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ABSTRACT

The established concept of temperature determination from dual spectral band
radiometric measurement is analyzed for the case that the measurement device is sensi-
tive to total photon emittance rather than radiant emittance. A temperature dependent
ratio o measurements is calculated for two distinct spectral bands using a black body
distribution. It is shown that, if the bands are not self contained, then there exists a
one-to-one correspondence between temperature and ratio.

A prototype algorithm is proposed and tested which demonstrates the feasibility of
extracting both the temperature and range by using three distinct spectral band meas-
urements. The model assumes nonhomogeneous, wavelength-dependent atmospheric
attenuation. The target and sensor systems each have an arbitrary location in a vertical
plane relative to the earth. In the computer simulations, LOWTRAN data was used.
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I. INTRODUCTION

A. REVIEW OF PRIOR WORK

In the photon detection process electromagnetic radiation causes three kinds of
mechanism such as photon effects, thermal effects, and wave interaction effects
[Ref. 1]. The focus of the remaining discussion will be confined to the first two effects
which cover the majority of applications involving the detection of thermal radiation.
One common photon effect is photoconductivity. Photoconductivity is observed in
semiconductors and characterized by photon energy and energy gap. One common de-
vice which uses a thermal effect is the bolometer. Bolometers can be made of any ma.
terial which has a temperature-dependent resistance. This effect is characterized by the
change of resistance from the heating effect of incident radiation. Therefore, Plank'’s
equation for radiant emittance can only be applied directly to thermal effects. Although
some devices have a detection mechanism based on the thermal heating effects due to
radiation, this is not true of semiconductor-based detectors. Semiconductors devices are
characterized by an energy gap. Only photons with energies greater than this gap can
produce electron hole pairs which contribute to the detected signal. The excess photon
energy is dissipated as heat [Ref. 2] and therefore does not contribute to the electrical
signal generated. Specifically the integrated spectral emittance [Ref. 3], i.e., photon flux,
is a more appropriate signal indicator than the radiant emittance for measurements
based on semiconductor devices.

R.B. Johnson and E.E, Branstetter presented a numerical method for the integration
of Plank’s equation [Ref. 4]. Johnson derived an approximated equation for effective
radiant sterance [Ref. 5]. Normalization of spectral bandwidth, for convenience in

analys:s, was provided by F.E. Nicodemus [Ref. 6]. Based on Plank’s equation for ra-




diant emittance, M.H. Horman prescnted the technique for temperature determination
using the ratio of output from two bands (Ref. 7]. On the other hand, analysis of the
dual spectral band temperature measurement for devices based on the photon effects has
not been developed.

One standard method for the determination of the gray-body emissivity and the
temperature of an object is based on two separate narrowband radiometric power
measurements. In combination with Plank’s radiation equation for a gray-body, two
narrowband measurements are sufficient to produce a unique value for both temperature
and emissivity. For practical reasons, such as improvement of signal-to-noise ratio,
most instrumentation take measurements over bands which are too wide to be consid-
ered narrowband. In this more general situation the question of uniqueness of temper-
ature requires more careful consideration. This issue has been recently analyzed for the
distribution based on a Plank’s spectral radiant emittance [Ref. 8]. The authors decvel-
oped an analysis based on the evaluation of the ratio (22) of two measurements of the
integrated power distribution over separate bands. Three cases, nonoverlapping bands,
partially overlapping bands and totally overlapping bands, were considered. The analyt-
ical investigation demonstrated that the last case does not always generate a one-to-one
correspondence between the ratio £ and the temperature.

For the passive ranging technique, PJ. Ovrevo and R.C. Wood presented the
method using absorption property of the atmosphere [Ref. 9], and J.R. Jenness, Jr., and
F.J. Shimukonis proposed the principle of passive ranging using the ratio of the signals
in narrow spectral bands received (Ref, 10].

For optical properties of the atmosphere, R.A. McClatchey and others described
effects of index of refraction in the atmosphere [Ref. 11: pp. 41}, It was found that
transmission factors are affccted by no more than 1 - 2 % if refraction is included in the

calculation.




B. OVERVIEW OF THE THESIS

Chapter I is the introduction and covers both a review of relevant literature and a
thesis overview. In the interest of keeping this thesis fairly self-contained, Chapter II
provides a brief technical description of essential background preliminaries. In Chapter
111, effects due to atmospheric attenuation and detector responsivity are ignored. Using
dual spectral measurements, it is shown that it is possible to uniquely determine a tar-
get's temperature if the detector bands are not 100 % overlapping. Specifically, the ratio
of the dual spectral band measurements is shown to exhibit & mathematically predictable
one-to-one correspondence with the temperature, as long as the bands are not totally
contained within the other.

In Chapter IV, a numerical program for calculating a spectral band measurement
without the assumption of constant atmospheric attenuation and detector responsivity
is discussed and tested In the process of this development, a novel definition for a
“responsivity”, applicable to devices sensitive to photon emittance, has been introduced.
If the effects of atmospheric attenuation on the dual spectral band measurement are not
equivalent, then the ratio scheme for temperature determination, discussed in Chapter
I11, is not applicable. It is precisely under these conditions that by using three distinct
bands both the temperature and the range can be determined.

In Chapter V, a prototype algorithm is discussed, which demonstrates the feasibility
of obtaining both the temperature and the range of a target using three distinct spectral
band measurements. Complications introduced by not assuming constant altitude of the
target-to-sensor trajectory are addressed. LOWTRAN data was also used here to char-
acterize atmospheric attenuation. Conclusions for the thesis are presented in Chapter
VI. In order to not obscure the main points of the thesis, the extensive mathematical
derivations have been relegated to appendices. Both Appendix A and Appendix B fit this

description. Appendix C, Appendix D and Appendix E have been created for those




readers who are interested in an algorithinic description of programs used in the com-

puter simulation.




1. BACKGROUND

In this chapter, an alternate approach based on photon emittance rather than radi-
ant emittance is applied. This kind of treatment is appropriate for photovaltaic or
photoconductive semiconductor devices but not radiometers. First, a few basic as-
sumptions need to be presented. The discussion starts from the ideal case with the fol-

lowing preliminary assumptions [Ref. 8: pp. 1256):
® opaque object
¢ Lambertian surface
¢ object in thermal equilibrium
e spectrally constant emissivity (gray body)
¢ photon emittance derived from Plank’s radiation law

® unity spectral transmittance of intervening media between the object and measuring
instrument.

Plank’s radiation law gives the spectral radiant emittance, which is given by

[Ref. 3: pp. 35}

2ne(A)hc?

Weem™oum™), 21
Alexp(heikT) = 1] (W cm™=e um] (2.1

Wy(A,T) =

where £(4) is the spectral emissivity, h is Plank’s constant, 4 is the wavelength, c is the
speed of light, k is Boltzmann's constant, and T is the object’s temperature. In this sec-
tion, since the emissivity is assumed to be spectrally constant, &(4) is denoted as ¢.

