
AD-A247 193
ESD-TR -222 i II I I1 III I~I~,ll lI~ 11111 II MTR- 1074

A Design for a Multi-Use Object Editor with Connections

By

D. S. Rand

October 1991

Prepared for

Director, SIGINT and Training Systems
Electronic Systems Division

Air Force Systems Command
United States Air Force

Hanscom Air Force Base, Massachusetts

D_TIC

92-06139

Project No. 6290

Prepared by

The MITRE Corporation

Approwcd for public release; Bedford, Massachusetts
distribution unlimited. Contract No. F19628-89-C-0001

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

EUGENE B. MORRIS, JR., CAPTAIN, USAF DAVID B. HULSLANDER, MAJOR, USAF
Deputy Program Manager, Program Manager,

SENTINEL BRIGHT II SENTINEL BRIGHT II

FOR THE COMMANDER

RONALD A. MASON, GM-15
Director, SIGINT and Training Systems

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubhc reporting burden for this collection of ntormation is estirmated to a~eraqe t1our per 'esP vose, ;ncluding the time for reviewing instructions. searching eisting data sources.
gatherng and maintaining the data needed, and comDleting and reviewing the liection of Information Send comments regarding this burden estimate or any other aspect of this
collection of informatiOn, including suggestions for reducing this ourden TC ashr'nqton Headduarters Services. Directorate for information Ooerations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Mlanagement antd Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I October 1991 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Design for a Multi-Use Object Editor with Connections F19628-89-C-0001
6290

6. AUTHOR(S)

Rand, Douglas S.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

The MITRE Corporation
REPORT NUMBER

Burlington Road

Bedford, MA 01730 MTR-11074

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Director, SIGINT and Training Systems (ESD/ICS) AGENCY REPORT NUMBER

Electronic Systems Division, AFSC ESD-TR-91-222

Hanscom AFB, MA 01731-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

One product of the Intelligent Courseware Authoring Tools project is a story-

boarding tool. The foundation of this tool is a more general object editor with

connectors. The methodology used is appropriate for a variety of object mani-

pulations by direct user input.

The tool is intended to aid in the improvement of the courseware development process

and facilitate the documentation and maintenance of completed courseware.

This document is a design specification which describes the architecture, design,

and implementation of the storyboarding tool. A user's manual will be forthcoming
under separate cover.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Authoring Tools Storyboarding 41

Flowcharting X Windows 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

NSN 7540-07-280-5500 Sarclard torm 298 'Rev 2-89)
0" 1 p, .- % 1" i .'

ACKNOWLEDGMENTS

This document has been prepared by The MITRE Corporation under Project No. 6290, Con-
tract No. F19628-89-C-0001. The contract is sponsored by the Electronic Systems Division,
Air Force Systems Command, United States Air Force, Hanscom Air Force Base, Massachu-
setts 01731-5000.

In addition, the work performed for the Intelligent Courseware Authoring Tools project was
funded by the Office of the Secretary of Defense.

Accession For

NTIS GPA&I ~
DTIC TAD^ El

Distributi on/

Avhl biibty CodeS

JAvail and/or
Dist Special

i'0(

iv

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 1

2 Architecture 3
2.1 Introduction 3
2.2 Class Hierarchy 4
2.3 User Interface 5
2.4 Printing 7
2.5 Connection Drawing 8
2.6 File 1/0 8

3 Classes 9
3.1 Class Graphical 9

3.1.1 Instance Variables of Class Graphical 9
3.1.2 Methods of Class Graphical 10

3.2 Class Picture 11
3.2.1 Instance Variables of Class Picture 12
3.2.2 Friends of Class Picture 12

3.3 Class Connection 12
3.3.1 Instance Variables of Class Connection 12
3.3.2 Methods of Class Connection 13

3.4 Class Protoconn 13
3.4.1 Instance Variables of Class Protoconn 13

3.5 Class List 13
3.5.1 Instance Variables of Class List 13
3.5.2 Methods of Class List 14

3.6 Class Select 14
3.6.1 Instance Variables of Class Select 14
3.6.2 Methods of Class Select 14
3.6.3 Application States 14

3.7 Class Clipboard 15
3.8 Class Crestore 15
3.9 Conclusions 15

4 Interactive Graphics 17

V

4.1 Introduction 17
4.2 World and Device Coordinates 17
4.3 Graphics Primitives 17

5 Implementation Details 21
5.1 Event Handling 21

5.1.1 Button Press Event 21
5.1.2 Button Move Event 22
5.1.3 Button Release Event 22

5.2 Canvas Management 23
5.3 Widget Creation and Management 23
5.4 Save File Details 24

6 Walkthroughs 25
6.1 Introduction 25
6.2 Edit Dialog 25
6.3 File Load 25
6.4 File Save 26
6.5 Cut 27
6.6 Copy 27
6.7 Paste 27
6.8 Print 27

7 Current Implementation 29
7.1 Future Work 29
7.2 Limitations 29

Bibliography 31

vi

LIST OF FIGURES

FIGURE PAGE

1 Class Hierarchy 5
2 User Interface 6
3 Translation and Scaling of Graphics 20

vii

viii

SECTION 1

INTRODUCTION

This document is a design specification for the storyboard tool produced as part of the Intelli-
gent Courseware Authoring Tools project. It is intended for technical staff who are familiar
with the basics of programming and using a window system such as the X Window System. It
documents the architecture, design, and implementation of the particular tool with some
emphasis on how some of the techniques can be reused for other applications.

