
AD-- A24 7 168

MODELLING BATHYMETRIC CONTROL OF

NEAR COASTAL WAVE CLIMATE: REPORT 3

by

James T. Kirby

with J. P. Anton, J. A. Baillard, R. A. Dalrymple,

J. W. DeVries and R. T. Guza

* DTICSFLECTE
MAR06 1992

RESEARCH REPORT NO. CACR-92-01

February 1992

Thsdocument has been approvdd
fr public felease and scle; its

distribution is uflirMnied

* CENTER FOR APPLIED COASTAL RESEARCH

DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF DELAWARE

NEWARK, DELAWARE 19716

92-04994
922, . oo0 9 Illl||



EPOR WREATON PAGE

14. IMUS a". subn &We f$

MODELLING BATHYMIETRIC CONTROL OF NEAR COASTAL L-February 1992

1. ANOO(s)

James T. Kirby CC-30

9. 1O ftestm Oqa assi M- miW~ Is rnenktsi& t
UNIVERSITY OF DELAWARE
Department of Civil Engineering
Center for Applied Coastal Research N00014-90-J-1678
Newark, DE 19716 .

L2i. sps'u o rm ta taU s oost a "d &" "so 
_NOffice of Naval Research Final Report

800 North QuincyStreet
Arlington, VA 22217

IS. S"PlemosTar votes

This document is the final report for the ONR project N00014-90-J-1678, the third
phase of a study entitled "Modelling bathymetric control of near coastal wave
climate." The effort in this phaie of the study was concentrated on the extension
of the angular spectrum modelling technique to nonline.'r shallow water waves, and
to further studies of the Bragg reflection mechanism for surface waves being
reflected by artificial or natural bars.

17. ftiaue.r' K07 wet" is. £welai~I1llSatmnt

= 9 . a. s. .,,. Closets. of a fte es so. . S. S ~sN uitp cl m.0 . !1 I s Pae . It. ft . 01 1 **0 1. P" Ce

Unclassified Unclassified



MODELLING BATHYMETRIC CONTROL OF
NEAR COASTAL WAVE CLIMATE: REPORT 3

by

James T. Kirby

with J. P. Anton, J. A. Baillard, R. A. Dalrymple, J. W. DeVries
and R. T. Guza

RESEARCH REPORT NO. CACR-92-01
February 1992

CENTER FOR APPLIED COASTAL RESEARCH
DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF DELAWARE
NEWARK, DELAWARE 19716



1 Summary 2

2 Bragg Reflection 2

3 Angular Spectrum Modelling 2

Appendix A: Bragg Reflection of Waves by Artificial Bars

Appendix B: Bragg Reflection Breakwater: A New Shore Protection Method?

Appendix C: Considerations in Using Bragg Reflection for Storm Erosion
Protection

Appendix D: A Note on Bragg Scattering of Surface Waves by Sinusoidal
Bars

Appendix E: A Discrete Angular Spectrum Model for Nonlinear Shallow
Water Waves. Part 1. Waves in Laterally Uniform Domains

Appendix F: Angular Spectrum Modelling of Water Waves

Accesion For

NTI'S CRAiJ
' D T I -- TA 3 -

Jusfit.caio

' sPL": tD t ' ' 0 /!''O -

A J

Si~



1 Summary

This document is the final report for the ONR project N00014-90-J-1678, the third phase of
a study entitled "Modelling bathymetric control of near coastal wave climate" The effort in
this phase of the study was concentrated on the extension of the angluar spectrum modelling
technique to nonlinear shallow water waves, and to further studies of the Bragg reflection
mechanism for surface waves being reflected by artificial or natural bars.

Data from a laboratory experiment on the mean surfzone flows associated with a passively-
driven syphon system is presently being reduced and will be described in a separate data
report.

2 Bragg Reflection

The major effort in this area was related to describing the reflection process for bars with
shapes that would correspond to artificial bars to be installed in the field. Appendix A
contains a paper which describes the analysis of reflection from a bar field using the Fourier
decomposition of the bar shapes in the analysis. Appendix B describes an attempted field
installation (see Kirby, 1988) of bars of the type described in Appendix A. Finally, Appendix
C assesses the usefuilness of artificial bars as coastal protection devices. The analysis in
this paper utilizes the bar relection program developed in Kirby (1987). Finally, Appendix
D presents a manuscript which addresses some theoretical points arising in the analysis of
resonant reflection of waves by sinusoidal bars.

3 Angular Spectrum Modelling

The development of the angular spectrum methodology for modelling nearshore wave prop-
agation was extended to the case of nonlinear shallow water waves; this case is described in
Appendix E. The work leading up to this point has culminated in an invited review article
covering work on linear waves, nonlinear Stokes waves, and shallow water Boussinesq waves,
which is presented here as Appendix F.
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CHAPTER 58

BRAGG REFLECTION OF WAVES BY ARTIFICIAL BARS

James T. Kirby', Jeffrey P. Anton2

Abstract

We consider the extension of previous theories for Bragg reflection of sur-
face waves by parallel bars to the case of artificial bars placed discretely on the

* seabed. The case of non-resonant, weak reflection is considered first, followed
by a consideration of the application of resonant interaction theory to the dom-
inant Fourier mode of the bar field. Both theories are compared to numerical

: results, and discrepancies are seen in both cases. Finally, experimental results
are compared to theory.

Introduction

The discovery that the Bragg reflection mechanism leads to strong reflection
of incident surface waves by periodic bottom undulations has led to speculation
that artificial bars could be constructed which would partially shelter shores or
localized structures from wave attack. Possible bar configurations of this sort
have been discussed previously by Mei et al. (1988) and Naciri and Mei (1988).
The paper by Bailard et al. (1990) in this conference describes an effort which
was made to install and test an artificial bar field offshore of a natural beach.

The purpose of the present study was to extend the scope of available theory
and techniques which were available for predicting wave reflection from bars, in

*, support of the proposed field study. Here, we discuss the application of ana-
lytic perturbation methods for both non-resonant and resonant cases. We also
discuss numerical results, which point out limitations present in both analytic
approaches. Finally, experimental results largely provide a qualitative verifica-
tion but in turn show some limitation of the small amplitude bar theory.

Theory for Small Amplitude Bars

The theory which provides the framework for analysis here is given by an
extended mild-slope equation derived by Kirby (1986).

We treat the water depth h'(z,y) as the superposition of a mildly-sloping
bottom h(x, y) and a rapidly-varying but small- amplitude undulation 6 (z,y):

h'(zy) = h(z, y) - 6(x, y) (1)

'Assoc. Prof., Center for Applied Coastal Research, Dept. of Civil Engrg., Univ. ofDelaware, Newark, DE 19716
2Formerly, Grad. Stud., Coastal and Oceanographic Engineering Department, University

of Florida, Gainesville, FL 32611
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Figure 1: Bar field with four discrete bars.

Using h(x, y) as the reference depth in the mild-slope sense, the model equation

v h. (CCgVh#) + k2CCqS = 9 v1-(6V,') = 0 (2)
cosh 2 kh

is obtained, where 0 is the value of the linear wave potential at the still water
surface. The model coefficients are obtained from

02 WW = gktanhkh; C = C9  (3)

and are determined by the value of h(x,y) in all cases.

The Artificial Bar Field

In the absence of appropriate field data, we have restricted our attention here
to the study of periodically spaced bars (6 = 6(x)) and an otherwise uniform
depth h = constant. In principal, 6 is arbitrary aside from the small amplitude
restriction. In the present study, we have chosen a bottom consisting of rectified
sine waves, given by

6(X) 2 - - 2 (4)
0 otherwise

N =0, . N -

where Nb is the number of bars, L is the periodic bar spacing, bL is the footprint
of the bar on the bottom, and D is the bar height. The rectified cosine form
is chosen mainly for its convenience in later analysis. An example bar field is
shown in Figure 1. The bar field is periodic over intervals of width L, and can
be conveniently represented by the cosine series,
*i

6(x)=2 D.cos(nAz) ; A= (5)

where o0 D D,, coo!
Do -*-; D. = D - (I + cosnwr) (6)

2'( (- n2)
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Non-resonant Reflection

* For the case of h constant, the model equation (2) may be written as

V2+ k2 = aVh- Vh) (7)

where
4k

* = 2kh + sinh 2kh (8)
With b(x) representing bars varying in the x-direction, we represent oblique
waves according to

O(x, y) = (x)e"'m ' ; m = ksin0 (9)

and obtain

4. + 12 = M6)--2a, (10)

12 = k 2 _M= k2 cos 2 a

This equation has been obtained by Miles (1981) who used it to study reflection
from a single isolated obstacle.

For 6(x) confined in a finite region of space, we may write

4(x -+ oo) = Te' z
0(x --* -cc) = ei& + Re- X (I1)

where T and R are complex transmission and reflection coefficients. With 6
small, we expand o, T and R as series in the small parameter € = D/h. andobtain oo = COT Ro = 0 To = 1 (12)
at leading order. At second order, the reflection coefficient R, for an arbitrary

topography b(x) is

R, (t2 - M2)f b(_)e 2s~z dx (13)

as found by Miles (1981). Note that R, is singular in the limit as 0 - ir/2. This
effect has not been previously noted and its practical implications are unclear.

For the case of a simple sinusoidal bottom

b(x) = Dsin (Ax) ; 0 < x < NbL (14)

we obtain the expression

I R I=  2 A : ,.N At- (15)
2 Pr 2 ; A -

This result extends the non-resonant theory of Davies and Heathershaw (1984)
to include obliquely incident waves.
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For the periodic bar field described by (5) and (6), we substitute (5) in (13)
and obtain the expression

R, = tDI. (16)

where the integrals In are given by

I. cos(nAz)e2"ldz. (17)

As in the case of a single sinusoidal bar, the integral I, takes on special values
when 2t/nA\ = 1 for the corresponding value of n. We further simplify the
notation by setting 2t

- (18)

Then, for -f 6 n, we obtain the expression

S 72 e" v b" sin NbL ; 7$fn (19)
- (y2 - n2)

For n - 7, we obtain the expression

* (7 = n) = NbL (20)

We thus obtain the general solution for obliquely incident waves

io (f2  m 2 \ f,7 ~2 D IN, Lb 'V
R=,i (= - n tsinf 'L + D,6(n

- 1~ 2) 2 - 712 ) '2

(21)
where b(n - -y) is the delta function, and there n = 7 can only occur for one
wavenimber component for a fixed value of t. For the case of normally incident
waves (studied further below), we let t -+ k, n -. 0 and obtain

R, D, MN L i kNL+ D,,6(n-7)kNL (22)

From the form of the solution, it is apparent that each harmonic of the bar field
contributes to the reflection process, with the dominant contribution of the nth

harmonic coming from the neighborhood A :z n. An example plot of reflection
coefficient I R, I is shown in Figure 2 for a case of 4 bars with crest-to-crest
spacing equal to the unrectified wavelength (bL = L/2). Waves are normally
incident on the bar field. The peak in R I at 2k/A = I corresponds to the usu-lf
Bragg interaction between the surface wave and the fundamental harmonic of
the Tar field, when the surface wave length is twice the bar spacing. A second
prominent peak is located at 2k/A = 2, corresponding to a surface wavelength
equal to twice the length of the second harmonic of the bar field (and thus equal
in length to the bar spacing). This strong second peak is absent when the bar

*t
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Figure 2: Reflection for four discretely placed bars. Non-resonant theory, equa-

tion (22).

field being considered is a simple sinusoid, as in Davies and Heathershaw (19S4)

and Mei (1985).
In general, the relative amplitude of the peaks in the reflection coefficient

may be adjusted by changing the spacing of artificial bars, assuming the cross-
section of each bar to stay the same. Pushing bars closer together makes the bar
field more sinusoidal and reduces the importance of higher harmonics. Placing
the bars further apart makes them into relatively more "solitary" features, and
thus emphasizes the relative importance of higher harmonics. Two cases illus-
trating these extremes were investigated in the experiments described below.

p{

p , ,- -rm m -rmmmmm N mmm m m m(mmm m Nmmmm m
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Resonant Reflection

The reflection coefficient described in (21) is defective for the cases 2 nA,
where the coefficient can become arbitrarily large as Nb ---* oo. While this
limit would never be reached in practice, the result shows that the theory is
not strictly valid in the neighborhood of the resonances. The problem lies
with assuming that R, is . ')( 1) in the perturbation series used above. Mei
(1985) has developed a resoi:.ce theory which allows for 0(1) reflection in the
neighborhood of each resonance. Mei et al. (1988) further suggested that, for
the case of a bar field with multiple Fourier components, the reflection could be
estimated using the resonance theory applied to the Fourier mode corresponding
to the bar wavelength. This approach would not account for the occurrence of
multiple strong peaks. In the present study, we define a neighborhood of each
resonance 21/A = n to be the range n - 1/2 < 21/A < n + 1/2. Then, in each
range, Mei's theory is used with 2t/A" replacing 2t/A, with A' = nA. We refer
the reader to Mei (1985) for the expressions defining the reflection coefficients.
The only necessary modification to the theory account for oblique incidence and
the presence of multiple resonant peaks. The frequency w, of the n"1 resonant
peak is given by

- n =g( tanh nh (23)n 2 cos 0 t 2cosO)

The cutoff condition flo defined by Mei is replaced by

11n = - M2 w ,kD k (24)
V 2 sinh 2kh cos 0

where the D, are the amplitudes of the bar Fourier coeffi,:ients, and there 11o,
refers to the n"h resonant peak.

An example of the reflection calculated for the case of normal incidence is
given in the following section, in comparison with numerical results and results
of the non-resonant theory.

Numerical Solutions

In order to study the validity of each of the perturbation solutions, direct
numerical solutions of equation (10) were also performed. For a bar field in the
region 0 < z < N6 L, an incident wave boundary is established at x = A < 0,
and a downwave, transmitting boundary is established at z = B > NbL. For
an incident wave 4q = eItZ, the appropriate boundary conditions are

lt{i (2 kI4) ; x (25)

Equations (10) and (25) are finite-differenced using central differences, leading
to a tridiagonal system which is solved using the Thomas algorithm.

Figure 3 shows a sample of calculated reflection coefficients obtained with
the numerical solution and the two analytic soluti,.s, for the bar field described
in Figure 2. As expected, the non-resonant solution over-predicts reflection at
2k/A = 1, in comparison with the resonant theory of Mei (1985). The discrep-
ancy is relatively minor at the second peak 2k/A = 2, where the resonance is
relatively weaker. In contrast to both analytic theories, the numerical results

Im nnmumm H l m n a i n o I I I N I I
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Figure 3: Comparison of non-resonant, resonant and numerical solutions for a
bar field with Nb = 4. - , non-resonant theory, . -- , resonant theory:

, numerical results.

show a strong downshift of the reflection peaks to lower values of 2k/A. This
downshift is related to the simultaneous interaction between the wave field and

* several bottom modes; a similar effect occurs for the case of a sinusoidal bar
field, but it is much more subtle. The numerical scheme also predicts a higher
reflection coefficient at each peak. The large downshifts and higher peaks are
largely validated by data described below. These results indicate that either
of the two analytic solutions are at best qualitatively accurate when used to
describe reflection from the type of bars that could be built in an actual con-
struction project.

Experimental Results

jExperiments were conducted in the 60 cm wide wave flume in the Coastal
and Oceanographic Engineering Laboratory, University of Florida, in order to
verify the basic aspects of the theory for normally incident waves. For the
experiments, a water depth h = 15 cm was used. Bar height D was 5 cm,
giving D/h = 0.33, which is relatively large and could contribute to some of
the iscrepancies between theory and data noted below. The bar footprint
bL = 50cm. Two bar spacings, L = 80cm and 120cm, were tested, corresponding
to cases with bar field bigher harmonics of low importance and great importance,
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INCIDENT ENERGY SPECTRUM

REFLECTED ENERGY SPECTRUM TRANSMITTED ENERGY SPECTRUM
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Figure 4: Bar field and wave gage placement

respectively. The bar fields tested contained four discrete bars.
In order to maintain a close correspondence between the assumed linearity

of the wave theory and the experiments, incident waves on the order of 1 cm in
height were generated. (Actual height varied with wave frequency, as would be
expected from wavemaker theory.) Wave heights were measured using capac-
itance wave gages mounted with 6 cm-long wires, which were calibrated over
their full length. Data was sampled using 12-bit digitization. giving a resolution
of 0.012 mm/division. The wavefield was sampled at a 10Hz frequency, with
experimental waves being generated in the range 0.4Hz < f < 1.6Hz.

Due to the small wave heights being used, there was an additional source of
noise in the data associated with mechanical vibration in the wavemaker and
other high-frequency effects. In retrospect, it would be better to use slightly
higher waves in future experiments unless great care were taken to isolate me-
chanical vibration. (For a particularly spectacular example of clean data in a
related low-amplitude wave experiment, see Benjamin et al. (1989)).

The three-gage, least squares method developed by Funke and Mansard
(1980) was used to separate incident and reflected waves. The gage layout
relative to the bar field is shown in Figure 4. The incident-reflected separation
was performed both upwave and downwave of the experimental bar field. The
downwave separation indicated a reflection from the absorbing beach on the
order of 5-6%. This reflected energy was neglected in subsequent processing
and the downwave region was assumed to be perfectly transmitting.

* Figure 5 shows the measured reflection coefficient for the case of L = 80crm,
when bar field harmonics are relatively unimportant. Also included in the figure
is the prediction of the numerical model described in the previous section. The
data largely validates the theory, although there is a great deal of scatter. (It
also appears that shifting the data to higher values of 2k/A would bring the data
into fairly close agreement with theory. No systematic error was ever detected in

*P the experimental procedure which could account for such a shift, unfortunately.)
Figure 6 shows corresponding data for the case of L = 120cm, where the

pi
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Figure 6: Experimentally measured reflection coefficient, L = 120cm.

second harmonic component of the bar field is comparable in height to the fun-
and tests were grouped in order to show the relative heights of the two reflection

peaks. Both the presence and the relative impoitance of the two numerically-
predicted peaks are substantiated by the data.

Response of a Closed-end Channel

One question that arises in response to the realization that bars can reflect
significant amounts of incident energy is whether or not a region downwave of a
bar field experiences a less severe wave condition than the region on the incident
site. The answer to this question can be positive or negative, depending on the
geometry of the downwave region and the reflectivity of the end boundary. For
cases where reflection from the end wall is nearly complete, waves travelling
back towards the bar field are partially re-reflected into the sheltered region.
The possibility of resonating the sheltered region exists, as does the possibility
of reducing the wave activity, and depends primarily on whether the sheltered
region contains an integer multiple of one-half the surface wavelength.

Figure 7 shows the numerically predicted amplitude at a vertical wall sit-
uated four barfield wavelengths downwave of a bar field with four bars, as in
the previous examples. The incident wave has an amplitude of unity, and so an
amplitude of 2 represents simple reflection. The figure shows that the amplitude
at the wall can reach as high as 3.6 and as low as 1, representing a range of
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Figure 7: Wave Amplitude at End Wall of a Channel Sheltered by an Artificial
Bar Field

4resonance and sheltering conditions.
For the case where the channel end is primarily absorbing (due to wave

breaking or frictional effects), the possibility of resonating the sheltered region
is greatly reduced. This virtually guarantees that a bar field designed to shelter
a beach from wind-wave band waves would not resonate the shoreline. How-
ever, as the wave frequency becomes low, even a mildly-sloped shoreline can
become essentially reflective. It is thus possible that broad, low bars contribute
significantly to amplifying long wave energy on the beach face. The long waves
that could be amplified or resonated by this mechanism may be locally gener-
ated by nonlinear processes in the surfzone, or they may be arriving as part of
the forced or free long wave climate incident from offshore. Problems of this
sort need further investigation to determine the relative importance of bottom
interaction in influencing the nearshore wave climate.

S
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Bragg Reflection Breakwater: A NOW
shore Protection Method?

5 James A. BailardI , Jack DeVries 2 , James T. Kirby 3
and Robert T. Guza 4

ABSTRACT

The feasibility of a new type of breakwater is explored
through a combined program of theorteical analysis, lab-
oratory experiments and a prototype field test. The
breakwater consists of a series of low height, shore-
parallel bars which are placed just outside the surf-
zone. The incident wave field is strongly reflected
when the incident wave length is equal to twice the dis-
tance between adjacent bars. The breakwater acts to
shelter the beach against storm wave attack and to build
a tombolo sand deposit behind the breakwater. Theoreti-
cal and laboratory studies indicated that the Bragg re-
flection breakwater concept may have considerable merit,
however, a small scale field test served to demonstrate
the many practical difficulties in implementing the
concept.

