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ABSTRACT

In this study a numerical model based on the hydrostatic Boussinesq equations is

used to simulate atmospheric frontogenesis driven by an irrotational non-divergent

deformation wind field. The equations are numerically integrated by using the semi-

Lagrangian technique associated with two different time schemes: explicit and semi-

implicit. Both schemes produce realistic fronts after approximately 40 hours of model

integration. The semi-Lagrangian semi-implicit scheme is more successful in handling

the sharp gradients associated with the front. Also, the semi-Lagrangian semi-implicit

equations are integrated with time steps as long as 3600 sec. producing solutions with

relatively small errors. This indicates that this numerical scheme is appropriate for use

in mesoscale regional models.
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I. INTRODUCTION

The development of fast computers has been of great importance for the

atmospheric sciences. With them, scientists have been able to obtain a better

understanding of the physical processes in the atmosphere and operational weather

services have produced more accurate forecasts. But as pointed out by Robert (1981),

scientists can also give their contribution by developing numerical algorithms that are

computationally less expensive and at the same time accurate. This interaction between

science and technology will allow the computational effort to be used in numerical

models that will have higher resolution and that will be more accurate, as well, since

more realistic and complex physical processes would be represented in these models.

One of the atmospheric processes that has been under active study is the formation

of fronts. In a study of non-geostrophic frontogenesis Williams(1972) reproduced

numerically a realistic front, demonstrating the importance of nonlinear effects in this

dynamical process. Since frontogenesis is a phenomenon that is characterized by the

development of sharp gradients of the physical parameters it would be interesting to

develop a numerical model based on techniques that can handle adequately the scale

collapse problem. Kuo and Williams (1990) studied the use of different numerical

techniques in the solution of a simple scale collapse problem, They concluded that the

semi-Lagrangian method, developed by Sawyer (1963), would be adequate for use in

numerical models where strong gradients were present.

The semi-Lagrangian technique has been used mostly in synoptic scale numerical

models. Robert (198 1) used this technique with the semi-implicit scheme (Robert et al,

i m i~ i I nu nn no m l nmllmlNll ['~l '11 - I



1972.) in a primitive equation model and obtained perfectly stable solutions using time

steps 25 times larger than those that would be alloved by the Courant-Friedrichs-Lcxvy

CFI.) stability criterion. Pudykiewicz, and Staniforth 11984) examined the use of the

scheme in several different conditions and concluded that besides its good stability

properties, it is also accurate and flexible.

The objective of the present study is to perform experiments using the sem-

Lagrangian technique in a frontogenesis model and verify its suitability for use in the

representation of atmospheric processes where sharp gradients are present.

The semi-Lagrangian technique is introduced in the next chapter. The basic model

equations are developed in chapter III. The numerical procedure employed for solving

the equations is presented in chapter IV. In chapter V the experiments and results are

discussed, followed by the summary and conclusions in chapter VI.
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II. THE SEMI-IAGRANGIAN SCHEME

1lhis model uses a semi-[agrangian algorithm smidar to the one described by

Robert (1981).

The three time level semi-Lagrangian technique consists of evaluating the total

derivative of a general dependent variable Q(F(t),t) following the trajectory of the

fluid particle, using the approximation

dQ Q(r(t.At),t+At -Q(F(t- A0,t-Ar) (2.1)
dt 2At

where f(t) represents the position vector of the fluid particle at time t. For sake of

simplicity, constrain the problem to two dimensions, y and z In this case the position

vector will be

t)- y()j+ z(t)k. (2.2)

The location of the particle at the forecast time ft + r :is chosen to be coincident

with a grid point. Let the displacements of the particle along the y and z directions

3



during one time step be represented by a and b. respectively. If the grid point position

is rcpresented by

r + At) = (y,,zk)

the approximation (2. i) can be written as

dQ _ Q(yjZkt+At)-Q(y,- 2a,zk-2bt-At) (2.4)

dt 2At

The displacements a and b can be calculated iteratively using

a -+I At.v(y,-a',zt-b,t), 12.5a)

bR-= At.w~y,-a",, b,, '  (2 'b)

where the superscript a represents the e iteration and v and w represent the

horizontal and vertical velocities, respectively. The initial estimates of a and b in the

iterative process are defined by

4



ao = At.v(yj,zk,t), I2 ic

b - At.w(y,,z 1 ,t) 12. d

In Pudykiewicz and Staniforth (1984) it can be found that the necessary condition for

convergence of the iterative procedure described in (2.5) is

At~l~t~x a av. )<, (16)

Furthermore. Kuo and Williams ( 1990) point out that no more than three iterations are

necessary for convergence to be attained. Robert (1981) compared the use of tv o and

tour iterations in his primitive equation model and the results obtained were quite

similar.

In order to determine the values of the variable Q at time t-At it is necessary to

use an interpolation scheme. In this model, bicubic spline interpolations (de Boor. 1962)

were used with the explicit formulations of the semi-Lagrangian scheme, using the

algorithm described by Marchuck (1982). In the semi-implicit formulation only one-

dimensional cubic splines in the y direction are necessary to solve the problem. as will

be shown in IV.C.2.