The photon emittance is derived from (2.1) dividing by Ac/4, which is the energy
associated with one photon [Ref. 3: pp. 38]. Therefore photon emittance is the flux re-
lated to the number of photons. The resultant photon emittance equation is obtained

as
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The integral of (2.2) over some band limits gives the photon emittance in the bands,

The photon emittance within the spectral band limits [4,, 4,] is given by

A
0itz, 1, 1= [ 0,0, )

From the assumptions, emissivity is assumed to be spectrally constant. Therefore
photon emittance for a gray body is simply expressed as photon emittance for a black

body multiplied by a constant emissivity and given by
Q)= ¢Qgy, (2.4)

From (2.3), it follows from (2.4) that

4
QU Ay T = L Qsa (4, VA
= eQpp(4y, 41, T,

(2.5)

where 4, < A, and Q,,,(4, T) is the spectral photon emittance for a blackbody [¢(1) = 1].
It has been shown that the temperature of an object can be determined by taking a
ratio of measured radiant emittance of an object in each of two spectral bands.
[Ref. 8 pp. 1256] In Chapter 11 and Chapter III, this concept is applied in a similar
manner except the assumption is made that a ratio is formed from the measured photon
emittance. Let the two spectral bands be denoted as [4,, 4,] and [4,, 4,] . Let the ratio

for photen emittance be defined as
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Since from the assumption, emissivity is uniform over the spectral band, emissivity is
cancelled out, and the ratio hecomes the ratio of the photon emittances associated with

a black body, as shown by

Qps(42 41, T)

Rp(A1 20 A3y Ay T) = sl 4 T)

2.7)

This implies that &, is a function of the object’s temperature T only and the ratio can
indicate the object temperature. When the dual spectral-band photon emittance method
is used, it is critical to know that the ratio &, and the temperature have a one-to-one
correspondence. For this purposes, three general cases of spectral bands which cover

all possibilities are considered. The possible cases are [Ref 8: pp. 1256)
1. non-overlapping bands (Figure 1a),
2. partially overlapping bands and common band limits (Figure 1b,c), and

3. totally contained band (Figure 1d).

These three cases are presented graphically in Figure 1. In the following two chapters
the validity of temperature determination based on dual spectral photon emittance for

the ideal case is discussed.




a. nonoverlapping case

1 2 3 4
b. partially overlapping case

1 3 2 4
c. one common band limit case

1,3 2 4
d. totally contained case

Figure 1. graphical representation of possible band combination: three cases are
nonoverlapping, partially overlapping, and totally contained.




lIl. DUAL SPECTRAL BAND MEASUREMENTS FOR TEMPERATURE
DETERMINATION

In this section the ratio of photon emittance defined in (2.6) is considered for the
various cases discussed at the end of Chapter 11. In order to validate the dual spectral
bands method, it is required to show one-to-one correspondence between the ratio and
the temperature of the object. For this purpose, the derivative of the ratio of band lim-
ited photon fluxes, &, in (2.7), with respect to temperature is performed. If the ratio of
photon emittance £, is proved to be either strictly increasing or strictly decreasing
function with respect to temperature, i.e., either 02,/0T > 0 or 0R,/0T < 0 for all T, then
the ratio of photon emittances and the temperature exhibit a one-to-one correspond-
ence. It follows that this approach is potentially applicable to the temperature determi-
nation of grey bodies.

To simplify the integral of (2.2) , the variables of integration in photon emittance

QO(A, A, T) are replaced by the dimensionless parameters [Ref. 8: pp. 1257]

__hc
and
T,
a-%, (3.2q)

where 7, is an arbitrary reference temperature. By prior convention [Ref. 8: pp. 1257],

it is chosen to be

_ _hc
T’—_—A,k ' (3.2b)




where 4,, as introduced in Chapter 11, is the highest wavelength in spectral band 1. Using

(3.2b) as a reference temperature in (3.1), the spectral band limits of Y are given by:

xy =5 (3.3)

where 4, is one of the spectral band limits [Ref. 8: pp. 1257]. After substitutions into

(2.5), the new representation for the photon emittance is given by

QU 2T = 20k T ™ [ “gty)ay, (34)
oxy

where [Ref. 8: pp. 1257)

¢2
g(¥) = =T (3.5)

The ratio of photon emittance is obtained as

[awav
Ry = e (3.6)
T M swa

00Xy

and the derivative of the ratio of photon emittance signals (3.6) with respect to temper-

ature comes out to be

fax’/('ﬁ)dw_f:g(w)dw - Lu’g(./,)d./, J:jw)d,p

““g(w)dw]’ |

X3

o,
aT

1
= 3.7)
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where

exp(¥)y’

. 3.8
[exp(y) - 1} G

AY) =

(The derivation of (3.7) is in Appendix A.) To simplify the expression of (3.7), the fol-
lowing operator is defined [Ref. 8: pp. 1257).

18, 332350 ) = [ sty [ by = [ braw[“aras  69)
Xy a Xy

Then the ratio becomes

oR 811, X5, X3, Xg,
—+ ...%_.Vg( nin¥e®) (3.10)

| [ f:‘g(w)dw]’

Since the denominator of (3.10) is always positive, the sign of d2,/dT is determined by
the sign of the operator [f,g]. It is necessary to show that the sign of [f,g], which is the
sign of (3.10), does not change with a, or equivalently with temperature. The temper-
ature dependence of [f,g] appears only in &, which can be seen in the limits of integration.

The integrands do not have an explicit dependence on temperature.

A. NON-OVERLAPPING CASE
In order to prove that the sign of [f,g] is fixed over the domain of «, several proper-

ties of f{Y) and g(¥) are required. They are [Ref. 8: pp. 1257]
1. f0)=g(0)=0
2. 0<gly)<fiY) for ¢y >0

3. lim,_ AAY) = lim,_g(y) =0
4. For f>1,1y) — Bg(y¥) has exactly one root on the interval ¥ € (0, oo).

11




The discussion to follow will clarify the significance of these requirements. Graphical
representation is useful to clarify these properties and it is shown in Figure 2. This figure
is especially useful for visualization of the fourth property. For values of # > 1, it is ob-
vious that fly) crosses fg(y¥) exactly once. A more formal discussion of the four prop-
erties is provided in the next paragraph.

The first property is proven by using I'Hopital’s rule. In order to prove the second

property, define

P(Y) = L) (3.11a)

g’

which by direct substitution from (3.5) and (3.8) is given by

U
P(y) = T =9 (3.11b)

It then can be shown that P(y) > 1 for ¥ > 0. This follows from the derivative of P(y),

which is :

dP(Y) _ 1-exp(~y)—vexp(~¥)

3.12
@y (1 - exp(— ) G129
After expanding (3.12a), it is clear that :
dP(y) 1 vesp(=¥) . (5.128)

dy  l-exp(—y) (1 - exp( — ¥))?

which follows from the observation that the second term in the expansion is smaller in
magnitude. Also, by direct application of 1'Hopital’s rule on (3.11b), lim,_ P(¢) = 1.
These two results imply that P(y) > 1. Thus fiy) > g(¥). Consequently, after noting that

both fl¥), as given in (3.8), and g(¥), as given in (3.5), are strictly positive, property two

12




follows. The third property is simply proven by limit evaluation. For the fourth prop-

erty, it is necessary to evaluate flys) — fig(¥) given by

- exply’ ¥
which can be expressed as
2
S¥) ~ Be(v) = exp(ﬁ) — ( efp?;’;‘f)‘ ~ p). (3.13)
By noting (3.11b), it follows that
v .
SW) = Bg(v) = TP =T LP) ~ B1. (3.13¢)

Since lim,,,.Q(¥)=1 and B is constrained to be greater than one, the quantity

JW) - Bg(V) satisfies, after reference to (3.11a), the inequality
S) - Bg(¥) <0 (small y) (3.14a)

for sufficiently small y. Also since lim,_ e P(V) = 00 , the inequality has to reverse for

large enough ¥. In other words
AY) —- Bg(¥) >0 (large y). (3.14b)

