was analyzed. It was shown the combination of some nonmonotonic
input units and some monotonic hidden units provides the excellent generalization by
specializing the selection of the internal representation to match the specific task domain.

REFERENCES
IlI Ahmad,S.,and Tesauro,G.,"Scaling and generalization in neural network: A case

study",Proc.of the 1988 Connectionist Models,pp3-10, Morgann Kaufman (1988)
12] Giles,C.L.,and Maxwell.T,"Learning,invariance and generalization in high-order

neural networks", Applied Optics,Vol.26, pp 4 97 2-4 9 78 ,(1987)

I- 682

[31 Irie,B.,and Miyake,S.,"Capability of three-layered perceptron",IEEE
International Conference on Neural networks, Vol. 1, pp509-513,(1988)

[4] Klassen,T.,Pao,Y.11.,and Chen,V,"Characteristics of the functional link
nets",IEEE Int. Conf. on Neural Networks,Vol. l,pp509-5l3,(1988)

[5 Lippmann,R.P.,Beckmnan,P.," Adaptive neural nets preprocessing for signal detection
in non-Gaussian" in Advances in Neural Information Processing
Systems 1,(ed.Tourretzky), Morgan Kaufmann, pp 124 - 13 2 (1989)

[6) Namatame,A.,and Kimata,Y.,"Improving generality of a backpropagation learning
system" International Journal of Neural Networks (1989) (to appear)

y-F(,i)

..............

-uI ..

Fig.l(a) An architecture of Fig.1(b) An architecture of high- Fig.2 An architecture of high-
first-order networks order flat networks order functional networks

Case 1 Case 2 (a) (b

1F`g.3 Learning achieved with high-order functional networks Fig.4 tearning achieved with first-order networks(a)

and high-order flat networks (b)

T r.. ."/', "*

I * , I.

i. . ! 1 ',
I70

' \ \ I' 'A

,. * . ;I .' •

I t " t :-/ 1

(a) (b)

Flg.5 The depction of the output of each hidden unit after learning: (a) Case 1 (b)Case 2

(The dots denote the extremume of the function to be learned)

1- 683

NN/I: A Neural Network Which Divides and Learns Environments

Yoshikazu NISHIKAWA, Hajime KITA, Akinori KAWAMURA
Dept. of Electrical Engineering, Kyoto University

Yoshida-Honmach, Sakyo, Kyoto 606, Japan

Abstract: The error back-propagation rule, though it is quite popular nowadays, has some drawback: in
practical'applications. In order to get rid of them, this paper proposes a new sort of neural network
called "NN/I". NN/I consists of two different types of network, i.e., a two-layer control network of
Kohonen type and a three-layer main network which contains several subnetworks of back-propagation
type. The control network learns to categorize the input patterns roughly, and acquires an ability to
select one of the subnetworks in response to an input pattern. Then the selected subnetwork works to
recognize and classify the input pattern in detail. Ability and features of NN/I are evaluated through
several computer simulations.

1. INTRODUCTION
The error back-propagation (BP) algorithm [1] is one of the powerful learning

algorithms for layered neural networks, and many applications have been reported
[2,3]. While the BP algorithm shows excellent performance in dealing with small prob-
lems [4], it faces some difficulties in applications to the large problems in the real world:
1) Speed of Learning: In the BP algorithm, it often takes much computation time to

learn a task, and sometimes it fails to find the global optimal connections. When a
complex task is tried by uce of a large network, this factor restricts the actual com-
putation.

2) Robustness of Memory: Suppose that a set of training tasks is to be learned by a BP
network, and those tasks are learned one by one in some order. The BP algorithm
works to modify the network connections for achieving only the present task without
regard to their usefulness in the previous tasks. In other words, the network is not
robust in the sense that it forgets the old tasks, if presentation of the training data
to the networks is not made appropriately.

3) Information Representation on Hidden Layers: In the BP algorithm, information
representations on the hidden layers are formed only to achieve a given task. They
sometimes become too dispersive, and make analysis of the network behavior diffi-
cult.

In the present paper, a neural network NN/I and its learning algorithm are pro-
posed to resolve these difficulties to some extent. In the succeeding section, the struc-
ture of NNII and its recalling/learning processes are described. In Section 3, some com-
puter simulations are presented to show the performance of NN/I.

2. A NEURAL NETWORK, NN/I
The basic strategy of the proposed network NN/I is to manage hard tasks by

'division' of environments. Namely, a large task of recognition is divided into several
subtasks, and each subtask is learned and recalled by a relatively small subnetwork. It
makes learning easy and quick, and at the same time it makes memory of the network
robust. Ability for both division of the task and assignment of the subtasks to the

1-684

L

subnetworks is attained adaptively by means of a self-organizing mechanism of the net-
work.

2.1. Structure of NN/I

NN/I consists of a three-layer main network of the BP type and a two-layer con-
trol network of Kohonen type. The main network has n1 input units, and no output
units, and its hidden layer is divided into ns groups each containing nH hidden units. A
partial network consisting of the input 1-hyer, the output layer and one group of the hid-
den units is called a 'subnetwork'.

The control network shares the input layer with the main network, and its out-
put layer consists of ns neurons each corresponding to a subnetwork. The output unit
of the control network is called the 'control unit'. Figure 1 shows the structure of

NN/I.

Main Network Control Network

Output Layer

Hidden Layer Q Q Q0Q 0 0

Input Layer

Fig. 1 Structure of NN/I.

2.2. Recalling Process
When an input pattern (n, vector) p is presented to the input layer of NN/I,

only the c-th control unit having the most similar connection weights (n, vector) wc,c
to p becomes active, i.e.,

y¢, = 1 for csuch that [wc,c - p[[= min[wC,j - pI1

Ycff forl* c, < l< nI (1)

where yCj denotes the output of the l-th control unit.
The activated control unit permits the corresponding subnetwork to work, and

then only the selected subnetwork works to generate the outputs as follows:

On the hidden layer

yJ = f((wHJ)Tp + 6H,k), 1 <j •nf (2)

On the output layer

Yo, o P 0,kYH + O,k), 1 <k <no (3)

1- 685

where trj, w/j and 0ýj denote the output, connection weights and bias of the j-th hid-
den trit belonging to the i-th subnetwork, respectively, and
Y/i =(Yj,1, yn,, "I)T Note that y4j = 0 for all i i c, 1 < i < n,.

F-Arther, Yo,k and wo,k denote the output and connection weights of the k-th output
uait, respectively, and 0 0,k denotes the bias of the k-th output unit when the c-th sub-
network is activated. f denotes the sigmoid function 1/(1 + exp(x)).

2.3. Learning Process

In NN/I, the control network learns a way for dividing the input patterns by
means of Kohonen's algorithm [5], that is, the connection weights are modified as fol-
lows:

wci(t+l) = wC,l + 3(t)(p(t) - wcj(t)), for 1 E Nc(t)

uWcj(t+1) = wej for 1 0 Nc(t) (4)

where t = 1, 2, • • • denotes discrete time. 3(t) is a positive parameter (a learning

rate), and Nc(t) dlenotes a neighborhood of the c-th control unit. Both /1(t) and Nc(t)
may be changed with the time t.

The main network, on the other hard, learns the input/output relations by
means of the error back-propagation algori. •im. Modification of the connections is
made only when the corresponding subnetwork is selected (activated) by the control
unit. It should be noted that each subnetworks must memorize its error signals at its
latest activation in order to introduce a momentum term for accelation of the learning.

3. COMPUTER SIMULATION

First, computer simulations to test the learning speed are carried out. NN/Is
having 10, 25, 50, 150 and 250 hidden units are investigated, together with conven-
tional three-layer BP networks having the same numbers of hidden units for com-
parison. All the networks are equipped with 10 input units and 5 output units. Four
tasks containing 5, 10, 30 and 50 patterns, respectively, are used for the test. Each
task is to categorize different input patterns selected randomly into five output pat-
terns.

Table 1 shows the result of simulaions. As shown in the table, NN/I is superior
to the conventional BP networks in completing the tasks with shorter time especially
when the task, and consequently the network are large.

Second, simulations to test robustness of the memory in the NN/I are carried out
in comparison with that in the conventional BP network. At the outset the network
learns a task, Task A, and after completing this the network learns another task, Task
B. After learning Task B, how are the responses of the network to the input patterns
of Task A? In case of the conventional BP network, the responses are quite poor
because the memory of Task A is destroyed almost completely by learning Task B, even
if the network is equipped with a plenty of hidden units. In contrast, in case of NN/I,
the responses are in good shape because Task B is assigned mainly to subnetworks dif-
ferent from those used for learning of Task A. Thus, robustness of the memory in NN/I

I- 686

Table 1 Number of Repetition Required for Completion of Learing

Network Number of Patterns
Size Type 5 10 30 50

10 BP 192 120 209 *
5*2 NN/I 174 121 206 *

25 BP 85 77 * *
5*5 NN/I 112 148 256 276
50 BP 85 77 * *

5*10 NN/I 110 174 230 237

250 BP * * * *
5*50 NN/I 37 39 141 141

"*" indicates that learning is not completed within 5000 iterations.
The size of NN/I is indicated by nH * n5 . It is noted that CPU time
required for one repetition is much shorter in NN/I than in BP.

is proved experimentally.

4. CONCLUDING REMARKS AND EXTENSIONS

This paper proposes a novel neural network, the NN/I, which improves remar-
kably some abilities of the error back-propagation (BP) algorithm for layered networks.
NN/I divides the environment, i.e., the input patterns into several categories by the
control network of Kohonen type. According to the category of the input pattern, a
subnetwork of BP type is selected, and it generates the desired outputs. The advantage
of NN/I over the conventional BP network in its learning speed and robustness of the
memory is demonstrated through computer simulations.

From the view point of internal information representation, NN/I has an interest-
ing nature. The control network yields a localized representation on one hand, and the
main network gives dispersive representations on the other hand. Then by changing
the size of a group in hidden layer of the main network, the information representation
can be either more localized or more dispersive. Choice of the group size and other
related problems such as the generalized internal representation of the recognized pat-
terns are open to further investigation. The authors are investigating such problems by
taking the recognition of hand-written Japanese characters as an example task.

REFERENCES
[1] D.E. Rumelhart et al.: "Learning Internal Representation by Error Propagation" in Parallel Distri-

buted Processing, Vol.1, MIT Press (1986).
[2] T.J. Sejnowski, et al.: "NETtalk: a parallel network that learns to read aloud", The Johns Hopkins

Univ. Elec. Eng. and Comp. Sci. Tech. Report, JHU/EECS-86/01, pp.32-41 (1986)
[3] P.R. Gorman et al.: "Analysis of Hidden Units in a layered Network Trained to Classify Sonar Tar-

gets", Neural Networks, Vol.1. pp.7 5-89 (1988).
[4] T. Kohonen et al.: "Statistical Pattern Recognition with Neural Networks: Benchmarking Studies,"

Proc. ICNN 1988 vol.1, pp.6 1-6 8 (1988).
[51 T. Kohonen: "Self-Organization and Associative Memory" 2nd Edition, Springer (1987).

I- 687

•' ---•... • • -• •- r _•, :• • • -••= •_ _ K•

SeLective Presentation of Learning SampLes for

Efficient Learning in MuLti-Layer Perceptron

Noboru Ohnishi+ , Atsuya Okamoto++ and Noboru Sugie.

+ Department of Electrical Engineering , Faculty of Engineering
Nagoya University , Furo-cho , Chikusa-ku , Nagoya 464-01 JAPAN

+÷ Nippondenso Co.,Ltd.

ABSTRACT

Four methods of presenting learning samples are proposed to increase
efficiency of learning in multilayer perceptrons. The methods are to
selectively present samples instead of randomly presenting samples:
typical and confusing samples are selected and presented in systematic
orders. The methods were simulated to examine their effectivenesses in a
simple three layer perceptron with two inputs and two outputs. The methods
,except the method of presenting typical samples alone, turned out to be
superior to the conventional method of random presentation. Among three
methods, the following two methods were best: presenting typical samples in
the first half period of learning and confusing ones in the second half
period of learning, and presenting in turns both typical and confusing
samples.

I.INTRODUCTION

Because of the error back-propagation learning algorithm, multildyer
perceptrons have been widely used in several fields such as robot
manipulatoi" control, speech processing , character recognition, and so on.
But a great number of iterative learning is needed. Therefore several
revisions of the back-propagation algorithm have been stud.ed[1],[2].

In the learning of perceptrons. random samples are generally used. In
this case, a teacher informs to the perccptrnn of whether the decision is
correct or not, but doesn't concern about how to present learning samples.
If a teacher presents suitabi -;amples for learning in a systematic order,
the convergence of learning wiýi be acceierated.

So we have devised metlods of selectively presenting learning samples
such as typical samples of each :!ass and confusing samples among classes.
The following four methods 3re studied: I'presentiig typical and confusing
samples in the first half and the second haif period of learning,
respectively, 2, presenting in turns both typ~cal and confusing samples,
3)presenting typic3: samrpies alne, ano 4.-precenting :onfusing samples
ai one.

This parer ' er : irbe:; the te aIl Is prop osed mee'm,)ds of selective
sample prse entati:• tc 'e ra ts ot simulatinn usin, a simple three
layer p-rcep' :" '.::r0 t. , -rut.; ana twi t)itput;.

2.SELECTI,'•. LEAW\NG SAMPLE PRESENTATION

:'ie•n . ." r nts g,): i -,amý es , o a student I ea1-
discrIrina t rn :I; '• pa te s r exa le, he -ii l prosent typt(al

among zias;e : i. '4 b!o i-a n rn, *ampi,-, are sele'teJ and th- orde:
f pi<e5 f lat i n nthv- 1, 4 nveien,,- - f learn og ', I I ne

I -

accelerated.
In order to examine the effect of sample presentation on learning, the

following four methods are experimentally investigated.
Method 1: presenting typical samples in the first half period of

learning and confusing ones in the second half period of learning.
Method 2: presenting in turns both typical and confusing samples such

as typical one, confusing one, typical one and so on.
Method 3: presenting typical samples alone.
Method 4: presenting confusing samples alone.

3. EXPERI MENT

To compare four methods mentioned above with the conventional method of
random samples presentation ;this is later called as Method 0), simulation
was carried out.
3.1 Conditions

The task used in this experiment is to learn the discrimination of two
classes in two dimensional space. Class A is inside area of an unit circle
centered at origin, and class B outside of it but bounded by a square (10 X
10).

A three layer perceptron with two inputs and two outputs was used. A
learning set is a pair of samples of each class:(a,b), ae A, bE B. It is
generally true that the more the number of learning sets is, the better the
recognition rate becomes. But many learning steps are needed in the case of
using too many learning sets. On the basis of preliminary experimental
results , the number of learning sets was set to be 40 sets:80 samples were
used in learning.

In each step of learning, one set is selected from 40 learning sets and
is inputted to perceptron. Weights are modified by the back-propagation
"algorithm.

Confusing samples are selected around the unit circle which is the
boundary between class A and B : 0.5 < r < 0.7 for class A and 1.5 < r <2.0
for class B (r denotes a radius). On the other hand, typical ones are
selected the center of each class, far from the boundary : 0 < r < 0.3 for
class A and 3.7 < r < 4.0 for class B.

5000 sets of data different from learning samples were selected for
evaluation of each method to examine the recognition rate, and the ratio of
the number of correct decisions to the number of total ones. At each step
of learning, the evaluation data were inputted and the recognition rate was
calculated.

The ability of perceptron depends largely on the number of hidden
units. As the results of pre'.iminary experiment, it was found that the
recognition rate saturates on and after eight hidden units. So the number
of hidden units was fixed to be eight.
3.2 Results

Four methods mentioned in section 2 and random presentation of samples
(Method 0) were simulated. Fig.1 shows the transition of recognition rate
with increase of the number of learning.

Though Method 4 is worse than Method 0, other three methods are
superior to Method 0 with regard to the higher recognition rate and faster
saturation. Next comparing among three methods (i.e. method 1, 2 and 3),
the followings are said. There are no difference between methods I and 2.
The Method 2 is better than Method 3 in the learning number of less than
400, but they show nearly equal recognition rate in the learning of more
than 400. Method 1 is superior to Method 3 in the learning number of les3

I- 689

than 200. Consequently,the order of good learning is that Method 2 = Method
I > Method 3 > Method 0 > Method 4.
3.3 Discussions

The reasons why the presentation of selected samples is better than the
one of random samples are as follows. A discrimination function will be
systematically formed because there are no drastic changes in the function.
Next a selection of typical and confusing samples might correspond to a
preprocessing such as averaging. But mathematical analysis should be done
in future ,because these reasons are rather intuitive.

4.Concluding Remarks

We proposed four methods in which typical and confusing learning samples
are selectively presented to the perceptron in systematic orders. As the
results of the simulation, proposed methods, except Method 4, were better
than the conventional method of random presentation. Though there were no
clear difference among other three methods, the following two methods were
better: method of presenting typical and confusing samples in the first and
second half period of learning, respectively, and the method of presenting
in turns both both typical and confusing samples.

REFERENCES
[l]T.P.Vogl et al.,"Accelerating the Convergence of the Back-Propagation

Method", Biol. Cybern., 59,pp.257-263(1988).
C2JD.B.Parker,"Optimal algorithms for Adaptive Networks", Proc. ICNN IEEE,

Vol.2, pp.593-600(1987).

1- 690

~~1
M e th o d 4

nu e

Of l a n .

-69

Fast Neural Nets with Gram-Schmidt Orthogonalization

Sophocles J. Orfanidis

Department of Electrical and Computer Engineering

Rutgers University, Piscataway, NJ 08855

Abstract

A new type of feedforward multilayer neural net is proposed that exhibits fast convergence properties.
It is defined by inserting a fast adaptive Gram-Schmidt preprocessor at each layer, followed by a conven-
tional linear combiner-sigmoid part which is adapted by a fast version of the backpropagation rule. The
resulting network structure is the multilayer generalization of the gradient adaptive lattice filter and the
Gram-Schmidt adaptive array.

1. Introduction

A feedforward multilayer neural net adapted by the backpropagation rule [1-31 can be thought of as the
multilayer generalization of the adaptive linear combiner adapted by the Widrow-Hoff LMS algorithm [4].
The backpropagation rule inherits the computational simplicity of the LMS algorithm. But, like the latter,
it often exhibits slow speed of convergence.

The convergence properties of the LMS algorithm are well-known [4]. Its learning speed depends on
the correlations that exist among the components of the input vectors-the stronger the correlations, the
slower the speed. This can be understood intuitively by noting that, if the inputs are strongly correlated,
the combiner has to linearly combine a lot of redundant information, and thus, will be slow in learning the
statistics of the input data. On the other hand, if the input vector is decorrelated by a preprocessor prior to
the linear combiner, the combiner will linearly combine only the nonredundant part of the same information,
thus, adapting faster to the input. Such preprocessor realizations of the adaptive linear combiner lead
naturally to the fast Gram-Schmidt preprocessors of adaptive antenna systems and to the adaptive lattice
filters of time-series problems [4-71.

In this paper, we consider the generalization of such preprocessor structures to multilayer neural nets and
discuss their convergence properties. The proposed network structure is defined by inserting, at each layer of
the net, an adaptive Gram-Schmidt preprocessor followed by the conventional linear combiner and sigmoid
parts. The weights of the preprocessors are adapted locally at each layer, but the weights of the linear
combiners must be adapted by the backpropagation rule. We use fast adaptation schemes for the weights
that are, in some sense, implementations of Newton-type methods for minimizing the performance index of
the network. Newton methods for neural nets have been considered previously [8-11]. These methods do not
change the structure of the network-only the way the weights are adapted. They operate on the correlated
signals at each layer, whereas the proposed methods operate on the decorrelated ones.

2. Gram-Schmidt Preprocessors

In this section, we sumr.., rize the properties of Gram-Schmidt preprocessors for adaptive linear combiners.
Our discussion is based on [7]. The Gram-Schmidt orthogonalizaLion procedure for an (M + 1)-dimensionai
random vector x = [X0,'z, ... Zf)T generates a new vector z = 1 0, z1," ",zM]T with mutually uncorrelated
components, that is, E[zzj] = 0 for i 9 j. It is defined by starting at :o = z0 and proceeding recursively
fori= 1,2,...,M

i--I

zi = Zi - •-•bq -i (2.1)

i- 692

LJ

where the coefficients bij are determined by the requirement that z, be decorrelated from all the previous
zU, (z0,z,. .'",zi-.). These coefficients define a unit lower triangular matrix B such that

x = Ba (2.2)

known as the innovations representation of x. For example, if M = 3,

X1 l 1 0 0 0 Z[
[2 zb o 1 0 0 Z 2

""62 = I 1 1 I BZ
X3o b3 6312 1 Z3

An equivalent computation of the optimal weights bij is based on the sequence of minimization problems
S= E[z,2] = min, i = 1,2,... ,M . A fast adaptive solution of these, that corresponds to Newton's method

with respect to the decorrelated basis, is obtained by the delta rule [7]

si = ±zzj (2.3)

where a is usually set to 1 and Ej is a time-average estimate of 4= E(z,], updated from one iteration to
the next by

Ej= A E, + z? (2.4)

where A is a "forgetting" factor with a typical value of 0.9.
Next, we consider the Gram-Schmidt formulation of the adaptive linear combiner. It generates an op-

timum estimate of a desired output vector d by the linear combination y = Wx, by minimizing the mean
square error £ = E[eTe] = min, where e = d-y is the estimation error. The output y may also be expressed
in the decorrelated basis z by y = Wx = Gz, where G is the combiner's weight matrix in the new basis,
defined by WB = G, which implies W = GB-1. The conventional LMS algorithm is obtained by considering
the performance index £ to be a function of W. In this case, the matrix elements of W are adapted by
Awii = peizj, where p is the learning rate. Similarly, viewing the performance index as a function of G, we
obtain a fast adaptive version, analogous to (2.3)

Ag,, = Eeizi (2.5)

with Ej adapted by. (2.4). Like (2.3), it is equivalent to applying Newton's method with respect to the
decorrelated z-basis. Conceptually, the adaptation of B has nothing to do with the adaptation of G, each
being the solution to a different optimization problem. However, in practice, B and G are simultaneously
adapted using Eqs. (2.3) and (2.5). In (2.5), we used the scale factor pO instead of /3 to allow us greater
flexibility when adapting both bii and gii.

3. Gram-Schmidt Neural Nets

In this section, we incorporate the Gram-Schmidt preprocessor structures into multilayer neural nets and
discuss their adaptation. Consider a conventional multilayer net with N layers and let un,x" denote the
input and output vectors at the nth layer and Wn the weight matrix connecting the nth and (n + 1)st !ayers.
The overall input and output vectors are x°, xNV. The operation of the network is described by the forward
equations: For n = 0, 1,... ,N - 1

un+1 = W"x" (3.1 a)

-x+1 = f(un+ 1) (3.1 b)

where we denote f(u) = [f(uo),!(ui),...]T if u = [uO,ui,-..]T. The sigmoidal function is defined by
f(u) = 1/(1 + e-u). The performance index of network is

i E (d_ xN)T(d -xN) (3.2)

I- 693

For each presentation of a desired input/output pattern {x°,d}, the backpropagation rule [1-3] computes
the gradients e" = -Ot/Ou" by starting at the output layer

*N = DN(d - xz) (3.3)

and proceeding backwards to the hidden layers, for n = N - 1, N - 2,..., 1

an = D"W"Te"+' (3.4)

where Dn = diag{f'(un)) is the diagonal matrix of derivatives of the sigmoidal function, and f' = f(1 - I).
The weights W" are adapted in the conventional way

= Me"j z= ' (3.5)

The proposed Gram-Schmidt network structure is defined by inserting an adaptive Gram-Schmidt pre-
processor at each layer of the network. Let z" be the decorrelated outputs at the nth layer and B" the
corresponding Gram-Schmidt matrix, such that by Eq. (2.2), x" = B"z", and let G" be the linear combiner
matrix. It is related to W" by W"B" = G", which ;mplieb that W"x" = G"z". The forward equations
(3.1) are replaced now by

Bn:" = x" (3.6a)

u0+1 = G"z" (3.6b)

Xn+' = f(u"4+) (3.6c)

where (3.6a) is solved for z" by forward substitution, as in (2.1). Bias terms in Eq. (3.6b) can be incorporated
by extending the vector z" by an additional unit which is always on. Inserting W" = G"(B")-l in the
backpropagation equation (3.4), we obtain e' = Dn(BnT)-IGnTe+`+. To facilitate this computation, define
the iptermediate vector fn such that BnTfY = G"T e"+1 . Then, Eq. (3.4) can be replaced by the pair

B nTfn = GnT e"n+1 (3.7a)

,n = D"f" (3.7b)

where, noting that BnT is an upper triangular matrix, Eq. (3.7a) may be solved efficiently for f' using
backward substitution. Using (2.3), the adaptation equations for the weights B" are given by

AP. = Z:' (3.8)

with E7j updated from one iteration to the next by

E7 = AE7+ (z+)2 (3.9)

Similarly, the adaptation of the weights G", based on (2.5), is given by

) - e zA (3.10)

The complete algorithm consists of the forward equations (3.6), the backward equations (3.3) and (3.7), and
the adaptation equations (3.8), (3.9), and (3.10).

4. Simulation Results

In this section, we present some simulations illustrating the performance of the proposed network structures.
Consider two network examples, the first is a 3:3:2 network consisting of three input units, two output units,
and one hidden layer with three units, and the second is a 3:6:2 network that has six hidden units. We
choose a set of eight input/output training patterns given by

1- 694

0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 11 0 1
1 0 0 1 0
1 0 1 0 1
I 1 0 0 1

110 011 11 1 0

The first of the two outputs is simply the XOR sum of the three inputs and the second output is the
complement of the first. We computed the average convergence times for the above examples based on
200 simulations with random initializations. Convergence time was defined as the number of iterations for
the performance index (3.2) to drop below a certain threshold value-here, 4~ = 0.01. One iteration
represented one epoch, that is, the presentaticn of all eight patterns in sequence. The following values of
the parameters were used: p = 0.25, 6 = 1, A = 0.85. We used both epoch updating and pattern updating
with a value of the momentum parameter a = 0.85. The average convergence times are shown in the table
below. The speed advantage of the Gram-Schmidt method is evident.

3:3:2 3:6:2

epoch pattern epoch pattern
conventional 2561 1038 1660 708
Gram-Schmidt 923 247 349 100

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Internal Representations by Error
Propagation" in D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed Processing, vol. 1,
Cambridge, MA, MIT Press, 1986.

[2] P. J. Werbos, "Backpropagation: Past and Future", Proc. IEEE Int. Conf. Neural Networks, San Diego,
July 1988, p. 1-343, and earlier references therein.

[3] D. B. Parker, "Optimal Algorithms for Adaptive Networks: Second Order Back Propagation, Second
Order Direct Propagation, Second Order Hebbian Learning", Proc. IEEE First Int. Conf. Neural Net-
works, San Diego, June 1987, p. 11-593, and earlier references therein.

"[4] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood-Cliffs, NJ, Prentice-Hall, 1985.

[5] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, New York, Wiley, 1980.

[6] R. T. Compton, Adaptive Antennas, Englewood-Cliffs, NJ, Prentice-Hall, 1988.

[7] S. J. Orfanidis, Optimum Signal Processing, 2nd edition, New York, McGraw-Hill, 1988.

[81 R. S. Sutton, "Two Problems with Back Propagation and Other Steepest-Descent Learning Procedures
for Networks", Proc. 8th Ann. Conf. Cognitive Sci. Soc., 1986, p. 823.

[9] R. L. Watrous, "Learning Algorithms for Connectionist Networks: Applied Gradient Methods of Non-
linear Optimization", Proc. IEEE First Int. Conf. Neural Networks, San Diego, June 1987, p. 11-619.

[101 S. Kollias and D. Anastassiou, "Adaptive Training of Multilayer Neural Networks Using a Least Squares
Estimation Technique", Proc. IEEE Int. Conf. Neural Networks, San Diego, July 1988, p. 1-383.

[11] R. A. Jacobs, 'Increased Rates of Convergence Through Learning Rate Adaptation", Neural Networks,
1, 295 (1988).

1- 695

PAST TRAINING OF MULTILAYER PERCEPTRONS
USING MULTILINEAR PARAMETRIZATION

Francesco Palmieri and Samir A. Shah
Department of Electrical and Systems Engineering

The University of Connecticut
Storrs, CT 06269-3157

Abstract
The training of multilayer perceptrons by the Backpropogation algorithm is usually plagued by poor

convergence and misadjustment.
In this paper, we introduce a faster version of the Backpropogation algorithm based on the tech.nique of Multilinear Parametrization using Recurjive Least Square#. We show that the added complexityassociated with the Enhanced algorithm can be easily incorporated in the network architecture; cone-quently, the update of the connection weights is local. The enhance,: algorithm performed consistentlybetter when compared to the Backpropogation algorithm in a set of simulations involving two benchmark

problems.

1 Introduction
A multilayer perceptron (MLP) is a combination of linear blocks and memoryless, sigmoidal nonlinearities.Despite the simple structure, a multilayer perceptron is endowed with almost unlimited functional capability.Recently, Cybenko and others [1] [2] reported that continuous valued multilayer perceptrons with two hiddenlayers and a fixed sigmoidal nonlinearity can approximate any continuous function from R" to P.tm (witharbitrary accuracy) on a compact set given sufficient units in the hidden layers.In a typical application, paired input-output vectors from the training set are presented to the network.
The MLP network "learns" the input-output mapping using the Backprapogation algorithm (BP) (3] [12].Each iteration of the backpropogation algorithm is accomplished in three steps (12]. In the first step, theinput vector is propogated through the MLP to produce a network output. This output is compared withthe desired output to generate an error. Subseoauently, this error is backpropogated through the network todefine errors at the output of the intermediate linear blocks. Finally, the backpropogated error is utilizedto update the connection weights in the linear blocks. In the conventional Backpropogation algorithm theweights are updated via an LMS-like algorithm [5].

