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Executive Summary

Currently, the control of the position and orientation of the end-effector of
a robot manipulator is usually done by controlling the joint angles of the
manipulator. This approach suffers from load disturbances, changes in
manipulator parameters, and the effect of compliance. The approach is an open-
loop control as far as the end-effector is concerned. Closed-loop control of the
end-effector can be achieved by using an inertial measuring system with the
sensors situated at or near the end-effector, thus improving the overall system
accuracy and robustness.

This report documents the results of a task to provide engineering support
for the continued development of a prototype inertially aided robotic end effector
position determination system. This support included the design and fabrication
of a special data acquisition system (DAS), analyzing the effects of system
parameters on position accuracy, developing and implementing real-time
position determination software, and integrating hardware and software into a
single-axis robotic end-effector position determination system.

The DAS was designed to provide high resolution (18 bits effective, 22 bits
internal), high accuracy, low drift analog-to-digital conversions at up to 500
samples/sec. Software was also developed to allow this hardware to be used for
data collection.

A study of position accuracy on system parameters such as
accelerometer scale factor (SF) and bias stability, SF nonlinearity, filter
bandwidth, sampling rate, and resolution was also conducted. This study was
useful in defining the parameter limits that are needed for different applications.

A single-axis position determination system which consisted of 1) a Q-flex
QA2000 accelerometer, 2) the DAS, 3) a single-axis linear translation table with
an position encoder and 4) real-time position determination software. The real-
time software was a menu driven program that included zero velocity updates,
temperature compensation, experiments of five different application scenarios,
and the capability of displaying, transmitting, or storing the position updates in
real-time.

The test results of the system were below that expected of the DAS.
Therefore, the dominant error sources seem to reside in the accelerometer. An
accelerometer that is specifically designed for this application (operation range of
+ 2 Gs) is needed. Also, from the simulation of the DAS, it was determined that
20 bits resolution is more than needed and a 100 Hz sampling rate is too slow for
real-time accuracy. Hence, using a 16-bit converter to sample at 20 kHz and
then averaging 4 samples resulting in a 5 kHz acceleration update should be
more accurate than the current system for real-time position accuracies less than
10 thousands of an inch. The averaging scheme will also tend to increase the
effective resolution of the system. Before continuing any more hardware
development an in-depth simulation of the entire system (open and closed loop)
from the accelerometer to the processor should be conducted. This approach
would better define the propagation of error sources to the position error.
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1 Introduction

For most of the current robot manipulators, control of its end-effector
position and orientation is done by controlling joint angles as shown in Figure 1.
Each joint is controlled by a local ,oint servo. Angular position sensors are
installed at manipulator joints to measure joint angles. For a desired end-effector
position and orientation, inyv "inematics is used to generate command
signals in joint coordinates 1_2T. These signals become the reference inputs to
local joint servos. Such control scheme may be called "Joint sensor based
mp!pulator control" Figure 2 shows a block diagram of this control scheme.

4Note thatttr ltcal feedback exists in each joint servo, there is no feedback
to compare the actual end-effector state with respect to the reference state.

End-effector control without feedback suffers from two major
shortcomings. The first is the effect of arm compliance on the control, and the
second is poor robustness. The compiiance is caused by the physical
nonrigidness of the manipulator and by the insufficient stiffness of the joint
servos. The compliance effect causes two problems. The first is the bending
and/or drooping of manipulator arms caused by loading and by the weight of
arms. This affects the accuracy of positioning the end-effector. The second
problem is the existence of bending modes in the manipulator's dynamical
characteristics, making an accurate and steady control of the end-effector
difficult. Current methods to cope with the problems of compliance is to adopt
large size arm cross-sections, resulting in a bulky manipulator

The lack of robustness is a well known nature of any tem using open-
loop control. The system is incapable of coping with the load disturbance and
the changes in plant parameters. Both can be severe in a manipulator system.

Closing the end-effect loop can be done by optical means. An optical
position monitor consists of one or more cameras and an image processing
microcomputer. A three-dimensional picture of the end-effector is taken by
cameras, converted into digital data, and processed by microcomputer to
generate the command signal for the manipulator. This arrangement has its
drawbacks. First of all, it requires ample computation effort, thus reducing the
bandwidth of the measured data. As a result, the data may not be useful for
bending mode control. Secondly, there are situations where uses of cameras
are not feasible. Therefore, closing the end-effect loop by cameras is not always
an effective approach for the improvement of manipulator robustness.

This report documents the results of a task to provide engineering supoort
for the continued development of a prototype inertially aided robotic end effector
position determination system. This support included the design and fabrication
of a special data acquisition system (DAS), analyzing the effects of system
parameters on position accuracy, developing and implementing real-time
position determination software, and integrating hardware and software into a
single-axis robotic end-effector position determination system. The concept has
numerous advantages as compared to the joint sensor based control. However,
implementation of the concept requires the solution of some practical problems.
The problems and the attempted solutions for them will be discussed. Test
results will also be presented.
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Figure 1 - Robot Manipulator having Joint Sensor Based Control
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2 Advantages of Inertially Aided Robotics

A concept has been proposed to close the end-effector feedback loop
using an inertial measurement system (IMS) (3]. An IMS consists of two parts,
an inertial measurement unit (IMU) and a data processing microcomputer. The
IMU is the sensor which measures both the linear and rotational motions of its
case while the microcomputer processes the IMU output data for the state
(including position and attitude) of its case. By mounting an IMU at or near the
end-effector of a manipulator, as shown in Figure 3, the state of the end-effector
can be determined. By comparing the actual end-effector state and the desired
state, errors are generated, which are processed by microcomputer to generate
the commands for joint sensors. In this approach, precision requirement for joint
sensors, needed for joint servos, can be greatly reduced since the error of end-
effector state is sensed by the IMU and can be made independent of the errors
of joint sensors. This approach may be called the "inertial measurement (IM)
based manipulator control". Figure 4 Jepicts a block diagram of this approach.
Note that total system feedback exists in the arrangement, which is markedly
different from the local feedback in joint sensor based control. It is clear that IM
based control is capable of coping the effects of arm compliance and capable of
providing the desired robustness in control. The advantage of IM based
manipulator control offers many practical features not available from the joint
sensor based control. Some of them are given below:

1. The potential of handling all problems caused by arm and joint
complianccs. This includes improving robustness of the system
with respect to manipulator loading, supporting the control of
bending modes, simpler implementation of learning and repeating
procedures, and stiffer end-effector control.

2. Providing signals for the stabilization of the end-effector of a
manipulator on a moving platform (Figure 5). In fact, it can support
the overall navigation of a mobile robot.

3. Relaxing the need for a complex analytic model of the manipulator
and enabling the use of a simpler algorithm for precision end-
effector control.

4. Relaxing the precision requirement of joint sensors.

5. Allowing the use of lighter arms, thus reducing the bulk and weight
of the manipulator,

6. The potential of implementing a long stick end-effector for reaching
a distant point (Figure 6).

It is clear that a successful development of an IM based control will have a
significant impact on robot technology.

4



Figure 3 - Robot Manipulator Having Inertial Measurement Based Control
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Figure 4 - Block Diagram of Inertial Measurement Based Manipulator Control
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Figure 5 - IM Based Stabilization of End-effector on a Moving Platform
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Figure 6 - IM Based Control of a Long Stick End-effector
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3 Accelerometer Characteristics

3.1 Principle of Operation

A functional block diagram of the 0A2000 accelerometer from Sunstrand
Corporation is shown in Figure 8. The flexure and proof mass are made by
etched amorphous quartz. An acceleration applied parallel to the sensitive axis
will cause the proof mass to bend about the flexure. This movement unbalances
the inputs into the position detector due to the change in the capacitance. The
output of the position detector then drives the torquer amplifier until the proof
mass has returned to the null position. The output of the torquer amplifier is
proportional to the input acceleration and is therefore use as the output signal. A
simple resistive load can be used to convert this signal into a voltage. The
QA2000 package outline and pinout are shown in Figure 9.

3.2 0A2000 Performance Parameters

The 0-flex QA2000 accelerometer from Sunstrand is capable of
measuring accelerations up to 1 kHz with minimal magnitude and phase errors.
This fact can be noted from the frequency response plot in Figure 7. As will be
discussed in the section on system parameters it is important to be able to
measure the signal power from dc to > 1 kHz without degrading the magnitude
and phase characteristics. Therefore future designs should incorporate even
higher frequency devices than the QA2000.

One of the most important properties of an accelerometer for this type of
application is low noise. Accelerometer noise is the dynamically changing output
of the accelerometer that is not related to the actual input acceleration. This
noise can be measured using a frequency analyzer such as the HP3562A from
Hewlett Packard which was used for this task. The power spectrum (PS) of the
accelerometer output without any filters was measured for a nominal dc input
acceleration of 0.0. The PS for two different frequency ranges is shown in
Figures 10 - 11. The two largest noise components at 27 Hz and 120 Hz are
equivalent to sinusoidal accelerations with peak magnitudes of 98 pG and 118
pG. Integrated twice these noise components result in sinusoidal position errors
with peak magnitudes of less than one thousandth of an inch. The reason these
"large" acceleration errors have a negligible effect on the position error is the
double integration effectively divides the magnitude of the noise components by
the square of the frequency. Therefore, the problem occurs for noise
components less than 1 Hz which are determined by the short-term bias and SF
stabilities of the accelerometer. This problem is compounded by the fact that
any noise components near multiples of the sampling frequency get "folded"
down near dc. (This phenomenon is known as aliasing). Hence, filters should
be used to filter out the frequencies above half the sampling rate. The total noise
power, which would be the combination of all frequencies, can be determined by
integrating the power spectrum from 0 to infinity. Taking the square root of the
total noise power will yield the rms value. The rms value was approximated by
measuring the peak to peak value of the output and then dividing by 6 resulting
in 1.2 mG rms. This method of approximating the rms value assumes the
amplitude probability density function to be Gaussian.

Table 1 presents the typical performance parameters of an accelerometer
for the QA2000.

9



Table 1 - QA2000 Typical Performance Parameters

Parameter Value

Scale Factor (SF) 1.25 mA/G
SF Temp Coef 120 PPM/°C
SF Stability 500 PPM

Bias Stability 500 JUG
Bias Temp Coef 30 AG/°C

Range + 25 G

Misalignment 2 mrad

Temp Range -55 to 950 C
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4 Data Acquisition System

4.1 System Overview

A graphical overview of the data acquisition system (DAS) is provided in
Figure 12 with the supporting schematics presented in Figures 13 - 19. A wiring
list of the complete system can be provided on request. The system utilizes two
ADl 170 analog-to-digital convertors from Analog Devices to provide high
resolution (up to 18 bits) sampling at rates up to 500 Hz. The A-to-D converters
are triggered 1800 degrees apart so that the effective sampling rate is twice that
of one convertor.

The system consists of four main sections, 1) the preamplifier and filters,
2) the AD1 170 interface, 3) the 16-bit programmable counter/timer, and 4) the
address decoder. The preamp and filters were specifically designed for used
with the 0A2000 accelerometer. The AD1 170 interface allows for programming
the converters. The counter/timer is used to set up a precise conversion timing
signal and the address decoder provides the interface to an IBM PC/XT/AT or
compatible. The following four sections present a detailed discussion of these
circuits while the last two sections provide the component layouts and a list of
system software.

4.2 QA2000 Preamplifier and Filters

The analog signal processing circuits are shown in Figures 13 and 14. In
the schematic drawings the symbol used for analog ground is a triangle while the
digital ground symbol was parallel lines in the shape of a triangle. The current-to-
voltage preamplifier (U26) has two jumper selectable gains (JMP4) of 4000 and
8000 volts/amp each with a single pole cutoff at 3 kHz.

The jumper selections J M P1-3 provide a dc offset for the preamp that will
cancel the dc signal measured by the accelerometer if the sensitive axis of is
parallel with gravity. This cancellation allows the QA2000 to sense gravity without
havlng to increase the range of the A-to-D which would decrease the resolution
of the system. A better gravity compensation scheme is shown in Figure 20.
This scheme involves averaging the accelerometer output (during zero velocity
update) and then outputting the negative of this average to a digital-to-analog
convertor to bias the preamp and cancel the gravity component. This method
allows for any component of gravity to be cancelled during normal robot
operation.

Another amplifier (U31) with a gain of 5 volts/volt was placed after the
filters to allow for finer range and resolutions. A toggle switch (SW2) on the DAS
box allows either the QA2000 current output to be measured or an external
voltage signal. This external input is not connected to the preamp or filters, but it
is connected to the x5 amplifier. Table 2 shows the proper jumper setting for
each possible G range and Table 3 provides the jumper selections for gravity
compensation.

16
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Table 2 - Jumper Selections for Different Conversion Ranges

Range JMP1 JMP4 JMP7

+~ 1 G 2-4 2-1 1-3

±1/2 G 3-4 3-1. 1-3

+ 1iG 2-4 2-1. 1-2

± 1/2 G 3-4 3-1 1-2

Table 3 - Jumper Selections for Different Gravity Components

Gravity Range J1P2 JMP3
Component

*+1 + 1iG X 6-8

*+I + 1/2 G 6-8 X

0 + 1iG X 5-6

o + 1/2 G 5-6 X

- 1 + 1iG X 4-6

- 1 + 1/2 G 4-6 X

25
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Two 4-pole butterworth filters (Figure 14) with bandwidths of 40 Hz and 80
Hz were used to filter out the noise components of the QA2000 above the folding
frequency. A magnitude response plot for each filter is pictured in Figure 21 and
22. The two bandwidths are jumper selectable as shown in Table 4.

Table 4 - Jumper Selections for Filter Bandwidth

Filter BW JMP5 JMP6

40 Hz 1-2 1-2

80 Hz 1-3 1-3

In a digital sampling system the folding frequency is defined as being half
the sampling frequency (fs). Any frequency components cf the signal being
sampled that are above the folding frequency get "folded" down into the range
between dc and fs/2. This phenomenon is also known as "aliasing". Therefore to
reduce the effects of aliasing, filters are placed before the A-to-D convertor. The
selection of the filter bandwidths used in the DAS (40 Hz and 80 Hz) were
selected for nominal sampling frequencies of 100 Hz and 200 Hz.

A Sallen-Key active filter configuration was used to implement the filters
discussed here. To insure that the filter elements would not add any noise
comparable to that of the accelerometer, a noise analysis was conducted prior to
fabrication. This analysis was done for a 2-pole filter without a preamp as shown
in Figure 23. The input to output transfer function for this arrangement is

Vout  R

Iin 1 + sC2 (R + R 1 + R 2 ) + s2R 2 C2 C!(R + RI)

The current sources (except for the input source) shown in the figure are
actually white noise qyrrent power models for the resistors and the opamp
having units of amps 1Hz. A simple nodal analysis results in the following
transfer functions for each noise source.

For R1

Vout  -R 1  Vout

IRI R Iin

For R2

Vout -R2(I + sC1 (R + R1 )) Vout

IR2 R Iin

27



For R

Vout Vout

IR Iin

For EN

Vout
= 1

EN

For IN+

Vout  (R + R1 + R2 )(1 + sC1 (R2//(R + RI)) Vout

IN+ R Iin

Replacing2,ie resistor noise currents by 4kT/R where k is Boltzmann's constant
(1.38x1 0 J/OK) and T is temperature in oK (Troom = 300 OK), results in the
following equations for the total input referred noise power,

2 4kT R + R1 + R2 (1 + sC1 (R + R1 ))
2

'in2  =R

+ IN+2  [ (R+R 1 +R 2 ) (1 + sC1 (R2//(R + RI))
2

+ EN 2  I in]2

Vout

and the output referred noise power,

Eo2 = Iin2

1in

Substituting in the appropriate values for an 80 Hz Butterworth filter (Table 5) in
the equation for the total output power and then integrating from dc-infinity and
taking the square root gives an rms output referred noise voltage of 1.0 PV.
Referring this value to the input and multiplying by the QA2000 scale factor (1.25
mAIG) gives the input referred noise acceleration of 0.1 pG, which is negligible
compared to the accelerometer noise 1200 pG.

The noise components of the 0A2000 are shown in Figures 10 and 11 of
the previous section. Figures 24 - 27 show the power spectrum of the
accelerometer after being filtered. The 40 Hz and 80 Hz filters reduced the RMS
noise of the QA2000 from 1200 pG to 75 pG and 85 /.G respectively. The OP27
opamp from Precision Monolithics was used in all of the filter and amplifier
designs because of its low noise characteristics (3 nV/,/Hz) and bias stability (0.4

28
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Table 5 - 2-Pole 80 Hz Butterworth Filter Elements

Element Value

R 8.0 kn
R1  5.9 kn
R2  2.4 kn
C1  0.690 AF
C2  0.173 gF

29
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4.3 AD1 170 Interface Circuit

The interface to the AD1 170's shown in Figure 15 was designed according
to the requirements as specified in the data sheets for these devices. A copy of
the AD1 170 data sheet is included in Appendix A. The only deviation from the
data sheet was the connection of the +5V reference of Ul to both reference
inputs of each device. This change allowed the convertors to calibrate using the
same reference which should increase the relative accuracy of the system. The
input impedence of the XTAL pins and the RESET pin did not allow for combining
the crystal oscillator circuits or the reset circuits. The external conversion signals,
data lines, address lines, and the read and write strobes were all transmitted via
a DB25 connector and cable (Figure 16) from the address decoder and counter
timer circuits.

4.4 Programmable Counter Circuit

The programmable counter/timer (C/7) consists of a 2 MHz crystal
oscillator, 16-bit load register, 16-bit counter, 16-bit counter latch, and a 16-bit
comparator. The outputs of the circuit are two clock signals, 1800 out of phase,
which are used to trigger the start of conversion for the two AD1 170's.

To program the C/T for a DAS sampling frequency of fs the low and high
bytes of the result,

Load value = 2.0xl0 6/fs,

are written to the 16-bit load register (U12 and U14) via the I/O bus. The
following "c" subroutine can be used to program the counter for any sampling
rate.

#define CNTRLOWBYTE BASE+8
#define CNTRHIGHBYTE BASE+9

double setupcounter (double frequency)
{
unsigned int

numbcounts, chigh, clow;

double
actualfreq;

numb counts = (unsigned int) (2.OE+06/frequency);
chigh = (numb_counts >> 8) & OxOOff;
clow = numb-counts & OxOOff;

outp (CNTRLOWBYTE, clow);
outp (CNTRHIGH_BYTE, chigh);

actual_freq = 2.OE+06/((double) numbcounts);
return (actualfreq);
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After the registers are loaded and the start command (CNTRW2) is given,
the 2 MHz clock (2MCLK) will start incrementing the counters (U9 and U1 0). The
outputs of the two 8-bit comparators (Ull and U13) signal whenever the count
on the counters is equal to the value set in the load register. The active low
outputs of the comparators are "NORed" to provide an active high input to an
edge-triggered D flip-flop (U16A) which outputs a 50% duty cycle clock (2XCLK)
at the programmed sampling rate. This clock is then divided by 2, using another
D flip-flop (U7A), to provide the conversion trigger clocks CNV1\ and CNV2\.
Figure 28 shows the relative timing of these signals as measured by a logic
analyzer. Once this process is completed then the data ready bit of one AD1 170
can be monitored until it signals the end of conversion. After reading this
AD1 170 then the program can begin to monitor the other AD1 170. The following
sample "c" program illustrates this procedure. The source code of the
subroutines used in this program are included in the real-time position
determination program in Appendix C.

#include <graph. h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <stdio. h>
#include <conio.h>
#include <time.h>
#include <bios.h>
#include "iarinc. h"

void
setupADC defaults (void),
main (void),
waitforA (void),
wait forB (void);

double
readA (void),
readB (void),
setupADC int time (double frequency),
setupcounter (double frequency);

void main ()
(
char

filename[80];

int i;

double
sample, sampfreq, int_freq;

FILE
*file-ptr;
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/* Open output file *//* ******** *** *** ********** ****** ** ******* *** ** ******* ** *****

printf ("\nEnter name of data file: ");
gets (file-name);

fileptr = fopen (file_name, "w");
if (fileptr == NULL)

{
printf ("\n\n\t** Could not open %s for writing **"

filename);
exit (0)

******** ** ***** **************** ******** ******* ****** ******

/* Program ADC and counter/timer for sampling rate of */
/* 200 Hz/************************************************************

outp (CNTRSTOP, OxOOOO); /* Disarm 2MCLK */

setup_ADCdefaults ();

sampfreq = setupcounter (200.0);

int_freq = setup ADCint_time (sampfreq);

outp (CNTRSTART, OxOOQO); /* Arm 2MCLK */

/**********************************************************/*
/* Loop until 2048 samples have been taken */

*** ** * ********** ********** ********* *** ****** *** ** **** * **

for (i = 0; i < 1024; ++i)
(
sample = readA );
fprintf (fileptr, "\n%g", sample);

sample = read B ();
fprintf (fileptr, "\n%g", sample);

I

The advantage of Me hardware initiated conversion is that the processor
can be used for other task besides controlling the A-to-D convertors and the
timing jitter is minimized.
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4.5 Address Decoder Circuit

The basic functions of the address decoder circuit shown in Figure 19
were to furnish chip select signals for the two AD1 170's, provide individual read
and write signals for the addresses occupied by the counter/timer, and buffer the
data transfers to and from the bus. Connections to the IBM bus were made such
that only one TTL LS load needed to be driven by the bus. Therefore the I/O
read and write strobes, and the address bits AO-3 were buffered through a
74LS244.

