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Foreword

Determining the scattered ficld from objects in a waveguide has
been difficult and is of great importance to the U.S. Navy.
Since future detection methods will exploit for both long- and
short-range bistatic detections of submerged objects, determining
whether various system/detection scenarios are feasible will
depend on both experiments and numerical mode! studies. Numerical
studies are particularly appealing, since they are considerably less
expensive than experiments and, in terms of a time frame, many
numerical studies can be done for any given experiment. More-
over, numerical studies can also be used to suggest experiments.

This report proposes a numerical scheme that will adequately
describe scattering from realistic objects (submarines) in an ocean
waveguide. The type of object used in this report was a spheroid,
and the object was assumed to have Dirichlet boundary conditions.
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Executive Summary

A method was developed. to describe acoustical scattering from an
object in a waveguide by using normal mode theory to describe the incident
field. Each mode is decomposed at the object into a pair of upgoing and
downgoing plane waves. A transition matrix was used (developed via
the extended boundary condition method of Waterman) to determine the
resulting near-field scattered field. The far-field scattered field was
determined by invoking Huygens’ principle. This far-field solution satisfies
all boundary conditions and preserves continuity of the solution
throughout all space.

The examples show that the object is correctly coupied to the waveguide.
This was done by showing that the object’s scattered field acts as a
secondary source and that this scattered field obeyed the same boundary
conditions as the point source field.

This method of determining the scattered field from a three-dimensional
object allows one to determine not only the correct target strength (intensity),
but also to properly determine the phase. In addition this method allows
the investigation of the interaction between the incident field and the
waveguide, the incident field with the object, and the object’s scattered
field with the waveguide. In this manner a better understanding of the
ongoing physical processes can be obtained.
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Theory and Application of Scattering from
an Object in an Ocean Waveguide

Synopsis

The treatment of scattering from submerged
objects in an unbounded environment is of
considerable interest to both the academic and
technological communities. Several approaches have
yielded results for different classes of problems and
have proven manageable for the free environment
case. The solution of scattering from objects in a
waveguide has been a difficult and almost intractable
problem to do in an exact framework, due to the
coupling of effects from the object’s scattered field
with that of the boundaries. It is, however, a problem
that is of great importance to the U.S. Navy
community, since future detection methods are going
to exploit both long- and short-range bistatic
detections of threat submarines. The ability to
determine whether various system/detection scenarios
arc feasible will depend on both experiments and
numerical model studies. Numerical studies are
particularly appealing, since they are considerably
less expensive than experiments and in terms of
time, many numerical studies can be performed for
any given experiment. Moreover, numerical studics
can be used to suggest experiments. The objective
of this work is to develop a model suitable for such
studies in an approximate but accurate framework.

Summary

The study described in the appendix presents a
coherent, self-consistent method to describe acous-
tical scattering and propagation from an object in a
waveguide. The method is based on Huygens' ptin-
ciple. The object was a spheroid with Dirichlet
boundary conditions. The study began by developing
the extended boundary condition (EBC) method*-?
to describe acoustical scattering from three-
dimensional objects in free space. This method was
used to describe scattering from objects with both

Neuman and Dirichlet boundary conditions and has
been extended for elastic objects. Next, the thesry
of acoustic propagation in a fluid was developed
from first principles and both normal mode and ray
theory were developed to describe propagation in
the simplest type of acoustic waveguide.

The mathematical expression that describes the
object’s far-field scattered field is developed here
through the use of Huygens’ principle. The near-
field scattered field, developed by allowing a
transition matrix (developed by the EBC method)
to map the incident field onto the scattered ficld,
was coupled to the Green's function, which satisfies
the waveguide. This application of Huygens’
principle leads to a manageable direct sclution of
the problem. This method also satisfies all
appropriate boundary conditions and yields a
continuous solution throughout space. This
expression is then applied to a Pekeris waveguide
and finally to a more general range-independent
waveguide.

The examples presented in the last two chapters
of the appendix were designed to demonstrate that
the object's scattered field is correctly coupled to the
waveguide. This was accomplished by showing that
the object acted as a secondary source in the
waveguide. Its field obeyed (satisfied) the same
boundary conditions for the waveguide as the point
source field.

Recommendations

The results obtained are for a waveguide that is
range independent; that is, the sound speed profile
in the water column and the sediment vary only in
depth and not in range, and the bathymetry does
not change with respect to range. In addition, the
object is expected to be in the far field of the source,
The model could simulate range dependency by either




applying the adiabatic approximation or by coupling
the discrete (propagating) modes. Additionally, if the
continuous spectrum of the incident field is included
and not just the discrete spectrum, then the object
could be located ncar the source where the continuous
spectrum could play an important role. The addition
of range dependency would be the most valuable
addition to the model.

The incident field was allowed to interact only
once with the object; that is, the primary interaction
of the incident field with the scatterer was retained,
and the subsequent interactions of the scattered field
between the boundaries of the waveguide and the
scatterer were ignored. This is not a limitation, since

the resulting field would consist of high-angle energy
and would dissipate quickly in an ocean environment.
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CHAPTER 1
INTRODUCTION

Goals of Research

This research project will answer the fellowing question. What is the
acoustic pressure at a ficld point in an underwater acoustic waveguide when a
three dimensional object is present? This research project concerns classical
wave propagation, diffraction and scattering effects. An inherent assumption
is that the object's dimension's (length and width) are small compared to the
waveguides dimensions. We therefore are assuming that the object will make a
small perturbation to the acoustic field produced by a monochromatic point
source. We assume then that the wave equation will properly describe the
acoustic wave propagating in the waveguide. We assume also that the field can
be expressed as a near field scattered field and a far field scattered field. The
near field scattered field will only be valid near the object, before it interacts
with the waveguide and the far field scattered field will be appropriate in the
far field of the object, that is when the scattered field has interacted with the
waveguide boundaries. With these assumptions, this project can be subdivided
into four distinct sub areas. First the incident field must be determined, that is
the acoustic field in the absence of the object or scatterer. Second, the
incident field which insonifies. the object is mathematically acted on by a
transition matrix which transforms the incident field into the near fieid
scattered field. Next, the near field scattered field is coupled to the waveguide
via invoking Huygens' principle (see chapter 4). Finally, we obtain the total

field by coherently adding the incident and scattered field.
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Because of the way the problem divides mathematically, we have divided

thkis discussion into two parts. The first is concerned mainly with theory and
results pertaining to free space scattering (chapter 2) and acoustic
propagation in a waveguide (chapter 3). This is done in order to first define
the physics that defines scattering from an object (via a matrix mapping) and
the propagation of this and the incident field in a waveguide. In part 2
(chapters 3-6) of this dissertation we present”t.he various methods that were
used prior to the present work. We then present formally this new method
based on Huygens' principle (chapter 4) and in Chapters 5-6 apply the method
to two acoustic waveguides. The first is a waveguide composed of an isovelocity
water-layer over an isovelocity fluid half-space and the second is a
multilayered waveguide consisting of multiple isovelocity sound and density
layers over an isovelocity half space.

Appendix A validates the Extended Boundary Condition (see chapter 2)
code by showing a comparison of the scattered field generated by this method
with the analytical solution for the case when a plane wave is incident upon a
sphere. Appendix B shows a derivation of a result needed in the development
of the acoustic field in a waveguide. Appendix C is a validation of the
prcpagation models used in this dissertation. Appendix D is a brief description
of the attenuation term used in the two waveguides., Appendix E shows the
comparison of the scattered field using the proposed method based on
Huygens' principle along with a different method described in Chapter 4.
These results were presented by the author at the Second Joint Meeting of the
Acoustical Society of America ‘and the Acoustical Society of Japan 14-18, Nov.

1288 in Honolulu.




CHAPTER 2
FREE SPACE SCATTERING

In this chapter we give a brief overview. of the usual methods used to
describe acoustical scattering prior to the introduction of the Extended
Boundary Condition (EBC) method. We then develop the EBC method, which is
used in this dissertation to describe the near scattered field. We complete this
chapter by showing some representable free space scattering results from this
method for both far and near field. The references listed represent a fraction
of the work being done by the scaticring community using this method and is

not meant to be all inclusive.

Early Free Space Scattering Techniques

Historically there are three predominate methods employed to solve
scattering and/or diffraction problems. They are separation of variables,
variational techniques, and the direct numerical solution of integral
equations.

The separation of variables technique has been used for objects bounded
by quadric (separable) surfaces. The technique can be used as long as the
scalar wave equation governing the problem can be solved by separation of
variables. This method solves the wave equation, (a linear partial differential
equation) by separating the original equation into a set of ordinary
differential equaiions, each involving only one variable. The general solution

is a product of the solutions to the ordinary differential equations. For




example, consider a spheroidal object. One can use the spheroidal coordinate
system to re- -sent the incident and scattered wavefunctions by a series of
spheroidal wavefunctions.  This requires that the wave equation be scparated
in the spheroidal coordinate system. This approach has been carried out by
Burke, who has solved the scattering problem for a plane wave incident upon
an impenetrable spheroid having Dirichlet boundary conditions (1) (which
fixes the value of the wavefunction on the suff’écc) as well as for a rigid
spheroid having Neuman boundary conditions (2) (which fixes the value of
the normal derivative of the wavefunction on the surface). He has also solved
the problem of a plane wave incident upon a penetrable spheroid. (3) Yeh has
solved the problem for a plane wave incident upon a penctrable liquid prolate
spheroid.(4) The liquid prolate spheroid is the limiting case of an elastic
spheroid with zero shear modulus. The main reason this approximation was
adopted was because the vector wave equations are not separable in spheroidal
coordinates. The secondary reason being that due to the complexity of
spheroidal coordinates, laborious computations had to be carried out in order
to obtain numerical values. There are other coordinate systems, one could use
to solve various scattering problems, spherical, cylindrical, etc., depending on
the type of object or objects one is concemed with. Considering only confocal
quadric surfaces and more specifically ellipsoids, there are nine coordinate
systems which can be obtained from ellipsoidal coordinates. (5) To solve the
scattering problem, a large part of the computational effort goes into the
evaluation of the wavefunctions themselves except for the sphere and the
circular cylinder, for which efficient recursion reclations are available. (5)
Levine and Schwinger (6) described the variational method for the
diffraction of a scalar plane wave by an aperture in an infinite plane screen.

In describing diffraction from general bodies the main effort goes into
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evaluating matrix elements, which consist of repeated surfacc integrals
requiring fourfold numerical quadrature or volume integrals requiring
sixfold numerical quadrature. In each case the integrals have singular
kernels.

The integral equation method has the advantage of gencrality, for
usually the integral is invariant under coordinate transformation. Once the
Greens function is found for the appropriate ”g'eometry, the solution of the
scalar wave cquation may be found. The problem with this method is that for
many cases the integral cannot be integrated in closed form and numerical
values are then extremely difficalt to obtain. However, with the advent of the
digital computer, this method has bcen used by various individuals, (7-12)
More recently the integral equations have been classified into two types,
depending upon the observation points. (13) Surface integral equations have
the observation points lying on the surface of the scatterer and the Extended
integral equations have the observation points inside the scatterer.

Waterman (14) described in his 1969 paper a then new matrix
formulation of acoustic scattering. He had previously developed the same
method for electromagnetic scattering. (15) The equations generated most
nearly resembled those obtained using the variational method. The advantage
was that for both surface and volume type scattering, elements of the matrix to
be inverted are described by a single surface integral with no singularities in
the integrand. Waterman used the interior boundary equation as a constraiut
in solving the exterior boundary equation. As he stated in the paper this
approach was not necessarily new as it appears that Smythe applied it in
electrostatics in 1956. (16) The next section presents the derivation of the
scattering matrix using this method derived by Waterman. The method of

obtaining the scattering matrix has been known by various names, T-Matrix




method, Extended Boundary Condition method and the Null Field Method. We
believe that the Extended Boundary Condition method best describes this

method. The method has since evolved and is used in many areas of classical

scattering determinations. (15,17-22)

The Extended Boyndary Condition (EBC) Method to Determine the Scattered

The theoretical basis for the Extended Boundary Condition method is
contained in the mathematical formulation of Huygens' principle. (23) This
description follows not only Watermans' but also Werby and Chin-Bing. (24)
We start with the Helmholtz-Poincare' integral representation of the total field

U exterior to the bounded object, which has the following form, (23)

au_(r’
1) U ()= U(r)+L[U () 2ur) - G(,r')—-—;—(i]

where U, (r') is the scalar wavefield on the object surface, G(r,r') is the

outgoing Green's function, r' is taken on the surface of the object, and n is a

unit vector nommal to the surface of the object. The surface O is taken to be

the surface of the bounded object. In order to obtain a unique solution, we will
need an additional expression. We will use the field interior to the object. This

Helmholtz-Poincare' expression is as follows, (23)

: - N 1) w09 (”]
(3-2) 0=U.(r )+L[U+(r ) =g =G, 1) —y— | d
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where 1" is a point taken in the interior of the object. This equation was
recognized by Waterman as providing a constraint to eliminate the unknown

surface quantities U,. These two equations yield the extended boundary
condition equations. (25) These equations will now be put into a form
amenable to numerical computation. For this example we allow the object to be

impenetrable, which requires that

(2'3) U+=0 .

Equation (2-1) becomes

s
(2-4) Ut(r) =Ui(r) - o G(ryr')—55—| ds
and Eq.(2-2) becomes

) . o aU+(r')]
(2-5) 0=Ui(r )= | |GE"y ') —55—| ds

In order to solve these expressions, it is convenient to express Uj(r), U4(r') and
G(r,r') as some suitable series expansion, which upon truncation leads to
matrix equations that can be solved using digital computers. The Green's
functions, G(r,r') is a normal operator and can be expressed by the following

biorthogonal series (26)

(2-6) G(r,r’) =ik ZR ep.(r Jo.(r)
1




where 1< and r, is the lesser or greater of the two points r and r' relative to

the origin of the object. The incident wavefield U; is known and can be

expressed as, (27)

(2-7) Ui(r)= EﬂanRecpn(r)

where Re is the regular part of Qu(r). The fact that this expansion Eq. (2-7)
can be obtained follows from the Hilbert-Schmidt theorem.(27) Using this and

Eq.(2-6), we seec that Eq.(2-5) becomes,

aU+(r’)
(2-8) 2a Rep (N=ikX| Rep (No (r")—gp7—ds
n no
8U+(r')
(2’9) an=ik (pn(r')—-§n—- ds
c

U,(r) is now written in some complete set of suitably chosen basis function
satisfying completeness on the object surface. The basis functions used were
the same as those chosen by Waterman, namely Re (y(r), where Re is the
regular part of Pp(r). We have not found any problem arising from irregular
values, nor have we had problems due to poorly-convergent solutions.
Waterman has shown that Eq. (2-10) satisfies closure on the surface of a rigid

object:

(2-10) U, =3b, Reg, ()




Using Eq. (2-10) in Eq. (2-9) results in the following for the incident ficld

expansion coefficients ap

. I , aRecpn(r‘)
(2-11) an=:k£bm c,<pn(r ) ds

2-12 =ik Tb
( ) ! E QOn

b J n 2Re9, (1) In matrix notation, Eq. (2-11) can b
where Q= o(pn(r )—;— d . In matrix notation, Eq. (2-11) can be
written

(2-13) a=ik Qb

and the expression for Ug(r') becomes,

(2-14) U(r) = 21, 0,(r")

Recognizing that Ug= Up- Uj, the expression for the scattered field expansion

coefficients fn, becomes,

. , dReo_ (1)
(2-15) Efn(pn(r')m-xk );.bm LR eq, (D¢ (r )—--5—:1-—- ds
dReg _ (r)
(2-16) fn=—ikbmj Reg, (1) —g7— ds
[+

2-17 s
(2-17) =-ikb_ ReQ__
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dReq (') . .
where ReQ_ =1 Rep (r)"""j"‘""’ ds. In matrix notation, fp becomes,
mn "~ J g n n
(2-18) =-ik bRe Q

Equation (2-13) can be solved for b,

(2-19) R L

Inserting Eq.(2-19) in Eq.(2-18) one obtains,

(2-20) =-ReQ)Q ! a
or
(2-21) f=Ta

where T=-(ReQ Q"1 . Notice that the matrix T is only a function of the
boundary conditions and the shape of the object. Once the matrix T is known,
the scattered field can be determined from any chosen incident field a. The
Extended Boundary Condition method yiclds a unique solution to the exterior
acoustic problem, and is efficient and numerically stable for a large variety of
bounded object shapes. The Extended Boundary Condition method has evolved
since its inception in 1965. In the areca of acoustic scattering, Werby, (28)
Werby, Tango and Green, (29) and Werby and Chin-Bing (24) have made
significant improvements to the general method. Not only is this method

applicable to solid surface of revolutions but also to shells (30-36) and other
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clastic objects. {(37-41) Resonance effects are observed and can be predicted

using this method. (33,36,39,42,43)

In this section we will show some examples of the scattered field in the
form of scattering amplitude vs. angle, norm"al'ly called the bistatic angular
distribution. (39) Bistatic angular distributions are defined by the case of non-
coincident source and receiver, where the receivers are omni directional.
Bistatic angular distributions are dependent on object geometry and can be
useful in determining such features of object shape as symmetry or
elongation. The far field bistatic angular distribution is defined as the

following, (38)

i
141 ikp m m m

(2-22) f(e)_z(m’( i) P (codo)f A
; “%a 71) ~i e TP (codODf) AL ()

where A?(ei) is the incident field expanmsion coefficient, which is dependent

upon the angle at which the source insonifies the object, a is the semi major

axis of the object and f :?, is the frce space scattering field as determined by

the EBC method (see Eq. (2-21)). Thercfore the far field bistatic angular
distribution is dependent upor two angles (incident and observed), and not
just one.

An cxample of the characteristics of a typical scattering object are
shown in Table 1. The incident field was a monochromatic point source. It is

assumed that the object is sufficiently far from the point source so that the
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incident wave front has infinite radius of curvature that is, it is a2 plane wave.