The general problem was to help courseware authors do a better job with less manual labor.
They currently do not have appropriate tools available on their development workstations to
flowchart their courseware. Some commercial tools exist, but are part of larger, expensive
computer-aided software engineering (CASE) tool suites. Additionally, a custom tool can later
become a knowledge-based tool to provide a front end to database navigation and courseware
design.

Designing and building a specialized flowcharting tool alone would not improve our user's set
of tools. They already have a flowcharter which runs on the IBM PC, and since we wish to
improve upon their current tools, we must go beyond the basic flowcharting tool. The require-
ment for future extension made an open-ended design important.

The resulting tool is user extensible and compatible with our future plans for next year. It pro-
vides both a flowchart type interface along with more storyboarding information held inside
iconic containers.

The fundamental nature of a direct manipulation interface is well suited to object-oriented
programming and so this is the paradigm chosen for the architecture and implementation.

The sections are divided according to the conceptual level of the description. Logically, we
first describe the architecture, the classes, the direct manipulation interface, implementation
details, and finish with some walkthrough. At the end of the report is a summary on the cur-
rent implementation state.

The architecture described in the next section is key to understanding the overall strategy of
the application.

2

SECTION 2

ARCHITECTURE

2.1 INTRODUCTION

The storyboard tool uses the object-oriented programming paradigm. In this paradigm, one
distributes the definition of functions amongst the various classes, and uses the class of the
object being manipulated to determine which of many function methods is the correct one to
evaluate. While this paper is not intended as a tutorial on object-oriented programming, it will
introduce some basic terms and concepts in terms of conventional programming.

The choice of C++ as an implementation language gives the best combination of portability
while retaining features of an object-oriented language.

class A structure description. Unlike conventional structures, the resulting class instances
(see below) are composed of the sum of their class and of their parent classes. The
classes form a tree. So each class has a set of instance and class variables of its own
and all of its parent's instance and class variables also.

class variables In C++ these are called static members. Class variables have only one copy
per class. That is, every instance has a variable whose value is the same, and this vari-
able can be modified through the access of any instance. They are used for tasks such
as recording he .v many objects have been allocated, and other class level state infor-
mation. In conventional programming these would be external variables or data com-
mons.

generic function The entire set of methods which comprise the implementation of a specific
function over all classes. Some object systems call this a message.

inheritance The concept that a particular class' instance variables, class variables, and meth-
ods are the combination of all of the parent classes plus the changes that the class
introduces. This is responsible for both the storage of each class being the combination
of itself and its parent classes and also the notion that the method most specific to a
particular class implements the particular generic function.

instance One instantiated copy of a specific class, an allocated block of memory, the correct
size for the specific class, and initialized according to the class description.

3

instance variables In C++ these are called members. Instance variables are simply the struc-
ture components that belong to each instance.

method In C++ these are called member functions. A method is the particular part of the
generic function pertinent to a specific class. So the draw method for a circle object
would draw a circle and the draw method for a square object would draw a square. The
combination of the circle draw method and the square draw method is the generic
function draw.

method combination This is the incremental programming aspect of the object-oriented pro-
gramming paradigm. A method can access its parent's method to perform all but the
specific class-dependent programming. So a class circle-with-line-in-it could use the
circle class' draw method to do everything but the extra line.

The methods for a particular class form an interface to the class. Most object programming
languages also feature some data hiding to make the interface more effective. The overall
effect is that good modularization is somewhat easier to achieve than in conventional lan-
guages like C or PL/1.

The following is a C++ convention which one needs to know about to read later sections.
When we make a new instance of a class we say that we run the constructor for the class.
When we destroy a class instance we run the destructor for the class. These methods allow the
programmer to do bookkeeping and initialization on the class instances.

The actual behavior of an application design with the object-oriented paradigm is strongly tied
to the class hierarchy of the class descriptions and the functionality contained in each class.

2.2 CLASS HIERARCHY

The class graphical is an abstract' base class for the direct manipulation interface. Each
instantiated class is related to the class graphical through inheritance. The graphical class
includes the generic information about each object such as its label, description, and connec-
tivity with other objects.

The tool manipulates objects derived from class graphical. The class graphical supplies a
well-defined interface which all of its subclasses use. The class hierarchy describes the class/
subclass relationship between all the classes. The class hierarchy of graphical is presented in
figure 1.

Abstract classes are never instantiated, they form a basis for other instantiated classes.

