WL-TR-91-3014

FOREIGN OBJECT DAMAGE TO TIRES OPERATING IN A WARTIME ENVIRONMENT

KENNETH P. SCHWARTZ SPECIAL PROJECTS GROUP AIRCRAFT LAUNCH AND RECOVERY BRANCH VEHICLE SUBSYSTEMS DIVISION

NOVEMBER 1991

FINAL REPORT FOR PERIOD JANUARY 1987 - DECEMBER 1990

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

FLIGHT DYNAMICS DIRECTORATE WRIGHT LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

RENNETH P. SCHWARTZ, Project Engineer Special Projects Group Aircraft Launch & Recovery Branch Vehicle Subsystems Division FOR THE COMMANDER

Pickard E. lotclos

RICHARD E. COLCLOUGH, JR. Chief Vehicle Subsystems Division

AIVARS V. PETERSONS, Chief Aircraft Launch and Recovery Branch Vehicle Subsystems Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify $\frac{WL/FIVMB}{WL/FIVMB}$, WPAFB, OH 45433-6553 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

		REPORT		N PAGE			Form Approved OMB No. 0704-0188
ia. REPORT SECUR Unclassi	ITY CLASS			1b. RESTRICTIVE	MARKINGS		
2a. SECURITY CLAS	SIFICATIO	N AUTHORITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT	
26. DECLASSIFICAT		NGRADING SCHE	DULE	Approved fo	r Public Re	lease;	
				distributio	n is unlimi	ced.	
4. PERFORMING OF WL-TR-91	RGANIZATI -3014	ION REPORT NUN	MBER(S)	5. MONITORING	ORGANIZATION RI	EPORT NL	JMBER(S)
6a. NAME OF PERF	ORMING	ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MC	ONITORING ORGAN	NIZATION	
Wright Labor	atory	lectorace	(<i>it applicable)</i> WI./FTVMR				
fr ADDRESS /CH	State	1 7IP Codel		74 40000000	. CA-A-	• - ام	
Wright-Patte	rson Al	FB OH 45433	-6553		sy, state, and ZIP (
8a. NAME OF FUNI ORGANIZATION	DING/SPO I	NSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	T INSTRUMENT IDI	ENTIFICAT	ION NUMBER
Sc. ADDRESS (City,	State, and	ZIP Code)		10. SOURCE OF F	UNDING NUMBER	\$	
				PROGRAM ELEMENT NO. 62201F	PROJECT NO. 2402	task no 01	WORK UNIT ACCESSION NO. 57 & 46
11. TITLE (include	ecurity Cl	assification)		L	L	L	
Foreign O	bject 1	Damage to T	ires Operating in	a Wartime En	vironment		
12. PERSONAL AUT	HOR(S)	Kenneth Sc	hwartz				
13a. TYPE OF REPC Final	DRT	13b. TIME FROM	COVERED Jan 87 TO Dec 90	14. DATE OF REPOI November 1	RT (Year, Month, 1	Day) 15	PAGE COUNT
16. SUPPLEMENTAR	RY NOTAT	ION					
17.	COSATI	ODES	18. SUBJECT TERMS	Continue on reverse	e if necessary and	identify	by block number)
FIELD G	ROUP	SUB-GROUP					• · · · · · · · · · · · · · · · · · · ·
			Foreign Obje	ct Damage			
19 ABSTRACT /		Tauame if	and identify to the				
Over the pas Damage (FOD) attack. The aircraft dam the operabil preliminary program. Th which were t Tests tires included spe size, debris involved cut aircraft ope	t 5 ye to ai ese eff age fr ity of assess e repo ested includ ed, lo distr types ration	ars, variou rcraft oper orts includ om tire lof tires subj ment to the rt summariz in a simula ed F-16 mai ad, size, p ibution, br , cut depth al impacts.	is efforts address ating in a debris le engine object i ted foreign objec ected to FOD. Th tire cutting FOD es the approach a ited post-attack e n and nose, and a ressure, tire typ aking, and combin is, number of cuts	ed the proble strewn envin ngestion prot ts, external is report was portion of t nd results of nvironment un n F-4 nose ti e, turning, w ed variable e , cut/hit pro	ems associat ronment foll bability, en stores FOD, s written to the overall f tests on o nder full sc ire setup. water effect effects. An obabilities,	ed wit owing gine (tire provi post-a over 12 ale te Test v s, deb alysis tire	h Foreign Object an airbase FOD) damage, cutting FOD, and de a summary and ttack FOD 6 aircraft tires st conditions. ariables ris type, debris consideration failures, and
22a NAME OF RESI Kenneth Schw	PONSIBLE Jartz	INDIVIDUAL		226 TELEPHONE (1) 513-257-212	nclude Area Code) 29	22¢ OF WL/	FICE SYMBOL FIVMB
DD Form 1473	UN 86		Previous editions	absolete	CECHDITY		
	• •			ン ゆう じって して .		Inclass	ified

FOREWORD

This effort was performed in-house by the Aircraft Launch and Recovery Branch, Vehicle Subsystems Division of the Wright Research and Development Center (now Wright Laboratory). The effort was conducted as part of a jointly funded program, between WRDC and AFESC Tyndall AFB FL, to determine the impact of FOD (Foreign Object Damage) to aircraft operating in a post-attack environment. This part of the program addressed the issues of tire cutting damage sustained as a result of operating an aircraft over post-attack debris and what measures would be needed to overcome any problems disclosed. The effort was conducted under Work Unit Numbers 24020146 and 24020157 entitled "Ground Contacting Systems" and "Vehicle Subsystems Integrity Program" respectfully. The test effort was conducted from 1 June 1986 to 1 November 1988 with data reduction and analysis continuing into October 1989. All of the cutting tests reported in this report were conducted at the Naval Air Engineering Center (NAEC), Lakehurst New Jersey, and the author acknowledges the engineering support provided by Mr. Jack Schaible of the NAEC. The author also acknowledges the technical support provided by Ms Gwen Patterson of WL/FIVMB.

This report was submitted by the author in November 1990.

This report has been reviewed and is approved.

· · · · · · · · · · · · · · · · · · ·
odes
OF
•
•

TABLE OF CONTENTS

SECTION

٠

PAGE

I	INTRODUCTION	1
II	PROGRAM EVOLUTION	3
III	TEST PROGRAM SUMMARY	5
IV	TEST VEHICLE/TEST SETUP	7
v	PRELIMINARY ANALYSIS	6
VI	CONCLUSIONS & RECOMMENDATIONS	7
	REFERENCES	0

ł

LIST OF FIGURES

FIGURE		PAGE
Figure 1	Finally Fabricated Tire Cutting Test Vehicle	8
Figure 2	Generic Test Setup	13
Figure 3	F-16 Stone Pattern (Test Setup)	14
Figure 4	F-4 Stone Pattern (Test Setup)	15
Figure 5	Speed Effects for All Cuts	. 18
Figure 6	Speed Effects (Over Limit Cuts)	. 18
Figure 7	Yaw Analysis (4 Cut Ranges)	20
Figure 8	Radial Tire Cut Comparisons	23
Figure 9	Pressure Trend Observations	23
Figure 10	Tire Type Damage Comparison (Constant Testbed)	27
Figure 11	Tire Type Damage Comparison (All Testbeds)	27
Figure 12	High Speed Water Comparison	35
Figure 13	Debris Size Effects (All Tire Types)	39
Figure 14	Debris Size Effects (Retread Only)	39
Figure 15 List	Debris Size Effects (Deep Cuts)Table 16 Debris Type Analysis Critical Items (GY Only All Beds)	41
Figure 16	Type Effects (As Is & Size Adjusted)	. 44
Figure 17	Debris Type Effects (Deep Cuts/Size Adjusted)	44
Figure 18	Brake Pressure Effects (All Cuts)	49
Figure 19	Brake Pressure Effects (Limit Cuts)	49
Figure 20	Combined Brake Yaw Data (All Cuts)	53
Figure 21	Averaged Brake Yaw Data	53
Figure 22	Combined Brake Yaw Data (Limit Cuts)	55

vi

LIST OF TABLES

ABLE	PAGE
able 1 TCTV System/Subsystem Breakdown	7
able 2 Speed Trend Analysis Data	17
able 3 Yaw Effects Analysis	19
able 4 Radial Tire Analysis	21
able 5 Tire Pressure Effects Analysis	24
able 6 Regular/Retread Comparison	25
able 7 Reg/Ret Analysis List Critical Items (Const/Early Patterns)	26
able 8 Tire Size Effects Analysis	29
able 9 F-4 Loads Effects Analysis	30
able 10 F-16 Loads Analysis List Critical Items	31
able 11 Low Speed Water Effects (F-16)	33
able 12 High Speed Water Effects (F-16)	34
able 13 Water Effects With Yaw	36
able 14 Debris Size Effects All Data	37
able 15 Debris Size Effects (Retread Tires Only)	38
able 16 Debris Type Analysis List Critical Jtems (GY Only All Beds)	42
able 17 Debris Type Analysis List Critical Items (GY/All Beds Deep Cut Adjusted)	43
able 18 Braking Analysis List Critical Items (GY only All Size Beds)	45
able 18a Braking Analysis (Limit Cut DataAll Stones & 1.5 Dia Stones)	46
able 19 Braking Analysis List Critical Items (GY Only 6/4 Beds)	47
able 19a Brake/Pressure Drag Relationship	47
able 20 Combined Braking/Yaw Analysis List Critical Items (GY 6/4 +Press)	50

Table	21	Combined Brake/Yaw (All Brake Pressures Included)	51
Table	22	Braking/Yaw Analysis (Pos Brake/ 0 Brake Comparison)	52
Table	23	Distribution Effects	56

.

LIST OF ACRONYMS & ABBREVIATIONS

ACRONYM

DESCRIPTION

A	Amperes
ADJ	Adjusted
AFESC	Air Force Engineering Services Center
AFFTC	Air Force Flight Test Center
CAM	Camber
CBR	California Bearing Ratio
D	Drag
ENG	Engineer
FOD	Foreign Object Damage/Debris
GY	Goodyear
LTH	Length
MIC	Michelin
MLG	Main Landing Gear
MPH	Miles Per Hour
NASC	Naval Air Systems Command
NLG	Nose Landing Gear
PRO	Propulsion
PSI	Pounds Per Square Inch
RETRD	Retreaded Tire
S	Side
SHRAP	Shrapnel
TCTV	Tire Cutting Test Vehicle
UDRI	University of Dayton Research Institute
v	Vertical
VEH	Vehicle
WL	Wright Laboratory
WRDC	Wright Research & Development Center
WTH	Width

SECTION I

INTRODUCTION

The purpose of this effort is to provide a preliminary assessment as to the sensitivity for tire cutting under varied operating conditions. This assessment is limited and non statistical in nature. The objective of the study is to provide preliminary guidance which can be used for both near-term research programs, detailed statistical analysis efforts, and initial operations analysis applications.

The study itself is confined to considering cut depths and numbers of cuts. No analysis considerations are given to cut types, locations, detailed loads, specific cut limits, or other damage. The study cut data are grouped into five cuts areas consisting of Total Cuts, 0-5 (32nds), 6-10 (32nds), 11-15 (32nds), and 16+ (32nds) depth. A total of 22 analysis extractions are derived from the original data base generated from the tire cutting test effort (reference 1). These 22 extractions resulted in the generation of 22 different tables whereby single variables can be looked at while all the remaining parameters remain fixed. A complete summary of the 22 analysis extractions and resulting data files are as follows:

SUBJECT AREA

FILE NAME

SPEED
YAW
RADIAL
PRESSURE
RETRDALL
RETRD
SIZE
F-4LOADS
F-16LOADS
WATER-LO
DEB-SIZA
DEB-SIZR
SHRAP
SHRAP 1
BRAKED
BRAKING 1
COMBO-BR
COMBO
COMBOA
DISTRIB

The resulting output consists of various Lotus worksheet files which were then printed out in table form and analyzed both visually and graphically in Section III of this report. A summary of the file contents, resulting table number and

number of tests included in the analysis is as follows:

SPEED EFFECTS ANALYSIS15	TESTS	TABLE	#	2
YAW EFFECTS ANALYSIS13	TESTS	TABLE	#	3
RADIAL TIRE ANALYSIS13	TESTS	TABLE	#	4
PRESSURE EFFECTS ANALYSIS 9	TESTS	TABLE	#	5
RETREAD TIRE ANALYSIS17	TESTS	TABLE	#	6
RETREAD TIRE CONST PATT ANALYSIS10	TESTS	TABLE	#	7
TIRE SIZE ANALYSIS17	TESTS	TABLE	#	8
F-4 LOADS EFFECTS	TESTS	TABLE	#	9
F-16 LOADS EFFECTS14	TESTS	TABLE	#	10
F-16 WATER EFFECTS LO SPD10	TESTS	TABLE	#	11
F-16 WATER EFFECTS HI SPD11	TESTS	TABLE	#	12
F-16 WATER/YAW EFFECTS HI SPD 4	TESTS	TABLE	#	13
DEBRIS SIZE EFFECTS GY/RET29	TESTS	TABLE	#	14
DEBRIS SIZE EFFECTS RETREAD17	TESTS	TABLE	#	15
SHRAPNEL (DEBRIS TYPE) EFFECTS16	TESTS	TABLE	#	16
SHRAP (ABOVE) DEEP CUTS ADJUSTED16	TESTS	TABLE	#	17
BRAKING ANALYSIS ALL BEDS17	TESTS	TABLE	#	18
BRAKING ANALYSIS 6/4 BEDS13	TESTS	TABLE	#	19
COMBINED YAW/BRAK + PRESS14	TESTS	TABLE	#	20
COMBINED YAW/BRAK ALL PRESS	TESTS	TABLE	#	21
COMBINED (TABLE 20 SEP COMPARE)29	TESTS	TABLE	#	22
DEBRIS DISTRIBUTION EFFECTS12	TESTS	TABLE	#	23

Future Studies and Analysis

The original test plan to generate these data was formulated to accommodate detailed operational studies in this area. With all of the above data in statistical form, these operational studies would first generate operational spectrums for specific aircraft/tire combinations and then combine these with expected levels of airfield debris. The resulting spectrum would then be segmented into detailed sub elements conforming to the available statistical form data. Typical sub elements will include taxi, takeoff, landing, and taxi segments each of which would be further segmented into multiple turning and braking segments each at different loading conditions. This model when combined with airfield debris models will permit very detailed and accurate studies of expected tire cutting as a function of aircraft operation and runway cleanliness to be made.

SECTION II

PROGRAM EVOLUTION

Broadbase Program

The tire cutting program discussed in this report is actually an outgrowth of a larger FOD program started in 1984. This original FOD effort consisted of assessing the FOD relationships to aircraft operations in a post attack or debris laden environment. The overall objective of this larger program was to generate test data to fill critical voids so that airfield cleanliness costs could be traded against some acceptable level operational FOD damage to the aircraft.

Original program emphasis was in three principal areas. The first consisted of aircraft engine damage occurring from the lofting of debris from the tires into the engine or direct vortex suction of debris off the ground into the engine. The second area of emphasis involved the lofting of debris by the tires against the aircraft itself resulting in damage to aircraft structures mechanical subsystems or external stores. The final area of concern was that of tire cutting whereby the effects of running high pressure tires over post-attack debris such as rocks and shrapnel would have to be analyzed.

Initial program emphasis was on the first two of these areas in that it was originally theorized that the tire cutting area was the least critical of the three. As a result, an extensive test and evaluation effort was started to study the effects of tire lofting and resulting lofted debris damage. Early in the lefting test effort, however, it was noted that the tires used for lofting tests were being very severely cut up during these tests. As a result, a separate and independent test effort to study tire cutting effects was established. The final results of the tire cutting would ultimately serve to show that the tire cutting area was indeed the most critical of the three areas studied in a post attack environment.

Test results from all three areas were quite interesting with some rather unexpected results occurring from applying wartime criteria rather than peacetime constraints. This report only covers the tire cutting portion and only provides a summary type analysis of that area. Additional details of the tire cutting portion of the effort are contained in references 1 through 5 and reference 12. Additional details of the tire lofting, engine degradation, mechanical subsystem and airframe damage, portions of the effort are contained in references 6 through 9. A report on the operational effects of all of these areas along with the generation of wartime cleanliness criteria is being prepared and will be available in the near future.

Program Participants

All of these previously discussed efforts were jointly undertaken and sponsored by WRDC/FIVMB Wright Patterson AFB, and AFESC/RDCR Tyndall AFB Florida. Support contractors involved in these efforts included the University of Dayton Research Institute, Dayton, Ohio; Physics Applications Inc. Dayton, Ohio; the BDM Corporation located in McLean, Virginia; Sverdrup Technology Inc, Tullahoma, Tennessee; and Commercial Metals Fabricators of Dayton, Ohio. Testing organizations involved in these programs included the Naval Air Systems Command, Lakehurst, NJ; The Air Force Flight Test Center, Edwards AFB, California; the UDRI Impact Dynamics Laboratory, Dayton, Ohio; the Mobility Development Laboratory, Wright Patterson AFB, Ohio and the Landing Gear Development Facility, Wright Patterson AFB, Ohio.

SECTION III

TEST PROGRAM SUMMARY

Purpose

All data and resulting data tables generated in this analysis were the result of an extensive tire cutting test effort conducted over a 2-year period. The subject test program was conducted at the Naval Air Engineering Center (NAEC) jet track facility located at Lakehurst, NJ. and involved over 150 tests specifically targeted for tire cutting studies. Details relating to test vehicle design, vehicle capabilities, facility operation, test methods, instrumentation, and data reduction techniques are quite extensive and are included in references 1, 2, 3, 5, and 12. This section summarizes work done to support the analysis conducted in this report and to outline what data and facilities are available for future efforts. To provide this background, brief summaries of important areas are presented in the following sections. Additionally, Section IV has been included which covers the test vehicle and test setup in further detail.

Test Vehicle

The TCTV (Tire Cutting Test Vehicle) consists of a 20-30 ton vehicle designed to be accelerated to speeds in excess of 200 MPH along a 6000-8000 ft test track. The test tire and/or landing gear is mounted to the vehicle by a hinged cantilevered boom extending forward of the vehicle. Loading of the tire or gear is accomplished with of dead weights mounted directly to the top of the cantilever structure. More detailed descriptions of this arrangement are included in reference 1. Typically tire loads of up to 17,000 lbs can be accommodated involving side and drag loads of 8,000 & 23,000 lbs respectively. The vehicle was qualified to speeds of over 150 MPH. A complete listing of the vehicle's capabilities are also noted in Section IV.

Test Plan

Prior to the implementation of this effort, a fully coordinated test plan was developed. The resulting plan considered user requirements, operational factors, cost trades, available resources, and a parametric analysis of what variables needed to be included along with their associated priority. The results of this planning phase are included in reference 3.

Instrumentation

Instrumentation contained on the test vehicle includes the capability to measure vertical, side, & drag loads throughout the test run. These loads are measured at the axle and through calibration, and conversion techniques can be directly correlated to loads occurring in the tire footprint area. Additional instrumentation includes the measurement of surface speed and brake pressure. Visual data can also be obtained with two on-board cameras capable of both high and low speed visual acquisition.

Data Acquisition

In addition to the dynamic data noted above, field calibration techniques, tire inspection techniques, and test parameter logging techniques had to be developed. Inspection methods required the measurement of severely cut tires in a high pressure inflated mode. Calibrations had to be completed rapidly in the field, and preliminary test results had to be rapidly assessed to permit test schedule changes to optimize the total data acquisition effort. A summary of these methods and activities are included in References 1, 2, 5, and 12.

Additional Tire Testing

One final area of work that was conducted in this program was the dynamic testing of cut tires. This phase of the effort consisted of subjecting severely cut tires to an operational taxi/takeoff load speed profile on an aircraft tire test dynamometer. The goal here was to determine if a damaged tire could still be used in an emergency for at least one or two taxi/takeoff landing/taxi cycles. This effort is not discussed in this report but additional information can be found in references 5 and 12.

SECTION IV

TEST VEHICLE/TEST SETUP

Test vehicle

Fabrication of the TCTV was completed on 3 January 1986. Figure 1 shows the vehicle installed at the NAEC Jet Track Facility and shows the deadload, boom structure, and associated systems. The particular test setup shown consists of an F-16 main wheel and tire installed for a 120-mph run. The TCTV is composed of four primary systems and various subsystems, as shown in Table 1. The first of these involves three options for providing forward speed to the test vehicle itself. The first option consists of using an MRS tractor system for speeds of 0-18 mph. The MRS (model 200) represents a high torque/high rimpull capability for use in high drawbar pull situations such as high yaw angle or soft soils testing. For lower drawbar situations a second option of lower torque capacity can be used for speeds of up to 30 mph. This option consists of utilizing a standard 5-ton truck, and a modified pusher plate system. For speeds in excess of 30 mph, the third system available is the standard NAEC jet car push mode. The pusher system consists of a rear push acceleration to some velocity above the desired test speed, and releasing the TCTV prior to engagement of the test section. This procedure eliminates any pusher bias through the test section and allows the vehicle to stabilize yielding more constant behavior through the testbed and over the entire range of all tests conducted.

Table 1 TCTV System/Subsystem Breakdown

А.	Speed Generation System 1. MRS Tractor (Low Geared) 2. Hi Geared Travels Pushers 3. Jet Car Pusher
В.	Dead Load with Railed Guidance
C.	Test/Support Systems 1. Support Structures 2. Instrumented Axles 3. Instrumentation System 4. Power Supply 5. Load/Lift/Stop System 6. Braking System
D.	Arresting System 1. Cable Catcher 2. Arrestor Brakes

Figure 1 Finally Fabricated Tire Cutting Test Vehicle

The second system noted in Table 1 consists of the deadload, with railed guidance. The deadload is comprised of all the yellow structure shown in Figure 1. This structure is a 40,000-lb steel frame, supported by eight wheels, and is guided on two 10WF49 steel rails.

The third system noted in Table 1 comprises the heart of the entire test vehicle. The majority of subsystems in this area are represented in black in Figure 1. Specific capabilities and operation of all of these systems is contained in reference 1.

The final system noted in Table 1 consists of the arresting system to safely catch and arrest the entire test vehicle following a high speed test. This system is comprised of a cable catcher located on the deadload, and two ground based arrester systems. The ground based arrester system consists of a suspended cable (which engages the cable catchers) attached to an arrester tape leading to a standard M-21 Naval arresting system.

In addition to the four systems previously discussed, several additional capabilities are worth mentioning. Figure 1 only depicts one particular test setup but different aircraft axles can be substituted to include other tires or aircraft types. In addition, the entire axle support structure can be easily removed, and an actual landing gear substituted in its place. This latter change was actually accomplished in this program with an F-4 nose landing gear system. It should be finally noted that the axle/instrumentation calibration system for the vehicle is of field design, and all calibrations can be accomplished on site.