The three frequencies chosen are given in Table 2, along with other

information.
TABLE 1
CBJECT CHARACTERISTICS
Object Type Aspect Ratio Boundary Length(L) Width(W)
@L/w) Condition (m) (m)
Solid Spheroid 5 Dirichlet 50. 10.
TABLE 2
EXTENDED BOUNDARY CONDITION INFORMATION
Frequency KL/2 Sound Speed A Highest # Matrix
(Hz) (m/s) (m) Matrix Order
95.5 10. 1500.0 15.7 17 4
191.0 20. 1500.0 79 32 7
382.0 40 1500.0 39 64 13

Figure 1 compares the angular distribution with the incident direction
along the major axis of symmetry. The object is oriented along the 0-180
degree axis in the figure and the incident field is coming from the direction of
the arrow. Angular distribution plot (a) is for a frequency of 95.5 (Hz) or a
KL/2 of 10. Where K is the wavenumber and L/2 is half the object's length.
The corresponding wavelength is 15" (m). The object is approximately 3

wavelengths long. This would represent a low frequency case. Note the
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broadness of the ficld. Even at this low frequency the ficld is predominantly

in the forward direction. As we incrcase in frequency (and KL/2) we note that
backscattering (toward the source) is reduced. whiie it is being focused in the
forward dircction. The amplitude is also increasing with increasing
frequency.

Figure 2 illustrates the case when the object is insonified at an angle of
45 degrees relative to the major axis of symme't.r}". The top plot is for a
frequency of 95.5 (Hz) and the bottom is for 382. (Hz). Note that for the low
frequency case, the field is oscillatory in appearance. We also see two peaks,
one in the forward direction (225 degrees) and the other in the specular
direction (135 degrees). The peaks become more focused in the forward
direction as we increcase the f{requency. The forward diffracted wave becomes
more highly focused with increased frequency. Also note that the wave-like
appearance of the field at low frequency virtually disappears in the high
frequency case. Again we see that the field tends to increase in amplitude as
frequency increases.

Figure 3 illustrates the case when the object is being insonified at an
angle of 90 degrees or broadside incidence. Note for the low frequency case,
the forward and backscattered amplitude are about equal. As we increase in
frequency we seec that the forward diffracted wave becomes more focused and
its amplitude is larger than the backscatiered (90 degrees) wave. In fact we
sece that the backscattered amplitude remains approximately constant. This is
because the backscattered amplitude (at 90 degrees incident and 90 degrees
observed) is dependent upen geometrical effects and is independent of

frequency. Now we turn our attention to some ncar field examples.
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KL/2 - 10.0

Frequency - 191.0 (Hz)
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Fig. 1. Angular Distribution of Free Field Form Fuction for an Object Being
Insonified Along the Principle Axis of Symmetry for KL/2 Values of 10, 20, and 40,
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Frequency - 95.5 (Hz)
Kuz A4 o

180
Frequency - 191.¢ (Hz)

180

Frequency - 382.0 (Hz)
KLR2 -40.0

180 -0

270

Fig. 2. Anguler Distribution of Free Field Form Function for an Object Bcing Insonified
45 Degrees Relative to the Principle Axis of Symmetry for KL/2 Values of 10, 20, and 40,
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Frequency - 95.5 (Hz)
KL/2-10.0

Frequency - 191.0 (Hz)
KL2.

L

180

Frequency - 382.0 (Hz)
KL/2-40.0

180

Fig, 3. Angular Distribution of Free Field Form Function for an Object Being Insonified
60 Degress Relative to the Principle Axis of Symmetry for KL/2 Values of 10, 20, and 40,
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In this section we will show representable examples of the near ficld
form function. The paramcters of Tables 1 and 2 from the last section will be

used in this section. The near field form iunction takes the following form,

1
m m

[
(2-23) £(6) = %t(y;“) h?)(k AP, (codO)f AT (e |

The mathematical surface on which the form function wili be evaluated is a
spheroid with an aspect ratio of 5:1 a semi-major axis of 125(m) and a semi-
minor axis of 25(m). This surface is not the surface of the object but a
mathematical surface enclosing the object.

Figure 4 illustrates the field for 3 different frequencies as it is being
insonified along the axis of symmetry. Note for the low frequency case (top
figure) the field is oscillatory in appearance while in the intermediate (middle
figure) and high (bottom figure) frequency cases the field is more strongly
focused in the forward direction. The amplitude of the field increases with
increasing frequency.

Figure 5 illustrates the case when the object is being insonified at an
angle of 45 degrees relative to the principle axis of symmetry. We see the same
traits as in the previous figures, with the low frequency case appecaring wave-
like while the intermediate and high frequency cases are void of this feature.
In addition we see the reflected field is in the specular direction. Finally, we

sec that the amplitude of the forward diffracted field increases with

increasing frequency.




90 Frequensy - 95.5 (Hz)
LL/2+ 100

180 2010 1020 0 g

Frequency « 191.0 (Hz)
Kuz L4 2000

180

Frezquency - 382.0 (Hz)
KL/2 - 40.0

10=20""10 ~E===

Fig.4. Angular Distributicn of Near Free Field Form Function for an Object Being
Insonificd Along the Principle Axis of Symmetry for KLJ2 Values of 10, 20, and 40,
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Frequency - 95.5 (Hz)

KL/ 2 - 10.0
0

270

90 Frequency - 192.0 (Hz)

KL2-200
180 30 5(. jﬂ 0
270
Frequency - 382.0 (Hz)
KL/z+40.0
187736 0

270

Fig. 5. Anguler Distribution of Near Free Field Form Function for an Object Being
Insonified 45 Degrees Relative to the Principle Axis of Symmetry for KLJ2 Values

of 10, 20, and 40,
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Figure 6 illustrates the case when the object is being insonified at an

angle of 90 degrees from the principal axis of symmetry. We note immediately
that the field is not being focused as we increase in frequency but the
amplitude is increasing in the forward direction. We also note that the
backscattered field remains approximately constant for the three cases shown.

To observe the effect that range has on the field, the surface on which
the ficld was solved was enlarged from a scm'i.-.major axis length of 125(m) to
250(m) and a semi-minor axis length of 25(m) to 50(m). The intermediate
frequency of 191 (Hz) was sclected for this evaluation. Figure 7 illustrates the
results for the near field. Three incident angles were investigated 0, 45, and 90
degrees relative to the principle axis of symmetry. By the time the surface is
at a range of 10 times the object's dimensions (which is for this case 25x5) the
field is approximating the far ficld result rather well for the 0 and 45 degree
incident case.  Although this is not the case at 90 degrees, the trend is correct;
that is the near field at the outer surface is approaching the far field result,
but not as rapidly as for the cases when the object is insonified at an angle of 0
and 45 degrees.

We have shown the angular distribution plots because they will be used
in later chapters. There arc other ways of showing frce space scattering
results such as showing the forward or backscattered form function vs KL/2.
In this way one can see resonance locaticns (in the case of elastic spheroids) or
Franz waves (38) which occur when the specular and circumferential waves
interact with one another at the field point. To include these would be outside
the scope of this dissertation since they have no bearing on the problem. We

will now turn our attention 10 acoustic propagation in a waveguide.
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Chapter 3
ACOUSTIC PROPAGATION IN A WAVEGUIDE

In this chapter we will describe how s;;t.md propagates through a shallow
water waveguide. We assume that the sound is a small amplitude wavelike
disturbance on the hydrodynamic background. We first describe the
properties of the fluid equations. We will derive these equations from first
principles, and then obtain the equations governing the sound field which we
discuss in more detail from two points of view, using Normal Mode theory and
Ray theory. We will finish by showing the connection between the two. This

section follows the procedure outlined by Ahlowalia and Keller. (1)
Properties of a Fluid

Lets begin by considering a large fluid mass, with mass density of p.
Within the fluid mass lets define an infinitesimal cube whose sides are of
length dx, dy, dz. The center of the cube is labeled c. The pressure at ¢ is

denoted by P. Figure 8 illustrates the cube.
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Fig. 8. Geometry for the fluid cube.

The force at ¢ due to hydrostatic pressure on face a of the cube is,

(3-1) facca-( op dx)dy dz

and for face b

oP dx
) =|p 4+ 2L X
(3-2) facep (P 2 )dy dz

the net force in the x direction due to the pressure on these two faces is,

(3-3) (P oF d")dy dz ( 33" d; ydz=- gp dxdy dz

By analogy the same procedure can be done for the net force in the y

and z direction.

(3-4) net force in y direction =-—g§dxdydz
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(3-5) net force in z direction =-—%—dxdydz

The resulting net force is then,

= 9Pp  OPs. PLI G
dF“—_(Bx ¥ 8yj\+ dz )dx ydz
(3-6) = _VPdxdydz ”

now taking the limit as dx, dy and dz approach zero, gives for the net force
dF
dt

(3-7)

Equation (3-7) represents the net force per unit volume at the point c. This is
just the internal stress at point ¢ duc to hydrostatic pressure.

The above description was for a fluid without an acoustic source. At this
time we inwoduce an acoustic source in the fluid medium. This is equivalent to
having an external force present. We denote the external force by ef; where €
is a measure of the source strength. We also introduce the force per unit
volume duc to gravity, pg. Now the total force per unit volume at point ¢ is
equal to,

(3-8) Fp= -VP+pg+ efy

We define u to be the velocity at point c. Then the acceleration is,

du _du  oudx ., Judy  oJudz

— 2 e—

t ot ax dt 9y dt | 9z dt

(3-9) =L 4 (weVu
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Using Newton’s 2nd law, ma =m%‘t-'—= YTF ., we can write down an expression
H 1
1

that cquates the sum of the forces to thc mass density times du/dt.

%:}-4' (u “V)u]= -VP + pg+ €f,

o
(3-10) [—%1:-+(u -V)u]: VpP+ g+ pa

This equation is called the equation of momentum.
Derivation of the Continuity Equation

To derive the continuity equation, we need to define a volume of liquid

(V), surrounded by a surface ¢. Gauss's Theorem (2) states that the rate of flow

of the fluid out of the volume cquals the flow of the volume through the

surface ©.

(3-11) IV(V-A)dv =[,A odo

where A is a vector field representing the flow of the fluid. Now the net flow
of the fluid out of the volume through the surface results in a reduction of the

density inside the volume.

-aﬂdv

(3-12) Jpueds= —J Y

v




Now substituting Eq. (3-11) in Eq. (3-12),

dp
Ve gv=-| —(d
"; (puyav Lau Y

(3-13) Vo(pu)+-@—=0
at
Eq. (3-13) is the continuity of mass cquation.

Derivation of the Continuity Equation for Entropy

The procedurc is thc samc as the last derivation, We define S to be the cntropy

density.
aSp) ., _
L—-&—-dv = -j'o(Spu) o dn
(3-14) =~ ‘{"Vo (Spu)dv

which through the limiting process becomes,
,{%§-+(vs)-u]+s[a—a‘l’+v-pu]=o

the second term is zero and one is left with,

(3-15) %f.+<vs).u...o

which is the continuity of entropy equation,
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Equation of State

Pressure can be considered a function of the fundamental quantities
density and entropy. (1)
(3-16) P =P(p,S)

which is just the equation of state.

Bounded Fluid

Now the fluid will be bounded above by a free surface defined by
z=n(x.y,t) and below by a rigid surface by z=-h(x,y). Thc pressurc above the
free surface is constant and is equal to Pg. There are two boundary conditions
on the top surface, the continuity of the pressure across the surface and the

continuity of the normal compenent of velocity across the surface.

" v

\

Fig. 9. Waveguide Geometry,
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Using the first boundary condition wc can equaie thc pressure on the opposite

side of the boundary z=m.
(3-17) Pix,.y. n(x.y.t)t} = Py when z=m(x.y.t)

To find the normal component of velocity, we need to construct the unit

normal vector. Let @ be a scalar function défining the surface,
(3' l 8) ¢(x'y~z'l)=z-n(xvy.t)
The unit vector normal to @ is defined as

Vo

__xon
Vo]l = Dax

yom
_Day +

Ui~

2
(3-19)  where V¢=—x~aﬂ--yﬂ+z and |Vd=ﬂﬂ) +(E‘]—J +1=D
gx ~ dy ox




Evaluating the unit vectors X, y, and z, we obtain

Vo ox = _ xan. }'a'f]. z,
W X =coga) = D ox X D ox XTD X
_.1an
D ox
Vo - _ xaﬂ. yaﬂ. z
Wl Y =C0P =55 Y 55 VDY
_.1o
D oy
Vo . ’
(3-20) W'zabﬂq"f) =-;‘)gwx]oz ’I’)g‘;loz.p%.z
=1
D

Now equating the normmal component of velocity across the upper surface,

uf ). v[ ), w_1dx( 311) 1dy( 8!1) 1dz
(3-21) D( )+ D( ay)+D_Ddt\ ax ) Ddt 9y ) Dt

Since the derivatives of x and y with respect to t are zero, Eq. (3-20) can be

rearranged into the following,

o o, dz -
(3-22) u = +v 3y + T w  when z = n(x,y,t)

This is the requirement on the velocity components at the top surface. For the

bottom surface let

(3-23) ®(x,y,z,t)=z+h(x,y)
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For a rigid bottom, the normal component of the velocity vanishes. If we

apply the same procedures as were used for the top surface, the results for the

bottom surface are,

1
(3-24) cos{a)=5%%.¢08(ﬁ)=15—g-:—,CO%Y)=113

an Y (anY
where D= (3;) +(-a—y-) +1
(3-25) “3—2 +v-§-§%+w=0 when z = -h(x.y)

The last expression is the requirement on the velocity components at the
bottom surface. When €, the measure of the source strength, is zero, the Egs.
(3-10), (3-13), (3-15), (3-16), (3-17), (3-22), (3-25) constitute what can be called
the basic state equations. When &€ = 0 this corresponds to a fluid containing no
source. Because of this, the velocity u = 0. The equation of momentum Eq. (3-

10) becomes
(3-26) VP = -pg.

Then the continuity equation for density becomes,

(3-27) -a—p=0,

i.e. p is a function of coordinate only, p=p(z2).




The continuity equation for entropy becomes,

as
- 9 g,
(3-28) o

and the .awropy is a function of the z coordinate only, S = S(z). The pressure is
still a function of density and eniropy, i.e. P = P(r,S). The pressure at z = 0 is

ecqual to the pressure on the other side of the top surface, Po.

We will now derive what Ahlowalia and Keller (1) call the acoustic
quantities. The approach will be to consider the equations which depend on
the source term e. By differentiating these equations with respect to ¢ and
cvaluating t. = results at ¢ = 0, we obtain the acoustic equations. The acoustic
quantities are the individual functions, i.e. u, P etc. differentiated with respect
to ¢ and evaluated at ¢ = 0. Once the acoustic equations arc obtained, the wave
cquation for the acoustic quantity P will be obtained along with the boundary

conditions.
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Thus
(3-29) a=2U
oe
e=0
- 9P|
(3-30) p= ael
e=0
._ |
(3-31) p= 8£|
e=0
- 98
(3-32) $= ™
e=0
——|
(3-33) ==

Starting with Eg. (3-10), the continuity of momentum equation, and evaluating

it at ¢ = 0 yields

: o, [f2u, wit] L lyp,bep.fa
(3-34) "a?*[('é? V)u] +[(u V) ae] = pVP+ 2VP+ 5

e=0 e=0 p




We stated earlier that the velocity u = 0 when € = 0. However that is not

necessarily the case for u.

(3-35) n=<= 20
de
e=0

nor is it for _Qll_:

oix azu

e=0
Therefore Eq. (3-34) becomes,
: f

o _ 1 P _a

(3'37) -éT-—b-VP+ 2VP+ P -

Now consider the continuity of mass equation, Eq. (3-13).

(3-38) [V' (%%“)] v ‘{ﬁf)]

the first term is zero because . is equal to zero when evaluated at € = Q.

oe

Therefore Eq. (3-38) becomes,

(3-39) [v. 9-“-)]+ ® .

34




Now consider

Q§+[Vﬁ§ou]
ot ot

(3-40)

the second term is zero because

3

0. Therefore Eq. (3-40) becomes,

(3-41)

ot 13

Now consider Eq. (3-16), the equation of state,

the continuity equation for entropy,

§+[vs.3_“]=0.

: _P(pS)|  _ ap o P 3s|
PpS) =—% T e| 3 eel
) =9P,, Pg
(3-42) %0 5
Now consider Eq. (3-17),
oP 9x op 9y 9P on
3.43 P 1) = 22X o) e
(3-43) (%Y =5 % Toyael  Tmae
£E= e=0 e=0

i s equal to zero when evaluated at € =

X1
dt de

£=

35
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when z = 1 = 0, we can define P at z=0 as,

_w(x,y,mt)| 3P ax 3P 3y | 3P At
(3-44) Pe—% 1 “oxoel * aya_el TS
e=0 £= e=0 £=
now Eq. 13-43) becomes,
(3-45) }':+.3_P.1'1=0 whenz=nm=90.
o
Now consider Eq. (3-21)
o duon o v om o _dw
(3-46) at "’ de ox ) e A 3
£= e=0 e=0 e=0 e=0

note that u = v=w = 0 when ¢ = 0 since u = 0. And since n= ¢ fa(x,y.t),

(3-47) n =0 and 9—;‘-' =ﬂ| =0 therefore Eq. (3-46)

e=0

n
n
(4

becomes,

|

(3-48) =w when z=0.




37
Now for the bottom condition, Eq. (3-25)

(3-49) W+ (a_“ih_] + (u _B_h_)
de dx )
e=0 e=0 £=0 g=0

when z = -h(x,y). The second and fourth terms are zero, and Eq.