Since, from (3.12a), P(y) is a strictly increasing function, it is correct to conclude the
inequality reversal can only occur once. Property 4 is therefore proven,
For the non-overlapping case represented on Figure la, there are only two sets of

relations which can define the spectral bands (3.3):

l<x; <x; <xy, (3.15q)

13




and

X3<x sl <x,. (3.150)

Relation (3.15a) is considered first. Motivated by the fourth property previously stated,
let
Sfloxy)

B(a)= o) (3.16)

The quantities f{y) and p(x)g(y¥) must cross each other only once at the value of ¥ de-
noted as x,. This is represented in Figure 3. The geometrical aspects of figures dictates

the following relations for all values of a:

[ < [“pagwray (170
and
[Fnvsas > [ worawras. (3178

Substitution (3.17a) and (3.17b) into (3.9) shows the operator [f,g] satisfies:

gL 23535000 < [ B30 [ sty ~ [ “gtray | pgtwyay =0

(3.18)

14




for all the values of « (3.2a). According to the brief description following (3.10), this
proves that 02,/0T < 0 for all the values of T and therefore &, is a strictly decreasing
function of temperature. For the second relation of non-overlapping bands (3.15b), a
similar analysis would show that 02,/dT >0 and £, is a strictly increasing function of

temperature.

B. PARTIALLY OVERLAPPING AND COMMON BAND LIMIT CASE
In this section, the case which is partially overlapping and the common band limit

case are considered. Two sets of relations are considered in this case and they are
ISsxi<xm<xorl<x;<x<x, (3.19a)
x;$l<x4<x2 OTX3<1<I4SXZ (3.l9b)

For this discussion, the graphical method previously introduced is useful [Ref. 8: pp.
1258). Figure 4 illustrates the first set of the relations (3.19a) for partial overlap. With

reference to Figure 4, six sets of integrals are defined as follows:

si=[ s 4= [gwrap (3200
Si=[ v Ap=[gray (3.20c,4)
s= [y ay= [“gray. (3.20e,)

After inserting this formalism into (3.9), the bracketed operator [f,g] becomes

15




[8)(1, Xy, X3, X4 @) = (S + S;)(A; + A3) — (4, + 4;)(S; + S). (3.21a)
After expansion and recombination of (3.21a), it follows
Vigl(1, x3, X3, X, &) = [A3(S; + 53) = S3(Ay + A)] + (514, = 4,5;).  (3.21))
This can be retranslated using (3.20) into two terms which follow
Vig)(L, xy, X3, X3, @) = [fig](1, X3, x5 Xg, @) + [fig)(1, X3, X3, X, 00}, (3.2¢)

Case (3.19a) will now be applied on expression (3.21¢). If 1 <x, <x, < x,, then both
terms in (3.21c¢) are of the form 1 < x, = x, < x, which satisfies the nonoverlap condition
(3.152). Since, as indicated in the previous section, the particular nonoverlap condition
(3.152) generates negative values for [f,g], the expression (3.21c) must be negative for the
stated inequality,

For common band limit case, which is 1 = x; < X, < x, or l <x,<x,=1x,,0neof the
terms in (3.21c) becomes zero. However, the other term remains negative, and therefore
[f,g] remains negative. This discussion implies that the ratio £, is a strictly decreasing
function of temperature. Similarly, for the second relation of this case (3.19b), the ratio

2, is a strictly increasing function of temperature.

C. TOTALLY CONTAINED SPECTRAL-BAND CASE

This section discusses case 3, where one intervaj is entirely contained within the
other. By the use of asymptotic approximations [Ref. 8: pp. 1258], it is possible to show
that the ratio &, may have the same value for two or more temperatures. Thercfore, the
measurement to determine the temperature is not unique. Two examples, which are the
case where a is large and the case where a is small, are discussed.

As previously discussed, the sign of d#,/0T is determined by the sign of [f,g]. There

are two sets of relations which are | <x; <x,<x; and x; <1 <x, <x,. The first set of
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relations is arbitrarily chosen for discussion since the approach is similar for the other
relation. For large or small value of a asymptotic methods are useful to determine the
sign of [f,g]. (The derivation using asymptotic approximation is in Appendix B.) For the

large value of « (i.e., small temperature ), [{,g] is approximated as
figl=o"x5(1 = x3) expl - alx; + 1)]. (3.22)
Since x, is greater than one, [f,g] becomes negative. For small values of « (i.e., large

temperature ), {f,g] is approximated as:

5

Vgl 55 L = x3)(r ~ 1)~ (&) =) = x3)]. (3.23)

o

Given x, and x,, it is always possible to find a sufliciently large x, such that (3.23) is
positive. Combining the two results for small « and large «, the sign of d4,/0T is not
fixed over « (i.e., temperature ). This means that the ratio £, does not have a one-to-one
correspondence with temperature. Therefore, for the case when one spectral band is
completely contained within the other, the temperature determination method based on

the dual spectral band measurement of photon emittance is not, in general, valid.

D. RATIO CALCULATION FOR PHOTON EMITTANCE

In order to generate the output ratio calculation, the numerical method for inte-
gration known as Simpson'’s rule [Ref. 12: pp. 95] was used. The flow chart for this
calculation is shown in Appendix C. The examples were demonstrated using the condi-
tions in [Ref. 8: pp. 1258-1259]. One case has a band combination of [2.5 um, 5.5 um]
and [3.9 um, 4.1 um] shown in Figure 5. The second case has a band combination of
[10.0 um, 14.4 um] and {11.8 um, 12.2 um] shown in Figure 6. In these figures, the nor-

malized ratio denoted as &, was used to enhance the results. Normalization is done by
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R, = L 3.24
P anx "Qmin ( )
where &,,,, is the maximum value of #, and #,,, is the minimum value of &, Both cases
are slightly different from the results in [Ref. 8: pp 1259], but the general features are the
same. One ratio value may correspond to two or more temperature values as predicted

in Section C. These figures indicate that the minima of the ratio occur in different po-

sitions depending on the bands selected.

E. DISCUSSION OF COMPUTER RESULTS

Computer simulations were performed for the three cases discussed in this chapter.
The first example is the nonoverlapping case and the band pair is chosen to be [3.0 um,
4.0 um] and [4.0 um, 5.0 um)]. Figure 7 shows this example and it exhibits the decreasing
feature as expected in Section A. The second example is the partially overlapping case
and the band pair is chosen to be [3.0 um, 4.5 um] and [3.5 um, 5.0 um). Figure 8 shows
this case and the results agree with the discussion in Section B. The third example is the
case of totally contained band within the other and the band pair is [3.0 um, 5.0 um] and
[3.5 pm, 4.5 um). Figure 9 represents this case and the results show that one-to-one
correspondence does not exist in this case. It can be seen from Figure 9 that a ratio value

of 2.0 corresponds to both 460 degrees Kelvin and 1400 degrees.
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Figure 2.

Plot of f(\/) and fg(¥) for = 1,2,...,8
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IV. A GENERAL MODEL FOR TEMPERATURE DETERMINATION VIA
DUAL SPECTRAL BAND MEASUREMENTS

In Chapter II, ideal photon emittance temperature determination was discussed.
Since this discussion was dealing with the ratio without considering measurement of the
photon emittance as a system, it was not always practical. Therefore, some other factors
should be taken into account to realize this method. They are emissivity of the object,
atmospheric transmittance, detector responsivity, and so on. In the previous discussion,
those parameters were assumed to be spectrally constant or unity. Strictly speaking,
they depend on the wavelength. Also after considering these factors as part of the sys-
tem, the resultant ratio becomes the ratio of the output voltages from the detectors of
two bands instead of the ratio of photon emittance. A brief discussion of these param-

eters follow.

