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FOREWORD
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between WRDC and AFESC Tyndall AFB FL, to determine the impact of FOD (Foreign
Object Damage) to aircraft operating in a post-attack environment. This part of
the program addressed the issues of tire cutting damage sustained as a result of
operating an aircraft over post-attack debris and what measures would be needed
to overcome any problems disclosed. The effort was conducted under Work Unit
Numbers 24020146 and 24020157 entitled "Ground Contacting Systems" and "Vehicle
Subsystems Integrity Program" respectfully. The test effort was conducted from
1 June 1986 to 1 November 1988 with data reduction and analysis continuing into
October 1989. All of the cutting tests reported in this report were conducted at
the Naval Air Engineering Center (NAEC), Lakehurst New Jersey, and the author
acknowledges the engineering support provided by Mr. Jack Schaible of the NAEC.
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SECTION I

INTRODUCTION

The purpose of this effort is to provide a preliminary assessment as to the
sensitivity for tire cutting under varied operating conditions. This assessment
is limited and non statistical in nature. The objective of the study is to
provide preliminary guidance which can be used for both near-term research
programs, detailed statistical analysis efforts, and initial operations analysis
applications.

The study itself is confined to considering cut depths and numbers of cuts. No
analysis considerations are given to cut types, locations, detailed loads,
specific cut limits, or other damage. The study cut data are grouped into five
cuts areas consisting of Total Cuts, 0-5 (32nds), 6-10 (32nds), 11-15 (32nds),
and 16+ (32nds) depth. A total of 22 analysis extractions are derived from the
original data base generated from the tire cutting test effort (reference 1).
These 22 extractions resulted in the generation of 22 different tables whereby
single variables can be looked at while all the remaining parameters remain
fixed. A complete summary of the 22 analysis extractions and resulting data
files are as follows:

SUBJECT AREA FILE NAME
SPEED EFFECTS ANALYSIS ............. FILE ........... SPEED
YAW EFFECTS ANALYSIS ............... FILE ........... YAW
RADIAL TIRE ANALYSIS ............... FILE ........... RADIAL
PRESSURE EFFECTS ANALYSIS .......... FILE ........... PRESSURE
RETREAD TIRE ANALYSIS .............. FILE ........... RETRDALL
RETREAD TIRE CONST PATT ANALYSIS ...FILE ........... RETRD
TIRE SIZE ANALYSIS ................. FILE ........... SIZE
F-4 LOADS EFFECTS .................. FILE ........... F-4LOADS
F-16 LOADS EFFECTS ............u.... FILE ........... F-16LOADS
F-16 WATER EFFECTS 1O SPD .......... FILE ........... WATER- LO
F-16 WATER EFFECTS HI SPD .......... FILE ........... WATER-HI
F-16 WATER/YAW EFFECTS HI SPD ...... FILE ........... WALER- YAW
DEBRIS SIZE EFFECTS GY/RET ......... FILE ........... DEB-SIZA
DEBRIS SIZE EFFECTS RETREAD ........ FILE ........... DEB-SIZR
SHRAPNEL (DEBRIS TYPE) EFFECTS ..... FILE ........... SHRAP
SHRAP (ABOVE) DEEP CUTS ADJUSTED ...FILE ........... SHRAP 1
BRAKING ANALYSIS ALL BEDS .......... FILE ........... BRAKED
BRAKING ANALYSIS 6/4 BEDS .......... FILE ........... BRAKING 1
COMBINED YAW/BRAK + PRESS .......... FILE ........... COMBO-BR
COMBINED YAW/BRAK ALL PRESS ........ FILE ........... COMBO
COMBINED (TABLE 21 SEP COMPARE) ....FILE ........... COMBOA
DEBRIS DISTRIBUTION EFFECTS ........ FILE ........... DISTRIB

The resulting output consists of various Lotus worksheet files which were then
printed out in table form and analyzed both visually and graphically in Section
III of this report. A summary of the file contents, resulting table number and




number of tests included in the analysis is as follows:

SPEED EFFECTS ANALYSIS ...........cvcunun. 15 TESTS TABLE # 2
YAW EFFECTS ANALYSIS ............00nnunn. 13 TESTS TABLE # 3
RADIAL TIRE ANALYSIS ...........iiiiunennn 13 TESTS TABLE #§ 4
PRESSURE EFFECTS ANALYSIS ............... 9 TESTS TABLE # S
RETREAD TIRE ANALYSIS ........0iiveenennn 17 TESTS TABLE # 6
RETREAD TIRE CONST PATT ANALYSIS ........ 10 TESTS TABLE # 7
TIRE SIZE ANALYSIS .........c.ittiiveneenn 17 TESTS TABLE # 8
F-4 LOADS EFFECTS ....... .ttt eeennnan 9 TESTS TABLE # 9
F-16 LOADS EFFECTS ... ... . ittt iinennnn. 14 TESTS TABLE # 10
F-16 WATER EFFECTS LO SPD ............... 10 TESTS TABLE # 11
F-16 WATER EFFECTS HI SPD ............... 11 TESTS TABLE # 12
F-15 WATER/YAW EFFECTS HI SPD............ 4 TESTS TABLE # 13
DEBRIS SIZE EFFECTS GY/RET .............. 29 TESTS TABLE # 14
DEBRIS SIZE EFFECTS RETREAD ............. 17 TESTS TABLE # 15
SHRAPNEL (DEBRIS TYPE) EFFECTS .......... 16 TESTS TABLE # 16
SHRAP (ABOVE) DEEP CUTS ADJUSTED ........ 16 TESTS TABLE # 17
BRAKING ANALYSIS ALL BEDS ............... 17 TESTS TABLE # 18
BRAKING ANALYSIS 6/4 BEDS ............... 13 TESTS TABLE # 19
COMBINED YAW/BRAK + PRESS ............... 14 TESTS TABLE # 20
COMBINED YAW/BRAK ALL PRESS ............. 29 TESTS TABLE # 21
COMBINED (TABLE 20 SEP COMPARE) ......... 29 TESTS TABLE # 22
DEBRIS DISTRIBUTION EFFECTS ............. 12 TESTS TABLE # 23
Futur ies d Analysis