Backpropogation algorithm works well for small nets. It iL computationally inexpensive and local. How-ever, it is plagued by slow convergence, misadjustment, and the rate of convergence is critically devendent
on the learning parameter.

There are numerous schemes to speedup the convergence of BP algorithm. We could group them into twocategories: algorithms based on heuristics such as those report by Jacobs and Falhman [41; and algorithmsstemming from optimization techniques like conjugate gradient methods and approximations to the Newtonmethod [81. Recently, Singhal and Wu [9) reported a method to train the network using the extendedKalman filter. Although this method is computationally expensive and not suited for real implementation,
it is probably the fastest in terms of convergence.

In this paper, we introduce a fast version of the Backpropogation algorithm based on the idea of Multilin-ear Parametrization using Recursive Least Squares (RLS). We show that the added storage requirement andcomputation associated with RLS can be easily incorporated into the network architecture, consequently the
algorithm is still local.

The RLS technique has also been idependently suggested by Azimi-Sadjadi and Citrin [101.The following section presents a matrix formulation of the Backpropogation algorithm. The new algo-rithm is introduced in Section 3. Finally, a set of simulation results is presented in Section 4.

2 Conventional Backpropogation Algorithm
Consider the multilayer perceptron (three layers for simplicity) depicted in Figure 1. The network consistsof a cascade of three multi-input multi-output linear filters coupled by memoryless, sigmoidal nonlinearities.

I- 696

d/

\I r-- I- - - -1r ,

I ,
NOCI CP2 C3 0[

Figure 1: A multilayer perceptron

The three linear filters are characterised by connection matrices C1 , C2 and C3 of dimensions N2 x (NI + 1),
N3 x (N2 + 1) and N4 x (Ns + 1) respectively.

The nonlinear transformation, p(z), is the logistic function 1/(1 +e-0) and is applied element by element
to the output of the three linear blocks. The biasing of the nonlinearities is accomplished by augumenting
the vectors xc, Yo and so as follows :

x=[I XT y (1 yoT]7 u= [I UoJ

Given aset of input output pairs {(xo(n), d(n)) i = 1,..., L}, the BP algorithm updates the weight matrices
in the steepest descent direction of the instantaneous squared error at the output. The algorithm can be
rewritten in the matrix form as follows,

1. Conventional Backpropogation algorithm
0. initialize the matrices C 1 , C2 and C3 to random weights.

for every input output pa e x(n),rd(n)

1. propogate the Input forward yo = W(CIx), s0 = W(C2y), £ = W(C31)

2. .(,) = d(n) - a(-) /0 -error vector- /
/0 backpropogate the error .I
3. 03(n) = g(n) - (I - g(n)) .e(n)

4 C(n+ 1) = C:(n) + p3$3(n),T(n)
S. $3(n) = ,e(n) .(1 - ,o(n)) * Co(n)6,(n)

S. C,(n + 1) = C2(n) + ,SL,(-)•(n)

7. it(n) = yo(n) * (1 - yo(n)) a Co(n)62,(n)

S. CI(n+ 1) = CI(n) + p1 61(n)x T (-)
where js,, & and JP are the learning parameters; 81, 5, and 63 are the error vectors of sizes N2, N3 and N 4 respectively; a

represent an element by element multiplication, and the matrices Cio (for i = 1,2,3) are the matrices Ci with the first column

removed

3 Enhanced Backpropogation Algorithm

The problem of computing the weights in a MLP can be viewed as a global nonlinear identification problem.
Due to the cascaded structure of the network, it can be partitioned into a set of linear least squares problems.
Each subproblem corresponds to identifiying one linear block in the cascaded structure. Using the technique
of multilinear parametrization (an extension of bilinear parametrization [6]), we can solve the global problem
by iteratively solving each subproblem independently, while keeping the other blocks fixed. One of the most
efficient ways of solving each linear subproblem is to employ the technique of recursive least squares (5]. The
RLS algorithm is summarized in the following paragraph.

Consider a linear transformation 77 = CC, where C is an (N x M) matrix. The adaptive steps for C to
minimize the sum of squared error between the actual output, 17 and the desired output, 8 are:

I- 697

'7

2. R]cursive Least Squares

(IN C1 - A'FP(n)C(n)
b. k(n) = CL(f)(1 + C(n)*CI(n -1

e- C(n + 1) = C(n) + 5nkn
d. P(n+ 1) = A'P(n) - k(n)Cs(n)r
CS(n) Is the leaIry transformed vector C(n); k(n) I- the Kalman g 6(n) = O(n) - n(n)i P is the current Invse of the
correlation matriz of (. 0 < A < I Is the aorgetting factor.

P(n) is initialized to a diagonal matrix with large diagonal terms [5].
For each input-output pair, the most straightforward adaptation strategy involves updating all the linear

'1ocks by an RLS iteration, one at a time, beginning with the output block and proceeding towards the
input. Thus, the Enhanced algorithm can be obtained by substituting each of the steps 4, 6 and 8 in the
conventional Backpropogation algorithm by the above set of equations. The errors 61, 62 and 63 of algorithm-
I correspond the error 6 in the RLS steps, the inputs x, y and s correspond to (; C1 , C3 and Cs correspond
to C. Additional storage is required for the three matrices Pt, P 2 and P 3 . These matrices will account for
the correlation at the input of the three linear blocks.

The errors 61, 63 and 63 have to be backpropogated from the output through the nonlinearities and the
linear blocks. Note that the backpropogation of the errors through the nonlinearities could be simplified
by excluding the multiplication of the error by the derivative of the nonlinearity, as in steps 3, 5 and 7.
Since the nonlinearity is monotonically nondecreasing, a change in the error at the input of the nonlinearity
corresponds to a change in the error at the output in the same direction. Therefore the error co•uld be carried
through the nonlinearity without modification.

6•=. 5 2 =C•, 61= C76

Note that we found this simplification usually leads to faster convergence.
The RLS based algorithm provides very fast convergence at the expense of greater computational com-

plexity. In fact additional matrices P 1 , P2 and P 3 have to be stored at the input of each linear block for
the computation fo the Kalman gains. This increased complexity could be incorporated into the network
structure in the form of lateral connections at the input of each linear block. The update of the forward and
the lateral connections (steps c and d) is Hebbian in both ce¢.es because it is proportional to a product term.
At initialization the P4 (i = 1,2,3) are diagonal, implying no lateral connections, but as the algorithm
progresses the lateral connections grow.

The enhanced backpropogation algorithm (EBP) usually exhibits very fast convergence but presents some
drawbacks. It is typical of multilinear Parametrization techniques to occasionally end up in a local minims.
A way of alleviating this problem is to randomize the order in which the input-output patterns are presented
to the network. Also, if the network contains enough redunduncy, the locally minimum solution may be
acceptable. The forgetting factor, A [5] can be used to correct the so called data saturation problem[9]
typically associated with any Kalman algorithm.

4 Simulation Results

We investigated the convergence properties of the enhanced backpropogation algorithm on two benchmark
problems , the binary XOR and the 4-2-4 encoder [4] [7].

In both problems the training set consisted of four training patterns. The MLP was presented with
patterns sequentially and the network was updated after every presentation. A sweep through the entire
training set is referred to as an epoch. Several epochs are required to accomplish learning. To avoid getting
trapped into a local minima, the ordering of patterns within a training set is randomly shuffled after every
epoch. The target values of 0.1 and 0.9 are used instead of 0 and 1. The network output is thresholded at
0.5, and when the desired output matches the network output over two consecutive epochs, training is said
to be complete.

XOR : The network consisted of two inputs, two hidden units and one output unit (2-2-1 architecture).
The learning of an XOR problem by a 2-2-1 network is usually difficult since this s minimal configuration.
Twenty-five simulations were performed with random initial connection weights uniformly distributed be-
tween -0.25 and +0.25. The results of the simulation are presented in Table 1. A simulation was considered

I- 698

no. 0f no. af Ma~x nu~n & vs. median UD"
runs successes (epoch) (epochs) (_pos) (epocs a

EBP 26 19 533 12 154 75 165 .

BP 25 11 591 232 350 297 112

Table 1: XOR simulation

no. 0 no. 0 __ax 72n avg. mean SD•

SEBP 2!_ 26 61 7 24 19 16

BPj 21 22 95 17 -2 52 is

Table 2: 4-2-4 encoder simulation

successful if it converged within 600 epochs. The statistics presented in Table 1 exclude unsuccessful simu-
lations. The learning rate (I) for the conventional backpropogation was set at 0.7 and no momentum was
used.

4-2-4 encoder : The network consisted of 4 input units, 2 hidden units, and 4 output units (4-2-4
n.ichitecture). The network was presented with four distinct input patterns, each of which had only one bit
turned on (set at 1). The task of the network was to duplicate the input pattern at the MLP output. To
accomplish this task, the network had to develop a unique encoding scheme at the hidden layer [7]. The
simulation results are presented in Table 2. If a simulation converged within 100 epochs, it was considered
successful. The learning parameter for conventional backpropogation was set at 0.3.

5 Conclusion

In this paper, we presented an enhanced version of the Backpropogation algorithm. The simulation results
clearly indicate the superiority of the enhanced backpropogation algorithm. Since this algorithm does not
involve any tunable parameters, guesswork is eliminated and good performance can be expected for various
problems. The algorithm is computationally complex but local.

Simulation results on continuous input-output mapping have shown encoraging results in terms of con-
vergence rate and generalization. These results will be reported elsewhere [11].

References
[i1 G. Cybenko, "Continuous Valued Neural Networks with Two Layers are Sufficient," Tech. Rep. Tuft University, Medford,

MA, March 1988.

(21 Ken-ichi Funahashl, "On the Approximate Realization of Continuous Mappings by Neural Networks," Neural ,etlw.rks,
Vol. 2, No. 3, pp. 183-192, 1989.

[3] D. E. Rumelhart, G. E. Hinton and P. J. Williams, "Learning Internal Representation by Error Propsgation," in Parallel
Distributed Processing, Vol. 1, Ed. D. E. Rumelhart and J. L. McClelland, MIT Press 1986.

[4) R. A. Jacobs, "Increased Rates of Convergence Through Learning Rate Adaptation," Neural Networks, VoL 1, N. 4, pp.

295-307, 1988.

[5) S. Haykin, Adaptive Filter Theory, Prentice Hall, 1988.

[8] L. Liung, System Identification, Theory for the User, Prentice Hall, 1987.

17] Scott Falhman, "Faster-learning Variations on Backpropogation : An empirical study," Proceedings of the 1988 Connee.
tionist Models, Summer school 1988, Carnegie Mellon University, pp. 38-50, 1988.

[81 Sue Becker, Yann le Cunn, "Improving the convergence of Backpropogation Learning using Second Order Methods,"
Proceedings of the 1988 Connectionist Models, Summer schoo! 1988, Carnegie Mellon University, pp. 29-37, 1988.

[9) S. Singhal. L. Wu, "Training Feed-Forward Networks with the Extended Kalman Filter," Proceedings of 1989 International
Conference on ASSP, pp. 1187-1190, Glasgow, Scotland, 1989.

[101 M.R. Azimi-Sadjadi, S. Citrin, "Fast learning of Multi-Layer Pzrceptron using Recursive Least Squares Technique," abstract
in the Proceedings of the International Joint Conference on Neural Network., Washington D.C., June 1989.

[111 F. Palmieri, S. Shah, "A New Algorithm to Train Multilayer Perceptrons," to be presented at the 1989 IEEE International
Conference on Systems, Man and Cybernetics, Boston, MA, 14-17 Nov., 1989.

[12] P.J. Werbos, "Generalization of Backpropogation with application to recurrent gas market model," Neural Networks, Vol.
1, N. 4, pp. 339-356, 1988.

I- 699

¸¸¸'I'"

Learning by Local Variations

Ajay Patrikar and John Provence
Department :f Elect'cal Engineering

Southern Methodist University
Dallas, TX 75275

Abstract

A new learning algorithm for multilayer feedforward neural networks is developed. The algo-
rithm trains the neural network by applying local variations to its parameters (i.e., weights and thres-
holds) and referred to as Learning by Local Variations (LLV) a!gorithm. The initial values of weights
and thresholds are generated randomly and then systematically perturbed such that the cumulative
mean square error decreases monotonically with each iteration. The performance of this algorithm was
compared with the back-,rropagation learning algorithm. It is observed that LLV algorithm outper-
forms back-propagation in terms of computational requirement, simplicity and accuracy. Extensive
simulation studies indicate that the LLV algorithm has some desirable features such as fast conver-
gence rate and reduced dependence of rate of convergence on the initial conditions.

I. Introduction

With the development of back-propagation (BP) algorithm 111 the multilayer feedforward net-
works have been used successfully to solve number of pattern classification problems. However, when
the BP algorithm is employed to train neural networks to solve complex problems, the computational
time requirements are often very high. Also, the BP algorithm suffers from some limitations such as
dependence of rate of convergence on initial values of weights and the possibility of converging to
local minima. Several attempts have been made to modify the BP algorithm to achieve faster conver-
gence. The second order BP methods [21-{31 improve the rate of convergence but with added computa-
tional complexity.

Our aim in this paper is to present a new learning algorithm based on locai variations of weights
and thresholds. Our approach differs significantly from that of error back-propagation. We make sys-
tematic changes in the weights, one at a time, and see if any improvement is obtained at the output.
If there is any reduction in cumulative mean square error we make the changes permanent. Otherwise
we discard the changes. The cumulative mean square error decreases monotonically with each success-
ful local variation.

This technique is termed as "Learning by Local Variations" or LLV algorithm. The LLV algo-
rithm is very simple to apply and it has very fast convergence rate as compared to the BP algorithm.
Extensive simulation studies indicate that its convergence rate is less dependent on the initial condi-
tions and the possibility of its converging to local minima is low.

Section 11 of this paper describes the learning problem. Section III presents the LLV algorithm.
The discussion regarding computational complexities of LLV and BP algorithms and the simulation
results are presented in section IV. Finally section V is the conclusion.

I1. Problem Formulation

A multilayer feedforward neural network with one hidden layer is shown in Fig. 1. When an
input pattern XP=[X0 ,,x,1 -X(N. 0_Ipl is presented at the input, it propagates forward in the network

and maps into an output pattern Y=[yo,yI,...,y(m-I'j. The layer I contains N, neurons. x) denotes the
output of the j th neuron belonging to the I th layer and is computed as

Nv-Ix =r(W 7 -1 -0. 1X ~ r, ELI (I)
0-0

where w"1 is the weight of connection between the n th neuron in the (I-1) th layer to the j th neuron
in the I th layer and 0' is the offset value of the j th neuron in the I th layer. The function f is

1- 700

:haracterized by sigmoid nonlinearity.

In supervised training of neural networks we are given a set of P input patterns X., p =1 .
P which need to be mapped into the corresponding set of output patterns. Let Dp=id0p,dAp,...,d(M-.)p]

be the desired output pattern corresponding to the input pattern X.; and Y. be the actual output
obtained during training phase. The mean square error for pattern p is given by

EP 1= 2-± (dRp-yQp} (2)

and the cumulative mean square error is given by

E--1 Ep (3)

p-I

The learning problem is to find the set of parameters w-1j and 0), such that the cumulative mean
square error given by eq.(3) is minimized.

III Learning by Local Variations

A set of initial weights and thresholds are generated randomly. All the input patterns Xp,p -
1,..,P are presented at the input ot neural network and the corresponding output patterns YP are
evaluated by forward propagation. The cumulative mean square E is calculated using eqs.(2) and (3).

In each iteration of LLV, local variations are periormed on each of the weights until all the
weights in the network are covered. The treatment of thresholds is the same as weights. To perform
local variations on the weight wvj , first positive local variation is attempted as follows.

wr•=w' i(t)+&w' (4)

where w'j(t) is the current value of weight w~l and 6wI is value of the incremental change to be

attempted in the weights of layer 1. The value of 6w' is chosen through trial and error at the beginning
of the algorithm. All the patterns are now applied to the neural network with this new value of
weight and the cumulative mean square error E' is calculated. If E7 is less than E then the positive
local variation is successful and the weight wl0(t+1) = wni. If positive variation is successful we go to
the next weight. Otherwise the positive variation is discarded and the negative local variation is
attempted as follows:

' (5)
A similar procedure is repeated for this change and E' is calculated. If E' is less than E we make the
change permanent i.e., wlj(t+1) = w.ý, otherwise, none of the variations are successful and we go to
the next weight. In each iteration we keep count of the successful variations in weights of each layer
1. If there are no successful variations in the weights of layer I (i.e., wij), then the value of 6w' is
reduced to abwv (O<acl) for the next iteration.

Thus each iteration of the algorithm involves local variation of each of the weights and thres-
holds of the network. The algorithm is terminated when sufficient reduction in the cumulative mean
square error is obtained. The LLV algorithm thus performs a search in the local neighborhood of the
point represented by current weights in the weight space.

Whenever a local variation is attempted on a given weight, the entire forward propagation for
patterns need not be carried out. Instead, only the variables along a path affected by the variaLion
should be reevaluated. For example, when a local variation is being attempted on the weight w'. in
the network shown in Fig. 1, only the variables along dotted paths are affected and need to be
reevaluated. This requires that some extra variables such as activations and outputs of neurons need
to stored for each pattern in the pattern set. This scheme brings about significant reduction in compu-
tations for every pattern presentation and is feasible in terms of memory storage if the number of pat-
terns is not very large.

1- 701

IV Simulation Results

In order to compare the performance of two algorithms we need to take into consideration the
time complexity as well as the optimization efficiency of the algorithms [2]. We limit our discussion to
one hidden layer networks as these are the most widely used. The time complexities of the network
with one hidden layer are presented here. One iteration of BP has time complexity of O(n) wher;.
nmNoNm+NtN.. One iteration of LLV has complexity of 0(n') where n' mNoN1 N2+N0N,+N 1 N2 . For
detailed comparison of two methods see Table I. However' the number of iterations required for con-
vergence by the LLV algorithm is significantly less than t: it of BP algor:thm. In most of the prob-
lems attempted during simulation studies we obtained convergence within 15-100 iterations using LLV
while BP took beveral thousand iterations.

The performance of these two methods on some of the problems such as Exclusive-OR, Parity
and Mux is presented in Table II. The parameters of both the algorithms were chosen so as to obtain
their best performance. The initial values of weights and thresholds were chosen to be random
numbers in the interval [-0.5,0.51 and were identical for both the algorithms. Column I of the Table II
gives information about architecture of the neural network to solve the problem. Thus 2-2-1 for XOR
problem means that there are two inputs, two neurons in the hidden layer and one output. Parity is a
four bit parity problem with six neurons in the hidden layer. The multiplexer problem consists of a
two bit select field, a four bit data field and a one bit output. The algorithms are said to be con-
verged if the cumulative mean square error falls below a certain threshold. In the problems dpscribed
here the threshold was chosen to be (0.01)2 i.e., the error in each of the output bits is approximately
0.01 for each pattern. In some cases the BP method could not meet this criterion even after a large
number of iterations.

Figs. 2 to 4 show cumulative square error versus the number of pattern set presentations for
each of the problems. It is evident that the rate of convergence for LLV is much higher than that of
BP. Also as the error becomes smaller, BP slows down. But no such effect is observed in case of LLV.
These plots, however, do not present a clear picture of the effectivenesss of LLV because the number of
computations per pattern set presentation for LLV is much lesser than that of BP as mentioned in sec-
tion 1II. Also, in the case of LLV, there is no error back-propagation with each pattern presentation.
Evaluation of number of computations required by both the methods on small to moderate sized net-
works indicates that LLV requiies one to two orders of magnitude lesser computations than BP. For
larger networks the improvement in performance was observed to be more problem specific and not so
significant. We also observed the performance of these methods under different initial conditions. The
performance of LLV was less sensitive to the initial conditions than that of BP. Also the frequency of
LLV to converge to local minima was significantly less than that of BP.

V Conclusion

A new learning algorithm for multilayer feedforward neural network has been presented. The
proposed algorithm is much simpler and computationally efficient compared to the back-propagation
algorithm for small to moderate sized networks and often gives more accurate results. Simulation stu-
dies indicate that the convergence rate of LLV is less dependent on the initial conditions and the pro-
bability that it would converge to local minima is significantly less than that of back-propagation.
The back-propagation method often takes an excessively large time to train nctwnrks to solve complex
problems. The new technique has potential of training neural networks to solve complex problems
within a reasonable time period.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. WVilliams, "Learning Internal Representations by Error
Propagation" in D. E. Rumelhart & J. L. NMcClelland (Eds.), Parallel Distributed Processing, vol.
1: Foundations. MIT Press (1986)

[2] R. L. \Vatrous, "Learning Algorithms for Connectionist Networks: Applied Gradient Methods of

Nonlinear Optimization" in IEEE International Conference on Neural Networks, 1987.

[31 S. Kollios, D. Anastassiou, "Adaptive Training of Multilayer Neural Networks Using a Least

Squares Estimation Technique" in IEEE International Conference on Neural Networks, 1988.

1- 702

SBack- LLV BP LLV
propagation (worst case) Xor 700 16

Mults P(5NN-N-4N N +4N1 -HN-) 2P(NoNNIN2+N 0NI +2NIN-) 2-2-1

Sigmoids P(N,+Nj 2P(NONN.,+N +2NN+•+*+N.) Parity 4700 42
4-6-1
Mux >15000 96
6-4-1 [>15000

Table I. Approximate number of computations per iteration Table IH. Number of iterations for convergence.
for one hidden layer network.

output , LLV (6wl=O.8,6vW=0.7,=0.5)
BP (,,.27.0, c= .9)

log(cse)

-13 L
0 100 200 300 400 500 6OO 700

i.: input
pattern set presentations

Fig 1. Multilayer feedforward Network. Fig. 2. The XOR problem.

0.5 - LLV (6w1=0.7,6w 2=0.8,a=0.5) 1 * LLV(6w'=0.8,6%v2=0-2,a=0.5)
-BP (1=0-5,a=0-9) BP (q=0.5,a=0.9)

-0.5 0

log(cse)_. log(cse) _

-2.5 -2

-3.5 -3 I
0 1200 2100 3600 4700 0 3000 6000 9000 12000

pattern set presentations pattern set presentations

Fig. 3. The Parity problem .1. The Mux problem.

I- 703

A NEW LEARNING ALGORITHM FOR THE BSB MODEL

Robert Proulx and Jean Begin
Department of Psychology

Universite du Quebec a Montreal
Montreal, Que, H3C 3P8 Canada

During the past ten years, connectionist networks have been applied to a
wide variety of problems ranging from low level pattern recognition to verbal
learning and decision optimization (Rumelhart & McClelland, 1986). Among

the various parallel distributed models proposed, the Brain-State-in-a-Box
(BSB) of Anderson Silverste'n Ritz and Jones (1977) has the advantage of being

able to explain the process of categorization in a natural learning framework.

In the model, this is accomplished on the one hand, by a positive feedback
loop which continuously returns the current state back to the input, thus
forcing any initial ambiguous state to converge toward one of the discrete
directions defined by the eigen vectors of the connectivity matrix, and on the
other hand, by the imposition of saturation limits that constrain vectors to lie
inside a hypercube of which corners, if they are stable, constitute the invariant
final states of the system. Thus, the performance of the model is closely linked
to conditions under which stable responses (comers) are acquired.

In a recent study, Proulx (1986, 1987) criticized the notion of stability as

defined by Anderson et a!, (1977) and showed that certain selectivity problems
emerge when the system learns in the presence of non-orthogonal stimuli.
More precisely, the imposed limits to adaptation of connections, which
prevent the system from being dominated by it's first eigen vector (Anderson
and Mozer, 1981, Golden, 1986), inevitably leads to decreased efficiency of the
feedback to drive initial states in the appropriate direction, while
simultaneously facilitating the stability of all the corners of the hypercube.
This seriously limits the applicability of the BSB model to human
categorization.

In this paper, we present a revised version of the BSB model in which the
coefficients of the connectivity matrix are updated according to two distinct
learning rules instead of only one. The first is the standard hebbian rule used
by Anderson & Mozer (1981) and the second is an anti-learning rule that
operates with a general parameter slightly less in magnitude and opposite in
sign relative to the first rule. Such a modification of the BSB's learning
algorithm has for major effect to introduce a negative feedback in addition to

1I- 704

the usual positive feedback in the system. Moreover, since the application of
the two synaptic modification rules is asynchronous (anti-learning following
learning by five iterations), the canonical bases of the two components of the
feedback never overlap and the resulting effect on the performance of the
model is much more complex and interesting than what is expected by the
simple application of two antagonistic processes.

More specifically, as demonstrated by a theoretical analysis of the dynamic
properties of the feedback, as well as by the results of several computer
simulations based on the operation of a 34 unit network in a recognition task
of nine correlated stimuli (letters), the new model performs better than the
standard BSB at all levels of analysis. First, inspection of the evolution the
eigen structure of the connectivity matrix as a function of the number of
learning trials reveals 1) that the eigen vectors of the total matrix develop
progressively to represent a well defined set of distinctive features of the
objects in the stimulus domain, and 2) that each eigen val'ue sequentially
emerges from noise level to converge toward a magnitude that depends on the
relative importance of the associate characteristic (eigen vestor). Second, an
analysis of the two eigen value spectra obtained for each component of the
feedback demonstrates that the ratio between successive eigen values
increases, thus indicating that the system becomes more selective as it learns.
This conclusion is also supported by the fact 1) that the final corners used by
the system are exact representations of the input stimuli though, in the
presence of noise, unaltered letters have never been presented, and 2) that
only those corners reach the appropriate level of stability during the learning
process. Finally, when tested in the presence of varying levels of noise, the
performance of the model is nearly ideal, both in lterms of accuracy of
categorizations and in speed of recognition.

Such findings strongly suggest that reconciliation of selectivity with
generalization in the BSB model depends on the dynamic properties of the
interaction of two types of feedback rather than on the effect of positive
feedback only.

References

Anderson, J.A. (1983). "Cognitive and psychological computation with neural
models". IEEE Transactions on Systems, Man, and Cybernetics, 13(5) 799-
815.

I- 705

Anderson, J.A. & Mozer, M.C. (1981). "Categorization and selective neurons".
In G.E. Hinton, & J.A. Anderson (Eds.) Parallel models of Associative
Memory (pp.213-236), Hillsdale, N.J.; Lawrence Erlbaum Associates.

Anderson, J.A., Silverstein, J.W., RRitz, S.A., & Jones, R.S. (1977).
"Distinctive features, categorical perception, and probability learning"
Some applications of a neural model". Psychological Review, 84. 413-451.

Golden, R.M. (1986). "A developmental neural model of visual word
perception". Cognitive Science, 10(3), 241-276.

Proulx, R. (1986). Etude des proprietes de selectivite d'un modele parallele de
memoire associative applique au probleme de la reconnaissance des
caracteres alphabetiques. Unpublished doctoral dissertation, Universite de
Montreal, Montreal.

Proulx, R. (1987, August). Selectivity problems in the Anderson's BSB
Model. Paper presented at the meeting of the Society for Mathematical
Psychology, Berkeley, CA.

Rumelhart, D.E. & McClelland, J.L. (Eds.) (1986). Parallel distributed
processing: Explorations in the microstructure of cognition, Volume 1:
Foundations. Cambridge, MA: Bradford Books/ MIT Press.

1 70

': '

THE EFFECT OF THE SLOPE OF THE ACTIVATION FUNCTION ON THE
BACK PROPAGATION ALGORITHM

Ali Rezgui and Nazif Tepedelenlioglu
Electrical and Computer Engineering Department

Florida Institute of Technology
Melbourne, Florida 32901

Abstract-We investigate in this paper the effect of the slope of the activation function(the node
nonlinearity) on the performance of the back propagation algorithm in training a multilayer
perceptron. The main conclusion of the paper is that the back propagation algorithm can be made
more robust by not only making the weights adaptive, but the slopes of the nonlinearities as
well.

INTRODUCTION
The back propagation algorithm[1],[21 is an adaptive procedure which is widely used in

training a multi!ayer perceptron for a number of classification applications in areas such as
speech and image recognition.

The network is presented a set of input vectors together with the corresponding desired
output patterns. At each iteration step, the algorithm compares the actual output with the
desired output and calculates the error. The error is then used to update the weights in the
output layer in the desired direction; and then back propagated to the hidden layers to update the
remaining weights.

The back propagation algorithm suffers from a major drawback however. The
convergence of the algorithm is very sensitive to the initial set of weights. Very often, one may
find that the algorithm fails to converge. This phenomenon is usually explained as the algorithm

getting stuck in a local minimum" of the error surface[I]. While this may be true for some
cases, there is another phenomenon which occasionally prevents convergence.

Because the unsaturated range of the nonlinearity (dynamic range) is predetermined and
kept fixed throughout; in the classical version of the algorithm it is very common that the
initial set of weights causes the nonlinearities to saturate and therefore the derivativs of the
nonlinearities becomes so small that the weights update very slowly, if at all, which causes the
algorithm to fail to converge or to converge after a relatively large number of iterations.

This problem makes the back propagation algorithm very unpredictable. It is the
experience of the authors that it takes several trials to find an initial set of weights that would
be suitable for convergence. Except for a new algorithm that uses Kalman filtering to train the
perceptron[4J, little attempt, if any, has been made to improve the back propagation algorithm
so that the convergence would be iess dependent on the initial set of weights.

In the next section, we introduce a modification to the classical back propagation
algorithm which updates the slopes of the nonlinearities as well as the weights, hence prevents
this saturation phenomenon. The remainder of the paper is devoted to experimental results.