INTRODUCTION

The Naval Civil Engineering Laboratory (NCEL) has been
involved in a multi-institutional program to explore low
cost, rapidly deployable techniques for reducing beach
erosion during storms. One concept under consideration
is the Bragg reflection breakwater. Theoretical and
----------------------------
1 Principal, Bailard Jenkins Technologies, Carpinteria,

CA
2 Engineer, Naval Civil Engineering Lab, Port Hueneme,

CA
3 Professor, University of Delaware, Newark, DE
4 Professor, Scripps Institution of Oceanography, La
Jolla, CA

Bailard



laboratory studies have shown that a series of periodi-
cally spaced, low height bars, oriented parallel to the
beach, can produce a strong reflection of the incident
wave field. A reasonant condition (termed Bragg reflec-
tion) occurs when the incident wave length is equal to
twice the separation distance between bars.

The Bragg reflection breakwater concept involves placing
a series of artificial bars just outside the surfzone.
Referring to Figure 1, the effect of the bar field is
two-fold: to shelter the beach from storm wave attack;
and, to create a large sand volume behind the breakwater
by way of the induced nearshore circulation. Both ef-
fects serve to protect the beach against storm wave at-
tack: the first by reducing the rate of offshore sand
transport, the second by increasing the erodable sand
volume.

The objective of the research program was to explore the
feasibility of the Bragg reflection breakwater concept
through a combined program of numerical and laboratory
modeling and a prototype field test. The present paper
presents an overview of the program with an emphasis on
the planning and results of a small scale field
experiment.

BACKGROUND

Theoretical and Experimental Basis

Davies and Heathershaw (1984), Nei (1985) and others
have shown that a series of low amplitude sinusoidal un-
dulations on the seabed can be an effective reflector of
surface gravity waves. The reflected wave energy varies
as a function of the ratio of the incident wave length
to the spacing between bottom undulations. A reasonant
condition, termed Bragg reflection, occurs when the in-
cident wave length is equal to twice the distance be-
tween undulations. When resonance occurs, a small num-
ber of bars can reflect a substantial portion of the
incident wave energy.

Technical Issues

At the onset of the research program, there were a num-
ber of unresolved technical issues relating to the fea-
sibility of the Bragg reflection breakwater concept.
These included: the response characteristics of non-si-
nusoidal bars on a sloping beach; the effects of finite
bar length and the resulting wave-induced circulation;
the morphological response of the beach in the presence

2 Bailard
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of the breakwater; the practical design, installation
and recovery of a breakwater; and, the effects of waves
on bar stability and scour. An additional issue was how
to measure spectral wave reflection in the field.

PRELIMINARY ASSESSMENT

As a means of exploring the feasibility of the Bragg re-
flection breakwater concept, a series of preliminary
studies were conducted. These studies were to culminate
in a small scale field test of the concept. The results
of the preliminary studies can be summarized as follows.

Wave and Current Modeling

Numerical and laboratory modeling studies were conducted
at the University of Florida to examine the effects of
bar shape, bar placement, beach slope and bar length on
the reflection characteristics of a Bragg reflection
breakwater. Details of these studies may be found in
Anton et al. (1990). Specific results included:

o The primary effect of beach slope is to require an
adjustment in the spacing between each bars to
accommodate the change in incident wave length.

o The reflection from a non-sinusoidal bar field can
be calculated by expanding the bottom shape func-
tion as a fourier series and linearly summing the
response characteristics for each component of the
series.

o Finite bar length causes a longshore variation in
the wave-induced setup leading to the formation of
a rip current flowing outward over the bar field.
The rip current acts to broaden the reasonant peak.

These studies indicated that a Bragg reflection breakwa-
ter, constructed from a small number of practical-shaped
(i.e. non-sinusoidal) bars, could be expected to gener-
ate a reflection coefficient in the range of 0.2 to 0.4.
Beach Response Modeling

A Bragg reflection breakwater protects a beach from
storm wave attack by reducing the rate of offshore sand
transport via decreased wave height and increasing the
erodable sand volume via creation of a tombolo behind
the breakwater. The former is a two-dimensional effect
which is independent of breakwater length. The latter
is a three-dimensional effect which results from the
formation of a nearshore circulation cell with a rip
current flowing outward over the top of the breakwater.
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NCEL conducted a numerical model study to determine the
impact of a Bragg reflection breakwater on the two-di-
mensional response of a beach profile during a simulated
storm. The model study utilized an energetics-based
beach profile response model developed by DeVries and

p Bailard (1988). The model was run for a simulated 5 day
storm assuming varying wave reflection coefficients.
The effectiveness of the breakwater was expressed in
terms of the normalized erosion volume. This was de-
fined as the ratio of the eroded sand volume in the
presence of the breakwater divided by the eroded sand

p volume without the breakwater.

Model inputs were as follows:

o Initial equilibrium beach slope - 0.03
o Grain size - 0.4 mm

* o Storm duration - 72 hr
o Peak wave height = 2 m
o Peak wave period = 9 sec

Without the breakwater, the beach eroded approximately
205 cubic meters per meter of beach. Referring to Fig-
ure 2, the breakwater reduced the storm erosion volume
by an amount which was inversely proportional to the
wave reflection coefficient, Kr. The degree of reduc-
tion is quite significant, amounting to 35% for a re-
flection coefficient of 0.2.

A movable bed physical model study was conducted at the
University of Florida to qualitatively examine the
three-dimensional beach changes induced by a Bragg re-
flection breakwater. The model confirmed the presence
of a nearshore circulation cell with a rip current flow-
ing outward over the bar field. The circulation cell
caused a tombolo to form behind the breakwater, with the
outer edge of the tombolo perched on the shoreward-most
bar.

Bar Module Tests

It was anticipated that developing a practical breakwa-
ter would be a significant design challenge. Our lim-
ited budget necessitated coming up with a breakwater
which could be rapidly assembled, installed and recov-
ered using a minimum of people and equipment. In order
to explore various design and installation concepts,
NCEL conducted field tests of two bar designs at a Port
Hueneme beach. Both designs featured modular construc-
tions consisting of skid-mounted bar modules which could
be assembled on the beach and dragged offshore.
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Referring to Figure 3, the first design consisted of a
geotextile bag attached to a skid-mounted steel frame.
The concept was to drag the modules into place with the
bags empty, and then fill the bags with sand using a
small dredge pump. When the breakwater was no longer
needed, the bags could be slit, allowing the sand to
disperse and the bars dragged back ashore. The advan-
tage of this design was that the bar modules would be
light and easy to move when empty, but heavy and diffi-
cult to move when full.

An attempted field test of the geotextile bar design
ended in failure. Although assembling and positioning
the bar module proved simple, filling the geotextile bag
with a small dredge pump proved difficult. The pump
was mounted on an amphibious LARC vehicle, parked in the
surfzone. The principal difficulties were maintaining
an adequate supply of sand to the pump and handling the
intake and discharge hoses. When, after a few hours of
filling, little sand had been pumped into the bag, the
test was abandoned. In retrospect, the test might have
been more successful had a larger, perhaps land-based
dredge pump had been used.
Nevertheless, the installation procedure was judged to
be too cumbersome for the planned field experiment.

Referring to Figure 4, the second bar module design con-
sisted of a corrugated steel arch attached to a skid-
mounted steel frame. The concept was to assemble the
modules on the beach and drag then into position. When
the breakwater was no longer needed, the modules would
be dragged back onto the beach and removed. The advan-
tage of this design was that the modules were ready to
go once they were moved into position. The main draw-
back was that the modules were relatively light weight
and could be moved about by large waves. Although pin-
ing the modules with uplift resisting anchors was con-
sidered, it was judged unnecessary for the anticipated
wave climate.

The field test demonstrated that the arch module design
could be rapidly assembled and installed. Provided wave
heights were less than 1 m (rms), the module tended to
remain in place. The primary problem was a scouring of
the seabed underneath the bar module. This was caused
by wave-induced flow passing through the narrow gap be-
tween the leading and trailing edges of the bar and the
sand bottom. The scour depression acted to further en-
hance the venting flow, reducing the reflectivity of the
bar module.
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Figure 3. Geotextile bar module design.
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Figure 4. Steel arch bar module design used in the
field test.
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The venting/scour problem was solved by adding steel
* plates to the leading and trailing edges of the bar.

The plates were attached to the bar by hinges, effec-
tively sealing off the gap underneath the bar. Although
some scour continued to occur around the bar module, the
plates continued to function by dropping down into the
scour depressions. After a period of two days, the
scour depressions appeared to stabilize at a depth of
about 0.3 m. A few days later, a significant storm
passed through the area destroying the bar modules.
However, the successful performance of the module prior
to the storm convinced us to that the steel arch design
would be suitable for the planned field test.

Detection Method

An inverse method was developed to estimate the direc-
tional spectrum of the reflected wave field (see Herbers
and Guza, 1990). The method requires simultaneous mea-
surement of the incident wave field at a point offshore
and the reflected wave field at a point immediately in
front of the Bragg reflection breakwater. The procedure
is as follows:

o The incident wave field is estimated using the
offshore wave measurements.

o The incident wave field is transformed to shallow
water using linear refraction.

o The reflected wave field is estimated using the
inshore wave measurements and subject to maximum
compatibility with the refracted incident wave
field.

PROTOTYPE FIELD TEST

Site Selection

In order to maximize the detectable reflected wave en-
ergy, we wanted to construct a breakwater that was sig-
nificantly longer than the incident wave length and
which produced a reflection coefficient of about 0.4.
To minimize the size of the breakwater and therefor its
cost, we decided to carry out our experiment in "super
laboratory" conditions. These can be defined as signif-
icant wave heights less than 0.25 m, a wave period of
about 5 seconds and an installation depth of about 1.5
meters.

A number of sites were considered for the field experi-
ment. The desired site required small amplitude, short
period waves, a long planar beach, limited public access
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and good logistical support. Based on these criteria,
Cape Canaveral Beach, Florida, was selected as the pre-
ferred site for the field experiment. The site was lo-
cated within the confines of Cape Canaveral Air Force
Base, limiting public access and providing the necessary
logistical support. Two years of wave data from the
site indicated that during the month of July, we could
expect significant wave heights of about 0.2 m with a 5
second period.

Breakwater Design

Referring to Figure 5, the prototype Bragg reflection
breakwater was composed of three bars, 90 meters long.
The offshore and middle bars were 0.7 meters high and
2.2 meters wide. The inner bar was 0.6 meters high and
2.4 meters wide. The spacing between the outer and mid-
dle bar was 9 meters versus 8 meters between the middle
and inner bars. The breakwater was designed to be in-
stalled in a water depth of about 0.76 meters MLW.

Referring to Figure 5, each bar module was 7.3 meters
long. The modules were fabricated from a pair of corru-
gated steel arches attached to a steel skid-mounted
frame. The frame was composed of a pair of steel angle
members attached to two steel skid beams. The angle
members served as attachment points for the edges of the
corrugated steel arches and the a series of steel scour
plates hinged to the front and rear edges of the bar.
The bar modules were designed to be assembled by a small
crew using a crane and hand tools. Assembly was facili-
tated by prefabricating the components off-site and us-
ing nuts and bolts for fasteners.

The total weight of the bar modules was approximately
3300 lb. An stability analysis indicated that the mod-
ules would remain in place without anchoring if rms wave
heights were less than 1 m (assuming a wave period of 5
to 6 sec).

Anticipated Performance

Figure 6 shows a plot of the estimated reflection char-
acteristics for the prototype breakwater. These charac-
teristics were estimated using a computer program devel-
oped by Kirby (1987). The response function shows a
broad peak centered at about 6 seconds with a reflection
coefficient value of 0.4. The adjacent narrower peak is
the first harmonic resulting from the non-sinusoidal
shape of the bar field (i.e. discrete bars resting on a
planar bottom).
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Figure 5. Bragg reflection breakwater design used in
the field test.
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Figure 6. Estimated reflection characteristics for
the field tested breakwater.
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Installation and Recovery

The bar modules were assembled in a staging area located
about 200 meters from the beach. After assembly, the
modules were carried to the beach with a large front-end
loader. The loader placed the modules on the upper

* beach face in groups of three, with their skids oriented
perpendicular to the shore. Scour plates were attached
to each module and tied up out of the way to facilitate
module dragging.

Referring to Figure 7, the original installation plan
called for dragging the modules into position in groups
of three using a shore-based winch and a movable sheave
and anchor assembly. In practice, we found that the
waves at the site were too large to allow this method of
installation. In particular, the LARC vehicle found it
difficult to negotiate the surfzone while pulling a
heavy anchor and cable. As a result, only one group of
modules was installed using this technique. The rest of
the modules were installed individually at extreme low
tide using the front-end loader. Although rapid (all of
the modules were installed in a single low tide), this
alternative technique required placing the breakwater
approximately 15 meters closer to shore. As a result,
the breakwater was situated inside the surfzone for a
substantial portion of the tidal cycle.

MonitorinQ Plan

A survey grid was established in the area of the break-
water and in an adjacent control area. Daily wading
profiles were to be conducted in the test and control
areas. These were to be supplemented by combined wading
and fathometer surveys at the start and end of the ex-
periment.

The incident directional wave spectrum was measured at a
depth of 6 meters using a linear array of pressure sen-
sors. A second array of pressure sensors and current
meters was to measure the reflected wave field and the
induced nearshore circulation field around the breakwa-
ter. The offshore array was constructed prior to the
installation of the breakwater. The inshore array was
to be constructed once the breakwater was in place. Un-
fortunately, this never occurred due to problems de-
scribed below.

RESULTS

The Bragg reflection breakwater was deployed on 11 July
1988. During the week prior to installation, the sig-
nificant wave height at the site averaged about 0.4 a.

11 Bailard
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This was approximately twice the anticipated wave height
based on two years of measured wave data and essentially
equal to the maximum design wave height for bar stabil-
ity.

Immediately following breakwater installation, the sig-
nificant wave height increased to about 0.6 m and
remained at this level for the next 36 hours. These
waves were significantly greater than the maximum design
wave, causing the bar modules to slowly shift their
positions. The modules rotated towards the direction of
wave attack and moved shoreward about 1 to 2 m. The
movement began with the outer-most bar and progressed
inward through the middle and inner bars.

Another problem which developed almost immediately after
installation of the breakwater was an intense scouring
around the bar modules. As the tide rose, the bars were
observed to be generating a significant degree of tur-
bidity. On the following day we discovered large scour
holes had formed in front of and behind the bars (see
Figure 8). The scour holes slowly grew, becoming deeper
and wider. Eventually they reached more than 2 meters
deep, threatening the stability of the bar modules.

The observed scour was approximately an order of magni-
tude greater than the scour observed in the Port Hueneme
tests. Since wave conditions were similar, we believe
that the increased scour was attributable to the differ-
ent properties of the two beach sands. At Port Hueneme,
the sand was well sorted, having a median diameter of
0.25 mm and quartz and feldspar composition. At Cape
Canaveral, the sand was poorly sorted, having a medium
diameter of 0.14 mm and calcium carbonate composition.
Apparently the lighter specific gravity of the Cape
Canaveral sand, coupled with its smaller size and higher
percentage of fines, resulted in increased sand suspen-
sion and enhanced scour.

After two days, the bar modules had become badly scat-
tered. Some of the modules had shifted into their scour
holes and begun to become buried. With bar burial be-
coming a growing problem, the decision was made to ter-
minate the experiment and recover the bar modules while
it was still possible. A bulldozer was used to pull the
individual modules out of the surfzone and back up the
beach face. From there, a front-end loader transported
the modules back to the staging area where they were
disassembled.

Because of the short duration of the breakwater deploy-
ment, the nearshore sensor array was never installed.
As a result, no quantitative measurements were obtained.
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Visual observations during the first few hours of de-
ployment indicated that some wave reflection was occur-
ring as evidenced by a standing wave pattern in front of
the breakwater.

CONCLUSIONS

Theoretical and laboratory studies have indicated that
the Bragg reflection breakwater concept may have merit
as an expedient shore protection method. The wave shel-
tering produced by a small number of bars was found to
significantly reduce the estimated erosion volme due to
a model storm. The small scale field test, however,
served to demonstrate many of the difficulties that will
need to be overcome before the Bragg reflection breakwa-
ter concept becomes practical. Bar stability and sea
bed scour appear to be the most troubling problems.
Further tests are needed to determine the overall merit
of the concept.
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Appendix C: Considerations in Using Bragg Reflection for
Storm Erosion Protection

J. Waterway, Port, Coastal and Ocean Engrng., 118, 62-74, 1992.
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* CONSIDERATIONS IN USING BRAGG REFLECTION FOR
STORM EROSION PROTECTION

By James A. Ballard,' Member, ASCE, Jack W. DeVrles,' and
James T. Kirby,' Member, ASCE

Aasm. c: It has been suggested that Bragg reflection. the combined coherent
wave reflection from a few low-lying shore-parallel bars. might be used to protect
a beach against storm-wave attack. Numercal models are used to examine two
issues relating to the feasibility of this concept: the degree of erosion protection
provided by reflecting a portion of the incident wave energy. and the degree of
wave reflection that can be generated by a bar field of varying geometry. The
results show that a Bragg-reflection bar field must reflect about one-quarter of the
incident wave energy to provide a significant measure of storm erosion protection.
Bar fields with uniform spacing are capable of producing the required magnitude
of wave reflection. but lack sufficient bandwidth. Bandwidth can be increased by
staggering the spacings between bars. however, this produces a concurrent decrease
in wave-reflection magnitude. Bragg-reflection bar fields appear capable of pro-
viding a limited measure of storm erosion protection along U.S. Gulf Coast and

* Atlantic Coast beaches, but their bandwidth may be too limited for use along Pacific
Coast beaches.

IWROOUCTION

Davies (1980) suggested that the combined action of a few low-lying shore-
parallel bars could reflect a significant portion of the incident wave energy.
thus protecting the beach behind the bars. This phenomenon, dubbed Bragg
reflection after a similar phenomenon in optics, has received considerable
attention in the recent literature. Theoretical and laboratory studies have
shown that wave energy can indeed be reflected by a Bragg-reflection bar
field. however, the following question remains: is it practical to use Bragg
reflection to protect a beach against storm wave attack? There are many
issues beyond mere reflection that have a bearing on this question.

For Bragg reflection to be a useful shore-protection method, a bar field
must be relatively simple to construct, it must produce a significant degree
of erosion protection, and it must be adaptable to a wide range of wave
and beach conditions. Bailard et al. (1990) addressed elements of the first
issue. This paper addresses elements of the second and third issues via
application of two numerical beach-profile response models and a numerical
wave-reflection model.

BACKGROUND

In a series of three papers, Davies (1980, 1982a, 1982b) considered the
two-dimensional interaction between surface waves and a fixed pattern of
undulations on the seabed. Each undulation reflects a small'amount of wave
energy, with the combined reflection from a series of undulations being

'Prin., James Bailard & Assoc., 1150 Bailard Ave.. Carpinteria, CA 93013.
;Engr.. Naval Civ. Engrg. Lab.. Port Hueneme, CA 93043.
'Prof.. Univ. of Delaware, Newark. DE 19716.
Note. Discussion open until June 1. 1992. To extend the closing date one month.

a written request must be filed with the ASCE Manager of Journals. The manuscript
!) for this paper was submitted for review and possible publication on February 25.

1991. This paper is part of the Journal of Waterway, Part, Coastal, and Ocean En.
gineering. Vol. 118. No. 1. January/February, 1992. OASCE, ISSN 0733-950X/921
0001-0062/31.00 + $.15 per page. Paper No. 1433.
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either coherent or destructive, depending on the phase relationship. The
*t latter is a function of the ratio of the surface wavelength to the spacing

between bed undulations. Davies found that the coefficient of wave reflec-
tion was oscillatory with respect to the wavelength-to-spacing ratio. He also
found that a resonant condition occurred when the surface wavelength was
exactly twice the spacing of the bed undulations. Thus, it appeared that for
certain wave conditions, a few shore-parallel bars might reflect a substantial
portion of the incident wave energy.

In support of these findings, a series of laboratory experiments (Heath-
ershaw 1982, Davies and Heathershaw 1984) were undertaken to measure
the reflection of monochromatic waves from a series of sinusoidal bed un-
dulations. The results confirmed Davies's theoretical predictions for all but
the resonant condition.

Mei (1985) developed an alternate theory that applied to the resonant
reflection condition. Later. Hara and Mei (1987) extended this work to
include the nonresonant case as well. In the meantime, Kirby (1986) de-
veloped a general wave-equation solution that was applicable to both res-
onant and nonresonant conditions.

Directional Waves and Sloping Bottom
Most of the work on Bragg reflection has been done in two dimensions

using normally incident, monochromatic waves. The issue of nonnormal
incidence was briefly addressed, in theory, by Mei (1985). His results in-
dicated that, relative to the normally incident case, the effective bar spacing
was increased by an amount proportional to the divergence of the incident-
wave angle.

The effect of beach slope on the Bragg-reflection process was considered
by both Mei (1985) and Kirby (1986). Both found that a sloping bed had
the effect of altering the ratio of the local wavelength to the spacing between
bed undulations. By varying the spacings between undulations to account
for the local change in wavelength, results were obtained that were identical
to the constant depth case.

