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Foreword

Determining the scattered field from objects in a waveguide has
been difficult and is of great importance to the U.S. Navy.
Since future detection methods will exploit for both long- and
short-range bistatic detections of submerged objects, determining
whether various system/detection scenarios are feasible will
depend on both experiments and numerical model studies. Numerical
studies are particularly appealing, since they are considerably less
expensive than experiments and, in terms of a time frame, many
numerical studies can be done for any given experiment. More-
over, numerical studies can also be used to suggest experiments.

This report proposes a numerical scheme that will adequately
describe scattering from realistic objects (submarines) in an ocean
waveguide. The type of object used in this report was a spheroid,
and the object was assumed to have Dirichlet boundary conditions.

W. B. Moseley L. R. Elliott, Commander, USN
Technical Director Commanding Officer



Executive Summary

A method was developed. to describe acoustical scattering from an
object in a waveguide by using normal mode theory to describe the incident
field. Each mode is decomposed at the object into a pair of upgoing and
downgoing plane waves. A transition matrix was used (developed via
the extended boundary condition method of Waterman) to determine the
resulting near-field scattered field. The far-field scattered field was
determined by invoking Huygens' principle. This far-field solution satisfies
all boundary conditions and preserves continuity of the solution
throughout all space.

The examples show that the object is correctly coupled to the waveguide.
This was done by showing that the object's scattered field acts as a
secondary source and that this scattered field obeyed the same boundary
conditions as the point source field.

This method of determining the scattered field from a three-dimensional
object allows one to determine not only the correct target strength (intensity),
but also to properly determine the phase. In addition this method allows
the investigation of the interaction between the incident field and the
waveguide, the incident field with the object, and the object's scattered
field with the waveguide. In this manner a better understanding of the
ongoing physical processes can be obtained.
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Theory and Application of Scattering from
an Object in an Ocean Waveguide

Synopsis Neuman. and Dirichlet boundary conditions and has
The treatment of scattering from submerged been extended for elastic objects. Next, the theory

objects in an unbounded environment is of of acoustic propagation in a fluid was developed
considerable interest to both the academic and from first principles and both normal mode and ray
technological communities. Several approaches have theory were developed to describe propagation in
yielded results for different classes of problems and the simplest type of acoustic waveguide.
have proven manageable for the free environment The mathematical expression that describes the
case. The solution of scattering from objects in a object's far-field scattered field is developed here
waveguide has been a difficult and almost intractable through the use of Huygens' principle. The near-
problem to do in an exact framework, due to the field scattered field, developed by allowing a
coupling of effects from the object's scattered field transition matrix (developed by the EBC method)
with that of the boundaries. It is, however, a problem to map the incident field onto the scattered field,
that is of great importance to the U.S. Navy was coupled to the Green's function, which satisfies
community, since future detection methods are going the waveguide. This application of Huygens'
to exploit both long- and short-range bistatic principle leads to a manageable direct solution of
detections of threat submarines. The ability to the problem. This method also satisfies all
determine whether various system/detection scenarios appropriate boundary conditions and yields a
are feasible will depend on both experiments and continuous solution throughout space. This
numerical model studies. Numerical studies are expression is then applied to a Pekeris waveguide
particularly appealing, since they are considerably and finally to a more general range-independent
less expensive than experiments and in terms of waveguide.
time, many numerical studies can be performed for The examples presented in the last two chapters
any given experiment. Moreover, numerical studies of the appendix were designed to demonstrate that
can be used to suggest experiments. The objective the object's scattered field is correctly coupled to the
of this work is to develop a model suitable for such waveguide. This was accomplished by showing that
studies in an approximate but accurate framework, the object acted as a secondary source in the

waveguide. Its field obeyed (satisfied) the same
boundary conditions for the waveguide as the point

Summary source field.

The study described in the appendix presents a
coherent, self-consistent method to describe acous-
tical scattering and propagation from an object in a Recommendations
waveguide. The method is based on Huygens' prin- The results obtained are for a waveguide that is
ciple. The object was a spheroid with Dirichlet range independent; that is, the sound speed profile
boundary conditions. The study began by developing in the water column and the sediment vary only in
the extended boundary condition (EBC) method1-3  depth and not in range, and the bathymetry does
to describe acoustical scattering from three- not change with respect to range. In addition, the
dimensional objects in free space. This method was object is expected to be in the far field of the source.
used to describe scattering from objects with both The model could simulate range dependency by either
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applying the adiabatic approximation or by coupling the resulting field would consist of high-angle energy
the discrete (propagating) modes. Additionally, if the and would dissipate quickly in an ocean environment.
continuous spectrum of the incident field is included
and not just the discrete spectrum, then the object References
could be located near the source where the continuous
spectrum could play an important role. The addition 1. Waterman, P. C. (1965). Matrix Formulation
of range dependency would be the most valuable of Electromagnetic Scattering. Proc. IEEE 53:805-
addition to the model. 812.

The incident field was allowed to interact only 2. Waterman, P. C. (1969). New Foundation of
once with the object; that is, the primary interaction Acoustic Scattering. J. Acoust. Soc. Am. 45:1417-
of the incident field with the scatterer was retained, 1429.
and the subsequent interactions of the scattered field 3. Waterman, P. C. (1977). Matrix Theory of
between the boundaries of the waveguide and the Elastic 'Wave Scattering II. A New Conservative
scatterer were ignored. This is not a limitation, since Law. J. Acoust. Soc. Am. 63:1320-1325.

2



Appendix

Theory and Application of Scattering from
an Object in an Ocean Waveguide

Guy V. Norton

Chapter 1. Introduction I
Chapter 2. Free Space Scattering 3
Chapter 3. Acoustic Propagation in a Waveguide 23
Chapter 4. Methods Describing Scattering from Objects in a Waveguide 71
Chapter 5. Application of Huygens' Method to an Isovelocity Waveguide 78
Chapter 6. Application of Huygens' Principle to a Multilayered Waveguide 150

Conclusions 177
Appendix A: Comparison Between the E. B. C. Method and an Analytical 178

Solution for the Scattered Field Produced by a Plane
Wave Incident Upon a Sphere

Appendix B: Derivation of Eq. (3-122) 182
Appendix C: Validation of Propagation Models 188
Appendix D: Modal Attenuation Coefficients Used in the Normal Mode Programs 211
Appendix E: Comparison of the Scattered Field Obtained Using the 214

Present Method and a Projection Method

3



CHAPTER I

INTRODUCTION

Goals of Research

This research project will answer the following question. What is the

acoustic pressure at a field point in an underwater acoustic waveguide when a

three dimensional object is present? This research project concerns classical

wave propagation, diffraction and scattering effects. An inherent assumption

is that the object's dimension's (length and width) are small compared to the

waveguides dimensions. We therefore are assuming that the object will make a

small perturbation to the acoustic field produced by a monochromatic point

source. We assume then that the wave equation will properly describe the

acoustic wave propagating in the waveguide. We assume also that the field can

be expressed as a near field scattered field and a far field scattered field. The

near field scattered field will only be valid near the object, before it interacts

with the waveguide and the far field scattered field will be appropriate in the

far field of the object, that is when the scattered field has interacted with the

waveguide boundaries. With these assumptions, this project can be subdivided

into four distinct sub areas. First the incident field must be determined, that is

the acoustic field in the absence of the object or scatterer. Second, the

incident field which insonifies. the object is mathematically acted on by a

transition matrix which transforms the incident field into the near field

scattered field. Next, the near field scattered field is coupled to the waveguide

via invoking Huygens' principle (see chapter 4). Finally, we obtain the total

field by coherently adding the incident and scattered field.
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Because of the way the problem divides mathematically, we have divided

this discussion into two parts. The first is concerned mainly with theory and

results pertaining to free space scattering (chapter 2) and acoustic

propagation in a waveguide (chapter 3). This is done in order to first define

the physics that defines scattering from an object (via a matrix mapping) and

the propagation of this and the incident field in a waveguide. In part 2

(chapters 3-6) of this dissertation we present the various methods that were

used prior to the present work. We then present formally this new method

based on Huygens' principle (chapter 4) and in Chapters 5-6 apply the method

to two acoustic waveguides. The first is a waveguide composed of an isovelocity

water-layer over an isovelocity fluid half-space and the second is a

multilayered waveguide consisting of multiple isovelocity sound and density

layers over an isovelocity half space.

Appendix A validates the Extended Boundary Condition (see chapter 2)

code by showing a comparison of the scattered field generated by this method

with the analytical solution for the case when a plane wave is incident upon a

sphere. Appendix B shows a derivation of a result needed in the development

of the acoustic field in a waveguide. Appendix C is a validation of the

propagation models used in this dissertation. Appendix D is a brief description

of the attenuation term used in the two waveguides. Appendix E shows the

comparison of the scattered field using the proposed method based on

Huygens' principle along with a different method described in Chapter 4.

These results were presented by the author at the Second Joint Meeting of the

Acoustical Society of America and !h- Acoustical Society of Japan 14-18, Nov.

1988 in Honolulu.
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CHARTER 2

FREE SPACE SCATTERING

In this chapter we give a brief overview. of the usual methods used to

describe acoustical scattering prior to the introduction of the Extended

Boundary Condition (EBC) method. We then develop the EBC method, which is

used in this dissertation to describe the near scattered field. We complete this

chapter by showing some representable free space scattering results from this

method for both far and near field. The references listed represent a fraction

of the work being done by the scattering community using this method and is

not meant to be all inclusive.

0ALLX F ree Sci Technigues

Historically there are three predominate methods employed to solve

scattering and/or diffraction problems. They are separation of variables,

variational techniques, and the direct numerical solution of integral

equations.

The separation of variables technique has been used for objects bounded

by quadric (separable) surfaces. The technique can be used as long as the

scalar wave equation governing the problem can be solved by separation of

variables. This method solves the wave equation, (a linear partial differential

equation) by separating the original equation into a set of ordinary

differential equations, each involving only one variable. The general solution

is a product of the solutions to the ordinary differential equations. For
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example, consider a spheroidal object. One can use the spheroidal coordinate

system to re- -sent the incident and scattered wavefunctions by a series of

spheroidal wavefunctions. This requires that the wave equation be separated

in the spheroidal coordinate system. This approach has been carried out by

Burke, who has solved the scattering problem for a plane wave incident upon

an impenetrable spheroid having Dirichlet boundary conditions (1) (which

fixes the value of the wavefunction on the surface) as well as for a rigid

spheroid having Neuman boundary conditions (2) (which fixes the value of

the normal derivative of the wavefunction on the surface). He has also solved

the problem of a plane wave incident upon a penetrable spheroid. (3) Yeh has

solved the problem for a plane wave incident upon a penetrable liquid prolate

spheroid.(4) The liquid prolate spheroid is the limiting case of an elastic

spheroid with zero shear modulus. The main reason this approximation was

adopted was because the vector wave equations are not separable in spheroidal

coordinates. The secondary reason being that due to the complexity of

spheroidal coordinates, laborious computations had to be carried out in order

to obtain numerical values. There are other coordinate systems, one could use

to solve various scattering problems, spherical, cylindrical, etc., depending on

the type of object or objects one is concerned with. Considering only confocal

quadric surfaces and more specifically ellipsoids, there are nine coordinate

systems which can be obtained fron ellipsoidal coordinates. (5) To solve the

scattering problem, a large part of the computational effort goes into the

evaluation of the wavefunctions themselves except for the sphere and the

circular cylinder, for which efficient recursion relations are available. (5)

Levine and Schwinger (6) described the variational method for the

diffraction of a scalar plane wave by an apelture in an infinite plane screen.

In describing diffraction from general bodies the main effort goes into
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evaluating matrix elements, which consist of repeated surface integrals

* requiring fourfold numerical quadrature or volume integrals requiring

sixfold numerical quadrature. In each case the integrals have singular

kernels.

* The integral equation method has the advantage of generality, for

usually the integral is invariant under coordinate transformation. Once the

Greens function is found for the appropriate geometry, the solution of the

• scalar wave equation may be found. The problem with this method is that for

many cases the integral cannot be integrated in closed form and numerical

values are then extremely difficalt to obtain. However, with the advent of the

• digital computer, this method has been used by various individuals. (7-12)

More recently the integral equations have been classified into two types,

depending upon the observation points. (13) Surfacr integral equations have

the observation points lying on the surface of the scatterer and the Extended

integral equations have the observation points inside the scatterer.

Waterman (14) described in his 1969 paper a then new matrix

formulation of acoustic scattering. He had previously developed the same

method for electromagnetic scattering. (15) The equations generated most

nearly resembled those obtained using the variational method. The advantage

was that for both surface and volume type scattering, elements of the matrix to

be inverted are described by a single surface integral with no singularities in

the integrand. Waterman used the interior boundary equation as a constraiat

in solving the exterior boundary equation. As he stated in the paper this

approach was not necessarily new as it appears that Smythe applied it in

electrostatics in 1956. (16) The next section presents the derivation of the

scattering matrix using this method derived by Waterman. The method of

obtaining the scattering matrix has been known by various names, T-Matrix
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method, Extended Boundary Condition method and the Null Field Method. We

believe that the Extended Boundary Condition method best describes this

method. The method has since evolved and is used in many areas of classical

scattering determinations. (15,17-22)

The Extended Boundary Condition (EC Method IQ Determine the Scattered

The theoretical basis for the Extended Boundary Condition method is

contained in the mathematical formulation of Huygens' principle. (23) This

description follows not only Watermans' but also Werby and Chin-Bing. (24)

We start with the Helmholtz-Poincare' integral representation of the total field

Ut exterior to the bounded object, which has the following form, (23)

(2-1) Ut(r) = U (r) + fFU + (r') r') -G(r, r' -""--] ds

where U+(r') is the scalar wavefield on the object surface, G(r,r') is the

outgoing Green's function, r' is taken on the surface of the object, and n is a

unit vector normal to the surface of the object. The surface ( is taken to be

the surface of the bounded object. In order to obtain a unique solution, we will

need an additional expression. We will use the field interior to the object. This

Helmholtz-Poincare' expression is as follows, (23)

r aU+(r') 1
(2-2) O=U.(r")+ U+(r') -n -G(r", r')------J ds
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where r" is a point taken in the interior of the object. This equation was

recognized by Waterman as providing a constraint to eliminate the unknown

surface quantities U+. These two equations yield the extended boundary

condition equations. (25) These equations will now be put into a form

amenable to numerical computation. For this example we allow the object to be

impenetrable, which requires that

(2-3) U+=O.

Equation (2-1) becomes

(2-4) Ut(r) = U.(r) -fG(r,r').fi-f-jds

and Eq.(2-2) becomes

(2-5) 0= Ui(r') - G(r, r) '--U+(r) ds

In order to solve these expressions, it is convenient to express Ui(r), U+(r') and

G(r,r') as some suitable series expansion, which upon truncation leads to

matrix equations that can be solved using digital computers. The Green's

functions, G(r,r') is a normal operator and can be expressed by the following

biorthogonal series (26)

(2-6) G(r, r') =ik FR eq)i(r <)q.i(r)
0i
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where r< and r> is the lesser or greater of the two points r and r' relative to

the origin of the object. The incident wavefield Ui is known and can be

expressed as, (27)

(2-7) U.(r) = Ia n R eqpn(r)
n

where Re is the regular part of (Pn(r). The fact that this expansion Eq. (2-7)

can be obtained follows from the Hilbert-Schmidt theorem.(27) Using this and

Eq.(2-6), we see that Eq.(2-5) becomes,

laR(n~)i"4()(Pn(' au + r') d
(2-8) a Re(r) =ik R e(Pn

n na

r aU+(r')
(2-9) an = ik Jq(n(r')----- ds

U+(r') is now written in some complete set of suitably chosen basis function

satisfying completeness on the object surface. The basis functions used were

the same as those chosen by Waterman, namely Re (Pn(r), where Re is the

regular part of (Pn(r). We have not found any problem arising from irregular

values, nor have we had problems due to poorly-convergent solutions.

Waterman has shown that Eq. (2-10) satisfies closure on the surface of a rigid

object:

(2-10) U+(r) = Ibn R e (n(r)
n
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Using Eq. (2-10) in Eq. (2-9) results in the following for the incident field

* expansion coefficients an

a aR e (r')
(2-11) a~ =ik~b m J(P (r) a n s

(2-12) =ik Ybm M mn

where Q f(Pn (r') DRew11 (r')d . In matrix notation, Eq. (2-11) can be
=n C an

* written

(2-13) a=ikQb

and the expression for Us(r') becomes,

*(2-14) U S(r') = Y )n('
n

Recognizing that Us = Ut - Ui, the expression for the scattered field expansion

9 coefficients fn, becomes,

(2-15) ~ f q(r') =-i k ID{e (r) q, r') a Re q)M(r') d

(2-16) f n= -ilo km R e~n(r) am d
Cyn

(2-17) =- kbm R eQmn
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where ReQmn= Req~n(r) an ds. In matrix notation, fn becomes,

(2-18) f =-ikbReQ

Equation (2-13) can be solved for b,

(2-19) b -i
k

Inserting Eq.(2-19) in Eq.(2-18) one obtains,

(2-20) f =-(ReQ)Q - 1 a

or

(2-21) f =Ta

where T=-( R eQ Q-. Notice that the matrix T is only a function of the

boundary conditions and the shape of the object. Once the matrix T is known,

the scattered field can be determined from any chosen incident field a. The

Extended Boundary Condition method yields a unique solution to the exterior

acoustic problem, and is efficient and numerically stable for a large variety of

bounded object shapes. The Extended Boundary Condition method has evolved

since its inception in 1965. In the area of acoustic scattering, Werby, (28)

Werby, Tango and Green, (29) and Werby and Chin-Bing (24) have made

significant improvements to the general method. Not only is this method

applicable to solid surface of revolutions but also to shells (30-36) and other
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elastic objects. (37-41) Resonance effects are observed and can be predicted

using this method. (33.36,39,42,43)

fgFjar Field i Examples Usin ,kExtended Boundary Condition Mcethod

In this section we will show some examples of the scattered field in the

form of scattering amplitude vs. angle, normally called the bistatic angular

distribution. (39) Bistatic angular distributions are defined by the case of non-

coincident source and receiver, where the receivers are omni directional.