Test Vehicle Specification Summary:

The resulting TCTV represents a significant advancement for the test and evaluation of aircraft landing gear systems. The range of capabilities extends from low speed (up to 10 mph) soft surface (CBR 3-4) testing, all the way to high speed (200 mph +) testing on actual runway surfaces. The vehicle can be utilized for full scale landing gear component studies involving aircraft up to 40,000 lbs, or a single gear weight of 17,000 lbs. The vehicle capitalizes on a forward mounted design approach to eliminate the effects of carriage airflow interference on the actual test sections. This fact results in a highly controllable test environment and the additional capability to include advanced test articles such as air cushion cells or dynamically scaled models. A summary of the current capabilities of the TCTV, as they relate to aircraft landing gear test and evaluation requirements, is as follows:

> Load Limits @ Ground Contact Point o Side = 8,000 lbs o Drag = 23,000 lbs o Vertical = 17,000 lbs (maximum) 4,500 lbs (minimum)

```
Speed Capabilities (Hard Surface)
    o 0-15 mph without jet car
     o 0-30 mph potential, without jet car
    o 30-200 mph with jet car
Soft Surface Capabilities
     o CBR to 3 or 4
     o 0-10 mph speed
Tire/Wheel/Brake Mountings (Available)
    o F-16/F-4 Nose Axle
     o F-16
              Main Axle
     o Adaptable to other specially made axles
Instrumented Capabilities
    o Surface Side Load
     o Surface Drag Load
    o Vertical Load
     o Surface Speed
     o Brake Pressure
Axle Block Positioning Control (Degrees)
     o Camber = 0, \pm 1, \pm 2
     o Yaw
             = 0 to \pm (measured)
                  0 to \pm 5 1/2 (max limit)
Test Surfaces
    o Concrete
     o Asphalt
     o Soils
     o Wet Surfaces
     o Standing Water
     o Debris Laden Hard Surfaces
     o Specialized Sections
Visual Data
     o On-board Camera (high speed)
     o On-board Camera (standard speed)
Environmental Limits
     o 10 to 100 F Ambient (operating range)
     o Operable in Rain/Snow/or Ice
Test Costs/Times/Test Rates
     o Low Speed Shot = Approximately $ 500
     o High Speed Shot = Approximately $3,000
```

```
Test Costs/Times/Test Rates (continued)
     o Wheel Change Time
                            = 10 minutes
     o Low Speed Test Rate = 5-7 per 8 hrs
     o High Speed Test Rate = 3-4 per 8 hrs
Field Calibration Loads (Available Capacity, NOT LIMITS)
     o Locked Wheel (S = 8,000 \text{ lbs})
       (with brake) (V = 17,000 \text{ lbs})
                     (D = 4,000 lbs)
     o Choked Wheel (S = 8,000 \text{ lbs})
                      (V = 17,000 \text{ lbs})
                      (D = 2,000 lbs)
Axle Limits
     o F-16 MLG S = 8,000 lbs
                 V = 17,000 lbs
                 D = 23,000 lbs
     o F-4 NLG S = 3,000 lbs
                 V = 6,000  lbs
                 D = 4,000 \, lbs
Braking System
     o Max Pressure
                         = 1,500-psi capacity
                             600-psi operational limit
     o Pressure Control = Direct or Feedback
                         = 55 million ft lbs
     o Max Energy
                           (from E_k = \frac{1970}{2} v^2), v = ft/s @ 160 mph
Testbed Lengths Available
     0 0-15 mph = 5,000 ft in rail
                     400 ft nonrail
     o Max mph = 1,500 ft in rail
                     300 ft nonrail
On board Power (2 Generators)
     o 1,800 watts, 120 volt, 60 cycle, 15A
         (Sears Model 580.327111)
     o 2,250 watts, 120 volt, 60 cycle, 15A
Boom Lift Specifications
     o Cylinder Limit = 3000-psi Heavy Duty Service
                          5000-psi Shock
     o Max lift load = 24, 900 lbs @ 3000 psi
     o Cylinder Spec = 3 1/4 HHC13K
```

Test Setup

The test setup utilized for this test effort is noted in the Figure 2 generic arrangement. Specific details relative to the vehicle, track layout, and testing techniques will not be presented in that they are fully covered in references 1 and 2. The data presented in this report contain references to push distances,

push vehicles and tested layouts which should be understood for proper data analysis.

For this test effort, two push modes were utilized. The first is a low speed mode (0-25 mph) where a push distance ranging from 1000 to 2500 feet was required to accelerate to the desired testbed speed. For the higher speed mode (30-200 mph), a jet car was utilized which entailed push distances of up to 6500 ft. The test bed itself ranged from 250 to 500 ft in length. Early in the program, numerous patterns and layout techniques were analyzed which included X patterns, Z patterns, random layouts, straight across rows, in line rows, and diagonals. A disconal pattern was ultimately selected and is shown in Figures 3 and 4 Figure 3 is the F-16 setup and Figure 4 represents the F-4 case. All pertinent data are noted on both the figures with one diagonal representing one tire circumference plus 1 inch to preclude striking the same tire point at each revolution. Horizontal spacing is such that all ribs, grooves, and sidewall points involve a stone contact. Within each figure three beds are noted. The leftmost is the original design. After further consideration one stone was added to both edges to assure that any lateral shift would still involve the same number of stone engagements. This revision is noted in the center drawing. The rightmost drawing represents a halving of the density which was required to both reduce tire damage to manageable levels and to add a more random aspect to the layout. Within the data, these layouts are described as a 9, 6/5, or 5/4 pattern as depicted in these figures.

Figure 2 Generic Test Setup

Figure 3 F-16 Stone Pattern (Test Setup)

Figure 4 F-4 Stone Pattern (Test Setup)

SECTION V

PRELIMINARY ANALYSIS

Speed Effects

A total of 15 tests were evaluated to determine the overall effects of speed on cutting damage. Specific tests included are noted in Table 2 where tests are listed in order of decreasing damage. For this case and all subsequent effects noted in the analysis tables, the highest damage severity is defined to be the lowest number of hits required to generate a cut on the tire. In Table 2 and all subsequent tables, this damage parameter is noted in column AU and is listed in order of increasing values unless stated otherwise.

Figure 5 graphically illustrates the Table 2 data and as expected a significant amount of scatter does exist. A potential trend, however, is evident for the case that higher speeds result in higher cutting. In an attempt to clarify this trend a second plot (Figure 6) was generated limiting the cuts considered to be beyond limit or specifically those only over ten 32nds of an inch. For this case, the scatter was less and the higher speed/higher damage theory becomes even more convincing.

For both Figures 5 and 6, only 13 points are used in that two of the Table 2 tests (items 1 & 2) are failed tires. Subsequent post-failure damage could not be determined to allow for any reliable use of these data points.

Yaw Effects

A total of 13 tests are available for an assessment of the effects of yaw or turning on cutting damage. Specific tests included are noted in Table 3 in order of decreasing yaw angle. From this table, one can observe that Column AU (damage level) follows an apparent trend of decreasing damage with decreasing angle. This fact, however, is misleading in that the AU column is for all cuts. When moving to other types of cuts namely deeper values this trend seems to disappear. Figure 7 graphically illustrates this fact where four curves are plotted for the four types of cut sizes. From these curves the potential trends are for increased low depth damage at higher yaw angles but for limited to zero increased damage for larger deep cuts.

Radial Tire Analysis

This analysis consists of comparing four radial tire tests against nine conventional tire tests. The resulting 13 tests are presented in Table 4 in order of increasing damage. In this case, however, increasing damage is confined solely to cuts beyond the limit noted for that particular tire. These two parameters are noted in the two rightmost columns in Table 4 (Beyond Limit Cut Data). It should be noted, however, that the beyond limit nomenclature may not involve true limits in that cut locations (groove, sidewall, or rib) were not considered. Values presented are simply in 32nds of an inch irrelevant of location.

TABLE 2 -- SPEED TREND ANALYSIS DATA

 		8		12	2	~	 \$		 m		~			~	0	~	0	~ ~
		LOA HITS		0 FAILU	1 FAILU	13 26.6	8 43.2	5 69.2	7 49.4	9 38.4	3 115.3	4 86.5	2 173.0	3 115.3	10 34.6	3 115.3	5 41.6	0 ER
0	83	ADJ HITS FOR		FAILURE	FAILURE	5.09	5.86	6.18	7.21	9.11	10.18	10.48	10.81	10.81	12.81	14.42	16.00	20.35
		LOA 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	346	9 7 6	346	346	346	346	346	2 3 46	5 346	5 346	2. 3 <u>4</u> 6	2766 2766	3 208	5 346
		101		٤À ٢	٦ ۲	ž	ž	₹ ~	ž	ž	ž	ž	ž	э М	ž	ž	302 206	а М
		5 1 1 1		; 0	0	30	~	m .+	~ ~	ب	~	4	2	۳ ا	9	~	2	0
ļ		0		20 20	0	2	2	2	2 22	5	¥ ₽)∓ ð	10	1 8	6 1	7	m	- 9
		OTA		; 0	-	%	5	32	8 3	8	2	8	22	22	27	54	13	12
	1990			8	ю. К	160.9	101.4	38.0	111.7	164.8	57.0	16.0	15.0	18.0	131.0	17.0	16.5	16.5
	PEED 1-OCT	HSH	DISI	, 0009	0009	6500	6500	000	6500	6500	0009	2300	อีรี	80 20	0009	2002	200	2300
	FILE S DATE 3	8				JET	JET	JET	JET	JET	JET	PAYM	PAYM	PAYM	Έ	PAYM	LPAY	PAYM
14300		VERT	8	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300
0	_	3		₹ ¤	0	0	0	0 -	•	•	0	0	0	0	0	0	0	0
0	4.48T7	AKE	× Isd	, o		0	0	0	0	0	0	0	0	0	0	0	0	0
	N SC	DEB 81	PAT '	ŚŚ	6/2 6/2	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	5/4	\$2
	/FIVMB	5	5	ж К	5	5.7	5.7	5.7	К.7	7.7	К.7	К.7	5.7	2	κ.	К.	6.5	5.7
			E	> 0 <u>2</u>	8	200	80	200	<u>5</u> 0	200	200	200	200	200	205	200	000	200
.50	ED RV-	DEBRIS		- 12 - 12	20 081	.50 CRL	.50 CRL	.50 CRL	.50 CRL	.50 CR	.50 CRL	.50 CRL	.50 CR	50 08	50 08	50 081	50 CRI	50 CBI
DRY 1	POFPAR	SURF		م ۲۵	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1	DRY 1
		PRNT	3	י מי	, s	5.8	8.0	5.8	8.0	8	5.8	5.8	5.8	8	8	с С	8	5.8
		PRN	- ·	÷	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10	10	10	10.01	10.2
		TIR		∍Ķ	5 K	2	22	22	22	1 K2	12	Ř	ĸ	ĸ	ΪĶ	Ķ	ξŔ	к К К
	TA ALI Tene	2	X L	N 14	5 <u>1</u>	- 19 - 19	- 16 16	F-16	F-16	F 16	F-16	F-16	F-16	141-1	5 <u>7</u>	F-14	14	-16 16
6 GY	E1 DA	\$	₹ .	ج ب	5 č	5	. <u>}</u>	5 GY	205	2 2	5 67	5 67	e e	; <u>}</u>	; Z	2	; ≿ • •	i de S
E-1	NLYSIS I	848	TEMPA/C			76 F-1	2.2	84 F-1	67 F-1	2 - 1	84 5-1	7 5-1	42 F-1	81 F-1	5 6	80 F-1		-1-1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
	TREND AL		ENG	4 KC/ IC	SE/SX S	sr 2	SL 7	Z KS/JS	Sf 2	ST 2	SL/S/ S	SL/SZ S				2 101 2	ST/SA S	ST 2
NSTANTS	-SPEED))ATE	ی 11 م 12 م		S SEP 8	2 SEP 8	2 44 8	2 SEP 8.	3 SEP 8.		2 U U U U U U U U U U U U U U U U U U U						
JERY CC	NBLE 2- Late 1	- 1S	*	8 4	, v	• • •	,	- 	· ~	14 17	· •		~	ייי	, v	× 01/0		1/11
10	- <u></u>	F	!		n at	2	<u>لا</u>	Ċ,	<u>¥</u>	<u> </u>	: ci		2 -	ġ	Σġ	<u> </u>	<u>د د</u>	<u>c</u>

YAW EFFECTS ANALYSIS TABLE 3

QUER	Y CONSTANTS		-> F-16 GY	275		DRY	1.50			0	0	14300		SPEED	8 ¢								
OLER	Y CONSTANTS		-> F-16 GY	ñ	,	DRY	1.50			÷	0	14300		SPEED	ŝ								
QUER	Y CONSTANTS		-> F-16 GY	52		DRY	1.50			÷	0	14300		SPEED	8								
	Y CONSTANTS		-> F-16 GY	5		DRY	1.50			+	0	14300		SPEED	ŝ					œ	EYOND	TIMI	
	Y CONSTANTS		-> F-16 GY	215		DRY	1.50			7 0	0	14300		SPEED	Ş					J	JIF DAT		
<u> </u>												Ē	ILE YAU				1						
Z	BLE 3 YAU EI	FFECTS J	MALYSIS			PREP	VRED BY:	AFUAL,	'FIENB/K	SCHUAR	21	ð	ATE 31-0.	ct Oct-9	-					1	X	2	
	NO E1 DATA	_																		Ŋ	Ξ	TS FOR	
TEST		2	9	TIR	E PRNT	PRNT SURI	F DEBRIS		ED DEB	BRAKE	₹	VERT PA	SU PUSI	H BED	TOTA	0	6 11	2	IT ADJ	HITS FOR T	OTAL C	F	
*	DATE	ENG TI	EMPA/C MAN	I AVLE PRE	ך כו	NOO N	SIZE TYP	: LTH 1	TH PAT	1 ISU	3	LOND V	EH DIS	T SPEE	o aurs	5	0 15	164 HI	TS HIT	5			
 			-		6	4		:		ļ			4										
• •	7, PL0 6, 1		¥ 2 - 1 - 2		- ç		- 5 - 5	> {	× ₹	- <	₹¢			z y	z ų	25	₹ " ≤ 0		SH I	4 `⊊	u	50.00	- 4
<u>}</u>	Z4 DEC 20		42 F-16 GY	C/2 X01-1	2.0L 0	2.8 DRY	ו.>ט מגר	Š		5	>	14 200541	ATM C		0	2	~ ~	×ĭ ⊃	9 7 9	2.1.2	^	8.S	
2-7 -1	23 DEC 86	r SL/SX	42 F-16 GY	F-168 275	10.2	5.8 DRY	1.50 CRL	80	7.7 6/5	0	0	14300 Pi	NA NA	80	2 88	ŝ	9	۲۹ ۲۵	6 346 0	°.8	4	86.50	
7-6	23 DEC 86	<pre> sr/sx </pre>	42 F-16 GY	F-16R 275	5 10.2	5.8 DRY	1.50 CRL	200	7.75 6/5	0	0	14300 PJ	AYM 23	00 15.5	8	5	9 6	ľÅ ∾	6 346 6	4.33	80	43.25	
8-7	24 DEC 86 I	KS/JS	40 F-16 GY	F-16R 275	10.2	5.8 DRY	1.50 CRL	80	7.7 6/5	0	0	14300 PJ	WW Z3	00 13.	5	R	8	м М	6 346	6.78	ŝ	69.20	
<u></u>	23 DEC 86 1	KS/JS	42 F-16 GY	F-16R 275	10.2	5.8 DRY	1.50 CRL	200	7.75 6/5	0	0	14300 PJ	NM Z	00 15.4	0 50	88	0	ч М	6 346	6.92	~	173.00	
-11-r	26 DEC 86 1	KS/JS	42 F-16 GY	F-168 275	10.2	5.8 DRY	1.50 CRL	80	7.7 6/5	0	0	14300 PJ	WW S3	00 13.5	8	2	9 2	м 0	6 346 6	9.80	2	173.00	
-1-4	23 DEC 86	KS/JS	42 F-16 GY	F-168 275	5 10.2	5.8 DRY	1.50 CRL	800	7.75 6/5	0	0	14300 PJ	WW C3	00 16.	0 28	ង	4 2	0 ¥	6 346 6	12.36	2	173.00	
81-1	9 04 0CT 86 1	t SL/SX	VA F-16 GY	F-16R 275	10.2	5.8 DRY	1.50 CRL	200	7.7 6/5	0	0	14300 PJ	AYM 23	00 16.(8	19	0	м о	6 346	10.48	4	86.50	~
<u>0</u>	03 AUG 87 .	SC	31 F-16 GY	F-16R 275	10.2	5.8 DRY	1.50 CRL	200	7.75 6/5	0	0	14300 PJ	AYM 23	00 18.	32	18	۳ ۲	0 W	6 346	10.81	м	115.33	
1/10	1 31 JUL 87 .	SL	78 F-16 GY	F-16R 275	10.2	5.8 DRY	1.50 CRL	202	7.75 6/5	0	0	14300 PJ	AYN 23	00 16.	5 17	6	-	м М	6 346 6	20.35	0	ERR	
×-7	18 JUL 86 1	RS/JS	35 F-16 GY	F-16R 275	10.2	5.8 DRY	1.50 CRL	800	6.5 5/4	0	。 。	14300 LI	PAY 23	00 16.	5 13	m	5 2	202 80	8 208	16.00	ŝ	41.60	
<u>د</u> -	23 DEC 86	KS/JS	42 F-16 GY	F-16R 275	10.2	5.8 DRY	1.50 CRL	88	7.75 6/5	0	0	14300 PJ	AYM 23	00 15.1	22	16 1	4 2	м 0	6 346 6	10.81	2	173.00	
D2/1	2 31 JUL 87 .	SL	22 F-16 GY	F-168 275	10.2	5.8 DRY	1.50 CRL	200	7.75 6/5	0	0	14300 PJ	AYN 23	00 17.	0 24	7	4 2	- X	6 346	14.42	M	115.33	
-								1															~

FOUR DIFFERENT CUT RANGES YAW ANALYSIS

TABLE 4 RADIAL TIRE ANALYSIS

 			•		<u>~</u>		*	=	5	5	4	m	m	m	2		-	-	0	0	- N
	TIMI				IS B	F		1.45	8	8	3	M	Ŗ	R	8.8	3	R	8	5.63	ñ	<u>7</u>
	2	DATA		é	H	5		M	5	14 10	4	3 15	3 115	3 115	2 17	8	7	2 17	7 45	0	8
	E,	5				101		Γ			-					<u> </u>	-			-	
					ğ			6.78	4	8.9	0.48	5.97	0.81	4.4	0.S	5.73	6.2	1.63	1.63	0.X	
ſ				§	SLIH	5	₹			-	•		~	*	÷	÷	-	~	2	2	
					-	⊢	l	<u>ب</u>	\$	5	~		~	~	<u>ح</u>		.~	<u>م</u>	.~		
					Ś	LIH S	8	Ř	ž	8	Ř	ž	ž	ž	ž	ž	ž	X	ž	ž	
					Þ	ŦĦ	¥	3%	200	88	38	38	38	38	38	8	38	38	38	8	
					Ξ	15 15	× 	=	ŝ	~	4	, N	m	~	~	Ļ	-	-	0	0	
					` `0	ê	¥	R	ħ	ŝ	2	ิล	3	4	4	80	2	*-	~	=	
					0	ŝ	R	4	ន	m	\$	R	8	~	2	₽	8	4	0	ø	
					10TA	SIG	₹	5	R	ñ	P	8	Я	ħ	ы	ខ	ß	2	\$	1	
	***		ž			Ð	y	17.0	16.0	16.5	16.0	17.0	18.0	17.0	15.0	15.5	18.5	18.0	19.0	16.5	
		æ	8 5		Ŧ	5	Γ	8	8	ß	8	R	` 8	8	8	, 8	8	8	8	g	
		POU	ы Ц		2	DISI	ຊ	ĸ	ស	Ň	Ň	ស	ស	ស	ង	R	ស	ន	ស	ស	
		FILE	Ш		8	Ð	R	MM	MMM	M	M.X	WW	MMK	MW	MW	WK	WK	MW	MM	MX	Í
8	8		_			ŝ	8	8	8	8	8	ŝ	ŝ	8	8	Ř	ğ	ŝ	8	8	
10	0 12				ź	_	Æ	0 14	0 14	0 14	22	0 12	0 4	0 1	0 2	0 14	0 12	120	14	0 14	
0	0		Ľ		0	¥	2	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0		30		XX	ĸ	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	1
			ž		ġ	PAI	×	\$	\$	54	\$	\$	\$	\$	\$	\$	\$	S	\$	\$	
ĺ			19			Ē	3	5.7	2.3	<u>6.5</u>	K .2	33	К.7	К.	5.7	6.7	К.	K .	3	К. К	
			ł			Ē	>	8	8	8	8	8	8	8	8	8	8	8	8	8	
1					s	Ĕ			ਹਾ ਜ	-	າ ພ				- -	יי ב	יי בי				1
8	ន		ä					8	8	8	8	8	6	8	8	8	8	8	8	8	
E					12 12	2	ľ	7	2	-	2	-	-	-	-	-	<u> </u>	-	-	-	
8	S		Ë		5	8	S	8 00	200	200	ž S	ž	3 DRV	S D3	₹ S	₹ S	È.	ž	È.	ž	1
					ž	3	a	3	20	5	5	5	5	3	<u>й</u>	6.1	9	9	, e	ີ ເ	
	-		é		۲. ۲	2 2	٩	10.	10.	10.5	2	10.2	10.2	50	5.0	8.8	8.8	8	8.8	2.0	
IS	S		Ē			۲ ۲	°	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ß	ŝ	ŝ	
			ğ			Š	z	F-16	F-16	F-16	10,10	F 16	F. 7	10	F-16	1 10	1 1 1 1 1 1 1	F 16	Ť Ž	10	
6		SI	5			Ī	2	6	6	6	6	6	6	6	Շ	Ű	Ĕ	Ŭ	Ë	5	
14	F-16		LIST		1	¥		7 8	5	F-76	5	F-16	7 8	F-16	5 8	5	7 8	5	5	7 8	
Î			¥	1	ŧ		J	2	8	6	ž	ଔ	<u>छ</u>	8	3	2	2	R	2	2	
					1	90	ω	878	S/B	878	228	228	ø	ø	S/B	ø	s	ø	Ś	Ś	
12	5		Z		1			8	8	8	88	8	50	20	8	50	5	8	6	7 8	
N.S.		4	2		ļ	JE I	ပ	8	8	Ţ	8	8		Ę		8	8	6	b	₹	
8						8		ð	6	*	8 8	6	8	2	KJ :	1	1	1	× i	5	
	5					*	68	<u>ل</u>	ы-2	×		4	n d	ā	<u>n</u>	2-1 ±	Ŧ	Ŧ	Ŧ	1/10	
											-		_								-

Table 4 data are graphically noted in Figure 8 where the radial design shows a marked improvement for reducing deep cuts in that all of the radial (coded MIC in Table 4) are grouped and the right low depth end of the chart. With regard to total cuts, however, no concrete conclusions can be made for the radial case.

Beyond limit cuts seemingly are greater for the radial case in that the radial limit is 5/32 versus 9/32 for the conventional bias case. No observations can be made in this area in that a detailed assessment as to limit reasons, cut locations, and true statistical trends are all required before any conclusions can be drawn.