(3-49) becomes,

(3-50) w+udl s v3h g when z = -h(x,y).
ox ay

Equations (3-37), (3-39), (3-41), (3-42), (3-45), (3-48), and (3-50) arc called the
acoustic equations. For instance, Pacts like a change in pressure due to source
emissions. These equation must now be combined in order to obtain a single

cquation for the pressurc and two boundary condition equations. We start by

taking the partial derivative of Eq. (3-39) with respect to time; this leads to

2

dp % di
(3-51) ——-i--i-Vo(-st-u]-i-Vo(p—a-:l):O
ot

The second term is zero since the density is not a function of time.

Equation (3-51) becomes,

32¢ /9
¢ di
(3-52) —-2—+v0kp°-aTJ—0.
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From Eq. (3-37) we have an expression for %tg Using this expression in

Eq. (3-52) gives after some simplifying,

2, .
(3-53) ap Vb 4Ve ( VP)=_V.f
a’

It is important to remember that these quantities are a function of z only.

Therefore the third term in Eq. (3-53) becomes,

) v.("’_ ):V (p(Z) ap) Ve (p(Z) ) k)
(3-54) PVP P(Z) 0z p(z) z(-p8) gaz
which, when substituted into Eq. (3-53) gives,

(3-55) a‘z’-vp e ¥ __v. f

at 9

Now taking the partial derivative with respect to time of Eq. (3-41) gives,

2
9S o - odS
(3-56) -—2—+-5-t—¢VS+u OV-a-t-—o,

at
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Since the entropy depends only on z in the basic state, the partial derivative

with respect to time of the entropy is zero. [Equation (3-56) becomes,

2
38,9 gs 9.
3 t

(3-57) >+ 5
t

Now substituting Eq. (3-37) for %!tl in Eq. (3-57) gives,

823 1 p fa
(3'58) 'ét_z'f'[-b‘vp*'")—zvp-i-'p—JOVS:O.

Remembering that S = S(z) and P = P(z), we obtain for VS and for VP,

(3-59) VS=z— and VP=z—
Equation (3-58) becomes after some simplifying,

2 f
(3-60) §_§.__l.(ap a5 _agds

_.+pg = - .
2 P
ot Pl oz 0z 0z

Now taking the partial derivative of Eq. (3-42) with respect to time twice gives,

2 2

3P _ opop P 2%
(3-61) T 2t R 2
ot ot ot
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2 2

Substituting Eq. (3-55) for i;?, ard Eq. (3-60) for -a—-g- in Eq. (3-61) yiclds,
ot ot
2 .
3P oP[o2, . ] 1P as(op .

Rearranging Eq. (3-62) gives,

2 .

3P ap Sl 9P 19Pos{aP . P F
(3-63) —at—Z—’?p'VP"'$(V'fa)+Pas az(az“’g fa3]+ % oz "
We can neglect the last two terms of Eq. (3-63) since p=0, .g% =0 and —gfz)-=0.

This results in the wave equation,

2 -1
2, 1 3P 3P 1
(3-64) VPSR (Ve) v [33] -5

The quantity c¢ is just the specd of sound in the fluid. We will now obtain the
equation governing the condition for the top boundary condition. Starting
with Eq. (3-45)

aP

(3-65) pandla
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Equation (3-65) can bec rewritten as

{2-66) P+i(-pg)=0

but i< <Pwhen z = 0. We can therefore neglect this term and Eq. (3-66)

becomes,
(3-67) P=0 whenz=0.

Consider now the bottom condition. We start by taking the partial derivative of

Eq. (3-50) with respect to time. This yields,

2 2
ow ouoh .oh  ovoh .dh _
(3-68) ot Farax TYaex T arax T oy =0,

since h is a function of x and y only, the partial derivative of h with respect to

time is zero. Equation (3-68) becomes,

) 3w, duoh , dvah _
(3-69) 3 ook ot ox D

We will use expressions for -aa‘tv—,%‘?’- and %‘t-’- from Egs. (3-37). Equation (3-69)

becomes after the substitution,

3-70)
1ap 1.0 1. ][ 1ap, 1 ap 1. Ton [ 19b, 1 9P 1, Jon_
[ +p p——-+pf3]+[ Pax+;2-p5;+9fl}ax +[ pay+-p—2pay+ pfz ay-O
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Since the bottom is defined as being rigid, no force is transmitted through the

bottom, which says that fy =f2 =f3 = 0 when z = -h(x,y). Finally sincep=0 we

can writc Eq. (3-70) as,

ab, 3P ah, 3P dh _,

oz axox ayay | Whenz=-h(xy).

(3-71)

This is the bottom boundary condition. We have now defined a boundary value
problem for the determination of the acoustic pressure using the wave
equation, Eq. (3-64) which governs the problem, subject to the boundary
condition at the surface, Eq. (3-67) and at the bottom, Eq. (3-71). In order to
solve the problem, we need to know how the sound speed varies with depth, the
depth of the waveguide and the source distribution. In underwater acoustics it
is common to consider the source to be a point source producing a
monochromatic time dependent wave. In this case, we now write the pressure

as a function of distance (r) and time (t),
(3-72) P(r,0) = P(r).

Substituting Eq. (3-72) into the wave cquation, Eq. (3-64) yields,

—. 2
(3-73) e 'm[VZP(r) + -:-:%P(r)]: Vef .
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¢

_ o 0 .
Defining k 27:—6- and n(z)za—z-)- where ¢, is a reference sound speed and n(z)

i :he index of refraction we have,

(3-74) a";—)- =k n(z)

and Eq. (3-73) becomes,

(3-75) e_iwt(VZP(rHkznz(z)P(r))=V.fa.

Suppressing the time dependence of Eq. (3-75) and defining q(r) as that

quantity in parenthesis, we¢ obtain

(3-76) q(r) = PP )+ k ‘n 2(2)P(r)

Equation (3-75) can be expressed as,

(3-77) q(r)=Vef .

Equation (3-77) is sometimes referred to as the reduced wave equation or as the

Helmholtz equation. (2) The boundary conditions are as follows,

(3-78) P{r,t)=0 =P =0 when z = 0 and
(3-79) —8}14- 9P oh + ob oh == a—P+ 9P +-Q-E-=0 when z = -h(x,y).

3z oxdx dy dy 0z odx dy
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The pressure due to Eq. (3-77) subject to the boundary conditions Eq. (3-78) and

Eq. (3-79) do not dctermine P uniquely, since the homogencous case (q(r)=0)
allows solutions which represent waves coming in from infinity. We will need
to impose an additional condition in order to uniquely determine P.  The

additional condition is that the wave number, k will become complex,

(3-80) k= Lvio

This condition makes the outgoing wave decay to zero at infinity while the
incoming wave will be infinite at infinity. 7The solution will be bounded at
infinity and thus climinatc the incoming wave. Thke pressure P(r) now takzs

the following form,

(3-81) P(r)= lim P(r,o).

a0

We stated carlier that the source was assumed to be a point source. A point

source can be represented by a delta function. The source distribution term,

Vef_  can be represented by,
(3-82) V-fa=-8(r-r0)

where is the source position. The point source will be normalized to

produce unit strength.  Assuming cylindrical coordinates,

(3-83) fva(r -rg)dr=1,
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Evaluating the integral in Eq. (3-83),

fvs(r TTp)dr= fvf(’)s(f)f(z ~z,)rdedrdz

(3-84) = 2nr
r)dfz-z
therefore 8(r-r0)=——;£1-”——02-__§nd f(r)=21l:—r'

The Helmholtz equation becomes,

'(r)&(z -—zo)

(3-85) PP(r)+k n2(2)P(r) = —

wt

Recall that P(r.t)= P(r) ¢’
We will now consider a simple waveguide, namely the homogeneous
waveguide of constant depth. We will solve for the pressure using normal
mode theory and ray theory. We will show the connection between the two
methods. The normal mode solution is most useful at distances where only a
finite number of propagating modes are present and the ray representation is
most uscful near the source where only the incident field and a few reflected
waves need to be considered since spherical spreading diminishes the rest.
Since both represcntations should give the same answer for the pressure (at
least mathematically) at any range, we will convert the ray represcntation

into the normal modc representation in order to shov the connection.
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Ngrmal Mode Theory

Normal Mode theory has been used to solve a variety of classical
phenomena.  Problems involving mechanical vibration reduce to that of the
harmonic oscillator at small amplitudes of vibration as long as they remain q
within the elastic limits of the material. The concept is used in the context of
finite, discrete systems of masses and spring‘s..‘ stretched strings and
membranes, etc. The motion of these systems results in a number of so-called (
normal modes of vibration, each mode behaving in many ways like an
independent harmonic oscillator. (3,4) Normal modes have also been used in
bounded continua, such as the acoustic modes of a room. (5) The above {
examples have infinitely many but discrete cigenfrequencies. The concept of
normal modes can also be applied to unbounded continua. An example is the
treatment of electromagnetic modes of infinite space used in the quantum (
theory of fields. (6) Biot and Tolstoy (7) have generalized the procedure to
conservative, unbounded, mechanical medium of any type. In principle,
normal mode theory can be used to provide a unified point of view of all types (
of mechanical, electromagnetic, and electromechanical waves.
A water waveguide can be visualized by starting with a rectangular box
of dimension a, b and h corresponding to x, y and z coordinates. Now allow & |
and b to approach infinity. If we chose appropriate boundary conditions at z=0
and at z=h, one can generate what is commonly called the ideal or perfect
waveguide. (8) The water that occupies the space between the horizontal
interfaces at z=0 and z=h has homogencous propertics. The ideal waveguide,
sometimes called the slab waveguide, does not represent a 'real' world
environment. A waveguide that better represents a real ocean waveguide

would allow the speed of sound in the water to vary in depth and range, i.c.
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c(z,r), where ¢ is the local speed of sound at the depth position z and the range

position r. In addition, the bathymetry would vary with range and there
would be multiple layers of sediment beneath the water layer, cach with its
own sound speed, density, sound attenuation, shear speed and shear
attenuation. We will consider two variations of the ideal waveguide in
Chapters 5 and 6. We will, however, at this point proceed with a discussion of

the ideal waveguide.

For a waveguide of constart depth and sound spced, we have c(z) = =

constaut, and n(z) = colc(z) = 1. The govemning equation is the wave equation,

Eq. (3-85), here written in it's homogeneous form,

(3-86) VZP(r)+k2P(r)=0

The boundary condition at the surface is that the pressure at the

surface is zero, i.e. it is a pressure relcaz: surface.
(3-87) P=0 at z=0.

The bottom boundary condition is that the normal derivative of the pressure is

zero, or that the bottom is rigid.

P

(3-88) >
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The Laplacian in cylindrical coordinates is,(9)

_1a(.30), 130, 30
(3-89) v(O)=Ldr ’)+r g

For this waveguide we assume cylindrical symmetry so the theta term vanishes

2%()
~———=0. The Laplacian then becomes,
2
0@
(3-90) 7()=12( & ) 2 ()
oo )T 2

Since the pressure is a function of both z and r we can write,

(3-91) P~ 0z)y(r)

and Eq. (3-86) becomes,

2
1d( dy de 2
(3-92) (p—r——dr[r——-dr)ﬂy-——-—dzz +k py=0

Equation (3-92) can be separated into two parts (possible only
when c=constant or c=c(z)), one par. containing terms dependent in r and the

second part containing terms dependent in z.

2 2
11(dy  dy do 2
(3-93) L{dr ’7}*%“7*“ =0.
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Denoting %-“r-'- by ¥ cic Eq. (3-93) now becomes,

111 __1 cC
(3-94) W[?Wr*'wrr]"_ﬁq)zz-k =-k 2

where a2 on the RHS is the scparation constant. The resulting Ordinary

Differential Equations are

2 22
(3-95) 9,,+ok =k a’¢

(3-96) Yoot

Solving the depth dependent equation Eq. (3-95) first, we know that the

gencral solution will be of the form,
(3-97) cp(z)=Asin(szl—a2)+Bcos(kz‘\/l— 2),

Due to the surface boundary condition, Eq. (3-87), the constant B in Eq. (3-97)
must be equal to zero if Eq. (3-97) is to be a solution. Applying the bottom

boundary condition to Eq. (3-97) we have,

(3-98) 9%(29=k\/1-a2|A cos(kzx/l-az)Lo L:_h

=cos(k‘\/l-—a2(—h))=0
=cos(k h'\/l-—az)=0
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In order for this to be true the following condition must be satisfied,

(3-99) khv1-22 = (9—'3—2*—1)).‘
Solving for a, we obtain

(3-100) a

we sce that there is a distinct, discrete solution ap, for each n. Equation (3-100)

can be written as,

2
b3
n+ n
(3-101) a, = [l-—5— n=0,1,2,3,

k

[ &)
= o L

The final solution for the depth equation is of the form,

(3-102) cpn(z)=Ansin(kz,/l—ai) n=6123,...

Now consider the solution to Eq. (3-96), which is Bessels' Equation of the first

kind; solutions are,

{3-103) y(r) = CyJg(kar) + CoYg(kar).
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We have the requirement that for any arbitrary z value, P is finite at r=0. This

o reauires that Cp be equal to zero. Rewriting Jg(kar) in terms of a sum of

:acl Functions (10) of the first and second kind we obtain,

1)
H =] +iY
° (3-104) 0 0 0
2)
H =] -iY
(3-105) o 0 0
®
) . 2)
(3-106) \y(r)=CH0 (karg +DH0 (kap
¢
To solve for the constants in Eq. (3-106), we note that for the
radiation condition, (as r — o ), P behaves as an ocutgoing wave. Therefore, in
® the limit as r—> oo, Y(r) needs to behave as an outgoing wave. Therefore,
choose the Hankel function which represents an outgoing wave. We will use
the large argument approximation to the Hankel function in order to
® determine which Hankel function to keep. The asymptotic form of the Hankel

functions are (11)

) Q) [ {xer-g)
(3-107) HO (kar) > a7 ©

. T
Y ) (2) 2 —x(kar-z-)
(3-108) Hy (kar) » /nkar e

o
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Equation (3-107) is an out~~ing wave while Eq. (3-108) is an ingoing wave.

Since we want an outgoing wave, we therefore choose D=0. And we are left

with

1
(3-109) y(r) =CH;)(kar)

Our expression for the pressurc now takes the following form,

/ 1)
(3-110) P(r)= 0@y = A s i r(kz 1- ai )Ho (k% r)

Now the ap are positive and either real or imaginary. If it is real then
we have propagating modes (trapped modes). If a, is imaginary we have non-

propagating modes (evanescent modes). (12,13) That is to say that if,

@) 5 i(ka,r-%)
3-111 n a7,
( ) HO (kanr)-a nkanr ¢

and if ap = i(l)

- 2i o lkrc'i':-
nklr

@)
Ho (kanr)-

Thus, if a, is imaginary, P(r) dccays exponentially as r increases. We can also

determine the number of propagating modes. Since ap is positive we have by

Eq. (3-100) the condition that

(3-112) 12 (n " ;—)2 (ﬁ)z




we know from Eq. (3-101) that ajp is,

g
(3'113) an= -——Thz—' n=0’1,2’3,...'M

We can now sct the limit on the number of ﬁrbpagaling modes, by the

following condition.

(3-114) 12(M+%) (ﬁ)

(3-115) k—nh-%zM.

Our expression for the pressurz now has the following form

] s a2 1Y
(3-116) P(r,z)-%’,Ansn(kz 1 an)H0 (ka,r)

In order to solve for A, we evaluate V2P using Eq. (3-90),

Eq. (3-117)

2
vp- TA, s n(kz, /1-a2 ){{irf -}--a—ar-]ﬁg)(k a,r)-k (1- ai)Hg)(k anr)l
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We have from Eq. (3-85) the inhomogencous wave equation that

- - 2
(3-118) 5(2-2) 80)_ #p .1 ’p
2nr
ZAsn(k 1-a ){32 laH()(ka )
= i z - — r
n arz ror 0 n
With help from Appendix B we have,
(3-119 L Lo [0,y 4iE)
-119) 32 foor 0( af)= 2nr

So that Eq. (3-118) becomes

is(z-z
(3-120) EAnsir(kz /l—azn ):1_(_.4_9_).

Utilizing the orthogonality condition for the depth eigenfunctions

(see Eq. (3-102)), (14) we find that Ay equals

(3-121) —-—-s”(kz .‘/ -a )

The expression for the pressure now becomes,

(3-122) P(r, z)=——):sn(kz0,/l-ai)sil{kz A/1 —ai )HS)(kanr).
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Ray Theory

We begin again with the time independent wave cquation (Helmholiz)

Eq. (3-85).

8(r)8(z —zo)

e 2w

(3-123) VZP(r)+k2n2(Z)P(r)=

the boundary conditions arc the same as for the normal mode case namely that
the pressure is zero at the surface and the normal derivative of the pressure is
equal to zero when evaluated at the bottom. While we assumed cylindrical
symmetry for the normal mode case, we will assume spherical symmetry for

the ray representation. The range variable R is defined as,

2 2
(3-124) R= [r +(z—z0)

The Laplacian for spherical coordinates is, (15)

2
2
(3-125) v =L21(R _a_)+—2-—1——--a%(ssn(e)§6)+ W S
R R sin6) R sinZ(e) 99
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Due to the spherical symmetry, the partial derivatives with respect to 6 and @

arc zero. Therefore Eq. (3-125) becomes,

2 1 3,20
(3-126) V= > aR(R ﬁ) and

2
2
(3-127) VP=i-Pz-+(2 ap).

We will use the homogenecous wave equation in order to obtain a gencral
solution and then use the inhomogenecous wave equation to obtain the
particular solution.  Starting with the homogeneous Helmholtz equation,

which is Eq. (3-85) with n(z) = 1 and the source distribution term equal! to zero
2 2
(3-128) VP+k P=0.

2
Substituting in Eq. (3-127) for V P we obtain,

2
(3-129) a—“‘-zf-)-+k2(kp)=o.
3R
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The general solution to Eq. (3-129) is, (16)

RP= +ikR
+ikR
P=
R
c+ikR c—ikR
(3-130) =A—¢ +B = EPO(R).