4

hica lgraphical

tin hchdecibscoectiybtn obet. onciosae inetymnpltdb

theus r. ., o~,,.

T Gaudi o b Gvideo s aMoifa

Figure 1. Class Hierarchy

Other utility classes include class List which is a generic list of graphicals and class connec-
tion which describes connectivity between objects. Connections are indirectly manipulated by
the user.

2.3 USER INTERFACE

The user interface for the application can be divided into two sections: a Motif-based interface

that provides for tasks like filing and editing, and a direct manipulation canvas that allows the
user to move and edit the graphical objects directly.

5

The user interface technology for the direct manipulation interface is Xlib. The application
has a single canvas upon which all the graphical objects and their connections are drawn. The
user manipulates the objects by selecting, moving, and editing the objects on the canvas. All
these manipulations are implemented by the application and not by the use of the toolkit. The
general application interface layout is shown in figure 2.

File Edit
Infomessage Area

Filename Area

Button
Box

Drawing:Canvas

Figure 2. User Interface

The Motif widget set is used for the application user interface. A full description of all the
widget classes" can be found in the "OSF/Motif' Programmer's Guide." There are a number
of user interface features using Motif. On the top of the application window is a MenuBar
with FILE and EDIT menus. The file and edit menus each get the obvious functionality.

The second two areas are a Label widget which serves as an information message area right
below the MenuBar and directly below the Label widget is another Label widget for the cur-
rent file name and the current layer of the flowchart.

Remaining are two areas: to the left is a RowColumn widget for buttons arranged in columns,
and to the right is the scrolled DrawingArea. The DrawingArea widget is not scrolled by the
Scrolled Window widget but rather the routines that display on the fixed DrawingArea widget
are controlled by the ScrollBar widgets.

2 Not to be confused with the application's class hierarchy.

6

The RowColumn widget is used for buttons for more commonly used functions than those
tied to buttons in the MenuBar. Here are buttons for resetting the state, pushing and popping
levels of Gcollection3 objects, and selecting what object to place next.

The mouse buttons are used to interact with the canvas. This part of the interface has only
minimal interaction with Motif or the X Toolkit. The available button actions are:

Single click left
If new object selected from buttons, then place new object; otherwise, select object
pointer is on.

Double click left
Edit object pointer is on.

Shift click left or click right
Paste current selection from X Windows. This allows the user to paste in text as a text
object from a text editor and also allows for a simpler duplication interface, allowing
the user to click left on an object and shift click left to place a duplicate.

Drag left
If no object pointed at, then rubber band a multiple selection box. When the user

releases the button, the resulting rubber band box is used to select a group of objects. If
over an object currently, then a connection is attempted.

Drag middle
Move object or current group pointed at. The highlight outline of the object or group is
dragged and the object moved when the mouse is released.

2.4 PRINTING

Printing is accomplished by having printing routines equivalent to the X drawing routines.
This is basically a WYSIWYG4 editor with some exceptions. There are some slight differ-
ences between the screen and the printed representation. For example, the screen shows an
arrow with two lines and the printer with a filled arrowhead.

3 Gcollection objects are explained later in the text. They are graphicals that contain a list of
graphicals to provide encapsulation of detail inside a single object.
4 What you see is what you get.

7

One nice correspondence is the way connections are shown on-screen. Bezier curves are used
for this and are exactly the same on the screen as on the printer. In addition this is a fine solu-
tion for the difficult problem of making the diagram look neat and uncluttered.

2.5 CONNECTION DRAWING

Other solutions were tried including straight lines, simple lines, and more complex Bezier
curves, but the best solution was to draw a simple Bezier curve whose size is proportional to
the distance between the two points to be connected. Overall, the nicest looking curves
resulted when the proportion was 1/2. In general, only one Bezier curve is used except when
the start and end points are in line with one another. Here a single Bezier curve would result in
a straight or nearly straight line. So we draw two curves. The first is a dog leg around the start
object and the second is identical to all the other curves we draw.

2.6 FILE 1/O

Each object is written to file in ASCII. There was a decision to make the files transportable,
which meant avoiding binary files. Other advantages of using simple ASCII is the ability to
extend the file format later and not invalidate old files.

When writing out to file, the objects are renumbered (they are internally numbered for identi-
fication) by walking the tree of objects. Then they are individually written to file. The connec-
tion information is written with them. Each connection describes the identifier 5 of the
connected object and the connector in use.6

While not essential to renumber, it is convenient when reading the objects back in. The same
function can read in a fresh chart and insert data into an existing chart. This is because the
identifiers are all that is used in determining connectivity. So we can use the last identifier
allocated to assure that there is no conflict with read-in objects; that is to say, we can add a
constant offset to the inserted data object identifiers and not require complex schemes to fix up
the connectivity information.

The classes form the basis of the modular programming in an object-oriented system. Practi-
cally all of the internal behavior of this application is determined by the class description and
hierarchy.