The original test plan to generate these data was formulated to accommodate
detailed operational studies in this area. With all of the above data in
statistical form, these operational studies would first generate operational
spectrums for specific aircraft/tire combinations and then combine these with
expected levels of airfield debris. The resulting spectrum would then be
segmented into detailed sub elements conforming to the available statistical form
data. Typical sub elements will include taxi, takeoff, landing, and taxi segments
each of which would be further segmented into multiple turning and braking
segments each at different loading conditions. This model when combined with
airfield debris models will permit very detailed and accurate studies of expected
tire cutting as a function of aircraft operation and runway cleanliness to be
made .




SECTION II

PROGRAM EVOLUTION

Broadbase Progqram

The tire cutting program discussed in this report is actually an outgrowth of a
larger FOD program started in 1984. This orig.aal FOD effort consisted of
assessing the FOD relationships to aircraft operations in a post attack or debris
laden environment. The overall objective of this larger program was to generate
test data to fill critical voids so that airfield cleanliness costs could be
traded against some acceptable level operational FOD damage to the aircraft.

Original program emphasis was in three principal areas. The first consisted of
aircraft engine damage occurring from the lofting of debris from the tires into
the engine or direct vortex suction of debris off the ground into the engine. The
second area of emphasis involved the lofting of debris by the tires against the
aircraft itself resulting in damage to aircraft structures mechanical subsystems
or external stores. The final area of concern was that of tire cutting whereby
the effects of running high pressure tires over post-attack debris such as rocks
and shrapnel would have to be analyzed.

Initial program emphasis was on the first two of these areas in that it was
originally theorized that the tire cutting area was the least critical of the
three. As a result, an extensive test and evaluation effort was started to study
the effects of tire lofting and resulting lofted debris damage. Early in the
lefting test effort, however, it was noted that the tires used for lofting tests
were being very severely cut up during these tests. As a result, a separate and
independent test effort Lo study tire cutting effects was established. The final
results of the tire cutting would ultimately serve to show that the tire cutting
area was indeed the most critical of the three areas studied in a post attack
environment.

Test results from all three areas were quite interesting with some rather
unexpected results occurring from applying wartime criteria rather than peacetime
constraints. This report only covers the tire cutting portion and only provides
a summary type analysis of that area. Additional details of the tire cutting
portion of the effort are contained in references 1 through S and reference 12.
Additional details of the tire lofting, engine degradation, mechanical subsystem
and airframe damage, portions of the effort are contained in references 6 through
9. A report on the operational effects of all of these areas along with the
generation of wartime cleanliness criteria is being prepared and will be
available in the near future.




Program Participants

All of these previously discussed efforts were jointly undertaken and sponsored
by WRDC/FIVMB Wright Patterson AFB, and AFESC/RDCR Tyndall AFB Florida. Support
contractors involved in these efforts included the University of Dayton Research
Institute, Dayton, Ohio; Physics Applications Inc. Dayton, Ohio; the BDM
Corporation located in McLean, Virginia; Sverdrup Technology Inc, Tullahoma,
Tennessee; and Commercial Metals Fabricators of Dayton, Ohio. Testing
organizations involved in these programs included the Naval Air Systems Tommand,
Lakehurst, NJ; The Air Force Flight Test Center, Edwards AFB, California; the
UDRI Impact Dynamics Laboratory, Dayton, ©Ohio; the Mobility Development
Laboratory, Wright Patterson AFB, Ohio and the Landing Gear Development Facility,
Wright Patterson AFB, Ohio.




SECTION TII

TEST PROGRAM SUMMARY

Purpose

All data and resulting data tables generated in this analysis were the result of
an extensive tire cutting test effort conducted over a 2-year period. The subject
test program was conducted at the Naval Air Engineering Center (NAEC) jet track
facility located at Lakehurst, NJ. and involved over 150 tests specifically
targeted for tire cutting studies. Details relating to test vehicle design,
vehicle capabilities, facility operation, test methods, instrumentation, and data
reduction techniques are quite extensive and are included in references 1, 2, 3,
S, and 12. This section summarizes work done to support the analysis conducted
in this report and to outline what data and facilities are available for future
efforts. To provide this background, brief summaries of important areas are
presented in the following sections. Additionally, Section IV has been included
which covers the test vehicle and test setup in further detail.