Nonsinusoidal Undulations
A sinusoid is not a practical shape for an artificial Bragg-reflection bar

field. Kirby (1987) and Mei et al. (1988) suggested that reflection from
nonsinusoidal undulations could be calculated by expanding the shape func-
tion of the bar field as a Fourier series. Kirby and Anton (1990) developed
an extension to the nonresonant interaction theory of Davies and Heath.
ershaw (1984) that allowed calculation of wave reflection from the individual
Fourier components of the bottom undulations. A series of laboratory ex-
periments were conducted to verify their theoretical results. They found
that for a series of smooth bumps on an otherwise flat bottom, the peak
reflection was reduced slightly relative to an equivalent sinusoidal bottom.

These studies provide the groundwork for consideration of Bragg reflec-
tion as a shore-protection alternative. Bragg reflection appears to be a
workable concept in theory and in the laboratory, but is it a reasonable
means to protect a natural beach?

PERFORMA N CNMRIA

Laboratory studies have shown that a Bragg-reflection bar field will mod-
ify the incident-wave field, triggering a process leading to the formation of
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a tombolo behind the bar field (Kirby and Anion 1990). The process begins
with the bar field reflecting a portion of the incident-wave energy. The
resulting wave sheltering produces a long shore gradient in the wave-driven
radiation stress, causing lateral inflows behind the bar field and a seaward-
flowing rip current at its center. Laboratory experiments have suggested
qualitatively that this circulation cell will cause sand to accumulate behind
the bar field, leading to the formation of a tombolo.

It can be hypothesized that a Bragg-reflection bar field wil protect a
beach against storm-wave attack in three ways: by reducing the volume of
sand eroded during the storm as a result of wave sheltering; by providing
additional sand volume available for erosion via formation of a tombolo;
and by restricting the loss of sand offshore via formation of a perched beach.
This paper deals with only the first protective mechanism; however, it should
be noted that the other two mechanisms may have a significant bearing on
the ultimate feasibility of the Bragg-reflection bar concept.

Beach Erosion Protection
The effect of a Bragg-reflection bar field in reducing the volume of sand

eroded from a beach by storm waves was investigated using two numerical
beach-profile response models. The first model was developed by Kriebel
(1982) and subsequently included in the Automated Coastal Engineering
System (1989), published by the U.S. Army Engineers Coastal Engineering
Research Center. The model is based on the assumption that the beach
profile evolves towards a shape having a uniform distribution of wave-energy
dissipation. In general, the model has been shown to do a good job of
predicting erosion, but a poorer job of predicting accretion (Kriebel 1986;
Birkemeier et al. 1987).

The second beach-profile response model was developed by DeVries and
Bailard (1988). The model is based on Bagnold's (1963) energetics sediment-
transport concepts, as generalized by Bailard (1981). Although its principal
use has been as a research tool for understanding cross-shore sediment-
transport processes, the model has been found to exhibit realistic erosion
and accretion behavior (Bailard 1985).

These models were used to predict the volume of sand eroded from an
initially planar beach during an idealized two-day storm (see Fig. 1). For
simplicity, it was assumed that the sole effect of the Bragg-reflection bar
field was to reduce the incident-wave height. The transmitted-wave height
behind the bar field was related to the incident-wave height by a reflection
coefficient, K,, defined as

H = ( - K I)H ,  ........................................... (1)

where H, = transmitted-wave height; and H, = incident-wave height. Base-
line conditions (i.e., no bar field present) were computed using a wave-
reflection coefficient equal to zero.

Storm erosion volumes were computed for a range of sediment sizes.
initial beach slopes, incident-wave heights, wave periods, and wave-
reflection coefficients (see Tables I and 2). The response of the beach was
computed in terms of a normalized erosion volume. V., defined as

whe.. V, :erosion..........th.......ef..ction.(............. (2)

where V, = erosion volume with wave reflection (i.e., with a bar field
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FIG. 1. Schemattlc Diagram of Beech-Profile Reepons. to Storm-Wave Attack

TABLE 1. Parameter Value$ for Beach-Profile Models ____

Vaiable
()(2) (3) (4) (5)

Wave heishta Wm 2.00 3.00 - -

Wave period, (sec) 6.00 8.00 12.00-
Grain sizes (mm) 0.20 0.40 0.60 -

Foreshore slope* 0.0W2 0.03 0.04 0.0
Reflection coefficient, 0.20 0,50 0.80 0.95

oUsed in all combinations.

* TABLE 2. Paramter Value for Beach-Profile Models

(1) (2)
Storm dvration (to) 48.0
Berm height (mn. SWL) 8.0
Slope of berm face 0.08
Offshore dlope 0.02,
Initial depth of slope intercept (in. SWL) -2.0'

Drag coefficiems 0.0050
Bedload efficiesc 0.13,

* Suspended load efficiency 0.016
aDeVrn wid Balad (1969) model only.
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present); and VO = erosion volume without wave reflection (i.e.. baseline
conditions).

For both beach-profile response models, the normalized erosion volume
was found to be a strong function of the reflection coefficient and a weaker
function of the sediment-grain size, the near-shore beach slope and the
incident-wave height. The incident-wave period was found to have a neg-
ligible effect on the normalized erosion volume.

Fig. 2 shows a plot of the predicted normalized erosion volume as a
function of the wave-reflection coefficient. Due to the weak dependency of
the erosion volume on the sediment grain size, beach slope, and incident
wave height. there was considerable scatter in the predicted erosion volumes
for each model. To simplify interpretation, only the average and extreme
values from each model were plotted in Fig. 2. For both models, averaging
was done over all cases producing erosion of the beach.

Reflection Bandwidth
A Bragg-reflection bar field will typically reflect wave energy over a

relatively narrow range of wave periods. To be an effective shore-protection
device, a bar field must reflect wave energy over the full range of storm-
wave periods anticipated at a given beach. A survey was made of typical
wave climates along three U.S. coastlines to determine the required band-
widths for potential Bragg-reflection bar fields. Utilizing data from Thomp-
son (1977) and Jensen (1983), wave periods were noted for past storms
having a recurrence interval of 2 years or less. Table 3 contains a list of the
range of wave periods for Atlantic Coast. Gulf Coast. and Pacific Coast
storms. Gulf Coast storms have the narrowest range of wave periods (5-9
s). with Atlantic Coast storms having a somewhat wider range (6-11 s),
and Pacific Coast storms having the widest range (6-17 s). Normalizing
these wave-period ranges by their central wave period, the normalized band-
widths of storms are approximately 0.70 for Gulf Coast and Atlantic Coast
beaches, and 1.0 for Pacific Coast beaches.

REFLECTION PERFORMANCE

In assessing the anticipated performance of a Bragg-reflection bar field,
a few practical limits were placed upon its configuration. First, it was as-

I O
" rC,.ebersKriebel's Model

' - DeVres & Bailard s Model -

* 000
020 040 060 080 1O0

-050,-

FIG. L Predctd Normalized Beach-Erosion Volume versus Wave Reflection
Coeffcent for Two Stct-Pmt ResponeVoMe
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TABLE 3 Wave Period Ranges for Commonly Occurring Storm along U.S.

Site Alantic Coast Gulf Coast Pacific Coast
(1) (2) (3) (4)

Range (s) 6-11 5-9 6-17
BWIT1 0.71 0.71 1.00

Note: Data from Jensen (1983) and Thompson (1977).

'7 SWL

j- B

L

FIG. 3. Definition Diagram for Uniformly Spaced Bar Geometry

sumed that the bar-height-to-water-depth ratio. B/h. could not exceed 0.5.
Beyond this value, the bars begin to look more like submerged breakwaters
than undulations on the seafloor. Second, it was assumed that a bar field
could include no more than 9 bars. Even with this limitation, seaward bars
tend to become large on beaches having moderate slopes (for constant
Bth ratio). Finally. it was assumed that the bar field resided in shallow
water. This last assumption ensures that the wave-reflection characteristics
of the bar field are solely functions of the bar height-to-depth ratio. B/h,
the bar width-to-spacing ratio, WIL. and the total number of bars.

Uniform Bar Spacing
The reflection characteristics of Bragg-reflection bar fields having a uni-

form spacing between bar elements were investigated using Kirby's (1987)
numerical wave-reflection model. For simplicity, constant depth was as-
sumed, however, the same results could have been obtained by adjusting
the bar spacing to account for wave shoaling on a sloping bottom.

Referring to Fig. 3. the bar field consisted of cosine-shaped bumps on an
otherwise flat bed such that the shape of the bottom, z(x), can be described
as:

Z(X) = B sin i x - nL + ; nL < -<= x < = nL +

......................................................... (3 )

z(z) - 0; otherwise ...................................... (3b)

where B = bar height; W = bar width; L = bar spacing; and n = number
* of the bar element.
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Wave-reflection properties were estimated for three different Bragg-
reflection bar fields over a range of bar height-to-depth ratios (B/h) and
bar width-to-bar spacing ratios (WIL). Results were computed for bar fields
consistin4 of three, five, and nine elements.

Fig. 4 is a plot of the normalized reflection bandwidth as a function of
the ratios B/h and WIL for each bar field. The normalized bandwidth was
defined as the wid, of the principal wave-reflection peak (in s) at the half.
value of the peak reflection coefficient, divided by the central wave period
(see Fig. 5).

Fig. 6 is a plot of the effective wave-reflection coefficient as a function
of the ratios B/h and WIL for each bar field. The effective wave-reflection
coefficient was defined as the average value of the reflection coefficient
over the bandwidth of the principal reflection peak (see Fig. 7).

Staggered Bar Spacing
Bragg-reflection bar fields with uniform bar spacings have relatively nar-

row bandwidths (0.1 < BW/To < 0.5). These bandwidths are less than the
normalized bandwidths of frequently occurring storms on most U.S. beaches
(0.7-1.0), thus limiting the utility of a uniformly spaced bar field. It is
possible, however, to alter the bandwidth of a Bragg-reflection bar field by
staggering the spacings between bar elements.

Kirby (1987) briefly considered the idea of staggered bar spacings and
found that the bandwidth of a Bragg-reflection bar field could be increased,
but only at the expense of reducing the wave-reflection coefficient. In the
present study this concept was further explored by systematically varying
the spacing geometry of three Bragg-reflection bar fields.

Effective wave-reflection coefficients and reflection bandwidths were cal-
culated for three-, five-, and nine-element bar fields having constant B/h
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FIG. 4. Okmnalonlm Reflectlon BandwIdth (BWIT.) versus Bar-Width-to-BSr-
Specing PA (WIL) and w-r4ght4o.Watr-Oet RMatio (8/h) for Unformfy Spaced
Bar FIteds Composed of 3, 5, and 9 Elements

68



0
o Kr

C 2
0

--_ Kr (peak)
Effective

Bandwidth

Wave Period

FIG. 5. Definition Diagram for Effective Wave-Reflection Bandwidth

3 BARS 5 BARS 9 BARS
O90. 09

0800

070- 0~ ( f0.747

00001 40006
•~~ I~z Ir

00040 060 080

IL 00 3 050 fl 070

00 000

010 030 .o050

010 020 030 040 0SC 010 020 030 040 00 0lb 00Z 030 040 O5

Bh Bh B h

FIG. S. Effective Coefficient of Wave Reflection (gr,,,,.,) versus Bar-Width-to-
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and WIL ratios of 0.3 and 0.4, respectively. The geometries of the bar fields
were varied, as shown in Fig. 8, by applying a stretching parameter, A,
defined as follows:

L L(I ± iA); n = 1,2, 3, 4 ............................ (4)
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FIG. S. Definition Diagram for Staggered Spaced Bar Geometries

where L D = the local staggered bar spacing; and L = the equivalent uniform
bar spacing defined as the overall width of the bar field divided by the
number of bar spaces.

Fig. 9 shows a plot of the predicted bandwidths for each bar field as a
function of the stretching parameter, A. Fig. 10 shows a plot of the predicted
wave-reflection coefficient for each bar field as a function of the stretching
parameter. In both figures, the predicted bandwidths and wave-reflection
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produce a wave-reflection coefficient of about 0.5 in order to be an effective
shore-protection device.

Referring to Figs. 4 and 6, Bragg-reflection bar fields having uniformly
spaced bar elements are capable of producing the desired level of wave
reflection (K, = 0.5), but lack sufficient bandwidth for practical application.
Bar fields having a small number of elements have a wide (although insuf-

0 ficient) bandwidth, but a modest level of wave reflection. Bar fields having
a large number of elements have a high level of wave reflection, but very
narrow bandwidths.

To be of practical use along U.S. coastlines, a Bragg-reflection bar field
must have a dimensionless bandwidth of at least 0.7. Fig. 4 indicates that
the maximum bandwidths produced by the uniformly spaced Bragg-

0 reflection bar fields range from a high of 0.45 (3 bars) to a low of 0.20
(9 bars). These bandwidths can be significantly increased by staggering the
spacing between bar elements (see Fig. 9), but this also decreases the wave-
reflection magnitudes (see Fig. 10).

Assuming that data in Figs. 9 and 10 can be applied to B/h ratios between
0.1 and 0.5, and WiL ratios between 0.3 and 0.9 (spot checks indicate that

9 this is approximately true), maximum bandwidths and wave-reflection coef-
ficients were estimated for staggered bar fields consisting of three, five, and
nine elements. Referring to Table 4, it was found that minimally acceptable
performance (i.e., a wave-reflection coefficient of 0.5 and a normalized
bandwidth of 0.7) was just possible using a nine-element staggered bar field
having a B/h ratio of 0.5, a WIL ratio of 0.6, and a A-value of 0.07.

These findings suggest that a Bragg-reflection bar field may have some
potential as a shore-protection device for Gulf Coast and Atlantic Coast
beaches, but little potential for Pacific Coast beaches. Considering just the
effects of two-dimensional wave sheltering, the number and size of the bar
elements required to produce a significant level of storm erosion protection
will make construction of a Bragg-reflection bar field a significant under-
taking. The difficulty and expense of constructing an effective Bragg-
reflection breakwater could easily approach that of a conventional detached
breakwater, however, the latter has greater bandwidth and wave-reflection
capabilities.

The foregoing findings are based on a consideration of simple two-
dimensional wave sheltering. Other mechanisms that may provide additional
erosion protection include: the formation of a tombolo behind the bar field,
and the formation of a perched beach. The tombolo would provide addi-
tional sand to the beach profile, thus reducing the magnitude of the induced
shoreline retreat. The perched beach may result from the retention of eroded

TABLE 4. Maximum Available Bandwldths for Staggared Bar Fields

Required Available Bandwidth
bandwidth Three bars Five bars Nine bars

Site (S) (s) (s) (S)
(1) (2) (3) (4) (5)

Atlantic Coast 5.0 3.2 3.4 5.2
Gulf Coast 6.0 3.8 4.2 6.4
Pacific Coast 12.0 5.2 5.8 8.6

aCalculated assuming K, - 0.5.
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sand against the shoreward bar element, limiting the induced shoreline
retreat.

CONCLUSIONS

Bragg-reflection bar fields appear capable of providing a limited measure
of storm-erosion protection on Gulf Coast and Atlantic Coast beaches.
Sufficient bandwidth can be obtained by staggering the spacing between bar
elements; however, adequate levels of wave reflection will require more
than just a few low-lying bars.

Numerical model results indicate that a staggered nine-element bar field
is necessary to provide a 25% reduction in storm erosion volume for Gulf
Coast and Atlantic Coast beaches. To produce this measure of protection,
the bar elements must have a height of approximately half the local water
depth. The difficulty in constructing a bar field with this number of large
bar elements suggests that the Bragg-reflection bar concept may not be
practical for most beaches.

Laboratory studies indicate that a Bragg-reflection bar field may produce
a tombolo or a perched beach condition. Although outside the scope of this
study, these effects may significantly enhance the ultimate feasibility of the
Bragg-reflection bar concept.
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APPENDIX 11. NOTAMiNS

* The following symbols are used in this paper:-

B = bar height;
BW = bandwidth;

8Wo = bandwidth with uniformly spaced bars;
C, = drag coefficient for bed;,

*h = water depth;
Hi = incident-wave height;
H, = transmitted-wave height;
K, = wave-reflection coefficient;

K = reflection coefficient with uniformly spaced bars;
*L = spacing between bar crests;

nv = number of bar element;
To = wave period at central reflection peak;
V. = normalized beach-erosion volume, V/V0;
Y0 = beach-erosion volume without wave reflection;

V,= beach-erosion volume with wave reflection;
W = bar width;
x = horizontal distance;
z = vertical elevation;
A = staggered bar stretching parameter;
r. = bed-load efficiency;
t, = suspended load efficiency; and

= 3.14.
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A note on Bragg scattering of surface waves by sinusoidal bars

James T. Kirby
Center for Applied Coastal Research

Department of Civil Engineering
University of Delaware

Newark, DE 19716

Abstract
The reflection of linear surface waves by sinusoidal bottom undulations is considered

in the case where the incident wave is not necessarily close to the resonant frequency.
For finite detuning away from the resonant frequency, two previous solutions are shown
to give results which are inconsistant with direct numerical solutions, especially when
the results are extended to oblique incidence. The correction to the methods is given,
and various consequences of the new results are examined.

1 Introduction

In recent years, the problem of the reflection of surface waves by undular bottom features
has drawn considerable attention, owing primarily to the mechanism's possible relation to
coastal morphology. Kirby (1986) has derived an extension to the usual mild-slope equation

(Berkhoff, 1972) which provides a theoretical umbrella for most of the existing analytical

results. Davies and Heathershaw (1984) solved for the reflection coefficient for the case
of weak reflection (far from resonance) and sinusoida bars in otherwise constant depth.
Their solution was recovered from Kirby's equation by Kirby and Anton (1990), who also

provided the extension to the case of oblique incidence over the bar field. Close to the
resonant condition, where the bar wavenumber is twice the wavenumber component of the

surface wave in the direction normal to bar crests, Mei (1985) provided a solution using

a multiple scales approach. His solution was extended to oblique incidence by Dalrymple
and Kirby (1986) and Mei et al (1988, hereafter referred to as MHN). Kirby (1986) showed
that Mei's analysis could be obtained from the extended mild-slope formulation. Further

explication of the problem (along with some additional solution techniques) may be found

in Davies et al (1989), Kirby (1989), and Benjamin et al (1987). As in these papers, we

restrict our attention here to the case of perfectly sinusoidal bars.

The resonant reflection solution of Mei proceeds by assuming that the waves are de-

scribed by carrier waves which are exactly in resonance with the bar field, together with
amplitudes which vary slowly in both space and time, to account for both frequency-

wavenumber detuning and slow evolution over the bar field. The analysis results in a



set of perfectly tuned, coupled evolution equations for the wave amplitudes; these may be

solved for the reflection coefficient and for the wave heights over the bar in the case of

time-periodic motions.

For the case of finite, arbitrary detuning, it is natural to extend the approach given

by Mei to consider the frequency and wavenumber detuning as part of the carrier wave;

as a result, the coupled amplitude equations become explicitely detuned, but may still be

easily solved for the case of periodic waves. Liu (1987) and Yoon and Liu (1987, referred

to as YL) took this approach in two related studies. Liu considered the resonant reflection

of linear monochromatic waves in a channel with corrugated sides and bottom, while YL

considered the scattering of incident cnoidal waves by a sinusoidal bar field in the context

of Boussinesq theory. (The latter problem has also been addressed by Kirby and Vengayil,

1988). For the case of normal incidence on the bar field, Liu's solution gave "cut-off"

conditions (demarcating the boundary between exponential and sinusoidal behavior of the

incident and reflected wave envelopes) which differed markedly from the values given by

Mei (1985). These differences were attributed to the effect of finite detuning.

In this note, we formulate the problem of detuned scattering by a field of sinusoidal bars,

and obtain a solution with different properties than would be found using the methods in

Liu and YL. In section 2, a new formulation of the detuned-interaction theory is developed.

This is followed in section 3 by a discussion of previous results and of their breakdown in the

oblique incidence case. The methods of Liu and YL are extended to the oblique incidence

case in the Appendix. In section 4, numerical results are used to establish the validity of

the present formulation. We also show that the resonant interaction theory of Mei (1985)

is reasonably robust for the entire range of physically relevant cases.

2 Solution of the generalized mild-slope equation for de-
tuned resonance

In this section, we present a perturbation solution of the equation of Kirby (1986) which

differs from the previous detuned interaction results given by Liu and YL. The derivation

here follows the notation of MHN closely, although the governing modulation equations are

arrived at by a different method. We consider the case of a patch of sinusoidal bars 6(z)
p given by

2wr6(z) = Dsin(Az); = (1)

where L is the bar wavelength and D is the bar amplitude. A finite patch of n bars rests in

the interval 0 :< z < nL, superimposed on a uniform depth h. We generalize the previous

results somewhat by considering the case of oblique incidence on the bar field, and take 9
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to represent the angle between z and the incident wavenumber vector. The general two-

dimensional form of the governing equation is then written as

SV. (pV) + k2CC,= 0 (2)

where
P = cc9 - g6(x) (3)

cosh 2 kh

and where the angular frequency w, wavenumber k, phase speed C, and group velocity C

are determined based on the mean depth h and the actual (tuned or detuned) wave period.