II1. BASIC EQUATIONS

1-his model uses the hydrostatic Boussinesq equations. which assume

incompressibity of the atmosphere. Friction and heating are neglected. It is also

assumed that the atmosphere is bounded above by a rigid lid. Periodic boundary

conditions are used in the horizontal.

The Boussinesq equations can be written as

A 3 (3.1)

dv (3 -fu, (3.2)
dt Ocy

- - -+ a Vo, 3.3)&r az

A . 0, 3.4)
dt

6



az o0

where

R
R C (3.6)

P

0 = T(P-)- -0 0 , (3.7)
P0

(, - c, o,(-L +9)' z. (3.8)
p0

This model assumes that the Coriolis parameter f is constant, and that the bottom

topography is flat. The variations in the x direction, along the front, are neglected,

except for the V field and the basic deformation field.

With the assumptions above, equation (3.3) reduces to

v+ -0 (3.9)

for departures from the deformation wind field.

7



With the use of a rigid lid assumption the pressure is not known at any level, and

this will require some manipulation of the equations.

Integrate the hydrostatic equation (3.5) from z -Oto an arbitrary level z and

obtain

z

f e zC.(3.10)

000

The constant of integration, C can be determined by taking the vertical average of

equation (3.10) and subtracting from equation (3.10) which gives

z z
(0 = Cfd-<-L d> +<(p>,

000 0

where < > denotes the vertical average operator

H

<F>._1fFdz. (3.12)

The constant of integration has been eliminated, but now an expression for <Vi> must

be found.

8



Apply the vertical average operator to the continuity equation (3.9) and use the

vertical boundary conditions

W = 0 at z = 0 (3.13a)

and

w - 0 at z - H (3.13b)

which yields

aKV>
= 0. (3.14)

Next. expand the total derivative in equation (3.2), multiply (3.9) by v and add

to (3.2) to obtain

+ & aa avfu
aay az aNy

Take the vertical average of (3.15), using the vertical boundary conditions (3.13).

which gives

a__>+ a<v> a<p> f<u>. (3.16)

at aya

9



Differentiating (3.16) with respect to yand using equation (3.14) yields

'2 <T> __ a<VV> a)<U>-f < (3.17)

ay, OYl ay

With appropriate boundary conditions, a solution for <,p> can be found.

in order to solve equation (3.1), an expression for 2. must be obtained.

Differentiate (3. 11) with respect to x and use the assumption that 0is not a function of

X which gives

a(P >(3.18)
ax

An expression for &P. must be obtained. Take the domain average of (3.2)

k >) - 3 - OP>)- ,yu>) 3.19)
dt 0y

where {( )} denotes the horizontal average operator

L

i

(F) - J Fdy. (3.20)(F)- ¥1
2

10



Expand the first term of (3.19) and use the vertical boundary conditions (3.13) which

yields

(dv>* OkvNf akv> (3.21)
dt t &

Using periodic boundary conditions in the y direction, it can be shown that the

second term in (3.19) is zero. With the assumption of constant , and using (3.21),

equation (3.19) becomes

- (- U>. (3.22)
at

Likewise, take the domain average of(3. 1) and use the vertical and horizontal boundary

conditions which yields

_<uk _ U > >1 +f<v> . (3.23)
& 8x

Equations (3.22) and (3.23) show that if (<u>/ is set initially equal to zero, <v>

will remain constant in time and so will a{< A >). Furthermore, if <v.> is also set to

zero initially, & >} will be identically zero for all time.

I1



In this study it will be further assumed that & (P > is constant W' the cross frontal
ax

direction (y), which allows to write

______ . a<=> (324)
axax

With the assumptions above the following relation is obtained

aN_ . a< > 0, (3.25)

axax

for initial conditions

<u>} - <V> O. (3.26)

The dependent variables will be expressed as a combination of a basic and a

disturbance part as follows:

U(X,y,Z~t) - Ud(x,y) +U'(y,z,t), (3.27)

v(x,y,z,0t - Vd(x,y)+ v' (y,z,A , (3.28)

w(y,z,t - W'(y,z,tO, (3.29)

12



O(y,z,t) = (yzt), 

p(x,y,z,t) - D(x9y) + /(y331b

where the quantities with primes represent the disturbance part of the variables.

The basic wind field that drives the frontogenesis is the nondivergent and

irrotational deformation field given by

Ud(xy )  - DD sinh( px) sin( gy), (3.32)
11

Vd(Xy) d- toddcosh(px) cos(pLy). (3.33)

IL

This wind deformation field was originally used by Stone (1966) in his study of quasi-

geostrophic frontogenesis.

It has been assumed that the perturbations are independent of x. If the

expressions for u and v (3.27 and 3.28 respectively) are substituted into the basic

equations, au and _v will be functions of x. In this study, where the main interest is
at at

in examining cross front variations, the equations will be evaluated at x -: 0. This will

make the mathematical formulations compatible with the previous assumptions and it

is expected that the results will be physically consistent.