We will use the radiation condition for spherical waves in order to decide
which term in Eg. (3-130) to keep. The radiation condition is, (17)

lim R/P’ (R)—ikPO(R)]=0

(3-131) R oo LO

+ ikR ikR ikR
When PO(R)=A° , P’O(R)=ikA£'§—_A£'z_ and Eq. (3-130) becomes,
R
" AcikR
(3-132) lim |[-2&& =0.
R R
e ikR , ] c-—ikR e ikR

When PO(R)=B = ,PO(R)=—1kB = -B R2 and Eq. (3-130) becomes,
(3_133) Iim [-ZiBC—ikR]iﬁO

R-o
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therefore B = O and Eq. (3-130) becomes,

ikR

(3-134)

In order to determine the constaat A, we will use the inhomogencous wave
Equation, Eq. (3-85). We integratc Eq. (3-85) over a volume v and then take the

limit as R approaches zcro:

R-0

(3-135) ”m{JV°(W)dv+k2LPdv=—Jv8(z—zo)g%:l%dv}.

Evaluating the first term with help from Gauss's theorem, (18)

(3-136) J Ve (WP)dv=[VPedo

AikolkR  AoikR )
where VP = lI: - ez and do=RR sin(6)dfdp. Equation (3-136)
R
becomes,
T
2n
(3-137) Ve (VP)dv = J J alikre™*R _ ¢*¥R] ¢ woydade

e

=4zAc*RlikR~1].




Now cvaluating the sccond term in Eq. (3-135),

2 2 ? kR .. f 2n
k“[Pdv=k"A JRE*RAR [sin(e)de fao
0 0 0
(3-138) - anAl*RGKR = 1)+ 1]
and finally evaluating the last term,
R 2n
r), 1 P
(3-139) —jS(z—zo)mdv—-zn ({S(r)dr f&(z 24)4 ({d(p
v 0

=-1
Equation (3-135) becomes,

lim {4nAc®RGKR -1) - anale*RGkR-1)+ 1)= -1},
-

(3-140) lim {4nA=1},
R-0

therefore A=Zl-7-€ an' Eq. {3-130) becomes,

(R) cikR
-141 P (R)= =—o.
3 ) 0 4nR
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So far we have cvaluated only the direct ray. We will now evaluate the ray

which suffers a single intcraction with the surface and the bottom. Any ray q
which reflects from the surface or bottom obeys the Law of Reflection, (19)

which says that the angle of incidence is equal to the reflected angle.

Following the same procedurc as for the direct ray, the phase and amplitude p
can be found for cach ray. The ray that reflects once from the surface

appears to come from a source located at r=0,"z'=-zo (see Fig. (10)). The pressure

due to this reflected ray is equal to (

e , ) 2
(3-142) PSref(r’Z)=4,rR' where R=\/r +(z—(—zo))

and the pressure due to the direct ray is given by Eq. (3-141). The total
pressurc then at the point (r,z) due to the direct and surface reflected ray is

just the sum of the individual pressures,

¢ e 4

(3-143) P(r,z)=4nR+ e

where Rg is the surface reflection coefficient. The boundary condition for the

top surface states that the pressurc is zero at 2z=0. Using this condition we can
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Fig. 10. Rays and their Image Point Source Location.
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determine the surface reflection coefficient Rg.

ik‘/;2 +zz

(3-144) P(r,z)] =0=2= 1+R]
Z=0 4 2 2
T /T +Z0

(3-145) whence Rg= -1

Equation (3-143) now becomes,

1 [KR kR’
(3-146) P(r,z) = an R R

To determine the pressure at a point P(r,z) due to the direct ray and -~ ray
which interacts with the bottom once, we proceed as before. The ray which
interacts once with the bottom appears to come from the point r=0, z=(2h+zg)

(see Fig. (10)). The pressure due to this bottom reflected ray is,

(3-147 P Sl here R Jz 2h 2
-147) Bref(r,z)-m where = [r +(z— +zo)

The total pressure at the point (r,z) due to the direct and the bottom reflected

fay s,

[ 4

(3-148) P(r,z):“7t +R_E




where Rp is the bottom surface reflection coefficient. Utilizing the bottom
boundary condition we can determine the bottom surface reflection

coefficient (Rp).

ik ik(h-z h-z
(3.149) 3P(r, 2)| =e[ (" -2) (" ~2p) 1-R)-0

e o] A 0]

it follows that Rg = 1. [Equation (3-148) becomes

1 cikR eikR"
-1 = N S—
(3-150) P(r, z) P =

This procedure can be generalized for rays that incur multiple reflections.

Each of these multiply reflected rays appears to come from an image point.

These image points are located at, z=j:zo +2nh n=90,21,%2,-..

The pressure then is a summation of all these interactions,

(3-151)

63

- ] ikjr2+(z~(zo +2nh))2 cikjr2+(z+(zo-2nh))2

¥ (-1) 3=

J2 e rmn’ ey -anny
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Connection Between Normal Mode and Ray Theory

There is not a one to one correspondence between modes and rays. In the
homogeneous waveguide, all images are required to form one mode and vice
versa. However, since both theories give the same answer in the waveguide,
they must be equal. We should therefore be able to convert from one
representation to the other. With this in min;i.wc will show that the Normal
Mode solution and the Ray or Multiple Reflection method from the last section
are mathematically connected. We begin with Eq. (3-151), the final form for

the pressure in the Ray representation,

(3-152)

2

+ oo

1 n
P(r,z)=z;n_2_ (-1)

eik‘/r2+(z—(zo+2nh))2 ] cik‘/r2+(z+(zo-—2nh)) ]l
\/r2+(z"(zo+2n h))2 Jr2+(z+(20~2n h,,.-:Jl

which can be written as,

(3-153) P(r,z)=41—1t +{ (—l)n{P(r,z—zo)—P(r,z+zo)}

NN =—eo
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writing (-1)® = ¢! we write,

(3-154) P(r,z)=P(r, y-)-P(r,7,)

o ]2 L
+00 1kJT7 4+ (y--2nh) ~inzn

where P(r,y_):zl—, )y —
B \/2 2
r“+(y--2nh)
2 z
s ikJr +(y+—2nh) -inx
and P(r 'y+)-— Z”

2
_\/r2 +(y+-2n h)

using the Poisson Sum Formula (20)

(3-155) }3f(an)— F(Zm")
n=—oo m——oo
1 e iqw
where Fq)=—==] ¢ " f(o)do
@) Wrhet
setting o = 2%, we obtain
Sram)=— 3
3-156 2fQnn)= 2F(m),
( ) n=-o Vit m=-e
where F(m)=—l--f+”e_immf(u))dm
Vv 7% '



We can now write f(27ntn) as,

(3-157) f(o)= n
Jo(r- )

Now for P(r,y.) we have,

| 3
(3-158) Pir,y.)=— Y
(rs7-) )

likewise for P(r,'y+):

(3-159) P(r,7+)=;l—22 :
T

If we set t=y—wh/n, and do=-%t/h dt and restrict ourselves to P(r,y.) we find,

+ o0
o+ £)E J e

1
-160 P = —
(3-160) (fs¥-)= 5o 2e P
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If we introduce © by t=r sinh(®), and let g=(n+.5)x/kh then the integral of

Eq. (3-160) becomes,

+ oo + oo
il et +i(n+%-)'T“ eikr,/l+ sinhz(e) +ikqt
(3-161) ¢ di= | coshe)de
2,2 _ra/1+sinh (6)

+ 00
J ikr,/l—q2 coshl®)
=Je de

, -1
where 8 =6+tanh (n)

Now set sinh(©') =s/r, so that cosh(®')d®' = ds/r; then

‘\/r2+s2 de’=.._d_5___
T

(3-162) cosKe)= >
r +8§

and Eq.(3-161) becomes,

eik‘/l--qz\/r2 +s?

(3-163)
(:2452)

ds

<+ 00
jeierl -q* cosh(e')de,




from Magnus et al., (21)

@) —i et
(3-164) Hy (kx) == < dt

Eq.(3-163) then becomes,

+ o0

eile--qur2+s2
ds

(1’2 + Sz)

(3-165)

Finally, Eq.(3-160) becomes,

. -'n.g.i_z 2
(3-166) P(r,7-) = g~ 2 (43R H(ol)kr‘ﬁ-(n+§-)
n

From Eq.(3-101), %:(n + ;_}E%' where we have defined 7Y, by

(3-167) 7 =k(1-a2),
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and now Eq.(3-166) becomes,

Ze-'(n *T)F Hm(r 22

(3-168) P(r,vy) = 8h 0 Ly
i e Tl (@)
=3n 2° o (Xa¥)

with Kn= k —yzn and Y-=2-2

Finally Eq.(3-168) and the equivalent equation for z+zgp can be written as,

ryn(z zo) M

(3-169) P(r,z zo) 8hz H (K )
. -iy (z+2
(3-170) P(r,z+zo)=§‘§_z"c n( )Ha)(K )
n
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Subtracting Eq. (3-169) from Eq. (3-170) (see Eq. 3-153), one obtains an

expression for P(r,z),
. -iy (z—z ) - iy (z+z )) 5§
i Z( n o) n 0
(3-171) P(r,z)-——8h 2 e e Ho (Knr)

c

~iy_z{ iy z =iy 2z, ). 1)
n (e n o_e n o)Ho (Knr)

s

J
8h

i —iypz o )
=3h <° (ZISm(Ynzo))Ho (KpT)

=

- Seos(1,7) ~i5i0(1,2) (251 0(7,2,)) H‘ol)(xnr)

=§.ii1. §2i cos(ynz)sin(‘ynzo) +2 Siﬂ(YnZ)Sin(YnZo)}H(ol)(an)

Since the sum is from n=- vo t0 n=+ co, the first term in the RHS vanishes, and

the second term equals 4 sin(ynz)sin(y nzo)' The result is

: 1§
(3-172) p(r,z)=-21h-§sin(ynz)sin(ynzo) H, (K,r)

which is Eq. (3-122), the normal mode representation for the acoustic

pressure,
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CHAPTER 4
) METHODS DESCRIBING SCATTERING FROM OBJECTS IN A WAVEGUIDE
In this chapter we begin by reviewing a few of the previous methods
® used to describe acoustical scattering from objects in a waveguide. While the
methods given are not cxhaustive, they represent the major work in this area.
We then formulate the present method based on Huygens' principle. We
° conclude this chapter by obtaining a general expression for the scattercd ficld
far from the object.
® Eisviously Used Mcthods
The problem of describing the scattering of acoustic, electromagnetic,
® etc. wave energy from an object in free space is difficult. One has to contend
with numerical instabilities, ill posed problems etc. When one allows the
object to be in a waveguide, thc problem greatly increases in difficulty. One of
P the carliest methods which allowed for numerical answers was the sonar
equation approach to scattering from an object in a waveguide. This method
simply takes the transmission loss (-20log(P/Pg)) from the source to the object,
® adds the target strength due to a single plane wave incident on the object and
then adds the transmission loss from the object to the fisld point (receiver).
Mathematically it takes the following form,
®
(4-1) Us='1"Lso+’I‘Sobj+'I‘Lor
®
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The problem is that there is only a single number that one obtains from this

process. There are no insights as to what physical processes are going on with
the scattered field. This mecthod however gave surprisingly good results when
the field point (recciver) was in the forward direction, and when the
frequency was high enough so that the scattered ficld was highly focused in
the forward direction.

Another approach taken to solve this prbBlem was to use ray theory and
follow individual rays as they intcracted with the boundaries and the object.
In theory this mecthod seems very plausible; however it becomes intractable in
practice. This method has been developed by Evans (1) and Werby and Evans
(2) for an object in a half space and the theory has been worked out for an
object in a waveguide. A similar method has been presented by Hackman et al
(3-5) for elastic objects including shells.

A more straightforward method was developed by Evans (6) which
decomposed the incident field (composed of a sum of normmal modes) into an
equivalent plane wave representation. Each of these plane waves are allowed
to insonify the object in order to generate the resulting scattered field. This
field is then projected onto a cylinder which encloses the object and spans the
depth of the waveguide. This method is known as the projection method and its
results are compared with the present method in Appendix E.

A method based on matched asymptotics was devised by Collins (7,8) to
derive an approximate expression for the field scattered from a spheroid. The
matched asymptotic solution consists of an inner solution valid near the
scatterer and an outer solution valid away from the scatterer. The two parts of
the solution are matched in the region in which they are both valid. The

resulting field is then propagated in the waveguide. Sen (9) has reported the

use of matched asymptotics to describe scattering of acoustic waves in a
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waveguide. He has reported that the method can be used to determine globally

valid pressure field junction conditions near a boundary discontinuity.
In addition, Kleshchev has written scveral papers decaling with

scattering f{rom objects in waveguides and/or sound channeis. (10-12)
Proposed Mecthod Based on Huygens' Principle

In 1690, C. Huygens published Traite’ de la Lumiére. In it he discussed a
new principle pertaining to the propagation of light. Huygens proposed that
at any instant t=tg, a point source of light generates a disturbance which is
propagated into the surrounding medium as an isolated spherical wave,
expanding at the velocity of light. The disturbance at time t=t; is due to a
succession of disturbances at intermediate times between t=tg and t=tj. The
actual effect then at time t=t; is the result of all the secondary disturbances.
In order to determine the effect at time t=t; caused by an initial disturbance at
t=tg we then calculate the state at some intermediate time t=t', then at t=t", etc.,
until we are at time t=tj.

There are some limitations imposed by this thcory namely that the
rectilinear propagation of light can be accounted for only by assuming that a
secondary wave has no effect except at the point where it touches its envelope,
and in addition it is assumed that since a disturbance on the envelope of the
secondary waves propagates in both the forward and backward direction, only
the forward propagated wave was to be considered.

The present method uses the basic concept of Huygens' principle namely
that the field propagating away from the object and is not contributing to the
field at the recciver can be neglected. Huygens reasoring for making this

basic premisc was based on cmpirical obscrvations. We make this assumption
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based on the type of propagation model used. Propagation models cither allow

for one way or two way propagation. If thc model performs onc way
propagation then the ficld always propagates away from the source and no
energy via backscattering from rough surfaces, rough bottoms or objects are
considered. If on the other hand the propagation model allows energy to be
received from the above mentioned mechanism then the ficld at the receiver
can be dependent on what environmental or"bhysical changes happens in the
waveguide beyond the receiver. For example, if beyond the receiver there
happens to be a sea-mount (an underwater mountain) then acoustical energy
could be scattered back toward the receiver affecting the ficld at the receiver.
In other words, for a one way model, the field at the receiver is dependent on
what happens to the field as it approaches the object. For a two-way model, the
field at the receiver is dependent on what happens before and after the field
reaches the receiver.

We will now formulate the scattering problem. The geometry used to
describe the scattering is shown in Fig. 1.. There are two regions, region 1
which contains the scatterer, and region 2 where the field will be determined,
region 2 is frec of sources. The surface S2 encloses region 2. The surface S2 is
taken to be at a large distance from the region of interest. The surface S1 is an
arbitrarv mathematical surface enclosing the scatterer. For free space or
unbounded problems the surface S2 could be extended an infinitc distance

away from the area of interest.




S2

REGION 2

REGION 1

Fig. 11. Genera! Scattering Geometry

For a problem dealing with scattering from an object in a waveguide, the

surface S2 can still extend to infinity but this necessitates that we use the
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Green's function which satisfics the waveguide boundary condition. See Fig.

12.

REGION 1

\ SCATTERER

Fig. 12. Specific Scattering Geometry for a Waveguide.
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To establish Huygens' principle for the scattering problem we need to develop

a relation between the known value of the field on the surface S1 and the
unknown value at the field point (receiver). Assume that the ficld is a solution

to the scalar Helmholtz wave equation,
2
(4-2) (v kP wix) =0

and the Greens function for the Helmholtz wave equation is given

by,
(4-3) (v2+ k3 6lx -x) = 8x -x)

We obtain this relationship by invoking Green's theorem (13) which equates
an integral of a vector function over a closed surface to an integral of a

related function over the volume enclosed by the surface,
2 , r qeo?
(4-4) fv(w G- GVzw)d'.' = fs(\yVG- GVy) en’ds

where in this case the surface S is S1 + S2. The surface integral is equal to zero

when the observation point (receiver) and the singularities of Wy lie outside
the surface S. (14) If the field point is inside the surface (in the bounded

volume) then the scattered field becomes,

(4-5) U =y(x)= fs(w(x')VG(x -x') - G{x - x)Vy(x")) e n'ds’

This integral over S is divided into two parts, over the surface S1 bounding the

scatterer, and over the surface at infinity S2. Since the field is propagated
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from the surface S1 to S2, it is composed of outgoing waves. We arc then left

with the integral over S1. The scattered field then in region 2 becomes,

(4-6) U = fsl(w(x')V'G(x -x") - G(x - x")Vy(x)) en’ds’
We replace y with the free field scattered field f which is valid ai the surface

S1. We then have,

(4-7) U = fﬂ(f(x’) vG(x -x’) - Gix - x")VT(x’)) e n’ds’

This is the expression for the scattered field far from the object. We apply this

expression to two different waveguides in the remaining two chapters.
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CHAPTER 5
APPLICATION OF HUYGENS' METHOD TO AN ISOVELOCITY WAVEGUIDE

In this chapter we utilize the expressionmdcveloped in Chapter 4 to
describe scattering from an object in an isovelocity waveguide. We begin by
solving for the acoustic pressure in the absence of an object. This will be the
acoustic field incident upon the object. We then show the development of the
near field scattered field (the field that is valid a shon distance from the
object). We then develop the far field scattered field. We end this chapter with
an example which shows that the object acts as a source in the waveguide
which implies that the object is now fully integrated into the waveguide. In
Appendix E, there is a comparison of this method with the projection method
described in Chapter 4.