Bistatic angular distributions are dependent on object geometry and can be

useful in determining such features of object shape as symmetry or

elongation. The far field bistatic angular distribution is defined as the

following, (38)

. !+i !kp m.
(2-22) f(0)- 2 ym )( e P (cos0))fllA ,(0)

where A,(0i)is the incident field expansion coefficient, which is dependent

upon the angle at which the source insonifies the object, a is the semi major

axis of the object and fm is the free space scattering field as determined by
11,

the EBC method (see Eq. (2-21)). Therefore the far field bistatic angular

distribution is dependent upon two angles (incident and observed), and not

just one.

An example of the characteristics of a typical scattering object are

shown in Table 1. The incident field was a monochromatic point source. It is

assumed that the object is sufficiently far from the point source so that the
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incident wave front has infinite radius of curvature that is, it is a plane wave.

The three frequencies chosen are given in Table 2, along with other

information.

TABLE 1

OBJECT CHARACTERISTICS

Object Type Aspect Ratio Boundary Length(L) Width(W)
(L/W) Condition (m) (m)

Solid Spheroid 5 Dirichlet 50. 10.

TABLE 2

EXTENDED BOUNDARY CONDITION INFORMATION

Frequency KL/2 Sound Speed X Highest # Matrix
(Hz) (m/s) (in) Matrix Order

95.5 10. 1500.0 15.7 17 4
191.0 20. 1500.0 7.9 32 7
382.0 40. 1500.0 3.9 64 13

Figure 1 compares the angular distribution with the incident direction

along the major axis of symmetry. The object is oriented along the 0-180

degree axis in the figure and the incident field is coming from the direction of

the arrow. Angular distribution plot (a) is for a frequency of 95.5 (Hz) or a

KL/2 of 10. Where K is the wavenumber and L/2 is half the object's length.

The corresponding wavelength is 1" (m). The object is approximately 3

wavelengths long. This would repr-.,cnt a low frequency case. Note the
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broadness of the field. Even at this low frequency the field is predominantly

in the forward direction. As we increase in frequency (and KL/2) we note that

backscattering (toward the source) is reduced. while it is being focused in the

forward direction. The amplitude is also increasing with increasing

frequency.

Figure 2 illustrates the case when the object is insonified at an angle of

45 degrees relative to the major axis of symmetry. The top plot is for a

frequency of 95.5 (Hz) and the bottom is for 382. (Hz). Note that for the low

frequency case, the field is oscillatory in appearance. We also see two peaks,

one in the forward direction (225 degrees) and the other in the specular

direction (135 degrees). The peaks become more focused in the forward

direction as we increase the frequency. The forward diffracted wave becomes

more highly focused with increased frequency. Also note that the wave-like

appearance of the field at low frequency virtually disappears in the high

frequency case. Again we see that the field tends to increase in amplitude as

frequency increases.

Figure 3 illustrates the case when the object is being insonified at an

angle of 90 degrees or broadside incidence. Note for the low frequency case,

the forward and backscattered amplitude are about equal. As we increase in

frequency we see that the forward diffracted wave becomes more focused and

its amplitude is larger than the backscattered (90 degrees) wave. In fact we

see that the backscattered amplitude remains approximately constant. This is

because the backscattered amplitude (at 90 degrees incident and 90 degrees

observed) is dependent upon geometrical effects and is independent of

frequency. Now we turn our attention to some near field examples.
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90 Frequency - 95S. (Hz)
KLI2- 10.0

180 20 10-20 0

270

90 Frequency- 191.0 (Hz)
KL/2 .20.0

180 20-10- 10-20 0 ~

270

90 Frequency -382.0 (Hz)
KW/ .40.0

180 .21J - 10-20 0 a -

270"

Fig. 1. Angular Distribution of Free Field Form Fmiction for an Object Being
Insonified Along the Principle Axis of Symmetry for =./, Values of 10, 20, and 40.
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0

901 Frequency . 95.5 (Hz)
KL/2. 10.0

180 0 5- -30 0

270

90 Frequency - 191.0 (Hz)
KUL2. 20.0

180 .0-20-- -4 0

270

90 Frequency .382.0 (Hz)
KL/2 .40.0

*180 40 20--.2 -40 0

2

Fig. 2. Angular Distribution of Free Field Form Function for an Object Being Insoniied
45 Degrees Relative to the Principle Axis of Symmetry for K147 Values of 10, 20, and 40.
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Frequency - 95.5 (Hz)
KL/2 - 10.0

180 24-12 12-2 0

270

Frequency o 191.0 (Hz)
KL/2 .20.0

180 0 -20~ in 0 0

Frequency - 382.0 (Hz)
K(1.2 -40.0

180 0- - 0 0

270

Fig. 3. Angular Distribution of Free Field Form Function for an Object Being Insonified
90 Degrees Relative to the Principle Axis of Symmetry for =(.12 Values of 10, 20, and 40.
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Near Field £.nc .ing Exampes Using Ex tended Boundary Condition Methbod

In this section we will show representable examples of the near field

form function. The parameters of Tables 1 and 2 from the last section will be

used in this section. The near field form ,unction takes the following form,

(2-23) f(O)= =jY-,) h (kp)Pm(co O))fmAim(O)

The mathematical surface on which the form function will be evaluated is a

spheroid with an aspect ratio of 5:1 a semi-major axis of 125(m) and a semi-

minor axis of 25(m). This surface is not the surface of the object but a

mathematical surface enclosing the object.

Figure 4 illustrates the field for 3 different frequencies as it is being

insonified along the axis of symmetry. Note for the low frequency case (top

figure) Ithe field is oscillatory in appearance while in the intermediate (middle

figure) and high (bottom figure) frequency cases the field is more strongly

focused in the forward direction. The amplitude of the field increases with

increasing frequency.

Figure 5 illustrates the case when the object is being insonified at an

angle of 45 degrees relative to the principle axis of symmetry. We see the same

traits as in the previous figures, with the low frequency case appearing wave-

like while the intermediate and high frequency cases are void of this feature.

In addition we see the reflected field is in the specular direction. Finally, we

see that the amplitude of the forward diffracted field increases with

increasing frequency.



90 Frequency -95.5 (Hz)
.W2 10.0

180 20-10 10-20 0

270

90 Frequency - 191.0 (Hz)
KUZ.20.0

180 -10- 10-20 0

270

91 Frquency -382.0 (Hz)
KL/2 .40.0

180 20-1O 10 20 0 '

270

Fig. 4. Angular Distribution of Neaw Free Field Fobm Function for an Object Being

insotified Along the Principle Axis of SyrmeM for 1(142 Values of 10, 20. and 40.
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90 Frequency - 95.5 (Hz)

KLI2 - 10.0

18 3015S 5-30 0

* 270

90 Frequency - 192.0 (Hz)
KLI2 -20.0

180 30 5- 1530 0

270

90 Frequency - 382.0 (Hz)
KLI2 .40.0

180 36 ~ ' 1936 0

270

Fig. 5. Angular Distribution of Near Free Field Form Function for an Object Being
Insonified 45 Degres Relative to the Pninciple Axis of Symmetry for KL/2 Values
of 10. 20. and 40.
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Figure 6 illustrates the case when the object is being insonified at an

angle of 90 degrees from the principal axis of symmetry. We note immediately

that the field is not being focused as we increase in frequency but the

amplitude is increasing in the forward direction. We also note that the

backscattered field remains approximately constant for the three cases shown.

To observe the effect that range has on the field, the surface on which

the field was solved was enlarged from a semi-major axis length of 125(m) to

250(m) and a semi-minor axis length of 25(m) to 50(m). The intermediate

frequency of 191 (Hz) was selected for this evaluation. Figure 7 illustrates the

results for the near field. Three incident angles were investigated 0, 45, and 90

degrees relative to the principle axis of symmetry. By the time the surface is

at a range of 10 times the object's dimensions (which is for this case 25x5) the

field is approximating the far field result rather well for the 0 and 45 degree

incident case. Although this is not the case at 90 degrees, the trend is correct;

that is the near field at the outer surface is approaching the far field result,

but not as rapidly as for the cases when the object is insonified at an angle of 0

and 45 degrees.

We have shown the angular distribution plots because they will be used

in later chapters. There are other ways of showing free space scattering

results such as showing the forward or backscattered form function vs KL/2.

In this way one can see resonance locations (in the case of elastic spheroids) or

Franz waves (38) which occur when the specular and circumferential waves

interact with one another at the field point. To include these would be outside

the scope of this dissertation since they have no bearing on the problem. We

will now turn our attention to acoustic propagation in a waveguide.
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90 Frequency - 95.5 (Hz)
KL!- 10.0

18 20-10 10-20 0

270

0 90 Frequency - 191.0 (Hz)KL/2- 20.0

* 180 28-14 4-28 0
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0

180 30-1S IS 30 0
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Fig. 6. Angular Distribution of Near Free Field For Function for an Object Being

Insonified 90 Degrees Relative to the Principle Axis of Symmetry for =L/2 Values

of 10, 20. and 40.

0
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90 Fre -uency -191.0 (Hz)

KL - 20.0

180 0-10- 10-20 0 -40

270

90 Frequency.- 191.0 (Hz)
KL/2 - 20.0

180 40 20- - 04IO 0

270

f
90 Frequenry.- 191.0 ( Hz)

KLI2- 20.0

180 40 0-~2 40 0

270

Fig. 7. Angular Distribution of Near Free Field Form Function for an Object Being
Insonified 0, 45. and 90 Degrees Relative to the Principle Axis of Symmetry for a
K142 Value of 20.
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Chapter 3

ACOUSTIC PROPAGATION IN A WAVEGUIDE

In this chapter we will describe how sound propagates through a shallow

water waveguide. We assume that the sound is a small amplitude wavelike

disturbance on the hydrodynamic background. We first describe the

properties of the fluid equations. We will derive these equations from first

principles, and then obtain the equations governing the sound field which we

discuss in more detail from two points of view, using Normal Mode theory and

Ray theory. We will finish by showing the connection between the two. This

section follows the procedure outlined by Ahlowalia and Keller. (1)

Properties of a Euid

Lets begin by considering a large fluid mass, with mass density of p.

Within the fluid mass lets define an infinitesimal cube whose sides are of

length dx, dy, dz. The center of the cube is labeled c. The pressure at c is

denoted by P. Figure 8 illustrates the cube.
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Y FORCE. FOC

FORCE

FACE a. 
FACE b;dy

dx

Fig. 8. Geometry for the fluid cube.

The force at c due to hydrostatic pressure on face a of the cube is,

(3-1) facea= (P aP dX)d zax 2 yd

and for face b

(3-2) faceb= P + mp .- y dz

the net force in the x direction due to the pressure on these two faces is,

(3-3) P ~- 'xdy dz-P+LPd dy z adx z
ax 2 a-,P y 2 x

By analogy the same procedure can be done for the net force in the y

and z direction.

(3-4) net force in y direction =--Pdxdydz
ay
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(3-5) net force in z direction =-Pdxdydz

The resulting net force is then,

d JaP P + -P + -- ,dxdydza~ ,x oy az )d

(3-6) =-VPdxdydz "'

now taking the limit as dx, dy and dz approach zero, gives for the net force
dFn

(3-7) - =-VPdt

Equation (3-7) represents the net force per unit volume at the point c. This is

just the internal stress at point c due to hydrostatic pressure.

The above description was for a fluid without an acoustic source. At this

time we inuoduce an acoustic source in the fluid medium. This is equivalent to

having an external force present. We denote the external force by Cfa where E

is a measure of the source strength. We also introduce the force per unit

volume due to gravity, pg. Now the total force per unit -volume at point c is

equal to,

(3-8) Fn= -VP+ pg+e fa

We define u to be the velocity at point c. Then the acceleration is,

du au+ audx +udy +udz

-+-+ -- iY+ tddt t ax dt ay dt az dt

(3-9) = s- + (U • V)u
at
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Using Newton's 2nd law, m a i u V F. .w. can write down an expression
dt

that equates the sum of the forccs to the mass icnsity times du/dt.

2- u + (U-V)u]=VP+ g Efa+ pg+ef

(3-10) +(u )u g+

This equation is called the equation of momentum.

Derivation of the Continuity Equation

To derive the continuity equation, we need to define a volume of liquid

(V), surrounded by a surface a;. Gauss's Theorem (2) states that the rate of flow

of the fluid out of the volume equals the flow of the volume through the

surface a;.

(3-11) t(V -A)dv= :JA .dO

where A is a vector field representing the flow of the fluid. Now the net flow

of the fluid out of the volume through the surface results in a reduction of the

density inside the volume.

opu *f N(3-12) 4 a{ t
v
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Now substituting Eq. (3-11) in Eq. (3-12).

fIv. (pu)dv=- -- dv

(3-13) VO (pu)+ 2a

Eq. (3-13) is the continuity of mass equation.

Derivation of the Continuity Equation for Entropy

The procedure is the same as the last derivatio. We ,efine S to be the entropy

density.

f d -J(Spu) .dn

* V

(3-14) IV * (Spu)dv

which through the limiting process becomes,

- -+(VS)ou +S[.2E + Vopu 0

the second term is zero and one is left with,

(3-15) s + (VS) - u = 0
at

which is the continuity of entropy equation.
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Equation of State

Pressure can be considered a function of the fundamental quantities

density and entropy. (1)

(316) P = P(pS)

which is just the equation of state.

Bounded Fluid

Now the fluid will be bounded above by a free surface defined by

z=I(x.y,t) and below by a rigid surface by z=-h(x,y). The pressure above the

free surface is constant and is equal to P0 . There are two boundary conditions

on the top surface, the continuity of the pressure across the surface and the

continuity of the normal component of velocity across the surface.

P0= CONSTANT

Z = 71
P=P(P,S

U = l+y v+z

Fig. 9. Waveguide Geometry.
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Using the first boundary condition wc can equate the pressure on the opposite

side of the boundary z-ii.

(3-17) Pfx,yjj(x.y,t).t1 = P0  when z=q(x.y.t)

To find the normal component of velocity, we need to construct the unit

normal vector. Let D be a scalar function defining the surface,

(3-18) 4'(x,y.zt)=z-q(xy.t)

The unit vector normal to 0 is defined as

V4) x on z.0E +-

I Dx D y D

Jl0l 2 +(12

(3-19) where =D
~ ~ Y + z anld ax txa )ax ay a-

Fa
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Evaluating the unit vectors x, y, and z. we obtain

I •o4i Dax Dax D

D ax

__ y-cs( xl. i y *. z
] D x D ax D

oan
D ay

(3-20) Dx D D

1
D

Now equating the normal component of velocity across the upper surface,

(3-21) i2!u)+M=.v L-a w dx' oidya V(_+ d. ldz(3-2ax 1D ay D "D Ddt ax D dt ay "Ddt

Since the derivatives of x and y with respect to t are zero, Eq. (3-20) can be

rearranged into the following,

(3-22) u -+v k + - = w when z = (x,y,t)

This is the requirement on the velocity components at the top surface. For the

bottom surface let

(3-23) 4 (x,y,z,t)=z+h(x,y)
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For a rigid bottom, the normal component of the ,elocity vanishes. If we

* apply the same procedures as were used for the top surface, the results for the

bottom surface are,

I h 1h _ h

(3-24) cosa)= -'--, coK3) = a -, co ,y) =

2 2

• where D- x a

(3-25) u.h- +v ah+ w =0 when z = -h(x,y)
ax ay

The last expression is the requirement on the velocity components at the

* bottom surface. When e, the measure of the source strength, is zero, the Eqs.

(3-10), (3-13), (3-15), (3-16), (3-17), (3-22), (3-25) constitute what can be called

the basic state equations. When e = 0 this corresponds to a fluid containing no

* source. Because of this, the velocity u = 0. The equation of momentum Eq. (3-

10) becomes

(3-26) VP = -pg.

Then the continuity equation for density becomes,

(3-27) aP =0,
at

i.e. p is a function of coordinate only, p=p(z).

0
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The continuity equation for entropy becomes,

(3-28) a
at

and the atropy is a function of the z coordinate only, S = S(z). The pressure is

still a function of density and entropy, i.e. P = P(r,S). The pressure at z = 0 is

equal to the pressure on the other side of the top surface, Po.