The switch (SW1) was used to set the I/O base address of the acquisition
system. The range of I/O base addresses is from 100 to 3F0 (Hexidecimal).
(That is address bit A8 is not selectable but hardwired to a "1 "). Figure 29 shows
the address definitions for the switch. The real-time software is setup to run with
a base address of 380 Hex. Table 6 shows the address map of the acquisition
system. The last three I/O locations were reserved for future enhancements.

Table 6 - DAS Address Map

Register/Command Read Write Address Data Lines Used?

AD#1 Command Reg * Base+O Yes
AD#1 Param Reg 1 * Base+1 Yes
AD#1 Param Reg 2 * Base+2 Yes
AD#1 Status Reg * Base+O Yes
AD#1 Low Byte * Base+1 Yes
AD#1 Mid Byte * Base+2 Yes
AD#1 High Byte * Base+3 Yes
AD#2 Command Reg * Base+4 Yes
AD#2 Param Reg 1 * Base+5 Yes
AD#2 Param Reg 2 * Base+6 Yes
AD#2 Status Reg * Base+4 Yes
AD#2 Low Byte * Base+5 Yes
AD#2 Mid Byte * Base+6 Yes
AD#2 High Byte * Base+7 Yes
Cntr Low Byte * * Base+8 Yes
Cntr High Byte * * Base+9 Yes
Cntr Start * Base+10 No
Cntr Stop * Base+11 No
Cntr Latch Cnt * Base+12 No
" Reserved * Base+13
" Reserved * Base+14
" Reserved * Base+15
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The output of the 8-bit comparator (74LS682), which signaled when the
address bits A4-A9 were equal to the base address set by the switch, was
"NORed" with the address enable strobe (AEN\) and then inverted to provide the
enable signal for the octal bidirectional bus transceiver (74LS245). (The original
design used a 74LS688 which has a built in enable eliminating the need for U8A
and U23D). The bus transceiver passed the data bits between the bus and the
acquisition system. The direction of the data transfer was controlled by the
buffered I/O read strobe (BIOR\).

Using the active low transceiver enable (BASEADD\) along with the
buffered address bits BA2 and BA3, the chip selects for the AD1 170's are
generated according to the boolean equations

csl\ =
BASEADD\ + BA2 + BA3

and

CS2\ =

BASEADD\ + BA2 + BA3

The lower 8 I/O locations, which are designated for use with the
programmable counter/timer, are decoded using two 74LS138 decoders, one for
reading and one for writing. The read (CNTRRO-7) and write (CNTRWO-7)
selects are active low strobes that coincide with the I/O read and write strobes
(BIOR\ and BIOW).

4.6 Data Acquisition System Component Layout

The DAS was physically divided into two sections. To reduce errors due
to external noise sources, the preamp, filters, and AD 170 interface were placed
in a shielded enclosure outside of the main processing computer and the
connection to the accelerometer output was via a shielded coaxial cable. The 25-
pin cable was used to communicate with the address decoder and counter/timer
circuits located inside the microcomputer. The component layouts for each
section are pictured in Figures 30 and 31.
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4.6 Data Acquisition System Software

During the development of the hardware and software for the real-time
position determination system, several "mini" programs were written that are still
useful in operating the DAS and Anorad table. These programs are listed in
Table 7 with a brief description of the program's purpose. The source codes
were delivered along with the system hardware and software and therefore are
not included in this report.

Table 7 - ),0 System Software List

Program Name Description

ANORAD.BAS User friendly environment for 7ontrolling
the Anorad linear translaticn/reference
table.

ll70SAMP.C DAS data collection program. Variable
sampling rate. Up to 2048 data points.

lI70ANO.C Same as "ll70SAMP" except it also reads
the position of the Anorad table before
and after sampling to determine total
distance moved.

I170ANOB.C Same as "lI70ANO.C" except it also
commands the Anorad table to move. The
command can be changed in the program
and recompiled for different movements.

ADCAL.C Program used to calibrace the ADll70's
to an external +5V reference.

ADSAVE.C Program used to save all of the default
parameters of the ADll70's to nonvolatile
memory.

ADRECAL.C Recalls the last set of saved AD1170
parameters.

AD1170.C Uses the ADll70's as a simple digital
voltmeter.

II70STOP.C Stops the conversion signals in the DAS
so that the "AD1I70" program can be used.
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Table 7 (cont.) - DAS System Software Ust

Program Name Description

MULTTRAP.C Processes off-line data taken from the
accelerometer. Compatible with "ll70ANO"
and "ll70ANOB". The program compensates
for accel bias and then integrates twice
to determine position. The first run in
a set is used to determine the scale
factor. The output of the program is a
file containing the velocity error and
position error for each run. The data
files in one set should be name with the
same first six letters followed by a
number. Do not use an extension.
ex/ lRUN1, 1RUN2, lRUN3,...RUN9
This program integrates using the
trapezoidal method.

MULTSIMP.C Same as "MULTTRAP" except it uses the
Simpson's rule for integration.

MULTADAM.C Same as "IMULTTRAP" except it uses the
Adam-Basforth method for integration.
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5 Affects of System Parameters on Position Error

5.1 Data Acquisition System Parameters

A computer simulaion was conducted to determine the effects of the anti-
aliasing filter bandwidth, the data sampling rate, and the resolution on position
error. The simulation was programmed using a simulation environment called
SimPack which was developed by System Dynamics [6]. SimPack allows one to
simulate any system, linear or non-linear, analog or digital. A SimPack user
develops the models he needs and then programs them in FORTRAN. The
program used for the DAS system is included in Appendix B.

The inputs to the simulation were filter bandwidth, sampling rate,
resolution, distanced moved, and simulation minimum and maximum rates.
Based on the desired distance moved the program would calculate the
appropriate time intervals of a predefined acceleration input. A typical
acceleration input is shown Figure 32. The simulation did not model any
accelerometer errors.

A typical plot of the position error versus time is provided in Figure 33.
The error grows during positive acceleration reaching a maximum when the
acceleration turns negative and returning near zero when the velocity returns to
zero. The fact that the final error is negligible means that the errors of the DAS
tend to cancel over a movement that starts at zero velocity and ends at zero
velocity.

Each of the three parameters under consideration were swept
independently over reasonable ranges. The two parameters that were not being
swept for a given set were set to default values that would have negligible effects
on the results as shown in Table 8. An execetion was the case where the
sampling rate was swept in which the filter bandwidth was always set to 1/4 of
the sampling rate.

The results are presented in the form of plots where the final position error
and the maximum position error are plotted versus the particular parameter
being swept. Figures 34 - 36 show that the bandwidth and sampling rate have a
negligible effect on the final position error while a resolution greater than 14 bits
will result in a final error less than 1 thousandth of an inch. Figures 37 - 39 show
that a resolution of at least 12 bits will reduce the maximum error down to 10
thousandths while a sampling rate of than 2 kHz and bandwidth of 1 kHz is
required for the same maximum error.

The results of this simulation show that a DAS with a higher sampling rate
(4 kHz) and lower resolution (16-bits) would be more appropriate than the low
bandwidth (100 Hz) and high resolution (20-bits) required in this task.

Table 8 - Simulation Defaults

Parameter Variable Default

Filter Bandwidth Fc 1 kHz
Sampling Rate SampRate 4 kHz
Resolution Numb ofBits 32 bits
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5.2 Inertial System Parameters

The concept of IM based manipulator control is very attractive based on
physical principles. However, the use of IMU has its difficulties because of
sensor imperfections. Referring to Figure 4, one sees that the block representing
IMU is in the feedback path. It is well known in feedback control theory that any
uncertainly in a feedback element affects the system output directly and its effect
cannot be lessened by the use of feedback. Therefore, finding ways to
sufficiently reduce the uncertainties in an IMU is the key to a successful
development of IM based control. Imperfections in an IMU mainly come from its
inertial sensors, namely, accelerometers and gyros. Accelerometers suffer from
bias uncertainties, gyros suffer from drift uncertainties, and they all suffer from
scale factor uncertainties and nonlinearities. These uncertainties are slowly time
varying quantities in general, which may become excessive over a sufficiently
long period of time.

5.2.1 Inertial Bias Uncertainties

The precision of commercial accelerometers range from 10 micro-g to
10,000 micro-g, where g = 9.8 meters/sec, and that of commercial gyros range
from .001 degree/hr to 100 degrees/hr. Consider an IMU equipped with high
grade inertial sensors having the following uncertainties:

Accelerometer bias: 10 micro-g
Gyro drift: .01 degree/hr

Then, over an one minute period, the accumulated position error is about 18
centimeters, and the accumulated attitude error is about .6 arcsecond. The
position error is not acceptable for most manipulator applications. If the
accelerometer bias uncertainty can be reduced to 1 micro-g, then the position
error will be 1.8 centimeters which is acceptable for some applications. The IMU
imperfection problem may be solved by using a certain novel reinitialization
technique during the course of manipulator operation. It is hoped that sensor
uncertainties will change only slightly over a very short period, say, a few
minutes. Then, at the end of each short period, the IMU is reinitialized to reduce
the values of uncertainties. By so doing, the cumulative errors of the IMU can be
kept sufficiently low. In the present study, a robot manipulator having only one-
dimensional linear motion in the horizontal plane is considered. IM based control
of such a system requires only a single accelerometer as inertial sensor.
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5.3 Numerical Integration

A numerical integrator is needed to convert acceleration data to velocity
and position data. Since a numerical integrator is an approximation to the ideal
integrator, it causes errors. Three numerical integrators are compared. The
three are trapezoidal rule integrator, Simpson's rule integrator, and Adam-
Bashforth integrator. Their time domain algorithms and associated frequency
domain transfer functions are given in the following:

Trapezoidal Rule Integrator

Algorithm:
Yk = Yk-I + (xk + Xk-l1)*T/2 (1)

Transfer function:
T (1 + z)

HT (z) = (2)2 (1 - z - )

Simpson's Rule Integrator

Algorithm:
Yk = Yk-1 + (5xk + 8Xk-I - Xk-2)*T/12 (3)

Transfer function:
T (1 + 4 + Z 2 )

HS (z) = (4)

Adam-Bashforth Integrator

Algorithm:
Yk = Yk- 1 +

( 5 5 xk - 5 9Xk_1 + 3 7 Xk_2 - 9xk_3)*T/24 (5)

Transfer function:
T (55 - 59z' + 37z 2 - 9z- 3

HA(z) = 24 (1 - (6)

The comparison is done by comparing the frequency responses of the
three numerical integrators. The sampling frequency used in this test in 100
hertz. Figure 40 shows the magnitude and phase responses of the three
numerical integrators and the ideal integrator. The gain of Simpson integrator
becomes infinite at the folding frequency while the gain of trapezoidal integrator
becomes zero at that frequency. These phenomena can be explained with the
help of the pole-zero diagrams of integrator transfer functions as shown in Figure
41. Notice that the Simpson integrator has a pole at the folding frequency, which
accounts for its infinite gain at that frequency. On the other hand, the trapezoidal
integrator has a zero at the folding frequency making its gain zero there. All
three integrators have pole at d-c.

To further compare these algorithms, the time-domain root-sum-square-
error was calculated at different frequencies for a folding frequency of 50 Hz and
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tabulated in Table 9. This table shows Simpson's rule to be the best up to about
40 Hz, the Trapeziodal method is best from 40 to 45, and the Adam-Basforth
algorithm is best from 45 to 50. Therefore, if the signal bandwidth is below an
anti-aliasing filter with a bandwidth below 0.4fs , then the Simpson's Rule
integrator is the best.
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Table 9 - lime-domain Comparison of Three Numerical Integrators

Frequency (Hz) Root-Sum-Square-Error
Adam-Basforth Simpson Trapeziodal

5 0.34199 0.00006 0.00321
10 0.12252 0.00047 0.00646
15 0.08159 0.00160 0.00976
20 0.08688 0.00382 0.01318
25 0.08266 0.00368 0.01673
30 0.06578 0.01379 0.02048
35 0.04446 0.02422 0.02449
40 0.02896 0.04495 0.02883
45 0.02848 0.10783 0.03362
50 0.04502 0.04502 0.04502
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6 Inertial Error Compensation Schemes

As discussed earlier, the growth of IMS errors can be contained by
frequent reinitializations during the course of manipulator operation. Different
initialization scheme 3, with different degrees of sophistication, can be devised. It
is assumed that the accelerometer can be modeled by

m = Ka + B (9)

where m is the measured acceleration, a is the true acceleration, K is the scale
factor, and B is the bias. The bias if further modeled as a linear function of time t
over a short time period, that is,

B = B0 + Blt (10)

where B0 and B1 are constants. The purpose of frequent reinitialization is to
determine the parameters of the model and make corrections for velocity and
position periodically (-once a minute). In the following, three reinitialization
schemes, with increasing degree of sophistication, are presented.

6.1 Zero-Velocity Update

Zero-velocity update, abbreviated ZUPT by the navigation profession, is
the simplest initiation scheme. It provides information to update only one
accelerometer error parameter, usually the constant term B0 of the bias. When
end-effector stops, its true velocity is zero. Any nonzero velocity computed from
accelerometer output is the velocity error ver of the inertial measurement
system. Assume uncertainties in K and B are negligible, one has the relationship

Verr = B0T (11)

where T is the time of elapse from the previous initialization. Thus Bo can be

computed from

B0 = Verr/T (12)

With B0 known, the present end-effector position can be corrected using

Snew = Sold - B0t
2/4 (13)

where Sold and s h are end-effector positions before and after the correction,
respectively. The ZUPT software based on this principle is given in the form of a
computer flow chart shown in Figure 42. Details in flow chart blocks are given
below.

Given: One base-station, the home station
N, the number of motions
DK, direction of the k-th motion, k=1 to N
DK, distance for the k-th motion, k=l to N
B, the initial accelerometer bias

63



K2F, the accelerometer scale factor

Block 1. Read initial reference position xref(O).
Set initial IAR distance D (0)=O.
Set k=1, the first motion.
Set the total distance traveled DT=0.
Set the total computation time steps iT=O.
Set the present computation time step i=l.

Block 2. Command motion to start.

Block 3. Read accelerometer output data a(i).

Block 4. Integrate a(i) to give velocity v(i).

Block 5. Is D(i) = DK?

Block 6. Command motion to stop.

Block 7. Compute accelerometer bias uncertainty

T = i x at
B0= -V(i)

T

where t is the sampling period. Update bias by

B = B + B0

Compute position correction

x = x - B0T
2

Compute the total time steps iT = iT + i.
Compute the total distance DT = DT + D(i).
Reset i=0.

Block 8. Read reference position Xref(iT).

Block 9. Compute reference distance
Dref = Xref(iT) - Xref(O).

Compute error in IAR distance e = D(iT) - Dref.
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6.2 Zero-Velocity Update with Round-Trig Motion

If the motion of the end-effector consists of one or more round-trip stops,
then at each round-trip stop the true velocity is zero and the true net distance is
also zero. Any non-zero values of velocity and distance, computed using
accelerometer output, are errors. Let Ver r and Perr be the non-zero velocity
and distance values at the end of a round-trip, and let T be the total time for the
round-trip. The Vetr and Perr are related to the bias coefficient uncertainties
Bo and B1 through the following equation.

Verr = TB0 + T2 B1
2

Perr = T 2B0 + T 3Bl 
(14)

2 6

Solving the above equations for Bo and B1 , gives

B0 = 2 Verr + 6 2 err
(15)

B1 =T er -6 . Perr
T T

Therefore two accelerometer bias coefficients can be updated. Figure 43 is a
computer software flow chart for the scheme of zero-velocity update with round-
trip motion. Details in flow chart boxes are given below.

Given: One base-station, the home station
N, the total number of motions
dK, the direction of the k-th motion, k=l to N.
DK, the distance of the k-th motion, k-I to N.
Accelerometer bias B = B0 + Blt.
Accelerometer scale factor Kst.
Stops which are round-trip stops.

Block 1. Read initial reference position Xref(0).
Set initial distance D(0)=0.
Set motion number k=l.
Set the total distance traveled DT=O.
Set the time step count, for each motion, i-i.
Set the total time steps iT= 0.

Block 2. Command motion to start.

Block 3. Read accelerometer output data a(i).

Block 4. Integrate a(i) to give v(i).
integrate v(i) to give D(i).

Block 5. Is D(i)=Dk?

Block 6. Command motion to stop.
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Block 7. Is this end of a round-trip?

T = ix t

B0 = ViL
T

Update bias B0 = B0 + B0 .
Compute position correction

x = x- B0T
2

Compute total time steps iT = iT + i.
Compute total distance DT = DT + D(i).

Block 9a. Read reference position xref(i).

Block 9b. Compute IAR distance error

D = D(i) - [Xref(i) - Xref(O)]

Compute accelerometer bias coefficients

B0 = -. V(i) + 6 D
T

B1 = 6 V(i) + I D
T T

Compute

B0 = B0 - B0
B1 = B1 - B1

i T = i T + i
DT = DT + D(i)

Compute position correction

x = Xref

Reset i=i.

Block 10. Read reference position xref(iT).

Block 11. Compute reference distance

Dref = Xref(i) - Xref(O)

Compute error in IAR distance

E = D(iT) - Dref
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6.3 Zero-Velocity Update and Two Reference Stations

This scheme posseses all the features of previous schemes with the
addition that two base-stations are available, the scale factor of the
accelerometer can be updated if the motion from one base-station to the other is
in all in one direction. The distance traveled is

DTR = XRS2 - XRS1 (16)

where XR$1 and XRS2 are positions of the first and second base-stations,

respectiveFy, and DTR is the true distance between the two base-stations. Then
the scale factor correction factor is given by

/08 = DTR/Dcomp (17)

The updated scale factor Is

Knew = a8Kold (18)

The above scale factor update procedure is used in the real-time menu
option labeled with (Ml). The menu option labeled (M2) updates the scale factor
by averaging the above update with the last update,

Knew = (P8Kold + Kold)/2 (19)

Figure 44 is the computer software flow chart for this scheme. Details in
flow chart blocks are given below.

Given: Two base-stations, with positions XRS2 - XRS1
N, the total number of motions
dK, the direction of the k-th motion, k=l to N.
DK, the distance of the k-th motion, k-i to N.
which stops are at base-station
Accelerometer bias B = B0 + Blt.
Accelerometer scale factor Kst.

Block 1. Read initial reference position xref(O).
Set initial IAR distance D(O)=O.
Set initial position x(O) = Xref(O).
Set motion number k=l.
Set the time step count, for each motion, i-i.
Set the total distance traveled DT=0.
Set the total time steps iT= 0.

Block 2. Command motion to start.

Block 3. Read accelerometer output data a(i).

Block 4. Integrate a(i) to give a(i).
Integrate v(i) to give D(i).

Block 5. Is D(i) = Dk?
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Block 6. Is this a base-station stop?

Block 7. Command motion to stop.

Block 8. Compute bias uncertainty

T = ix t

B0 = VLil
T

Compute updates

B0 = B0 + B0

iT = i T + i

DT = DT + D(i)

Reset i=0.
Compute position correction

x = x - - B0 T 2

Block 9a. Command motion to stop.

Block 9b. Read reference position Xref(i).

Block 10. Is this a one way motion from last base-station?

Block 11. Compute IAR distance error

D = D(i) - [Xref(i) - Xref(O)]

Compute bias coefficients

B0 = 2 V(i) + 6 D
T T

B1 = 62 V(i) + _ D
T T

B0 = B0 + B0

B1 = B1 + B1

Set iT = iT + i and DT = DT + D(i).

Reset IAR position x(0)=Xref(i).

Reset initial reference position Xref(O)=Xref(i).

Reset i = 0.
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Block 12. Same as Block 11 with additional scale factor
update computations.

BSF = Actual distance between 2 base-stations
Computed distance between 2 base-stations

KSF = BSFKSF

Block 13. Read reference position x (i).

Block 14. Compute error in IAR position

E = x(i) - Xref(iT)
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7 Real-time Position Determination Software

The real-time position determination program is a menu driven
environment that allows the user to setup and test a single-axis inertial
positioning system. The program was written in the "c" programming language
and compiled using the Microsoft C Version 5.1 Optimizing Compiler. The
source code is included in Appendix C. The modular design of the program will
allow a different DAS, translation table, or processing unit to be used by only
modifying a few subroutines. A flow chart of the program is given in Figure 45.

The main menu offers four options:

1) System Setup - Activates a sub-menu with choices to
calibrate the AD1 170's, calibrate the QA2000 scale factor and
bias, select one of three integration methods, or change the
DAS sampling frequency.

2) Experiments - Activates a sub-menu with that allows the user
to select from five application scenario tests. A log file will
record each test that is run along with the results.

3) Free-Running Position Display - Uses the currently selected
sampling rate, and integration algorithm along with the last
updates of the scale factor and bias to display the real-time
position of the accelerometer. The program will capture any
key-strokes and send them to the Anorad table so that the
accelerometer can be moved. (Appendix D contains a brief
description of all of the Anorad table commands.) A no-
motion command signal can be generated by pressing "Z"
which will invoke a zero velocity update. To return to the main
menu press "*"

4) Quit - Quits the program.