SLOPE OF THE NODE NONLINEARITY
While it is standard procedure to use the so called sigmoid as the node nonlinearity[l],

we shall depart from this and use the saturating linear soft limiter (SLSL) given by

S1 if x > 1/a
f (x)= ax if Ixl-• 1/a (1)

-1 if x <-1/a

1- 707

instead, because of its advantages mentioned in [5].
To illustrate the effect of the slope of the nonlinearity, a two layer perceptron with two

input nodes, two nodes in the hidden layer and one output layer will be used to solve the XOR-
problem[31.

The possible inputs, the desired output responses, and symbols to represent the actual
output of the net for the XOR'problem are shown in table 1.

xl x2 DES.OUTPUT symbolized f(x) A •.B
_________ output

S 1 -1 A -x t'(x)
1 .1 1 B .

.1 - . D ---C-D -_B.

(a) (b)
Table 1. XOR-problem Fig 1. (a) node nonlinearity, (b) Derivative

Since the initial set of weights is randomly choren, it is common that the output of the
linearcombiner for a given slope setting saturates the nonlinearity as shown in Fig 1.(a),
where x is the input to the nonlinearity and the symbols are the actual outputs of the net for the
four possible inputs of an XOR-problem for a specific case. It is seen that the slope of the
nonlinearity is so steep that all possible inputs to the nonlinearity fall in the saturated range.

Fig 1.1b) shows that when such a case occurs, the derivative of the nonlinearity is very
small(instead of setting the derivative to zero in the saturation regions as shown in the figure,
we set it to a small e as explained below) and therefore the weights will update very slowly
which might cause the algorithm not to converge.

On the other hand, if the slope is made very small so as to have all the inputs to the
nonlinearity, however big, fall in the dynamic range, it might be so small that it would take a
relatively large number of iterations for the actual outputs to move out from the dynamic range
and fall in the correct saturated regions.

Therefore, there must be an optimal value for the slope of the nonlinearity for different
initial sets of weights.

Since there is no way to determine the optimal slope, it would be propitious to modify
the back propagation algorithm such that the slopes of the nonlinearities used in the net are
made adaptive as well.

In order to make the slope of the nonlinearity adaptive, the SLSL given by (1) is viewed
as a function of two variables : the input x and the slope a.

Therefore the derivatives of (1) with respect to x and a are given by
a if jxI < 1/a

f',(x,a) (2)
c if jxI>1/a

and

x if a5 _I1/xI
f'a(x,a) (3)

c if a> I1/xI

I- 708

respectively, where e is a suitably small positive number, included so as to have the derivative
never equal to zero so that a small updating occurs even when the nonlinearity is saturated.

Let the sequence of input vectors and the corresponding desired output vectors be Xp,
p=1,2....,M and Dp, p=1,2,...,M , respectively.

The purpose is to determine adaptively the weight vectors Wj and the slope of the
nonlinearity a1 that belong to each neuron (node) so as to minimize the mean squared error

Ep - 11 Yp" Dp 112

where Yp is the actual net output corresponding to the input Xp.
The new algorithm does this following the steps below:

1. Start with a random set of weights and a random set of slopes.
2. Calculate Yp by propagating Xp through the network.
3. Calculate Ep.
4. Adjust slopes by

aj(t+l) . aj(t) + •Aaj+ p(aj(t) - aj (t- 1)) (4)
where ai(t) is the slope at time t belonging to node j, [is the step size, and p is a momentum

term and
Aaj = fa' (Xpjaj) (dpj - ypj) (5)

if j is an output node and
Aaj = fa' (Xpj,aj) ,k A Wjk (6)

if j is a hidden node.
This step is the only addition to the classical algorithm and its derivation follows exactly

the same steps used in deriving (7) in the literature. It can be seen in (4) that the slopes are
updated in a very similar manner to the way the weights are updated in the classical back
propagation algorithm.
5. If aj(t+l)< amin then aj(t+l)= amin
where amin is a small positive number which is used to prevent the slopes from taking very

small or negative values.
6. Adjust weights by

Wj(t+l) = Wj(t) +)AAwjX1 + cc (Wj(t) - W1(t-1)) (7)
where Awj = fx' (xp,) (dpj - ypj) (8)
if node j is an output node and

Awj = fx' (xp,ai) 7k Awk Wjk (9)
if node j is a hid den node.
7. Repeat by going to step 2.

It must be noted that the new algorithm has only two new terms compared to the classical
algorithm,Aaj and fa'(Xpj,aj). The term fa'(xpj,aj) is the derivative of the nonlinearity with
respect to the slope and has the same computational complexity as the term fx'(xpj,aj), and the
term Aaj, as seen in (6), is related to Awj which is used to update the weights. Therefore, the

new algorithm does not have any more computational burden than the classical one since the
Awj'S, used to update the weights, are also used to update the slopes.

SIMULATION RESULTS
Both the classical and the new algorithm are used to train a two-layer neural network,

as described in the previous section, to solve the XOR-problem. Both algorithms are run with
the same sequence of inputs, the same initial set of weights, the same parameters : X =.5, g=.7,
and the same initial set of slopes aj = 1 for all the nodes. The new algorithm has the additional

I- 709

parameters B - .15 and p - .05.
The input data are presented in sequence together with the desired output to the net as

shown in table 1.
Since there are four different pairs of inputs in the XOR-problem, the MSE between the

desired output and the actual output of the net is computed at every four iterations.
The results of the simulation are plotted in Fig 2. It is seen that while the new algorithm

converges in about 50 iterations, the classical algorithm does not converge even after 300
iterations. It must be emphasized here that this behavior for the classical back propagation
algorithm occurs sufficiently often to justify the modification.

3-

W
" 0

Z+ FIXED SLOPE 0
"W ADAPTIVE SLOPE .2Z

... . -0
0 10 200 300 0 10 20 30 40 s0

ITERATIONS Iterations

Fig 2. Learning curves for the XOR-problem. Fig 3. slope of the output nonlinearity.

The value of the slope of the output node nonlinearity is shown in Fig 3. It seen that the
slope decreases from its initial value to a very small value, which increases the dynamic range
and therefore allows the weights to update rapidly in the initial stages of the training period. As
the algorithm begins to converge, however, we see from the figures that the slope begins to
increase, thus decreasing the dynamic range and therefore limiting adaptation.

REFERENCES
[11] R. P. Lippman, "An Introduction to Computing with Neural Nets", IEEE ASSP Magazine, Vol.
4, Number 2, April 1987.
[21 D. E. Rumelhart and J. L. McClelland, Parallel Distributfed Processing, Vol I, Cambridge,
MA, MIT Press, 1986.
[31 B. Widrow, R. G. Winter and R. A. Baxter, "Layered Neural Nets for Pattern Recognition',
IEEE Trans. Acous., Speech, Signal Processing, Vol. 36, Number 7, July 1988.
[4) R. Scalero and N. Tepedelenlioglu, " A Fast New Algorithm for Training Feed-Forward
Neural Networks * submitted to the IEEE Trans. Acous., Speech, Signal Processing, May 1989.
[5] N. Tepedelenlioglu and Ali Rezgui, The Effect of the Activation Function on the Performance
of the Back Propagation Algorithm e, IEEE International Conference on Systems Engineering,
Dayton Ohio, August 24-26, 1989.

1 - 710

LEARNING WITH 'Mi OPTIMJM PidfI PARADIGM

Samir 1. Sayegh
Physics Department
Purdue University

Ft Wayne, LW 46b3O'-1499
sayeghipfwcvax. oitnet

THE FEED-FORWARD PHASE

The proposed optimum pith paradi•a kOPP) worKs as foliows. The
input is specified by a string of w symbois ta~en from an aipn-
abet A = fa, b, c, .. Y, containing , letters. The output is a
string of _ symbols in alignment with the w input symuoois. Tne
output symbol corresponding to a given input symooi can De taieen
from a collection of allowaole output symools for each input
symbol. For example, the input symool a would admit output
symbols al, a2, ... , aq. The direct problem is to find tne cor-
rect string of output symbols for eacn admissiole input string.
The inverse problem, i.e., learning, consists in finding the
association laws or dynamics, by observing inpu-t/output pairs,
thus allowing oneself to predict future outputs.

The input string is written horizontally and below eucn input
symbol one writes a layer of ail possiole output jymmois cor-
responding to the input symbol under consideration. Specifying
the output string consists in mating a cnoice of an output sywuol
per layer. If one thinics of joining each output symool to tne
next chosen one as a means of specifying the correct output
string, one then gets a path connecting the first layer to tne
last layer, and containing one node per layer.

All symbols in two successive layers are assumed to oe connected
with a weight assigrnent for each such connection. This is tne
same connectivity as for the backpropagation algoritnm -d i5 ,6J.
The traversal of the network is specified by finding tne patn or
least cost from first to last layer. it can be impiemented witn
the Viterbi algorithm M7J whiCn is itself a version of Dijistra's
algorithm C1J. The topology is identical to Mat of bV and naa
the same degee of parallelism. All nodes of a given layer
compute simultaneously. Each node performs a function of q
argunents, one argument corresponding to eacn node of Tne previ-
ous layer. Each such argament is a sum kinstead of a prouct, as
for BP) of a value stored at tne previous node ard tnat of a
wei•nt on the connection between the two nodes. Tne function
used here is a min function (i.e. taie the stalest argument)instead of the sum followed by a sigoid used in ik'.

The specification of output descrioed anove, presumes tnat Lnere
is a gn x M matrix V1 of weighta, specifying aLl possinie trwisi-
tionsbtetween all possiole pairs of output symuois, ieartn
deals with the problem of finding such a matrix.

1- 711

TH! LEARNING PROCEDURE

Learning consists in observing a numoer of input/output pairs a.nd
in reconstructing from them the input/output mapping. An in-
pIt/output pair is equivalent to the specification of a net and
an optimum path on that net. Given a collection of sucn nes,
together with the corresponding optimum paths, one would li~e to
reconstruct the matrix W of weights of transition from one output
symbol ci to another cj.

Notice that the specification of an optimum path is equiva.Leat to
the specification of a number of inequalities, stating t•nat tne
sum of the weights of the edges forming tne optimum path iu
larger than the sum of any combination of weights corresponding
to an alternate path. Knowledge of a collection of input/output
pairs is therefore equivalent to the knowledge of a large numoer
of inequalities among the entries of the matrix W. Attempting to
achieve learning, i.e., determining the entries of 4 or ode sucn
equivalent set of entries, is tantamount to the "soLution" of a
large number of inequalities among the matrix elements. 'This is
achieved by introducing a heuristics that relates the freqaency
of occurrence of a weight as part of a large side of an inequali-
ty to its actual value. This is quite intuitive since tne larger
a weight the more likely it is to occur on the larger side of
inequalities involving different weights. Simulations Dear tnis
fact 6.

When translated back to the network formulation, the heuristics
dictates strengthening each edge or connection that occurs on a
best path. The matrix W' is therefore constructed oy successive
incrementation of the entries correuponding to transitions oc-
curring on best paths. This is a form of Heooian learnind L?.J in
the context of a different feed-forward paradigm for supervised
learning.

The task to be learned here will be assumed to De impiementacle
through minimization and that a transition matrix W actually
exists to represent the given mapping through minimization as
discussed. Learning will then consist in recovering an
equivalent matrix W', througi observation of input/output pairs
generated through the use of W. One then uses W' to generate
outputs and compares them to the one generated with W. if they
agree, learning has been successful.

It is not necessary to have a specific model for the objects that
W represents. If such a model is considered useful at tnis
stage, one could use that of a robot arm. In this particular
model we assume that we have three positions pl, p2 and p5, that
it is desirable to reach. Each such position is realizaile
through two different configurations of tne joint variaoles of
the robot arm. We thus have 6 different possiole configurations

1- 712

and the costs of transition from any one configuration to anotner
is entered in the 6 x 6 matrix, W. /

Through the use of W, one plans the optimum path for any prescr-
ibed trajectory. By considering the actua.L trajectories followed
and applying the heuristics described above, one then generates a
new matrix W' of inferred costs of transition. if learning is
successful, the use of 41 for path planning will result in tne
same paths as the use of W.

The above is illustrated by the following example:

The matrix W is given by:

012 12 3)101 31 2j

W 1 3 10 3 2
(11230

2221 0

We then consider 3-position sequences. ?'or eacn sucn sequence we
generate the optimum path. By applying OF? learning we oontin
the following matrix W':

/2 0 0 5/20 0

W o 7/2 3 0 17/6 1/6
o 4/3

0 17/6 0 4 2
1 0 11/6 4/3 0

It can be verified that maximum paths using W' generates the same

paths as W has. Learning was thus successful.

DISCUSSION

The present paradign is promising for learning witn connectionist
networks. One reason is the speed of ootn feed-forward and
learning phases. The fast nature of the learning phase, which
processes each weight no more than once, maxes it a good
candidate for prwctical applications L4,9].

Despite the wide difference in concept between OPF and BF, tnere
are fundamental similarities between hea . A pr",cticLU similari-

I - 713

ty is related to the identical topology in the feed-forward pnase. A fixed
architecture will run both paradiims. A theoretic.L similarity
arises from the fact that B? performs gradient descent in tne
space of weights during the learning phase, tnus searching for
the "state of minimum energy," in a way similar to actual
physical systems. In OPP, during the feed forward phase, Zne
system looks for the path of "minimum total weignt" or "Least
action," which agiin is what physical systems do. The succL-Js of
both paradigms migit be rooted in tne simple fact tnat tney
emulate the long tested ways Nature uses to evolve.

REFERENCES

[Il Dijkstra, E. V. 1959. "A Note on Two Proalems in Con-
nection with Graphs." Numerische Math. I, 2b,-4.l .

[2] Hebb, D. 1949. Organization of Benavior. wiley, flewIork.

[3] Rumelhart, D.E. and McLelland, J.L. 19d7. ParaLlel.
Distributed Processing. Cambridge, MA: MKL Press.

(4] Sayegi, S.I. 199 "Fingering for String Instmruents
with the Optimum Path Paradiga" Computer Awasic Jodrnal
Special Issue on Connectionism (Septemoer I 99).

L5] Sayegh, S.I. and M4anzor-Coats, L. 1963. "Neural. Aet-
works as an Alternative to Rule-Based Systems for
Learning Spanish Prhnetics," Proceedings of tne Inter-
national Symposium on Artificial inteJligence, iKonter-
rey, Mexico.

[6] Sayegh, S.I. and Tenorio, M.F. 1986. "Inverse Vriteroi
Algorithm as Learning Procedure and Application to
Optimization in the String Instrument Vingering
Problem," Proceedinp of the IEK International
Conference on Ne NFetworks, San Diego, CA.

[7] Viterbi, A.J. 1967. "Error oounds for convolational.
Codes and an Asymptotically Optimam Decoding
Algoritnm." IE&B 'rarsactions on Information 'neory.

[8] Werbos, P. 1974. Beyond Regression: New -fools for
Prediction and Analysis in the denavioral. -ciences.
Ph.D. thesis, darvard University Committee on AppJ.ied
Mathemnatics.

1- 714

t i i l li I l

A FAST TRAINING ALGORITHM FOR NEURAL NETWORKS

Robert S. Scalero is with Grumman Melbourne Systems, P.O. Box 9650, Melbourne, FL 32904.

Nazif Tepedelenlioglu is with the Electrical and Computer Engineering Department of the Florida
Institute of Technology, Melbourne FL 32901.

ABSTRACT
A fast new algorithm is presented for training multi-layer perceptrons as an alternative to the
back-propagation algorithm. This new algorithm reduces the required training time
considerably and overcomes many of the shortcomings presented by the conventional back-
propagation algorithm.

The algorithm uses a modified form of the back-propagation algorithm to generate error signals
with respect to the summation outputs (inputs to the nonlinearities). These error signals are
used to estimate values at the summation outputs that will improve the total network error. The
determination of weights using these summation output estimates is thereby reduced to a linear
problem which may be solved by using a Kalman filter at each layer.
The new algorithm, as shown in this paper, shortens the training time by several orders of
magnitude for the pattern recognition type problem considered. In some cases improvement
ratios of the new algorithm over the back-propagation algorithm run higher than 10,000. The
new algorithm is also less effected by the choice of initial weights and set up parameters.

INTRODUCTION

The purpose of this paper is to present a novel algorithm for rapid training of feed-forward
multilayer perceptrons. It is not our intent to derive the algorithm here, but to state the
algorithm and present experimental results in pattern recognition. For the full derivation of
the algorithm, and additional experimental results, the reader is refered to [1], [21.
The back-propagation algorithm [31, [4], which is a generalization of the LMS algorithm that
minimizes the mean squared error between the desired and the actual outputs of the network
with respect to the weights, has become the standard way of training multilayer perceptrons.
The algorithm, however, suffers from a number of shortcomings. Aside from the large amount
of time required for the algorithm to converge, it has the added disadvantage of being very
sensitive to initial weights and set up parameters.
It is the presence of the nonlinear functions in the network that prevents us from directly
applying the standard !east squares adaptive filtering techniques which are known to have rapid
convergence prope,-;i•. If the nonlinear neural network problem can be partitioned into linear
and nonlinear parts, z. wide range of techniques would be at our disposal for solving this
problem. In contrast to t.he standard back-propagation algorithm, the new algorithm uses a
modified form of the back-propagation algorithm to minimize the mean squared error with
respect to the summation outputs (inputs to the nonlinearities). Error signals are generated
and used to estimate values at the summation outputs that will improve the total network error.
By specifying improved summation outputs this way, the determinatici of the weights is
thereby reduced to a linear problem. The solution of the weight vector at each node, is the
solution of the deterministic normal equation [4] whose input variables are the estimated
summation outputs, along with the input vector to the respective node. Solving the normal
equation is implemented recursively by using a Kalman filter [51 at each layer.

I - 715

THE ALGORITHM

1. Initialize
Equate the node offset x1.1,0 of every node to some non-zero constant for layers j - 1

through L, randomize all weights in the network, and initialize the inverse matrix R-I.

2. Select training pattern
Randomly select an input/output pair to present to the network. The input vector
Is Xo and desired network output vector is 0.

3. Run selected pattern through the network
For each layer j from 1 through L, calculate the summation output

N

Yjk " Z xj.i,i wjk and the function output Xjk - f(Yjk) - eX(-a vkl
I-o 1+ exp(-a Yjk)

for every node k. N is the number of inputs (not including the offset) to a node, and
constant a is the sigmoid slope.

4. Invoke Kalman filter equations
For each layer j from 1 through L, calculate Aj - R-lj Xj.1, calculate the Kalman gain

Kj - Aj [bj + XTj. 1 Al 1 -1, and update the inverse matrix R-lj - [R-lj - K1 Aj J / b,
where bj is the the forgetting factor for the jth layer.

5. Back-propagate error signals
Compute the derivative of f(Yjk) using f'(Yjk) 2 ak.. .

[1 + exp(-a Yjk)] 2

Calculate error signals in the output layer, for every node k, by evaluating
eLk- f'(Ylk) (Ok- XLk).

For the hidden layers, starting at layer j - L-1 and decrementing through j = 1,
find error signals by solving

ejk f(Yjk) ej.41 . Wj+l,i,k for every node in the jth layer.

6. Find the desired summation output
Calculate the desired summation output at the Lth layer by using the inverse function

dk = 1 In [1±-. for every kth node in the output layer.

a 1 -Ok

7. Update the weights
The weight vectors in the output layer L, are updated by WLk = WLk + KL (dk - YLk

for every kth node. For each hidden layer j = 1 through L-1, Ihe weight vectors are
updated by Wjk = Wjk + Kj ejk • for every kth node.

8. Test for completion
If the network has not yet converged go back to step 2.

1- 716

III Ii

PATTERN RECOGNITION EXPERIMENTAL RESULTS

The following pattern recognition example illustrates the difference in training times of the two
algorithms when presented with the same pattern set. The 7 x 7 pixel patterns, Fig. 1, are the
Inputs to a 2 layer feed-forward perceptron with 16 nodes in the hidden layer. The desired
output of the network is a 2, 3, or 4 bit binary word depending upon the number of patterns
used to train the network. As stated for the examples in [11 and [2], both algorithms were
started from exactly the same initial weights, and patterns were presented to both algorithms in
the same order. Fig. 2 shows the mean squared error vs. the iteration number for both
algorithms during training.

Table 1 presents numerically, the performance comparisons of the two algorithms plotted in
Fig. 2. These comparisons take into consideration the computational efficiency of each algorithm
as well as the number of iterations required for the algorithm to reach a specified mean squared
error. The result is a time ratio of the two algorithms when run on a sequential machine. The
computation ratio is the number of operations required by the back-propagation algorithm,
divided by the number of operations required by the new algorithm per iteration. This ratio,
multiplied by the iteration ratio (iterations required by the new algorithm divided by iteiations
required by the back-propagation algorithm) produce the total improvement ratio. A mean
squared error convergence of slightly less than 0.25 was chosen since this value is the
minimum that can be used and still produce correct results, assuming that the outputs are
eventually passed through a hard limiter to produce a binary word.

RESULTS & CONCLUSIONS

As illustrated in Fig. 2 and table 1, the new algorithm converges much faster than the back-
propagation algorithm for pattern recognition type problems. Even with its additional
arithmetic operations, improvement ratios of the new algorithm over the back-propagation
algorithm ran higher than 10,000 in some cases and it is not unlikely that this number may be
further increased by considering patterns with higher resolution.

The new algorithm is also more predictable in its training. In Fig. 2, we notice that the back-
propagation algorithm tends to reach a certain mean squared error and remain there for quite a
while making little or no progress. At some point, it either rapidly converges, or jumps to a
new level where it would again make little or rio progress for quite a while. In contrast, the new
algorithm continues to make steady progress toward improving the mean squared error
throughout the training period.

REFERENCES

[1] R. S. Scalero and N. Tepedelenlioglu, "A Fast New Algorithm for Training Feed-Forward
Neural Networks", Submitted for publication to IEEE Trans. Acoust., Speech, Signal
Processing on May 17, 1989.

[2 1 R. S. Scalero and N. Tepedelenlioglu, "A Fast New Algorithm for Training Feed-Forward
Neural Networks: Application Pattern Recogmition", Submitted for publication to IEEE
Trans. Acoust., Speech, Signal Processing on July 14, 1989.

[3] D. E. Rumnelhart and J. L. McClelland, "Parallel Distributed Processing", Vol. I,
Cambridge, MA, MIT Press, 1986

[4] S. S. Haykin, "Adaptive Filter Theory", Prentice-Hall, 1986, pp. 312-314

[5 S. S. Haykin, "Adaptive Filter Theory", Prentice-Hall, 1986, pp. 381-390

1- 717

c E
C.2 3

CL C

.

C -

00
* '.4 0

ci -

4C4

0 cc

NMI 'SN
-J-IM EI.-:]

177: 0 o .

0) C0

_ _ _ _ _ _ _ _ _ _ _ _ C.

4', 0 n 0

C0 0n

0
3

0. A D 0 4'

0 01 0 0 U
R0.I! af E= N

C R 4 0 0-C.
4 rrIF72MERE] C U)l- --F- B Pýc l

x A

Er~~ 0M0

40 cc I *
__ _ _ _ __ _ _ w -.0

'D\

SRecurrent Networks Adjusted by Adaptive Critics

Jfirgen Schmidhuber
Institut ffir Informatik

Technische Universitit Manchen
Arcistr. 21, 8000 Manchen 2, Germany

schmidhu@tumult.informatik.tu-muenchen.de

Abstract

This paper is concerned with spatiotemporal credit assignment in recurrent networks by local computa.
tions only. An approach to on-line reinforcement learning and an approach to on-line supervised learning
are considered. Common to both is that state transitions in a completely recurrent network are observed
by a second non-recurrent network which receives as input the complete activation vectors of the recurrent
one. The output of the second network serves to provide error information for the recurrent network.

We also consider how in a changing environment a recurrent dynamic supervised learning critic can
interact with a recurrent dynamic reinforcement learning network in order to improve its performance.

Introduction
Few learning schemes in principle are applicable to dynamic tasks with temporally varying inputs and

outputs, including 'extended REINFORCE' algorithms (Williams, 1988) and the 'Neural Bucket Brigade
Algorithm' (Schmidhuber, 1988) for reinforcement learning. For supervised (and non-local) learning in com-
pletely recurrent dynamic networks see e.g. (Pearlmutter, 1988), (Williams and Zipser, 1988), (Rohwer, 1989),
(Gherrity, 1989).

The most important aspect of the algorithms described in this paper is their locality in both space and
time. 'Local in time' is meant to say that weight changes should take place continually, and that changes
should depend only on information about activations and weights from a fixed recent time interval. (In this

paper the recent time interval degenerates to the last time tick for discrete time versions.) This contrasts to
weight changes that take place only after externally defined episode boundaries, which require additional a
priori knowledge. 'Local in space' is meant to say that for arbitrary network size changes of a unit's weight
vector should depend solely on information from connected units, and that the update complexity per time
tick should be only proportional to the dimensionality of the weight vector. This implies that for a completely
recurrent network the weight update complexity at a given time is 0(n2) where n is the number of units. (In
this paper the 'connected units' are the set of source units which provide input to a given unit, plus one more
unit from a second network which is used to compute error information. The additional unit can be thought
of as 'connected in a special way'.)

In both cases described herein there is a primary network which has to be adjusted such that it shows

desireable input-output behavior. The primary network is a completely recurrent dynamic one, where certain
units serve as input units and others serve as hidden units or output units. In both cases there also is a second
network (termed 'the critic' hereafter) which has to be capable of static pattern association. It receives as
input the whole (or parts of the) current state of the primary network. Both networks are adaptive: The
output of the critic serves to adjust the primary network. Various methods can be used to adjust the critic.
Two examples of pairs Jf interacting networks will be described in the next two sections.

Reinforcement Learning in Dynamic Recurrent Networks
We propose the discrete time version of an algorithm for adjusting a recurrent network in order to let

it solve tasks by delayed reinforcement learning (i. e. tasks where an external teacher only indicates once
a while whether the system is in a desireable state or not, without providing detailed knowledge about the
desired outputs at each time tick). Essentially this algorithm can be viewed as an application of 'Temporal
Difference Methods' (TD-methods) (Sutton, 1988) to the temporal evolution of recurrent networks. The fully

1- 719

recurrent primary network consists of linear input units and binary probabilistic non-input units. We consider
the case where the Izarning phase is dividable into 'episodes'. An episode starts with the initialization of the
system's activations and is finished when the final reinforcement R becomes known. Here is a description of
the algorithm:

First all weights are randomly initialized with real values.
For all episodes:
In the beginning of each episodc the activations of input units of the recurrent network are initialized with

values determined by the environment, and the activations of hidden and output units are initialized with 0.
For all time ticks, until there is ezterwal reinforcement R (a real number) indicating failure or success

At a given time tick t:
1. The critic (e.g. a back-propagation network with one output) receives as input the complete activation

vector x(t - 1) of all units of the recurrent network. So the dimensionality of the input vector of the critic
equals the number of units in the recurrent network. Its one-dimensional output r is interpreted as a prediction
of the final reinforcement to be received in the future (Barto et al., 1983)(Sutton, 1984)(Anderson, 1986).

2. The recurrent network performs one update-step: Each probabilistic non-input unit i sums its weighted
inputs, this sum is passed to the logistic function which gives the probability that the activation zi(t) becomes
1, orO, respectively. Each unit i also stores its last activation zi(t - 1). Output units may cause an action in
the environment, this may lead to new activations for the input units (external feedback).

S. If there is external reinforcement R (this means the end of the current episode) then the variable r' is
defined to be equal to R.

Otherwise r' is defined to be a new estimation of final reinforcement, obtained by letting the critic judge
the new state of the recurrent network.

Using itiq static learning algorithm (e.g. the generalized delta rule) the critic associates the last activation
vector of the recurrent network with r', thus 'transporting expectation back in time'for one time step.

4. Each directed weight wij(t) from unit i to unit j of the recurrent network is immediately altered according
to Aw.i(t) = A(r' - r)zi(t - 1)z2 (t) (with A being a positive constant), thus encouraging (or discouraging,
respectively) the last transition.

State transitions from states associated with low expectation of reinforcement leading to states with a higher
evaluation are encouraged. State transitions from states associated with high expectation of reinforcement
leading to states with a lower evaluation are discouraged. So the learning algorithm implements Samuel's
principle for delayed reinforcement, as described in the context of learning to play checkers (Samuel, 1959):
'We are attempting to make the score, calculated for the current board position, look like that calculated for
the terminal board position of the chain of moves which most probably will occur during actual play.'

The algorithm described above has been applied successfully to a 'delayed XOR' problem (Schmidhuber,
1989). An interesting aspect is that a linear critic was sufficient, while the task to be solved was of the
'non-linearily separable' type.

A few modifications were made to the algorithm, in order to make it applicable to tasks where the goal is
to maximize the duration of an episode. These modifications are motivated by the work of Sutton (Sutton,
1984), who studied and generalized Samuel's principle for the case of networks consisting of single units. Sutton
introduced a discount rate 0 < - < 1 in order to give more weight to reinforcement to be received in the nearer
future. Following Sutton we modified step 3 of the algorithm. The corresponding statement now says:

Otherwise r' is defined to be a new estimation of final discounted reinforcement, obtained by letting the
critic judge the new state of the recurrent network and multiplying the new value with 7 .

We also modified the learning rule for the recurrent net (step 4 of the algorithm) such that unlikely
transitions were credited more strongly (Anderson. 1986):

SAw 2i(t) = A(r'- r)(xi(t - l)(z (t) - P(zj = 1 I x(t - 1), w(t - 1)), where w(t - 1) is the last weight vector.
We tested the modified algorithm on the pole balancing task described in (Anderson, 1986). (Detailed

parameter settings and results are given in (Schmidhuber, 1989).) Following Anderson we made the task
more difficult than the similar task described in (Barto et al., 1983), where a prewired decoder was used to
provide binary multi-dimensional input to a single-unit 'network', with all components being zero except for
one. Instead the input was real valued, and additionally scaled in an asymmetric manner, in order to force
the system to discover a non-trivial internal representation by itself.

