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Executive Summary

Currently, the control of the position and orientation of the end-effector of
a robot manipulator is usually done by controling the joint angles of the
manipulator. This approach suffers from load disturbances, changes in
manipulator parameters, and the effect of compliance. The approach is an open-
loop control as far as the end-effector is concerned. Closed-loop control of the
end-effector can be achieved by using an inertial measuring system with the
sensors situated at or near the end-effector, thus improving the overall system
accuracy and robustness.

This report documents the results of a task to provide engineering support
for the continued development of a prototype inertially aided robotic end effector
position determination system. This support included the design and fabrication
of a special data acquisition system (DAS), analyzing the effects of system
parameters on position accuracy, developing and implementing real-time
position determination software, and integrating hardware and software into a
single-axis robotic end-effector position determination system.

The DAS was designed to provide high resolution (18 bits effective, 22 bits
internal), high accuracy, low drift analog-to-digital conversions at up to 500
samples/sec. Software was also developed to allow this hardware to be used for
data collection.

A study of position accuracy on system parameters such as
accelerometer scale factor (SF) and bias stability, SF nonlinearity, filter
bandwidth, sampling rate, and resolution was also conducted. This study was
useful in defining the parameter limits that are needed for different applications.

A single-axis position determination system which consisted of 1) a Q-flex
QA2000 accelerometer, 2) the DAS, 3) a single-axis linear translation table with
an position encoder and 4) real-time position determination software. The real-
time software was a menu driven program that included zero velocity updates,
temperature compensation, experiments of five different application scenarios,
and the capability of displaying, transmitting, or storing the position updates in
real-time.

The test results of the system were below that expected of the DAS.
Therefore, the dominant error sources seem to reside in the accelerometer. An
accelerometer that is specifically designed for this application (operation range of
+ 2 Gs) is needed. Also, from the simulation of the DAS, it was determined that
20 bits resolution is more than needed and a 100 Hz sampling rate is too slow for
real-time accuracy. Hence, using a 16-bit converter to sample at 20 kHz and
then averaging 4 samples resulting in a 5 kHz acceleration update should be
more accurate than the current system for real-time paosition accuracies less than
10 thousands of an inch. The averaging scheme will also tend to increase the
effective resolution of the system. Before continuing any more hardware
development an in-depth simulation of the entire system (open and closed loop)
from the accelerometer to the processor should be conducted. This approach
would better define the propagation of error sources to the position error.

vii




1 Introduction

For most of the current robot manipulators, control of its end-effector
position and orientation is done by controlling joint angles as shown in Figure 1.
Each joint is controlled by a locai joint servo. Angular position sensors are
installed at manipulator joints to measuré joint angles. For a desired end-effector
position and orientation, inyagse—Kinematics is used to generate command
signals in joint coordinates (ﬁzy. These signals become the reference inputs to
local joint servos. Such control scheme may be called “joint sensor bassd
manipulator control*. , Figure 2 shows a block diagram of this control scheme.
SNote tﬁMal feedback exists in each joint servo, there is no feedback
to compare the actual end-effector state with respect to the reference state.

End-effector control without feedback suffers from two major
shortcomings. The first is the effect of arm compliance on the control, and the
second is poor robustness. The compiiance is caused by the physical
nonrigidness of the manipulator and by the insufficient stiffness of the joint
servos. The compiiance effect causes two problems. The first is the bending
and/or drooping of manipulator arms caused by loading and by the weight of
arms. This affects the accuracy of positioning the end-effector. The second
problem is the existence of bending modes in the manipulator’'s dynamical
characteristics, making an accurate and steady control of the end-effector
difficult. Current methods to cope with the problems of compliance is to adopt
large size arm cross-sections, resulting in a bulky manipulator,/

The lack of robustness is a well known nature of any SYdtem using open-
loop control. The system is incapable of coping with the load disturbance and
the changes in plant parameters. Both can be severe in a manipulator system.

Closing the end-effect loop can be done by optical means. An optical
position monitor consists of one or more cameras and an image processing
microcomputer. A three-dimensional picture of the end-effector is taken by
cameras, converted into digital data, and processed by microcomputer to
generate the command signal for the manipulator. This arrangement has its
drawbacks. First of all, it requires ample computation effort, thus reducing the
bandwidth of the measured data. As a result, the data may not be usefui for
bending mode control. Secondly, there are situations where uses of cameras
are not feasible. Therefore, closing the end-effect loop by cameras is not always
an effective approach for the improvement of manipulator rcbustness.

This report documents the results of a task to provide engineering support
for the continued development of a prototype inertially aided robotic end effector
position determination system. This support included the design and fabrication
of a special data acquisition system (DAS), analyzing the effects of system
parameters on position accuracy, developing and implementing real-time
position determination software, and integrating hardware and software into a
single-axis robotic end-effector position determination system. The concept has
numerous advantages as compared to the joint sensor based control. However,
implementation of the concept requires the solution of some practical problems.
The problems and the attempted solutions for them will be discussed. Test
resuits will also be presented.
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Figure 1 - Robot Manipulator having Joint Sensor Based Contrcl
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2 Advantages of Inertially Aided Robotics

A concept has been proposed to close the end-effector feedback loop
using an inertial measurement system (IMS) [3]. An IMS consists of two parts,
an inertial measurement unit (IMU) and a data processing microcomputer. The
IMU is the sensor which measures toth the linear and rotational motions of its
case while the microcomputer processes the IMU output data for the state
(including position and attitude) of its case. By mounting an IMU at or near the
end-effector of a manipulatcr, as shown in Figure 3, the state cf the end-effector
can be determined. By comparing the actual end-effector state and the desired
state, errors are generated, which are processed by microcomputer to generate
the commands for joint sensors. In this approach, precisicn requirement for joint
sensors, needed for joint servos, can be greatly reduced since the error of end-
effector state is sensed by the IMU and can be made independent of the errors
of joint sensors. This approach may be called the "inertial measurement (IM)
based manipulator control’. Figure 4 lepicts a block diagram of this approach.
Note that total system feedback exists in the arrangement, which is markedly
different from the local feedback in joint sensor based control. It is clear that IM
based control is capable of coping the effects of arm compliance and capable of
providing the desired robustness in control. The advantage of IM based
manipulator control offers many practical features not available from the joint
sensor based control. Some of them are given below:

1. The potential of handling all problems caused by arm and joint
compliances. This includes improving robustness of the system
with respect to manipulator loading, supporting the control of
bending modes, simpler implementation of learning and repeating
procedures, and stiffer end-effector control.

2. Providing signals for the stabilization of the end-effector of a
manipulator on a moving platform (Figure 5). In fact, it can support
the overall navigation of a mobile robot.

3. Relaxing the need for a complex analytic mode! of the manipulator
and enabling the use of a simpler algorithm for precision end-
effector control.

4 Relaxing the precision requirement of joint sensors.

5. Allowing the use of lighter arms, thus reducing the bulk and weight
of the manipulator.

6. The potential of implementing a long stick end-effector for reaching
a distant point (Figure 6).

It is clear that a successful development of an [M based control will have a
significant impact on robot technolegy.




Figure 3 - Robot Manipulator Having Inertial Measurement Based Control
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Figure 5 - IM Based Stabilization of End-effector on a Moving Platform




Figure 6 - IM Based Control of a Long Stick End-effector




3 Accelerometer Characteristics

3.1 _Principle of Operation

A functional block diagram of the QA2000 accelerometer from Sunstrand
Corporation is shown in Figure 8. The flexure and proof mass are made by
etched amorphous quartz. An acceleration applied parallel to the sensitive axis
will cause the proof mass to bend about the flexure. This movement unbalances
the inputs into the position detector due to the change in the capacitance. The
output of the position detector then drives the torquer ampiifier until the proof
mass has returned to the null position. The output of the torquer amplifier is
proportional to the input acceleration and is therefore use as the output signal. A
simple resistive load can be used to convert this signal into a voitage. The
QA2000 package outline and pinout are shown in Figure 9.

3.2 QA2000 Performance Parameters

The Q-flex QA2000 accelerometer from Sunstrand is capable of
measuring accelerations up to 1 kHz with minimal magnitude and phase errors.
This fact can be noted from the frequency response plot in Figure 7. As will be
discussed in the section on system parameters it is important to be able to
measure the signal power from d¢ to > 1 kHz without degrading the magnitude
and phase characteristics. Therefore future designs should incorporate even
higher frequency devices than the QA2000.

One of the most important properties of an accelerometer for this type of
application is low noise. Accelerometer noise is the dynamically changing output
of the accelerometer that is not related to the actual input acceleration. This
noise can be measured using a frequency analyzer such as the HP3562A from
Hewlett Packard which was used for this task. The power spectrum (PS) of the
accelerometer output without any filters was measured for a nominal dc input
acceleration of 0.0. The PS for two different frequency ranges is shown in
Figures 10 - 11. The two largest noise components at 27 Hz and 120 Hz are
equivalent to sinusocidal accelerations with peak magnitudes of 98 uG and 118
MG. Integrated twice these noise components result in sinusoidal position errors
with peak magnitudes of less than one thousandth of an inch. The reason these
“large" acceleration errors have a negligible effect on the position error is the
double integration effectively divides the magnitude of the noise components by
the square of the frequency. Therefore, the problem occurs for noise
components less than 1 Hz which are determined by the short-term bias and SF
stabilities of the accelerometer. This problem is compounded by the fact that
any noise components near multiples of the sampling frequency get "folded"
down near dc. (This phenomenon is known as aliasing). Hence, filters should
be used to filter out the frequencies above half the sampling rate. The total noise
power, which would be the combination of all frequencies, can be determined by
integrating the power spectrum from 0 to infinity. Taking the square root of the
total noise power will yield the rms value. The rms value was approximated by
measuring the peak to peak value of the output and then dividing by 6 resulting
in 1.2 mG rms. This method of approximating the rms value assumes the
amplitude probability density function to be Gaussian.

Table 1 presents the typical performance parameters of an acceierometer
for the QA2000.

9




Table 1 - QA2000 Typical Performance Parameters

Parameter Value
Scale Factor (SF) 1.25 mA/G
SF Temp Coef 120 pPpM/°cC
SF Stability 500 PPM
Bias Stability 500 uG
Bias Temp Coef 30 uG/°c
Range + 25 G
Misalignment 2 mrad
Temp Range -55 to 95°C
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4 Data Acquisition System

4.1 m Overview

A graphical overview of the data acquisition system (DAS) is provided in
Figure 12 with the supporting schematics presented in Fi%;_:res 13 - 19. A wiring
list of the complete system can be provided on request. e system utilizes two
AD1170 analog-to-digital convertors from Analog Devices to provide high
resolution (up to 18 bits) sampling at rates up to 500 Hz. The A-to-D converters
are triggered 180° degrees apart so that the effective sampling rate is twice that
of one convertor.

The system consists of four main sections, 1) the preamplifier and filters,
2) the AD1170 interface, 3) the 16-bit programmable counter/timer, and 4) the
address decoder. The preamp and filters were specifically designed for used
with the QA2000 accelerometer. The AD1170 interface allows for programming
the converters. The counter/timer is used to set up a precise conversion timing
signal and the address decoder provides the interface to an IBM PC/XT/AT or
compatible. The following four sections present a detailed discussion of these
circuits while the last two sections provide the component layouts and a list of
system software.

4. A2 Preamplifier and Filters

The analog signal processing circuits are shown in Figures 13 and 14. In
the schematic drawings the symbol used for analog ground is a triangle while the
digital ground symbol was parallel lines in the shape of a triangle. The current-to-
voitage preamplifier (U26) has two jumper selectable gains (JMP4) of 4000 and
8000 volts/amp each with a single pole cutoff at 3 kHz.

The jumper selections JMP1-3 provide a dc offset for the preamp that will
cancel the dc signal measured by the accelerometer if the sensitive axis of is
parallel with gravity. This cancellation allows the QA2000 to sense gravity without
having to increase the range of the A-to-D which would decrease the resolution
of the system. A better gravity compensation scheme is shown in Figure 20.
This scheme involves averaging the accelerometer output (during zero velocity
update) and then outputting the negative of this average to a digital-to-analog
convertor to bias the preamp and cancel the gravity component. This method
allows for any component of gravity o be cancelled during normal robot
operation.

Another amplifier (U31) with a gain of 5 volts/voit was placed after the
filters to allow for finer range and resolutions. A toggle switch (SW2) on the DAS
box allows either the QA2000 current output to be measured or an external
voltage signal. This external input is not connected to the preamp or filters, but it
is connected to the x5 amplifier. Table 2 shows the proper jumper setting for
each possible G range and Table 3 provides the jumper selections for gravity
compensation.
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Address Decoder Circuit

Figure 19
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Table 2 - Jumper Selections for Different Conversion Ranges

Range JMP1 JMP4 JMP7
* 16 2-4 2=1 1-3
+ 1/2 G 3-4 3~-1 1-3
+ 16 2-4 2-1 1-2
+1/2 G 3-4 3~-1 1-2

Table 3 - Jumper Selections for Different Gravity Components

Gravity Range Jup2 JMP3
Component

+ 1 + 166G X 6-8

+ 1 + 1/2 G 6-8 X

0 + 166G X 5-6

0 +1/2 G 5-6 X

-1 + 1G X 4~6

-1 +1/2 G 4-6 X
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Two 4-pole butterworth filters (Figure 14) with bandwidths of 40 Hz and 80
Hz were used to filter out the noise components of the QA2000 above the folding
frequency. A magnitude response plot for each filter is pictured in Figure 21 and
22. The two bandwidths are jumper selectable as shown in Table 4.

Table 4 - Jumper Selections for Filter Bandwidth

Filter BW JMPS JMP6

40 Hz 1-2 1-2

80 Hz 1-3 1-3

In a digital sampling system the folding frequency is defined as being haif
the sampling frequency {fs). Any frequency components cf the signal being
sampled that are above the folding frequency get “folded" down into the range
between dc and fg/2. This phenomenon is also known as “aliasing”. Therefore to
reduce the effects of aliasing, filters are placed before the A-to-D convertor. The
selection of the filter bandwidths used in the DAS (40 Hz and 80 Hz) were
selected for nominal sampling frequencies of 100 Hz and 200 Hz.

A Sallen-Key active filter configuration was used to implement the filters
discussed here. To insure that the filter elements would not add any noise
comparabie to that of the accelerometer, a noise analysis was conducted pricr to
fabrication. This analysis was done for a 2-pole filter without a preamp as shown
in Figure 23. The input to output transfer function for this arrangement is

Vout R

Iin 1 + sCo(R + Ry + Ry) + s°RyCCy (R + Rp)

The current sources (except for the input source) shown in the figure are
actually white noise CéJrrent power models for the resistors and the opamp
having units of amps</Hz. A simple nodal analysis results in the following
transfer functions for each noise source.

FOFRl
Vout ~ “R1 Vout
Ir1 R Iin
For Ry
Vout -Rz(1 + sC1(R + R1))  Vout
Ir2 R Iin
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Forr

Vout Vout
Ir Iin
For En
Vout _
Ey
For In+
Vout (R + Ry + Rz)(l + SCl(Rz//(R + R3)) Vout
IN+ R Iin

Replacin%éhe resistor noise currents by 4KT/R where k is Boltzmann’s constant
(1.38x10°%° J/PK) and T is temperature in °K (Tygom = 300 °K), resuits in the
following equations for the total input referred noise power,

—s R + R] + Rp(1 + SC1(R + Rp))2

(R + Ry + Ry)?2

+ IN+2 [ (1 + sCy(Rp//(R + Rl))2 ]

R2

2

Iin 1%
+ En

Vout

and the output referred noise power,

2
2 2 Vout
Eo = Iin

Iin

Substituting in the appropriate values for an 80 Hz Butterworth filter (Table 5) in
the equation for the total output power and then integrating from dc-infinity and
taking the square root gives an rms output referred noise voltage of 1.0 uV.
Referring this value to the input and multiplying by the QA2000 scale factor (1.25
mA/G) gives the input referred noise acceleration of 0.1 uG, which is negligible
compared to the accelerometer noise 1200 uG.

The noise compoenents of the QA2000 are shown in Figures 10 and 11 of
the previous section. Figures 24 - 27 show the power spectrum of the
accelerometer after being filtered. The 40 Hz and 80 Hz filters reduced the RMS
noise of the QA2000 from 1200 uG to 75 uG and 85 uG respectively. The OP27
opamp from Precision Monolithics was used in all of the filter and amplifier
designs because of its low noise characteristics (3 nV//Hz) and bias stability (0.4

28




uV/month).

Table 5 - 2-Pole 80 Hz Butterworth Filter Elements

Element Value

R 8.0 kA
Ry 5.9 kn

Cy 0.690 uF
3  0.173 uF

29




(zH) Aousnbaay

501 {01 001
68 L9 G F e rd 68 2L 9 ¢ ¥ € < .
| JSLAL S B SN T T T 7T T T T Y OOCCN‘|I
1000°0G—-
=
1Y
§ (=]
=
=
400006~ £
¢
‘ o
] o
{00001~
| S W S S T 1 1 " | ISR T W 1 2 2 OO0.0ﬁ

asuodsay J9[1] Yomaanng zH 0F 21od-¥

Figure 21 - Magnitude Response of a 40 Hz 4-pole Butterworth Filter
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Figure 22 - Magnitude Response of an 80 Hz 4-pole Butterworth Filter
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Figure 23 - Noise Analysis of a 2-pole Active Filter
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4.3 AD1170 Interface Circuit

The interface to the AD1170’s shown in Figure 15 was designed according
to the requirements as specified in the data sheets for these devices. A copy of
the AD1170 data sheet is included in Appendix A. The only deviation from the
data sheet was the connection of the +5V reference of U1 to both reference
inputs of each device. This change allowed the convertors to calibrate using the
same reference which should increase the relative accuracy of the system. The
input impedence of the XTAL pins and the RESET pin did not allow for combining
the crystal oscillator circuits or the reset circuits. The external conversion signals,
data lines, address lines, and the read and write strobes were all transmitted via
a DB25 connector and cable (Figure 16) from the address decoder and counter
timer circuits.

4.4 Programmable Counter Circuit

The programmabie counter/timer (C/T) consists of a 2 MHz crystal
oscillator, 16-bit load register, 16-bit counter, 16-bit counter latch, and a 16-bit
comparator. The outputs of the circuit are two clock signals, 180° out of phase,
which are used to trigger the start of conversion for the two AD1170’s.

To program the C/T for a DAS sampiing frequency of fg the low and high
bytes of the resuit,

Load value = 2.0x10%/fg ,

are written to the 16-bit load register (U12 and U14) via the I/O bus. The
following “c" subroutine can be used to program the counter for any sampling
rate.

4define CNTR_LOW_BYTE BASE+8
#define CNTR_HIGH BYTE BASE+9

double setup_counter (double frequency)

{
unsigned int

numb_counts, chigh, clow;

double
actual_freq;

numb_counts = (unsigned int) (2.0E+06/frequency):;
chigh = (numb_counts >> 8) & Ox00ff;
clow = numb_counts & O0x00ff;

outp (CNTR_LOW_BYTE, clow):
outp (CNTR_HIGH_BYTE, chigh);

actual_freq = 2.0E+06/((double) numb_counts) ;
return (actual_freq):
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After the registers are loaded and the start command (CNTRWZ2) is given,
the 2 MHz clock (2MCLK) will start incrementing the counters (U9 and U10). The
outputs of the two 8-bit comparators (U11 and U13) signal whenever the count
on the counters is equal to the value set in the load register. The active low
outputs of the comparators are "NORed" to provide an active high input to an
edge-triggered D flip-flop (U16A) which outputs a 50% duty cycle clock (2XCLK)
at the programmed sampling rate. This clock is then divided by 2, using another
D flip-flop (U7A), to provide the conversion trigger clocks CNV1\ and CNV2\.
Figure 28 shows the relative timing of these signals as measured by a logic
analyzer. Once this process is completed then the data ready bit of one AD1170
can be monitored until it signals the end of conversion. After reading this
AD1170 then the program can begin to monitor the other AD1170. The following
sample 'c" program illustrates this procedure. The source code of the
subroutines used in this program are included in the real-time position
determination program in Appendix C.

#include <graph.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <time.h>
#include <bios.h>
#include "iarinc.h"

void
setup_ADC_defaults (void),
main (void),
wait_for_A (void),
wait_for_ B (void):

double
read_A (void),
read_B (void),
setup_ADC_int_time (double frequency),
setup_counter (double frequency):

void main ()

{

char
file_name{80]:
int
i;
double
sample, samp_freq, int_freq;

FILE
*file ptr;
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/**********************************************************/

/* Open output file */
/**********************************************************/

printf ("\nEnter name of data file: ");
gets (file_name);

file_ptr = fopen (file_name, "w");
if (file_ptr == NULL)

{
printf ("\n\n\t** Could not open %s for writing *=*",

file_name);
exit(0);
}

/**********************************************************/

/* Program ADC and counter/timer for sampling rate of */

/* 200 Hz */
/**********************************************************/

outp (CNTR_STOP, 0x0000); /* Disarm 2MCLK */
setup_ ADC_defaults ():

samp_freq = setup_counter (200.0);

int_freq = setup_ADC_int_time (samp_freq):

outp (CNTR_START, 0x0000); /* Arm 2MCLK */

/**********************************************************/

/* Loop until 2048 samples have been taken */
/**********************************************************/

for (i = 0; i < 1024; ++i)
( .

sample = read_A ():

fprintf (file_ptr, "\n%g", sample):;

sample = read_B ():
fprintf (file_ptr, "\n%g", sample);

The advantage of tne hardware initiated conversion is that the processor
can be used for other task besides controlling the A-to-D convertors and the
timing jitter is minimized.
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4.5 Address Decoder Circuit

The basic functions of the address decoder circuit shown in Figure 19
were to furnish chip select signals for the two AD1170’s, provide individual read
and write signals for the addresses occupied by the counter/timer, and buffer the
data transfers to and from the bus. Cannections to the IBM bus were made such
that only one TTL LS load needed to be driven by the bus. Therefore the I/O
reaLdS and write strobes, and the address bits AQ-3 were buffered through a
74.5244.

The switch (SW1) was used to set the I/O base address of the acquisition
system. The range of I/O base addresses is from 100 to 3F0 (Hexidecimai).
(That is address bit A8 is not selectable but hardwired to a "1"). Figure 29 shows
the address definitions for the switch. The real-time software is setup to run with
a base address of 380 Hex. Table 6 shows the address map of the acquisition
system. The last three I/O locations were reserved for future enhancements.