,AcoustcuaiteanEuaos

We will now derive what Ahlowalia and Keller (1) call the acoustic

quantities. The approach will be to consider the equations which depend on

the source term E. By differentiating these equations with respect to e and

evaluating t. -1 results at e = 0, we obtain the acoustic equations. The acoustic

quantities are the individual functions, i.e. u, P etc. differentiated with respect

to F and evaluated at E = 0. Once the acoustic equations are obtained, the wave

equation for the acoustic quantity P will be obtained along with the boundary

conditions.

=-I
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Thus

(3-29) j,= a

C=0

(3-30) P= "

(3-31) p

(3-32) s
C=O

(3-3 3)

Starting with Eq. (3-10), the continuity of momentum equation, and evaluating

it at E = 0 yields

(3-34) - + p, +at L=k E O "-p 2.I* 0P
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We stated earlier that the velocity u = 0 when e = 0. However that is not

necessarily the case for u.

(3-35) u

£ =0

nor is it for a. l
at

2
(3-36) ail au 0

=0

Therefore Eq. (3-34) becomes,

ail f
(3-37) " Vii. +  VP + -1""

at p 2 p

Now consider the continuity of mass equation, Eq. (3-13).

(3-38) V. u + V* ato] + 0"

E=0 c=0

the first term is zero because 2E is equal to zero when evaluated at E = 0.

Therefore Eq. (3-38) becomes,

(3-39) V a] + =0 .



35

Now consider the continuity equation for entropy,

(3-40) + tU]1 + [Vs . . =0
a=0 

a =O

the second term is zero because -S is equal to zero when evaluated at =

0. Therefore Eq. (3-40) becomes,

(3-41) a S 0 au =.

Now consider Eq. (3-16), the equation of state,

P~,S)= aP(P' S) a = G-'P -€ + P is E
0e 1PS 0 a- p ael as ac

(3-42) = P+ +'I
(32)ap as

Now consider Eq. (3-17),

(3-43) P t x X1 4i L  + aP Y + lPa-ra + aPat =0
ax =0 =0 elC=0 at a =0
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when z = i = 0, we can define P at z=0 as,

(3-44) PE ap'XII ) = a- ax. Ly + t
as ax ae = ay ae = at ass=0 £= =0 s=0

now Eq. (3-43) becomes,

(3-45) P+ -I= 0 when z q = 0.

Now consider Eq. (3-21)

(3-46) 2 L " t +a a o =a
at a=ax I0 ax =0 I= a 0

notethat u=v=w=Owhene=0sinceu 0. And since q=cfa(x,y,t),

(3-47) 2a =0 and ax =- y =0 therefore Eq. (3-46)
E=0 a =O a =O

becomes,

(3-48) iv when z = 0.at
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Now for the bottom condition, Eq. (3-25)

(3-49) i u + e.xh _ +a(avxh + (v LI =0
=O (u C= 0 ay E=O

when z = -h(x,y). The second and fourth terms are zero, and Eq.

(3-49) becomes,

(3-50) ,v +u.k+v" al = 0 , when z = -h(x,y).

Equations (3-37), (3-39), (3-41), (3-42), (3-45), (3-48), and (3-50) are called the

acoustic equations. For instance, Pacts like a change in pressure due to source

emissions. These equation must now be combined in order to obtain a single

equation for the pressure and two boundary condition equations. We start by

taking the partial derivative of Eq. (3-39) with respect to time; this leads to

2
(3-51) a (a0

at Ratt) +V -(Pat

The second term is zero since the density is not a function of time.

Equation (3-51) becomes,

(3-52) b2'7+ V P ai )O.
at2
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From Eq. (3-37) we have an expression for .. Using this expression in

at
Eq. (3-52) gives after some simplifying,

2

-2 (P a
at

It is important to remember that these quantities are a function of z only.

Therefore the third term in Eq. (3-53) becomes,

(3-54) 7 V)V(()

which, when substituted into Eq. (3-53) gives,

(3-55) 2"a-VP-g =-Vof
at

Now taking the partial derivative with respect to time of Eq. (3-41) gives,

(3-56) +2 + S+ *VL=0at2 at at



39
Since the entropy depends only on z in the basic state, the partial derivative

with respect to time of the entropy is zero. Equation (3-56) becomes,

(3-57) a2S + L 0 VS =0.
~at aS3at 2

Now substituting Eq. (3-37) for .i| in Eq. (3-57) gives,
at

(3-58) - IP+ -VP + *VP0
at [- P2

Remembering that S = S(z) and P = P(z), we obtain for VS and for VP,

0S
(3-59) VS=z- and VP=z--

* Equation (3-58) becomes after some simplifying,

(3-60) a 2 'I ap +gS - fa S

at 2 Paz ) az

Now taking the partial derivative of Eq. (3-42) with respect to time twice gives,

(3-61) 
a2 ap 32 + a3 a 2

0at 2 a 2 as 3t2
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Substituting Eq. (3-55) for r a. Eq. (3-60) for in Eq. (3-61) yields,
at at

at 2,_ ap(2t g± _ (L(3-62) 2 a) +g-L--- * + I9 -fJ at

Rearranging Eq. (3-62) gives,

a2. apas at+' 9(3-63) V P f a s +z a a a-2 +a ! L asazg 'at

We can neglect the last two terms of Eq. (3-63) since 0- 0, L-- 0 and .z 0.az az

This results in the wave equation,

2 1 2  = (a_ -1
(364)2 2 ( ' f a) where 2c at Wc 2

The quantity c is just the speed of sound in the fluid. We will now obtain the

equation governing the condition for the top boundary condition. Starting

with Eq. (3-45)

(3-65) + hiq = 0az
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Equation (3-65) can be rewritten as

13 -66) + (-pg) = 0

but i < < P when z = 0. We can therefore neglect this term and Eq. (3-66)

becomes,

(3-67) P=0 whenz=0.

Consider niow the bottom condition. We start by taking the partial derivative of

Eq. (3-50) with respect to time. This yields,

(3-68) aiv aii ah +U , -a h " a =0,at at ax atax at ax v atay

since h is a function of x and y only, the partial derivative of h with respect to

time is zero. Equation (3-68) becomes,

(3-69) Div+ Iaf ah ' a, ah =0.

at at ax at ax

We will use expressions for -- ,-L- and a- from Eqs. (3-37). Equation (3-69)at at at
becomes after the substitution,

3-70)
1 ap I 1 . -i + I f +f-apr I + P 2  h =0

p 'P2-a 3 1-P ax P2ax Pliax Pa 2aPaz J ax 2 JLa~ aP + ifay
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Since the bottom is defined as being rigid, no force is transmitted through the

bottom, which says that f1 = f2 = f3 = 0 when z = -h(x.y). Finally sincel- 0 we

cart write Eq. (3-70) as,

(3-71) 3+ 0 h + jP 3h = 0 when z = -h(x,y).
az ax ax ay ay

This is the bottom boundary condition. We have now defined a boundary value

problem for the determination of the acoustic pressure using the wave

equation, Eq. (3-64) which governs the problem, subject to the boundary

condition at the surface, Eq. (3-67) and at the bottom, Eq. (3-71). In order to

solve the problem, we need to know how the sound speed varies with depth, the

depth of the waveguide and the source distribution. In underwater acoustics it

is common to consider the source to be a point source producing a

monochromatic time dependent wave. In this case, we now write the pressure

as a function of distance (r) and time (t),

(3-72) P(r ,t) = e-icotp(r).

Substituting Eq. (3-72) into the wave equation, Eq. (3-64) yields.

(3-73) e- iot VP(r) + 02P(r)--V 0f.
24

C
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Defining k and n (z) r= cz0 where co is a reference sound speed and n(z)

i3 *he index of refraction we have,

0(3-74) c(0 =k n(z)

and Eq. (3-73) becomes,

(3-75) e-j a(VPr + k 2n 2 (z)P(r))= V * fa

0 Suppressing the time dependence of Eq. (3-75) and defining q(r) as that

quantity in parenthesis, we obtain

*(3-76) q (r) sV2P(r)+ k 2n 2(z)P(r)

Equation (3-75) can be expressed as,

(3-77) q (r) =V- f a*

* Equation (3-77) is sometimes referred to as the reduced wave equation or as the

Helmholtz equation. (2) The boundary conditions are as follows,

*(3-78) tP(r,t)=O=*P=O when z=O0 and

(3-79) ap+a h+a -h p+a +-P= 0 when z = -h(x,y).
z ax ax ay ay az ax ay
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The pressure due to Eq. (3-77) subject to the boundary conditions Eq. (3-78) and

Eq. (3-79) do not determine P uniquely, since the homogeneous case (q(r)=0)

allows solutions which represent waves coming in from infinity. We will need

to impose an additional condition in order to uniquely determine P. The

additional condition is that the wave number, k will become complex,

(3-80) k -+ -a+ I cc."'

This condition makes the outgoing wave decay to zero at infinity while the

incoming wave will be infinite at infinity. The solution will be bounded at

infinity and thus eliminate the incoming wave. The pressure P(r) now takes

the following form,

(3-81) P(r) lim P(r,a).
a-+0

We stated earlier that the source was assumed to be a point source. A point

source can be represented by a delta function. The source distribution term,

V O f a can be represented by,

(3-82) V. fa = (r - r 0 )

where r 0 is the source position. The point source will be normalized to

produce unit strength. Assuming cylindrical coordinates,

(3-83) fv(r - r 0 )dr = 1.
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Evaluating the integral in Eq. (3-83),

S
f r - ro)dr = f f(r)5(r)8(z -z 0 )rd0drdz

Vv

(3-84) = 2rr

therefore 8(r -r0)= 0r)(zz0) and f(r)= 1

The Helmholtz equation becomes,

(3-85) V2 (r)+k n 2 (z)P(r)= z)

n )2tr

Recall that P(r,t)= P(r)e iC-t.
O

We will now consider a simple waveguide, namely the homogeneous

waveguide of constant depth. We will solve for the pressure using normal

mode theory and ray theory. We will show the connection between the two

methods. The normal mode solution is most useful at distances where only a

finite number of propagating modes are present and the ray representation is

most useful near the source where only the incident field and a few reflected

waves need to be considered since spherical spreading diminishes the rest.

Since both representations should give the same answer for the pressure (at

least mathematically) at any range, we will convert the ray representation
iinto the normal mode representation in order to shov the connection.
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Normal M.. Theory

Normal Mode theory has been used to solve a variety of classical

phenomena. Problems involving mechanical vibration reduce to that of the

harmonic oscillator at small amplitudes of vibration as long as they remain

within the elastic limits of the material. The concept is used in the context of

finite, discrete systems of masses and springs, stretched strings and

membranes, etc. The motion of these systems results in a number of so-called

normal modes of vibration, each mode behaving in many ways like an

independent harmonic oscillator. (3,4) Normal modes have also been used in

bounded continua, such as the acoustic modes of a room. (5) The above

examples have infinitely many but discrete eigenfrequencies. The concept of

normal modes can also be applied to unbounded continua. An example is the

treatment of electromagnetic modes of infinite space used in the quantum

theory of fields. (6) Biot and Tolstoy (7) have generalized the procedure to

conservative, unbounded, mechanical medium of any type. In principle,

normal mode theory can be used to provide a unified point of view of all types

of mechanical, electromagnetic, and electromechanical waves.

A water waveguide can be visualized by starting with a rectangular box

of dimension a, b and h corresponding to x, y and z coordinates. Now allow a

and b to approach infinity. If we chose appropriate boundary conditions at z=O

and at z=h, one can generate what is commonly called the ideal or perfect

waveguide. (8) The water that occupies the space between the horizontal

interfaces at z=O and z=h has homogeneous properties. The ideal waveguide,

sometimes called the slab waveguide, does not represent a 'real' world

environment. A waveguide that better represents a real ocean waveguide

would allow the speed of sound in the water to vary in depth and range, i.e.
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c(z,r), where c is the local speed of sound at the depth position z and the range

position r. In addition, the be:thymetry would vary with range and there

would be multiple layers of sediment beneath the water layer, each with its

own sound speed, density, sound attenuation, shear speed and shear

attenuation. We will consider two variations of the ideal waveguide in

Chapters 5 and 6. We will, however, at this point proceed with a discussion of

the ideal waveguide.

For a waveguide of constai.t depth and sound speed, we have c(z) -c O =

contaiit, and n(z) = c0 /c(z) = 1. The governing equation is the wave equation,

Eq. (3-85), here written in it's homogeneous form,

(3-86) V2P(r)+ k2P(r)= 0

The boundary condition at the surface is that the pressure at the

surface is zero, i.e. it is a pressure relea:. surface.

(3-87) P=O at z=O.

The bottom boundary condition is that the normal derivative of the pressure is

zero, or that the bottom is rigid.

(3-88) z=0

pa
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The Laplacian in cylindrical coordinates is,(9)

(3-89) vI( )= - - )+ -La.( )+ 2h()

rar Ir 2 a02 az

For this waveguide we assume cylindrical symmetry so the theta term vanishes

) -o,

2 )- 0. The Laplacian then becomes,

/02

(3-90) V(=. r-. + z .

Since the pressure is a function of both z and r we can write,

(3-91) P - p(z)W(r)

and Eq. (3-86) becomes,

(3-92) 1 d r -%")+ " + k 2 0
dz

Equation (3-92) can be separated into two parts (possible only

when c=constant or c=c(z)), one par, containing terms dependent in r and the

second part containing terms dependent in z.

(3-93) 4d l Y .[ d2v1 2
(3.-93)d--'{-+r- +-- +k =0*

'rdr 2' (p 2A+ +k=dr J dz
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Denoting d...! by Vr, =t Eq. (3-93) now becomes.
dr

1 1r] = 1 2 2 2
(3-94) LT Ir +xvr -- pzz =-k a

where a2 on the RHS is the separation constant. The resulting Ordinary

Differential Equations are

2 22
(3-95) (Pzz + 9k =k a 2p

(3-6) f +i k 2 a2V

(3-96) 'Tr r +V'r =-a a .

Solving the depth dependent equation Eq. (3-95) first, we know that the

general solution will be of the form,

(3-97) q(z) = As i n(k zv'?1 -2+ Bc os (k z-v/-a )

Due to the surface boundary condition, Eq. (3-87), the constant B in Eq. (3-97)

must be equal to zero if Eq. (3-97) is to be a solution. Applying the bottom

boundary condition to Eq. (3-97) we have,

(3-98) a(P(z) =k N' 1  A c v1 a 2)0 z=-haz

=cos~k~l - a2 (- h))= 0

=Cojlk hVFI a2=O
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In order for this to be true the following condition must be satisfied,

(3-99) k hv"ia2 = ((2n+ 1)

Solving for a, we obtain

2 2

(3-100) a 1- 2 2
k h

we see that there is a distinct, discrete solution an, for each n. Equation (3-100)

can be written as,

(3-101) a 2n 2 n 0 1,2,3,.

k h

The final solution for the depth equation is of the form,

(3-102) cpn()=Ansi(kz l-a 2)n=0,1,2,3,...

Now consider the solution to Eq. (3-96), which is Bessels' Equation of the first

kind; solutions are,

(3-103) V(r) = C1 J0 (kar) + C2 Y0 (kar).
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We have the requirement that for any arbitrary z value, P is finite at r--O. This

re.uires that C2 be equal to zero. Rewriting J0(kar) in terms of a sum of

.,cl Functions (10) of the first and second kind we obtain,

(1)
(3-104) H =0 +iY0

(2)H'( )=Jo-iY

(3-105) 0 0 0

(1) (2)(ar

(3-106) w(r)=CH )(ka) +DH (kar)
0 0

To solve for the constants in Eq. (3-106), we note that for the

radiation condition, (as r -4 -c ), P behaves as an outgoing wave. Therefore, in

the limit as r--- c-, iI(r) needs to behave as an outgoing wave. Therefore,

choose the Hankel function which represents an outgoing wave. We will use

the large argument approximation to the Hankel function in order to

determine which Hankel function to keep. The asymptotic form of the Hankel

functions are (11)

(3-107) H0)(kar ,ka e 4

S (kar-.)
(3-108) H0 (k ar)-4 2 e 4 )

0 ka re
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Equation (3-107) is an ou!-,:Ing wave while Eq. (3-108) is an ingoing wave.

Since we want an outgoin., wave, we therefore choose D=O. And we arc left

with

(3-109) ty(r) = CH ()(k a r)

Our expression for the pressure now takes the following form,

(3-110) P(r) = (p(z)V(r) = Ans i I kz l-anH )(kan r)

Now the an are positive and either real or imaginary. If it is real then

we have propagating modes (trapped modes). If an is imaginary we have non-

propagating modes (evanescent modes). (12,13) That is to say that if,

2 i(kanr-'4)

(3-111) H0 (kanr) - V kanr e

and if an = i()

(1) -2 -kr
H )(kanr) -n- e-lkre-

Thus, if an is imaginary, P(r) decays exponentially as r increases. We can also

determine the number of propagating modes. Since an is positive we have by

Eq. (3-100) the condition that

2
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we know from Eq. (3-101) that an is,

_(n+ 
n+

(3-113) an -_2 2 n =0,1,2,3,. .,M
* kh

We can now set the limit on the number of propagating modes, by the

following condition.