We utilize Normal Mode theory to determine the incident field. We
consider a waveguide consisting of an isovelocity layer of water over an
isovelocity half-space. The bathymetry will be flat and the half-space will not
support shear. Sound speed in the half-space will be greater than that of the
water, as -vill its density and attenuation likewise will be greater than the
water's. Such a waveguide is sometimes called the 'Pekeris’ waveguide, (1)
since Pekeris was the first to thoroughly investigate it. As mentioned in the
introduction, we will solve the acoustic field scattered from the object first
using the Pcheris waveguide and then using the more general multilayered
waveguide. We begin by deriving the incident field for the Pekeris

waveguide. The following development is based on Clay and Medwin. (2)
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Theory

The following assumptions will be made when deriving the incident

field.
1)

2)

3)

4)

5)

The object is in the farfield of the source, this atlows the use of
the asymptotic form of the Hankel Function.

There is a pressure release air-water interface, this would
correspond to having a boundary condition such that the

acoustic pressure evaluated at the surface is equal to zero,
i.e.P(0)=0

The pressure is continuous across the water layer (subscript 0)
and the semi-infinite half-space (subscript 1). This corresponds
to the following boundary condition,

= 2 = @2 =
Po=P =070 =070, =P 0, =0

The vertical component of displacement is equal across the
interface of layer 1 and layer 2. This corresponds to the
following boundary condition,

(o) " (), = LI

at\ oz ot\ az

The source produces a symmetric field about the z-axis.
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We wi  vrite the particle displacement d and particle velocity u in terms

of the displ. .ent potential &:

P

(5-1) d=V® and u=V<>,

ot

Newton's Second Law becomes

2
(5'2> =-§[— pﬂ}

Solving for the pressurc P, we obtain

P=- p—z-
(5-3) ot

where p is the density of the medium. For a harmonic point source, the

pressure is

(5-4) P=o’pg

The governing equation is the wave equation,

n
Y
o

o
NI"‘
™

(5-5) VP

Q@
—




where ¢ (water sound speed) is time independent.

Substituting Eq. (5-4) into

the wave equation, Eq. (5-5) gives the time independent wave equation or

Helmholtz equation, (3)

or

(5-6)

2
2
¢ at
2
o
c
2
V2¢+k ¢=0

where k2 = 02/c2.

We will use the separation of variable technique (4) to solve this

equation.

(5-7)

(5-8)

The Laplacian in cylindrical coordinate is (5)

2 2

V2 82 10 1 9 )
= 2+rar+

Jr r° 3e 07z

The solution to Eq. (5-6) will take the following form,

(5-9)

o= U(r)z(z)

81
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Using Eq. (5-8) and (5-9) in Eq. (5-6) yields two ordinary differential

equations, in range and depth. The range solution is,

(5-10) U6+ 1ue) +xue)=0

2 . L
where K is the separation constant, and the depth solution is,

(5-11) Z(z+ & -x¥z=0.

2 2
where k =Qi- is the characteristic wave number and Equation (5-11) can be
c

rewritten as,

(5_12) Z"(z)+72 Z=0

2 2
where 72 =k -K and is the vertical component of the wave number. The

wave number k is constant in the waveguide, while the horizontal component
K and the vertical component y will vary with mode number (K =7+ R).
Consider now Eq. (5-10),

(5-10) U6)+ 12U ) +kPu() =0

this is Bessels' equation of zeroth order, whose solution is the

cylindrical Bessel function of the first kind Jo(Kr) (6) thus

(5-13) U(r)=Jo(Kr)
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The asymptotic form of J, is (7)

2 n
JO(KT)=,/;{—§¢°{K’"T) when Kr>>1
i(Kr—Zc- -1 Kr«-z]
- 1 Ie\ 4)+c( 4)

(5-14) V2rnKr

The first exponential represents an incoming wave with infinite amplitude at
infinity and the second exponential represents an outgoing wave with zero
amplitude at infinity. We are interested only in the outgoing wave, therefore

the solution for the radial term takes the following form,

(5-15) o1l F)]

Now consider the depth solution, Eq. (5-12):

(5-12) Z'(2)+y Z=0

the general solution has the following form, (8)

(5-16) Z(z)=Asinyz)+Bcogv2)
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Implementing the surfacc boundary condition, that is P=0 at z=0:

(5-17) P(r.z.1)=0
(5-18) P(r, 2,1) = 02pg ¢V 0’pU(r)Zz)e™"
(5-19) P(r,0,1)= (ozp U(r)Z(())eimt

which implies that Z(0)=0, hence B=0 in Eq. .'(‘5-16). The depth Eigenfunction

then takes the form,

(5-20) Zz)~ Asin(yz)

At this timec we will derive the characteristic equation for the waveguide.

To accomplish this we define the reflection coefficient to be (9)
(5-21) R=¢

The reflection coefficient for the upper layer is given by

(5-22) u

which implies 20y =T or &y = -12-‘- When the incident angle € is less than the
critical angle, ©,, the reflection coefficient rt the lower interface is given

by (10)

) plclcoieo)—pococos(el) o<
1 plclcos(eo)+p0c0cos(el) when $6,58,

(5-23)
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where by Snell's law el=sin [——sxn(e ] When the incident angle is
% the reflection coefficient for

larger than the critical angle and less than

the lower interface is given by

i2d>1 i
(5-24) Rl=c when .. _ecseos;
and it follows that
b
—1l  Po%°1
(5-25) ® =tan [-——
1 plclcos(eo)

2

c
)sinz(eo)-l. Utilizing the boundary condition at

(S

(]

where b1= [
0

z=h, and Egs. (5-22, 5-24) the characteristic equation becomes,

—xzyh _ei2[°“+¢l-yh]

(5-26) R Re =1

u

rewriting the exponential using trigonometric functions gives,

(5-27) co(2(¢u+d)l—yh))+isin(2(¢u+¢l—yh))=l
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which implies 2{® +&® -yh)=2nn,n=0,21,+2,-..
u 1

or
Th -¢u—d>l=(m-l)1r m=1,2,3, ...
or
={m_1
(5-28) Y h -(m 2)”«»1,

We can rewrite the horizontal and vertical components of the wave number as

the following,

Km=ksin(6m)=-é‘%sin(em)
and

(529) 1=k c0§0,) = cox(6)

Equation (5-28) can be solved for ® with the help of Eq. (5-29) with the result

that

°0[(m - %’)’” ®1]

(5-30) 0= hcos(em)

which can be rewritten as

whcog(8 ) 0 -1 pocob1
(5_31) _-—%————(m-?/Pt:‘bl:tan plclcoxem) .
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This can be put in the following form,

( LCAN
-1iPo 11

°1 -c-‘-‘;—cos(em)

1
h*{m—(m —5)u=tan

- =tan
(5-32) Mo\ Pk coge,)

2 2
® . 2 0}
where -cﬁb1=\/('5—-) sin (em)—(-c—) .

1 0 Ul
Defining
2 2
(5-33) me Km—kl
where k 1=cﬂ. We now rewrite the right hand side of Eq. (5-32) as the
1
following,
Dh
p c. "1 P, b
-1 "0 1 -1 "0 “m

(5-34) tan =tan " |=——/1.

Prkcos(e,) [pl {m]
so that

1 -1 m
5-35 hy —(m —w)n=tan —t_0
(5-33) m 2 P Tm




or

(5-36) tar(hY ( )) [2‘;:“‘}

The left hand side. of Eq. (5:36) can_be rewritten. as

tafhy_~(m-1 s”’(‘”m (’ i)
el

+co(h'y )
(5-37) . s ":'s—,;,-(g:,——)"c“(h?xn)

After using Eq. (5-37) in Eq. (5-36), the following equality now holds,

By b
: .0
-cot(hym)—[-ﬁ—l--,-y-;—;‘-)
or
Py y
(5-38) tan(hy )= B‘fgﬂ)
m

Equation (5-38) is the characteristic equation for the isovelocity water column

overlying an isovelocity half space. It will be used to solve for thc cigenvaluey

Ym, which are solutions to the depth eigenfunction equation, Eq. (5-12).




89
Now we will derive the depth eigenfunction for the second layer. The

sound pressure is exponentially damped because the incident sound field is

totailly reflected. Using Snell's law, (11)

sin(eo)_sin(el)

Co Cl

(5-39)

This implies that

[C_‘Jz in®(0,)=1- cosz(el)

or

(5-40) cos(8)) = / 1 -(:_;st i n’(eo)

The argument in the radical is positive if 90 <8 that is, if the incident angle

is less than the critical angle. At the critical angle,

(5-41) Sin(e ‘i"(9°)=asin(ec)=?°-

and

(5-42) cos(8)) =j1 -(:_;]zs i nz(eo)




When €, > 6., the argument inside the radical of Eq. (5-42) is negative:

cos(el) ‘/{ sln (60)}

2
C
(5-43) =i [-c-l] sir’(8)) -1

Modes will propagate only in the upper layer only for € > 6.

0

Therefore,

k cos(8)) a\/(.c‘l’;)z(%]zsinz(eo) -ki

L f2 .02 2
5-44 -

( ) qu sin (Go) kl
Defining B_ by the following:

(5-45) Bm-klcoa(elm)

we find

(5-46) B =iJk2sin2(eo 2k

90
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so that

(5-47) B, =i [K -k =ib

2 2 2
where bm =Km—kl.

The depth eigenfunction for the second layer takes the following form,

ip (z~h) D -iB,(z~h)

<

Zm(z) =C,¢ m

bpla=h) - bple-h)

(5'48) =C [ [

m m

The first term on the right damps the signal as the wave penetrates into the
second layer. The second term increases the strength of the signal as it gets

farther in the sediment (and farther from the source). We therefore choose

Dpn=0. Equation (5-48) now becomes,

-b_(z-h
(5-49) Z,(2)=Cye =

We use the boundary condition at the water/fluid bottom interface in order to

solve for the modal coefficient Cy,. This requires that the pressure across the

interface be continuous:

(5-50) PoZom (h)= plzlm(h) (refer to page 77)
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or
-bm(h ~-h)
N
Py b? n(ym )= plCmc
(5-51) =P1Cm
Therefore
Po
(5-52) Cm=-stin(7mh).

Now the depth cigenfunction for the fluid bottom takes the following form:

-bm(z ~h)

Po
(5-53) Zm(z)=p—lsin(ymh)e z2h

Before we can solve for the acoustic pressuse in the waveguide, we need

to solve the modal coefficient Ay. The deptl: cigenfunction cqguation for the
m p -]

water layer Eq. (5-20) can be rewritten as jullows:

(5-54) Zm(z)=Amsils{‘ym::';;s
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To obtain the modal coefficient Ay, we use the orthogonality of depth

cigenfunctions.
f;pozm(z)zn(z)dz
=f;.posin(ymz)sin(ynz)dz=0, m#n
(5-55) =f "o”"z("m’)d""m’ m=n

0

Since we cxpand the source fimction 8(z-zg) in terms of these orthogonal

cigenfunctions Z,:

(5-56) ii(z-zo)=n ElAnZn(z)

fo “pyZ(2)(2 - 2g)dz = ZA, [ "pyZ (22, (2)dz

0
so that
(5-57) pozm(zo)=Amvm
or
P2 (2
(5-58) A =_2.L°)

m Vm
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The sound pressuic from Eq. (5-4) is

2 2
(5-59) P=0'pe=a’p, o,

Now
P(r,z,t) = (ozpo ZAmZm(z)Um(r )(t)
m

p.Z (2.YZ (2) -(Kpr) ;%
(5-60) —olp 320 m(vo)zm e o4
m m 21:Kmr

iot
e

Finally,

-i( Knt)e-anr

_ ¢
(5-61) P(r,z,t)-C% Zn(zo)Zn(z)——v—n-W—

where the constant C has absorbed all numerical constants, coefficients, and
the time dependent term, and we have introduced the attenuation term, ¢ @f, A
brief discussion of the attenuation term is presented in Appendix D. This is the
field in the absence of the object. To obtain the total field with a scattering
object present, onc would add the scattered field to this incident ficld. We now
proceed to insonify the object using this incident field.

The derivation follows Norton. (12) The geometry is shown in Fig. 13.
The object has as body fixed axis, X,, Yo, Zo , Where Z, is the axis of symmetry
and is parallel to the waveguide boundaries. The angle that the symmetry axis
of the object makes with the vertical plane containing the source and the

center of the object is labeled ..




source

Fig. 13. Waveguide Geometry with Object.

The connection between the cylindrical coordinates of the source and the

body-fixed rectangular coordinates of the object is given by

(5-62) r,=r,,-cofa)Z -sin(aZ, z=zobj-x0

Since we required that the object be in the far field of the source,

Ig S rgo and the factor _\/knr‘ E‘\/kn’s o is nearly constant in range at the

object. Equation (5-61) can be rewritten using the exponential form of the

95
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sin (Y,Z) term and Eq. (5-62), resulting in the following expression for the

incident field in the rectangular system,

. obj nso n' so
sin(y_z)e [
(5-63) U.(r,2 =CY 15
1 n 21\1ﬂ Knrso
i(y, K, sina),K coda))e(X ,Y ,Z)
o
-iynzobj-il(nrm —a
-sin(y_z)e ¢
+CY n%s -
n 2iv K. r

n n so

(- ¥y Ky sima),K, coga))e (X, Y, Z,)
oc

We have specified the depth of the ficld point to be at the depth of the
object, Zobj and zg is the source depth. Note that there are two sets of plane
waves, a downgoing and upgoing set. They are expanded in a spherical
representation so as to be compatible with the T-matrix, since the T-matrix is
in a spherical representation.

A spherical coordinate system is established at the center of the object.

The angle © is measured from the Z, axis, and ¢ measures the rotatirn in the

Xo+ Yo plane. The object is invariant under rotation in @. The angles are

defined as follows,

-1 2 -1.X 2 2
(5-64) 6= cos l(-‘-,i’-),qmtan l(Y—°), p=.‘/)go+Yo+Zo
[
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The exponential terms of Eq.(5-62) can be rewritten as
iR
(5-65) ¢

Where Kandp are given by the following:

(5-66) K=(iyni +K_ sin(a)j+ K cos(a) K, b=()§,i+Yoj+%k)

We now expand Eq. (5-65) in spherical waves. The expansion follows Morse

and Feshbach. (13)

, !
5-67) e XP - 2(2l+1)11(kr) y 4= "‘)'P €0s(9) P €050’
120 m=-1 (1)1

e[cofmgcos(me) ) +(sinm@sinme))]

where © and ¢ are relative to K and 6' and @' are relative to p . If we let

°), and
o’-(0 o)van

em(21+l)(l -m)!
(5-68) 7, = andom)! eo=l em=2 ,ym=0

then Eq. (5-67) becomes,

iR 2 -
(5-69) &' T -dn T itern) P;n(cose)){smmq,)c 0}

L, m,o cos(mg) c=1

1
T m inlmo)c=0
.(y’l“) ik r)Pl (cos(e')){s ’ }

co(mg’)o=1
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Equation (5-69) can be simplified by making the following definition:

1
T m sin(mcp)ozo
a;':cr_ni(y;“) Pl(coie)){ }

co{mo)o =1
A
(5-70) =4 ni Xjno (6,9
and, .
72 m Sil(ﬂup')o‘:o
Rev™ ) =[y™) i(kn) P (cos(6))

I, o(P) (71 ) ’ ! co{mo’)c=1

. m .,
(5-71) =Jl(kf) \q,c (6,9)

Where Re denotes the regular part of ¥. Utilizing Egs. (5-70) and (5-71), Eq.

(5-69) takes the following form,

iRe m
(5-72) e P _ p af:okevl(,pg

l,m,o

The incident field (Eq. (5-63)) in terms of the spherical coordinates is now

given as

m
(5-713) um=% X &: Re ¥ P

1 |,m,oc W10

where n is the index for the number of modes. The partial waves coefficients
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of the incident field are then given by the following,

(5-74)
-~a_r . .
o siny zJe n 0 Hy g2 i~ Kalso)  =ilvpz g+ Korg)
%00 i °(e ¢ )al c
vl 2iv K.Teo ’

where zg is the depth of the source, zppj is the-depth of the object and rgq is the
range from the source to the object. The scattered field about the object is

written as (see chapter two)

m m
5.75 f(p) = ¥
( ) (p) n,l.zm,oB“vl,O l9c(p)
m _om m
where n,],o_Tl,l',o an,l',c
™ (5 =h (kp Y (8,0)
and 1,0(5)" Al WA

The scattered field given by Eq. (5-75) is valid only near the
object before it has a chance to interact with the waveguide boundaries.

Notice that the spherical Bessel function used in Eq.(5-71) to describe the

regular spherical wave (Re‘P:no(p)) is now replaced by the spherical Hankel
]

function to obtain the outgoing spherical wave (‘P;nc(p) ). Having the

scattered field about the object we can generate the expression for the

scattered field far from the object.
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The scattered near field does not satisfy the boundary conditions of the

waveguide. The solution for the scattered field far from the object (from

chapter 4) is:

oG ,2)
(5-76) U r s’z)=J(f(’)‘_a_;—'G(’s’z)—afa(;))dS

1}

where the surface ¢ is a closed surface enclosing the object. Figure 14 shows
the geometry of the waveguide with the object centered at the origin of the Xo,

Yo, Zo coordinate system.

I x
% Jor
/ r
y s
z z
z r
receiver
scattering (field point)
patch

Fig. 14. Geometry of Waveguide from Object to Receiver.

We now need to determine the normal derivative of the scattered field and the
Green's function that satisfies the waveguide boundary conditions, and its

normal gradient on some arbitrary surface sufficiently near the object.