Pressure Effects

For this survey three low pressure runs (225 psi) were conducted and compared against six operating pressure (275 psi) runs. This comparison is noted in Table 5 in two sections where both total cuts and beyond limit cuts are tabulated. A cursory review of the table does not indicate anything other than the fact that a trend may well exist for greater damage at higher pressures and should be considered in any statistical analysis work. The trend noted is presented graphically in Figure 9 where all cuts and beyond limit cuts are separately plotted at the two pressure points. Average values are also noted for each of these two cut types. Considering the average values, two trendlines are shown for all cuts and limit cuts which show a bias toward increasing probabilities of cutting at higher pressures.

Retread Tire Analysis

A total of eight retreads were compared to nine new tires and are tabulated in Table 6. The database query used to generate Table 6 did not include testbed width as a result two different testbed widths are shown. Theoretically this fact should make no difference but a preliminary analysis of Table 6 indicated that a difference does exist. To preclude any variance in this regard, a second table (Table 7) was generated to independently analyze each width. This table is presented in two sections containing data for each of the two testbed types.

In initially looking at Table 7, it would appear that little insight could be gained as to the behavior of either tire type. Assuming however, that Column AU actually represents some measure of damage resulting, a plotting of the data could be worthwhile. With this in mind, Figures 10 and 11 were generated. From these figures, a case could be made that retreaded tires do exhibit improved performance. This however is only an observation from the table and will require statistical verification.

One important additional parameter to note from these figures is the general data distribution reflecting quality of data. In both cases and with or without retreads included the quality appears excellent and conforms to classical statistical form for an expected distribution.

RADIAL TIRE ANALYSIS

PRESSURE ANALYSIS

TABLE 5 TIRE PRESSURE EFFECTS ANALYSIS

	501		R 55		0	80271	75	R R R							
· F-16	5	12	DRY 1.50		000	14300	55						_	BEYOND	TIMI
		1				FILE	RESSURE	1						ar Mi	
			HEPWED BT:	Arhal/Filbe/K	ZUMMENS	DATE C	ž 707-0	5-20					ġ		
3													2	-	3
		TIRE PRUT PRU	it surf debris		RME CM -	(ERT PRO P	E HS		0 7	\$	Ħ	TOT ADJ	HITS FOR >	10/32HI	SFOR
NA N	INN AXL	L HES L	I COND SIZE LL	pe lth uth pat	MA ISO	LOND VEH	DIST	SPEED O	ST	5	5 5	164 HITS HIT	5	TOTAL	 5
-	2	0 0	S T U	× 7	Y Z M	AB AC		N N	2	¥	A	M AR AS	R]
I	6 GY F-168	25 10.7 6.4	4 DRY 1.50 CRL	500 7.75 6/5	0 0 0	4300 PAYM	88	14.0	11 6	4	-	0 346 346	31.45	-	<u>46.00</u>
E	6 GY F-16A	275 10.2 5.4	8 DRY 1.50 CRL	300 6.5 5/4	0 0 0	4300 LPAY	8052	16.5	E E	~	2	3 208 208	16.00	ŝ	41.60
i.	6 GY F-16A	275 10.2 5.4	B DRY 1.50 CRL	500 7.7 6/5	0 0 0	4300 PAYM	80	16.5	17 6	=	0	0 346 346	20.35	0	ě
i.	6 GY F-16A	255 10.7 6.4	4 DRY 1.50 CRL	500 7.75 6/5	0 0 0	4300 PAYN	80 20	13.0	ຄ	8	m	1 346 346	17.30	4	86.50
T	6 GY F-168	25 10.7 6.	4 DRY 1.50 CRL	500 7.7 6/5	0 0 0	4300 PAYM	8 2	15.5	14	0	-	0346 346	16.48	-	00.97
i.	16 GY F-16A	275 10.2 5.4	B DRY 1.50 CRL	500 7.7 6/5	0 0 0	4300 PAM	88	17.0	ر م	4	~	1346 346	14.42	m	15.33
T	6 GY F-16R	275 10.2 5.4	B DRY 1.50 CRL	500 7.7 6/5	0 0 0	4300 PAYM	88 82	18.0	81	=	m	0 346 346	10.81	m	15.33
T	6 GY F-168	275 10.2 5.4	B DRY 1.50 CRL	500 7.7 6/5	0 0 0	4300 PAYM	882	15.0 3	10	4	~	0.3% 3%	10.81	2	23.00
ĩ	16 GY F-16R	275 10.2 5.4	B DRY 1.50 CRL	500 7.75 6/5	0 0 0	4300 PAYM	80	16.0 3	5 19	10	4	0 346 346	10.48	4	86.50
		25 MERGE				۶J •	0.00	14.2 17.	3 9.3	6.0	1.70.	м	21.7	2.0	
		JABRAGE		* • • • • • • • • • • • • • • • • • • •		RJ ب	0.00	16.5 <i>D</i> .	2 11.5	10.8	2.2 0.	7	13.8	2.8	
															-
							:								
L 1	16 GY F-168	Z75 10.2 5.8	8 DRY 1.50 CRL	500 7.7 6/5		4300 PANH	8	16.5 1	9; 2	Ξ.	0	0346346	8.8 :	0	ž
Ξ.		9 9					38		*	••	- •		16.48 7		8
Ī	101-1 15 0	8 N.1 0.4		() () MC	5	SUU PATH	3	14.0	•	*	-		51.45		8.9
Ĩ	6 GY F-16R	275 10.2 5.8	3 DRY 1.50 CRL	500 7.75 6/5	0 0 0	4300 PAM	88	15.0	22 22	14	~	0346 346	10.81	2	2.00
Ę	5 GY F-16R	275 10.2 5.8	3 DRY 1.50 CRL	500 7.7 6/5	0 0 0	4300 PAYN	88	17.0 2	7	14	2	1346 346	14.42	M	15.33
Ľ,	5 GY F-16R	275 10.2 5.8	3 DRY 1.50 CRL	500 7.75 6/5	0 0	4300 PAM	88	18.0 3	18 18	=	m	0.376 376	10.81	ž	15.33
F-16	GY F-168	275 10.2 5.8	3 DRY 1.50 CRL	500 7.7 6/5	0 0 0	4300 PAYM	88	16.0 3	3	e	4	0 346 346	10.48	4	96.50
T Z	5 GY F-16R	25 10.7 6.4	5 DRY 1.50 CRL	500 7.75 6/5	000	4300 PAYM	8	13.0 2	8	80	M	1346 346	17.30	4	86.50
F.7	5 GY F-16R	275 10.2 5.8	3 DRY 1.50 CRL	300 6.5 5/4	000	4300 LPAY	8	16.5 1	m m	ŝ	~	3 208 208	16.00	Ś	41.60

4

.

TABLE 6 REGULAR/RETREAD COMPARISON

.IST CRITICAL ITEMS PREPARED BY: AF TIRE PRAIT PRAIT SLAFT DEBRIS BET TIRE PRAIT PRAIT SLAFT DEBRIS BET AVC NM AXLE PRES L N CBRIS BET AVC NM AXLE PRES L N CBBRIS BET AVC NM AXLE PRES L N CBBRIS BET AVC NM AXLE PRES L N CBBRIS BET F1 K N O P S T U V F16 GY F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 F16 GY F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 F16 GY F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 F16 GY F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 F16 GY F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 F1	TT Dev 1.50 TTBMS PREPARED BY: AF TIRE PRAIT PRAIT SURF DEBRIS BEI R Z75 10.2 5.8 R Z75 10.2 5.8 DRY R Z75 10.2 5.8 DRY 1.50 R Z75 10.2 5.8 DRY 1.50 CRL R Z75 10.2 5.8 DRY 1.50 CRL 500 R Z75 10.2 5.8 DRY 1.50 CRL 500 R Z75 10.2 5.8 DRY 1.50	DRF 1.50 PRET BF PRMT SURF PERPARED BY: PRMT SURF V COMD V COMD V COMD V COMD V COMD S.8 DRY Q S S.8 DRY A.0 S.0 S.8 DRY S.9 CRL S.8 DRY S.9 CRL S.9 CRL S.8 DRY S.9	2000 2000 2000 2000 2000 2000 2000 200		ML/FII H MFH V V V V V V V V V V V V V	DEB 88 PAT =	CHANNETZ CHANNETZ CANCE	500 File Date 500 Paym 500 Pay		2000 - 20		00 70040000 5 5 5 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20 X 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 3 3 3 3 3 3 3 3 3 3 3	<u>5</u> 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AD AL AL AL AL AL AL AL AL AL AL AL AL AL
3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		275 WA 275 10.2 275 10.2 275 WA 275 10.2 275 WA 275	5.8 084 1-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ ਫ਼	88888888888	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		 200 LPAY 200 PAYM 200 PAYM 200 LPAY 200 LPAY 200 BUD 200 BUD 200 PAYM	88888888888888888888888888888888888888	17.0 17.5 16.5 17.5 17.5 17.5 17.0	でおななたた ゃぁたっ -	04400-	404040-000	20100000000000000000000000000000000000	*****	13.42 14.44 14.444 14.44

TABLE 7 REG/RETREAD ANAL LIST CRITICAL ITEMS CONSTANT PATTERN/EARLY PATTERN

				¥
	õ	-004000000		515
Ę	HITS F	AU 5.97 5.97 5.97 5.97 5.97 5.95 7.57 57.57	5.55 26.06 26.05 25.25 25.25 25.25 25.25 25.25	DISTRIB
	AD.	8 *************	<u> </u>	45 DATA 42 PROF1
	TOT 64 HITS	M 0 - 0 0 0 0 0 - 0 - 0 - 0 - 0 - 0 - 0	3 2 2 0 2 0 2 0 2 0 2 0 2 0 0 2 0 0 2 0	
	≓£	ANNEZNWRNON	N-4N4F	
	စ္စ	¥5885455450	るよいよーと	
	0 10	S2846686700-	264 M G S	
	ATOT DUTS	×885888858	25 % E C 6 8	
speed </td <td></td> <td>AE 16.0 17.0 17.0 17.0 17.0 17.0 17.0</td> <td>17.3 16.5 17.5 17.5 17.5</td> <td></td>		AE 16.0 17.0 17.0 17.0 17.0 17.0 17.0	17.3 16.5 17.5 17.5 17.5	
CK-HOV	PUSH DIST	$\mathbf{s}_{\mathbf{x}}^{\mathbf{x}} \\ \mathbf{x}_{\mathbf{x}}^{\mathbf{x}} \\ \mathbf{x}_{\mathbf$	8888888888 888888888	
ATE	홍 표		PAY PAY PAY PAY	
88		= 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
143	22	400000000000	222222 2222222	
	3₃	× • • • • • • • • • • • • • • • • • • •	000000	
00	SI Y	, 000000000	000000	
8 8	86 C		******	
ζο ζά Π	22	<u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	
L/FI		******		
AFW		> 8 8 8 8 8 8 8 8 8 8 8 8	<u>888888</u>	
	17PE		ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼	
52 S B B		+ 888888888888	<u> </u>	
Y 1.	13 8 8		eeeeeee XXXXXXX	
888	5 D	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	888888 	
	5			l
	2 2 2 2 2 2 3 2 3 2 3 2 3 3 2 3 3 3 3 3	P 10:201	10. 10. 10.	
	PRES	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	****	
	ALLE	×22222222222	\$\$\$\$\$\$\$\$\$	
ET TICA	ł			
16 R 16 R	¥ ب	- 2222222222222	5555555 555555	
			88872228 4444	
ANAL	Z H	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<u>ເ</u> ເ ເ ເ ເ ເ ເ เ เ เ เ เ เ เ เ เ เ เ เ เ	
Elo Parte	ENG			
NTS- NTS- NETR TANT			8 88888888 2 88888888	{
NISTA NISTA NISTA NISTA NISTA NISTA	ATE	2222222222222 222222222222222222222222		
2 2 2 2 2 2 2 2 2 2 2	-	N4-6 - NEN		
	TES.		8 N- V 0 - 4]

æ

.

.

Size Effects

Within the existing database, only one comparison becomes available and consists of nine F-16 main tests compared to eight F-14 nose tire tests. Any analysis of this comparison becomes difficult, however, due to other variables which are introduced. The 17 test runs are tabulated in Table 8 in descending damage order. A review of this table immediately suggests that the smaller size is vastly more damage resistant. The question that arises, however, is this improvement more an effect of size or a pressure effect.

If we go back to our pressure analysis (Table 5, Figure 9) and do a minor extrapolation back to 215 psi, which is the pressure used in the smaller sized tire, we see that tire size may well have a significant effect on damage resistance. For this earlier pressure analysis with extrapolation to 215 psi we can show an average of 15.72 total cuts or 22.01 hits to cut occurring for this case. Looking at Table 8, however, we see that damage levels on the smaller tire all fall well below this average. In fact when we combine pressure with size variance, maximum differences of up to 1700% improvement for the smaller tire can be derived. Without the luxury of further analysis in this area, little can be done other than to note the above observations. It may be that size is a highly influencing parameter or that pressure/loads effects may be far greater than projected earlier. Whatever the case further, investigations in this area would be very worthwhile.

Load Analysis

Loads effects require consideration from two significantly different points of view. If the load varies substantially, the net effect is to decrease the tire footprint width. From a tire mechanics point of view, one can consider the relationship of cut probability as a simple hit/damage relationship. From an operational point of view, however, the probability of hitting an object can be reduced substantially at lower loads in that a narrower footprint results in less area traversed during taxi/takeoff/landing/taxi segments. From this then if one were to rank test in order of severity, two distinctly different orders should result depending on if the ranking is in a form of total cutting damage or the number of hits required to generate cutting damage.

The loads survey was conducted by extracting two separate tables from the program database. The tables consist of an F-4 data analysis (Table 9) and F-16 data analysis (Table 10). Each of these tables are discussed separately in the following sections:

F-4 Loads

A total of nine tests were extracted which matched the criteria needed for this survey. However, only one of these nine represented a load different from the remaining eight. In addition the single comparative test available was from an early test vehicle trial run and no footprint data were recorded. Although little can be drawn from this data set, it has nevertheless been included as Table 9 for record purposes. About all that can be derived from this information is that the single comparative point (Item 3, Table 9) does not exhibit any significant increase or decrease in damage from either a total cut or hits to TABLE 8 TIRE SIZE EFFECTS ANALYSIS

NERV	CONSTANTS CONSTANTS			59		65		DRV DRV	1.50				00	00	1430	90									
	SIZE M	AL LIST	CRITIC	1186	"				ured by	<	FLML/F	1 96/K	SCHW	RTZ		DATE	SIZE D4-Nov N	01						ŝ	
TEST #	DATE			3	AXLE P	TIRE P	RNT PR	NOS TA	SIZE	IS B	85 82	D DEB	PSI	₹ S		D VEH	HSUN DIST		V IS	0 M	20 25	164 HI	LON T TIH ST		ð
8	0	w	9	-	=		0	s			2	×	>	2	8	¥	2	¥			2	N N	S	R]
E1-2	07 OCT 8	6 KS/JS	60 F-1	16 GY F	168 2	5 5	.2 .2	8 DRY	1.50 0	2	8.7.	73 6/5	0	0	1430	D PAYN	2300	16.0	r R	0 1	5	20	8 8 9	4.4	2
E1-4	07 OCT 8	6 KS/JS	8 F-1	16 GY F	16R 2	5 10	N. 2	8 DRY	1.50 0	5	8.7	73 6/5	0	0	1430	D PANH	80 20	17.0	т 83	3	~	х - -	6 3 <u>4</u> 6	5.9	6
E1-1	04 OCT 8	6 KS/JS	76 F-1	16 GY F	-16R 2	5 5	2 2	8 DRY	1.50 0	<u>ک</u>	8	7 3 6/5	0	0	0271 0	D PANH	8 20 20	17.0	5	א די	5 11	х 0	6 3 <u>4</u> 6	6.7	20
B T-19	OK OCT B	SL/SX 3	7 F-1	16 GY F	-16R 2	5 5	5. 2	8 DRY	1.50 G	2	8.7.	73 6/5	0	0	1430	O PAYN	80 12	16.0	8	9 ∃	4	м 0 1	8 38	10.4	eQ
<u>ه</u> -	03 AUG 8	2 JS	81 F-1	19 0 L	-168.2	5 5	N 20	8 DRY	1.50 0	ي م	8	73 6/5	0	0	0271	D PAYN	8 20 20	18.0	22	8	м -	2	6 346	10.8	=
<u>ہ</u> ۔	23 DEC 8	6 KS/JS	42 F-1	1 10 9	-16R 2	5 10	5. 	B DRY	1.50 0	<u>ک</u>	8.7	73 6/5	0	0	01430	O PAYN	8 20	15.0	22	4 9	~ +	х 0 	6 ¥6	10.8	=
02/12	31 JUL 8	2 JS	88 F-1	1 10 9	-168 2	5 10	N N	8 DRY	1.50 0	גר גר	8	73 6/5	0	0	1430	D PAYH	8 20	17.0	\$	7	بہ ج	х -	6 <u>3</u> 66	14.4	Q.
X-7	18 JUL 8	6 KS/JS	18	6 GY F	-168 2	5 10	5 2	B DRY	1.50 0	۲ א	8	.5 5/4	0	0	1430	O LPAY	80	16.5	ñ	m	~	8	8028	16.0	
01/11	31 JUL 8	7 JS		6 GY F	-168 2	5 5	5 2	B DRY	1.50 0	2	8	73 6/5	0	0	0271 0	0 PAYM	800	16.5	4	6 1	。 -	х 0 -	8 % 9	20.2	
R	11 AUG 8	2 JS	7 F-4	BFGF	4	15 5,	š	3 DRV	1.50 0	2	20	.5 5/4	0	0	1 450	0 PAYM	8 2	18.5	12	-	-	0 27	0 22 0	8.8	Q
2-2	11 AUG 8	7 JS	7 F-4	BFG F	4	15 5.	5	3 DRY	1.50 0	<u>ک</u>	50 4	.5 5/4	0	0	1 450	D PANN	800	18.5	2	с. С.	°	0 27	0 52 0	27.0	
F2-10	20 11 8	6 KS/JS	86 F-4	BFGF	4	15 5.	5	3 DRY	1.50 0	2	202	.5 5/4	0	0	650	0 PAYN	8 20 20	5.5	m	-	0	0 27	0 22 0	<u>8</u> .8	
F2-64	28 JUL 82	6 KS/JS	84 F-4	BFGF	-4-	15 5.	5	3 DRY	1.50 0	<u>۶</u>	20 4	.5 5/4	0	0	1 450	O PAYN	8 20	16.5	2	-	。 _	0 27	0 22 0	135.00	0
12-6	28 JUL 82	SL/SX 8	88 F-4	BFG F	4	15 5.	5	3 DRY	1.50 G	3	20	.5 5/4	0	0	650	0 PAYM	8 N	0.0	-	0	。 _	0 27	0 2 2 0	270.00	
F2-9	29 JUL 8	SL/SX S	82 F-4	BFGF	2 4-	15 5.	5 3.	3 DRY	1.50 0	<u>ه</u>	50 4	.5 5/4	0	0	1 450	0 PAYM	8 2	8.0	-	-	。 。	0 27	0 22 0	20.02	
F-31	11 AUG 8	21 SL 7	7 5-4	BFGF	4	15 5.	5	3 DRY	1.50 0	5	30	.5 5/4	0	0	1 450	O PAYM	88 R	18.0	0	0	0	0 27	22 0		
F2-5	2 M 8	SL/SX S	80 F-4	BFGF	4-1	15 5.	м м	3 DRY	1.50 G	<u>א</u>	50	.5 5/4	0	0	450	O PAYN	80 20 20	19.5	0	0	0	0 27	82 0		