The five application scenarios are actually tests of the compensation
schemes discussed in section 6. The tests are referred to in the program menu
as:

1) Single Motion Test - Does not use any compensation. One
run equals one 3.6 inch move.

2) Multiple Motion Test w/ZUPT - Updates the accelerometer
bias by simply averaging the output of the accelerometer
inbetween movements. One run equals three 3.6 inch moves.
Discussed in section 6.1.

3) Multiple Motion Test w/ZUPT & Unknown Base - Updates
the accelerometer bias by using the position error and velocity
error over one run. One run equals two 3.6 inch moves - one
forward and one backward. Discussed in section 6.2

4) Multiple Motion Test w/ZUPT & Known Base - Updates the
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4) Multiple Motion Test w/ZUPT & Known Base - Updates the
accelerometer bias by using the position error and velocity
error over one run. One run equals two 3.6 inch moves - one
forward and one backward. Discussed in section 6.2

5) Multiple Motion Test w/ZUPT & 2 Known Base (M1) -
Updates the accelerometer bias and scale factor by using the
position error and velocity error over one run. One run equals
two 3.6 inch moves in the same direction. Discussed in
section 6.3

6) Multiple Motion Test wIZUPT & 2 Known Base (M2)
Updates the accelerometer bias by using a regular ZUPT and
updates the scale factor using the position error. One run
equals two 3.6 inch moves in the same direction. Discussed
in section 6.3

The results of each test run along with the statistics and experimental
conditions for each set or runs are stored in a log file. A plot of the acceleration
profile for the 3.6 inch movement used in most of these tests is shown in Figure
46.

The temperature compensation was implemented implicitly since the bias
and scale factor (SF) updates would take into account the variations due to
temperature changes. This implicit method is better since the temperature
coeffiecients vary significantly from one measurment to another as determined in
phase one of this project.

The heart of the real-time software is a subroutine called
"integrate andmove" which simultaneously determines the real-time position
and controls the Anorad table. The inputs to the routine are amount of time to
determine position in seconds and a character string of Anorad table commands,
while the output is the distance moved in inches after the specified time.
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8 System Tests

8.1 System Setup

The robot end-effector having one-dimensional linear motion was
implemented using a linear motion table manufactured by Anorad Corporation,
Hauppange, New York. The table was equipped with a motion controller
contained in a separate box. Mounted on the table is an optical linear encoder
which can measure the position of the table to 16 microinches. The table is
maintained level. An accelerometer is mounted on the table with its input axis
pointed along the direction of table motion. The output of the accelerometer
goes to the DAS which contains interface electronics, anti-aliasing filter, and ND
converter. The output of ND converter goes to a microcomputer (Compaq
386/25) which is also connected to the table controller via an RS232 port. The
RS232 cable connections are shown in Figure 47. Figure 48 is a sketch of the
system setup.
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8.2 Test Results

Using the real-time software the system was tested for each application
scenario. The single motion test, multiple motion test with ZUPT, and multiple
motion test with ZUPT and two bases (M2) were the only compensation schemes
that provided any useful results. Table 10 summurizes the results of these tests.
The scheme number in the table is the menu number as specified in section 6.
Each result in the table represents the statistics of 50 runs for a filter bandwidth
of 40 Hz, an A-to-D range of 1.0 Gs, and the trapezoidal integration method. The
log files for the tests are included in Appendix E. The compensation schemes for
the remaining tests relied on the accelerometer bias to be the dominant error
source and also that the bias could be modeleled by

B = Bo + Bit .

Evidently the accelerometer errors such as SF stability and nonlinearity are as
dominant as the bias.

Since the results of these tests were below that expected of the DAS, a
more detailed simulation of the system including the accelerometer error sources
should be conducted. Such a simulation would be able to determine system
performance for a variety of accelerometers, DAS's, and integration algorithms.

Table 10 - Real-Time Test Results

Scheme Sampling Rate Max Err Mean Err Stand Dev

1 200 Hz 0.268 0.150 0.055
2 200 Hz -0.412 -0.281 0.049
6 200 Hz -9.255 -0.383 1.617
6 200 Hz 1.328 0.008 0.219

1 300 Hz 0.187 0.061 0.054
6 300 Hz -0.583 -0.012 0.092

Position errors and standard deviation are in inches.
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9 Conclusions and Recommendations

The test results of the system were below that expected of the DAS.
Therefore, the dominant error sources seem to reside in the accelerometer. An
accelerometer that is specifically designed for this application (operation range of
+ 2 Gs) is needed. Also, from the simulation of the DAS, it was determined that
20 bits resolution is more than needed and a 100 Hz sampling rate is too slow for
real-time accuracy. Hence, using a 16-bit converter to sample at 20 kHz and
then averaging 4 samples resulting in a 5 kHz acceleration update should be
more accurate than the current system for real-time position accuracies less than
10 thousands of an inch. The averaging scheme will also tend to increase the
effective resolution of the system. Before continuing any more hardware
development an in-depth simulation of the entire system (open and closed loop)
from the accelerometer to the processor should be conducted. This approach
would better define the propagation of error sources to the position error.
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k ADI170 contains no internal trim; its span accuracy is As shown in the diagram, the calibration technique tends to
ctory calibrated by using the ECAL (Electronic CALibration) exaggerate the relative error at the negative end of the scale, and
amirc. This feature is a firmware routine which measures an reduce the error between 0 and + 5 volts. This characteristic
,ernally applied reference voltage, compares it to the internal happens to be most beneficial when using the AD1170 in systems
fercace voltage, and computes a span correction factor which where the input comes from a sensor whose signal is mostly 6
stored in nonvolatile memory. The correction factor is then positive, such as a thermocouple.

,plid to all subsequent measurements, thereby compensating For systems where the user desires to minimize the relative
c the reference error. The ECAL function may be invoked by error equally across the whole span of the converter, it is possible
wc user at any time, thereby replacing the usual trim potentiometer to intentionally introduce a span error during the ECAL procedure,
ith a totally electronic calibration capability. as shown in Figure 3. This scheme sacrifices positive full-scale

NDERSTANDING THE AD1170 SPECIFICATIONS accuracy in order to minim;ze negative full scale error. The net
he AD 1170, because of its unique conversion technique, is result is a relative accuacy equal to the integral nonlinearity.
pecifid quite differently from more conventional integrating EROR

nverters. The following sections will help the user to understand
,here the sources of error are, and how to extract the best -S VOLTS

ossible performance from the converter. _ _ __ _ _

'here are two primary sources of error in the AD1170: integral . NT  G L "

onlineariry of the charge balancing converter, which influences.........
ll conversions equally, regardless of the integration period and
alibration period; and the noise error of the measurementcali- iIEN ,,ONAL MISCAILBRA7ON

EQUAUZES ERROR AtB901)
Pration process, which is a function of the integration period ENOSOF SCALE

nd calibration period as selected by the user. Figure 3. Relative Accuracy with Intentional Span Error at
+F.S.

NTEGRAL NONLINEARMT In both cases the accuracy of the input offset (which is servo
['he integral nonlinearity of the charge balancing converter controlled) is not compromised.
,CBC) is t l0ppm (t0.001%) of Span. This specification is an
'endpoinet nonlinearity measurement; i.e., the typical deviation MEASuREMENTICALIBRATnON NOISE
men from a straight line drawn between the CBC output at - 5 Measurement noise refers to the conversion-to-conversion uncer-
vlts and its output at + 5 volts. This specification excludes any tainty caused either by mathematical truncation or device noise.
pin or offset error. Calibration noise is actually the measurement noise resulting
If the converter was externally calibrated at its end points (- 5 from the calibration process. The converter stabilizes itself by
volts and + 5 volts), then the integral nonlinearity would also be performing internal measrements of the reference, and ofground;
the relative accuracy of the converter. This is not the case in the these measurements have the same uncertainty due to noise as
ADI70, however, because calibration is performed internally at does the normal measurement process.
0 and + 5 volts, rather than - S and + 5 volts. This calibration
technique, superimposed upon the integral nonlinearity of the The measurement and calibration noise error of the AD 1170
CBC, results in the curve shown in Figure 2. determines the differential linearity, or useable resolution, of the

converter. This parameter determines the usable resolution

ERROR because it defines what codes can be seen through the noise.
The specified value is the amount of error, in either direction
from the average reading, which will not be exceeded for 95%

- S VOLTS -S VOLTS of all conversions. This parameter, as in all integrating converters,

.... is a function of the integration time; long conversions result in
INPUT VOLTAGE .L. ..- "very high resolution, while short conversions provide lower

"- - ...... resolution. In the AD 1170, all internal computations are always... -" *"" -INTEGRAL

.ONLINuRry carried out to 22-bit resolution, but useable resolution is limited
by the peak-to-peak noise, as determined by T(cal) and T(int).

Figure 2. Relative Accuracy and Integral Nonlinearity The chart shown in Figure 4, illustrates the typical peak-to-peak

when Calibrated noise (in ppm Span) versus T(int) and T(cal). These numbers
can be used to indicate how much useable resolution can be

I CAL :

T(cal)= 1ms lOms 16.7ms 20ms looms 166.7ms 300ms DISABLED UNITS

T(int)= lms 208 115 115 114 113 112 111 110 :t ppm of SPAN

loms S, '"224 18 16 13 13 13 12

16.7ms --- / 14 13 8 8 8 8

20ms , .' .,/ ",. 12 7 7 7 7

lOOms 7 7 4 / 7 / "'/// / .0 4.0 3.5 3.5

166.7ms r,' - - --"-/ ,y//, // 1/ .// 4.0 3.5 3.5

300ms /"/ 7 /3.5 3.5

Figure 4. Typical Peak-to-Peak Noise (in ppm Span) Versus T(int) and T(cat)
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expected under a given set of operating conditions. For example, RESET

a peak-to-peak noise of t 8ppm is approximately analcious to a A reset sequence must be accomplished after power-up and

flicker of = 0.SLSB at 16 bits of resolution. Under these conditions, before any access to the converter. The RESET line initializes

a user could set the default format for the AD 1170 to 16-bit the internal logic of the AD 1170. This Line may be driven from

resolution, and observe no more than = I/2LSB of differential an external source, such as may exist in most computer based

error. See Table I for conversion of typical peak-to-peak noise systems, or it may be connected to a simple RC circuit which

to Differential Nonlinearity and Useable Resolution. will automatically invoke a reset sequence at power-up. Figure 5
illustrates the recommended circuit.

The chart in Figure 4 may also be used to determine the minimum
effective calibrauon time for a specified integration period; the When driving the RESET Line from an external source, the line

noise contributions of both the measurement cycle and the must be held high for at least 2 microseconds after the oscillator

calibration cycle combine as the "root sum square", and the is running and stable (rypically 300 microseconds after power is

combined effect tends to asymptotically approach a baseline applied) in order to assure a proper reset.

value determined by the shorter of %he two. For exampie, a CLOCK
T(cal) greater than 10 milliseconds does little or nothing to The AD 1170 requires a 12M Hz clock for operation. This clock

improve the noise performance for conversions using a T(intc of may be supplied by connecting the XTAL OUT and XTAL IN

1 millisecond. pins to a 12MHz crystal, along with two resistors and two capacitors
as shown in Figure 5.

RESOLUTION, RESOLUTION! The user may also supply a 12MHz logic signal from an external
AT I2LSB AT ILSB DIFFERENTIAL source. such'as may be available in the user's system. In this

NOISE I DNLERROR DNLERROR NONLNEArrf T

(ppm Span) i (NO. OFBITS) (NO. OF BITS) (%Span) case, the external clock should be applied to the XTAL IN pin,

and the XTAL OUT pin should remain unconnected.

244 11 12 0.024 POWERING THE ADI170
122 12 13 0.012 For best performance, the user should pay careful attention :o
61 13 14 0.006 proper power supply bypassing, as well as grounding. Analog
31 14 15 0.003 common and digital common are not connected internal to the
15 I15 16 0.0015 module, but must be connected externally. Figure 5 illustrates
4 16 17 0.00076 the proper connection of power and ground to the AD 1170'.
4 [ 17 18 0.00038

2 18 19 0.00019 REFERENCE CONNECTIONS
The internal - 5 volt reference of the AD1170 is brought out to

Table IConversion of Noise Error to DNL and Usable Pin 21 of the module; for normal operation, it should be connected
Resolution to the reference input (Pin 23).

SIGNAL INPUT CONNECTIONS An external reference voltage of from 4.5 to 5.5 volts may be
The AD 1170 has both a positive input pin (- -IN) as well as a applied to the reference input (Pin 23), and the reference output
negative input pin (-IN), but the ADI 170 input is not a true may remain unconnected. The data will be ratiometric to that
differential input. The negative input pin is an input used during reference. The input impedance of the reference input is ap-
calibration cycles to establish the zero reference. In applications proximately 16K ohms. The reference input is not dynamic; any
with static ground offsets, the - IN pin may be used as a ground external reference voltage must be an essentially static DC
sense input, to sense a signal reference point which is offset signa.
from analog common by a small differential. Both the - IN and IINTERFACING TO THE AD 1170
+ IN signals must have a bias current path back to analog com- The AD 1170 contains an eight-bit microprocessor compatible
mon. Figure 5 illustrates the proper use of the input signal interface structure, including control lines. It can be interfaced
connections. to any microprocessor-based system in either a memory mapped

or I/O mapped mode, and occupies four successive bytes of
INPUT 1 31 Z2P~F  read/write address space, as shown in Figure 6.'

-INPUT 20 7
2CS RD WR Al AO FUNCTION

I VOTS 1 H X X X X Device Not Selected
L H L H H (Unused)

OG. L H L H L Parameter2Write
.7 AD11TS - L H L L H__ Parameter I Write

6L H L L L Command Write
L L H H H High Data Read

S L L -H HTC L MidDataRead
4 , - _______

DIGITAL - 26 W L L H L H LowData Read
COMMON =_ RFUL L H L L Status Read

X = DON'T CARE X DON'T CARE

23 Figure 6. Control Functions

'Attenpting ro READ and WRITEat 'hc Ame rinie TD and 7'R et !ow
Figure 5. Input, Power, Reset, and Clock Connections miv Alter *he onrenrs ot -he itcrnal nonoliatile ,emorv.
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lie ADI170 is controlled by writing a command into the lowest 7 136 85 84 83 82 81 so

yte of the device image. Upon receipt of the command byte, * * u. INT CMO DATA D US
ie BUSY line is set low, indicating that command interpretation
in progress. The BUSY line returns high, following command * UNUSED: CONTENTS INDETERMINATE

2terpretacion and a command dependent execution time. This Figure 7. The Status Byte (
ignals that the command execution has been completed, and
nother command may now be written. The logical inverse of OUTPUT DATA FORMAT
he BUSY line is available in the STATUS byte for use in poring. The AD 1170 architecture allows a programmable data format
ee the section below about THE STATUS BYTE. independent of the integration time. The user may specify any

l'hen the command requires one or two parameters, in addition resolution from 7 to 22 bits, and may specify either offset binary

o the command byte, they must be written into the second and coding or two's complement coding. Programming the data

hird parameter bytes of the image before writing the command format is accomplished via the use of the SDF command, using

yze. This is because writing the command byte triggers the the format code described in the table in Figure 8 as the

nicroprocessor to begin command interpretation. PARAMETER I value.

rollowing the execution phase of any command, the CMD ERR C. C3  C2  C, C, DATA FORMAT

)it in the STATUS byte wil indicate acceptance or rejection o I H X X X X Two's Complement

he command. When set, this bit indicates that there was a
:ontexrual or syntactic error in the command or parameters. L I X X X X Offset Binary

be initiated either bv bus command, or bv a X I H H H H 22 Bits

iigh to low transition of the EXT CC Line'. Externally triggered X H H H L 21 Bits

:onversions behave in the same way as bus triggered conversions, X H H L H I 20 Bits
1cept that the BUSY Line and re 3USY batin ,he status word X H H L L 19 Bits

temain inactive; the end of execution of externaly triggered I X H L H H I 18 Bits
-onversions must be determined bv examinacion ,)f the DTA X H L H L 17 Bits
RDY line nr -he DTA RDY bit in the STATUS word. X H L L H 16 Bits

rlHE STATUS BYTE X H L L L 15 Bits
the lowest readable byte of the device image is the STATUS X L 2 H H H 14Bits
)yte; it contains six bits of information about the current status X L i H H L 13 Bits
)f the AD 1170. This byte may be examined by the host processor
it any time. The individual bits in the status byte (see Figure 7) X L H L L 11 Bits
ire assigned the following functions: X - L

X L L I H H 10Bits
BITO The BUSY bit is an inverted version of the signal on Pin X I

7 of the module. When low, it indicates that the AD 1170 X LL

is ready to receive a command. When high, it indicates X L L L I H 1 8 Bits
that the ADII70 is busy executing the last command. X L L L L 1 7 Bits
Any commands loaded while the BUSY signal is high will X DON'T CARE (C- Cs C= X FOR ALL DATA FORMATS)
be ignored. Figure 8. Format Code

BITI The DTA RDY bit ,aiso available on Pin 10 of the module,
goes high to indicate that the data from the most recent It should be noted that the AD 1170 computes all data to 22 bit
conversion is available in the LOW DATA, MID DATA, resolution. However, not all 22 bits are useable, since the differ-
and HIGH DATA registers. This bit is cleared at the enial performance is largely dependent upon factors such as
start of the next conversion. It may also be cleared by integration period and calibration period. The SDF command
executing an EOI command. simply serves to round off the result to the specified number of

BIT? The DATA SAT bit is set by any conversion which is bits. The graph in Figure 4 can be used to estimate the amount
saturated, i.e.. any conversion whose output data exceeds of useable resolutio n achievable for a specified integration period
positive or negative full scale. and calibration period.

BIT3 The CMD ERR bit indicates that the most recently loaded The output data is always right justified within the three output
command contained a contextual or syntactic error, or bytes (LOW DATA, MID DATA, and HIGH DATA,. If two's
was not recognized. It is cleared when the next command complement format is selected, the MSB of the data is inverted
is loaded. and extended all the way to the top of the HIGH DATA byte.

For example, if 16 bit two's complement format is selected, the
[T4 The tNT bit 'also available on Pin I l of the module) goes data will appear in the LOW DATA and MID DATA bytes,

high to indicate that the input signal is currently being and the MSB will be 0 for positive inputs.: The format is a
integrated. It is used in multiplexed systems to determine n te m eer heneve an S h fom ma s t

nonvolatile parameter; whenever an SAVA command is executed,
when the input multiplexer may be switched. the current format will be saved to nonvolatile memory, and

31T5 The PWRUP bit also available on Pin 14 of the module) will become the default format upon powerup.
goes high when the module is powered up or when the
RST command is executed. It remains high until device ation for E Cs one mcrosecond.
initialization is complete. This signal is used to indicate 2Si the sign is extended af tihe way to me top ul the uppermost byte, the
readiness of the converter after system initialization. HIGH DATA byte will be filled with the value of the MSB.
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PROGRAMMING THE INTEGRATION PERIOD C2 C, C. INTEGRATnONTIME NOTES
The key parameter of any integrating A/D converter is the
integration period. As shown in Figure 9, an integrating AiD L L I 1 Millisecond

converter provides maximum normal mode rejection at those L L H 10Milliseconds

frequencies which are integral multiples of 1/I(int), where T(int) L H L 16.667 Milliseconds 1 cycle q 60Hz

is the integration period. The most common way to exploit this L H f H 20 Milliseconds I cycle (" 5OHz I

characteristic is to set the integration period equal to one period H L L 100Milliseconds 50/60Hz

of the power Line frequency so that ac hum will be rejected. H L H 166.67 Milliseconds 10 cycles a 60Hz

I H H L 300 Milliseconds 50/60Hz
Retke ¢mqme. T * - ': H H H (See Note)

1 1 oNOTE

0 10 T This code is used for externally loaded integration times
(defined with the EIS Command) or externally measured times
(from the ELS Command). The value can be anywhere from

-t Iorma- 1 Millisecond to 350 Milliseconds.

S "Figure 10. Preset Integration Periods

2 The third way to set the integration period is via the external
-- line sampling feature, using the ELS command. This command

Inuovr , af mulS samples the period of the logic signal presented to the ELS
of8 W/mtar input pin ,Pin 12), and sets the extemaily definable period

= jig out register accordingly. This feature is most useful in environments
with fluctuating line frequencies. By executing an occasional
ELS command, the converter effectively "tracks" the line fre-
quency. To use this feature, a clean, bounce free logic represen-

Figure 9. Normal Mode Rejection tation of the line frequency must be present at the ELS input

Te duration of the integration also affects the resulting resolution during the execution of the ELS command. Once having performed
of the data; long integration times result in more usable resolution the ELS command, the measured integration time may be selected
than do short integration periods t using the SDI or CNVP commands along with the (HHH) code

from the table in Figure 102.