For obliquely-incident waves, we take

m = ksinO. (4)

The governing equation is reduced to the second-order ODE in z;

0.. + Po. + 72 = 0 (5)P

where the factor -f2 is given by

72 = k2p-ICC9 - M 2  (6)

which, for the case of small bottom perturbations, may be approximated by

2 2 + gk 26 v= 0 m 2 =kcose (7)
CC, cosh2 kh-

As in Kirby (1986), we seek coupled first order equations of the form

= iyo+ + F(6+, - ) (8)

"= -i7- - F(O+,0 - ) (9)

where the total wave field is divided into incident and reflected components,

0= + + 0- (10)

and +(-) denotes the incident (reflected) wave. Substituting (8)-(10) in (5) leads to the

result

F (11)
27yp

To the leading order of approximation in powers of 6, the coefficients in (8) and (9) are

given by

= 11+ C 6) (12)7 1+2CCO CoSh 2 kh Cos2 0

(Op) - 2 flo6 , (13)
2,- kCgD
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where
cos 20 (14)

and gk 2 D (5
o 4wcosh 2 kh (15)

Note that fo here differs from the value given in Mei (1985) in that it is evaluated at

the detuned wavenumber rather than ,he resonant wavenumber. We also note that no

approximations have been made in obtaining the basic form of the coupled equations (8)

and (9); the splitting is reversible and no information has been suppressed. We introduce

the explicit form of 6:

6z AD (e A + eiX) (16)

and seek a solution for slowly-varying incident and reflected waves of the form

= A(z)eii = A(z)e t0-; = B(z)e -  = B(x)e - kco 9 , (17)

Following Liu and YL, we construct an approximate detuned-interaction model by sub-

stituting (17) in (8)-(9) and retaining terms which come closest to satisfying resonance

conditions. This leads to the coupled evolution equations

00a cos9 (k-e) BetO: (18)

B. = f°cos9 k_"Ae-'_ (19)C9 k

where A
kes - 2cos (20)

is the resonant wavenumber, and

= A - 2kcosO (21)

is the detuning parameter, as introduced in Liu and YL. For I = k cos B = A/2, we re-

cover the exactly-resonant interaction equations following from MHN, equation (2.5). The

detuned equations differ from the results in MHN by the inclusion of the factor (k.e/k),

which introduces an asymmetry in the coupling coefficient. We see that waves with lower

wavenumbers (indicating relatively shallower water) become more strongly coupled, as may

be expected on physical grounds.

We can increase the correspondence between the results of MHN and the present deriva-

tion by introducing a detuning wavenumber

K = k - k,. (22)
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and a corresponding frequency parameter

fl = K¢ (23)

Note that fl again differs from Mei's fl since detuning is finite and the relation between the

detuned wavenumber and the detuned frequency here is not linear, except in the limit of

extremely shallow water. The detuning parameter 3 may now be written as

= -2K cos 0. (24)

We introduce the transformation

B heiKcoo 0 (25)

and obtain the coupled equations

A. iK co O - "0 cos 9 k~re~ (26)

, = cosKcosb flo Cos0 (k) A (27)C9  k

We may reduce these to two second-order equations for A and b:

i p2 A)=0(8

The parameter P is determined from

lO Cos9 [Q8 2 2 ( 2]e1/2

and may be either real or imaginary depending on the term in square brackets. The ex-

pression for P here is also similar to the expression given in MHN, with the exception of

the appearance of the kre/k ratio. The cutoff condition in the solution corresponds to the

value P = 0.

Equations (28) are solved with the boundary conditions

A(0) = Ao; B(nL) = 0 (30)

which indicates an incident wave amplitude of A0 at the start of the bar field and a reflection

of zero at the downwave end. The solution is given by

A(z) = Aoe - iK c s ex PCs cos P(nL - z) - ifl cosOsin P(nL -z) (31)

PC, cos nPL - ifl cos 0 sin nPL

and

B(z) = Aoe ,X wf@oa(k,.Ik) cos sin P(nL - x)
PC, cos nPL - ifl cos 0 sin nPL"
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The reflection coefficient upwave of the bar field is given by

R Bi O) Ii I Roa~(k,7 ./k) Cos 0sin nPL (33
Ao PCcos nPL - ifl cos 0 sinnPL I (33)

We illustrate the present solution in comparison to the resonant solution of MHN by

plotting contours of reflection coefficient as a function of 0 and 2k cos 0/A, where resonance

occurs at 2kcosO/A = I. The solution of MHN is implemented exactly as given in their

paper, with K specified based on the chosen wavenumber parameter and f? computed from

0 = KC9( e). The choice of 2k cos 6/A as a plotting parameter is inconvenient from a

design point of view, where a fixed range of wave periods would lead to consideration of a

fixed range of 2k/\. This alternate choice will be followed below; it is avoided in the initial

comparisons here since the resonance curve goes to large values of 2k/A\ as 0 increases.

To maintain correspondence with experimental results given in Davies and Heathershaw

(1984), we choose n = 4, D/h = 0.32, D = 5cm, L = Im, and h = 15.625cm. Solutions are

computed for the parameter range .25 < 2kcosl9/A < 1.75, 00 < 9 5 850. Solutions for

the resonant theory of MHN are shown in Figure 1. The symmetry of the theory about

the resonance condition 2k cos 0/A = I is apparent, as is a tendency for the solution to die

out for large values of 0. Figure 2 shows reflection coefficient contours and the locus of the

cutoff condition for the present analytic theory. The results here are markedly asymmetric

about the resonance condition. Agreement between the two analytic solutions is good, both

for reflection coefficients and cutoff conditions, up to 0 = 55 . For larger O's and for values

of 2k cos O/A < 0.5 and > 1.5. the asymmetry of the solution becomes marked and the two

approximate solutions deviate.

The apparent agreement between the cutoff conditions predicted here and the conditions

predicted by the Mei (1985) and MHN theory is in marked contrast to the large deviation

between cutoffs seen in comparing the theory of Liu and Mei (1985) (see section 4 in Liu).

Direct numerical determination of the detuning 0 corresponding to the cutoff condition has

been made for the bar geometry considered here, but with a range of D/h values. The

cutoff condition on the high frequency side of resonance is compared to Mei's (1985) theory

in Figure 3, where we plot the % error in Mei's result relative to the present theory. The

results typically agree to within 1% or so. In contrast, Liu shows deviations on the order

of 50% between his and Mei's predicted cutoffs.

For angles less than about 600, we will evaluate the disagreement between the approxi-

mate solutions here by comparison with numerical solutions for the full problem. We close

this section by remarking that both of the approximate solutions studied here would be

expected to break down far from resonance, since the effect of neglected non-resonant terms

in the equations would become as important as the effects of the retained terms.
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3 Comparison with previous results

In this section, we compare the present results to the results obtained by extending the

derivation techniques used in Liu and YL. Those derivations are described in Appendix A.

The resulting derivations produce coupled equations with the same form as equations (18)-

(19) above, and hence we can consider the correspondence between the form of the coupling

coefficients, the values of the factor P and loci of the cutoff conditions, and numerical

values of predicted reflection coefficients. We limit the comparison here to an examination

of the coupling coefficients and, in particular, to the determination of the zeroes of those

coefficients, where we see a decoupling between the wave and bar fields. Both the Liu

and YL theories have the interesting feature of predicting decoupling for normally incident

waves at a finite value of the parameter 2k/A. When extended to oblique incidence, both

theories produce patterns of decoupling which are at odds with the present theory, with the

MHN resonant theory, with the nonresonant theory of Kirby and Anton (1990), and with

numerical results.

The interaction coefficient for the present theory may be written as

c os 20( k-(

CScos9 k(

which has a zero at 0 = 450 for all incident wave frequencies. This result also was found

by MHN for the resonant case, and is a feature of a wide range of non-resonant scattering

theories for small obstacles (see Kirby and Anton, 1990, for a review). The locus of the zero

in the present coupling coefficient is shown in Figure 4 along with the locus of the resonance

curve 2k/A = I/cosO.

The coupling coefficient a, obtained from the YL derivation has zeroes on the curve

2k/A = 2 cos 9, shown in Figure 4. The intersection of this curve with the resonance curve

occurs at 0 = 450 and 2k/A = Vf2, as does the curve for the zeroes of the present theory.

Away from this intersection, the predicted zeroes deviate markedly.

For the second theory of Appendix A, the interaction coefficient 02 leads to decoupling

on a curve 2k/A = V(2)/cos0, which lies to the right of the resonant interaction curve in

Figure 4 and doesn't intersect it anywhere.

The two theories described in Appendix A clearly predict patterns of wave-bottom

interaction which are at odds with the remaining body of theory on this problem. This

result points out the sensitivity of the results here to the method of derivation; in particular,

theories which neglect terms of the order of terms that appear eventually in the equations

to be solved (A,, and B,, here) lead to incorrect results. The splitting method employed

by Kirby (1986) and Kirby and Vengayil (1988) appears to be a robust method.

7



4 Numerical results

Numerical solutions are obtained for the parameter range 0.5 < 2k/A < 2.5, 00 <9 < 850,

using second-order accurate centered finite differences applied to (5). Boundary conditions

for the numerical problem are discussed in Kirby (1989). Results for the n = 4 Davies and

Heathershaw barfield are shown in Figure 5. We see that the numerically predicted solution

shows nearly total reflection at large angles of incidence, as well as very small reflection

at 0 = 450, as predicted by the analytic theories developed here. The reflection coefficient

does not drop identically to zero for 0 = 450 owing to the effect of nonresonant modes in

the solution which are not accounted for in the analytic approaches.

In Figure 6, reflection coefficents for normally incident waves obtained numerically,

from Mei's solution, and from the present analytical solution are compared. The numerical

solution (solid line) is seen to obtain a somewhat higher maximum than in the analytic

solutions, and the maximum is shifted to a slightly lower wavenumber. The two analytic

solutions agree at resonance but deviate slightly away from resonance. The numerical

solution also indicates that reflection is slightly stronger for the first lobe on the short wave

side of the main resonance, in contrast to the prediction of the present analytic theory.

The solution of Mei is therefore a somewhat more accurate representation of the numerical

solution, although the two analytic results agree more closely with each other than they

do with the numerical result. Overall, the deviation between the numerical and analytical

results would not be resolvable within the accuracy of the Davies and Heathershaw (1984)

data set.

5 Effects of frictional damping

The propagation of waves over a bar field is affected by a number of mechanisms which

are not included in the analysis presented above. YL and Vengayil and Kirby (1988) have

discussed some of the consequences of nonlinear interaction on the scattering process. In

real applications, it is expected that a number of dissipative mechanisms could come into

play. Bottom boundary layer damping would affect the waves moderately, causing a small

decrease in the transmitted and reflected waves predicted by the theory described above.

For bars fronting a beach face in relatively shallow water, the protruding bar crests could

also induce breaking of steep incident waves, leading to significant reduction of incident

energy over the bar field.

Here, we consider the effect of laminar frictional damping on the predicted reflection

coefficient. Following Booij (1981) and Kirby (1986), we may extend the generalized mild-
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slope equation to include damping effects according to

S+ W - V. (pv) + (W2 - k2cc)=0 (35)

or, for time-harmonic waves,

V. (pV4) + k2CC.9€ + iwW 0 (36)

Here, W is a generalized complex damping term. Following the derivation in section 2 leads

to the coupled evolution equations

A = A + iK cos OA - cor e (
= - Co cT) '(37)2C. coso

h =2 C WoheiK cosOlB Na Cos a(kres) A (38)

where we have assumed that the dissipative effects act uniformly and equally on the incident

and reflected waves. The new dissipative term may be absorbed in the previous derivation

by defining a new complex detuning factor

w w
= -2KcosO ico (39)

C9 cos e 39

From this point, the derivations in section 2 follow through exactly, with the exception that

the definition of P in (29) is replaced by

p =+ocos0 _ ___ k2 N O 2 ] (40)

For the case of laminar bottom boundary layer damping. an expression for W is given

by (Liu, 1986)

W (1i) 9k 2 - (41)
wcosh 2 kh 2(

For laminar damping alone, the effects on the results given above are quite small, owing

to the relatively short length of the bar field. The reflection coefficients with damping can

be either smaller or larger than the coefficients without damping, due to the effect that

damping has on the wave speed and wavelength. It is not anticipated that local damping

over the bar field has any significant effects in any of the available laboratory data sets.

6 Discussion

The results of this and previous studies have shown that numerical solutions of a generalized

mild-slope equation may be used to model the reflection of waves from simple (nearly

sinusoidal) bar fields. A body of analytic approximations are also now available for providing

estimates in the same situation.
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Several recent studies have indicated that bottom configurations having multiple Fourier

components can lead to additional reflection peaks appearing at difference wavenumbers

resulting from the interaction of two or more individual bottom components (Belzons et

al, 1991). This situation is not handled properly by the existing generalized mild-slope

equation. The problem of these subharmonic resonances is being pursued further by the

present author in the context of a generalization of the mild-slope equation to handle the

presence of non-propagated modes.

Acknowledgement. This work was supported by the Office of Naval Research, con-

tract N00014-90-J-1678.

Appendix A. Extension of Liu and YL results to the case of
obliquely incident waves

The problem of specifying the evolution equations for the detuned interaction between

surface waves and the sinusoidal bar field has been considered previously by Liu and YL, as

well as by Kirby and Vengayil (1988). The study of Liu was restricted to normal incidence

of linear waves in a channel with both bottom and side-wall corregations, while the theory

of YL was ior the same channel configuration but for weakly nonlinear, weakly dispersive

waves obeying the Boussinesq equations. Here, we consider the case of normal or oblique

incidence of linear dispersive waves over an infinitely wide bar field, as in section 2, and

extend the theories of Liu and YL accordingly. Section 3 of the main text gives a comparison

between various features of these extended results and the results in section 2.

The YL approach is conceptually simpler than the Liu approach, and so we follow it

first. We start by rewriting the governing equation as

V , + k2CC = , ch 2 kh6V2 + 6 ) (Al)

where we have used the fact that the mean depth is taken to be uniform and the bar field

varies as 6(z) only. Employing the separation (4) in the main text reduces (Al) to

gk (2 k + r - m20) (A2)b:+/0=W(? cosh, h 6- ~

We now make the separation into incident and reflected waves with slowly varying ampli-

tudes, as specified in (10) and (17). These are substituted directly into (A2) without a prior

splitting. An apparent ordering is made which equates the importance of slow derivatives

of A and B with terms that are first order in 6. Terms of 0(62) are then dropped. Then,

substituting the expression (1) for 6 and retaining terms closest to resonance leads to the

coupled equations

A, = rio BeW# (3)
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B= -- aAe' (A4)
C9

where

a, = (cos)-' (2 (k Cos- 2  (AS)

and where all other notations are as in the main text. The resulting model is similar in form

to (18)-(19) in the main text, except for a change in the interaction coefficient. We remark

that the principle reason for the differences between the present model and the model in

the main text arrises due to neglect of terms involving the factors 6A, and 6B. If these

terms were retained by effectively dividing through by the quantity p as in the main text,

the resulting model would be equivalent.

For the case of normal incidence and in the limit of long wave theory, in interaction

coefficient becomes
-no D(A k) (M)

as in YL. At resonance, this reduces to AD/8h as in Kirby and Vengayil (1988), but it

disagrees with their theory (again, based on a splitting procedure) away from resonance.

Turning to the work of Liu, we rewrite (A2) as

(pO.). + 12CC,4 = 0 (A7)

We then employ the Liouville transformation

= p-1/2 (A)

and obtain
P1 - p.( + 12p-ICCOC = 0 (A9)

Retaining terms to 0(6), this becomes

+ 12 DkC + 126 C = 0. (AIO)

We then employ the split into incident and reflected waves according to

= 0+(z)e"iL + 0-(z)e - t. (All)

Direct substitution and the neglect of second-order terms in the slow derivatives leads to

the set of coupled equations

00020 = o _e'z (A12)

_ 2  +e-i#V (A13)

11



where = cos (2(L)2 1 (A H)

For the case of normal incidence, the interaction coefficient in (A12-A13) reduces to

1 A2  k2 (A15)

as in Liu.

The main drawback in the derivation of (A12-A13) lies in the fact that the amplitudes
0 + and 0- are not properly decoupled. For example, compare the transformed incident

wave to an untransformed form:

O/+e ilz = pl/2Aez (A16)

Taking z derivatives of both sides of (A16) leads to the expression

0+ = p1l 2AT + lp-1/2pA. (A17)
I2

We see that the derivative of 0 + contains a term which would resonate with the reflected,

B wave, indicating that the incident-reflected wave separation is incomplete in this method.
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A Discrete Angular Spectrum Model for Nonlinear Shallow
Water Waves. Part 1. Waves in Laterally Uniform Domains

James T. Kirby
Center for Applied Coastal Research, Department of Civil Engineering

University of Delaware, Newark, Delaware 19716

Abstract

This paper describes the development of a model for the shoaling and refraction of
an incident directional spectrum over beach topography. The present model is limited
to topography which varies only in the on-offshore direction, but no restriction is made
On allowed angles of incidence with respect to the shore-normal direction. Several
approximations for restricted directional bandwidth are discussed, and several numerical
examples are presented which illustrate the growth of significant harmonics resulting
from the interaction of waves travelling at different directions. The model is verified in
comparison to laboratory data for Mach reflection of cnoidal waves from a vertical plane
wall. It is shown that the model provides a more accurate representation of the evolving
wave field than does an earlier parabolic approximation, using the same laboratory data.

1 Introduction

As ocean surface waves propagate towards shore, they pass through a shoaling zone prior

to breaking in which nonlinear interactions become strong and can significantly modify the
wave train. This zone is characterized by weak frequency dispersion, since waves become

relatively long compared to local water depth. In addition, the weak dependence on wave-

length in the wave phase speed leads to the occurence of strong nonlinear interactions at

second-order in wave height. The combined effects of weak dispersion and nonlinearity may

be modelled by the Boussinesq equations (discussed below in section 2), which serve as a

reasonably accurate general purpose model for the domain in question as long as waves do

not become too high.

Since the area being studied here can be quite extensive in comparison to the character-

istic wavelength of the waves being modelled, the choice of an efficient numerical solution

technique is crucial. The Boussinesq equations may be successfully solved by time-stepping

techniques (Wu and WIu, 1983; Rygg, 1988 for example), but these methods are too ineffi-

cient for the spatial and temporal spans being considered in applications to an open coastal

zone. Instead, various prior studies have found that it is efficient to decompose the time-

dependent wave train into a stack of frequency components by Fourier decomposition, and
then solve for the spatial evolution of each frequency mode. This is exactly the same kind



of manipulation that is done in Fourier analysis of data, and is valid as long as the wave

train satisfies the requirements for the transform to exist. In field applications, the Fourier

decomposition into a finite set of discrete frequencies under the assumption of periodicity

is exactly the same as applying an FFT to data. Assumptions about stationarity of the

process are implicit and should be kept in mind when determining if the present approach

is useful.

The solution for the spatial behavior of each frequency component is itself involved. A

number of studies (Freilich and Guza, 1984; Elgar and Guza, 1985 and 1986 and subsequent

contributions) have considered only the shoreward propagation in one space dimension, and

have shown that the resulting one-dimensional, first-order coupled mode equations are ca-

pable of modelling the evolution of the spectrum and bispectrum of choaling waves, as

verified by comparison with field measurements. Liu, Yoon and Kirby (1985; referred to

here as LYK) alternately proposed a parabolic model for the shoreward propagation of each

frequency component over two-dimensional topography, and verified the method in com-

parison to a laboratory experiment on the focussing of periodic long waves by topography.

The parabolic model approach has never been used to study a field application, although

such work is presently underway (Freilich et al, 1990b).

In this study, we derive a model for the evolution of each frequency mode in two di-

mensions, based on the angular spectrum approach. This approach has been applied to
the study of intermediate depth waves by Dalrymple and Kirby (1988) and Dalrymple et al

(1989). For the case of linear theory, the angular spectrum is usually posed as the contin-

uous Fourier transform of the wave field in the longshore direction. Here, in keeping with

the mental framework associated with the discrete transforms being employed in time, we

impose longshore periodicity as well and obtain a discrete spectrum in longshore wavenum-

ber. This frequency - longshore wavenumber spectrum is subsequently referred to as the

discrete angular spectrum, as referred to in the title of this paper.