TABLE 9 F-4 LOADS EFFECTS ANALYSIS

F-4 LONDS MAL LIER F-4 LONDS MAL LIER F-4 LONDS MAL LIER F-4 LONDS MAL LIER PREPARED BY: AMAL/FIENE/X SCMMRTZ DATE C/- HOV NOV-91 TEST AMB TT C E G T V V X Y Z M RED MED TOTA 0 F T C E G T V V X Y Z M RED MED MED TOTA 0 F S T V V V X Y Z M <	QUERY	CONSTANT	S	₽-3 <	. •		215		DRY	1.50	_				0	0			S	PEED <	0						
TEST ANB TIRE PRIVE PRIVE SURF DEBRIS BED DEB BRAVE CM VER PRIVE DATE ENG TIRE PRIVE LIME PRIVE TATE ENG TIRE PRIVE LIME PATE CM VERT PRIVE PATE PATE		F-4 L	INN SONO	LIST C	RITIC	UL 178-	ø		PRE	PARED	BY:	AFHAL	/FIEM	B/K SC	INNR!	21		DATE	N VON-10	ov-91							
B C E G I N 0 P 3 T U V H X Y Z A AB AC AD AE AI AI AI F-33 11 MLG B7 JS 77 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CL 55/4 0 0 0 4500 PMIN 2300 18.5 10 9 57-11 2 2 77 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 6 4.500 PMIN 2300 18.5 10 9 57-1 12 SEP ML DF 8 FG 4.5 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 500 PMIN 200 16.5	TEST #	DATE	ENG	ANB TEMPA/C	M	AXLE	TIRE P	KNT P	NAT SL	RF DE ND SIZ	BRIS E TYPE	BB HI		OEB BR	SI Y	₹	VER	N PRO	PUSH DIST			0 50	2 Q	13 15 16	TOT + HITS	AD HIT	NITS F
F-33 11 AUG 87 JS 77 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PAM 2300 18.5 12 11 F-32 11 AUG 87 JS 77 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PAM 2300 18.5 10 9 157-1 12 SEP 86 KS/JS 70 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 5500 PAM 2300 18.5 10 9 172-10 29 JUL 86 KS/JS 86 F-4 815 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 5500 PAM 2300 10.9 5 10 9 5 3 1 1 15 5 3 3 11 5 10 9 5 3 10 5 5 3 10 1 10 5 11 9 2 11 15 5	-	0	W	- 9	×	z			s S		þ	>	_		7	×	\$	Ŷ	2	¥	I	R	¥	8	A A	S	R
F-32 11 Aug 87 JS 77 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PANH 2300 18.5 10 9 151-1 12 259 266 KS/JS 70 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 5300 PANH 2300 10.4 3 172-10 29 JUL 86 KS/JS 86 F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 5500 PANH 2300 10.4 3 1 172-10 29 JUL 86 KS/JS 86 F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 4500 PANH 2300 16.5 2 1 1 172-0 29 JUL 86 KS/JS 87 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 4500 PANH 2300 16.5 2 1 1 1	Ŗ	11 AUG	37 JS	7 F-4	BFG	F-4	215 5	ŝ	5.3 DRY	1.50	ß	320	4.5	5/4	0	0	450	D PAYM	80 27	18.5	2	=	0	-	0.2 0	22	22.50
57-1 12 25 3.3 087 1.5 57.4 0 0 5300 PANN 2300 LOU 4 3 172-10 29 JUL 86 KS/JS 86 F-4 815 5.5 3.3 DRY 1.50 CUL 350 4.5 5.4 0 0 5500 PANN 2300 5.5 3 1 172-10 29 JUL 86 KS/JS 86 F-4 815 5.5 3.3 DRY 1.50 CUL 350 4.5 5.4 0 0 0 500 PANN 2300 5.5 3 1 172-6 28 JUL 86 KS/JS 87 F-4 816 F-4 215 5.5 3.3 DRY 1.50 CUL 350 4.5 5.4 0 0 0 4500 PANN 2300 16.5 2 1	R.	11 AUG	37 JS	77 F-4	BFG	F-4	215 5	ŝ	5.3 DRY	1.5	ខ	320	4.5.5	5/4	0	0	450	PAYN (80 20	18.5	₽	0	-	0	22	22	27.0
[F2-10 29 JUL 86 KS/JS 86 F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PAW 2300 5.5 3 1 [F2-64 28 JUL 86 KS/JS 86 F-4 815 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 4500 PAW 2300 15.5 2 1 [F2-64 28 JUL 86 KS/JS 86 F-4 815 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 4500 PAW 2300 1 1 [F2-6 28 JUL 86 KS/JS 87 F-4 815 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 4500 PAW 2300 8.0 1<1	ST-1	12 569	Sr/SX 96	7-1 R	BFG	F-4	215 N/i	N N	'A DRY	1.50	ខ	350	4.5	5/4	0	。 。	5300	D PAYN	80 20	3	4	m	-	0	220	22	67.5
[F2-64: 28 JUL 86 KS/JS 84: F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PANH 2300 16.5 2 1 [F2-9: 29 JUL 86 KS/JS 82 F-4 8FG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PANH 2300 16.5 2 1 [F2-9: 29 JUL 86 KS/JS 82 F-4 8FG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PANH 2300 8.0 1 1 [F2-6: 28 JUL 86 KS/JS 83 F-4 8FG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PANH 2300 8.0 1<0	F2-10	3	SP KS/JS	86 F-4	BFG	F-4	215 5	ŝ	5.3 DRY	1.5	ซี	350	4.5.5	5/4	0	。 。	4500	D PAYM	80 12	5.5 2	м	-	~	0	R 2 0	22	8.8
[F2-9 29 JUL B6K (S/JS 82 F-4 815 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PANH 2300 8.0 1 1 [F2-6 28 JUL B6K (S/JS 83 F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PANH 2300 8.0 1 0 [F2-6 28 JUL B6K (S/JS 85 F-4 815 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4.500 PANH 2300 9.0 1<0	F2-64	38	SF/SX 96	84 F-4	BFG	F-4	215 5	ŝ	5.3 DRY	1.S	ខ	350	4.5	5/4	0	0	4500	DAYM	80 20	16.5	~	-	-	0	220	22	135.0
[F2-6 28 JUL 86 KS/JS 83 F-4 815 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PAWH 2300 9.0 1 0 [F-31 11 AUG 87 JS 77 F-4 815 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PAWH 2300 9.0 1 0 [F-31 11 AUG 87 JS 77 F-4 816 F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PAWH 2300 18.0 0 [F2-5 25 JUL 86 KS/JS 822 F-4 816 F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 4500 PAWH 2300 19.5 0	F2-9	34 82	36 KS/JS	80 F-4	BFG	F-4	215 5	ŝ	5.3 DRY	1.5	ខ	330	4.5.5	5/4	0	。 。	4500	PAM	ອ ສ	8.0	-	-	0	0	220	R 2	270.0
[F-31 11 AUG 87 JS 77 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 4500 PAYM 2300 18.0 0 0 1 [F2-5 25 JUL BAK XS/JS 82 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 4500 PAYM 2300 19.5 0 0	F2-6	28 . M	SF/SX 96	83 F-4	BFG	F-4	215 5	si M	1.3 DRY	1.50	ខ	320	4.5.5	5/4	0	0	4500	D PAYM	8 N	9.0	-	0	•	0	0.2 0	R 2	270.00
12-5 25 JULU BAKS/JS 82 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5 5/4 0 0 0 4500 PAMI 2300 19.5 0 0	F-31	11 AUG	37 JS	7 F-4	BFG	F-4	215 5	ŝ	1.3 DRY	1.50	ខ	320	4.5	5/4	0	。 。	4500	DAYM	<u>න</u>	18.0	0	0	0	0	22	R	Non-
	F2-5	3	SL/SX &	82 F-4	BFG	F-4	215 5.	ŝ	5.3 DRY	1.50	ខ	350	4.5	5/4	0	0	<u>5</u> 50) PAYM	8 N	19.5	0	0	0	0	2 2	22	A NUMBER OF

.

.

.

.

TABLE 10 F-16 LOADS ANAL LIST CRITICAL ITEMS

1									
		ADJ HITS FO CUT	88 7 7 7 7 7 7 7 7	8.5 8.8 8.8	10.11 10.61 10.61	11.70 16.00 20.35		4.8 5.97 6.78 6.78 6.78 7.4.28 8.69 11.70 7.11 7.42 8.88 11.70 7.11 7.42 8.88 11.70 7.97 11.70 7.70 7.70 7.70 7.70 7.70 7.70 7.	
		ADJ NIT	AS 192 192	\$\$\$\$	<u>8</u> % % %	£8,7,8,7		**********	
		TOT	፞	****	***	£\$\$££		BEEEEEEEEEEEEEE	
		<u>\$</u>	10.00	0 - 0 4					
			Xeo	10.04		-440-		N Q Q Q Q C - 4 4 4 4 4 - N	
		0 s 1	3222	2 2 2 2 0	२ <u>२</u> २ व	<u>6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>		0.84255085022000 2011	
		OTA UTS	Z J MI	2855	2 R R 2	メガメロヤ		8853888888888	
-	:t-91		AE 17.5 18.5	16.0 17.0 14.0	18.5 15.0 15.0	14.0 17.0 16.5		16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	
	F-16LOW 31-Oct Q	PUSH DIST	2 8 8 8	និនិនិនិនិ	ន្តន្តន៍ន័		14300 4.00 36.67		
	PATE	VEH DO	PAYN PAYN	PAYN PAYN PAYN	PAYN PAYN PAYN	PAYN PAYN PAYN PAYN	10300 7.50 27.00	РАҮН РАҮН РАҮН РАҮН РАҮН РАҮН	
		VERT	8 00 C	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0021	14300	7300 8.00 33.00	(*300 (*300) (*3	
0		₹_	\$ 00	0000	0000	00000		00000000000000000	
0	CHAMR 72	rake Psi yah	× 0 0		0000		ΓO	••••••	
	3X S		×\$\$!	????	<u> </u>	<u> </u>	ars ars	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	./FIEW		KKI	C K K K	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5. K. S. K.	LIMIT	<pre></pre>	
	AFLAN		> 8 8	<u>8888</u>	8888	<u></u>	운 문 생 생	************	
1.50	RED BY:	DEBRIS SIZE TYPE	1.50 CRL 1.50 CRL	1.50 GR 1.50 GR 1.50 GR	2.2.2 2.2.2 2.2 2.2 2 2 2 2 2 2 2 2 2 2	1.50 GR 1.50 GR	AVERA AVERA	1.28 2.25 2.55	
DRY	PREPA	RNT SURF U COND	0 S 8 DRY .8 DRY	.8 DRY .8 DRY .8 DRY .2 DRY	.8 DRY .8 DRY .8 DRY	. 8 DRY . 8 DRY . 8 DRY . 8 DRY		8 DRY 8 DRY	
		L PRNT F	P 7.2	2 2 2 2 2	2 2 2 2 C	00.2			
23	ŝ	T I RE PRES	៰៱៱	<u> </u>	<u> </u>			*****	
		AXLE	≂ <u>7</u> 7 8 8	<u> </u>		2 2 2 2 2 2 2 3 3 3 3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2	Cell 2	Ĩ	7 6 6 F	5555	6668	55555		555555555555555555555555555555555555555	
F-16	LIST	PAC	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	* * * * * 5 5 5 5 5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	52222		<u> </u>	
	AM	ana Mei	56.40	。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	8.∜≦&8 ∾ ∾	3 8 8 9 5 v		838558555886888888888888888888888888888	
	SONO	ENG	ត្ត ស្ត		SC KS/J	5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5		<u> </u>	
WTS-	-16 L		22 22 J	8 8 8 8 6 5 5 5 5 6	5886 6886	3 3 4 4 4 4 3 5 5 8 5 8 5		888888888888888888888888888888888888888	
UNST U	ů o	DATE	284 284	5635	శరదశ నినిబోక	38585			
GLERY O	TABLE 1	TEST #	9-24 06/J26/	E1-2 E1-4 E5/13	07/J25/ 81-19 J-3	0%/17 10%/17 x-7 01/11		E1-2 E1-4 BE1-4 BE1-19 BE1-19 BE1-19 D-3 D-3 D-3 D-3 D-3 D-3 D-3 D-3 D-3 D-3	

generate cut point of view.

F-16 Loads

As a result of the two points of view noted initially in this loads analysis section, Table 10 consists of two different listings to show two orders of damage. The upper table ranks the data in a hits to cut order while the lower table ranks the same data in a total cuts order. As expected two significantly different rankings do result. A quick look at both of these orders does not disclose any apparent load effect. The distribution appears totally random and will require further statistical analysis to see if any trends exist. These observations are somewhat surprising in that it was originally thought that high loads would have an observable impact.

Water Effects

Low Speed

Only one low speed water run was available and is compared against nine matching dry runs in Table 11. For this case, no conclusions or trends can be cited due to both insufficient data and the fact that the one run falls in the median of all the other data.

High Speed

For the high speed water case, two tests can be extracted and are shown in Table 12. In viewing this chart a potential trend becomes evident so a bar plot was generated covering each of the ten tests included in Table 12. This plot is noted as Figure 12 and shows that the flooded tests were the top two damage products for both all cuts and limit cut categories. In fact on an average basis, the water runs resulted in an approximate 100% increase in damage in both cases. Based on this observation, future statistical reviews should include this factor and apply this to an operational environment.

Yaw Effects (water)

A third area where water effects were investigated related to yaw where four tests are available for comparison. These tests noted in Table 13 yield a rather unexpected trend. For this case when yaw angles were introduced the level of damage was almost cut in half from a total cuts perspective. From a limit cut prospective, however, the trend is less apparent in that the one lower speed test exhibited a comparable level of damage. Because of the wide divergences in tire damage shown in Table 13, significant trends are probable and it should be verified through statistical reviews or additional testing.

Debris Size/Type

Two different debris size tables were extracted from the available data. Table 14 includes all data and Table 15 includes retread tires only. Overall damage effects are illustrated in figures 13 and 14 for all tires and retreads only. A resulting average curve is shown in both figures. All tables and curves are for F-16 main tires only and no nose tire effects were considered.

TABLE 11 LOW SPEED WATER EFFECTS (F-16)

QUERY	CONSTANT	S2	I.	-16 G	~	2				1.50					6	0				-							
																		FILE	WATER_LC	~							
6	~								PREP		۲ :	AFIAL	/FIEM	8/K SC	HUMR	21		DATE	OK-Nov	1621							
		ED ONLY																									Ş
TEST			ŧ			TI	NU SU	T PRW	T SUR	800	RIS			DEB BR	NA NA	₹	ÿ	T PRO	PUSH	0	TOTA	0	\$	=	<u>10</u>	Ş	HITS F
*	DATE	ENG	19181	× 2	¥ X	E PR	L S	3	NOS) SIZE	TYPE	E	Ę	PAT F	17 IS	3	No.	d veh	DIST	SPEED	STO	ŝ	9	15 16	+ HITS	HIT	5
8	0	u	6	×	2	°	4	a	S	┝	5	>	3	×	×	×	R	R	8	¥	I	2	×	× لا	M R	AS	R
E1-2	07 OCT {	SK KS/JS	3	-16 6	Y F-1	SK 275	10.2	5.8	DRY	1.50	ß	200	5.2	5/3	0	0	1430	O PAYN	88 87	16.0	R	ß	£	ŝ	0 346	35	4.8
E1-4	07 OCT {	SK KS/JS	8	16 6	Y F-1	SK 275	10.2	5.8	DRY	1.50	ĸ	200	K.7	5/5	0	0	1430	D PAYN	882	17.0	ß	R	ଷ	2	1 346	35	5.97
E1-1		SK KS/JS	3 92	16 6	Y F-1	SC2 95	5 10.2	5.8	DRY	1.50	Я	80	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	5/5	0	0	1430	O PAYN	8 20 20	17.0	5	14	8	Ξ	976	<u>%</u>	6.7
6	28 SEP (SL 75	8	-16 6	Y F-1	8 273	10.2	5.8	FLO0	1.50	R	20	5.2	ŝ	0	0	1430	O PAYM	8 N	18.0	\$	ស	17	ŝ	1 346	3£	7.52
BT-19	or oct	SK KS/JS	7 5	16 6	Y F-1	SK 275	5 10.2	5.8	DRY	1.50	Я	80	к. 2	5/5	0	0	1430	O PAYM	8 20 20	16.0	R	\$	6	4	0 346	¥	10.48
-r	23 DEC	SL/SX 8	42 F	¹⁻¹⁶ G	Y F-1	SK 273	10.2	5.8	DRY	1.50	ĸ	20	5.2	5/5	0	0	1530	O PAYM	8 20 20	15.0	R	16	14	~	9%	¥	10.81
<u>ہ</u> ۔	03 AUG E	SL 78	81 5	16 6	Y F-1	S 273	5 10.2	5.8	DRY	1.50	ಸ	<u>5</u> 0	K 2	55	0	0 C	1430	O PAYN	88 R	18.0	R	8	1	m	9%	¥	10.81
02/12	31 JUL 8	SL 78	8	-16 6	Y F-1	<u>8</u> 273	5 10.2	5.8	DRY	1.50	ž	200	5.2	5/5	0	0 C	1430	O PAYM	8 20 20	17.0	2	~	14	~	1356	<u>%</u>	14.42
×-7	18 JUL 8	SL/SX 85	8	-16 G	Y F-1	SC 273	5 10.2	5.8	DRY	1.50	ಸ	8 M	6.5	5/4	0	0	1430	O LPAY	8 N	16.5	₽	m	ŝ	~	3 208	80 200	16.00
11/10	31 JUL {	SL 78	82	16 G	Y F-1	52 X	10.2	5.8	DRY	1.50	R	20	7.7	ŝ	0	0	1430	D PAYM	88	16.5	17	Ŷ	1	0	0 346	¥	20.35
_																											

TABLE 12 HI SPEED WATER EFFECTS (F-16)

EXE PREPARED BY: AMAL/FIENCX SOMMETZ DATE MICHANIA 1157 MI SPEED ONLY TIRE PRANT PANT SUFF DEBRIS BED DEB DEB DATE PRANT PRO PUSH BED TO DATE ELG TEPPON PANT SUFF DEBRIS BED DEB DATE BRANC CAN VERT PRO PUSH BED TO 1157 MIE ELG TEV MAG TIRE PRANT PANT SUFF DEBRIS BED DEB DATE BRANC CAN VERT PRO PUSH BED TO 1157 MIE ELG TEV MAG TIRE PRANT PANT SUFF DEBRIS BED DEB DATE BRANC CAN VERT PRO PUSH BED TO 1151 MIE ELG TEV MAG TIRE PRANT PANT SUFF DEBRIS BED DEB DATE BRANC CAN VERT PRO PUSH BED TO 1151 MIE ELG TEV MAG TIRE PRANT PANT SUFF DEBRIS BED DEB DATE BRANC CAN VERT PRO PUSH BED TO 1151 MIE ELG TEV MAG TIRE PRANT PANT SUFF DEBRIS BED DEB DATE BRANC CAN VERT PRO PUSH BED DEBRING 1151 MIE ELG TEV MAGE PRES L W COD DSTERPRES TO COD STERPRES TO COD DSTERPRES TO COD STERPRES TO COD TATE TO COD STERPRES TO COD TATE TO COD STERPRES TEACT TO COD STERPRES TO COD TATE TO COD STERPRES TO COD T	aLERY	OUNSTAN	TS-		F-16 (7.	ŝ				ß				0	0	88			Â	e								
HI SPEED ONLY HI SPEED ONLY TEST MIC DATE DATE </th <th>6</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>PREPAR</th> <th>50 BY:</th> <th>APU</th> <th>L/FIE</th> <th></th> <th>SCHUNEL</th> <th>Ч</th> <th></th> <th></th> <th>-Nov N</th> <th><u>8-9</u></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	6	-							-	PREPAR	50 BY:	APU	L/FIE		SCHUNEL	Ч			-Nov N	<u>8-9</u>									
TEST MG TIRE PRAIT PRAT SLAFT DEBRIS BED DEB BRAVE CMM PRIT		55 문																								ą	-		~-
Image: Control of the contro	TEST			Į			TIR	Ned 14	T PRNT	SUR	DEBRIS				HANG	₹		Ş	F SA		TOTA	0	6 1	.	TOTA		is for		
B C E G I V N Y Z A B AC AO AE AC AO AE AC	*	DATE	90	ē	PWC 1	¥ ₩	22 7	с S	3	88	SIZE TYF	E 13	H	PAT	12 12	3	10101	NEH	DIST		ars B	ŝ	5	5 Č	H STIH	5	_		
B -4 Z JJJ B -1 (SV) Z JJJ B -1 (SV) Z JJJ Z -1 (SV) Z SP B -1 (SV) <	_	L L	u.	0			P	4	a	s		>	3	×		₹	æ	2	2	¥	R	2	× ×	N	AR AS	×			Ī
0-6 30 SEP BT JS 70 F 16 GF F 168 ZF 10.2 5.8 FL00 1.50 GRL 500 7.7 6/5 0 0 14300 JET 6500 164,11 0-5 30 SEP BT JS 77 F 16 GF F 168 ZF 10.2 5.8 FL00 1.50 GRL 500 7.7 6/5 0 0 14300 JET 6500 160,9 6 1x-3 22 SEP BT JS 76 F 16 GF F 168 ZF 10.2 5.8 DRY 1.50 GRL 500 7.7 6/5 0 0 14300 JET 6500 160,9 6 1x-1 22 SEP BT JS 70 F 16 GF F 168 ZF 10.2 5.8 DRY 1.50 GRL 500 7.7 5 6/5 0 0 14300 JET 6500 160,9 6 14,4 14 7.0 2 5.8 DRY 1.50 GRL 500 7.7 5 6/5 0 0 14300 JET 6500 160,4 14 14 7.0 14 14 7.0 14 14 7.0 14 14 7.0 14 14 14 14 14 7.0 14 14 7.0 15 5.8 DRY 1.50 CRL 500 7.7 5 6/5 0 0 14 16 7.0 14 15 7.0 14 14 7.0 14 14 7.0 14 14 7.0 15 5.8 DRY 1.5	- 4 - 4	23 M		8	F-16 C	¥ F-16	5	10.2	5.81	DRY 1	50 CR	8	K . 2	\$	0	0	14300		89	98.0	0	0	ő	0	м Ж	- .2	.'YIL		
0-5 75 75 75 0 0 14300 LET 6500 168.2 11 1x-3 22 22 25 75 10.2 5.8 Der 1.50 CRL 500 7.75 6/5 0 0 14300 LET 6500 160.9 6 1x-1 22 22 25 75 10.2 5.8 Der 1.50 CRL 500 7.75 6/5 0 0 14300 LET 6500 160.9 6 1x-1 22 23 75 70.2 5.8 Der 1.50 CRL 500 7.75 6/5 0 0 14300 LET 6500 101.4 5 1x-2 23 24 7.50 CRL 500 7.75 6/5 0 0 14300 LET 6500 101.4 5 1x-2 23 24 7.50 CRL 500 7.75 6/5 0 0 14300 LET 6500 101.4 5 1x-2 24 25 24 1.50 CRL 500 7.75 6/5 0 0 14300 LET 6500 11.7 4 4 500 <t< th=""><th>6</th><th></th><th>ST 28</th><th>R</th><th>F-16.0</th><th>X F-16</th><th>ŝ</th><th>10.2</th><th>8</th><th>691</th><th>80</th><th>8</th><th>7.7</th><th>Ş</th><th>0</th><th>0</th><th>14300</th><th></th><th>650</th><th>161.4</th><th>113</th><th>ž</th><th>кл Ж</th><th>9</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>2</th><th>8.8</th><th>-</th><th>8</th></t<>	6		ST 28	R	F-16.0	X F-16	ŝ	10.2	8	691	80	8	7.7	Ş	0	0	14300		650	161.4	113	ž	кл Ж	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	8.8	-	8
K-3 Z SEP B7 JS 76 + 16 G7 F-16 G7 <th><u>, 4</u></th> <td>8</td> <td>Sr 28</td> <td>2</td> <td>F-16 C</td> <td>X F-16</td> <td>53 94</td> <td>10.2</td> <td>5.8</td> <td>8</td> <td><u>5</u> 20</td> <td>8</td> <td>2.7</td> <td>\$</td> <td>0</td> <td>0</td> <td>14300</td> <td>Ę</td> <td>8<u>9</u>9</td> <td>168.2</td> <td>112</td> <td>ន្ត</td> <td>8</td> <td>8 8</td> <td>м Ж</td> <td>.9</td> <td>8.</td> <td>~</td> <td>ผ</td>	<u>, 4</u>	8	Sr 28	2	F-16 C	X F-16	53 94	10.2	5.8	8	<u>5</u> 20	8	2.7	\$	0	0	14300	Ę	8 <u>9</u> 9	168.2	112	ន្ត	8	8 8	м Ж	.9	8.	~	ผ
K-1 Z SEP GT JS 70 - 148 Z5 70.2 5.8 Def 1.50 CRL 500 7.75 4/5 0 0 14300 JET 600 101.4 5 B-1 Z JLL GT NC/JS 8 F-16 GT F-148 Z5 70.2 5.8 Def 1.50 CRL 500 7.75 4/5 0 0 14300 JET 600 131.7 5 K-2 Z SEP GT JS 67 F-16 GT F-148 Z5 70.2 5.8 Def 1.50 CRL 500 7.75 4/5 0 0 14300 JET 600 111.7 4 K-4 Z SEP GT JS 77 F-16 GT F-148 Z5 10.2 5.8 Def 1.50 CRL 500 7.75 4/5 0 0 14200 JET 600 11.7 4 K-4 Z SEP GT JS 77 F 10.2 5.8 Def 1.50 CRL 500 7.75 4/5 0 0 14200 JET 600 131.0 2 B-2 Z JLL BE/SC/JS 8 F 16 GT F168 Z75 10.2 5.8 Def 1.50 CRL 500 7.75 4/5 0 0 14200 JET 600 131.0 2 31.0 2 2 <td< th=""><th>N X</th><td></td><td>S1 78</td><td>2</td><td>F-16 C</td><td>¥ F-16</td><td>5</td><td>10.2</td><td>5.8</td><td>DRY 1</td><td><u>5</u> 20</td><td>8</td><td>7.7</td><td>ŝ</td><td>0</td><td>0</td><td>14300</td><td>Ē</td><td>650</td><td>160.9</td><td>8</td><td>ผ</td><td>ຕ ຄ</td><td>m 0</td><td>м 95</td><td><u>.</u></td><td>8</td><td>m</td><td>ħ</td></td<>	N X		S1 78	2	F-16 C	¥ F-16	5	10.2	5.8	DRY 1	<u>5</u> 20	8	7.7	ŝ	0	0	14300	Ē	650	160.9	8	ผ	ຕ ຄ	m 0	м 95	<u>.</u>	8	m	ħ
B-1 Z LL RT KSUL State COO 38.0 5 K-2 Z SEP 87 5.8 0.0 7.7 5.5 0 0 14300 ET 600 38.0 5 K-2 Z SEP 87 5.5 10.2 5.8 0 7.7 5.5 0 0 14300 ET 600 38.0 5 K-4 Z SEP 87 3 70 2.75 55 0 0 14300 ET 600 13.1 7 K-4 Z SEP 87 1.50 0 7.7 5.6 0 0 14300 ET 600 14.3 3 B-2 Z LL 66 7.15 5.8 0 7.75 5.6 0 0 14300 ET 600 57.0 3 3 3 3 3 3 3 3 3	-	8	S7 78	R	F-16 6	X F-16	3 9	10.2	5.81	DRY 1	50 081	8	7	\$	0	0	16300		6 50	101.4	ጽ	₽	4	1 2	17 17 17 17		8.	4	80
K-2 2 2 2 2 9 0 14300 JET 6500 111.7 4 K-4 25 2 2 2 2 0 0 14300 JET 6500 111.7 4 K-4 25 25 2 0 0 14300 JET 6500 111.7 4 K-4 25 25 20 7 5 0 0 14300 JET 6500 164.8 3 B-2 2 JL 66 154 150 CRL 500 7.75 6/5 0 0 14300 JET 6500 57.0 3 B-5 23 JL 66 154.8 275 10.2 5.8 DBM 1.50 CRL 500 7.75 6/5 0 0 0 14300 JET 600 57.0 3 B-5 23 JL 66 154.6 7 1.50 CRL 500 7.75 6/5 0 0 0 14300 JET 600 57.0 3 B-5 23 JL 66 154.6 7 1.50 CRL 500 7.75 6/5 0 0 0 14300 JET 600 731.0 2 B-5 23 JL 66 154.7 1.50 CRL 500 7.75 6/5 0 0 0 0 14300 JET </th <th>-</th> <th>2</th> <th>1/SN 28</th> <th>8 8</th> <th>F-16 6</th> <th>X F-16</th> <th>52</th> <th>10.2</th> <th>5.81</th> <th>DRY 1</th> <th>50 GR</th> <th>8</th> <th>7.7</th> <th>\$</th> <th>0</th> <th>0</th> <th>14300</th> <th>Ē</th> <th>89</th> <th>80.08</th> <th>R</th> <th>R</th> <th>4</th> <th>N M</th> <th>ж 35</th> <th>9</th> <th>.18</th> <th>ŝ</th> <th>5</th>	-	2	1/SN 28	8 8	F-16 6	X F-16	52	10.2	5.81	DRY 1	50 GR	8	7.7	\$	0	0	14300	Ē	89	80.08	R	R	4	N M	ж 35	9	.18	ŝ	5
K-4 23 SEP BT JS 72 F-16 GT F-168 ZF 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 JET 6500 164.8 3 B-2 22 JLL 66 KS/JS 84 F-16 GT F-168 ZF 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 JET 6000 57.0 3 B-5 23 JLL 66 KS/JS 89 F-16 GT F-168 ZF 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 JET 6000 57.0 3 B-5 23 JLL 66 KS/JS 80 F-16 GT F-168 ZF 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 JET 6000 131.0 2 B-3 23 JLL 66 KS/JS 80 F-16 GT F-168 ZF 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 JET 6000 131.0 2 B-3 23 JLL 66 KS/JS 80 F-16 GT F-168 ZF 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 JET 6000 131.0 2	K-2	3	ST 12	67	F-16 6	X F-16	ŝ	10.2	5.81	DRY 1	.50 QR	8	7	ŝ	0	。 。	0021		820 820	111.7	\$	R	ສ	6 1	й 95		ភ	s	~
B-2 Z2 JLL 66 KS/JS SK F-16 KT F-164 Z75 10.2 S.8 0KY 1.50 CKL S00 7.75 6/5 0 0 14300 JET 6000 57.0 3 B-5 Z3 JLL 66 KS/JS 90 F-164 Z75 10.2 5.8 0KY 1.50 CKL 500 7.75 6/5 0 0 14300 JET 6000 57.0 3 B-5 Z3 JLL 66 KS/JS 90 F-164 Z75 10.2 5.8 0KY 1.50 CKL 500 7.75 6/5 0 0 0.4300 JET 6000 53.0 2 183 23.0 23.0 23.0 20 27.75 6/5 0 0 0.4300 JET 6000 73.0 2 28.0 7.0 200 7.76 6/5 0 0 0.4300 JET 6000 70.0 29.0 7.0 20.0 10.0 14300 JET 6000 70.0 29.0 20.0 10.0 14300 JET 6000 70.0 29.0 20.0 27.0 20.0 20.0 20.0 27.0 20.0 20.0 27.0 20.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0	4	23	ST 78	2	F-16 G	א F-16	52 %	10.2	5.81	DRY 1	.50 CR	8	7.7	ŝ	0	0	0023	JET	89	164.8	窝	ξ	14	m v	ж Ж	ک		~	0
18-5 23 JUL 66 125/15 90 F-16 67 F-164 275 10.2 5.8 DKY 1.50 CKL 500 7.75 6/5 0 0 0 14300 JET 6000 131.0 2 18-1 23 JUL 66 125/15 80 F-16 67 F-168 275 10.2 5.8 DKY 1.50 CKL 500 7.75 6/5 0 0 0 14300 JET 6000 75.0	2-8	2	36 KS/J	20 20 20	F-16 C	7 F-16	52 %	10.2	5.81	DRY 1	50 GR	8	7.7	ŝ	0	0	14300	Ę	89	57.0	አ	고	5	2	й 95	₹ ₹	.18	80	m
1a-1 23 LL BA KS/JS BD F-16 GY F-168 275 10.2 5.8 DRY 1.50 CR 500 7.75 6/5 0 0 0 14300 JET 6000 75.0		23 .41	SK KS/J	8	F-16 6	7 F-16	53	10.2	5.8	DRY 1	50 08	8	2.2	\$	0	0			809	131.0	2	9	11 1	0	X6 W	₹5 12	81	0	2
	5	3	SK KS/J	5 8) F-16 (37 F-16	£2 ¥	10.2	5.8	DRY 1	2005	8	7.7	ŝ	0	0	14300	Ę	0009	у.С	-	0	0	-	й 35	ž 9	8	9	~