Test Vehicle

The TCTV (Tire Cutting Test Vehicle) consists of a 20-30 ton vehicle designed to
be accelerated to speeds in excess of 200 MPH along a 6000-8000 ft test track.
The test tire and/or landing gear is mounted to the vehicle by a hinged
cantilevered boom extending forward of the vehicle. Loading of the tire or gear
is accomplished with of dead weights mounted directly to the top of the
cantilever structure. More detailed descriptions of this arrangement are included
in reference 1. Typically tire loads of up to 17,000 lbs can be accommodated
involving side and drag loads of 8,000 & 23,000 1lbs respectively. The vehicle was
qualified to speeds of over 150 MPH. A complete 1listing of the vehicle’s
capabilities are also noted in Section IV.

Test Plan

Prior to the implementation of this effort, a fully coordinated test plan was
developed. The resulting plan considered user requirements, operational factors,
cost trades, available resources, and a parametric analysis of what variables
needed to be included along with their associated priority. The results of this
planning phase are included in reference 3.




Instrumentation

Instrumentation contained on the test vehicle includes the capability to measure
vertical, side, & drag loads throughout the test run. These loads are measured
at the axle and through calibration, and conversion techniques can be directly
correlated to 1loads occurring in the tire footprint area. Additional
instrumentation includes the measurement of surface speed and brake pressure.
Visual data can also be obtained with two on-board cameras capable of both high
and low speed visual acquisition.

Data Acquisition

In addition to the dynamic data noted above, field calibration techniques, tire
inspection techniques, and test parameter logging techniques had to be developed.
Inspection methods required the measurement of severely cut tires in a high
pressure inflated mode. Calibrations had to be completed rapidly in the field,
and preliminary test results had to be rapidly assessed to permit test schedule
changes to optimize the total data acquisition effort. A summary of these methods
and activities are included in References 1, 2, 5, and 12.

Additional Tire Testing

One final area of work that was conducted in this program was the dynamic testing
of cut tires. This phase of the effort consisted of subjecting severely cut tires
to an operational taxi/takeoff load speed profile on an aircraft tire test
dynamometer. The goal here was to determine if a damaged tire could still be used
in an emergency for at least one or two taxi/takeoff landing/taxi cycles. This
effort ig not discussed in this report but additional information can be found
in references 5 and 12.




SECTION IV

TEST VEHICLE/TEST SETUP

Test vehicle

Fabrication of the TCTV was completed on 3 January 1986. Figure 1 shows the
vehicle installed at the NAEC Jet Track Facility and shows the deadload, boom
structure, and associated systems. The particular test setup shown consists of
an F-16 main wheel and tire installed for a 120-mph run. The TCTV is composed
of four primary systems and various subsystems, as shown in Table 1. The first
of these involves three options for providing forward speed to the test vehicle
itself. The first option consists of using an MRS tractor system for speeds of
0-18 mph. The MRS (model 200) represents a high torque/high rimpull capability
for wuse in high drawbar pull situations such as high yaw angle or soft soils
testing. For lower drawbar situations a second option of lower torque capacity
can be used for speeds of up to 30 mph. This option ccnsists of utilizing a
standard 5-ton truck, and a modified pusher plate system. For speeds in excess
of 30 mph, the third system available is the standard NAEC jet car push mode. The
pusher system consists of a rear push acceleration to some velocity above the
desired test speed, and releasing the TCTV prior to engagement of the test
section. This procedure eliminates any pusher bias through the test section and
allows the vehicle to stabilize yielding more constant behavior through the
testbed and over the entire range of all tests conducted.

Table 1 TCTV System/Subsystem Breakdown

A. Speed Generation System
1. MRS Tractor (Low Geared)
2. Hi Geared Travels Pushers
3. Jet Car Pusher

B. Dead Load with Railed Guidance

C. Test/Support Systems
Support Structures
Instrumented Axles
Instrumentation System
Power Supply
Load/Lift/Stop System
Braking System

AUV W

D. Arresting System
1. Cable Catcher
2. Arrestor Brakes
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The second system noted in Table 1 consists of the deadload, with railed
guidance. The deadload is comprised of all the yellow structure shown in Figure
1. This structure is a 40,000-1b steel frame, supported by eight wheels, and is
guided on two 10WF49 steel rails.

The third system noted in Table 1 comprises the heart of the entire test
vehicle. The majority of subsystems in this area are represented in black in
Figure 1. Specific capabilities and operation of all of these systems is
contained in reference 1.

The final system noted in Table 1 consists of the arresting system to safely
catch and arrest the entire test vehicle following a high speed test. This system
1s comprised of a cable catcher located on the deadload, and two ground based
arrester systems. The ground based arrester systém consists of a suspended cable
(which engages the cable catchers) attached to an arrester tape leading to a
standard M-21 Naval arresting system.

