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ABSTRACT

The established concept of temperature determination from dual spectral band

radiometric measurement is analyzed for the case that the measurement device is sensi-
tive to total photon emittance rather than radiant emittance. A temperature dependent
ratio of measurements is calculated for two distinct spectral bands using a black body
distribution. It is shown that, if the bands are not self contained, then there exists a
one-to.one correspondence between temperature and ratio.

A prototype algorithm is proposed and tested which demonstrates the feasibility of
extracting both the temperature and range by using three distinct spectral band meas-
urements. The model assumes nonhomogeneous, wavelength-dependent atmospheric
attenuation. The target and sensor systems each have an arbitrary location in a vertical
plane relative to the earth. In the computer simulations, LOWTRAN data was used.
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I. INTRODUCTION

A. REVIEW OF PRIOR WORK

In the photon detection process electromagnetic radiation causes three kinds of

mechanism such as photon effects, thermal effects, and wave interaction effects

[Ref. 1]. The focus of the remaining discussion will be confined to the first two effects

which cover the majority of applications involving the detection of thermal radiation.

One common photon effect is photoconductivity. Photoconductivity is observed in

semiconductors and characterized by photon energy and energy gap. One common de-

vice which uses a thermal effect is the bolometer. Bolometers can be made of any ma-

terial which has a temperature-dependent resistance. This effect is characterized by the

change of resistance from the heating effect of incident radiation. Therefore, Plank's

equation for radiant emnittance can only be applied directly to thermal effects. Although

some devices have a detection mechanism based on the thermal heating effects due to

radiation, this is not true of semiconductor-based detectors. Semiconductors devices are

characterized by an energy gap. Only photons with energies greater than this gap can

produce electron hole pairs which contribute to the detected signal. The excess photon

energy is dissipated as heat [Ref. 2] and therefore does not contribute to the electrical

signal generated. Specifically the integrated spectral emittance [Ref. 3], i.e., photon flux,

is a more appropriate signal indicator than the radiant emittance for measurements

based on semiconductor devices.

R.B. Johnson and E.E. Branstetter presented a numerical method for the integration

of Plank's equation [Ref. 4]. Johnson derived an approximated equation for effective

radiant sterance [Ref, 5]. Normalization of spectral bandwidth, for convenience in

analysis, was provided by F.E. Nicodemus [Ref. 61. Based on Plank's equation for ra-



diant emittance, MH. Horman presented the technique for temperature determination

using the ratio of output from two bands (Ref. 71. On the other hand, analysis of the

dual spectral band temperature measurement for devices based on the photon effects has

not been developed.

One standard method for the determination of the gray-body emissivity and the

temperature of an object is based on two separate narrowband radiometric power

measurements. In combination with Plank's radiation equation for a gray-body, two

narrowband measurements are sufficient to produce a unique value for both temperature

and emissivity. For practical reasons, such as improvement of signal-to-noise ratio,

most instrumentation take measurements over bands which are too wide to be consid-

ered narrowband. In this more general situation the question of uniqueness of temper-

ature requires more careful consideration. This issue has been recently analyzed for the

distribution based on a Plank's spectral radiant emittance [Ref. 8]. The authors dcvel-

oped an analysis based on the evaluation of the ratio (2) of two measurements of the

integrated power distribution over separate bands. Three cases, nonoverlapping bands,

partially overlapping bands and totally overlapping bands, were considered. The analyt-

ical invwstigation demonstrated that the last case does not always generate a one-to-one

correspondence between the ratio 2 and the temperature.

For the passive ranging technique, P.J. Ovrevo and R.C. Wood presented the

method using absorption property of the atmosphere [Ref. 9], and J.R. Jenness, Jr., and

F.J. Shimukonis proposed the principle of passive ranging using the ratio of the signals

in narrow spectral bands received [Ref. 10].

For optical properties of the atmosphere, R.A. McClatchey and others described

effects of index of refraction in the atmosphere [Ref. 11: pp. 41). It was found that

transmission factors are affected by no more than I - 2 % if refraction is included in the

calculation.
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B. OVERVIEW OF THE THESIS

Chapter I is the introduction and covers both a review of relevant literature and a

thesis overview. In the interest of keeping this thesis fairly self-contained, Chapter II

provides a brief technical description of essential background preliminaries. In Chapter

I11, effects due to atmospheric attenuation and detector responsivity are ignored. Using

dual spectral measurements, it is shown that it is possible to uniquely determine a tar-

get's temperature if the detector bands are not 100 % overlapping. Specifically, the ratio

of the dual spectral band measurements is shown to exhibit a mathematically predictable

one-to-one correspondence with the temperature, as long as the bands are not totally

contained within the other.

In Chaptcr IV, a numerical program for calculating a spectral band measurement

without the assumption of constant atmospheric attenuation and detector responsivity

is discussed and tested In the process of this development, a novel definition for a

"responsivity", applicable to devices sensitive to photon emittance, has been introduced.

If the effects of atmospheric attenuation on the dual spectral band measurement are not

equivalent, then the ratio scheme for temperature determination, discussed in Chapter

I11, is not applicable. It is precisely under these conditions that by using three distinct

bands both the temperature and the range can be determined.

In Chapter V, a prototype algorithm is discussed, which demonstrates the feasibility

of obtaining both the temperature and the range of a target using three distinct spectral

band measurements. Complications introduced by not assuming constant altitude of the

target-to-sensor trajectory are addressed. LOWTMAN data was also used here to char-

acterize atmospheric attenuation. Conclusions for the thesis are presented in Chapter

VI. In order to not obscure the main points of the thesis, the extensive mathematical

derivations have been relegated to appendices. Both Appendix A and Appendix B fit this

description. Appendix C, Appendix D and Appendix E have been created for those

3



readers who are interested in an algorithmic description of programs used in the com-

puter simulation.
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11. BACKGROUND

In this chapter, an alternate approach based on photon emittance rather than radi-

ant emittance is applied. This kind of treatment is appropriate for photovaltaic or

photoconductive semiconductor devices but not radiometers. First, a few basic as-

sumptions need to be presented. The discussion starts from the ideal case with the fol-

lowing preliminary assumptions [Ref. 8: pp. 1256]:

* opaque object

* Lambertian surface

* object in thermal equilibrium

* spectrally constant emissivity (gray body)

* photon emittance derived from Plank's radiation law

• unity spectral transmittance of intervening media between the object and measuring
instrument.

Plank's radiation law gives the spectral radiant emittance, which is given by

[Ref. 3: pp. 351:

T21(l)hc( 2  [W • cmM-2 •n , (2.1)
; [exp(hcI/Ak 7)- 1]

where &(A) is the spectral emissivity, h is Plank's constant, A is the wavelength, c is the

speed of light, k is Boltzmann's constant, and T is the object's temperature. In this sec-

tion, since the emissivity is assumed to be spectrally constant, c(A) is denoted as C.