.

٠

٠

HI SPEED WATER EFFECTS FLOODED RUNWAY

TABLE 13 WATER EFFECTS WITH YAW

	DUSTANTS-		<u> </u>	9	~	22			8	2.1					9	-	3	B	I C LATD		ŝ							
2	uater and	r risi	CKIT	3					PREPL		:X:	AFLAN	./FIB	₿/K	SCHUN	XT2		2 4		NOV NOV-	5						4	_
	YAL AM	ж Н		: بر	2	118	- PRN	T PRN			RIS TVDC			DEB	BRAKE	3	<u>w</u> 9	RT PR			26	TS C	6	ت ۲	12 12 12	UN IN IN	5 = 3	, 15 55 57
	MIE			נו גו.	ž 1 z			•	5 .			; >		: >	<u>;</u> >					AF			¥	A	AN AS	AS		
	20 CC 27	<u>ה</u>	ي ج د	۲ م م	■ - 1 ×	э Қ 9	- ⁶	, «	، 6	- 22	- 2	- 00	52	ŝ	- 0	4 O	143	۲ <u>با</u> 8	1 65	00 161 161	4 11	: ค	22 	2	3 10	ক ত	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.8
		<u>ç</u>	2 6	2 4	κ ε-16 γ	;	101	5.00	8	25	Ĩ	8	52	ŝ	0	0	143	۳ 8	1 65	00 168	2 11	ک 2	8	16	8 8	₹ 9	~	3.09
		ŝ		-16 G	Y F-16	22	10.2	20		1.5	ಕ	ğ	5.7	ŝ	ò	_ بر	54 0	30	1 65	27 00	8.0	5	ខ	ន	6 2	Я 9	~	5.67
	5 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2	3 2	88	-16 5	Y F-16	5 2 33	10.2	5.8	5	1.50	៵	8	7.7	\$2	ó	Ţ	0 143	₩ 8	11 65i	09 160	5 M	S S	8	~	2	ж 9	-	5.86

.

.

TABLE 14 DEBRIS SIZE EFFECTS ALL DATA

					5	R	FALURE	FAILURE	4.8	5.97	6.67	6.3	10.48	10.81	10.81	11.16	12.24	13.87	14.42	14.42	16.00	16.67	20.35	20.35	20.80	27.22	26.00	26.67	29.71	29.71	40-0 0	41.60	52.00	57.67	80.00
			Ş	3	HIT	5	<u>ş</u>	3	3	ž	8	22	25	£	ž	<u>8</u>	80 20	ౙ	346	3	ĝ	<u>ş</u>	£	22	8 2 2	ළි	80 20	ŝ	208 208	8	ଛ	g	ĝ	£	ĝ
			į	5	HITS	¥	3	8	¥	¥	8	ž	£	£	¥	£	g	g	£	£	8	3 8	¥	£	g	8 8	ĝ	2 8	g	ğ	8	g	8	£	8
			•		<u>\$</u>	M	4	4	0	e	9	0	0	0	0	0	2	0	~~ ~	0	m	2	2	0	0	M	м.	0	0	-	0	0	0		-
				=	ħ	₹	9	Ð	Ś	~	ŝ	=	4	2	M	~	4	4	2	4	2	2	4	0	m	~	2	ŝ	0	2	0	2	2	2	0
			Ì		9	×	N N	R FA	15	8	<u>د</u> ،	8	2	2 2	3 1	5	9	5	7 75	5	5	4 2 2	4	5	5	-	m O	5	~	m 	~	~	-	~	4
					SE	×	A TH	A TH	ъ М	ті 92	₹ 9	2	ະ 2	ы 2	≌ 22	=	2	5	3	7 2	m	2	2	⊵	<u> </u>	~ ~	8	5	~	~	ŝ	ŝ		` vo	ŝ
88	;	8	1	2	ප ස		NO.	.5 N	0	0	0	0,	, 0	м 0	0	0	ņ	m	0	ŝ	ŝ	0.	ņ	ŝ	5	ŝ	ŝ	ŝ	M	o.	ŝ	ŝ	ŝ	0	ŝ
SPEE	Z	19 19	1	8	8	Y	0 15	0 15	0 16	0 17	0 15	0 17	0 16	5	0 18	0 17	0 16	0	0 17	0 16	0 16	0 15	0 17	0 2	0	0	0 17	0 16	0 17	9 0	0 16	0 16	0 16	0 17	17 0
_	DEBS	31-00	Ì	ŝ	DIST	2	ន	ន	ន <u>្</u> ល	ສິ -	ង	สิ 	ซี -	ສິ -	ซี ส	និ 	ន	ស្ត	କ୍ଷ 	สั ส	ສ	ង	នា	କ୍ଷ _	នី	និ	ສ	ង	ก ั	ก ั	ส	និ	និ	និ 	ង
С С	FILE	DATE	ł	Ş	Æ	¥	3	3	PAYN	PAM	8	PAM	PAYM	PAM	PAW	PAYN	LPAY	LPAY	PAYN	PAY	LPAY	2	LPAY	PAYN	LPAY	3	LPAY	3	LPAY	LPAY	2	PAM	LPAY	PAYM	3
14300				K	8	8	1500	14300	1500	14300	14300	14300	14300	14300	14300	9 <u>6</u>	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300
0 0	,	•		5		₹	o	0	0	0	0	0	ò	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0
00))	LART	ļ	ų	TA I	2	00	0	00	00	0 0	00	00	0 0	00	0 0	00	0 0	00	00	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0
		ES X	i		8				5	5	4	5	5	5	5	Ś	4	4	ŝ	4	4		4	ŝ	4	4	4		4	4	4	4	4	ŝ	
					Ŧ	×	6 S.	6 5	3	3	.5 5/	50	5	3	50	3	.5 5/	5.5	500	.5 5/	.5 5/	·5 9	.5 5/	5	.5 5/	5.5	.5 5/	5.9	.5 5/	.5 5/	.5 5/	.5 5/	.5 5/	3	<u>.</u> 5 9
		FIL/F	1		5		% 8	8 8	8.4	8	9 8	8	8.4	8.7	8.7.	8.7	% 8	% 8	8.4.	% 8	% 8	8	8	8	8	% 8	8	у 8	% 8	9 8	% 8	8	9 8	8	8
		Z	i	86	Ц Ц	ſ	M	M	ž	ŭ,	بم	3	<u>к</u>	3	<u>к</u>	<u>к</u>	ž	ř٩	<u>х</u>	ж	M	м	ъ.	ж	M	ж	Ř	M	M	M	M	м.	M	<u>к</u>	M
ซีอี	5	BΥ:			2	7	100	3000	500	300	300	800	500	50	800	800	800	800	800	200	800	800	500	500	Š	ซื	ซีอ	500	800	100	80	ğ	80	ខ័	200
		PARED	:		is Q	F	2.0	5.0	5.	:5	2.0	5.	:	÷.5	1.5	5	-	 	1.5		1.5	-	<u>.</u>	÷.	1.2	:5		1.5				-	-	. 5	0.5
200	İ	W.	i		8	S	DRY	DRY	3 DRY	S DRY	DRY	3 DRY	S DRY	S DRY	3 DRY	DRY	3 DRY	DRY	S DRY	PRΥ	3 DRY	DRY	DRY	3 DRY	3 DRY	DRY	DRY	DRY	3 DRY	DRY	DRY	DRY	DRY	DRY	DRY
			i	E PRI	3	ľ	N/A	NN N	2	5.6	N/A	5.6	5.0	5	5.5	N/A	5.5	N/A	5.0	N/A	5	N/A	N/A	5.00	5.5	N/A	N/A	N/A	5.5	N/A	N/A	N/A	N/A	N/A	N/A
			ļ		S S	٩	N/N	Ň	10.2	10.2	N/A	10.2	10.2	10.2	10.2	N	10.2	N/A	10.2	N/A	10.2	N/A	N/A	10.2	10.2	N/A	N/A	N/A	10.2	N/A	N/A	N/A	N/A	N/A	N/A
κχ	500	Z	1	I	ž Ž	0	23	5	522	ŝ	522	522	52 2	233	522	52%	52	52	222	55	52 %	522	\$ 275	52%	\$ 275	522	\$ 275	522	52%	\$ 23	522	522	23	522	273
	- .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T D			VCI	z	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16
LI N	RITIC	TS AL			ł	×	E.	Ę	5	5	RET	ç	5	5	5	RET	6	R	5	RET	2	RET	RET	5	5	RET	RET	RET	Շ	RET	RET	RET	RET	RET	RET
F-16	: ST C	FFEC			Š	-	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16
	E.	1 221	Č.	Ĩ	NB1	0	R	R	8	8	R	8	~	3	8	8	8	8	8	8	88	R 	2	R 2	8	2	88	2	8	8	R	8	8	R	8
	N N	RIS S	/ FI		DNC DNC	_	KSAK	KS/MS	SL/SX	KS/JS	KS/HE	KS/JS	KS/JS	KS/JS	ŝ	KS/JS	SL/SX	KS/JS	SL	SL/SX	SL/SX	KS/HS	sr/sx	S	KS/JS	sr/sy	KS/JS	SL/SX	KS/JS	KS/JS	KS/JS	KS/JS	SL/SX	KS/JS	KS/DH
NTS	IS SI	BB	RET				88	8	1 8	8	Y 88	1 88	188	8	G 87	188	8	8	8	8	8	X 88	8	L 87	8	88	8	Y 88	8	8	¥ 88	8	8	8	88
ATSHOO	DEBX	NE 14	ar ∠G		DATE	ľ	M 80	¥ 80	02 00	02 00	W 80	8	8	23 06	03 AU	800	18 JU	18 JU	31 JU	8	18 JUI	08 MM	21 JU	31 JU	18 JUL	16 MM	18 JUL	16 MA	16 JUI	16 JUI	16 MM	16 JUL	16 JUL	00 10 10	08 MM
LERY C	, JBLE	I N		ESI	*	8	-12	-124	1-2	1-4	-13	1-1	1-19	ή	ň	<u>.</u>	ę	ņ	2/12	0	2-	-10	<u>6</u>	1/1	6 7	8	4	-13A	ņ	Ş	Ę	-	-24	12	ę
			!	-				. <u>e</u>		<u> </u>	<u> </u>	ш			<u>0</u>	<u>×</u>	<u>×</u>	. <u>×</u>	<u>.</u>	. <u>×</u>	×	<u>~</u>	<u>×</u>	0	<u>×</u>	<u>a</u> _	×	<u>a</u>	<u>×</u>	<u>×</u>	<u>a</u>	<u>×</u>	<u>×</u>	×	<u>e</u>

TABLE 15 -- DEBRIS SIZE EFFECTS (RETREAD TIRES ONLY)

1							;											-						
					õ			X	z	11 2	6 7	7 4	5	4	0 9	1 2 4	ء م	5	۳ ۲	0 2	2 0	2 0	m N	-
				Ş	HITS	5	R	INFI	INFI	6.6	11.1	13.8	14.4	16.6	20.3	2.2	26.0	26.6	29.7	40.0	41.6	52.0	57.6	80.0
					Ş	HIT :	AS	§	8	8	3 2	80 200	3£	8	35	ଛ	8 2	Ş	80 200	8	80 20	800	¥	8
					던	+ HITS	X	<u>8</u>	8	2 200 200	346	3 208	9% 0	5 400	346	3 200	3 208	007 0	1 208	200	208	208	1346	1 400
					1	15 16	A A	8	8	ŝ	~	4	4	2	4	-	2	ŝ	N	0	~	2	2	0
					Ŷ	10	¥	EFAIL	EFAIL	ŝ	F	\$	4	15	4	-	m	ŝ	m	2	-	-	~	4
					۰ ۲	s S	2	TIR	TIR	4	13	ŝ	16	4	~	4	0	ŝ		m	2	•	-	0
Ŗ	Ş				10	5	₹	S NA	A N C	ន	M	ک	5	27	3 17	5	<u>ده</u>	5	~	ŝ	ŝ	3	ہ د	ŝ
SPEED	Ś	ន	Oct-9			SPEE	¥	5.5	15.(15.(17.0	17.	16.1	15.(17	17.5	17.1	16.1	10.0	16.1	16.1	16.1	17.0	14.
	0	DEB_SI	31-Oct		P ISH	DIST	8	8 2	8 N	8 10	88 20 20 20 20 20 20 20 20 20 20 20 20 20	8 ស្ត	88 20 20 20 20 20 20 20 20 20 20 20 20 20	88 8	8000	8 N	80 20 20 20 20 20 20 20 20 20 20 20 20 20	88 20	ອ ສິ	88 83	80 20 20 20 20 20 20 20 20 20 20 20 20 20	80 20 20 20 20 20 20 20 20 20 20 20 20 20	88 200 200 200 200 200 200 200 200 200 2	2300
	• •	FILE	DATE		8	Æ	¥	8	2	2	PAYM	LPAY	PAYM	2	LPAY	8	I LPAY	8	I LPAY	8	PAYM I	I LPAY	PAYM	2
14300	14300				VERT	<u>R</u>	8	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300
C	0		2		₹	3	8	0 C	0	0 0	0	0	0	0	0	0	0 C	0 0	0	0	0 C	。 。	0	0
0	0		SCHUR		BRAKE	1X ISd	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					0EB	PAT	×	9	6	5/4	5 6/5	5/4	5/4	0	5/4	5 5/4	5 5/4	0	5/4	5 5/4	5 5/4	5 5/4	5 6/5	6 5
			L/FIE			ž	3	6.5	6.5	6.5	5.2	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	5.2	6.5
			AFU			# LTH	>	8	ğ	8	82	8	82	8	800	8	8	8	8	8	8 M	8 M	83	80 M
ฮี	ಹ		BY:		BRIS	۲۳ ۲۳	Þ	ខ	ຮັ	ซี	ซี	รั	с С	รั	ຮີ	ខ	ខ្ល	300	ຮັ	ซี	ซี	ซี	ษั	ខ្ល
	0		ÅRED		ž	D 512	F	2.00	2.00	2.00	1.50	1.50	1.50	1.8	1.50	1.50	1.50	1.50	1.0	1.00	1.0	1.8	1.50	0.50
DRY	DRY		PAG		1 S L	8	S	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
		~			IT PR	3	ľ	N/A	N/A	N/A	N/A	N/N	N/A	N/A	N/A	N/N	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A
5	ŝ	ONLY	Å		Se Pa	L S	6	5 N/A	S N/A	S N/A	5 N/A	N/N S	N/N S	2 N/A	S N/A	S N/A	5 N/A	5 N/A	5 N/A	5 N/A	5 N/A	S N/A	5 N/A	2 N/A
27.	2	TIRES	81.		111	ы. 25	°	8 27	R 27	R 27	R 27	R 27.	R 27	R 27	R 27	R 27	¥ 27.	8 27	R 27	8 27	R 27.	R 27	R 27	% 27.
	-		TICM			N AXI	2	F F-16	r F-16	F F-16	1 F-16	r F-16	r F-16	F F-16	F-16	r F-16	T F-16	T F-16	r F-16	F F-16	r F-16	T F-16	F F-16	T F-1
16 REI	16 REI	(RET)	31 00			₹	ľ	16 RE1	16 REI	16 REI	16 REI	16 REI	16 REI	16 REI	16 REI	16 REI	16 REI	16 RE1	16 REI	16 RE1	16 REI	16 REI	16 REI	16 REI
1	÷	FECTS	AL LIS	BEDS	¥) Maha	5	28	E R	28	8	88 F-1	80 F-1	R R	7 5-1	2 5-	88 F-	2 2	20		8	8	28	R
		IZE EF	N ZI	ILY ALL	2	500	u U	S/NS	SMS	SWS	SL/S	SL/S	Sr/S	SMS	Sr/S	SL/S	SL/S	SL/S	Sr/S	SL/S	SL/S	Sr/S	Sr/S	WQ/S
TS	ST	RIS S	RIS S	8		ш		× 88	× 8	8	8	8	88 K	8	%	8	8 X	8 X	% ×	× 88	86 K	%	8	8
DISTAN	WISTAN	14 DEB	DEB	RETRE		DATE	မ ၂၀	OB MAY	VAN 80	OB MAY	20 201	18 JUL	04 OCT	VAN 80	21 JUL	16 MAY	18 JUL	16 MAY	16 JUL	16 MAY	16 JUL	16 JUL	<u>Q</u> 0 <u>C</u>	VAN 80
QUERY C	QUERY C	TABLE 1			TEST	*	6	P-12A	P-12	P-13	11-X	m-X	-10 -	P-10	6-X	P-138	*-X	P-13A	X-2	P-11	X-1	x-2	X-12	80 4

The results are as expected with larger debris causing a greater level of damage. Effects appear to be fairly linear with a stone size of 1.5 to 2.0 inches becoming a limiting size. As noted in Table 14, two of the three 2-inch runs resulted in tire blowouts. Through observation of these two failed runs it is estimated that failure occurred at 10% and 50% into the testbeds for tests P-12 and P-12A respectively. Although no 1.5-inch failures are noted in these tables, it should be noted that at least one such failure did occur with the introduction of a braking variable.