5 The instance variable id of class graphical.
6 This is why we must renumber.

8

SECTION 3

CLASSES

3.1 CLASS GRAPHICAL

There are two program variables referred to in the following text. The variable object con-
tains the current level being worked upon in the editor. The variable topob ject contains the
root of the tree of all objects being worked upon. The variable topobject is the only object
of class graphical whose parent instance variable contains 0

3.1.1 Instance Variables of Class graphical

parent Each graphical object has a parent. There is a top level container object (of class
Gcollection) which is the top of the tree of graphical objects. The top level container is
the only object in the tree with no parent (that is parent == 0).

id This is a unique id per graphical object. It is used in conjunction with saving and restoring
graphicals in files and cutting, pasting, and copying graphicals.

x,y The position of the graphical on the canvas. This is in world coordinates.

height,width The apparent height and width of the graphical only. This does not include the
length of the label string or connection paths. It is just the bounding box. For most
graphicals these are fixed at creation time. This is, like the (x,y) position, in world
coordinates.

label A character string labeling this graphical. It is initially set to an empty string.

description A character string (possibly very large) that contains the description for this
graphical.

name The class name is stored in this string for file input/output purposes and also for debug-
ging. It helps that all objects have such a label when examining objects in the debug-
ger.

number This is a class variable that tracks the total number of instances of graphical. The
only method that references this is the constructor for graphical. It is used for assign-
ing ids.

9

nprotoconns The number of available connectors on this graphical. Currently this is 4 for all
graphicals, which provides a connector on the top, bottom, and both sides of each
graphical. Larger numbers might be useful for another type of application using this
kind of interface to provide, for example, an integrated circuit with a dozen inputs and
a dozen outputs.

protoconns An array of connector descriptions. See the class protoconn.

selected A flag indicating that the object is selected. It should only be on for one object at a
time. There are a set of functions and member functions, which are always used to set
this to avoid problems. Small pieces of code may avoid this for performance reasons.

conns Connections to other objects. See the class connection for a full description.

3.1.2 Methods of Class graphical

void virtual Draw() Draw the graphical on the canvas.

void virtual Print(file) Print the graphical in postscript on the given output file.

void virtual highlight(dohl) If dohl is 1 then highlight the graphical on the canvas, if dohl is
0 then unhighlight the graphical.

void virtual edit(x, y) Edit the graphical. Put its edit window at (x,y) on the display.

void virtual editbeforeo This sets up any additional information this subclass of graphical
needs to have edited.

void virtual editafterO This recovers changes for the additional fields that editbefore set
up.

void virtual Showo Do something to display yourself. This is ignored by all non-media
objects. In the current version only the class Ggraphic will do anything with this.

void virtual moveto(x, y) Move the graphical to another location.

void selectObjectO Select this object.

int virtual select(x, y, x2 = 0, y2 = 0) If x2 and y2 are not given (which C++ allows with the
=0. above defaulting their values to 0), then does a rectangle containing this object
contain the point (xy)? If x2 and y2 are given, then is this object's midpoint contained
in the rectangle bounded by the points (x,y) and (x2,y2)?

10

void reparent(newparent) Reparents a graphical. All graphicals, except the variable top-

object, are child objects.

int findconn(x, y) Find the connector on the graphical nearest (x,y).

void calcProtoconns0 Create the prototype connectors for this graphical (part of initializa-
tion).

void fixconnections0 Fix the connections after pasting a graphical.

void virtual readOn(int key, String value) Process instance-specific information during
load.

void virtual storeOn(ostream) Store instance-specific information on the output file during
save.

graphical virtual *findbyindex(id) Find the graphical with a matching id. This does a recur-
sive descent from a Gcollection to find a contained graphical. It returns 0 if no match-
ing graphical is found.

int virtual isCollection0 Predicate that returns 1 if and only if the graphical is of class Gcol-
lection.

int virtual isGroup(Predicate that returns 1 if and only if the graphical is of class Ggroup.

int virtual isMediao Predicate that returns 1 if and only if the graphical is a subclass of class
Gmedia.

void virtual breakconns(Remove all connections on this graphical.

3.2 CLASS PICTURE

Class Picture is a simple static class used to store an X Pixmap and a PostScript bitmap of
each read in bitmap. The constructors for the class do all the interesting work. The constructor
allocates an X Pixmap (unless one already exists) and loads in the data from an external or
internal source.

PostScript uses an ASCII string to represent a bitmap as an encoding of hexadecimal digits
(i.e., each character in the string has an ASCII value of 0 ... 9 or A ... F, and represents a bit
pattern from 0000 ... 1111 binary). So a character string is allocated which is filled with ASCII
characters of hexadecimal digits to be used later when printing graphicals of class GPixmap
or those derived from GPixmap on a PostScript printer.

11

3.2.1 Instance Variables of Class Picture

Generally, all the instance variables of the other classes described here are public-they may
be accessed by anyone with a valid instance of the class. All of the instance variables of Class
Picture are private except for name.

picts is an array class variable that stores all the instances so that they may be found using the
function lookupP ic.

number is a class variable that tracks how many Picture instances have been created as the
array class variable picts has a fixed upper limit.

width, height stores the height and width of the image.

xpicture stores the X Pixmap associated with this instance.

ppicture stores the character string for PostScript associated with this instance.

name the name of this Picture. This is used for matches in the function lookupPic.