The photon emittance is derived from (2.1) dividing by hc/l, which is the energy

associated with one photon [Ref. 3: pp. 38]. Therefore photon emittance is the flux re-

lated to the number of photons. The resultant photon emittance equation is obtained

as

S



QA = A4 e..c/ [photons. s-i. cm - 2 • .M-1] (2.2)

The integral of (2.2) over some band limits gives the photon emittance in the bands.

The photon emittance within the spectral band limits [A,, A21 is given by

Q(A2, A,, 7) - AQ(A 7)dA (2.3)
A'2

From the assumptions, ernissivity is assumed to be spectrally constant. Therefore

photon emittance for a gray body is simply expressed as photon emittance for a black

body multiplied by a constant emissivity and given by

QA = CQaa4. (2.4)

From (2.3), it follows from (2.4) that

Q(A2, A 1, 7) = ZJ BA (A 7)dA(25

= &QBB(A 2, 47,7),

where A, < A• and QA( 2 , 7) is the spectral photon emittance for a blackbody [c(A) - 11.

It has been shown that the temperature of an object can be determined by taking a

ratio of measured radiant eniittance of an object in each of two spectral bands.

[Ref. 8: pp. 1256] In Chapter II and Chapter III, this concept is applied in a similar

manner except the assumption is made that a ratio is formed from the measured photon

emittance. Let the two spectral bands be denoted as [A2, A,] and [P., A3] . Let the ratio

for photcn emittance be defined as

6



QO. 2 A 7) 
(

2,2-,6))
AA1,'1A,47)MQO- 41 A37T)(26

Since from the assumption, emissivity is uniform over the spectral band, emissivity is

cancelled out, and the ratio becomes the ratio of the photon emittances associated with

a black body, as shown by

Q,(B. 2, Al, 7) (2.7)
,Q8 (. 4, A3,1•)

This implies that A, is a function of the object's temperature T only and the ratio can

indicate the object temperature. When the dual spectral-band photon emittance method

is used, it is critical to know that the ratio A, and the temperature have a one-to-one

correspondence. For this purposes, three general cases of spectral bands which cover

all possibilities are considered. The possible cases are [Ref 8: pp. 1256]

I. non-overlapping bands (Figure la),

2. partially overlapping bands and common band limits (Figure lb,c), and

3. totally contained band (Figure id).

These three cases are presented graphically in Figure 1. In the following two chapters

the validity of temperature determination based on dual spectral photon eniittance for

the ideal case is discussed.

7



a. nonoverlapping case

1 2 3 4
b. partially overlapping case

1 3 2 4

c. one common band limit case

1,3 2 4
d. totally contained case

1 3 4 2

Figure 1. graphical representation of possible band combination: three cases are
nonoverlapping, partially overlapping, and totally contained.



111. DUAL SPECTRAL BAND MEASUREMENTS FOR TEMPERATURE

DETERMINATION

In this section the ratio of photon emittance defined in (2.6) is considered for the

various cases discussed at the end of Chapter II. In order to validate the dual spectral

bands method, it is required to show one-to-one correspondence between the ratio and

the temperature of the object. For this purpose, the derivative of the ratio of band lim-

ited photon fluxes, 6P, in (2.7), with respect to temperature is performed. If the ratio of

photon emittance 2, is proved to be either strictly increasing or strictly decreasing

function with respect to temperature, i.e., either agt,/aT> 0 orORt,/aT < 0 for all T, then

the ratio of photon emittances and the temperature exhibit a one-to-one correspond-

ence. It follows that this approach is potentially applicable to the temperature determi-

nation of grey bodies.

To simplify the integral of (2.2) , the variables of integration in photon emittance

Q(R,,. 47j.T) are replaced by the dimensionless parameters [Ref. 8: pp. 1257]

hc (3.1)

and

T,-, "" (3.2a)

where T, is an arbitrary reference temperature. By prior convention [Ref. 8: pp. 1257],

it is chosen to be

hc
T r-- -- (3.2b)

9



where A,, as introduced in Chapter 11, is the highest wavelength in spectral band 1. Using

(3.2b) as a reference temperature in (3.1), the spectral band limits of 0 are given by:

hc (3.3)

where A, is one of the spectral band limits [Ref. 8: pp. 1257]. After substitutions into

(2.5), the new representation for the photon emittance is given by

Q(Ai, AJT)- 2Rk31,C2h g(-)d3 , (3.4)
MXJ

where [Ref. 8: pp. 12571

¢t,2
gC)fiexp(,) - I 35

The ratio of photon emittance is obtained as

RP M(3.6)

MiX3

and the derivative of the ratio of photon emittance signals (3.6) with respect to temper-

ature comes out to be

- 2A)dof ' (Of)dok - ,f "'g(O)dof ' )do,

a* [f1X4 &d20

, 10



where

O)- exp() 3  (3.8)
[exp(o)- 1]2  (

(The derivation of (3.7) is in Appendix A.) To simplify the expression of (3.7), the fol-

lowing operator is defined [Ref. 8: pp. 1257].

[ab](1, X2, X3, X41 C) - a() b( -)dj- b(O)dd4a(Od (3.9)
ft fX 3  fefX3

Then the ratio becomes

P I V;g](I , x2, x3,1x4, ) (3.10)

[f T J 4g(O)do j2

Since the denominator of (3.10) is always positive, the sign of 62,/1T is determined by

the sign of the operator [f,g]. It is necessary to show that the sign of [fgg, which is the

sign of (3.10), does not change with a, or equivalently with temperature. The temper-

ature dependence of [f,g] appears only in a, which can be seen in the limits of integration.

The integrands do not have an explicit dependence on temperature.

A. NON-OVERLAPPING CASE

In order to prove that the sign of [f,g] is fixed over the domain of a, several proper-

ties offl•o) and g(o) are required. They are (Ref. 8: pp. 12571

1. AO) - g(o) - 0

2. 0 < gio) <J(O) for 0 > 0

3. Unin ,) - Um...(O) - 0

4. For # > I,./(¢) - /g(O,) has exactly one root on the interval i e (0, oo).

11



The discussion to follow will clarify the significance of these requirements. Graphical

representation is useful to clarify these properties and it is shown in Figure 2. This figure

is especially useful for visualization of the fourth property. For values of f > 1, it is ob-

vious that AO) crosses Pg(o) exactly once. A more formal discussion of the four prop-

erties is provided in the next paragraph.

The first property is proven by using MHopital's rule. In order to prove the second

property, define

P(M)U- ) (3.1 Ia)g(O') ,

which by direct substitution from (3.5) and (3.8) is given by

I(/ = - exp(- 7/) '(3i)

It then can be shown that P(O) > 1 for 0 > 0. This follows from the derivative of P(O),

which is:

dP(O,) -I - exp( - 0,) - 0, exp( - 0)(31 a
do (I - exp( - •)

After expanding (3.12a), it is clear that :

dP(O) 1 • exp(- 0) > 0 (3.12b)
l - -I - exp--) (I-eXp(- 0))2

which follows from the observation that the second term in the expansion is smaller in

magnitude. Also, by direct application of r'Hopital's rule on (3.1 lb), limn. 0.P(O) - I.