The AD 1170, unlike most dual slope converters, offers the user
the capability of programming the integration time. This feature It should be noted that the actual integration period used in thecan be used to great advantage in systems design, since the measurement process is accurate to about _± 200p.s, due to the
integration time can be optimized for differing system conditions, limitations of the charge balancing converter. This is adequate,
For example, inm systems whose inputs are severely polluted by however, for greater than 50dB of normal mode rejection at

For xamle, n sstem whse nput ar sevrel polute by 60Hz when using an integration period of l,60 second. Even
60Hz noise, the user may wish to program the ADI 170 for a greate n a modertion mayiod obta;e0 sen then
100 millisecond integration time, which will result in excellent greater normal mode rejection may be obtained when the inte-
60Hz normal mode rejection. In another application, a user may
wish to scan a large number of channels rapidly, looking for CONTROLLING THE CALIBRATION CYCLE
gross input changes, then slow down in order to make a high The AD 1170 achieves its excellent span and offset stability by
resolution conversion before resuming rapid scanning. calibrating itself against its internal reference voitages. The user

The AD 1170 offers the user a number of different ways to set can control the frequency of occurrence for calibration cycles
the integration period. The simplest way is by using the SDI and their duration.
command to set the default integration period to one of seven The duration of the calibration cycle is an important parameter,
preset periods (Ims, lOms, 16.66ms, 20ms, lOOms, 166.66ms, because it affects the accuracy of the calibration cycle itself.
300ms). The first two preset periods offer fairly rapid scanning Errors in the calibration cycle appear in the output data as
at reduced resolution; the other five represent American and instantaneous offset and span errors. If automauc "background"
European line voltage standards or multiples thereof. For single calibration is enabled, these errors effectively appear as noise.
conversions without altering the default integration time, the Just as in the case of input conversions, longer calibration times
CNV'P command may be used, which also allows the selection result in more accuracy and less noise.
of one of these seven preset periods. These preset periods and
their corresponding codes are listed in the table of Figure 10. Of course there may be system applications where there simply

isn't sufficient time to perform a long calibration cycle. For this
Another way in which the integration period may be programmed reason, the AD 1170 offers the user the ability to specify the
is via the EIS command, which allows the user to load the externally calibration period, using the SDC command.
definable period register with a binary value' proportional to the
desired integration period. Using this technique, the user may the secion nled "T .'ADI 17 Cumniand Se: or he formula ,uscJ -
specify any period from one millisecond to 350 milliseconds compute the proper binar value.
(with 200 microsecond accuracy). Access to this user definable 'Caution is advised: if no signal is present at the ELS input when the EL ,

period is via the SDI or CNVP commands; the last entry in command is executed, or if :he iugnal is not within aczeptable trequency
Figure 10 is used to select the period defuied by the EIS or litru'ts, the module ma "hang" and reqture a hard-aue reset "o .cntinue

ELS command. operation.
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te argument for the SDC command is the same three-bit code offset value to be nulled should ideally be no more than a few
is used for the SDI and CNVP commands. The reason for hundred millivolts in amplitude.
is is that each calibration cycle consists essentially of two The NULL command does not need to be executed every time
dinary conversion cycles, performed upon the internal zero the AD 1170 is powered up. Since the value measured by the
d span references. For example, if an SDC command with an NULL command is saved and restored by the SAVA and RESA (
gument of 3 is executed, the default calibration time will commands, the value of the null will be the one saved during
en be approximately 49 milliseconds (two conversions of 20 the last SAVA command. Execute a NULL command only
illiseconds plus approximately 9 milliseconds for the internal when a new null measurement is desired.
atheri_ atics). When NULEN is in effect, the length of each conversion will
he user may also disable or enable background calibration. In be extended by approximately 700 microseconds.
rstems where the AD 1170 may be perinodically idle, i.e., not
irforming input conversions, background calibration is a good ELECTRONIC CALIBRATION
ioice. This mode is enabled with the.CALEN command and The ADi 170 contains an Electronic CALibration capability,
ill cause the AD 1170 to continually initiate an internal calibration which, along with the internal nonvolatile memory chip, effectively
,cle whenever the converter is otherwise unoccupied. Any eliminates the need for trim potentiometers of any kind. This
)nversion commands received during a cal cycle will cause that capability, abbreviated as ECAL, should not be confused with
xl cycle to be aborted in favor of the input conversion, thereby the internal background calibration cycles. ECAL is a completely
iving the user priority over calibration. This mode of operation distinct function used to calibrate the AD 1170 to an external
& automatic and transparent. reference standard.

'he CALDI instruction is used to disable background calibration. The ECAL function measures the ratio of the internal reference
Vben this instruction is executed, the converter will be completely voltage in the module with respect to an externally applied
dle between convert commands, and calibration cycles will only reference voltage. The resulting coefficient is applied to the
occur when invoked by the SCAL command. This mode of math 'computations for all subsequent conversions, effectively
operation is best when the user would Like to perform input compensating the module for absolute value errors in its own
.onversions at the maximum rate, and/or when the system affords reference. The ratio is stored in random access memory until

specific convenient time to perform calibration. the user invokes a SAVA command, which will save this coefficient
there are no hard and fast rules about the best way to appl-" all (along with the other nonvolatile parameters) in the nonvolatile
)f this flexibility, but best performance will be obtained if the memory chip. When the module is powered up, the previously
,oUowing points are observed: saved coefficient is recalled from nonvolatile memory and stored
6 Consult the chart in Figure 4 to determine the inium in random access memory.

effective calibration period for use with a desired integration In order to use the ECAL command, the input to the AD 1170
period, must first be presented with an external + 5 volt reference standard

a Don't use automatic background calibration unless your system such as is usually found in many calibration labs. The ECAL
will allow the converter enough uninterrupted time to perform command may then be invoked; the external reference voltage
at least one calibration cycle. For example, if you are using a must remain at the input until command execution is complete.
calibration period code of 3, your system must periodically If the calibration is to be made nonvolatile, a SAVA command
allow at least 49 milliseconds without a convert command or must then be invoked.'
calibration will not occur. ECAL may also be used as a means of making limited ratiometric

* Remember that the purpose of the calibration cycle is to measurements. For example, in some applications, it may be
cancel the intrinsic drift of the charge balancing converter useful to be able to measure the output of some transducer with
within the AD1170 itself. If the converter is in a stable envi- respect to its excitation; if the excitation can be scaled to the
ronment, calibration may be done less frequently. The best range of 4.5 to 5.5 volts, then it can be used as an excitation for
possible performance will be achieved in stable ambient tem- the ECAL process. Having digitized the excitation, all subsequent
peranures, where calibration is manually invoked by the system conversions will be rataoed to the ECAL value. For example, if
at relatively long intervals, using the longest allowable calibration an ECAL procedure is performed upon a 4.5 volt source, and
time. the converter subsequently digitizes a 2.25 volt signal, the converter

output will be half of full scale, or 11000... (assuming offset* Very short calibration times, although allowed by the ADII70 binary coding). The converter can be restored to absolute cal-
firmware, are not especially useful because they introduce bration by executing a RESA command, which will restore the
more error than they compensate. The only useful purpose of last nonvolatile ECAL coefficient to random access memor.
very short calibration times is in systems which are operating
in rapidly changing ambient temperatures, and then only for The user is cautioned that the nonvolatile memorv used in the
relatively low resolution conversions. ADI 170 has a finite endurance of 1000 write cycles minimum.

Assuming that the AD 1170 is calibrated weekly, this implies aCOMPENSATION OF EXTERNAL OFFSETS device life span of greater than 19 years. Less frequent calibrations
An electronic "nil!" feature compensates for offset errors of mean a proportionately longer life span. This means ECAL may
signal conditioning stages preceding the AD! 170. be performed any number of times, but the user should limit
The null feature comprises three commands: NULL measures the number of SAVA commands in order to extend the life span
the input signal ,using the current integration tre) and stores it of the nonvolatile memory.
in internal RAM; NULEN subtracts the measured value from
all subsequent conversions, NULDI cancels the NULEN com-
mand's effect.

'Since the SAVA .:ommand saves all nonvolatile parameters, the user shouldThe sum of the offset value plus the full-scale input should be be sure that the other default parane'ers, such is integration time and data
less than the = 6 volts linear input range of the AD 1170. The formar, are set to their desired values before SAVA is invoked.
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NONVOLATILE MEMORY CALEN 10110000
The internal nonvolatile memory in the ADI170 is used to store CALEN (CALibration ENable) enables automatic background
the various nonvolatile parameters associated with A/D operation calibration cycling. In this mode, background calibration cycles
(for example, the integration period, data format, ECAL coeffi- are executed automatically whenever the AD 1170 is not otherwise
cient, etc.). occupied. If a command is received during a calibration cycle,

in addition, eight 16-bit words of the nonvolatile memory are that cycle will be aborted and the command will be executed.

* made available to the user for general purpose use. They may CALDI 10111000
be accessed using the RDNV and WRNV commands. Because CALDI (CALbration Disable) disables automatic background
the nonvolatile memory is specified for a finite endurance of calibration. After executing this com2nd, the ADi 17o will be
1000 write cycles minimum, it is best used for data which does completely iWe between commands. While in this state, a single
not regularly need to change, such as configuration information calibration cycle may be invoked with the SCAL command.
or system calibration parameters.

FACTORY DEFAULT SETTINGS O 00001000

The AD1170 is calibrated at the factory; the factory default N (CoNVert) causes a single conversion to be performed,set i 1gs arc: using the current default integration time and data format.

Format: 16-bit, offset binary 04VP 0001OC [Co
Default T(int): 16.667 miiseconds (code 2) CNVP (CoNVert using specific Preset time) causes a singleDefault T(cal): 100 milliseconds (code 4) conversion to be performed, using one of the eight preset inte-

THE AD1170 COMMAND SET gration times as listed in Figure 10. The default integration timeis not changed. The three bit code for the desired integrationThe ADI 170 command code set includes 20 different funcions.71c DI 70 orn~ndcodesetincude 20diffren fuctins. time is embedded in the lowest three bits of the command code.
Some of the commands require no parameters, while others
require one or two parameters which must be loaded into the
PARAMETER 1 and PARAMETER 2 registers prior to loading ECAL 0001ec1rnic CA0ibratio) causes an electronic calibration
the command register. Some commands (for example, (qVP) EA Eetoi Airto)cue neetoi airtohave their option paramter embedded in the lowest three bits cycle to be performed. An external + 5 volt reference voltageof the command itself, must be presented to the input before this command is executed,

and the input must remain stable until the end of command
The execution time for any command depends on the command. execution is signaled by the BUSY line or the BUSY bit in the
Figure 11 is a synopsis of the available commands, as well as status word. The calibration data computed by this command is
estimates of their execution times, applied to al subsequent conversions, but is not made nonvolatile
Each of the commands described below is preceded by an opcode until a SAVA command is performed.

name, along with the digital code (in binary).

EXECUTION TIME

MNEMONIC' FUNCTIONAL DESCRIPTION (APPROX)

CNV Perform a Single Conversion Using the Default integration Time Tfint) + 3ms

1 CNVP Perform a SingleConversion UsingtheSpecified lntegration Time T(intl + 3ms

ELS Measure Period of Signal at the ELS Input 2x TfintI + 20ms

ECAL Perform ElectronicCALibration Routine 1.5 seconds

SO i Set Default Integration Time for Input Measurements 1SOES

SDC i Set Default Calibration Period 160..s

SDF Set Default Data Format 140Rs__
* RESA Restore All Nonvolatile Parameters from Memory 2.3ms

SAVA Save All Nonvolatile Parameters to Memory 15oms

WRNV Write a Word to the User EEPROM Area 22ms

RDNV Read a Word from the User EEPROM Area 600 Ls

EOI Clear the Data Ready Flag 2601&s

SCAL Perform a Single Cal Cycle 2 x T(cal) - 9ms

CALEN Enable Background Calibration 300gis

CALDI Disable Background Calibration 310 gs

EIS Set integ!ration Time to Arbitrary Value 13Ois
RST Reset AD 170 to Power Up Conditions 210ms
NULL Measure the Offset Voltage Value at the AOl 170 Input and Store Tmntl - 3ms

NULEN Subtract NULL Measured Value from All Subsequent Conversic is 2501is

L NULDI I Cancel the Effect of the NULEN Command 250gs
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EOI 10001000 SDC 01000CzCtC0
EOI (End Of Interrupt) clars the DTA RDY bit in the status SDC (Set Default Calibration time) sets the default calibration
byte, as well as th DTA RDY line (Pin 10). It is provided as a time (Tcal) according to the three bit code embedded in the
m-ms of clearing the interrupt source in systems which use an lowest three bits of the command. The calibration times are
interrupt upon data ready. shown in Figure 10. Note that the actual duration of a calibration

cycle is approximately 2 x T(cal) + 9 milliseconds.ELS 00100000
ELS (External Line Sample) measures the period of the logic WRNV 1001IA2AIAo
signal applied to the ELS input (Pin 12)'. This period is loaded WRNV (WRite NonVolatile) writes the user supplied data, in
into the register associated with the last entry of the table in the PARAMETER 1 and PARAMETER 2 registers, into the
Figure 10. Input conversions using this measurement as the use accessible area of the ADI 170's nonvolatile memory. Eight
integration period may be performed by invoking a 0NVP words of this memory are available, and are addressed by the
command, or by setting the default integration period with the lowest three bits of the command.
SDI command. This command is intended for use in environments
with varying line power frequency; periodically invoking this RDNV 10100A7A,,
command allows effective tracking for improved normal mode RDNV (ReaD NonVolatile) reads one word from the user ac-
rejection. cessible portion of the nonvolatile memory within the AD 1170,

and places the data into the LOW DATA and MID DATA
EIS 00101000 registers for retricval by the user. The address of the desired
EIS (External Integration Set) is used to establish an arbitrary word is embedded into the lowest three bits of the command.
integration period from 1 millisecond to 350 milliseconds. To
use this command, first load the PARAMETER I and PARAM- RST 10010000
ETER 2 registers with the 16-bit binary number N, which is RST (ReSeT) is effectively equivalent to a hardware reset ot the
calculated using the following expression: ADI 170. After executing this command, all nonvolatile parameters

N=216 - T(int)/21.333E-6 (including the ECAL coefficient, the default integration and,
calibration periods, EIS/ELS period, NULL value and theAfter the low and high bytes representing N are loaded into the default format) will be restored to their last saved values, automatic

PARAMETER 1 and PARAMETER 2 registers respectively, calibration will be enabled, and NWLL will be disabled.
exe te the EIS command. Once this command is executed, the
externally loaded integration time can be used via the CNVP or NULL 01110000
SD! commands. NULL measures the input signal (using the curent integration

time value) and stores the measurement in internal RAM. ItRESA 01101000 allows the user to establish the value of offset voltage at the
RESA (REStore All) restores all configuration parameters (default input and subtract that offset from subsequent conversions
integration time, default calibration time, data format, EIS/ELS through the execution of the NULEN command. The user must
period, NULL value and electronic calibration data) from non- insure that the sum of the offset value plus the full scale input
volatile memory. After executing this function, all parameters is less than the ±6 volts linear input range of the ADI170.
will be restored to their last value as saved by the SAVA com- Ideally the offset value to be nulled should be no more than a
mmnd. few hundred millivolts in amplitude. The value measured by the

NULL command is saved and restored by the SAVA and RESA
SAVA 01001000 commands - maintaining this value through subsequent powerups.
SAVA (SAVe All) saves all programmable attributes (default The NULL command need only be invoked when a new null
integration time, default calibration time, data format, EISiELS measurement is desired.
period, NULL value and electronic calibration data) into non-
volatile memory. NULEN 01111000

SDI 00111C2 CICO NULEN (NULl ENable) subtracts the value, measured and
SDI (Set Default Integration time) sets the default integration stored by the last NULL command, from all subsequent coa-
time to one of the eight preset times listed in Figure 10. The versions. When NULEN is in effect, each conversion's length
three-bit code for the desired integration time is embedded in will be extended by approximately 700 microseconds.

the lowest three bits of the command code. NULDI 10000000

SDF 00110000 NULDI (NULl DIsable) cancels the effect of the NL'LEN
SDF (Set Default Format) sets the default data format according command.
to the five bit code loaded into the PARAMETER I register
prior to execution of this command. The table in Figure 8 illustrates
the construction of the five bit code according to the desired
data format and resolution.

SCAL 11000000
SCAL (Single CAlibration) performs a single background cali.
bration cycle. This command is intended for use when auto- 'This logic sipgnl should be a TTL or C.MOS compatible continuous
matic background calibration has been disabled via the CALDI waveform. It need not be symmemcal, but the HIGH or LOW time should
command. not be less than 25 microseconds.
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MIM PC* INTERFACE
Figure 12 is an example of an AD I 170/IBM interface suitable 1 23A

for the IBM PC or XT personal computers. In this case, the 01012A

AD 1170 is interfaced in the 1/0 space; the DIP switch controls8016Z
the specific location of the AD 170 within the available address "145WR

spe 124 r

tol the daabsadtDeDsn oto ies hspt

0[NIT:4L I 3 SET P2.523 ;DS ED/

WIASET 7 3i102P .3 37WR 8

MOV2 1 P2 FF 22ET 39TALD1N1

bes wIste to. Set the P port to th com daa21esrb

"l21 1 4.1 010Figure 12. Simpl 8051to AD 170 Interface P,*CV CVISHPODFR

;AlM SiL CONVERSIO
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!SSURE TRANSDUCER DATA ACQUISITON
wo module solution for microcomputer based data acquisition n
a IB31 hybrid signal conditioner and an AD 1170 as shown m"wwKO

igure 14. A 3 millivolt/volt pressure transducer (e.g., Dynisco'sM OWA17
series) is interfaced to a model IB31 configured for a gpin -Ov
33.3, to provide a 0 to 5 volt output. The regulated excitation OT
age is 5 volts, and is used as the reference input for theI
1170 to produce ratiometric operation. This configurationasOMW um
ds very high CMR enhanced by the IB31 low pass flter and mo -W " D
integrating conversion scheme of the AD 1170.A"c" M

addition, fixed offsets caused by bridge imbalance can beCA

led out by the AD! 1170 wth a power-up initialization command I.WNACILL

nthe microcomputer (see COMPENSATION OF EXKTER- GA -33
UN. IV^W.-GA~fMMMRIs WIN . Maww AhLL OFFSETS section). The full-scale output of the IB31 and

Lnisducer can also be normalized to AD! 1170 full scale Ehrough Figure 14. Pressure Transducer Data Acquisition Using
electronic calibration command ECAL. Both the offset and 1831 and AD 7 170

I-scale correction data can then be stored in nonvolatile memory
eliminate repeating this Emm process after each power-up.
c AD 1170 eliminates a potentiometer or software overhead
ich might otherwise be needed for these functions.
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Appendix B - Simulation Program



posi err_sr:POSt..ERRF Page 1
Subroutine ModelDefaultData

Implicit N4on*

Include ISP-Global.Coimon. ±nc,
Include 'SPSystem 'ariables.inc'
Include '?3 r za.ic
Include '5? £-vents.inc'
Include 'posi err. inc'

Accel-Amp - 3C."
Sl~ope - 16C0.3
:nches Noved - i.J
OtSample -0. :o
Old-sample 1 .0
SampFiltAccel - 0.3
Val - 0.0
Oid v..-1 3.3
?osition -0.3

Fc - 80.3
Number-of-31t3 - -.
R~ange - 386.4

Ret-.r
End

Subroutine ModelOescrip..on

Implicit None

:nc.lude 'SP2Global-Common. inc'
Include ISPSystem Variables.inc'
Include 'SP iZvent3.i.nc'
Include ISP Differential.4nc'
include 'osi_err.z4nc'

X :dex(umberoaf-quation3 - U - 1001
X Zndex(Number-of- :quation3 2) . 1003
X -ndex(mu.ber-o-quat!on3 - 3) - 1005
X "ndex(Number of- -quation3 4) - 1007
X - ndex(NUmbrofZquatiOns + 5) - 1025
XjIndex(Number ofEqruation3 6) - 1026
XIndex(Number-of-Equations 7) - 1051

Xdot -Index (Number ofEquat~ons 1) - 1000
Xdot I ndex(Number_of_-quati.ons 2) - 1002
Xdot_-Index(Number-of-Equatlcns 3) - 1004
Xdot Index(Number-of-7Equatilons -4) - 1006
Xdot Index(Number-of-7Equations - 5) - 1026
Xdot Index(Numberof-Equatlons- 6) - 1023
Xdot Index(Numnber of_ Equacions - 7) - 1024

Number-of-Eqations - Nuncer of-Equacions - 7

Re~urn



posi~err.src:POSI ERRLF Page 2

Subroutine SetupModel

implicit None

Include ISP GlobalCommon.inc'
Include 'SPSystem Variable3.inc1
Include * SP Events .n
:nclude 'SP Different2.al.inc'
:rnclude 'Po3sierr.- rC'

Real*8 ?_total, A-ccef, BScoef, C coef, T2A

?t - Sanp~rate/4.0

A -coot - Accel_-Amp,(l.O + AccelAmp/(2.0*slopefl
3_coot - 5.1*Accel-Amp*2./(2.0'Slope)
Ccoef - 2.0 ai3lAmp-3.0/OSope12.0) - Inches-Moved

72A - (-3 coef + DSqrt(B-coef"w2.0 - 4.0*A-coef*C-ccef))/(2.0*A-coef)

1f(T2A .gt. 0.3) Then
T2 - 72A

Else
T2 - (-3_coot - OSqrt(B coef'*2.0 - 4.0*A coef*C coef))/(2.0'A-coef)

End If

F total - Accel -Aip'Il.Q + Accel kmp/(2.0*Slope)) *T2**2.0
& + T2*(5.0*Accel_Amp*-2.0)/C2.0*Slope)
a + 2.O'AccelAmp-3.0/(Slope**2.O)

Write(*,*) '?-total - ',P total

TI - AccelAmp/Slope

f ~Wc - 2.0*3.1415*Fc

Resolution - Range/ (2.0'tNumcer-ofBits)
Write(,) 'Resolution * ,Resolution, I in/sec2 or,, Resolution/386.4,
Wrte(*,*) 'Bandwidth 7 , c, I Hz'
OtISamnple - 1.0/Samp_Rate
Write(*,O1 'Sampl..ng Rate = ,SampRate, I Hz'
Write(*, ) 'Nor-.al Simulation Rate 1 , 1.0/Otmax, 'Hz'
Write(*,*) 'Maximum Simulation Rate - , 1.0/Otmin, I Hz'

Sample-Number - I
Next Time to Sample - DtSample
Call SPScEhedule(Next-Time to_Sample, SampFilter Output)

R etu rn
End

Subroutine Continuous-Model

Implicit None

Include 'SP Global Zornmon.inc'
Include 'SPSystemnVar~ables.1nc'



posierr...src:POSI_ERRF Page 3

Include ' SP ZvenZ3.inc
Include sp oifferentiai.inc'
Include 'posi err. inca

Integer*4 ±

Real~s Step

Input Accel -Slope"(t - Tci)*Step(Td)
-slopeatt - (Td -2.0171))*Stea(Td 2.0,11)
-Slopem - (Td 2.0*T! - T2/2.O))Steo(d 2.0'TI - T2/2.C
*Siope(t - (Td -5.0,71 - T2/2.0))*Step(Td *5.0,T! T2/2.C
-Slovel~t - (Td 5.0*T! - +.'2lSe~ S.0'Tl + .SIT:
2 .0,Slope*(t - (Td 6.017- + 1.5'T2))*Step(Td + 6.0*T1 1.