Table 6 - DAS Address Map

Register/Command Read Write Address Data Lines Used?
AD#1 Command Reg * Base+0 Yes
AD#1 Param Reg 1 * Base+1 Yes
AD#1 Param Reqg 2 * Base+2 Yes
AD#1 Status Reg * Base+0 Yes
AD#1 Low Byte * Base+1 Yes
AD#1 Mid Byte * Base+2 Yes
AD#1 High Byte * Base+3 Yes
AD#2 Command Reg * Base+4 Yes
AD#2 Param Reg 1 * Base+5 Yes
AD#2 Param Reg 2 *  Base+6 Yes
AD#2 Status Reg * Base+4 Yes
AD#2 Low Byte * Base+5 Yes
AD#2 Mid Byte * Base+6 Yes
AD#2 High Byte * Base+7 Yes
Cntr Low Byte * * Base+8 Yes
cntr High Byte * * Base+9 Yes
Cntr Start * Base+10 No
cntr Stop * Base+11 No
Cntr Latch ¢Cnt * Base+12 No
* Reserved * Base+13

* Reserved * Base+14

* Reserved * Base+15
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The output of the 8-bit comparator (74LS682), which signaled when the
address bits A4-A9 were equal to the base address set by the switch, was
"NORed" with the address enable strobe (AEN\) and then inverted to provide the
enable signal for the octal bidirectional bus transceiver (74LS245). (The original
design used a 74LS688 which has a built in enable eliminating the need for USA
and U23D). The bus transceiver passed the data bits between the bus and the
acquisition system. The direction of the data transfer was controiled by the
buffered I/O read strobe (BIOR)\).

Using the active low transceiver enable (BASEADD\) along with the
buffered address bits BA2 and BA3, the chip selects for the AD1170’'s are
generated according to the boolean equations

CS1\
BASEADD\ + BA2 + BA3

and

cs2\

BASEADD\ + BA2 + BA3

The lower 8 /O locations, which are designated for use with the
programmable counter/timer, are decoded using two 74LS138 decoders, one for
reading and one for writing. The read (CNTRR0-7) and write (CNTRWOQ-7)
selects are active low strobes that coincide with the 1/O read and write strobes
(BIOR\ and BIOW\).

4.6 Data Acquisition System Component Layout

The DAS was physically divided into two sections. To reduce errors due
to external noise sources, the preamp, filters, and AD1170 interface were placed
in a shielded enclosure outside of the main processing computer and the
connection to the accelerometer output was via a shielded coaxial cable. The 25-
pin cable was used to communicate with the address decoder and counter/timer
circuits located inside the microcomputer. The component layouts for each
section are pictured in Figures 30 and 31.
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4.6 Data Acquisition System Software

During the development of the hardware and software for the real-time
position determination system, several "mini" programs were written that are still
useful in operating the DAS and Anorad table. These programs are listed in
Table 7 with a brief description of the program’s purpose. The source codes

were delivered along with the system hardware and software and therefore are
not included in this report.

Table 7 - A3 System Software List

Program Name

Description

ANORAD. BAS

1170SAMP.C

1170ANO.C

1170ANOB.C

ADCAL.C

ADSAVE.C

ADRECAL.C

AD1l170.C

1170STOP.C

User friendly environment for controlling
the Anorad linear translaticn/reference
table.

DAS data collection program. Variable
sampling rate. Up to 2048 data points.

Same as "1170SAMP" except it also reads
the position of the Anorad table before
and after sampling to determine total
distance moved.

Same as "1170ANO.C" except it also
commands the Anorad table to move. The
command can be changed in the program
and recompiled for different movements.

Program used to calibrace the AD1170's
to an external +5V reference.

Program used to save all of the default
parameters of the AD1170's to nonvolatile
memory.

Recalls the last set of saved AD1170
parameters.

Uses the AD1170's as a simple digital
voltmeter.

Stops the conversion signals in the DAS
so that the "AD1170" program can be used.
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Table 7 (cont.) - DAS System Software List

Program Name

Description

MULTTRAP.C

MULTSIMP.C

MULTADAM.C

Processes off-line data taken from the
accelerometer. Compatible with "1170aANO"
and "1170ANOB". The program compensates
for accel bias and then integrates twice
to determine position. The first run in
a set is used to determine the scale
factor. The output of the program is a
file containing the velocity error and
position error for each run. The data
files in one set should be name with the
same first six letters followed by a
number. Do not use an extension.

ex/ 1RUN1l, 1RUN2, 1RUN3,...1RUNS

This program integrates using the
trapezoidal method.

Same as "MULTTRAP" except it uses the
Simpson's rule for integration.

Same as "MULTTRAP" except it uses the
Adam-Basforth method for integration.
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5 Affects of System Parameters on Position Error

5.1 Data Acquisition System Parameters

A computer simulation was conducted to determine the effects of the anti-
aliasing filter bandwidth, the data sampiing rate, and the resolution on position
error. The simuiation was programmed using a simuiation environment called
SimPack which was deveicped by System Dynamics [6]. SimPack allows one to
simulate any system, linear or non-iinear, analog or digital. A SimPack user
develops the models he needs and then programs them in FORTRAN. The
program used for the DAS system is inciuded in Appendix B.

The inputs to the simulation were filter bandwidth, sampling rate,
resolution, distanced moved, and simulation minimum and maximum rates.
Based on the desired distance moved the program would calculate the
appropriate time intervais of a predefined acceleration input. A typical
acceleration input is shown Figure 32. The simulation did not model any
accelerometer errors.

A typical plot of the position error versus time is provided in Figure 33.
The error grows during positive acceleration reaching a maximum when the
acceleration turns negative and returning near zero when the velocity returns to
zero. The fact that the final error is negligible means that the errors of the DAS
terlid to cancel over a movement that starts at zero velocity and ends at zero
velocity,

Each of the three parameters under consideration were swept
independently over reasonable ranges. The two parameters that were not being
swept for a given set were set to default values that would have negligible effects
on the resuits as shown in Table 8. An execetion was the case where the
sampling rate was swept in which the filter bandwidth was always set to 1/4 of
the sampling rate.

The results are presented in the form of plots where the final position error
and the maximum position error are piotted versus the particular parameter
being swept. Figures 34 - 36 show that the bandwidth and sampling rate have a
negligible effect on the final position error while a resolution greater than 14 bits
will result in a final error less than 1 thousandth of an inch. Figures 37 - 39 show
that a resolution of at least 12 bits will reduce the maximum error down to 10
thousandths while a sampling rate of than 2 kHz and bandwidth of 1 kHz is
required fcr the same maximum error.

The results of this simulation show that a DAS with a higher sampling rate
(4 kHz) and lower resolution (16-bits) would be more appropriate than the low
bandwidth (100 Hz) and high resolution (20-bits) required in this task.

Table 8 - Siinulation Defaults

Parameter YVariable Default
Filter Bandwidth Fc 1 KHz
Sampling Rate Samp_Rate 4 kHz
Resolution Numb_of Bits 32 bits
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5.2 Inertial System Parameters

The concept of IM based manipulator control is very attractive based on
physical principles. However, the use of IMU has its difficuities because of
sensor imperfections. Referring to Figure 4, one sees that the block representing
IMU is in the feedback path. It is well known in feedback control theory that any
uncertainly in a feedback element affects the system output directly and its effect
cannot be lessened by the use of feedback. Therefore, finding ways to
sufficiently reduce the uncertainties in an IMU is the key to a successiul
development of IM based control. Imperfections in an IMU mainly come from its
inertial sensors, namely, accelerometers and gyros. Accelerometers suffer from
bias uncertainties, gyros suffer from drift uncertainties, and they all suffer from
scale factor uncertainties and nonlinearities. These uncertainties are slowly time
varying quantities in generai, which may become excessive over a sufficiently
long period of time.

5.2.1 Inertial Bias Uncertainties

The precision of commercial accelerometers range from 10 micro-g to
10,000 micro-g, where g = 9.8 meters/sec, and that of commercial gyros range
from .001 degree/hr to 100 degrees/hr. Consider an IMU equipped with high
grade inertial sensors having the following uncertainties:

Accelerometer bias: 10 micro-g
Gyro drift: .01 degree/hr

Then, over an one minute period, the accumulated position error is about 18
centimeters, and the accumulated attitude error is about .6 arcsecond. The
position error is not acceptable for most manipulator applications. If the
accelerometer bias uncertainty can be reduced to 1 micro-g, then the position
error will be 1.8 centimeters which is acceptable for some applications. The IMU
imperfection problem may be solved by using a certain novel reinitialization
technique during the course of manipulator operation. It is hoped that sensor
uncertainties will change only slightly over a very short period, say, a few
minutes. Then, at the end of each short period, the IMU is reinitialized to reduce
the values of uncertainties. By so doing, the cumulative errors of the IMU can be
kept sufficiently low. In the present study, a robot manipulator having only one-
dimensional linear motion in the horizontal plane is considered. IM based control
of such a system requires only a single accelerometer as inertial sensor.

57




5.3 _Numerical Integration

A numerical integrator is needed to convert acceleration data to velocity
and position data. Since a numerical integrator is an approximation to the ideal
integrator, it causes errors. Three numerical integrators are compared. The
three are trapezoidal rule integrator, Simpson’s rule integrator, and Adam-
Bashforth integrator. Their time domain algorithms and associated frequency
domain transfer functions are given in the foliowing:

Trapezoidal Rule Integrator

Algorithm:
Yk = Yk-1 * (xXx + Xk-1)*T/2 (1)
Transfer function:
T (1 + z°1)
Hp(z) = )

2 (1 -2z71

Simpson'’s Rule Integrator

Algorithm:
Yk = Yk-1 t+ (5xx + 8Xp-1 - Xk-2)*T/12 (3)
Transfer function:
T (1 + 4271 + z72)
Hg(z) = (4)

3 (1 - z'l)
Adam-Bashforth Integrator

Algorithm:

Yk = Yk-1 *
(55Xx = 59Xk-1 + 37Xk-2 - 9%Xk-3)*T/24 (5)

Transfer function:
T (55 - 59z™1 + 37272 - 9z73)
Hp(z) = 1 (6)
24 (1 - z7%)

The comparison is done by comparing the frequency responses of the
three numerical integrators. The sampling frequency used in this test in 100
hertz. Figure 40 shows the magnitude and phase responses of the three
numerical integrators and the ideal integrator. The gain of Simpson integrator
becomes infinite at the folding frequency while the gain of trapezoidal integrator
becomes zero at that frequency. These phenomena can be explained with the
help of the pole-zero diagrams of integrator transfer functions as shown in Figure
41. Notice that the Simpson integrator has a pole at the folding frequency, which
accounts for its infinite gain at that frequency. On the other hand, the trapezoidal
integrator has a zero at the folding frequency making its gain zero there. All
three integrators have pole at d-c.

To further compare these algorithms, the time-domain root-sum-square-
error was calculated at different frequencies for a folding frequency of 50 Hz and
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tabulated in Table 9. This table shows Simpson’s rule to be the best up to about
40 Hz, the Trapeziodal method is best from 40 to 45, and the Adam-Basforth
algorithm is best from 45 to 50. Therefore, if the signal bandwidth is below an
anti-aliasing fiter with a bandwidth below 0.4fs, then the Simpson’s Rule
integrator is the best.
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Table 9 - Time-domain Comparison of Three Numerical Integrators

Frequency (Hz)

Root-Sum-Square-Error

Adam-Basforth Simpson Trapeziodal
S 0.34199 0.00006 0.00321
10 0.12252 0.00047 0.00646
15 0.08159 0.00160 0.00976
20 0.08688 0.00382 0.01318
25 0.08266 0.00368 0.01673
30 0.06578 0.01379 0.02048
35 0.04446 0.02422 0.02449
40 0.02896 0.04495 0.02883
45 0.02848 0.10783 0.03362
50 0.04502 0.04502 0.04502
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6 Inertial Error Compensation Schemes

As discussed earlier, the growth of IMS errors can be contained by
frequent reinitializations during the course of manipulator operation. Different
initializaticn scheme s, with different degrees of sophistication, can be devised. It
is assumed that the accelerometer can be modeled by

m = Ka + B (9)
where m is the measured acceleration, a is the true acceleration, K is the scale
factor, and B is the bias. The bias if further modeled as a linear function of time t
over a short time period, that is,

B

By + Bjt (10)

where By and By are constants. The purpose of frequent reinitialization is to
determine the parameters of the model and make corrections for velocity and
position periodically (~once a minute). In the following, three reinitialization
schemes, with increasing degree of sophistication, are presented.

6.1 Zero-Velocity Update

Zero-velocity update, abbreviated ZUPT by the navigation profession, is
the simplest initiation scheme. It provides information to update only one
accelerometer error parameter, usually the constant term Bg of the bias. When
end-effector stops, its true velocity is zero. Any nonzero velocxty computed from
accelerometer output is the velocity error Vey,- Of the inertial measurement
system. Assume uncertainties in K and B are negFglble, one has the relationship

where T is the time of elapse from the previous initialization. Thus By can be
computed from

Bo = Verr/T (12)

With By known, the present end-effector position can be corrected using

Snew = Sold - BOtz/4 (13)

where Sg14 and s are end-effector positions before and after the correction,
respectlvey The ﬂjFSJT software based on this principle is given in the form of a

computer flow chart shown in Figure 42. Details in flow chart blocks are given
below.

Given: One base-station, the home station
N, the number of motions
Dk, direction of the k-th motion, k=1 to N
Dk, distance for the k-th motion, k=1 to N
B, the initial accelerometer bias
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Block 1.

Block 2.
Block 3.
Block 4.
Block 5.
Block 6.

Block 7.

Block 8.

Block 9.

Kop, the accelerometer scale factor
Read initial reference position xXyef(0).
Set initial IAR distance D (0)=0.
Set k=1, the first motion.
Set the total distance traveled Dp=0.
Set the total computation time steps ip=0.
Set the present computation time step i=1l.
Command motion to start.
Read accelerometer output data a(i).
Integrate a(i) to give velocity v(i).
Is D(i) = Dg?
Command motion to stop.
Compute accelerometer bias uncertainty

T=1ix at

Bo= _V(i)
T

where t 1is the sampling period. Update bias by

B =B + Bg
Compute position correction

X =x - % BOT2

Compute the total time steps ip = ip + 1i.
Compute the total distance Dp = Dp + D(1).
Reset i=0,

Read reference position xpef(ifp).

Compute reference distance
Dref = Xref(iT) - Xref(0).

Compute error in IAR distance e = D(ip) - Drerf
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6.2 Zero-Velocity Update with Round-Trip Motion

If the motion of the end-effector consists of one or more round-trip stops,
then at each round-trip stop the true velocity is zero and the true net distance is
also zero. Any non-zero values of velocity and distance, computed using
accelerometer output, are errors. Let Very and Pery be the non-zero velocity
and distance values at the end of a round-trip, and T’et T be the total time for the
round-trip. The Ve, and Porp are related to the bias coefficient uncertainties
Bg and B through the following equation.

Verr = TBg + 2231

2

> (14)
Perr = T°Bg + T°B;
2 6
Solving the above equations for Bg and B,, gives
Bo = 2 Verr * & Perr

T T

(15)

By ='1762Verr ’T..l32_ Perr

Therefore two accelerometer bias coefficients can be updated. Figure 43 is a
computer software flow chart for the scheme of zero-velocity update with round-
trip motion. Details in flow chart boxes are given below.

Given: One base-station, the home station
N, the total number of motions
dk, .the direction of the k-th motion, k=1 to N.
Dk, the distance of the k-th motion, k-1 to N.
Accelerometer bias B = Bg + Bjt.
Accelerometer scale factor Kgt.
Stops which are round-trip stops.

Block 1. Read initial reference position xpef(0).
Set initial distance D(0)=0.
Set motion number k=1.
Set the total distance traveled Dp=0.
Set the time step count, for each motion, i-i.
Set the total time steps ip= 0.
Block 2. Command motion to start.
Block 3. Read accelerometer output data a(i).

Block 4. Integrate a(i) to give v(i).
integrate v (i) to give D(i).

Block 5. 1Is D(i)=Dyg?

Block 6. Command motion to stop.
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Block 7.

Block 9%a.

Block 9b.

Block 10.

Block 11.

Is this end of a round-trip?

T=ix t
Bp = V(i)
T

Update bias Bg = Bg + Bg.
Compute position correction

X = x-% BpT?

Compute total time steps ip = ip + i.
Compute total distance Dp = Dp + D(i).

Read reference position Xpes(i).
Compute IAR distance error

D = D(i) =~ ([Xref(i) - Xref(0)]

Compute accelerometer bias coefficients

Bg = -2 V(i) + 6 D
T T2

By = _6 V(i) + 1 D
T2 T

Compute

Bg = Bg - Bo

By = By - By

iT=iT+i

Dp = Dp + D(1)

Compute position correction
X = Xref
Reset i=i.
Read reference position Xref(i7).
Compute reference distance
Dref = Xref(i) - Xref(O)

Compute error in IAR distance

E = D(iT) - Dref
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6.3 Zero-Velocity Update and Two Reference Stations

This scheme posseses all the features of previous schemes with the
addition that two base-stations are available, the scale factor of the
accelerometer can be updated if the motion from one base-station to the other is
in all in one direction. The distance traveled is

Drr = Xrs2 ~ Xrsi (16)
where Xpsy and Xggp are positions of the first and second base-stations,
respec‘lvef and Dpr IS the true distance between the two base-stations. Then

the scale factor correction factor is given by

= Drr/Dcomp (17)

The updated scale factor is

Knew = BgKolgd (18)

The above scale factor update procedure s used in the real-time menu
option labeled with (M1). The menu option labeled (M2) updates the scale factor
by averaging the above update with the last update,

Knew = (BgKold *+ Xo14)/2 (19)

Figure 44 is the computer software flow chart for this scheme. Details in
flow chart blocks are given below.

Given: Two base-stations, with positions Xgrgz> - XRrs1
N, the total number of motions
dg, the direction of the k-th motion, k=1 to N.
Dx, the distance of the k-th motion, k-1 to N.
which stops are at base-station
Accelerometer bias B = Bg + Bjt.
Accelerometer scale factor Kgt.

Block 1. Read initial reference position Xpaef(0).
Set initial IAR distance D(0)=0.
Set initial position x(0) = Xpef(0).
Set motion number k=1.
Set the time step count, for each motion, i-i.
Set the total distance traveled Dp=0.
Set the total time steps ip= 0.

Block 2. Command motion to start.
Block 3. Read accelerometer output data a(i).

Block 4. 1Integrate a(i) to give a(i).
Integrate v(i) to give D(i).

Block 5. 1Is D(i) = Dyg?
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Block 6. Is this a base-~-station stop?
Block 7. Command motion to stop.

Block 8. Compute bias uncertainty

T =1ix ¢t
Bg =_V(i)
T

Compute updates

Bgp = Bg + Bg

iT iT + i

Dep Dp + D(1)

Reset i=0.
Compute position correction

X =x - X BoT2
Block 9a. Command motion to stop.
Block 9b. Read reference position xXref(i).
Block 10. Is this a one way motion from last base-station?
Block 11. Compute IAR distance error
D = D(i) = [Xpef(l) = Xref(0)]
Compute bias coefficients

Bg = 2 V(i) + 6_ D
2

=]

By = 6,V(i) + 12 D
T T

Bop = Bgp + Bg
By = B + B
Set ip = ip + i and Dp = Dp + D(i).
Reset IAR position x(0)=Xref(i).
Reset initial reference position Xpef(0)=Xref(i).

Reset 1 = 0.




Block 12. Same as Block 11 with additional scale factor
update computations.

Bgr = Actual distance between 2 base-stations
Computed distance between 2 base-stations

Ksr = BsrKsF
Block 13. Read reference position x (i).

Block 14. Compute error in IAR position

E = x(i) ~ Xpef(ip)
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7 Real-time Position Determination Software

The real-time position determination program is a menu driven
environment that allows the user to setup and test a single-axis inertial
positioning system. The program was written in the "¢’ programming language
and compiled using the Microsoft C Version 5.1 Optimizing Compiler. The
source code is included in Appendix C. The modular design of the program wiil
allow a different DAS, translation table, or processing unit to be used by only
modifying a few subtrcutines. A flow chart of the program is given in Figure 45.

The main menu offers four options:

1) System Setup - Activates a sub-menu with choices to
calibrate the AD1170’s, calibrate the QA2000 scale factor and
bias, select one of three integration methods. or change the
DAS sampling frequency.

2) Experiments - Activates a sub-menu with that allows the user
to select from five application scenario tests. A log file will
record each test that is run along with the resuits.

3) Free-Running Position Display - Uses the currently selected
sampling rate, and integration algorithm along with the last
updates of the scale factor and bias to display the real-time
position of the accelerometer. The program will capture any
key-strokes and send them to the Anorad table so that the
accelerometer can be moved. (Appendix D contains a brief
description of all of the Anorad table commands.) A no-
motion command signal can be generated by pressing "Z"
which will invoke a zero velocity update. To return to the main
menu press "*".

4)  Quit - Quits the program.

The five application scenarios are actually tests of the compensation
schemes discussed in section 6. The tests are referred to in the program menu
as:

1)  Single Motion Test - Does not use any compensation. One
run equals one 3.6 inch move.

2) Multiple Motion Test w/ZUPT - Updates the accelerometer
bias by simply averaging the output of the accelerometer
inbetween movements. One run equals three 3.6 inch moves.
Discussed in section 6.1.

3) Multiple Motion Test w/ZUPT & Unknown Base - Updates
the accelerometer bias by using the position errcr and velocity
error over one run. One run equals two 3.6 inch moves - one
forward and one backward. Discussed in section 6.2

4)  Multiple Motion Test w/ZUPT & Known Base - Updates the
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4) Multiple Motion Test w/ZUPT & Known Base - Updates the
accelerometer bias by using the position error and velocity
error over one run. One run equals two 3.6 inch moves - one
forward and one backward. Discussed in section 6.2

5) Multiple Motion Test w/ZUPT & 2 Known Base (M1) -
Updates the accelerometer bias and scale factor by using the
position error and velocity error over one run. One run equals
two 3.6 inch moves in the same direction. Discussed in
section 6.3

6) Muitiple Motion Test w/ZUPT & 2 Known Base (M2) -
Updates the accelerometer bias by using a reguiar ZUPT and
updates the scale factor using the position error. One run
equals two 3.6 inch moves in the same direction. Discussed
in section 6.3

The resuits of each test run along with the statistics and experimental
conditions for each set or runs are stored in a log file. A plot of the acceieration
profile for the 3.6 inch movement used in most of these tests is shown in Figure
46.

The temperature compensation was implemented implicitly since the bias
and scale factor (SF) updates would take into account the variations due to
temperature changes. This implicit method is better since the temperature
coeffiecients vary significantly from one measurment to another as determined in
phase one of this project.

The bheart of the real-time software is a subroutine called
"integrate_and_move" which simultaneously determines the real-time position
and controis the Anorad table. The inputs to the routine are amount of time to
determine position in seconds and a character string of Anorad table commands,
while the output is the distance moved in inches after the specified time.
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8 System Tests

8.1 System Setup

The robot end-effector having one-dimensional linear motion was
implemented using a linear motion table manufactured by Anorad Corporation,
Hauppange, New York. The table was equipped with a motion controller
contained in a separate box. Mounted on the table is an optical linear encoder
which can measure the position of the table to 16 microinches. The table is
maintained level. An acceleromster is mounted on the table with its input axis
pointed along the direction of table motion. The output of the accelerometer
goes to the DAS which contains interface electronics, anti-aliasing filter, and A/D
converter. The output of A/D converter goes to a microcomputer (Compaq
386/25) which is also connected ‘o the table controller via an RS232 port. The
RS232 cabie connections are shown in Figure 47. Figure 48 is a sketch of the
system setup.
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8.2 Test Results

Using the real-time software the system was tested for each application
scenario. The single motion test, muitiple motion test with ZUPT, and multiple
moticn test with ZUPT and two bases (M2) were the only compensation schemes
that provided any useful results. Table 10 summurizes the resuits of these tests.
The scheme number in the table is the menu number as specified in section 6.
Each result in the table represents the statistics of 50 runs for a filter bandwidth
of 40 Hz, an A-to-D range of 1.0 Gs, and the trapezoidal integration method. The
log files for the tests are included in Appendix E. The compensation schemes for
the remaining tests relied on the accelerometer bias to be the dominant error
source and also that the bias could be modeleled by

Evidently the accelerometer errors such as SF stability and nonlinearity are as
dominant as the bias.