These two results imply that P(O) > 1. ThusA(0) > g(O). Consequently, after noting that

bothA(O), as given in (3.8), and g(O), as given in (3.5), are strictly positive, property two

12



follows. The third property is simply proven by limit evaluation. For the fourth prop.

erty, it is necessary to evaluate AO') - Pg(,) given by

Af*)- #(0)" exp(0)0v ___(3.13a

(exp(M)- I) exp(O)"- I(.1a

which can be expressed as

AO') - - e ) - (exp( P). (3.13b)

By noting (3.1 Ib), it follows that

.g,)-/•(E)- e-(i f e, /il. (3.13c)

Since linm*, 0 Q(O) -1 and P is constrained to be greater than one, the quantity

AO) - ig(O,) satisfies, after reference to (3.1 la), the inequality

.AO) -/ig(O) < 0 (small 0) (3.14a)

for sufficiently small 0. Also since linm.. ..P(O) - oo , the inequality has to reverse for

large enough 0. In other words

AO') - fig(O) > 0 (large 0). (3.14b)

Since, from (3.12a), P(O) is a strictly increasing function, it is correct to conclude the

inequality reversal can only occur once. Property 4 is therefore proven.

For the non-overlapping case represented on Figure la, there are only two sets of

relations which can define the spectral bands (3.3):

1 < X2rX3 < X4, (3.15a)

13



and

x3 <x 4 < 1 <x2 . (3.15b)

Relation (3.15a) is considered first. Motivated by the fourth property previously stated,

let

( A 2) (3.16)

The quantities AVO) and f(l)g(a) must cross each other only once at the value of 0 de-

noted as xa. This is represented in Figure 3. The geometrical aspects of figures dictates

the following relations for all values of &:

f ' d/)do/ < f ' 2P( a)g( O/)dO/ (3.17a)

and

fj 'A &0 > f 'f(a)g( ,)dO. (3.17b)

OX3  IL3

Substitution (3.17a) and (3.17b) into (3.9) shows the operator [f.g] satisfies:

V9.s1(0, X21 X3. x4 ) <Jf '&2())g(O)d•MIg(O)dO - f"!(0)d4 #-0)dO -O

(3.18)

: 14



for all the values of a (3.2a). According to the brief description following (3.10), this

proves that O 9,/a T < 0 for all the values of T and therefore 9, is a strictly decreasing

function of temperature. For the second relation of non-overlapping bands (3.15b), a

similar analysis would show that aO,/aT> 0 and 9, is a strictly increasing function of

temperature.

B. PARTIALLY OVERLAPPING AND COMMON BAND LIMIT CASE

In this section, the case which is partially overlapping and the common band limit

case are considered. Two sets of relations are considered in this case and they are

1 x3 <x 2 <x 4 or I <x3 <x 2 9x 4  (3.19a)

x3 :s I <x 4 <x 2 orx 3 < 1 <x 4 rx 2  (3.19b)

For this discussion, the graphical method previously introduced is useful [Ref. 8: pp.

1258]. Figure 4 illustrates the first set of the relations (3.19a) for partial overlap. With

reference to Figure 4, six sets of integrals are defined as follows:

s,- A, - (3.20a,b)

S2 - fJt t )dov A2 - f"'g(&)do, (3.20c,d)

S,3 - fA'Ao)do A3 - f*g(O)dO. (3.20ej)

After inserting this formalism into (3.9), the bracketed operator [f,g] becomes

15



[fg](1, x2, x3, x4 , a) - (Sl + S2)(A2 + A3) - (AI + A2)(S2 + S3). (3.21a)

After expansion and recombination of (3.21 a), it follows

[fg](1, x2, x3, x4, t) - [A3(S1 + S2) - S3(Al + A2)] + (SIA 2 - A1S2). (3.21b)

This can be retranslated using (3.20) into two terms which follow

V-](0, x2,x3,x 4, U) - V[f0](l,x 2,X2,x 4, a) + Vf'0](1,x 3,x 3,x2, 0). (3.21c)

Case (3.19a) will now be applied on expression (3 21c). If 1 < x3 <x2 < x., then both

teims in (3.21c) are of the form 1 < x, - x3 < x4 which satisfies the nonoverlap condition

(3.15a). Since, as indicated in the previous section, the particular nonoverlap condition

(3.15a) generates negative values for [f,g], the expression (3.2 I c) must be negative for the

stated inequality.

For common band limit case, which is I - x3 < x3 < x, or I < x3 < x2 - x, , one of the

terms in (3.21c) becomes zero. However, the other term remains negative, and therefore

[f,g] remains negative. This discussion implies that the ratio 2, is a strictly decreasing

function of temperature. Similarly, for the second relation of this case (3.19b), the ratio

A, is a strictly increasing function of temperature.

C. TOTALLY CONTAINED SPECTRAL-BAND CASE

This section discusses case 3, where one interval is entirely contained within the

other. By the use of asymptotic approximations [Ref. 8: pp. 12581, it is possible to show

that the ratio 9, may have the same value for two or more temperatures. Therefore, the

measurement to determine the temperature is not unique. Two examples, which are the

case where a is large and the case where a is small, are discussed.

As previously discussed, the sign of ag,/O T is determined by the sign of [f,g]. There

are two sets of relations which are 1 < x3 < x1 < x2 and x< < I< x. < x,. The first set of
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relations is arbitrarily chosen for discussion since the approach is similar for the other

relation. For large or small value of a asymptotic methods are useful to determine the

sign of [f,g]. (The derivation using asymptotic approximation is in Appendix B.) For the

large value of a (i.e., small temperature ), [f,g] is approximated as

[f,gl-0C5xs2(l - x3) exp[ - c(x3 + 1)]. (3.22)

Since x3 is greater than one, [f,g] becomes negative. For small values of a (i.e., large

temperature ), [f,g] is approximated as:

Vf,g]-- 4 [ _( -x31)(x3 - 1)- (X2 - 1)(X4 -)]. (3.23)

Given x3 and x4, it is always possible to find a sufficiently large x2 such that (3.23) is

positive. Combining the two results for small a and large a, the sign of 8P4/8T is not

fixed over a (i.e., tcmperature ). This means that the ratio 9, does not have a one-to-one

correspondence with temperature. Therefore, for the case when one spectral band is

completely contained within the other, the temperature determination method based on

the dual spectral band measurement of photon emittance is not, in general, valid.