13



Therefore, the basic wind detormation field will become

Ud(Oy) - 0, (3.34)

Vd(~y - Dd

Vd(0,1) - -2 Cos y. (3.35

The basic geopotential field 0 is chosen such that it will be in geostrophic balance

with the wind deformation field as follows:

fUd - (3.36)

0

-f d ( . (3.37)

Substitution of (3.36) and (3.37) into (3.27) and (3.28) respectively, and use of the

expressions obtained for the dependent variables in equations (3. I)-(3.4) yields the

following set:

du .fv, (3.38)
dt

14



dv fU-(V+ Vd) dV., (3.39)dv aydt o'y oly

V N 0, (3.40)

dO 0. (3.41)

where the primes were dropped from the disturbance variables.

Finally, an easier way to obtain - will be described. The dependent variablev

can be expressed as

9P - 90o OP., (3,42)

where

f Mf le dz (3.43)

00

15



Differentiate (3.42) with respect to y. to obtain

0  fa 44

y a e 0a

The value of #, is not known, by virtue of the rigid lid assumption. In practice v

will be predicted using equation (3.44) with = assumed initially equal to zero. After
0 y

that, the v field will be adjusted in order to satisfy < v > - 0. This procedure will be

equivalent to solving equations (3.11) and (3.17) for 4, differentiating the values

obtained with respect to y, and substituting into (3.39). Equations (3.38)-(3.41) and

(3.44) give a complete set that can be integrated in time in order to predict the values of

the dependent variables.

16



IV. NUMERICAL SOLUTION

A. INITIAL CONDITIONS

The initial conditions used in this model are similar to the ones used by Williams

et a1.(1991) in their study of effects of topography on fronts.

The initial temperature field is given by

e(y0zO) - H[z _ ] - e 4.1)
az 2

where

e - A cos(py~cs2(? - z S' Z1  (4.2)

e - 0, Z>Zt (4.3)

In the expression above s is a constant. A is the amplitude of the temperature

disturbance and z, is the height of the upper limit where the temperature disturbance is

present. This initial temperature field will confine the frontogenesis to the lower layers

of the atmosphere, which will make the results more realistic.

17



The intial u component field is chosen to be 'to thermal wind balance with the

temperature field and is given by

U (y, Z,O) - -gOi sin (Ity) (4.4)

where

- 0,z>z( (4.6)

and the condition

U(y,,0q) - 0 (4.7)

has been used.

18



The initial v and w fields are obtained from the solution of the quasi-geostrophic

circulation equation (Williams, 1972)

9 aos,a2* : 2g aV, aO 48
f2 0  Z ay2 az 2 f2eo ay ay

where

V - A (4.9)

az

WM t4. 10)

The vertical boundary conditions for the solution of (4.8) are set to

*(z - O) - * (z - M - 0 (4.11)

It can be shown, from the domain averaging of equation (4.2) that I < u > I will

be zero initially. Also, the condition (4.11) will allow (3.25) and (3.26) to be satisfied in

order for the numerical solution to be consistent with the assumptions of the model.

19



B. THE SPATIAL GRID

The numerical calculations are performed on a staggered grid, both in the

horizontal and in the vertical directions. In the horizontal the variables are staggered

following the scheme B described in Arakawa and Lamb (1977). This scheme, as shown

in Haltiner and Williams (1980), allows a better representation of geostrophic

adjustment processes. The variables are also staggered in the vertical. Pielke (1984)

points out that the staggering of the u and w components in the vertical gives better

solutions for the vertical velocity from the continuity equation.

The horizontal grid uses I grid points separated by a constant grid space dy. The

vertical grid has K grid points and also uses a constant grid spacing, referred to as Az.

Figure I shows the arrangement of the variables on the grid.

C. FORMULATION OF THE MODELS

. Scmi-Lagrangian Explicit Scheme

In the semni-Lagrangian explicit formulation of the present model, the total

derivatives will be approximated using the technique described in chapter 11. The

remaining terms of the equations are evaluated at the positions of the fluid particles at

time level t. Introducing those approxations into the prognostic equations (3.38),

(3.39) and (3.41) the following set is obtained, after dropping subscripts i andj.

u(y,z,t+At)-u(y-2az- 2b,t-At) . f.v(y-a,z-bt), (4.12)
2At

20



Ow 0 w O0w z(k+1)

6,~ 0 O', 1P *8E,fp z(k+f)
U,VIVd U,VVd

Ow 0Ow 41w z(k)

@0,~ 0po'4 0 *6,f z(k-1)
U,V,Vd UlV,Vd

Ow O0w Ow z(k-1)

yUj-1) yfj-1) y(j) y(j4.j) Y(j+1)

Figure 1: Staggered spatial grid
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v(y,z,t+At)-v(y-2a,z-2b,t- At)
2At

- - (y-a,z-b,t)-f.u(y-a,z-b,t)

- [v(y - a,z - b,t) + Vd(y - a)] -- d (y - a), (4.13)
0 y

O(y,z,t+ At)-O(y-2az-2b, t-At) . 0. (4.14)

2At

The values of wand V are obtained from the diagnostic equations (3.40) and (3.45).

respectively.