It is worth noting some differences to Andersons system (Anderson, 1986). In contrast to Anderson we
did not use a back-propagation network but a single linear unit for the critic. We alsc did not use a static

1- 720

feed-forward network for computing output actions, but a continually running recurrent network1 . Since one
update-step of the recurrent network also involves a change of input activations due to the external loop
through the environment, there is a delay of at least 2 time ticks between inputs that have to be transformed
in a non-linear fashion, and the corresponding actions. A new input can be available before the response to
the last one is computed.

An Approach to Supervised Learning in Recurrent Networks
In this section we describe an idea for a local learning scheme for supervised learning in continually running

recurrent networks, where each non-input unit at each time can receive an individual error signal. The method
is based on back-propagation (BP) (Werbos, 1974) in recurrent networks unfolded in time (Rumelhart et al.,
1986), the global error measure to be minimized is the sum of all errors received at the non-input units over
time. The important difference is that the method is local in space and time, while conventional BP is not.
In conventional BP each unit needs a stack for remembering past activations which are used to compute
contributions to weight changes during the error propagation phase. Starts and ends of sequences have to
be indicated by an external teacher. (Williams' and Zipser's on-line algorithm (Williams and Zipser, 1988) is
local in time, but not in space.)

Instead of allowing unlimited storage capacities in form of stacks we introduce a second adaptive, but static
network (again termed the 'critic'). The dimensionality of its output now equals the number of non-input units
of the recurrent net. Its task is to associate states of the recurrent (primary) network with error-vectors. The
behavior of both interacting networks can be described like this:

Activations spread through the primary network in the same manner as with conventional BP. At each
discrete time tick the critic receives as input the state vector of the non-input units of the primary network.
The sum of the critics output and the new error which may have been observed at certain output-units is used
as an error-vector. This error-vector is propagated backwards through the primary network, but only one step
'back in time'. (So each unit of the primary network has to store only its last activation.) The involved weights
are changed immediately afterwards, assuming that the learning rate is sufficiently small to avoid instabilities.

The new error vector received at the non-input units after the one-step-back propagation phase becomes
associated with the last state of the primary network. This association has to be done by the static learning
algorithm of the critic, which can be a Boltzmann machine, or a feedforward BP network, or something else.

A critical assumption of this scheme is that the state of the non-input units at a given time uniquely
represents the history which led to this state. Two different histories leading to the same internal state can not
be distinguished by the critic. In such cases it is likely that incorrect error vectors are one-step-back-propagated
during further training. The self-healing effect could be that weight modifications caused by this process lead
to new errors which in turn split 'critical' states into two or more distinguishable states representing different
histories. However, at the moment the precise nature of the interactions between two net. orks like those
described above is not clear.

The advantage of the scheme is that it is both local in space and local in time: At every time tick the
system in principle performs the same local operations, there is no need for storing past activations (except
for the last ones), and there is no such thing as epoch boundaries.

For several reasons the method does not implement exact gradient descent (in the sense of (Rumelhart
et al., 1986) where epoch boundaries are used.). Two of them have been mentioned above: At every time tick
there are weight changes, and different histories leading to the same state will cause incorrect error vectors.
Another (pragmatic) reason is that the critic often will not exactly mirror the relations between primary
states and error vectors, since its learning algorithm will not be perfect either. 'Similar' primary states will be
blamed with 'similar' error-vector.. where the measure of similarity depends on the complexity of the critic.
It remains to be verified whether such a learning scheme will face serious problems or whether the inertia
of the static network could even lead to beneficial effects, comparable to the effects induced by momentum
terms in conventional BP. In some preliminary experiments with a constrained linear critic (adapted by the
delta-rule) the system sometimes learned but more often failed to learn a dynamic task (the dynamic delayed
XOR problem described in (Williams and Zipser, 1988)). An interesting point is, again, that the linearity of
the critic did not necessarily prevent the recurrent network from sometimes solving its non-linear task.

'We also did not use different learning rules for hidden and output units.

1I- 721

Two Interacting Recurrent Networks
Why should not the critic's own output directly de[ond on past states of the recurrent reinforcement learning

system? Although the primary network is able to memorize information about past states by means of its
recurrent links, one should expect advantages by introducing a continually running 'self-supervised' recurrent
critic. In the sequel we informally describe one scenario for such a system consisting of two interacting recurrent
networks. The basic principle is similar to the one of the algorithm described in the first section:

There is a continually running recurrent primary network with external and internal feedback, and a critic
whose task is to predict the sum of (discounted) reinforcement to be received in the future. However, now the
critic itself is a continually running recurrent network whose input at a given time is the complete current
state of the primary network (including the current enviroamented input). One of the critic's non-input units
is interpreted as the predictive output.

The desired value for the critics output unit at a given time tick is given by the sum of the external
reinforcement and its own (discounted) output at the next time tick.

The critic's error also is the reinforcement for the primary network's reinforcement learning algorithm.
The latter needs to consider only the last and the present state, as above. But it also might be an on-line

version of Williams 'extended REINFORCEMENT' algorithm. The learning algorithm for the critic should be
local in time, at least. So Williams and Zipsers algorithm (Williams and Zipser, 1988) or Gherrity's slightly
more general version (Gherrity, 1989) are promising candidates.

Again the computation of error signals for the critic's output is very much inspired by Sutton's TD-
methods. TD methods, however, require two successive predictions during the same time tick in order to
remove dependencies on weight changes. Since the recurrent critic's output already depends on past states
(by means of its internal feedback) and also on past weights, the scheme described above makes only one critic
update at a time.

References
Anderson, C. W. (1986). learning and Problem Solving with Maulila ver Connectionise Systems. PhD thesis, University of

Massachusetts, Dept. of Comp. and Iaf. Sci.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult learning control
problems. IEEE Tra•,sactiots on Systems, M4n, and Cybernetiecs, SMC-13.

Gherrity, M. (1989). A learning algorithm for analog fully recurrent neural networks. In IJCNN International Joint Conference
on Neural Networks, Vol 1.

Kindermann, J. and Linden, A., editors (1989). Proceedings of Workshop 'Distributed Adaptive Neural ' reation Processing',
St.Asajutin, t4.-45.5, to appear.

Pearlmutter, B. A. (1988). Learning state space trajectories in recurrent neural networks. Technical report, Dept. of Comp. Sci.,
Carnegie Mellon Univ., Pittsburgh.

Rohwer, R. (1989). The 'moving targets' training method. In (Kindernmann and Linden, 1989).

Rumelhart, D. E., Hinton, G. E.. and Williams, R. J. (1986). Learning internal representations by error propagation. In Rumeshart,
D. E. and McClelland, J. L.. editors, Parallel Distributed Processing, volume 1. MIT Press.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal on Research and Development,
3.

Schntidhuber, J. H. (1988). The neural bucket brigade. In Pfeifer, R., Schreter, Z., Fogelman, Z., and Steels, L., editors, Proceedings
of the International Conference 'Connectionism in Perspective', Zirich, Switzerland, Amsterdam: Elsevier.

Schmaidhuber. J. H. (1989). Networks adjusting networks. In (K(indermann and Linden, 1989).

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University of Massachusetts, Dept.
of Comp. and Inf. Sci.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning. 3.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analsiz in the Behavioral Sciences. PhD thesis, Harvard
University.

Williams, R. 1. (1988). Toward a theory of reinforcement-learning connectionist systems. Technical Report NU-CCS-88-3, College
of Comp. Sci., Northeastern University, Boston, MA.

Williams, R. 1. and Zipser, D. (1988). A learning algorithm for continually running fully recurrent networks. Technical Report
ICS Report 8805, Univ. of California, San Diego, La Jolla.

i- 722

Speeding up Back Propagation by Gradient Correlation
David V. Schreibman

Grumman Data Systems
McLean, Virginia

and
Eugene M. Norris

Department of Computer Science
George Mason University

Problem Statement:

Observations of the behavior of the conventional back propagation algorithm [1]
indicates that the ability to adjust the learning rate parameter Tl and the momentum
parameter a dynamically is highly desirable for at least two reasons: efficiency and
quality of learning. The efficiency issue is one of keeping 71 and a as large as possible
in order to minimize time required to learn to a specified error level. The quality
issue is one of keeping ii and (x small enough to allow non-oscillatory descent into
deep, possibly small-diameter local minima, thus permitting learning to proceed to
a small error tolerance. Ideally, these are resolved by keeping the learning rate as
large as possible without being so large as to interfere with successful, low-error
learning. In practice, a strategy is needed to decide when and how to adjust the
learning parameters dynamically, with no operator intervention.

Prior Results

An approach to the efficiency issue has been reported by Vogl et al [2]. In summary
that method is as follows: (1)Weights are modified only after all patterns have been
presented, and (2)The learning rate il is varied after a back propagation step
according as the following forward propagation increases the error. If the error is
decreased, the learning rate is multiplied by a factor 0 > 1. If the error increase
exceeds some threshold, typically 1-5 percent over the previous error value, then the
back propagation step is rejected (all weights are set back to what they were before
the back propagation step), the learning rate is multiplied by a factor P < 1, and the
momentum is set to zero. When a successful step is taken, the momentum a is
reset to its original value. This reactive approach is costly in that it is likely that
some back propagation steps and the following forward propagation steps will be
discarded.

Gradient Correlation Approach

We examine a new approach to the efficiency and quality issues using a proactive
dynamic decision mechanism for parameter adjustment that is based upon the
correlation of present and immediate past gradient vectors.

The error gradient, a vector of weight error derivatives, points in the direction of
the maximum increase of error in weight space. The correlation between the
gradient values across successive training epochs indicates how stably the gradient

I- 723

/

direction changes from epoch to epoch. A large (near 1.0) positive value indicates
that the present direction of weight change is substantially the same as the previous
direction, while a negative value for this correlation measure indicates that the

gradient is changing direction by a large value, greater than

The gradient correlation, gcor [31, is ttie angle between vector weight derivatives,

< wed(t-I),wed(t) >

g<wed(t-Avved(t-1)> <wed(t),wed(t)>

where wed(t) is the vector of weight error derivatives at epoch t, and <u,v> is the
vector inner product, <u,v> = Y'uivi . Gradient correlation value is used as a cue

i
for automatic learning rate adjustment during back propagation. The heuristic is
that when the local topography of the error surface causes a large change in the
direction of the step being taken, oscillation of the gradient vector is likely, and
therefore it is prudent to reduce the step size. In the method in [21, the rate of travel
is adjusted only after a "bad" weight change has driven the network away from its
approach to a local minimum.

Implementatien

A backprop simulator [31 was modified to incorporate gradient correlation and the
Vogl et al. method. Networks using the two modifications were trained on the
same data; results were compared with those obtained from the "classical"
unmodified backprop simulator.

We chose to simulate a small expert system problem of independent interest to us.
This system chooses a commuter's route to work based upon the day of week, time
of day, traffic accidents, and weather conditions. A brief description of this system
follows.

Expert Rules

The rules for the expert system were derived from the knowledge and experience of
a seasoned commuter. They are applicable for travel during morning hours
between suburban Fairfax, Virginia and urban Washington, D.C. The rules
recommend, for example, travel via train (Metro Rail) on weekdays when the time
is early. The reason for this is that parking at the Metro station becomes scarce after
7 A.M (it is assumed that the commuter will drive his car to the station; riding by
bus to the train station would eliminate the parking concern and alter the expert
system's rules). Between 7 A.M. and 9 A.M., Route 50 is recommended because it's
iv aite to find a parking space at the train station, yet too early to drive on Route 66
because of time-of-day-related vehicle occupancy (HOV) restrictions -- it is assumed
that the commuter travels alone. Finally, Route 66 is recommended after 9 A.M.
because HOV restrictions are lifted and traffic on Route 66 is generally better than on
Route 50.

I- 724

UIIIII

Also considered are possible travel delays due to accidents which may have occurred
on the available routes: accidents on the Metrorail in fine weather, for example, will
result in a recommendation for Route 50 before 9 A.M. and Route 66 is
recommended after 9 when HOV is lifted. Accident severity is not considered
because even minor accidents can sometimes cause unacceptable delays.

The rules also take the weather into consideration. For example, bad weather is
considered to pose a risk to driving an automobile and thus the Metro is
recommended independently of time of day.

On weekends, the rules recommend Route 66 at all times except during severe
weather. The motivation for driving rather than riding the train is that weekend
trips are for pleasure and having a car provides flexibility to accommodate deviation
from initial plans. For example, one might suddenly decide to go to the beach.

Each of the expert system's 45 rules is encoded as a 5-tuple of discrete real numbers:
two values respectively represent travel on a weekday or holiday; three values are
needed for time of day represent time of day; four values represent absence of an
accident or its location; four represents weather conditions. A three-bit value
represented the recommended route. The results described belo*.v are averages
obtained from a single 4-5-3 network topology using full layer-to-layer connectivity
but no additional feedforward links.

Results

Because the aim of the project is to study error reduction rate improvements, the
basic gauge of performance is the level of error vs. number of training epochs.A
basic, no-frills back propagation simulator was only able to train this network to an
error value of 0.7 after several thousand training epochs. In this simulation, Ti = 0.5
typically and ax= 0.9.

The algorithm was then modified so that the learning rate, T1, would be set to a
minimum value (0.01) as soon as the gradient correlation went negative. By thus
reducing the learning rate, we avoid a loss of learning due to a step size that was too
large for the error surface topography. Simulation results confirmed the
effectiveness of this modification.

We also modified the momentum parameter, a, in a way similar to [2]. Whenever
the gradient correlation became negative, the momentum parameter was set to 0,
the heuristic being that a large change in the gradient vector's direction means that
the direction of the next step should not be influenced by the previous step.
However, instead of immediately returning the momentum to .9 for the next step,
the momentum is gradually built up over time. This new implementation of the
gradient correlation approach was then tested by training a network on the
commuter rules data. Training led to an error of 0.04 after some 800 epochs, which
allowed the network to make 100% correct route recommendations for all the
patterns in the training set.

I- 725

Comparison

The simulator code was also modified to implement the accelerated convergence
method described by Vogl et al and tests were conducted on randomized 4-5-3
networks using the commuter rules data, as before. Our results show this method
to perform quite well. In fact it performed nearly as well as the gradient correlation
method, but it usually required a little more training to reach a given error level
Their method requires about 1200 epochs to achieve an error of 0.04 whenever P3 was

high (0.7 as in their paper). At this 0 level, many steps were rejected because the
learning rate is not reduced quickly enough. The method reduced large error very
quickly but then had trouble converging to a small error value because it waits for
errors before adjusting the learning rate, at which time the error had increased. On

the other hand, when 03 was smaller (0.3), fewer steps were rejected but more
training was required to converge.

Without using gradient correlation, we were unable previously [41 to train a smaller
(4-3-3) network to an error of less than 12.8 after 31,000 epochs. Using gradient
correlation, we trained down to an error of 6.1 after only 300 epochs. Other tests
have given similarly positive results.

Conclusions:

Dynamic learning parameter adjustment is a significant improvement over
conventional back propagation. Vogl's et al. reactive method for accelerated
convergence is confirmed to be somewhat less effective than proactive gradient
correlation. Further investigation may show which method more useful with large
networks.

The gradient correlation approach saves the time the other method uses to compute
backward and forward propagation steps that are later rejected, but spends some
time computing the correlation. As far as computational complexity is concerned,
computing the gradient correlation (indeed, just the inner product is needed) is not
nearly as complicated as a back propagation pass (which in the other method is
sometimes rejected).

References

1. Rumelhart, D.E, J.L. McClelland et al., Parallel Distributed Processing, volume
1,MIT Press, Cambridge, 1986.

2. Vogl, T., P., J.K. Mangis, A.K. Rigler, W.T. Zink and D.L. Alkos, Accelerating the
Convergence of the Back-Propagation Method, Biol. Cyb. 59, 257-263.

3. McClelland, J.L. ct al, Explorations in Parallel Distributed Processing, MIT Press,
1986.

4. D. Schreibman, unpublished ms.

I- 726

Learning to Identify Letters with REM Equations

Wayne E. Simon & Jeffrey R. Carter
Martin Marietta Astronautics Group
P. O. Box 179, Denver, CO 80201

(303) 977-3449

Abstract
Learning equations derived from Recursive Error Minimization (REM) are

applied to the identification of letters defined on a twenty-pixel field.
Learning is from ten to ten thousand times faster than conventional back
propagation and is guaranteed to converge to a global minimum.

A simple measure of the strength of an identification is developed in
terms of output magnitude. Measures of validity (correctness) and strength
are then presented as functions of training.

Introduction
In our previous paper [1], we derived REM learning equations for neural

networks and applied them to simple problems. In this paper we present the
results of applying REM learning to a more complex and more realistic problem.

Equations (1), (2), and (3) describe the propagation of node stat. forward
and the propagation of error and derivative backward. Equation (4) gives the
rule for correcting the value of connections. The numerator of Equation (4)
is, except for the method of presenting the constants, equivalent to the
"generalized delta rule." The denominator is the second derivative of the
mean square error with respect to the specific connection and has a lower
bound of 0.000001 to prevent computational difficulties.

Y.- tanh(!ZYwc4)(I

E 2- ")E. ÷](2)

2 X
Jw:- RMQP H'21 (4)R M p iLk[•' H d /

Yd state of a node of the dtb layer
c, d unspecified layers in a neural network
wcd connection from a node of layer c to a node of layer d
Ec = generalized error of a node of layer c (equivalent to the delta of the

"generalized delta rule")
Ec = D - Yc, if the node has a desired state (Dc)

= 0, otherwise
Hc' = generalized derivative of a node of layer c
Hc = 1, if the node has a desired state (Dr)

= 0, otherwise
0 : learning rate parameter (T, 1.0)
R.'Vp [...] = recursive mean of parameter in brackets with P as parametric

memory

1- 727

Finally, Equation (5) incorporates the technique which guarantees
convergence to a global minimum. The initial desired output is defined to be
the initial output of the network, and is then inwoothly changed to the final
desired output as learning progresses. If the rate of change of the desired
output~ is sufficiently small, the network is always in the neighborhood of a
global minimum, and will still be in the neighborhood of a global minimum when
the desired output has transitioned to the final desired output. Note that
Equation (5) has been simplified from that presented previously (1).

' .1 R - \)RJ(3S!D :.;- D . • R !+ D "

initial desired output (initial observed output) of the Itb output node
to the qt4b experience
final desired output of the •h output node to the qtb experience

R parametric memory of initial desired output

Problem
We applied REM equations to the problem of identifying the twenty-six

capital letters of the English alphabet. The letter representations, shown in
Figure 1, are given on a four by five grid of binary pixels, for a total of
twenty pixels corresponding to twenty inputs to the network. The desired
output was a number from one to twenty-six corresponding to the letters A
through Z. In binary notation it requires five bits to represent twenty-six,
resulting in five outputs from the network.

We used a feed-forward network of forty-five nodes: twenty input
nodes, twenty intermediate nodes, and five output nodes. The intermediate

4 and output nodes had biases modeled as the connections from a "node zero"
which always had an output of one.

Results
As we pointed out previously [1], the node transfer function used here

has a range from -1 to +1. This choice has no effect on the basic
characteristics of the network, but does make possible a very convenient
method for presentation of the validity and strength of identification. If the
signs of all the output nodes are correct, the identification is valid. The
product of the magnitudes of the output nodes gives a measure of strength of
the identification which ranges from zero to one.

The network learned to give valid identifications in about fifteen epochs
and strong identifications in thirty epochs. Figure 2 shows the distribution
of identification strength with thirty epochs of training. The distribution was
computed with a twenty-slot histogram, so the resolution is only 0.05 and the
maximum function value is twenty. Figure 2a shows that all letters of the
training set were identified with strengths greater than 0.85. In order to
give some indication of the effect of imperfect input, a test set was
constructed by removing each pixel from the input field, one at a time.
Figure 2b presents the distribution of strength of the correct re3ponses
(91.2%) and Figure 2c presents the distribution of incorrect responses (8.8%)
to this test set. Figure 3 presents the same information after ninety epochs
of training. Note that the identification strengths on the training set are all
greater than 0.95, but the number of correct responses to the test set is
somewhat lower (89.2).

1- 728

we....i

It is obvious that if the training set is redefined to include the test set,
correct responses should be obtained for all eases. Figure 4 shows that
thirty epochs of training on this expanded set gives valid identifications with
strengths greater than 0.85 for the original training set arid strengths greater
than 0.65 for the set with missing pixels.

Finally, we made a comparison with conventional back propagation using
the "bp" program supplied by McClelland and Rumelhart [21 with the identical
network configuration on the same problem. Figure 5 presents the epochs of
training vs. RMS error for REM learning and conventional back propagation.
The conventional back propagation is extrapolated from 7500 epochs
(twentyu-one hours) to 900,000 epochs. Note that REM is exponentially
convergent and back propagation is power convergent. Thus the ratio .f -
epochs required varies from 0.1 to 0.0001, depending on the allowable error.

We estimate the computational load per epoch for the REM equations to be
about twice that of the back propagation equations. This is based on
observed running time orn an IBM AT. The back propagation program, written
in C arnd optimized for speed, runs at ten seconds per epoch for this problem.
The REM program, written in Pascal with n() consideration given lo speed,
runs at forty seconds per epoch, with an assumed tact.,r 1.f two improvement
with optimization.

Conclusion
Learning with REM eluations has been demonstrated to be orders of

magnitude fastr tba-i le,-tirnifig with conventional back propagation equations,
both in number of epot-hs required and total computational time. The
advantage of the REM equations increases at lower levels of acceptable error.
The node transfer equation chosen for this work is 'sho'.,n to provide :--
convenient method of presenting the validity and strength of identifitciation,.

References
[1] Simon, W., and Carter, J., "Bac:k Pr-opagati,)n Learning Equationiv from the

Minimizatiion of Recursiv,, Frror," Proceeding's of the IEEE International
Confereni vi on Svstem.-t Engineerinjg', Aug"ust 24-26, 1989.

[2] M'7clelilrid, J., :and Rumelhart, D., Explorations in Parallel Distributed
Proc'essins, MIT Press, 198P.

ABDE FGH IKLM
PRT U

Figr izte I. (,apitaIl l.,t ters CiVen Mn a Fo10 r by Five ri xel trid

I- 729

(100%) (91.2%) (8.8%)

a) Training Set--Valid b) Test Set--Valid c) Test Set--Invalid
Figure 2. Identification Strength--Thirty Epochs of Training Set

] (100C%) (89.2%)] (10.8%)

•............, --. • . -- - •,5

a) Training Set--Valid b) Test Set--Valid c) Test Set--Invalid

Figure 3. Identification Strength--Ninety Epochs of Training Set

20

(100%) (100%)

a) Training Set--Valid b) Test Set--Valid
Figure 4. Identification Strength--Thirty Epochs of Training and Test Sets

106

1OS - .

10 - Back Propagation

103 .

REM

101
0.001 RMS Error 0.01 0.1

Figure 5. Required Training as a Function of Allowable RMS Error

1- 730

Improved Back-Propagation ComLined with LVQ

Takehisa Tanaka, Motohiko Naka, and Kunio Yoshida

Matsushita Research Institute Tokyo, Inc.
3-10-1, Higashimita, Tama-ku,

"Kawasaki, 214 Japan
ttake~mrit.mei.junet

Abstract

Back-propagation(BP) is the most popular learning method for multi-layer perceptrons. Lately
many improved methods of BP have been proposed, but most of them are about how the network learns.
In this paper we propose a new model considering what the network learn. In this model a LVQ network
learns input patterns prior to a BP network which learns the reference vectors adjusted through the pre-
learning of the LVQ. We test our model with computer simulation.

1. Introduction
BP is the most popular learning method for multi-layer perceptrons and various improved methods

have been proposed. Lately Takagi proposed one variation using DSC search method of non-linear optim-
"ization.1 This method accelerates convergent speed, but it is necesiary to calculate the gradient of
squared error function of all learning patterns and consequently it is time consuming when there are
many learning patterns. To emphasize the feature of the method, we must reduce the number of learning

patterns. For this purpose we adjust reference vectors with LVQ learning method which T. Kohonen pro-
posed 2 and use them as learning patterns of BP. Only the learning algorithm is changed in most varia-
tions of hP, but in this model learning patterns of BP are transformed, too. In other words we change
what the network learns in addition to how the network learns.

2. Improved BP using DSC search
DSC search was originally proposed by Davies, Swann, and Campey as line search algorithm for an

optimization subproblem. 3 Recently Takagi proposed to use the DSC search for finding the best learning
rate in BP and showed the learning with DSC search converged more than three times faster than the
original BP. The algorithm proposed by Takagi is:

1) Initialize weight vector ý70 and set el to a small value.I 2) Calculate the outputs for every input pattern and sum up them to the total squared error
E(i 0). After that, calculate the gradient Aý" of the total squared error in the same way as
the original BP without changing the weight vector.

3) Calculate w, by
=' " i,!w fiw-+ V. (1)

Then calculate E(W1).
If E(0) < E(w,), set c, to a smaller value and repeat this step.

4) If E(i,,) > E(i,_,) (i = 1,2,--.), go to 6).
5) Set c,+, to doubled c, and calculate wi+I and E(w,+1). Then go to 4).

K : ... 6) Calculate w,+1/, and E(w,+1 2) as following,

C,+,/2 (e,+e,+1) / 2 (2)

7) Select minimum three values among E(w,_,), E(w,), E-rw.,/1 2), and E(w,.,). Then set E, E2,
and E3 to them respectively and set El , E,, and E3 to 6 corresponding to El, E2, and E3
respectively.

8) Calculate E as

- 731

E2-E, E3-ElE E2- (4)
E - 2 E3-2E2+E1 4

9) Calculate new weight vector as
W -0;+EA (5

10) Go to 2) until E(Z70) gets less than the pre-determined value.

3. LVQ (Learning Vector Quantization)
Learning Vector Quantization is one of nearest-neighbor methods. In this model there is a pre-

determined number of processing units and each unit has a reference vector of the same dimensions as
input pattern vectors. Each processing unit is associated with one of the categories of the input patterns.
If rm is the closest reference vector to an input pattern z;in some appropriate metric, the category which

W., belongs to is the classification of z. During learning, ; is updated as follows,

If z belongs to the same category as the nearest unit m., -

If ;belong; to the different category with the nearest unit m%,
Z- (7)

where 0 < a(t) < I siad a(t) is decreasing monotonously with t.

4. Combining improved BP and LVQ
Though DSC search accelerates the convergent speed of BP, there are still some problems. For

example,
1) Because the initial weights and the sequence of learning patterns influence learning process, a

learning result differs from another learning result using different initial states or different
learning patterns.

2) It is difficult to evaluate the optimal network siz-.
3) Learning time increases invers.ly proportional tu the number of learning patterns.

On the other hand there are some problems with LVQ. For example,
1) Initial values of reference vectnrs must be set to a good state.
2) Since the LVQ lez.rning algorithm makes only look-up table, many reference vectors are often

necessary.

3) LVQ doesn't make a continuous function.
In order to suggest the solution of problems mentioned above, we propose to use the LVQ reference vec-
tors as the learning patterns of the improved BP. Our algorithm is:

1) Classify a large number of input patterns to some categories and then adjust initialized rtfer-
ence vectors with LVQ learning. In the pattern classification problem, execute LVQ learning
directory.

2) After LVQ learning cons rges, let the multi-lay-r perceptron network learn the reference vec-
tors with improved BP using DSC search.

Our proposed method has some merits. In short diey are
1) Because our method suppresses a number of learning patters, the improved BP converges

quickly.

2) Since we can evaluate complexity of relation between inputs and outputs by analyzing refer-
ence vectors adjusted with LVQ, the optimal network size of the perceptron can be estimated.

3) By analyzing distribution of reference vectors, it is able to scale eseh element of input vectors
belore BP. It makes the learning faster.

4) We can easily tune 1I'1 learning process by hand. For example, if squared error of input pat.
terns belonging to a certain, ra!egory is greater than the others, the category may be learnied
mere frequeintly than the others.

1 - 732

But there are some disadvantages in our model also. That is
1) Since our method needs both LVQ learning and improved BP using DSC search, it takes

larger time.
2) It is not easy to apply this model to non-classifier problem.
3) Reference vectors after LVQ learning reflects the distribution of learning patterns but they are

not always the best learning patterns ,or the BP learning.

5. Simulation and Results
We carried out simulation to test our model.
We applied our model to 2-dimensional pattern classify problem. Each learning pattern was

extracted form one of seven categories. The input patterns of each category are distributed according to
the normal distribution in Table 1, but category I and IV consisted of two separated normal distribution.
We made 10,000 input patterns randomly.

We used both 900 and 270, in total, reference vectors and each category had the same number of
reference vectors except category H and IV that had twice as many processing units as the others. So
category 11 and IV had 200 or 60 reference vectors. We made initial reference vectors randomly according
to the distribution in Table 1. Initial distribution of reference vectors in case of 270 reference vectors are
in Fig.1.

During LVQ learning, we made reference vectors learn all input patterns 600 times altogether. The
distribution of reference vectors after learning in case of 270 reference vectors are in Fig.2, and the mis-
classified rates to all input patterns are in Table 2.

After LVQ learning, we carried out BP learning using DSC search in 2-layer perceptron. We used
10 nodes for the hidden layer and 7 nodes for the output layer. Each output node corresponded to each
category and the category which the output node generating maximum output belonged to was the clas-
sification to the input pattern at that time. We used reference vectors before learning, after 100 LVQ
learning, and after 600 learning for learning patterns of BP. The misclassified rates to 10,000 input pat-
terns are in Table 3.