D. RATIO CALCULATION FOR PHOTON EMITTANCE

In order to generate the output ratio calculation, the numerical method for inte-

gration known as Simpson's rule [Ref. 12: pp. 951 was used. The flow chart for this

calculation is shown in Appendix C. The examples were demonstrated using the condi-

tions in [Ref 8: pp. 1258-1259]. One case has a band combination of [2.5 um, 5.5 pim]

and [3.9 pm, 4.1 pm] shown in Figure 5. The second case has a band combination of

[10.0 uim, 14.4 /Am] and [11.8 Am, 12.2 pim] shown in Figure 6. In these figures, the nor-

malized ratio denoted as _, was used to enhance the results. Normalization is done by
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am• --61min 
(3.24)

OMaX -amin

where R.. is the maximum value of.A, and 9.1,, is the minimum value of 9, Both cases

are slightly different from the results in [Ref. 8: pp 1259], but the geneial features are the

same. One ratio value may correspond to two or more temperature values as predicted

in Section C. These figures indicate that the minima of the ratio occur in different po-

sitions depending on the bands selected.

E. DISCUSSION OF COMPUTER RESULTS

Computer simulations were performed for the three cases discussed in this chapter.

The first example is the nonoverlapping case and the band pair is chosen to be [3.0 Am,

4.0 Am] and [4.0 Am, 5.0 Am]. Figure 7 shows this example and it exhibits the decreasing

feature as expected in Section A. The second example is the partially overlapping case

and the band pair is chosen to be [3.0 um, 4.5 rni] and [3.5 Am, 5.0 Am]. Figure 8 shows

this case and the results agree with the discussion in Section B. The third example is the

case of totally contained band within the other and the band pair is [3.0 Am, 5.0 Arm] and

13.5 um, 4.5 urn]. Figure 9 represents this case and the results show that one-to-one

correspondence does not exist in this case. It can be seen from Figure 9 that a ratio value

of 2.0 corresponds to both 460 degrees Kelvin and 1400 degrees.
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Figure 2. Plot of f(ji) and Pg(@) for P- 1,2,...,5
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IV. A GENERAL MODEL FOR TEMPERATURE DETERMINATION VIA

DUAL SPECTRAL BAND MEASUREMENTS

In Chapter II, ideal photon emittance temperature determination was discussed.

Since this discussion was dealing with the ratio without considering measurement of the

photon emittance as a system, it was not always practical. Therefore, some other factors

should be taken into account to realize this method. They are emissivity of the object,

atmospheric transmittance, detector responsivity, and so on. In the previous discussion,

those parameters were assumed to be spectrally constant or unity. Strictly speaking,

they depend on the wavelength. Also after considering these factors as part of the sys-

tem, the resultant ratio becomes the ratio of the output voltages from the detectors of

two bands instead of the ratio of photon emittance. A brief discussion of these param-

eters follow,

A. EMISSIVITY

The emissivity dictates how much thermal energy is radiated from an object. Its

value lies between zero and unity depending upon the material characteristics of thermal

source. It is denoted as c(A). Although emissivity for some materials has temperature

dependency, it is assumed to be independent of temperature to make discussion simpli-

fied. Materials are divided into three types based on the value of emissivity. They are

[Ref. 3: pp. 40]

1. A black body, t(A) = 1.

2. A gray body, E(A) = constant < 1.

3. A selective absorber, &().) varies with wavelength.

The spectrally constant enissivity cases were covered in the previous Chapters II and

II1. Therefore, wavelength-dependent emissivity is the primary focus of discussion in this
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chapter. In addition, since emissivity depends on the types of materials, it is not possible

to get reliable analytical expressions for all selective absorbers. Usually emissivity values

are obtained by measurement.

B. ATMOSPHERIC TRANSMITTANCE

The atmosphere is known to behave as a wavelength-selective absorber. This im-

plies that the transmission of signals through the atmosphere becomes wavelength de-

pendent. Specifically, the atmosphere affects the transmission of infrared radiation. The

main compositions of the atmosphere are nitrogen, carbon dioxide, oxygen, and water

vapor. Among these, molecules which have nonsymmetric molecular structure are pri-

mary responsible for absorption. Thus carbon dioxide and water vapor are the dominant

sources for absorption. In addition some other small constituents of the atmosphere,

which have non-symmetric structure, also contribute absorption.

Atmospheric scattering is the other important phenomenon which affects atmo-

spheric transmission. The strongest atmospheric scattering occurs in the case when the

size of aerosols and the wavelength of the signal are almost the same. In this particular

case the scattering coefficient depends highly on a wavelength of the signal. The Mie

theory describes this phenomenon.

The atmospheric transmittance is determined by atmospheric absorption coefficient

and atmospheric scattering coefficient. It is given by

r(A, x) - exp [ - (a(A) + y(A))x] (4.1)

where a0() is atmospheric absorption coefficient, y(A) is atmospheric scattering coeffi-

cient, and x is the distance between the object and the detector. An example

transmittance data by the NPS LOWTRAN6 program [Ref. 131 at 20 meters in height,

0 degree elevation for I km and 5 km distances under 1962 U.S. standard atmospheric

conditions are shown in Figure 10. The importance here is that the transmittance de-
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pends not only the wavelength but also distance and atmospheric conditions. Moreover,

atmospheric conditions vary with height and thus the transmission depends on the path

between the object and the detector. Unless the path and atmospheric conditions are

known, it is impossible to apply the ideal ratio calculation. Therefore, the transmission

path and atmospheric conditions have to be provided in order to obtain the atmospheric

transmittance. A recent report [Ref. 11: pp. 411 on transmittance calculation for the at-

mosphere has concluded that refraction efrects can essentially be ignored.

C. DETECTOR RESPONSIVITY

The detector responsivity is generally obtained by dividing the measured output

signal voltage by the optical power falling on the detector. And it is defined as

Ras- V.. . (4.2)IHAd

where R is the responsivity [V/WJ, V,, is the RMS output voltage, 1-1 is the RMS

irradiance [TV/crn 2 ] at the detector location, and Ad is the detector area [cmr?. However,

this quantity is not the appropriate parameter for the development of the photon

emittarice case. A new proposed responsivity R' is defined by modifying (4.2) in order

to adjust it for the photon emittance calculation. It is given by dividing the measured

output voltage signal by the number of photons into the detector. The proposed R' is

defined as

R _, --s (4.3)
QAd

where R' is the photon responsivity [V. photons-' s], and Q is the photon emittance

[photons s-' cin-21. It follows from definitions (4.2) and (4.3) that the photon

responsivity R' is simply obtained by multiplying responsivity R by hI[).,
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R' - R Ac (4.4)

as shown above. For photon detectors sensitive to the number of photons, R' should

be fairly constant out to the cut off wavelength.

Unfortunately, detector responsivity (4.2) is not usually provided among detector

specifications, but the specific detectivity D* is given instead. The D* is the normalized

quantity of detectivity defined by [Ref. 3: pp. 270]:

D*- =DrAdB (4.5a)

where B is the electrical system bandwidth in heltz, A, is the area of the detector, and

D is the detector detectivity. This quantity is often expressed in terms of the reciprocal

of the noise equivalent power (NEP). Therefore, the D* is also given by [Ref. 3: pp.