In addition to the four systems previously discussed, several additional
capabilities are worth mentioning. Figure 1 only depicts one particular test
setup but different aircraft axles can be substituted to include other tires or
aircraft types. In addition, the entire axle support structure can be easily
removed, and an actual landing gear substituted in its place. This latter change
was actually accomplished in this program with an F-4 nose landing gear system.
It should be finally noted that the axle/instrumentation calibration system for
the vehicle is of field design, and all calibrations can be accomplished on site.

Test Vehicle Specification Summary:

The resulting TCTV represents a significant advancement for the test and
evaluation of aircraft landing gear systems. The range of capabilities extends
from low speed (up to 10 mph) soft surface (CBR 3-4) testing, all the way to
high speed (200 mph +) testing on actual runway surfaces. The vehicle can be
utilized for full scale landing gear component studies involving aircraft up to
40,000 1bs, or a single gear weight of 17,000 lbs. The vehicle capitalizes on
a forward mounted design approach to eliminate the effects of carriage airflow
interference on the actual test sections. This fact results in a highly
controllable test environment and the additional capability to include advanced
test articles such as air cushion cells or dynamically scaled models. A summary
of the current capabilities of the TCTV, as they relate to aircraft landing gear
test and evaluation requirements, is as follows:

Load Limits @ Ground Contact Point
o Side = 8,000 lbs
o Drag 23,000 1bs
o Vertical = 17,000 lbs (maximum)
4,500 1lbs (minimum)




Speed Capabilities (Hard Surface)
o 0-15 mph without jet car
© 0-30 mph potential, without jet car
o 30-200 mph with jet car

Soft Surface Capabilities
o CBR to 3 or 4
o 0-10 mph speed

Tire/Wheel/Brake Mountings (Available)
o F-16/F-4 Nose Axle
o F-16 Main Axle
o Adaptable to other specially made axles

Instrumented Capabilities
o Surface Side Load
o Surface Drag Load
o Vertical Load
o Surface Speed
©0 Brake Pressure

Axle Block Positioning Control (Degrees)
o Camber = 0,+1,+2
o Yaw 0 to + (measured)
0 to+5 1/2 (max limit)

Test Surfaces

Concrete

Asphalt

Soils

Wet Surfaces

Standing Water

Debris Laden Hard Surfaces
Specialized Sections

0000OO0OO0ODO

Visual Data
o On-board Camera (high speed)
o On-board Camera (standard speed)

Environmental Limits
0 10 to 100 F Ambient (operating range)
o Operable in Rain/Snow/or Ice

Test Costs/Times/Test Rates

© Low Speed Shot = Approximately § 500
o High Speed Shot = Approximately $3,000
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Test Costs/Times/Test Rates (continued)
o Wheel Change Time = 10 minutes
o Low Speed Test Rate 5-7 per 8 hrs
o High Speed Test Rate = 3-4 per 8 hrs

Field Calibracion Loads (Available Capacity, NOT_LIMITS)
o Locked Wheel (S = 8,000 lbs)

(with brake) (V = 17,000 lbs)
(D = 4,000 lbs)
o Choked Wheel (S = 8,000 1lbs)
(V = 17,000 lbs)
(D = 2,000 1bs)
Axle Limits
o F-16 MLG S = 8,000 1lbs
VvV = 17,000 lbs
D = 23,000 1lbs
o F-4 NLG S 3,000 1bs
V = 6,000 lbs
D = 4,000 lbs

Braking System
o Max Pressure 1,500-psi capacity
600-psi operational limit
Direct or Feedback
55 million ft 1bs

(from E, = 210 v 2), v - ft/s @ 160 mph
k 2

o Pressure Control
0 Max Energy

Testbed Lengths Available
o 0-15 mph = 5,000 ft in rail
400 ft nonrail
o Max mph = 1,500 ft in rail
300 ft nonrail

On board Power (2 Generators)
o 1,800 watts, 120 volt, 60 cycle, 15A
(Sears Model 580.327111)
o 2,250 watts, 120 volt, 60 cycle, 15A

Boom Lift Specifications
© Cylinder Limit = 3000-psi Heavy Duty Service
5000-psi Shock
o Max lift load = 24, 900 1lbs @ 3000 psi
o Cylinder Spec 3 1/4 HHC13K

Test Setup

The test setup utilized for this test effort is noted in the Figure 2 generic
arrangement. Specific details relative to the vehicle, track layout, and testing
techniques will not be presented in that they are fully covered in references 1
and 2. The data presented in this report contain references to push distances,
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push vehicles and tested layouts which should be understood for proper data
analysis.