3.2.2 Friends of Class Picture

Friends are functions that have access to the private data of a Class.

drawimage draws the given Picture on the canvas.

printimage outputs the given Picture for the printer.

userbuttons initializes the user defined buttons and requires access to the Pixmap.

IookupPic(String) finds a Picture whose name matches the given string.

3.3 CLASS CONNECTION

Class connection helps manage the connectivity of graphicals. By providing a place to record
drawing path information it provides a convenience by not requiring the output routines to
recalculate this information continually. It also provides a nice abstraction from direct point-
ers.

3.3.1 Instance Variables of Class connection

from, to pointers to the graphical objects this connection connects.

12

fromindex, toindex these are the indices of the connections in the conns array of the from

and to objects.

path this array contains the points for the Bezier curve to draw.

ncurves the number of curves to draw this connection.

arrowdir the direction of the ending arrowhead.

3.3.2 Methods of Class connection

--connection() removes the connection from the graphicals using it.

void calcpath0 recalculates the drawn screen path.

3.4 CLASS PROTOCONN

Class protoconn is just a data structure to record information about the connectors (versus the

connections) on a graphical. It has no methods.

3.4.1 Instance Variables of Class protoconn

x, y is the relative (x,y) position of the connector from the origin (x,y) of the graphical object.

cdir is the direction of the connection to this connector as one of the enumeration: DUp,
DDown, DLeft, or DRight.

3.5 CLASS LIST

Class List is a simple, polymorphic, singly linked list of graphicals. Items are added as to a
LISP type list by adding them to the front of the list. Items are removed by destructively mod-
ifying the list. This class is used both as lists in the class Gcollection, the class Ggroup, and as
a stack for various processing tasks.

3.5.1 Instance Variables of Class List

object a pointer to the object contained in this instance variable.

next a pointer to the rest of the list, this is 0 for the last element of a list.

13

3.5.2 Methods of Class List

List(void *object, List *rest) creates a new List object with the specified object and whose
tail is the List rest.

List(void *object) creates a new List with an empty tail.

-List() systematically deletes all the List nodes in this list. When removing a single node we
carefully set that node's next field to zero which prevents this action.

List *remove(void* item) returns a List without the node whose object is equal to item (a
pointer comparison).

int member(graphical* item) returns 1 if the item matches one of the objects on the List and
0 otherwise.

3.6 CLASS SELECT

Class Select is the state holder for the application and manages new objects.

3.6.1 Instance Variables of Class Select

int state The current state of the application.

graphical *data A holding place for new graphical objects prior to being put in place on the
canvas.

3.6.2 Methods of Class Select

void dispose() makes sure that the contained data is deleted if and only if it is not null.

3.6.3 Application States

SSelect for selecting an object.

SNew for having a new object created and ready for placement in the chart.

SMove currently moving an object.

SConnect trying to connect two objects.

SMselect doing a multiple selection.

14

3.7 CLASS CLIPBOARD

Class Clipboard is the clipboard for the application. It keeps track of cut status, whether the
object has ever been pasted, and such. Note that this is not directly related to cutting and past-
ing between applications.

3.8 CLASS CRESTORE

Class crestore holds a connection until all the objects have been read in from the file. It is then
used to restore the connections. A connection has had its direct pointers to objects reduced to
the object ids. These are restored by finding the objects matching the ids.

3.9 CONCLUSIONS

The classes which make up the application define and constrain the design in strong ways.
This has always been true of the choices of data structures in programs, but in object-oriented
programming this becomes even more pointed. But, while the data structures or classes define
and constrain the internals of the design, the look and feel, the man-machine interface of the
application, are a separate issue.

The look and feel of the chart and the way the user interacts with the application is determined
by both the widget set, for which we use OSF/Motifbl, and by the direct manipulation inter-
face. You might even consider the user interface to be an entirely separate design. This is the
subject of the next section.

15

16

SECTION 4

INTERACTIVE GRAPHICS

4.1 INTRODUCTION

The classes describe on the internal level what the data structures are and how they hold
together, but the application is more than this. The application presents a view of the internal
data structure as graphics which the user can directly manipulate. These graphics are the con-
cern of the Draw and Print methods on objects of class graphical. However, there is a
whole graphics subsystem in charge of displaying and printing the objects which goes beyond
the basic methods.

An important design decision revolved around the combination of interactive graphics and
drawing libraries. Traditional libraries, like GKS, have limited user interface models, and the
mechanisms with good user interface models are primarily meant for other kinds of interfaces
and don't include scalable or translatable graphics. So it was necessary to create a simple
graphics system to deal with issues of world versus device coordinates.