Since the results of these tests were below that expected of the DAS, a
more detailed simulation of the system including the accelerometer error sources
should be conducted. Such a simulation would be able to determine system
performance for a variety of accelerometers, DAS's, and integration algorithms.

Table 10 - Real-Time Test Results

Scheme Sampling Rate Max Err Mean Err Stand Dev
1 200 Hz 0.268 0.150 0.055
2 200 Hz -0.412 -0.281 0.049
6 200 Hz -9.255 -0.383 1.617
6 200 Hz 1.328 0.008 0.219
1 300 Hz 0.187 0.061 0.054
6 300 Hz -0.583 -0.012 0.092

Position errors and standard deviation are in inches.
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9 Conclusions and Recommendations

The test results of the system were below that expected of the DAS.
Therefore, the dominant error sources seem to reside in the accelerometer. An
accelerometer that is specifically designed for this application (operation range of
+ 2 Gs) is needed. Also, from the simuiation of the DAS, it was determined that
20 bits resolution is more than needed and a 100 Hz sampling rate is too slow for
real-time accuracy. Hence. using a 16-bit converter to sample at 20 kHz and
then averaging 4 samples resuiting in a 5 kHz acceleration update shouid be
more accurate than the current system for reai-time position accuracies less than
10 thousands of an inch. The averaging scheme will also tend to increase the
effective resolution of the system. Before continuing any more hardware
development an in-depth simulation of the entire system (open and closed loop)
from the accelerometer to the processor shoufd be conducted. This approach
would better define the propagation of error sources to the position error.
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Appendix A - AD1170 Data Sheet




ANALOG

FEATURES
Low Nonlinearity:
Integral: =£0.001%
Differential: =0.00035%
Microcomputer-8ased Design
Programmabie Integration Time: 1 to 350ms
with Resolution from 7 to 18 Bits
Programmable Qutput Data Format
Auto-2erced Opaeration and Elactronic Calibration
{No External Trim Potentiometers)
Microprocessor Compatible Interfacs
High Throughput: Over 50 Conversions;Second
for Line Cycle Integration Period
High Normai Mode Rejection: S4dB at 50Hz
Small Size: 1.24"x 2.5" < 0.55" max

APPLICATIONS

Data Acquisition Systems
Scientific Instrumants
Maedical Instruments
Woeighing Systems
Automatic Test Equipmaent

GENERAL DESCRIPTION

The AD1170 is a high resolution integratung A/D couverter
intended for applications requiring high accuracy and high
throughput at low cost. A novel conversion architecture provides
the user with outstanding iccuracy, stability and ease of use.

The AD1170 is a compiete microcomputer-based measurement
subsystem, composed of three major clements: a highly precise
charge balancing converter, a singie chip microcomputer, and a
custom CMOS controller chip. The AD1170 otfers independeady
programmabie integration time [from one muilisecond to 350
milliseconds) and data format (offset binary or two’s complement,
from 7 to 22 bits). The coaverter is fully auto-zeroed and exhibits
a span drift of only 9ppm/°C, assuring stable, accurate readings.

The AD1170 may be interfaced to any microcomputer based
system in a memory mapped or VO mapped tashion via an 8-bit
data bus. The AD1170’s advanced features are controlled by
sample commands seat o it via thus bus.

The converter uulizes surface mount technology and s housed
inasmall 1.247 x 2.5" < 0.85" package. [t operates from =15V dc
and + 5V dc power.

Informaton ‘urrsned By Angrecq Cevices s Hereved 10 De accurate
and retapie However 1g resporsh ity s assumed oy Angiag Devices
far 'ts use. no- for any ~fr ngements of Datents or other ~gnts of thirgy
part'es wh cn ™ay resu't fram rs use NO icense g jranted by mooca

. tTon ar otnerwse urder any paten~t Ir patent <3rrs 3f Anaieg Jev ces

High Resolution, Programmable

In A

PRODUCT HIGHLIGHTS ]

1. The AD1170, unlike dual slope converters, offers the user
the capability of programming the integration time by selecting
one of seven preset integraton periods or by loading an
arbitrary integration period over the interface bus.

2. The AD1170 architecture provides for user programmable
data format independent of the integration time. All data is
computed to 22-bit resolution and the user may specify any
resolution from 7 to 22 bits. Usable resolution will rypically
be limited to 18-bits due to measurement and calibradon
noise error.

3. Electronic digital calibration eliminates the aeced for mim
potentiometers. Caiibraton can be performed at any tme by
arplying an external reference voltage to the input and invoking
a calibration command. The calibration daa is stored 10 ao
internal nonvolanle memory chip.

4. Internal calibraton cycles may be programmed to occur
whenever the converter is idle, assuring negligible offset drift
and only 9ppw/°C span drift.

S. The conversion rate is greater than S0 conversions per second
when programmed for 60Hz line cvcle wntegravon. The
maximum cogversion rate is greater than 250 conversions per
second, using a one m'llisecond integrauon period.

QOne Technology Way, P O Box 9106, Norwood, MA 02062-9106
Tei- 617/329-4700 TWX 710/394-6577
WestCoast Midwest Texas

714.641-939) 312 380-0300 214.231-50%4




SPECIFICATIONS s + 2.1, = =151, =

+ 5V uniass atherwiss specifisd)

MODEL Mis Typ Max Units
RESOLUTION' 7 18 Bits
ACCURACY |
Integral Nonlineanty® | =0.001 % SPAN
THROUGHPUT RATE!
Time (Integrate) = Ims 250 conv/S
Time (Integrace; = 16.667ms 50 coav:S
Time (Integrate! = {00ms 9 coav/S
DIFFERENTIAL NONLUINEARITY |
Tlay 4 T @b ‘
lms 10ms =0.01 % SPAN
16.667ms 100ms , 20.0008 % SPAN
300ms 300ms =0.00035 % SPAN
STABILITY !
Span . =9 ppm SPANSC
POWER SUPPLY REJECTION RATIO ,
(Span Error vs. Analog }
Supply Voluge) 60 ppm of Reading'V
INPUT CHARACTERISTICS
Analog [nput Range
de -5 -5 v
dc PlusNormai- Mode Yoitge ;-0 - 07
Absolute Maumum | |
(Without Damage! [ -30 +30 ! v
Normai- Mode Re:ecuon }
@60Hz | S4 4B
@50Hz ; 50 4B
loput Bias Current ' 10 nA
lnput Impedance ! 100 M0
REFERENCE !
Outpurt Voltage 5 Vdc
Qutput Current 2 mA
Input Range 4.5 5.5 Vdc
DIGITAL LEVELS ! '
lopuns
Low 0.3 v
High j 2.0 v
Ourpues i
Low(@4mA: l 045 . V
High (@ 100uA 123 by
WARMUP TIME . '
0o 60ppm SPAN S i mn
to 20ppm SPAN 15 . gun
POWER REQUIREMENTS ;
«Vsand -V 3 'S 18 ’ v
Vo L7 s 525 v
Supply Current Drain ]
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FACTORY DEFAULT SETTINGS
The AD1170’s internal nonvolatile memory stores various A/D
parameters as programmed by the user (such as the integration
period, output data format, calibration coefficient, etc.). The
AD1170 is calibrated at the factory with the following default
settngs:

FORMAT: 16-bit, offset binary

DEFAULT T(int): 16.667 milliseconds

(code 2)

DEFAULT T{(cal): 100 milliseconds

(code 4)

AD1170 ARCHITECTURAL OVERVIEW

The AD1i70 is a complete microcomputer-based measurement
subsystem, containing three major elements: a highly precise
charge balancing coaverter, a single chip microcomputer, and a
custom CMOS controller chip.

The heart of the measurement technique is the charge balancing
converter (essentally a voltage to frequency converter). This
converter measures the input signal by balancing a proportional
current against a train of precisely controiled reference current
pulses using an incegrator. The microprocessor, together with
the counting and gating circuitry within the CMOS controller
chip, measures the period of the reference current pulses by
interpolating them using a 12MHz clock signal. The resulting
data is converted to binary representation by the use of floating
point firmware routines within the microprocessor.

When the AD1170 is triggered to perform a conversion, two
separate phases are performed: first, an integration phase, where
the input signal is actually measured, and then a computation
phase, where the dau from the integration phase is processed,
along with both the volatile and nonvolatile calibration data, and
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PARAMETER  DESCRIPTION MIN TYP  MAX UNITS
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WRITE CYCLE TIMING REQUIREMENTS
PARAMETER  DESCRIPTION MIN  TYP MAX UNITS

Tom Wi Puise Width 100 ns
Tean Chip Select to WH Low (] ns
Tou Chip Select Hoid Time ° ns
Tas Address Setup time 19 ns
Tan Address Hold Time [} ns
Tos Data Setup Time 50 ns
Ton Dats Hold Time 20 ns

Figure 1. Timing Diagrams and Requirements

formarted for output as the user desires.

The duradon of the integration phase can be programmed by
the user, and may be as short as one millisecond, or as long as
350 milliseconds. The computation phase always lasts approxi-
mately three milliseconds and commences immediately after the
integration phase is over. Therefore, the total conversion time
will equal the user programmed integrate time plus a fixed 3
milliseconds. Status signals are provided to indicate when the
dau is ready and when the converter may be retriggered for the
next conversion.

For maximum stability, the AD1170 periodically calibrates itself
by performing measurements upon a zero input signal and a
full-scale signal provided by the internal reference. This technique
cancels any drift within the charge balancing converter itself,
resulting in negligible offset drift, and gain suability equal to
that of the reference. Calibration cycles may be programmed to
take place whenever the AD1170 is idle, or they may be invoked
under system control.




he AD1170 contains no internal trims; its span accuracy is
ctory calibrated by using the ECAL (Electronic CALibration)
acure. This feature is a irmware routine which measures an
nernally applied reference voltage, compares it to the internal
ference voltage, and computes a span correction factor which
stored in nonvolatile memory. The correction factor is then
splied to all subsequent measurements, thereby compensating
ir the reference error. The ECAL function may be invoked by
Je user at any time, thereby replacing the usual trim potentometer
ith a totaily electronic calibradon capability.

INDERSTANDING THE ADI1170 SPECIFICATIONS

he AD1170, because of its unique conversion technique, is
secified quite differenty from more conventional integrating
snverters. The following sections will help the user to understand
rhere the sources of error are, and how to extract the best
ossible performance from the converter.

“here are two primary sources of error in the AD1170: integral
onlinearity of the charge balancing converter, which influences
il conversions equaily, regardless of the integraton period and
alibradon period; and the noise error of the measurement/cali-
ration process, which is a function of the integration period
ind calibration period as selected by the user.

NTEGRAL NONLINEARITY

[he integral nonlinearity of the charge balancing coaverter
CBC) is =10ppm ( =0.001%) of Span. This specification is an
*endpoint” ponlinearity measurement; i.e., the typical deviadon
teen from 3 straight line drawn between the CBC output at - 5§
volts and its output at +5 volts. This specification excludes any
gain or offset error.

If the converter was externally calibrated at its end points (—~5
wolts and + S volts), then the integral noalinearirty would also be
the relative accuracy of the converter. This is not the case in the
ADI1170, however, because calibration is performed internally at
0 and + 5 volts, rather than -5 and + 5 volts. This calibration
technique, superimposed upon the integral nonlinearity of the
CBC, results in the curve shown in Figure 2.

«5 VOLTS

s S}

-8 VOLTS
|
i
INPUT VOLTAGE
—

(NTEGRAL
NONLUINEARITY

.....
,,,,,

Figure 2. Relative Accuracy and Integral Nonlinearity
when Calibrated

As shown in the diagram, the calibradon techaique tends to
exaggerate the relative error at the negative end of the scale, and
reduce the error between 0 and + 5 volts. This characteristic
happens to be most beneficial when using the AD1170 in systems
where the input comes from a sensor whose signal is mostly
positive, such as a thermocouple.

For systems where the user desires to minimize the relative
error equally across the whole span of the converter, it is possible
to intentionally introduce 2 span error during the ECAL procedure,
as shown in Figure 3. This scheme sacrifices positive full-scale
accuracy in order to minimize negative full scale error. The net
result is a reladve accuacy equal to the integral nonlinearity.

ERAOR

~5 VOLTS

i — 1
|l “
NTEGRAL o
NONUNEARITY /
INTENTIONAL MISCALIBRATION
! €QUALIZES ERROR AT BOTH

ENOS OF SCALE

Figure 3. Relative Accuracy with Intentional Span Error at
+F.S.

1n both cases the accuracy of the input offset (which is servo
controlled) is not compromised.

MEASUREMENT/CALIBRATION NOISE
Measurement noise refers to che conversion-to-conversion uncer-
tainty caused either by mathematical truncadon or device noise.

Calibraton noise is actually the measurement noise resulting
from the calibration process. The converter stabilizes itself by
performing internal measvrements of the reference, and of ground;
these measurements have the same uncertainty due to noise as
does the normal measurement process.

The measurement and calibradon noise error of the AD1170
determines the differendal linearity, or useable resoludon, of the
converter. This parameter determines the usable resolution
because it defines what codes can be seen through the noise.
The specified value is the amount of error, in either direction
from the average reading, which will not be exceeded for 95%
of all conversions. This parameter, as in all integrating converters,
is a function of the integration time; long conversions result in
very high resolution, while short conversions provide lower
resolution. In the AD1170, all internal computations are always
carried out to 22-bit resolution, but useable resoludon is limited
by the peak-to-peak noise, as determined by T(cal) and T(int).

The chart shown in Figure 4, illustrates the typical peak-to-peak
noise (in ppm Span) versus T(int) and T(cal). These numbers
can be used 10 indicate how much useable resolution can be

! ! l } |
Tleal) = ! ims l 10ms !f16.7ms l 20ms ' 100ms , 166.7ms ' 300ms DIS%ABtED UNITS
T(int)= 1ms ' 208 115 115 © 114 113 112 11 110 = ppm of SPAN
10ms 7 77" 24 18 16 13 13 13 12
16.7ms -0 40 14 13 -8 8 8 8
20ms Y L0 127 .7 7 7
10ms (70 /00 40 | 40 35 35
166.7ms ¥, 0, 0. 0 A 40 35 1 35 |
sooms [ A 7 s [ ae

Figure 4. Typical Peak-to-Peak Noise (in ppm Span) Versus T(int) and T(cal)
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expected under a given set of operating conditions. For example,
a peak-to-peak noise of =8ppm is approximately analcgous to 2
flicker of =0.5LSB at 16 bits of resolution. Under these conditions,
a user could set the default format for the AD1170 to 16-bit
resolution, and observe no more than = 1/2LSB of differential
error. See Table I for conversion of typical peak-to-peak noise
to Differential Nonlinearity and Useable Resolution.

The chart in Figure 4 may also be used to determine the minimum
effective calibration time for a specified integration period; the
noise contributions of both the measurement cycle and the
calibration cycle combine as the “root sum square”, and the
combined effect tends to asymproticaily approach a baseline
value determined by the shorter of the rwo. For 2xampie, a
T(cal) greater than 10 mulliseconds does litde aor nothing to
improve the noise performance for conversions using a T(int} of
1 millisecond.

H
nssoumoa:! RESOLUTION:
AT12LSB ' ATILSB . DIFFERENTIAL
NOISE DNL ERROR , DNLERROR : NONLINEARITY
(ppm Spaa); (NO. OF BITS) (NO.OFBITS) (%Span)
244 1 12 0.024
122 12 13 0.012
61 | 13 13 0.006
31 ; 14 15 . 0.003
15 15 i 16 | 0.0015
: 16 17 l 0.00076
4 17 18 0.00038
2 18 19 l 0.00019

Table . Conversion of Noise Error to DNL and Usable
Resolution

SIGNAL INPUT CONNECTIONS

The AD1170 has both a positive input pin (=~ IN) as well as a
negative input pin ( ~ IN), but the AD1170 input is aot a true
differential input. The negative input pin is an input used during
calibration cycles 10 establish the zero reference. Ia aoplicauons
with static ground offsets, the —IN pin may be used as a ground
sense input, [0 sense a signal reference point which is offset
from analog common by a small differendal. Both the —IN and
+ IN signals must have a bias current path back to analog com-
mon. Figure 5 illustrates the proper use of the input signal
connectons.

+ INPUT ©

-INPUT g

+15 VOLTS o

4 TuF
ANALOG

COMMON
A TuF

- 18 VOLTS O—L

+§ VOLTS O——g—f
N
eTuF

AD1170

DIGITAL

8 21t

Figure 5. Input, Power, Reset, and Clock Connections

RESET

A reset sequence must be accomplished after power-up and
before any access to the converter. The RESET line initalizes
the internal logic of the AD1170. This lize may be driven from
an external source, such as may exist in most computer based
systems, or it may be connected to a simple RC circuit which
will automatically invoke a reset sequence at power-up. Figure §
illustrates the recommended circuit.

When driving the RESET line from an external source, the line
must be held high for at least 2 microseconds after the oscillator
is running and stable (tvpically 300 microseconds after power is
applied) in order to assure a proper reset.

CLOCK

The AD1170 requres a 12MHz clock for operation. This clock
may be supplied by connecting the XTAL OUT and XTAL IN
pins toa 12MHz crystal, along with two resistors and two capacitors
as shown in Figure 5.

The user may also suppiv a 12MHz logic signal from an external
source. such as may be available in the user’s svstem. In this
case, the axternal clock should be applied to the XTAL IN pin,
and the XTAL OUT pin should remain unconnected.
POWERING THE AD1170

For best performance, the user should pav careful arteation 0
proper power supply bypassing, as well as grounding. Analog
common and digital common are not connected internal to the
module, but must be connected externally. Figure S illustrates
the proper connection of power and ground to the AD1170%.

REFERENCE CONNECTIONS

The internal + 5 voit reference of the AD1170 is brought out to
Pin 21 of the module; for normal operation, it should be connected
to the reference input (Pin 23).

An external reference voltage of from 4.5 1o 5.5 volts may be
applied to the reference input {Pin 23), and the reference output
may remain unconnected. The data will be rauometric to that
reference. The input impedance of the reference input is ap-
proximately 16K ohms. The reference input is not dynamic; any
external reference voltage must be an essentally static DC
signal.

INTERFACING TO THE ADI1170

The AD1170 contains an eight-bit microprocessor compatible
interface structure, inciuding controt lines. It can be interfaced
to any microprocessor-based system in either a memory mapped
or /O mapped mode, and occupies four successive bytes of
read/write address space, as shown in Figure 6.'
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High Data Read
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Low Data Read
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Figure 6. Control Functions

'Attempting to READ and WRITE at the same nume RD and WR et low
mav aiter *he contenrs of the tnternal nonvolinle memory.

-5




he AD1170 is controlled by writing a command into the lowest
yte of the device image. Upon receipt of the command byte,

ae BUSY line is set low, indicating that command interpretation
i in progress. The BUSY line returns high, following command
aterpretation and a command dependent execution time. This
ignals that the command execution has been compieted, and
pother command may now be written. The logical inverse of
he BUSY line is availabie in the STATUS byte for use in polling.
e the secton below about THE STATUS BYTE.

Then the command requires one or two parameters, in addition
o the command byte, they must be written iato the second and
hird parameter bytes of the umage before writing the command
syte. This is because writing the command byte triggers the
nicroprocessor to begin command interpretation.

ollowing the execution phase of any command, the CMD ERR
sit in the STATUS byte will indicate acceptance or rejection of
he command. When set, this bit indicates that there was a
ontextual or svntactic error in the command or parameters.

—onversions may be initiated either by bus command, or bv a
aigh to low transition of the EXT CC line'. Externally triggered
sonversions behave in the same wav as bus triggered conversions,

- 24 Bé 8S 84 83 82 81 8o

0ATA DATA

cMD
ERROR | SAT | Roy | BYSY

* * PWRUP INT

% UNUSED: CONTENTS INDETERMINATE
Figure 7. The Status Byte

OUTPUT DATA FORMAT

The AD1170 architecture allows 2 programmable daz format
independent of the integration time. The user may specify any
resolution from 7 to 22 bits, and may specify either offset binary
coding or two’s complement coding. Programming the data
format is accomplished via the use of the SDF command, using
the format code described in the table in Figure 8 as the
PARAMETER 1 value.

»xcept that the BUSY line and the 3USY bt in the status word
remain inactive; the end of execuuon of externaily triggered

— R n ] Y
sonversions must be determined by exarminauon of the DTA

RDY line ar -he DTA RDY bit in the STATUS word.

THE STATUS BYTE

The lowest readable byte of the device image is the STATUS
dyte; it contains six bits of information about the current status
of the AD1170. This byte may be examined by the host processor
it any time. The individual bits in the status byte (see Figure 7)
ire assigned the following functions:

BITO The BUSY bit is an inverted version of the signal on Pin
7 of the module. When low, it indicates that the AD1170
is ready to receive a command. When high, it indicates
that the AD1170 is busy executing the last command.
Any commands loaded while the BUSY signal is high will
be ignored.

BIT1 The DTA RDY bit {aiso available on Pin 10 of the module}
goes high to indicate that the data from the most recent
conversion is availabie in the LOW DATA, MID DATA,
and HIGH DATA registers. This bit is cleared at the
start of the next conversion. It may aiso be cleared by
executing an EQI command.

BIT2 The DATA SAT bit is set by any conversion which is
saturated, i.e.. any conversion whose ourput data exceeds
positive or negative full scale.

BIT3 The CMD ERR bit indicates that the most recendy loaded
command contained 3 contextual or syntacuc error, or
was not recognized. It is cleared when the next command
is loaded.

BIT4 The INT bit “also availabie on Pin 11 of the module) goes
high to indicate that the input signal is currently being
integrated. [t is used in multiplexed systems to determine
when the input multiplexer mav be switched.

3IT5 The PWRCUP bit .also availuble on Pin 14 of the moduie)
goes high when the moduie is powered up or when the
RST command is executed. It remains high until device
initializauon is complete. This signal is used to indicate
readiness of the converter after system initalization.

€. | € 1 ¢ | & | € | DATAFORMAT

H | X ix ' X ' X ! Two'sComplement '
L I X !X + X : X . OffsetBinary

X | H 'H H H  22Bits

X | H 'H H L . 21Bits

X + H i H 'L : H | 208its

X . H 'H . L I L ' 19Bits

X { H ;L | H | H 1 18Bits

X | H | L H L ! 178its

X | H 'L L H  16Bits

X | H L L L _ 15Bits

X L , H H . H . 14Bits

X L | H ;| H L . 13Bits

X L H | L | H | 12Bits

X L H | L | L | 1Bits

X L L (| H ' H ! 108Bits

X L L H | L | 98its

X L L L H | 8B8its

X L L L L | 78its

X = DONT CARE (C,C¢ Cs = X FOR ALL DATA FORMATS)

Figure 8. Format Code

It should be noted that the AD1170 computes all data to 22 bit
resolution. However, not all 22 bits are useable, since the differ-
ential performance is largely dependent upon factors such as
integration period and calibration period. The SDF command
simply serves to round off the result to the specified number of
bits. The graph in Figure 4 can be used to estimate the amouat
of useable resolution achievable for a specified integration period
and calibration period.