The appropriatc Green's function (G(rg.z) ) is given by Eq.(5-61),

iK r
simy z)siny e " ‘e

vl’l‘\/Kﬂr S

(5-77) G ,2)=CZ
n

where zr is the receiver depth and rg, to within first order, is given by

(5-78) Ig = Topot €05(6)

where 6 is the angle between v and T or

and rop is the distance from the
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object to the receiver. The Green's function after substituting Eq. (5-78) can

be rewritten as

(5-79) G =g italde
n

- iKnr cog0) o rcog6)
sin('ynz)c e
[ ]

Jl_ r cos(6)
Tor

Substituting Eq. (5-79) into Eq. (5-76) yields for the scattered field

(5-80) Us(rs,z)=CE
n




102

where
in(y_ 2 -iK rcog8) a rcog8)
S 2)¢ e
(5'8]) B = f(p) 0 ! Yn
. dn \/1_ r cos(6)
T
6 or
-iK r coxe)nnrcosﬂ))
sin('ynz)e (]

dr .
= [f(p]edS

Jl_ r cos(6)
ror

Finally combining C and B into a single term Ap,, gives for the

scattered field

iK r ~-a
sin(ynzr)e c

\n Knror

(5-82) Ulr,2z)=3A
n

This expression satisfies all boundary conditions at the waveguide
interfaces and is continuous throughout all space. Note that the solution,
Eq. (5-82), is in the form of a guided wave as one would expect for the field far
from the source. Now that the scattered far field has been determined, some

numerical examples will be presented.

Examplcs

In this example we will follow the acoustic field as it propagates from the
source to the object, to the receiver. We will determine the total field at the
receiver by using the principle of superposition. The characteristics of the

sample waveguide are shown in Table 3.




TABLE 3
WAVEGUIDE CHARACTERISTICS

Water Layer

Depth Compression Wave Density Attenuation
(m) Sound Speed (m/s) (g/lcm**3) (nepers/m)
150 1500 .. LO 1.0e-7

Half Space

Depth Compression Wave Density Attenuation
(m) Sound Speed (m/s) (g/cm**3) (dB/A)

infinite 1600 L5 5

103

The source will have a frequency of 100 (Hz). Table 4 lists the source, object

and receiver locations. For this environment there are 7 propagating modes,

as determined by Eq. (5-36).

TABLE 4
LOCATION PARAMETERS
Source Location  Object Location Receiver Location
r (m) z(m) r (m) z(m) r (m) z (m)
0 50 5000 75 6500 25

Figures 15 and 16 depict the waveguide in a vertical and horizontal view.

horizontal view is looking at the waveguide from the surface down.

The
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R
RECEIVER
(6500,25)
yA
® (0,50)
SOURCE
OBJECT
(5000,75)
Fig. 15. Vertical (side) View of the Waveguide.

.q R .
SOURCE RECEIVER
(0,50) (6500,25)

OBJECT
(5000,75)

Fig. 16. Horizontal (top) View of the Waveguide.

The source, object and receiver can be at different depths in the

waveguide; a requirement on the object is that it must be in the far field of the

source. This is because we are assuming that only the discrete propagating
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modes contribute to the pressure at the receiver and because we use the

asymptotic expression for the Hankel function, (in the solution for the range
equation) which is only valid at long ranges. Another requirement is that the
object is not so near an interface that the surface on which the near field

scattered field is determined comes in contact with the interface. The objects

characteristics are shown in Table S.

TABLE §
OBJECT CHARACTERISTICS
Length (m) Width (m) Boundary Condition
50 10 Dirichlet

We will now follow the field as it propagates in the waveguide. Figure 17
illustrates the magnitude of the normalized pressure field verses depth at a
range of 300 (m). Notice that the pressure at the surface goes to zero as the
boundary condition requires. There is an interference pattern due to the
summation of the 7 individual modes. Figures 18-24 illustrate the contribution
from each mode. Note that mode 3 (Fig. 20) contributes the least to the overall
field and that Mode 6 (Fig. 23) and mode 7 (Fig. 24) also contribute very little.
Modes 2 (Fig. 19) and 5 (Fig. 22) have the largest contributions to the field.
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09 % o o o
‘ ® o o ® o6 .
- oo
B PP X 2 o
-
o o0
50 .......
g 4
E 754
m <
a I(X)" q.'
125+ o® ....O>
150 v 1§ " Y A 8 y
0.000 0.002 0.004 0.006 0.008

NORMALIZED PRESSURE

Fig. 17. Point Source Pressure vs. Depth at a Range of 300 (m) from the
Source.
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DEPTH

.

0.006 0.008

v

v T v —
0.000 0.002 0.004

NORMALIZED PRESSURE

Fig. 18. Point Source Pressure vs. Depth at 2 Range of 300 (m)
from the Source. Mode 1 Only.
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DEPTH (m)

v

0.004 0.006 0.008

v

150 T
0.000 0.002

NORMALIZED PRESSURE

Fig. 19. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 2 Only.




(m)

DEPTH

v

v v

0.000 0.002 0.004 0.006

NORMALIZED PRESSURE

Fig. 20. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 3 Only.
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DEPTH (m)

1251 '°>
150 - ' v T . r v
0.000 0.002 0.004 0.006

NORMALIZED PRESURE

Fig. 21. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 4 Only.
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Fig. 22. Point Source Pressure vs. Depth at a Range of 300 (m)

from the Source.
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Mode 5 Only.
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Fig. 23. Point Source Pressure vs. Depth at a Range of 300 (m)

from the Source.

)
0.002

_—

1
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Mode 6 Only.
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Fig. 24. Point Source Pressure vs. Depth at a Range of 300 (m)
from the Source. Mode 7 Only.
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We now allow the field to propagatc to the object. Figure 25 depicts the

magnitude of the normalized pressure field at the object, 5000 (m) ifrom the
source. Notice that the interference pattern differs from that shown in Fig.
17, near the source. This is because the higher modes attenuate more quickly
than do the lower modes. Notice that the magnitude of the field has decreased
to about 1/5 its value at the source. Figures 26-32 depicts the contributions
from the individual modes. Notice that only ii{e magnitude of each of the
modal fields has changed, not the shape. Note also, that the relative strength
of mode 6 (Fig. 31) and 7 (Fig. 32) have reversed because of aittenuation, due to
interaction with the waveguide interfaces. Modes 1 (Fig. 26) and 2 (Fig. 27)
now contribute more to the field than any other.

We now look at the scattered pressure field as it propagates from the
object. Since the scattered field is not cylindrically symmetric, we will look at
the pressure in the vertical plane at 90 degrees relative to the front of the
object (backscatter) and 0 degrees (along major axis of symmetry). Figure 33
illustrates the vertical normalized pressure field at a distance of 300 (m) from
the object and at an angle of 90 degrees (backscatter). Note that the strength
of the field is approximately 2 orders of magnitude less than the incident field.
Figures 34-40 illustrate the contributions from the individual modes. Notice
also that while the structure of the modes are similar to the incident field
modes, their relative contributions are not the same as for the incident field.
Modes 1, (Fig. 34) 3, (Fig. 36) 5, (Fig. 38) and 7 (¥ig. 40) contribute much more

than the corresponding incident field modes. This is because the object, acting




0+ 115

DEPTH (m)
&
Fo—‘
]
°
)
°
°
°
°
]
e
°

1004
:
1254
150 —~ T Liadies , .
0.0000 0.0005 0.0010 0.0015

NORMALIZED PRESSURE

Fig. 25. Point Source Pressurc vs. Depth at a Range of 5000 (m)
from the Source.




116

509

(m)

759

DEPTH

1004

1254

150 M ] M ] v
0.0000 0.0005 0.0010 0.0015

NORMALIZED PRESSURE

Fig. 26. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 1 Only.




117

0
@ 25
50
° E
ool 754
-
[
1£3]
a 100
|
125+
° 150 T v T v
0.0000 0.0005 0.0010 0.0015
NORMALIZED PRESSURE
[ Fig. 27. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 2 Only.
e
o
@
L 4
|




118

DEPTH (m)

) v ] M
0.0005 0.0010 0.0015

NORMALIZED PRESSURE

Fig. 28. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 3 Only.




119

F;

Q
DEPTH (m)
\/

125 ->
150 T

d 0.0000 0.0005 0.0010 0.0015
NORMALIZED PRESSURE
Fig. 29. Point Source Pressure vs. Depth at a Range of 5000 (m)

e from the Source. Mode 4 Only.

@

®

L

e




120

DEPTH (m)

0005 0.0010 0.0015

NORMALIZED PRESSURE

Fig. 30. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 5 Only.




121

DEPTH (m)

" —y . ng

M 1 | v v v v
0.0005 0.0010 0.0015

NORMALIZED PRESSURE

Fig. 31. Point Source Pressure vs. Depth at a Range of 5000 (m)
e from the Source. Mode 6 Only.




122

DEPTH (m)

150 M  § v T
0.0000 0.0005 0.0010 0.0015

NORMALIZED PRESSURE

Fig. 32. Point Source Pressure vs. Depth at a Range of 5000 (m)
from the Source. Mode 7 Only.



123

0 LN S -
®
. ® ° ., °
25 .ooo'°°...
.
4 ...".:=
N ;
- 754 ®
!: 1 o®
@ ove®®
L L J
a 100- €

125- °® [ ®
9

1 0., oo"

‘50 v | v L] M v A L .-‘" v

0.0e+0 2.0e-6 4.0c-6 6.0c-6 £.0e-6 1.0e-5 1.2e-5

NORMALIZED PRESSURE

Fig. 33. Objects' Scattered Pressure vs. Depth at a Range of 300 (m)
from the Object. Scattered Angle 90 (deg.)




124

DEPTH

¥ v ) § v

150 M 1 M L M 1 4 L
0.0c+0 2.0c-6 4.0c-6 6.0¢-6 8.0e-6 1.0e-5 1.2¢-5

NORMALIZED PRESSURE

Fig. 34. Objects' Scattered Pressure vs. Depth at a Range of 300 (m)
from the Object. Scattered Angle 90 (deg.). Mode 1 Only.




125

DEPTH (m)

L T v 2 1 v v

1 1 v v
0.0e+0 2.0e-6 4.0e-6 6.0e-6 8.0e-6 1.0c-5 1.2¢-5

NORMALIZED PRESSURE

Fig. 35. Objects' Scattered Pressure vs. Depth at a Range of 300 (m)
from the Object. Scattered Angle 90 (deg.). Mode 2 Only.




126

DEPTH (m)

T v

150 v 1 '..l.l v Y 2 4 T y
0.0e+0 2.0e-6 4.0e-6 6.0e-6 8.0e-6 1.0e-5 1.2e-5

NORMALIZED PRESSURE

Fig. 36. Objects' Scattered Pressure vs. Depth at a Range of 300 (m)
from the Object. Scattered Angle 90 (deg.). Mode 3 Only.




127

251

504
° g
ool 754
o
-9
=2
Q 100-
1251
. 150 v 1 v | ¥ 4 ¥ | 4 T .
0.0e+0 2.0e-6 4.0e-6 6.0e-6 8.0e-6 1.0e-5 1.2e-5
NORMALIZED PRESSURE
® Fig. 37. Objects' Scattered Pressure vs. Depth ai a Range of 300 (m)
from the Object. Scattered Angle 90 (deg.). Mode 4 Only.
o
o
®
®
-




128

-~ .....
e’

= >

g .....ooo

150 v 1 v A ¥ M 1 v T v
0.0e+0 2.0e-6 4.0e-6 6.0e-6 8.0e-6 1.0e-5 1.2¢-5

NORMALIZED PRESSURE

Fig. 38. Objects' Scattered Pressure vs. Depth at a Range of 300 (m)
from the Object. Scattered Angle 90 (deg.). Mode S Only.




DEPTH (m)

1004 >

1254

_?O

vV

150

NORMALIZED PRESSURE

Vv

0.0c+0 2.0e-6 4.0e-6

| |
6.0e-6

v

L

8.0e-6

1.0e-5

1.2e-5

Fig. 39. Objects' Scattered Pressure vs. Depth at a Range of 300 (m)

from the Object.

Scattered Angle 90 (deg.).

Mode 6 Only.

129




130

E lagoee?®®
oo 75+ .:,
[;- 9 ..C...
2 ......C.
100
ve 0000"}
® ....
125 - )
. see®®
T *teee,
150' v T 'si v L M L

0.0e+0 2.0e-6 4.0e-6 6.0e-6 8.0e-6 1.0e-5 1.2e-5

NORMALIZED PRESSURE

Fig. 40. Objects' Scattered Pressuze vs. Depth at a Range of 300 (m)
from the Object. Scattered Angle 90 (deg.). Mode 7 Only.

as a source, is introduced into the waveguide and the energy which radiates
from it must behave as any other source would behave, propagating according
to the restrictions imposed on it by the boundary conditions. These

restrictions manifest themselves through the eigenfunctions. If we look at
the 7 depth eigenfunctions for this waveguide (Figs. 41-47) we see that modes
2, (Fig. 42) 4, (Fig. 44) and 6 (Fig. 46), ecach have a null at or very near the mid-
point of the waveguide. Modes 1, (Fig. 41) 3, (Fig. 43) 5, (Fig. 45) a (Fig. 47)
have a maximum, (or a minimum) at or near the mid-point of the waveguide.
When any source is placed at the mid-point of the wavcguide the odd

numbered modes will be highly excited while the even modes will not.
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This is what is happening with the scattered field.

Figure 48 depicts the vertical normalized pressure field at a ranve of 300
(m) and an angle of 0 degrees from the object. Notice that the field is
approximately 1 order of magnitude smaller than the backscattered field and 3
orders of magnitude less than the incident field. It is clear that the scattered
field is not symmetric about the object.

It is customary to show acoustic propagation in terms of transmission
loss versus range, where transmission loss is -20 log P where P is the
normalized pressure. The pressure is normalized relative to the pressure from

the point source at a range of 1(m). Figure 49 shows a comparison between the
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point source transmission loss and the forward and backscattered transmission
loss of the object. The object is at a range of 5000 (m) from the source. This was
obtained by solving for the scattered field 1500 (m) from the object, in both
the forward and backward direction. This graphically shows the difference
between the two fields. The total field would be a coherent sum of the two.
Expressed logarithmically (in dB), there would be little or no change in the

incident field, since the scattered field is so small.
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Figure 49 gave a two dimensional view of the incident and scattered ficld.
We now tum our attention to representing the incident, scattered and total
field in three dimensions. The idea is illustrated in Fig. 50. A portion of the
waveguide is defined by the .hree dimensional rectangular region; the <ource
is located somewhere in this volume. Ncxt we superimpose a solution griu at
some depth in the waveguide. In general the point source and the solution
grid will not be at the same depth. At each point of the grid, we determinc the
pressure and conscquently the transmission loss duc to the point source. An
cxample is shown in Fig. 51. The sourcc is at a depth of 50 (m) and is at the
center of the grid, which is at a depth of 25 (m). Mote the cylindrical

symmetry produced by the point source, and the modal interference pattern.
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Schematic Drawing Depicting the Geometry for a Three Dimensional




Fig. 51. Three Dimensional Field Produced by a Point Source.
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We allow the ficld shown in Fig. 51 to propagatc in the waveguide and

allow it to insonify the object. We compute the ficld in three dimensions
between the ranges of 4300 (m) and 5700 (m) with a cross range of 1175 (m);
this represents a grid containing 2856 points. Figurc 52 depicts the results.
Notice how smooth the field is. The lack of structurc is duc to the small
number of modcs propagating. There is still a small amount of curvature to
the wavefront. Finally we will place the objcci at a range of 5000 (m) and
solve for the scattered ficld. The results are illustrated in Fig. 53. The most
obvious feature is that the scattered field is not azimuthally symmetric. The
major axis of symmetry of the object is parallel to the cross range axis. Notice
that the forward scattered field is slightly stronger than the backscattered
field and that the backscattered field is broader than the forward scattered
field. The forward scattered field also appears to have a high pressure lobe o
each side of the main field. And finally note that the field emanating from
either end of the object, (90 degrees relative to ecither the forward or backward

scattered field) is much lowcr than any other direction.
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Fig. 52. Three Dimensional Point Source Field Between a Range of 4300 (m) and 5700 (m).
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We now investigate in more detail the scattered ficld of the object. If the

object is truly incorporated into the waveguide then we should see both free
field and waveguide characteristics in this field. Figure 54 illustrates the free
field scattered field (near field) after the object has been insonified by the 7
modes. The field is expressed as transmission loss. The smallier the number,
the stronger the signal. The arrow indicates from which direction the

incident field is coming.

180

270

Fig. 54. The Objects' Free Field Scattered Field vs Angle, After 7 Modes
Insonified It.

Comparing Fig. 54 with Fig. 53 we can make the following observations.
First, in both cases, the forward scattered field is narrower than the

backscattered field. Second, from Fig. 54 we sce that the forward scattered ficld
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does indeed have well pronounced side lobes. Third, in both cases the ficld is

the weakest along the major axis of symmetry. We now look at the field
produced by a point source at the objects’ depth of 75 (m). Figure 55 illustrates
the field. We notice that this ficld peaks at two separate ranges. The first is at
approximately 100 (m) and the other is at approximately 400 (m). Referring to
the field of the object in Fig. 33, we notice a very slight undulation of both the
forward and back field. The peak of this uﬂdulation is occurring at
approximately 400 (m) from the object. This would correspond to the second
peak in Fig. 55. The first peak is not observed. It could be that the objects’ frec
field effects are dominant close to the object since the field has not propagated
long in the waveguide. This indicates that we have coupled the free field
scattered field into the waveguide.

We now coherently add the incident field, Fig. 52, and the scattered field,
Fig. 53 to obtain the total field, which is illustrated in Fig. 56. There is no
discernable difference between the total field and the incident field of Fig. 52,
If, however, we look at the difference (in dB space) between the total field and
the incident field, we will be left with just the change in the field due to the
object. Figure 57 shows this difference: the effect of the object is limited to the
forward and backward direction. The largest effect iz observed in the
backward direction due to the fact that there is a minimum in the incident
field at this location. The difference is less than 2 (dB). In the forward
direction we see that the scattered field does indeed have an effect, but it is
very slight, only 1 (dB) or less.