+ 2.0'Slope*(t - (Td +7.Z 'T. + 1.5*T2))*Step(Td +7.0*Tl 1

6-2.0*slope*(t - (Td + 8.01T1 1.5'T2)lt Step(Td + S.0"Ul + 1.
+ 2.0,slope*(t - (Td -9.0,T! 1.S*T2fl*Step(Td + 9.0*Tl + 1.

-2.OwSlope*(t - (Td 10.0*Tl 1.5*T2))*Step(Td + 10.0*Tl
+ 2.0,Siope*it - (I'd 1+ .0*' + 1.5*IT2))*Step(Td + 11.0'T'. +

6-Siopel(t -.~d *12.3-T1 ,!..3kT2))*Step(Td 12.0*T! s

c InputAccel -Slope*(t -Td)*Step(Td)

c & Slope*(t -(Td - ?1))*Step(Td + 71)

c & -Slope*(t -(Td + ZI + T2))*Steop(Td - TI + T2)
c + SlopeC(t -(Td + 3.2'Tl + T2flStep(Td t 3.0wT1 + T2)
c * Siope'(t -(Td + 3.0*T! 2.0*T2))*Step(Td 3.0*T1 + 2.0*1
c 6-Sloce*(t -(I'd ,4.0'T! + 2.2'r2))*Step(Td +4.0*Tl +4.*

xl dot - 0.7654*Wcxl + x2
x2 -dot - -Wc*Wc*xl + WC*WcInput -Accel
x3 dot - -1.8478'Wclx3 + x4
x4 dot - Wc*Wc*x3 + WcWc-xi

Filtered-Accel -x3

PE - RealPosi -Position

o Write(*,*) 'In Continuous Model at t 1,
c Do i - 1000,1029
c Wr','te(*,*) i,G.lobai-Common(i)

a End Do
c

c Do i - 1030,4031
c 'Writ e*,f), erloaomoC4
c End Do

Return
End

Subroutine Discrete-Model

Implicit: Non~e

Include 'S?_GlobalCommnon.inc
Include * SP-System Variables. incl
Include 'SP Events.inC'
Include 'S? Differential.inc'
Include 'P0s1-err.inc'

Integer*4 I



posierr~srcP0SIERR.F Page 4

C Write(*,*) 'In Discrete -4odel at t -=
C Do i - 1000,1029
c Write(*,*) i,GIlobal-Common(i)
c EndDo
C
c Do i - .030,1031
c Write(*,*) I, Inteqer-G'.oalCommonUl,l)
C End Do

: f (Events ) .eq. Samp_'; t~e rOut put) Then
Old Samo~e Sao i:Ael
Samp_%1.zAccel - :tesoluz4ion :~itered -AccellResolu:Loni

OldVei. - Vel
Vel - Vol + (OldSample * Samp_ ?ilt Accel)*DtSample/2.0

Position - Position + (Old VeJ. + Vel 'Ot_Sample/2.0

Sample Nuner - Sample Nurmer 4-

NextTine co Sample - Dt Sample'Sample Vuinber

Call SP Schediule(Next :1-metoSample, Samp FilterOutput]

snd : f

Return
End

Subroutine ModelTermination

Implicit NIone

Include 'SPOlobalCommon.I;ncl
Include 'SP_System_Variable3.!nc'
Include 'S? Oifferential.inc'
:nclude ISP 7-vents.inc'
Include 'posi err.incl

If (t .ge. (-.d 12.0*T - .5*72 0.12] Then
7nd of Run - .TRU7.

End If

Return
End



posi-err src:Step.F Page 1
Double Precision Function Step(Time to step)

; -- --- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* This function is the step function.
i.e. Step(Time to step) - 1.0 if t >- Time to step I

Step(TIme to step) - 0.0 if t < Time to step I

-- -- - --- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

I Include global common block definitions *

mmpiicit None

Include 'SP Global Common.inc'
Include SP-System-Variables..1nc'

----------------------------

• Variable Declarations I
*-------------------------------------------------1*

Double Precision Time to step

--------------------------------------------------------------------------------------

* Begin Code I
--------------------------------------------------

If (t .ge. Time to step) Then
Step - 1.OdO

Else
Step - O.OdO

End If

Return
End



posi_erric:POS1_ERR.INC Page I
Integer-4 SampleNumber, SampFilter Output

Real'S xl, xl dot, TD, Old V.1, Samp Tilt Accel,
&x2, x2_dot, T!., Slope, old-sample,

& x3, x3_-dot, T2, Position, inches_Moved,
& x4, x4_dot, Vel, Dr Sample, Acel Amp,

&Fc, We, ?E, InputAccel, Rangqe,
& Next Time to Sample, Resolution,

& RealPosi", RealVel, FiteredAccel,
&SampRate, :PE, HUMber-Of-its

Parameter (Samp_7'i-:erutpu- - 1

Equivalence (Global_-Common(1000), x! dc:)
Equivalence (Globa1_Common(10011), xl)
Equivalence (Global-Common(1002), x2 dot)
Equivalence (Global Common(1003), x2T
Equivalence (Global -Common(1004), x3_dot)
Equivalence (GlobalCommon(.00S), x3)
Equivalence (Global Z.mmon(:CC 6), x4ot)
Equivalence (Global Comumon(1007), x4)

Equivalence (Global_-Co.mmon(1008), TD)
Equivalence (Global Common(1009), Accal_Amp)
Equivalence (Global Co-mmon(l0lO), Slope)
Equivalence (Global Common(101.), InchiesMoved)
Equivalence (Global Common(1012), Dt~sample)
Equivalence (Global Common(1013), Old Sample)
Equivalence (Global Common(1014), SampFlt-Accel)
Equivalence (GlobalCommon (1015), Vel)
Equivalence (Global Common(1016), Old V.1)
Equivalence (GlobalCommon(1017), Position)
Equivalence (Global Common(lO181, 71)
Equivalence (Global Common(1019), T2)
Equivalence (GlobalCommon(1020), Next -Time-toSample)
Equivalence (Global Common(1021), Nc)
Equivalence (Global Common(1022), Fe)
Equivalence (Global Common(1023), Input_-Accel)
Equivalence (Global Common(1024), PE)
Equivalence (GlobalCommon(1025), Real ?osi)
Equivalence (Global --amnon(1026), Real Vel)
Equivalence (Global ComnonR1027), Resolution)
Equivalence (Global_ Conmon(l0Z9), Range)
Equivalence (Global i-ommon (1029) , Filtered Accel)
Equivalence (Global -Common(1C30), Sample - umber)
Equivalence (GlobalCoffmon(1OM1), Number of 3its)

Equivalence (Global Common(1050), SampRate)
Equivalence (Global Cominon(1051), IPE)



Appendix C - Real-Time Position Determination Program



#include <graph.h>
#include <string. h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio. h>
#include <time.h>
#include <bios.h>
#include "iarinc. h"

void
calibrate ADl170 (void),
calibrate-QA2000 (void),
commandanorad (char *ano_buffer),
display-menuitem (int left_row, int leftcol, char *str, int len),
draw_menubox (int upleftrow, int upleft_col, int height, int width),
freerunmode (void),
setupADCdefaults (void),
setupanorad (void),
main (void),
wait for (double seconds),
wait forA (void) ,
wait forB (void);

int
getmenu (int row, int col, char * *items);

unsigned
cursor (unsigned value);

double
do zupt (int numbdata points),
experl (void),
exper_2 (void),
exper_3 (void),
exper_4 (void),
exper_5 (void),
exper_6 (void),
integrateandmove (double seconds, char *anobuffer),
readA (void),
readB (void),
readposition (void),
setupADC_int time (double frequency),
setupcounter (double frequency);

/* Main Menu Definitions */

char
*mnuMain[] =

(
"System Setup",
"Experiments",
"Free-Running Position Display",
"Quit",
NULL

);

#define SYS SETUP 0
#define EXPER 1
#define FREERUN 2
#define QUIT 3

/* Menu for System Setup */



char
*mnuSys[] =

"Calibrate QA2000",
"Calibrate ADll70's",
"Select Integration Method",
"Select Sampling Rate",
"RETURN TO MAIN MENU",
NULL

#define CALQA2000 0
#define CAL AD1l70 1
#define SELINTEG 2
#define SELSAMP 3
#define RETURNFRCMSYS 4

/* Menu for Experiments */

char
*mnuExp[l =

{
"Single Motion Test",
"Multiple Motion Test w/ZUPT",
"Multiple Motion Test w/ZUPT & Unkown Base",
"Multiple Motion Test w/ZUPT & Known Base",

"Multiple Motion Test w/ZUPT & 2 Known Bases (Ml)",
"Multiple Motion Test w/ZUPT & 2 Known Bases (M2)",

"RETURN TO MAIN MENU",
NULL

#define SINGLE 0
#define ZUPT 1
#define ZUPT BASE 2
#define ZUPT KNOWN BASE 3
#define ZUPT_2 KNOWN BASES 4
#define ZUPT 2 KNOWN BASES M2 5
#define RETURNFROMEXP 6

/* Menu for Integration Methods */

char
*mnuInteg[] =

{
"Simpson's Rule",
"Trapezoidal",
"Adam-Basforth",
"RETURN TO MAIN MENU",
NULL

#define SIMP 0
#define TRAP 1
#define ADAM 2
#define RETURNFROMINTEG 3

int
integ_alg, centerrow, centercol;

double
SF, bias, bias time, vel, dt, dt_2, dt_12, dt_24;



/* Video configuration structure (graph.h) *

struct videoconfig
vid-config;

/* structure for menu attributes *

struct mnuAtr

{n goml geet godr
lot fgNormal, fgSelect, fgBorder;

int centered;
char nw(2], ne(2], se(2], sw[2], ns(2], ewE2];

/* Color menu attributes *

struct mnuAtr
menus=

Ox~f, Ox0l, Ox~f,
Ox0l, Ox~f, Ox0l,
TRUE,

of r it 11111 J ton is, ie ul of of 4

/* Monochrome menu attributes *

struct mnuAtr
bwmenus=

0x07, OxOO, 0x07,
OxOO, 0x07, OxOO,
TRUE,
ofr I it I o II uJ if sLe go o o g

FILE
*log-ytr;

void main C

char
string(803, file name(80];

int
choice, i_cnt, numb-runs;

double
sampfreq, f req, int freq, p err, p_err sum, p err avg,
perr-sqsum, perr-siavg, max-err, f-band, ad_range;

1* Open output file

printf ("\nEnter name of log file: "1);
gets (file_name);



log-ptr = fopen (filename, "w");
if (logptr == NULL)

printf ("\n\n\t*** Could not open %s for writing **~,filename);

exit(0) ;

setup-anorad ~

outp (CNTRSTOP, 0X0000); /* Disarm 2MCLK *

setupADC-defaults ~

freq = 200.0;
integaig = TRAP;
bias = 0.0;

sampfreq = setup counter (freq);

dt = 1/sampfreq;
dt_2 =dt/2.O;

dtl12 dt/12.0;
dt_24 dt/24.0;

int_freq = setup_ ADC_int_time (samp-freq);

outp (CNTRSTART, OxOOOO); /* Arm 2MCLK *

_getvideoconfig (&vid_config);
center-row = vid-config.numtextrows / 2;
center col = vid-config.numtextcols / 2;

_setvideomode (_DEFAULTMODE);

calibrateQ9A2000 ~

_setbkcolor ((long) 0);
_clearscreen (_GCLEARSCREEN);
_setbkcolor ((long) 1);
_settextcolor ((short) 15);
-settextposition (center_row, center col -13);

_outtext ("Enter filter bandwidth (Hz): )
gets (string);
f-band = atof (string);

_setbkcolor ((long) 0);
_clearscreen (_GCLEARSCREEN);
_setbkcolor ((long) 1);
_settextcolor ((short) 15);
-settextposition (center_row, center col -13);

_outtext ("Enter A-to-D range (Gs): "1);
gets (string);
ad_range = atof (string);

_setbkcolor ((long) 0);

_clearscreen (_GCLEARSCREEN);

/* Select and branch to menu choices *

do



_setbkcolor ((long) 1);
_settextcolor ((short) 15);

-settextposition (1, center col - 13);
_outtext (11 IAR DEMONSTRATION PROGRAM )

choice = get-menu (center-row, center col, mnuMain);

switch (choice)

case SYSSETUP:
choice =get-menu (center-row, center-col, mnuSys);
switch (choice)

case CALQA2000:
calibrate_QA2000 ~

break;

case CALAD1170:
calibrateAD1170 Q

break;

case SELINTEG:
choice = get -menu (center_row, center-ccl, mnulnteg);
switch (choice)

case SIMP:
integaig = SIMP;

break;

case TRAP:
integaig = TRAP;

break;

case ADAM:
irtegaig = ADAM;

break;

break;

case SELSAMP:
outp (CNTRO, OxOOOO); /* Disarm 2MCLK

do

-setbkcolor ((long) 0);
_clearscreen (_GCLEARSCREEN);
_setbkcolor ((long) 1);
-settextcolor ((short) 15);
_settextposition (center_row, center col -13);

-outtext ("Enter sampling rate (Hz): "1);
gets (string);
freq = atof (string);

while (freq < 31.0 11freq > 490.0);

sampfreq = setup counter (freq);

dt = 1/sampfreq;
dt 2 =dt/2.0;
dt 12 =dt/12.0;

dt_24 =dt/24.Q;



int-freq = setupADc-int-time (sampfreq);

outp (CNTRSTART, OxOOOO); /* Arm 2MCL(*

break;

case RETURN rROH_SYS:
break;

break;

case EXPER:
choice = get-menu (center_row, center-col, mnuExp);
switch (choice)

case SINGLE:

fprintf (logptr, "\n\n\n\n\t\t\tSINGLE\n");

_setbkcolor ((long) 0);
-clearscreei (_GPCLEARSCREEN);
-setbkcolor ((long) 1);
_settextcolor ((short) 15);
-settextposition (center_row, center col - 11);
_outtext ("Ene number ofrus
gets (string);
numb-runs = atoi (string);

bias-time = 0.0;

p-err = 0.0;
perr_sum = 0.0;
perrs~sum = 0.0;
max-err = 0.0;

for (icnt = 0; i-cnt < numb-runs; ++i_cnt)

perr = experi 1
perr -sum = perr -sum + p err;
perr-sqsum = p_err-sssum + perr*p err;

if (fabs(max_err) < fabs(p err))

max-err = p err;

p err avg = perr-sum! ((double) numb_runs);
perr-sq~avg = p err sq~sum/ ((double) numb-runs);

_clearscreen (_GCLEARSCREEN);
_settextposition (1, center-col - 3);
-outtext ("SINGLE");

-settextposition (3, 1);

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.4g (inches)",
p err avg,
sqrt(p err sc~avg - p err avg*p err_avg));

_outtext (string);

sprintf (string, "1\nMax Error = %12.4g (inches)", max_err);



-outtext (string);

sprintf (string, "\nSampling rate = %g (Hz) ", sampfreq) ;
-outtext (string);

sprintf (string, "\nFilter bandwidth = g(Hz) ", f_band) ;
-outtext (string);

sprintf (string, "\nA-to-D Range = %g (Gs)", ad_range);

-outtext (string);

sprintf (string, "\nlntegration method = %d ", integ_aig);
-outtext (string);

-outtext ("'\n (0-Simp 1-Trap 2-Adam)"');

sprintf (string, "\nNumber of runs = %d ", numb-runs);

-outtext (string);

fprintf (logptr,
"1\n\nMean Error = %12.4g (inches) STD = %12.4g

(inches)",
perravg,
sqrt(p err sqavg - p err avg*p err_avg));

fprintf (logptr, "\nMax Error = %12.4g (inches)", max_err);
fprintf (logptr, "\nSampling rate = %g (Hz)", sampfreq);
fprintf (logptr, "'\nFilter bandwidth = %g (Hz)", f band);
fprintf (logyptr, "'\nA-to-D Range = %g (Gs)", ad_range);
fprintf (logptr, "\nlntegration method = %d ", integaig);
fprintf (logptr, "'\n (0-Simp 1-Trap 2-Adam)"');
fprintf (logptr, "'\nNumber of runs = %d "1, numb-runs);

-settextposition (center_row+2, center_col - 19);
_outtext ("Press <Enter> to return to main menu.");
gets (string);

break;

case ZUPT:

fprintf (logptr, "\n\n\n\n\t\t\tZUPT ONLY\n");

-setbkcolor ((long) 0);
_clearscreen (_GCLEARSCREEN);
setbkcolor ((long) 1);

_settextcolor ((short) 15);
-settextposition (center_row, center col - 11);
_outtext ("Enter number of runs:")
gets (string);
numb_runs = atoi (string);

bias-time = 0.0;

p-err = 0.0;
p-err-sum = 0.0;
perrsqsum = 0.0;
max-err = 0.0;

for (icnt - 0; i-cnt < numb_runs; ++i_cnt)

perr = exper_2 i

p err sum = p err sum + p err;



perrs~sum = perr sc~sum + perr*perr;

if (fabs(max_err) < fabs(p err))

max-err = p err;

perr avg = p-err sum/((double) numb_runs);
perr7sc~avg = p_ err sqsum/ ((double) numb-runs);

_clearscreen (_GCLEARSCREEN);
-settextposition (1, center-col - 4);
_outtext ("IZUPT ONLY") ;

_settextposition (3, 1);

sprintf (string,
"Mean Error =%12.4g (inches) STD = %12.4g (inches)",
perr_avg,
sqrt (p err sc~avg - p err avg*p err avg));

_outtext (string);

sprintf (string, "1\nMax Error = %12.4g (inches)", max err);
_outtext (string);

sprintf (string, "\nSampling rate = %g (Hz)"1, sampfreq) ;
_outtext (string);

sprintf (string, "1\nFilter bandwidth = %g (Hz)"1, if band) ;
-outtext (string);

sprintf (string, "I\nA-to-D Range = %g (Gs)", ad-range);
-outtext (string);

sprintf (string, "\nlntegration method = %d "1, integ_aig);
-outtext (string);

-outtext (1"\n (0-Simp 1-Trap 2-Adam)");

sprintf (string, "1\nNumber of runs = %d "1, numb-runs);
-outtext (string);

fprintf (logptr,
"1\n\nMean Error = %12.4g (inches) STD = %12.4g

(inches)",
p err avg,
sqrt(p err sqavg - p err avg*p err avg));

fprintf (logptr, "1\nMax Error = %12.4g (inches)", max_err);
fprintf (logptr, "1\nSampling rate = %g (Hz)"I, sampfreq);
fprintf (logptr, "1\nFilter bandwidth = %g (Hz)"I, if band);
fprintf (logyptr, "I\nA-to-D Range = %g (Gs)", ad_range);
fprintf (logptr, "\nlntegration method = %d "1, integ_aig)
fprintf (logptr, "1\n (0-Simp 1-Trap 2-Adam)");
fprintf (logptr, "1\nNumber of runs = %d "1, numb-runs);

-settextposition (center -row+2, center -col - 19);
_outtext ("Press <Enter> to return to main menu.");
gets (string);

break;



case ZUPTBASE:

fprintf (logptr, "V\rin\n\n\t\t\tZUPT W/ONE UNKNOWN BASE\nI);

-setbkcolor ((long) 0);
-clearscreen (_GCLEARSCREEN);
-setbkcolor ((long) 1);
settextcolor ((short) 15);
-settextposition (center -row, center col -1)