The output dara is alwavs right jusufied within the three output
bytes (LOW DATA, MID DATA, and HIGH DATA.. If two’s
complement format is selected, the MSB of the data is inverted
and extended all the way to the top of the HIGH DATA byte.
For example, if 16 bit two's complement format is selected, the
data will appear in the LOW DATA and MID DATA bytes,
and the MSB will be 0 for positive inputs.” The format is a
nonvolatle parameter; whenever an SAV A command is executed,
the current format will be saved to nonvolatile memory. and
will become the default format upon powerup.

'Themioumum duaranion for EXT CC 1s one microsecond.

2Since the sign is extended all the way fo the top uf the uppermost byte, the
HIGH DATA byte will be filled with the value of the MSB.




PROGRAMMING THE INTEGRATION PERIOD

The key parameter of any integrating A/D converter is the
integration period. As shown in Figure 9, an integrating A/D
converter provides maximum normal mode rejection at those
frequencies which are integral multiples of 1/T(int), where T(inr)
is the integration period. The most common way to exploit this
characteristic is to set the integration period equal to one period
of the power line frequency so that ac hum will be rejected.

Reiauve frequency, t = -? log scaie

1 1] 10
107 T T
0
Envelooe
} of normai-
H mode gamn
[
§ -20
3 Integral muitipies \f
k] of 1/T are ~
2 asymptoucaity \_’
1 nulled out \’
. H t . )
f 1 ! Lo
-4 , \ ) .

Figure 9. Normal Mode Rejection

The duration of the integration also affects the resulting resotution
of the data; long integration times result in more usable resolution
than do short integration periods.

The AD1170, unlike most dual slope converters, offers the user
the capability of programming the integration time. This feature
can be used 10 great advantage in systems design, since the
integration time can be optimized for differing system conditoas.
For example, in systems whose inputs are severely polluted by
60Hz noise, the user may wish to program the AD1170 for a
100 millisecond integration time, which will result in excellent
60Hz normal mode rejection. In another application, 3 user may
wish to scan a large number of channels rapidly, looking for
gross input changes, then slow down in order to make a high
resolution conversion before resuming rapid scanning.

The AD1170 offers the user a number of different ways to set
the integration period. The simplest way is by using the SDI
command to set the default integration period to one of seven
preset periods (1ms, 10ms, 16.66ms, 20ms, 100ms, 166.66ms,
300ms). The first two preset periods offer fairly rapid scanning
at reduced resolution; the other five represent American and
European line voltage standards or multiples thereof. Far single
conversions without aitering the default integration time, the
CNVP command may be used. which also allows the selection
of one of these seven preset periods. These preset periods and
their corresponding codes are listed in the table of Figure 10.

Another way in which the integration period may be programmed
is via the EIS command, which allows the user to load the externaily
definable period register with a binary value' proportional to the
desired integraton period. Using this technique, the user mav
specify any period from one millisecond to 350 milliseconds
(with 200 microsecond accuracy). Access to this user definable
period is via the SDI or CNVP commands; the last entry in
Figure 10 is used to select the period defined by the EIS or
ELS command.

C: | C | Co | INTEGRATIONTIME | NOTES i
L L L | 1Millisecond i |
L L ! H | 10Milliseconds i
L ' " L 16.667 Milliseconds 1cycle@ 60Hz !
L H | H 20 Milliseconds Tcycle @ 50Hz |
H Lt L 100 Milliseconds 50/60Hz
H L H 166.67 Milliseconds 10cycles @ 60Hz
H H i L 300 Milliseconds - 50/60Hz

" H ! H | H ' (SeeNote)
NOTE

This code is used for externally loaded integration times
(defined with the EIS Command) or externally measured times
(from the ELS Command). The value can be anywhere fram

1 Millisecond to 350 Mitiiseconds.

Figure 10. Preset Integration Periods

The third way to set the integration period is via the external
line sampling feature, using the ELS command. This command
samples the period of the logic signal presented to the ELS
input pin (Pin 12, and sets the externaily derinable period
register accordingly. This feature is most useful in environments
with flucruating line frequencies. By executing an occasional
ELS command, the converter effectvely “tracks” the line fre-
quency. To use this fearure, a clean, bounce free logic regresen-
tation of the line frequency must be present at the ELS input
during the execution of the ELS command. Once having performed
the ELS command, the measured integration time may be selected
using the SDI or CNVP commands along with the (HHH) code
from the table in Figure 102,

It should be noted that the acrual integration period used in the
measurement process is accurate to about =200us, due to the
limitations of the charge balancing converter. This is adequate,
however, for greater than S0dB of normal mode rejection at
60Hz when using an integration period of 1/60 second. Even
greater normal mode rejection may be obtained when the inte-
graton peériod is a multiple of the line frequency period.

CONTROLLING THE CALIBRATION CYCLE

The AD1170 achieves its excellent span and offset stability by
calibrating itself against its internal reference voitages. The user
can control the frequency of occurrence for calibration cycles
and their duration.

The duradon of the calibration cycle is an important parameter,
because it affects the accuracy of the calibration cycle itself.
Errors in the calibration cvcle appear in the output data as
instantaneous offset and span errors. If automatc “background”
calibration is enabled. these errors erfectively appear as noise.
Just as in the case of input conversions, longer calibration umes
result in more accuracy and less noise.

Of course there may be system appiications where there simply
isn't sufficient ume to perform a long calibration cycle. For thus
reason, the AD1170 offers the user the ability to specify the
calibration period. using the SDC command.

'See the seczion ntled “The ADII70 Command Se:” for the tormula used o
compute the proper binary value.

!Caution 1s advised: if 10 signal 15 present at the ELS mnput when the EL>
command 1s executed, ur :f the signal 1s not within acceptable frequency
lirmuts, the moduie mav “hang™ and requre 2 hardware reset o conunue
operation.




1e argument for the SDC command is the same three-bit code
is used for the SDI and CNVP commands. The reason for

is is that each calibration cycle consists essentiaily of two
dinary conversion cycles, performed upon the internal zero

d span references. For example, if an SDC command with an
gument of 3 is executed, the default calibration time will

en be approximately 49 miiliseconds (two conversions of 20
illiseconds plus approximately 9 milliseconds for the internal
atheatcs).

he user may also disable or enable background calibraton. In
rstems where the AD1170 may be periodically idle, i.e., not
erforming input conversions, background calibration is a good
oice. This mode is enabled with the. CALEN command and
1l cause the AD1170 to continually initiace an internal calibration
vcle whenever the converter is otherwise unoccupied. Any
Jnversion commands received during a cal cycle wiil cause that
al cycle to be aborted in favor of the input conversion, thereby
iving the user priority over calibration. This mode of operation
i automatic and ransparent.

“he CALDI instruction is used to disable background calibration.
¥hen this instruction is executed, the converter will be completely
dle between convert commands, and calibration cycles will only
xcur whea invoked by the SCAL command. This mode of
yperadon is best when the user would like to perform input
‘onversions at the maximum rate, and/or when the system affords
| specific convenient time to perform calibration.

There are no hard and fast rules about the best way to appl:- all
of this flexibility, but best performance will be obtained if the
following points are observed:

» Consult the chart in Figure 4 to determine the minimum
effective calibration period for use with a desired integration
period.

® Don’t use automatic background calibration unless your system
will allow the converter enough uninterrupted time to perform
at least one calibration cycle. For exampie, if you are using a
calibration period code of 3, your system must periodically
allow at least 49 milliseconds without a convert command or
calibration will aot occur.

® Remember that the purpose of the calibration cycle is to
cancel the intrinsic drift of the charge balancing converter
within the AD1170 itself. If the converter is in a stable envi-
ronment, calibration may be done less frequently. The best
possible performance will be achieved in stable ambient tem-
peratures, where calibration is manually invoked by the system
at relatively long intervals, using the longest allowable calibration
time.

® Very short calibration times, although allowed by the AD1170
firmware, are not especially useful because thev introduce
more ¢rror than they compensate. The only useful purpose of
very short calibration times is in systems which are operating
in rapidly changing ambient temperatures, and then only for
relatively low resolution conversions.

COMPENSATION OF EXTERNAL OFFSETS
An electronic “nill” feature compensates for offset errors of
signal condinoning stages preceding the AD1170.

The null feature comprises three commands: NULL measures
the inpuc signal (using the current integration time; and stores it
in internal RAM; NULEN subtracts the measured value from
all subsequent conversions; NULDI cancels the NULEN com-
mand’s effect.

The sum of the offset value plus the full-scale input should be
less than the =6 voits linear input range of the AD1170. The

offset value to be nulled should ideally be no more than a few
hundred millivolts in amplitude.

The NULL command does not need to be executed every time
the AD1170 is powered up. Since the value measured by the
NULL command is saved and restored by the SAVA and RESA
commands, the value of the nuil will be the one saved during
the last SAVA command. Execute a NULL command only
when a new null measurement is desired.

When NULEN is in effect, the length of each coaversion will
be extended by approximately 700 microseconds.

ELECTRONIC CALIBRATION

The AD1170 contains an Electronic CALibration capability,
which, ajong with the internal nonvolatile memory chip, effectively
eliminates the need for trim potentometers of any kind. This
capability, abbreviated as ECAL, should not be confused with
the internal background calibraton cycles. ECAL is a completely
distnct function used 1o calibrate the ADI170 to an externai
reference standard.

The ECAL funcuon measures the ratio of the internal reference
voltage in the module with respect to an externally applied
reference voitage. The resulting coefficient is applied to the
math computations for all subsequent conversions, effectively
compensating the module for absolute value errors in its own
reference. The ratio is stored in random access memory until
the user invokes a SAVA command, which will save this coefficient
(along with the other nonvolatile parameters) in the nonvolatile
memory chip. When the module is powered up, the previously
saved coefficient is recailed from nonvolatile memory and stored
in random access memory.

In order to use the ECAL command, the input to the AD1170
must first be presented with an external + 5 volt reference standard
such as is usually found in many calibration labs. The ECAL
command may then be invoked; the external reference voltage
must remain at the input until command execution is complete.
If the calibration is to be made nonvolatile, a SAVA command
must then be invoked.'

ECAL may also be used as a means of making limited ratiometric
measurements. For example, in some applications. it may be
useful to be able to measure the output of some transducer with
respect to its excitation; if the excitation can be scaled to the
range of 4.5 t0 5.5 volts, then it can be used as an excitation for
the ECAL process. Having digitized the excitation, all subsequent
conversions will be ratioed to the ECAL value. For example, if
an ECAL procedure is performed upon a 4.5 voit source, and
the converter subsequently digitizes a 2.25 volt signal, the converter
output will be half of full scale, or 11000... (assuming offset
binary coding). The converter can be restored to absolute cali-
bration by executing a RESA command, which will restore the
last nonvolatile ECAL coefficient to random access memory.

The user is cautioned that the nonvolatile memory used in the
AD1170 has a finite endurance of 1000 write cycles minimum.
Assuming that the AD1170 is calibrated weekly, this implies a
device life span of greater than 19 vears. Less frequent calibrations
mean a proporuonately longer life span. This means ECAL may
be performed anyv number of umes, but the user should limit
the number of SAVA commands in order to extend the life span
of the nonvolatile memory.

'Since the SAVA command saves all nonvolatile parameters, the user should
be sure thac the other default parameters, such is integration ume and Jata
formart, are set to their desired values before SAV A s invoked.
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NONVOLATILE MEMORY
The internal nonvolatile memory in the AD1170 is used to store
the various nonvolatle parameters associated with A/D operation
{for example, the integration period, data format, ECAL coeffi-

cient, etc.). )

In addidon, eight 16-bit words of the nonvoladle memory are

" made available to the user for general purpose use. They may
be accessed using the RDNV and WRNV commands. Because
the nonvolatile memory is specified for a finite endurance of
1000 write cycles minimum, it is best used for datza which does
not regularly need to change, such as configuratdon informadon
or system calibradon parameters.

FACTORY DEFAULT SETTINGS
The AD1170 is calibrated at the factory; the factory default
setungs are:

Format: 16-bit, offset binary

Default T(int): 16.667 milliseconds (code 2)

Default T(cal): 100 milliseconds (code 4)

THE AD1170 COMMAND SET

The AD1170 command code set includes 20 different funcdons.
Some of the commands require no parameters, while others
require one or two parameters which must be loaded into the
PARAMETER 1 and PARAMETER 2 registers prior to loading
the command register. Some commands (for example, CNVP)
have their option parameter embedded in the lowest three bits
of the command itself.

The execution time for any command depends on the command.
Figure 11 is a synopsis of the available commands, as well as
estimates of their execution times.

Each of the commands described below is preceded by an opcode
name, along with the digital code (in binary).

10110000
CALEN (CALibraton ENable) enables automatic background
calibration cycling. In this mode, background calibration cycles
are executed automatically whenever the AD1170 is not otherwise
occupied. If a command is received during a calibration cycle,
thac cycle wiil be aborted and the command will be executed.

CALDI 10111000
CALDI (CALibradon Dlsable) disables automaric background
calibration. After executing this command, the AD1170 will be
completely idle berween commands. While in this state, a singie
calibration cycle may be invoked with the SCAL command.

NV 00001000
CNYV (CoNVert) causes a single conversion to be performed,
using the current default integration time and data format.

CNVP 00010C,C,C,
CNVP (CoNVert using specific Preset time) causes a single
conversion to be performed, using one of the eight preset inte-
gration dmes as listed in Figure 10. The default integration dme
is not changed. The three bit code for the desired integration
time is embedded in the lowest three bits of the command code.

ECAL 00011000
ECAL (Electronic CALibration) causes aa electronic calibration
cycle 10 be performed. An external +5 volt reference voltage
must be presented to the input before this command is executed,
and the input must remain stable undl the end of command
execution is signaled by the BUSY line or the BUSY bit in the
status word. The calibradon data computed by this command is
applied to all subsequent conversioas, but is not made nonvoladie
unt] a SAVA command is performed.

| EXECUTION TIME
MNEMONIC '~ FUNCTIONAL DESCRIPTION {APPROX)
CNV | _Perform a Single Canversion Using the Defauitintegration Time  Tlint) + 3ms
i« CNVP Perform a Single Conversion Using the Specified Integration Time _ T(int) + 3ms
i ELS Measure Period of Signal at the ELS Input 2x T(int) + 20ms
ECAL ! Perform Electronic CALibration Routine 15 d
SD{ i SetDefsult Integration Time for Input Measurements 150ps
SDC i _SetDefault Calibration Period 160us i
SOF Set Default Data Format 140ps
. RESA Restore All Nonvolatile Parameters from Memory 23ms
. SAVA Save All Nonvolatile Parameters to Memory 150ms
WRNV Write a Word to the User EEPROM Area I 2ms
RDNV Read a Word from the User EEPROM Area 600us
ECI Clear the Data Ready Flag _260us
' _SCAL i Perform a Single CaiCycle 2x T{cal) + 9ms
. CALEN Enable Background Calibration o 300us
_CALDI 1 _Disable Background Calibration e 310ns
" EiS Setintegration Time to Arbitrary Value 130us
RST Reset AD1170 to Power Up Conditions o ___20ms__
NULL Measure the Offset Voitage Vaiue atthe AD1170 input and Store Tlint) + 3ms
| NULEN __Subtract NULL Measured Value from All Subsequent Conversic s 250us
| NULDI | _Cancel the Effect of the NULEN Command  250us




EOI 10001000

SDC 01000C;C,Cy

EOI (End Of Interrupt) clears the DTA RDY bit in the swatus
byte, as well as the DTA RDY line (Pin 10). It is provided as a
means of clearing the interrupt source in systems which use an
interrupt upon data ready.

ELS 00100000
ELS (External Line Sample) measures the period of the logic
signal applied to the ELS input (Pin 12)!. This period is loaded
into the register associated with the last entry of the table in
Figure 10. Input conversions using this measurement as the
integration period may be performed by invoking 3 CNVP
command, or by setting the default integration period with the
SDI command. This command is intended for use in environments
with varying line power frequency; periodically invoking this
command allows effective tracking for improved normal mode
rejecuon.

EIS 00101000
EIS (External Integration Set) is used to establish an arbitrary
integration period from 1 millisecond to 350 milliseconds. To
use this command, first load the PARAMETER 1 and PARAM-
ETER 2 registers with the 16-bit binary number N, which is
calculated using the following expression:

N=2'% —T(inty21.333E-6

After the low and high bytes representing N are loaded into the
PARAMETER 1 and PARAMETER 2 registers respectively,
execute the EIS command. Once this command is executed, the
externally loaded integration time can be used via the CNVP or
SDI commands.

RESA 01101000
RESA (REStore All) restores all configuration parameters (default
integration time, default calibration time, data format, EIS/ELS
period, NULL value and electronic calibration data) from non-
volatile memory. After executing this function, all parameters
will be restored 1o their last value as saved by the SAVA com-
mand.

SAVA 01001000
SAVA (SAVe All) saves all programmable attributes (default
integration time, default calibration time, data formar, EIS/ELS
period, NULL value and electronic calibration data) into non-
volatile memory.

SD1 00111C,C;C,
SDI (Set Default Integration time) sets the default integration
time to one of the eight preset times listed in Figure 10. The
three-bit code for the desired integration time is embedded in
the lowest three bits of the command code.

SDF 00110000
SDF (Set Default Format) sets the default data format according
to the five bit code loaded into the PARAMETER 1 register
prior to execution of this command. The table in Figure 8 illustrates
the construction of the five bit code according to the desired
data format and resolution.

SCAL 11000000
SCAL (Single CALibration) performs a single background cali-
braton cycle. This command is inteaded for use when auto-
matic background calibration has been disabled via the CALDI
command.

-10-

SDC (Set Default Calibration time) sets the defauit calibration

tme (Tcal) according to the three bit code embedded in the

lowest three bits of the commaand. The calibradon times are .
shown in Figure 10. Note that the actual duration of a calibration /
cycle is approximately 2 x T(cal) +9 milliseconds. ’

WRNV 10011A,A,A,
WRNYV (WRite NonVolatile) writes the user supplied data, in
the PARAMETER 1 and PARAMETER 2 registers, into the
user accessible area of the AD1170’s nonvoladle memory. Eight
words of this memory are available, and are addressed by the
lowest three bits of the command.

RDNV 10100A,A.4)
RDNYV (ReaD NonVolatile) reads one word from the user ac-
cessible portion of the nonvolatile memory within the AD1170,
and places the data into the LOW DATA and MID DATA
registers for retricval by the user. The address of the desired
word is embedded into the lowest three bits of the mmd.

RST 10010000
RST (ReSeT) is effectively equivalent to a hardware reset of the
ADI1170. After executing this command, all nonvolatile parameters
(including the ECAL coefficient, the default integration and,
calibration periods, EIS/ELS period, NULL vaiue and the
default format) will be restored to their last saved values, automatic
calibration will be enabled, and NULL wiil be disabied.

NULL 01110000
NULL measures the input signal (using the curent integradon
time value) and stores the measurement in internal RAM. It
allows the user 1o establish the value of offset voltage at the
input and subtract that offset from subsequent conversions
through the execution of the NULEN command. The user must
insure that the sum of the offset value plus the full scale input
is less than the =6 volts linear input range of the AD1170.
Ideally the offset value to be nulled should be no more than a
few hundred millivolts in amplicude. The value measured by the
NULL command is saved and restored by the SAVA and RESA
commands ~ maintaining this value through subsequent powerups.
The NULL command need oniy be invoked when a new aull
measurement is desired.

NULEN 01111000
NULEN (NULI ENable) subtracts the vaiue, measured and
stored by the last NULL command, from all subsequent con-
versions. When NULEN is in effect, each conversion’s length
will be extended by approximately 700 microseconds.

NULDI 10000000
NULDI (NULI DIsable) cancels the effect of the NULEN
command.

This fogic signal should be 2 TTL or CMOS compatible continuous
waveform. It need not be symmetrical, but the HIGH or LOW time should
not be less than 25 microseconds.




IBM PC* INTERFACE

Figure 12 is an example of an AD1170/IBM interface suitable
for the IBM PC or XT personal computers. In this case, the
AD1170 is interfaced in the /O space; the DIP switch controls
the specific location of the AD1170 within the available address

oziAN q
YAl a

ARNIANT}

OW 1813
SR g

Figure 12. IBM PC'XT to AD1170 Interface

INTERFACING TO AN 8051 MICROCONTROLLER
Figure 13 shows how an AD1170 may be interfaced to an 8051
microcontroller using a technique commonly called “byte bang-
ing”’, where the control lines and data bus of a device are man-
ipulated under firmware control. This “byte banging” technique
can be adapted to most microprocessors and is useful in situations
where a conventional bus structure is either nonexistent or
unavailablie for use.'

The AD1170’s data bus is connected to the 8051 using ['O lines
P2.0 through P2.7. The address lines AO and Al are connected
to /O lines P1.0 and P1.1 respectively. The RD/ and WR. lines
are connected to P1.2 and P1.3. The CS/ line of the ADI170 is
grounded when it is the only device connected to the 8051, but
multple AD1170s could easily be connected in the same way if
each C§/ line were separately controlled.

'Note that the 805 | microcontroiler does contain a conventional bus structure;
the “byte banging” interface shown here is presented as an example of an
alternanve technique.

*[BM PC is a trademark of Internatianal Business Machines Corp.

AD1170

Figure 13. Simple 8051 to AD1170 Interface

To initialize the interface, first write “1"s to the port pins connected
to the data bus and the RD/ and WR. control lines. This puts
the 8051 L'O lines into a lightly “pulled up” state, simulating a
tri-stated condition on the bus to insure that neither RD/ or
WR/ are selected:

INIT: SETB Pl1.2
SETB Pl.3

;DISABLERDY
;AND WR/

MOV P, #OFFH SETP2TOALLONES

To write a command to the AD1170, first set the state of the
P1.1 and P1.0 lines for the address corresponding to the byte to
be written to. Set the P2 port to the command data, then strobe
the WR/ line by first clearing the P1.3 line and then setting it:

WRCMD: CLR PL.O yFIRSTCLEAR AOAND AL

CLR PlL.! ;TOPOINTTOCMDBYTE

MOV P2, #CNV ;CNVISTHEOPCODE FOR
;A SINGLECONVERSION

CLR PL3 ;STROBETHE WR/ LINE

SETB P13 ;ONE TIME

MOV P2, #OFFH ;CLEARDATABUSTO
;ALL ONES

To read a bvte from the AD1170, first set the P1.0 and P1.1
lines to point to the address of the bvie desired. Bring the RD-
line low, reading the contenats of P2. Return the RDr line high:

RDSTAT: CLR Pl POINTTOSTATUSBYTE
CLR PlL.! H
CLR Pt.2 :BRINGRD LINELOW
MOV AP JREADCONTENTSOF BUS
SETB Pi.2 :RESTORERD LINEHIGH
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ISSURE TRANSDUCER DATA ACQUISITION

ro module soluton for microcomputer based data acquisition
i a 1B31 hybrid signal conditioner and an AD1170 as shown
igure 14. A 3 millivolt/volt pressure transducer (e.g., Dynisco’s
series) is interfaced t0 a model 1B31 configured for a gain
33.3, to provide 2 0 to S volt output. The regulated excitation
age is 5 voits, and is used as the reference input for the
1170 to produce ratiometric operation. This configuration

ds very high CMR enhanced by the 1B31 low pass filter and
integrating conversion scheme of the AD1170.

addition, fixed offsets caused by bridge imbalance can be

led out by the AD1170 with a power-up initialization command
m the microcomputer (see COMPENSATION OF EXTER-
\L. OFFSETS section). The full-scale output of the 1B31 and
insducer can also be normalized to AD1170 full scale through
electronic calibrauon command ECAL. Both the offset and
l-scaie correction data can then be stored in nonvolaule memory

eliminate repeaung this tim process after each power-up.