4.2 WORLD AND DEVICE COORDINATES

As in traditional graphics systems, the graphicals are maintained in a world coordinate space.
All events are translated from device coordinates to world coordinates, and all graphical out-
puts are translated from world coordinates to device coordinates. In figure 3, the translation of
world coordinates to device coordinates is shown. Note that the while people refer to the "X
Window System" the proper name for the output area on the screen is a viewport and the area
being shown is the window.

In the current system, we only provide scrolling of output on the canvas. We could also pro-
vie scaling of the graphics output but do not because of the issues of font and Pi -map scal-
ing. In particular, there is no support mechanism for this in X-even to scale by powers of 2.

4.3 GRAPHICS PRIMITIVES

For drawing, we define a set of primitives which abstract the interface from the Draw meth-
ods of each object of class graphical. In this way, we simplify the methods and allow our-
selves to replace more easily the current mechanism for drawing in the future. We also take
the issues of device versus world coordinates out of the specific methods.

17

World Coordinates Device Output

Figure 3. Translation and Scaling of Graphics

The basic drawing primitives are:

DCtoWC(int x, int y, int *nx, int *ny) Translates a device coordinate (x,y) into a world coor-
dinate (nx,ny).

WCtoDC(int x, int y, int *nx, int *ny) Translates a world coordinate (x,y) into a device coor-
dinate (nx,ny).

drawbox(int x, int y, int width, int height) Draws a box at (x,y) with (width,height).

drawline(int xl, int yl, int x2, int y2) Draws a single line from (xl,yl) to (x2,y2).

drawlines(int *x, int *y, int npoints) Draws the polyline contained in the x and y arrays.

drawcircle(int x, int y, int diameter) Draws a circle whose bounding rectangle has its upper
left comer at (x,y) and the givenl diameter.

drawtext(int x, int y, String text) Draws the given text at (x,y). The text is positioned so that
its bounding box has its upper left comer at (x,y).

drawimage(int x, int y, Picture *pict) Draws the given pict's Pixmap onto the screen at (x,y).

In printing, we handle the basic primitives in a different way. We define a series of Postscript
routines which handle the minor extensions to what Postscript has predefined. These exten-
sions are:

box x y width height Draws a box.

18

circle x y diameter Draws a circle.

arrow r s x y Draws an arrowhead of size r at angle s at (x,y).

While we cannot conveniently scale the screen output, there is a printing mechanism in Post-
Script that will take care of scaling and translation. So, in printing, we just check the bounds
of the diagram to be printed and scale the diagram accordingly.

The only interesting issue in providing PostScript output is handling the relative coordinate
systems of X and PostScript. In X the point (0,0) is at the top left of the screen. In PostScript
the point (0,0) is at the bottom left of the page. To translate between, we give PostScript a
translation to move the page's origin to the top left and then invert all the y coordinates on out-
put. So a graphic which appears at (10,10) on the screen is placed at (10,-0) on the page. This
is an adequate solution.

The actual implementation of the direct manipulation interface is in the guts of handling
events from the X server. This is the subject of the next section.

19

20

SECTION 5

IMPLEMENTATION DETAILS

5.1 EVENT HANDLING

The heart of the direct manipulation interface lies in event handling. For the other part of the
user interface, the Motif widgets, event handling takes care of itself and we only need to add
appropriate callbacks for buttons and scrollbars. But the direct manipulation of the objects of
class graphical is more like the internals of a widget.

Event handling is a tricky business. There are many events one can choose to handle. For this
application's canvas, we limit ourselves to button events and exposure events.

When the user presses any mouse button there is a "passive grab" of the server. This means
that if a user presses a button we are guaranteed to get both the button press and the button
release events. This is crucial to how the direct manipulation interface works.

We have three callbacks for button events on the canvas, one for each of button press, button
move, and button release events.

5.1.1 Button Press Event

We first discard any event for the right button. The middle button is always used for moves
and the left button is used for several things. If the middle button is pressed and there is no
currently selected item, or there is a currently selected item and we aren't pointing at it, then
we select a new item before starting to move it. We only change to the move state if we suc-
ceed at selecting a new object.

If the left button is pressed and we have a pending object to be placed, then we place the
object in the indicated location, otherwise we do a selection. If the left button was pressed
very recently (within the last 350 milliseconds), then we consider it to be a double click and
we run the object's edit method.

When the object is selected it is highlighted.

21

There is a state variable which shows the current state, and the canvas cursor mirrors the state
to visually cue the user. The states and associated cursor cues are as follows.

State (Internal narne Cursor

Selection (SSelect and SMselect) arrow

Moving (SMove) hand

Placing new (SNew) crosshair

Connecting (SConnect) dot

5.1.2 Button Move Event

During the last button press the state was set to either SSelect, SMove, or SMselect
(multiple object selection).

If the state is SMove, then we start dragging the object's drag box around. We do this by
unhighlighting the box, and then rehighlighting in the new cursor position. The result is that
the object's box tracks the cursor. The box is a simple rectangle and is managed by the dragger
routines in dragger. cc.