A. EMISSIVITY

The emissivity dictates how much thermal energy is radiated from an object. Its
value lies between zero and unity depending upon the material characteristics of thermal
source. It is denoted as £(4). Although emissivity for some materials has temperature
dependency, it is assumed to be independent of temperature to make discussion simpli-
fied. Materials are divided into three types based on the value of emissivity. They are

[Ref. 3: pp. 4C]
1. A black body, ¢(4) = 1.
2. A gray body, £(4) = constant < 1.
3. A selective absorber, ¢(4) varies with wavelength.

The spectrally constant emissivity cases were covered in the previous Chapters II and

I11. Therefore, wavelength-dependent emissivity is the primary focus of discussion in this
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chapter. In addition, since emissivity depends on the types of materials, it is not possible
to get reliable analytical expressions for all selective absorbers. Usually emissivity values

are obtained by measurement.

B. ATMOSPHERIC TRANSMITTANCE

The atmosphere is known to bchave as a wavelength-selective absorber, This im-
plies ihat the transmission of signals through the atmosphere becomes wavelength de-
pendent. Specifically, the atmosphere affects the transmission of infrared radiation. The
main compositions of the atmosphere are nitrogen, carbon dioxide, oxygen, and water
vapor. Among these, molecules which have nonsymmetric molecular structure are pri-
mary responsible for absorption. Thus carbon dioxide and water vapor are the dominant
sources for absorption. In addition some other small constituents of the atmosphere,
which have non-symmetric structure, also contribute absorption.

Atmospheric scattering is the other important phenomenon which affects atmo-
spheric transmission. The strongest atmospheric scattering occurs in the case when the
size of aerosols and the wavelength of the signal are almost the same. In this particular
case the scattering coefficient depends highly on a wavelength of the signal. The Mie
theory describes this phenomenon.

The atmospheric transmittance is determined by atmospheric absorption coefficient

and atmospheric scattering coeflicient. It is given by
(4, x) = exp [ = («(4) + y(4))x] (4.1)

where a(4) is atmospheric absorption coeflicient, y(1) is atmospheric scattering coefTi-
cient, and X is the distance between the object and the detector. An example
transmittance data by the NPS LOWTRANG program [Ref. 13] at 20 meters in height,
0 degree elevation for 1 km and 5 km distances under 1962 U.S. standard atmospheric

conditions are shown in Figure 10. The importance here is that the transmittance de-
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pends not only the wavelength but also distance and atmospheric conditions. Moreover,
atmospheric conditions vary with height and thus the transmission depends on the path
between the object and the detector. Unless the path and atmospheric conditions are
known, it is impossible to apply the ideal ratio calculation. Therefore, the transmission
path and atmospheric conditions have to be provided in order to obtain the atmospheric
transmittance. A recent report [Ref. 11: pp. 41] on transmittance calculation for the at-

mosphere has concluded that refraction effects can essentially be ignored.

C. DETECTOR RESPONSIVITY
The detector responsivity is generally obtained by dividing the measured output

signal voltage by the optical power falling on the detector. And it is defined as

Vrm 5

R="4,

(4.2)

where R is the responsivity [V/W], ¥, is the RMS output voltage, H is the RMS
irradiance [1V/cnY] at the detector location, and A, is the detector area [cm?]. However,
this quantity is not the appropriate parameter for the development of the photon
emittanice case. A new proposed responsivity R’ is defined by modifying (4.2) in order
to adjust it [or the photon emittance calculation, It is given by dividing the measured
output voltage signal by the number of photons into the detector. The proposed R’ is

defined as

"’
R =T 4.3
04, (4.3)
where R’ is the photon responsivity [V« photons « 5], and Q is the photon emittance
[photons e st e cm?]. It follows from decfinitions (4.2) and (4.3) that the photon

responsivity R’ is simply obtained by multiplying responsivity R by Ac/4,
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R = RLE 44)

as shown above. For photon detectors sensitive to the number of photons, R’ should
be fairly constant out to the cut off wavelength.

Unfortunately, detector responsivity (4.2) is not usually provided among detector
specifications, but the specific detectivity D* is given instead. The D* is the normalized

quantity of detectivity defined by [Ref. 3: pp. 270}
D*= DJA,B (4.5q)

where B is the electrical system bandwidth in heltz, 4, is the area of the detector, and
D is the detector detectivity, This quantity is often expressed in terms of the reciprocal
of the noise equivalent power (NEP). Therefore, the D* is also given by [Ref. 3: pp.
270]

JAB
D* = -N—EP—- . (4.56)

The noise equivalent power is the radiant flux required to obtain an output signal equal

to the noise of the detector. It is given by

NEP = —’1,;4-4- (4.6)
$

Vn

where V, is RMS signal voltage and ¥ is RMS noise voltage. From (4.6), the specific

detectivity becomes

4.7




The photon responsivity is obtained by combining (4.3), (4.4), and (4.7), and it is

D*Vy pe

"V

R’ 4.8)
This equation shows the specific detectivity is closely related to the photon responsivity.
From the expected wavelength dependencies in (4.8), it follows that the quantity D*
should increase linearly with wavelength out to the cutoff wavelength [Ref. 3: pp. 294).
Since photon detectors respond to the number of photons absorbed in the detector up
to cutoff wavelength (usually dictated by the band-gap), the modified responsivity of

photon detectors is ideally independent of wavelength.

D, COMPUTER SIMULATION OF TEMPERATURE DETERMINATION
Based on above discussion, the ratio of photon emittance for black body is replaced

by the ratio of the output voltages at the detectors, and it is given by

 [Cewrorias
R -t 4.9)
L X

3

where ¢(4) is the emissivity, t(4, x) is atmospheric transmittance, and R’(4) is the photen
detector responsivity. The subscript on the photon detector responsivity denotes the
spectral band used in the measurement. In this equation, assuming that the wavelength
parameters are spectrally constant and two identical detectors are used, the ratio be-
comes identical to the ratio of photon emittance for black body (3.6). In order to gen-
erate the output ratio calculation under more general conditions, the numerical method
for integration known as Simpson’s rule [Ref. 12: pp. 95] is used. The algorithm for this

calculation is shown in Appendix D.
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1. Discussion of the computer simulations

As described in this chapter, the actual ratio for the photon detector is the ratio
of the output voltages. In the rest of this section, the simulation for the ratio calculation
is discussed. Although the photon detector responsivity has wavelength dependence, as
discussed in Section C, it is not a very sensitive factor up to the detector cut-off.
Therefore, this is ignored in this discussion, and emissivity and atmospheric
transmittance are considered. Since emissivity depends on the material of the thermal
source, many kKinds of emissivity values are possible. For this simulation, an arbitrary
created emissivity curve shown in Figure 11 was used. For atmospheric transmittance,
the atmospheric conditions of 1962 U.S. standard atmosphere were selected. The data,
shown in Figure 10, are obtained from NPS LOWTRANG6 program. For the purpose of
comparison with the results for ideal case, the same band pairs are selected as cnes in
Chapter I11. The result for overlapping case is shown in Figure 12, for partially over-
lapping case in Figure 13, and totally contained case in Figure 14. The curves generated
in these figures correspond to 1 km and 5 km. With the exception of Figure 14, there
is a one-to-one correspondence between measured ratio and temperature for each range.
In Figure 14, there is a slight positive shape after T=1300 K which violates the
uniqueness condition. Although the values are shifted slightly, the shapes of the curves
are essentially the same as ones for ideal ratio case shown in Chapter I1I. The general
features of each case are the same. However, the results demonstrate that the curves
depend on distance. This is quite inconvenient. The application of two-band temperature
determination is then impossible without range information. Also, to lesser extent, the
application is limited since the emissivity is material dependent. If the source for thermal
radiation is not a gray body, then the emissivity of the source needs to be known in ad-

vance.
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The ratio of output voltages for nonoverlapping case: Bands are (5.0
um, 4.0 um) and (4.0 um, 3.0 um). The distances are 1 km and § km.
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V. THERMAL RANGING TECHNIQUE

From the previous chapter, the ratio of output voltages from dual spectral bands is
not the same as the ratio of black body photon smittances under realistic and nonideal
conditions. To solve and apply the method under these conditions can be quite difficult.
On the other hand, one significant idea is hidden in this problem.