€ AD1170 eliminates a potentiometer or software overhead

ich might otherwise be aceded for these functions.

NoTES

* ImvVLOAD CELL
s +SYEXCITATION, 1%my F8

* GAIM « 333

& USE 109 C GAIN RESISTOR FOR LOW GANN TEMPCO

Figure 14. Pressure Transducer Data Acquisition Using
1831 and AD1170
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Appendix B - Simulation Program




posi_err_src:POSI_ERR.F

Page 1)

Subroutine Model_Default Data
Impliciz None

Include 'SP_Global_Common.linc'
Include 'SP_System_Variables.!inc®
Include 'SP_Jifferential..inc’
Include 'S?_tvents..nc'

Include 'pesi_err.iac’

T =20

Accel Amp = 3C.3
Slope = 16C0.73
Inches _Moved = 3.)
Dt_Sample = 0.50
Old_Sample = 3.3
Samp_Filt_Accel = 0.)
Vel = 0.2

dld_vel = 2.)
Position = 3.2

Fec = 80.9

Number_of 3its = 16.0
Range = 186.4

Return
em

s

Subrautine Model Description
Implicit None

Include ‘SP_Global_Common.inc’
Include 'SP_System Variables.inc'
Include 'SP _zvents,liac’

Include 'SP _Differential.inc'
Include ‘posi_err.inc’

X_Index (Numper of ZIquations - 1 = 1001
X_Index(Number_of_zquations - 2) = 1003
X_Index(Nunver of_Zquations + 3) = .00S
X_Index (Number of_ Zquations -~ {4) = 1007
X_Index (Number of_zZquations + 5) = 1025
_Index(Number_of Equations + 6) - 1026
X_Index (Number_of_ Squations « 7) = 1051
Xdot_Index (Number_of Equations + 1)} = 1000
Xdot _Index(Number_of Zquations + 2) = 1002
Xdot_Index(Number_of_ Z=quatisns + 3J) = 1004
Xdot _Index(Number_of_Zquations + 4) = 10C6
Xdot_Index(Number_of_Zquations » 5) = 1026
Xdot _Index(Number of_Zquations - §) = 1023
Xdot _Index(Number_of_Zquaticns + 7) = 1024

Numoer_of _Zquaticns = Number of_Zquactlens + 7

Rezurn

Znd
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posi_err_src:POSI_ERR.F Page 2)

Subroutine Setup_Model
Implicit None

Include 'SP_Global_Common,inc’
Include 'SP_System Varlables.inc!
Include 'SP_tvents.inc'

Iaclude 'sp_Differentlal.linc’
Include 'posi_arr.inc!

Real*8 ?_zotal, A_ccef, B_ccef, C_coef, T2A
Tc = Samp_rate/4.0

A_coef = Accel Amp~(l.0 - Accel_Amp/(2.0*Slope))
3 _coef = 5.7%*Accel Amp**2.0/(2.0*Slope)
C_coef = 2.0%ac-2l_Amp==3.0/(Slope**2.0) - Inches_Moved

T2A = (-3_coef + DSgrt(B_ccef*r2.3 - 4.0%A_coef*C_ccef))/(2,.0*A_coef)

I£(T2A .gt. 0.0) Then

T2 = T2A
Else

T2 = (-3_coef - DSqrt(B_ccef**2.0 - 4,0*A_cocef*C_ccef))/(2.0*A_coef)
End If

P_total = Accel Amp*(1.0 + Accel_Amp/{2.0*Slope)}*T2**2.0
+ T2*(5,0*Accel_Amp**2.0)/(2.0*Slope)
+ 2,0*Accel_Amp**3.0/(Slope**2.0)

Write(*,*) ‘'P_total = ',P_total
Tl = Accel_Amp/Slope
de = 2.0*3,1415=Fc

Resolution = Range/(2.0**Number_ of_ Bils)

Arite{=,*) 'Resolutilon = ', Resolution, ' in/sec2 or', Resolution/386.4,
Write(*,*) 'Bandwidth = ', Fe¢, ' HZ'

Dt_Sample = 1.0/Samp_Rate

Write(*,~) 'Sampling Rate = ', Samp_Rate, ' Hz'

Write(r,*) 'Normal Simulation Rate = ', 1.0/Dtmax, ' Hz'

Write(*,*) 'Maximum Simulation Rate = ', 1,0/Dtmin, ' Hz'

Sample_Number = 1
Next_Time_to_Sample = Dt_Sample
Call sP_Schedule(Next_Time_to_Sample, Samp_Filter_ Output)

Return
€nd

Subroutine Continuous_Model
Implicit None

Include 'SP _Gloobal_Common.inc’
Include 'SP _System Varlables.linc'




posi_err_src:POSI_ERR.F
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Input_Accel = Slope*(t - Ta)*Step(Td)
& - Slope*(t -~ (Td + 2.0*T1l))*Step(Td + 2.0"T1)
& - Slope*(t =~ (T4 + 2.0%T1 +~ T72/2.0))*Step(Td + 2.0*T1 + T2/2.(
& + Slope=(t ~ (Td - 5.0*T1 + 72/2.0))*Step(Td + 5.07T1 + T2/2.C
a + Sloper (s =~ (Td + 3.3*T1 - 1.3772))*Step(Td + 5.0*7T1 + 1,5%T
& - 2.0*Slope*(t - {Td « 6§.0*Tl + 1.57T2))*Step(7d + 6.0*T1 + 1,
& + 2.0*Sloper(t - (Td + 7.3*T1 + 1,5*T2))*Step(Td + 7.0*T1 + 1
& - 2.0*Slcpe*(t - (Td + 8,0*TL + 1.57T2))*Step(Td + 8.0*T1 + 1
& + 2.0*Slope=(t - (Td + 9.0*T1 = 1,5%T2))*Step(Td + 9.0*T1 + 1.
& - 2.0*Sloper{t = (Td + 10.0*Tl - 1.5+*T2))*Step(Td + 10.0*T1 =~
& + 2.0*Slope*(t - (Td + 11.,0*T1 + 1,5#T2))*Step(Td + 11.0*T1 +
s - Slope*(t = {Id + 12.0*T1 » 1.3%*T2))*Step(Td » 12.0*TL = 1.3*
c Input_Accel = Slope*(t - Td)*Step(Td)
< & - Slope*(t - (Td - T1))*Step(7d + T1)
c & - Sloper(t - (Td + T1 + T2))*Step(ld = T1 + T2)
c & + Slope*(t - (Td + 3.3*T1 + T2})=Step(Td + 3,0*T1 + T2)
< é + Slope*(t = (Td + 3.0*T! » 2.0%T72))*Step(Td ~ 3.0*T1 + 2.0*1
c & - Slope*(t - (Td + 4.0*T1 + 2.0%72))*Step(Td + 4.0%T1 + 2,071
x1_dot = -0.7654*Wc*xl + x2
x2_dot = -Wc*Wec*xl + We*Wcr*Input Accel
x3 _dot = ~1.8478*Wc*x3 + x4
x4_dot = -Wc*Wc*x3 + WcrWewxl
Filtered_Accel = x3
PE = Real_Posi - Pesition
c Write(*,*) 'In Continuyous Model at t = ',t
c Do i = 1000,1029
c Write(*,*) i,Glcbal_Common(i)
c Znd Do
c
< Do L = 1030,1031
< drite(*,*) i,Integer_Gioccal_Cocmmon(l,l)
c End Do
Return
End
Subroutine Discrete Model
Implicitc Nore
Include 'S?_Global_Common.inc’
Include 'SP_System_Variables.inc'
Include 'SP_Events.inc’®
Include 'S?_Differential.inc’
Include ’‘posi_err.iac’
Integer*4 1
J

Include °'SP_Even

ts.inc'

Include ‘'SP_Differential.inc’
Include 'posi_err.inc'

Integer*4 {

Real+*8 Step
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00000 0O0NO

Write(®,*) 'In Discrete_Model at t = ',T
Do L = 1000,1029

Write(*,*) i,Global_Common(i)
End Do

Do L = 1030,1031
Write(*,*) i,Integer_Glcbal_Common(l,i)
End Do
If (Events!l) .eq. Samp_Tilter_Qutput) Then
Old_Samp.e = 3amp_FLlt_Accel
Samp_Tilt_Accel = ResoiuticnrDInt(Filtared_Accel/Resolution)

Old_Vel = Val
Vel = Vel + (Old_Sample » Samp_Filt_Accel) *Dt_Sample/2.0

Position = Position + (Old_Vel + Vel)"Dt_Sample/2.0

Sample_Number = Sample_Number + 1
Next_Time zc¢_Sample ~ Dt_Sample*Sample_Number

Call sP_Schedule(Next_Time_to_Sample, Samp_rilter CTutput)

2ad If

Return
End

Subroutine Model Termination
Implicit None

Include 'S?_Global _Common.inc'
Include 'S?_System_Variables.inc’
nclude 'S?_Differential.inc’
Include 'S?P_Ivents.inc’

Include 'posi_err.inc’

£ (¢t .ge. (Td + 12.0°Tl + 1.5*72 + 0.1)) Then
End_of_Run = ,TRUEZ,
End If

Return
Ead




posi_err_src:Step.F

Page 1)

Double Precision Function Step(Time o step)

N & B & W

This function is the step function.
i.e. Step(Time to step) = 1.0 L£

t >= Time to step
Step(Time to step) = 3.0 if ¢t <

Time %o step

"

Include global common bicck defiaitions

Impilcit None

Include 'SP_Globai_Common.lnc’
Include 'SP_System Variables.inc'

Variable Declaratlons

+ ~ 4

Double Precision Time zZo step

Begin Code

If (¢t .ge. Time to step) Then
Step = 1.0d0

Else
Step = 0.0d0

End If

Return
End




posi_err_inc:POSI_ERR.INC

Page 1

AP h

Inteqger*4 Sample_Number, Samp_rilter_Output

Real*8 x1,
x2,
x3,
x4,
Fe,

Next_Time_=o_Sample,
Real_posi,

xl_doc, 1D,
x2_dot, TI1,
x3_dot, T2,
x4_dot, Vel,
we, °E,

Real Veli,

Samp_Rate, IPE,

Parameter (Samp_Tiltar_Qutput = 1)

Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence

Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence
Zquivalence
Equivalence
Equivalence
Equivalence
Equivalence
Equivalence

Equivalence
Equivalence

(Global_Cemmon(1CCO),
(Global_Common(1001),
(Global _Common(1002),
(Global_Common (1003},
(Global _Common(1004),
(Global_Cemmon(1005),
(Globai_Common(10C8),
(Global_Cemmon(1007),

(Global_Common(1008),
(Global_Common (1009},
(Global_Cosmmon(1310),
{Global Common(101ll),
(Global_Common(1012),
(Global Common(1013),
(Global_Common(1014),
(Global Common(1015),
(Global _Common(1016),
(Global _Common(1017),
(Global Common (1018},
(Global_Common(1019),
(Global_Common(1020),
(Global Common(1021),
(Global_Common(1022),
{(Glopal_Common(1023),
(Glebal Common(1024),
(Global_Common(1025),
(Global_Common(10256),
(Global_Common(1027),
(Gilobal_Common(1028),
(Globai_Common(1029),
(Global_Common(1C€30),
{Global_Common(1031),

(Global _Common(1050),
(Global_Common(1051),

Old_Vel,
Slope,
Position,
Dc_Sample,
Input_Accel,
Resolution,

0ld_Sample,

Accel_Amp,
Rarnge,

Flltered_Accel,
Number of 3i:ts

x1_det)
x1}
x2_dot)
x2}
x3_dot)
x3)
x4_dot)
x4)

D)

Accel_Amp)
Slope}
Inches_Moved)
0t_Sampie)
0ld_sample)
Samp_Filt_Accel)
Vel)

0ld_Vvel)
Position)

T1}

T2)
Next_Time_to_Sample)
We)

Fe)
Input_Accel)
PE)

Real_Posi)

Real Vel)
Resoiution)
Range)
Flltered_Accel)
Sample Number)
Number_of_3its)

Samp_Rata)
IPE)

Samp_Filt_Accel,

Inches_Moved,




Appendix C - Real-Time Position Determination Program




#include <graph.h>
#include <string.h>
#include <math.h>
#$include <stdlib.h>
#$include <stdio.h>
#include <conio.h>
#include <time.h>
#include <bios.h>
#include "“iarinc.h®

void
calibrate_AD1170 (void),
calibrate_QA2000 (void),
command_anorad (char *ano_buffer),
display_menu_item (int left_row, int left_col, char #*str, int len),
draw_menu_box (int up_left_row, int up_left_col, int height, int width),
free_run_mode (void),
setup_ADC_defaults (void),
setup_anorad (void),
main (void),
wait_for (double seconds),
wait_for_ A (void),
wait_for_B (void):

int

get_menu (int row, int col, char * *items):
unsigned

cursor (unsigned value);
double

do_zupt (int numb_data_points),
exper_1 (void),

exper_2 (void),

exper_3 (void),

exper_4 (void),

exper_5 (void),

exper_6 (void),

integrate_and_move (double seconds, char *ano_buffer),
read_A (void),

read_B (void),

read_position (void),

setup_ ADC_int_time (double frequency),
setup_counter (double frequency):

/* Main Menu Definitions */

char
*mnuMain(] =

"System Setup",
"Experiments",
"Free-Running Position Display",
"QUit" ,
NULL
)

#define SYS_SETUP O
#define EXPER
$define FREE_RUN
#define QUIT

WN

/* Menu for System Setup */




char
*mnusSys[] =

"Calibrate QA2000",
"Calibrate AD1170's",
"Select Integration Method",
“Select Sampling Rate",
"RETURN TO MAIN MENU",

NULL

}:

#define CAL_QA2000 0
4define CAL_AD1170 1
#define SEL_INTEG 2 .
#define SEL_SAMP 3
#define RETURN_FRCM_SYS ¢

/* Menu for Experiments */

char
*mnuExp(] =
(

"Single Motion Test",
"Multiple Motion Test w/ZUPT",
"Multiple Motion Test w/2UPT & Unkown Base",
"Multiple Motion Test w/ZUPT & Known Base',

"Multiple Motion Test w/ZUPT & 2 Known Bases (M1)",

"Multiple Motion Test w/ZUPT & 2 Known Bases (M2)",
"RETURN TO MAIN MENU",
NULL

}:

#define SINGLE 0
#define ZUPT 1
#define ZUPT_BASE 2
4define ZUPT_KNOWN_BASE 3
4define ZUPT_2_ KNOWN_BASES 4
#define ZUPT_2_KNOWN_BASES_M2 5
$define RETURN_FROM_EXP 6

/* Menu for Integration Methods */

char
*mnulnteg(] =

"Simpson's Rule",
"Trapezoidal",
"Adam-Basforth",
"RETURN TO MAIN MENU",
NULL

}:

#define SIMP 0
#define TRAP 1
#define ADAM 2
4define RETURN_FROM_INTEG 3

int
integ_alg, center_row, center_col;

double
SF, bias, bias_time, wvel, dt, dt_2, dt_12, dt_24;

R ===,




/* Video configuration structure (graph.h) */

struct videoconfig
vid_config;

/* Structure for menu attributes */

struct mnuAtr
{

int fgNormal, fgSelect, fgBorder;

long bgNormal, bgSelect, bgBorder;

int centered:;

char nw(2)], ne[2], se(2], sw[2], ns[2], ew[2]:

}:
/* Color menu attributes */

struct mnuAtr
menus =
{
0x0f, Ox01, OxOf,
0x01, Ox0f, Ox01,
TRUE,

e

" win uln n I " oan
’ ! r’ 4

1
}:

/* Monochrome menu attributes */

struct mnuAtr
bwmenus =

0x07, 0x00, 0x%07,
0x00, 0x07, 0x00,
TRUE,

e

" nln nln nin nan
4 ’ 4 4

1
}:

FILE
*log_ptr;

void main ()

{
char

string(80], file_name([80];

int
choice, i_cnt, numb_runs;

double
samp_freq, freq, int_freq, p_err, p_err_sum, p_err_avyg,
p_err_sq_sum, p_err_sq avg, max_err, f_band, ad_range;

/****************************************************************/

/* Open output file */
/****************************************************************/

printf ("\nEnter name of log file: ");
gets (file_name);




log_ptr = fopen (file_name, "w");
if (log_ptr == NULL)

}

printf ("\n\n\t*** Could not open %s for writing ***",
exit(0);

setup_anorad ():;
outp (CNTR_STOP, 0x0000); /* Disarm 2MCLK */
setup_ADC_defaults ():

freq = 200.0;
integ_alg = TRAP:
bias = 0.0;

samp_freq = setup_counter (freq):

dt = 1/samp_f£freq:;
dt_2 = dt/2.0;
dt_12 = dt/12.0;
dt_24 = dt/24.0;

int_freq = setup_ADC_int_time (samp_freq):;
outp (CNTR_START, 0x0000); /% Arm 2MCLK */

_getvideoconfig (&vid_confiq);
center_row = vid_config.numtextrows / 2;
center_col = vid_config.numtextcols / 2;

_setvideomode (_DEFAULTMODE) ;
calibrate_QA2000 ():

_setbkcolor ((long) 0);

_clearscreen (_GCLEARSCREEN) ;

_setbkcolor ((long) 1):

_settextcolor ((short) 15);

_settextposition (center_row, center_col -~ 13);
_outtext ("Enter filter bandwidth (Hz): ")
gets (string):

f_band = atof (string);

_setbkcolor ((long) 0);

_clearscreen (_GCLEARSCREEN) ;

_setbkcolor ((long) 1):

_settextcolor ((short) 15);

_settextposition (center_row, center_col - 13);
_outtext ("Enter A-to~D range (Gs): ");

gets (string):

ad_range = atof (string):

_setbkcolor ((long) 0);
_clearscreen (_GCLEARSCREEN) ;

/* Select and branch to menu choices */

do
{

file_name);




*/

_setbkcolor ((long) 1):

_settextcolor ((short) 15):
_settextposition (1, center_col - 13);

_outtext (" IAR DEMONSTRATION PROGRAM ");

choice = get_menu (center_row, center_col, mnuMain):;

switch (choice)
{
case SYS_SETUP:
choice = get_menu (center_row, center_col, mnuSys);
switch (choice)
{
case CAL_QA2000:
calibrate_QA2000 ():
break:

case CAL_AD1170:
calibrate_AD1170 ():
break:

case SEL_INTEG:
choice = get_menu (center_row, center_col, mnulnteq):
switch (choice)
{
case SIMP:
integ_alg
break;

SIMP:

case TRAP:
integ_alg
break:;

TRAP;

case ADAM:
integ_alg
break;

}
break:

ADaM;

case SEL_SAMP:
outp (CNTR_STOP, 0x0000); /* Disarm 2MCLK

do

{
_setbkcolor ((long) 0);
_Clearscreen (_GCLEARSCREEN) ;
_setbkcolor ((long) 1);
_settextcolor ((short) 15);
_settextposition (center_row, center_col - 13);
_outtext ("Enter sampling rate (Hz): ")
gets (string):
freq = atof (string):

while (freq < 31.0 || freq > 490.0);
samp_freq = setup_counter (freq):

dt = 1/samp_freq:;

dt_2 = dt/2.0;

dt_12 = dt/12.0;
dt 24 = dt/24.0;




int_freq = setup_ADC_int_time (samp_freq):
outp (CNTR_START, 0x0000); /* Arm 2MCLK */
break;

case RETURN_I'ROM_SYS:
break;

}
break;

case EXPER:
choice = get_menu (center_row, center_col, mnuExp):
switch (choice)

{
case SINGLE:

fprintf (log_ptr, "\n\n\n\n\t\t\tSINGLE\n"):

_setbkcolor ((long) 0):

_clearscreen (_GCLEARSCREEN) :;

_setbkcolor ((long) 1):

_settextcolor ((short) 15):

_settextposition (center_row, center_col - 11);
_outtext ("Enter number of runs: ");

gets (string):

numb_runs = atoi (string);

0.0;

bias_time

p_err = 0.0;
p_err_sum = O.
p_err_sqg_sum =
max_err = 0.0;

0:
0.0

for (i_cnt = 0; i_cnt < numb_runs; ++i_cnt)
{

p_err = exper_l ():

p_err_sum = p_err_sum + p_err;

p_err_sqg _Sum = p_err_sq _Sum + p_err*p_err;

if (fabs(max_err) < fabs(p_err))
{
max_err = p_err;
}
}

p_err_avg = p_err_sum/((double) numb_runs);
p_err_sq_avg = p_err_sq_sum/((double) numb_runs);

_Clearscreen (_GCLEARSCREEN);
_settextposition (1, center_col - 3);
_outtext ("SINGLE"):

_settextposition (3, 1)

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.4g9 (inches)",
p_err_avg,
sgrt(p_err_sq_avg - p_err_avg*p_err_avg)):

_outtext (string):

sprintf (string, "\nMax Error = %12.4g (inches)", max_err):




(inches)",

_outtext (string):

sprintf (string, "\nSampling rate = %g (Hz)", samp_freq):
_outtext (string):

sprintf (string, "\nFilter bandwidth = %g (Hz)", f_band):
_outtext (string);

sprintf (string, "\nA-to-D Range = %g (Gs)", ad_range);
_outtext (string):

sprintf (string, "\nIntegration method = %d ", integ_alg):
_outtext (string);

—outtext ("\n (0-Simp 1-Trap 2-Adam)"):

sprintf (string, "\nNumber of runs = %d ", numb_runs);

_outtext (string):;

fprintf (log_ptr,
"\n\nMean Error = %12.4g (inches) STD = %12.49g

p_err_avyg,

sqrt(p_err_sq_avg - p_err_avg*p_err_avg));
fprintf (log_ptr, "\nMax Error = %12.4g (inches)", max_err):
fprintf (log_ptr, "\nSampling rate = %¥g (Hz)", samp_freq);
fprintf (log_ptr, "\nFilter bandwidth = %g (Hz)", f_band):;
fprintf (log_ptr, "\nA-to-D Range = %g (Gs)", ad_range);
fprintf (log_ptr, "\nIntegration method = 3¥d ", integ_ alqg):
fprintf (log_ptr, "\n (0-Simp 1-Trap 2-Adam)"):;
fprintf (log_ptr, "\nNumber of runs = %¥d ", numb_runs);