-outtext. ("Enter number of runs: "1);
gets (string) ;
numb-runs - atoi (string);

p-err = 0.0;
p-err sum = 0.0;
p_err-sqsum = 0.0;
max-err =0.0;

for (i -cnt = 0; i-cnt < numb-runs; ++i-cnt)

perr = exper-3
p err -sum = p_err -sum + p err;
perr-sqsum = p-err-sqsum + p err*p err;

if (fabs(max err) < fabs(p err))

max-err = p err;

p_err-avg = perr-sum/((double) numb_runs);
p_err sc~avg =p err sqsum/ ((double) numb runs);

-clearscreen _GCLEARSCREEN);
-settextposition (1., center-col - 11);
-outtext ("IZUPT W/ONE UNKOWN BASE");

-settextposition (3, 1);

sprintf (string,
"Mean Error = %12.4g (inches) STD =%12.4g (inches)",
perr_avg1
sqrt (p err sqavg - p err avg*p err avg));

-outtext (string);

sprintf (string, "1\nMax Error = %12.4g (inches)"1, max_err);
-outtext (string);

sprintf (string, "1\nSampling rate = %g (Hz) 1, sampfreq) ;
-outtext (string);

sprintf (string, "1\nFilter bandwidth = %g (Hz)"1, f band) ;
-outtext (string);

sprintf (string, "1\rA-to-D Range = %g (Gs)"1, ad_range);
-outtext (string);

sprintf (string, "\nlntegration method = %d "1, irtegaig)
-outtext. (string);

-outtext ("1\n (0-Simp 1-Trap 2-Adam)");

sprintf (string, "\nNumber of runs =%d "1, numb_runs);



-outtext (string);

fprintf (logptr,
"1\n\ndean Error = %12.4g (inches) STD = %12.4g

(inches)",
perr -avg.
sqrt (p err sc~avg - p err avg*p_err-avg));

fprintf (logtr "\ia Err=%2g(iches)", max err);
fprintf (logptr, 1"\nSamupling rate = %g (Hz)"I, sampfreq);
fprintf (logyptr, "1\nFilter bandwidth = %g (Hz)"I, f band);
fprintf (logptr, "1\nA-to-D Range = %g (Gs)", ad -range);
fprintf (logptr, "\nlntegration method = %d "1, integaig);
fprintf (logptr, "1\n (0-Simp 1-Trap 2-Adam)");
fprintf (logptr, "1\nNumber of runs = %d 11, numb-runs);

-settextposition (center_row+2, center -col - 19);
_outtext ("Press <Enter> to return to main menu.");
gets (string);

break;

case ZUPTKNOWNBASE:

fprintf (logptr, "\n\n\n\n\t\t\tZUPT W/ONE BASE\n");

_setbkcolor ((long) 0);
-clearscreen (_GCLEARSCREEN);
_setbkcolor ((long) 1);
_settextcolor ((short) 15);
-settextposition (center-row, center-ccl - 11);
_outtext ("Enter number of runs: "1);
gets (string);
numb-runs = atoi (string);

p-err = 0.0;
perr_sum = 0.0;
perr -sqsum = 0.0;
max-err = 0.0;

for (i_cnt = 0; i-cnt < numb-runs; ++i-cnt)

perr = exper_4 i
perr -sum = perr -sum + p err;
perr-sqsum = p err sqsum + p err*p err;

if (fabs(max err) < fabs(p err))

max-err = p err;

perr avg = perr -sum/((double) numb_runs);
perrsc~avg = p-errs~sun/((double) numb_runs);

_clearscreen (_GCLEARSCREEN);
-settextposition (1, center-col - 7);
_outtext ("IZUP' W/ONE BASE");

-settextposition (3, 1);

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.4g (inches)",



perravg,
sqrt (p err sq~avg - p err avg*p err avg));

-outtext (string);

sprintf (string, "\n~ax Error = %12.4g (inches)", max_err);
_outtext (string);

sprintf (string, "\nSampling rate = %g (Hz)", sampfreq);
-outtext (string);

sprintf (string, "\nFilter bandwidth = %g (Hz)", f-band);
_outtext (string);

sprintf (string, "\nA-to-D Range = %g (Gs)", ad_range);
_outtext (string);

sprintf (string, "\nlntegration method = %d ", integaig);
_outtext (string);

-outtext ("\n (0-Simp 1-Trap 2-Adam)");

sprintf (string, "\nNumber of runs = %d ", numb_runs);

-outtext (string);

fprintf (logptr,
"\n\nMean Error = %12.4q (inches) STD = %12.4g

(inches)",
p err avg,
sqrt (p err sq~avg - p err avg*p err avg));

fprintf (logptr, "\nMax Error = %12.4g (inches)", max_err);
fprintf (logptr, "\nSampling rate = %g (Hz)", sampfreq);
fprintf (logptr, "\nFilter bandwidth = %g (Hz)", f band);
fprintf (logptr, "\nA-to-D Range = %g (Gs)", ad-range);
fprintf (logptr, "\nlntegration method = %d ", integaig);
fprintf (logptr, "\n (0-Simp 1-Trap 2-Adam)");
fprintf (logptr, "\nNumber of runs = %d ", numb-runs);

-settextposition (center_row+2, center_col - 19);
-outtext ("Press <Enter> to return to main menu.");
gets (string);

break;

case ZUPT_2_KNOWNBASES:

fprintf (logptr, "\n\n\n\n\t\t\tZUPT W/2 BASES (M1\n");

-setbkcolor ((long) 0);
-clearscreen (_GCLEARSCREEN);
-setbkcolor ((long) 1);
-settextcolor ((short) 15);
-settextposition (center_row, center~col - 11);
-outtext ("Enter number of runs:")
gets (string);
numb-runs = atoi (string);

p-err = 0.0;
p_err_sum = 0.0;
p-err-s-sum = 0.0;
max-err = 0.0;

for (icnt = 0; i ont < numb-runs; ++i_cnt)



perr = exper_5
p_err_sum - perr_sum + p err;
p_err_sqsum = p err sqsum + p err*p err;

if (fabs(max err) < fabs(p err))

max_err = p_err;

perr_avg = perr_sum! ((double) numb runs);

perrsqavg = p_err_sqsum/ ((double) numb runs) ;

cplearscreen (_GCLEARSCREEN);
-settextposition (1, center_col - 10);
_outtext ("ZUPT W/2 BASES (Ml)");

-settextposition (3, 1);

sprintf (string,
"Mean Error = 112.4g (inches) STD =%12.4g (inches)",
p err avg,
sqrt (p err sq~avg - perr_avg*p err avg));

_outtext (string);

sprintf (string, "\nMax Error = %12.4g (inches)", max_err);
_outtext (string);

sprintf (string, "\nSampling rate = %g (Hz)", sampfreq);
_outtext (string);

sprintf (string, "\nFilter bandwidth = %g (Hz)", f-band);
-outtext (string);

sprintf (string, "\nA-to-D Range = %g (Gs)", ad range);
-outtext (string);

sprintf (string, "\nlntegration method = %d ", integaig);
_outtext (string);

-outtext ("\n (0-Simp 1-Trap 2-Adam)");

sprintf (string, "\nNumber of runs = %d 11, numb_runs);
-outtext (string);

fprintf (logptr,
"1\n\nMean Error = %12.4g (inches) STD =%12.4g

(inches)",
perravg,
sqrt(p err sq~avg - perr_avg*p_err~avg));

fprintf (logptr, "\nMax Error = %12.4g (inches)", max_err);
fprintf (logptr, "\nSampling rate = %g (Hz)", sampfreq);
fprintf (logptr, "\nFilter bandwidth = %g (Hz)", f-band);
fprintf (logptr, "\nA-to-D Range =%g (Gs)", ad range);
fprintf (logptr, "\nlntegration method = %d ", integaig);
fprintf (logptr, "\n (0-Simp 1-Trap 2-Adam)");
fprintf (logptr, "\nNumber of runs = %d ", numb_runs);

-settextposition (center_row+2, center-col - 19);
-outtext ("Press <Enter> to return to main menu.");
gets (string);



break;

case ZUPT_2_KNOWN_BASESM2:

fprintf (logptr, "'\n\n\n\n\t\t\tZUPT W/2 BASES (M2) \n");

-setbkcolor ((long) 0);
-clearscreen (_GCLEARSCREEN);
-setbkcolor ((long) 1);
-settextcolor ((short) 15);
-settextposition (center_row, center_col - 11);
-outtext ("Enter number of runs:")
gets (string);
numb_runs = atoi (string);

perr =0. 0;
perr_sum -= 0.0;
perrsq~sum = 0.0;
max-err = 0.0;

for (icnt = 0; i-cnt < numb-runs; -H-i_cnt)

p-err = exper_6
p_err_sum = perr_sum + p err;
p_err_sqsum = p err sqsum + perr*perr;

if (fabs(max err) < fabs(p err))

max_err = p_err;

p err avg = p err sum/ ((double) numb-runs) ;
perrsqavg = p_err_sqsum/((double) numb-runs);

_clearscreen (_GCLEARSCREEN);
-settextposition (1, center_col - 10);
_outtext ("ZtJPT W/2 BASES (W2)");

-settextposition (3, 1);

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.4g (inches)",
perravg,,
sqrt (p err sqavg - p err avg*p err avg));

_outtext (string);

sprintf (string, "\nMax Error = %12.4g (inches)", max_err);
_outtext (string);

sprintf (string, "\nSampling rate = %g (Hz)", sampfreq);
_outtext (string);

sprintf (string, "\nFilter bandwidth = %g (Hz)", f_band);
_outtext (string);

sprintf (string, "\nA-to-D Range = %g (Gs)", ad_range);
_outtext (string);

sprintf (string, "\nlntegration method = %d ", integaig);
-outtext (string);



-outtext (11\n (0-Simp 1-Trap 2-Adam)");

sprintf (string, 1"\nNumber of runs = %d "1, numb-runs);
_outtext (string);

fprintf (logptr,

(ichs","\n\nMean Error = %12.4g (inches) STD = %12.4g

p err -avg ,
sqrt (p err -sqavg - p err avg*p_err-avg));

fprintf (logptr, "1\nMax Error = %12.4g (inches)", max -err);
fprintf (logyptr, "1\nSampling rate = %g (Hz)", sampfreq);
fprintf (logptr, "1\nFilter bandwidth = Ig (Hz)", f band);
fprintf (logptr, "1\nA-to-D Range = %g (Gs)", ad-range);
fprintf (logyptr, "1\nlntegration method = %d "1, integaig);
fprintf (logptr, "1\n (0-Simp 1-Trap 2-Adam)");
fprintf (logptr, 11\nNumber of runs = %d "1, numb_runs);

_settextposition (center -row+2, center -col - 19);
-outtext ("Press <Enter> to return to main menu.");
gets (string);

break;

case RETURNFROMEXP:
break;

break;

case FREERUN:
free -run-Mode ~

break;

case QUIT
-setvideomode (_DEFAULTMODE);
exit (0)

break;

_setbkcolor ((long) 0);
_clearscreei (_GCLEARSCREEN);

while (1);

void calibrateADll7O (void)

char
string[80];

int
k, delay cnt;

double
adc-double_a, adc-double-b;

outp (CNTR_STOP, OxOOQO);

_setbkcolor ((long) 1);
_settextcolor ((short) 15);



_clearscreen (_GCLEARSCREEN);

_settextposition (1, 1);
_outtext ("Apply +5 volt reference to EXT INPUT.");

_settextposition (2, 1);
_outtext ("Press <Enter> when ready.");

gets (string);

/* Setup AC5004 */

waitforA 0;
outp (COMMANDREGA, RST);

wait forA 0;
outp (COMMANDREGA, SDI INTEG_167_M);

waitforA ();
outp (COMMAND_REGA, SDC INTEG_300_M);

wait for A ();
outp (PAKAM_1_REGA, OxOOOf);
outp (COMMAND_REGA, SDF);

waitforA ();
outp (COMMANDREGA, NULDI);

wait for B ();
outp (COMMANDREG_B, RST);

wait for B ();
outp (CORMANDREG_B, SDI I INTEG_167_M);

waitforB ();
outp (COMMANDREG_B, SDCI INTEG_300_M);

waitforB ();
outp (PARAMI REGB, OxOOOf);
outp (COMMANDREGB, SDF);

waitforB );
outp (COMMANDREG_B, NULDI);

waitfor A ();
outp (COMMANDREGA, ECAL);

wait for B ();
outp (COMMANDREG_B, ECAL);

waitforA );
outp (COMANDREG_A, SCAL);

waitforB ();
outp (COMMANDREGB, SCAL);

waitfor A 0;
waitforB ();

settextposition (4, 1);
_outtext ("Now adjust EXT INPUT to -2 volts.");



-settextposition (5, 1);

_outtext ("Press <Enter> when ready.");

gets (string);

clearscreen (_GCLEARSCREEN);

-settextposition (1, 12);

_outtext ("1 Results of Calibration "1);

for (k = 0; k < 10; ++-ik)

wait for A
outp (COMMAN4DREGA, CNV);

wait for B
outp (COMMAN4DREGB, CNV);

adc-double -a = read_-A 0
adc-double-b = readB 0

-settextposition (2 + k, 1);
sprintf (string, "I\nADC#1 = %13.6g ADC#2 =%13.6g Diff =%13.6g",

adc double-a, adc_double-b, adc-double-a - adc-double b);
_outtext (string);

for (delay cnt = 0; delay cnt < 30000; -H-delay cnt);

-settextposition (4 + k, 1);
-outtext ("Enter 'S' to save new A-to-D scale factor to non-volatile");

-settextposition (5 + k, 1);
_outtaxt ("memory on ADll7O's

gets (string);

if (string(03 == I' 1 1 string(0] 's')

wait-for A
outp (COMMAN4DREGA, SAVA);

wait forB i
outp (COMMAN4D.REG_B, SAVA);

void calibrateQA2000 (void)

char
test-str[803;

double
startp, dist,
endp, calcp;

_setbkcolor ((long) 1);
_settextcolor ((short) 15);



_clearscreen (_GCLEARSCREEN);

command-anorad ("IA5."1);

wait-for (6. 0) ;

startyp = readposition 0

bias = bias + do-zupt (ZUPTPOINTS);
SF = 1.0;

calcp integrate and-move (4.0,
'DOODOO1881DO1FFOO00000000FE77E30000000000G");

endy = readyposition ();
dist =endp - startp;

SF = dist/calc-p;
bias-time = 0.0;
printf ("\ndist = %g SF = %g bias =%g", dist, SF, bias);
gets (test_str);

void command-anorad (char *ano_buffer)

int

for (i = 0; ano-buffer(i] != \0'; -Hi)

bios-serialcom (_COM SEND, 0, (unsigned int) ano-bufferf 1]);

/* Change the cursor shape.
<value> has starting line in upper byte, ending line in lower byte.
Returns the previous cursor value. *

unsigned cursor (unsigned value)

union REGS inregs, outregs;
mnt ret;

inregs.h.ah = 3; /* Get old cursor *
inregs.h.bh = 0;
int86 (OxlO,&inregs,&outregs);
ret = outregs.x.cx;

inregs.h.ah = 1; /* Set new cursor *
inregs.x.cx = value;
int86 (OxlO,&inregs,&outregs);

return (ret);

/* Put an item in menu.



<row> and <col> are left position.
<str> is the string item.
<len> is the number of blanks to fill. *

ioid display menu item (int left_row, int left-col, char *str, mnt len)

char
temp(80J;

-settextposition (left_row, left-col);
-outtext (11 1);
_outtext (str);
memset (temp,9 I'ler--);
temp(len) = 0;
outtext (temp);

double do_zupt (int numb data-points)

int

double

accel-sum;

accel-sum = 0.0;

for (i = 0; i < numb data-points/2; ++i)

(ce u ce sm+ra is
accel-sum = accel-sum + readA ) bias;

return (accelsum/ (double) numb-datapoints);

/* Draw menu box.
<row> and <col> are upper left of box.
<hi> and <wid> are height and width. */

void draw-menu-box (mnt up left_row, mnt up left-col, int height, mnt width)

mnt

char
temp(8O];

settextposition (up_left_row, up left_col);
tempro] = *menus.nw;
memset (temp + 1, *menus.ew, width);
temp(width + 1] = *menus.ne;
temp(width + 2) = 0;
_outtext (temp);

for (i = 1; i <= height; ++i)

_settextposition (up left-row + i, up_left_col);
_outtext (menus.ns);



_settextposition (upleft-row + i, up_left-col + width + 1);
_outtext (merius.ns);

settextposition (up_left-row + height + 1, upleft_col);
tEemp(0] = *menus.sw;
memset (temp + 1, *menus. ew, width);
temp~width + 1] = *menus.se;
temp(width + 2] = 0;
_outtext (temp);

double experl1 (void)

double
startp, endp, calcp, err, data-time;

data-time = 3.0;

command-anorad ("IA5."1);

wait_f or (8. 0) ;

outp (CNTRSTOP, OxOOOO); /* Disarm 2MCLK *

wait for A ();
outp (COMMAN4DREGA, SCAL);

wait-forEB ();
outp (COMMANDREGB, SCAL);

wait for A
wait-for B ~

outp (CNTRSTART, OxOOGO); /* Arm 2MCLK *

startp = readposition ~

calcp = integrate and-move (data_time,

"DOODO0188lDOlFFOOOOOOOODOFE77E30000000000G"I);

endp =readposition ();

err = calcp - (endp - startyp);

fprintf (logptr, "\n%14.6g %14.6g %14.6g",
calcyP, end~p - startp, err);

return (err);

double exper_2 (void)

double
startp, endp, calcp, err, data-time;



data-time - 3.0;

command-anorad ('IA5."1);

wait_f or (8. 0) ;

outp (CNTRSTOP, OxOOOO); /* Disarm 2MCLK *

wait forA ();
outp (CORMA14DREGA, SCAL);

wait-forB ();
outp (COMOMANDREGB, SCAL);

wait forA 0
wait-forB ;

outp (CNTRSTART, OxOOOO); /* Arm 2MCLK *

startyp = readposition 0

bias =bias + do-zupt (ZUPTPOINTS);

calcp = integrate-and-move (data time,
"DOODO01881DOlFFOOOOOOOODOFE77E30000000000GO);

wait_f or (2.0) ;

bias = bias + do-zupt (ZUPTPOINTS);

calc3p = calc~p +
integrate and-move (data_time,

"DOODO0l881DOlFFOOOOOOOODOFE77E3OOOOOOOOOOG"I);

wait_f or (2. 0) ;

bias = bias + do-zupt (ZUPTPOINTS);

calc~p = calcp +
integrate aAna-move (data time,

"DOODO0l88lDOlFFOOOOOOOODOFE77E30000000000GI) ;

endp = readposition ();

err = calcp - (endp - startp);

fprintf (logptr, "\n%14.6g %14.6g %14.6g",
calcp, endp - startp, err);

return (err);

double exper-3 (void)

double
startp, endp, calcp, err, data_time, vel-sum;

data-time = 3.0;

command-anorad ("IA5."1);



wait-for (8. 0);

outp (CNTR STOP, OXOOOO); /* Disarm 2MCLK *

wait-forA ();
outp (COMMANDREGA, SCAL);

wait forB ();
outp (COMMANDREG_B, SCAL);

wait-for_-A 0
wait-forB ;

outp (CNTRSTART, OxooGo); /* Arm 2MCLK(*

startp = readposition ();

calcp = integrate-and-move (data-time,
"DOODO0l8lDO1FFOOOOOOOODOFE77E30000000000G"I);

vel-sum = vel;

wait-for (2.0);

calcp =calcp +
integrateand -move (data_ t-ime, "IA5.t1);

vel-sum. = vel-sum + vel;

endp = readposition ();

err = calcp - (endp - startp);

bias = bias - (2.0*vel-sum/data-time +
6. 0*err/ (data -time*data time) )/SF;

bias-time = bias-time + (6.O*vel-sum/(data-time*data_time)-
12.0*err7(data time*data-time*data-time))/SF;

fprintf (logyptr, "\n%14.6g %1l4.6g %14.6g",
calcp, endp - startp, err);

return (err);

double exper_4 (void)

double
startp, endp, calcp, err, data_time, vel-sum;

data-time = 3.0;

command-anorad ("IA5.2');

wait-f or (8. 0) ;

outp (CNTRSTOP, OxO 000); /* Disarm 2MCLK *

wait for-A ();
outp (COMMANDREGA, SCAL);

wait for-B ();



outP (COMMANDREG_B, SCAL);

wait forA 0
wait-forB 0

outp (CNTRSTART, OXOOOO); /* Arm 2MCL(K

startp = readposition ();

calcy = integrate and-move (data_time,
"DOODOO1881DO1FFOOOOOOOODOFE77E30000000000G"I);

ye]._sum = ye].;

wait_for (2.0);

calcp = calcp +
integrate_and_move (data-time, "A5.1);

ye]._sum = ye)._sum +- ye);

endp - readyposition ();

err = caicD - (end D - startp);

bias = bias - (2.0*vel sum/data-time
6.0*err/(data -time*data_time) )/SF;

bias -time =bias-time + (6.0*vel_sum/(data time*data_time)
12.0*err/ (data-time*data-time*data-time) )/SF;

fprintf (logptr, "\n%14.6g %14.6g %14.6g",
calc-p, end~p - startp, err);

return (err);

double exper_5 (void)

double
startp, endp, calcp, err, data_time, ye)._sum;

data-time - 3.0;

command-anorad ("IA5."1);

wait_for (8.0);

outp (CNTR_STOP, OxOOOO); /* Disarm 2MCLK *

wait for A ();
outp (COMMANDREG_A, SCAL);

wait forB ();

outp (COMMANDREG_B, SCAL);

wait forA 0
wait-forB 0

outp (CNTR_START, OxOOQO); /* Arm 2MCLK *

startp = read position ~



calcp = integrate_and-move (aatime,
"DO0D0l881DOIFFO0000000D'~ 277E30000000000G"O)

vel-sum = vel;

wait-for (2.0);

calcp = calcp +
integrate and-move (data-time,

"DOOD00l88lDOlFFOOOOOOoODOFF77E30000000000GO);
vel-sum = vel-sum + vel;

endp = readposition 0

err = calcp - (endp - startyp);

bias = bias - (2.0*vel sum/data time +
5.* *r/ (data-time*data -time) )/SF;

bias -time = bias-time + (6.0*vel_sum/(data time*data-time)
12.0O*err/ (data-time*data-time*data-time) )/SF;