2. Scmi-Lagrangian Semi-Implicit Scheme

The semi-Lagrangian semi-implicit scheme was introduced in this model

following the development described by Robert et al.(1985). The scheme consists of

separating the temperature into a basic state, dependent only on the vertical coordinate

z and a disturbance part. Next, an implicit treatment is given to those terms related to

gravity waves, namely: horizontal pressure gradient, divergence and vertical motion.

To obtain the system of equations in the semi-implicit formulation take the

advective terms out of the total derivatives in equations (3.38), (3.39) and (3.44);

22



dtuatU &

diV a" avd (4.16)
+ W----fU -(V+ Vd)

dt az ay

+O- 0, (4.17)t az

where the terms with subscript H represent horizontal components of the total

derivative.

Replace the temperature and geopotential fields by basic state and

disturbance parts as follows:

e(y,z,t) - O*(z)+O/(yz,t), (4.18)

fp(y,z,t) - 'P"(z)+qP'(y,z,t), (4.19)

where the superscripts (*) represent the basic state parts of the variables.

Now introduce (4.18) and (4.19) into equations (3.5), (3.40) and (4.15)-(4.17),

and take the time average of those terms related to gravity waves, which yields

23



d He t fr, (4-20)
dt az

dV + v W -fa-(v. V (4.21)

a 09 (4.22)
az

d /* w +W- O, (4.23)

P 9W (4.24a)Se o

- go' (4.24b)
& Oo'

where ( ) denotes the time average operator.

24



Define the explicit terms at time t as

= w u -fr, (425)

8v avd
I - +fu + (v + V a-, (4.26)

az ay

- W a(4.27)az

Using (4.25)-(4.27) in (4.20)(4.23). the following set of equations is obtained:

dU+ r - , (4.28)

dt

dHV (4.29)

+ 2 - 0

25



+I ) O, (4.30)

- -+r = 0. (4.31)

Next. define the auxiliary variables

F - F(y,z,t+ At), (4.32a)

F - F(y-az,t), (4.32b)

F- - F(y-2a,z,t- At), (4.32c)

where

ajI+ - At.(v°(y-a",t)+Vd(y-a',t)). (433)

Note that the use of the time average of the vertical velocity w eliminates the

need of considering vertical displacements in the calculation of the trajectories of the

26



fluid particles. Therefore, the interpolation will be performed only in the horizontal

direction using one dimensional cubic spline functions.

Define the following approximations for the time derivatives and tune

average respectively.

dtHF FP - F- .4dflF ____(4.34)

dt 2At

F*+F- (4.35)

2

Use of approximations (4.34) and (4.35) into (4.28)-(4.31) gives

u + -u-
+r I  0, 9(4.36)

2At

V-- V (_ + r2- (4.37)

27



N- 0, (4.38a)

3v- + w- 0, (4.38b)
ay az

W8- ! e*- w r3 - 0. (4.39)

2At 2 &az

Group the terms at time (t-A t) and define new auxiliary variables p,.

PI1 . -U- (4.40)

P2 - " At---, (4.41)

ay

P3- -. (4.42)

28



Similarly, group the terms at time (t +A t)and define the auxiliary variables

q,=U + (4.43)

q 2 MV++AtIf /+(4.44)

q3 - + At w (4.45)

Use of (4.40)-(4.45) allows to rewrite (4.36), (4.37) and (4.39) as follows:

q- - -p, -2At r, , (4.46)

q2 - -p2 - 2 At r2 , (4.47)

q- " -P 3 -2At r3 . (4.48)

The variables p, and r, can be calculated explicitly and with their values the

q, variables can be obtained.

29



To calculate the values of the variables u. v. w. 0 and qP at the time level

t f At) it is necessary to solve the system of equations composed by (4.38b), (4.43)-

4.45') and the hydrostatic equation (4.24b). The procedure used by Robert et al.( 1985)

consists of first solving an elliptic equation for p.

[n this model it is not possible to state exact boundary conditions for V, due

to the use of the rind lid assumption. However, the w field has the exact boundary

conditions (3.13). The following elliptic equation for w can be derived from the system

of equations at time level (t * At):

W* , At 2g ae* Cw . Atg aq 3  ' 02q2  (449)

az2  0o  ay 2  0 o  y 2  -yYz

Once w was calculated, ( was determined using (4.45). and -- and v were

obtained using the procedure described in Chapter III. After adjusting the v field to

satisfy < v > = 0, a new . field was calculated using the new values of v in (4.44)OY
and the w field was also adjusted to satisfy the continuity equation (4.38a).

Finally, both in the explicit and the semi-implicit schemes the spatial

derivatives are approximated by centered in space finite differences. Following Monk

(1989), the derivatives are first evaluated at the grid points and, after that the values are

interpolated for the position of the fluid particle. This procedure is computationafly

more efficient than the calculation of the derivatives at the fluid particle points, which

would double the number of interpolations.
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V. EXPERIMENTS AND RESULTS

A. PARAMETERS USED IN 'HE EXPERIMENTS

The following values for the constants were used in all experiments:

L - 3600 km.

H 12km.

A 120 K,

0., = 3W K,

g =-9.81 m s2

f__ 10 4sl''
DI = 10 s

z, 9 km,

4"~ 4K km'.