(3-114) 1 2:(M + )( 71 M ) 7a

(3-115) kh I M
n 2

Our expression for the pressure now has the following form

(3-116) P(r, z) = An s i r( 0 -a2)FI(kanr)

In order to solve for An we evaluate VP using Eq. (3-90),

Eq. (3-117)
CP=A n ts -kzVr-, 2 + -() )n
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We have from Eq. (3-85) the inhomogeneous wave equation that

-8(z-z,) 5(r) V2p +k2p
(3-118)2ira J{ +jH

2ntr

XAn s i kj rH0(kanr)
n D

With help from Appendix B we have,

(3-119) + H .A ) (kan r)=4 8r)

So that Eq. (3-118) becomes

(3-120) 7An s i =kz J a =! 4

Utilizing the orthogonality condition for the depth eigenfunctions

(see Eq. (3-102)), (14) we find that An equals

(3-121) An =-s i kz 0  Ia n

The expression for the pressure now becomes,

( 22 2 ((3-122) P(r' z)= Is ninkz, la n Slrkz I/-a n)H 0 (k anr) .
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R.ay. Theory

We begin again with the time independent wave equation (Helmholtz)

Eq. (3-85).

V2 P''k 22 r)8(z-z 0 )

(3-123) VP(r) + n (z)P(r) =

the boundary conditions are the same as for the normal mode case namely that

the pressure is zero at the surface and the normal derivative of the pressure is

equal to zero when evaluated at the bottom. While we assumed cylindrical

symmetry for the normal mode case, we will assume spherical symmetry for

the ray representation. The range variable R is defined as,

(3-124) R= r 2 +(z-z 0 )

The Laplacian for spherical coordinates is, (15)

2 2 1 1
si(3-125) 2 R- 2 R inn(O)(

R R s in(O) T o R 2sin 2(0) a(P2
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Due to the spherical symmetry, the partial derivatives with respect to 0 and (9

are zero. Therefore Eq. (3-125) becomes,

_2 a

(3-126) V2= 1 a 2 and
2 aRR4

(3-127) V 2P = "- +, ap
DR2 (R DR)a R

We will use the homogeneous wave equation in order to obtain a general

solution and then use the inhomogeneous wave equation to obtain the

particular solution. Starting with the homogeneous Helmholtz equation,

which is Eq. (3-85) with n(z) = 1 and the source distribution term equal to zero

(3-128) V2P + k2P =0.

2
Substituting in Eq. (3-127) for V P we obtain,

(3-129) a2(RP) +k2(RP) =0.2
aR
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The general solution to Eq. (3-129) is, (16)

RP=e±ikR

± ikRp=e
R

+ ikR - ikR
(3-130) =A --- + Be R P 0(R).RR 0

We will use the radiation condition for spherical waves in order to decide

which term in Eq. (3-130) to keep. The radiation condition is, (17)

lim P[P' (R)-ikP(R)]-0
(3-131) R-o L

+ ikR ikR ikR
When P (R)=Ae , P' (R)=ikAe.-- A--.- and Eq. (3-130) becomes,

0 R 0 R 2R

(3-132) 1im .A ] 0.

- ikR -ikR - ikR
When P (R)=B -  P' (R)=-ikBe -Be and Eq. (3-130) becomes,0 R'0O R 2R

(3-13)lira [-2iBe -ikR] 0
(3-133)R-.o*
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therefore B = 0 and Eq. (3-130) becomes,

ikR
(3-134) P 0(R) = A --.

In order to determine the constant A, we will use the inhomogeneous wave

Equation, Eq. (3-85). We integrate Eq. (3-85) over a volume v and then take the

limit as R approaches zero:

(3-135) 1ir m V{ (VP)dv+k2 Pdv =- z-z 0 ) -(r)dV }
Evaluating the first term with help from Gauss's theorem, (18)

(3-136) fvv (VP)dv=- ,VP.da

ikR A ikR']2

where VpW {Aike Ae 2 and d=RR sin(O)dPq. Equation (3-1.36)R 2
R'

becomes,

v 0

=4 ,AeikR[ikR- 1].
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Now evaluating the second term in Eq. (3-135),

2 2 ikR 12
k fvPdv=k A Re dR fs i nO)dO Jdp

0 0 0

(3-138) -4 nAl [ ikR( ikR -i)+i1]

and finally evaluating the last term,

~r) R -h 271
(3-139) - (z - z0  ,f5r)2r d7 0 f~z-z )dz d

v 00

Equation (3-135) becomes,

(3-140) lini {4nA=1},

therefore A=- __ an,' Eq. (3-130) becomes,
4n;

ikR
(3-141) P (R) = e

0 n
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So far we have evaluated only the direct ray. We will now evaluate the ray

which suffers a single interaction with the surface and the bottom. Any ray

which reflects from the surface or bottom obeys the Law of Reflection, (19)

which says that the angle of incidence is equal to the reflected angle.

Following the same procedure as for the direct ray, the phase and amplitude

can be found for each ray. The ray that reflects once from the surface

appears to come from a source located at r=-O, z=-zo (see Fig. (10)). The pressure

due to this reflected ray is equal to

ikR' 2

(3-142) P sref(r,z) =e where R'= r2 +(z-(-z0 ))Sref 4nR' . ( O)

and the pressure due to the direct ray is given by Eq. (3-141). The total

pressure then at the point (r,z) due to the direct and surface reflected ray is

just the sum of the individual pressures,

ikR ikR'
(3-143) P(r, z) = e +  e

where Rs is the surface reflection coefficient. The boundary condition for the

top surface states that the pressure is zero at z=0. Using this condition we can
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-(2 h - z)

z=O

z=2zo

z=2h+70

Fig. 10. Rays and their Image Point Source Location.
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determine the surface reflection coefficient Rs.

ikf 2 2
0

(3-144) P(r, z) =0- e 21 + Rs]

47cr +

(3-145) whence Rs = -1

Equation (3-143) now becomes,

iikR eikR ' 1
(3-146) P(r,z)= 4I e ik R- .k

To determine the pressure at a point P(r,z) due to the direct ray and - ray

which interacts with the bottom once, we proceed as before. The ray which

interacts once with the bottom appears to come from the point r=0, z=(2h+z0)

(see Fig. (10)). The pressure due to this bottom reflected ray is,

ikR 2 2
(3-147) P rer,z)=e where R"= r2+(z-2h +z)'

Bref 4tR"

The total pressure at the point (r,z) due to the direct and the bottom reflected

lay is,

de

ikR ikR"
(3-148) P(r, z) = e n+R --..-

4 icR B 4tnR"
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where RB is the bottom surface reflection coefficient. Utilizing the bottom

boundary condition we can determine the bottom surface reflection

coefficient (RB).

(3-149) P(r,z) ei k ik(h - z0 ) (h - z0) ](1_-R
Iz I T 2 2

z(h + h- 1 3F+(h-z,;_ ))

it follows that RB = 1. Equation (3-148) becomes

41 [ikR ikR]
(3-150) P(r, z) = 4 R

This procedure can be generalized for rays that incur multiple reflections.

Each of these multiply reflected rays appears to come from an image point.

These image points are located at, z=±z0 +2n h, n =0,±_1,±2,...

The pressure then is a summation of all these interactions,

(3-151)

ik 2+(z-(z 0 +2nh)) 2  i kr2+(z+(z 0 -2nh);
P(r, z) = + I ( n 7

47c n 2 2
( z_ 0 hr2+Z+ (zo -2n h))}r2 +(z-(g 0 +2n h)) 2
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Connection. Btween Normal Mode and RmyTyIeor

There is not a one to one correspondence between modes and rays. In the

homogeneous waveguide, all images are required to form one mode and vice

versa. However, since both theories give the same answer in the waveguidc,

they must be equal. We should therefore be able to convert from one

representation to the other. With this in mind we will show that the Normal

Mode solution and the Ray or Multiple Reflection method from the last section

are mathematically connected. We begin with Eq. (3-151), the final form for

the pressure in the Ray representation,

(3-152)
nji k r2 +(z-(z0+2nh)) ''r+z( 0  nh)I

P(r,z) (-1)
72t z +2n r2 +(z+(zO-2n h J

which can be written as,

(3-153) P(r,z)=- + (-1)nfP(r,z-zo) -P(r, z+Zo4 7c-- n
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writing (-1 )n - ein n we write.

(3-154) P(r, z)=P(r, y)- P(r,T +)

2 2

ikir +(._-2n-h) -inn
where P(r,y.,_)= y .. 'r2+.y__2nh)2

r 2+(y--2n h)
+ 0ikr 2 + ( -2nh) 2 - inn

and P(r, y,+)= y e
47 - r 2 +(-f + - 2n h) 2

using the Poisson Sum Formula (20)

(3-155) T'f (atn) I a Y
n =-co M=-00

where F(q) = 1 f e-iqcof(€)dc

setting a = 27, we obtain

+00(3-156) Yjf(21cn) =7," F(m)

n=-oo %/2Cn =- C

where F(m+) f () do.
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We can now write f(2irn) as,

ik -moh

........._ e i k r h T -- -in n~ i-

(3-157) f ()= 2

Now for P(r,+) we have,

2

i kr2 + (7- -hinn-i

(3-158) P(r,y+) = -_. .

8nn

- e0

likewise for--r'-)

+00

i~ kkrr2 + t2Y Rh in + i!

(3-159) P(r, - = e %(2 + 2

87Co

If we set t--y-mh/ic, and d =-x/h dt and restrict ourselves to P(ry.) we find,

+0

(3-160) P,1, 2-~n -d
8 nh _ 2 -00
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If we introduce 8 by t=r sinh(E), and let q=(n+.5)n/kh then the integral of

Eq. (3-160) becomes,

i*Ur 2 +t i(n + L) i ikrjl+ sinh2 (8) + ikqt
(3-161) e 27J h dt= ) r cosO(e)d@

2 2 2
r2+ t2  ..rT 1 +s i n h2(

+00

=f i k ri -qc os E')dje'

where E'= o+ t a nh- (n)

Now set sinh(E') =s/r, so that cosh(O')dO' = ds/r; then

_r 2 2 ds
r+ s de'= d(3-162) cost( e')= rr 2 s

and Eq.(3-161) becomes,

(3-163) - ikri cosh(')d e (r 2 + S2 ) ds
r 2 +s2)
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from Magnus et al., (21)

+0o

(3-164) H (kx)= e  7 dt

x t

Eq.(3-163) then becomes,

+00

(3-165) e ds =

-00

i H(1) (k r I_ rH(1krJ -(nhr I r rJ/--h

Finally, Eq.(3-160) becomes,

(3-166) P(r,y_)= H i(n+)H)kr 1-(n+ )2 -2
n 0 h

From Eq.(3-1O1), .A = (n + L n where we have defined Y'n by

(3-167) Y =k
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and now Eq.(3-166) becomes,

• 3-168) P~, -= e ~n + ' - H(1) 1r r.k 2 --'n)
n +

-i16)_ (1)

__. 7..-_ H0 (Knr).
8h n

with Kn= k2  2 and '-=z-z o

Finally Eq.(3-168) and the equivalent equation for z+zo can be written as,

i yn(z-z°) (1)

(3-169) P(r, z- Zo) -e H (Kr)

(3-170) - n(z+ zo) (1)
) r8h n H0 (Kn r)
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Subtracting Eq. (3-169) from Eq. (3-170) (see Eq. 3-153), one obtains an

expression for P(r,z),

(3-171) P(r, z) = - (e -(Z o ~e Y(+Z)HO(Knr)

=.L 8 e e eH ()

-yz (1

= 1 l 0(tn) i s if(nZo) (Knrf(Y))H (K

Since the sum is from n=- vo to n=+ cc, the first term in the RHS vanishes, and

the second ternm equals 4 s i n(ynz)s In(ynzo). The result is

(3-12) Pr, Z= 2h i n(ynz)si n(ynz0 ) H0 (K r)

which is Eq. (3-122), the normal mode representation for the acoustic

pressure.
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CHAPTER 4

METHODS DESCRIBING SCATTERING FROM OBJECTS IN A WAVEGUIDE

In this chapter we begin by reviewing a few of the previous methods

used to describe acoustical scattering from objects in a waveguide. While the

methods given are not exhaustive, they represent the major work in this area.

We then formulate the present method based on Huygens' principle. We

conclude this chapter by obtaining a general expression for the scattered field

far from the object.

F!*viouslv Used Methods

The problem of describing the scattering of acoustic, electromagnetic,

etc. wave energy from an object in free space is difficult. One has to contend

with numerical instabilities, ill posed problems etc. When one allows the

object to be in a waveguide, the problem greatly increases in difficulty. One of

the earliest methods which allowed for numerical answers was the sonar

equation approach to scattering from an object in a waveguide. This method

simply takes the transmission loss (-20log(P/Po)) from the source to the object,

adds the target strength due to a single plane wave incident on the object and

then adds the transmission loss from the object to the field point (receiver).

Mathematically it takes the following form,

(4-1) Us=TL so+ TS obj + TL or
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The problem is that there is only a single number that one obtains from this

process. There are no insights as to what physical processes are going on with

the scattered field. This method however gave surprisingly good results when

the field point (receiver) was in the forward direction, and when the

frequency was high enough so that the scattered field was highly focused in

the forward direction.

Another approach taken to solve this problem was to use ray theory and

follow individual rays as they interacted with the boundaries and the object.

In theory this me!hod seems very plausible; however it becomes intractable in

practice. This method has been developed by Evans (1) and Werby and Evans

(2) for an object in a half space and the theory has been worked out for an

object in a waveguide. A similar method has been presented by Hackman et al

(3-5) for elastic objects including shells.

A more straightforward method was developed by Evans (6) which

decomposed the incident field (composed of a sum of normal modes) into an

equivalent plane wave representation. Each of these plane waves are allowed

to insonify the object in order to generate the resulting scattered field. This

field is then projected onto a cylinder which encloses the object and spans the

depth of the waveguide. This method is known as the projection method and its

results are compared with the present method in Appendix E.

A method based on matched asymptotics was devised by Collins (7,8) to

derive an approximate expression for the field scattered from a spheroid. The

matched asymptotic solution consists of an inner solution valid near the

scatterer and an outer solution valid away from the scatterer. The two parts of

the solution are matched in the region in which they are both valid. The

resulting field is then propagated in the waveguide. Sen (9) has reported the

use of matched asymptotics to describe scattering of acoustic waves in a
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waveguide. He has reported that the method can be used to determine globally

valid pressure field junction conditions near a boundary discontinuity.

In addition, Kleshchev has written several papers dealing with

scattering from objects in waveguides and/or sound channels. (10-12)

Proposed M oon .1-lugens' Principle

In 1690, C. Huygens published Traite' de la Lumiere. In it he discussed a

new principle pertaining to the propagation of light. Huygens proposed that

at any instant t=to, a point source of light generates a disturbance which is

propagated into the surrounding medium as an isolated spherical wave,

expanding at the velocity of light. The disturbance at time t=tl is due to a

succession of disturbances at intermediate times between t=tO and t=tl. The

actual effect then at time t=tl is the result of all the secondary disturbances.

In order to determine the effect at time t=tl caused by an initial disturbance at

t=t0 we then calculate the state at some intermediate time t=t', then at t=t", etc.,

until we are at time t=tl.

There are some limitations imposed by this theory namely that the

rectilinear propagation of light can be accounted for only by assuming that a

secondary wave has no effect except at the point where it touches its envelope,

and in addition it is assumed that since a disturbance on the envelope of the

secondary waves propagates in both the forward and backward direction, only

the forward propagated wave was to be considered.

The present method uses the basic concept of Huygens' principle namely

that the field propagating away from the object and is not contributing to the

field at the receiver can be neglected. Huygens reasoning for making this

basic premise was based on empirical observations. We make this assumption
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based on the type of propagation model used. Propagation models either allow

for one way or two way propagation. If the model performs one way

propagation then the field always propagates away from the source and no

energy via backscattering from rough surfaces, rough bottoms or objects are

considered. If on the other hand the propagation model allows energy to be

received from the above mentioned mechanism then the field at the receiver

can be dependent on what environmental or physical changes happens in the

waveguide beyond the receiver. For example, if beyond the receiver there

happens to be a sea-mount (an underwater mountain) then acoustical energy

could be scattered back toward the receiver affecting the field at the receiver.

In other words, for a one way model, the field at the receiver is dependent on

what happens to the field as it approaches the object. For a two-way model, the

field at the receiver is dependent on what happens before and after the field

reaches the receiver.

We will now formulate the scattering problem. The geometry used to

describe the scattering is shown in Fig. 1. There are two regions, region I

which contains the scatterer, and region 2 where the field will be determined,

region 2 is free of sources. The surface S2 encloses region 2. The surface S2 is

taken to be at a large distance from the region of interest. The surface S 1 is an

arbitrary mathematical surface enclosing the scatterer. For free space or

unbounded problems the surface S2 could be extended an infinite distance

away from the area of interest.
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Fig. 11. Genera! Scattering Geometry

For a problem dealing with scattering from an object in a waveguide, the

surface S2 can still extend to infinity but this necessitates that we use the

Gre,-n's function which satisfies the waveguide boundary condition. See Fig.