With regard to larger cuts, some additional analysis was done. Figure 15 shows the results of extracting all of the cuts over 10/32 inch deep from Table 15. Although a similar trend exists, it may be that at larger diameters, the trend becomes increasingly nonlinear.

Within the test effort, shrapnel tests became a problem due to a limited availability of uniform sized shrapnel for use. It was possible, however, to obtain about 250 pieces of uniform sized shrapnel representing a 1.25-inch stone comparison. Four tests were then conducted utilizing this debris on a 250-ft testbed. These results could then be compared to 12 stone runs involving a 1.50-The results of this comparison are presented in Table 16 in in stone size. increasing order of damage. Table 16 data can be assessed in two ways, either as it stands or by application of the size effects data noted in Figures 13 and 14. As the data stands, an argument exists for higher levels of damage with shrapnel, because in general the shrapnel runs fall into the upper 50 percentile However, if size effects are applied, an even greater level of of the data. damage can be noted. More specifically from Tables 10 and 11, an approximate 1/3 reduction in damage can be realized in going from a 1.5 to a 1.25-inch size or a 150% increase for the larger size. Introducing these adjustments into the Table 16 data, it can be seen that of all tests falling into the upper 31 percentile of damage, four of them are shrapnel runs.

For the larger cut case, a second table (Table 17) is presented with a new column added. This column adjusts large cut data for both size and testbed length and presents it in order of increasing damage. Size effects adjustments were made based on the Figure 15 nonlinear size effects for deep cutting. Overall the results for large cuts are similar to the previous findings for all cuts. Two runs comprising the upper 12.5 percentile were both shrapnel. Out of the eight runs comprising the upper 50 percentile, 50% were shrapnel, and of the eight runs comprising the lower 50 percentile, none were shrapnel.

Results of both the total cuts and deep cuts data are presented graphically in Figures 16 and 17. Figure 16 presents both adjusted and unadjusted results while Figure 17 is only the size adjusted data.

Braking Analysis

A total of 17 tests were available for the braking analysis and are presented in Tables 18, 18a, 19 and 19a. Twelve of these points, however, are 0 psi baseline points, so any statistical conclusions in this area will be difficult.

The reason for the limited number of positive pressure tests can be attributed

TABLE 16 DEBRIS TYPE ANAL LIST CRITICAL ITEMS

MC MC MC MC MC MC MT PSI YW LOND VEH ED TOTA 0 11 TOT MC HITS FOR MT PSI YW LOND VEH DIST SPEED CUTS 5 10 15 14 MK MC MC MC X Y Z M. B MC MD ME ML MK ML MK MC MC K5 0 0 14,300 PMM Z300 17.0 55 13 55 13 55 13 55 57 55 77 5 577 5 577 5 577 5 5 70 86 5 77 5 577 5 5 70 86 5 77 5 5 77 5 5 77 5 5 77 5 5 77 5 5 77 5 5 77 <td< th=""></td<>
DEB BANE CM VERT PRO RUM RDD TOTA 0 11 TOT AU HITS HTS
X Y Z M
6/5 0 0 14,300 PMM 2500 16.0 70 55 736 346 4.96 14,46 6/5 0 0 14300 PMM 2500 17.0 58 35 20 5.97 2 5.97 6/5 0 0 14300 PMM 2500 17.0 58 35 2 5.97 2 5.97 2 5.97 6/5 0 0 14300 PMM 2500 17.0 51 13 51 13 5 3 4 6.78 5 7 3 3 4 6.78 5 5 7 3 3 4 6.78 5 5 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 6 6 6 6 6 6 8 10 1 10 1 10 10 10 10 10 10 10 8 10 10 10
6/5 0
6/5 0 0 14300 PMM 2500 19.5 25 11 3 2 173 15 5 5 9 5 5 9 5 5 7 1 6 7 1 1 3 3 5 1 1 5 5 7 10 8 5 7 10 8 5 7 10 8 5 7 10 8 5 11 8 5 7 10 8 5 7 10 8 5 <t< td=""></t<>
6/5 0
6/5 0
6/5 0
6/5 0 0 1(3300 PNM 2000 16.0 3 19 10 4 0.36 346 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 7 10.48 8 10.81 8 10.81 8 10.81 8 10.81 8 10.81 5 5 6 7 236 208 12.24 10 12.24 10 12.24 10 8 15 14 2 236 208 12.24 10 8 15 10 8 15 10 8 15 10 8 15 10 12 10 12 10 12 24 10
6/5 0 0 0,2300 PMM 200 18.0 2 18 11 3 0 346 10.81 8 10.81 6/5 0 0 0,4300 PMM 200 15.0 2 16 1 2 0 346 10.81 9 10.81 5/4 0 0 0,4300 PMM 200 15.0 2 16 1 2 0.26 346 10.81 9 10.81 5/4 0 0 0,4300 PMM 200 15.5 14 6 7 0 1173 173 173 12.28 10 8.15 6/5 0 0 16,300 PMM 200 15.0 2 14 2 10.81 8.15
6/5 0 0 0.200 PMM 2500 15.0 22 16 14 2 0 346 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 9 10.81 10 10 12.24 10
5/4 0 0 0.4300 LMN 2500 6.3 7 5 6 4 2308 208 12.24 10 12.24 6/5 0 0 0.4300 PMN 2500 15.3 5 5 6 7 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 12 14<.42
5/4 0 <th0< th=""> 0 0 0</th0<>
6/5 0 0 0 14300 PMM 2300 17.0 24 7 14 2 1 346 346 14.42 12 14.42 15 14.42 15 14.42 15 14.42 15 14.42 15 14.42 15 15 00 15/5 0 0 0 14300 PMM 2300 15.0 15 17 6 11 0 0 346 346 20.55 14.20 55 15 0 0 0 14300 PMM 2300 15.17 6 11 0 0 346 346 20.55 14 20.55 15 0 0 0 14300 PMM 2300 15.17 10 6 1 3 0 208 208 20.80 15 2
6/5 0 0 0 14200 PMM 200 15.5 5 5 5 7 5 8 6.00 13 16.00 13 16.00 15 17 6 11 0 0 346 346 20.35 14.20 5 16.00 14200 PMM 200 16.5 17 6 11 0 0 346 346 20.35 14.20.20.20.20.20.20.20.20.20.20.20.20.20.
5/4 0 0 1000 cm 2000 cm
05/2 0 0 014200 LMY 2000 17.1 10 6 1 3 0 208 208 20.80 15
2/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

					~	m	4	ŝ	\$	~	80	0	₽	=	₽	ť	2	ξ	2	
		~	×	ผ	4	F	9	ŝ	ŝ	4.1	4.1	4	m	m	m	M	~	0	0	
	_	8 2		6	8	R	2	8	8	Ŕ	5	84.	8	5	ġ	6	8.	พิ	F.	
	Q	ĒŞ	R	ŝ	80	v	2	4	5	₽	o	₽	ଷ	9	7	ŝ	우	ຊ	8	
		マー		š	m	Ś	80	Ś	80	ž	ы	9	80	9	\$	\$	\$	\$	ø	
			8	1	5	M N	8	м 	8	5	2	м 	8	ж .0	Ъ.	Ъ.	3	м 	8	
		₽₩	¥ H	2 17	5 12	ž	8	ž	ğ	5	5	ž	80	ž	ž	ž	ž	300	8	
		- 2 2	N N	m	m	÷	4	5	~	0	0	4	m	m	N	N	~	0	0	
		9 0	¥	ß	Ξ	8	\$	2	ŝ	2	~	<u>0</u>	-	Ξ	4	ខ	4	=	4	
		0 in		Ę	Ś	4	ŝ	ន	м	Ś	þ	5	Ŷ	<u>ه</u>	~	8	2	v vo	m	
		N ST	R	ର୍ଷ	ଷ	5	17	R	ñ	4	1 8	R	9	R	*	8	R	1	~	
	۶	68	_	9.5	0.0	2.0	6.J	6.0	6.5	9.5	0.0	6.0	2.1	8.0	2.0	7.0	<u>ۍ</u>	6.5	<u>7.</u>	
95 95	Š.	æ 55	┨	<i>#</i>	<i>*</i>	÷-	~	ř	ř	<i>€</i>	~	ř	÷-	<i>≈</i>	-	1	# ~	ř	-	
0	2		2	8	8	8	8	88	8	8	8	8	8	8	8	8	8 N	8 N	8	
		2	9	Ł	Ę	Æ	Ϋ́Υ	Æ	٨Y	Æ	H	Æ	ĂY	Æ	Ę	Ę	Æ	Æ	YX	
88	8	£₩ 59		8	8	8	ື 8	8	ື 8	8	8	8	2 8	8	8	8	8	8	5 8	
51		99	₹	3	15	153	100	153	100	153	100	143	143	153	5	153	153	15	1430	
00	2	5,	×	0	0	0	0	0	。 。	0	0	0	0	0	0	0	0	0	0	
00	LINN	¥ SI SI		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	X S	885		Ś	ŝ	ŝ	4	5	4	ŝ	ŝ	ŝ	4	ŝ	5	5	ŝ	ŝ	4	
1	19 10	82		5	5	5	55	К 9	5.5	5	5	5	5.57	5	К 2	300	500	5	5.5	
-	R F	۳Ę	3	~	~	2	Ś	~	Ś	~	~	~	Ś	~	~	~	~	~	Ś	
	R		>	พิ	พิ	8	8	8	8	พิ	พิ	8	8	8	8	8	8	8	8	
N IS	ž	RIS THE	-	SHR	SHER	ಕ	ซี	ಕ	ฮ	SHE	SHE	ซี	ಕ	៩	ಕ	ឌ	ಕ	ಕ	ಕ	
0			-	พ	Ŋ	S.	8	ŝ	នុ	Ŋ	Ń	Ř	Ņ	នុ	ŝ	8	ß	Ŗ	8	
K X	N CED	SUR SOLO	s	RY 1	2	RY	RY	2	R	۲.	2	2	۲ ۲	2	٣	٣	2	RY .	۲.	
	α.		0	-8 D	08.	.8 0	0 8°.	.8 D	.8 0	.8 D	08.	.8 D	.80	.80	.80	.8 0	.8 D	.80	.8 0	
			6	N N	N N	N N	ς γ	ς. Γ	ς. Γ	2	2	s, S	N S	N N	ŝ	2	2 2	N N	2	
kr				5	5	5	12	5	5	5	5	5	₽ 12	5	50	5	5	5	5	
22		31		5	12 35	52 35	53	53	53	58	53	5 3	53	5 3	5 35	12 35	53	12 85	5	
		Š	Z	Ę	F.	F-1	ľ	Ĩ	F.	Ę	Ę	1-1	F	F.1	Ę	F-1	F-1	F.	F-1	
55		ž	×	ç	ß	ß	ß	ß	ک د	ß	ß	6	5	ß	5	5	ß	5	Š	
1		¥	-	F-16	F-16	5-16	F-1	F-1	F-1	FI	F-1	1-1	F-1	F-1	1-1	F-16	F-1	F-1	F-1	
	ង	S E	6	8	2	8	88	8	88	8	8	NAX :	88	20	8	8	3	R	88	
	86	B IG	W	ß	R	S/JS	S/JS	ŝ	S/JS	र	ß	S/JS	sr/s	S	ų	SL/S	sr/s	S	ŝ/S	
SI	2	-		6	6	8	8	8	8	6	60	8	8	60	6	8	8	6	8	
NSTAN USTAN	NO ≿	Ĩ	lo lo	8	8	50	JL S	7 001	J T T	8	8	50		S AG	국	20	S DEC	7	2 1	
88	۲ ۲	8		-	F	8	*	6	₽	-	Ŧ	8	#	ម	ы 2	6	ส	ši T	2	
999	w	TEST *	0	N	<u>5</u>	E1-1	2 2-2	E1-2	X-7	2-5	₹		80 ×	<u>n</u>	122	E1-4	r <u>,</u>	1/10	Ň.	

TABLE 17 DEBRIS TYPE ANAL LIST CRITICAL ITEMS GY ONLY ALL BEDS (DEEP CUTS ADJUSTED)

TABLE 18 BRAKING ANAL LIST CRITICAL ITEMS (GY ONLY ALL SIZE BEDS)

									•						•			• • •	• • •	•				
				Ĩ	HITS	FOR CUT	R	76-7	5.16	5.97	6.78	10.48	10.81	10.81	11.93	11.93	12.24	13.31	14.42	15.73	16.00	20.35	20.80	29.71
					Ş	H17	S	346	346	346	346	35	346	346	346	346	208	346	346	346	208	346	208	208
					101	51 HI TS	M AR A	0 346	1 346	1 346	0 346	0 346	0 346	0 346	1 346	1 346	2 208	0 346	1 346	0 346	3 208	0 346	0 208	0 208
					:	15 16	 	ŝ	12	~	:	4	m	~	~	4	t,	ŝ	~	m	~	0	m	0
					\$	5	¥	£	16	2	26	9	:-	4	5	9	9	•0	14	=	Ś	:	•	t
					0	5	R	20	8	ŝ	14	\$	38	16	Ę	4	Ś	5	~	ø	m	ò	Ŷ	m
ຄ	ຊ				101	213	A	2	67	58	5	R	22	33	ጽ	ని	17	26	54	22	ñ	17	9	2
SPEED	SPEED		oct-91		850	SPEED	AE	16.0	16.0	17.0	17.0	16.0	18.0	15.0	17.0	18.0	16.3	14.0	17.0	10.3	16.5	16.5	17.1	17.3
	0	BRAKE 17	31-oct		PUSH	DIST	R	2300	2300	2300	2300	2300	2300	2300	2002	2300	2300	2300	2300	2300	2300	2300	2300	2300
	0	ΞE	DATE		Q.	ÆH	PC	AYM	PAYM	PAYM	AYM	AYM	MYM	AYM	AYM	AYM	PAY.	AYM	AYM	AYM	PAY	AYM	PAY	PAY-
1300	1300	_			/ER1	8	B	1300	1300 1	1300	1 0021	1300	1 005	1300 1	1300	300	1300 1	1300 1	1300	1300	1300 1	300	300 1	300
10	0 12				¥		×	10	0 12	0 12	10	10	10	0 12	10	0 14	10	10	0 1	0 12	0 14	0 14	0 14	0 14
0	o		213		ບ 	YAU	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BRAKE	0		CHUAG		BRAKE	ISd	>	0	1040	0	0	0	0	0	800	200	0	ŝ	0	500	0	0	0	0
			K S		89	PAT	×	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	5/4	6/5	6/5	6/5	5/4	6/5	5/4	5/4
ĺ			FIVE		BED	HEA	3	К.7	5.7	К.7	5.2	5.7	К.7	К.7	К. ~	К.7	6.5	К.7	К.7	5.2	6.5	5.2	6.5	6.5
			WRDC/		BED	Ľ	>	<u></u>	ŝ	ğ	20	20	20	20	20	20	ğ	200	500	<u>8</u>	300	200	300	30
	2				S	LYPE		۔	ي لير	ಸ	7	يد	2	يد	يد	۔ بر	ج	2	ي	2	2	بر	ਦ	 بر
	0		0 8		DEBRI	I ZE		50	50	50	50 Ct	50	50 CF	200	50	50 53	50	50 53	50	50	50 CF	50 53	53	500
7	7		EPARE		Ъ,	SING		۲. ۲	۔ ۲	۲. ۲.	۲.	۲.	۲. ۲	۲. ۲.	۔ ۲	×	۲. ۲.	۲. ۲.	۔ ۲	- -	- -		-	- -
ă	ă		<u>x</u>		RNT SI	о т	S	8 DR	.8 DR	.8 DR	8 DR	8 DR	8 08	8 DR	8 DR	8 DR	8 DR	8 DR	8 DR	8 DR	8 08	8 DR	8 DR	B DR
					ENT P	-		2	2	2	2	2	2	2	2	2	2	5 1	2 2	2	2. 2	2	2	2 2
5	5				R PR	S		5 30.	5 50.	5 30.	5 10.	5 10.	5 0.	5 5	5 5	ë.	5 5	°.5	5 5	5 30.	5 10.	5 5	5 0.	5 10.
27	27		TENS		Ē	Вd З.	°	R 27	2 24	R 27	¥ 27	27.24	22.34	2 24	22.4	4 27	R 27	22.04	4 27	R 27	8. 27. 7.	R 27	R 27.	R 27
			ฐ			AXL	Z	1-16	5-16	5	5	F.1	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16
۲. ۲	S S		E			MAN	×	5 6	5.0	5 GY	ς G	S GY	۶ ۲	۶ ۲	₹ 2	γ Ω	۶ G	2	۲ ۲	<u>کر</u>	<u>ک</u>	۶,	ξ	5
Ē	Ĩ		IST	ß		PA/C	-	<u>-</u>	5-16	Ĩ	Ē	5	5-1	1	1-10	5.16	E E	Ĩ	5	F-10	5	1-1	F-16	F-16
î	^		¥L L	IZE B	SH S	1EM	9	3	192 (19	3	8 8	~	8	5	87	8	8	2	8	සි	 8	2	8	۰. ۲
		1	NG A	ILL S.		ENG	Ψ	KS/JS	KS/JS	;r/s)	KS/J	KS/J	SL	KS/JS	s	s	KS/J	SL	SL	S	KS/JS	SL	KS/JS	SL/SX
NTS	SIN		BRAKI	NLY A				88	88	8	88	8	3 87	8	3 87	3 87	8	. 87	. 87	3 87	8	87	8	8
NSTA	NSTA		8	0 2		ATE	ľ	20	20	3 80	8 8	8	JA AU	3 25	13 AU	k AU	10r 81	10r 03		NA EU	10r 8,		101 8	101 9
א ג	א מ		TABLE		<u>ب</u>	ы		2	17 0	4	- -	19 C	0	~	0	0		'n	12 3	0		11	•	ښې
3	۳. ۲				TES	** 	6	Ē	-18	÷.	<u>L</u>	- 18	<u>5-</u> 0	<u>.</u> -	<u>~</u>	7-1 ¦	9-X-	ŗ.	20	9-1	×-∧	10	8-X	Ś.

TABLE 18ª BRAKING ANAL -- LIMIT CUT DATA (ALL STONES & 1.5 DIA STONES)

1.5 IN LINIT ADJ HITS TO CUT AVGS	173.0 69.2 31.5 115.3 0.0 115.3 86.5 88.26 69.2 115.3 2 115.3 2 69.2 2 69.2 2 65.2 2 66.2 2 66.61	
LIMIT ADJ HITS TO CUT AVG	7.28 8.0 15.3 1	
	22000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TEST	81-1-2 81-1-2	
<u>x</u>		•
E	2.5.5 2.1.5 2.1.5 2.5 2.1.5	
ALL t CUTS 1050	5.16 5.16	1
ALL CUTS 500	13.31 15.73 14.52	
ALL Z00	11.93	
ALL S CUTS CO ZERO	7.97 7.97 7.97 7.97 7.10 10 10 10 10 10 10 10 10 10 10 10 10 1	
1.5 CU1 CU1	4.97 5.97 6.77 10.81 10.81 10.81 10.81 10.81 10.57	
ADJ HITS FOR CUT	AL 20.00 11.03 16.00 10.01 10.01 10.00 10.	
L L L L L L L L L L L L L L L L L L L	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	_

+

,

۵

.

 TABLE 19--BRAKING ANAL LIST CRITICAL ITEMS

 (GY ONLY 6/4 BEDS)