For the semi-Lagrangian semi-implicit (SLSI) case there were two control runs

using Ay = 20 km and Az = 167 m. All the remaining experiments used normal

resolution, with Av= 40 km and Az= 333m. The cross-sections of the initial fields are

shown in Figs. 2-5. There is a warm front with thermally indirect circulation near y

900 km and a cold front with termally direct circulation near Y = 2700 km.

In order to assess the evolution of the frontogenesis process, the following

parameter is defined at the lowest computational level:

IA0l
d - 3
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where 40 is the maximum variation of 0 along the Y direction. This parameter. used

by Williams et a1.(1991), gives a reasonable measure of the width of the frontal zone.

During the first experiment wit' he semi-implicit scheme. a high frequency

oscdlation Aas observed in the frontal width. That noise "as not present in the

experiments carried out with the seni-Lagrangian explicit (SL EX) scheme In order to

eliminate the noise, a tume filtering technique similar to the one described by Asselin

(1972) was used. The time filtering of a variable Q is defined as

Q(t) - Q(t)+y(Q(t+At)-2Q(t)+Q(t-At)J, (5.2)

where Q(t+ t)has been previously obtained by using the respective predictive equation

with the unaveraged value of Q(t). The time filter defined above is expected to affect the

higher frequencies only.

Several experiments were performed with the objective of assessing how the use

of time filtering would affect the solutions, as will be described next.

B. DESCRIPTION OF THE EXPERIMENTS

The experiments basically consisted of carrying out time integrations of the model

using the SLEX and SLSI schemes, starting from the same initial conditions and using

different combinations of time step A t and filtering factor y. The experiments were

intended to give information about the following points:

* How well the different schemes handle the formation of large gradients.

* How the use of time rltering affects the final solutions- and

0 How the solutions are affected by the use of longer time steps.
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Table I shows the experiments performed with the SLEX scheme, as a function

of time step At and fiaering factor y. The experiments carried out using the SLSI

scheme are identified on Table 2.

TABLE 1. EXPERIMENTS WITH THE SLEX SCHEME.

A t (sec.) y = 0.0 y = 0.01 y = 0.03

180 SLEXOI SLEX02 SLEX03

360 SLEX04 SLEX05 SLEX06

600 SLEX07 SLEX08

TABLE 2. EXPERIMENTS WITH THE SLSI SCHEME.

At (sec.) y = 0.0 y=O.01 y=O.03 y=O.05 y=0.07 y=O.1

180 SLSIOI SLSI02 SLSI03 SLS123

360 SLSI04 SLSIO5 SLSI06 SLSI24

600 SLSI07 SLSI08 SLSI09 SLSI25

1200 SLSIIO SLSIII SLSII2

1800 SLSII3 SLSII4 SLS15

2400 SLSII6 SLSII7 SLSII8 SLSII9

3600 SLSI20 SLSI21 SLSI22 SLSI26 SLS127
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There were two high-resolution experiments, both using the SLSI scheme, with

time steps of 180 secs. In the first of them . identified by SLHRO1, the time filtering

tactor y = 0.01 was used. and in the second one SILHR02) y was set equal to o05. The

velocity components and temperature fields at time t : 40 hours, for experiment

SLHRO1 are shown in Figs. 6-9 The occurrence of frontogenesis for the surface cold

front and frontolysis for the warm front can be seen. These processes are due to the

relation between the wind deformation and temperature disturbance fields, that gives

convergence in the cold front region and divergence for the warm front. The wand v

fields give a direct circulation around the cold frontal zone and an indirect circulation

about the warm frontal zone. The u field develops cyclonic shear at the cold front.

The evolution of the frontal width (d-value) for SLHROI is presented in Fig. 10.

An almost linear decrease in the frontal scale can be seen. This curve is different from

that obtained by Williams et alA 1991), because in that case there was a momentum

diffusion term that gave an asymptotic behavior in the evolution of the frontal width

towards a balance condition. In the present model a continuous reduction of the frontal

scale is expected until a limit, when the grid resolution is reached. Figure 11 shows the

evolution of the d-value for experiment SLEXOl. It can be seen that the minimum value

of the frontal width is reached at approximately r = 40 hours. Note that this curve is

more linear than that obtained in experiment SLHRO. Also, the d-value curves

obtained for experiments SLEX02 and SLEX03 were virtually coincident with the one

for SLEXO 1. This result shows that the use of stronger filtering effect (larger y) does not

affect the evolution of the frontogenesis process represented by the SLEX scheme.

During the first experiment with the SLSI scheme (SLSIO1) the d-value curve,

shown in Fig. 12, presented a high frequency oscillation. The time integration could be

carried out until time t = 36 hours and after that, the iterative procedures no longer
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achieved convergence and the integration was terminated. It is important to note that

the irregular behavior of the curve was not related to continuous amplification of the

solution due to numerical instability and that the curve presents a general tendency to

the frontogenesis solution obtained in the SLEX experiments. The high resolution

experiment SLHROI also shows a low frequency oscillation about its linear decrease in

d

0-

0- 'I II f

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Time(days)

Figure 12. Evolution of the frontal width (d-value) for SLSIO1.