12.
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Fig. 12. Specific Scattering Geometry for a Waveguide.
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To establish Huygens' principle for the scattering problem we need to develop

a relation between the known value of the field on the surface S1 and the

unknown value at the field point (receiver). Assume that the field is a solution

to the scalar Helmholtz wave equation,

(4-2) (V2+ k2)W(x) =0

and the Greens function for the Helmholtz wave equation is given

by,

(4-3) (V 2+ k2 )G(x - x,)= (x - x')

We obtain this relationship by invoking Green's theorem (13) which equates

an integral of a vector function over a closed surface to an integral of a

related function over the volume enclosed by the surface,

(4-4) J(4VV2G -GV2V)dv'= J(,#VG -GVWI) 9 n 'ds'

where in this case the surface S is Si + S2. The surface integral is equal to zero

when the observation point (receiver) and the singularities of V lie outside

the surface S. (14) If the field point is inside the surface (in the bounded

volume) then the scattered field becomes,

(4-5) u s= V(x)= f (V(x')Vt3(x - x')- G(x- x')V'v(x')) . n'ds'

This integral over S is divided into two parts, over the surface SI bounding the

scatterer, and over the surface at infinity S2. Since the field is propagated
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from the surface SI to S2, it is composed of outgoing waves. We are then left

with the integral over S1. The scattered field then in region 2 becomes,

(4-6) Us = fs(v(x')V'G(x - x') -G(x - x')V (x) 'ds'

We replace 4f with the free field scattered field f which is valid at the surface

SI. We then have,

(4-7) U s= f(f (x') Vt(x -x') - G(x - x')V'f(x')) . n'ds'

S1s

This is the expression for the scattered field far from the object. We apply this

expression to two different waveguides in the remaining two chapters.
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CHAPTER 5

APPLICATION OF HUYGENS' METHOD TO AN ISONVELOCIT\" WAVEGUIDE

In this chapter we utilize the expression developed in Chapter 4 to

describe scattering from an object in an isovelocity waveguide. We begin by

solving for the acoustic pressure in the absence of an object. This will be the

acoustic field incident upon the object. We then show the development of the

near field scattered field (the field that is valid a short distance from the

object). We then develop the far field scattered field. We end this chapter with

an example which shows that the object acts as a source in the waveguide

which implies that the object is now fully integrated into the waveguide. In

Appendix E, there is a comparison of this method with the projection method

described in Chapter 4.

We utilize Normal Mode theory to determine the incident field. We

consider a waveguide. consisting of an isovelocity layer of water over an

isovelocity half-space. The bathymetry will be flat and the half-space will not

support shear. Sound speed in the half-space will be greater than that of the

water, as "vill its density and attenuation likewise will be greater than the

water's. Such a waveguide is sometimes called the 'Pekeris' waveguide, (1)

since Pekeris was the first to thorougiy investigate it. As mentioned in the

introduction, we will solve the acoustic field scattered from the object first

using the Pekeris waveguide and then using the more general multilayered

waveguide. We begin by deriving the incident field for the Pekeris

waveguide. The following development is based on Clay and Medwin. (2)
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Theory

0

The following assumptions will be made when deriving the incident

field.
1) The object is in the farfield of the source, this allows the use of

* the asymptotic form of the Hankel Function.

2) There is a pressure release air-water interface, this would
correspond to having a boundary., condition such that the
acoustic pressure evaluated at the surface is equal to zero,
i.e.P(O)=O.

3) The pressure is continuous across the water layer (subscript 0)
and the semi-infinite half-space (subscript 1). This corresponds
to the following boundary condition,

P0 = P 1 = (02p 0 (P0 = (02p 19l P 0 cP0 
= Pl(P1

4) The vertical component of displacement is equal across the
interface of layer 1 and layer 2. This corresponds to the
following boundary condition,

(u o) = (ul) =* az('at z at-i-
z z

a ( '901 _ a I (,,)7t (J ) - tW a

sro _aeic

05) The source produces a symmetric field about the z-axis.
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We wi vrite the particle displacement d and particle velocity u in terms

of the dispL .tent potential 4):

(5-1) d =V4, and u =Uk.
at

Newton's Second Law becomes

at

(5-2) a

Solving for the pressure P, we obtain

2
P . -, a -t2

(5-3) at

where p is the density of the medium. For a harmonic point source, ihe

pressure is

(5-4) P = (02PIP

The governing equation is the wave equation,

(5-5) V 1 a2p
c at2
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where c (water sound speed) is time independent. Substituting Eq. (5-4) into

the wave equation, Eq. (5-5) gives the time independent wave equation or

Helmholtz equation, (3)

2
2 1 a P

c at2

or

(5-6) V2 p + k 0

where k2 = 0,2/c 2 .

We will use the separation of variable technique (4) to solve this

equation. The Laplacian in cylindrical coordinate is (5)

(5-7) V2 22  1a 2 +
r 2 2 2•

Because of azimuthal symmetry the Laplacian becomes

(5-8) 
V - 1 T a + a a

ar az 2

The solution to Eq. (5-6) will take the following form,

(5-9) p= U(r)Z(z)
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Using Eq. (5-8) and (5-9) in Eq. (5-6) yields two ordinary differential

equations, in range and depth. The range solution is,

(5-10) Uf(r) + -- u'(r) +K2U(r) = 0

2
where K is the separation constant, and the depth solution is,

(5-11) Z"(z) + (k2 K2)Z= 0.

2 (02
where k =2i is the characteristic wave number and Equation (5-11) can be

C

rewritten as,

(5-12) Z*(z) + Y2 Z=0

where Y 2 =k K2and is the vertical component of the wave number. The

wave number k is constant in the waveguide, while the horizontal component

K and the vertical component y will vary with mode number (RI = 7+R).

Consider now Eq. (5-10),

(5 1)U'(r) + r-u'(r) + K 2U(r ) = 0
(5-10)r

this is Bessels' equation of zeroth order, whose solution is the

cylindrical Bessel function of the first kind J0 (Kr) (6) thus

(5-13) U(r) = J 0(Kr)
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The asymptotic form of J0 is (7)

J (Kr)= co Kr
0 :n ~ when Kr >I

* ei(Kr~~ +e . i(Kr -'

(5-14)

The first exponential represents an incoming wave with infinite amplitude at

infinity and the second exponential represents an outgoing wave with zero

amplitude at infinity. We are interested only in the outgoing wave, therefore

the solution for the radial term takes the following form,

1 [ - i(Kr - I')].

(5-15) U(r)- - r

Now consider the depth solution, Eq. (5-12):

(5-12) Z"(z) + Z 0

the general solution has the following form, (8)

(5-16) Z(z)= As i n(yz) +B c o yz)
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Implementing the surface boundary condition, that is P=0 at z=0:

(5-17) P(r,z.t)=0

(5-18) P(r, z,t)o= 2p e iwtacco 2pU(r)Z(z)e ic t

(5-19) P(r, 0, t) = to2p U(r)Z() el(t

which implies that Z(0)=0, hence B=0 in Eq. (5-16). The depth Eigenfunction

then takes the form,

(5-20) Z(z) - A s i n(yz)

At this time we will derive the characteristic equation for the waveguide.

To accomplish this we define the reflection coefficient to be (9)

(5-21) R= ei2 0

The reflection coefficient for the upper layer is given by

i20

(5-22) 
u -1=e I

which implies 24
u = It or Ou = - Wh'fl the incident angle 00 is less than the

critical angle, e c, the reflection coefficient r the lower interface is given

by (10)

(5-23) R PlC OS(O0 oco0COS(1 1)  when 0<0 8
IPflc' cO()+PO'cco s( @1) -0 C4
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where by Snell's law @, =sin- (J..s in~e When thc incident angle is

larger than the critical angle and less than 1 the reflection coefficient for
2

the lower interface is given by

(5-24) R =e w~) vhen..) e5 <-!
C 0 2

and it follows that

0(5-25) (D =tan-1 P 0 b J
I [Pfi Co (80 )

where b, c s i n2( 0o .- 1. Utilizing the boundary condition at

S z=h, and Eqs. (5-22, 5-24) the characteristic equation becomes,

(5-26) RURe =e

rewriting the exponential using trigonometric functions gives,

(5-27) c 2 u+ '01 - yh)) + i sin(2 (Ou+ 01-,yh))I
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which implies 2(O u + - h) =2nn,n =0,_ ,2,

or

y-Inh u =(m- m=,2,3...

or

(5-28) TMh

We can rewrite the horizontal and vertical components of the wave number as

the following,

m=k sin(Om) sin(em)
c0

and

(5-29) Ym = k cos(Im)=0 cos(rem)
0

Equation (5-28) can be solved for o) with the help of Eq. (5-29) with the result

that

(5-30) to h cos(em)

which can be rewritten as

whcos(em)- - P0 c 0 bl 1
(5-31) c P C =tan 'J .

.. . " 1 I clle )
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This can be put in the following form.

m 2) 01 _ -0 c m)

(5-32) =tan - Pk co . m)

where l-b=

Defining

= 2 2
(5-33) b K -k l

m "/ n

where k We now rewrite the right hand side of Eq. (5-32) as the01 IC1

following,

IPO c I In~.-
1~PL]

(5-34) tan- Pkco e)ta, n mJ

so that

\/

(5-35) h 7 - (m - I~n= tan- P" in)

ni2PIy M
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o r

(5 3 6)tah =ni7

the left -hand' sid6. of Eq. (5-36N, can be rewritten. as

+cb~hyfi)
-(5-37) ±s 'fl(,h ym) (Oh y r)

After using Eq. (5-37) in Eq. (5-36), the following equality now holds,

-Cothyn) (0 bo bi

o r

(5-38) t a h y m)

Equation (5-38) is the characteristic equation for the isovelocity water column

overlying an isovelocity half space. It will be used to solve for the cigenaut

yin' which are solutions to the depth eigenfunction equation, Eq. (5-12).
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Now we will derive the depth eigenfunction for the second layer. The

sound pressure is exponentially damped because the incident sound field is

tota,1ly reflected. Using Snell's law, (11)

si n(6) Si n( 1O
(5-39) c c

This implies that

_ ~..sin2(e 0) - cobl(e 1

or

(5-40) co0 s(e1  =[1 -( Is i n2( 0 )

The argument in the radical is positive if e0 < e that is, if the incident angle

is less than the critical angle. At the critical angle,

sI n(e,) s i n(90) c(5-41) c L I s ( O)=

and

(5-42) C o.S(0 0 = F ( Co s In2(e2 ) = o 0.
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When e0 > e the argument inside the radical of Eq. (5-42) is negative:

0

cos(eC .2

(5-43) = ,0 s1

Modes will propagate only in the upper layer only for 0 > 0
0 C*

Therefore,

IC o =i00k 21

(5-44) =- kk2 s2

Defining pm by the following:

(5-45) Am- kI CoSin)

we find

(5-46) 2 2 2

(O-6) =i k sIn2(0 -kI
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so that

(5-47) km=i =ibm

2 2 2
where bm =Km-ki.

The depth eigenfunction for the second layer takes the following form,

ip m(Z - h) + -im(Z - h)Zm(z)= Cme +DCn

( -b n(z- h) bm(Z -h)(5-48) = Cme m +DmC

The first term on the right damps the signal as the wave penetrates into the

second layer. The second term increases the strength of the signal as it gets

farther in the sediment (and farther from the source). We therefore choose

Dm=O. Equation (5-48) now becomes.

-bm(z -h)

(5-49) Zm(Z)= Cme m zkh

We use the boundary condition at the water/fluid bottom interface in order to

solve for the modal coefficient Cm. This requires that the pressure across the

interface be continuous:

(5-50) P0 Z M(h)= PZM(h) (refer to page 77)
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or

-bm(h -h)

(5-51) =p Cm

Therefore

(5-52) Cm = p1 s i n(ymh) •

Now the depth eigenfunction for the fluid bottom takes the following form:

(5-53) Zm(Z) = O S i n(ymh)e b (z-h) z a h

Before we can solve for the acoustic pressue Ln the wavt; uide, we need

to solve the modal coefficient Am. The dept:! ciger;function cq,,ation for the

water layer Eq. (5-20) can be rewritten as fillows:

(5-54) Zm(Z) = Am S I i
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To obtain the modal coefficient Am we use the orthogonality of depth

* eigenfunctions.

foP0 Zm(Z)Zn(Z)dz

=f POS i n(ymz)S i nz)dz = 0, m *n

* -

(5-55) =fjP 0 
s i ?(,mZ)dZzVm, m =n

0

Since we expand the source function 8(z-zo) in terms of these orthogonal

eigenfunctions Zn:

(5-56) 8(z-z0)= 1 AnZn(z)
n=1

• 0 Zm(Z)8(z - zo)dz = IAn f PoZm(Z)Zn(z)dz

so that

(5-57) POZm(Z0) = AmVm

* or

(5-58) Am= P VZm(z.)

0v
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The sound pressure from Eq. (5-4) is

(5-59) P0= 2 pp=co 2 p 0

Now

P(r, z, t) = 02p0 mLAmZm(z)Um(r)T(t)

P0Zm(Z0)Zm(Z) -i(Kmr) is
(5-60) = Cm2  m Y 0

Finally,

-i(Kur ) - Unr

(5-61) P(r, z,t) = C Zn(z0)Zn(z)c e
n V n V

where the constant C has absorbed all numerical constants, coefficients, and

the time dependent term, and we have introduced the attenuation term, e- a r . A

brief discussion of the attenuation term is presented in Appendix D. This is the

field in the absence of the object. To obtain the total field with a scattering

object present, one would add the scattered field to this incident field. We now

proceed to insonify the object using this incident field.

The derivation follows Norton. (12) The geometry is shown in Fig. 13.

The object has as body fixed axis, Xo , Yo, Zo , where Zo is the axis of symmetry

and is parallel to the waveguide boundaries. The angle that the symmetry axis

of the object makes with the vertical plane containing the source and the

center of the object is labeled cc.
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zo
Sobject

*Y0
source

Fig. 13. Waveguide Geometry with Object.

The connection between the cylindrical coordinates of the source and the

body-fixed rectangular coordinates of the object is given by

(5-62) r S=r so-COK(a)Zo -sI (a)Zo , Z=Zobj- X0

Since we required that the object be in the far field of the source,

_-.Srso and the factor ,k.r. a V is nearly constant in range at the

object. Equation (5-61) can be rewritten using the exponential form of the
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sin (ynZ) term and Eq. (5-62), resulting in the following expression for the

incident field in the rectangular system,

i nZ obj - MK Jr . - nr o
s i n(y n s)e •

(5-63) U.(r, z) =CI
n 2iv K -V nr so

ei(y ,K n s i (a),K co Sa))*(Xo,Yo, Z o)

- iynz obj -iK cr so -nrso

+ sZn( nZ)e 
C

n 2ivn nr so

eei(-yn Kn Si (a), Kn co ga)) *(Xo, Yo Z )

We have specified the depth of the field point to be at the depth of the

object, Zobj and Zs is the source depth. Note that there are two sets of plane

waves, a downgoing and upgoing set. They are expanded in a spherical

representation so as to be compatible with the T-matrix, since the T-matrix is

in a spherical representation.

A spherical coordinate system is established at the center of the object.

The angle 0 is measured from the Zo axis, and q measures the rotatirn in the

Xo, Yo plane. The object is invariant under rotation in (p. The angles are

defined as follows,

1 Z. X ~ 2 2
(5-64) O=-cos - ) :=tan- (-), P= +Y +Zo

0
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The exponential terms of Eq.(5-62) can be rewritten as

iK'
(5-65) C

Where R andp are given by the following:

(5-66) R= (±n i +Kn si n(a)j + Kn cos(a) k),= ( i + Yoj +Z k)

We now expand Eq. (5-65) in spherical waves. The expansion follows Morse

and Feshbach. (13)

iK.ep I 1 (l-m)p(oo)pioe)
(5-67) e = 1(21+l)ijI(kr) Z (c o s(O)) P(

1=0 m=-_ll m). 1

•[(c o K m q) c o s(m (p) ) + (s i n(m qs i n(m qi))]

where 0 and (p are relative to K and 0' and (p' are relative to p . If we let

1=e
a=( ), and0=o

m Em (21+l)0I-m)!

(5-68) I 4i(l +m)! e0=1 em=2,m*O

then Eq. (5-67) becomes,

1

iR-P 2 In 0 i r n0
(5-69) e = 4x 5 i.y) P7 (c M0)) Is,,

,m,o co s(m 40) o=

11 fs u(m 0) a = 0
"y1) j(k r)P (co s(O')){

) 0co (p)o =l1
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Equation (5-69) can be simplified by making the following definition:

1
I siO(mIP)o=O

am2 M
(1 Y m  [sin (P) CFi

(5-70) =-4 iI ,(0,0

and,
2 inIs i U(m f jC- 0,

R eil() = 1 (kr) Pl(COs(0')) 1 si, m9 ')o=1

(5-71) =j (kr) ym (0,q')1 ,

Where Re denotes the regular part of I'. Utilizing Eqs. (5-70) and (5-71), Eq.

(5-69) takes the following form,

(5-72) e = - am Re I,)1, m,o l,o lo

The incident field (Eq. (5-63)) in terms of the spherical coordinates is now

given as

(5-73) U. (p)=I -- Re i, o(p)
I ie fa ne 1,f a Ta

where n is the index for the number of modes. The partial waves coefficients
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of the incident field are then given by the following,

(5-74)(5-74) zs)e anr so (Ynz obj - Knr so) - obj + Knr so)am  = • Ky O(e -eC a
n,l,o 2iv n-V"n r so e

where zs is the depth of the source, Zobj is the-depth of the object and rso is the

range from the source to the object. The scattered field about the object is

written as (see chapter two)

(5-75) f(P) = n, m, 4 mn,l,m,crn101

where m T m am
n ,l,o I'," a n,l',o

and , =h 1(kp) Y,(,q )

The scattered field given by Eq. (5-75) is valid only near the

object before it has a chance to interact with the waveguide boundaries.