If the state is SSelect, then we check if the user is dragging the cursor. If the user is drag-
ging the cursor, then he is attempting a connection to another object. We change the state to
SConnect and put up an appropriate message.

If the state is SMselect, then we are drawing a rubber band box on the screen which will be

used in the button up event handler to select a set of objects.

To get smooth animation, for the rubber band box, we do an XSync0 after each change.

5.1.3 Button Release Event

This is where we finish off all the set up actions from the press and move events.

If we were moving the object, then we finish the move, reset the state back to select, and
redraw the canvas. The final cleanup includes redrawing all the connections attached to the
moved graphical.

If we were doing a multiple select, then we now call the selection routine with the final rectan-
gle drawn.

If we were trying a connect, we look up the connectors and do the connection.

22

5.2 CANVAS MANAGEMENT

The current canvas is 11 x 14- and is of fixed size. The application doesn't yet do automatic
scrollbar sizing or different size canvases. This is not seen as a crucial extension of functional-
ity.

The redisplay algorithm has several paths. The canvas can be redisplayed for any canvas area
in whole or part. Only visible objects are redrawn in this case. The algorithm can also do a
full redisplay. Both of these options are available with or without a clear area.

In general, we try to avoid a redisplay call. On a paste, we just redraw the object and any con-
nections drawn to or from. On a move, we erase the old object position by a redisplay with a
clear area, and then draw the object in its new position. Full redisplays mostly happen from
de-iconification of the application or some other exposure event.

Scrolling is currently handled by the graphics software, but another mechanism could take
over the scrolling of the canvas. The scrolling window widget that contains the drawing area
widget is capable of scrolling its child widget. This still doesn't deal with issues of scaling but
it is a notion for dealing with a fair amount of translation that currently happens.

5.3 WIDGET CREATION AND MANAGEMENT

There are three initialization files. init . cc does almost all the widget creation and setting
up of callbacks. The dialog boxes are created in dialog. cc and also in text. cc.

Resources for the widgets are specified in the resource files, app-default s/FCEdit, 7

. Xdefaults, and in the source code. It would have been preferable to place all of the
resources in the application defaults file, but the form widget information cannot go there as
there are problems with supplying the type conversion required by Motif.8

The dialog widgets are managed by using XtManageChild. and XtUnmanageChild.
The normal intrinsics routines XtPopup and XtPopdown are not used by Motif.

As with a number of details of an X-based application, the dialog management appears some-
what asynchronous. It would be more true to say that it is broken into two pieces. The first

7 The app-defaults directory is in the / u s r / 1 ib / X 11 directory.

8 For some reason Motif wants a string to window converter which cannot be supplied

because the widgets have been created but not displayed at the time the conversion occurs,
and a widget has no window until it is displayed (realized). Motif should be able to use the
string to widget converter which is available from the Xmu library.

23

piece activates the dialog which sets up the dialog's activate callbacks for the OK and Cancel
buttons. The activate callbacks then take care of dialog cleanup and value changes.

5.4 SAVE FILE DETAILS

The objects are saved in a canonical form in the save file. An EBNF (extended Backus-Naur
form) description of the save file is as follows:

file .= collection-object
object := standard-object I collection-object
collection-object := standard-object object* end
standard-object :- classname cr data* end
data := key space value null cr
null := ascii-byte-0
space := ascii-space
cr .= ascii-newline
end ":end"
key := ascii-string
classname := ascii-string

So each object has a line containing the class name of the object. This is followed by some
number of lines containing a string naming the value (a key) and the value saved (as a string).
The value is terminated by a null character which allows us to have multiline descriptions and
such stored in this way. The object is ended by a single line with the string ":end" on it. The
exception is the collection objects which then have zero or more objects following them with
a ":end" ending the object list.

All data is stored this way. A side benefit is that the save files will never become out of date. If
some information is discarded, then the data in the save file is ignored. If some new informa-
tion is added then the default value will be used.

The only thing to be careful about in this approach is that if the semantic meaning or format of
a particular field changes, then a new key must be chosen for the save, and a compatible
reader must convert the old saved data, but this is a small price to pay for upward compatibil-
ity.

Further elucidation of this and other subjects may be found in the following section which
contains partial walkthroughs of the application for several common user requests.

24

SECTION 6

WALKTHROUGHS

6.1 INTRODUCTION

The best way to make clear some of the more confusing implementation details is to walk
through the steps that the application takes in dealing with some of the common user requests.

6.2 EDIT DIALOG

Let's use the edit dialog for the standard graphical as an example.

1. The user double clicks on an object. The canvas buttonpress callback dobuttondown
calls the selected objects edit method

2. The edit method copies the label and description instance variables into the dialog's text
widgets, it calls the class editbe fore. method, it configures a number of toggle widgets
for connection breaking, and calls the function XtManageChild to manage the dialog shell.

3. The user manipulates the dialog fields. Notice that this is not a modal dialog9 and will not
force user input, i.e. the user can continue to edit the diagram and ignore the dialog. In fact,
the user can double click on another object and the dialog will be modified.