The concept presented in this chapter is created from the difficulty, in the temper-
ature determination method, produced by nonconstant atmospheric transmittance.
Aimong assumptions discussed in Chapter 1V, atmospheric transmittance breaks the va-
lidity of temperature determination procedure because it depends on wavelength, the
distance between an object and the detector, and atmospheric conditions. Although
emissisivity and detector responsivity have to be taken into account, under some rea-
sonable assumptions they can be neglected. It will be shown that the dependency of at-
mospheric attenuation on the distance makes the concept of thermal ranging feasible.

The use of infrared thermal signals has the advantage that active interrogation is not
required since the object radiates energy or photons. This passive property of infrared
detection can be significantly important in military situations. However, the passive de-
tection of the target does not automatically provide range data and this is a disadvantage
of thermal infrared detection systems. One interactive (nonautomatic) passive system
involves the use of a trained human observer. The training allows the observer to rec-
ognize a target and by noting the size of the target on the screen make an experienced
estimate of the range. Currently ranging is done by active sensor systems such as radar
or laser range finder. These active systems are capable of being sensed by the target.

Although active ranging systems tend to provides precise distance information, they ex-
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posc the instrument gencrating the signal. Therefore, the development of a passive
ranging system would provide significant military advantage.

The Electronic Support Measure (ESM) equipment in electronic warfare systems is
the passive sensor in the microwave region. This gives target identification, direction of
the target and also a very rough range information. For this method, the power trans-
mitted by a radar of a target, the antenna gain, and attenuation factor must be obtained
in advance. It seems that the same concept can be applied to infrared systems only if
the temperature of a target, surface area, emissivity, and atmospheric transmittance are
known. Therefore, this method is not practical.

The following discussion proposes a new concept of passive ranging by infrared
systems. It will be shown that this concept is a feasible solution to the problem of target
ranging using only automatic passive methods. The following discussion consists of

three steps:

1. Step 1: Atmospheric attenuation coeflicient is assumed to be constant. Temper-
ature of the target is known.

2. Step 2: Atmospheric attenuation coefficient is assumed to be constant. Temper-
ature of the target is unknown.

3. Step 3: Atmospheric attenuation coeficient is not constant. Temperature of the
target is unknown.

The concept of ranging shown here is based on the distance dependency of atmospheric
transmittance. Step | and step 2 are intermediate procedures and they do not allow
changing atmospheric conditions due to, for example, an elevated transmission path.
In step 3, these prohibitions are rescinded and the ranging model has greater applica-

bility.

A. RANGING FOR KNOWN TEMPERATURE CONDITION WITH
HOMOGENEOUS ATMOSPHERIC CONDITIONS
In the analysis of this section the emissivity of the target and photon detector

responsivity are assumed to be spectrally constant. In addition, it is assumed that at-
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mospheric -onditions are not changing along a line-of-sight trajectory between target
and passive sensor system. Therefore, atmospheric attenuation coeflicients will not de-
pend on range but still exhibit wavelength dependence. By appropriate band selection,
i.e,, from a flat portion of the transmission curve [LOWTRAN)], the wavelength de-
pendence of the transmission can be approximately neglected with in each of the selected

bands. Therefore, atmospheric transmittance for the i-th band is given by
7x) = exp( — o) (5.1)

where o, is the atmospheric attenuation coeflicient within the i-th band, and x is the

transmission path length. Applying the assumptions stated to the ratio (4.9) leads to

AY -’-‘-(-’-‘l-a'. (5.2)

12(x)
After substitution of (5.1), the ratio can be written as
AM = exp [ - (0, = ay)x|R’ (5.26)

where #¥ is the ratio of the measured output voltage at the detector, &' is the ideal ratio
of photon emittance, and o, are the atmospheric attenuation coefficient for the measured
bands. In (5.2b), the ratio of the output voltages is obtained by direct measurement. The
atmospheric attenuation coeflicient is calculated from the atmospheric conditions, and
the ratio of photon emittance is determined by the temperature given. Therefore, the
transmission path length is the only unknown parameter, From (5.2b), the transmission
path distance is obtained as

1 aM
xm= = g—g=ln T (5.3)
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The use of (5.3) makes passive thermal ranging feasible. Ilowever, it is applicable to very
limited conditions. In the battle ficld, the targets are usually unknown, and consequently
the temperature of the target is hard to obtain, This means that the system should be
capable of determining both range and temperature to be practical. The new proposed

concept is described in the following sections.

B. RANGING FOR UNKNOWN TEMPERATURE WITH HOMOGENEOUS
ATMOSFHERIC CONDITIONS

In this section a concept to determine the range and the temperature of the target
is discussed. As in Section A, the atmospheric conditions are assumed to be homogene-
ous in space. Mathematically, two nondegenerate equations can be used to solve for two
unknowns. In this discussion, the two unknowns are range and temperature of a target.
To get two equations, two distinct sets of ratio calculations are required. For that pur-
pose, no less than three sets of band measurements ( i.e., band 1, band 2, and band 3 )
are required to produce two distinct equations such as (5.3). All the assumptions de-
scribed in the previous section are also applied in this section except that the temper-
ature of a target is unknown. The mathematical derivation to get the range equations
is exactly the same as in the previous section. The two range equations for three sets of

band measurements are

M
1 R,
xm=gloin 2 (5.4)
M
x= L, 2 (5.5)

where the subscripts serve as an index to identify spectral bands. Combining (5.4) and

(5.5), one equation to solve the temperature is obtained as
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(5.6)

However, this equation is impossible to solve analytically. A numerical method can be
uscd to solve this equation. After getting the temperature, the range is easily obtained
by using (5.4) or (5.5). Since the assumption that the atmospheric conditions are ho-
mogeneous in space is only approximately valid for very short ranges, this method is not
practical. The following section solves the difficulty of the determination of the range

without assuming homogeneous atmospheric conditions.

C. RANGING FOR UNKNOWN TEMPERATURE WITH INHOMOGENEOUS
ATMOSPHERIC CONDITIONS
For the following discussion, several equations are recalled for convenience. For

four bands, the ideal ratios calculated from photon emittance are defined as:

1 Q44,4 T)

™ O 40 T)

(5.7a)

and

Q()-Sv )-6’ T)
K (5:76)

5’54 -
where the total photon emittance is given by

A
Ol 1y, T = L 0,0, Ty, (5.8)
J

and spectral photon emittance @, can be expressed in terms of the gray body distribution
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_2nec
2 [ exp(hc/k) = 1) )

With two band measurements, the temperature can be determined. With three band
measurements, it should be possible to determine both temperature and range. As pre-
viously discussed, range information is available as long as the effective atmospheric at-
tenuations in each band are distinct. The problem posed by obtaining range information
for a thermal source at the same elevation as the receiver (homogeneous atmospheric
conditions) is not as complex as that associated with arbitrary elevation. Elevation
changes in the trajectory of the radiation usually require consideration due to the cur-
vature of the carth. In the general problem to be solved, both the receiver and the ther-
mal source take arbitrary locations in the plane defined by the vertical line passing
through the receiver and thermal source, This is represented in Figure 15.