270]

N M rAd(4.5b)
NEP

The noise equivalent power is the radiant flux required to obtain an output signal equal

to the noise of the detector. It is given by

NEP - HAd (4.6)vs
VN

where V, is RMS signal voltage and VN is RMS noise voltage. From (4.6), the specific

detectivity becomes

V

D* - - . (4.7)
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The photon responsivity is obtained by combining (4.3), (4.4), and (4.7), and it is

R D* VY hc (4.8)., -I .d(-B A

This equation shows the specific detectivity is closely related to the photon responsivity.

From the expected wavelength dependencies in (4.8), it follows that the quantity D*

should increase linearly with wavelength out to the cutoff wavelength [Ref. 3: pp. 2941.

Since photon detectors respond to the number of photons absorbed in the detector up

to cutoff wavelength (usually dictated by the band-gap), the modified responsivity of

photon detectors is ideally independent of wavelength.

D. COMPUTER SIMULATION OF TEMPERATURE DETERMINATION

Based on above discussion, the ratio of photon emittance for black body is replaced

by the ratio of the output voltages at the detectors, and it is given by

fax &(A)(.(A' x)R' 2(A)g(0)d0 (4.9)

*aX3

where z(A) is the emissivity, T(A, x) is atmospheric transmittance, and R'(A) is the photon

detector responsivity. The subscript on the photon detector responsivity denotes the

spectral band used in the measurement. In this equation, assuming that the wavelength

parameters are spectrally constant and two identical detectors are used, the ratio be-

comes identical to the ratio of photon emittance for black body (3.6). In order to gen-

crate the output ratio calculation under more general conditions, the numerical method

for integration known as Simpson's rule [Ref. 12: pp. 95] is used. The algorithm for this

calculation is shown in Appendix D.
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1. Discussion of the computer simulations

As described in this chapter, the actual ratio for the photon detector is the ratio

of the output voltages. In the rest of this section, the simulation for the ratio calculation

is discussed. Although the photon detector responsivity has wavelength dependence, as

discussed in Section C, it is not a very sensitive factor up to the detector cut-off.

Therefore, this is ignored in this discussion, and emissivity and atmospheric

transmittance are considered. Since emissivity depends on the material of the thermal

source, many kinds of emissivity values are possible. For this simulation, an arbitrary

created emissivity curve shown in Figure I I was used. For atmospheric transmittance,

the atmospheric conditions of 1962 U.S. standard atmosphere were selected. The data,

shown in Figure 10, are obtained from NPS LOWTRAN6 program. For the purpose of

comparison with the results for ideal case, the same band pairs are selected as cnes in

Chapter I11. The result for overlapping case is shown in Figure 12, for partially over-

lapping case in Figure 13, and totally contained case in Figure 14. The curves generated

in these figures correspond to 1 km and 5 km. With the exception of Figure 14, there

is a one-to-one correspondence between measured ratio and temperature for each range.

In Figure 14, there is a slight positive shape after T= 1300 K which violates the

uniqueness condition. Although the values are shifted slightly, the shapes of the curves

are essentially the same as ones for ideal ratio case shown in Chapter III. The general

features of each case are the same. However, the results demonstrate that the curves

depend on distance. This is quite inconvenient. The application of two-band temperature

determination is then impossible without range information. Also, to lesser extent, the

application is limited since the eniissivity is material dependent. If the source for thermal

radiation is not a gray body, then the emissivity of the source needs to be known in ad-

vance.
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V. THERMAL RANGING TECHNIQUE

From the previous chapter, the ratio of output voltages from dual spectral bands is

not the same as the ratio of black body photon emittances under realistic and nonideal

conditions. To solve and apply the method under these conditions can be quite difficult.

On the other hand, one significant idea is hidden in this problem.

The concept presented in this chapter is created from the difficulty, in the temper-

ature determination method, produced by nonconstant atmospheric transmittance.

Among assumptions discussed in Chapter IV, atmospheric transmittance breaks the va.

lidity of temperature determination procedure because it depends on wavelength, the

distance between an object and the detector, and atmospheric conditions. Although

emissisivity and detector responsivity have to be taken into account, under some rea-

sonable assumptions they can be neglected. It will be shown that the dependency of at-

mospheric attenuation on the distance makes the concept of thermal ranging feasible.

The use of infrared thermal signals has the advantage that active interrogation is not

required since the object radiates energy or photons. This passive property of infrared

detection can be significantly important in military situations. However, the passive de-

tection of the target does not automatically provide range data and this is a disadvantage

of thermal infrared detection systems. One interactive (nonautomatic) passive system

involves the use of a trained human observer. The training allows the observer to rec-

ognize a target and by noting the size of the target on the screen make an experienced

estimate of the range. Currently ranging is done by active sensor systems such as radar

or laser range finder. These active systems are capable of being sensed by the target.

Although active ranging systems tend to provides precise distance information, they ex-
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pose the instrument generating the signal. Therefore, the development of a passive

ranging system would provide significant military advantage.

The Electronic Support Measure (ESM) equipment in electronic warfare systems is

the passive sensor in the microwave region. This gives target identification, direction of

the target and also a very rough range information. For this method, the power trans-

mitted by a radar of a target, the antenna gain, and attenuation factor must be obtained

in advance. It seems that the same concept can be applied to hifrared systems only if

the temperature of a target, surface area, emissivity, and atmospheric transmittance are

known. Therefore, this method is not practical.

The following discussion proposes a new concept of passive ranging by infrared

systems. It will be shown that this concept is a feasible solution to the problem of target

ranging using only automatic passive methods. The following discussion consists of

three steps:

1. Step 1: Atmospheric attenuation coefficient is assumed to be constant. Temper-
ature of the target is known.

2. Step 2: Atmospheric attenuation coefficient is assumed to be constant. Temper-
ature of the target is unknown.

3. Step 3: Atmospheric attenuation coefficient is not constant. Temperature of the
target is unknown.

The concept of ranging shown here is based on the distance dependency of atmospheric

transmittance. Step I and step 2 are intermediate procedures and they do not allow

changing atmospheric conditions due to, for example, an elevated transmission path.

In step 3, these prohibitions are rescinded and the ranging model has greater applica-

bility.

A. RANGING FOR KNOWN TEMPERATURE CONDITION WITH

HOMOGENEOUS ATMOSPHERIC CONDITIONS

In the analysis of this section the emissivity of the target and photon detector

responsivity are assumed to be spectrally constant. In addition, it is assumed that at-
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mospheric ionditions are not changing along a line-of-sight trajectory between target

and passive sensor system. Therefore, atmospheric attenuation coefficients will not de-

pend on range but still exhibit wavelength dependence. By appropriate band selection,

i.e., from a flat portion of the transmission curve [LOWTRAN], the wavelength de-

pendence of the transmission can be approximately neglected with in each of the selected

bands. Therefore, atmospheric transmittance for the :-th band is given by

-A(x) - exp( - oV) (5.1)

where o, is the atmospheric attenuation coefficient within the i-th band, and x is the

transmission path length. Applying the assumptions stated to the ratio (4.9) leads to

A f - T(x.)W aI (5.2a)T2(X)

After substitution of(5.1), the ratio can be written as

-M exp [ - (a1 - 62)XI (5.2b)

where Am is the ratio of the measured output voltage at the detector, a, is the ideal ratio

of photon emittance, and o, are the atmospheric attenuation coefficient for the measured

bands. In (5.2b), the ratio of the output voltages is obtained by direct measurement. The

atmospheric attenuation coefficient is calculated from the atmospheric conditions, and

the ratio of photon emittance is determined by the temperature given. Therefore, the

transmission path length is the only unknown parameter. From (5.2b), the transmission

path distance is obtained as

- - -I- -- (5.3)
4FT= 02 a/
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The use of/(5.3) makes passive thermal ranging feasible. However, it is applicable to very

limted conditions. In the battle field, the targets are usually unknown, and consequently

the temperature of the target is hard to obtain. This means that the system should be

capable of determining both range and temperature to be practical. The new proposed

concept is described in the following sections.