In section 2, we describe the reduction of the Boussinesq equation to a general model
for the on-offshore behavior of each wave train resulting from Fourier decomposition of time

and longshore direction. In this derivation, bathymetry is assumed to be uniform in the

longshore direction. In section 3, this general formulation is restricted to the case of waves

propagating towards shore, and the angular spectrum is introduced as the slowly varying

amplitude of each component wave. The evolution equations are described. An equation

describing the gain or loss of energy in each shoaling wave mode is derived, and an angular

bispectrum is introduced which could be used to study the strength of coupling across a

range of wave directions. Several reductions of the full model are considered which would

reflect a narrowing of allowed range of wave directions in the modelled wave field.
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In section 4, we introduce some simple examples which illustrate the strength of interac-

tion that may occur between waves travelling in different directions, relative to interactions

occuring in waves travelling in the same direction. In particular, the characteristic hexag-

onal stem and saddle structure associated with solutions for short crested waves (Segur

and Finkel, 1985) is seen to be related to the presence of a strong second-harmonic compo-

nent resulting from the interaction of the two obliquely interacting primary waves. (This

observation would also follow from an examination of the spectrum of a Genus 2 KP equa-

tion solution (Segur and Finkel), but this interpretation has not been discussed extensively

before.)

The model developed here is applicable both to simple periodic waves generated in the

laboratory environment and to irregular, "random" waves in the field environment. In this

paper, we concentrate on a model verification conducted from the first viewpoint. In section

5, the model is tested against laboratory data obtained by Hammack, Scheffner and Segur

(1990) who investigated the development of a Mach stem arising during the glancing-angle

reflection of a cnoidal wave by a vertical wall. The model developed here is tested against

the laboratory data along with an existing model based on the parabolic approximation

described in LYK. (The case of Mach reflection of a cnoidal wave has been studied using

the parabolic approximation by Yoon and Liu (1989); however, no comparison to data was

provided in that study.) The spectral model is shown to give a more accurate representation

of the data than the parabolic model over the entire range of angles of incidence considered.
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2 The basic model

",'e first establish the form of a model for waves in a laterally unrestricted domain. A

Cartesian coordinate system is adopted which has z pointed in the onshore direction and

y pointing alongshore. Depth is assumed to vary as h(z) only. We take as a starting point

the variable depth Boussinesq equations as given by Peregrine (1967):

rh + V (hu) + (c)V. (iu) = 0 (1)

ut + ( . Vu + 9V,7 - (Ps2 ){ V(v (hut)) - -V(V . t)} (2)
2 6

Here, r7 is the surface displacement and u is the horizontal wave-induced velocity. The

equations are kept in dimensional form; the scaling parameters c for nonlinearity and p2 for

weak dispersion are present only schematically and will be subsequently dropped. We will

assume that either bottom slope or the amplitude of bottom features (as scaled by water

depth) are also small and hence the model will be developed to leading order in nonlinearity,

dispersion, and domain inhomogeneity. This leads to immediate neglect of bottom slope

effects in the dispersive terms of (2). Using the linear portion of (1), we may then write (2)

in the reduced form hV
ut + u. Vu + gV7 + ivrm = 0. (3)

We now make the following assumptions. First, the model will be applied to time-

periodic wave trains, where periodicity is in the sense of either a regular wave train, or of

a discrete FFT over a finite length of sampled data. This assumption has been routinely

applied in the spectral sense in the one-directional shoaling model of Freilich and Guza

(1984) (see also Elgar and Guza: 1985, 1986). Its interpretation in the regular wave case is

straightforward, with the wave being separated into its harmonic components (Rogers and

Mei, 1978; LYK).

Secondly, the wave field will be assumed to be periodic in the transverse y direction.

This corresponds again to a fixed longshore wavelength in the regular wave case, or to

periodicity over a long spatial interval in the spectral sense.

The governing equations are first split into coupled elliptic models for separate harmonic

components. Following LYK, we write the surface displacement and velocity as

1 : Iz' -nt+ c--(4)

N Un(ZtP)e-it + C.c.:2
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Substitution of (4) and (5) in (1) and (3) and subsequent elimination of the velocity leads

to the following model equation for the %, in the horizontal plane:

n2W2 % + V. (G3 V,) + [n.l.ft. = 0; n = 1,...,N (6)

Here, [n.l.t], denotes the nonlinear interactions with other discrete frequency components

which are sorted by means of the rules for triad interactions applied to the time dependence.

The term is given in Appendix A. The mode n = 0 corresponding to the steady, wave-

induced setdown is neglected since it is at most second order in the largest wave amplitudes

present (see LYK). Also,

G,(z) = gh(z) - n2Wh2(Z). (7)

We now apply a spectral transform to the y dependence of the wavefield, assuming

propagation is to be considered in the on-offshore (±z) direction. We consider here the case

of an unbounded lateral domain and a wavefield which is periodic over the basic interval L.

We then represent 7n(z,y) as

M17n(-,Y)= E C(z)em"o (8)

where
2x
LO--. (9)L

Substituting (8) in (6) and neglecting z - derivatives of small terms in G, then leads to a

set of coupled second-order ODE's for the t7, given by

Gm h ()2m1 + 2A2 k2 42o n + i1[n.l.. =0;

n = I,-., N; M = -M,..., M. (10)

where [n.l.t.]r now represents triad interactions satisfying resonance conditions in t and y.

The nonlinear term is again given in Appendix A. Here, k is the wavenumber determined

by the lowest order dispersion relation

W 2 = gk 2h. (11)

Also,
(.Ym)2 = ,k 2 - m 2A (12)

For fixed n, k, AO0, large values of m will make y' imaginary, which corresponds to modes

which are exponential rather than oscillatory in z in the linear approximation. In the linear

case, the presence of these modes in the initial conditions would be interpreted in the same

5



light as the presence of evanescent modes in the general wavemaker problem (see Dalrymple

and Kirby, 1988). However, the interpretation in the case of possible nonlinear forcing of

the offshore portion of trapped modes in the nearshore region is non-trivial and will need

to be considered carefully in applications where the inclusion of this effect is desired. In

addition, nonlinearity could force the propagation of modes that would not be present in a

linearized wave field, and which could affect a detailed representation of an individual wave.

At present, the range of M at each value of n may be restricted to M, < nk/,\o in order to

eliminate forcing of these modes arbitrarily.
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3 Shoaling waves

The model developed in the previous section allows for the onshore and offshore propagation

of the directional spectrum components. For the remainder of the present paper, attention

is restricted to waves propagating onshore, or in the positive sense with respect to the z

coordinate.

3.1 The Model Equations

Based on the linear, nondispersive portion of the model (10), we assume that the incident

wave may be written in the form

17.(z) = A-(z)e' f " n" d x  (13)

where it is assumed that the z dependence of A, k and 1 is on a slow scale of O(e), and

where
= (1 - (rn2(A0 /2-/ (14)

inn k 'P nk

(where the positive root is taken). The amplitudes A represent the discrete angular spectrum

being considered here, and are allowed to vary owing to refraction, shoaling, dispersion and

nonlinear interaction. (It would be possible to absorb shoalinw and refraction effects by the

use of the usual linear refraction formulae; this step is not taken here.) Substitution of (13)
in (10) leads to the spectral model for incident waves, given by

1nA. + (khinm). _ in 3 k3 h2 A
2kh n 6

ink P N-n 4 '1ifT' Pdx
+-~ zz njPAPA n~efenJ + 2 3 JnmJAP-AnPefni 0;

+ 1= p=Pa 5=1 p=A

n= ,...,N; m = -M,..., M.. (15)

Here, (-) denotes the complex conjugate. The limits of summation P - P4 are given by

P = max(-Mt,-M..-.. + m)

2 = min(M, M,-.i + m)

P3 = max(-Mt,-M,+t - m)

P4 = min(MM .+1 - m) (16)

The interaction coefficients I and J are given by

(lif + (n -
'i" 1+U[V " + P l (T)2J [1 +(2)2(A)2+ J(17)
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The phase arguments 0 and T represent the basic mismatch in the z direction of the triads

chosen based on perfect matching in y and t. Generally, the only components which expe-

rience complete resonance in the long wave limit must have parallel propagation directions;

all obliquely interacting components are somewhat detuned. The phase arguments are given

by

9-fP = lk!P i+ (n - i)kj7. P - nk/n' (19)
rT-' = (20)

The spectral model (15) is a set of coupled first order ODE's which are solvable by
standard techniques. Results presented in sections 4 and 5 were obtained using a standard

4th-order Runge-Kutta scheme with fixed step size and no error checking. Presently, exten-

sions of the model using error control and adaptive step size are being tested and will likely

be the vehicle for further field testing of the model beyond the scope of the present study.

The model developed here allows for coupling and energy transfer between spectral

modes with different directions and frequencies as the wave field evolves in the shoreward

direction. For the case when modes with real wavenumbers ' are retained, an energy

equation for each mode may be constructed by multiplying (15) by A:* and adding the

resulting equation to its complex conjugate, to get

n 12 +(khin), iAm 2

n n x kh nA~

n'Zk C piPIm(B Pe i'dx) + 2ZZ JE Pmr Bn(s)eTaL ' d = -

h 1 = fPe 1=1 p=P3  J
n = 1, ...,IN; m = -M, -,.M,, (21)

The quantity B introduced here is given by

Bf, = AZP(An') (22)

and may be thought of as being a discrete representation of a directional biapectrum. Anal-

ysis of the magnitude of this term should provide a measure of the strength of nonlinear

coupling across a range of directions in a field spectrum. This aspect of the analysis is not

pursued further here. In (21), the first appearance of the directional bispectrum corresponds

to coupling between the present mode n and modes of lower frequency; the present wave

takes the role of a sum wave in a higher-harmonic excitation. The second appearance of

bispectral coupling corresponds to cases where the present mode has either the lowest or

middle frequency in a triad.
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3.2 Approximations for small angles of incidence

Parabolic modeling schemes have drawn a reasonable amount of interest as a way of com-
puting wave fields in the coastal environment. Since these models presuppose a narrow

range of wave propagation directions relative to the full 180° band allowed here, it is of

some interest to see how the present model could be reduced in scope to correspond to the
assumptions made in developing the parabolic approximation. (Note that the parabolic

model computations presented in section 5 were made using the standard model in physical
space, and are not an application of the results derived here).

We consider first the effect of assuming that the spread of wave directions about a central

angle is small. In particular, we choose the central angle as 0 = 08, coincident with the z
axis. The effect of having waves propagating at close to normal incidence is to lengthen

the longshore interval needed in order to assume spatial periodicity. Thus, Ao/k in (14-20)
would be effectively small. Further restricting attention to small angle deviations from the

normal direction limits consideration to relatively small values of m. Consequently, the

may be approximated according to

= 1- m)2 (A) 2 + Q(2)4 (23)

which is consistent with the usual small-angle form of the parabolic approximation. The

resulting modifications to the phase arguments and interaction coefficients are given by (to
the same level of approximation)

- (Ao)20 ( Ml - np)2 (n2 + In 12)
= 3 k n212(n - 1)2

3 
(24)

= .(mr-n)2] (25)

1j 2k W~ 2n- 1

where the second form in equation (24) results from the need to avoid a zero arising at

finite angles in the first approximation. This model then corresponds to the case where

angular variations between interacting wave components are small, but where no direct

correspondence is made between the smallness of this dependence and the other small

parameters in the problem. A further reduction in complexity would occur if we were

to make the full set of restrictions appropriate to the parabolic approximation of the KP

equation (Kadomtsev-Petviashvili, 1970), which is available in variable depth form from

LYK. Carrying the ordering restrictions to their fullest extreme, we would conclude that,
since the nonlinear terms are already of small size, only 0(I) information should be retained

9



in their coefficients. This further assumption reduces the coefficient I to

r-,L -3 (26)

for all components of the wave train.

To date, the various forms of small-angle approximations have not been fully tested

for their ability to model the general (unrestricted angle) evolution of a wave train. The

existence of various approximations of the full governing equations leads to the question of

whether the approximate interaction coefficients may be applied in a directional wave calcu-

lation with finite directional bandwidth. For example, if the presence of detuning effectively

nullifies the nonlinear interaction in a particular triad before the point is reached where the

interaction coefficient deviates significantly from one of its small-angle forms, then the small-

angle forms may be retained in the full governing equations and sums over transverse mode

numbers may be limited to the bandwidth contributing to resonance. Support for this hy-

pothesis is fragmented, but comes from both numerical and experimental results indicating

the large angular range for which the KP equation produces reasonably valid results. For

example, Kirby et al (1988) have demonstrated that the KP model accurately describes

reflection of solitary waves by a wall, in comparison with data obtained by Melville(1980)

and with numerical solutions of the full Boussinesq theory by Funakoshi (1981). However,

these computations are limited to the near field of the start of the reflecting wall and do not

adequately describe far field behavior. The reflection pattern is reproduced for angles of

incidence well beyond the critical angle for producing a Mach stem, as defined theoretically

by Miles (1977), at least for short distances in a wave channel. Similarly, Hammack et al

(1989) have demonstrated that the theory of Segur and Finkel (1985) for KP solutions of

biperiodic (short-crested) waves may be applied accurately to wave trains having essentially

no apparent scale distinction in the underlying z - y parallelogram.

The determination of the validity of the KP approximation relative to the fun Boussi-

nesq equation will require careful studies with models of the present type and with time-

dependent studies for transient phenomena. The results in section 4 and 5 are a start

towards such a study, and indicate that the range of validity of the small angle approx-

imations may be quite limited, when actual computational evolution of the wave field is

considered.
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4 Analysis for a simplified wave field

Before moving to model - data comparison, we consider a simple example which illustrates

the strength of possible triad interactions occuring between waves travelling at different

directions, relative to interactions occuring between waves travelling in the same direction.

For this example, we consider the case of the oblique interaction of two synchronous n = 1

modes oriented at ±O with respect to z (m = ±1, representing a linear short-crested wave
train), which interact to form 2n = 2 modes oriented with z (m = 0, the sum interaction)

and at ±9 with respect to z (m = ±2, the self-interaction of each linear mode). Water

depth is assumed to be constant. We further assume that the oblique modes are equal in

amplitude (A' = A "1, A2 = A- 2) and obtain a reduced set of three equations. For this

reduced case involving only one wave-angle 0, it is convenient to express \ 0 in terms of k

and 9. We take Ao = ksin9 for n = 1,m = ±1. We further nondimensionalize all A's by

AI(0) and z by k- 1 and obtain the equations

A' A + iE(JA*A2eer + 3A*A ) 0 (27)

2, - o O+ I(A 1 )e-' = 0 (28)
,y2 4i 2A2 3i c(AI)22 - 1 +7 1(97A - "3/P2A2 + 4 'A1/2 = 0 (29)

where

-v = cos9 (30)

J = 1 + cos0(6- 4cos0) (31)

I = 3-5sin2 +2sin 49 (32)

E = 2(1 - cos9) (33)

Equations (27-29) admit a corresponding conservation law
2cosO(IA112 + IA212) + IA,,2 = constant (34)

For the case of a small angle approximation consistent with the information in equations

(24) and (25), we obtain the approximations cos9 -+ 1 - Isin29, J - 3+sin2 0, I

3/(1 + (5/3) sin2 ) and 0 -+ sin 2 0. For the parabolic model used in section 5, 1 and J

further reduce to I = J = 3. The resulting evolution is expected to be dependent on
A 2 = (kh)2,f = A1(O)/h and 0. We are interested in testing the approximate models as

9 increases for fixed values of #2 and c, and in studying the resulting interactions. Figure

1 gives plots of I(*), J(O) and 0(f) and their small angle approximations over the range

0- :5 0 S 9O.



4.1 Steady solutions

The three coupled evolution equations may be solved simply for the case of a steady wave

of permanent form. Letting
.A 2.

Al = aexp(- 6)

= lexp(I ip'2) (35)

2= 4i
2z,A2 3 pp -y-

leads to elimination of the dispersive terms and gives the revised equations

icJ A 3ie .7a. + Tafte' " + -a-peiA2- 0 (36)

I3 + L,,ae-'"'" 0. (37)
2

+ a 2e - i a z -0. (38)

where

4 2 1 it2

37 + ? - 5'T (39)
p2

A2 = - (40)

We then seek steady solutions of the form

a = aei6sz; bei62Z; p =ce 3X (41)

where a, b, c are real amplitudes and the 6s are phases. Defining = A1(O)/h, we then take

a = 1. Substitution of (41) in (36-38) and use of the properties of the amplitudes leads to

the conditions

62 - 261 +1 =0 , (42)

63 - 26 + A2 =0. (43)

with
(Jb _3c cI Ue

b 4 4 2b 63 = (44)

The solution is then given by 3(b
2 "t~ l + 2 'bl '(4 5 )

2-y[It + 2ANb]'
where A' = A2 - A,, and a cubic equation for b given by

(2JW)P + (cIJ + 47 A1 A' + W )b2 + [271(A - A')]b - C712 = 0. (46)
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In the parameter ranges of interest (0 _5 (p 2, C) _5 0.5, 00 < 0 < 90°), the roots of (46) are

typically real and distinct. However, only one root leads to a positive value for c and hence

a co-directional, in-phase harmonic for each individual primary wave. This root is taken to

be the physically plausible solution.

As 0 -- 900, the solutions of (46) become difficult to evaluate numerically. 0 = 900

represents primary waves travelling in opposite directions; these waves do not interact at

leading order (Rogers and Mei, 1978) and hence b drops to 0 in this limit. Therefore,

solutions for c are obtained directly from a truncated, two equation model, which gives

6= 3_ ;3 = - " C (2 +-_ (47)
w 4-7 47c' 2 3c U

where the positive root for c is chosen. This result is utilized if either of the coefficients of

the zeroth and first order terms in (46) fall below 10- 1 in absolute value. This limit does

not have a great deal of practical importance in the present context.

Figure 2 presents solutions for the harmonic amplitudes b and c for A2 = 0.36 and

a range of e and 9 values. The value of p 2 is chosen to correspond approximately to

the tests in section 5. The most striking feature of the result is that the amplitude b of

the sum-wave component at normal incidence exceeds the amplitude c of the inline second

harmonics of each oblique primary wave for sufficiently small angles of incidence. This result

is not immediately intuitive, since any triad based on oblique components would necessarily

be more detuned than the corresponding triad based on second-harmonic resonance. See

Figure 3 for the geometry of several hypothetical detuned triads whose component lengths

are determined from the lowest order relation (11). The results in Figure 2 indicate that the

result of the detuned triad interaction actually dominates the higher harmonic contents for

angles of intersection between the two primary waves as large as 500 - 600. Of course, the

conclusion that detuned interactions are dominating over more closely tuned interactions

is an artifact, in this case, of the assumption that the component wavenumbers are given

by the linear non-dispersive theory. In a permanent-form wave, nonlinearity distorts all

component wavenumbers in such a way that components satisfying resonance conditions

in frequency and longshore wavenumber also satisfy resonance conditions in on-offshore

wavenumber. If this were not true, the components would have different wavelengths in

the 2- direction and permanent form would not be retained. The short crested wave field

computed here could be regarded as being a truncated form of the Genus 2 KP solution of

Segur and Finkel (1985) in the event that the intersection angle of the two primary waves

approaches zero (and KP scaling restrictions are satisfied). Conversely, reta'ing higher

hayrnonics and determining solutions of the full problem would provide the large angle

extt.asion of the KP solution.
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Figure 4 shows a plot of two periods of the wavefield for the case p 2 = .36,c = .1,-j =

0.88, which corresponds reasonably closely to the test condition CR38 discussed in section

5. For this case, b = 0.15522 and c = 0.18204; the in-line and center angle second harmonic

components are nearly balanced. The resulting wave field exhibits the hexagonal form

characteristic of short-crested shallow water waves, as discussed in Segur and Finkel (1985)

and Hammack et al (1989). Wavefields dominated by the center angle component b give

the appearance of being long crested with phase jumps confined to a more narrow saddle

region; see Figure 8 below. In contrast, wavefields dominated by inline harmonics would

instead appear more diamond shaped, as is the case in linear theory; see Figure 9 below.

In order to get an idea of how much the solution of a small-angle approximation would

deviate from the predictions of the full theory, we have recomputed the solution for b and c

for the parameters used to obtain the solution in Figure 2. The solution is obtained using the

small angle values for -y and e and the parabolized values of I = J = 3, which represents the

most extreme reduction of the theory in terms of directional resolution, barring reduction

to one-dimension. Results are shown in Figure 5. The figure is similar to Figure 2 except

that the plots of b and c seem to be stretched out along the 0 axis; the waves behave as if the

ngle between the primary components is less than it actually is. This is due to the fact that

the small angle estimate of the value of 7 drops off less quickly than does the true value,

and to the fact that the use of I = J = 3 causes the nonlinear interactions to behave more

like they would at vanishingly small angle of incidence than would be expected. Note that

tests in section 5 cover a corresponding range of O's up to about 450; deviations between

the full solution and the parabolic form are significant in this range.