When 900 reference vectors were used as the BP learning pattcrns, there was no difference between
reference vectors beforc training and after 600 LVQ training. But learning using reference vectors after
600 LVQ training was explicitly better when 270 reference vectors were used.

6. Conclusion
We proposed a new model which used both LVQ for prior data conversion and improved BP using

DSC search for calculating optimal learning path of BP. Since our algorithm reduce the number of learn-
ing patterns for BP, it makes learning faster. In addition, as LVQ makes the structure of the learning
data clear, it enables us to estimate the perceptron network size. We showed that our algorithm
improved learning efficiency and did no harm to learned ability by simulations.

Acknowledgements

Many thanks to our colleagues, especially Mr. Takagi for his advice about DSC search.

References

I . H. Takagi, S. Sakaue, and H. Togawa, "Fast Learning Algorithm for Artificial Neural Network
using Non-Linear Optimization Method," 1989 Spring National Convention Record IEICE, pp. 7-I 305, 1989. (in Japanese)

2. T. Kohonen, G. Barna, and R. Chrisley, "Statistical Pattern Recognition with Neural

Netwoeks:rnchmarking Studies," Proc. ICNN, vol. 1, pp. 61-68, 1988.
3. W.H. ' warn, "R- • rt on the Development of a New Direct Search Method of Optimization," I.C.I.

Ltd., C:i•r. ;•r' ent Laboratory Research Note, vol. 64/3, 1964.

1- 733

,/

Category I 11-1 11-2 IIi IV-1 IV-2 V VI Vll

Average 3.0 14.0 11.5 26.0 6.5 22.5 16.5 4.0 22.5
4 x

SD 1.5 4.0 1.75 2.0 3.25 1.25 1.75 2.0 3.75
Averag.! 2.5 2.5 0.5 2.5 1.5 1.5 1.5 0.5 0.5

y- --
SD 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 1. Averages and standard deviations(SD) of each category

Learning Times 0 100 300 600

Error rate in case of 900 reference vectors (%) 9.07 6.84 5.81 5.44
Error rate in case of 270 reference vectors (%) 12.0 6.21 5.44 5.42

Table 2. Results of the LVQ learning

Number of reference vectors 900 270

Learning times by LVQ 0 100 coo 0 100 600
Error rate after 2000 times DSC (%) 36.2 35., 36.0 36.2 34.0 33.0
Error rate after 4000 times DSC (%) 27.2 26.1 2710 25.4 23.4 16.2
Error rate after 14000 times DSC (%) 6.39 6.03 .04 12.0 6.92 6.19

Table 3. Result of the improved BP using DSC search

3.03.

2.C0:. - 2.0 I
".0 . 1.0

.• .. .I

0.0 0 . 1
0 10 20 30 0 10 20 30r ,, Fig.1 Reference vector distribution before LVQ Fig.2 R.!ference vector distribution after LVQ

-734

ADDING TOP-DOWN EXPECTATION INTO THE LEARNING PROCEDURE
OF SELF-ORGANIZING MAPS

Lei Xu tand Erkki Oja
Department of Information Technology, Lappeenranta University of Technology

Box 20, SF-53850, Lappeenranta, Finland
tPermanent address: Dept. of Mathematics, Peking University, P.R.China

Abstract. The self-organizing topological map is provided with a top-down expectation
mechanisa. The analysis and computer simulations show that this generalization can
not only retain the charateristics of the original topological map, but also has new char-
acteristics of converging faster, working for nonstationary input data, having adjustable
discriminative ability and resistance to abnormal noise.

1. Introduction. As one of the most notable recent developments of competitive learn-
ing, Kohonen's self-organizing topological map has been widely investigated in the aspects
of applications, theoretical analysis, extensions and variations [1-3]. Two recent variations
were given in [4,5]. Paper [4] made a modification on convergence speed and data repre-
sentation by adding a "conscience" to the competition. In paper [5], the ordering of data
with different variances in each dimension is improved by using accordingly weighted dis-
tances, and better and faster approximations of prominently structured density functions
are obtained by introducing the minimal spanning neighborhoods.

Deviating from those approaches, it is suggested in this paper that the maps be
generalized by using top-down expectation. The importance of top-down expectation in
human perception has been emphasized by Grossberg [6]. Particularly, in the ART model,
top-down expectation is used for self- stabilizing adaptive pattern recognition in real-
time nonstationary input environments. Top-down expectation is here introduced into
topological maps by checking whether the present input is compatible with the previously
learned information of its best-matching unit, and if not, by finding another candidate
for the best matching unit. This results in a modified self-organizing procedure. Both
analysis and computer simulations have shown that the procedure can not only retain the
properties of the original topological maps but also has some advantages such as converging
rapidly, working for nonstationary input data, having adjustable discriminative ability and

"[• resistance to abnormal noise.

2. A Modified Self-Organization Procedure. For a 2D unit lattice with each
unit i having a weight vector mi, the original self-organization procedure consists of the
following two steps [1]:
Step 1: For each input x, find the best-matching unit c with its weight vector m, being the
best one to match x among all the ri under a matching criterion, e.g., Euclidean distance,

liz - mcil = minlhx - millVi. (1a)

Step 2: Improve the match between z and the weight vectors m3 of units within a topo-
logical neighborhood N, of unit c,

This work was supported by Tekes Grant 4196/1988 under Finsoft project

I- 735

mi:=Imi+ k[-Mnil if iENc;
Mi if not i E N(lb)

where a and N, are monotonically decreasing with the iteration step.
The top-down expectation process is introduced between Step 1 and Step 2. When

a unit which has already adapted to previous inputs becomes the best- matching unit forthe present input z, it should retain the earlier learned information as much as possiblein the updating. It is especially desirable that the closer the unit is to its convergedstate, the more strongly it will resist z from erasing the information learned earlier. Itshould become only possible for it to adapt to new input patterns which are compatible orsimilar with the previously learned patterns. Any input which is incompatible with (i.e.,significantly different from) the weight vector of the unit will be rejected. In such a case,the second best-matching unit to the input is found as the new best- matching unit and
another top-down expectation process starts in the similar way.

On the other hand, if the unit is far from its converged state, it is more sensitivefor learning any new input pattern although this learning may erase some information
previously learned.

One problem is how to know when a unit is close to convergence. We use a scalarmeasure for each unit i, denoted ori, to describe the state of convergence. At each step,
these scalars are updated according to

S a/3oi + (1 - R)IiAm ill if i E N c;
ai if not i E N,. (2)

There Ami is the change in the value of mi during the last step (it is nonzero only ifi E Nc). In effect, ai is a kind of weighted mean of the norms of all the previous differencesAmi. Since the parameter 3 is on (0,1), the ai will become small when the unit is close
to convergence.

In summary, the generalized self- organizing procedure is proposed as follows:

repeat until converged or for a fixed number of steps
begin
input new z, place all the units i in set U;
compatible := false;
repeat until compatible or U = 0

begin
c := bestmatch(x, U);
(bestmatch gives the index of the best matching unit for z in set U);U := U' - fcJ;
if aljz - m,11 < vac then compatible := true;
end;

if U 0 0 then begin
update all mi according to (1b);
update all cai according to (2)
end'::,:•iend.

1I- 736

Some remarks:
(1) Within the procedure, the condition

aj l - mli <I/Cc (3)

is used for testing whether x is compatible with unit c. There V > 1.0 is a given parameter
(the "vigilance"); the smaller v is, the more sensitive the test is, thus, only a small difference

SIt - mojj can pass the compatibility test. Similarly, the opposed effect is obtained if v
is large. Furthermore, it follows from Eq. (1) that Amc = a[z - m,], and so checking
whether (3) holds is in fact checking whether the increment IIAmjII of the weight vector
by learning the present z is not larger than v times the weighted mean of all the previous
increments. Since ac becomes smaller as the unit converges, the increment of the weight
vector by learning this x must be more strictly constrained to be quite small such that the
erroneous erasure may be avoided.

(2) When U = 0 happens in the loop, it means that the present z is significantly
different from patterns previously learned on all the units of the map. So we have to give
up this z to prevent erasing already learned events.

(3) Some ways to initialize aj are given in [7].
(4) Our procedure will reduce into the original self- organization procedure if we let

the vigilance level be very low (i.e., v is a very large constant). So, it can still retain the
properties of the original procedure.

3. Charateristics of the Modified Procedure.
"Faster Convergence: In the self-organization procedure, when a new input pattern

finds its best matching unit, the unit will adapt to it even if it is significantly different
from the earlier learned patterns. As a result, the prior learned knowledge may be erased
too strongly and need be relearned in future steps, which results in repeated learning. In
the procedure suggested here, the best- matching unit will check whether or not the input
pattern may refine its already established weight vector. If not, it will be passed to a
unit on which there is no prior knowledge, or the prior knowledge iý not well established
(i.e, which is far from convergence). Thus the repeated learning may .ze partially avoided,
which makes the convergence speed faster.

Works In a Nonstationary Environment: The self-organization procedure was designed
for stationary inputs in the first place, since the main goal is to find an optimal vector
quantization for a stationary input distribution. Understandably, for nonstationary inputs,
it may lead to an unstable cycle of learning and forgetting. Also, some unexpected new
inputs may disturb or even destroy the already organized map unless it is frozen on pur-
pose. In the modified procedure, nonstationarities will not lead to unstable learning-and-
forgetting cycles since they will be prevented by the compatibility test of top-down expec-
tation. When an unexpected new pattern comes to a best-nmatching unit of the already
organized map, the unit will test whether or not the pattern can reilne it, and if not, the
pattern will be sent to another unit. Thus the earlier learned map is retained. The new
procedure can maintain its ability to learn new unexpected inputs until all the units on a2D lattice have converged. In this case, a new unexpected input will not be learned by any

unit and also not disturb the already learned ordering, so there is no need for externally
switching off.

i~ I- 737

Adjustable Discriminative Ability: It is possible to adjust the sharpness of discrimi-
nation via the parameter v. If a unit has high attentional vigilance (small v), then only
an input having a high degree of similarity to the weight vector of its best-matching unit
can satisfy Eq. (3). As a result, a unit of the organized map will only response to patterns
which are very similar. On the other hand, if a unit has low attentional vigilance (large
v), then a best- matching unit can tolerate larger mismatches between the input pattern
and the weight vector of the unit, i.e., the map has a rough discriminative ability. For the
special case v = oo , the procedure will reduce to the original self-organization procedure.

Resistance for Abnormal Noise: Even in a stationary input process, if some abnormal
noise is contained in some of the inputs, this can affect an already organized map. In our
procedure, when an input with abnormal noise comes, it will either be passed to a new
unit to learn it or simply not be learned by any unit if there is no spare unit, since the
compatibility test on the already learned units will reject this noise input. Therefore the
learned map will not be contaminated or demolished by abnormal noise.

4. Simulation Results. Computer simulations were conducted both by the original self-
organization procedure (la,b) and the generalized procedure to show each of the above
four advantages. Due to limited space, here we have to omit the experimental details and
illustrations of the results. All of them are given in [7]. The results have shown that: (1).
Our procedure is faster than the original self-organization and seems to be more robust
for parameters a and N,. (2). For nonstationary input, e.g., samples are alternatively
from two separated classes in such a way that samples consecutively come from one class
for a certain period and then from the other class for another period, a learning and
erasing cycle makes the topological map difficult to organize. In contrast, our procedure
only learns samples from one specific class at a time and can rapidly converge to a good
organized map. (3). When some abnormal noise was introduced to an already organized
map over a training period, the map was at least partly destroyed if self- organization
in the original form was carried out, but could keep unchanged by the new procedure.
(4). With different values of v, the new procedure did give organized maps with different
discriminative ability.

Acknowledgement: The first author expresses his thanks to J.Lampinen, P.Kultanen
and P.Koikkalainen for their help on his work of C language programming and computer
simulations.

REFERENCES

[1]. T. Kohonen, Self-Organization and Associative Memory. Springer, Berlin, 1988.
[2]. Self-Organization Section, Proc. of IJCNN'89, Washington,D.C.
[3]. Self-Organization Section, Proc. of IEEE ICNN'88, San Diego.
[4]. D.DeSieno, i.b.i.d., pp 1117 - 1124.
151. J.Kangas and T.Kohonen, pp 11517 - 522 in [2].
[6]. S.Grossberg, Neural Networks, Vol.1, 1988, pp 17 - 61.
[7]. L. Xu and E.Oja, "Adding Top-Down Expectation into The Learning Procedure of
Self-Organizing Maps", Technical Report, Lappeenranta Univ. Te i., Aug. 1989.

- 738

Analyses of the Hidden Units of Back-Propagation Model

by Singular Value Decomposition(SVD)

Qiuzhen Xue, Yuhen Hu, and Willis J. Tompkins

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Madison, WI 53706

ABSTRACT

The singular value decomposition (SVD) method is used to analyze the output covariance matrix
of the hidden units of a back-propagation model and the weight matrix consisting of the connec-
tions to the hidden layer. The results of the SVD method indicate the rank of the matrices,
which helps to decide on the appropriate number of hidden units. A network with an optimal
number of hidden units is efficient for both computation of learning iteration and forming of the
classification regions. For excising the redundant hidden units, two steps are adopted. The first
substitutes a new weight matrix formed by SVD reduction for the original weight matrix under a
controllable error; The second lets the network establish a new weight matrix by relearning based
on either the beginning random weights or a reduced weight matrix.

Introduction

Among the many Artificial Neural Network (ANN) models, the Back-Propagation (BP) model is
often considered the most useful learning model [1]. A BP model usually consists of three or more
layers: one input layer which connects input patterns, one output layer which is the output of the
system, and one or more hidden layer(s) which play a key role in the learning processes. To the
present, the characteristics of this hidden unit, unfortunately, remain largely unknown. When the
BP model is used for pattern classification, an important task is the selection of the number of
hidden units. On the one hand, hidden units should form enough generalization to classify the in-
put patterns. On the other hand, if too many hidden units are used, the generated classification
regions will be more complex than necessary, also many more training patterns and computations
will be needed 12]. Some research on the topic of deciding the number of hidden units has been
reported. Based on empirical data, some researchers applied heuristic rules to selecting hidden
unit numbers [31, in which, different number of hidden units were tried and their performance was
compared, so that a reasonable number of hidden units was decided. Some other work provides an
analytic way for hidden units selection [41-[7].

In this paper, the SVD method is used as an objective way to find the redundancy of the
dimensionality formed by hidden units. In the system analyses, the SVD method is used to pro-
vide the rank of a rectangular matrix or a singular matrix [8]. By using the results of SVD, one
can manipulate matrix computation easily or can do data reduction. The redundancy of the hid-
den units is implied either by high correlation of the weight vectors which consist of fan-in con-
nections from the units of the lower layer to the units of the upper layer, or by the similarity of
the outputs of the hidden units. The former correlation can be found from the weight matrix,
each column of which corresponds to a fan-in vector, and the latter similarity can be obtained
from the output covariance matrix of the hidden units. Actually, the weight matrix and the out-
put covariance matrix are equivalent on the aspect of the redundancy, although there is a non-
linear relationship between them.

I- 739

Method

In a BP model(without loss of generality, a two-layer model is used), the output as a function of
the inputs is:

N

O.d(z ,..., ZM) , eg f(net. (i)) 1 =1,2, .. ,P (1)
i-1

where the neSt (i) is the output of the ith hidden unit
U

net (j) w ti z;i, + 0i (2)
i-I

j =I....N; i =l... M

And the output of the hidden net is the sigmoid function of the net activation:

O' - f (NetH-l, where, f(z) Il+ (3)

For the convenience of analysis, we can express (2) in matrix form:

NetHp = W Ip (4)

where

Ne-tH =- netI (1), nenH (2),... netn (N) 1"

=t .I I t.. .zM j input vector

11 W12 W IN

W =I weight pattern

WU I •WMN

The eovariance matrix is defined as

cHH= E [OH Of I = E[f(W X 1 qw p, 1 (5)

We will first discuss the redundancy of the dependent hidden units. Assuming the output of one

hidden unit is a linear combination of the rest hidden units for all input vectors, we are able to

prove that the output function will not changed by excising that hidden unit and modify other

weights according to that linear combination.
From the pattern recognition point of view, above statement implies that the redundant hidden

units wll not contribute to the forming of the classification sub-regions which, for one hidden

layer networks, are some kinds of hyperplanes[9].
We can also prove that the rank of the output covariance matrix is the minimum of the rank of

the weight matrix and the rank of the input pattern covariance matrix.

Let us first consider a linear case, i.e. the hidden unit output are linear, then

CHH = EfWXp(WXp)T] I E[WXPXpT WT I (6)

=WE[XpXpT]WT -WCXXWT

where Cxx is the covariance matrix of the input patterns, in the linear algebra 181,

rank (A B) < min [rank (A), rank (B) I and rank(A) = rank(AT) (7)

so rank(CHif = rank(WCxxWT) = min [rank (W), rank(Cxx)

For the general case, where the hidden unit outputs are nonlinear signioid functions, we also can

justify the results by the theory of the random process[9].

SVD method are based on the following theorem of linear algebra: Any N1 by N matrix A whose

number of rows M is greater than or equal to its number of columns N, can be written as the

1- 740

product of an M by N column-orthogonal matrix U, an N by N diagonal matrix S with positive
or zero elements, and the transpose of an N by N orthogonal matrix V. It can be expressed as
follows:

A = USVT where S = [a ,. .. ,aN (8)

After we obtain the rank of the matrix, the next question is how the matrix will be influenced
by ",ý noving redundant hidden units. To answer this question we adopted two approaches. The
firm. one is from the analysis of SVD matrix reduction; the second one is by relearning input pat-
ternL under the reduced hidden units circumstances.

For the first method, i.e. the SVD matrix reduction, by reducing the dimensions of the matrices
U, V and S respectively, we can generate a new matrix A, as

A, = U- S- Vu T (9)

The second method is to excise the redundant hidden units from the original network. We
tried two ways to achieve the reduction. One is to let the model relearn the input patterns from
the beginning. This method works fine, at least in all our experiments. But the problem is the
relearning time, especially for the large size problems. So our second way is to find which units
are redundant, remove them while keeping the original weights unchanged or doing more iterative
learning based on old weight values. The SVD method only tells us the rank of the weight matrix
without telling us which units are redundant. We calculate the correlation coefficients of weight
vectors (one vector corresponds to one column in the weight matrix) as a supplement to the SVD
method. If the S'VD indicates that q units are redundant, we try to find these q units which have
the largest coefficients. After excising these q hidden units, we checked the network performance
by letting it operate on the originl training patterns. If the performance was as good, the net-
work did not have to relearn. Otht-wise, we let the network relearn based on original weights.
Comparing the relearning iteration of this method and the first method which relearned from the
beginning, we found that this method is very efficient in terms of computation time.

Simulation and Implementation

We developed a program which simulates back-propagation learning model on a Sun-
workstation. All the SVD analyses are built into the program as options.

In order to clarify our explanation, we selected as our first experimental set as two kinds of
geometric patterns; one is linearly separable by a hyperplane, the other is not linearly separable
but is separable by a convex region. The dimension of both input patterns was 10. Figure 1(a)
and 1(b) are their projections on two-dimensional space. The number of their classes was two.
The training sets of these two cases all consisted of 50 vectors, 25 with class 1, another 25 with
class 2. At the beginning, the structure of the networks was selected as 10 input units which
corresponded to 10 components of the input patterns, 10 hidden units (one hidden layer), and 2
output units (1 0 represents class 1, 0 1 represents class 2). After the network converged, with
total error between target patterns and actual activations less than 0.05, the SVD was applied to
the weight matrix. For the linear separable patterns, the rank of the weight matrix was equal to
2, whereas for the convex patterns, the rank was 6. These results verify our statement in the pre- -

vious section that the rank of the weight matrix reflects the complexity of the classification
regions. To excise the redundant hi Aden units based on the SVD analysis, the two steps described
previously were adopted. The results show that, after redundant hidden units were removed, the
recognition performance was better and learning iteration was much fewer than before.

Our second experimental set is a group of random vectors with different dependency. Our SVD
analyses found that the rank of the weight matrix and the output covariance matrix are related to
the dependency of the input patterns.

The third experimental sets were the electrocardiogram (ECG). The automatic recognition of
the ECG signals is of both practical concern and theoretical interest. Input patterns consist of
five different kinds of ECG waveforms as shown in Fig. 2. The training set includes 30 different
versions of these five kinds of patterns. These different versions were obtained by adding random

1-741

L/

obtained by adding random noise with a SNR of 10:1, then passing the noisy waveforms through
a low-pass filter (f, - 70 H.) to avoid aliasing. An additional 50 different versions of these five
kinds of patterns were formed for the test set in the same way.

The training set is sent to the input nets. At the beginning, the BP model has 10 input nets, 10
hidden nets, and five output nets. After the first training process, the weight matrix W is
analyzed by the SVD routine. All analyses are done automatically, yielding three outputs: reduc-
tion dimension, least-square error and new weight pattern. Then we let the system either relearn
the input patterns based on new hidden nets or test both the training set and the test set based
on the new weight pattern.

Conclusions

Our experiments shows that the SVD is a useful method to analyze the weight patterns. This
method is an objective way for us to decide the number of hidden units, and help us to find the
redundant information. Based on these results, we can excise the redundant hidden units to keep
the network only z•.nerating necessary regions. Further research topics will be redundancy versus
robustness, dynamic property of the SVD and so on.

References

[1] D.E. Rumelhart et al, "Learning Internal Representations by Error Propagation", in Parallel
distributed Processing, MIT Press (1986).

[21 S.J. Hanson & L.Y. Pratt, "Comparing biases for minimal network construction with back-
propagation", IEEE Conf. NIPS 88.
131 R.P. Gorman & T.J.Sejnowski, ' Learned classification of Sonar Targets Using a Massively

Parallel Network%, IEEE Trans. ASSP, Vol. 36, ppi135-I140, July 1988.
[41 S.Y. Kung & J.N. Hwang, "An Algebraic Projection Analysis for Optimal Hidden Units Size

and Learn.ng Rates in Back-Propagation Learning", IEEE 2nd Intl' Conf. on Neural Networks,
San Diego, pp. 1363-1370, July 1988.
[5] M. Bichsel & P. Seitz, "Minimum Class Entropy: A Maximum Information Approach to Lay-

ered Networks*, Neural Networks, Vol.2, pp. 133-141, 1989.
[5) R.N. Shepard, "The Analysis of Proximities: Multi-dimensional Scaling with an Unknown

Distance Function, I & II", Psychometrika, Vol.27, pp.125-140, pp. 219-246, 1962.
[7] J.K. Kruschke, "Improving Generalization in Back-Propagation Networks with Distributed

Bottlenecks", IEEE 3rd Intl' Conf. on Neural Networks, Washington D.C., June 1989.
[81 V.C. Klema & A.J. Laub, "The Singular Value Decomposition: Its Computation and Some

Applications', IEEE Trans Auto. Control, Vol. AC-25, pp164-176, April 1980.
[9g R.P. Lippmann, "An Introduction to Computing with Neural Nets', IEEE ASSP Magazine,

pp. 4-22, April 1987.
[101 H.P. William, Numerical Recipes in C, Cambridge University Press, (1988).
[11] M. Minsky & S. Papert, Perceptrona: An Introduction to computational Geometry,

extended edition, MIT Press (1988).

0 - class 1

0 + - ctss 2 0 0

0 0 -0
+ + 0 0. 0+÷++-+ 00

++ 0 0 0 ++ +

+ +0 + 0+0

0~ -f -t- I,

+ 0 0 + + + .

) 0 Fig. 2. Input ECG waveforms0 0

Fig. 1(a) Linear separable case Fig. 1(b) Non-linear seperable case

I - 742

,/

Connections between Levels of Description of Perception

James L. McClelland
Carnegie Mellon University

Traditionally, the field of psychology has tried to characterize human information processing in terms of simple
principles stated at the level of the behavior of the human cognitive system as a whole; yet we believe that the cog-
nitive system is implemented in a large network of neuron-like computing elements. A question, then, becomes:
How do we relate these different kinds of descriptions? In the past, my own research has taken the form of building
computationally explicit models that make use of neuron-like elements and which can be used to simulate data
obtained in psychological experiments. But there has been no effort to relate these models to the well-established
general principles. In this paper, I describe results of an attempt to make such a connection.

The research begins with an observation by Massaro (1989) that the interactive activation framework developed
by Rumelhar and me (McClelland and Rumelhart. 1981) did not accord with classical models of context effects in
perception. I have analyzed the original nodel, discovered what lead it astray, and modified it in ways that have
lead to a very satisfying result: I have found that interactive activation networks that incorporate variability directly
into their processing activity do accord with classical models of context effects. I call such networks stochastic
interactive activation networks. In what follows I briefly review the main elements of classical models of context
effects. Then I describe simulation and mathematical results that demonstrate that stochastic interactive activation
networks comform asymptotically to the characteristics of the classical models. This allows us to see how the princi-
ples captured by classical models might result from an underlying process of stochastic interactive activation.

Classical models. In classical models of context effects, it is assumed that decisions about the identity of a
stimulus (let us say a phoneme in a word) are based on an essentially additive combination of independent cues,
some of which are perceptual cues to the identity of the phoneme and some of which come from the context. For
example, the decision about the identity of the last phoneme in the word Christmas would be based on acoustic cues
arising from the sound of the final segment of the word, and from contextual cues arising from the fact that s is the
only phoneme that fits together with the context to lorm a word. Both kinds of cues are graded in strength, and are
combined together to produce a probabilistic outcome.

Two quantitative formulations have been proposed. In one of these, it is assumed that. associated with each alter-
native, there is an internal psychological continuum on which evidence for or against that alternative is added up.
This evidence includes inputs from stimulus input and contextual sources, each of which has an additive effect on
the total accumulated evidence. A third, also additive component is also assumed: normally distributed random
noise. The process of response selection simply amounts to choosing the alternative with the largest net evidence
value. This formulation arises from the theory of signal detectability (see Luce, 1963, for a discussion).

Mathematically this formulation is intractable when the number of alternatives is greater than two. For that situ'm-
tion, a slightly different formulation is used (Morton, 1969). The alternative fonrulation can also be used or thIe
two-alternative case, and is the basis of a model called the Fuzzy logical moddl of perception iOden and Mas:;aro.
1978). In this formulation, each response is aLssigned a strength, which is the pioduct of input and context terims. A
bias term may also be included, in which case the formula for the strength of a particular alternative becomes:

Si = BiC;i.

Where B, mpresents the bias, C, represent the influence of context, and lI represents the influence of the stimulus
input. The connection between this formulation and the signal detection formulation becomes clear if we note that
an equivalent formula for Si is Si = e ', where b, etc. are the logs of B; etc. Variability is not explicitly

1- 743

incorporated into the strengths used in this version of the model, but is introduced in the process (of selection of a
response. The probability of choosing alternative i out of a set of alternatives is given by Luce's (1963) choice rule:

p(R=r.) = "S.

The index j in this rule runs over all of the alternatives under consideration.

It is well known that these two formulations produce essentially equivalent results for two-choice cases, and that
for such cases either model generally provides a very good account of patterns of empirical response probabilities
obtained in experiments that separately vary context and stimulus cues (Massaro. 1989). For multiple-choice or
open-ended identification tasks, the Luce formulation provides a very succinct summary of the results of a large
number of different experimental investigations. Indeed, this general account 0 ' context effects in word identifica-
tion has stood since Morton (1969).

But these classical models do not describe the actual processing operations u, give rise to response identification
outcomnes. they simply describe the asymptotic probabiities of these outcomes. Although investigators have built

process description around one or the other of these formulations, it is important to note that the mathematical for-
mulations themselves are silent about such matters as the time course of evidence a,:cumulation. combination, and
decision.

The interactive activation model. Let us now con- 0 o 7
sider interactive activation models, such as the interactive/0 Wo y
activation model of visual word perception (McClelland 0
and Rumnelharl, 1981). A sketch indicating the structure
of this model is shown. As the sketch brings out, the
model consists of groups of processing units at several 0 0
levels: Visual feature, letter and word. There are bi- ELe

directional excitatory connections between mutually con-
sisleilt units at different levels (some of tile relevant ones I - t,
for the word TIME are shown), and bi-directional inhibi-
twry connections (not explicitly drawn on the diagram) 0 Foatse

t'etween m|utually inconsistent alternatives at each level.

So uniLs for alternative letters in the initial letter position tripi

have mutual inhibitory connections.

Processing in the interactive activation framework takes place through a synchronous settling process. Each unit
computes its net input from other units, which is simply a weighted sum of the output of each unit that projects to it
times the strength of die connection between the units. (The outputs of units ;ire equal to their activations or to t,

whichever is largest). Once all the net inputs are computed activations are updated according to the tbUowing nalc:

If net, >O. Aa = (M-a,)net, - Da,-r):
Otherwise, .a, -, (a,-rn)net, - D(a,-r).

Her- M is the maximum activation, t is the minimum qctivation, r is the resting activation level, antd D is a decay
rate constanit. These equations are derived from similtr equations used by Grossherg t 1978).

Since fth wetlling process was completely determiinistic in the original fortmnlation, a probabilistic method was
required for translating these activations into response probabilities. For this purpose, the Luce choice rule •as

e
applied to the exponentials of the activations of the units, so that p (R=r,, ..

I e 4

1 - 744

4

A problem. This formulation was highly succes,%ful in allowing the model to account for a wide range of experi-
mental findings on context effects in perception of briefly flashed letter strings. However, Massaro (1989) pointed
out that the model as described above is incompatible with the quantitative characteristics of context effects found in
experiments that systematically vary the strengths of contextual and stimulus cues; the same ones that are so closely
fit by the classical models.