B. RANGING FOR UNKNOWN TEMPERATURE WITH HOMOGENEOUS

ATMOSPHERIC CONDITIONS

In this section a concept to determine the range and the temperature of the target

is discussed. As in Section A, the atmospheric conditions are assumed to be homogene-

ous in space. Mathematically, two nondegenerate equations can be used to solve for two

unknowns. In this discussion, the two unknowns are range and temperature of a target.

To get two equations, two distinct sets of ratio calculations are required. For that pur-

pose, no less than three sets of band measurements ( i.e., band 1, band 2, and band 3 )

are required to produce two distinct equations such as (5.3). All the assumptions de-

scribed in the previous section are also applied in this section except that the temper-

ature of a target is unknown. The mathematical derivation to get the range equations

is exactly the same as in the previous section. The two range equations for three sets of

band measurements are

SIn 9?12 (5.4)
1

xMna (5.5)

~23

where the subscripts serve as an index to identify spectral bands. Combining (5.4) and

(5.5), one equation to solve the temperature is obtained as
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A

-2 - 23

However, this equation is impossible to solve analytically. A numerical method can be

used to solve this equation. After getting the temperature, the range is easily obtained

by using (5.4) or (5.5). Since the assumption that the atmospheric conditions are ho-

mogeneous in space is only approximately valid for very short ranges, this method is not

practical. The following section solves the difficulty of the determination of the range

without assuming homogeneous atmospheric conditions.

C. RANGING FOR UNKNOWN TEMPERATURE WITH INHOMOGENEOUS

ATMOSPHERIC CONDITIONS

For the following discussion, several equations are recalled for convenience, For

four bands, the ideal ratios calculated from photon emittance are defined as:

•2-Q(G.,R)2,)
a Q(A3, 1, A7") (5.7a)

and

.1 Q0 5, A6, 7)
Q(A40 , AS, 7) (5.7b)

where the total photon emittance is given by

Q(A, A" 7) - QA(Q(A 7)dA, (5.8)
fA1

and spectral photon ernittance QA can bc expressed in terms of the gray body distribution
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A4 2nec (5.9)
" exp(hclk 7) - 1)

With two band measurements, the temperature can be determined. With three band

measurements, it should be possible to determine both temperature and range. As pre-

viously discussed, range information is available as long as the effective atmospheric at.

tenuations in each band are distinct. The problem posed by obtaining range information

for a thermal source at the same elevation as the receiver (homogeneous atmospheric

conditions) is not as complex as that associated with arbitrary elevation. Elevation

changes in the trajectory of the radiation usually require consideration due to the cur-

vature of the earth. In the general problem to be solved, both the receiver and the ther-

mal source take arbitrary locations in the plane defined by the vertical line passing

through the receiver and thermal source. This is represented in Figure 15.

In the algorithm to be discussed, three arbitrary but distinct radiation bands are se-

lected. Initially disregarding the effects due to the atmospheric attenuation, calculated

ideal ratios of signals are given by

I Ideal signal Band 1
42(7) Ideal signal Band 2 ('1Oa)

911(7)- • Ideal signal Band 3
Ideal signal Band 1 (5.1b)

Figure 16 shows the temperature dependence of these curves for bands defined by:

(2 1, A 2) ,-(12.0 /Am, 10. 8 um)

(03, )4) = (10.8 jAtm, 9.6 uim)
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(AS, A6) - (9.6 Mm, 8.2 Am)

The atmospheric attenuation in the form of transmittance is provided from the NPS

LOWTRAN6 program [Ref. 13] using data corresponding to a vertical path. Atten-

uation coefficients are derived from

OVA) I - TV A (A) [nepers$m] (5.11)

where i- 1,2,3 indicate the wavelength band and j is the index of the specific layer. The

quantity r, is the length of the trajectory in thej.th atmospheric layer. See Figure 17.

Each r, has the same length if the line-of-sight angle is 90 degree. The attenuation coef-

ficient oa is obtained by taking the 90 degree angle. The standard band average for T

is given by

j ý A M , , , , V (A, ,

TV AA (5.12)

With reference to Figure 18, the effective approximate transmission factor T,, for the i-th

band, is given by:

T,- exp( - X.ffL(k+m,,_1)rk) (5.13)

*=I

where k,,, is the number of layers between source and receiver, and m is the layer num-

ber of the receiver. Here, r, is the length of the trajectory in the layer k + m - 1. The

approximation involved in (5.12) will be discussed at the end of this section. Expression

(5.13) can be recast into the form:
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-T - exp( - aR) (5.14)

where

kmax

k-a R (5.15)

and when the range R must satisfy:

R - Zrk. (5.16)
ha-d

With the exception of the first and final layer, the value for each r, is obtained from the

rule

'--I
r, - R, - E..ri (5.17)

J-1

as shown in Figure 19. Each R, is calculated from the Cosine Law relation derived from

the geometry of Figure 20

(H, + RE)2 - R• + (h4 + RE)2 - 2R,(hd + RE) cos( 2 + (5.1 Ba)

or equivalently

2 2 E2(HI + RE) - Rj + (hd + RE) + 2R,(hd + RE) sin 0, (5.18b)
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where 0 is the line of sight angle between receiver and source measured with respect to

the horizontal. R, can be obtained from (5.18) using the quadratic formula with the

correctly chosen '+' sign. R, is also obtained from (5.18) after taking

lid
H1 -[nt(-jr)+ ljAr (5.19)

where the intU results in the integer part. This follows from examination of the geom-

etry in Figure 15. For R2,...,Rk, RA values for H, follow

Hk = Ht + (k - l)Ar (5.20)

which are used in (5.18) to calculate subsequent R,. For clarity, it is noted that:

R, - r, (5.21a)

Rk - r, + r 2 +.... + rk (5.21b)

until k - km. as defined by (5.16). Equations (5.17) combined with (5.20) are solved it-

eratively to generate the values for r, except for rT . Lastly, r•, is calculated from:

r•,.-- rfl.. , R , 4 -R ,1 . (5.22)