_settextposition (center_row+2, center_col - 19):;
_outtext ("Press <Enter> to return to main menu."):
gets (string):

break:

case ZUPT:
fprintf (log_ptr, "\n\n\n\n\t\t\tZUPT ONLY\n"):;

_setbkcolor ((long) 0):

_Clearscreen (_GCLEARSCREEN) ;

_setbkcolor ((long) 1):

_settextcolor ((short) 15);

_settextposition (center_row, center_col - 11):
_outtext ("Enter number of runs: ");

gets (string):;

numb_runs = atoi (string):

bias_time = 0.0:

p_err = 0.0;
p_err_sum = 0.0;
p_err_sg_sum = 0.0;
max_err = 0.0;

for (i_cnt = 0; i_cnt < numb_runs; ++i_cnt)
(

p_err = exper_2 ();

p_err_sum = p_err_sum + p_err;




p_err_sq_sum = p_err_sq_Sum + p_err*p_err;

if (fabs(max_err) < fabs(p_err))
{

}
}

p_err_avg = p_err_sum/((double) numb_runs);
p_err_sq_avg = p_err_sq_sum/((double) numb_runs):;

max_err = p_err;

_Clearscreen (_GCLEARSCREEN) :;
_settextposition (1, center_col - 4);
_outtext ("ZUPT ONLY"):

_settextposition (3, 1):

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.4g9 (inches)", -~
p_err_avg,
sqrt(p_err_sq_avg - p_err_avg*p_err_avg));

_outtext (string):

sprintf (string, "\nMax Error = %12.4g (inches)", max_err);
_outtext (string);

sprintf (string, "\nSampling rate = %g (Hz)", samp_freq):;
_outtext (string):;

sprintf (string, "\nFilter bandwidth = %g (Hz)", f_band):
_outtext (string):

sprintf (string, "\nA-to-D Range = %g (Gs)", ad_range);
_outtext (string):

sprintf (string, "\nIntegration method = %d ", integ_alg):
_outtext (string);

_outtext ("\n (0-Simp 1-Trap 2-Adam)"):;

sprintf (string, "\nNumber of runs = %d ", numb_runs);

_outtext (string);

fprintf (log_ptr,
"\n\nMean Error = %12.4g9 (inches) STD = %12.4g
(inches) ",

p_err_avg, -

sqrt(p_err_sq_avg - p_err_avg*p_err_avg)):
fprintf (log_ptr, "\nMax Error = %12.49 (inches)", max_err);
fprintf (log_ptr, "\nSampling rate = %g (Hz)", samp_freq):;
fprintf (log_ptr, "\nFilter bandwidth = %g (Hz)", f_band):;
fprintf (log_ptr, "\nA-to-D Range = %g (Gs)", ad_range):
fprintf (log_ptr, "\nIntegration method = %d ", integ_alg);
fprintf (log_ptr, "\n (0-Simp 1-Trap 2-Adam)");
fprintf (log_ptr, "\nNumber of runs = %d ", numb_runs);

_settextposition (center_row+2, center_col - 19):
_outtext ("Press <Enter> to return to main menu."):;
gets (string):

break;




case ZUPT_BASE:
fprintf (log_ptr, "\n\n\n\n\t\t\tZUPT W/ONE UNKNOWN BASE\n"):;

_Setbkcolor ((long) 0):

_Clearscreen (_GCLEARSCREEN):;

_Setbkcolor ((long) 1):

_settextcolor ((short) 15);

_settextposition (center_row, center_col - 11);
_outtext ("Enter number of runs: ");

gets (string):

numb_runs = atoi (string):;

p_err = 0.0;
p_err_sum = 0.0;
p_err_sqg_sum = 0.0;
max_err = 0.0:;

for (i_cnt = 0; i_cnt < numb_runs; ++i_cnt)
{

p_err = exper_3 ():

p_err_sum = p_err_sum + p_err:

p_err_sqg _sum = p_err_sq_Sum + p_err*p_err;

if (fabs(max_err) < fabs(p_err))
{

max_err = p_err:

}
}

p_err_avg = p_err_sum/((double) numb_runs):;
p_err_sq _avg = p_err_sqg_sum/((double) numb_runs):;

_Clearscreen (_GCLEARSCREEN) ;
_settextposition (1, center_col - 11);
_outtext ("ZUPT W/ONE UNKOWN BASE");

_settextposition (3, 1);

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.49 (inches)",
p_err_avg,
sqrt(p_err_sq_avg - p_err_avg*p_err_avg)):

_outtext (string);

sprintf (string, "\nMax Error = %12.49 (inches)", max_err):;
_outtext (string):

sprintf (string, "\nSampling rate = %g (Hz)", samp_freq):
_outtext (string);

sprintf (string, "\nFilter bandwidth = %g (Hz)", f_band);
_outtext (string);

sprintf (string, "\nA-to-D Range = %g (Gs)", ad_range):;
_outtext (string);

sprintf (string, "\nIntegration method = %d ", integ_alg);
_outtext (string):

_outtext ("\n (0~Simp 1-Trap 2-Adam)");

sprintf (string, "\nNumber of runs = %d ", numb_runs);




(inches) ",

_outtext (string):

fprintf (log_ptr,
"\n\nMean Error = %12.4g (inches) STD = %12.4g

p_err_avg,

sgrt(p_err_sq_avg - p_err_avg*p_err_avg)):
fprintf (log_ptr, "\nMax Error = %12.4g (inches)", max_err):
fprintf (log_ptr, "\nSampling rate = %g (Hz)", samp_freq):;
fprintf (log_ptr, "\nFilter bandwidth = %g (Hz)", f_band):
fprintf (log_ptr, "\nA-to-D Range = %g (Gs)", ad_range);
fprintf (log_ptr, "\nIntegration method = %d ", integ_algqg);
fprintf (log_ptr, "\n (0-Simp 1-Trap 2-Adam)®);
fprintf (log_ptr, "\nNumber of runs = %d ", numb_runs);

_settextposition (center_row+2, center_col - 19);
_outtext ("Press <Enter> to return to main menu.");
gets (string):;

break:;

case ZUPT_KNOWN_BASE:
fprintf (log_ptr, "\n\n\n\n\t\t\tZUPT W/ONE BASE\n");

_setbkcolor ((long) 0);

_Clearscreen (_GCLEARSCREEN) ;

_setbkcolor ((long) 1):

_settextcolor ((short) 15):

_settextposition (center_row, center_col - 11):
_outtext ("Enter number of runs: "):;

gets (string):

numb_runs = atoi (string):;

p_err = 0.0;
p_err_sum = 0.0;
p_err_sqg_sum = 0.0;
max_err = 0.0;

for (i_cnt = 0; i_cnt < numb_runs; ++i_cnt)
{

p_err = exper_4 ();

p_err_sum = p_err_sum + p_err;

p_err_sg_sum = p_err_sq_Sum + p_err*p_err;

if (fabs(max_err) < fabs(p_err))

{

max_err = p_err;
}
}

p_err_avg = p_err_sum/((double) numb_runs);
p_err_sq_avg = p_err_sq_sumn/((double) numb_runs);

_clearscreen (_GCLEARSCREEN) ;
_settextposition (1, center_col - 7):
_outtext ("ZUP" W/ONE BASE");
_settextposition (3, 1);

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.4g (inches)",




p_err_avg,
sqrt(p_err_sq _avg - p_err_avg*p_err_avg));
_outtext (string):

sprintf (string, "\nMax Error = %12.49 (inches)", max_err):
_outtext (string):

sprintf (string, "\nSampling rate = %g (Hz)", samp_freq):
_outtext (string):

sprintf (string, "\nFilter bandwidth = %g (Hz)", f_band):
_outtext (string):

sprintf (string, "\nA-to-D Range = %g (Gs)", ad_range):
_outtext (string):

sprintf (string, "\nIntegration method = %d ", integ_alg):
_outtext (string):

_outtext ("\n (0-Simp 1-Trap 2-Adam)"):;

sprintf (string, "\nNumber of runs = %¥d ", numb_runs):

_outtext (string):

fprintf (log_ptr,
"\n\nMean Error = %12.4g9 (inches) STD = %12.4qg
(inches) ",

p_err_avg,

sqrt(p_err_sq_avg - p_err_avg*p_err_avg));
fprintf (log_ptr, "\nMax Error = %12.4g (inches)", max_err):
fprintf (log_ptr, "\nSampling rate = %g (Hz)", samp_freq):
fprintf (log_ptr, "\nFilter bandwidth = 3%g (Hz)", f_band);
fprintf (log_ptr, "\nA-to-D Range = %g (Gs)", ad_range);
fprintf (log_ptr, "\nIntegration method = %d ", integ_alg):;
fprintf (log_ptr, "\n (0=Simp 1-Trap 2-Adam)");
fprintf (log_ptr, "\nNumber of runs = %d ", numb_runs);

_settextposition (center_row+2, center_col - 19);
_outtext ("Press <Enter> to return to main menu.");
gets (string):

break;

case ZUPT_2_KNOWN_BASES:
fprintf (log_ptr, "\n\n\n\n\t\t\tZUPT W/2 BASES (M1)\n");

_setbkcolor ((long) 0):;

_Clearscreen (_GCLEARSCREEN) ;

_setbkcolor ((long) 1):

_settextcolor ((short) 15);

_settextposition (center_row, center_col - 11);
_outtext ("Enter number of runs: ");

gets (string):

numb_runs = atoi (string):

p_err = 0.0,
p_err_sum = 0.0;
p_err_sq_sum = 0.0;
max_err = 0.0;

for (i_cnt = 0; i_cnt < numb_runs; ++i_cnt)




{
p_err = exper_5 ();
p_err_sum = p_err_sum + p_err;
p_err_sq _sSum = p_err_sq_Sum + p_err*p_err;

if (fabs(max_err) < fabs(p_err))
{
max_err = p_err;
}
)

p_err_avg = p_err_sum/((double) numb_runs);
p_err_sq _avg = p_err_sqg_sum/((double) numb_runs);

_clearscreen (_GCLEARSCREEN) ;
_settextposition (1, center_col - 10);
_outtext ("ZUPT W/2 BASES (M1)");

_settextposition (3, 1);

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.4g (inches)",
p_err_avg,
sqrt(p_err_sq_avg - p_err_avg*p_err_avg));

_outtext (string):

sprintf (string, "\nMax Error = %12.4g (inches)", max_err);
_outtext (string):

sprintf (string, "\nSampling rate = %g (Hz)", samp_freq);
_outtext (string):

sprintf (string, "\nFilter bandwidth = %g (Hz)", f_band);
_outtext (string):

sprintf (string, "\nA-to-D Range = %¥g (Gs)", ad_range):
_outtext (string):

sprintf (string, "\nIntegration method = %d ", integ_algqg):
_outtext (string):

_outtext ("\n (0-Simp 1-Trap 2-Adam)"):;

sprintf (string, "\nNumber of runs = %d ", numb_runs);

_outtext (string):

fprintf (log_ptr,
"\n\nMean Error = %12.4g (inches) STD = %12.44g
(inches) ",

p_err_avg,

sqrt(p_err_sq_avg - p_err_avg*p_err_avqg));
fprintf (log_ptr, "\nMax Error = %12.4g9 (inches)", max_err):
fprintf (log_ptr, "\nSampling rate = %g (Hz)", samp_freq):;
fprintf (log_ptr, "\nFilter bandwidth = %g (Hz)", f_band):;
fprintf (log_ptr, "\nA-to-D Range = %g (Gs)", ad_range);
fprintf (log_ptr, "\nIntegration method = %d ", integ_alg):
fprintf (log_ptr, "\n (0-Simp 1-Trap 2-Adam)");
fprintf (log_ptr, "\nNumber of runs = %d ", numb_runs):

_settextposition (center_row+2, center_col - 19);
_outtext ("Press <Enter> to return to main menu.");
gets (string);




break;

case ZUPT_2_KNOWN_BASES M2:
‘ fprintf (log_ptr, "\n\n\n\n\t\t\tZUPT W/2 BASES (M2)\n"):

_setbkcolor ((long) 0):

_Clearscreen (_GCLEARSCREEN) ;

_setbkcolor ((long) 1):

_settextcolor ((short) 15);

_settextposition (center_row, center_col - 11):
_outtext ("Enter number of runs: ");

gets (string):

numb_runs = atoi (string):

p.err = 0.0;
p_err_sum = 0.0;
p_err_sqg_sum = 0.0
max_err = 0.0;

~-e

for (i_cnt = 0; i_cnt < numb_runs; ++i_cnt)
{

p_err = exper_6 ();

p_err_sum = p_err_sum + p_err;

p_err_sg_sum = p_err_sqg_Sum + p_err*p_err;

if (fabs(max_err) < fabs(p_err))
(
max_err = p_err;
}
}

p_err_avg = p_err_sum/((double) numb_runs);
p_err_sq_avg = p_err_sq_sum/((double) numb_runs);

_clearscreen (_GCLEARSCREEN):;
_settextposition (1, center_col - 10):
_outtext ("ZUPT W/2 BASES (M2)");

_settextposition (3, 1):

sprintf (string,
"Mean Error = %12.4g (inches) STD = %12.4g (inches)",
p_err_avg,
sqrt(p_err_sq_avg - p_err_avg*p_err_avg)):

_outtext (string):

sprintf (string, "\nMax Error = %12.4g (inches)", max_err):
_outtext (string);

sprintf (string, "\nSampling rate = %g (Hz)", samp_freq):
_outtext (string):

sprintf (string, "\nFilter bandwidth = %g (Hz)", f_band):
_outtext (string);

sprintf (string, "\nA-to-D Range = %g (Gs)", ad_range);
_outtext (string):;

sprintf (string, "\nIntegration method = %d ", integ_alg);
_outtext (string):;




—outtext ("\n (0-Simp 1-Trap 2-Adam)"):

sprintf (string, "\nNumber of runs = %d ", numb_runs);
_outtext (string):

fprintf (log_ptr,

"\n\nMean Error = %12.49g (inches) STD = %12.49g
(inches) ",
p_err_avyg,
sgrt(p_err_sq_avg - p_err_avg*p_err_avg));
fprintf (log_ptr, "\nMax Error = %12.49 (inches)", max_err):
fprintf (log_ptr, "\nSampling rate = %g (Hz)", samp_freq):
fprintf (log_ptr, "\nFilter bandwidth = %g (Hz)", f_band):
fprintf (log_ptr, "\nA-to-D Range = %g (Gs)", ad_range):
fprintf (log_ptr, "\nIntegration method = %d ", integ_alg):;
fprintf (log_ptr, "\n (0-Simp 1-Trap 2-Adam)"):
fprintf (log_ptr, "\nNumber of runs = %d ", numb_runs);
_settextposition (center_row+2, center_col - 19);
_outtext ("Press <Enter> to return to main menu.");
gets (string);
break;
case RETURN_FROM_EXP:
break;
}
break:;

case FREE_RUN:
free_run_mode ()
break;

case QUIT :
_setvideomode (_DEFAULTMODE) ;
exit(0);

break;

}
_setbkcolor ((long) 0);
_Clearscreen (_GCLEARSCREEN) ;

)
while (1):
)

void calibrate_AD1170 (void)
(

char
string({80];

int
k, delay_cnt;

double
adc_double_a, adc_double_b;

outp (CNTR_STOP, 0x0000);

_setbkcolor ((long) 1):;
_settextcolor ((short) 15);




_Clearscreen (_GCLEARSCREEN) ;

_settextposition (1,

1):

_outtext ("Apply +5 volt reference to EXT INPUT."):;

_settextposition (2,

1)

_outtext ("Press <Enter> when ready."):;

gets (string):

/****************************************************************/

/* Setup AC5004

*/

/****************************************************************/

wait_for_A ():
outp (COMMAND_ REG_A,

wait_for A ():
outp (COMMAND_REG_A,

wait_for_A ():
outp (COMMAND_REG_A,

wait_for_A ():
outp (PARAM_1 REG_ A,
outp (COMMAND REG_A,

wait_for_ A ():
outp (COMMAND_REG_A,

wait_for_B ():
cutp (COMMAND_REG_B,

wait_for_B ()
outp (COMMAND_REG_B,

wait_for B ():
outp (COMMAND REG_B,

wait_for_B ()
outp (PARAM_1_REG_B,
outp (COMMAND_REG_B,

wait_for_B ():
outp (COMMAND_REG_B,

wait_for A ()
outp (COMMAND_REG_A,

wait_for_B ()
outp (COMMAND_REG_B,

wait_for A ():
outp (COMMAND_REG_A,

wait_for_B ():
outp (COMMAND_ REG_B,

wait_for A ()
wait_for B ()

.
’
.
’

_settextposition (4,

RST) ;
SDI | INTEG_167_M);
SDC | INTEG_300_M):

0x000f) ;
SDF) ;

NULDI) ;

RST) ;

SDI | INTEG_167_M);
SDC | INTEG_300_M):;

0x000f) ;
SDF) ;

NULDI) ;
ECAL) ;
ECAL) ;
SCAL) ;

SCAL);

1)

_outtext ("Now adjust EXT INPUT to "2 volts.");




_settextposition (5, 1):
_outtext ("Press <Enter> when ready."):;

gets (string):;
_Clearscreen (_GCLEARSCREEN) ;

_settextposition (1, 12);
_outtext (" Results of Calibration ");

for (k = 0; k < 10; ++Kk)
{
wait_for_A ():
outp (COMMAND_REG_A, CNV); )

wait_for_B ()
outp (COMMAND_REG_B, CNV); .

adc_double_a = read_A ():
adc_double_b = read_B ():

_settextposition (2 + k, 1);
sprintf (string, "“\nADC#1 = %13.6g ADC#2 = %13.6g Diff = %13.6g",
adc_double_a, adc_double_b, adc_double_a - adc_double_b):
_outtext (string):

for (delay_cnt = 0; delay_cnt < 30000; ++delay_cnt);
}

_settextposition (4 + k, 1);
_outtext ("Enter 'S' to save new A-to-D scale factor to non-volatile");

_settextposition (5 + k, 1)
_outtext ("memory on AD11l70's : ");

gets (string):

if (string(0] == 'S' || string[0] == 's')
{
wait_for A ()
outp (COMMAND_REG_A, SAVA);

wait_for_B ()
outp (COMMAND_REG_B, SAVA):;
}

void calibrate_QA2000 (void)
{
char
test_str(80];

double
start_p, dist,
end_p, calc_p;

_setbkcolor ((long) 1): |
_settextcolor ((short) 15): |




_clearscreen (_GCLEARSCREEN) ;
command_anorad ("AS5."):
wait_for (6.0):

start_p = read_position ();

bias = bias + do_zupt (ZUPT_POINTS)
SF = 1.0;

calc_p = integrate_and_move
"DO0OD001881DO1FF00000000DOFE77E30000000000G") ;

end_p = read_position ():
dist = end_p - start_p:

SF = dist/calc_p;

bias_time = 0.0;

printf ("\ndist = %¥g SF = %g bias = %g", dist, SF, bias);
gets (test_str):

void command_anorad (char *ano_buffer)
{
int
i;

for (i = 0; ano_buffer(i] != '\0'; ++i)
(
_bios_serialcom (_COM_SEND, 0, (unsigned int) ano_buffer([i]):
}

/* Change the cursor shape.

<value> has starting line in upper byte, ending line in lower byte.
Returns the previous cursor value. */

unsigned cursor (unsigned value)
{
union REGS inregs, outregs:;
int ret:

inregs.h.ah = 3; /* Get old cursor */
inregs.h.bh = 0;

int86 (0x10, &inregs, &outregs) ;

ret = outregs.x.cx:

inregs.h.ah 1; /* Set new cursor */
inregs.x.cx value:
int86 (0x10,&inregs, &outregs):

return (ret):

/* Put an item in menu.