4. The user clicks the OK or Cancel button. The function finishOedit is called.

5. The function finish0edit takes down the dialog box. If the OK button was pressed,
then the changes recorded in the box are done. This includes modifying the label and
description and removing any connections toggled off and the editafter method is
called for additional modifications.

6.3 FILE LOAD

1. Put up the file selection dialog which will call the function load with the selected file infor-
mation.

2. Open the file.

9 Modal dialogs are those that take over until the user completes or cancels them. The Apple
Macintosh makes use of modal dialogs for a number of things such as print setup.

25

3. If this is a load (not an insert) clear all the existing objects. 10

4. Now read the top level object. This object will contain all the other diagram objects.

5. Each object consists of an initial line containing its classname, zero or more lines contain-
ing instance data, and a line with the text :end.

6. Each of the data lines has a keyword followed by a single space character followed by a
null terminated character string containing data.

7. All normal instances will have at least an id, (xy) position, label, and description data.

8. We create the specified object class instance.

9. Each data line is read in. The keyword is converted to a unique number, and the data is read
into a String object. The readOn method for the class is invoked with the keynumber and
String as arguments. The correct instance variable is found and set. This includes the con-
nection information.

10. If this is a Collection object then we also look for some number of subobjects following
the :end line of the instance data.

11. Continue as above for the next object.

12. Now scan the saved connection information and connect the read in objects.

13. Redisplay the screen and close the input file.

6.4 FILE SAVE

1. Put up the file selection dialog and call save with the appropriate filename.

2. Renumber the objects to have continuous ids starting at 0.

3. Now save the top level object which will save all its children.

4. For each object, start by writing the id and (x,y) position.

5. Then write the label and description and the description terminator.

6. Write out the connection information.

7. Then call the object's storeOn method to write out class-specific information.

8. Continue with the next object as above.

9. Close the file and tell the user the file is saved.

10 This needs to be modified to allow the user to save the existing file first.

26

6.5 CUT

1. First a copy is made of the selection (see copy below).

2. Then the clipboard.pasted flag is set to false.

3. The connections are broken.

4. If this is a class Ggroup object, then we scan the list of subobjects in a nonrecursive fashion
and break their connections.

5. Remove the item f-om the current level's list.

6. Set the modified flag.

7. Redraw the screen.

6.6 COPY

1. Remove the existing clipboard object if not null and unpasted.

2. Set up the clipboard structure.

6.7 PASTE

1. If the clipboard item is null, then return.

2. If the clipboard item has been pasted before, we do a deep copy of the object. This means
we copy the entire structure of a Gcollection. We do not at this time try to duplicate the
connections.

3. If the item to be pasted is a Ggroup, then we only paste its children one by one.

4. Otherwise we simply paste the object.

5. Then we fix the connections to all objects which were pasted.

6.8 PRINT

1. First we output a PostScript setup header which sets up the print font, scaling and transla-
tion for our output.

2. We define PostScript routines for boxes, circles, and arrows.

3. We do the following for each Gcollection including the top level. Gcollection:

Output the translation setup

27

Output a header with the Gcollection's label.
Calculate the total size of this Gcollection.

Scale this pages output to fit the Gcollection.

Print the Gcollection's objects.

Start a new page.

Output the non-null descriptions from the Gcollection's objects.

28

SECTION 7

CURRENT IMPLEMENTATION

The current implementation is a growing, evolving application. Some current notes are here
on future work planned and limitations of the current implementation.

7.1 FUTURE WORK

We hope in the next year to make this a more competent storyboarding environment. We will
do this by adding integration with a media database and providing full support for viewing
media objects contained in the storyboard tool.

7.2 LIMITATIONS

This is a partial list of current limitations of the implementation.

* Currently the user can scroll the canvas (DrawingArea widget) but not scale it. This is a
current compromise as X doesn't provide scalable fonts or scalable Pixmaps. There is a rel-
atively easy work around by allowing only power of 2 scaling, i.e., 2x, lx, l/2x, 1/4x, etc.,
but this would have been somewhat time consuming for the benefit.

" The canvas is of fixed size.

* Media objects other than Ggraphic do not yet have viewers.

29

30

BIBLIOGRAPHY

Open Software Foundation, 1990, OSF/Motifl Programmer's Reference, Englewood Cliffs,
NJ: Prentice-Hall.

Nye, A., 1988, Xlib Programming Manual, Sebastapol, CA: O'Reilly and Associates Inc.

Nye, A., 1988, Xlib Reference Manual, Sebastapol, CA: O'Reilly and Associates Inc.

Nye, A. and O'Reilly, T., 1990, X Toolkit Progranming Manual for X Version 11, Sebastapol,
CA: O'Reilly and Associates Inc.

Nye, A. and O'Reilly, T., 1990, X Toolkit Reference Manual for X Version I/, Sebastapol, CA:
O'Reilly and Associates Inc.

31