In order to eliminate the noise the time filter described in the last section was

introduced. Figure 13 shows the evolution of the frontal width obtained in experiment

SLSI02, with the fitering factor y set equal to 0.01. It can be seen from the figure that

although the filtering effect was small, it was adequate to suppress the high frequency

oscillations.
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Figure 13. Evolution of the frontal width (d-value) for experiment SLSI02.

Figures I I and 13 show that both for the the SLSI and SLEX experiments the

minimum frontal width is reached approximately at time t= 40 hours and after that the

d-value curves oscillate. Those oscillations can be related to the fact that the front

reached a width corresponding to the model resolution and after that point the solutions

were no longer physically consistent.

Tables 3 and 4 show the minimum value of the frontal width for the SLEX

experiments with time steps 180, 360 and 600 sec., and the corresponding SLSI

experiments for which the time integrations could be carried out until t = 40 hours.

Also presented is the time when the minimum d-vaue ocurred.

Comparison of the values presented in Tables 3 and 4 show that the minima d-

values obtained in the SLSI experiments are smaller than those obtained for the

corresponding SLEX experiments with same A rand y. Also, in the SLEX experiments

the minimum frontal width increases as A tincrease whereas in the SLSI case there is no
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significant change in the minimum d-value due to changes in the tune step. [t is

interesting to note that for the SLEX case a shorter time integration is necessary for the

minimum to occur for increasing time step. while the inverse tendency is observed in the

SLSI case that is. a longer time integration is necessary for the minimum frontal width

to occur, for larger A t.

TABLE 3. MINIMUM D-VALUE FOR SLEX EXPERIMENTS.

A t (sec.) y Experiment Minimum Time (hour)

d-value (km)

180 0.0 SLEX01 49.0 45.5

180 0.01 SLEX02 49.0 45.5

180 0.03 SLEX03 49.0 45.5

360 0.0 SLEX04 68.4 39.6

360 0.01 SLEX05 68.3 39.9

360 0.03 SLEX06 68.3 39.6

600 0.0 SLEX07 69.9 39.3

600 0.03 SLEXO8 69.8 39.5

Therefore, it can be concluded that the SLSI scheme gives a better representation

of the scale collapse process than that obtained from the SLEX scheme, since narrower

frontal widths can be resolved by the former than by the latter.
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TABLE 4. MINIMUM D-VALUE FOR SLSI EXPERIMENTS.

t t (sec.) Y Experiment Minmum Tiume

d-value (kin) (hours)

180 0.01 SLSI02 43.4 41.5

ISO 0.03 SLSI03 43.4 41.7

360 0.01 SLS105 43.4 41.5

360 0.03 SLS106 43.4 42.0

600 0.03 SLSI09 43.1 42.0

Experiment SS[03 used y= 0.03 and the d-valuecurve obtained was practically

coincident with the one obtained in SLSI02, with y=0.01.

In experiments SLS104 and SLSI07 no filtering was used (y=O.O) and

approximately at time t: 37 hours the numerical integration was interrupted because

the solutions were no longer able to achieve convergence in the iterative procedures.

However, the use of larger values of y (SLS[05. SLSI06, SLS[24, SLS08. SLS[09,

SLSI25) allowed the normal execution of the time integrations. Figure 14 shows the d-

value curves for experiments SLSI08 and SLSI09. It can be seen that the oscillations

were not completely filtered out with y=0.01 and a stronger filtering effect (y =0.03) was

required. The experiments with longer time steps showed that as the time step increased

a larger value for y was required for an appropriate filtering of the noise. Also, all

experiments with the SLSI scheme showed that the largest amplitudes of the noise

occurred during the first 24 hours of integration. Furthermore, those experiments
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showed that the noise was not related to imbalance in the initial conditions, since the

mass and wind fields were initially adjusted using the quasi-geostrophic circulation

equation (4.8) and the oscillations were not present before t = 02 hours. The presence

of the noise was investigated by examining the u, v and 0 fields obtained at the lowest

computational level of experiment SLS07. At time t =13 hours, that corresponds

approximately to maximum amplitude of the noise, there was no evidence of small scale

spatial oscillations in those fields. Although the origin of the noise could not be

determined, the experiments showed that the use of the time filter was effective in

eliminating the oscillations with relatively small values of y. It is expected that this

filtering would not significantly affect the lower frequency solutions.

0SLS108
0-

II

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time(davjs)I
Figure 14. Evolution of the fronal width (d-value) for experiments SLS108 and SLSI09.