QUERY CONSTANTS> F-16 GY Z75 DRY O 0 14,300 O 0 seeE0 0 11LE BRAKING MDI MDI GY ONLY 6/4 BEDS TARL FIETHAL PREPARED BY: AFMAL/FIETHA/X SCHMARTZ DATE LE BRAKING ANDI ADI GY ONLY 6/4 BEDS TARL PANT SURF DEBAIS BED DEB BRAKE CAM VERT PRO DV V V <t< th=""><th>OUER</th><th>20</th><th>WSTANT:</th><th>S</th><th>^</th><th>F-16</th><th>GY</th><th>275</th><th></th><th>DRY</th><th></th><th></th><th></th><th>6/5 BR</th><th>RAKE O</th><th>0</th><th>14300</th><th>_</th><th>S</th><th>PEED<2</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	OUER	20	WSTANT:	S	^	F-16	GY	275		DRY				6/5 BR	RAKE O	0	14300	_	S	PEED<2	0							
TABLE FILE BRAKING Multication FILE BRAKING Multication Mole	OUER	<u>S</u>	WSTANT	ss		F-16	G۲	275		DRY	0 CRL			6/5	0	•	14300	0	IS O	PEED <2	0							
TABLE 19-BRAKTING AMAL LIST CRITICAL ITEMS NALL FIGNE 31-OCT 00:1-91 ADJ TEST CRITICAL ITEMS REPARED BY: AFMAL/FIGNB/X SCHMART2 DATE 31-OCT 00:1-91 ADJ ADJ GY ONLY 6/4 EDS TRE PANU PANT SURF DEBRIS BED BEB BRAKE CAM VERT PRO PUSH BED TOTA 0 6 11 TOT ADJ TEST TEST TEST TEST ADJ ADJ TEST TEST TEST TEST TEST TEST TEST ADJ ADJ ADJ TEST TEST TEST TEST ADJ ADJ TEST TEVE LITH WITH PAT PSI TAU LU V V ADJ TEST TEST TEST TEST TEST TEST TEST TEST <th colspan="1</td> <td></td> <td>FILE</td> <td>RAKING1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																		FILE	RAKING1									
GY ONLY 6/4 REDS FIRE PRIV Form Pany Rups User DEBRIS BED DEB BRAKE CAM VERT PRO PUSH BED TOTA 0 11 TOT ADJ # DATE ENG TEMP A/C MMA TIRE PANY PANY SURF DEBRIS BED DEB BRAKE CAM VERT PRO PUSH BED TOTA 0 6 11 TOT ADJ HITS FOR # DATE ENG TEMP A/C MAN AXLE PRES L U V W X Y Z AD A AC AD AC AD AL AN	¥ 	BLE	19BRJ	AKING AN	IAL LIS	IT CRI	TICAL	I TEMS		PREPA	RED 8Y:	AFWA	L/FIEM	B/K SC	CHUART	2		DATE 3	1-0ct 0	:t-91								
TEST ANB TIRE PRIVE PRIVE PRIVE DATE SURFED RED DEB BRAKE CAN VERT PRO DUSH DED TOT ADJ HITS FOR # DATE ENG TEMP A/C MX X Y Z M VERT PRO 0 11 TOT ADJ HITS FOR # DATE ENG TEMP A/C MX X Y Z AN AC AD AE AI		-	GY ONLY	Y 6/4 BE	DS																						VDJ	
# DATE ENG TEW AL MIL PRE L U CND Size TAL AL	TEST				AMB			TIR	E PRNT	PRNT SURF	DEBRIS	BED	BED	DEB BR	RAKE	CAM	VERT	PRO	HSU	BED	TOTA	0	9		101	rg	HITS FOR	~
B C E G I V	*	â	ATE	ENG	TEMP	A/C	NAN	AXLE PRE	S L	N COND	SIZE TYPE	LTH	HIN	PAT P	SI YA	3	LOAD	VEH	DIST	SPEED 1	CUTS	ŝ	0	5 16+	HITS +	Ĩ	С1	
[E1-2 07 07 05	60		- - -	ш	0	-	×	2	•	0) L	>	>	×	7	A	BB	AC	AD	AE	AI	R	X	W	AR AS		AU	
BT-17 04 OCT BKS/JS 78 F-16 77 6/5 10 0 14300 PAYN 2300 16.0 67 38 16 12 1346 346 5.97 [E1-4 07 OCT 86 KS/JS 75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYN 2300 17.0 51 14 26 11 0 346 5.76 [E1-1 04 OCT 86 KS/JS 76 16 7.75 6/5 0 0 14300 PAYN 2300 17.0 51 12 346 10.48 [E1-1 04 OT 86 KS/JS 75 6/5 0 0 14300 PAYN 2300 15.0 346 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.46 10.48 10.46 10.46 10.46	E1-2	ö	7 OCT &	36 KS/JS	99	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	5.2	6/5	0	0	14300	PAYM	2300	16.0	2	02	2	0	346	146	76.7	
[E1-4 07 OCT B6 KS/JS 62 F-166 75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 17.0 58 35 20 2 1346 5.97 [E1-1 04 OCT 86 KS/JS 75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 18.0 33 19 10 4 0346 346 10.48 10-3 33 DS LG F-166 77 F 0 0 14300 PAYM 2300 18.0 346 10.81 10-3 03 AUG S7 VS 5 0 0 014300 PAYM 2300 18.0 346 10.81 13-3 23 DS F 16 77 50 0 0 14300 PAYM 2300 17.0 29 1346 11.93 10.81 11.93	87-1	6 ~	4 001 8	SL/SX &	78	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	2.7	6/5 10	070	•	14300	PAYM	2300	16.0	67	88	10	2	346	146	5.16	
[E1-1] 04 OCT 86 KS/JS 76 F-166 27.75 6/5 0 0 14300 PAYM 2300 17.0 51 14 26 11 0 346 54.6 5.78 BT-19 04 OCT 86 KS/JS NA F-166 77 10.2 5.8 Dry 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 16.0 33 19 10 4 0 346 10.48 10-3 304 87 1-16 CYT 5.0 7.75 6/5 0 0 14300 PAYM 2300 15.0 2346 10.48 10-3 03 AUG 87 15 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 15.0 2346 11.93 11.93 11.93 11.93 11.93 11.93 11.93 11.93 11.93 11.93 11.93 11.93 11.93	E1-4	ö	7 OCT 8	36 KS/JS	62	F-16	с F.	-16R 275	10.2	5.8 DRY	1.50 CRL	500	7.75	6/5	0	•	14300	PAYM	2300	17.0	58	ŝ	ខ្ល	2	346 3	146	5.97	
BT-19 04 OCT BK S/JS N/A F-16K Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 16.0 33 19 10 4 0 346 346 10.48 10-3 03 MUG B7 -16 C7 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 18.0 32 18 11 3 0 346 346 10.48 1-3 03 MUG 87 JS 42 F-16K 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 17.0 29 11.93 11-4 04 MUG 87 JS DCRL 500 7.75 6/5 200 0 14300 PAYM 2300 18.0 27 10.2 5.8 DKY 15.0 CRL 500 7.75 6	E1-1	ð	4 OCT 5	36 KS/JS	26	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	2.7	6/5	0	•	14300	PAYM	2300	17.0	51	4	8	•	346 3	346	6.78	
10-3 03 AUG 87 JS 81 F-16 GY F-16R 275 10.2 5.8 DY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 18.1 3 0 346 346 10.81 J-3 23 DEC 86 KS/JS 42 F-16 67 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 15.0 32 14 2 0 346 310.81 11-3 03 AUG 87 JS 42 F-16 67 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 17.0 29 11 93 46 11.93 11-4 04 AUG 87 JS 90 F-16 677 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 200 0 14300 PAYM 2300 18.0 2 346 11.93 11-4 04 AUG 87 JS 91 F-16 677 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 14300 PAYM 2300 14.0 2 346	1-1-	ð	4 OCT 8	36 KS/JS	N/A	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	5.2	6/5	0	•	14300	PAYM I	2300	16.0	33	6	2	4 0	346	346	10.48	
J-3 23 DEC 86 KS/JS 42 F-166 CY F-168 Z75 70.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 15.0 32 14 2 0 346 11.93 11 3 03 AUG 87 JS 87 F-166 CY F-168 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 200 0 14300 PAYM 2300 17.0 29 11 19 11-4 04 AUG 87 JS 90 F-166 CY F-168 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 200 0 14300 PAYM 2300 18.0 2 11.93 11-4 04 AUG 87 JS 90 F-166 CY F-168 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 14.0 2 13.31 11-5 30 JUL 87 JS 91 F-166 CY F-168 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYM 2300 14.0 2 14.42 14.42 14.42 14.42 14.42 <td><u>0</u></td> <td>9</td> <td>3 AUG 8</td> <td>37 JS</td> <td>81</td> <td>F-16</td> <td>GY F-</td> <td>-16R 275</td> <td>10.2</td> <td>5.8 DRY</td> <td>1.50 CRL</td> <td>500</td> <td>5.2</td> <td>6/5</td> <td>0</td> <td>•</td> <td>14300</td> <td>PAYM</td> <td>2300</td> <td>18.0</td> <td>32</td> <td>8</td> <td>=</td> <td>0 2</td> <td>346 3</td> <td>546</td> <td>10.81</td> <td></td>	<u>0</u>	9	3 AUG 8	37 JS	81	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	5.2	6/5	0	•	14300	PAYM	2300	18.0	32	8	=	0 2	346 3	546	10.81	
11 3 03 AUG 87 JS 87 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 200 0 0 14300 PAYM 2300 17.0 29 11 15 2 1 346 346 11.93 11-4 04 AUG 87 JS 90 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 200 0 0 14300 PAYM 2300 18.0 29 14 10 4 1 346 346 11.93 11-5 30 JUL 87 JS 91 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 14.0 26 15 6 5 0 346 346 13.31 122/12 31 JUL 87 JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 17.0 24 7 14 2 1 346 346 14.42 122/12 31 JUL 87 JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 0 346 346 14.42 121/16 131 JUL 87 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 0 346 346 14.42 101/11 31 JUL 87 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 0 346 346 14.42 101/11 31 JUL 87 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 10.3 22 8 11 0 0 346 346 20.35 101/11 31 JUL 87 JS 78 F-16 GY F-16 CY F-	<u></u> ~	2	3 DEC 8	36 KS/JS	5	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	5.7	6/5	0	•	14300	PAYM	2300	15.0	32	2	14	2	346	246	10.81	
11-4 04 AUG 87 JS 90 F-16 GY F-16 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 200 0 0 14300 PAYM 2300 18.0 29 14 10 4 1 346 346 11.93 11-5 30 JUL 87 JS 91 F-16 GY F-16 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 14.0 26 15 6 5 0 346 346 13.31 122/12 31 JUL 87 JS 82 F-16 GY F-16 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 17.0 24 7 14 2 1 346 346 14.42 122/12 31 JUL 87 JS 82 F-16 GY F-16 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 346 346 14.42 101/11 31 JUL 87 JS 78 F-16 GY F-16 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 00 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 346 346 20.35 101/11 31 JUL 87 JS 78 F-16 GY F-16 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 00 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 346 346 20.35	m 	6	3 AUG 8	37 JS	87	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	5.2	6/5 2	000	0	14300	PAYM	2300	17.0	5	=	5	2	346 3	346	11.93	
11-5 30 JUL B7 JS 91 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 14.0 26 15 6 5 0 346 346 13.31 122/12 31 JUL B7 JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 24 7 14 2 1 346 346 14.42 11-6 03 AUG 87 JS 80 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 346 346 15.73 101/11 31 JUL B7 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 16.5 17 6 11 0 0 346 346 20.35	7-1	2	4 AUG 5	37 JS	8	F-16	GY F-	-168 275	10.2	5.8 DRY	1.50 CRL	500	2.7	6/5 2	000	0	14300	PAYM	2300	18.0	29	14	2	4 1	346 3	146	11.93	
22/12 31 JUL B7 JS B2 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 24 7 14 2 1 346 346 14.42 11-6 03 AUG B7 JS 80 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 346 346 15.73 101/11 31 JUL B7 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 16.5 17 6 11 0 0 346 346 20.35	-1-2	ň	3 JUL 8	37 JS	5	F-16	GY F-	-168 275	10.2	5.8 DRY	1.50 CRL	500	2.73	6/5 5	000	•	14300	PAYM	2300	14.0	26	5	9	2	346 3	146	13.31	
11-6 03 AUG 87 JS 80 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 500 0 0 14300 PAYM 2300 10.3 22 8 11 3 0 346 346 15.73 (01/11 31 JUL 87 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 16.5 17 6 11 0 0 346 346 20.35	D2/1	5 M	1 JUL 8	37 JS	82	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	200	7.75	6/5	0	•	14300	PAYM	2300	17.0	24	~	7	2	346 3	146	14.42	
101/11 31 JUL B7 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 16.5 17 6 11 0 0 346 346 20.35	1-6	8	3 AUG 8	37 JS	80	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	5.23	6/5 5	000	0	14300	PAYM	2300	10.3	22	80	5	0	346 3	946	15.2	
	1/10	5	1 JUL 8	SL 71	78	F-16	GY F-	-16R 275	10.2	5.8 DRY	1.50 CRL	500	5.7	6/5	0	0	14300	PAYM	2300	16.5	17	•0	Ξ	0	346 3	46	20.35	

TABLE 19a BRAKE PRESSURE/DRAG RELATIONSHIP

AVAVERAGE OF MEAN DRAG	142 522 1085 2751	
AVERAGE OF PEAK DRAG	1321 1729 1979 3770	
BRAKE	1000 1000	-

to difficulties encountered in the brake control system and the nonrepresentative mass of the test vehicle. For the F-16 aircraft, two brakes are utilized to arrest a 25,000 to 35,000 pound vehicle. In the test setup, however, a single brake is utilized to arrest a mass of 50,000 to 60,000 lbs or almost four times the real requirement.

For the test itself, only a comparative attempt was introduced whereby various brake pressures were applied just prior to testbed entry and released at testbed exit. This requirement in conjunction with a poor brake control system setup resulted in questionable brake pressure values. A number of trail tests were conducted noting deceleration and testbed speed behavior, and it was concluded that brake pressure values could be off as much as 175 psi. To help offset this fact, loads data was analyzed to note drag effects as related to brake pressure. The objective here is to make drag rather than pressure an available comparison for anticipated future statistical studies. A summary of this drag analysis is noted in Table 19a where the average of all tests for peak and mean drag values were computed. A limited analysis of the Table 18 and 19 data was conducted in this report and is summarized in Figures 18 and 19. The results presented represent all cuts and no conclusive trend becomes apparent although one might conclude that at drag loads above 1100 lbs significantly increased cutting does result. For beyond limit cuts it was originally thought that a significant trend would result toward more cuts and higher braking. However, as Figure 19 illustrates limit cuts seem to hold constant up to some value beyond 500 psi (approx. 1100 lbs drag) at which point original thinking may hold true. Table 19 data for only 1.5 in debris have been included on Figure 18. For this case, a trend toward reduced cutting up to 500 psi brake pressure exists followed by increased cutting beyond 500 psi.

Considering the previously noted trends several notes of caution are in order. First the potential + 175 psi pressure scatter has not been factored into any data and should be considered in any future analysis. Also the amount of data generated at certain points may or may not hold statistical significance and must be considered accordingly in anticipated future statistical studies. Finally future tire cutting T&E programs should include further braking runs to permit firm conclusions to be drawn in the area.

Combined Braking/Yaw

Data for a combined braking/yaw trend analysis was extracted and is presented in Tables 20, 21, and 22. Data points are noted graphically in figures 20 and 21. From these figures, the effects of increasing damage at higher yaw angles is apparent, with 30-50% reductions being noted with the addition of braking. This fact reinforces the findings of the previous section in that braking may not be as critical as originally anticipated. The fact that braking may serve to actually reduce damage could well be true in that theories can be offered as to why this might occur. Typical theories might include localized heating effects or a tendency for the tire to generate a rolling effect on debris when encountered. It should also be noted that these effects apply only to the 200 and 500 psi values tested and for hard braking, the resulting trend may well reverse itself. Several potential trends can be noted from the data; however, additional testing with a refined brake control system will be required if a firm grasp of these effects is to be attained.

5	CONSTANTS		1	F-16 G		N	ĸ		18					S	BRAKE		21430			E S	8											1
5	I CONSTANTS			F-16 G	≻	N	к		8	7	008			ŝ	BRAKE	_	0 1630	ິວ	5	E S C	8											
																		FILE		×												
	TABLE 20		0.88	KING	A B	۲ ۲	۲ اکا	RITIC	₹ ₹	BMG) BY:	Å	L/FIE	ž	MHOS	Ę		DATE	3404	ti B	5											
	57 6/4 L	BEDS INC	8	PRESS		۲												8	38 QC								Ş					
TEST		-	ŧ			F	R R		RUT S	R	CER IS			Ø	BRAK	3	E E E E E	8	EST T	Ħ	2	0 4	°	٦	5	Se L	HITS F	ş				
*	DATE	S		ž	₹ ₹	ы Ц	ន្ល	_	а з	IS OO	EE E	5	Ē	PAT	15	ş	ġ	Ē	DIST	8	8	S S	2	ξ	≣ 5_	IS HIT	5					
00	u	w	6	×	Z				S		-	>	3	×	 	2	N N	×	8	¥	 	2	¥	ן₹	A A	8	R	0 DEG	1 DE	330	l g	
1-19	7 04 007 84	\$ 15/15	2	F-16 G	Y F-1	58	800	2	8.090	۲ 1.5	20 CM	8	5.7	\$	<u>3</u> 6	0	3150	D PAM		10	9 0	88	5	얻	1 2	38	5.1	5.16	_		Ę	5
2-	O5 ALC S	23	ଷ	F-16 G	Y F-K	\$3 \$5	К 8	2	80.00	1.5	20 00 00	8	5.7	\$	8	m	1630	D PAM	202	m -	80 17	ъ С	ស	0	Ж 0	38	6.18	~		0	18 6.	8
8	OF ALC S	7.55	Ş	F-16 G	Y F-16	53	К 6	2	8.00	1.5	00 00 00 00	8	5.7	\$	8	m	0.51 0	D PAM		м м	ío O	2	₽	ø	N N O	38	6.7	~		0	0 20	8
4-79	OK ALG 8	2, F	8	F-16 G	Y F-1	\$3 \$5	к 5	N N	8.00	Y 1.5	20	ß	5.2	S	ଞ୍ଚ	m	2010	O PAM	2002	ë	S.	2	କ୍ଷ	Ś	ي م	8 8	2.06	.0		~	х 6	8
J-18	OK AUG 8	Z, S	k	F-16 G	Y F-1	3 5 7 7	к 5	N N	8.08	1.5	80	8	5.7	S	8	m	500	D PAN	2002		0. 14	BX m	4	4	ž	38	7.21			~	2 0	8
1-12	OK AUG SI	2 2 2	8	F-16 G	Y F-1	%	к 5	ς. Ν	80.00	۲ 1.5 د:1	80	8	5.7	\$	8	m	2010	MM O		ŝ	9 0	8	5	m	ž	8 8	7.36			~	8 9	8
1-15	OS AUG SI	2, 2	8	5450	Y F-1	3 53	к 5	1 1 1	8.00	۲ 1.5 ۲	800	8	5.7	\$	Ş	-	500	MMA 0		~	ŝ	2 5	4	9	ž	8 8	9.61		9.6	_	=	*
21-12	OS ALG S	Z, L	88	F-16 G	Y F-1	53 56	к 5	2	8.08	۲ 1.5	80	8	5.7	\$	ଞ୍ଚ	-	2430	O PAN		11.	Při M	1	4	9	Ň	38	9.8	~	9. 8	~	Ę	3
7-15	OS ALLG ST	7 JS	8	F-16 G	Y F.K	53 53	к 6	N N	80.83	1.5	20	8	5.7	\$	§	-	8910	O PAM		9	M N	2	1	m	ž	8	10.81	_	10.81		=	*
7	OF ALLE B	22	8	F-16 G	Y F-1	83	к 5	N N	8.08	7 15	80	8	5	\$	8	- -	1630	O PAN		1 <u>8</u>	Ri Q	4	9	4	ž	8	11.93	11.93			Ę	2
<u>r</u> i	CB ALC S	2	8	F-16 G	Y F-14	53 55	ю 5	ς Ν	8.08	1.5	90 05 05	8	5.7	\$	ଞ୍ଚ	0	55	O PAN	2022	7.	Ni Q	Ξ	ťΰ	2	ž	38	11.93	11.93			Ξ.	5
<u>1</u> .	30 JLL 82	5	2	F-16 G	Y F-1	53 53	к 6	ς. Ν	808.	1.5	20	8	3	\$	8	0	201	O PAN		14.	0	ະ ອ	9	ŝ	ž	8	13.31	13.31			=	5
5-1	O5 ALC S	23	8	F-16 G	۲ ۲-۲	53 56	к 5	5 2	808	۲ 1.5	ਲ 80 92	8	5.7	\$	8	-	500	0 PAM		5	N N	5	9	Ś	х М	8	15.0 <u>4</u>	. •	1 2	. •	Ë	*
<u>9</u>	03 AUG 8	2,2	8	F-16 G	Y F-X	5 5	к 5	ς Ν	808	7 1.5	20	8	К.7	\$	ß	- 0	1430	0 PAM		9.	N M	8	=	m	Ř	*	15.73	5.3			Ξ.	5
_																																

s

\$

٠

TABLE 20 COMBINED BRAKING/YAW ANAL LIST CRITICAL ITEMS (GY 6/4 BEDS INC POS PRESSURE ONLY) TABLE 21 COMBINED BRAKE/YAW (ALL BRAKE PRESSURES INCLUDED)

				-																																
				P N	HITS FOR	5	R	2.77	4.33	4.X	5.09	5.97	6.18	6.78	6.78	6.92	7.06	7.21	7.36	9.61	9.89	9.89	10.48	10.81	10.81	10.81	11.93	11.93	12.36	13.31	13.84	14.42	15.04	15.73	19.22 35 25	<u>8</u> .5
						ITS HIT	R AS	5 36	1 5 376	5 <u>7</u> 6	5 X 2	5 25	1 6 316	1 6 3 <u>1</u> 6	49 349	1 5 376	1 5 376	8 8 3 78	1 5 316	49 349 49	1 5 3 <u>7</u> 5	8 7 8	49 X 9	5 X	1 5 345	5 35	49 346 16	48 346	49 346	1 6 316	5 35	1 5 3 <u>7</u> 6	F 379	5 35	5 25 25	1 5 250
					-	5 14 H	L AN A	5 0 3	6 23	503	2 33	2 1 3	6 03	1 03	4 13	1 13	6 23	4 13	м м м	6 13	6 0 3	2 0 3	4 03	2 03	м 0 М	м 0 М	4 13	2 3	2 0 3	5 03	0 3	2 13	5 03	2 O 3	00	5 00
					vo	₽	×	19	19	ñ	0	ຊ	ខ	ž	œ	9	ର	17	5	14	12	0	9	14	1	17	9	5	4	\$	~	14	Ŷ	;	m;	=
					0	Ś	R	5	ß	ß	ŝ	ŝ	2	14	ጽ	Я	5	ጽ	ଷ	ñ	1	5	\$	16	18	12	14	=	ង	5	ង	~	12	œ	<u>ۍ</u> ،	\$
ଛ	ຂ				TOTA	ars	₹	ß	8	R	8	ß	ጽ	5	2	ß	ç	\$	47	ጽ	ŝ	ŝ	R	2	2	2	ጽ	ଛ	82	8	ß	54	ង	ង	<u>8</u> ا	12
SPEED	SPEED		Oct-91			SPEED	¥	11.0	15.0	16.0	14.5	17.0	3.8	17.0	13.5	15.0	10.5	1.0	5.0	7.5	11.3	13.8	16.0	15.0	18.0	10.5	18.0	17.0	16.0	14.0	16.5	17.0	12.5	10.3	1.1	16.5
	0		: 31-Oct		PUSH	DIST	\$	88 N	88 2	2000	2300	8 1 1 1	88	88 10 10 10 10 10 10 10 10 10 10 10 10 10	8 พิ	2002	00 20 20 20 20 20 20 20 20 20 20 20 20 2	002 1	80 20 20 20 20 20 20 20 20 20 20 20 20 20	002 1	ອີ ສິ	88 20 20 20 20 20 20 20 20 20 20 20 20 20	80 20 20 20 20 20 20 20 20 20 20 20 20 20	80 20 20 20 20 20 20 20 20 20 20 20 20 20	88 81 -	88 10 10	00 20 20 20 20 20 20 20 20 20 20 20 20 2	88 87 -	คุณ -	ด พี	2000	80 20 20 20 20 20 20 20 20 20 20 20 20 20	2300	88 87	88 N 8	
	-	FLE	DATE		8	Ē	¥	PAN	PAN	PAM	PAM	PAW	PAM	PAY	PAN	PAY	PAN	PAN	PAN	PAY	PAN	PAYN	PAYN	PAY	PAN	PAN	PAM	PAY	PAY	PAY	PAY	PAN	PAN	PAN	PAM	PAT
14300	14300				K	8	2	14300	14300	14300	14300	00571	00271	14300	<u>88</u>	16300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300	14300
0	0		•••		₹	_	₹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	D
ŝ	0		T N	9	₩	IYA	~	\$	£ ₽ 0	0	¶ 0	0 0	£ 0	0 0	₩ 0	ç 0	£ 0 ₩	₩ 0	۲ 0	Ŧ	Ŧ	? ∓ 0	0 0	0	0	Ŧ	0 0	0 0	+0	00	0-1	0	Ŧ	0 0	2 ° 0	о 0
BR			ES V		88 88	8							3				8	3	ຂ.	3	ຊ 					3	ຂ ເຄ	2		3			ຂ	3		
3	3					PA	×	5 6/	50	3 6	5 6.	5 6/	5.0	З С	5.0	5 6/	5	5 6	5 6/	3	5 6.	5	5 6/	5	ъ 20	5	5 2	\$ \$	у С	3	5	5 6	5	50%	5	<u>ک</u>
			AL/FI			Ē	3	7.7	7.7	2.7	7.7	7.7	7.7	7.7	7.7	7.7	2.7	7.7	1.7	7.7	1.7	7.7	7.7	~	7.7	1.7	7.7	2	1.7	7.7	7.7	7.7	7.7	~~	~	7.7
			P			E	>	8	80	80	8	88	88	88	88	88	80	38	80	80	8	80	8	ß	ß	<u>8</u>	<u>8</u>	8	8	80	<u>8</u>	80	<u>8</u>	<u>8</u>	8	8
	0 0 0		KED BY:		DEBRIS	size type	J	.50 CRL	.50 CRL	.50 CR	.50 GR	.50 CRL	.50 GRL	.50 CRL	.50 CRL	.50 CRL	.50 CRL	.50 CRL	.50 CRL	1.50 CRL	50 CRL	.50 CRL	.50 CRL	50 CRL		.50 GR	.50 GR	.50 GR	.50 CRL	.50 CRL			.50 CRL	.50 CRL	.50 CRL	.50 CRL
λ¥	Ϋ́	â	REPA		SUR 1		s	Ϋ́	RY ,	٣	٣	۲	2	٣	٣	2	۲. ۲	R۲ ۱	٣	۳۲.	۳.	۴.	۳۲.	₹Y.	۳.	۳.	₹.	₹	RY.	٣	RY.	ž	<u>۲</u>	2	2	۲
	-	INCLUDE	a		IT PRNT	3	a	5.8 0	5.8 0	5.80	5.8 D	5.80	5.8 D	5.8 D	5.8 D	5.8 D	5.8 D	5.8 D	5.8 0	5.8 0	5.8 0	5.8 0	5.8 D	5.80	5.8 D	5.8 D	5.8 D	5.80	5.8 0	5.8 0	5.8 D	5.8 D	5.8 0	5.8 D	5.80	5.80
		URES			8 2	ך S	٩	10.2	10.5	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	2	10.2	10.2	10.2	6.5	10.2	10.2	5	10.2	10.2	10.2	10.2	10.2	0	10.2	10.2
ŝ	ĸ	PRESS			T	۳. ۲	P	5	52 2	522	52	522	52	52	522	522	522	522	522	222	500	522	8 23	52	53	52	522	ž	522	52	52	\$ 275	222	222	5	22
×	×	BRAKE		ESSURE		N VCI	z	Y F-16	Y F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	/ F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16	r F-16
16 6	·16 G	F		8		₹ Ω	×	16 0	16 0	16 0	16 G	16 G	16 0	16 0	16 0	16 G	16 G	16 G	16 0	16 0	16 0	16 0	16 G	16 G	16 0	16 0	16 0	16 0	16 0	16 0	16 6	16 G	16 G	16 G	16 G	5 0
÷	÷	JE/VAU		C ZERO	ŧ	VdBL	5	42 F-	42 F-	20 	12 F-	8	8	76 F-	40 F-	£2 F-	. 8	3 1	%	8	58 88	42 F-	N/AF-	42 F-	81 F-	8 F-	8	87 F-	42 F-	91 F-	42 F-	8 7	8	88	31 31	: R
S2	S	INE BRA		BEDS IN		5NG	w	B6 KS/JS	86 KS/JS	86 KS/JS	Sr/sx 98	B6 KS/JS	87 JS	B6 KS/JS	86 KS/JS	B6 KS/JS	87 JS	87 JS	SL 7S	87 JS	87 JS	Sr/SX 96	SL/SX 98	B6 KS/JS	87 JS	87 JS	87 JS	87 JS	36 KS/JS	87 JS	86 KS/JS	SL 76	SL 78	87 JS	BK KS/JS	87 JS
CONSTANT	CONSTANT	21 008		GY 6/4		DATE	0	24 DEC	23 DEC	07 007	23 DEC	07 001	OS AUG	20 20	24 DEC 5	23 065	OK AUG	OK AUG	S AUG	OS AUG	OS AUG	26 DEC {	00 CT	Z3 DEC	03 AUG	OS AUG (OK AUG	BUG	Z3 DEC &	30 JUL SE	Z3 DEC	31 JUL 1	OS AUG (03 AUG 2		31 701 9
OLERY	QUERY	TABLE			TEST	*	60	6-r	9-r	E1-2	1-7	E1-4	-19	E1-1	-7 8-7	, S	J-16	J-18	1-12	J-15	J-12	11-1	BT-19	<u>.</u>	<u>5</u>	1-14	*-1	<u>-1</u>	4-L	1-2	J-2	D2/12	J-13	9-1		11/10