Notice that the spherical Bessel function used in Eq.(5-71) to describe the

regular spherical wave (Re',a(p)) is now replaced by the spherical Hankel

function to obtain the outgoing spherical wave (mpIa(p)). Having the

scattered field about the object we can generate the expression for the

scattered field far from the object.



100
The scattered near field does not satisfy the boundary conditions of the

waveguide. The solution for the scattered field far from the object (from

chapter 4) is:

f G~r ' z)a, (r) ,

(5-76) U (r S,Z) f(f(r) an G(rS'Z)a S

a

where the surface C is a closed surface enclosing the object. Figure 14 shows

the geometry of the waveguide with the object centered at the origin of the Xo,

Yo, Zo coordinate system.

rZ

Z Z Z r

receiver
scattering (field point)
patch ; 'or

Fig. 14. Geometry of Waveguide from Object to Receiver.

We now need to determine the normal derivative of the scattered field and the

Green's function that satisfies the waveguide boundary conditions, and its

normal gradient on some arbitrary surface sufficiently near the object.
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The appropriate Green's function (G(rsz) ) is given by Eq.(5-61),

(5-77) O S, Z)= C 4as i n( n zr) s i n( n z) e e~rsC-a

(5-77) G(r n z)= rn Vn nr

where Zr is the receiver depth and rs , to within first order, is given by

(5-78) rs = ror-r cos(0)

where 0 is the angle between r and r or and ror is the distance from the

object to the receiver. The Green's function after substituting Eq. (5-78) can

be rewritten as

iKnr or - a nr or

(5-79) G(r s, z)= C 7Y
n Vn-N/nr or

S i I n z)e oO) earcoO)

r c os()r or

Substituting Eq. (5-79) into Eq. (5-76) yields for the scattered field

iKnror -ar ors iI n z )e e
(5-80) Us(r s, z)= C s rnZ Bn

n VnAKnr or
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where

(5-81) B sin(nz)e e
n f(P)an r co(0)

1- r or

- iKnr coXO).anr cos(0)
s in(y n z)e ea

r cos an
ror

Finally combining C and Bn into a single term An, gives for the

scattered field

iK nor -a Js ii nnZr)e ore

(5-82) U (r s z) = A n
S n 'n V K n r o

This expression satisfies all boundary conditions at the waveguide

interfaces and is continuous throughout all space. Note that the solution,

Eq. (5-82), is in the form of a guided wave as one would expect for the field far

from the source. Now that the scattered far field has been determined, some

numerical examples will be presented.

In this example we will follow the acoustic field as it propagates from the

source to the object, to the receiver. We will determine the total field at the

receiver by using the principle of superposition. The characteristics of the

sample waveguide are shown in Table 3.
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TABLE 3

WAVEGUIDE CHARACTERISTICS

Water Layer

Depth Compression Wave Density Attenuation

(m) Sound Speed (m/s) (g/cm**3) (nepers/m)

150 1500 ... 1.0 1.0e-7

Half Space

Depth Compression Wave Density Attenuation

(m) Sound Speed (m/s) (g/cm**3) (dB/X)

infinite 1600 1.5 .5

The source will have a frequency of 100 (Hz). Table 4 lists the source, object

and receiver locations. For this environment there are 7 propagating modes,

as determined by Eq. (5-36).

TABLE 4

LOCATION PARAMETERS

Source Location Object Location Receiver Location
r (m) z (m) r (m) z (m) r (m) z (m)

0 50 5000 75 6500 25

Figures 15 and 16 depict the waveguide in a vertical and horizontal view. The

horizontal view is looking at the waveguide from the surface down.



(R 1 )4

RECEIVER
(600,2s) 0

S (oso)
SOURCE

OBJECT

(5000,7S)

Fig. 15. Vertical (side) View of the Waveguide.

SOURCE RECEIVER
(0,so) (6500,2S)

OBJECT

(5000,75)

Fig. 16. Horizontal (top) View of the Waveguide.

The source, object and receiver can be at different depths in the

waveguide; a requirement on the object is that it must be in the far field of the

source. This is because we are assuming that only the discrete propagating
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modes contribute to the pressure at the receiver and because we use the

asymptotic expression for the Hankel function, (in the solution for the range

equation) which is only valid at long ranges. Another requirement is that the

object is not so near an interface that the surface on which the near field

scattered field is determined comes in contact with the interface. The objects

characteristics are shown in Table 5.

TABLE 5

OBJECT CHARACrERISTICS

Length (m) Width (in) Boundary Condition

50 10 Dirichlet

We will now follow the field as it propagates in the waveguide. Figure 17

illustrates the magnitude of the normalized pressure field verses depth at a

range of 300 (in). Notice that the pressure at the surface goes to zero as the

boundary condition requires. There is an interference pattern due to the

summation of the 7 individual modes. Figures 18-24 illustrate the contribution

from each mode. Note that mode 3 (Fig. 20) contributes the least to the overall

field and that Mode 6 (Fig. 23) and mode 7 (Fig. 24) also contribute very little.

Modes 2 (Fig. 19) and 5 (Fig. 22) have the largest contributions to the field.
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Fig. 17. Point Source Pressure vs. Depth at a Range of 300 (m) from the
Source.
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* Fig. 18. Point Source Pressure vs. Depth at a Range of 300 (in)
from the Source. Mode 1 Only.
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Fig. 19. Point Source Pressure vs. Depth at a Range of 300 (in)
from the Source. Mode 2 Only.
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Fig. 20. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 3 Only.
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NORMALIZED PRESURE

Fig. 21. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 4 Only.
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Fig. 22. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 5 Only.
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Fig. 23. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 6 Only.
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Fig. 24. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 7 Only.
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We now allow the field to propagate to the object. Figure 25 depicts the

magnitude of the normalized pressure field at the object, 5000 (in) from the

source. Notice that the interference pattern differs from that shown in Fig.

17, near the source. This is because the higher modes attenuate more quickly

than do the lower modes. Notice that the magnitude of the field has decreased

to about 1/5 its value at the source. Figures 26-32 depicts the contributions

from the individual modes. Notice that only the magnitude of each of the

modal fields has changed, not the shape. Note also, that the relative strength

of mode 6 (Fig. 31) and 7 (Fig. 32) have reversed because of ittenuation, due to

interaction with the waveguide interfaces. Modes 1 (Fig. 26) and 2 (Fig. 27)

now contribute more to the field than any other.

We now look at the scattered pressure field as it propagates from the

object. Since the scattered field is not cylindrically symmetric, we will look at

the pressure in the vertical plane at 90 degrees relative to the front of the

object (backscatter) and 0 degrees (along major axis of symmetry). Figure 33

illustrates the vertical normalized pressure field at a distance of 300 (in) from

the object and at an angle of 90 degrees (backscatter). Note that the strength

of the field is approximately 2 orders of magnitude less than the incident field.

Figures 34-40 illustr:ite the contributions from the individual modes. Notice

also that while the structure of the modes are similar to the incident field

modes, their relative contributions are not the same as for the incident field.

Modes 1, (Fig. 34) 3, (Fig. 36) 5, (Fig. 38) and 7 (Fig. 40) contribute much more

than the corresponding incident field modes. This is because the object, acting
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Fig. 25. Point Source Pressure vs. Depth at a Range of 5000 (in)
* from the Source.
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Fig. 26. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 1 Only.
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Fig. 27. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 2 Only.
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Fig. 28. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 3 Only.
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Fig. 29. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 4 Only.
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Fig. 30. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 5 Only.
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Fig. 31. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 6 Only.
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Fig. 32. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 7 Only.
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as a source, is introduced into the waveguide and the energy which radiates

from it must behave as any other source would behave, propagating according

to the restrictions imposed on it by the boundary conditions. These

restrictions manifest themselves through the eigenfunctions. If we look at

the 7 depth eigenfunctions for this waveguide (Figs. 41-47) we see that modes

2, (Fig. 42) 4, (Fig. 44) and 6 (Fig. 46), each have a null at or very near the mid-

point of the waveguide. Modes 1, (Fig. 41) 3, (Fig. 43) 5, (Fig. 45) ai (Fig. 47)

have a maximum, (or a minimum) at or near the mid-point of the waveguide.

When any source is placed at the mid-point of the waveguide the odd

numbered modes will be highly excited while the even modes will not.
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This is what is happening with the scattered field.

Figure 48 depicts the vertical normalized pressure field at a ran-e of 300

(in) and an angle of 0 degrees from the object. Notice that the field is

approximately I order of magnitude smaller than the backscattered field and 3

orders of magnitude less than the incident field. It is clear that the scattered

field is not symmetric about the object.

It is customary to show acoustic propagation in terms of transmission

loss versus range, where transmission loss is -20 log P where P is the

normalized pressure. The pressure is normalized relative to the pressure from

the point source at a range of l(m). Figure 49 shows a comparison between the
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Fig. 48. Objects' Scattered Pressure vs. Depth at a Range of 300 (in)
from the Object. Scattered Angle 0 (deg).

point source transmission loss and the forward and backscattered transmission

loss of the object. The object is at a range of 5000 (in) from the source. This was

obtained by solving for the scattered field 1500 (m) from the object, in both

the forward and backward direction. This graphically shows the difference

between the two fields. The total field would be a coherent sum of the two.

Expressed logarithmically (in dB), there would be little or no change in the

incident field, since the scattered field is so small.
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• Figure 49 give a two dimensional view of the incident and scattered field.

We now turn our attention to representing the incident, scattered and total

field in three dimensions. The idea is illustrated in Fig. 50. A portion of the

• waveguide is defined by the ihree dimensional rectangular region; the cource

is located somewhere in this volume. Nca we superimpose a solution gri(, at

some depth in the waveguide. In general the point source and the solution

•grid will not be at the same depth. At each point of the grid, we determine the

pressure awid consequently the transmission loss due to the point source. An

example is shown in Fig. 51. The source is at a depth of 50 (mn) and is at the

•center of the grid, which is at a depth of 25 (m). Note the cylindrical

symmetry produced by the point source, and the modal interference pattern.

C,
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Solution.
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We allow the field shown in Fig. 51 to propagate in the waveguide and

allow it to insonify the object. We compute the field in three dimensions

between the ranges of 4300 (m) and 5700 (m) with a cross range of 1175 (m);

this represents a grid containing 2856 points. Figure 52 depicts the results.

Notice how smooth the field is. The lack of structure is due to the small

number of modes propagating. There is still a small amount of curvature to

the wavefront. Finally we will place the object at a range of 5000 (m) and

solve for the scattered field. The results are illustrated in Fig. 53. The most

obvious feature is that the scattered field is not azimuthally symmetric. The

major axis of symmetry of the object is parallel to the cross range axis. Notice

that the forward scattered field is slightly stronger than the backscattered

field and that the backscattered field is broader than the forward scattered

field. The forward scattered field also appears to have a high pressure lobe oi:

each side of the main field. And finally note that the field emanating from

either end of the object, (90 degrees relative to either the forward or backward

scattered field) is much lower than any other direction.
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We now investigate in more detail the scattered field of the object. If the

object is truly incorporated into the waveguide then we should see both free

field and waveguide characteristics in this field. Figure 54 illustrates the free

field scattered field (near field) after the object has been insonified by the 7

modes. The field is expressed as transmission loss. The smaller the number,

the stronger the signal. The arrow indicates from which direction the

incident field is coming.

90

180 10()-- 120= 120---100-- 0
0%

270

Fig. 54. The Objects' Free Field Scattered Field vs Angle, After 7 Modes
Insonified It.

Comparing Fig. 54 with Fig. 53 we can make the following observations.

First, in both cases, the forward scattered field is narrower than the

backscattered field. Second, from Fig. 54 we see that the forward scattered field
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does indeed have well pronounced side lobes. Third, in both cases the field is

the weakest along the major axis of symmetry. We now look at the field

produced by a point source at the objects' depth of 75 (m). Figure 55 illustrates

the field. We notice that this field peaks at two separate ranges. The first is at

approximately 100 (m) and the other is at approximately 400 (m). Referring to

the field of the object in Fig. 53, we notice a very slight undulation of both the

forward and back field. The peak of this undulation is occurring at

approximately 400 (m) from the object. This would correspond to the second

peak in Fig. 55. The first peak is not observed. It could be that the objects' free

field effects are dominant close to the object since the field has not propagated

long in the waveguide. This indicates that we have coupled the free field

scattered field into the waveguide.

We now coherently add the incident field, Fig. 52, and the scattered field,

Fig. 53 to obtain the total field, which is illustrated in Fig. 56. There is no

discernable difference between the total field and the incident field of Fig. 52.

If, however, we look at the difference (in dB space) between the total field and

the incident field, we will be left with just the change in the field due to the

object. Figure 57 shows this difference: the effect of the object is limited to the

forward and backward direction. The largest effect is observed in the

backward direction due to the fact that there is a minimum in the incident

field at this location. The difference is less than 2 (dB). In the forward

direction we see that the scattered field does indeed have an effect, but it is

very slight, only 1 (dB) or less.

Having obtained the total field for a coherent addition of the incident

and scattered fields for a single-layer waveguide, we proceed to a multilayered

waveguide in which the sound speed will vary with depth.
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CHAPTER 6

APPLICATION OF HUYGENS' PRINCIPLE TO A MULTILAYERED WAVEGUIDE

In this chapter we develop the scattered field for an object in a

waveguide consisting of multiple isovelocity water and sediment layers.

Because the general development is the same as in Chapter 5, we will only

point out the difference between the two expressions due to the differences in

the waveguides. We conclude this chapter with an example: we will explore

what happens to the field when the object is insonified by only a few of the

propagating modes. This can happen when the source is in a duct or sound

channel and the object is outside of this feature. In Appendix E, we compare

this method with the projection method described method in Chapter 4.

Theory

The development of the field due to a harmonic point source in a

waveguide consisting of many isovelocity layers is given by Tolstoy. (1,2) We

start with the expressibn for the acoustic field, previously developed

(6-1) P(r, z)= C Z n ( z s) Z n ( z )  iKr

n

where Zn is the depth eigenfunction, K. is the horizontal eigenvalue, z is the

depth of the field point and z. is the source depth. The horizontal range



between the source and the field point (receiver) is given by r and 0 n is the

modal attenuation coefficient, (See appendix D for further information). The

attenuation term takes into account energy losses due to interaction with the

boundaries and losses due to propagation of the signal in the water. The

geometry of the waveguide with the object is the same as illustrated in Figs. 13

and 14. The derivation of the incident field is the same as for the isovelocity

case of Chapter 5 except that the depth eigenfunctions of Equation (6-1) take a

different form. They are as follows,

(6-2) Zn(z s) = An s i n(ynZs) + Bn Co ,nZ s)

(6-3) Zn(Z) = An s i n(ynZ) + Bn c o synz)

Where 'n is the vertical eigenvalue.

The expression equivalent to Eq.(5-63) is the following:

N A sin(n zS) +B n co s( Yn zs)  anrso
(6-4) P(r,z)=C " nn=l

.(An + en) e mn r 0 ei On,Knsi ainc),Knco~ainc )).(X 0 ,Y0 ,Z0 )

N An si n y n z s)+B n co(y nzs) -a rso
+ C 7,+cX l n s on n

*-n = Ki i

0 Zo n OC(-YK ''aic)qnC~ n -XY9O

-7 1
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The incident field in terms of the spherical coordinates is now given as

(6-5) U. (,= Re ()I n n9110 1,o C) 0

where n is the index specifying the number of modes and l,m,o are the indices

for the spherical harmonics. The partial waves coefficients (Equivalent to Eq.

(5-74)), of the incident field are given by the following,

(6-6) a m  = C n sj + Bn-an ro
n,l,o CFnr;s

°

+ a~

+A.n s 'n ns n( ns ) + B
n c o s( ^f -z) an rso

A + )eB - 1(ytnZobj + Knr so) al

where zs is the depth of the source, Zobj is the depth of the object and rso is the

range from the source to the object. The scattered field about the object has
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the same form as Eq. (5-75) namely,

m

(6-7) f() Z n,, r ~ ( P)

n,l,md' n9I90 1,a
n*1m mo

where, = T II am
n, 1, a I', n,l', a

and IFmI (p) =h (kp) Y (0,p)
19 a 1 l'a

The development of the scattered field far from the object is

equivalent to that developed in chapter 5. The difference is due to the fact that

we now have different depth eigenfunctions shown in Eqs. (6-2) and (6-3).

The solution for the scattered field far from the object is the same as Eq.

(5-76) namely,

(6-8) U (r s,z)= f(r) -n G(r s, z) ) ds

where the surface a is chosen at a suitable region circumscribing the object.

• The scattered field is written as

Z(Zr) - nr°  -i n ro
(6-9) Us(r s,z)=C Z n r e r e Bn

n KV/nr r
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where

Z Z () zr c X rco O) iK [ rcol)
{ C c e n

n ano r Co)
r

Zn (Z) a rco.%8) iKrc o0) aIf() d
- C

r cogO) eanfpId
r

and Zr is the depth of the receiver.

This expression satisfies all boundary conditions at the waveguide

interfaces and is continuous throughout all space.