Once r, are determined for all i up to k,,. , the effective transmission for each band (5.14)

can be calculated from (5.15) and (5.16). The measured ratios, i.e., including the effects

of the atmosphere, are related tc ideal ratios (5.7) according to:

212 12 -2 (5.23a)

and
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Af61 T3
R31 - 31 Tj(5.23b)

in agreement with (5.2a). After substitution from (5.14), (5.23) can be written as

MI
&12 - Qi2 exp I - (a1 - 02)R] (5.24a)

and

•31 - 931 exp - a- )R], (5.24b)

where R is the distance between thermal source and receiver. Figure 21 shows the

measured ratios calculated from (5.24) for conditions:

a an " 0.0001494 [nepers/n]J

a 3 =0.0001027 [nepers/mJ

a 03 - 0.0004622 [nepers/m]

SR- 100 [m]

Solving for R from (5.24), it follows that

(1 F=- In Ig (5.25a)-2 22M

and

R 3 • (7) Ma1aj I (5.25b)

where the subscripts are employed to denote spectral bands. In the algorithm, it will be

assumed that the correct measured ratios, consistent with (5.24), are provided by exper-

imental testing. Ideal ratio curves can always be calculated according to the methods

(5.10) previously discussed. Constants oa, az, o3 can be approximately calculated from the
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NPS LOWTRAN6 data. By checking for the crossing point between the two curves

(5.25), both the temperature, T, ai,d the range, R, are uniquely determined as shown in

Figure 22.

The algorithm sketched out is not yet complete. The values of a,, o, and 0 are de-

pendent on the range, R, since the weights for evaluating the coefficients 0, (5.15) depend

on all the values for r,. In order to calculate the coefficients o, (5.15), an initial guess is

made for a range candidate, R,, within limits dictated by the domain or LOWTRAN

data sampled. This value for R% is used in the calculation of a,, 02, and 03. The search

for a numerical crossing point for curves (5.25) produces a new value for R which can

be denoted as R,,. The value for R& generated by this first iteration is expected to be

closer to the actual range but with an unacceptable level of error. The process is re-

peated by iterating with the R&. The next estimate generated by the algorithm, Rn, is

tested against the previous one, ROG. In general, the procedure is stopped when

R.m - Rm. <6. (5.26)

where 6 is the predetermined convergence parameter and the index m specifies the

number of iteration cycles. In Appendix E, the algorithm for the process is presented.

For the purpose of checking the algorithm, the range candidate, R,,, is selected as

shown in Figue 23. Actual ranges are chosen from 10 meters to 700 meters and RG's

are 700 meters for up to 350 meters of actual ranges and 10 meters for longer than 350

meters. This choice appears to correspond to worst-case guessing. The results for error

calculation are obtained for 0- 0 degrees, 30 degrees, and 45 degrees at a detector

height of 5 meters. The actual temperature and convergence parameter 6 are chosen to

be 353.54 K and 0.001, respectively. The error of range determination is shown in Figure

24, and the error of temperature determination is shown in Figure 25. Both errors in-
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crease as the actual range increases. However, the maximum error in temperature and

range is insignificantly small, The maximum error in ranging is 0.09 % and the maximum

error in temperature is 0.0008 %. This results shows that the method performs remark.

ably well for the conditions tested.

In the calculation of the transmission factor for the i-th band, the precise ;k should

be calculated according to the weighted average

f MPPQA(A, 7)rlk(A)dA
- °f (5.27)Trk tn et ag ! QA.A, T)dA

rather than the standard average (5.12). It should be noted that, the flatter the photon

emnittance distribution within the spectral bands, the smaller the discrepancy between

calculations (5.12) and (5.27).

Despite the simplifying assumptions used in the model, the results demonstrate the

feasibility of extracting both target range and temperature from thermal radiation

measured over three bands.
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VI. CONCLUSIONS

Previous work on dual spectral band measurements of radiant emittance demon-

strated that, under somewhat ideal conditions, the ratio of the measurements could be

used to determine the temperature. The main stipulated condition was that the bands

were not self-contained. In the Chapter III of this thesis, the same conclusions were

obtained for measurements of photon emittance.

A general model encompassing arbitrary wavelength-dependent emissivity,

responsivity, and transmission factor was proposed in Chapter IV. Although the general

problem is not analytically tractable, the methods applicable to constant emissivity,

responsivity, and transmission factor (Chapter III) are approximately valid if the spec-

tral bands are narrow enough. However, from the practical view point of making a

signal measurement in the presence of noise, the spectral bands should not be too nar-

row. Therefore, the more general model is often needed under practical conditions. For

reason explained in Chapter IV, the photon detector responsivity introduced is fairly

insensitive to wavelength up to the cut-off wavelength. In addition, for a broad class

of materials emissivity curves are quite flat. Therefore, the focus of the reminder of the

thesis concentrated on effects due to atmospheric attenuation. Specifically, knowledge

of the range to the target would be necessary to apply the method discussed in Chapter

IV.

The concept presented and tested in Chapter V is created from the requirement that

the dual spectral band method of temperature determination would require range infor-

mation to determine the temperature. This assumes a disparity in attenuation effects

between bands. By employing three bands instead of two, this problem is circumvented.

Additional complications created by changing atmospheric conditions with trajectory
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path are handled within the model. The numerical atmospheric attenuation data used in

the model testing was taken from LOWTRAN. The results for this preliminary model

are extremely encouraging. Future work needs to be performed to develop and test a

mote rigorous model.
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APPENDIX A. DERIVATIVE OF N WITH RESPECT TO T

The purpose of this appendix is to prove equation (3.7) which appears in the main

text. Equation (3.7) had been introduced in [Ref. 8: pp. 12571 without proof. Since the

ratio of photon emittance is a function of i, it requires a few steps to get its derivative

with respect T. For the reader's convenience, relations (3.2a), (3.5) and (3.6) are re-

produced, which show that

A P= a-T4(Al)

MX3

where

g(o) f () (A2)
exp(o~) - 1

and

T, (A3)
T

Following the product rule, the derivative of the ratio of photon emittance (Al) with

respect to temperature is
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f~ j sg(O(4dkf'(0)dOv - fJ'g(&bdb O J~

aT 2 (M4)

where the temperature dependence is expressed through a. One approach to simplifying

the expression is to transfer the dependence of the integral limit on a evident in (A4) to

the integrand. A substitution,

ax- (45a)

will transfer this dependence. It follows that

f =V(0)d .- f ,XJ g(cx)dx. (A5b)

Therefore according to the product rule,

fi-. •Jg( v)dov - Jfg(ax)dx +4 - - g(ixx)dx. (A6)

Now from (A2) and the transformation rule (ASa),

(ax)2 (A7)g(•x) - exp(ax) -i '

and it follows from (A7) that
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02acx 2  c2 x3 exp(ocx)- exp(*x)-- E exp(ax) - 112 (A,8)

Direct substitution of(AS) into (A6) leads to:

x g' 2(.Cx)2  Ci ((%x) 3 exp(ocx)

~ jg()d'mjgaox)dx + - dx- J 2 dx. (A9)6* j f~~~~ exp(ocx) -1I f Eep~X ]

Noting the equivalence between g(ax) defined in (A7), and the integrand of the second

integral (AM), it follows that

.•= x (ax)3 exp(axr)
f fX'(,)d,/J - 3J ~g(czx)d:V - C'(ox) 3 epox dx. (A 10)

aa A, IE exp(ocx) - 1)2

After reversing the transformation (AMa), 'he integiands in (AIO) will depend on 0 and

(A10) leads to:

!LJrd~l •j I J f:i exp(Ov)

'of•(0)do - 3O (J- [f"exp(O)'1I 2 do. (All)

For compactness of representation, define

O 0exp()(A

6-exp(O)- I '
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Then combining the result (A3) with (Al 1) leads to:

f7 ,,<[>j,3.- (A 13)

After substituting (A 13) into (A4)

[*td- 3f &)doI )i - f__(.)d4JfMA)do - 3f....&)do.. .