For this test effort, two push modes were utilized. The first is a low speed
mode (0-25 mph) where a push distance ranging from 1000 to 2500 feet was required
to accelerate to the desired testbed speed. For the higher speed mode (30-200
mph), a jet car was utilized which entailed push distances of up to 6500 ft. The
test bed itself ranged from 250 to 500 ft in length. Early in the program,
numerous patterns and layout techniques were analyzed which included X patterns,
Z patterns, random layouts, straight across rows, in line rows, and diagonals.
%L Zizzcnal pattern was ultimately selected and is shown in Figpures @ and ¢
Figure 3 1s the F-16 setup and Figure 4 represents the F-4 case. &X.. perz.rzoc
data are noted on both the figures with one diagonal representing one tire
circumference plus 1 inch to preclude striking the same tire point at each
reveclution. Horizontal spacing is such that all ribs, grooves, and sidewall
points involve a stone contact. Within each figure three beds are noted. The
leftmost is the original design. After further consideration one stone was added
to both edges tc assure that any lateral shift would still involve the same
number of stone engagements. This revision is noted in the center drawing. The
rightmost drawing represents a halving of the density which was required to both
reduce tire damage to manageable levels and to add a more random aspect to the
layout. Within the data, these layouts are described as a 9, 6/5, or 5/4 pattern
as depicted in these figures.
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SECTION V

PRELIMINARY ANALYSIS

Speed Effects

A total of 15 tests were evaluated to determine the overall effects of speed on
cutting damage. Specific tests included are noted in Table 2 where tests are
listed in order of decreasing damage. For this case and all subsequent effects
noted in the analysis tables, the highest damage severity is defined to be the
lowest number of hits required to generate a cut on the tire. In Table 2 and all
subsequent tables, this damage parameter is noted in column AU and is listed in
order of increasing values unless stated otherwise.

Figure 5 graphically illustrates the Table 2 data and as expected a significant
amount of scatter does exist. A potential trend, however, is evident for the
case that higher speeds result in higher cutting. In an attempt to clarify this
trend a second plot (Figure 6) was generated limiting the cuts considered to be
beyond limit or specifically those only over ten 32nds of an inch. For this
case, the scatter was less and the higher speed/higher damage theory becomes even
more convincing.

For both Figures 5 and 6, only 13 points are used in that two of the Table 2
tests (items 1 & 2) are failed tires. Subsequent post-failure damage could not
be determined to allow for any reliable use of these data points.

Yaw Effects

A total of 13 tests are available for an assessment of the effects of yaw or
turning on cutting damage. Specific tests included are noted in Table 3 in order
of decreasing yaw angle. From this table, one can observe that Column AU (damage
level) follows an apparent trend of decreasing damage with decreasing angle.
This fact, however, is misleading in that the AU column is for all cuts. When
moving to other types of cuts namely deeper values this trend seems to disappear.
Figure 7 graphically illustrates this fact where four curves are plotted for the
four types of cut sizes. From these curves the potential trends are for
increased low depth damage at higher yaw angles but for limited to zero increased
damage for larger deep cuts.

Radial Tire Analysis

This analysis consists of comparing four radial tire tests against nine
conventional tire tests. The resulting 13 tests are presented in Table 4 in
order of increasing damage. In this case, however, increasing damage is confined
solely to cuts beyond the limit noted for that particular tire. These two
parameters are noted in the two rightmost columns in Table 4 (Beyond Limit Cut
Data). It should be noted, however, that the beyond limit nomenclature may not
involve true limits in that cut locations {(groove, sidewall, or rib) were not
considered. Values presented are simply in 32nds of an inch irrelevant of
location.
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Table 4 data are graphically noted in Figure 8 where the radial design shows a
marked improvement for reducing deep cuts in that all of the radial (coded MIC
in Table 4) are grouped and the right low depth end of the chart. With regard
to total cuts, however, no concrete conclusions can be made for the radial case.

Beyond limit cuts seemingly are greater for the radial case in that the radial
limit is 5/32 versus 9/32 for the conventional bias case. No observations can
be made in this area in that a detailed assessment as to limit reasons, cut
locations, and true statistical trends are all required before any conclusions
can be drawn.

Pregssure Effects

For this survey three low pressure runs (225 psi) were conducted and compared
against six operating pressure (275 psi) runs. This comparison is noted in Table
S in two sections where both total cuts and beyond limit cuts are tabulated. A
cursory review of the table does not indicate anything other than the fact that
a trend may well exist for greater damage at higher pressures and should be
considered in any statistical analysis work. The trend noted is presented
graphically in Figure 9 where all cuts and beyond limit cuts are separately
plotted at the two pressure points. Average values are also noted for each of
these two cut types. Considering the average values, two trendlines are shown
for all cuts and limit cuts which show a bias toward increasing probabilities of
cutting at higher pressures.

Retread Tire Analysis

A total of eight retreads were compared to nine new tires and are tabulated in
Table 6. The database query used to generate Table 6 did not include testbed
width as a result two different testbed widths are shown. Theoretically this fact
should make no difference but a preliminary analysis of Table 6 indicated that
a difference does exist. To preclude any variance in this regard, a second table
(Table 7) was generated to independently analyze each width. This table is
presented in two sections containing data for each of the two testbed types.

In initially looking at Table 7, it would appear that little insight could
be gained as to the behavior of either tire type. Assuming however, that Column
AU actually represents some measure of damage resulting, a plotting of the data
could be worthwhile. With this in mind, Figqures 10 and 11 were generated. From
these figures, a case could be made that retreaded tires do exhibit improved
performance. This however is only an observation from the table and will require
statistical verification.