Having obtained the total field for a coherent addition of the incident
and scattered fields for a single-layer waveguide, we proceed to a multilayered

waveguide in which the sound speed will vary with depth.
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CHAPTER 6
APPLICATION OF HUYGENS' PRINCIPLE TO A MULTILAYERED WAVEGUIDE

In this chapter we develop the scattered ficld for an object in a
waveguide consisting of multiple isovelocity water and scdiment layers.
Because the general development is the same as in Chapter S, we will only
point out the difference between the two expressions due to the differences in
the waveguides. We conclude this chapter with an example: we will explore
what happens to the field when the object is insonified by only a few of the
propagating modes. This can happen when the source is in a duct or sound
channel and the object is outside of this feature. In Appendix E, we compare

this method with the projection method described method in Chapter 4.
Theory

The development of the field due to a harmonic point source in a
waveguide consisting of many isovelocity layers is given by Tolstoy. (1,2) We

start with the expression for the acoustic field, previously developed

Z (zS)Zn(z) a1 ~iK T
— ¢

(6-1 P(r,z)=C3I—
) (r,2) nE\/?F ¢

where Zp is the depth cigenfunction, K, is the horizontal cigenvalue, z is the

depth of the field point and zg is the source depth. The horizontal range
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between the source and the field point (receiver) is given by r and Oty is the

modal attenuation coefficient, (See appendix D for further information). The
attcnuation term takes into account energy losses due to interaction with the
boundaries and losses due to propagation of the signal in the water. The
geometry of the waveguide with the object is the same as illustrated in Figs. 13
and 14. The derivation of the incident field is the same as for the isovelocity
case of Chapter 5 except that the depth eigeﬁfunctions of Equation (6-1) take a

different form. They are as follows,
(6-2) Zn(zs)=Ansi|(ynzs)+Bnco(ynzs)
(6-3) Zn(z)=Ansin(ynz)+Bnco('ynz)

Where 7Yp is the vertical eigenvaluc.

The expression cquivalent to Eq.(5-63) is the following:

N A sin(y_z)+B_cosy z) -
(6-4) P(r,z)=C X n ns 0 ns . %nTfso

n=1 \/Knr::

An Bn i('YnZob]- Knrlo) i(anKnSida mc)’Knco‘ainc)).(xo’yo’zo)
[ 2i + 2 [ [

.C g Ans1n(ynzs)+Bnco(ynzs) c-a"r“
n=1

VEaTso

.[—An h)e~i<7n7-°b;*K,,rw)ci(-Yn’KnS“(“im%"nCos(“mJ)'(Xo’Yo’Zo)
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The incident field in terms of the spherical coordinates is now given as

(6-5) Um=X I d&' Re w’l"‘o(p)

n I,m,o 1,

where n is the index specifying the number of modes and 1,m,6 are the indices

for the spherical harmonics. The partial waves coefficients (Equivalent to Eq.

(5-74)), of the incident field are given by the following,

Ansin(ynzs)+Bn co(ynzs) -0 r

(6_6) am =C e n so
n, Lo '\/KanO
.[(.’f_n_ N En_)ei(y“z“j ~Kar ‘°)] a™
2i 2 Lo

Al sin(ynzs) +B,cos(y z) e—an Teo

+

where zg is the depth of the source, zop; is the depth of the object and rg, is the

range from the source to the object. The scattered field avbout the object has
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the same form as Eq. (5-75) namely,

m m
(6-7) f(p)=n lzr:n cBn,l,c\yl,o(p)
where, % m m .

= o
n,l, o ,IY'e n,l%o

m m
and ‘Pl’ c(ﬁ) =h l(kp) YI’O(O,CP)

The development of the scattered field far from the object is
equivalent to that developed in chapter 5. The difference is due to the fact that
we now have different depth eigenfunctions shown in Eqgs. (6-2) and (6-3).
The solution for the scattered field far from the object is the same as Eq.

(5-76) namely,

[ aG(r o 2) Af(r)

(6-8) U (r s,z)=J f(r)——a;‘——--G(!'s, Z)“aT-J ds

(o]

where the surface o is chosen at a suitable region circumscribing the object.

The scatiered field is written as

Z(z) -or -K_r
(6-9) U r s,z)=CE—-——q——r—— e "% e ™ B
) n

Knror
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where

af Zp(z) a, rcog8) iK rcodo)
B_=1 {(p) : c c
n on .\/l' rcog9)
o Tor J
Z (z) a rcog8) iK_rcog8)
-t ¢ e " Z[1(p] « ds

\/ _ Lcoie)
l'Or

and z; is the depth of the receiver.
This expression satisfies all boundary conditions at the waveguide

interfaces and is continuous throughout all space.
Exampics

Ir this example we have placed the source and receiver in a weak sound
channel, and the object has been placed near the bottom, Fig. 58 illustrates the
geometry. The waveguide has 35 water layers and 3 scdiment layers overlying
the semi-infinite half space. The sound speed profile is shown in Fig. 59. The
source is again at 100 (Hz). There are 16 propagating modes for this

environment,
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The characteristics of the object are the same as for the example in
Chapter 5. We now allow the source to propagate to the object. Since the
source is located at the apex of a sound channel the field produced by the lower
order modes is concentrated in this channel. This means that with the object
located outside the sound channel, those modes that remain in the sound
channel will have littiz or no effect on the object. This can easily be
illustrated by again isolating the modes at thc object and looking at the
vertical distribution of the scattered pressure duc to the individual modes. In
this cxample the first threc modes have very little effect upon the object (Sce

Figs. 61-64) with mode number 4 being the first mode to insonify the object

with any appreciabic cnergy. We therefore look at the vertical pressure at the
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object duc to the source insonifing it. Figure 60 illustrates the ficld. Notice

that the ficld peaks at the source depth of 60 (m). The secondary peak results
from thc modal contributions which are not contained in the sound channel.
This would correspond to higher order modes. The ficld diminishes very

quickly after this secondary pcak.
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Fig. 60. Point Source Pressure vs. Depth at the Object, 5000 (m)
from the Source.

We will now look at the effect that cach of the first four modes have at
the object.  Figures 61-64 shows the pressure vs. depth at the object for the

first four modes.
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Notice that for mode i (Fig. 61) thc maximum pressurc is containcd within the

sound channel. The pressure dies off cxponentially after a depth of 150 (m).
This is to be expected since this mode is evancscent after this depth. This is
also truec for mode 2, (Fig. 62) we scc the cxponential decay of the pressure
ficld at a greater depth than for modc one. Again this is consisicnt with mode
theory, which states that the higher order modes will travel at a stecper angle
and as such they will penctrate through the sound channel more than the
lower order modes. Mode three (Fig. 63) is not excited by the point source and
does not contribute much at any depth. Finallv we sce that for mode 4 (Fig. 64)
the pressure is significantly larger at the object, depth of 260 (m). The field
still decays exponentially starting approximately at the depth of the object.
Now we allow this ficld (all 16 modes) to insonify the object. Figure 65
shows the resulting ficld at a range of 1500 (m) in the forward direction (270
degree scattered angle). The ficld is approximately 3 orders of magnitude less
than the incident field. One can sec that the field is very complex, resulting
from modal interactions. The ficld is not contained in the sound channel since
the object, which is generating this field, is not within the sound channel. We
will now look separately at the first four modes contained in this scattered

field. Figures 66-69 depict the pressure vs. depth for the first four modes.
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Fig. 65. Objects' Pressure vs. Depth at the Receiver, 1500 (m) from

the Object. Scattered Angle 270 (deg).
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Fig. 66. Objects' Pressure vs. Depth at the Receiver, 1500 (m) from
the Object. Scattered Angle 270 (deg). Mode 1 Only.
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Fig. 67. Objects’ Pressure vs. Depth at the Receiver, 1500 (m) from
the Object. Scattered Angle 270 (deg). Mode 2 Only.
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Fig. 68. Objects' Pressure vs. Depth at the Receiver, 1500 (m) from
the Object. Scattered Angle 270 (deg). Mode 3 Only.
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Fig. 69. Objects' Pressure vs. D-oth at the Receiver, 1500 (m) from
the Object. Scattered Angle 270 ¢deg). Mode 4 Only.

Notice that the excitation of the first mode (Fig. 66) is very weak through
the entirc depth of the waveguide. The magnitude of the normalized pressure
is on the order of 10-9. Mode 2 (Fig. 67) is also very weak. There is a slight
variation with depth of the field. One would no! expect that these two modes
would be excited since they are both highly cvanescent at the depth of the
object. We see that mode 3 (Fig. 68) is excited along with mode 4 (Fig. 69).
These and the higher order modes arc not affected by the sound channcl. This
kind of modal behavior is typical of a point source. Since the object is

producing this signal, this is another indication that the object is coupled to

the waveguide.




We now comparc the point source's and object's transmission loss with

range. Figure 70 illustrates the results.
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Fig. 70. Comparison of the Transmission Loss vs. Range of the Point Source and
the Objects Scattered Field.

The point source field (heavy solid line) decays very little with range.
This is consistent with our observation that most of the energy is contained
within the sound channel.
object. It varies greatly in amplitude over a smaller horizontal distance.
scattered ficld is approximately 70 (dB) smaller than the incident ficld.

this is consistent with what we saw when looking at the first four modes.

A sharp contrast to this is the scattered ficld of the
The

Again
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We now look at the three dimensional ficid. Figure 71 depicts the

incident ficld at a range from 4300 (m) to 5700 (m), with the cross-range
coordinate varying from -700 to 700 (m). There is more variability of the ficld
than for the previous casc (Fig. 52) again duc to the fact that more modes arc
propagating. The wave front is slightly curved, as is to be expected with a ficld
that is cylindrically symmetric. Figure 72 depicts the scattered field for the
same location in the waveguide, however the .objcct is at the center of the grid.
We notice that this field looks very similar to the scattered field produced in
the waveguide of the last chapter. This ficld appears to be increasing in
strength as it propagates from the object. We also sce some of the same
features as in the last chapter, namcly that the ficld is strongest in the
forward and backward direction, but still narrower in the forward direction.
The side lobes that were present in the last chapter are not as prevalent. We
compare this field to the free space scattered field (Fig. 73) that was produced
by allowing the object to be insonified by the propagating modes ancd then
compare it to the three dimensional field (Fig. 74) produced by the point
source at the objects' depth in the waveguide. We do this for the same reason
that we did it in Chapter 5, namely to verify that we have correctly coupled the

objects' field into the waveguide.
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Fig. 71. Three Dimensional Point Source Field Between a Range of 4300 (m) and 5700 (m).
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Fig. 72. Threc Dimensional Objects’ Scattered Field Between # Range of 4300 (m) and 5700 (m)
from the Scurce.
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180 9% fi9—140

Fig. 73. The Objects' Free Ficld Scattered Field vs. Angle, After 16 Modes Have
Insonified It.

Notice that the free space scattesed field is similar to the field ob’.ined in
Chapter 5. There are differences, however. The ficld is stronger than the ficld
in Chapter 5 and there was a peak in the backscattered ficld produced by the
waveguide of Chapter 5 which is absent for this waveguide. 7 - side lobes are
present but they are not as pronounced as in the last chapter which is
consistent with what we saw in Fig. (72). We also scc that the forward scattered
ficld is narrower than the backscattered field. There is a greater difference
between the forward and backward ficlds. This difference is difficult to see in
Fig. 72 but it is evident in the two dimensional plot (Fig. 70), where it is seen to
be about 3 (dB). Figure (74) gives a three dimensional ilusttation of the field

produced by a point source located at the same depth as the object  The
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waveguide effect on the ficld allows the field to increase over the range

increment as was observed in Fig. 71. It appears that the ficld of the object is
being correctly coupled to the waveguide. We now determinc the total ficld.
which is shown in Fig. 75.

There is no observable difference between the total ficld and the
incident field of Fig. (70). This was to be expected because the large difference
in amplitude between the two ficlds. On a difference plot however (Fig. 76),
the difference between the incident and total fields is evident. Notice that the

largest difference occurs in the forward direction where the incident ficld has

a minimum. This difference is on the order of a half of a decibel.
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Fig. 76. Three Dimensional Difference Field Between the Total Field and the Incident Field.
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CONCLUSICNS

We have developed a method to dcscril;e acoustical scaitering from an
object in a waveguide. We have done so by using Normal Mode theory to
descrite the incident field. [Each mode (at the object) was decomposed into a
pair of up going and down going plane waves. We next used a Transition
matrix to dectermine the ncar ficld scattered field from these plane waves
incident upon the object. By utilizing Huygens' principle we obtained a far
field solution which satisfied ail boundary conditions and preserves continuity
of the solution throughout all space.

We have shown through exampies that the object is correctly coupled to
the waveguide. We have shown that the objects scattered field acts as a
secondary source by showing that this scatiered field obeyed the same
boundary conditions as the point source field.

This method of dctermining the scattered field from a three dimensional
object allows one to determine not only the correct target strength (intensity),
but also to properly determine the phase. In addition this method allows one to
investigate the interaction between the incident field with the waveguide, the
incident field with the object, and the object's scattered field with the
waveguide. In this manner a better understanding of the ongoing physical

processes can be obtained.
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APPENDIX A: COMPARISON BETWEEN THEE. B. C METHOD AND AN ANALYTICAL
SOLUTION FOR THE SCATTERED FIELD PRODUCED BY A PLAN.. WAVE INCIDENT
UPON A SPHERE.

In this appendix we will show a comparison between the scattered ficld
as solved for by the Exiended Boundary Condition method and the analytic
solution for the case when a plare wave is incident upon a spherc. The

analytic expression is given in Morsec and Feshbach (1) as:

(@ +1) -id_(xa)
c

(A1) ¥ =-X(2n +Di si l{&n(k a)]Pn(cose)h 2k 1)

where k is the wave number, r is the distance from the sphere, 8n is the

phase angle, 0 is the observed angle and a is the radius of the sphere. The

important parameters are listed in Table Al.

TABLE Al
PROBLEM PARAMETERS
Sphere Diameter Boundary Conditions Distance from Sphere
(m) (m)
2 Dirichlet 100

The "Distance from Sphere” ..lue in Table Al is the distance from the sphere
that the scattered field was obtained. Three frequencies were examined. They
were, 59.68 (Hz), 596.8 (Hz), and 5968. (Hz). This resulted in K1/2 values of .28,

2.5 and 25. The three frequencies were sclected because they represcented a
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low, medium and high frequency case. Figures Al, A2, and A3 shows the

comparison between thc methods for the different frequencies (the forward
direction is at 0 deg.). In all cases the open circles are the analytic solution
while the black dot is the E. B. C. solution. Notice in all cases the agreement is
quite good. The E. B. C. code has been tested thoroughly by Dr. Mike Werby of
the Naval Ocean Rescarch and Development Activity. This particular test was
performed as a check on the validity of the E.B.C. code used in the present

work.

O ANALYTICAL SOLUTION
o0 * E.B.C.SOLUTION

180

270

Fig. Al. Comparison Between thc Analytic Solution and the E. B. C. Solution for
a Plane Wave Incident Upon a Sphere for a Frequency of 59.68 (Hz).




180

O ANALYTICAL SOLUTION
90 ¢ E.B.C.SOLUTION

180 by ot

270

Fig. A2. Comparison Between the Analytic Solution and the E. B. C. Solution for
a Plane Wave Incident Upon a Sphere for a Frequency of 596.8 (Hz).
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Fig. A3. Comparison Between the Analytic Solution and the E. B. C. Solution for
a Planc Wave Incident Upon a Sphere for a Frequency of 5968. (Hz).
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APPENDIX B: DERIVATION OF EQ. (3-122)

We nced to cvaluate

2
2 Y
(B-1) [-a——+.lr_—a—+k az}Ho (kanr)=?

1
where H(O)(k anr)=10(kanr)+iY0(kanr).

Since the Bessel function is analytic for all ranges, we need to show how Eq.
(B-1) bchaves when r # 0 and when r = 0.

First consider the case when r # 0. The derivative of the Neuman function

with respect (o r is

d(ka r)
. c o4y (k - n d
(B-2) Yondr( o(*2a7)) = dr  d(kagr) Yolk#ar)-

We have the relationship, -ag;Yo(x)=—Yl(x), (1)

Equation (B-2) now takes the following form,

(B-3) Y'0=kan[—Yl(kanr)}=—kanYl(kanr)




183
Taking the sccond derivative of the Yq gives,
o
d2 d
(B-4) ¥ =;—3{Yo(kanr)}=a{Yo(kanr) E
|
i{ ika, Y, (ka,r)]
d(ka_r)
n d
= ka Y (k
® dr d(ka r)l. %n l( 2 r)]
=ka (-ka ) ==Y (ka,r)
n n d(ka r) noon
n
®
i k2 ) YO (kanr)—Yl(kanr)
= -~ an 2
L
We have used the following relationship concerning the derivative of the
Neuman function of the first order, (1)
®
d _1 -
(B-5) d—xYl(x)_?(Yo(X) Y,(x)).
L
®
@
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Now letting the operator of Eq. (B-1) opcratc on iYO(k anr), we obtain, with

help from the above relationships,

[.2
3 13 212
(B-6) [7+T5;+k dn]IYO(kanr)

2

n(Y,-Y,)+ (ke Y )+k

The recursion formula Yz(x)=§—Y1(x)—Y0(x) leads to the following for

Y,(x) ()

2

(B-7) Yz(kanr)=Ta—;Yl(kanr)—Yo(kanr)

B G R C

(Yy- Yo)]

|
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Now when r=0, we will use the small r approximation, (2) for the Neuman

function,

(B-8) Y, (0) ~ -(l nx)+y-1n2)), y= 577

25
Yo(kanr)«»,|E 1 3 ) for small r

and taking the derivative with respect to r of Eq. (B-9) gives

ka_r
+_d dj2 2
®-10) Yosz:(yo(‘“n’))n‘?{f“( 3 )]-—

now doing the same to Eq. (B-10) gives,

(B-11) Y= (Yy(ka,r)) = Lv,)- %(-,?;)v(:?)