Massaro's claim rests on simulation results, and on the following intuitively appealing argument: Interactive
activation models, he claims, cannot capture the classical context effects because of their inherent use of a bi-
directional flow of information. Independence of the contributions of context and stimulus information is not inain-
tained because of this bi-directionality. Stimulus input feeds in from the bottom up, propagates further upward, and
then propagates down again, and can (when the context is conducive) become amplified in the process. Thus con-
text and stimulus can produce synergistic, rather than strictly additive effects, contrary to the evidence.

My analysis reveals that this argument is incorrect. In fact, it turns out - peihaps surprisingly -- that interactive
activation can produce the classical effect of context on perception. There is a problem with the formulation
described above, but it is not the fact that it relies on bi-directional flow of information.

Solution. To correct the model, we need simply to incorporate random variability into the actual processing
activity. I have done this in three ways. Two of these involve minimal changes to the model: The first assumes that
variability arises in the input to the network, in the form of random perturbations of inputs to units. The second
assumes that each processing unit has its own intrinsic variability. This is modeled by assuming that on each
update, the net input is perturbed by a small amount of normally distributed random noise.

In both of these cases, we can dispense with the use of the Luce role, and simply make response choices ini the
following way: We present an input at time t--O, allow the network to settle, and then, at sonic arbitrary but long
time after the beginning of processing, we simply choose the most active alternative front the candidate set. So, if
the task is to identify the final letter in the word, we simply choose the letter corresponding to the unit with the larg-
est activation. I have demonstrated that both assumptions about the source of variability lead to very close mimicry
of the classical models in a number of different example cases (See McClelland, in press).

Why does this approach work where the deterministic version of the model does not? Basically, in the original
model, Luce's choice rule was applied to variables which involve complex non-lineir combinations of stimulus and
contextual influences. Bi-directional information flow contributes to this, but the problem exists even without it.
Why then are the distortions of the results eliminated in the stochastic formulation? In essence, the reason is that the
non-linearities apply to the noise along with the signal. They do not, for example, remove effects of noise that make
an input that is really a token of one alternative seem more like a token of another: they simply implement the same
incorrect decision among these alternatives that would be made if the evidence from input and context were com-
bined linearly.

For a highly simplified interactive activation network, I was able to demonstrate mathematically that it would
produce the classical pattern of results when processing noisy inputs. However. I was not able to demonstrate this

for the general case or for the case of intrinsic noise inside the network. However. a third variant can be shown to
implement the classical context effects in a very general class of architectures.

Context effects in Boltzmann machines. In the third variant, the interactive activation model becomes a
Boltzmann machine (Hinton and Sejnowski, 1983). The architecture and connections aniong units are as betore,
though resting activation levels are replaced with bias terms. The analysis applies to a wide range of architectures
providing that they have the following characteristics: a) The set of units in the network can be partitioned into three
sets, consisting of those representing the alternatives, those representing the (boltom-up) input to the units, and those
representing the context. b) There are no direct connections between the units representing the input and the units
representing the context. c) All connections are symmetric. Note that the interactive activation model of word

1- 745

perception hNs these characteristics (Figure I). Suppose, for example, the task is to identify the letter present in a
particular letter position. Iu this case, the alternatives are the units representing the letter in the position in question;
the input is the set of feature units in the same position: and the context consists of all of the other units in the net.
There are no connections between any of the input units and any of the context units; their influences converge on
the units that represent the alternatives.

Processing in the Boltzmann machune is an asynchronous, stochastic settling process. Units ire chosen sequen-
tially for updatintg; the net input to each unit is computed as in the interactive activation model (with the unit's bias
contributing to the net input), and the activation of tie unit is set to I or 0 using the logistic function:

l+;7--111r

Where T is the temperature parameter. Suppose that we present an input at time t. and then continue updating until
tlenial equilibrium is reached at sonic particular temperature T. At equilibrium, we then inspect the units
representing the alternatives and if one and only one of them is active we choose that alternative as our responWse.
"ithe probability of choosing a particular response i is then simply the probability that the network is in one of the
litany possible states of the entire net. in which altemative i is active and no other alternative is active, divided by
the sum of the probabilities that it is in any one of the corresponding states associated with any of the other alterna-
tives. The probability of being in one of the many possible states in which alternative i is active and no other alter-
native is actve plays the role of the response strength Si in the Luce choice formula.

At this point, we can use the fact that the probabilities associated with various states of the Boltzmann machine
-are related to their relative goodnesses to determine these probabilities directly. Because of the absence of connec-
tions from context units to input units, we can partition these goodnesses into three parts. One associated with the
unit's bias. one associated with state of the input to the unit; and one associated with the context. These components
of the goodness are in fact independent, in that the goodness of one component is not affected by the goodness of
the other. Because of this, I show in McClelland (in press) that it is possible to write Si as

S, = BCI,

where B,=e h', C, is the sum of the exponentials of the partial goodnesses of the possible states of the context, and
I, is the sum of the exponentials of the pautial goodnesses of the possible states of the input. Thus the Boltzmann
machine asymptotically exhibits the independence of contextual and input assumed in the Classical account.

Discussion. The intuition that interactive activation inherently distorts the classical picture of the role of coitext
in perception has turned out not to hold up under scrutiny. I take the Boltzmann version of the interactive activation
model to be a full-fledged interactive activation model, in that it has the same architecture and preserves the essen-
tial bi-direciionality of influences among units. Yct it is clear that in this case the essential independence of contex-
tual and input factors is preserved. The simulations show that this is also true, at least in somie cases, whets the
interactive activation model is kept in its original form and variability is assumcd to be present either in the input or
in the processing itself.

Whit emerges is the observation that the classical picture of the way in which context inifluences perception is in
lact a rather general consequence of connectionist architectures in which context and input maintain a structural
indtependence. Just how general the consequence is remains to be established turough furtier :ualyses. In :uiy case.
ihe anAysis to date suggests that it may be possible to understand general principles stated at or near the level of the
behavior of the cognitive system as a whole in tcmis of characteristics of the underlying processing mechanisms.

1- 746

References

Grosberg, S. (1978). A theory of visual coding, memory, and development. In E. L. J. Leeuwenberg, & H. F. J..
M. Buffart (Eds.). Formal dheories of viswualperception. New York: John Wiley and Sons.

Hinton, 0. E., & Sejnowsk~i. T. J. (1983). Analyzing cooperative computation. Proceedings of the Fifth Annual
Conference of the Cognitive Science Societ.y

Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. Bush & E. Galanter (Eds.), Handbook of
mathematical psychology: Vol 1. New York: Wiley

M assaro, D. W. (1989). Testing between the TRACE model and the fuzzy logical model of speech perception.
Cognitive Psychology.

McClelland, J. L (in press). Stochastic interactive activation and the effects of context on perception. Cognitive
Psycholog~y.

McClelland, J. L. & Rumeiarvt. D. E. (1981). An interactive activation model of context effects in letter percep-
tion, Pani 1: An account of basic findings. Psychological Review, 88, 375-407.

Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76, 165-178.

Oden, G. C., & Massaro, D. W. (1978). Integration of featural information in speech perception. Psychological
Review, 85, 172- 19 1.

I1- 747

Author Index

Author Index
(an references aor to the first page of ffe relevant paper)

Abe, Shigeo; 1-34 Bigus, Joseph P.; 11-463 Chun& A-Yeun; 1-412
Acharya, R. S.; 11-298 Bizzi, Emilio; 1-173 Chung, T.; 11-453

Aceran Egee;11-151 Blmned -ar;11-575 Cimagalli, Valeria; 1-333
Ackley, David H.; 1-189 Bochereau, Laurent; 11-579 C-lark, James J; 11-118
Acres, Jody DeJonghe; 11-539 Bodenhausen, Ulrich; 1-597 Clingman, William H.; 1-609

LAdams, William S.; 11-114 Bodurret, Paul; 1-329 Co, Tomas B.; 1-373
Agba, L C.; 11-275 Bogart, Christopher; 1-134 Coleman, William P.; 1-51
Aghili, Seyed M.; 11.659 Bonds, A. B.; 11-712 Collins, Edward; 11-479
Agrantat, Aharon; 11-64 Booker, Lashon B.; 1-39 Collins, J. S.; 11-417
Aiken, Steven W.; 11-393 Boone, John M.; 11-09 Copeland, Bruce R.; 1-377
Aiso, Hideo, 1-35 Bourgine, Paul; 11-579 Culioli, Jean-Christophe; 1-293,
Ajioka, Yoshiaki; 1-353 Bourret, P.; 11-535 1-381
Akabane, Toshio; 11-43 Bovik, Alan C.; 11-283
Aleksander, Igor, 11-499 Brady, David; 11-72 DYArgenio, David Z.; 1-289
Allen, Robert B.; 1-210 Britton, Charles L. Jr.; 1-293, 1-381 Dagli, Cihan H.; 11-587
Alpaydin, Ethem; 11-92 Brooke, Martin A.; 11-441 Daunicht, Wolfgang J.; 1-161
Alston, Michael D.; 11-302 Brown, David R.; 11-421 Dayhoff, Judith; 1-157
Axnari, Shun-ichi; 1-509 Brown, Cordon D.A.; 1-43 De Gaetano, Andrea; 1-51
Anderson, H.; 11-527 Brown, Harold K.; 1-537, 11-133 De Jong, Kenneth A.; 1-118
Andes, David; 1-533 Brown, Russell C.; 11-712 de Callatay, Armand; 1-55
Anikst, M. T.; 11-306, 11-237 Brown, Thomas H.; 1-138 de Canis, Hugo; 1-194
Ansari, Nirwant; 11-567 Buljan, Josko; 11-655 de Greef, Bart L.; 1-627
Anzai, Yuichiro; 1-353 Bullock, Daniel; 11-209 Dembinski, S.C.; 1-255
Appolloni, B.; 11-571 Burns, Mark; 1-202 Deng, Guolin; 1-392

4Ardizzone, E.; 11-310 Burnside, Jamie W.; 11-257 Deshmukh, Vinod D.; 1-59
Arisawa, Shigeru; 11-1 37 Dewan, Hasanet M.; 1-613
Arozullah, Mohammed; 11-241, Canditt, Sabine; 11-102 Dirlich, Gerhard; 1-228

11-315 Card, H.C.; 11-106 Dobbins, R.W.; 11-122
Arras, Michael K.; 1-455 Cariani, Peter; 1-47 Dontas, Kejitan; 11-507
Arrue, Begona; 11-559 Carlin, M.J.; 1-573 Douglas, Scott C.; 11-331
Arteaga-Bravo, Francisco J.; 11-319 Carney, Jeanne M.; 11-413 Doya, Kenji; 1-177
Asakawa, Kazuo; 11-47 Carpenter, Gail A.; 11-30 Drue, S.; 1-247
Ashentayi, Kaveh; 1-581 Carrabina, J.; 11-8 Dyer, Michael G.; 1-I
Ashouri, M. Reza; 11-587 Carter, C. R.; 11-453
Avanzini, G.; 11-571 Carter, Jeffrey R.; 1-727 Eberhart, R.C.; 11-122
Avellana, N.; 11-183 Cassellman, Fred; 11-539 Eckrniller, Rolf; 1-165, 11-102
Aylor, James H.; 1-325 Ceccarelli, M.; 1-365 Edelman, Jay A.; 1-62

Ce-a-Bianchi, N.; 11-571 Egeth, Howard; 1-223
Baba, Morio; 1-585 Chant, S. C.; 11-599 Eisenman, L.N.; 1-147
Bailey, A.W.; 1-589 Chan, Sing-chai; 11-110 EI-Leithy, N.; 11-126
Bairaktaris, Dimitnios; 1-357 Chan, Y.C.; 1-408 Erdogan, Temel; 11-191
Bar-Kana, Izhak; 11-323 Chang, Eric L.; 11-327 Ericson, Milton N.; 1-293, 1-381
Barga, Roger S.; 11-94 Chau, Paul M.; 11-302 Espinosa, Ismael E.; 1-66
Barhen, Jacob; 1-512 Chella, A.; 11-310
Barto, A.; 1-147 Chen, Carson; 11-245 Faisal, Kanaan A.; 11-471
Basti, Gianfranco; 1-333 Chen, Chi-Ming; 1-493 Farsaie, Ali; 11-595
Basu, Koushik; 1-392 Chen, D.; 1-577 Fernandez, Kenneth R.; 11-712
Battiti, Roberto; 1-593 Chen, H.H.; 1-285, 1-577 Fields, Chris; 1-70
Bear, Mark; 1-240 Chen, Henzer; 11-503 Figueroa, J. C.; 1-74, 1-385
Becker, Suzanna; I-1 Chen, J.R.; 128-601 Floreen, P.; 11-475

........... Bedian, Vahe; 1-35 Chen, James R.; 11-467 Flores, C.; 1-74, 1-385
Begin, Jean; 1-704 Chen, Victor C.; 11-583 Fong, A. M.; 11-335
Beichter, J.; 11-59 Chen, Yizhong; 11-567 Fong, David Y.; 11-129, 11-339
Belew, Richard K.; 11-467 Chester, Daniel L.; 1-265 Foo, Simon; 11-703
Belfore, Lee A. If; 1-325 Chittineni, C.B.; 1-369 Freeman, Walter J.; 1-62, 1-243
Beocanin, Dragan; 11-655 Cho, Sung-Bae; 1-605 Frias, Bruno Cernuschi; 1-463
Bprnstein, Adam S.; 11-257 Choi, Kyusun; 11-114 Friesen, Donald K.; 1-609
Bertille, J.M.; 1-361 Chu, Yaohan; 11-110 Frostrom, Stephen A.; 11-51

Author Index
(all references or* to the first page of the relevant paper)

Fujimoto, Yoshiji; 1143 Hecht-Nielsen,Robert; 11-40 Jurgens, Charles; 11-559
Fukuda, Naoyuki; 11-43 Heileman, Gregory L.; 11-133 Jutamulia, Suganda; 11-147
Fukui, Chihirm, 11-591 Heldt, Peter; 11-167
Fukushirna, Kunihiko; 1-273, Hemani, Ahmed; 11-543 Kadaba, Nagesh; 11-551

11-279 Henriksson, Jukka; 11-249 Kamgar-Parsi, Behzad; 1-277
Fuller, J. Joseph; 11-595 Hering, Dean; 11-355 Kammen, D.M.; 1-181

Hertz, David B.; 1-392 Kangas, Lars; 11-551
Caglio, S.; 11-310 Higashino, Junichi; 1-627 Kato, Hideki; 11-47
Galindo, Pedro L.; 1-142 Himmelblau, D.M.; 1-631 Katz, Bruce F.; 1-643
Gargano, Michael L.; 1-388 Hinton, Geoffrey; 1-218 Kawakami, Junzo; 1-349, 11-591
Gaudiano, Paolo; 11-213 Hiraiwa, Atsunobu; 11-137 Kawamura, Akinori; 1-684
Gaudiot, Jean-Luc; 11-199 Hirsch, Morris; 1-297 Keane, Martin A.; 1-198
Gawthrop, P.J.; 1-569 Hodges, Russel E.; 1-517, 11-141 Kehagias, A.; 1-281
Geisler, Fred H.; 1-51 Holmes, Philip J.; 1-181 Keifer, J.; 1-147
Georgiopoulos, Michael; 1-133 Holmstrom, Lasse; 11-359 Khaparde, S. A.; 11-615
Georgopoulos, A.: 1-169 Horne, Bill; 1-269 Khosla, Pradeep; 11-355
Chosh, Joydeep; 11-283 Hosogi, Shinya; 11-217 Khoukhi, A.; 11-383
Ghosh, Sushinito; 11-479 Hostetler, Larry D.; 11-221 Kilis, Danny; 11-151
Giambiasi, Norbert; 1-476 Houk, J.C.; 1-147 Kim, Doo; 11-191
Giles, C.L.;.1-285,1-577 Hsu, Ching-Chi; 11-631 Kim, Eun Jin; 1-416
Giona, Massimiliano; 1-333 Hsu, Ken; 11-72 Kim, Jin H.; 1-605
Cochin, Paul M.; 1-77 Hsu, L.; 11-599 Kim, Yoo Seok; 11-619
Golden, David; 1-86 Hu, Chia-Lun J.; 1-635 Kimd, Tae Cheon; 1-416
Goodall, S.; 11-535 Hu, Yuhen; 1-739 Kita, Hajime; 1-684
Goodall, Sharon M.; 11-343 Huffman, Jim; 11-603 Kitano, Hiroaki; 1-541
Goosbey, Keith; 11-463 Hung, Yat-Sang; 11-607 Klaassen, Arno J.; 1-90
Gopal, Nanda; 11-283 Hush, Don R.; 1-269, 1-396 Klein, Gregory J.; 11-385
Coser, Karl; 11-159 Hutton, Larrie V.; 1-223, 1-251 Kobayachi, Tetsuo; 11-389
Goulet, Ronald; 1-81 Kobuchi, Youichi; 1-301
Govind, Rakesh; 11-643 Iciki, Hiroki; 11-47 Koch, Christof; 1-138, 1-181
Grajski, Kamil A.; 11-245 llmoneimi, Risto J.; 11-359 Koch, Mark W.; 11-393, 11421
Graves, E.B.; 1-255 Imai, Yoshihito; 11-55 Koh, Sang-Ho; 1-647
Grogan, T. A.; 11-379 Imasaki, Naoki; 11-720 Kohonen, Teuvo; 11-249, 11-253
Gross, George W.; 11-98 Inigo, R. M.; 11-363, 11-559, 11-699 Koistinen, Petri; 11-359
Gross, Guenter W.; 1-86 Inoue, Makoto; 11-137 Kojima, Keisuke; 11-203
Grossberg, Stephen; 1-11, 11-26, Ito, Takayuki; 1-273 Koos, L. James; 11-671

11-30, 11-209, 11-213 Izui, Yoshio; 1-400, 1-639 Koruga, Djuro; 1-94
Gualtieri, J. Anthony; 1-277 Kosugi, Makoto; 11-429
Guez, Allon; 11-323, 11-347, 11-397 Jackson, Bernie; 1-202 Kovacs, Gregory T.A.; 11-3
Guha, Aloke; 11-511 Jacyna, Garry M.; 1-404 Kowalski, Jacek; 1-86
Gulati, S.; 1-512 Jagota, Arun; 11-607 Koza, John R.; 1-198

Jakubowicz, Oleg G.; 11-298, 11-367, Kraft, Tim; 11-51Hagiwara, Masafumi; 1-3, 1-617 11-371, 11-611, 11-683 Kumar, B. V. K. Vijaya; 11-355
Halgren, Eric; 1-232 Jang, Jongwook; 1-651 Kumar, Sanjay S.; 11-397
Hall, Jeffrey C.; 11-257 Jang, Ju-Seog; 1-647 Kung, S. Y.; 11-409
Hall, Lawrence 0.; 11-483 Jansson, Peter A.; 11-375 Kurosu, Shigeru; 11-137
Hallse, Brian; 11-171 Javidi, Bahram; 11-145 Kwan, Hon Keung; 11-155
Hammerstrom, Dan; 11-80 Jean, J.S.N.; 1-408 Kwang, H.; Il-175
Hanson, W. G.; 11-527 Jeskers, P.; 1-447, 1-672 Kwok, K. L; 11-623
Harston, Craig; 1-664, 11-663 Jimbo, Takashi; 11-457 Kyuma, Kazuo; 11-203
Hart, John L.; 1-537 Johnson, Barry W.; 1-325, 11-559,
Hartmann, G.; 1-247 11-699 Laczko, Jozsef; 1-98
Haruki, Kazuhito; 11-515,11-720 Johnson, J. D.; 11-379 Lange, David F.; 1-537
Hassoun, M. H.; 1-621 Johnson, Kenneth; 11-35 Langheld, Erwin; 11-159
Hatano, Hisaaki; 11-515 Jones, William C. I11; 11-437 Lazear, Manette B.; 1-404
Hatsopoulos, Nicholas G.; 1-214 Jong, Tai-Lang; 1-31 Lee, Bang W.; 11-627
Hayakawa, Isao; 11-351 Josin, Gary; 11-547 Lee, Hahn-Ming; 11-631
Haykin, Simon; 11-84, 11-253 Juell, Paul L.; 11-551 Lee, Jang Gyu; 11-619

Author Index
(Wll references are to the first page of the relevant paper)

Lee, Jau-Yien; 1-493 Mead, Carver; 11-25 Oita, Masaya; 11-203
Lee, Kyunghee; 1-651, 11-635 Meador, Jack L; 1-668 Oja, Erkki; 1-735, 11-531
Lee, Shuo-Jen; 11-503 Means, Eric; 11-80 Okamoto, Atsuya; 1-688
Lee, Soo-Young; 1-647 Medawar, Bassem; 1-440 Olinger, Michael D.; 11_675
Lee, Sukhan; 11-229 Mehta, Rita; 11-615 Oosterlinck, Andre; 11-405
Lee, Won Don; 1-651, 11-635 Meisel, W. S.; 1-443, 11-306 Orfanidis, Sophocles J.; 1-692
Lee, Y.C.; 1-285,1-577 Mekkaoui, A.; 1-447, 1-672 Orlando, Jim; 11-263
Lee, Y'dlbyung; 1-412.1-416 Melton, Ronald B.; 11-94 Orponen, P.; 11-475
LeGroff, Bertrand; 1-98 Meng, Teresa H.-Y.; 11-331 Otwell, Ken; 1-561
Lehr, Michael; 1-533 Michalson, William R.; 11-167 Oyster, J. Michael; 11-225
Lehrer, Nancy B.; 11-225 Michaux, Thierry; 1-142
Leininger, Gary; 11-587 Minai, Ali A.; 1-676 Palmieri, Francesco; 1-696
Levine, Daniel S.; 11-639 Mingolla, Ennio; 1-11 Panda, D. K.; 11-175
Levy, William B.; 1-7, 1-19 Minnix, Jay; 11-559, 11-699 Pandya, A. 5.; 11-187, 11-275
Li, Dapeng; 1-420 Minor, J. M.; 11-519 Park, Jun; 11-225
Li, Robert Y.; II-401 Mitra, Shanda; 11-699 Parker, Ken L.; 11-179
Li, Ziqing; 11-287 Miyazaki, Tomoyuki; 1-27 Patil, Rajendra B.; 11-491
Lindmayer, Joseph; 11-147 Modric, Branislav; 11-655 Patrick, P. H.; 11-527
Linsker, Ralph; 11-291 Moon, Young B.; 11-667 Patrikar, Ajay; 1-700
Lister, Raymtnd; 1-424 Moore, W.R.; 11-106 Pellionisz, Andras; 1-15
Littman, Michael S.; 1-189 Morta, Atsushi; 11-55 Pentland, Alex; 1-400, 1-639
Liu, Y.D.; 1-285 Morton, H. B.; 11-499 Penz, P. Andrew; 11-639
Livingston, David L.; 11-555, 11-687 Moser, A.R.; 1-255 Perez, C. J.; 11-183
Loe, K. F.; 11-599 Mostafavi, Mohammed T.; 1-581 Perez, J. C.; 1-361
Lu, Taiwei; 11-114 Movellan, Javier R.; 1-557 Perrone, Antonio; 1-333
Luce, Hudson H.; 11-643 Moya, Mary M.; 11-221 Perry,'John L.; 11-413
Ludermir, Teresa B.; 1-428 Mueller, Paul; 1-149 Persoon, H.J.; 1-627
Lui, Ho Chung; 1-655 Mugler, Dale; 1-157 Peschl, Markus F.; 1-110
Lukes, G.; 1-521 Murata, Noboru; 1-177 Pesulima, E. E.; 11-187
Lynch, James F.; 1-35 Murphy, John N.; 1-451 Peterson, Barry; 1-152

Myllymaki, P.; 11-475 Petrosino, A.; 1-365
Machizawa, Akihiko; 1-660 Pirzadeh, S. S.; 11-306
Madey, Gregory R.; 11-647 Nahvi, Mahmood J.; 1-106 Pomalaza-Raez, Carlos A.; 11-339
Malakooti, B.; 1-432 Naka, Motohiko; 1-731 Porcino, D. P.; 11-417
Malakooti, B.; 11-495 Nakagawa, Seiichi; 11-351 Postula, Adam; 11-543
Mann, Richard; 11-84, 11-263 Namatame, Akira; 1-680 Protopopescu, Vladimir; 1-381
Mannaert, Herwig; 11-405 Namphol, Aran; 11-241 Protzel, Peter W.; 1-455, 11-523
Manner, R.; 1-126 Narathong, C.; 11-363 Proulx, Robert; 1-704
Manteuffel, Gerhard; 1-170 Naylor, C.; 11-275 Provence, John; 1-700
Mao, W. D; 11-409 Nenov, Valeriy I.; 1-232 Psaltis, Demetri; 11-72
Marcus, C.M.; 1-321 Neugebauer, Charles F.; 11-64
Margarita, Sergio; 11-651 Neumann, Eric K.; 11-257 Rabelo, Luis; 11-191
Maricic, Borut; 1-102, 11-655 Nevard, John A.; 1-545 Raivio Kimmo; 11-249
Marpaka, D. Rao; 11-659 Newcomb, R.W.; 11-126 Rajapakse, J. C.; 11-298
Mars, P.; 1-601 Newstadt, R. E.; 11-306 Ramacher, U.; 11-59
Martinez, 0. Enrique; 11-663 Nguyen, An-Hoang; 11-433 Ramani, N.; 11-527
Martinez, Oscar; 1-664 Nigrin, Albert L.; 1-525 Ramanujam, Sridhar; 11-611
Massengill, L.W.; 11-88, 11-712 Nikolov, Zoran; 1-102 Read, Walter; 1-232
Massone, Lina; 1-173 Ning, Paul; 11-267 Reeder, James R.; 11-671
Masti, C. L.; 11-555 Nishikawa, Yoshikazu; 1-684 Reggia, James A.; 11-343
Masulli, F.; 1-185 Noda, Akio; 11-55 Reibling, Lyle A.; 11-675
Mathur, Anoop; 11-511 Noetzel, Andrew; 1-440 Reilly, Douglas; 11-479
Matsuoka, Kiyotoshi; 1-305 Noguchi, Kazuhiro; 11-68 Reinis, Stanislav; 1-114
Matsuyama, Yasuo; 1-436 Norris, Eugene M.; 1-723 Remy, F.; 11-535
Mattis, W.E.; 11-163 Nunally, Patrick; 11-171 Rezgui, Ali; 1-707
McClelland, James L.; 1-743 Nygard, Kendall E.; 11-551 Richards, Donald St. P.; 1-19
McMillan, Bruce; 11-587 Richards, Robert; 1-309
McMillan, Clayton; 1-228 Ohnishi, Noboru; 1-688 Ritter, Helge; 1-23

Author Index
(all references are to the first page of the relevant paper)

Roberts, Morien W.; 11-393, 11-421 Shustorovich, Alexander; 1-529 Tocci, Christopher; 11-129Rogers, W.T.; 1-255 Shvaytser, Haim; 1-313 Tom, M. Daniel; 11-441
Romaniuk, Steve C.; 11-483 Si, Huaxiano; 11-401 Tompkins, Willis).; 1-739Romero, M.; 1-74, 1-385 Sigillito, Vincent C.; 1-223,1-251 Ton& David; 11-327
Ronchini, G.; 11-571 Simon, Wayne E.; 1-727 Toomarian, N.; 1-512
Rosen, Joseph M.; 11-3 Simonotto, E.; 1-185 Toriwaki, Jun-ichiro; 1-503Ross, Muriel D.; 1-157 Simpson, Patrick K.; 1-468 Touretzky, David S.; 11-487Ruani, M.; 1-185 Sims, James; 1-251 Touxet, Claude; 1-476
Rudolph, Frank; 11-425 Simula, Olli; 11-249 Trawick, David J.; 11-237,11-306
Rupnik, Kresimir; 11-679 Singh, S.P.; 1-147 Tsai, W.T.; 1-485, 11-716