One important additional parameter to note from these figures is the general
data distribution reflecting quality of data. In both cases and with or without
retreads included the quality appears excellent and conforms to classical
statistical form for an expected distribution.
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Size Effectsg

Within the existing database, only one comparison becomes available and consists
of nine F-16 main tests compared to eight F-14 noge tire tests. Any analysis of
this comparison becomes difficult, however, due to other variables which are
introduced. The 17 test runs are tabulated in Table 8 in descending damage
order. A review of this table immediately suggests that the smaller size is
vastly more damage resistant. The question that arises, however, is this
improvement more an effect of size or a pressure effect.

If we go back to our pressure analysis (Table 5, Figure 9) and do a minor
extrapolation back to 215 psi, which is the pressure used in the smaller sized
tire, we see that tire size may well have a significant effect on damage
resistance. For this earlier pressure analysis with extrapolation to 215 psi
we can show an average of 15.72 total cuts or 22.01 hits to cut occurring for
this case. Looking at Table 8, however, we see that damage levels on the smaller
tire all fall well below this average. In fact when we combine pressure with size
variance, maximum differences of up to 1700% improvement for the smaller tire can
be derived. Without the luxury of further analysis in this area, little can be
done other than to note the above observations. It may be that size is a highly
influencing parameter or that pressure/loads effects may be far greater than
projected earlier. Whatever the case further, investigations in this area would
be very worthwhile.

Load Analysis

Loads effects require consideration from two significantly different points of
view. If the load varies substantially, the net effect is to decrease the tire
footprint width. From a tire mechanics point of view, one can consider the
relationship of cut probability as a simple hit/damage relationship. From an
cperational point of view, however, the probability of hitting an object can be
reduced substantially at lower loads in that a narrower footprint results in less
area traversed during taxi/takeoff/landing/taxi segments. From this then if one
were to rank test in order of severity, two distinctly different orders should
result depending on if the ranking is in a form of total cutting damage or the
number of hits required to generate cutting damage.

The loads survey was conducted by extracting two separate tables from the
program database. The tables consist of an F-4 data analysis (Table 9) and F-16
data analysis (Table 10). Each of these tables are discussed separately in the
following sections:

F-4 Loads

A total of nine tests were extracted which matched the criteria needed for
this survey. However, only one of these nine represented a load different from
the remaining eight. In addition the single comparative test available was from
an early test vehicle trial run and no footprint data were recorded. Although
little can be drawn from this data set, it has nevertheless been included as
Table 9 for record purposes. About all that can be derived from this information
ts zhat the single comparative point (Item 3, Table 9) does not exhibit any
significant increase or decrease in damage from either a total cut or hits to
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TABLE 9 F-4 LOADS EFFECTS ANALYSIS
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TABLE 10 F-16 LOADS ANAL LIST CRITICAL ITEMS
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generate cut point of view.
F-16 Loads

As a result of the two points of view noted initially in this loads analysis
section, Table 10 consists of two different listings to show two orders of
damage. The upper table ranks the data in a hits to cut order while the lower
table ranks the same data in a total cuts order. As expected two significantly
different rankings do result. A quick look at both of these orders does not -
disclose any apparent load effect. The distribution appears totally random and
will require further statistical analysis to see if any trends exist. These
observations are somewhat surprising in that it was originally thought that high .
loads would have an observable impact.

Water Effects
Low Speed

Only one low speed water run was available and is compared against nine
matching dry runs in Table 11. For this case, no conclusions or trends can be
cited due to both insufficient data and the fact that the one run falls in the
median of all the other data.

High Speed

For the high speed water case, two tests can be extracted and are shown in
Table 12. In viewing this chart a potential trend becomes evident so a bar plot
was generated covering each of the ten tests included in Table 12. This plot is
noted as Figure 12 and shows that the flooded tests were the top two damage
products for both all cuts and limit cut categories. In fact on an average
basis, the water runs resulted in an approximate 100% increase in damage in both
cases. Based on this observation, future statistical reviews should include this
factor and apply this to an operational environment.

Yaw Effects (water)

A third area where water effects were investigated related to yaw where four
tests are available for comparison. These tests noted in Table 13 yield a rather
unexpected trend. For this case when yaw angles were introduced the level of
damage was almost cut in half from a total cuts perspective. From a limit cut
prospective, however, the trend is less apparent in that the one lower speed test
exhibited a comparable level of damage. Because of the wide divergences in tire
damage shown in Table 13, significant trends are probable and it should be
verified through statistical reviews or additional testing.

Debris Size/Type

Two different debris size tables were extracted from the available data. Table
14 includes all data and Table 15 includes retread tires only. Overall damage
effects are illustrated in figures 13 and 14 for all tires and retreads only.
A resulting average curve is shown in both figures. All tables and curves are
for F-16 main tires only and no nose tire effects were considered.
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TABLE 11 LOW SPEED WATER EFFECTS (F-16)
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TABLE 12 HI SPEED WATER EFFECTS (F-16)
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TABLE 14 DEBRIS SIZE EFFECTS ALL DATA
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The results are as expected with larger debris causing a greater level of damage.
Effects appear to be fairly linear with a stone size of 1.5 to 2.0 inches
becoming a limiting size. As noted in Table 14, two of the three 2-inch runs
resulted in tire blowouts. Through observation of these two failed runs it is
estimated that failure occurred at 10% and 50% into the testbeds for tests P-12
and P-12A respectively. Although no 1.5-inch failures are noted in these tables,
it should be noted that at least one such failure did occur with the introduction
of a braking variable.