4.2 Unsteady evolution

The results for steady periodic waves indicate that nonlinear interactions can distort the

underlying components of the wave train to the extent that components that would be

expected to be only weakly tuned based on linear parameters are actually dominant parts of

the wave. In this section, we consider instead the unsteady evolution of similar wave trains,

in which second harmonics are allowed to grow from zero amplitude. We are interested in

the competition between the growing second-harmonic amplitudes and the dependence of

the evolution on the intersection angle between the primary components. The numerical

experiments described here are similar in spirit to the studies of second-harmonic generation

in one space dimension performed by Mei and Unluata (1972) and Boczar-Karakiewicz

(1972), with the exception that the two-dimensionality of the problem introduces a set of

competing second harmonics. Depending on the angle of incidence of each primary with

respect to the z axis, one of the two possible second-harmonic components may become
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dominant in the harmonic generation process. The dominance corresponds closely to which

of the components b or c takes on the larger value in the steady solution; larger values of
b indicate that the sum-wave interaction will become dominant, larger values of c indicate

that the in-line components will be dominant, and values of b and c which are close in

magnitude indicate that the two harmonics will evolve in a complex fashion with neither

being dominant. An illustration of these effects is given in Figure 6, which shows the pattern
of second harmonic evolution for the case of p2 = 0.36, c = 0.1 over an x distance of 100
water depths. The pattern shifts from one where the sum-wave interaction dominates the
wave field evolution at small angles, to one where the in-line components dominate and the

sum wave is only of minor importance at large angles.
The complexity of the wave field evolution at intermediate angles is of interest, and

sensitive laboratory experiments on this topic could provide a way of discriminating between

the detailed accuracy of various future versions of schemes like the one developed here. The
relevance of these results to natural events is in question, though. Recent computational
tests using a one-dimensional model (Elgar et al, 1990) have shown that an evolving triad
(or degenerate triad involving a primary component and its second harmonic) is unstable to
broad-banded noise and would thus not be expected to be manifested in the natural wave
field which has arrived after travelling some distance. This result does not invalidate the
use of second-harmonic generation tests in the laboratory as a means of studying model

accuracy.

Finally, use of the full model (15) with a large number N of components retained would
allow for the generation of a more complex pattern of higher harmonics; the resulting wave
fields are not qualitatively different from the ones shown here and still exhibit recurrence

or quasi-recurrence.
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5 Comparison with Data and a Parabolic Model Approxi-
mation

In order to verify the basic computational model provided by (15) and to test whether the
present angular spectrum provides a more accurate representation of the wave field relative

to earlier parabolic models (LYK; Yoon and Liu, 1989), we have compared model predictions

to laboratory data obtained by Hammack et al (1990) for the case of glancing, or Mach,

reflection of a cnoidal wave by a vertical wall. The experimental tests were conducted using
the directional wave maker at the Coastal Engineering Research Center, Vicksburg, MS. A

prior use of this facility to study the properties of intersecting cnoidal waves is described in

Hammack et al (1989), referred to here as HSS.

5.1 Layout of Experimental Facility

For the tests considered here, the wave basin was operated with a water depth of 20cn in

a constant depth region extending 12.55m in front of the wavemaker, after which a beach

with 1:30 slope provided an efficient wave absorber giving little reflection. The basin floor

was leveled to a tolerance of 0.01ft in order to remove some of the spatial irregularity of the

waves reported in HSS resulting from local refraction effects. For the Mach stem tests, two

parallel false walls were installed perpendicular to the wavemaker axis in order to provide
a closed channel. The channel walls were situated 13.26m apart, which fixes the width of

the numerical domain to be considered.

Instrumentation and data aquisition are described in HSS, and readers are referred there

for greater detail. In the present tests, an array of 18 wave gages were installed in the basin

as shown in Figure 7. In this figure, the directional wavemaker occupies the y-axis, and

the channel sidewalls lie along the z-axis and the line y = -13.26m. The positions of

the gages are given in Table 1. The linear gage array 13 - 9 - 8 - 7 - 6 - 4 - 3 - 2 - 1

provides a transect perpendicular to the reflecting sidewall which allows a determination of
the width and structure of the Mach stem and additional crests in the reflection pattern.

This array is used to provide most of the information described below. An additional array

18 - 17 - 16 - 15 - 14 - 13 - 5 provides measurements of the evolution of the reflected

stem wave along the wall. For each gage, data consists of a time series of 1250 points with

a sampling rate of 25Hz.

5.2 Specification of the Incident Wave

The generation of oblique cnoidal waves using the directional wavemaker has been described

in HSS. In the present laboratory tests, waves were initially specified as having a wavelength

of 2m and a crest elevation 4cm above mean water level. The algorithms given by Goring and
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Raichlen (1980) were used to generate a time series of paddle displacement corresponding to

one-dimensional generation. Oblique waves were then generated by phase lagging adjacent

paddles. The relation between paddle phase shift angle # and directed wave angle a is given

by

= arcsin(aL/360W) (48)

where L is the wave length and W = 45cm is the individual paddle width. Tests were
conducted for six paddle phase lags, and are denoted CRzz02O4, where zz denotes paddle

phase lag. Note that (48) corrects a typographic error appearing in HSS. Table 1 gives a
list of a and P values for the six tests.

Prior to running the Mach reflection experiments, the nominally 4cm high wave was
generated in the normally incident direction (traveling parallel to sidewalls) in order to
study its characteristics. It was found that the wave actually had a crest elevation dose

to 3.3cm above mean water level. This value was used to specify incident waves in the
numerical computation, along with a wave period of 1.478s as specified by KdV cnoidal

wave theory. We note that it is impossible to tell whether the value of 3.3cm was invariant
under changes of angle of incidence in the laboratory experiment. Variation of this quantity
would add an untraceable source of error in model-data comparison.

It has been shown (Kirby, 1990) that spectral models of the type described here (with
lowest order non-dispersive results used to develop dispersive and nonlinear terms) have

one-dimensional solutions that correspond exactly to solutions of the modified KdV-type

equation
3 h(49)Ih+ cn- - Th - Z - rhut = 0 (9

In order to account for this factor, input data for the computational models was specified

as follows. First, KdV theory was used to determine a waveheight and wave period cor-
responding to the wave described above. Then, a Fourier series solution of the modified

KdV equation (49) was performed using that waveheight and period to specify the solution.
This solution led to a predicted wavelength of 1.9977m, which is only slightly less than the

KdV prediction of 2m. (Recall, however, that the 2m value was for a crest elevation of 4cm
rather than 3.3cm). This wavelength was then used in (48) along with the phase lag angle
a in order to determine the directed angle P for each test. A table of resulting angles is

given in Table 2.

The computed wave angle and the Fourier coefficients derived from the solution of (49)
were used to compute the surface displacement for oblique cnoidal waves along the boundary

z = Om corresponding to the wavemaker. For parabolic model calculations, information
in the range - 13.26m < y !5 Om was used to start the computation. The model was run
with reflective sidewalls at y = 0,-13.26m. For the spectral model, a periodic interval
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was constructed by using a mirror image about y = Om; the computational domain thus

corresponds to the region -13.26m < y < 13.26m. The computed waveform was then

Fourier transformed over this interval and the resulting frequency-wavenumber spectrum

was fed into the spectral model. (It is noted that the problem as stated could be handled

directly by means of a cosine transform over the true model domain; this was not done

because of the reprogramming of the basic model that would have been required.)

For the examples shown here, the parabolic model was run with a grid spacing Ax =

Ay = 0.0625m, and N = 9 frequency components were used. Tests were performed for

two cases for both half the grid spacing and twice the number of harmonics to insure that

convergence was adequate for the parameters finally used. In the spectral model, we used

N = 9 and M = 64. The large value of M insures that all freely propagating modes of

the solution are retained for the highest harmonic considered. The forward grid space step

was also Ax = 0.0625m. Again, these parameters were found to give sufficient convergence

of solutions when compared to runs with smaller grid steps and more retained frequency

components.

5.3 Results

Results of model calculations are presented here in two forms: gray level contour plots of in-

stantaneous surface over the model basin, and time series computed from model output and

compared to experimental data. The gray level plots are actually of the quantity -9ia/Oz,

and the pictures thus mimic the visual image that would be obtained in an overhead pho-

tograph resulting from lighting at a low angle from the direction of the wavemaker. (This

is similar to the photographic arrangement in HSS). In all cases, the gray level plots from

parabolic model computations are similar to those from spectral model computations, and

only spectral model results are shown. Figure 8 presents results for the test CR150204,

which clearly shows the evolution of a wide Mach stem wave along the reflecting boundary.

In contrast, Figure 9 shows the other extreme example of test CR580204, where the angle of

incidence is about 45* and the reflection pattern is regular (i.e., nearly linear superposition.)

In order to compare time series from experiment and model calculations, the following

procedure is used. First, after allowing some time for nearly periodic motion to be estab-

lished in the experiment, a reference time to is established at the position of a wave crest at

gage 13 (z = llm,y = -0.07m). This start time is used for all other gages as well, in order

to maintain synchronization. Then, a start time is also established for the model-predicted

time series by identifying a crest at model gage 13. Synchronization between model and

data time series is thus based on correlating the series at a gage location, rather than (more

correctly) correlating at the wavemaker. This step is necessary since the wavemaker control
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is not available and since absolute time in the model-constructed time series is arbitrary.

After determining the synchronous start times for model and data at gage 13, time series
were plotted for the transect along the wall ( gages 18-17-16-15- 14-13-5) and perpendicular

to the wall (gages 13-9-8-7-6-4-3-2-1). Aside from the presence of experimental errors, a

correct model result would be indicated by complete agreement between model and data

time series at each gage. As examples, two periods of time series for the perpendicular

transect are shown in Figure 10 for the spectral model predictions for CR150204. The

plot shows a stem developed near the wall in the area spanned by gages 13-9-8-7, beyond

which there is a clear phase lead at each subsequent gage, indicating the approach of the

incident wave at a small angle of incidence. In this plot, model predictions are indicated

by solid lines and experimental data by dashed lines. At the opposite extreme, Figure 11

shows spectral model predictions and data for the case CR580204. This figure indicates the

structure of a short crested wave field, with one complete diamond over the range of gages

13-9-8-7-6-4-3, whereas the signal in gages 3-2-1 indicating a strong progressive phase lag,

corresponding to a wave travelling away from the wall at close to 45° . The structure of

the plots in Figures 10 and 11 may be further clarified by comparing them to the contour

plots in Figures 8 and 9, respectively.

In order to quantify the comparison between model predictions and measurements, a

standard correlation coefficient p was calculated for each time series on the perpendicular

transect. For i=l,...,I corresponding to the discrete time series over two wave periods and

j =, ...,9 corresponding to the 9 gages, we first define a correlation for each gage by

Pj = _ 2j (50)

where subscripts 1 and 2 refer to data and model, respectively, and where

1 1
¢ =2j I .= (i) b(i) (51)

i=1

=tj(i)77jj(i); I = 1,2 (52)

are measures of covariance of model and data signals and of the individual standard devia-

tions. Table 3 gives values of pj for the nine gages for both spectral and parabolic models,

as well as a composite average A given by
19

P EyPj (53)
j=1

which becomes a measure of accuracy at each angle of incidence. A plot of versus incident

angle 0 is given in Figure 12. The plot indicates that the correlation for the spectral model
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is high and does not fall off with increasing angle until the last test, CR58. This would

be expected, since the model does not have any restriction on angle of incidence. The loss

of correlation in CR58 relative to the other tests is due to the strong apparent mismatch

in phase on the last three gages 3-2-1 in Figure 11, which biases the overall average low

(see results for this test in Table 3). In contrast, the correlation between parabolic model

and data is weaker and falls off progressively with increasing angle except for an anomalous

agreement on the last test, CR58. We remark here that the standard correlation coefficient

p, which penalizes mismatches in wave phase heavily, can also give high values of correlation

when information is in phase, even though there is strong disagreement between details of

the compared time series. To illustrate this effect, the parabolic model time series are

compared to data in Figure 13 for CR58. The mismatch in crest structures is striking, but

the waves are phased relatively correctly and so the correlation coefficient becomes high.

In order to provide an independent check on these results, an rms error measure was

constructed for the comparison. This measure e is given by

e -- I V . 1 ( 2 1 1 2 •
ei(54)

for each gage, where the normalization of the mean square error is with respect to the true

(data) standard deviation. A composite value E for each angle or test is constructed from

the ratio of the rms error for all points divided by the total standard deviation for all points.

Table 4 gives the computed error estimates for all tests, and Figure 14 shows the composite

error as a function of incidence angle for the two models. In this case, the trend towards

increasing error with increasing angle is clear in the parabolic model results. The spectral

model also shows an increasing trend in this case, which would not necessarily be expected.

One possible reason for an increase in error in the spectral model as wave angle becomes

large rests in the fact that the reflected wave crests at the wall and in the short-crested
wave pattern away from the wall result from the interaction between waves that are colliding

head on to the same extent as they are interacting colinearly. Tests and analysis of head on

collision and vertical wall reflection of solitary waves have indicated that the leading order
theory (as in the Boussinesq model employed here) is not capable of predicting the height

of the runup or maximum elevation, or the phase lag associated with the opposite-going

interaction. See Su and Mirie (1980) for an example of this type of analysis. Effects of
this nature may be present in the experiments being considered here. Figure 15 displays

the comparison of the time series on the transect 18-17-16-15-14-13-5 along the wall for

test CR580204, using spectral model results. Synchronization is again with respect to gage

13. It is dear that the height of the wave along the wall is underpredicted by the model,

as may be expected for the case of low-order Boussinesq theory with waves interacting at
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large angles. This underestimation of the crest height could in turn have a detrimental

effect on the prediction of phase speed; the picture indicates that the model waves are
relatively slower than the experimental waves. The discrepancies between model and data
on the transect along the wall are even more drastic for the parabolic model, as would be

expected.

In the comparisons made above, no attempt was made to find a relative allignment
of model and data results that would minimize error in each case, or to define an error

measure that is "best" in any sense. The results of the comparison generally indicate that
the spectral model is better capable of modelling the mach reflection than is the parabolic

model.
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6 Discussion

We have described the development of a solution technique for the Boussinesq model of long

waves, based on a discrete representation of the angular spectrum for waves incident towards

shore from the ocean. The model is similar in intent to the parabolic model developed earlier

by LYK, with the exception that the present model does not impose a restriction on the

range of directions that can be accurately modelled. This advantage is counterbalanced

(at this stage of development) by the need to impose periodic boundary conditions on the

modelled problem. This restriction must be alleviated before the various representations

of angular spectrum models (present model; Dalrymple and Kirby, 1988; Dalrymple et al,

1989 ) become generally applicable as coastal wave models.

A simple application of the angular spectrum model in section 4 showed that nonlinear

interactions between modes travelling in different directions can interact strongly to produce

a significant mode travelling at an intermediate direction. In the example here, it was

shown that the amplitude of second harmonic waves resulting from the sum interaction of

two intersecting primary waves may actually exceed the amplitude of the in-line second

harmonics resulting from self-interaction in each primary wave. This result would seem to

be counter-intuitive, since the interaction between modes travelling at different directions

would seem to be weaker than the interaction between modes with similar frequencies

travelling in the same direction. In the overall interplay of the nonlinear interactions, this

simple picture does not win out, either for the case of steady solutions or solutions evolving

by means of harmonic generation. A recent paper (Freilich et al, 1990a) has shown evidence

that distinct peaks resulting from higher-harmonic generation by sum interactions of waves

travelling in different directions are observable in measured field data. Initial indications

are that the parabolic modelling scheme (as in LYK) is capable of modelling this interaction

and reproducing the measured directional spectra after shoaling (Freilich et al, 1990b). A

comparison of the present and the parabolic modelling schemes and their application to

field data are underway and will be reported separately.

Finally, comparison of the present model, a parabolic model and laboratory data in-

dicates that differences do occur between predictions of a small-angle approximation and

the fully directional expansion employed here, and that the deviation is apparent even at

small angles of incidence. This result indicates that the further development of the angular

spectrum model is worth pursuing as a means of providing accurate prediction of coastal

wave fields. The first extension of the present model to include weak longshore topographic

variation and on-offshore reflection is presently underway and will be described shortly.
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Appendix A: Nonlinear terms

The nonlinear term [n.l.]. appeasing in (6) is given by

In.-t. = 4 ----- V ,. V(V7._.) + VM_1. V(Vx)j[,,t~t], = k2 { (,, - 1)

N-n__ .__

-2 T l(. +)V [v- I . v(vi7 .+1) + v, ,vj )

n2
9 k2 n-I N-n

4 { i.ir..i-+2 4
1=1!=

1(n _ 1) 2 ((A +)) (

The term [n.l.t.]' appearing in (10) is given by

N-I

[n~l..]-" g Z- #'i I)[-

-2 7 j)Z (( ..T- mi) + -_p(m - 1
-Ep I( + )m[E((f -P +) , ].

n29k 2 In-1 N-n ]
4"(q + F)] + 2 'n+]

4 =1 P 1=1 P

+gn -In - 1) l)[Z(If._-1fl4.Z - P(m - PWiifi' )]
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gage z(m) y m) gage z(m) y(m) gage z(m) y(m)
1 11 -5 7 11 -1.5 13 11 -0.07
2 11 -4 8 11 -1 14 10 -0.07
3 11 -3 9 11 -0.5 15 8 -0.07
4 11 -2.5 10 8 -1 16 6 -0.07
5 12 -0.07 11 6 -1 17 4 -0.07
6 11 -2 12 10 -1 18 2 -0.07

Table 1: Wave gage positions in Mach reflection experiments

test CR15 CR22 CR30 CR38 CR48 CR58
j 14.5 22.0 30.0 38.5 47.5 57.6

13 10.13 15.48 21.34 27.84 35.18 43

Table 2: Paddle phase angles and directed wave angles; Mach reflection experiments

spectral model
gage 13 9 8 7 6 4 3 2 1 average
CR15 .996 .994 .997 .997 .987 .959 .926 .944 .968 .974
CR22 .974 .958 .963 .954 .951 .898 .943 .990 .860 .943
CR30 .984 .975 .989 .978 .802 .972 .949 .984 .981 .958
CR38 .986 .854 .827 .841 .985 .966 .897 .943 .994 .921
CR48 .993 .996 .950 .986 .982 .877 .783 .989 .993 .950
CR58 .986 .961 .886 .957 .842 .756 .804 1.007 .791 .784

parabolic model
gage 13 9 8 7 6 4 3 2 1 average

CR15 .994 .992 .997 .996 .959 .854 .760 .873 .924 .928
CR22 .984 .950 .923 .893 .807 .524 .742 .931 .523 .809
CR30 .978 .986 .971 .961 .033 .992 .993 .859 .945 .856
CR38 .999 .972 .892 -.644 .952 .839 .871 .703 .901 .721
CR48 .889 .914 -.516 .894 .929 .873 -.658 .938 .870 .570
CR58 .966 .852 .814 .852 .729 .790 .903 .944 .866 .858

Table 3: Correlation coeficients p for spectral and parabolic model runs
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spectral model

gage 13 9 8 7 6 4 3 2 1 average
CR15 .089 .109 .078 .076 .177 .296 .386 .349 .285 .193

CR22 .228 .292 .281 .305 .326 .496 .346 .148 .526 .296

CR30 .208 .234 .168 .214 1.250 .306 .317 .124 .196 .250

CR38 .276 .535 .578 1.060 .206 .275 .442 .520 .190 .383
CR48 .128 .137 .636 .206 .216 .524 .953 .162 .124 .273

CR58 .194 .277 .479 .293 .540 .717 .631 1.280 .612 .540

- _parabolic model

gage 13 9 8 7 6 4 3 2 1 average
CR15 .113 .132 .093 .103 .327 .600 .713 .503 .422 .319

CR22 .191 .326 .407 .556 .916 1.240 .678 .370 1.020 .509

CR30 .242 .225 .418 .597 1.975 .386 .231 .690 .333 .365
CR38 .211 .324 .706 1.936 .430 .550 .612 .713 .489 .494
CR48 .513 .743 1.911 .473 .398 .799 1.425 .476 .598 .599

CR58 .261 .534 1.099 .969 1.611 .630 .672 .697 .515 .689

Table 4: RMS error coefficients e for spectral and parabolic model runs
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Appendix. F: Angular Spectrum Modelling of Water Waves
to appear in CRC Critical Reviews in Aquatic Science, 1992.
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1 Introduction

The propagation of water waves over an irregular bathymetry has served as an important
area of research for mathematicians, oceanographers and ocean engineers for a long time
due to the the importance of the problem and the mathematical difficulties encountered in
its solution. For example, the design of shore facilities (harbors, breakwaters and piers)
and offshore structures requires a good knowledge of the wave heights and directions to be
encountered at the site of interest.