Examples

In this example we have placed the source and receiver in a weak sound

channel, and the object has been placed near the bottom, Fig. 58 illustrates the

geometry. The waveguide has 35 water layers and 3 sediment layers overlying

the semi-infinite half space. The sound speed profile is shown in Fig. 59. The

source is again at 100 (Hz). There are 16 propagating modes for this

environment,
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The characteristics of the object are the same as for the example in

Chapter 5. We now allow the source to propagate to the object. Since the

source is located at the apex of a sound channel the field produced by the lower

order modes is concentrated in this channel. This means that with the object

located outside the sound channel, those modes that remain in the sound

channel will have litti-- or no effect on the object. This can easily be

illustrated by again isolating the modes at the object and looking at the

vertical distribution of the scattered pressure due to the individual modes. In

this example the first threc modes have very little effect upon the object (See

Figs. 61-64) with mode number 4 being the first mode to insonify the object

with any appreciable energy. We therefore look at the vertical pressure at the

oI
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object due to the source insonifing it. Figure 60 illustrates the field. Notice

that the field peaks at the source depth of 60 (m). The secondary peak results

from the modal contributions which are not contained in the sound channel.

This would correspond to higher order modes. The field diminishes very

quickly after this secondary peak.

0 s 'w . eeo.
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100

E 150- 00

200'
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300.
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0.0000 0.0005 0.0010 0.0015

NORMALIZED PRESSURE
O

Fig. 60. Point Source Pressure vs. Depth at the Object, 5000 (m)
from the Source.

We will now look at the effect that each of the first four modes have at

the object. Figures 61-64 shows the pressure vs. depth at the object foi the

first four modes.
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Notice that for mode I (Fig. 61) the maximum pressure is contained within the

sound channel. The pressure dies off exponentially after a depth of 150 (m).

This is to be expected since this mode is evanescent after this depth. This is

also true for mode 2. (Fig. 62) we see the exponential decay of the pressure

field at a greater depth than for mode one. Again this is consistent with mode

theory, which states that the higher order modes will travel at a steeper angle

and as such they will penetrate through the sound channel more than the

lower order modes., Mode three (Fig. 63) is not excited by the point source and

does not contribute much at any depth. Finally we see that for mode 4 (Fig. 64)

the pressure is significantly larger at the objects depth of 260 (m). The field

still decays exponentially starting approximately at the depth of the object.

Now we allow this field (all 16 modes) to insonify the object. Figure 65

shows the resulting field at a range of 1500 (m) in the forward direction (270

degree scattered angle). The field is approximately 3 orders of magnitude less

than the incident field. One can see that the field is very complex, resulting

from modal interactions. The field is not contained in the sound channel since

the object, which is generating this field, is not within the sound channel. We

will now look separately at the first four modes contained in this scattered

field. Figures 66-69 depict the pressure vs. depth for the first four modes.
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Notice that the excitation of the first mode (Fig. 66) is very weak through

the entire depth of the waveguide. The magnitude of the normalized pressurc

is on the order of 10- 9 . Mode 2 (Fig. 67) is also very weak. There is a slight

variation with depth of the field. One would not expect that these two modes

would be excited since they are both highly evanescent at the depth of the

object. We see that mode 3 (Fig. 68) is excited along with mode 4 (Fig. 69).

These and the higher order modes are not affected by the sound channel. This

kind of modal behavior is typical of a point source. Since the object is

producing this signal, this is another indication that the object is coupled to

the waveguide.
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We now compare the point source's and object's transmission loss with

range. Figure 70 illustrates the results.

FREQUENCY - 100 (Hz)
SOURCE DEPTH - 60 Wm)
OBJECT DEPTH - 260 (m)

50- EEVRDPH-6 m

70"

Z 90" BACK
SCATTER

FORWARD SCATTER

110 >

130 f
OBJECT LOCATION

150

0 5000 10000 15000 20000

RANGE (m)

Fig. 70. Comparison of the Transmission Loss vs. Range of the Point Source and
the Objects Scattered Field.

The point source field (heavy solid line) decays very little with range.

This is consistent with our observation that most of the energy is contained

within the sound channel. A sharp contrast to this is the scattered field of the

object. It varies greatly in amplitude over a smaller horizontal distance. The

scattered field is approximately 70 (dB) smaller than the incident field. Again

this is consistent with what we saw when looking at the first four modes.
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We now look at the three dimensional fieid. Figure 71 depicts the

incident field at a range from 4300 (m) to 5700 (in), with the cross-range

coordinate varying from -700 to 700 (m). There is more variability of the field

than for the previous case (Fig. 52) again due to the fact that more modes are

propagating. The wave front is slightly curved, as is to be expected with a field

that is cylindrically symmetric. Figure 72 depicts the scattered field for the

same location in the waveguide, however the object is at the center of the grid.

We notice that this field looks very similar to the scattered field produced in

the waveguide of the last chapter. This field appears to be increasing in

strength as it propagates from the object. We also see some of the same

features as in the last chapter, namely that the field is strongest in the

forward and backward direction, but still narrower in the forward direction.

The side lobes that were present in the last chapter are not as prevalent. We

compare this field to the free space scattered field (Fig. 73) that was produced

by allowing the object to be insonified by the propagating modes and then

compare it to the three dimensional field (Fig. 74) produced by the point

source at the objects' depth in the waveguide. We do this for the same reason

that we did it in Chapter 5, namely to verify that we have correctly coupled the

objects' field into the waveguide.
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Notice that the free space scattered field is similar to the field ob *ned in

Chapter 5. There are differences, however. The field is stronger than the field

in Chapter 5 and there was a peak in the backscattered field produced by the

waveguide of Chapter 5 which is absent for this waveguide. " - side lobes are

present but they are not as pronounced as in the last chapter which is

consistent with what we saw in Fig. (72). We also see that the forward scattered

field is narrower than the backscattered field. There is a greater difference

between the forward and backward fields. This difference is difficult to see in

Fig. 72 but it is evident in the two dimensional plot (Fig. 70), where it is seen to

be about 3 (dB). Figure (74) gives a three dimensional illustation of the field

produced by a point source located at the same depth as the object T'ie
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waveguide effect on the field allows the field to increase over the range

increment as was observed in Fig. 71. It appears that the field of the object is

being correctly coupled to the waveguide. We now determine the total field.

which is shown in Fig. 75.

There is no observable difference between the total field and the

incident field of Fig. (70). This was to be expected because the large difference

in amplitude between the two fields. On a difference plot however (Fig. 76),

the difference between the incident and total fields is evident. Notice that the

largest difference occurs in the forward direction where the incident field has

a minimum. This difference is on the order of a half of a decibel.

0--
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Fig. 74. Three Dimensional Field Pr'oduced by a Point Source at the Objects' Depth of 260 (m).
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CONCLUSIONS

We have developed a method to describe acoustical scattering from an

* object in a waveguide. We have done so by using Normal Mode theory to

describe the incident field. Each mode (at the object) was decomposed into a

pair of up going and down going plane waves. We next used a Transition

* matrix to determine the near field scattered field from these plane waves

incident upon the object. By utilizing Huygens' principle we obtained a far

field solution which satisfied ai boundary conditions and preserves continuity

of the solution throughout all space.

We have shown through examples that the object is correctly coupled to

the waveguide. We have shown that the objects scattered field acts as a

secondary source by showing that this scattered field obeyed the same

boundary conditions as the point source field.

This method of determining the scattered field from a three dimensional

object allows one to determine not only the correct target strength (intensity),

but also to properly determine the phase. In addition this method allows one to

investigate the interaction between the incident field with the waveguide, the

incident field with the object, and the object's scattered field with the

waveguide. In this manner a better understanding of the ongoing physical

processes can be obtained.
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APPENDIX A: COMPARISON BETWEEN THE E. B. C METHOD AND AN ANALYTICAL
SOLUTION FOR THE SCATTERED FIELD PRODUCED BY A PLAN_. WAVE INCIDENT

UPON A SPHERE.

In this appendix we will show a comparison between the scattered field

as solved for by the Extended Boundary Condition method and the analytic

solution for the case when a plane wave is incident upon a sphere. The

analytic expression is given in Morse and Feshbach (1) as:

(A-I) s = -X(2n + 1)i(n + 1)- i8n(ka) sir(Sn(ka)lPn(cosO)hn(k r)
n

where k is the wave number, r is the distance from the sphere, 8 n is the

phase angle, 0 is the observed angle and a is the radius of the sphere. The

important parameters are listed in Table Al.

TABLE A l

PROBLEM PARAMETERS

Sphere Diameter Boundary Conditions Distance from Sphere
(in) (m)
2 Difichlet 100

The "Distance from Sphere" .lue in Table Al is the distance from the sphere

that the scattered field was obtained. Three frequencies were examined. They

were, 59.68 (Hz), 596.8 (Hz), and 5968. (Hz). This resulted in KI/2 values of .25,

2.5 and 25. The three frequencies were selected because they represented a
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low, medium and high frequency case. Figures Al, A2, and A3 shows the

* comparison between the methods for the different frequencies (the forward

direction is at 0 deg.). In all cases the open circles are the analytic solution

while the black dot is the E. B. C. solution. Notice in all cases the agreement is

* quite good. The E. B. C. code has been tested thoroughly by Dr. Mike Werby of

the Naval Ocean Research and Development Activity. This particular test was

performed as a check on the validity of the E.B.C. code used in the present

* work.

0 ANALYTICAL SOLUTION

90 E. B. C. SOLUTION

0i

180 0 0

270

Fig. Al. Comparison Between the Analytic Solution and the E. B. C. Solution for
a Plane Wave Incident Upon a Sphere for a Frequency of 59.68 (Hz).
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180

0 ANALYTICAL SOLUTION
90 * E. B. C. SOLUTION

080V.

270

Fig. A2. Comparison Between the Analytic Solution and the E. B. C. Solution for
a Plane Wave Incident Upon a Sphere for a Frequency of 596.8 (Hz).
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0 A NALYTICAL SOLUTION
90 * E. B.C. SOLUTION

270

Fig. A3. Comparison Between the Analytic Solution and the E. B. C. Solution for
a Plane Wave Incident Upon a Sphere for a Frequency of 5968. (Hz).
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APPENDIX B: DERIVATION OF EQ. (3-122)

We need to evaluate

(B-I) "I L + k+ka H0 (k anr)= ?

(1)(
where H0 (kanr)=J0 (kanr)+iYo(kanr).

Since the Bessel function is analytic for all ranges, we need to show how Eq.

(B-I) behaves when r # 0 and when r = 0.

First consider the case when r * 0. The derivative of the Neuman function

with respect to r is

(B-2) Y'0= -(Y 0 (kanr)) = d(kanr) d ar )  anr
drdr d(k anr) n0 k~)

We have the relationship, -Y (x)=- Y(X). (1)
dx 0 1

0

Equation (B-2) now takes the following form,

(B-3) Y0 =kan[-Yl(kanr)]=-kanYl(kanr)

0

0
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Taking the second derivative of the Y0 gives,

2
(B-4) YO= dY(ka r)= -rY0(kanr =

=4-jr-i k anY (k a nr)]

d(kanr) d Y(kar= dr d(kanr) -  n1 ( k a n r

=k an(-ka) d(ka) Y l ( k a n r)

2 a2n (kanr) -YI(kanr)

n 21

We have used the following relationship concerning the derivative of the

Neuman function of the first order, (1)

01

dx 1 2 (0 ( - 2 ().
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Now letting the operator of Eq. (B-I) operate on iY0 (k ar) , we obtain, with

help from the above relationships,

(B-6) a + + k 2a ]iy (k anr)

- a Y_ Y+ Y'+ 2a002 0

=i "2n (y a Y2) + -kan

2a2_ _ (kn, k,2 a21

t +1

The recursion formula Y2(x)= 1-Y,() - Y0() leads to the following for

Y2(x) (1)

(B-7) Y2 (k a n r)= ka rY(kanr)Y(kanr
n

i nkya0n _ (kanI)y k an]( 2 (y-Y 0)(2
[[=0-wj - (Yi-

=0
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Now when r=0, we will use the small r approximation, (2) for the Neuman

function,

(B-8) Y (0)- I(! n(x)+ y-I n(2)), y = .577....
S0

2( ( kar))(B-9) YO(kanr) -u j -- L. for small r

and taking the derivative with respect to r of Eq. (B-9) gives

(B-10) YJ0 a -L(Y0(k anr)) - d 2 1 4 an r 2

now doing the same to Eq. (B-10) gives,

d 2 r)=- d4_) (221)
* (B-11) Y. -- (YO(kan r))--rY'0) r it-r-)--- .r 2

Now solving Eq. (B-i) for the Neuman function at small r gives,

_ 1LL~ a iY22zr

(B-12) [r2 r a n iY 0 (kanr)

i 04 1 Y 221

=i zj+ 12)+k2 an()l
0 r 0, ' ".

2.)2a2 2 I kanr

R
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Multiplying Eq. (B-12) by r and integrating gives

(B-13) f ,
ar

ka

0 (kar j( r

karaknr

=i 2) 2
kan

={V-!) {f' 1"10)] - I (la -



187
Summarizing the results.

(B-8) 
0a (kanr)=0, r *0

(B-16) .[-4o

(B-17) fi (2)8(r)dr = i (1)

We therefore have as the solution for Eq. (B-1) the following,

(B-Is) [ +L a + k 2a 24)( (ka) = i(!)5r)

or

(B~~ ~ - 9IT2 a +k2 a2 0(k1 ) = 4i8(r)

S(B-19)2 a n an 2r
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APPENDIX C: VALIDATION OF PROPAGATION MODELS

This appendix shows the comparison between the horizontal eigenvalues

generated by the SACLANT Center Normal Mode &coustic Propagation (SNAP)

(1) model and both the isovelocity normal mode model which was developed for

the Pekeris waveguide (i.e. isovelocity water layer over a high speed

isovelocity fluid half space), and for a multilayered waveguide, consisting of

numerous isovelocity water and sediment layers. Table (C1) lists the

waveguide parameters.

TABLE CI

PARAMETERS FOR THE ISOVELOCTY WAVEGUIDE

Depth (m) Sound Speed (m/s) Den:,ty (g/cm**3)

0.0 1500.0 1.0
150.0 1500.0 1.0
150.0+ 1600.0 2.0

Table (C2) shows the comparison between the Pekeris wa-eguide model and the

SNAP model determination of the horizontal eigenvaluts. with the magnitude

of the difference between the two models.
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TABLE C2

• COMPARISON OF HORIZONTAL EIGENVALUES GENERATED BY THE SNAP AND
PEKERIS WAVEGUIDE MODEL

Pekeris Waveguide SNAP Program Magnitude
Program of Difference

* Horizontal Horizontal
Eigenvalue Eigenvalue

0.4184382396D+00 0.4184382379D+00 .1D-08
0.4171019040D+00 0.4171019027D+00 .ID-08
0.4148351550D+00 0.4148351369D+00 . ID-07
0.4115958809D+00 0.4115958645D+00 .ID-07
0.4073444101D+00 0.4073443901D+00 .3D-07
0.4020511324D+00 0.4020510729D+00 .5D-07
0.3957339603D+00 0.3957339045D+00 .5D-07

For this example there weve 7 modes propagating. The largest difference

between the eigenvalues were on the order of lxl0 "6 m- 1 and the smallest

difference was lxl0 "7 m-1 . Figure (Cl) depicts the transmission loss vs. range

for the environment depicted in Table (Cl). Notice that the structure between

the two models are identical but that the transmission loss generated by the

Pekeris Waveguide model is off by a factor of JT ' It's obvious that the

difference is just a constant since the level of variation does not change with

range. It is obvious that the Pekeris Waveguide model will give as accurate

results as SNAP for these rather simplistic environments.
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- - PEKERIS WAVEGUIDE MODEL
- SNAP MODEL

FREQUENCY - 100 (Hz)
40 SOURCE DEPTH - 75 (m)

RECEIVER DEPTH - 75 (m)
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80-
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Fig. Cl. Comparison of Transmission Loss Between the SNAP and Pekeris
Waveguide Model.

We compare the horizontal eigenvalues generated by the Pekeris Waveguide

model (see chapter 5) and the MultiLayered Waveguide model, the results are

as in Table (C3).
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COMPARISON OF HORIZONTAL EENIVALUES GENERATED BY THE MULTILAYERED
AND PEKERIS WAVEGUIDE MODEL

Multilayered Waveguide Pekeris Waveguide Magnitude
Model Model of Difference

Horizontal Horizontal
Eigenvalue Eigenvalue

0.4184382396D+00 0.4184382396D+00 0.
0.4171019040D+00 0.4171019040D+00 0.
0.4148351550D+00 0.4148351550D+00 0.
0.4115958809D+00 0.4115958809D+00 0.
0.4073444101D+00 0.4073444101D+00 0.
0.4020511324D+00 0.4020511324D+00 0.
0.3957339603D+00 0.3957339603D+00 0.