In the algorithm to be discussed, three arbitrary but distinct radiation bands are se-
lected. Initially disregarding the effects due to the atmospheric attenuation, calculated

ideal ratios of signals are given by

Ideal signal Band 1

Ideal signal Band 2 ° (5.10a)

Ry (T) =

Ideal signal Band 3
Ideal signal Band 1 °

R5\(T) = (5.105)

Figure 16 shows the temperature dependence of these curves for bands defined by:
(A4 43) = (12.0 um, 10.8 um)

(A3, A4) =(10.8 um, 9.6 um)
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(Asy Ag) = (9.6 um, 8.2 um)

The atmospheric attenuation in the form of transmittance is provided from the NPS
LOWTRANG program [Ref. 13] using data corresponding to a vertical path. Atten-

uation coefficients are derived from
oy(A) = — -,‘7 In7{4) [nepersim] (5.11)

where i=1,2,3 indicate the wavelength band and j is the index of the specific layer. The
guantity 7, is the length of the trajectory in the j-th atmospheric layer. See Figure 17.
Each 7, has the same length if the line-of-sight angle is 90 degree. The attenuation coef-
ficient o, is obtained by taking the 90 degree angle. The standard band average for 7,

is given by

j A”"'r‘,(/l)dl

ru=-ﬁ’i'-'zl———-. (5.12)

With reference to Figure 18, the effective approximate transmission factor t,, for the i-th

band, is given by:

Ky
T, = exp( — Zal(k+m-l)’k) (5.13)

k=)
where &, is the number of layers between source and recciver, and m is the layer num-
ber of the receiver. Here, r, is the length of the trajectory in the layer k +m~ 1. The
approximation involved in (5.12) will be discussed at the end of this section. Expression

(5.13) can be recast into the form:




1, = exp( — g;R) (5.14)

where

Kmax
Oik+m=1)Tk

o m F2ee— (5.15)

and when the range R must satisfy:

R=D re (5.16)

With the exception of the first and final layer, the value for each 7, is obtained from the

rule

oo |
n=R= 1 (5.17)
J=1

as shown in Figure 19. Each R, is calculated from the Cosine Law relation derived from

the geometry of Figure 20
(Hy+ R = R} + (hg+ Re) — 2R(hy + Rg) cos(8 +5-) (5.184)

or equivalently

(H;+ Rg)* = R? + (hqg+ Rg)* + 2R(hy+ Ry) sin 6, (5.18b)




where 6 is the line of sight angle between receiver and source measured with respect to
the horizontal. R, can be obtained from (5.18) using the quadratic formula with the

correctly chosen ’+* sign, R, is also obtained from (5.18) after taking
H, =[int( 24 + 1) 5.19
= lint( %) + 1]Ar (5.19)

where the int[_] results in the integer part. This follows from examination of the geom-

etry in Figure 15. For R,,...,R,, R, values for H, follow
Hk - H| + (k - I)A’ (5.20)
which are used in (5.18) to calculate subsequent R,. For clarity, it is noted that:

Rl =T (5.210)

Rymr+ry+..+r (5.218)

until &k = k_,, as defined by (5.16). Equations (5.17) combined with (5.20) are solved it-

eratively to generate the values for », except for r,,. Lastly, r,,, is calculated from:
’km“ - ’_ﬂnat = kau —kau-l' (5.22)

Once r, are determined for all / up to k., , the effective transmission for each vand (5.14)
can be calculated from (5.15) and (5.16). The measured ratios, i.e., including the effects

of the atmosphere, are related tc ideal ratios (5.7) according to:

T
agaag7§ (5.23a)




T
R} = R}y 5, (5.235)

in agreement with (5.2a). After substitution from (5.14), (5.23) can be written as

R = R1; exp | — (0, — 05)R] (5.240)
and

R3] = R}, exp [ — (03 — 0,)R], (5.24b)

where R is the distance between thermal source and receiver. Figure 21 shows the

measured ratios calculated from (5.24) for conditions:
¢ o,=0,0001494 {[nepers/m]
¢ ¢,=0,0001027 [nepers/m]
® o, =0,0004622 [nepers/m|
& R=100 [m]

Solving for R from (5.24), it follows that

RN ==1—M R1; (5.254)
- — N . a
N7 gl(T)
and
QM
R m e I —231— | 5.25b
D= o= " anm (.23

where the subscripts are employed to denote spectral bands. In the algorithm, it will be
assumed that the correct measured ratios, consistent with (5.24), are provided by exper-
imental testing. Ideal ratio curves can always be calculated according to the methods

(5.10) previously discussed. Constants o, 0,, 0, can be approximately calculated {from the
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NPS LOWTRANSG data. By checking for the crossing point betwcen the two curves
(5.25), both the temperature, T, and the range, R, are uniquely determined as shown in
Figure 22.

The algorithm sketched out is not yet complete. The values of o,, ¢,, and o, are de-
pendent on the range, R, since the weights for evaluating the coefficients o, (5.15) depend
on all the values for 7. In order to calculate the coefficients g, (5.15), an initial guess is
made for a range candidate, Ry, within limits dictated by the domain of LOWTRAN
data sampled. This value for R, is used in the calculation of ¢, 6;, and a,. The search
for a numerical crossing point for curves (5.25) produces a new value for R which can
be denoted as R;. The value for R; generated by this first iteration is expected to be
closer to the actual range but with an unacceptable level of error. The process is re-
peated by iterating with the R;. The next estimate generated by the algorithm, R, is

tested against the previous one, R;,. In general, the procedure is stopped when

| RGm - RGm—I

< 0. 5.26
T | (5.26)

where & is the predetermined convergence parameter and the index m specifies the
number of iteration cycles, In Appendix E, the algorithm for the process is presented.
For the purpose of checking the algorithm, the range candidate, R, is selected as
shown in Figure 23. Actual ranges are chosen from 10 meters to 700 meters and Rg's
are 700 meters for up to 350 meters of actual ranges and 10 meters for longer than 350
meters. This choice appears to correspond to worst-case guessing. The results for error
calculation are obtained for 6= 0 degrees, 30 degrees, and 45 degrees at a detector
height of § meters. The actual temperature and convergence parameter 4 are chosen to
be 353.54 K and 0.001, respectively. The error of range determination is shown in Figure

24, and the error of temperature determination is shown in Figure 25. Both errors in-
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creasc as the actual range increases. However, the maximum error in temperature and
range is insignificantly small. The maximum error in ranging is 0.09 % and the maximum
error in temperature is 0.0008 %. This results shows that the method performs remark.
ably well for the conditions tested.

In the calculation of the transmission factor for the i-th band, the precise t, should

be calculated according to the weighted average

4“”"’
[ 0.0, Deatiyar
Ty m 2 (5.27)
04, D

’lluur

rather than the standard average (5.12). It should be noted that, the flatter the photon
emittance distribution within the spectral bands, the smaller the discrepancy between
calculations (5.12) and (5.27).