Sinkjaer, T.; 1-147 Tsang, Pang Chung; 11-155Sakano, Toshikazu; 11-68 , Soares, M. C.; 11-306 Tsoi, A. C.; 11-703
Sakita, Kazutaka; 11-429 Sohn, Andrew; 11-199
Sakou, Hiroshi; 11-449 Song, J.; 1-621 Uecker, Damrin R.; 11-449
Salas, John M.; 1-396 Sontag, Eduardo D.; 1-613 Umeno, Masayoshi; 11-457
Salomon, Gitta B.; 11-467 Sorbello, F.; 11-310 Uzunoglu, V.; 11-163
Samad, Tariq; 1-565 Spears, Wi!liam M.; 1-118
Samarabandu, Jagath K.; 11-683 Spina, Robert; 11-367 Valderrama, E.; 11-183Samardzija, N.; 1-549 Spitzer, A.R.; 1-621 Vargas, E.; 1-74,1-385
Sanford, David P.; 1-51 Spyer, K.M.; 1-255 Venta, Olli; 11-249
Sarma, Jayshree; 11-507 Srinivasan, Padmini; 11-507 Vieth, John 0.; 1-553Sawada, Yasuo; 1-489 Srinivasan, Sanjay; 11-699 Vrckovnik, G.; 11-453
Sayegh, Samir 1.; 1-711 Staddon, J.E. R.; 1-122 Vyas, D.; 1-147
Sayeh, Mohammad R.; 1-581 Starkweather, Timothy; 206
Sbarbaro, D.; 1-569 Stevenson, Maryhelen; 1-337 Waldron, Ronan; 1-477Scalero, Robert S.; 1-715 Stork, David G.; 1-202 Walker, Scott; 1-202
Scheff, Kim; 11-76 Storti, George; 11-147 Wan, Eric; 1-533, 11-3, 11-267Schmidhuber, Jurgen; 1-719 Stotzka, R.; 1-126 Wang, Chia-Jiu; 1-31, 11-141,
Schreibman, David B.; 1-723 Sudharsanan, S.I.; 1-472 11-271Schreinemakers, Jos. F.; 11-487 Sugie, Noburu; 1-688 Wang, Chungching; 11-195Schumacher, J. E.; 11-306 Sun, G.Z.; 1-285,1-577 Wang, Gang; 1-27
Schurmann, Bernd; 1-459 Sundareshan, M.K.; 1-472 Wang, Jun; 11-495Schwaber, J.S.; 1-255 Sung, Chen-Han; !1-433 11-437 Wang, Xin; 1-481
Schvns, Phillippe G.; 1-236 Swaminathan, Gnanasekaran; Warren, William H.; 1-214
Scoield, Christopher; 11-479 11-699 Waterland, R.L.; 1-549, 11-519Scoggins, John; 11-603 Swasny, Stan C.; 11-471 Waugh, F.R.; 1-321Segura, Enrique Carlos; 1-463 Szu, Harold; 1-317, 11-76, 11-703 Waxman, Allen M.; 11-233Seibert, Michael; 11-233 Wechsler, Harry; 11-507
Seiderman, William; 11-147 Tagliaferri, R.; 1-365 Wee, William C.; 1-420Sclinsky, J. W.; 11-347 Tai, Heng-Ming; 1-31 Weingard, Fred S.; 11-34
Semancik, William J.; 11-315 Tai, Ju Wei; 1-499 Weinroth, Jay; 11-647Serpen, Gursel; 11-687 Tai, Shuichi; 11-203 Weiss, David S.; 1-114Shaber, Gary S.; 11-98 Takahashi, Masanobu; 11-203 Welch, Steven W.; 11-712Shadmehr, Roza; 1-289 Takashima, Yosuke; 11-695 Wells, Francis M.; 11-712
Shah, Samir A.; 1-696 Takegaki, Morikazu; 11-55 Werbos, P.; 1-521
Shamma, Shihab A.; 1-259 Takeishi, Taisuke; 1-27 Westervelt, R.M.; 1-321Shankar, R; 11-187, 11-275; Takigawa, Morikuni; 1-27 Wheeler, David A.; 11-257
Sharda, Ramesh; 11-491 Tam, David C.; 1-130 Whitley, Darrell; 1-134, 1-206Sher., S-M; 1-621 Tanaka, Takehisa; 1-731 Widrow, Bernard; 1-337, 1-53.,,
Shestov, Yuri; 11-691 Teh, H. H.; 11-599 11-3, 11-267Sheu, Bing, J.; 11-627 Tenorio, M. Fernando; 11-445 Williams, Ronald D.; 1-676
Shibata, Naoki; 11-695 Tepedelenlioglu, Nazif; 1-707, Winter, Rodney; 1-337
Shimabukuro, R. L.; 1-573 1-715 Witmer, Dan P.; 11-245
Shimazu, Hideo; 11-695 Thompson, B.; 1-521 Won& Andrew K.C.; 1-553Shin, Sang-Yung; 1-647 Thomsen, Axel; 11-441 Wu, Chwan-Hwa; 1-31,1-517,
Shinn, P.; 11-306 Thornbrugh, Allison L.; 11-179 11-141, 11-271Shirazi, Behrooz; 11-195 Thursby, Michael H.; 11-659
Shoemaker, P.A.; 1-573 Tirri, H.; 11-475 Xu, Lei; 1-341, 1-735, 11-531

Author Index
(all references aoe to the first page of the relevant paper)

Xu, Qing; 11.559
Xu, X.; 1-485, 11-716
Xue, Qiuzhen; 1-739

Yamaguchi, Toru; U1-720
Yamauchi, Kouichiro; 11457
Yanai, Hiro F.; 1-489
Yang, Jar-Ferr; 1-493
Yang. Qing; 1-345
Yang, Xiaowei; 1-259
Yao, Yong; 1-243,1-345
Yariv, Amnon; 11-64
Yin, Hong Feng; 1-499
Yokoi, Shigeki; 1-503
Yonekura, Tatsuhiro; 1-503
Yoroizawa, Isamu; 11429
Yoshida, Kunio; 1-731
Yoshizawa, Hideki; 11-47
Yoshizawa, Shuji; 1-177
Yu, Francis T.S.; 11-114

Zador, Anthony; 1-138
Zaghloul, M.E.; 11-126
Zak, Stanislaw; 11-563
Zhang, Fengman; 1-35
Zhang, Y.; 1-122
Zhou, Y.; 1-432
Zhu, Xiao-yan; 11-457
Ziemer, Rodger E.; 11-271

Title Index

Title Index
(all references are to te first page of the relevant paper; tItles may be truncated)

About the Geometry Intrinsic to Neural Nets, 1-15
Accelerated Back Propagation Using Unlearning Based on Hebb Rule, 1-617
Accelerated Learning Method with Backpropagation, An, 1-605
Acceleration of Back-Propagation Through Learning Rate and Momentum Adaptation, 1-676
Adaptive Analog MOS Neural-Type Junction, 11-126
Adaptive Discrete-Signal Detector Based on Self-Organizing Maps, An, 11-249
Adaptive Junction: A Spatio-Temporal Neuron Model, 1-353
Adaptive Neural Algorithm for Traveling Salesman Problem, An, 11-716
Adaptive Pole Placement for Neurocontrol, 11-397
Adaptive Strategy to Design the Structure of Feedforward Neural Nets, An, 1-432
Adding Top-Down Expectation into the Learning Procedure of Self-Organizing Maps, 1-735
Additive Automata and Associative Memories, 1-365
Adjoint-Operator Algorithms for Learning in Neural Networks, 1-512
Algebraic Analysis of Neural Networks Applications Independent of Global Network Architecture, 1-609
Analog CMOS Implementation of a Self Organizing Feedforward Network, An, 11-118
Analog Synaptic Weight System, An, 11-163
Analog-Divider-Design Based on a Perceptron-Neural-Network, An, 11-441
Analyses of the Hidden Units of Back-Propagation Model by Singular Value Decomposition (SVD), 1-739
Analysis of an Inhibitive Directional Selective Unit for Vision, 11-339
Analysis of Decision Contour of Neural Network with Sigmoidal Nonlinearity, 1-655
Analysis of EEG Changes Between Frontal and Occipital Area in Speaking Process, 1-27
Application of Coulomb Energy Network to Korean Character Recognition, 11-635
Application of Generalized Boolean Functions for Neural Networks, 11-159
Application of Neural Network to Information Retrieval, 11-623
Application of Neural Network to Pulse-Doppler Radar System for Moving Target Indication, 11-271
Application of Neural Networks to Impulse Radar Waveforms from Asphalt-Covered Bridge, An.., 11-453
Application of Neural Networks to the Guidance of Free-Swimming Submersibles, An, 11417
Architectural Isomorphisms in Neural Network Applications, 11-603
Architecture of a Systolic Neuro-Emulator, 11-59
ART 1.5-A Simplified Adaptive Resonance Network for Classifying Low-Dimensional Analog Data, 11-639
ART 3 Hierarchical Search: Chemical Transmitters in Self-Organizing Pattern Recognition... 11-30
Artificial Neural Network Approach for Solving Autonomous Navigation Control Problems, An, 11-367
Artificial Neural Networks for Multiple Criteria Decision Making, 11495
Associative Memory Systems, 1-468
Asymmetric Spin-Glass Model of Long-Term Memory in a Dynamic Network Architecture, An, 1-333
Auto-Associative Memory: Implications for Hippocampal Physiology, 1-232
Automatic Evolution of Neural Net Architectures, 1-589

Back-Propagation Learnirg With Coarse Quantization of Weight Updates, 1-573
Backpropagation Improvements Based on Heuristic Arguments, 1-565
Backpropagation Learning with High-Order Functional Networks and Analyses of Its Internal ..., 1-680
Biological Learning Primitives in Analog EEPROM Synapses, 11-106
Biophysical Model of a Hebbian Synapse, 1-138
Bounding Analysis of a Single-Layer Feedforward Neural Network for a Binary Hypothesis-Testing ..., 1404

Cart Centering and Broom Balancing by Genetically Breeding Populations of Control Strategy .. , 1-198
CASENET: Computer Aided Neural Network Generation Tool, 11-122
Chaos in the Biodynamics of Pattern Recognition by Neural Networks, 1-243
Characteristics of Neural Population Codes in Hierarchical, Self-Organizing Vision Machines, 11-35
Classification of Unaveraged Evoked Cortical Magnetic Fields, 11-359
Classifier Voting in Neural Networks, 1-388
Classitron: A Flexible Generalization of the Perceptron, 1-373
Clustering Taxonomic Data with Neural Networks, 1-277
Coding of the Direction of Reachiun• by Neuronal Populations, 1-169
Cognition and Neural Computing-An Interdisciplinary Approach, 1-110
Cognitive Triangular Relationship, A, 1-90
Collective Oscillations in Neuronal Networks: Functional Architecture Drives the Dynamics, 1-181
Colored Noise Annealing Benchmark by Exhaustive Solutions of TSP, 1-317

Title Index
(all references ore to the first page of the relevant paper; tifles may be truncoted)

Combinatorial Optimization Using Competitive-Hopfield Neural Networks, 11-627
Comparative Performance Measure for Neural Networks Solving Optimization Problems, 11-523
Comparison of a Neural Network Based Estimator and Two Statistical Estimators in a Sparse ... 1.289
Comparison of the Moore-Penrose and Drazin Generalized Inverses in Biological Coordinate.... 1-98
Comparison of the Performances of Three Popular Neural Network Architectures, 11-707
Competitive Activation Methods for Dynamic Control Problems, 11-343
Competitive Learning with Modifiable Thresholds for Visual Pattern Recognition, 1-357
Compiling High-Level Specifications Into Neural Networks, 11-475
Composite Stock Cutting Pattern Classification Through Necognitron, 11-587
Computation of Pattern Primitives in a Neural Net for Acoustical Pattern Recognition, 1-149
Computational Framework and Neural Networks for Low and Intermediate 3D Computer Vison, 11-287
Computer Aided Radiologic Diagnosis Using Neural Networks, 11-98
Computer Simulation of a Macular Neural Network, 1-157
Concurrent ANS Architecture Using Communicating Concurrent Processes, 11-51
Connectionist Approach to the Processing of Time Dependent Medical Parameters, A, 11-575
Connectionist Finite State Machines, 1-476
Connectionist Network for Color Selection, A, 11-467
Connectionist Production Systems in Local Representation, 11-199
Connectionist Pushdown Automata That Learn Context-Free Grammars, 1-577
Connections Between Levels of Description of Perception, 1-743
Connectivity in the Observed Portion of an Auditory Neuronal Network, 1-66
Continuous Speech Recognizer Using Two-Stage Encoder Neural Nets, A, 11-306

DASAJLARS: A Large Diagnostic System Using Neural Networks, 11-539
Data Expressions Suitable for Size- and Rotation-Invariant Pattern Classification, 11-429
Dataflow-Based Neural Net Multiprocessor, A, 11-195
Decoder for Block-Coded Forward Error Correcting Systems, A, 11-302
Deductive and Inductive Learning in a Connectionist Deterministic Parser, 11-471
DEFAnet-A Deterministic Approach to Functon Approximation by Neural Networks, 1-161
Design of a Pole-Balancing Controller Using Neural Networks, 11-619
Design of a Saccadic Motion Generator That Learns, 11-379
Design of Edge Detection Templates Using a Neural Network, 11-331
Designing a Sensory Processing System: What Can Be Learned from Principal Components Analysis?, 11-291
Detecting Symmetry with a Hopfield Net, 11-327
Detection of Heart Malformation Using Error Back-Propagation Network, 11-655
Development of Neural Network Interfaces for Direct Control of Neuroprostheses, 11-3
Diagnosis of Epilepsy via Backpropagation, 11-571
Digital Implementation Issues of Stochastic Neural Networks, 11-187
Directing Focus of Attention Through Control in Depth Perception, 1-228
Disproof of Two Conjectures on Capacity of Hopfield Associative Memories, 1-481
Dynamic Digital Satellite Communication Network Management by Self-Organization, 11-567

Effect of the Slope of the Activation Function on the Back Propagation Algorithm, The, 1-707
Effects of Neuron Properties on the Performance of Associative Memory Networks, 1-489
Effects of Threshold Modulation on Recall and Recognition in a Sparse, The, 1-232
Efficient Algorithm for Annealing Schedules in Boltzmann Machines, An, 1-309
Emergent Self: A Phylogenetic and Ontogenetic Evolution of Biological Networks., The.. 1-81
Enhancement of Detection of Dense Multiple Targets Through Lateral Suppression..., 11-315
Equilibrium Uniqueness and Global Exponential Stability of a Neural Network for Optimization..., 1-472
Error Functions to Improve Noise Resistance and Generalization in Backpropagation Networks, 1-557
Evolution of Connectivity: Pruning Neural Networks Using Genetic Algorithms, The, 1-134
Expectation Driven Learning with an Associative Memory, 1-521
Experiments on Constructing a Cognitive Map: A Neural Network Model of a Robot that Daydreams, 1-223
Experiments with the Spatio-Temporal Pattern Recognition Approach and the Dynamic Time ..., 11-445
Expertise Acquisition Through Concepts Refinement in a Self-Organizing Architecture, 1-236
Explanation-Based Learning and Relevance, 1-643
Extraction of Semantic Features and Logical Rules from a Multilayer Neural Network, 11-579
Extrapolatory Methods for Speeding Up the BP Algorithm, 1-613

Title Index
(all references are to the first page of the relevant paper; titles may be truncated)

Fast Neural Nets with Gram-Schmidt Orthogonalization, 1-692
Fast Quadratic Separation Using a Single-Layer Interconnect Model, 1-668
Fast Synaptic Modulation Provides a Ubiquitous Mechanism to Support An Instruction-Data..., 1-70
Fast Training Algorithm for Neural Networks, A, 1-715
Fast Training of Multilayer Perceptrons Using Multilinear Parameterization, 1-696
Fault Tolerance Analysis of a Neocognitron Model, A, I-559
Fault Tolerance in Neural Networks, 11-699
Fault Tolerant Behavior of 12t Parallel Computing Network, 11-712
Fault Tolerant Ran .om Mapping Using Back Propagation, 11-507
Fault-Tolerance of Optimization Networks: Treating Faults as Additional Constraints, 1-455
Feasibility of Use of a Neural Network for Bad Data Detection in Power Systems, 11-615
Feature Detector and Application to Handwritten Character Recognition, 11-457
Feature Linking by Synchornization in a Two-Dimensional Network, 1-247
Fish Detection and Classification Using A Neural-Network-Based Active Sonar System..., 11-527
FLETE An Opponent Neuromuscular Design for Factorization of Length and Tension, 11-209
Framework for Distributed Artificial Neural System Simulation, 11-94
Function Mapping and Its Relationship with the Psychophysical Functions in the Theory..., 1-74
Fuzznet: Towards A Fuzzy Connectionist Expert System Development Tool, 11483
Fuzzy Knowledge Model of Neural Network Type. A Model Which Can Be Refined By Learning, 11-55
Fuzzy Logic in Connectionists' Expert Systems, 11-599
Fuzzy Rule on Associative Memory System, 11-720

Generalized Neural Network Model and Its Properties, 1-485
Genetic Programming: Modular Neural Evolution for Darwin Machines, 1-194
GENNET: System for Computer Aided Neural Network Design Using Genetic Algorithms, 1-102
Global Minima within the Hopfield Hypercube, 1-377
Grammatical Inference and Neural Network State Machines, 1-285

Hangul Recognition Using Neocognitron, 1-416
High-Order Bidirectional Associative Memory and Its Application to Frequency Classification, 1-31
Human Face Recognition Using a Multilayer Perceptron, 11-413
Hybrid Algorithm for Finding the Global Minimum of Error Function Neural Networks, A, 1-585
Hybrid Architecture for the ART2 Neural Model, A, 11-167
Hybrid Neurocomputer Using Optical Disk, 11-114

Identification of Synaptic Connectivity Using a Hidden Markov Model, 1-259
Implications from Structural Evolution: Semantic Adaptation, 1-47
Improved Back-Propagation Combined with LVQ, 1-731
Improved Competitive Learning Agorithm Applied to High Level Speech Processing, An, 1-142
Improvement of Autoassociative Memory Models Based on Properties of BAMS, 11-183
Improvement on Simulated Annealing and Boltzmann Machine, An, 1-341
Incomplete Learning Paradigms In Neural Netowrk Computing Models, 1-392
Incremental Backpropagation Learning from Novelty-Based Orthogonalization, 1-561
Information Storage Matrix Neural Networks, 1-549
Input Representation and Output Voting Considerations for Handwritten Numeral Recognition ... , 1-408
Integrating Digital and Artificial Neural Networks Using Neurocontrollers: An Intermediate Step..., 11-191
Integrating Neural Networks and Knowledge-Based Systems in a Commercial Environment, 11-463
Interactive Activation and Competition Model for Machine-Part Family Formation., An.., 11-667
Interfacing a Neural Network with a Rule-Based Reasoner for Diagnosing Mastitis, 11-487
Interfacing Data Base To Find the Best and Alternative Solutions To Problems By Obtaining..., 11-663
Internal Representation of Space in Neural Networks of Primates and Other Sensorimotor..., 1-165
Introducing a Neural Network Design Language, 11-110
Introducing Efficient Second Order Effects into Back Propagation Learning, 1-631
Introduction of New Angle Modulated Architectures for the Realization of Large Scale ... , 11-171
Invariant Target Recognition Using Feature Extraction, 11-595

Langevin Equations and the Formal Foundations of Neural Networks, 1-385

Title Index
(aWl reforences are to the first page of the relovant paper; titles may be truncoted)

Learning "Semantotopic Maps" from Context, 1.23
Learning Algorithm Based on Prediction, A, 1.660
Learning Aspect Graph Representations of 3D Objects in a Neural Network, 11-233
Learning by Local Variations, 1-700
Learning Complex Mappings by Stochastic Approximation, 1-569
Learning from Natural Selection in an Artificial Environment, 1.189
Learning in Optical Neural Computers, 11-72
Learning Logic Array, 11-92
Learning Spatiotemporal Patterns in a Neural Network with Lateral Inhibitory Connections, 1-177
Learning to Identify Letters with REM Equations, 1-727
Learning with the Optimum Path Paradigm, 1-711
Locally Optimizing Neural Networks in Adaptive Robot Path Planning, 11425

Manipulator Control Using Layered Neural Network Model with Self-Organizing Mechanism, 11-217
Maximum Entropy Prediction in Neural Networks, 1-7
Merging Hebbian Learning Rule and Least-Mean-Square Error Algorithm for Two-Layer.. , 1-647
Method for Neural Network Based Melody Harmonizing, A, 11-695
Method to EsLt ,fsh an Autonomous Self-Organizing Feature Map, A, 1-517
Model of the Neural Network Based on the Local Interaction Hypothesis and Two-Stage Modeling..., 1-541
Model-Based Perceptual Grouping (MPG): A Cooperative-Competitive Apprach to Shape..., 11-225
Modeling of Fault-Tolerance in Neural Networks, 1-325
Modeling of Spatial Transformations in Vestibular Reflex Systems, 1-152
Modelling of Human Neocortical Surface and Its Growth, 1-59
Modular Back-Propagation Neural Networks for Large Domain Pattern Classification, 11-551
Modular Neural Neworks: Combining the Coulomb Energy Network Algorithm and .. , 1-651
Modularity of Neural Network Architecture, 1-51
Motion Detection in the Visual Cortex of the Cat, 1-114
Motor Programs and Sensorimotor Integration, 1-147
MRIII: A Robust Algorithm for Training Analog Neural Networks, 1-533
MSK Signal Noise Estimation Using a Hopfield Neural Network, 11.385
Nulti-Resolutional Retina Images for Machine Vision, 11-335
Multidirectional Associative Memory, 1-3

Multilayer Back-Propagation N,-twork for Learning the Forward and Inverse Kinematics Equations, 11-319
Multilayer Neural Network Modlling the Perceptual Reversal of Ambiguous Patterns, A, 1-185
Multilayered Neural Network to Determine the Orientation of an Object, A, 11421
Multilevel Neural Architecture for Robot Dynamic Control, A, 11-383
Multiple Descent Cost Algorithms for Standard Pattern Self-Organization, 1-436
Multiple Threshold Perceptron Using Gaussian Function, 1-581
Multiple-Bus Network for Implementing Ver1 -Large Neural Networks with Back-Propagation , A..., 11-175
Multiple-Order HMM Based Speech Recognition Using Neural Network, 11-351
Multiplexed Charge-Based Circuits For Analog Neural Systems, 11-88

Neural Computation for Collision-Free Path Planning, 11-229
Neural Computation in a Vertebrate Adaptive Reflex System, 1-255
Neural Dynamics of Motion Segmentation: Direction Fields, Apertures, and Resonant Grouping, 1-11
Neural Lexicon in a Hopfield-Style Network, A, 11-607
Neural Model of Interpolation or Interpolation with Blobs, A, 1-529
Neural Net Editor with Biological Applications, A, 1-35
Neural Nets vs. Analog Computers: An Observation, 11-687
Neural Network Approach to Electronic Circuit Diagnostics, A, 11-671
Neural Network Architecture for Silhouette Completion, A, 11-310
Neural Network Based Data Compression Using Scene Quantization, 11-241
Neural Network Enhancement to Traditional Computer Environment, 11.691
Neural Network for Explicitly Bounded Linear Programming, A, 1-381
Neural Network for Image Representation Using Back Propagation, 1-503
Neural Network Implementation of Parallel Search for Multiple Paths, A, 11-675
Neural Network Model for Fault-Diagnosis of Digital Circuits, A, 11-611
Neural Network Models and Their Application to the VUV and Optical Spectroscopy..., 11-679

Title Index
(al references are to the first page of the relevant paper; titles may be truncated)

Neural Networks and General Purpose Simulation Theory, 11.647
Neural Networks as Forecasting Experts: An Empirical Test, 11491
Neural Networks for Addressing the Decomposition Problem in Task Planning, 11-555
Neural Networks for Maximum Likelihood Error Correcting Systems, 1-493
Neural Networks in Statistical Classification, I-S53
Neural Networks Models for Linear Programming, 1-293
Neural Networks with Periodic Outputs: Applications to the Recognition of Temporal Sequences ... , 1-329
Neural Representation of Information, 1-509
Neural Tree Structured Vector Quantization, 11-267
Neurocontroller with Guaranteed Performance for Rigid Robots, A, 11-347
Neuromorphic Computer Architecture for Adaptive Control, 11-323
New Kind of Associative Memory Network Model, A, 1-499
New Learning Algorithm for the BSB Model, A, 1-704
New Model for Concept Classification Based on Linear Threshold Unit and Decision Tree, A, 11-631
New Neocognitron Structure Modified by ART and Back-Propagation, A, 1-420
NNII: A Neural Network Which Divides and Learns Environments, 1-684
Nonlinear Dynamics of Analog Associative Memory Neural Networks, 1-321
Novel, One-Step, Geometrical, Supervised Learning Scheme, A, 1-635
Numerical Analysis and Adaptation Method for Learning Rate of Back Propagation, 1-627

On the Amari-Takeuchi Theory of Category Formation, 1-297
On the Assignment-of-Credit Problem in Operant Learning, 1-122
On the Behavior and Significance of Random Neuronal Networks, 1-86
On the Learning Power of Networks with a Bounded Fan-In Layer, 1-313
On the Optimality of the Sigmoid Perceptron, 1-269
On the Role of Input Representations in Sensorimotor Mapping, 1-173
On the Training of a Multilayered Neural Net, 1-369
One-Class Generalization in Second-Order Backpropagation Networks for Image Classification, 11-221
Optical Associative Frocessors with Adaptive Learning Capabilities Using Variable Nonlinearity 11-145
Optical Formation of Interconnection Weight Matrix for a Neural Net Using Electron Trapping..., 11-147
Optically Configured Phototransistor Neural Networks, 11-64
Optically Implemented Hopfield Associative Memory Using Two-Dimensional Incoherent..., 11-68
Optimal Preprocessing Networks and a Data Processing Theorem, 1-19
Optimal Self-Organizing Pattern Classifier, An, 1-447
Optimization Methods for Back-Propagation: Automatic Parameter Tuning and Faster Convergence., 1-593
Optimization Search Using Neural Networks, 11-503
Optimizing Small Neural Networks Using a Distributed Genetic Algorithm, 1-206
Optimizing the Household Utility Function Using Neural Networks, 11-651
Optoelectronic Interconnection Scheme for Neural Networks, An, 11-129
Orthogonal Extraction Training Algorithm, 1-537
Orthogonal Projection Type of Associative Memory, An, 1-305
Overview of Weightless Neural Nets, An, 11-499

Parallel Implementation of Kohonen Feature Maps on the Warp Systolic Computer, A, 11-84
Parallel Neurocomputer Architecture Towards Billion Connection Updates Per Second, A, 11-47
Parallelized Back-Propagation Training and Its Effectiveness, 11-179
Parallelizing the Self-Organizing Feature Map on Multi-Processor Systems, 11-141
Parsimony in Neural Networks, 1-443
Pattern Recognition in Primate Temporal Cortex: But Is It ART?, 1-77
Pattern Recognition of Handwritten Phonetic Japanese Alphabet Characters, 11-515
Perceptron Based Auto-Associative Memory, A, 1-672
Performance of Neural Network Classifiers for the 1-Class Classifier Problem, A, 1-396
Phase Space Diagrams: Towards a Useful Characterization of Network Behavior, 1-477
Point Pattern Matching Using a Hopfield-type Neural Network, 11-449
Possible Mechanisms of Experience-Dependent Synapse Modification in the Visual Cortex, 1-240
Preadaptation in Neural Circuits, I-202
Preliminary Development of a Neural Network Autopilot Model for a High Performance Aircraft, 11-547
Preliminary Note on Training Static and Recurrent Neural Networks for Word-Level Speech., A.., 11-245

Title Index
(all references are to the first page of the relevant paper; titles may be truncated)

Principles of Sequential Feature Maps in Multi-Level Problems, 11-683
Probability-based Neural Networks, 1-451
Problem-solving by Using Reinforcement Learning Neural Nets, 11.583
Programming Neural Networks: A Dynamic-Static Model, 1-345
Psychophysical Experiments and Computer Simulations of the Binocular Rivalry, 11-389
Pulse Coding Hardware Neurons that Learn Boolean Functions, 11-102

Radar Classification of Sea-Ice Using Traditional and Neural Classifiers, 11-263
Range Image Analysis Using Neural Network, 11-401
Real-Time ART-I Based Vision System for Distortion Invariant Recognition and Autoassociation, A, 11-298
Real-Time Classification of Temporal Sequences with an Adaptive Resonance Circuit, The, 1-525
Recognition of 26-Character Alphabet Using a Dynamic Opto-Electronic Neural Network, 11-203
Recognition of Spatio-temporal Patterns with a Hierarchical Neural Network, 1-273
Recurrent Networks Adjusted by Adaptive Critics, 1-719
Relationship of Visual Spatial Map and Saccadic Motor Map in Salamander, 1-170
Reproducing Infinite Boolean Sequences: An Application of Hidden Markov Models .., 1-281
Retro: An Expert System Which Embodies "Chemical Intuition", 11-43
Risk Assessment of Mortgage Applications with a Neural Network System: An Update ., 11479
Robust Tracking Control of Dynamic Systems with Neural Networks, 11-563

Sampling Learning Recall and Filtering in Stable Adaptive Neural Systems with Graded Response, 1-459
Scheduling by Self-Organization, 11-543
Segment Reversal and the Traveling Salesman Problem, 1-424
Sejong-Net: A Dynamic Visual Pattern Recognition Neural Net, 1-412
Selective Presentation of Learning Samples for Efficient Learning in Multi-Layer Perceptron, 1-688
Self-Learning Simulated Annealing, 1-463
Self-Organization of a Linear Multilayered Feedforward Neural Network, 1-126
Self-Organizing Analog Fields (SOAF), 11-34
Self-Organizing Autoassociative Dynamic Multiple-Layer Neural Net for the Decomposition ... 1-621
Self-Organizing Neural Architectures for Motion Perception, Adaptive Sensory-Motor Control,..., 11-26
Self-Organizing Recursive Network for Object Recognition, A, 11-405
Self-Regulating Generator of Sample-and-Hold Random Training Vectors, A, 11-213

'2i Sensititivity of Layered Neural Networks to Errors in the Weights, 1-337
Setpoint Control Based on Reinforcement Learning, 11-511
Shape Recognition by Ring Hidden Markov Models, 11-409
Short-Term Memory Capacity Limitations in Recurrent Speech Production and Perception Networks, 1-43
Simulated Annealing Feature Extraction from Occluded and Cluttered Objects, 11-76
Simulation and Analysis of a Model of Mitral/Granule Cell Population Interactions .., 1-62
Simulation of Artificial Neural Network Models Using an Object-Oriented Software Paradigm, 11-133
SIPS-1I: A Spatial Information Processing System on Perceptual Grouping, 11-433
Smiles Parity and Feature Recognition, 11-519
Some Practical Aspects of the Self-Organizing Maps, 11-253
Some Similarities Between Single-Cell Recordings of the Motor Cortex and Neural Networks:..., 1-251
Space-Scanning Curves for Spatiotemporal Representations-Useful for Large Scale Neural..., 11-703
Spatio-Temporal Novelty Detector Using Fractal Chaos Model, A, 1-361
Spatio-temporal vs. Spatial Pattern Recognition by the Neocognitron, 11-279
Spatiotemporal Pattern Segmentation by Expectation Feedback, 11-40
Special Purpose Neural Network for Scheduling Satellite Broadcasting Times, A, 11-535
Speech Recognition System Featuring Neural Network Processing of Global Lexical Features, A, 11437
Speeding Up Back Propagation by Gradient Correlation, 1-723
Speeding Up Back Propagation, 1-639
Stability Analysis of Power Systems Using Multi-Layer Perceptron, 11-659
Stability and Temporal Pattern Recognition, 1-428
State Evaluation Functions for Neural Networks and Possible Lyapunov Functions, 1-301
Stepsize Variation Methods for Accelerating the Back-Propagation Algorithm, 1-601
Stochastic Neuron Model for Pattern Recognition, A, 11-151
Sub-Neural Factors of Neural Networks, 1-94
Superresolving Neural ."etwork for Deconvolution, 11-375