BT -T [fK3(Od

(A 14)

which after simplification leads directly to (A 16) or (3.7), as given in the text.

M f.,,2,O<,of, '<+0),o,-I f ".,of,'A,<,
SIX (A 15)

-TT- T [fJOA (v)dOj2
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APPENDIX B. ASYMPTOTIC APPROXIMATION FOR RATIO

CALCULATION

The purpose of this appendix is to prove equations (3.22) and (3.23) which appear

in the main text where the asymptotic approximations are applied.

A. FOR LARGE ALPHA

For large a (i.e., small temperature), since x, values are fixed, , takes on large posi-

tive values Therefore, g(,) and AO) functions are approximated from (3.5) and (3.8) as

follows:

¢2
(El)exp(,)

and

0 (B2)"exp(o)

After direct substitution into (3.8), it follows that:

[f,glf 03 exp( - O)do 0' exp( - O)do

fep =(-k3, (B3)
f N2 exp(c-)do ,4j exp(-&O

£xs

One round of integration by parts yields
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- &,exp( - ) + 3f ' exp(- ,)d] }{ 2 'exp( -*)do

cfxp( - exp( - 0)]0 + 3exp( -2 exp()] - )d } (B )

aX3

After algebraic simplification, (B4) becomes

01 eXp(_ - )]*aX 02 exp( - Od

S (85)

-J •~ex(- b)d[-& exp(-,v)]•

According to [Ref. 12: pp. 85]

f 02 exp( _ O)do -" - O,'exp( - 0) - 20 exp(-- 0,) -- 2 exp( - 0f), (B6)

which, for large positive 0 (B6), is approximately given by

fT 2 exp( - O)do - ,2 exp( -0). (B7)

After substitution of the approximate form (B7) into the integrals (B5), [f,g] becomes
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jf]•Ee' exp(- exp(- 0)1"- E[ exp(- 0)]E I[3 exp(- 0))•. (B8)

which, after simplification, becomes

V[,-I E(OCx 2)3 exp( - ox) - &' exp( a)]E(OCX4)2 exp( _ 0x4) _ (Ox3)2 exp( - ax3)3 (B9)
- E(tx2)2 exp( - ax2) _ a2 exp( - a)3 E(ox 4)' exp( - ax4) - (&x,3)3 exp( - &x3)3)

Since, for large a, the second terms within each bracket of (B9) become dominant, [fg]

is approximated as

V;,g]&ZS[x 32 exp( - ox3) exp( - a) -x3 exp( - ox3) exp( - a)]. (B10)

Recombination of (BI 1) leads to:

[fg]:---x 33( - x3) exp[ - oc(x 3 +1)]. (BI 1)

This last form is applied in Section C of Chapter Ill.

B. FOR SMALL ALPHA

For small o (i.e., large temperature ), i is small. Thus, g(o,) and.f,) are approxi-

mated from (3.5) and (3.8) by binomial expansion. After application of binomial expan-

sion, g(o,) is integrated as

fg(0)dq,-vf 0(l + 0 -'dO,. (B12)

And a binomial approximation for small 0, leads to:

Jg(,)dJ.f 0(l --i )do, (B13)
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which is integrated as

Jg(*&)d*@( 4--" - -612 ) (B14)

Similarly, after applying binomial expansion to (3.8), the integration ofAO) becomes

JfO,)dbf J0(1 + *)(1 1- -)2do. (B15)

Algebraic expansion of(B15) leads to:

P O~)dO= & I. _ 3. 02 + 1 3(B16)

which is approximated as

JA/O)do=2( / - -L•6 &) (B17)

Therefore, for small a, [f,g) becomes

I- [3( 0+ ra2 ( CXX (818) a

2-•/ , 6 a 2 16 /.IX,

which is expanded as
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12 32 2 32 (BI19)
-- •S 7

12 3 X432 (42-4)(x4 --)

Since, for small alpha, a' terms are dominant, [fgJ approximated as

122

This final form is applied in Section C of Chapter III.
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APPENDIX C. ALGORITHM TO CALCULATE THE RATIO OF

PHOTON EMITTANCE

bwid knts 1.2,3.4
trrprahn mrq. T1,T2
oitgran1w warei CR

T=TI +nAT

photon emtttance Integration by L._ m or mct
calculdons Simpson's rule w, [.M dse.•tun

bandlimb1,2 '7band limbt 3,4 l

nno

output
ratioT
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APPENDIX D. ALGORITHM TO CALCULATE THE RATIO OF

OUTPUT VOLTAGE AT THE DETECTOR

aftphoto for radmt

T=T1 +nAT fitmnto•,

photo smttanoe Integration by detectorI aon il, LSimpson's rule responsivitybandliftios re1,2~i
Sbandll1mft ,4 I J

yes
[ratio calculation•

no~ @es

output
ratio
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APPENDIX E. MODEL FOR PASSIVE RANGE AND TEMPERATURE

DETERMINATION

A. MAIN ALGORITHM

Approximate
Attenuation

nwguess
L ,T _

rang caculti4



B. LOWTRAN DATA GENERATION

Inputs
Wavelength Range
Distance Range
Atmospheric Conditions
Angle=90 degree(vertical)

LOWTRAN 6 Program

Transmission Data for
Each Layer/Wavelength

Calculate Intrinsic Attenuation
for Each Layer/Wavelength

see EQ(5.11)
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C. LAYER (SUBROUTINE)

Inputs

Angle(Line of Sight)
Range Guess
ntrinsic Attenuation Coefficien!
Layer Thickness
Detector Location
Earth Radius

Calculate ri
see EQs(5.17),(5.21),(5.22)

Calculate Average Attenuation
Coefficients
see EQ(5.15)

o END
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D. MEASURED RATIO PREDICTOR

Inputs
Range R1 ,R2
Temperature T
Angle

-•"iiR=RI1•R,

Layer Subroutine .
• Correct Average

Attenuation Coefficients
Measured Ratio
Calculation
Subroutine

no =yes •Store R (T)
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