Now solving Eq. (B-1) for the Neuman function at small r gives,
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Multiplying Eq. (B-i2) by r and integrating gives

L(2)e {torwon-[Liwn- 1]} -i(2)
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Summarizing the results,

2 2
(B-15) [fr-z-+§--59r-+k . g)(kanr)=0,t¢0

a2 13 220 (2
(B-16) ;;fz'*"r"é—"k a, o(kanr)ﬂ(-x-),r—»o

(B-17) fi (%)&r)dr =i(%)

2
2,0
(B-18) [airi+%-§;+k ai 0 (kanr)=i(%)ﬁ(r)
or
2
° 19,2200 4i8(r)
(B-19) li;.r?+?$+k My (ka,r) T
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APPENDIX C: VALIDATION OF PROPAGATION MODELS

This appendix shows the comparison between the horizontal ecigenvalues
generated by the SACLANT Center Normal Mode Acoustic Propagation (SNAP)
(1) model and both the isovelocity normal mode model which was developed for
the Pekeris waveguide (i.e. isovelocity water layer over a high speed
isovelocity fluid half space), and for a multilayered waveguide, consisting of
numerous isovelocity water and sediment layers. Table (C1) lists the

waveguide parameters.

TABLE C1
PARAMETERS FOR THE ISOVELOCITY WAVEGUIDE

Depth (m) Sound Speed (m/s) Dens:ity  (g/cm**3)
0.0 1500.0 1.0
150.0 1500.0 1.0
150.0+ 1600.0 2.0

Table (C2) shows the comparison between the Pcekeris waveguide model and the
SNAP model determination of the haorizontal eigenvalues. with the magnitude

of the difference between the two models.
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TABLEC2
COMPARISON OF HORIZONTAL EIGENVALUES GENERATED BY THE SNAP AND
PEKERIS WAVEGUIDE MODEL
Pekeris Waveguide SNAP Program Magnitude
Program of Difference
Horizontal Horizontal
Eigenvalue Eigenvalue
0.4184382396D+00 0.4184382379D+00 .1D-08
0.4171019040D+00 0.4171019027D+00 .1D-08
0.4148351550D+00 0.4148351369D+00 .1D-07
0.4115958809D+00 0.4115958645D+00 .1D-07
0.4073444101D+00 0.4073443901D+00 .3D-07
0.4020511324D+00 0.4020510729D+00 SD-07
0.3957339603D+00 0.3957339045D+00 .5D-07

For this example there were 7 modes propagating. The largest difference
between the cigenvalues were on the order of 1x10-6 m-1 and the smallest
difference was 1x10"7 m-1. Figure (C1) depicts the transmission loss vs. range
for the environment depicted in Table (Cl). Notice that the structure between

the two models are identical but that the transmission loss generated by the
Pekeris Waveguide model is off by a factor of ,‘/-f- . It's obvious that the
difference is just a constant since the level of variation does not change with

range. It is obvious that the Pekeris Waveguide model will give as accurate

results as SNAP for these rather simplistic environments.
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Fig. C1. Comparison of Transmission Loss Between the SNAP and Pekeris
Waveguide Model.

We compare the horizontal cigenvalues generated by the Pekeris Waveguide
model (see chapter 5) and the MultiLayered Waveguide model, the results are

as in Table (C3).



TABLE C3 191

COMPARISON OF HORIZONTAL EIGENVALUES GENERATED BY THE MULTILAYERED
AND PEKERIS WAVEGUIDE MCDEL

Multilayered Waveguide Pckeris Waveguide Magnitude
Model Model of Difference
Horizontal Horizontal
Eigenvalue Eigenvalue
0.4184382396D+00 0.4184382396D+00 0.
0.4171019040D+00 0.4171019040D+00 0.
0.4148351550D+00 0.4148351550D+00 0.
0.4115958809D+00 0.4115958809D+00 0.
0.4073444101D+00 0.4073444101D+00 0.
0.4020511324D+00 0.4020511324D+00 0.
0.3957339603D+00 0.3957339603D+00 0.

Out to 10 decimal places there is no difference. Figures (C2) and (C3) shows the
comparison between the depth cigenfunctions for mode 1 and mode 2, as
generated by the Pekeris Waveguide and the MultiLayered Waveguide model.
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Fig. C2. Comparison of the First Depth Eigenfunction Generated by the Pekeris
and MultiLayered Model.
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Fig. C3. Comparison of the Second Depth Eigenfunction Generated by the

pekeris and MultiLayered Model.

Figure (C4) shows the Transmission loss comparison petween the Pekeris

Waveguide and the MultiLayered Wwaveguide model. Note {hat the structur®

petween the two are jdentical and we set that again the {ransmission loss

generatcd by the Pekeris Waveguide model is off by & constant factor of %

This would suggest that the transmission loss generated by the MultiLayercd

model and by SNAP would agree pcrfectly.
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Fig. C4. Comparison of the Transmission Loss Generated by the Pekeris and
MultiLayered Waveguide Models.
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Figure (C5) shows this comparison. Note the good agreement between the two
°® models.
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Fig. C5. Comparison of the Transmission Loss Generated by the MultiLayered
and SNAP Model.
o
With confidence in the MultiLayered model, we now compare SNAP and the
MuitiLayered model for a slightly more complex environment, a three layered
® environment. The environment is depicted in Fig. (C6), with the water layer

having the lowest sound speed, the sediment layer the next and the half space

the highest.
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We compare the transinission loss generated by both models for this

environment ia Fig. (C7).
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Fig. C7. Comparison of the Transmission Loss Generated by the MultiLayered
Waveguide Model and by SNAP.

We now investigate a much more complex environment. This environment is
shown in Fig. (C8). It conmsists of 13 water layers, (wo sediment layers, and a
half space. Figures (C9) and (C10) compares the depth eigenfunction

generated by SNAP and by the MultiLayered model for mode 1 and mode 2 for
this environment. They show good agreement betwcen the two models. Figure
(C11) shows the comparison of thc transmission loss between SNAP and the

MultiLayered mode! for this environment.
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Fig. C8. The Third Test Waveguide Used to Validate the MuitiLayered Waveguide
Model.
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The final test of the MultiLaycred model is against data, which arc takea from

Ingenito and Wolf. (2) The sound speed profile is shown in Fig. (C12).
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Fig. C12, Sound Speed Profile after Ingenito and Wolf.

The model vs. data comparison for 400 (Hz) is shown in Fig. (C13), along with
the mode! calculation by Ingenito and Wolf. Note that the agreement is quite
good. Table (C5) compares the horizontal cigenvalues generated by each model

and gives the absolute difference between the two. The largest difference is

1x10-3 m-1.
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Fig. C13. a) Comparison of the First Depth Eigenfunction for 400 (Hz)

Generated by the MultiLayered Waveguide Model and Data. b) Comparison of
Model Results With Data as Presented by Ingenito and Wolf,

T/BLECA
COMPARISON OF HORIZONTAL EIGENVALUES GENERATED BY THE MULTILAYERED

WAVEGUIDE MODEL AND THE SNAP MODEL FOR A FREQUENCY OF 400 (Hz)

MultiLayered Waveguide

Model

Horizontal
Eigenvalue

0.1643477015D+01
0.1632167076D+01
C.1617969309D+01
0.1598583468D+01
0.1572341994D+01
0.1549392552D+-01
0.1534040267D+01
0.1499363280D+01
0.1470642438D+01
0.1437511941D+01
0.1387679442D+01
0.1345397981D+01

SNAP Model

Horizontal
Eigenvalue

0.1643473073D+01

0.1632159020D+01
0.1617967663D+01
0.1598577065D+01
0.1572336591D+01
0.1549390991D+01
0.1534034656D+J1

0.1499358976D+01
0.1470634678D+01
0.1437498305D+01
0.1387678929D+01
0.1345388765D+01

Magnitude
of Difference

3D-05
8D-0S
.1D-05
.6D-05
5D-05
J1L.05
SD-05
" A4D-05
.1D-05
.1D-04
3D-06
9D-05
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Figure (C14) show the comparison between the transmission loss generated by

the two models.

The agreement is quite good.
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Fig. Cl4. Comparison of Transmission Loss Generated at & Frequency of 400 (Hz)
by the MultiLayered and SNAP Model Using the Sound Speed Profile of Fig. (C12).

Figure (C15) shows the model vs. data comparison at 750 (Hz).

agreement is quite good.

determined by each model.

Again the

Table (C5) compares the horizontal cigenvalues as

The largest difference is again 1x10-3 m-!,
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Generated by the MultiLayered Waveguide Model and Data. b) Comparison of

Model Results With Data as Presented by Ingenito and Wolf.
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TABLE C5

COMPARISON OF HORIZONTAL EIGENVALUES GENERATED BY THE MULTILAYERED
WAVEGUIDE MODEL AND THE SNAP MODEL FOR A FREQUENCY OF 750 (Hz)

MuitiLayered Waveguide SNAP Model Magnitude
Model of Difference

Horizontal Horizontal

Eigenvalue Eigenvalue
0.3086479467D+01 0.3086475129D+01 .4D-05
0.3077106218D+01 0.3077095247D+01 .1D-04
0.3064396577D+01 0.3064383452D+01 .1D-04
0.3054483253D+01 0.3054480991D+01 .2D-05
0.3039869244D+01 0.3039859840D+01 .9D-05
0.3022117375D+01 0.3022111962D+01 .5D-05
0.3000974575D+01 0.3000965802D+01 .8D-05
0.2976025500D+01 0.2976016499D+01 .9D-05
0.2948016738D+01 0.2948006350D+01 .1D-04
0.2930876943D+01 0.2930875337D+01 .1D-05
0.2914863167D+01 0.2914853243D+01 .9D-05
0.2889885853D+01 0.2889880707D+01 .5D-05
0.2872611077D+01 0.2872596332D+01 .1D-04
0.2838535723D+01 0.2838528599D+01 .7D-05
0.2811841177D+01 9.2811827591D+01 .1D-04
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Figure (C16) compares the transmission loss generated by the two models;

agreement is quite good.
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Fig. C16. Comparison of Transmission Loss Generated at a Frequency of 750 (Hz)
by the MultiLayered and SNAP Model Using the Sound Speed Profile of Fig. (C12).

Finally we test the model against data at a frequency of 1500 (Hz). The comparison
is shown in Fig. (C17). Good agreement is again obtained.  Table (C6) shows the
comparison between the horizontal eigenvalues generated by the two models. The

largest difference is approximately 1x10-3 m-l.
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a) Comparison of the First Depth Eigenfunction for 1500 (Hz)
Generated by the MultiLayered Waveguide Model and Data.
Presented by Ingenito and Wolf.
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TABLE C6

COMPARISON OF HORIZONTAL EIGENVALUES GENERATED BY THE MULTILAYERED
WAVEGUIDE MODEL AND THE SNAP MODEL FOR A FREQUENCY OF 1500 (Hz)

MultiLayered Wavegaide SNAP Model Magnitude
Model of Difference

Horizontal Horizontal

Eigenvalue Eigenvalue
0.6178208386D+01 0.6178205701D+01 .2D-05
0.6170829629D+01 0.6170825078D+01 4D-05
0.6161214393D+01 0.61¢1204743D+01 .9D-05
0.6147548359D+01 0.6147527882D+01 .2D-04
0.6134282776D+01 0.6134262291D+01 .2D-04
0.6126957355D+01 0.6126951385D+01 SD-05
0.6116767898D+01 0.6116757846D+01 .1D-04
0.6105159734D+01 0.6105157746D+01 .1D-05
0.6091359606D+01 0.6091353580D+01 .6D-05
0.6075254880D+01 0.6075252494D+01 .2D-05
0.6057488415D+01 0.6057480164D+01 .8D-05
0.6037737287D+01 0.6037726331D+01 .1D-04
0.6016358465D+01 0.6016350572D+01 .7D-05
0.5992942428D+01 0.5992931846D+01 .1D-04
0.5967737123D+01 0.5967721190D+01 .1D-04
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Figure (C18) shows the comparison between the two models. And we see again

that there is good agreement between the two models.
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Fig. C18. Comparison of Transmission Loss Generated at a Frequency of
1500 (Hz) vy the MultiLayered and SNAP Model Using the Sound Speed Profile
of Fig. (C12).

Based on the preceding comparisons of horizontal eigenvalues, transmission
loss, and eigenfunctions we conclude that both the Pekeris Waveguide model
and the MultiLayered Waveguide model can generate the acoustic pressure at a

field point with sufficient accuracy for the purpose of this project.
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APPENDIX D: MODAL ATTENUATION COEFFICIENTS USED IN THE NORMAL MODE
PROGRAMS.

This appendix gives a brief overview of the modal attenuation
coefficients used in the normal mode propagation models. When a
propagating mode is excited it will decay with range at a steady rate. Each
mode however will not decay at the same rate. The higher order modes will
decay more quickly than the lower order modes. This can be visualized by
remembering that the higher order modes propagate at a higher angle and
thus interact with the bottom more than the lower order modes. When mode
decay is present, the wave number becomes complex, that is k -k +if where
k is the wave number (propagation constant) and B is the attenuation
coefficient of a plane wave.

Tindle (1) has developed an expression for the modal attenuation
coefficients for a waveguide consisting of an isovelocity water layer

overlaying a semi-infinite isovelocity half space. The expression is

2
(9B Gk ),

) 7 3
YlnYZnH{(%yln FeYan) * (PyYaq ! "z"ln)]+ Tin*V2n

(Dl) an=

in dB/m.
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Each parameter is explained below,

f=frequency (Hz)
o= 2nf (Hz2)
B= .0561/1000. (dB/m)
Co= Compressional Sound Speed

in Half Space (m/s)
ky=Wave Number in Half Space (m-1)
¥y,=Vertical Component of

Wave Number in Water Layer (m-1)

Y5,=Vertical Component of

Wave Number in Half Space (m-1)
H=Water Depth (m)
p,=Density of Water (kg/m3)
p,=Density of Half Space (kg/m3)

This expression is not valid when the waveguide consists of multiple
isovelocity water and sediment layers. In that case we have to resort to

perturbation theory (2) which produces the following expression,

(D-2) a,=(0/k,) J(%)Zi(z)dz
0

Ingenito (3) gives a brief but through description of the development of Eq.

(D-2), where k;, is the horizontal ecigenvalue, B is the attenuation coefficient C
is the compressional sound speed and Zp(z) is the depth eigenfunction. The

above equation is valid throughout the depth of the waveguide.
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The attenuation cocfficient for the water layers (Bg) is given by the following

expression, (4)

C‘, 2
(D-3) Bo= T 0.007 +0.155

2 -6
(1L.7) +f 10

2
-9
1.7f 0

where the attenuation coefficient for the sediment layers and the halfspace is
an input into the model. Physically what happens when losses are assumed to
occur primarily in the sediment is that the bottom boundary condition
requires that for each mode, power must flow from the water into the bottom.
Therefore for each unit horizontal distance traveled the the total power loss
for a mode must equal the power transmitted into the bottom by that mode.
Equation (D-1) was used in the Pekeris Waveguide Model and Eq. (D-2)
was used in the MultiLayerc © Model to account for losses in the sediment, while

Eq. (D-3) was used for each model for the attenuation coefficient in the water.
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APPENDIX E: COMPARISON OF THE SCATTERED FIELD OBTAINED USING THE
PRESENT METHOD AND A PROJECTION METHOD.

The material in this appendix was presented ai the 2nd Joint Meeting of
the Acoustical Society of America and the Acoustical Society of Japan which
was held at Honolulu, Hi. (1) The projection method was developed by Evans
(2) and has been presented by Norton. (3-4) The characteristics of the

scattering object are presented in Table El.

TABLEEI
OBJECT CHARACTERISTICS

Length (m) Width (m) Boundary Conditions
25 5 Dirichlet

The scattering geometry is shown in Fig. (El).

——— 10 &m) | FORWARD SCATTERED

SIGNAL

® . >

SOURCE

Fig. El. Geometry for the Scattering Problem.

Two waveguides were investigated. The first had a isovelocity water layer

overlaying an isovelocity halfspace. The second waveguide consisted of 43
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water layers and 4 sediment layers over a halfspace. The first waveguide had

o the source, object and receiver all at a depth of 75(m). The waveguide

characteristics are listed in Table E2.

° TABLEE2
ISOVELOCITY WAVEGUIDE CHARACTERISTICS

Water Layéf

) Depth Compressional Density Attenuation
(m) Sound Speed (m/s) (g/cm**3) (nepers/m)
150 1500 1.0 1.0 E-6
Half Space
® : : ,
Depth Compressional Density Attenuation
(m) Sound Speed (m/s) (g/cm**3) (dB/AA)
semi-inf 1600 2.0 15
e

Figure (E2) shows a comparison of the transmission loss vs range
between the two methods for a frequency of 100 (Hz). The current method
® based on Huygens' principle is the solid line and the projection method is the
dotted line They are not identical but the agreement is very good. Figure (E3)

is a comparison between the two for the same waveguide at a frequency of 450

® (Hz). Again the agreement is quite good.
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Fig. E2. Comparison Between the Scattered Field Generated From the Model

Using Huygens' Principle and the Projection Method for a Frequency of 100 (Hz).
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Fig. E3. Comparison Between the Scattered Field Generated From the Model
Using Huygens' Principle and the Projection Method for a Frequency of 450 (Hz).




Figure (E4) illustrates the multilayered waveguide used. The source
object and receiver are all at 60 (m). Note at the source depth we have a
minimum in the sound speced, which results in a weak sound channel. Figure
(ES) shows a comparison between the scattered field expressed as transimission
loss vs range for the two methods. Also plotted in this case is the field
produced by a point source. The range axis is therefore relative cither to the
point source or to the location of the object .dcpcnding on which field is under
consideration. The fieids were plotted this way because the ficld produced by
the object should show the same structurc as that produced by a point source,
albeit the level should be much lower. It is clearly shown that not only are the
two methods agreeing quite well but they both show structure similar to a
point source. In Fig. (E6) we show the results for a frequency of 45C (Hz).

Again we have cxcellent agreement between the two methods.
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