Another point of interest in this study was the computational effort employed in

each of the experiments, since one of the objectives of the SLSI scheme is to allow stable

solutions with long time steps. In order to evaluate the relative computational
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efficiency, the CPU time spent tor running each experiment for 42 hours was measured

and normalized by the CPU time used in SLSIOI. It was observed that the CPU time

was not affected by changes in the value of y. so that the results are presented in Table

5as a function of numerical scheme and time step only. As expected, the computational

effort decreases almost linearly for increasing time step. Also, for a given time step, the

SLEX scheme is more efficient than the SLSI one. This is observed because the SLSI

technique requires the solution of an elliptic equation every time step. It should also be

pointed out that in this study the SLSI formulation makes the spatial interpolations

necessary only in the horizontal direction, whereas in the SLEX scheme the

interpolations are performed using bicubic splines. Thus, a formulation of the SLSl

scheme using two-dimensional interpolations could give a further increase in the

computational effort. The advantage of the SLSI scheme appears clearly when

integrations with time steps as long as 3600 sec. are performed with perfectly stable

solutions, while the SLEX scheme did not allow time steps longer than 600 seconds.

In order to assess the accuracy of the several solutions, a second high resolution

(SLHR02) control run was carried out with the SLSI scheme. The parameters used

were At = 180 sec. and y = 0.05. This value for y was chosen to guarantee that the

solutions would not be affected by noise. The solutions of the control run were linearly

interpolated for the normal resolution grid point positions when necessary, because of

the staggering of the variables. The differences between the values obtained for the

control run and those obtained for the experiments with normal resolution were

calculated at each grid point. The results were used to calculate the domain RMS

differences for each variable. Two sets of comparisons were performed: In the first one

the velocity components and temperature fields for selected SLSI experiments at t = 36

hours were compared with the ones obtained from SLHR02 at the same time. That

45



tune was considered appropriate to give a well characterized atmospheric front and

sufficiently away from the inconsistent solutions obtained after the model resolution

was achieved.

TABLE 5. NORMALIZED CPUTIME FOR 42-HOUR MODEL INTEGRATION

A t (sec.) SLEX SLSI

180 0.84 1.00

360 0.42 0.50

600 0.25 0.30

1200 -- 0.16

1800 0.11

2400 0.08

3600 - 0.06

The experiments chosen for this first set of comparisons were those with y= 0.05

for all time steps, except A - 3600 sec., where y = 0.07 was used. The accuracy of the

solutions was expressed in terms of RMS differences in the values the of u. v. wand 8,

given in Table 6.

The values obtained show that the u and 0 fields have small errors as compared

to the range of the values observed in the domain (-35 to +22 *K for e and -50 to + 15

m s 'for u). On the other hand, the errors obtained in the v and w fields were relatively

large compared with the magnitude of the reference values obtained for SLHR02. The
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large differences can be associated with the tact that the v and w components are

,dosely related to the divergencc in the model and their values can be significantly

affected by the presence of gravity waves. Time series of v and a- were examined and

they confirmed the presence of internal gravity waves in the solutions. Thus, a single

sample would not be sufficiently representative of the actual level of accuracy obtained

in those fields.

TABLE 6. RMS DIFFERENCES FOR TIME T= 36 HOURS.

Experiment At (sec.) y u(m/s) v(m/s) w(mw's) 0 (0K)

*,10--3

SLS123 180 0.05 0.170 0.134 0.58 0.087

SLS[24 360 0.05 0.180 0.168 0.92 0.088

SLS125 600 0.05 0.220 0.256 1.62 0.098

SLSI12 1200 0.05 0.373 0.526 3.40 0.139

SLSII5 1800 0.05 0.554 0.796 5.87 0.191

SLS[18 2400 0.05 0.764 1.038 7.23 0.254

SLSI22 3600 0.07 1.204 1.270 8.56 0.377
- L- - - =

The differences in the u and 0 fields obtained at each grid point tor experiments

S[S123 and SLSI 15 are shown in Figs. 15-18. It can be seen that the largest differences

occur close to the frontal region for the u field, but they are almost uniformily

distributed at the lowest levels in the 0 field for experiment SLS[ 15.
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Figure 18. Differences in e field (*K) for experiment SLSI15 at t = 36 hours.
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The second set of comparisons used as reference the same solutions obtained for

experiment SLHR02 at time t = 36 hours. The frontal width at that time in the high

resolution experiment was 99. 5 km. For those SLSI experiments where the time filter

controlled the high frequency oscillations, the frontal width d = 100 km was uniquely

related to a certain time. If the solutions had no error we could suppose that for a

certain d-value the velocity components and temperature fields should be the same as

those obtained from the control run. Thus, the geophysical fields for the times

corresponding to a d-vaue approximately equal to 100 km were chosen for the second

set of comparisons. Table 7 gives the RMS differences obtained and the corresponding

frontal widths and times used for each comparison. The values obtained show that the

frontogenesis process is slower for longer time steps, since the frontal width of 100 km

is reached at a later time for larger A t. The RMS differences for u and 0 are again

relatively small compared to the magnitude of the values obtained in the reference

solution. The differences for v and w are still relatively large with respect to the

reference values, as expected. Figures 19-22 show the grid point differences of the u

and 0 fields for experiments SLS123 and SLSI15.

The figures show that the largest differences occur close to the front. This

characteristic ofsemi-Lagrangian schemes in which the large errors areconfined around

the scale collapse region was observed by Kuo and Williams (1990). Such a property

is desirable, since the regions away from the front will not undergo a large effect of

errors generated close to the region where strong gradients are present.