Title Index
(all references are to the first page of the relevant paper; titles may be truncated)

Switch Pattern Planning in Electric Power Distribution Systems by Hopfield-Type Neural Network, 11-591
Symbolic Networks with Timers, Latches and Classifiers May Be Mapped to the Nervous System, I-55
Synchronous Equivalent to Asynchronous Network Dynamics, A, 1-400
Synthetic Cerebellum: What It May Do and How It May Do It, 1-106
System Design for a Second Generation Neurocomputer, 11-80
System in Control of Its Knowledge that Provides Alternative and Different Solutions, A.., 1-664
Systolic Implementation of Multi-Layer Feed-Forward Neural Network With Back-Propagation..., 11-155

Technique for the Classification and Analysis of Insect Courtship Song, A, 11-257
Tempo-Algorithm: Learning in a Neural Network with Variable Time-Delays, The, 1-597
Temporal-Spatial Coding Transformation: Conversion of Frequency-Code to Place-Code.... 1-130
Textured Image Segmentation Using Localized Receptive Fields, 11-283
Theories on the Hopfleld Neural Networks with Inequality Constraints, 1-349
Time--The Essential Dimension, 11-25
Towards Reducing the Hardware Complexity of Feature Detection-Based Models, 1-440
Training Continuous Speech Linguistic Decoding Parameters as a Single-Layer Perceptron, 11-237
Transputer Implementation of Toroidal Lattice Architecture for Parallel Neurocomputing, A, 11-43
Tree Net: A Dynamically Configurable Neural Net, 1-545
Two-Layer Hopfield-Tank Network for Motion Estimation, A, 11-363
Two-Level Pipeline RISC Processor Array for ANN, A, 11-137

Unsupervised Learning Procedure That Discovers Surfaces in Random-Dot Stereograms, An, 1-218
Use of Modular Neural Networks in Tactile Sensing, The, 11-355
Using Classifier Systems to Implement Distributed Representations, 1-39
Using Neural Networks and Genetic Algorithms as Heuristics for NP-Complste Problems, 1-118
Using Verbs and Remembering the Order of Events, 1-210

Vector Pair Correspondence by a Simplified Counter-Propagation Model: A Twin Topographic Map, 11-531
Vision Architecture for Scale, Translation, and Rotation Invariance, A, 11-393
Visual Discrimination of Multi-Spectral Signals, 11-371
Visual Navigation with a Neural Network, 1-214
VLSI Implementable Handwritten Digit Recognition System, A, 11-275

Why Two Hidden Layers Are Better Than One, 1-265

Subject Index

S.. . I

r

Subject Index
(aO reforences are to the first page of the relevant pape)

Abstractions, learning of; 1-23 Applications (cont.)
Adaline satellite communications; 11-535, 11-539, 11-567

sensitivitity to weight errors; 1-337 setpoint control; 11-511
MR III; 1-533 sonar signal processing; 11-527

Adaptive junction neuron; 1-353 stock-cutting; 11-587
Adaptive resonance theory; 1-77, 1-142 task planning; 11-555

ART 1.5; 11-639 Tower of Hanoi; 11-583
ART 2, hardware implementation; 11-167 vector mapping; 11-519
ART 3; 11-30 Artificial life; 1-110, 1-189
as pattern classifier; 1-447 ART. See Adaptive resonance theory.
in adaptive control; 11-397 Assignment-of-credit problem; 1-122, 11-34
in radar; 11-639 Assignment problem; 1-381, 1-455
in vision; 11-298 Associative memories (AMs) (see also Hopfield
modifying the neocognitron; 1-420 networks)
temporal pattern recognition; 1-525 autoassociative AMs; 1-232, 1-621, 1-672

Additive automata; 1-365 bidirectional AM (BAM); 1-3, 1-31, 1-385,
Amari-Takeuchi theory of category formation; 11-183

1-297 dynamics of; 1-321, 1-365
Analog divider circuit; 11-441 effect of neuron properties in; 1-489
Analysis of network dynamics expectation-driven learning in; 1-521

and statistical mechanics; 1-385 general; 1-7, 1-468, 1-499, 1-664
bounding analysis; 1-404 higher order BAM (HOBAM); 1-31
dynamic state model; 1-345 modeling fault tolerance in; 1-325
in graded networks; 1-459 multidirectional AM; 1-3
in optimization applications; 1-472 orthogonal projection in; 1-305
learning power; 1-313 Attention; 1-228
of additive automata; 1-365
of associative memories; 1-321 Backpropagation (see also Applications,
of Hopfield networks; 1-349 Backpropagation applications, Recurrent
synchronous approximation; 1-400 networks)
taxonomy of networks; 1-477 and higher order networks (see also Higher

Applications (see also Backpropagation order networks); 1-680
applications, Character recognition, coarse quantization; 1-573
Counterpropagation network, Expert networks, compared to NN/I; 1-684
Hopfield networks, Language understanding, compared to single-layer interconnect model;
Machine vision, Process control applications, 1-668
Robotics, Signal processing, Speech processing, decision contour, 1-655
and Traveling Salesman Problem) effect of shape of sigmoid on; 1-707
aircraft autopilot; 11-547 harware implementations; 11-47, 11-51, 11-155,
as operating system enhancement; 11-691 11-175
control of prostheses; 11-3 image representation; 1-503
detecting bad data; 11-615 improvements to; 1-557, 1-565, 1-589, 1-593,
detecting heart malformations; 11-655 1-601, 1-605, 1-613, 1-617, 1-627, 1-631, 1-639,
fish detection; 11-527 1-651, 1-676, 1-696, 1-715, 1-723, 1-727, 1-731
in economics; 11-651 incremental; 1-561
in electrical power systems; 11-707 modifying neocognitron; 1-420
in harmonizing; 11-695 parallel implementations; 11-179
in hashing; 11-507 presentation of learning samples; 1-688
in manufacturing (group technology); 11-667 second order; 11-221
in spectroscopy; 11-679 stochastic approximation; 1-569
information retrieval; 11-623, 11-663 vs. Hopfield network; 1-707
language understanding; 11-471, [1-631, 11-683 with Gram-Schmidt orthogonalization; 1-692
nonlinear search; 11-503, 11-675 with recirculation; 1-597
optimization problems; 11-503, 11-523, 11-543 with SVD; 1-739

/ -

Subject Index
(all references aOe to the first page of the relevant paper)

"Backpropagation applications (see also Biology of the
Applications, Expert networks, Machine motion and coordination systems (cont.)
vision, Robotics, Speech processing) sensonmotor networks; 1-147,1-173, 1-177,
detecting heart malformations; 11-655 11-209
diagnosing epilepsy; 11-571 vestibular reflex; 1-152
electrical power systems; 11-615, 11-659 olfactory system; 1-62
face recognition; 11-413 and chaos; 1-243
fish detection; 11-527 speech; 1-27, 1-43
hashing functions; 11-507 vision
image classification; 11-221 ambiguous patterns; 1-185
insect song analysis; 11-257 binocular rivalry; 11-389
learning kinematic equations; 11-319 biological architectures; 1-181
pattern classification; II-551 Boundary Contour System (BCS); 1-11
pulse-doppler radar; 11-271 cognitive mappings; 1-228
robotics; 11-319 layered feature detectors; 1-126
screen color selection; 11-467 motion detection; 1-11, 1-114
sea-ice classification; 11-263 of salamander; 1-170
speech recognition; 11-245 of the cat; 1-240
tactile sensing; 11-355 pattern recognition; 1-77
vision; 11-393, 11-401, 11-413 sensorimotor mappings; 1-165

Binary hypothesis testing problem; '-404 Boltzmann machines
Biological neurons and interactive activation model of

geometry of; 1-94 perception; 1-743
Hebbian synapse; 1-138 annealing schedule in; 1-309
oscillations in; 1-181 hardware implementation issues; Ii-187
temporal-spatial coding in; 1-130, 1-170 improvement on simulated annealing in; 1-341

Biological neural networks 1-51, 1-55, 1-86, 1-130, Brain theory (see also Biology of the brain) 1-74,
1-138, 1-149, 1-165, 1-251, 1-259 1-90
and evolution; 1-202 Brain-State-in-a-Box (BSB)
as interpreters; 1-70 modified form of; 1-185
axo-axonic models; 1-668 learning in; 1-704
feedback in; 1-181 Breeding neural networks; 1-198
in motor control; 1-169 Broom balancing; 1-198, 11-397, 11-619
linked to artifical neural nets; 11-3
Long Term Enhancement (LTE); 1-541 Calyces; 1-157
molecular level; 1-94 Cart centering; 1-198
oscillations in; 1-181 Categorization; 1-55, 1-297
simulator for; 1-35 Cauchy machines; 1-317
spatial representations; 1-165, 1-170 Cerebellum (see also Sensorimotor networks,
synchronization in; 1-247 Robotics); 1-106, 1-147, 1-165

Biology of the Chaos in neural networks; 1-243
auditory system; 1-66, 1-149 in spatiotemporal novelty detectors; 1-361

cortical magnetic fields in; 11-359 Character recognition
brain; 1-59, 1-66, 1-62, 1-70 handwritten numerals; 1408, 11-275, 11-457,

vaga baroreflex; 1-255 11-515
cortical magnetic fields in; 11-359 Hargul; 1-416, 11-635

macular system; 1-157 Korean alphabet; 1-416, 11-635
memory; 1-232 optoelectronic system for; 11-203
motion and coordination systems; 1-98, 1-106, using Coulomb energy network 11-635

1-251 with REM equations; 1-727
input representations; 1-173 Classifier systems (see also Kohonen feature
locomotion; 1-214 maps, Self-organizing systems) 1-39, 1-47, 1-55,
reaching; 1-169 1-388

classitron; 1-373

//

Subject Index
(al references are to the first page of the relevant paper)

Classifier systems (cont.) Evolution (cont.)
of insect song; 11-257 of connectivity; 1-134
of sea ice; 11-263 Expert networks (see also Fuzzy networks,
of temporal sequences (see also Spatio- Knowledge processing, Symbolic processing)

temporal systems); 1-525 diagnostic systems
one-class classifier; 1-396 digital circuits; 11-611, 11-671
statistical; 1-553 epilepsy; 11-571

Classitron; 1-373 mastitis; 11-487
Clustering (see also Learning vector radiologic diagnosis; 11-98

quantization); 1-277, 1-553 satellite communications; 11-539
Cognitive mapping; 1-214, 1-223, 1-228 dispatching delivery trucks; 11-463
Cognitive modeling; 1-110 explanation in; 11-579
Cognition; 1-110 extracting rules from; 11-579
Cognitive systems; 1-90, 1-223 forecasting; 11491

representation; 1-236 fuzzy networks in; U1-55, 11483, 11-599
Competitive learning 1-23, 1-126, 1-142 hardware implementation of; 11-199

in visual pattern recognition; 1-359 human resource policies; 11-647
Communications applications (see also in Traveling Salesman Problem; 11-551

Applications, Backpropagation applications, integration of neural networks with expert
Self-organizing systems, Signal processing); systems; 11463
11-302, 11-385 mortgage/credit system; 11479

Connectivity; 1-134 multiple criteria decisions; 11495
Context-free grammars; 1-577 screen color selection; 11467
Contravarient form; 1-152 synthetic organic chemistry; 11-643
Cooperative-competitive networks (see also

Adaptive resonance theory, Kohonen feature Fault-tolerant computing
maps); 11-26, 11-225 in neural networks; 11-699

Coulomb energy network; 1-651 modeling in neural networks; 1-325
in character recognition; 11-635 of 12t network; 11-712

Counterpropagation network; 11-531 of optimization networks; 1455
in range-image analysis; 11401 Finite state machines; 1-476

Covarient form; 1-152 FLETE; 11-209
Crayfish Fractals (see also Chaos)

tail-flip circuitry of; 1-202 in spatiotemporal novelty detector; 1-361
Fuzzy logic model of perception; 1-743

Darwin machines (see also Evolution); 1-185, Fuzzy networks; 11-55, 11483, 11-599, 11-720
1-189, 1-194, 1-198, 1-202, 1-206

Data compression (see also Learning vector Gabor filters (see also Machine vision); 11-283
quanitzation, Vector quantization); 11-241, Gardner-Medwin memory model; 1-232
11-267 Gaussian problem, 2-class; 1-269

Daydreaming; 1-223 Genetic algorithms (see also Evolution); 1-39,
DEFAnet; 1-161 147, 1-102, 1-118, 1-134
Drazin generalized inverse; 1-98 and broom balancing; 1-198
Dynamic state model of neural networks; 1-345 and evolutionary reinforcement learning; 1-189

and neural networks; 1-102, 1-194
EEG, activity during speech; 1-27 and preadaptation; 1-202
Emergence of self; 1-81 genetic programming; I- 194
Entropy in a neural network; 1-7 optimizing neural networks with; 1-206
Estimation by neural networks; 1-289 Genetic codes; 1-189
Evolution; 147, 1-81, 1-102, 1-589 Graded training; 1459, 1-719, 11417

and learning; 1-189, 1-198
and preadaptation; 1-202 Hamiltonian circuit problems; 1-118
evolutionary reinforcement learning; 1-189 Hangul character recognition; 1416
modular neural evolution; 1-194

Subject Index
(all referonces are to the first page of the relevant paper)

Hardware implementation (see also Implementations--VLSI and Electronic (cont.)
Implementations-VLSI/Electronic, learning logic array; 11-92
Implementations-Optical) of backpropagation; U1-47, 11-51, 11-155, 11-175
reducing complexity of; 1-440 of biological learning primitives; 11-106

Heuristics; 1-118 of Boltzmann machine; 11-187
Higher order networks; 1-396 of expert networks; 11-199

and backpropagation; 1-689 of Kohonen feature map; 11-84, 11-253
in task planning; 11-555 of self-organizing networks; 11-84, 11-118

Hopfield networks (see also Applications, of stochastic networks; 11-187
Associative memories, Implementations- principles of VLSI design; 11-171
VLSI/Electronic, Implementations-Optical, pulse coded; 11-102
Optimization applications, Traveling RISC; 11-137
salesman problem); 1-349, 1-377, 1-635 system design; 11-80, 11-183
building a lexicon with; 11-607 systolic; 11-59, 11-84, 11-155
capacity (disproof of conjecture); 1-481 toroidal lattice architecture; 11-43
compared to analog computers; 11-687 using transputers; 11-43
competitive Hopfield network; 11-627 Input representations; 1-173
detecting symmetry (in images) Insect songs, classification of; 11-257
generalization of; 1-485 Interactive activation model of perception; 1-743
improvement of capacity of; 1-468 Interpolation with neural networks; 1-529
in dynamic system control; 11-563
in electric power distribution; 11-591 Knowledge processing (see also Expert networks,
in machine vision; 11-327, 11-363, 11449 Fuzzy networks)
in optimization applications; 1-472, 11-627 fuzzy knowledge systems; 11-55
in task planning; 11-555 knowledge representation; 1-509, 1-643, 11-475
optical implementation of; 11-68 with probability-based neural networks; 1-451
VLSI-Electronic implementation of; 11-43 Kolmogorov's theorem; 1-74, 1-161
vs. backpropagation; 11-707 Kohonen feature maps (see also Classification
vs. Hamming network; 11-707 systems, Counterpropagation networks,

Hybrid systems-neural networks combined with Learning vector quantization, Self-
other systems (see also Expert networks); organization); 1-232, 1-236, 1-517
11-463, 11475, 11-603 as part of NN/I; 1-684
diagnostic expert system; 11-487 for classification of insect courtship song;
interfacing to database; 11-663 11-257

implemented in hardware; 11-84, 11-253
Image processing. See Machine Vision in optimization problems; 11-543
Implementations-Hybrid in satellite communications; 11-567

digital and neural network systems; 11-191 in sea-ice classification; 11-263
optoelectronic in sentence understanding; 11-683

character recognition; 11-203 in signal processing; 11-249, 11-257
interconnection schemes; 11-129 in target recognition; 11-595
of ART 2; 11-167 multi-level systems; 11-683
using optical disk; 11-114 parallel algorithms for; 11-141

Implementations-Optical; 11-64, 11-68, 11-145, practical aspects of; 11-253
11-147 twin topographic maps; 11-531
learning in 11-72 Korean alphabet recognition; 1-416, 11-635
using optical disk; 11-114
using electron trapping materials; 11-147 Langevin equations; 1-385

Implementations-VLSI and Electronic Language understanding; 1-210
analog; 11-126, 11-163 context-free grammars; 1-577
charge-based circuits; 11-88 grammars; 1-285
communicating concurrent processes; 1I-51 Lateral inhibition (see also Adaptive resonance
dataflow-based; 11-195 theory, Kohonen feature maps, Self-
generalized boolean operations; 1i-159 organizing systems); 1-177

P- -PM IO MRNRNl

Subject Index
(all references are to th. first page of the relevant paper)

Learning (see also Backpropagation, Kohonen Machine vision (cont.)
feature maps) feature extraction; 11-76
adjoint-operator algorithms; 1-512 image classification (see also Classifier
analysis of paradigms; 1-609 systems); 11-221
biological primitives implemented in image segmentation; 11-283, 11-433
hardware; 11-106 invariance in; 11-298, 11-393, 11429
boolean sequences; 1-281 motion detection; 11-26, 11-339, 11-363
by local variations; 1-700 multiresolutional images; 11-335
evolutionary reinforcement; 1-189 object orientation; 11421
expectation-driven; 1-521 point pattern matching; 11449
explanation-based; 1-643 range image analysis; 11-401
for Brain-State-in-a-Box; 1-704 saccadic motion generator; 11-379
grammars; 1-313 scene quantization; 11-241
Hebbian learning; 1-647 shape recognition; 11-225, 11-371
hybrid algorithm; 1-585 silhouette completion; 11-310
in Hopfield networks; 1-635 symmetry detection; 11-327
in optical neural computers; 11-72 target detection; 11-315, 11409, 11-595
incomplete paradigms; 1-392 texture analysis; 11-283
LMS learning (see also Adaline, three-dimensional vision; 11-287
Backpropagation); 1-647 using ART 1; 11-298
operant; 1-122 with Hopfield network; 11-327
optimum path paradigm; 1-711 with neocognitron; 11-35, 11-279
prediction-based; 1-660 Macular neural network; 1-157
relevance in; 1-643 Markov models; 1-259, 1-281
spatiotemporal patterns; 1-178 edge detection; 11-331
unsupervised (see also Self-organizing modeling fault tolerance; 1-325
systems); 1-23, 1-126, 1-218 shape recognition; 11409
with Gram-Schmidt orthogonalization; 1-692 speech recognition; 11-351

Learning vector quantization (LVQ) (see also Match filtering; 1493
Clustering, Kohonen feature maps, Vector Mathematics of biological networks
quantization); 1-396, 1-731 function mapping; 1-74,1-161
in insect song classification; 11-257 geometry; 1-15
in sea-ice classification; 11-263 internal mathematics; 1-98
in target recognition; 11-595 tensor network theory; 1-98

Linear programming and neural networks (see tensor representations; 1-152
also Associative memories, Hopfield Medical applications of neural networks
networks); 1-293, 1-381 controlling insulin flow; 11-575

Linking, biological neural networks to artificial detecting heart malformations; 11-655
neural networks; 11-3 diagnosis of epilepsy; 11-571

Localized receptive fields (LRF) (see also diagnosis of mastitis; 11487
Visual receptive fields) ; 1-396 radiologic diagnosis; 11-98

Locomotion. See Robotics, Sensorimotor netowrks recurrent networks in; 11-575
Long term enhancement neural models; 1-541 Modular neural evolution; 1-194
Long term memory (LTM) Monte Carlo used in neural networks; 11-151

spin glass model; 1-333 Moore-Penrose pseudo-inverse; 1-98
Lyapunov functions; 1-301, 1477 Multiple threshold perceptron; 1-581

Mach pyramid; 1-185 Navigation; 1-214, 1-223
Machine vision (see also Biology of vision); Necker cube; 1-185

1-218, 1-357, 1412, 1-503, 11-287, 11-375, 11405 Neocognitron
aspect graph; 11-233 combined with ART 1; 11-298
distortion invarient; 11-298 fault tolerance analysis of; 11-559
edge detection; 11-331 in character recognition; 1416
face recognition; 11413 in stock-cutting problem; 11-587

Subject Index
(an roferonces ar* to the first pago of the relovant papeo

Neocognitron (cont.) Neural network implementations
modified by ART; 1-420 VLSI-electronic (cont.)
modified by backpropagation; 1-420 systolic; 11-59, II-84, 11-155
recognition performance; 11-35 toroidal lattice architecture; 11-43
spatiotemporal vs. spatial recognition; 11-279 using transputers; 11-43
stochastic neuron model; 11-151 Neural network simulators; 1-35

Neural networks and ANSkit; 11-94
analog computers; 11-687 CASENET; 11-122
brain theory; 1-15 distributed (over computer network); 11-94
compared to other estimators; 1-289 parallel algorithms
data processing; 1-7, 1-9 for self-organizing feature maps; 11-141
decision trees; 1-443 for backpropagation; 11-179
dynamic programming; 11-306 using object-oriented paradigm; 11-133
genetic algorithms; 1-39, 1-47, 1-102, 1-118, weightless neural networks; 11-499

1-134, 1-189, 1-194, Neuronal group selection theory; 1-90
mathematics; 1-15 NN/I network; 1-684
sensitivity to weight errors; 1-337 Normalization; 1-150
statistical mechanics; 1-385 Novelty-based orthogonalization; 1-561
time; 11-25 Number of hidden layers; 1-265

Neural network design; 1-35, 1-102
adaptive strategy; 1-432 Oculomotor paradigm; 1-165
language; 11-110 Operant learning; 1-122
weightless neural networks; 11-499 in guidance of submersibles; 11-417

Neural network implementations; Optical flow; 1-214
hybrid (digital and neural network systems); Optimization applications (see also Traveling

11-191 salesman problem); 1-472
hybrid (optoelectronic) in economics; 11-651

character recognition; 11-203
interconnection schemes; 11-129 Pattern recognition
of ART 2; 11-167 acoustical; 1-149
using optical disk; 11-114 boolean sequence learning; 1-281

optical; 11-64, 11-68, 11-145, 11-147 character recognition (see also Character
learning in 11-72 recognition); 1-408, 1-416
using optical disk; 11-114 classification (see also Classifier systems);
using electron trapping materials; 11-147 1-388, 1-447, 1-553, 11-221

VLSI-electronic clustering (see also Clustering); 1-277
analog; 11-126, 11-163 feature detection; 1-440, 11-151
charge-based circuits; 11-88 olfactory; 1-243
communicating concurrent processes; 11-51 partitioning of sets; 1-545
dataflow-based; 11-195 spatiotemporal (see also Spatiotemporal
generalized boolean operations; 11-159 systems); 1-273, 1-329, 1-353, 1-428, 11-40
learning logic array; 11-92 visual (see also Machine vision); 1-357, 1-412
of backpropagation; 11-47, 11-51, 11-155, with ART 3; 11-30

11-175 Peano curves; 11-703
of biological learning primitives; 11-106 Perception (see also Biology of..., Sensorimotor
of Boltzmann machine; 11-187 networks); 1-743
of expert networks; 11-199 Preadaptation; 1-202
of Kohonen feature map; 11-84, 11-253 Prediction-based learning; 1-660
of self-organizing networks; 11-84, 11-118 Primate brain research; 1-165
of stochastic networks; 11-187 Principal components analysis; 11-291
principles of VLSI design; 11-171 Probabilistic neural networks; 1-451
pulse coded; 11-102 Process control applications (see also Robotics);
RISC; 11-137 11-323
system design; 11-80, 11-183 broom balancing; 11-397, 11-619

Subject Index
(aN references are to the first page of the relevant paper)

Process control applications (cont.) Semantic adaptation; 147
camera tracking; 11-343 Semantotopic maps; 1-23
dynamic system control; 11-563 Sensitivity to weight errors; 1-337
prosthesis control; 11-3 Sensorimotor networks (see also Roboticd); 1-147,

Prosthesis control; 11-3 1-153, 11-26, 11-213
Psychopathology and neural networks; 1-81 biological; 1-147, 1-173, 1-177, 11-209
Pushdown automata; 1-577 linked artificial and biological networks; 11-3

role of input representations in; 1-173
Radar systems (see also Signal processing); sensory processing system; 11-291

11-271, 11-453, 11-639 tactile sensing; 11-335
Random sampling; 1-317 Sensory receptive fields (maculas); 1-157
Reaching Short-term memory (STM); 1-143, 1-333

direction of coding; 1-169 Sigmoid perceptron; 1-707
Recurrent networks; 1-43,1-223, 1-533, 1-719 Signal processing (see also Applications,

learning grammars; 1-285 Backpropagation applications, Classifier
medical applications; 11-575 systems, Kohonen feature maps, Speech
speech recognition; 11-245 processing)

Recursive analog divider circuit; 11-441
error minimization; 1-727 classification of insect song; 11-257
least squares; 1-696 communications; 11-302, 11-385

Robotics cortical magnetic fields: 11-359
arm motion control; 1-173, 11-209, 11-217, 11-347, radar systems; 11-271, 11-453, 11-639

11-383 sonar echo; 11-527
learning kinematic equations; 11-319 with self-organizing maps; 11-249
navigation and path planning; 11-229, 11-367, Simulated annealing (see also Boltzmann

11417, 11425 machines); 1-309, 1-317
submersible robot; 11-417 feature extracticr; 11-76
tactile sensing; 11-355 improvement on; 1-341

self-learning; 1-463
Saccadic motion Tower of Hanoi; 11-583

of salamander; 1-170 Simulators; 1-35
motion generator; 11-379 ANSkit; 11-94

Salamander, saccadic motor map of; 1-170 CASENET; 11-122
Search; 11-30 distributed (over computer network); 11-94
Sejong-net; 1-412 parallel algorithms
Self-organizing systems (see also Adaptive for self-organizing feature maps; 11-141

resonance systems, Kohonen feature map, for backpropagation; 11-179
Unsupervised learning); 1-23, 1-126, 1-218, using object-oriented paradigm; 11-133
1-236, 1-517, 1-621, 11-26 weightless neural networks; 11-499
combined with expert systems; 11-463 Singular value decomposition (SVD); 1-739
dispatching delivery trucks; 11-463 Society of mind (see also Evolution; Genetic
hardware implementations; 11-84, 11-118, algorithms); 1-194

11-253 Spatiotemporal systems (see also Classifier
multiple descent cost algorithms; 1-436 systems, Medical applications, Pattern
parallel algorithms for; 11-141 recognition, Recurrent networks, Self-
pattern classifier; 1-447 organizing systems; Signal processing; Speech
robotic arm control; 11-217 processing)
self-organizing analog fields (SOAF); 11-34 backpropagation with recirculation; 1-597
signal processing; 11-249, 11-257 classification; 1-525
simulated annealing; 1-463 mappings; 1-165
Traveling salesman problem; 11-551 medical applications; 11-575
vision; 11-35, 11-233, 11-405 networks; 1-130, 1-177
with backpropagation; 11-551 novelty detector; 1-361
with top-down expectation; 1-735 pattern recognition; 1-273, 1-329, 1-428

Subject Index
(all references are to the first page of the relevant paper)

Spatiotemporal systems (cont.) Vision (cont.)
with adaptive junction; 1-353 of salamander; 1-170

Speech processing (see also Signal processing) of the cat; 1-240
biological; 1-27, 143 pattern recognition; 1-77
neural network compared to traditional; 11-445 sensorimotor mappings; 1-165
recognition; 11-237, 11-245, 11-306, 11-351, Visual receptive fields (see also Biology of

11-437, 11-445 rision); 1-126, 1-248, 1,[283
with neocognitron; 11-279

Spin glasses (see also Hopfield neural Waveform reshaped averaging; 1493
networks); 1-333 Weightless neural networks; 11-499

State evaluation functions; 1-301
Stochastic interactive activation networks;

1-743
Symbolic processing (see also Expert networks);

1-55, 1-90
problems with; 1-110

Synchronization of neural networks; 1-248, 1-400
Syntactic adaptation; 1-47

Taxonomy of networks; 1477
Taylor series expansions and neural networks;

1-369
Theory of neural networks; 1-265, 1-269 This Document
Time and neural networks (see also Reproduced From

Spatiotemporal systems); 11-25
Training neural networks (see also Self- Best Available Copy

organizing systems); 1-369 C y
graded; 1459
MR I11; 1-533
orthogonal extraction; 1-537

Transportation problem; 1-381
Traveling salesman problem (see also Hopfield

networks, Implementations); 1-317, 1-424,
1-455, 11-55', 11-703, 11-716
hatdware imp~mentations; 11-43

Tree net; 1-545

Unsupervised learning (see also Kohonen feature
maps, Self-organizing systems); 1-23, 1-236,
1-126, 1-218

Vector quantization (see also Kohonen feature
maps, Learning vector quantization); 11-267

Vestibulocollic reflex; 1-152
Vestibuloocular reflex; 1-152, 1-165
Vision (see also Biology of vision, Machine

vision)
ambiguous patterns; 1-185
binocular rivalry; 11-389
biological architectures; 1-181
Boundary Contour System (BCS); 1-11
cognitive mappings; 1-228
layered feature detectors; 1-126 This Document Contains Missing
motion detection; I-11, 1-114 Page/s That Are Unavailable In

The Original Document

This document contains
blank pages that were
not filmed