SF = SF*endp/calcp;

fprintf (logptr, "\n%14.6g %14.6g %14.6g--,
calcp, endp - startp, err);

return (err);

double exper-6 (void)

double
startyp, endp, calc~y, err, data time;

data-time = 3.0;

command-anorad ("IA5."1);

wait-for (8.0);

outp (CNTRSTOP, OxOOOO); 1* Disarm 2MCLK *

wait forA ();
outp (COMMAN4DREGA, SCAL);

wait forB ~
outp (COMMANDREG_B, SCAL);

*wait forA ~
wait-for_B Q

outp (CNTRSTART, OxOOOO); /* Arm 2MCLK *

startp = readposition ();

bias = bias + do_zupt (ZUPTPOINTS);

caic_p = integrate_and-move (data_time,

"DOODOO1881DOlFFOOOOOOOODOFE77E30000000000G'I)

wait-for (2.0) ;



* bias -bias + dozupt (ZUPTPOINTS);

* calcp = calcp +
integrate-and-move (data-time,

* DOODO0l88lDOlFFOOOOOOOODOFE77E30000000000GI);

* end~p = readyposition ~

err = calc-p - (endp - startp);

SF = (SF + SF*endp/calcp)/2.0;

*fprintf (logptr, "\n-%l4.6g %14.6g %14.6g",
calcp, endyp - startp, err);

return (err);

* void free-run-mode (void)

char

string (80);

int
in-char;

unsigned mnt
ret;

double
accel-ml, accel-m2, accel-m3, accel, position, d_cnt,
vel-mi, vel -m2, vel-m3, tot-time, p_ correct,
new-bias, slope;

_setbkcolor ((long) 1);
_settextcolor ((short) 15);
_clearscreen (-GCLEARSCREEN);

accel ml = 0.0;
accel m2 = 0.0;-
accel m3 = 0.0;
accel =0.0;

vel ml =0.0;

vel m2 =0.0;

vel m3 =0.0;

vel = u0

d-cnt = 0.0;

position = read-Position ~

do

if (kbhit()o 0)

in-char =getch ;
if (in char == (int) 11



return;

if (in_char == (int) 'Z')

new bias = bias + dozupt (ZUPTPOINTS);
tot-time = d cnt*dt*2.0;
slope = SF*(new -bias - bias)/tot-time;
p_,correct =slope*tot_time*tot time*tot-time/6.0;
position =position-p correct;

bias =new-bias;

d-cnt =0.0;

accel-ml = 0.0;
accel-m2 = 0.0;
accel-m3 = 0.0;
accel =0.0;

vel-ml =0.0;

vel-m2 =0.0;

vel-m3 =0.0;

vel = 0.0;

else

ret = -bios serialcom (_COM SEND, 0, (unsigned int) in-char);

accel-m3 = accel-m2;
accel-m2 = accel-ml;
accel ml = accel;

accel = F*(read-A ()-bias);

vel m3 = vel m2;
vel m2 = vel-ml;
vel-ml = vel;

switch (integaig)

case SIMP:
vel = vel + (5.0*accel + 8.0*accel-ml - accelm2)*dt_12;
position =position + (5.0*vel + 8.0*vel-ml - vel-m2)*dt_12;

break;

case TRAP:
vel = vel + (accel + accel-ml) *dt-2;
position =position + (vel + vel-ml)*dt_2;

break;

case ADAM:
vel = vel + (55.0*accel - 59.0*acce2._ml +

37.0*accel-m2 - 9.0*accel m3)*dt_24;
position = position + (55.0*vel - 59.0*vel-ml +

37.0*vel-m2 - 9.0*vel-m3)*dt 24;
break;

accel-m3 = accel-m2;
accel-m2 = accel-ml;
accel-ml = accel;



accel =SF*(read_B C)-bias);

vel m3 = vel m2;
vel m2 = vel ml;
vel-ml = vel;

switch (integaig)

case SIMP:
vel = vel + (5.0*accel + 8.O*accel-ml - accel-m2)*dt_12;
position = position + (5.0*vel + 8.O*vel-ml - vel-m2)*dt_12;

break;

case TRAP:
vel = vel + (accel + accel ml) *dt_2;
position = position + (vel + vel-ml)*dt_2;

break;

case ADAM:
vel = vel + (55.O*accel - 59.0*accel-ml +

37.0*accel-m2 - 9.0*accel-m3)*dt_24;
position = posit ion + (55.O*vel - 59.O*vel-ml +

37.0*vel-m2 - 9.Q*vel-m3)*dt 24;
break;

sprintf (string, "Position = %12.3f inches", position);
-settextposition (center-row, center-col - 16);
-outtext (string);

d Tcnt = d cnt + 1.0;

while (1);

double integrate and-move (double seconds, char *ano-buffer)

int
string len, i, k, numbpoints;

double
accel ml, accel m2, accel mW, accel, position,
vel-ml, vel_m2, vel-m3;

_setbkcolor ((long) 1);
_settextcolor ((short) 15);
_clearscreen (_GCLEARSCREEN);

string_len =strien (ano buffer);
k = 0;
numbpoints =(int) (seconds/dt);

accel-ml = 0.0;
accel-m2 = 0.0;
accel-m3 = 0.0;
accel =0.0;

vel-ml =0.0;

vel-m2 =0.0;



vel m3 = 0.0;

vel = 0. 0;

* position = 0.0;

for (i - 0; i < numbjpoints/2; ++i)

accel m3 = accel m2;
accel-m2 = accel-ml;
accel ml = accel;
accel =SF*(read-A ()-bias - bias-time*dt*i);

vel m3 vel m2;
vel m2 =vel ml;
vel-ml =vel;

switch (integaig)

case SIMP:
vel = vel + (5.0*accel + 8.0*accel -ml - accel -_m2)*dt-12;
position position + (5.0*vel + 8.0*vel-ml - vel-m2)*dt_12;

break;

case TRAP:
[ vel = vel + (accel + accel-ml)*dt_2;

position =position + (vel + vel-ml) *dt_2;
break;

case ADAM:
vel =vel + (55.0*accel - 59.0*accel-ml +

37.0*accel-m2 - 9.0*accel m3)*dt_24;
position = position + (55.0*vel - 59.0*vel-ml +

37.O*vel-m2 - 9.0*vel-m3)*dt 24;
break;

accel-mJ = accel-m2;
accel-m2 = accel-ml;
accel ml = accel;

accel = SF*(readB ()-bias -bias time*dt*i);

vel-m3 = vel-m2;
vel m2 = vel ml;
vel-ml = vel;

switch (integaig)

case SIMP:
vel = vel + (5.O*accel + 8.0*accel -ml - accel_m2)*dt_12;
position =position + (5.0*vel + 8.O*vel-ml - vel-m2)*dt_12;

break;

case TRAP:
vel = vel + (accel + accel-ml)*dt_2;
position =position + (vel + ye)._ml)*dt_2;

break;

case ADAM:
vel = vel + (55.O*accel - 59.0*accel -ml +

37.0*accei m2 - 9.0*accel m3)*dt_24;
position =position + (35.O*vel - 59.O*vel-ml +

37.O*vel-m2 - 9.O*vel-m3)*dt_24;
break;



if (k < stringlen)
(

bios serialcom (_COMSEND, 0, (unsigned int) anobuffer(k]);

return (position);

/* Put menu on screen.
Starting <row> and <column>.
Array of menu <items> strings.
Global structure variable <menus> determines:
Colors of border, normal items, and selected item.
Centered or left justfied.
Border characters.
Returns number of item selected. */

int get-menu (int row, int col, char * *items)(
int

i, numb items, max = 2, prev, curr = 0,
litem25];

long
bcolor;

cursor (TCURSOROFF);

bcolor = _getbkcolor ();

/* Count items, find longest, and put length of each in array */

for (numb-items = 0; items~numbitems] != NULL; numb-items++)
(
litem~numbitems] = strlen (items~numbitems]);
if (max < litem~numbitems])
max = litem[numbitems];

max = max + 2;

if (menus.centered)
(
row -= numb items / 2;
col -= max 7 2;)

/* Draw menu box */

_settextcolor (menus.fgBorder);
setbkcolor (menus.bgBorder);

drawmenu_box (row++,col++,numbitems,max);

/* Put items in menu */

for (i = 0; i < numb-items; ++i)
iif (i == curr)
{



_settextcolor (menus.fgSelect);
_setbkcolor (menus.bgSelect);

else

(stetoo mnsf~ra)
settexcolor (menus. fgNormal);

display_ menu-item (row-Ii,col,items(i],max- litem(ijl;

/* Get selection *

* for (;

switch ((_bioskeybrd(_KEYBRD-READ) & OxffOO) >> 8)

case UP
prey = curr;
curr = (curr > 0) ? (--curr % numb-items) : numb items-i;

break;

case DOWN
prey = curr;
curr = (curr < numb-items) ? (++curr I numb-items) 0;

break;

case ENTER
-setbkcolor (bcolor);
return (curr);

default
continue;

)stetoo mnsf~lc)
_settexcolor (menus.fgSelect);

display-menu-item (row +- curr, col, items(curr], max -litemfcurr]);

_settextcolor (menus.fgNormal);
_setbkcolor (menus.bgNormai);
display_ menu_item (row + prey, col, items~prev], max -litem~prev]);

double readA (0

ithigh byte, mid-byte, low-byte, status_byte;

long int
hbyte, mbyte, ibyte, adc-result;

double
adc-double;

do

status_byte = inp (STATUSRiEG_A);

while ((status byte & 0x0002) ==OxOOQO);



/* Read low, mid and high bytes

high byte -inp (HIGH_-DATA-A);
mid-byte =inp (MIDDATAA);
low-byte inp (LOWDATAA);

/* Combine bytes

h-byte = (long int) high byte;
m,.byte = (long int) mid -byte;
1 byte = (long int) low byte;
adc-result = ((h byte <« 16) & OxffffOOOO)

((mbyte << 8) & OxOOOOffOO)I
(1-byte & OxOOOOOOff);

adc-double = (l0.0*adc -result)/4194304.0 - 5.0;
return (adc double);

double read B (

int
high byte, mid-byte, low-byte, status-byte;

long int
h_byte, m-byte, 1 byte, adc-result;

double
adc-double;

do

status_byte = inp (STATUSREGB);

while ((status-byte & 0x0002) == OxOOQO);

/* Read low, mid and high bytes

high byte =inp (HIGH_-DATA_-B);
mid byte =inp (MIDDATAB);
low-byte =inp (LOW_DATAB);

/* Combine and store in array

hbyte = (long int) high byte;
mbyte = (long int) mid byte;
1_byte = (long int) low -byte;
adc-result = ((h byte << 16) & OxffffOOOO)

((m-byte << 8) & OxOOOOffOO)
(1_byte & OxOOQOOff);

adc-double = (l0.0*adc-result)/4194304.Q 5.0;



return (adc-double);

double readposition (

unsigned int
comi-ret, comi-reti, comi-ret2, comi-ret3, coml-ret4,

comi_ret5,
comi-ret6, comi-ret7;

double
posi;

do

{ol-rt bo eilo _O EEVo )
comi -ret7 = -bios -serialcom (_COk _RECEIVE, 0, 0);
comi-ret7 = -bios-serialcom (_CObiRECEIVE, 0, 0);

comi-ret7 = bios-serialcom (_CORECEIVE, 0,sine 0);

comi -reti = _bios -serialcom (_COMS EDV0, (usine int);'

comi reti = bios serialcom (_COM_RECEIVE, 0, 0);
comi -ret2 = -bios -serialcom (_COk _RECEIVE, 0, 0);
comi -ret3 = -bios -serialcom (_CON RECEIVE, 0, 0);
comi -ret4 = -bios -serialcom (_COk RECEIVE, 0, 0);
comi -ret5 = -bios -serialcom (_COMRECEIVE, 0, 0);
comi-ret6 = -bios-serialcom (_COkRECEIVE, 0, 0);

if (comi-reti < 65)

posi = 1048576.0 * ((double) comi-reti - 48);

else

posi = 1048576.0 * ((double) coml-reti - 55);

if (coml-ret2 < 65)

posi = posi + 65536. 0 * ((double) comi_ret2 - 48);

else

posi = posi + 65536.0 * ((double) coml_ret2 - 55);

if (comi-ret3 < 65)

posi = posi + 4096. 0 * ((double) coml_ret3 - 48);

else

posi = posi + 4096.0 * ((double) comi_ret3 - 55);

if (coml-ret4 < 65)

posi = posi + 256. 0 * ((double) comi-ret4 - 48);



else

posi - posi + 256.0 *((double) comi_ret4 -55);

if (comi-ret5 < 65)

posi -posi + 16.0 *((double) comi_ret5 -48);

else

posi -posi + 16.0 *((double) comI_ret5 55);

if (comlret6 < 65)

posi = posi + 1.0 * ((double) coml_ret6 - 48);

else

posi = posi + 1.0 * ((double) comi_ret6 - 55);

posi =- posi/64000.0;

while (posi > 12.0 1 POsi < 0.0);

return (posi);

void setupADC-defaults (void)

wait_forA
outp (COMMAND_REG_,A, RST);

wait_for A ();
outp (COMMANDP_REG_A, SDC IINTEG_300JM);

wait_forB ();
outp (COMMANDREG_B, RST);

wait_forB ();
outp (COMMAND_REG_B, SDC IINTEG_300_M);

wait_for_A 0
outp (PARAM_1_REG_A, OxOQOf);
outp (COMMAND_REG_A, SOF);

wait_for_B 0
outp (PARAM_1_-REG_B, OxOOf);
outp (COMMAND_REG_B, SDF);

wait-forA ();
outp (COMMAND_REG_A, CALDI);

wait_for A ();
outp (COMMANDREG_A, NtJLDI);

wait_forA ();
outp (COMMANDREG_A, SCAL);



void setup-anorad (void)

unsigned mnt
comi-ret;

comi-ret = bios serialcom (_COMINIT, 0,

C;OM_9600 _COMEVENPARITY f COMCHR7 I COMSTOP2);

comi-ret = -bios-serialcom C_ COMSEND, 0, 1);

comi ret = -bios serialcom (_CON_-SEND, 0, (unsigned int) 'N');
comi ret = bios serialcom (_COMSEND, 0, (unsigned int) 'H');
comi ret = bios serialcom ( CON SEND, 0, (unsigned int) '2');
comi ret = bios serialcom ( CONSEND, 0, (unsigned int) 15');
comi ret = bios serialcom (_COMSEND, 0, (unsigned int) '6');
comi-ret = -bios-serialcom CCONSEND, 0, (unsigned int) '.');

comi-ret = _bios-serialcom (_COMSEND, 0, (unsigned int) 'H');

comi ret = -bios serialcom (_COMSEND, 0, (unsigned int) 'E'):
comi ret = -bios serialcom (_CONSEND, 0, (unsigned int) 1');
comi-ret = -bios-serialcom (_COMSEND, 0, (unsigned int) 1.1);

comi ret = -bios serialcom (_COM _SEND, 0, (unsigned int) IF');
comi ret = _ bios serialcom (_COMSEND, 0, (unsigned int) '2');
comi ret = -blos serialcom (_CONSEND, 0, (unsigned int) '0');
comi ret = -bios serialcom (_CONSEND, 0, (unsigned int) '0');
comi-ret = -bios-serialcom (_COMSEND, 0, (unsigned int) '.');

comi ret = -bios serialcom (_CONSEND, 0, (unsigned int) IM');
comi ret = -bios serialcom (_COkSEND, 0, (unsigned int) 'W);
comi ret = -bios serialcom (_CONSEND, 0, (unsigned int) '5');
comi-ret = -bios-serialcom (_COMSEND, 0, (unsigned int) '.');

comi ret = bios serialcom (_CONRECEIVE, 0, 0);
comi ret = bios serialcom ( CON RECEIVE, 0, 0);
comi-ret = -bios-serialcom (-CONRECEIVE, 0, 0);

double setup-counter (double frequency)

unsigned int
numb-counts, chigh, Clow;

double
actual-freq;

Program counters on ADC board

numb-counts = (unsigned int)(2.OE+06/frequency);
chigh =(numb_counts >> 8) & OxOOff;
Clow =numb-counts & OxOOff;

outp (CNTRSTOP, OxOOQO);
outp (CNTR_-LOWBYTE, Clow);
outp (CNTRHIGHBYTE, chigh);



actual -freq = 2.OE+06/((double) numb-counts);
return (actual-freq);

void wait-for (double seconds)

char
string(80j;

int
1, numbpoints;

double
input;

_setbkcolor ((long) 1);
_settextcolor ((short) 15);
_clearscreen ' GCLEARSCREEN);

-settextposition (center-row, center-col -15);

sprintf (string, "Waiting for %10.2g seconds", seconds);
_outtext (string);

numbypoints = (int) (seconds/dt);

for (i = 0; i < numbypoints/2; ++i)

inu( edA0
input = readA B

void wait-forA (

unsigned int
status-word;

do

status-word =inp (STATUS_REGA);

while ((status-word & OxOOl) == 1. (status-word & 0x0020) == x0020);

void wait-forB (

unsigned int
status-word;

do



statusword = inp (STATUSREGB);
wwhile ((status_word & OxOO0l) == 3. I I (status word & 0x0020) ==0x0020) ;
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IAC PROGPAMMING CODES EXPLANNTInN

Command Descrintions PAG7

- A Absolute Position 2-2

- D Acceleration Data 2-3

- E Set Early Ready Distance 2-3

- F Set Maximum Velocity 2-4

- I Incremental Position 2-4

- Home Offset 2-4

G Interpolation 2-5

- p Point-To-Point Mode 2-5

J,R Servo off 2-5

- H Home 2-6

Z Zero Set (reset) 2-6

M Select Variable Axis Parameters 2-7

MA Select Square Root Deceleration 2-7

MB Set Velocity Bias 2-8

MC Tach switching systems only 2-9

MD Set home search distance 2-9

MF Set DAC Bias Compensation 2-9

MG Interpolation Error Gain 2-9

MH Set Home Speed 2-10

?AI Desired Velocity (Interpolation) Scale Factor 2-10

MP Select Linear Deceleration Slope 2-11

- Q Output Position 2-12

U Enable Synchronized Ready Mode 2-12

V Disable Synchronized Ready Mode 2-12

W Output Status 2-13

- X Abort Command Execution 2-16

Y Abort Command Execution 2-15

2-1
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This section contains detailed descriptions of all commanis.

These fall into two groups: Buffered (non-immediate) and

Non-Ruffered (immediate).

Buffered Commands

The following commands are stored by the axis; they are executed in

sequence immediately following the completion of the previous

command (see Enable Synchronized Ready command page 2-12 for more

information). All require that the axis be addressed in order to be

accepted.

Data Input Commands

The format of all data input commands (except "D") is:

I En..n] t

-terminator - any non digit character excluding

address characters. Can be the next

* : command letter. In the following

: . examples "." is used.

----------- data - from one to seven digits. The []

indicate that this data is optional:

if omitted then a command value of

zero is used.

- command-letter - a single letter.

A - Absolute Position Command

Commands the axis in Point-to-Point mode to a specific position

relative to zero.

Fx: A10000. move to +10000 counts

A-1234. move to -1234 counts

2-2
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-i

D - Acceleration, Deceleration nata

* Used for entering data to define a controlled-path move. -his is

done by commanding the axes to accelerate at given rate for a given

time. Acceleration is in counts ner interrupt units, and time is 'n

.498 millisecond units. Each frame consists of ten hexadecimal
digits: ttttiiffff where tttt is the frame tim ii is the intecer
poron f t =aeieration (counts) and ffff is th iractiona!

acceleration (1/65536 counts The data input is

terminated (at the end of a frame) by either a non-hexadecimal

character or a frame with zero time. A frame with zero time

indicates the end of the contour, at which the axis switches to

Point-to-Point mode. (See interpolation description for format and

a detailed example.)

Ex: OOOO80080000008FF8O000000000000

ttttiiffffttttiiffffttttiiffff

actually: D 0008 00 8000 accel at .5cts/int for 8 interrupts,

0008 FF 8000 decel at -.5 cts/int for 8 int,

0000 00 0000 zero frame time - end of contour

E - Set Early Ready Distance

Sets the position tolerance in counts within which the axis is said

to have reached its commanded position. That is, when the axis is
within "E" counts of its commanded position, its "ready" status will

become true. The default (power-on) early ready distance is 13

counts (approx .0002" for EEl encoder); the maximum allowable value

is 255 counts.