Despite the simplifying assumpticns used in the model, the results demonstrate the

feasibility of extracting both target range and temperature from thermal radiation

measured over three bands.
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Figure 15. Definition of vertical line from the earth through the receiver
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Figure 20. Geometry of ranging (cosine law)




1000

avnenes aene

[}

[}

[}

[}
FTTITIS )
]
[}
[}

[ETISITYTURT SATPSTPRTTTS TTTTRPITINNT INUPITTIRTRS FETPSRTrIey AT TITIRNTTT IT PRV

1esssessacstacasine -§

XTITIY TTTPY TEYY I

ssssssceres -§

vettansuateeniesisrsustarapastaant

LTI YT YT IR YT TP PRY YT SETETT Y (TYVY]

t
\
[}

ssrssnsnense

BAND1 AND BAND2

i \)
L S L N Y CTTIT T LEEY ;TRTPRR T

\
\
1

.
H

s sesssessacaceisartusteaneans

\:
v i
t

LI T YT Y TP P P PYPY PY PRSP PPy sesssgrssasBasnasies YT I LY TYT T TY PRIy T VT PRPY PR

600
TEMPERATURE (K)

ssnsanesas

assaysenns

L Y Ty PR T P PV T PP I PTTY PR sesoenes
I

500

4sseconsysaassennessres r

sessesecansn

eressasissesntanasecnss

seneraestutesansrcnnnadnoirretsariavanttinaanntiariosnnenaly
) ‘

“tmesmratrscsesasebenmnvesoabarmermean

: :
: ) H H
: H
: \ : :
: :
: H (-3
: -
:
:
H
:
:
:

sessavinanse

CEtmssamstréeciasitasantatarerrntrlasetitaran oy .

300

aseasarncrs sssmsswsrssarensansons etssanavaar

200

0’0

Figure 21. Measured ratio curves




1000

] . v " ¥ v

. H ' s ° .
H
H H H
\ H
...........}..... R T Tt T PR P TN T TP TY TEPPTTT IS Y PSPRTYT YO ITY
. t
. v..‘!t-lll’----l L Ry L A L R A R R R L L ) LERRLALAL L Ahiiidd o

anessens

mecssseues -§

R S S TTTTTTTST (T TTTUNNTS STPPTIVUNE FYSPPRPTE PO varanes

LEGEND
BAND1 AND BAND2

\
\
\
\
)

.
Asssssmmanada
n

I
.
.
.
.
.

‘en

XTI

Y
700

R T L L L R R R TR ILTYY TY IR P TR srfosanm
" It

.

»
PPN 4R R R, SN

H H
cnaeanay “esstemitesensysboaustessamEssusitodecstdionshaararan tesesammuivenses
v ¢

ssasmsccsreskassusmEaness sserssssmmanceanes

‘eesteanceens

600
TEMPERATURE (K)

Ceasnrsesnnsers

T
500

1esetrnsasacs
v

crvesany aemses

i
sevees cemsesemantesnnn

teesrerimmensnsine ssvernofe

vesrneny

400

S R Sy IO JEUR R o R SR SRS S

yensnoe esnnasss

vasEbsmserncsmmunsesnes FYYITTTEY =

300

.
'
H
‘
H
i
’
-
"
H
i
H
H

rarececeaNenacreec

sracaes

sessesse

~
-

PRI SRUPR SOOI

RPN SP

200

008 00% OOE 002 00F O 001~ 003- 0OE- 0O¥= DOG— 009-004-
(SYILINW) IONVH

Figure 22. Graphical solution of range and temperature




400
ACTUAL RANGE

300

[~]
K
8
1] 4 T i 1 Y LA o
004 009 009 00¥ ooe ocz oot 0
dONVHY SsaND
Figure 23. Initial guess range (the worst case)

58




al ol Y

...................................................

..............................................................

....................

- LEGEND
10 DE((};REE
_45DEGREE __~

...........................................

[ PR

ol'0 800 800 400 800 S00 %00 €00 200 100 000
CLNEDHSJ) HONVY 40 30HYyd

Figure 24. Error of range determination



.........

.........

.........

........

.........................

.................................

JPLEL

........................

...................

...........................

............................

.................

LEGEND
10 DEGREE
45 DEGREE

300

200

400

ACTUAL RANGE (METERS)

i 1 L o
0ot 06 08 ©OLZ 09 0O¢ O¥ 0€ 02 0T 00
+OTe (SLNAOUAd) FUNIVHIdNIL 40 HOUHd
Figure 25, Error of temperature determination




. VI. CONCLUSIONS

Previous work on dual spectral band measurements of radiant emittance demon-
strated that, under somewhat ideal conditions, the ratio of the measurements could be
used to determine the temperature. The main stipulated condition was that the bands
were not self-contained. In the Chapter III of this thesis, the same conclusions were
obtained for measurements of photon emittance.

A general model encompassing arbitrary wavelength-dependent emissivity,
responsivity, and transmission factor was proposed in Chapter 1V, Although the general
problem is not analytically tractable, the methods applicable to constant emissivity,
responsivity, and transmission factor (Chapter II1) are approximately valid if the spec-
tral bands are narrow enough. However, from the practical view point of making a
signal measurement in the presence of noise, the spectral bands should not be too nar-
row. Therefore, the more general model is often needed under practical conditions. For
reason explained in Chapter 1V, the photon detector responsivity introduced is fairly
insensitive to wavelength up to the cut-off wavelength. In addition, for a broad class
of materials emissivity curves are quite flat. Therefore, the focus of the reminder of the
thesis concentrated on effects due to atmospheric attenuation. Specifically, knowledge
of the range to the target would be necessary to apply the method discussed in Chapter
v,

The concept presented and tested in Chapter V is created from the requirement that
the dual spectral band method of temperature determination would require range infor-
mation to determine the temperature. This assumes a disparity in attenuation effects
between bands. By employing three bands instead of two, this problem is circumvented.

Additional complications created by changing atmospheric conditions with trajectory
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path are handled within the model. The numerical atimospheric attenuation data used in

the model testing was taken from LOWTRAN. The results for this preliminary model

are extremely encouraging. Future work needs to be performed to develop and test a

more rigorous model.




APPENDIX A. DERIVATIVE OF # WITH RESPECTTO T

The purpose of this appendix is to prove equation (3.7) which appears in the main
text. Equation (3.7) had been introduced in [Ref. 8: pp. 1257] without proof. Since the
ratio of photon emittance is a function of «, it requires a few steps to get its derivative
with respect T. For the reader’s convenience, relations (3.2a), (3.5) and (3.6) are re-

produced, which show that

[Fawrav
Byt (1)
[ ewrav

Xy

where

'/’2
gy) = =T (42)

and

o =, (43)

Following the product rule, the derivative of the ratio of photon emittance (Al) with

respect to temperature is




_g_ axy axy - LI __Q-. L]
2 [ say L,“fw ) ) [ nwa

o2
oT
[ ”‘z(w)dw]‘
axy

(44)

where the temperature dependence is expressed through a. One approach to simplifying

the expression is to transfer the dependence of the integral limit on a evident in (A4) to

the integrand. A substitution,

Y = ax

will transfer this dependence. It follows that

j:’g(w)dw - af:’g(ax)dx.

Therefore according to the product rule,

X/ a
do

ax; X

Now from (A2) and the transformation rule (ASa),

(ax)?

glox) = opx) =1

and it follows from (A7) that

o J' u/g(\b) dy = J‘xj&‘(“ X)dx + aJ. . glax)dx.