Numerous models have been proposed in the past to solve various aspects of wave prop-
agation. The first models were ray tracing models, which determine the path followed by
the waves as they traverse irregular bathymetry (e.g., Munk and Arthur, 1952; Noda, 1974).
These models, when used either from offshore towards the shore or in reverse, provide rea-
sonable estimates for wave heights when refraction (due to variations in water depth normal
to the direction of propagation) and shoaling (due to changes in water depth in the wave
direction) are the dominant phenomena affecting the waves.

Computer models of nearshore circulation have required knowledge of the wave field at
discrete grid points over an offshore region, which led to the development of models based
on the irrotationality of the wave number. Examples of these models are Perlin and Dean
(1983) and Dalrymple (1988). Despite the inclusion of numerous other effects (such as wave-
current interaction and bottom friction by Dalrymple), none of these models incorporates
the process of diffraction. Ebersole (1985) extended these models to include diffraction.

Diffraction, which is the turning of the wave rays due to gradients in wave amplitude,
as would occur as waves pass a surface-piercing obstacle (e.g., breakwaters), was largely
ignored for coastal situations due to the lack of asuitable model which would incorporate
refraction and diffraction simultaneously. In the vicinity of breakwaters, the optics solution
of Sommerfeld (1898) was adapted by Penney and Price (1952) for waves; however, the
procedure by which refraction models would be patched locally into the diffraction solution
remained an art for many years.

Of fundamental importance to the combined refraction/diffraction problem was the devel-
opment of the mild-slope equation by Berkhoff (1972). This equation, which is the vertically-
averaged equation for wave motion, reduces the 3-D problem of solving the Laplace equation
to a 2-D problem for cases where the bottom does not vary greatly. This second order
partial differential equation permits refraction and shoaling, as well as diffraction, to occur
simultaneously. Numerous finite element models were developed to solve this equation (e.g.,
Berkhoff, 1972, Houston, 1981, and Bettess and Zienkiewicz, 1977).

Liu and Mei (1976) first developed a parabolic approximation to the problem of wave
fields in the vicinity of shore-parallel breakwaters, in order to study the wave-induced circu-
lation caused by the presence of the structure.

Radder (1979) developed the first parabolic representation of the mild-slope equation,
leading to greater computational simplicity and the ability to neglect the downwave boundary
condition, which in practice is very difficult to specify a priori. The parabolic modelling has

2
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been explored more fully by Kirby and Dalrymple (1983) and Liu and Tsay (1984), who
showed how to develop a weakly-nonlinear version of the mild-slope equation, allowing for
amplitude dispersion (bigger waves travel faster than smaller ones).

One of the drawbacks of the parabolic modelling has been the restriction that the waves
travel almost in a prescribed direction. The small-angle parabolic models for example require
that the waves travel within ±300 of the z axis. Wider angle models have been developed by
Booij (1981) and Kirby (1986a,b); however, each successive approximation only opens the
range of allowed angles by a finite amount, and the limit of full ±90* is never approached.
An alternative path taken by Lozano and Liu (1980) was to base the parabolic model on
the underlying refracted wave field, such that the large angles due to refraction were taken
care of properly prior to the diffraction calculations. However, diffraction effects still only
occurred in a narrow range of angles around the principle ray direction.

Angular spectrum modelling has in principle no limitation on wave angle; hence, its
development for water waves by Dalrymple and Kirby (1988), Dalrymple, Suh, Kirby and
Chae (1989) and Suh, Dalrymple and Kirby (1990). The angular spectrum approach has
been used in other fields, such as radio astronomy (Booker and Clemmow, 1950) and electro-
magnetic fields (Clemmow, 1966). Some references for the development of angular spectra
are Goodman (1968; optics) and Stamnes (1986; optics and water waves).

The basic ideas behind the angular spectrum can be obtained by examining a single wave
train on the surface of the ocean, which can be described at a point (z, y) in the horizontal
plane as

17(z, y, t) = aei(kcoG z+ksinV p-w) (1.1)

where the real part of ti is the displacement of the water surface about its mean position. a
is the wave amplitude, k and w are the wave number (defined as 27 over the wave length
L) and the angular frequency (2*-over the wave perio-dT), respectively. The angle 0 is the
direction that the wave direction makes with the z axis, which points onshore. At z=0, the
wave form can be separated into two parts,

YI(O,y,t) = aeik s 0e - wt  (1.2)

Clearly there is a oscillatory variation of nI in the y direction, which will be denoted by 4(y).
Defining A as k sin 0 we have

k(y) = ae (1.3)

For a more realistic sea state, the y variation of will be more complicated, say, f(y),
resulting from the superimposition of many wave trains with different directions, but with
the same frequency w. To determine the contributions of each of the many wave trains in
f(y), we can decompose it through the use of a Fourier transform in the y direction. The
Fourier transform and its inverse for any function f(y) defined on an infinitely wide domain
are given by

1A) =f~ f (y)e-'dy

(Y) = f e'AgdA (1.4)
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where the Fourier transform parameter is A. The angular spectrum is i(A), which consists of
the amplitudes of the wave trains travelling in directions, 9 = sin-(A/k). Thus, the angular
spectrum is a (continuous) collection of wave trains, each travelling in a different direction,
determined by the Fourier parameter, A. The free surface displacement is now expressed as

q(z, Y, t) = 1 f ()ee "d (1.5)

where k cos 0 is rewritten as 1kT- A2 using the definition of A. (We note that the contri-
butions from the integral from JAI > k are not propagating waves, as they decay in the z
direction.)

2 The Angular Spectrum Model

r'he sea surface for many years has been described by a superposition of individual wave trains
travelling in different directions, leading to a directional spectrum. The angular spectrum is
very similar except that the directions are prescribed by Fourier analysis for each frequency,
as we now show.

The directional frequency spectrum may be written

7(TY,) 0= o jo 2 r F (w ' ) e i ( k cw sz + k z ey ' Od i (2.1)

where the real part of 7 is the water surface elevation as a function of time at position
(z,y). F(w,0) is the amplitude spectrum for the waves. If we now assume that we can
separate F(w, 9) into a separate frequency and direction components, F = S(W)D(O) then
the above expression can be rewritten (replacing k-sin 9 with the parameter A and k cos 9
with VW_-"T) as

7(zy,t) = S() ', =D) eilk 2 A z d e- (2.2)

For the present time we will restrict ourselves to a single frequency, wo, with an amplitude,
So = S(wo)&, and define the angular spectrum representation of the waves at that frequency
as

k D(Av.:.) eilkTA zeAwdA (2.3)T;,.(Z,Y,t)=L k 00 2 - A

The angular spectrum is defined as the complex amplitude of the waves,

A()_ 2rSoD(A)
A() -

2 
-.

2

The wave trains making up the angular spectrum are progressive (that is, v 'AWX is real);
however, for convenience and for analogy to the Fourier transform, we change the limits of
integration to +oo.

(Z,,0 1 A(1)e '"'YdA (2.4)
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The new additional wave trains that are added by extending the range of integration are all
evanescent, decaying in the z direction as A is greater than k and the z dependency becomes
exp{-VX"L"k z). In this form, the wave spectrum now looks like the Fourier transform
(1.5).

For a domain which repeats periodically in the transverse direction, we have the following
Fourier transform pair,

fn(z,t) - bf(z,y,t)e -;'dy (2.5)

00

f(z,t) = n, e"k (2.6)
-00

where now A = r/b and 2b is the width of the domain. The equivalent angular spectrum to
Eq. 2.4 for a given frequency is

0O

q(z, y, t) = -A"e)2e n A (2.7)
-00

where wave trains of amplitude, A,, propagate in discrete directions, measured by the angle
P. to the z axis,

a= tan-' (/2 A) for viA < k and ni = 1,2,3,... (2.8)

Again, evanescent modes occur when nA > k. Figure 1 shows a schematic of the angular
spectrum, showing a number of wave directions. Sometimes these individual wave trains will
be referred to as Fourier modes or simply modes.

For domains bounded laterally by impermeable barriers, solutions are sought in the form

(z,Y,t)= cosnAy (2.9)
n=O

where again A = r/b, in order that

Of =0, at = ±b,
OY

or, for solutions which are non-symmetric about y = 0,

f(z,. Y, = E j, cos nAp + E . sin 'y.,, (2.10)
SW=O 0=0

where the first series represents the even solution (symmetric about y 0) and the second
series is the antisymmetric part of the solution. The parameter y. = (n + j)v/b.

5
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Figure 1: The Angular Spectrum

2.1 Constant Depth

To fix ideas, consider the onshore direction as the z direction and the transverse direction is
the y direction; the coordinate z will point upward from the mean water level. The velocity
potential for the wave motion is O(z,y,z,t), from which the velocities and water surface
elevation can be determined (see, e.g., Deafi -and Dalrymple, 1984). For linear plane waves
on constant depth, the boundary value problem is separable and the reduced potential must
satisfy the Helmholz equation,

- + 8 + k2¢ =0 (2.11)

where $(z, y, z, t) = O(z, y) cosh k(h + z) e- wt, and the wave number k and the angular wave
frequency w are related through the dispersion relationship,

w2 = gk tanh kh (2.12)

Fourier transforming the differential equation in the y direction yields

d-- + (k2 _ A2)  =0 (2.13)

which is an ordinary differential equation for s(z). The solution is

4(z) = Aev'p r%. (2.14)

where A is a function of A (but constant in z) which must be determined. The Fourier
inverse in an infinitely wide domain is

(2, z) = 4 F A(A) ei(4'+Aw) dA (2.15)
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At z = 0,
00, = A(A)eA'VdA (2.16)

Comparing with Equations (1.4), we see the boundary condition for A(X),

A(A) = foo (0,y)e- Idy (2.17)

It should be emphasized that the solution we have obtained (2.15, 2.17) for this linear wave
field is fix- 4 Y the initial condition at z = 0, as there is no coupling between the various
modes com ising ihe angular spectrum. If the problem of interest is wave propagation
behind a breakwater, with all the attendent diffraction, the angular spectrum model shows
that the wave behavior is solely determined by the initial condition, i.e., the diffraction the
waves experience behind a breakwater is determined by the initial condition at the breakwater
as each of the wave trains comprising the angular spectrum propagate independently of each
other. The diffraction pattern observed is created by the radial spreading of the wave trains
comprising the angular spectrum.

For a periodic domain of lateral extent 2b, the Fourier transform leads to

+ (k2 - (nA) 2 ) = 0 (2.18)

with the solution

4(z, nA) = AneW X (2.19)

The inverse is

00

*(z,y,z,t) = j Anei(%/k2 - (n
.2 r+n I-") cosh k(h + z) (2.20)

-00

The wave number vector k = (k cos 0, k sin 0) = ( k2 - (nA) 2 ,A).

Again, the behavior of the wave trains as they propagate is fixed by the initial conditions
in this problem, which are ascertained by a Fourier transform of the initial conditions,

,(O, y) = An. For example, for a plane wave train propagating at angle, 7 to the z axis,
the initial value of 0(0, y) = Dei- ° y , where Ao = k sin -1. The Fourier transform of this initial
condition, again for a periodic domain, is

A. = 2Db sin(Ao - n.)b,

unless \, = m, for some integer, m, in which case all the A. are zero, except for Am, which
is 2Db. For computational purposes, it is convenient to chose incident plane wave trains
which correspond to a Fourier mode.

The conservation of energy equation can be used as a check for numerical calculations in
periodic domains, as the energy fluxes through the lateral boundaries cancel and therefore

7



the flux of energy across any plane parallel to the y axis is a constant. If the energy flux is
defined as

= - - dydi, (2.21)

then the flux past any location in terms of the Fourier coefficients, A., can be shown to be

pWC Cb~l IA, 12 I'k2 _ (nA)2 = constant (2.22)
g

2.1.1 Wavemakers

The solution for O(z,y) in constant depth water (2.15,2.17) can be used to determine the wave
field inside directional wave basins, which are typically rectangular basins with segmented
wavemakers along one wall (Dalrymple and Greenberg, 1985). For an example, we will
assume the basin is infinitely wide (y direction) with the x axis located at the center of the
wavemaker pointing into the basin.

Equation (2.16) indicates that the wave field is known, once the velocity potential is
specified along the wavemaker; however, the usual linearized wavemaker boundary condition
specifies the velocity in the x direction at x=O (see Dean and Dalrymple, 1984, for example).
Therefore we need to treat this problem slightly differently.

We will take the horizontal velocity created by the wavemaker of length 2a (associated
with the progressive wave mode) to be adequately described by

d.O(O, y) _fe'XO', ys < a (2.23)
d = 0, Iy>a

where A = k sin y and 7 measures the desired wave direction. The Fourier transform of this
condition is

do(O, A) 2 sin(Ao - A)a (2.24)
dz (Ao - A)

From the solution for Oiz, y), we have

dO O,) = f i Vk- A A(A) e' -\" dA (2.25)

and, after transforming,
d4,A) =A )  (2-26)

d,
Equating these two expressions for the transformed velocity, we find

A(A) = 2isin(Ao - )a(2.27)
(Ao - A)v2-(

8



This gives the final form for the velocity potential in the basin

O(Z, Y) = - -i_ 2 sin(o - A)a e•Ay dA (2.28)2w -2_e~d C(2.-2)8)k2 -,

The convolution theorem allows this expression to be rewritten into the form shown by
Dalrymple and Greenberg (1985) and Dalrymple and Kirby (1988),

T,= Ye) ¢ H)(k/z2 - (y - C)2) dC (2.29)

which is also obtainable through a Greens function approach. Dalrymple and Greenberg
(1985) also treated the evanescent modes which are important in the vicinity of the wave-
maker. Stamnes (1986) shows how to obtain the evanescent modes in the context of an
angular spectrum.

Dalrymple and Kirby (1988) point out that the wave field behind a thin island of width
2a can be easily found by taking the plane wave solution and subtracting the wavemaker
solution from it, according to Babinet's Principle.

Dalrymple (1989) has used this constant depth solution and the non-symmetric Fourier
expansion (2.10) to determine the wave fields generated by directional wavemakers in basins
of finite width, taking into account side wall reflection. This is the so-called 'designer waves'
solution. (His solution is also valid for basins with straight and parallel bottom contours.)

To illustrate the 'designer wave' concept, see Figure 2, which show the instantaneous
water surface for a wave train with 30 *angle of incidence which is generated at the wavemaker,
located at the bottom of the figure. Due to the presence of the reflecting wall at the left of
the figure, a short-crested wave pattern is created. The presence of the side wall at the right
of the figure creates a diffraction zone. There is only a limited portion of the wave basin
near the wavemakers, where the desired wave train exists. At the far end of the tank (at
the top of the figure), the wave field is clearly no longer a uniform wave train. Now, if this
long-crested wave train is desired to occur at the far end of the tank, then the power of a
directional wavemaker can be used. By generating a nonuniform wave field, the presence of
the side walls can be incorporated in the wavemaker signals. For example, to generate a wave
train with 30"angle of incidence at the far end of the basin, the wavemaker must generated
short-crested and diffracted waves. For this case, if we now imagine the wavemaker at the
top of the same figure, we see that by the time the wave field propagates to the far end of
the tank (now the bottom of Figure 2), the wave becomes long-crested. This technique,
including shoaling waves, is used in the Ocean Engineering Laboratory at the University of
Delaware.

2.1.2 Wave Behind Narrow Gaps

Another interesting application of this constant depth solution is the propagation of a direc-
tional sea state through a small gap. This problem can be treated in several ways. First the
influence of the waves on the seaward side of the breakwater could be neglected, in which
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case the wavemaker solution could be used directly with the appropriate specification of the
velocity. Alternatively the offshore wave field can be specified and matched at the gap to
the wavefield on the sheltered side of the breakwater. This is the case we will treat.

Consider either a natural gap through which waves must propagate into an embayment or
a man-made gap, as between two breakwater segments. It has been noticed that, regardless
of how directional the sea state seaward of the gap is, the waves inshore of the gap are
long-crested and these crests are circular. To show that this is true, we postulate an angular
spectrum for the waves offshore of the (infinitessimally narrow) gap for a given frequency as

o =, . f A(X) e Ye'dA (2.30)

where the A(,) are imposed by the nature of the offshore sea state. The velocity at the gap
is

840"(O, ) 00 f
axO = f-0j iVk -_ A2 A(A)e'-' dA 6(y) (2.31)

where the 6(y) is the Dirac delta function, which represents the fact that the velocity is zero
except at the narrow gap. The Fourier transform:

O 'o=O2Y)iv 1P /T _ \2 A( ) d\ (2.32)

Inside the (infinitely thin) breakwater, the wave field for this frequency is given by another
angular spectrum,

) f0 E(AX) -ei A e "Y dA\ (2.33)
The transformed horizontal velocity (z direction) at the gap is

--00,y) ivi A- B(A) (2.34)

Equating both of the velocities yields

B(A) = 2 A(\) dA (2.35)

We can make several assumptions here for A(,). If we assume that the wave trains are
coming from all directions with the same height (a), then A(.) = a; alternatively if the
waves come only from the direction associated with Ao, then A(A) = A(,o)b(A\o - A). For
both cases, the integral in the above expression can be evaluated, such that

B(A) ak (2.36)

or
B(A) = -iA(Ao) (2.37)
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Substituting these expression into the angular spectrum inside the breakwater, (2.33), and
integrating, we have

4,i(z, y) = aHo(kr) (2.38)
where, for the first case, a = ak2/2 and, for the second case, a = -iA(Ao)/2. The Hankel
function of the first kind and order zero, which is a function of the wavenumber and the
radial distance r = V/2'+y2, arrives through the following identity:

1 0 = i Ho(kr) (2.39)

The nature of our solution for one frequency is that the wave form inside the bay, which
is only dependent on the radial distance from the gap, is described by circular wave crests
(via the Hankel function). For the linear superposition of many frequencies, the same result
obtains-all frequencies are described by circular wave crests.

For waves through a breakwater gap much smaller than a wavelength, the result is not
new, Penney and Price (1952).

Dalrymple and Martin (1990) examine the wave field inshore of a line of breakwaters that
are separated by gaps of the same length (similar to an optical grating). The influence of
the offshore waves is included in their analysis. They find that the wave field inshore of the
breakwater can be very complicated as new wave modes are generated when the gap spacing
is less than a wave length, due to superposition of the diffraction patterns behind each gap.
The presence of multiple wave trains of the same frequency can lead to the formation of rip
currents behind such structures.

2.1.3 Wave Focussing

Stamnes et aL. (1983) carried out a laboratory and theoretical study of the focussing of
waves behind a submerged shoal, designed to act as a Fresnel lens. The field experiment
consisted of generating a circular wave with a point wavemaker; these waves were focussed
by the lens to another (focal) point. Wave height measurements were made with densely
spaced transects in the vicinity of the focal point. The comparisons to the data were made
using the (linear) angular spectrum approach, along with a nonlinear parabolic model. The
comparison was carried out by assuming the wave field over the lens was representable by a
arc of a circular wave converging on the focal point.

3 Variable Bathymetry

Most coastal regions of interest are not characterized by uniform depth, but instead have
spatial nonuniformity in bathymetry. At the simplest, this spatial variation is characterized
by a trend of decreasing depth in the shoreward direction, with a superposed, irregular
depth variation in both the on-offshore and longshore direction. For the case of intermediate
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water depth, it is convenient to model small amplitude waves using the mild-slope equation

(Berkhoff, 1972; Smith and Sprinks, 1975),

V . CC9VO + k2CC4, = 0 (3.1)

which is applied separately to each frequency component in the wave train. Here, V -
(-t+ fJ) is the horizontal gradient operator, C is the wave phase celerity and C is the
group veocity of the waves, given by

C(z,y) = wlk(z,y) (3.2)

C,(z,y) = s(1i+ 2kh) C (3.3)

Again, the complete velocity potential is 4I(z, y, z, t) = 4(z, y) cosh k(h + z)e -iw. The coeffi-
cients, C and C., in (3.1) are determined based on the local value of the water depth h(z, y)
at each point in the domain of interest and the dispersion relationship (2.12).

3.1 Straight and Parallel Contours

The Fourier transform of (3.1) for an infinitely wide domain where the depth only varies in
the z direction is

d- (CO 9 ) + (k 2 _A 2 )CC = 0 (3.4)

This ordinary differential equation for has variable coefficients as the wave number, wave
phase, and group velocities vary with the depth, h(z). -

An assumed form of the solution for is

4(_) = (z)e f - x (3.5)

where d is assumed to vary slowly in z as the exponential term carries most of the phase in-
formation and the integral is necessary to get the phase change with z correctly. Substituting
into equation (3.4) leaves an equation for ,

CC, \2_ + d (CC~VUP77).
\2 dZ dz 0 (3.6)

where we have neglected two small terms,

CCgX- . 1 (3.7)

aCC, C1(3.8)8: dx36

as the bottom varies slowly in x as does 4.