Ex: F2. set early ready distance to 2 counts

El00. set early ready distance to 100 counts

E0. set no early ready distance - axis must reach

commanded position to be ready
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F - Set Maximum Velocity

Used to specify the maximum velocity in Point-to-Point mode. The

data is in units of .1%0 of maximum velocity, that is, F1O00 is

maximum velocity, FI00 is one-tenth of maximum, etc.

Fx: Fl000. set maximum point-to-point vel.

FI0. set 1% of maximum vel.

I - Incremental Position Command

Commands the axis to move a specified distance (increnent) frcm its

current position. This is in contrast to absolute, which commands

the axis to a specific position, instead of by a specific distance.

Ex: 11200. move the axis +1200 counts

1-123. move the axis -123 counts

0 - Home Offset

This command is used to implement coordinate translation, i.e.

re-defining the zero reference position.

Ex: 064000. set axis zero to +64000 counts from home (the

axis' position is now -64000)

00. set axis zero to home (clear the offset)

0-20000. set axis zero to -20000 counts from home (the

axis' position is now +20000)
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Other Commands

H - Home

Causes the axis to begin the !Iome/Calihrate sequence in which the

encoder signals are first sampled and then compensated for, after

which the axis' machine home position (according to mechanical or

optical sensors) is determined. (See standard encoder home

sequence.)

Ex. H Homes axis

Z - Zero Set (reset)

Introduces an offset equal to the value of the current absolute

position, thereby defining that position as zero. (Independent of

Home Offset "0".)

Ex. Z Zeros axis

Q command will display 000000.

2
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M -Select Variable Axis Parameters

Allows the user to configure the axis for particular tables, loads,

etc. The commiand requires an extra letter to select the parameter

to be changed.

--MA - Select Square Root Deceleration

Used to select square root (constant) deceleration in pt-to-pt

positioning mode. The command requires a single digit from 0 to 11

to select deceleration according to the following table. (M~ote -

* the given deceleration values are based upon a standard EEl encoder

i.e. 15.625u'/count = l/64000"/ct, and maximum table velocity of 10

in/sec)

MAO 1 /512g = 7539"/sec/sec

MAI 1 /256g = .508"/sec/sec

MA2 - 1/128g = 3.01G"/sec/sec

MA3 - 1/64g = 6.02"/sec/sec

MA4 =1/32 g =12.063"/sec/sec

MA5 =1/16 g =24.125H/sec/sec

MA6 = 1/8 g = 48.25"/sec/sec

MA7 = 1/4 g = 96.5"/sec/sec

VMAS 1/2 g = 193"/sec/sec

MA9 = 1 g = 386'*/sec/sec

MA10 = 2 g = 772"/sec/sec

MAll = 4 g = 1544"/sec/sec

Ex: M~a7. select 1/4 g deceleration

MA4. select 1/32 g deceleration
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MC - MA for lowspeed mode. Tach switching systems only, see addendum

MD - SET HOME SEARCH DISTANCE

Sets half the number of cycles searched for the home pulse. (Mhe

number of cycles searched is twice what is entered by Mn).

EX: MD25. For 500 line per inch encoder

MD31. For 25 line per mm encoder

MD125. For 2500 line per inch or 100

line per mm encoder

MF - DAC Bias Compensation

This number is added to the DAC output when in the linear region of

the point to point servo. The purpose of this is to insure that the

output is enough to overcome a small DAC offset.

EX.: MF 4. set to 4 DAC counts

MF 0 set to 0 DAC counts

MF 10 set to 10 DAC counts

MG - Interpolation Error Gain

MGO = Positional Error / 128

MGI = Positional Error / 64

MG2 = Positional Error / 32

MG3 = Positional Error / 16

MG4 = Positional Error / 8

MG5 = Positional Error / 4

MG6 = Positional Error / 2

MG7 = Positional Error / 1
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-- MH - Set Home Speed

Used to set the maximum sneed at which the axis will search for the

home reference. The speed is programmed in D/A counts, where

maximum is 4095.

Ex: MH4095. set maximum home sneed

MH1024. set 1/4 maximum speed

MI - Desired Velocity (Interpolation) Scale Factor

MI0 = x 1

Mil = x 2

M12 = x 3

M13 = x 4

M14 = x 6

MIS = x 8

M16 = x 12

M17 = x 16

MI8 = x 24

t"I9 = x 32

MI10 = x 48

MIll = x 64

M112 = x 96

MI13 = x 128

DVEL scale factor = 4095 (max DAC) / Maximum System Speed In cts/Int

2-10



ANORAD CORPORATION * 110 OSER AVE. * HAUPPAUGE. NEW YORK 11788

--MR - Select Linear Deceleration Slope

Used to select the linear (declining) deceleration slope. It is

typically used to match performance and stability for a given axis.

(See Point-to-Point servo description)

MR0 -- vel = 1/16 x dist to goal

MR1 -- vel = 1/9 x dist to goal

MP2 -- vel = 1/4 x dist to goal

MP3 -- vel = 1/2 x dist to goal

MR4 -- vel = 1 x dist to goal

MR5 -- vel = 2 x dist to goal

MR6 -- vel = 4 x dist to goal

Ex: MRO. select 1/16 linear slope

MR3. select 1/2 linear slope
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Non-Buffered (Immediate) Commands

The following commands are acted upon as soon as they are received

by the axis.

Addressed Commands (require axis to be addressed)

S- 'utout Position

Causes the current oosition of the axis to he output over the

communications interface. The position is transmitted as six

hexadecimal characters (3 bytes) and is two's-compliment binary.

charl char2 char3 char4 char5 char6 & CR

-------------------- least significant byte

--------------------------- middle byte

----------------------------------------- most significant byte

Ex. Q Output position

OOOOOF response - 16 counts positive from 0 position

U - Enable Synchronized Ready Mode

Causes the axis to link itself to the Universal Ready signal. This

signal is the logical "AND" of all linked axes' ready states: it

indicates that all linked axes have completed command execution.

When linked in this manner, the axes begin each new command at the

same time, allowing for synchronized system control.

Ex. U Enables synchronized ready mode.

V - Disable Synchronized Ready !ode

Disconnects the axis from the Universal Ready Signal.

Ex. V Disables synchronized ready mode.
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COMMAND SUMMARY

default data immed addr

A Absolute Position Command ....... Asnnnnnnn ..... x.. ..x

D Interpolation Acceleration Data. Dhhhhhhhhhh. ..x.. ..x

E Set Early Ready Distance ........ Ennn ........ 13 ..x.. ..x

F Set Maximum Velocity ............ Fnnnn ....... 250 ..x.. ..x

G Acceleration Servo Mode ......... G............ .. ..x

H Home ................................H. ........... . x

I Incremental Position Command .... Isnnnnnnn ..... x.. ..x

J Servo Off ........................ J............ J .... .x

M Select variable axis parameters:

MA Select pt-pt deceleration.. MAn ........... 6 ..x

MB Set Velocity Offset ........ MBsnnn ........ 0 ..x.. ..x

MC MA for low speed mode .........................................

Tach switching systems only.MCn ........... 0 ..x.. ..x

MD Set Home Pulse Search Dist. MDnn ....... +50 cycles..x.. ..x

MF Set DAC Bias Compensation.. MFn ........... 2 ..x.. ..x

MG Interpolation Error Gain... MGn ........... 4 ..x.. ..x

M.H Set Home Speed ............ MHnnnn ...... 1,0OO ..x.. ..x

MI Interp.Des. Vel. Scale Fac. MIn ........... 6 ..x.. ..x

ML Set Lin (usually 2X Predis) MLnnnnn .......

MP Set Predis .................. MPnnnnn .......

MR Select Linear Slope ........ MRn ........... 0 ..x.. ..x

O Set Home Offset .................. Osnnnnnnn... 0 ..x..x

P Point-to-Point Servo Mode....... P ............. ... x

o Output Position................. 0 ............... .. x x

R Servo Off........................ R ............. .. ..x

U Enable Universal Ready Mode ..... o ............. ... . x ..x

V Disable Universal Ready Mode .... V ............ V .... x ..x

W Output Status ................... W ........ ... .. .. x ..x

X Abort Command Execution......... X.............. .. x

Y Abort Command Execution.........Y....... ... .... x ..x

Z Set Zero............ ......... .......... .... ..x
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"data" indicates that command requires numeric data

"immed" indicates that command is executed as soon as it's received
"addr" indicates that axis must be addressed for command to be

executed

n = decimal dicit 0-9

h = hexadecimal digit 0-9, A-F

s = sign (+,-); if omitted, + assumed

N OTE: For the data input commands, the number of digits shown is

the maximum number of digits allowed - any smaller number

of digits is acceptable; only significant digits are

necessary.

31
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ZUPT W/2 BASES (M2)

7.30441 7.15834 0.146061
7.1865 7.15834 0.0281605
7.18247 7.15834 0.0241231
7.15927 7.15833 0.000940704

Mean Error = 0.04982 (inches) STD = 0.05653 (inches)
Max Error = 0.1461 (inches)
Sampling rate = 300.03 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = I

(0-Simp 1-Trap 2-Adam)
Number of runs = 4

ZUPT W/2 BASES (M2)

7.20275 7.15834 0.044411
7.13201 7.15834 -0.0263327
7.15324 7.15834 -0.0051064
7.11669 7.15834 -0.0416573
7.14982 7.15834 -0.00852089
7.16546 7.15834 0.00711192
7.16868 7.15834 0.010335
7.16711 7.15834 0.00876731
7.20367 7.15833 0.0453468
7.15949 7.15834 0.00114539
7.12438 7.15834 -0.0339601
7.12775 7.15834 -0.0305962
7.23076 7.15834 0.0724123
7.1694 7.15834 0.0110526

7.14557 7.15834 -0.0127723
7.17002 7.15834 0.0116749
7.16657 7.15834 0.00822315
7.17329 7.15834 0.0149415
7.11822 7.15834 -0.0401271
7.15417 7.15834 -0.00416887
7.12214 7.15834 -0.0361999
7.29125 7.15834 0.132905
7.10728 7.15834 -0.051064
7.15111 7.15834 -0.00723693
7.11567 7.15834 -0.0426769

7.08974 7.15834 -0.0686072
7.19755 7.15834 0.0392108
7.12916 7.15836 -0.0291945
7.19481 7.15834 0.0362638
7.25577 7.15834 0.092428
7.09025 7.15834 -0.0680972
7.20021 7.15834 0.0418621
7.16298 7.15834 0.00463132
7.14292 7.15834 -0.0154208
7.14574 7.15834 -0.0126082
7.13279 7.15834 -0.0255554
7.15601 7.15833 -0.00232236
7.15576 7.15834 -0.00257956
7.19948 7.15834 0.0411383
7.15835 7.15834 2.92266e-006
'7 1 n .InA C71=a 23- A 2 1r



7.12619 7.15834 -0.0321568
7.08353 7.15836 -0.0748272
7.13555 7.15834 -0.0227911
7.21819 7.15834 0.0598437
7.13713 7.15834 -0.0212158
7.11653 7.15834 -0.0418092
7.15717 7.15834 -0.00117053
6.57505 7.15834 -0.583294

Mean Error = -0.01235 (inches) STD = 0.09205 (inches)
Max Error = -0.5833 (inches)
Sampling rate = 300.03 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 50
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ZUPT W/2 BASES (M2)

7.44339 7.15834 0.285044
7.29352 7.15833 0.135187
7.22559 7.15833 0.0672611
7.17013 7.15834 0.0117896

Mean Error = 0.1248 (inches) STD 0.1023 (inches)
Max Error = 0.285 (inches)
Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs - 4

ZUPT ONLY

10.4659 10.7375 -0.271614
10.4443 10.7375 -0.293167
10.4492 10.7375 -0.288347
10.4836 10.7375 -0.253901
10.3753 10.7375 -0.3622
10.5135 10.7375 -0.224022
10.4561 10.7375 -0.28145
10.4361 10.7375 -0.301446
10.5301 10.7375 -0.207372
10.488 10.7375 -0.249539

10.4666 10.7375 -0.27089
10.3974 10.7375 -0.340082
10.5306 10.7375 -0.206871
10.4628 10.7375 -0.274736
10.4771 10.7375 -0.260416
10.3546 10.7375 -0.382905
10.4174 10.7375 -0.320126
10.4964 10.7375 -0.241153
10.5155 10.7375 -0.221975
10.4249 10.7375 -0.312634
10.4129 10.7375 -0.324588
10.4964 10.7375 -0.241136
10.5076 10.7375 -0.229934
10.4869 10.7375 -0.250652
10.4514 10.7375 -0.286082
10.4267 10.7375 -0.310801
10.4121 10.7375 -0.325385 "
10.4903 10.7375 -0.247166
10.3975 10.7375 -0.339971
10.4454 10.7375 -0.292108
10.5413 10.7375 -0.196196
10.4849 10.7375 -0.25259
10.436 10.7375 -0.301544

10.3258 10.7375 -0.411754
10.5613 10.7375 -0.176204
10.4539 10.7375 -0.283599
10.5232 10.7375 -0.214327
10.4435 10.7375 -0.293985
10.5209 10.7375 -0.216621
10.4358 10.7375 -0.301699



10.439 7375 -0.29853

10.4113 10.7375 -0.326196
10.424 10.7375 -0.313559

10.4419 10.7375 -0.295585
10.516 10.7375 -0.221528

10.3946 10.7375 -0.34287
10.4395 10.7375 -0.297976
10.4485 10.7375 -0.289051

Mean Error = -0.2806 (inches) STD = 0.04909 (inches)
Max Error - -0.4118 (inches)
Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 50



10.6821 10.7375 -0.0553822
10.611 10.7375 -0.126509

10.6344 10.7375 -0.103088
10.6443 10.7375 -0.0931978
10.6966 10.7375 -0.0409445

2 10.6544 10.7375 -0.0831523
10.7071 10.7375 -0.0303822
10.644 10.7375 -0.0935399

10.6869 10.7375 -0.0506013

Mean Error = -0.3825 (inches) STD 1.617 (inches)
Max Error = -9.25535 (inches)
Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 50



ZUPT W/2 BASES (M2)

7.43025 7.15834 0.271904
7.39292 7.15834 0.234581
7.21671 7.15834 0.0583694
7.20442 7.15834 0.0460733

Mean Error = 0.1527 (inches) STD = 0.1015 (inches)
Max Error = 0.2719 (inchesl
Sampling rate 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 4

SINGLE

3.7217 3.57917 0.142527
3.74455 3.57917 0.165374
3.67074 3.57917 0.0915699
3.76825 3.57917 0.189078
3.71378 3.57917 0.134606
3.79898 3.57917 0.219806
3.76927 3.57916 0.190115
3.7909 3.57917 0.211731

3.81156 3.57917 0.232383
3.77446 3.57917 0.195283
3.84755 3.57917 0.268377
3.68388 3.57917 0.104713
3.83674 3.57917 0.257572
3.75973 3.57917 0.180559
3.84719 3.57917 0.268018
3.71489 3.57917 0.135715
3.77763 3.57917 0.198457
3.71851 3.57917 0.139334
3.6254 3.57916 0.0462468

3.81362 3.57917 0.234453
3.74733 3.57917 0.168155
3.7395 3.57917 0.160329

3.70978 3.57917 0.13061
3.68336 3.57917 0.104189
3.75655 3.57917 0.177379
3.71036 3.57916 0.131202
3.67549 3.57916 0.0963378
3.63095 3.57917 0.0517735
3.68743 3.57917 0.108262
3.72398 3.57916 0.144821
3.70681 3.57916 0.127657
3.74794 3.57917 0.168766
3.71601 3.57919 0.136825
3.6639 3.57917 0.0847326

3.76259 3.57917 0.183421
3.68004 3.57916 0.100881
3.70031 3.57917 0.121137
3.72125 3.57916 0.142093
3.71998 3.57916 0.14082
3.66858 3.57917 0.0894032
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3.60977 3.57919 0.0305816
3.67302 3.57916 0.0938641
3.77422 3.57917 0.195046
3.72409 3.57917 0.144922
3.70178 3.57916 0.122626
3.76619 3.57917 0.187021
3.7526 3.57917 0.17343

3.75786 3.57917 0.178684
3.65471 3.57917 0.0755369

Mean Error =0.1497 (inches) STD =0.05474 (inches)
Max Error 0.2684 (inches)
Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = I. (Gs)
Integration method 1

(0-Simp 1-Trap 2-Adam)
Number of runs =50



ZUPT W/2 BASES (M2)

7.71103 7.15834 0.552688
7.40671 7.15834 0.248369

Mean Error = 0.4005 (inches) STD = 0.1522 (inches)
Max Error = 0.5527 (inches)
Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = I (Go)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 2

ZUPT W/2 BASES (M2)

7.33207 7.15834 0.173723
7.20969 7.15834 0.0513454
7.19432 7.15834 0.0359726
7.20165 7.15834 0.0433022
7.0976 7.15834 -0.0607487

7.18628 7.15834 0.027941
7.12231 7.15834 -0.0360384
7.14922 7.15834 -0.00912419
7.2457 7.15834 0.0873563
7.09991 7.15834 -0.0584323F 7.13646 7.15834 -0.0218851
7.36029 7.15834 0.20195
7.08902 7.15833 -0.0693051
7.08859 7.15836 -0.0697731
7.08235 7.15834 -0.0759961
8.48598 7.15P34 1.32764
6.61151 7.15834 -0.546837
6.73718 7.15834 -0.421167
7.07975 7.15836 -0.0786095
7.14799 7.15834 -0.010349
7.21924 7.15834 0.0608971
7.0986 7.15834 -0.059746

7.08265 7.15834 -0.0756949
7.12416 7.15834 -0.034186
7.24217 7.15834 0.0838257
7.22167 7.15834 0.063328
7.10807 7.15834 -0.0502786
7.14702 7.15834 -0.0113227
7.17431 7.15834 0.015971
7.10684 7.15834 -0.051503
7.15627 7.15834 -0.00207368
7.13143 7.15834 -0.0269168
7.13841 7.15834 -0.0199348
7.18337 7.15834 0.0250295
7.15283 7.15834 -0.00551456
7.17664 7.15834 0.0182948
7.20265 7.15834 0.0443014
7.11525 7.15834 -0.043093
7.15147 7.15834 -0.00687234
7.17072 7.15834 0.0123791
7.17711 7.15834 0.0187615
7.19479 7.15834 0.0364444
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7.13856 7.15834 -0.0197797
7.12869 7.15834 -0.0296585
7.19144 7.15834 0.0330956
7.13001 7.15834 -0.0283296
7.16615 7.15833 0.00781981

" 7.15237 7.15834 -0.005978

Mean Error - 0.007973 (inches) STD = 0.2189 (inches)
Max Error = 1.328 (inches)
Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 50
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ZUPT W/2 BASES (M2)

7.45049 7.15834 0.292143
7.28482 7.15834 0.126476

, 7.21856 7.15834 0.0602202
7.15354 7.15834 -0.00480726

[ Mean Error = 0.1185 (inches) STD 0.1105 (inches)
Max Error 0.2921 (inches)

* Sampling rate = 300.03 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = '

(O-Simp 1-Trap 2-Adam)
Number of runs 4

SINGLE

3.55978 3.57917 -0.01939
3.54229 3.57917 -0.0368816
3.54694 3.57917 -0.0322323
3.63482 3.57917 0.0556449
3.63281 3.57917 0.0536336
3.62732 3.57916 0.0481628
3.65493 3.57917 0.0757594
3.64363 3.57917 0.0644545
3.58617 3.57917 0.00700136
3.65271 3.57917 0.0735389
3.64166 3.57917 0.0624923
3.57481 3.57916 -0.00434921
3.63181 3.57917 0.0526363
3.6761 3.57917 0.0969242

3.69462 3.57916 0.11546
3.63971 3.57917 0.0605346
3.51247 3.57917 -0.0667012
3.63727 3.57917 0.0580935
3.60522 3.57917 0.0260435
3.54944 3.57917 -0.0297321
3.54651 3.57917 -0.0326585
3.60893 3.57917 0.0297585
3.64881 3.57917 0.0696343
3.63893 3.57917 0.0597571
3.62365 3.57917 0.044475
3.63384 3.57917 0.054666
3.67087 3.57917 0.0916981
3.59821 3.57917 0.0190411
3.68936 3.57917 0.11019
3.70367 3.57917 0.124498
3.69755 3.57917 0.118376
3.68552 3.57917 0.106345
3.65328 3.57917 0.0741094
3.65864 3.57916 0.0794848
3.73494 3.57917 0.155771
3.71158 3.57916 0.132425
3.61414 3.57917 0.0349671
3.67858 3.57917 0.0994099
3.64598 3.57917 0.0668099
3.69938 3.57917 0.120206
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3.76603 3.57916 0.18687
3.72948 3.57917 0.150306
3.69942 3.57916 0.120266
3.57036 3.57919 -0.00883179
3.69021 3.57917 0.111038
3.61883 3.57917 0.0396579
3.64885 3.57917 0.069681
3.61286 3.57917 0.0336911
3.61364 3.57917 0.0344713

Mean Error : 0.0612 (inches) STD : 0.05404 (inches)
Max Error = 0.1869 (inches)
Sampling rate = 300.03 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs 50

*I