(A5a)

(45b)

(46)

(47)




2ux? a’x’ exp(ax) (a9

expax) =1~ [ exp(ax)~11*

—aa; glox) w

Direct subistitution of (AR) into {A6) leads to :

y K 2(¢:z.v:)2 K (auc)3 exp(ax)
6a (W)d¢ _L x(ax)dx+£ TS dx—J; [ explen) — 1T dx. (A49)

g

Noting the equivalence between g(ax) defined in (A7), and the integrand of the second

integral (A9), it follows that :

ax x/ xj 3
'Eaa— .Lr‘/g(v',)dw - B-L glox)dx — J [(::;(::)p-(-a:;z dx. (410)

After reversing the transformation (AS5a), *he integiands in (A10) will depend on ¢ and

(A10) leads to:

uj 3
3 1 Y~ exp(¥)
B I g(i)dy = .[ )l =5 J [ exp(y)—13° W (4t

For compactness of representation, define

v’ exp(¥)
- . A12
M= Tepw)—17 i
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Then combining the result (A3) with (Al1) leads to :

’bgfj:‘ls(lﬁ)d'll - "!f [I:{/W)d'll - BJ:Jg(w)dw]. (413)

After substituting (A13) into (A4)

[ [Frway -3 ng(w)dw] IR L”"g('l')d!ﬁ[ oy -3 J:,(.M,]

oR, ¢ axy
[ | “"‘g(w)dw]’

oT

-l
T

(A14)
which after simplification leads directly to (A16) or (3.7), as given in the text.
ax. ax, axy axy
e | twe| gy - [“swras[ gy
P _]__ o axy o axy AlS
T =T (415)

[ f:g(w)dw]’
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APPENDIX B. ASYMPTOTIC APPROXIMATION FOR RATIO
CALCULATION

The purpose of this appendix is to prove equations (3.22) and (3.23) which appear

in the main text where the asymptotic approximations are applied.

A. FOR LARGE ALPHA
For large « (i.e., small temperature), since x, values are fixed, y takes on large posi-

tive values Therefore, g(y) and f{yy) functions are approximated from (3.5) and (3.8) as

follows:
'112
gy)= =P (81)
and
wJ
JW)= o) (B2)

After direct substitution into (3.8), it follows that:

axy Xy
lf.zlzj Viexp(— )y | P exp(— ¥)ay
[ s [L25Y = . (83)
- f Wrexp(—y)ay| ¥’ exp(~y)dy
a ¢X3

One round of integration by parts yields
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L] o
lf.ela{[ - exp(—- 9]0 + {[ v? exp(— !IJ)G'W} v exp( — ¥)dy

axy

ax oxy (B4)
-j v exp(-ww{[ v exp(—¥)Jan+3] v exp(— ww}
« Yax,
After algebraic simplification, (B4) becomes
aXy
gl = v° exp(— ) ]2 J Y exp( — ¥)dy
B (85)

- j V2 exp( =~ W)dy[ — v* exp(— ¥) Jaxt

According to [Ref. 12: pp. 85]

f V2 exp( — )dy = — y* exp( = ¥) — 2¢ exp( — ¥) — 2 exp(— ¥), (B6)

which, for large positive y (B6), is approximately given by

fw’ exp( — ¥)dy — ¥* exp( - ¥). (B7)

After substitution of the approximate form (B7) into the integrals (B5), [f,g] becomes
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Vigl=L v’ exp( — ¥)1290y? exp( — )15k — [y? exp(— )19V’ exp( ~ ¥)13%.(B8)
which, after simplification, becomes

gl (axy)® exp( — axy) — o exp( — &) I (axg)* exp( — axg) — (ax3)? exp( — ax;)]
2 2 3 3 ('Bg)
— [(axy)? exp( = axy) — o exp( — a) [ (axs)’ exp( — axg) — (2x3)” exp( — axy) ]

Since, for large «, the second terms within each bracket of (B9) become dominant, [f,g]

is approximated as
[/:g1=0’[x] exp( = ox3) exp( — &) —x3 exp(— ox3) exp( — @)} (B10)
Recombination of (B11) leads to:
figl=o’x3(1 = x3) exp [ — aars +1)]. (B11)

This last form is applied in Section C of Chapter III.

B. FOR SMALL ALPHA
For small « (i.e., large temperature ), ¥ is small. Thus, g(y) and f{y) are approxi-
mated from (3.5) and (3.8) by binomial expansion. After application of binomial expan-

sion, g(y) is integrated as

Jowros[o(1+5 ) ar. B12)

And a binomial approximation for small ¢ leads to:

oo o(1-% ). (B13)

69




which is integrated as

Jeniai( 3-%)

(B14)

Similarly, after applying binomial expansion to (3.8), the integration of f{y/) becomes

Jrosausfua + (1 -5 Y.

Algebraic expansion of (B15) leads to:

fﬂwdwfw’(-;--—,?gw%-z‘a-w’),

which is approximated as

ol T4
dUCINGES D)

which is expanded as

70

(B13)

(B16)

(B17)

(B18)



Y
gt 35 (o =106 = o) = - ot = (ad = ) = 5 (e~ e = )

o 4 o 4 a3 - (B19)
5 (e = x3)0q =) + 55 ok =) ~1) =5 g — Xk - 1)
Since, for small alpha, o terms are dominant, [f,g] approximated as
5
gl 357 [0k = XYz =1) = (3 = D)od = x3)]. . (B20)

This final form is applied in Section C of Chapter III.
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APPENDIX C. ALGORITHM TO CALCULATE THE RATIO OF

PHOTON EMITTANCE

band imits 1,234

{temperature range T1,T2
criterion for error CR

1

—» T=T1+naT

yes

ratio calculatioq

no

Yyes

output
ratio(T)

72

photon emittance integration by photon or raciant
caiculations Simpson's rule omitance dietriulion
band limits 1,2
band limits 3,4




APPENDIX D.

ALGORITHM TO CALCULATE THE RATIO OF

OUTPUT VOLTAGE AT THE DETECTOR

ratio calcu|atlorJ

no

T=T2
yes

output
ratio(T

3

band imits 1,2,3,4
ternperature range T1,T2 mt:: distribution
criterion for error CR
' atmospheric
photon emittance integration by detector
caiculations Simpson's rule responsivity
band limis 1,2
band limits 3,4
érror< CR emissivity




APPENDIX E. MODEL FOR PASSIVE RANGE AND TEMPERATURE
DETERMINATION

A. MAIN ALGORITHM

uy«mi 9i__| LOWTRAN
Measured ratio ciata g joroeratire -———— data
intial guess B T

.
layer

Approximate
Attenuation

Coesfficients

new guess

+

range
T ure Calculation |

soe EQ(5.25) see EQ.N

no error < orerion
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B. LOWTRAN DATA GENERATION

Inputs

Wavelength Range
Distance Range
Atmospheric Conditions

Angle=90 degree(vertical)

Y

LOWTRAN 6 Program
Y

Transmission Data for
Each Layer/Wavelength

Y
Calculate Intrinsic Attenuation

for Each Layer/Wavelength
see EQ(5.11)




C. LAYER (SUBROUTINE)

Inputs
Angle(Line of Sight)
Range Guess

Intrinsic Attenuation Coefficient
Layer Thickness

Detector Location
Earth Radius

Calculate r;
see EQs(5.17),(5.21),(5.22)

Calculate Average Atienuation
Coefficients

see EQ(5.15)

o END
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D. MEASURED RATIO PREDICTOR

Inputs

Range R1,R2
Temperature T
Angle

— R=R1+nAR
R=R
' G

Layer Subroutine

l Correct Average
Attenuation Coefficients
Measured Ratio
Calculation
Subroutine

o g Ve ooty M
\/

7
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