1
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The resulting equation is a first order differential equation for the wave modes which can
be solved by separation, resulting in

Ao -___ _ A_2_ = AoK. (A)K,,(A) (3.9)

or
o = AoKK, tf "  (3.10)

where the terms with a zero subscript axe evaluated at the origin. This equation shows
that the (transformed) wave form is given by an initial amplitude, A, evaluated at z = 0
and then the wave changes with z in accordance with standard shoaling and refraction
coefficients, K°K,. Furthermore there is no interaction between the different Fourier modes;
any diffraction observed for z > 0 is due to the spreading of the angular spectrum, as each
wave train propagates in a different direction.

The inverse Fourier transform yields

I/ J AK.KeifV 2 rei 'dA (3.11)

for an infinitely wide domain. This is a generalization of the result of Mei et aL (1968), who
used a multiple scales approach, to now include all possible wave trains in a directional sea.

Dalrymple and Kirby (1988) studied the case of waves propagating through gaps in a
row of periodically spaced offshore breakwaters, assuming that the potential through the
gaps could be given as the wave potential in the absence of the breakwaters (known as the
Kirchoff approximation in optics). Shoreward of the breakwater the assumed planar bottom
sloped upwards to the shoreline. Their results, see Figure 3, show diffraction patterns behind
each of the breakwater gaps as would be expected, including the refraction of the waves due
to the sloping bottom. There is also a region of short-crested waves due to the influence of
neighboring gaps.

3.2 Realistic Bathyrnetry

For more realistic bathymetry, we must permit a variation in the bathymetry in the V di-
rection as well. It is convenient to modify the mild-slope equation to treat this problem.
Introducing p(z, y) = CC, and - p, we obtain a Helmholz equation for the modified
potential,

V'j +2 = 0 (3.12)

where

*, = k V- (3.13)

Following Dalrymple ef at., 1989, a laterally averaged wave number is introduced for a domain
o( width,2b,
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Figure 3: Instantaneous Wave Field Behind a Breakwater Gap Over a Sloping Bottom, from
Dalrymnple and Kirby (1988)

15



This permits rewriting the Helmholtz equation as

V + 2-_ T22.0 = 0 (3.14)

where Y2(Z, y) represents the lateral deviation of k(z) from k,(z, y):

For bathymetries which have very little variation in the y direction, the V 2 is small.

Fourier transforming (3.14) yields an equation for the Fourier modes,

d24
d + (k7 - A2 )$- k2F(v2 o) = 0 (3.15)

where the Fourier transform of the product, v2 is shown symbolically with the F operator.

This second order differential equation can be separated into two equations (as is done for
developing parabolic equations), one equation governing waves propagating in the positive
z direction and another for the opposite direction, which, after assuming that the nega-
tively propagating wave motion is small, due to only small amounts of reflection, yields one
equation,

d4(X, A) 2 (X2T  i - kF(V 24)
dx iN=k 2k2 -2 0-(3.16)

The second term on the right hand side is the shoaling and refraction term, which occurs for
planar bathymetry, and the last term represents the effect of the irregular bathymetry. This
bathymetric effect represents a coupling between all Fourier wave modes and the bottom due
to refraction. Modes which do not exist can be created by this interaction.

The example used by Dalrymple, Suh, Kirby and Chae (1989) is that of a submerged
circular shoal located in a region of constant depth. as studied in the laboratory by Ito
and Tanimoto (1972). The evolution of the modes over and behind the shoal are shown in
Figure 4. The incident wave train is specified to have only one direction (mode). As the wave
train encounters the shoal, the waves refract and focus due to the depth changes. Through the
bottom term, new Fourier modes are spawned and grow over the island. Behind the island,
in the constant depth region, the bottom coupling term is no longer active and the angular
spectrum is unchanged with further propagation distance, yet the wave field experiences the
formation of a strong focal region, where diffraction is important. The apparent diffraction
once again is explained by the radial propagation of the individual members of the angular
spectrum, generated by refraction over the shoal. The envelope of the wave field in the
vicinity of the shoal is shown in Figure 5.

3.3 Alternative Formulation of the Bottom Coupling Term

Due to the efficiency of the FFT algorithm, the Fourier transform of the last term in (3.16)
and the inverse transform needed to obtain 4 from 4 are usually evaluated over a periodic
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Darymple et .1., 1989
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interval in a finite width domain. Using this fact about the computational procedure allows
the effect of the coupling term to be directly interpreted in terms of mode coupling between
transverse surface wave modes and transverse bottom modes. In order to show this, let

(y) = V2 (3.17)

denote the real-valued argument of F on the line -b < y < b. The Fourier transform pair
for f is then defined by the transform pair, (2.5, 2.6).

oof(ii)- = fnenAY; A = I"(3.18)
_ b

S.i / j(y)e-"dy (3.19)

Likewise, the discrete transforms vn,, v of the physical variables , V2 are defined by

0 ( Y2 ) (o ) e in; x r(3.20)

( (Y ) e-'kPdy (3.21)

The discrete Fourier transform of the governing equation (3.15) gives

dZ + (k2  (nA) 2 )4 - k/, = 0 (3.22)

By direct substitution, we obtain

f (Y) = -O, e' ( "')A" (3.23)

Then

= Y ,2 4,,, 6(1+ m - n) (3.24)
1 M

where 6(s) = 1 for a = 0 and zero otherwise. We thus require the condition I + m - n = 0
in order to obtain a contribution to the surface wave mode by the bottom. For an arbitrary
choice of I and a subsequently fixed value of m = n - 1, we obtain the expression

1=-a3
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Figure 6: Amplitude Spectrum of the Bottom Modes, v2(z, m,), from Dalrymple and Suh,
1988

When this term is substituted back into (3.22), it is dear that the effect of F. is to scatter
energy into (or out of) mode n through resonant interaction between a surface wave at mode
n - I and a bottom mode I. The interaction is a linear process, since the amplitudes vI
are fixed. The formulation may be interpreted as a generalization of the Bragg scattering
mechanism described by Mei (1985) for forward propagation over a sinusoidal bed (actually
not explicitly covered here) and by Naciri and Mei (1988) for waves propagating over a bi-
periodic bottom. In this extension, the entire problem of wave deformation by a non-uniform
bottom may be viewed as the result of a complicated multiple scattering problem involving
the entire set of Fourier modes resolved by the system.

In practice, it is possible either to use the FFT and inverse FFT algorithms to evaluate
the last term in (3.22), or to evaluate the sum in (3.25) after evaluating the FFT of v2 . The
operation count of the second option is smaller, although all exponentials involved in the
computation of the FFT's may be evaluated once and then stored, making the subsequent
FFT calls quite efficient.

Dalrymple and Sub (1988) show this interaction between the bottom and surface modes,
using an idealized bathymetry consisting of sinusoidal corrugations perpendicular to the z
axis, so that the major component of the bottom was v2. The surface wave train was incident
at an angle corresponding to 4 at z=O. According to (3.25), the next modes to be forced
by the bottom are 42 and 4. These modes then create additional modes. These results are
shown on Figures 6 - 8, which show the evolution of the angular spectrum with distance, x,
and the instantaneous water surface. Note that wave rays, obtained from refraction theory
and depicted with solid lines, are also shown.
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over many wave directions. The water wave problem however is nonlinear, due to the free

surface boundary conditions. There have been two approaches to solving a more nonlinear
problem. The first is to replace the linear dispersion relationship (2.12) used to find the wave
number given the wave frequency with a nonlinear dispersion relationship, which includes
amplitude dispersion. Candidates for this dispersion relationship could be the Stokes third
order relationship or the modified dispersion relationship of Kirby and Darymple (1986).
This last relationship was used directly in the equations in Section 3.2, with very good
agreement with laboratory data by D rymple et aL (1989).

The second approach is to rigorously satisfy the nonlinear governing equations, which

are

VIO = 0 (-h< z< q) (3.26)
g#O, + #It + 12OI + 2(V# .V)j V# 12 = 0 (Z = 17) (3.27)

#1+-IV.012+ 91q = o (Z== (3.2)
#, = -Vj,#. V,%h (z = -h) (3.29)

where V and V are the three-dimensional and the horizontal gradient operators.
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The methodology is to expand 4 and q in terms of a small parameter, e, which is the
Stokes steepness parameter,

00 00

E ==ZE'; 7 =E 0n (3.30)
n=l n---1

Also the method of multiple scales is used, which has been shown to be very useful for wave
evolution problems. Suh et al. (1990) chose the following slow variables

X1= EZ,Z2 = f2z, .... ;tl -t,t 2 = 2t, .... (3.31)

A mild slope bottom was assumed, such that h, 2h-2 . This leaves the bottom effectively
characterized by straight and parallel contours up until third order. Next, the Taylor series
is used to expand the nonlinear free surface boundary conditions about z = 0 and the
bottom boundary condition about z = -h, which provides for series representations of these
nonlinear conditions in linear form, ordered by the Stokes parameter. Finally, grouping the
coefficients of each order of the Stokes parameter gives a boundary value problem for each
order, v:

= F (-h < z < 0) (3.32)

go, + 0,,,. = G. (z = 0) (3.33)

0.,,+9 = H (z=0) (3.34)

O,, = B,, (z = -h) (3.35)

where the forcing terms, Fn, Gn, H,, Bn, are determined from solutions of lower order. See
Sub et al. (1990) for the complete expressions for the right hand sides. The first order
solution, as expected, is that of Dalrymple and Kirby (1988), for waves on straight and
parallel contours. At the second order, the interaction of components of the first order
directional spectrum leads to the appearance of sum and difference frequencies, including the
usual Stokes harmonic. Additionally, forcing from the bottom occurs through the coupling
term in Dalrymple et al. (1989). At the third order, the forcing of the wave field is due to
third-order terms proportional to the first harmonics and a cubic resonance which results
from the interaction of the primary waves and the second-order sum and difference waves or
among three primary waves. New bottom coupling terms arise as well.

Suh et al. (1990) compared the third-order model to data (Booij, Berkhoff and Radder,
1982, Ito and Tanimoto, 1972), showing good agreement, far better than that obtained
by linear theory. Another comparison was made to the nonlinear model of Dalrymple et al.
(1989) on the BBR data set, also showing good agreement and indicating that, at least for the
example shown, the two methods of including nonlinearity are almost equivalent. In fact,
the Dalrymple et al. (1989) model has a computational advantage for most applications;
however it does not include the wave-wave interactions as does Suh et a. (1990). Both
models have the disadvantage that for very large angles, say greater than 50, the model
results begin to show discrepancies.
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4 Shallow Water Waves

As waves propagate towards shore, they enter a region where the wavelength becomes long
relative to the water depth, and the product kh in the dispersion relation (2.12) becomes
small. In this case, the dispersion relation approaches the limiting form

W2 = gk 2h (4.1)

and wave speed C = w/k becomes only weakly dependent on frequency. In this limit, all
waves are travelling at nearly the same speed, and strong nonlinear coupling exists between
waves of different frequency and direction. Prior to wave breaking, numerous studies have in-
dicated that the Boussinesq equations (in which all frequencies are treated together) provide
an adequate model for the wave field. To date, this problem has only been treated (from the
angular spectrum point of view) for the case of topography varying in one direction; the case
of two-dimensional topography has not been described as of yet. Kirby (1990) has developed
a model for waves on an infinitely long beach and has compared model results to data and
parabolic model results. This model will be presented here.

We first establish the form of a model for waves in a laterally unrestricted domain. Again,
a Cartesian coordinate system is adopted which has z pointed in the onshore direction and
y pointing alongshore. Depth is assumed to vary as h(z) only. We take as a starting point
the variable depth Boussinesq equations as given by Peregrine (1967):

rh + V.- (hu) -+- eV. (7u) = 0 (4.2)

h2ut + Cu* Vu + gVI - 2t V(V . (hut)) - -V(V -ut)) (4.3)

Here, Yj is the surface displacement and u is the horizontal wave-induced velocity vector. The
equations are kept in dimensional form; the scaling parameters t for nonlinearity and p 2 for
weak dispersion are present only schematically and will be subsequently dropped. We will
assume that either bottom slope or the amplitude of bottom features (as scaled by water
depth) are also small and hence the model will be developed to leading order in nonlinearity,
dispersion, and domain inhomogeneity. This leads to immediate neglect of bottom slope
effects in the dispersive terms of (4.3). Using the linear portion of (4.2), we may then write
(4.3) in the reduced form

ut + u. Vu + gV17 + hVjht = 0. (4.4)

We now make the following two assumptions. First, the model will be applied to time-
periodic wave trains, where periodicity is in the sense of either a regular wave train, or of a
discrete FFT over a finite length of sampled data. This assumption has been routinely applied
in the spectral sense in the one-directional shoaling model of Freilich and Guza (1984) (see
also Elgar and Guza, 1985). Its interpretation in the regular wave case is straightforward,
with the wave being separated into its harmonic components (Rogers and Mei, 1978; Liu,
Yoon and Kirby, 1985, hereafter referred to as LYK). Secondly, the wave field will be assumed
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to be periodic in the transverse y direction. This corresponds again to a fixed longshore
wavelength in the regular wave case, or to periodicity over a long spatial interval in the
spectral sense.

The governing equations are first split into coupled elliptic models for separate harmonic
components. Following LYK, the surface displacement and velocity are written as

0= Y)e- I" c.c. (4.5)17 2
n=O

2N u,(XY)e-in,.C (4.6)

Substitution of (4.5) and (4.6) in (4.2) and (4.4) and subsequent elimination of the velocity
leads to the following model equation for the 'M in the horizontal plane:

n2w2q -+ V. (GnVtn) + [n.l.t.], = 0; n = 1,..., N (4.7)

Here, [n..tI]n denotes the nonlinear interactions with other discrete frequency components
which are sorted by means of the rules for triad interactions applied to the time dependence;
complete expressions may be found in Kirby (1990). The mode n = 0 corresponding to the
steady, wave-induced setdown is neglected since it is at most second order in the largest wave
amplitudes present (see LYK). Also,

G,(x) = gh(z) - !ln2W2h2(z). (4.8)3

We now Fourier transform the wave field in the y direction, assuming propagation is to
be considered in the on-offshore (±z) direction. We consider here the case of an unbounded
lateral domain and a wave field which is periodic over the basic interval -b < y < b. We
then represent ,n(x,y) as

M=-M

where
1 (4.10)

b*
as before. Substituting (4.9) in (4.7) and neglecting z - derivatives of small terms in Gn then
leads to a set of coupled second-order ODE's for the i7', given by

G,, + LT C_,,,,,,
,,... + ,. + (,n)2, + ,. 2n2A2k2h2,, + [n...1] = 0;

n = 1,...,N; m = -M,...,M. (4.11)

where [n.l.t.1] now represents triad interactions satisfying resonance conditions in t and p.
Here, k is the wavenumber determined by the lowest order dispersion relation (4.1). Also,

(7.m)2 = n2k2 - m 2.%2 (4.12)
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For fixed n,k,A, large values of m will make yn imaginary, which corresponds to modes
which are exponential rather than oscillatory in z in the linear approximation. In the linear
case, the presence of these modes in the initial conditions would be interpreted in the same
light as the presence of evanescent modes in the wavemaker problem discussed in Section
2.1.1. However, the interpretation in the case of possible nonlinear forcing of the offshore
portion of trapped modes in the nearshore region is non-trivial and will need to be considered
carefully in applications where the inclusion of this effect is desired. In addition, nonlinearity
could force the propagation of modes that would not be present in a linearized wave field,
and which could affect a detailed representation of an individual wave. At present, the range
of M at each value of n may be restricted to M. !5 nk/A in order to eliminate forcing of
these modes arbitrarily.

4.1 Shoaling waves

The model developed in the previous section allows for the onshore and offshore propagation
of the directional spectrum components. Here, attention is restricted to waves propagating
onshore, or in the positive sense with respect to the z coordinate.

Based on the linear, nondispersive portion of the model (4.11), we assume that the
incident wave may be written in the form

7(z ) = A'(z)e'" (4.13)

where it is assumed that the z dependence of A, k and is on a slow scale of 0(c), and
where

m (1 - (rn)2 (\) 2 )1/ 2 - (4.14)
n n nk(

(where the positive root is taken). The amplitudes A represent the discrete angular spectrum
being considered here, and are allowed to vary owing to refraction, shoaling, dispersion and
nonlinear interaction. (It would be possible to absorb shoaling and refraction effects by the
use of the usual linear refraction formulae; this step is not taken here.) Substitution of (4.13)
in (4.11) leads to the spectral model for incident waves, given by

n'Am + (khj) AT - !in 3 k 3 h 2

ink (n-I P2  "' N-n PA + fTmnPd
+-PP~-- ft X + +2 JmiPAPiA eJnad = 0;

1=1 piP 1  1=1 P=PI
n = 1q...,9; Im=-Mn,,...,Mn. (4.15)

Here, (.) denotes the complex conjugate. The limits of summation P - P4 are given by

1 
= max(-M,-Mn-1 + m)

P2 = min(Mi, M,,_1 + m)

Ps = max(-M, -M.+1 - m)
P4 = min(M1,M,+1 - m) (4.16)
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The interaction coefficients I and J are given by

nm-p 2 2 2 '+ (_
(,1 ][+ ," Pi + 2 - 1 ](4.17)

, + 1(4.17)

The phase arguments 0 and T represent the basic mismatch in the z direction of the triads
chosen based on perfect matching in y and t. Generally, the only components which expe-
rience complete resonance in the long wave limit must have parallel propagation directions;
all obliquely interacting components are somewhat detuned. The phase arguments are given
by

On - lk=1j + (n - I)kj:. - nkj'/ (4.19)
Tm' = 0 , P (4.20)

The spectral model (4.15) is a set of coupled first order ODE's which are solvable by
standard techniques. Results were obtained using a 4th-order Runge-Kutta scheme.

4.2 Comparison with Laboratory Data

In order to verify the basic computational model provided by (4.15), Kirby (1990) compared
model predictions to the laboratory data obtained by Haxnmack et aL (1990) for the case
of glancing, or Mach, reflection of a cnoidal wave by a vertical wall. Additional compar-
isons were made with parabolic models. The experimental tests were conducted using the
directional wave maker at the Coastal Engineering Research Center, Vicksburg, MS. A prior
use of this facility to study the properties of intersecting cnoidal waves is described in Ham-
mack et aL (1989), referred to here as HSS, who also discuss the instrumentation and data
acquisition used.

For the tests considered here, the wave basin was operated with a water depth of 20cm
in a constant depth region extending 12.55m in front of the wavemaker, after which a beach
with 1:30 slope provided an efficient wave absorber giving little reflection. For the Mach
stem tests, two parallel false walls were installed perpendicular to the wavemaker axis in
order to provide a dosed channel. The channel walls were situated 13.26m apart, which fixes
the width of the numerical domain to be considered.

The generation of oblique cnoidal waves using the directional wavemaker has been de-
scribed in HSS. In the present laboratory tests, waves were initially specified as having a
wavelength of 2m and a crest elevation 4cm above mean water level.

A sample of the model calculations are presented here as gray level contour plots of
instantaneous surface over the model basin. The gray level plots are actually of the quantity
-Oq/Oz, and the pictures thus mimic the visual image that would be obtained in an overhead
photograph resulting from lighting at a low angle from the direction of the wavemaker. (This
is similar to the photographic arrangement in HSS). Figure 9 presents results for the test
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Figure 9: Reflection of Cnoidal Wave from Barrier, Corresponding to TEST CR150204
(Kirby. 1990)

CR150204. which clearly shows the evolution of a wide Mach stem wave along the reflecting
boundary. In contrast, Figure 10 shows the other extreme example of test CR580204. where
the angle of incidence is about 450 and the reflection pattern is regular (i.e., nearly linear
superposition.) The reader is referred to Kirby (1990) for a detailed comparison between
model results and the laboratory data.

5 Conclusions

The angular spectrum method for both intermediate and shallow water depths provides a
useful tool for the propagation of water waves. It has the advantage of including refraction,
diffraction, and shoaling, but permitting larger angles of propagation than the parabolic
models permit.

The angular spectrum provides an interesting interpretation of diffraction. For the case
of diffraction through a gap, treated by the Kirchoff approximation, the initial condition
contains all the information for diffraction. The circular spreading of waves behind a gap
is simply the radial spreading associated with the different propagation directions of the
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Fourier modes. There is no coupling between the modes when there is no lateral variation
in bathymetry. Further for cases where diffraction occurs within the computational domain,
say, behind a shoal surrounded by constant depth water, the coupling between the bottom
modes and the surface wave modes over the shoal forces new modes to grow which, behind
the shoal, lead to the characteristic focus and diffraction regions. However, for linear wave
models, there is no coupling between the modes after the waves pass over the (refractive)
shoal region.

In shallow water, the mode coupling is very strong and plays a major role in the compu-
tations. However, comparisons to data show that the angular spectrum model is very good;
in fact, better than parabolic representations of the Boussinesq equations.

Future work in angular spectrum modelling will be directed to the development of an
elliptic angular spectrum model to provide for reflection upwave and the application to a full
directional spectrum by superposing many frequencies.
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