Figures 23-29 show the temperature distribution at the lowest computational level

(z = 167 m) for the experiments listed in Table 5 (solid line) for comparison with the
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values obtained from the control run (dashed line). It can be seen that as the time step

increases the differences increase but the largest errors remain close to the frontal

region.

TABLE 7 RMS DIFFERENCES FOR d - 100 kin.

RMS DIFFERENCES

Experiment, un.s) v(m/s) wtm/s) OCK) d(km) Time

At(sec.), y *Io -& (hours)

SLSI03, 0.667 0.398 2.91 0.215 101.0 38.0

180,003

SLSI06, 0.683 0.422 3.01 0.240 101.4 38.2

360, 0.03

SI.S109, 0.731 0.468 3.24 0.280 100.8 38.5

600,0.03

SLSII2, 0.914 0.593 3.78 0.388 101.2 39.3

1200, 0.05

SLSII5, 1.031 0.622 3.92 0.452 101.5 39.5

1800,0.05

SLSI19, 1.155 0.701 4.26 0.531 101.5 40.0

2400, 0.07

SLS127, 1.197 0.815 5.47 0.588 103 40.0

3600. 0.10
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For this model the Courant number a is calculated using the following expression:

At (5.3)

u x (Ay/2) '

where c2., is the phase speed of the fastest internal gravity wave. An important result

from this study is that for the SLSI experiments, a ranged from 0.5 (At= 180 sec.) to

10.4 (A t = 3600 sec.), as opposed to the CFL stabilty criterion that would require a to

be less than or equal to 1, and the values of the RMS differences obtained for u and 1

in the experiments with large time steps remained relatively small. This result indicates

that the gain in computational efficiency does not affect significantly the accuracy of the

solutions obtained with the SLSI scheme.

-10-

.- 20

-E-
.---- Control Run

SLSI03

- 4 0 i i i T - I , I , i ' ' I 1 I J ' ' ' I I  I -T 
I  n 

r
i  i

- I  T

o 600 1200 1800 2400 3000 3600

y( kin)

Figure 23. Temperature disturbance at z = 167 m. for experiment SLSI03 (solid line)
and control run (dashed line), at time corresponding to d- 100 km.
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Figure 24. Same as Fig. 23 except for experiment SLS1O6.
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Figure 25. Same as Fig. 23 except for experiment SLSIO9.
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Figure 26. Same as fig. 23 except for experiment SLSI 12.
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Figure 27. Same as Fig. 23 except for experiment SLSI1 5.
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VI. SUMMARY AND CONCLUSIONS

In this study a numerical model based on the hydrostatic Boussinesq equations

was used to simulate atmospheric frontogenesis driven by an irrotational non-divergent

deformation wind field. The semi-Lagrangian technique was employed to integrate

numericaly the prognostic equations. The model assumes periodic boundary

conditions in the cross-front direction and the rigid lid assumption is used as the upper

boundary condition. The model also neglects along front variations. A basic sinusoidal

deformation flow is introduced as the forcing of the frontogenesis process. Experiments

were performed using the semi-Lagrangian technique associated with two different time

schemes: explicit and semi-implicit. In the semi-Lagrangian explicit case (SLEX)

bicubic splines were used to interpolate the variables in space. In the semi-Lagrangian

semi-implicit case (SLSI) the variables were interpolated in the y-direction only. using

one-dimensional splines. A frontal width parameter (d-value) was defined at the lowest

computational level to describe the evolution of the frontogenetical processes. The

experiments with the SLEX technique were successful in replicating the formation of a

realistic front in approximately 40 hours. Different time steps were used for the

integration of the model and solutions which were both numerically and physically

consistent were obtained with the SLEX scheme for values of Courant numbers as large

as 1.7.

The etperiments with SLSI scheme presented high frequency oscillations that were

eliminated by using a time fdter. However, no small scale spatial oscillations were

observed in the solutions. Different filtering effects were tested by changing the value
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of the filtering parameter y. The solutions obtained with the SLEX scheme were not

affected by the time filter, whereas the SLS[ solutions showed that stronger filtering was

necessary for larger time steps.

The SLSI scheme showed to be more successful in handling the scale collapse

process than the SLEX scheme, since the fronts reproduced by the former had

minimum widths smaller than those obtained by the latter. The SLSI scheme presented

a tendency of slowing down the frontogenesis process for increasing time steps.

Experiments were performed with the SLSI scheme with time steps aslong as 3600

seconds. correspondin to a Courant number greater than 10. The solutions obtained

were perfectly stable, and the accuracy was not significantly degraded, even for longer

time steps.

The SLSI solutions also had the characteristic of constraining the largest errors

close to the scale collapse region. Such a characteristic is desirable since the errors will

have a smaller impact on the solutions in regions away from the front.

The results obtained in this study suggest that the SLSI technique is appropriate

for mesoscale regional models since it is computationaly efficient and produces accurate

results. A different formulation of the scheme where two-dimensional interpolation of

variables were allowed should be studied to verify if there would be a significant positive

impact on the accuracy of the solutions. Also, effects of surface topography and

physical processes like advection of the frontal system, friction, vertical shear of the

basic wind field and moisture should be investigated in future studies.
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