Out to 10 decimal places there is no difference. Figures (C2) and (C3) shows the
comparison between the depth eigenfunctions for mode 1 and mode 2, as
generated by the Pekeris Waveguide and the MultiLayered Waveguide model.
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0 PEKERIS WAVEGUC)E MODEL

50 MUTILAYER WAVEGUIDE MODEL

100
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-1.0 -0.5 0.0 0.5 1.0

MODE 1

Fig. C2. Comparison of the First Depth Eigenfunction Generated by the Pekeris
and MultiLayered Model.
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Fig. 3. Copansk of the Second Depth Eiefunctiofl Generated by the

pekeris and M ultiLayered M odet eel.e P ke'

Figure (C4) shows the TransnIssiOn loss coma o te btwee the struetur

0 ~ ~~~aveguide and the MultiLaYered Wveguide model. Noetathstcur

btenthe toaeidentical 
and we see that again the transmission loss

geeted by thae eris Wveguide model is off by a constant factor Of

This would suggest that the transmission ls eeae yte~ liaee

model and by SNAP would agree Perfectly'
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Fig. C4. Comparison of the Transmission Loss Generated by the Pekeris and
MultiLayered Waveguide Models.
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Figure (C5) shows this comparison. Note the good agreement betwcen the two

models.

30'
- MULTILAYER WAVEGUIDE MODEL

SNAP MODEL
4FREQUENCY - 100 (Hz)

40- SOURCE DEPTH - 75 (m)
c I RECEIVER DEPTH - 75 (m)

C0 500

z2
S60-

70

80.
0 1000 2000 3000 4000 '500

RANGE (in)

Fig. C5. Comparison of the Transmission Loss Generated by the MultiLayered
and SNAP Model.

With confidence in the MultiLayered model, we now compare SNAP and the

MultiLayered model for a slightly more complex environment, a three layered

environment. The environment is depicted in Fig. (C6), with the water layer

having the lowest sound speed, the sediment layer the next and the half space

the highest.



SOUND SPEED (m/s) 196

1460 1500 1540 1580 1620 1660
0. - _ _ _ _ _I 4

50.
WATER4

E100.

150.- _ _ _ _ _

SEDIMENT

200.-

250.HALF SPACE

Fig. C6. The Second Waveguide Used to Validate the MultiLayered Waveguide
Model.
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We compare the transiriission loss generated by both models for this

environment 1a Fig. (C7).

30
- MULTILAYER WAVEGUIDE MODEL

0- SNAP MODEL

40

50
_ 50
z
0

S60

E 70

08

0 1000 2000 3000 4000 5000 6000

RANGE (m)

Fig. C7. Comparison of the Transmission Loss Generated by the MultiLayered
Waveguide Model and by SNAP.

We now investigate a much more complex environment. This environment is

shown in Fig. (C8). It consists of 13 water layers, two sediment layers, and a

half space. Figures (C9) and (CIO) compares the depth eigenfunction

generated by SNAP and by the MultiLayered model for mode I and mode 2 for

this environment. They show good agreement between the two models. Figure

(CII) shows the comparison of the transmission loss between SNAP and the

MultiLayered model for this environment.
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Fig. C8. The Third Test Waveguide Used to Validate the MultiLayered Waveguide
Model.
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Fig. C9. Comparison of the First Depth Eigenfunction Generated by the
MultiLayered and SNAP Model for the Third Test Waveguide.
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Fig. CIO. Comparison of the Second Depth Eigenfunction Generated by the
MultiLayered and SNAP Model for the Third Test Waveguide.
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Fig. Cli. Comparison of Transmission Loss Generated by the MultiLayered and
SNAP Model for the Third Test Waveguide.
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The final test of the MuldiLayered model is against data, which are taken from

Ingenito and Wolf. (2) The sound speed prefile is shown in Fig. (C12).

0

10

20-

30 -

1510 1520 1530 1540 1550

SOUND SPEED (m/s)

Fig. C12. Sound Speed Profile after Ingenito and Wolf.

The model vs. data comparison for 400 (Hz) is shown in Fig. (C13), along with

the model calculation by Ingenito and Wolf. Note that the agreement is quite

good. Table (C) compares the horizontal eigenvalues generated by each model

and gives the absolute difference between the two. The largest difference is

lx10- 3 m-1.
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Fig. C13. a) Comparison of the First Depth Elgenfunction for 400 (Hz)
Generated by the MultiLayered Waveguide Model and Data. b) Comparison of
Model Results With Data as Presented by Ingenito and Wolf.

TIBL.EC4

COMPARISON OF HORIZONTAL EIGENVALUES GENERATED BY THE MULTILAYERED
WAVEGUIDE MODEL AND THE SNAP MODEL FOR A FREQUENCY OF 400 (Hz)

MultiLayered Waveguide SNAP Model Magnitude
Model of Difference

Horizontal Horizontal
Elgenvalue Elgenvalue

0.1643477015D+01 0.1643473073D+01 .3D-05
0.1632167076D01 0.1632159020D+01 .&D-05
C.1617969309D+01 0.1617967663D+01 .ID-05
0.1598583468D+01 0.1598577065D+01 .6D-05
0.1572341994D+01 0.1572336591D+01 .5D-05
0.1549392552D+01 0.1549390991D+01 .I-..05
0.15340402671)01 0.1534034656D+01 .5D-05
0. 1499363280D+0I 0.1499358976D+01 .4D-05
O.1470642438D+01 0. 1470634678D+01 .7D-05
0.1437511941D+01 0,1437498305D+01 .AD-04
0.1387679442D+01 0.1387678929D+01 .5D-06
0.1345397981 D+01 0. 1345388765D+01 .9D-05
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Figure (C14) show the comparison between the transmission loss generated by

the two models. The agreement is quite good.

30'
-- 0-- MULTILAYER WAVEGUIDE MODEL

4 SNAP MODEL

40-

50

r60 -

b, 70"
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SOURCE DEPTH - 15 (m)
RECEIVER DEPTH - 15 (W)

80'
0 1000 2000 3000 4000 5000

RANGE (m)

Fig. C14. Comparison of Transmission Loss Generated at a Frequency of 400 (Hz)
by the MultiLayered and SNAP Model Using the Sound Speed Profile of Fig. (Cl2).

Figure (C15) shows the model vs. data comparison at 750 (Hz). Again the

agreement is quite good. Table (C5) compares the horizontal cigenvalues as

determined by each model. The largest difference is again Ixl0 "3 inn.
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Fig. C15. a) Comparison of the First Depth Eigenfunction for 750 (Hz)
Generated by the MultiLayered Waveguide Model and Data. b) Comparison of
Model Results With Data as Presented by Ingenito and Wolf.
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TABLE C5

COMPARISON OF HORIZONTAL EIGEN VALUES GENERATED BY THE MULTILAYERED,
WAVEGUIDE MODEL AND THE SNAP MODEL FOR A FREQUENCY OF 750 (Hz)

MultiLayered Waveguide SNAP Model Magnitude
MAodel of Difference

Horizontal Horizontal
Eigenvalue Eigenvalue

0.3086479467D+01 0.3086475129]D+01 .4D-05
0.3077106218D+01 0.3077095247D+01 . D-04
0.3064396577D+01 0.3064383452D+01 .1D-04
0.3054483253D+01 0.3054480991D+01 .2D-05
0.3039869244D+01 0.3039859840D+01 .9D-05
0.30221 17375D+01 0.302211 1962D+01 .5D-05
0.3000974575D+01 0.3000965802D+01 .8D-05
0.2976025500D+01 0.297601 6499D+01 .9D-05
0.294801 6738D+01 0.2948006350D+01 .1 D-04
0.2930876943D-i-1 0.2930875337D+0 1 .1 D-05
0.2914863167D+01 0.2914853243D+01 .9D-05
0.2889885853D+01 0.2889880707D+01 .5D-05
0.287261 1077D+01 0.2872596332D+01 .ID-04
0.2838535723D+01I 0.2838528599D+01 .7D-05
0.2811841177D+01 0.2811827591D+01 .ID-04
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Figure (C16) compares the transmission loss generated by the two models;

agreement is quite good.

30
---0- MULTILAYER WAVEGUIDE MODEL

.. SNAP MODEL

40
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70 0
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80 1 . . ,
0 1000 2000 3000 4000 5000
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Fig. C16. Comparison of Transmission Loss Generated at a Frequency of 750 (Hz)
by the MultiLayered and SNAP Model Using the Sound Speed Profile of Fig. (C12).

Finally we test the model against data at a frequency of 1500 (Hz). The comparison

is shown in Fig. (C17). Good agreement is again obtained. Table (C6) shows the

comparison between the horizontal eigenvalues generated by the two models. The

largest difference is approximately lxl0"3 m-1 .
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Fig. C17. a) Comparison of the First Depth Eigenfunction for 1500 (Hz)

Generated by the MultiLayercd Waveguide Model and Data. b) Comparison of

Model Results With Data as Presnted by Ingenito and Wolf.
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TABLE C6

* COMPARISON OF HORIZONTAL EIGEN VALUES GENERATED BY THE MULTILAYERED
V.AVEGUIDE MODEL AND THE SNAP MODEL FOR A FREQUENCY OF 1500 (Hz)

lultiLayered Wavegaiide SNAP Model Magnitude
Model of Difference

Horizontal Horizontal
Eigenvalue Eigenvalue

0.6178208386D+01 0.617820570!1+01 .2D-05
0.6170829629D+01 0.61 70825078D+01 .4D.05
0.6161214393D+01 0.61CI204743D+01 .9D-05
0.6147548359D+01 0.6147527882D+01 .2D-04
0.6134282776D+01 0.6134262291D+01 .2D-04
0.6126957355D+01 0.612695 1385D+01 .5D-05
0.61 16767898D+01 0.61 16757846D+01 I1D-04
0.6105159734D+01 0.6105157746D+01 .ID-05
0.6091 359606D+01 0.6091 353580D+01 .6D-05
0.6075254880D+01 0.6075252494D+01 .2D-05
0.60574884 15D+0 1 0.60574801 64D+01 .8D-05
0.6037737287D+01 0.6037726331D+01 .1 D-04
0.601 6358465D+01 0.60 16350572D+0 1 .7D-05
0.5992942428D+01 0.5992931 846D+01 .1I D-04
0.5967737123D+01 0.5967721190D+01 .1D-04
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Figure (C18) shows the comparison between the two models. And we see again

that there is good agreement between the two models.
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Fig. C18. Comparison of Transmission Loss Generated at a Frequency of
1500 (Hz) i y the MultiLayered and SNAP Model Using the Sound Speed Profile
of Fig. (C12).

Based on the preceding comparisons of horizontal eigenvalues, transmission

loss, and eigenfunctions we conclude that both the Pekeris Waveguide model

and the MultiLayered Waveguide model can generate the acoustic pressure at a

field point with sufficient accuracy for the purpose of this project.



211

APPENDIX D: MODAL ATTENUATION COEFFICIENTS USED IN THE NORMAL MODE
PROGRAMS.

This appendix gives a brief overview of the modal attenuation

coefficients used in the normal mode propagation models. When a

propagating mode is excited it will decay with range at a steady rate. Each

mode however will not decay at the same rate. The higher order modes will

decay more quickly than the lower order modes. This can be visualized by

remembering that the higher order modes propagate at a higher angle and

thus interact with the bottom more than the lower order modes. When mode

decay is present, the wave number becomes complex, that is k -4 k + i 3 where

k is the wave number (propagation constant) and 3 is the attenuation

coefficient of a plane wave.

Tindle (1) has developed an expression for the modal attenuation

coefficients for a waveguide consisting of an isovelocity water layer

overlaying a semi-infinite isovelocity half space. The expression is

(D.1) an  2 2 2 )2 2

YinY 2nH(P 2Yin 1 Yn) + (Ply2n ' 2 n)] +  n 2  n

in dB/m.
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Each parameter is explained below,

f=frequency (Hz)
co= 21tf (Hz)

P= .056f/1000. (dB/m)
C2= Compressional Sound Speed

in Half Space (m/s)
k2=Wave Number in Half Space (m-1 )

Ylfn=Vertical Component of
Wave Number in Water Layer (m- 1)

yf2n=Vertical Component of
Wave Number in Half Space (m- 1)

H=Water Depth (in)
Pi=Density of Water (kg/m 3 )

P2=Density of Half Space (kg/m 3 )

This expression is not valid when the waveguide consists of multiple

isovelocity water and sediment layers. In that case we have to resort to

perturbation theory (2) which produces the following expression,

(D-2) Otn = ((o / k n) ,CZn(Z)dz

0

Ingenito (3) gives a brief but through description of the development of Eq.

(D-2), where kn is the horizontal eigenvalue, 3 is the attenuation coefficient C

is the compressional sound speed and Zn(z) is the depth eigenfunction. The

above equation is valid throughout the depth of the waveguide.
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The attenuation coefficient for the water layers (3O) is given by the following

* expression, (4)

=f_ 21.7f 2

(D-3) 0 0. 0071 +0. 1 5 2 2 - 0 - 9

(1.7) +f .10

where the attenuation coefficient for the sediment layers and the halfspace is

an input into the model. Physically what happens when losses are assumed to

occur primarily in the sediment is that the bottom boundary condition

requires that for each mode, power must flow from the water into the bottom.

Therefore for each unit horizontal distance traveled the the total power loss

for a mode must equal the power transmitted into the bottom by that mode.

Equation (D-1) was used in the Pekeris Waveguide Model and Eq. (D-2)

was used in the MultiLayerc" Model to account for losses in the sediment, while

Eq. (D-3) was used for each model for the attenuation coefficient in the water.
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APPENDIX E: COMPARISON OF THE SCATTERED FIELD OBTAINED USING THE
PRESENT METHOD AND A PROJECTION METHOD.

The material in this appendix was presented at the 2nd Joint Meeting of

the Acoustical Society of America and the Acoustical Society of Japan which

was held at Honolulu, Hi. (1) The projection method was developed by Evans

(2) and has been presented by Norton. (3-4) The characteristics of the

scattering object are presented in Table El.

TABLE El

OBJECT CHARACTERISTICS

Length (in) Width (m) Boundary Conditions
25 5 Dirichlet

The scattering geometry is shown in Fig. (El),

10 (Kin) - FORWARD SCATTERED
SIGNAL

SOURCE

Fig., El. Geometry for the Scattering Problem.

Two waveguides were investigated. The first had a isovelocity water layer

overlaying an isovelocity halfspace. The second waveguide consisted of 43
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water layers and 4 sediment layers over a halfspace. The first waveguide had

the source, object and receiver all at a depth of 75(m). The waveguide

characteristics are listed in Table E2.

TABLE E2

ISOVELOCITY WAVEGUIDE CHARACTERISTICS

Water Layer

Depth Compressional Density Attenuation
(in) Sound Speed (m/s) (g/cm**3) (nepers/m)

150 1500 1.0 1.0 E-6

Half Space

Depth Compressional Density Attenuation
(in) Sound Speed (m/s) (g/cm**3) (dB/)

semi-inf 1600 2.0 .15

Figure (E2) shows a comparison of the transmission loss vs range

between the two methods for a frequency of 100 (Hz). The current method

based on Huygens' principle is the solid line and the projection method is the

dotted line They are not identical but the agreement is very good. Figure (E3)

is a comparison between the two for the same waveguide at a frequency of 450

(Hz). Again the agreement is quite good.
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60- FREQ UEWC. -100 (Hz)PROJETON SOURC E DEPTH - 75 (m)
OBJECT DEPTH- 75 (m)

70 RECEIVER DEPTH - 75 (W)U,,
80-

0
90-

z 100-

110-

1201
0 5000 -10000 15000 20000

RANGE (in)

Fig. E2. Comparison Between the Scattered Field Generated From the Model
Using Huygens' Principle and the Projection Method for a Frequency of 100 (Hz).



217

4- FRESMEHO QUECY - 450 (Hz)RHOJECT[ON METHOD SOURCE DEPTH - 75 (n)OBJECT DEPTH- 75 (m)
RECEIVER DEPTH - 75 (m)

Z 8

*4
U,,
x

0 5000 10000 15000 20000

RANGE (m)

Fig. E3. Comparison Between the Scattered Field Generated From the Model
Using Huygens' Principle and the Projection Method for a Frequency of 450 (Hz).
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Figure (E4) illustrates the multilayered waveguide used. The source

object and receiver are all at 60 (in). Note at the source depth we have a

minimum in the sound speed, which results in a weak sound channel. Figure

(ES) shows a comparison between the scattered field expressed as transmission

loss vs range for the two methods. Also plotted in this case is the field

produced by a point source. The range axis is therefore relative either to the

point source or to the location of the object depending on which field is under

consideration. The fields were plotted this way because the field produced by

the object should show the same structure as that produced by a point source.

albeit the level should be much lower. It is clearly shown that not only are the

two methods agreeing quite well but they both show structure similar to a

point source. In Fig. (E6) we show the results for a frequency of 450 (Hz).

Again we have excellent agreement between the two methods.
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z

2

120- PROJECTION MMOD

0 500 10;00 15000, 20000

RANGE (n

Fig. E5. Comparison between the Field Produced by a Point Source and the
Object Using the Method Based on Huygens' Principle and the Projection
Method fci; a Frequency of 100 (Hz). Therm arm a Total of 47 Layers in the
Waveguide.
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50 HUYGENS METHOD FREQUENCY - 450 (Hz)
S,'FCE DEPTH - 60 (m)PROJECTION EIOD OBE" DEPTH - 60 (m)

60 RFMPV' DEPTH - 60 (m)

70"

V)

0
Z 80

S 90,.

z

1100

0 5000 10000 15000 20000

RANGE (m)

Fig. E6. Comparison Between the Scattered Field Generated Using the Method
Based on Huygens' Principle and the Projection Method for a Frequency of
450 (Hz). There are a Total of 47 Layers in the Waveguide.

9
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