With regard to larger cuts, some additional analysis was done. Figure 15 shows
the results of extracting all of the cuts over 10/32 inch deep from Table 15.
Although a similar trend exists, it may be that at larger diameters, the trend
becomes increasingly nonlinear.

Within the test effort, shrapnel tests became a problem due to a limited
availability of uniform sized shrapnel for use. It was possible, however, to
obtain about 250 pieces of uniform sized shrapnel representing a 1.25-inch stone
comparison. Four tests were then conducted utilizing this debris on a 250-ft
testbed. These results could then be compared to 12 stone runs involving a 1.50-
in stone size. The results of this comparison are presented in Table 16 in
increasing order of damage. Table 16 data can be assessed in two ways, either
as it stands or by application of the size effects data noted in Figures 13 and
14. As the data stands, an argument exists for higher levels of damage with
shrapnel, because in general the shrapnel runs fall into the upper 50 percentile
of the data. However, if size effects are applied, an even greater level of
damage can be noted. More specifically from Tables 10 and 11, an approximate 1/3
reduction in damage can be realized in going from a 1.5 to a 1.25-inch size or
a 150% increase for the larger size. Introducing these adjustments into the
Table 16 data, it can be seen that of all tests falling into the upper 31
percentile of damage, four of them are shrapnel runs.

For the larger cut case, a second table (Table 17) is presented with a new column
added. This column adjusts large cut data for both size and testbed length and
presents it in order of increasing damage. Size effects adjustments were made
based on the Figure 15 nonlinear size effects for deep cutting. Overall the
results for large cuts are similar to the previous findings for all cuts. Two
runs comprising the upper 12.5 percentile were both shrapnel. Out of the eight
runs comprising the upper 50 percentile, 50% were shrapnel, and of the eight runs
comprising the lower 50 percentile, none were shrapnel.

Results of both the total cuts and deep cuts data are presented graphically in

Figures 16 and 17. Figure 16 presents both adjusted and unadjusted results while
Figure 17 is only the size adjusted data.

Braking Analysis

A total of 17 tests were available for the braking analysis and are presented in
Tables 18, 18a, 19 and 19a. Twelve of these points, however, are 0 psi baseline
points, so any statistical conclusions in this area will be difficult.

The reason for the limited number of positive pressure tests can be attributed
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to difficulties encountered in the brake control system and the non-
representative mass of the test vehicle. For the F-16 aircraft, two brakes are
utilized to arrest a 25,000 to 35,000 pound vehicle. In the test setup, however,
a single brake is utilized to arrest a mass of 50,000 to 60,000 lbs or almost
four times the real requirement,

For the test itself, only a comparative attempt was introduced whereby various
brake pressures were applied just prior to testhed entry and released at testbed
exit. This requirement in conjunction with a poor brake control system setup
resulted in questionable brake pressure values. A number of trail tests were
conducted noting deceleration and testbed speed behavior, and it was concluded
that brake pressure values could be off as much as 175 psi. To help offset this
fact, loads data was analyzed to note drag effects as related to brake pressure.
The objective here is to make drag rather than pressure an available comparison
for anticipated future statistical studies. A summary of this drag analysis is
noted in Table 19a where the average of all tests for peak and mean drag values
were computed. A limited analysis of the Table 18 and 19 data was conducted in
this report and is summarized in Figures 18 and 19. The results presented
represent all cuts and no conclusive trend becomes apparent although one might
conclude that at drag loads above 1100 1lbs significantly increased cutting does
result. For beyond limit cuts it was originally thought that a significant trend
would result toward more cuts and higher braking. However, as Figure 19
illustrates limit cuts seem to hold constant up to some value beyond 500 psi
(approx. 1100 1lbs drag) at which point original thinking may hold true. Table
19 data for only 1.5 in debris have been included on Figure 18. For this case,
a trend toward reduced cutting up to 500 psi brake pressure exists followed by
increased cutting beyond 500 psi.

Considering the previously noted trends several notes of caution are in
order. First the potential + 175 psi pressure scatter has not been factored into
any data and should be considered in any future analysis. Also the amount of
data generated at certain points may or may not hold statistical significance and
must be considered accordingly in anticipated future statistical studies.
Finally future tire cutting T&E programs should include further braking runs to
permit firm conclusions to be drawn in the area.