<row> and <col> are left position.
<str> is the string item.
<len> is the number of blanks to fill. #*/

soid display_menu_item (int left row, int left_col, char *str, int len)

{
char
temp([80]);

_settextposition (left_row, left_col):
_outtext (" “);
_outtext (str):;
memset (temp,' ’',len--):;
tenmp(len) = 0:
_outtext (temp):
}

double do_zupt (int numb_data_points)
{
int
i;

double
accel_sum;

accel_sum = 0.0;

for (i = 0; i < numb_data_points/2; ++i)
{
accel_sum = accel_sum + read_A () - bias:;
accel_sum = accel_sum + read_B () - bias;
)
return (accel_sum/(double) numb_data_points):;

/* Draw menu box.
<row> and <col> are upper left of box.
<hi> and <wid> are height and width. */

void draw_menu_box (int up_left row, int up_left_col, int height,

{
int
i;
char
temp([80]:

_settextposition (up_left_row, up_left_col);
temp(0] = *menus.nw;

memset (temp + 1, *menus.ew, width):
temp(width + 1] = *menus.ne;
temp{width + 2] = 0;
_outtext (temp):

for (i = 1; i <= height; ++1i)

{

_settextposition (up_left _row + i, up_left_col);

_outtext (menus.ns);

int width)




_settextposition (up_left_row + i, up_left_col + width + 1);

_outtext (menus.ns);
}

_settextposition (up_left_row + height + 1, up_left_col):

temp(0] = *menus.sw;
memset (temp + 1, *menus.ew, width):;
temp[width + 1] = *menus.se;
temp({width + 2] = 0;
_outtext (temp):

}

double exper_1 (void)
double
start_p, end_p, calc_p, err, data_time;
data_time = 3.0;
command_anorad ("AS5."):;
wait_ for (8.0);
outp (CNTR_STOP, 0x0000); /* Disarm 2MCLK */

wait_for_ A ():
outp (COMMAND_REG_A, SCAL);

wait_for_B ():
outp (COMMAND_REG_B, SCAL);

wait_for_ A ():
wait_for_ B ():

outp (CNTR_START, 0x0000):; /* Arm 2MCLK */
start_p = read_position ()

calc_p = integrate_and_move
"DOOD001881DO1FF00000000DOFE77E30000000000G") ;

end_p = read_position ()
err = calc_p -~ (end_p -~ start_p):

fprintf (log_ptr, "\n%l4.6g %$14.69q %14.6g9",
calc_p, end_p - start_p, err);

return (err):
)

double exper_2 (void)

double
start_p, end_p, calc_p, err, data_time;

(data_time,




data_time = 3.0;

command_anorad ("AS5.");

wait_for (8.0):

outp (CNTR_STOP, 0x0000):; /* Disarm 2MCLK */

wait_for_A ():
outp (COMMAND REG_A, SCAL);

wait_for B ():
outp (COMMAND_REG_B, SCAL);

wait_for_A ():
wait_for B ():

outp (CNTR_START, 0x0000); /* Arm 2MCLK */
start_p = read_position ():;
bias = bias + do_zupt (ZUPT_POINTS):

calc_p = integrate_and_move
"DOOD001881D0O1FFO0000000DOFE77E30000000000G") ;

wait_for (2.0);
bias = bias + do_zupt (ZUPT_POINTS):;
calc_p = calc_p +
integrate_and_move
"DOOD001881DOLFFO0000000DOFE77E30000000000G") ;
wait_for (2.0);
bias = bias + do_zupt (Z2UPT_POINTS):;
calc_p = calc_p +
integrate_and_move
"DOODO01881DO1FFO0000000DOFE77E30000000000G") ;
end_p = read_position ():
err = calc_p - (end_p =~ start_p):

fprintf (log_ptr, "\n%l4.6g %14.6g %14.6g9",
calc_p, end_p =~ start_p, err);

return (err):

double exper_3 (void)

double
start_p, end_p, calc_p, err, data_time, vel_sum;

data_time = 3.0;

command_anorad ("A5.");

(data_time,

(data_time,

(data_time,




wait_for (8.0);
outp (CNTR_STOP, 0x0000):; /* Disarm 2MCLK */

wait_for A ():;
outp (COMMAND_REG_A, SCAL);

wait_for B ()
outp (COMMAND_REG_B, SCAL);

wait_for_A ():
wait_for B ():

outp (CNTR_START, 0x0000); /* Arm 2MCLK */
start_p = read_position ()
calc_p = integrate_and_move (data_time,
"DOOD001881DO1FFO0000000DOFE77E30000000000G") ;
vel_sum = vel;
wait_for (2.0):
calc_p = calc_p +
integrate_and_move (data_time, "A5."):
vel_sum = vel_sum + vel;
end_p = read_position ():
err = calc_p - (end_p - start_p):
bias = bias - (2.0*vel_sum/data_time +
6.0*err/ (data_time*data_time))/SF;
bias_time = bias_time + (6.0*vel_sum/(data_time*data_time) -
12.0%err/(data_time*data_time*data_time))/SF;

fprintf (log_ptr, "\n%l4.6g 314.69g %14.6g9",
calc_p, end_p - start_p, err):

return (err):

}

double exper_4 (void)

double
start_p, end_p, calc_p, err, data_time, vel_sum;

data_time = 3.0;

command_anorad ("A5.");

wait_for (8.0):

outp (CNTR_STOP, 0x0000); /* Disarm 2MCLK */

wait_for_ A ():
outp (COMMAND_REG_A, SCAL):;

wait_for B ():




outp (COMMAND_REG_B, SCAL);

wait_for_ A ():
wait_for_B ():

outp (CNTR_START, 0x0000): /* Arm 2MCLK */
start_p = read_position ():
calc_p = integrate_and_move (data_time,
"DOOD001881DO1FF00000000DOFE77E30000000000G") ;
vel_sum = vel;
wait_for (2.0);
calc_p = calc_p +
integrate_and_move (data_time, "AS5."):

vel_sum = vel_sum + vel:;

end_p = read_position ():

err = calc_v - (end_v - start_p):
bias = bias - (2.0*vel_sum/data_time +
6.0*err/ (data_time*data_time))/SF;
bias_time = bias_time + (6.0*vel_sum/(data_time*data_time) -

12.0%err/(data_time*data_time*data_time))/SF;

fprintf (log_ptr, "\n%l4.6g %14.69g %$14.6g9",
calc_p, end_p - start_p, err);

return (err):;

}

double exper_ 5 (void)

{
double

start_p, end_p, calc_p, err, data_time, vel_ sum;
data_time = 3.0;
command_anorad ("A5.");
wait_for (8.0);
outp (CNTR_STOP, 0x0000); /* Disarm 2MCLK */

wait_for A (); .
outp (COMMAND_REG_A, SCAL);

wait_for_B ()
outp (COMMAND REG_B, SCAL);

wait_for_A ()
wait_for_ B ():

outp (CNTR_START, 0x0000); /* Arm 2MCLK */

start_p = read_position ():




=

calc_p = integrate_and_move (data_time,
"DOOD001881DOYIFF00000000D0™ 177E30000000000G") ;
vel_sum = vel;
wait_for (2.0);
calc_p = calc_p +
integrate_and_move (data_time,
"DOOD001881DOLFFO0000000DOFE77E30000000000G") ;
vel_sum = vel_sum + vel;
end_p = read_position ():
err = calc_p - (end_p - start_p):
bias = bias - (2.0*vel_sum/data_time +
5.0%err/(data_time*data_time))/SF;
bias_time = Dbias_time + (6.0*vel_sum/(data_time*data_time) -
12.0*err/(data_time*data_time*data_time))/SF;
SF = SF*end_p/calc_p;

fprintf (log_ptr, "\n%l4.6g %¥14.69g %¥14.6g",
calc_p, end_p - start_p, err):

return (err):
}

double exper_6 (void)

(
double

start_p, end_p, calc p, err, data_time;
data_time = 3.0;
command_anorad ("A5.");
wait_for (8.0);
outp (CNTR_STOP, 0x0000):; /* Disarm 2MCLK */

wait_for A ():
outp (COMMAND REG A, SCAL);

wait_for_B ():
outp (COMMAND REG_B, SCAL);

wait_for A ():
wait_for_ B ():

outp (CNTR_START, 0x0000); /* Arm 2MCLK */
start_p = read_position ():
bias = bias + do_zupt (ZUPT_POINTS)

calc_p = integrate_and_move (data_time,
"DOOD001881DO1FF00000000DOFE77E30000000000G") ;

wait_for (2.0);




bias = bias + do_zupt (ZUPT_POINTS) ;

e

calc_p = calc_p +
integrate_and_move
"DOOD001881DO1FF00000000DOFE77E30000000000G") ;
end_p = read_position ();
err = calc_p - (end_p - start_p):
SF = (SF + SF*end_p/calc_p)/2.0;

fprintf (log_ptr, "\n%l4.6g %14.69g %14.6g9",
calc_p, end_p - start_p, err);

return (err):

void free_run_mode (void)

{

char
string [80]:

int
in_char;

unsigned int

ret;
double
accel_ml, accel_m2, accel_m3, accel, position, d_cnt,
vel ml, vel_m2, vel_m3, tot_time, p_correct,

new_bias, slope;

_setbkcolor ((long) 1):;
_settextcolor ((short) 15);
_clearscreen (_GCLEARSCREEN) ;

accel_ml
accel_m2
accel_m3
accel = 0.0

wun
ooo

0
0
0

vel_ml
vel_m2
vel_m3
vel = (.0

~o =0 ws

0‘0
0.0
0'0

d_cnt = 0.0;
position = read_position ():
do

if((kbhit() 1= 0)

in_char = getch ():
if (in_char == (int) '*')

(data_time,




{

return;

)
if (in_char == (int) '2')

{
new_bias = bias + do_zupt (ZUPT_POINTS):;
tot_time = d_cnt*dt*2.0;
slope = SF*(new_bias - bias)/tot_time;
p_correct = slope*tot_time*tot_time*tot_time/6.0;
position = position-p_correct;

bias = new_bias;

d cnt = 0.0;

accel_ml = 0.0;
accel_m2 = 0.0;
accel_m3 = 0.0;
accel = 0.0;
vel ml = 0.0;
vel m2 = 0.0;
vel m3 = 0.0;
vel = 0.0;
}
else
ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) in_char);
}
}
accel_m3 accel_m2;

accel_m2 = accel_ml;
accel_ml = accel;
accel = SF*(read_A () - bias);

vel m3 = vel_m2;
vel _m2 = vel_ml;
vel _ml = vel;

switch (integ_algqg)
{
case SIMP:
vel = vel + (5.0*accel + 8.0*accel_ml - accel_m2)*dt_12;
position = position + (5.0*vel + 8.0*vel_ml - vel_m2)*dt_12;
break;

case TRAP:
vel = vel + (accel + accel_ml)*dt_2;
position = position + (vel + vel_ml)*dt_2;
break;

case ADAM:
vel = vel + (55.0*accel - 59.0%*accel_ml +
37.0*%accel_m2 - 9.0%*accel_m3)*dt_24;
position = position + (55.0%*vel = 59.0%*vel_ml +
37.0*vel_m2 - 9.0*vel _m3)*dt_24;

break:
}
accel _m3 = accel_m2;
accel _m2 = accel_ml;
accel_ml = accel;




accel = SF*(read_B () - bias):

vel_m3 = vel_m2;
vel_m2 = vel_ml:;
vel_ml = vel;

switch (integ_alg)
{
case SIMP:
vel = vel + (5.0%accel + 8.0%accel_ml - accel_m2)*dt_12;
position = position + (5.0*vel + 8.0*vel_ml - vel_m2)*dt_12;
break;

case TRAP:
vel = vel + (accel + accel _ml)*dt_2;
position = position + (vel + vel_ml)*dt_2;
break:;

case ADAM:
vel = vel + (55.0%accel - 59.0%*accel_ml +
37.0%accel_m2 - 9. O*accel _m3) *dt_24;
position = position + (55.0%vel - 59. 0*vel ml +
37.0*vel_m2 - 9.0*vel_m3) *dt_24;
break:;
}

sprintf (string, "Position = %12.3f inches", position):
_settextposition (center_row, center_col - 16):
_outtext (string);

d_ent = d_cnt + 1.0;

}
while (1)
}

double integrate_and_move (double seconds, char *ano_buffer)
{
int
string_len, i, k, numb_points;

double
accel_ml, accel_m2, accel_m3, accel, position,
vel ml, vel_mz2, vel_m3;

_setbkcolor ((long) 1);
_settextcolor ((short) 15):
_clearscreen (_GCLEARSCREEN) ;

string_len = strlen (ano_buffer):;
k = 0:
numb_points = (int) (seconds/dt);

accel_ml
accel_m2
accel_m3 .
accel = 0.0;

we wo wo

0.0
0.0
0.0




vel m3 = 0.0;
vel = 0.0;

position = 0.0;

for (i = 0; i < numb_points/2; ++i)
{

accel _m3 = accel_m2;
accel_m2 = accel_ml:
accel_ml = accel;

accel = SF*(read_A () - bias - bias_time*dt#*i);

vel_m3 = vel _m2;
vel m2 = vel _ml;
vel_ml = vel;

switch (integ_alg)
{
case SIMP:
vel = vel + (5.0%accel + 8.0%*accel_ml - accel_m2)*dt_12;
position = position + (5.0%*vel + 8.0*vel_ml - vel_m2)*dt_12;
break:;

case TRAP:
vel = vel + (accel + accel_ml)*dt_2;
position = position + (vel + vel_ml)*dt_2;
break;

case ADAM:
vel = vel + (55.0*accel - 59.0*accel_ml +
37.0*%accel_m2 - 9.0*accel_m3)*dt_24;
position = position + (55.0%*vel - 59.0*vel ml +
37.0*vel_m2 ~ 9.0*vel_m3)*dt_24;

break:;
)
accel_m3 = accel_m2;
accel_m2 = accel_ml:

accel_ml = accel;
accel = SF*(read_B () - bias - bias_time*dt*i);

vel _m3 = vel_m2;
vel_m2 = vel_ml;
vel _ml = vel;

switch (integ_alg)
(
case SIMP:
vel = vel + (5.0%*accel + 8.0%*accel_ml - accel_m2)*dt_12;
position = position + (5.0*vel + 8.0*vel _ml - vel_m2)*dt_12;
break;

case TRAP:
vel = vel + (accel + accel_ml)*dt_2;
position = position + (vel + vel_ml)*dt_2;
break:;

case ADAM:
vel = vel + (55.0%*accel - 59.0%*accel _ml +
37.0*accel_m2 - 9.0%*accel_m3)*dt_24;
position = position + (55.0*vel - 59.0%*vel ml +
37.0*vel_m2 - 9.0*vel m3)+*dt_24;
break;




)

if (k < string_len)

{
_bios_serialcom (_COM_SEND, 0, (unsigned int) ano_buffer(k]):

return (position);
}

/* Put menu on screen.
Starting <row> and <column>.
Array of menu <items> strings.
Global structure variable <menus> determines:
Colors of border, normal items, and selected item.
Centered or left justfied.
Border characters.
Returns number of item selected. */

int get_menu (int row, int col, char * *items)
{
int
i, numb_items, max = 2, prev, curr = 0,
litem([25];

long
bcolor:;

cursor (TCURSOROFF) ;
bcolor = _getbkcolor ():;

/* Count items, find longest, and put length of each in array */
for (numb_items = 0; items{numb_items] != NULL:; numb_items++)

litem({numb_items] = strlen (items{numb_items}]):
if (max < litem(numb_items])
max = litem[numb_items];
}

max = max + 2;

if (menus.centered)

{
row ~= numb_items / 2;
col -= max / 2:

)

/* Draw menu box */

_settextcolor (menus.fgBorder);
_setbkcolor (menus.bgBorder);
draw_menu_box (row++,col++,numb_items,max);
/* Put items in menu */

for (1 = 0; i < numb_items; ++i)

if (i == curr)
{




_settextcolor (menus.fgSelect):
_setbkcolor (menus.bgSelect);

}
else

{
_settextcolor (menus.fgNormal):;

_setbkcolor (menus.bgNormal):

)
display_menu_item (row+i,col,items{i],max - litem(i]):
}

/* Get selection */
for (::

switch ((_bios_keybrd(_KEYBRD_READ) & 0xff00) >> 8)
{

case UP :

prev = curr;

curr = (curr > 0) ? (--curr % numb_items) : numb_items-1:;
break:
case DOWN :

prev = curr;

curr = (curr < numb_items) ? (++curr % numb_items) : 0;
break:;
case ENTER :

_setbkcolor (bcolor);
return (curr):;

default :
continue;

_settextcolor (menus.fgSelect);
_setbkcolor (menus.bgSelect):
display_menu_item (row + curr, col, items[curr], max - litem[curr});

_settextcolor (menus.fgNormal):;
_setbkcolor (menus.bgNormal):
display _menu_item (row + prev, col, items([prev], max - litem(prev]):

}

double read A ()
{
int
high_byte, mid_byte, 1low_byte, status_byte;

long int
h_byte, m_byte, 1 _byte, adc_result;

double
adc_double;
do

{
status_byte = inp (STATUS_REG_A):;

}
while ((status_byte & 0x0002) == 0x0000);




/****************************************************************/

/* Read low, mid and high bytes */
/****************************************************************/

high_byte = inp (HIGH_DATA_A);
mid_byte = inp (MID_DATA_A):;
low_byte = inp (LOW_DATA_A);

/****************************************************************/

/* Combine bytes */
/****************************************************************/

h_byte = (long int) high_byte;

m_byte = (long int) mid_byte;

1_byte = (long int) low_byte;

adc_result = ((h_byte << 16) & Oxff££0000) |
((m_byte << 8) & 0x0000££00) |
(1_byte & O0x000000ff);

adc_double = (10.0%*adc_result)/4194304.0 - 5.0;
return (adc_double);

double read_B ()

(

int
high_byte, mid_byte, 1low_byte, status_byte:;

long int
h_byte, m_byte, 1_byte, adc_result;

double
adc_double;

do

{
status_byte = inp (STATUS_REG_B):

)
while ((status_byte & 0x0002) == 0x0000);

/****************************************************************/

/* Read low, mid and high bytes */
/****************************************************************/

high_byte = inp (HIGH_DATA_B):;
mid_byte = inp (MID_DATA_B):
low_byte = inp (LOW_DATA_B):

/****************************************************************/

/* Combine and store in array */
/****************************************************************/

h_byte = (long int) high_byte;
m_byte = (long int) mid_byte:
1l byte = (long int) low_byte:;
adc_result = ((h_byte << 16) & OxXffff0000) |
({m_byte << 8) & Ox0000££00) l
(1_byte & Ox000000ff);

adc_double = (10.0*adc_result)/4194304.0 - 5.0;




return (adc_double);
}

double read_position ()
{
unsigned int
coml_ret, coml_retl, coml_ret2, coml_ret3, coml_ret4,
coml_ret5,
coml_reté, coml_ret7;

double
posi:

do

{

coml_ret7 = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret7 = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret7 = _bios_serialcom (_COM_RECEIVE, 0, 0):;
coml_ret = _bios_serialcom (_COM_SEND, O, (unsigned int) 'Q');
coml_retl = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret2 = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret3 = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret4 = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret5 = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_reté = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret7 = _bios_serialcom (_COM_RECEIVE, 0, 0);

if (coml_retl < 65)
{

posi = 1048576.0 * ((double) coml_retl -~ 48);
}

else
{

posi = 1048576.0 * ((double) coml_retl -~ 55);

}

if (coml_ret2 < 65)
{

}
else

{
)

if (coml_ret3 < 65)
{

}
else

(
}

if (coml_ret4 < 65)
(

}

posi posi + 65536.0 * ((double) coml_ret2 - 48);

posi = posi + 65536.0 * ((double) coml_ret2 - 55);

posi = posi + 4096.0 * ((double) coml_ret3 =~ 48);

posi = posi + 4096.0 * ((double) coml_ret3 - 55);

posi = posi + 256.0 * ((double) coml_retd4 - 48);




else

(

}

if (coml_retS < 65)
{

posi = posi + 256.

0 * ((double) coml_ret4 - 55);

posi = posi + 16.0 * ((double) coml_ret5 - 48);

)

else

{

posi = posi + 16.0 * ((double) coml_retS5S - 55);

)

if (coml_reté6 < 65)
{

}
else

{
}

posi = posi + 1.0

posi posi + 1.0

* ((double) coml_reté - 48);

* ((double) coml_reté - S55);

posi = posi/64000.0;

)
while (posi > 12.0 || posi < 0.0):

return (posi):
}

void setup_ADC_defaults (void)

(
wait_for_ A ():
outp (COMMAND_REG_A,

wait_for_A ():
outp (COMMAND_REG_A,

wait_for_B ():
outp (COMMAND_REG_B,

wait_for_B ()
outp (COMMAND_REG_B,

wait_for_A ():
outp (PARAM_1 REG_A,
outp (COMMAND_ REG_A,

wait_for_B ():
outp (PARAM_1_ REG_B,
outp (COMMAND_REG_B,

wait_for_A ():
outp (COMMAND_REG_A,

wait_for A ():
outp (COMMAND_REG_A,

wait_for A ():
outp (COMMAND_REG_A,

RST) ;
SDC | INTEG_300_M);
RST) ;
SDC | INTEG_300_M);

O0x000f) ;
SDF) ;

0x000f£) ;
SDF):

CALDI) ;
NULDI) ;

SCAL) ;




void setup_

{

unsigned int

coml_ret;
coml_ret = _bios_serialcom (_COM_INIT, O,

_COM_9600 | _COM_EVENPARITY | _COM_CHR? | _COM_STOP2);

coml_ret = _bios_serialcom (_COM_SEND, 0, 1):
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) 'M');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) 'H'):
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '2')
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '5');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '6');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '.');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) 'H')
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) 'E'):;
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '1');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '.'):
coml_ret = _bios_serialcom (_COM_SEND, O, (unsigned int) 'F'):
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '2');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '0');
coml_ret = _bios_serialcom (_COM_SEND, O, (unsigned int) '0');
coml_ret = _bios_serialcom (_COM_SEND, O, (unsigned int) '.');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) 'M');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) 'A'):;
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) 'S');
coml_ret = _bios_serialcom (_COM_SEND, 0, (unsigned int) '.');
coml_ret = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret = _bios_serialcom (_COM_RECEIVE, 0, 0);
coml_ret = _bios_serialcom (_COM_RECEIVE, 0, 0):

anorad (void)

double setup_counter (double frequency)
{
unsigned int
numb_counts, chigh, clow;

double
actual_freq:

/*************************************************************/

/* Program counters on ADC board * /
/*************************************************************/

numb_counts = (unsigned int) (2.0E+06/frequency);
chigh = (numb_counts >> 8) & Ox00ff;
clow = numb_counts & 0x00ff;

outp
outp
outp

(CNTR_STOP, 0x0000) ;
(CNTR_LOW_BYTE, clow);
(CNTR_HIGH BYTE, chigh):




actual_freq = 2.0E+06/((double) numb_counts);
return (actual_freq):
}

void wait_for (double seconds)

{
char

string[80]:;

int
i, numb_points;

double
input;

_setbkcolor ((long) 1):
_settextcolor ((short) 15);
_Clearscreen /_GCLEARSCREEN);

_settextposition (center_row, center_col - 15);
sprintf (string, "Waiting for %10.2g seconds", seconds);
_outtext (string):

numb_points = (int) (seconds/dt);

for (i = 0; i < numb_points/2; ++i)
{
input = read_A ():
input = read_B ():
}

void wait_for_A ()

{
unsigned int

status_word;

do

{
status_word = inp (STATUS_REG_A):

}
while ((status_word & 0x0001) == || (status_word & 0x0020) == 0x0020);

}

void wait_for_B ()
{
unsigned int
status_word:;

do
{




status_word = inp (STATUS_REG_B);

}
while ((status_word & 0x0001) == || (status_word & 0x0020) == 0x0020);

}




Appendix D - Anorad Table Commands
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IAC PROGPAMMING CODES EXPLANATINY

Command Descrintions PAGF
- A Absolute Position 2=2
- D Acceleration Data 2-3
- E Set Sarly Ready Distance 2-3
- F Set Maximum Velocity 2-4
- I Incremental Position 2-4
- 0 Home Offset 2-4

G Interpolation 2-5
— P Point-To-Point Mode 2-5
J,R Servo Off 2=5
— H Home 2-6
Z Zero Set (reset) 2-6
M Select Variable Axis Parameters 2-7
- MA Select Square Root Deceleration 2-7
MB Set Velocity Bias 2-8
MC Tach switching systems only 2-9
MD Set home search distance 2-9
MF Set DAC Bias Compensation 2-9
MG 1Interpolation Error Gain 2-9
MH Set Home Speed 2-10
M1 Desired Velocity (Interpolation) Scale Factor 2-10
MP Select Linear Deceleration Slope 2~11
- 1 Qutput Position 2-12
u Enable Synchronized Ready Mode 2-12
Disable Synchronized Ready Mode 2-12
- ¥ Output Status 2-13
- X Abort Command Execution 2-16
Y Abort Command Execution 2-15
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This section contains detailed descriptions of all commanAds.

™hese fall into two groups:

Non-RBuffered (immediate).

Buffered Commands

Buffered (non-immediate) and

The following commands are stored by the axis; they are executed in

sequence immediately following the completion of the previous

command (see Enable Syvnchronized Ready command page 2-12 for more

information).

accepted.

Data Input Commands

All require that the axis be addressed in order %to be

The format of all data input commands (except "D") is:
(n..n] ¢t

I

*
.

e

[T

o

..

e

-terminator -

- - - —-— e —— - —u— -

-~command-letter -

A - Absolute Position Command

any non digit character excluding
address characters. Can be the next
command letter. In the following

examples "." is used.

from one to seven digits. The []
indicate that this data is optional;
if omitted then a command value of

zero is used.

a single letter.

Commands the axis in Point-to-Point mode to a specific position

relative to zero.

Fx:

A10000.

A-1234.

move to +10000 counts

move to -1234 counts




e .