TABLE 22 BRAKING/YAW ANALYSIS (POS BRAKE/0 BRAKE COMPARISON)

										13.31	11.93	11.93	15.73					11.91			7.21	6.18	7.06														
			8	ž				N	Ł	Ņ	ŝ	2	5	0	Ξ	Ξ	ø	9	0	N	ø	m	ç	2		-	m	M	ы	-	4	0		•	co ·	<u>ہ</u>	ò
			2	^ -	5	3		19.2	13.8	14.4	20.3	4.9	5.0	6.7	10.8	10.8	10.4	12.3	9.8	6.9	6.7	4.4	5.0	2.7		13.3	11.9	11.9	15.7	10. B	15.0	9.8	9.6	2.2	6.1	0 	S
			2:	εC	5			-							•		-									•	•	•	•	•	•						
						AS		346	346	346	346	346	346	346	346	346	346	346	346	346	346	346	346	346		346	346	346	346	346	346	346	346	346	346	97 27	240
			ļ			¥		346	346	546	346	246	346	346	346	346	246	246	346	246	26	546	346	246		246	346	246	346	246	346	246	246	246	9	9	9
				1441	5	A		0	0	-	0	0	-	0	0	0	0	0	0		-	2	N	0		0	-	-	0	0	0	0	-	-	0	~ 1	5
			;	= ¥	2	AL		0	0	2	0	5	~	Ξ	2	m	4	2	2	-	4	9	2	5		5	4	~	m	2	5	9	\$	4	•	- -	'n
					-	8				7	Ξ		2	ž	7	-	Ĕ		°.	Ę	~	÷	ς.	÷.		Ŭ	¥	5.	Ξ	12	Ū	12	1	2		23	N
1			۰ •	ວ ທ ສ ທ		R		5	2	~	Ŷ	ß	5	2	16	8	2	2	24	Ř	38	ß	ŝ	101		5	14	÷	80	2	12	1	5	28	2	23	2
2	S				3	I		18	3	54	17	2	58	5	22	32	R	28	ŝ	S	5	8	88	125	1	26	\$	3	22	32	23	33	36	48	20	ç !	41
PEED	sPEEU<	lct-91		SPEED	arce	AE		11.1	16.5	17.0	16.5	16.0	17.0	17.0	15.0	18.0	16.0	16.0	13.8	15.0	13.5	15.0	14.5	11.0		14.0	18.0	17.0	10.3	10.5	12.5	11.3	7.5	1.0	3.8	10.5	D .0
	,, ,, ,,	ŭ č	į		5	_		300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300		300	300	300	300	300	300	300	300	200			300
	2	35	Z	2 2	5	Q		∼ ≖	~ ⊻	∼ ≖	∾ ≖	∾ ≖	∼ E	∾ ≖	∾ ≖	∾ ≖	د ۲	2	N E	∼ ¥	∼ ≖	N E	∼ ≖	~ ≖		E	∼ E	Z	N E	∼ ≖	E	N E	Ω Σ	E I	~ · ·		V E
		DATI	24	2 2 2		AC		ΡΑΥΙ	PAYI	PAYI	PAYI	PAY	PAΥ	PAYI	PAYI	PAΥ	PAY	ΡΑΥΙ	PAS	PAYI	ΡΑΥΙ	PAΥ	PAΥ	PAYI		PAYI	PAYI	PAYI	PAY	PAYI	PAYI	PAYI	PAY	PAYI	PAY	PAY	PAY
14300	4200		1011		3	AB		14300	14300	4300	4300	14300	4300	14300	14300	4300	14300	14300	14300	14300	14300	14300	14300	14300		14300	14300	14300	14300	14300	14300	4300	14300	14300	14300	14300	14.500
6	5			Ę		¥		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0 0	5
Ņ		RTZ		ע אר גער		2		~	÷	0	0	0	0	0	0	0	0		2	~	m	m	m	4		0	0	0	0	-	•		-	m	m I	m I	n
BRAKE	>	SCHUA		DCI	167	۲		0	0	0	0	0	0	•	0	0	•	0	•	0	0	0	0	0		200	200	200	500	400	200	200	400	60 7	400	22	200
\$/2	5	8/K	ŝ		ě.	×		6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	[6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/2	6/2 9	۶ <u>/</u> ۶	\$
		./FIEM				3		7.75	К.7	5.2	5.7	К. ~	К.7	К.7	К. ~	К.7	5.2	к. <u>,</u>	5.2	5.2	К.7	К.7	5.7	7.75		7.7	7.7	5.7	7.7	7.7	7.75	7.3	К.	5	5.7	<u>к</u> і	¢.7
		AFUAL				>		500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	200		500	500	500	500	200	500	200	500	200	200	200	200
	Ľ			15	117	7		۲	۲	۲	٦	۲	۲	لم لا	۲	۲	۲	۲ ۲	۲	۲	R.	۲	님	R		۲ ۲	۲ ۲	2	۲	۲	Ľ	۲	۲	۲ ۲	۲ ۲	ਦ 1	۲
	5 2	9γ			5	-		0	00	0	00	0 0	0	0 0	0 0	0 0	000	0 0	00	000	000	000	000	0 0	1	0	00	000	0	00	0 0	000	0 0	ບ ວ			0 0
		PARED				-		1.5	-	5.	5	5	<u> </u>	- -	5,	<u>.</u>	-	-	-	-	-	- -	2	-		- -	-			-	-	-	-	-	-		2
DRY		PAKI	i	38	3	S		DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRΥ	DRY	DRY	DRY	DRY	DRY	DRY	DRY		DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
			-			æ		5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8		5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5. 8	°.°	5.8
		EKAKI	-	N -	ر د	٩		10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2		10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2
5	ŝ				L L L	0		573	52	53	ž	ñ	52	ñ	ĸ	ž	273	52	273	23	273	ž	273	273		273	52	273	273	52	52	53	273	23	53	23	23
		S BKAK ST CRI	LRE		AALE	z		F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F - 16R	F-16R	F-16R		F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F-16R	F - 16R	F-16R	F - 16R	F - 16R
2	64	51	PRESSI	MAN		¥		5	2	5	5	5	2	2	Ş	5	2	ξ	5	λg	β	۶	ç	ξ	1	۲	۲	ξ	۶	2	5	5	5	G۲	2	5	2
19	0	S IS	8	Ļ	2	-		-16	-16	-16	-16	-16	-16	16	-16	-16	-16	-16	-16	-16	-16	-16	-16	-16		- 16	-16	- 16	- 16	-16	- 16	-16	-16	- 16	-16	-16	-16
^		ANALY G/YAU	ZERO	AMB		J		42 F	42 F	82 F	7 8 7	60 1	62 F	76 F	42 F	81 F	N/AF	42 F	42 F	42 F	40 F	42 F	42 F	42 F		91	8	87 F	80	92 5	8	88	8	26	82 F	8	8
		/YAU RAKIN	S INC	ç	2	ш	u.	SL/S	sr/s	s	s	Sr/S	sr/s	SL/S	SL/S	s	SL/S	Sr/S	SL/S	SL/S	SL/S	SL/S	SL/S	sr/s	ESSUR	s	s	S	s	s	S	s	s	s	s	s	S
			BED	ŭ	u		SSUR	2	8	37 J	37 J	% ×	8 ×	% ×	% ×	37 J	8 ×	% ×	8	8 ×	8 ×	% ×	8	88 ×	E PR	37 J	87 J	97 J	37 J	37 J	37 J	37 J	87 J	87 J	ר 22 יי	5	2 2
INV		BRAI 19 Int	6/4			υ	PRE		EC.	ק	ק	5	5	Ę	, Jac	200	5	EC &	ц Ц	EC &	EC &	JEC 1)EC)EC	IRAKI	۲. ۲	3	50	50	5	S	50	3	33	2 2	S.	5
ONST	ONS)	NB	5	2740	זואט		AKE	23 D	23 0	31 .	ы Ш	07 0	07 0	3	23 0	03 A	20	20	26 D	23 0	24 0	20	23 0	24 C	VE B	7 OE	10	03 A	03 A	8 8	05 A	05 A	<u>S</u>	₹ 70	05 A	× - ۲	¥ 8
ERV C		I ABLE VLE	į	5 -		~	70 BR	_	•	112	E	Ņ	4	Ţ		~	6		=		~	~	•	•	11150					4	5	2	5	80	6	2	2
13	ลี่	. X	į	Ë.	-	-	ZEI	-	5	22	5	÷	÷	Ē	-	-	Ė	5	4	-	5	-	Ξ,	5	م	1	1	1	Ľ	4	5	-	5	5	5	-	-

,

•

A second analysis was also conducted relative to limit cuts only and is graphically illustrated in Figure 22. For the limit case, the addition of braking behaves as expected when the fitted trend lines are compared. More specifically an increase in damage of from 50% and 0 degree yaw to 60% at 3 degree yaw can be derived. Increasing damage at higher yaw angles with braking is also confirmed.

Distribution Analysis

An attempt was made at a limited distribution survey to see if any effects were apparent. The results of this data base extraction are noted in Table 23. In reviewing this table, no apparent effects could be noted since only one test at the same stone size with a nonstandard distribution was found. Data for this test does fall near the edge of the expected range; however, it is still within an expected value and no conclusions can be made. COMBINED BRAKE AND YAW LIMIT CUTS ONLY (PER COMBOA)

TABLE 23 DISTRIBUTION EFFECTS

. •

1																			
				Ŋ	HITS F	5	R	4.4	5.97	6.73	10.48	10.81	10.81	12.24	14.42	16.00	20.35	20.80	29.7
					<u>S</u>	HIT	5	25	9% %	32	9 <u>%</u>	35	35	8	35	508	346	ĝ	8 0
					101	HITS	N N	3%	35	38	346	346	346	208 208	35	208 208	8 8	508	88 82
					_	5 ₹	2		~	2		~	~		~	~	~	5	~
					\$ \$	₽ 0	N N	5	0	\$ \$	0	4		- 0	4	5	-	-	- -
					0	5	×	0	5	2 -7	6	9	8	ŝ	~	m	6	Ś	m
					¥10	JJS		2	m 92	5	2	2	22	17	*	m	2	⊵	~
	Ş a		<u>ہ</u>		₽ Ø	ط E		6.0 7	7.0 5	7.0	6.0 3	5.0	8.0	6.3	7.0	6.5 1	6.5 1	7.1	7.3
	305	RIB	ct Oct		H B	ჯ ⊷	┫	8	8	8	8	8	8	8	8	8	8	8	8
	0	E DIST	E 31-0		PUS SUS	DIS	8	12 T	រង 1	ង	E E E E E E E E E E E E E E E E E E E	Ω π	12 1	۲ ک	2	2	12 12	3	2
	0	Ę	DAT		T P80	D VEH	¥	0 PAY	0 PAY	0 PAY	0 PAY	0 PAY	0 PAY	O LPA	0 PAY	AU O	0 PAY	O LPA	N LPA
	1430				Ř	NO I	8	1430	1430	1430	1430	1430	1530	1430	<u>6</u>	1430	<u>8</u>	<u>8</u>	1430
	0		N		₹	~	¥	0	0	0	0	0	0	0	0	0	0	0	0
	0		T N		Ē	I YN	2	0	0	0	0 0	0	0	0	0	0	0 0	0	0
			ES X		BRA	۲ ۲		5	5	5	<u>ہ</u>	ŝ	5	4	5		5	4	-
					B	Ā	×	5	500	500	5	5	5	5.5%	5	5 5	5	55	5 5
			AL/FI		멾	ŝ	3	7.7	1	2	2	2	~	Ś.	~	Ś.	~	¢.	÷.
			AFU				>	ß	8	8	8	ß	8	8	ŝ	ន្ត	ğ	8	8
	ซี		:.		RIS	ž	þ	ಕ	ទី	ซี	ಕ	ಕ	ಕ	៩	ಕ	ಕ	ಕ	ឌ	ಕ
	0		g		B	SIZE	-	1.50	1.50	1.50	1.50	1.50	1.50	8.1	1.50	1.50	1.50	<u>ы</u>	1 .8
	жY		PREPA		2	8	s	Ř	¥	ž	Ϋ́	Ϋ́	RY	Ř	ХY	ž	ХY	Ř	RY
			÷		PRNT	3	a	5.81	5.8	5.8 (5.8	5.8	5.8	5.8	5.8 (5.8 (5.8	5.8	5.8
			. 118		PRNT	بـ	4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	52		ICA		TIRE	PRES	0	ĸ	ĸ	ĸ	ñ	5	ñ	ñ	ñ	ñ	ĸ	ñ	ŝ
			ST CRI		•	AXLE	z	-168	15 19	-164	-16R	F-168	<u>8</u>	391	19	1	8	3 6	3 9
	5		Ë T			Ĩ	×	5	2	5	5	5	_ ₽	5	5	5	5	_ 5	5
	2:-	ECTS	NA S			Š	-	-16	-16	- 16	:-16	:-16	-16	-16	9	-16	-16	-16	-16
	<u>^</u>	N EF	FECT	9	ŧ	18491	6	8	ઝ	22	~	3	8	8	8	8	R	8	8
				X		Ð	u	SL/S	SL/S	SL/S	sr/s	SL/S	S	SL/S	S	Sr/S	S	SL/S	SL/S
	S2	ISTRI		M X		u		%	%	8	8	8	87 J	8	87 J	%	87 J	8	8
	INVISI	ຄ ຊ	ISTRI	-16/6		NTE	0	50	100	50	00	I DEC	SULC 1	3	Ę		Ę	Ř	۲ ۲
	8	BLE 2	ω			0		6	8	8	8	ស	8	35	20	3	5	8	16
	QUER	Z	TABL		TEST	*		E1-2	E1-4	E1-1	BT-1	<u>.</u>	<u>5-0</u>	9-X	02/1	X-7	1/10	8-X	<u>×</u> -2

SECTION VI

CONCLUSIONS & RECOMMENDATIONS

CONCLUSIONS:

Test Methods and Data Generation:

Overall the data from this effort proved to be of high quality. The method of testing devised was the closest possible to actual flight test data and represents a first to determine the effects of tire cutting in a hostile situation. Several critical testing barriers were successfully overcome and the method of testing employed can now be confidently used for future test needs of this type.

Data Analysis Conclusions:

As a result of this preliminary analysis, the following conclusions observations or trends were noted for the various parameters tested and analyzed:

Speed (All Cuts):

Tire cutting damage increases moderately at higher speeds.

Speed (Deep Cuts):

Tire cutting damage increases substantially at higher speeds.

Yaw (All Cuts):

A trend toward higher cutting damage at higher yaw angles exists.

Yaw (Deep Cuts):

Only minor increases in damage were noted for this case.

Radial (All Cuts):

No significant differences were noted in the total number of cuts occurring in the radial as opposed to the bias ply case.

Radial (Deep Cuts):

The radial tire data showed a significant reduction in the number of deep cuts occurring. This is offset, however, by the lower cut limit associated with the particular design tested.

Pressure Effects:

A trend exists for increasing tire cutting at higher tire pressure values.

Retread Effects:

A minor trend toward less damage for a retreaded tire may exist.

<u>Tire Size</u>: Due to pressure differences tested an assessment of this parameter is difficult. However, in extrapolating pressure data, smaller size tires may have a very significantly higher resistances to tire cutting.

Loads Effects:

Based on the data studied the effects of load seems insignificant relative to tire cutting damage.

Water Effects:

The effects of running over flooded surfaces appears to be very significant and damage increases of over 100% can be expected.

e

Yaw/Water Effects:

Limited testing in this area lead to a preliminary conclusion that the introduction of yaw on a wet surface could serve to reduce the amount of cutting damage occurring.

Debris Size:

Of all the areas investigated, size disclosed one of the most significant findings of the program. Specifically cut size and overall damage increases dramatically with increasing debris size. It also was disclosed that for the 275 psi tire tested that transversing debris sizes over 1.5 inches results in a very high probability of tire failure.

Debris Type:

The type of debris encountered (stone vs. steel) also proved to be a significant parameter. For the steel case, cutting damage can increase significantly.

Braking Effects:

With regard to braking effects no quantitive conclusions can be derived. In general, however, it appears that no significant effects occur until high brake torques are applied. In terms of drag load, a value of 1100 lbs was calculated whereby increased cutting damage comes into play.

Brake/Yaw Effects:

The effects of combining braking with yaw were not as expected. Increasing yaw angles and braking tend to increase the resulting damage. However, the combination of the two parameters does not appear to introduce significantly higher damage levels.

RECOMMENDATIONS:

Detailed Operational Models

The results of the tire cutting test effort along with this preliminary analysis and subsequent statistical studies have shown that realistic tire damage models can be developed through the addition of aircraft operational data. It is therefore recommended that airfield cleanliness models be combined with detailed aircraft operational models to obtain the improved tire reliability required :... either peacetime situations or wartime postattack situations.

Additional Testing of Different Tire Sizes

This particular test effort was confined to one aircraft involving only two tire sizes and one operational spectrum. To better understand the full impact of tire cutting, more sizes involving more variations in load, speed, turning, and braking conditions are required. With the current strong baseline in hand, lower cost testing methods could be developed for such testing, and it is recommended that these approaches be pursued.

High Pressure Effects Expansion

Pressure effects is one area where the data were limited, but a trend was exhibited toward increased cutting at increased pressure. Additionally this trend could become highly significant at pressures beyond those tested. With current design trends going toward higher pressures, the influence of cutting on operations and safety could become quite significant even in a peacetime scenario. It is therefore recommended that additional tests be conducted on an F-16 main tire at pressures up to 350 psi.

LIST OF REFERENCES

1. Landing Gear & Tire Cutting Test Vehicle (Design & Capabilities Report), Ken Schwartz, WRDC/FIVMB Wright-Patterson AFB OH, TM- - , April 1990.

2. Tire Cutting Test Program (Test Report), Ken Schwartz, WRDC/FIVMB, Wright-Patterson AFB OH, TM- - , April 1990.

3. Air Base Survivability - Tire Cutting Test Plan & Program Development, WRDC/FIVMB Wright-Patterson AFB OH, TM- - , April 1990.

۴

•

4. Tire Cutting Assessment Report, Ken Schwartz, WRDC/FIVMB Wright-Patterson AFB OH, Internal Memo Report for AFESC/RDCR, August 1984.

5. Cut Tire Inspection Procedure, Peter C. Vorum, WRDC/FIVMB Wright-Patterson AFB OH, WRDC-TM-90-319-FIVM, April 1990.

6. UDRI Piekutowski Report.

7. Foreign Object Damage Field Test (Revised Draft Test Report), the BDM Corporation, BDM/W-84-0291-TR.

8. Post-Attack Debris Clearance Program Tire Cutting Test Analysis, Draft Technical Report, June 6 1988, The BDM Corporation, BDM/MCL-88-0200-TR.

9. Cleanliness Requirements for Aircraft Operating Surfaces, Draft Technical Report, The BDM Corporation, BDM/MCL-87-0112-TR.

10. FOD Generation by Aircraft Tires, S J Bliss, L Cross, A J. Piekutowski, H F Swift, University of Dayton Research Institute, for AFESC/RDCR Tyndall AFB Florida, ESL-TR-82-47.

11. Design Analysis Report Tire Lofting Test Boom, Contract N68335-82-C-1389, Sverdrup Technology Inc., Tullahoma, Tennessee, Oct 1982, Tire Cutting Modification, May 1985.

12. Cut Progression During Dynamometer Testing of Foreign Object Damaged Type VII Extra High Pressure Aircraft Tires, Peter C. Vorum, WL/FIVMB Wright-Patterson AFB OH, to be released Jan 1991.