Combined Braking/Yaw

Data for a combined braking/yaw trend analysis was extracted and is presented in
Tables 20, 21, and 22. Data points are noted graphically in figures 20 and 21.
From these figures, the effects of increasing damage at higher yaw angles is
apparent, with 30-50% reductions being noted with the addition of braking. This
fact reinforces the findings of the previous section in that braking may not be
as critical as originally anticipated. The fact that braking may serve to
actually reduce damage could well be true in that theories can be offered as to
why this might occur. Typical theories might include localized heating effects
or a tendency for the tire to generate a rolling effect on debris when
encountered. It should also be noted that these effects apply only to the 200
and 500 psi values tested and for hard braking, the resulting trend may well
reverse itself. Several potential trends can be noted from the data; however,
additional testing with a refined brake control system will be required if a firm
grasp of these effects is to be attained.
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A second analysis was also conducted relative to limit cuts only and is
graphically illustrated in Figure 22. For the limit case, the addition of
braking behaves as expected when the fitted trend lines are compared. More
specifically an increase in damage of from 50% and 0 degree yaw to 60% at 3
degree yaw can be derived. Increasing damage at higher yaw angles with braking
is also confirmed.

Distribution Analysis

An attempt was made at a limited distribution survey to see if any effects were
apparent. The results of this data base extraction are noted in Table 23. 1In
reviewing this table, no apparent effects could be noted since only one test at
the same stone size with a nonstandard distribution was found. Data for this test
does fall near the edge of the expected range; however, it is still within an
expected value and no conclusions can be made.
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SECTION VI

CONCLUSIONS & RECOMMENDATIONS

CONCLUSIONS:
Test Methods and Data Generation:

Overall the data from this effort proved to be of high quality. The method
of testing devised was the closest possible to actual flight test data and
represents a first to determine the effects of tire cutting in a hostile
situation. Several critical testing barriers were successfully overcome
and the method of testing employed can now be confidently used for future
test needs of this type.

Data Analysis Conclusions:

As a result of this preliminary analysis, the following conclusions
observations or trends were noted for the various parameters tested and
analyzed:

Speed (All Cuts) :

Tire cutting damage increases moderately at higher speeds.

Speed (Deep Cutsg) :

Tire cutting damage increases substantially at higher speeds.

Yaw (All Cuts) :

A trend toward higher cutting damage at higher yaw angles exists.

Yaw (Deep Cuts) :

Only minor increases in damage were noted for this case.

Radial (All Cuts):
No significant differences were noted in the total number of cuts occurring
in the radial as opposed to the bias ply case.

Radial (Deep Cutsg):

The radial tire data showed a significant reduction in the number of deep cuts
occurring. This is offset, however, by the lower cut limit associated with the
particular design tested.

Pregsure Ef :
A trend exists for increasing tire cutting at higher tire pressure values.

Retread Effects:
A minor trend toward less damage for a retreaded tire may exist.

Tire Size: Due to pressure differences tested an assessment of this parameter
is difficult. However, in extrapolating pressure data, smaller size tires may
have a very significantly higher resistances to tire cutting.
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Loads Effects:
Based on the data studied the effects of load seems insignificant relative to
tire cutting damage.

Water Effects;
The effects of running over flooded surfaces appears to be very significant
and damage increases of over 100% can be expected.

Yaw/W r Effe :

Limited testing in this area lead to a preliminary conclusion that the
introduction of yaw on a wet surface could serve to reduce the amount of
cutting damage occurring.

Debrig Size;

Of all the areas investigated, size disclosed one of the most significant
findings of the program. Specifically cut size and overall damage increases
dramatically with increasing debris size. It also was disclosed that for the
275 psi tire tested that transversing debris sizes over 1.5 inches results in
a very high probability of tire failure.

Debrig Type:

The type of debris encountered (stone vs. steel) also proved to be a
significant parameter. For the steel case, cutting damage can increase
significantly.

Braking Effects;

With regard to braking effects no qguantitive conclusions can be derived. In
general, however, it appears that no significant effects occur until high
brake torques are applied. In terms of drag load, a value of 1100 lbs was
calculated whereby increased cutting damage comes into play.

Brake/Yaw Effects:

The effects of combining braking with yaw were not as expected. Increasing yaw
angles and braking tend to increase the resulting damage. Hrwever, the
combination of the two parameters does not appear to introduce significantly
higher damage levels.

RECOMMENDATIONS :

D ile erational M ls

The results of the tire cutting test effort along with this preliminary analysis
and subsequent statistical studies have shown that realistic tire damage models
can be developed through the addition of aircraft operational data. It is
therefore recommended that airfield cleanliness models be combined with detailed
aircraft operational models to obtain the improved tire reliability required :n
either peacetime situations or wartime postattack situations.
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Additional Testing of Different Tire Sizes

This particular test effort was confined to one aircraft involving only two tire
sizes and one operational spectrum. To better understand the full impact of tire
cutting, more sizes involving more variations in load, speed, turning, and
braking conditions are required. With the current strong baseline in hand, lower
cost testing methods could be developed for such testing, and it is recommended
that these approaches be pursued.

High Pressure Effects Expansion

Pressure effects is one area where the data were limited, but a trend was
exhibited toward increased cutting at increased pressure. Additionally this trend
could become highly significant at pressures beyond those tested. With current
design trends going toward higher pressures, the influence of cutting on
operations and safety could become quite significant even in a peacetime
scenario. It is therefore recommended that additional tests be conducted on an
F-16 main tire at pressures up to 350 psi.
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