— ‘
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D - Acceleration, Deceleration Data

Used for entering data to define a controlled-path move. ~his is
done by commanding the axes to accelerate at given rate for a given

time. Acceleration is in counts per interrupt units, and time is in

.498 millisecond units. Fach frame consists of ten hexadecimal

a———

digits: ttttiiffff where ttt: is the frame tirme, ii is the intecer
portion of the acceleration (counts) and ffff is the fractional
iﬂgg;ion_ai_zhg_ggsgferation (1/65522_2222251;_ The data input is

terminated (at the end of a frame) by either a non-hexadecimal

character or a frame with zero time. A frame with zero time
indicates the end of the contour, at which the axis switches to
Point-to-Point mode. (See interpolation description for format and
a detailed exanple.)
Ex: DOO0O80080000008FF80000000000000
ttetiiffffreteiiffffetetiifffef
actually: D 2008 00 8000 accel at .5cts/int for 2 interrupts,
0008 FF 8000 decel at -.5 cts/int for 8 int,
0000 00 0000 zero frame time - end of contour

E - Set Early Ready Distance

Sets the position tolerance in counts within which the axis is said
to have reached its commanded nosition. That is, when the axis is
within "E" counts of its commanded position, its "ready" status will
hecome true. The default (power-on) early ready distance is 13
counts (approx .0002" for FEl encoder); the maximum allowable value

is 255 counts.

Ex: E2. set early reacdy distance to 2 counts
5101, set early ready distance to 100 counts
EO. set no early ready distance - axis must reach

commanded position to be ready
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F - Set Maximum Velocity

Used to specify the maximum velocity in Point-to-Point mode. The
data is in units of .13 of maximum velocity, that is, Fl000 is
maximum velocity, Fl00 is one-tenth of maximum, etc.

Ex: Fl000. set maximum point-to-point vel,

Flo0. set 1% of maximum vel.

I - Incremental Position Command

Commands the axis to move a specified distance (increment) frcom its

current position. This is in contrast to absolute, which commands

the axis to a specific position, instead of by a specific distance.
Ex: 1Il1200. move the axis +1200 counts

I-123. move the axis -123 counts

O - Home Offset

This command is used to implement coordinate translation, i.e.
re-defining the zero reference position.

Ex: 064000, set axis zero to +64000 counts from home (the
axis' position is now -64000)
00. set axis zero to home (clear the offset)
0-20000, set axis zero to -20000 counts from home (the

axis®' position is now +20000)
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Other Commands

H - Home

Causes the axis to begin the !lome/Calibrate sequence in which the
encoder signals are first sampled and then compensated for, after
which the axis' machine home position (according to mechanical or
optical sensors) is determined. (See standard encoder home

sequence.)

Ex. H Homes axis

Z - Zero Set {reset)

Introduces an offset equal to the value of the current absolute

position, thereby defining that position as zero. (Independent of
Home Offset "0".)

Ex. 2 Zeros axis

Q command will display 000000.

— ——

— -

h
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M - Select Variable Axis Parameters

Allows the user to configure the axis for particular tables, loads,
etc. The command requires an extra letter to select the parameter

to be changed.

--MA - Select Square Root Deceleration

Used to select square root (constant) deceleration in pt-to-pt
positioning mode. The command requires a single digit from 0 to 11
to select deceleration according to the following table. (Wote -
the given deceleration values are based upon a standard EEl encoder
i.e. 15.625u"/count = 1/64000"/ct, and maximum table velocity of 10

in/sec)

MAO = 1/S512g = .7539" /sec/sec
MAl = 1/256g = 1.508"/sec/sec

MA2 = 1/128g = 3.016"/sec/sec

MA3 = 1/64g = 6.02"/sec/sec

MA4 = 1/32 g = 12.063"/sec/sec

MAS = 1/16 g = 24.125"/sec/sec

MA6 = 1/8 g = 48.25"/sec/sec

MA7 = 1/4 g = 96.5"/sec/§ec

MAS = 1/2 g = 193%/sec/sec

MA9 = lg = 386" /sec/sec
MAl10 = 2 g = 772" /sec/sec
MAll = 4 g = 1544"/sec/sec

Ex: MA7, select 1/4 g deceleration

MA4. select 1/32 g deceleration
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MC - MA for lowspeed mode. Tach switching systems only, see addendum

MD - SET HOME SEARCH DISTANCE

Sets half the number of cycles searched for the home pulse. (The

number of cycles searched is twice what is entered by MD).

Ex: MD2S. For 500 line per inch encoder

MD31l. For 25 line per mm encoder

MD125. For 2500 line per inch or 100

line per mm encoder

MF - DAC Bias Compensation

This number is added to the DAC output when in the linear region
the point to point servo. The purpose of this is to insure that
output is enough to overcome a small DAC offset.
EX.: MF 4. set to 4 DAC counts
MF O set to 0O DAC counts
MF 10 set to 10 DAC counts

MG - Interpolation Error Gain

[
N
0

MGO = Positional Error

(o))
>

MGl = Positional Error

MG2 = Positional Error

w
N

MG3 = Positional Error
MG4 = Positional FError
MG5 = Positional Error

MG6 = Positional Error

NN N SN OSSN NN
[
o}

-~ NN s O

MG7 = Positional Error

of
the




R
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--MH - Set Home Speed

Used to set the maximum spreed at which the axis will search for the

home reference. The speed is programmed in D/A counts, where

maximum is 4095.
Ex: MH4095.
ME1024.

MI - Desired Velocity (Interpolation) Scale Factor

set maximum home speed

set 1/4 maximum speed

MIO
MI1
MI2
MI3
MI4
MIS
MI6
MI1?7
MI8
MI9
MI10
MI1ll
MIl2
MI13

DVEL scale factor = 4095 (max DAC) / Maximum System

KoM HKoX H XK K XK K K K XK K

[}

X

128

Speed In cts/Int
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--MR - Select Linear Deceleration Slope

Used to select the linear (declining) deceleration slope.

It is

typically used to match performance and stability for a given axis.

(See Point-to-Point servo description)

HMRO ==~
MRl --
MP2 -~
MR3 ==~
MR4 -~
MR5 -~
MR6 -~

Ex: MRO.
MR3.

vel
vel
vel
vel
vel
vel

vel

= 1/16
= 1/9
= 1/4
= 1/2
= 1
= 2

select

select

X

®oXK X X X K

1/16 linear slope
1/2 linear slope

dist
dist
dist
dist
dist
dist
dist

to
to
to
to
to
to

to

goal
goal
goal
goal
goal
goal
goal
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Non-Buffered (Immediate) Commands

The following commands are acted upcon as soon as they are received
by the axis.

Addressed Commands (require axis to bhe addressed)

T =~ Nutput Pcsition

Causes the current position of the axis to he output over the
communications interface. The position is transmitted as six
hexadecimal characters (3 bytes) and is two's-compliment binary.

charl <c¢har2 : char3 chard4 : char5 charée & CR

. - - .
- . . -

.
.

: : : : emmem——eee-- least significant byte
: | eemecccacecceccccrconccce - middle byte
---------------------------------------- --most significant byte

Ex. Q Output position

00000F response - 16 counts positive from 0 position

U - Enable Synchronized Ready Mode

Causes the axis to link itself to the Universal Ready signal. This
signal is the logical "AND" of all linked axes' ready states:; it
indicates that all liﬁked axes have conmpleted command execution.
Vhen linked in this manner, the axes begin each new command at the

same time, allowing for synchronized system control.

Fx., U Fnables synchronized ready mode.

V_- Disable Synchronized Ready Mode

Disconnects the axis from the lniversal Ready Signal.

Ex. V Disables synchronized ready mode.
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COMMAND SUMMARY

default data immed addr

T U~ T Qmmo »

< wm o v o

<X

Absolute Position Command....... Asnnnnnnn... eeXoa .. X
Interpolation Acceleration Data. Dhhhhhhlkhhh. eeXa I
Set EZarly Ready Distance........ Ennn........ 13 A . e X
Set Maximum Velocity....c.esce.... FoOnON.......250 coXaon .o X
Acceleration Servo Mode.....ceee Geeovancnnne ee e .
HOMe..iooeesnesceennocenccsoannees Hiveeoaeonns ce o X
Incremental Position Command.... Isnnnnnnn... eeXaa .o X
Servo Off. ... cieiveeeecnceananees Jeeavaaoonse J oo e «eX
Select variable axis parameters:
MA Select pt-pt deceleration.. MAn........... & oMo . e X
MB Set Velocity Offset.....ce. MBsnnn.«.eee.. O s e X
MC MA for low speed MOde....vsevccecsccscscccncassseassssssossasa
Tach switching systems only.MCn......ec.0.. O ceX.o oo X
MD Set Home Pulse Search Dist. MDnn.......+50 cycles..x.. . eX
MF Set DAC Bias Compensation.. MFN....cccoees 2 ceXao .
MG Interpolation Error Gain... MGN....scsese. 4 . .eX
MH Set Home Speed......¢s..... MANAAN......1,000 «eXoo .eX
MI Interp.Des. Vel. Scale Fac. MIn...ccesees. 6 e X -
ML Set Lin (usually 2X Predis) MLnnnnn....... ee s .o
MP Set Predis......cvce0veeee. MPNnnNnNn....... e o .
MR Select Linear Slope........ MRN....ce0e0.. O . seX
Set Home Offset.....c¢cecavesse.. Osnnnnnan... O e eX.w oo X
Point-to-Point Servo Mode....... Pocecvansens s e oo X
Output POSitiON.ceescecesssvenss Qeecencocoas A P
Servo Off...cieeieiieeneennssess Rivesnoonnan e e .. X
Enable Universal Ready Mode..... Meiereeeeans N RS
Disable Universal Ready Mode.. V.. ceeees V ee e X ..X
Output StatusS....ceeeeeccccacs W.. ceene . T {
Abort Command Execution....... X.. cevenn e e X ..
Abort Command Execution....... Y.. ceeaan ee e+ X <.X
Set ZerO.csceesveocessacsaannae Z.. crecae ce e .
3-1




"data“
" immedll
"addr”

F o
] ]

MOTE:
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indicates that command requires numeric data
indicates that command is executed as soon as it's received
indicates that axis must be addressed for command to be

executed

decimal digit 0-9
hexadecimal digit 0-92, A-F

sign (+,-); if omitted, + assumed

For the data input commands, the number of digits shown is
the maximum number of digits allowed - any smaller number
of digits is acceptable; only significant digits are

necessary.
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ZUPT W/2 BASES (M2)

7.30441 7.15834 0.146061

7.1865 7.15834 0.0281605

7.18247 7.15834 0.0241231

7.15927 7.15833 0.000840704
Mean Error = 0.04982 (inches) STD = 0.05653 (inches)
Max Error = 0.1461 (inches)

Sampling rate = 300.03 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 4

ZUPT W/2 BASES (M2)

7.20275 7.15834 0.044411
7.13201 7.15834 -0.0263327
7.15324 7.15834 -0.0051064
7.11669 7.15834 -0.0416573
7.14982 7.15834 -0.00852089
7.16546 7.15834 0.00711192
7.16868 7.15834 0.010335
7.16711 7.15834 0.00876731
7.20367 7.15833 0.0453468
7.15949 7.15834 0.00114539
7.12438 7.15834 -0.0339601
7.12775 7.15834 -0.0305862
7.23076 7.15834 0.0724123
7.1694 7.15834 0.0110526
7.14557 7.15834 -0.0127723
7.17002 7.15834 0.0116748
7.16657 7.15834 0.00822315
7.17329 7.15834 0.0149415
7.11822 7.15834 -0.0401271
7.15417 7.15834 -0.00416887
7.12214 7.15834 -0.0361999
7.2912%5 7.15834 0.132905
7.10728 7.15834 -0.051064
7.15111 7.15834 -0.007236¢3
7.11567 7.15834 -0.0426769
7.08974 7.15834 -0.0686072
7.19755 7.15834 0.0392108
7.12916 7.15836 -0.0291945
7.19461 7.15834 0.0362638 R
7.25577 7.15834 0.097428 o
7.09025 7.15834 -0.0680872 O
7.20021 7.15834 0.0418621
7.16298 7.15834 0.00463132
7.142892 7.15834 ~0.0154208
7.14574 7.15834 -0.0126082
7.13279 7.15834 -0.0255554
7.15601 7.15833 -0.00232236
7.15576 7.15834 -0.00257956
7.19948 7.15834 0.0411383
7.15835 7.15834 2.92266e-006
7 1A A 7 1TRaQ72 N AR ATNNE




(.2480Y {.1o5834 0.0903466
7.12619 7.15834 -0.0321568
7.08353 7.15836 -0.0748272
7.13585 7.15834 -0.02273811
7.21819 7.15834 0.0598437
7.13713 7.15834 -0.0212158
7.11653 7.15834 -0.0418082
7.158717 7.15834 -0.00117053
6.57505 7.15834 -0.583294

Mean Error = -0.01235 (inches) STD = 0.09205 (inches)
Max Error = -0.5833 (inches)
Sampling rate = 300.03 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1
(0-Simp 1-Trap 2-Adam)
Number of runs = 50

Lo 5 ..
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7.44339
7.29352
7.22558
7.17013

Mean Error =
Max Error =
Sampling rate = 200 (Hz)

ZUPT W/2 BASES (M2)

7.15834
7.15833
7.15833
7.15834

0.1248 (inches)
0.285 (inches)

Filter bandwidth = 40 (Hz)

A-to-D Range = 1 (Gs)

Integration method = 1
(0-Simp

Number of runs = 4

10.4659
10.4443
10.4492
10.4836
10.3753
10.5135
10.4561
10.4361
10.5301
10.488
10.4666
10.3974
10.5306
10.4628
10.4771
10.3546
10.4174
10.4964
10.5155
10.4249
10.4129
10.4964
10.5076
10.4869
10.4514
10.4267
10.4121
10.4903
10.3975
10. 4454
10.5413
10.4849
10.436
10.3258
10.5613
10.4539
10.5232
10.4435
10.5208
10.4358

N AT 8

1-Trap 2-Adam)

ZUPT ONLY

10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375
10.7375

anmn e,

0.285044
0.135187
0.0672611
0.0117896

STD =

-0.271614
-0.293167
-0.288347
-0.2533901
-0.3622
-0.224022
-0.28145
-0.301446
-0.207372
-0.248539
-0.27089
-0.340082
-0.206871
-0.2747386
-0.260416
-0.382805
-0.320126
-0.241153
-0.221975
-0.312634
-0.324588
-0.241136
-0.229934
-0.250652
-0.286082
-0.310801
-0.325385
-0.247166
-0.339971
-0.292108
-0.196196
-0.25259
-0.301544
-0.411754
-0.176204
-0.283599
-0.214327
-0.293985
-0.216621
~-0.301699

AN e s e

0.1023 (inches)
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ml -\ TV . WVvaDAD

10.439 10.7375 ~-0.29853

10.4113 10.7375 -0.326196

10.424 10.7375 -0.313559

10.4419 10.7375 -0.295585

10.516 10.7375 -0.221528

10.3946 10.7375 -0.34287

10.4395 10.7375 -0.2973978

10.4485 10.7375 -0.289051
Mean Error = -0.2806 (inches) STD = 0.04909 (inches)
Max Error = -0.4118 (inches)

Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 50

¢
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10.6821 10.7375 -0.0553822
10.611 10.7375 ~0.126509
10.6344 10.7375 -0.103088
10.6443 10.7375 -0.0831978
10.6966 10.7375 -0.04089445
10.6544 16.7375 - -0.0831523
10.7071 10.7375 -0.0303822
10.644 10.7375 -0.0935399
10.6869 10.7375 -0.0506013
Mean Error = -0.3825 (inches) STD =
Max Error = -9.25535 (inches)

Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 50

1.617 (inches)




7.43025
7.39292
7.21671
7.20442

Mean Error =
Max Error =

ZUPT W/2 BASES (M2)

7.15834
7.15834
7.15834
7.15834

0.1527 (inches)
0.2719 (inches)

Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1
(0-Simp 1-Trap 2-Adam)
Number of runs = 4
SINGLE
3.7217 3.57917
3.74455 3.57917
3.67074 3.57917
3.76825 3.57917
3.71378 3.57917
3.79888 3.57917
3.76927 3.57916
3.7909 3.57917
3.81156 3.57917
3.77446 3.57917
3.84755 3.57817
3.68388 3.57917
3.83674 3.57917
3.75973 3.57817
3.84719 3.57917
3.71489 3.57817
3.77763 3.57917
3.71851 3.57917
3.6254 3.57916
3.81362 3.57917
3.74733 3.57917
3.7395 3.57917
3.70978 3.57917
3.68336 3.57217
3.75655 3.57917
3.71036 3.57916
3.67549 3.57916
3.63095 3.57917
3.68743 3.57917
3.72398 3.57916
3.70681 3.57916
3.74794 3.57917
3.71601 3.57919
3.6639 3.57917
3.76258 3.57917
3.68004 3.57916
3.70031 3.57917
3.72125 3.57916
3.71998 3.57916
3.66858 3.57917
2 LOROR N ETALT

0

0.
STD

0

0

0
0

0

0

0.271904
0.234581
.0583694
0460733

0.142527
0.165374
.0915699
0.189078
0.134606
0.219806
0.190115
0.211731
.232383
.195283
.268377
.104713
.257572
. 180558
.268018
.1358715
.198457
.139334
.0462468
0.234453
0.168155
0.160329
0.13061
0.1041889
0.177379
0.131202
.0963378
.0817735
.108262
.144821
.127657
.168786
.136825
.0847326
0.183421
0.100881
0.121137
0.142083
0.14082
.0894032
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0.1015 (inches)




3.60977
3.67302
3.77422
3.72409
3.70178
3.76619

3.7526
3.75786
3.65471

Mean Error =
Max Error =
Sampling rate

A-to-D Range =

Number of runs

Filter bandwidth

Integration method
(0~-Simp 1-Trap 2-Adam)

3.57919
3.57916
3.57917
3.57917
3.57916
3.57917
3.57917
3.57917
3.57917

0.1497 (inches)

0.2684 (inches)
200 (Hz)
40 (Hz)

0.0305816
0.0938641
0.195046
0.144922
0.122626
0.187021
0.17343
0.178684
0.0755369

STD =

0.05474 (inches)




2UPT W/2 BASES (M2)

7.71103 7.15834 0.552688

7.40671 7.15834 0.248368
Mean Error = 0.4005 (inches) STD = 0.1522 (inches)
Max Error = 0.5527 (inches)

Sampling rate = 200 (Hz)
Filter bandwidth = 40 (H=)
A~to-D Range = 1 (Gs)
Integration method = 1

(0~Simp 1-Trap Z2Z2-Adam)
Number of runs = 2

ZUPT W/2 BASES (M2)

7.33207 7.15834 0.173723
7.20969 7.15834 0.0513454
7.19432 7.15834 0.0358726
7.201865 7.15834 0.0433022
7.0978 7.15834 -0.0607487
7.18628 7.15834 0.027941
7.12231 7.15834 -0.0360384
7.14822 7.15834 -0.00912419
7.2457 7.15834 0.0873563
7.09991 7.15834 -0.0584323
7.13646 7.15834 -0.0218851
7.36029 7.15834 0.20185
7.08802 7.15833 -0.0683051
7.08859 7.15836 -0.0697731
7.08235 7.15834 -0.0759961
8.48598 7.15834 1.32764
6.61151 7.15834 -0.546837
6.73718 7.15834 -0.421187
7.07975 7.15836 -0.0786095
7.14799 7.15834 -0.010349
7.21924 7.15834 0.0608971
7.0988 7.15834 -0.059746
7.08265 7.15834 -0.0756948
7.12416 7.15834 -0.034186
7.24217 7.15834 0.0838257
7.22167 7.15834 0.063328
7.10807 7.15834 -0.0502788
7.14702 7.15834 -0.0113227
7.17431 7.15834 0.015971
7.10684 7.15834 -0.051503
7.15627 7.15834 -0.00207368
7.13143 7.15834 -0.0269168 v.
7.13841 7.15834 -0.0199348 O
7.18337 7.15834 0.0250285 S
7.15283 7.15834 -0.00551456
7.17664 7.15834 0.0182948
7.20265 7.15834 0.0443014
7.11525 7.15834 -0.043083
7.15147 7.15834 -0.00687234
7.17072 7.15834 0.0123791
7.17711 7.15834 0.0187615
7.19479 7.15834 0.0364444
fa R IR We ¥ o] ™ 1ED7A NN NARTR AL




7.13856 7.15834 -0.0197797
7.12869 7.15834 -0.0296585
7.19144 7.15834 0.0330956
7.13001 7.15834 -0.0283296
7.16615 7.15833 0.00781981
7.15237 7.15834 -0.005978
Mean Error = 0.007973 (inches) STD = 0.2189 (inches)

Max Error = 1.328 (inches)
Sampling rate = 200 (Hz)
Filter bandwidth = 40 (Hz)
A~to~-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 50




ZUPT W/2 BASES (M2)

T7.45049 7.15834 0.292143
7.28482 7.15834 0.126476
7.21856 7.15834 0.0602202
7.15354 7.15834 -0.00480726
Mean Error = 0.1185 (inches) STD = 0.1105 (inches)
Max Error = 0.2821 (inches)
Sampling rate = 300.03 (Hz)
Filter bandwidth = 40 (Hz)
&A-to-D Range = 1 (Gs)
Integration method = 1
(0-Simp 1-Trap 2-Adam)
Number of runs = 4
SINGLE
3.55878 3.57917 -0.01839
3.5422¢9 3.57917 -0.0368818
3.54694 3.57917 -0.0322323
3.63482 3.57817 0.0556449
3.63281 3.57917 0.0536336
3.62732 3.57916 0.0481628
3.65493 3.57917 0.0757594
3.64363 3.57917 0.0644545
3.588617 3.57917 0.007001386
3.65271 3.57917 0.0735388
3.64166 3.57917 0.0624923
3.57481 3.57916 -0.00434921
3.63181 3.57917 0.0526363
3.67861 3.57917 0.0969242
3.69462 3.57216 0.115486
3.63971 3.57917 0.06053486
3.51247 3.57917 -0.0667012
3.63727 3.57917 0.0580935
3.60522 3.57917 0.0260435
3.54944 3.57917 -0.0287321
3.54651 3.573817 -0.0326585
3.60883 3.57817 0.0297585
3.64881 3.57317 0.0696343
3.63893 3.579:17 0.0597571
3.62365 3.57817 0.044475
3.63384 3.57917 0.054668
3.67087 3.57217 0.0916981
3.59821 3.57917 0.0190411
3.68836 3.57917 0.11019 4
3.70367 3.57917 0.124498 N
3.09733 3.57917 0.118B376 2
3.68552 3.57917 0.106345 >
3.65328 3.57917 0.0741094 B
3.65864 3.57216 0.0794848
3.73494 3.57917 0.155771
3.71158 3.57916 0.132425
3.61414 3.572817 0.0349671
3.67858 3.57917 0.0994089
3.64588 3.57917 0.0668099
3.69938 3.57917 0.120206
Q2 _RP1P1 2 R721a N tOPREAR
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3.76603 3.57916 0.18687
3.72948 3.57917 0.1503086
3.69942 3.57916 0.120266
3.570386 3.57919 -0.00883179
T 3.69021 3.57917 0.111038
C 3.61883 3.57917 0.0386579
3.64885 3.57917 0.069681
3.61286 3.57917 0.0336911
3.61364 3.57917 0.0344713
Mean Error = 0.0612 (inches) STD = 0.05404 (inches)
Max Error = 0.1869 (inches)

! Sampling rate = 300.03 (Hz)
] Filter bandwidth = 40 (Hz)
A-to-D Range = 1 (Gs)
Integration method = 1

(0-Simp 1-Trap 2-Adam)
Number of runs = 50




