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1. Introduction

We present a new approach for the construction of wavelets and prewavelets on IRd from

multiresolution. Our method, which is based on our earlier work [BDR] and [BDR1], uses only

properties of shift-invariant spaces and orthogonal projectors from L2(IRd) onto these spaces, and

requires neither decay nor stability of the scaling function. Furthermore, this approach allows us

to derive in a simple way previous constructions of wavelets, as well as new constructions, and to

settle completely certain basic questions about mult':esolution.

A univariate function 0 E L2(IR) is called an orthogonal wavelet if its normalized, translated

dilates ?Pj,k := 2k/2V( 2 k. -j), J, k E 2Z, form an orthonormal basis for L 2(IR). In other words, this

system is complete and satisfies the orthogonality conditions

(1.1) J,k~j1,k1 = b(j - j')5(k - '), j,k, j', k' E 7Z,

with b the delta function on 7. The concept of prewavelet is somewhat more general in that

it requires (1.1) to hold only when k $ k' and hence the functions there are not assumed to be

orthogonal at a fixed dyadic level k. In particular, 0(. - j), j E 71, are not necessarily orthogonal,

and, instead, one assumes that ((. - jE& forms a stable basis for L2(IR) (see the end of this

section and §2 for the definition of stability).

On IRd, wavelet and prewavelet bases are generated by the translation and dilation of the

elements of a set %Y of 2 d - 1 functions from L 2 (lRd). We shall say that they are an orthogonal

wavelet set if {Vj,k := 2 kd/2¢V( 2 k . _j) : V E 1i,j E 7Zd,k E 2Z} is an orthonormal basis for

L. (IR d). Analogously, the set V is a prewavelet set if {Vjk : ' E 'T,j E 2Zd,k E 2ZJ is a stable

basis for L2(JRd), and in addition we have orthogonality between levels:

(1.2) JM k''i',kl, = O, k J k', jj' E Zd, , E C

The construction of orthogonal wavelets has a rich history described in the monograph of

Meyer (Me] and the article of Daubechies (DI]. Prewavelets have been stressed only in recent

years beginning with Battle [B]. The paper of Jia and Micchelli [JM] discusses their brief history.

Most methods used for the construction of wavelets are based on the notion of multiresolution as

introduced by Mallat [Ma] and Meyer (see [Me]). Multiresolution, which we now describe, will also

form the starting point for our constructions.

We say that a space S of functions defined on lItd is shift-invariant if, for each s E S, the

shifts, s(. - j), j E 2d, of s are also in S. More generally, we say that S is h-shift-invariant if it is

closed under h2Zd-translations. All shift-invariant spaces considered in this paper are assumed to

be closed subspaces of L2(IR d). Important examples of shift-invariant spaces are those generated r

by a finite set 4 := { ,...,,} of functions from L2 (IRd). For such c1, we define

to be the L2(lRd)-closure of the finite linear combinations of the 2-k-shifts of the functions from

. We write
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In case 4 consists of a single element 0, we write Sk(0) (instead of Sk({0})) and we say that S(O)
is a principal shift-invariant space.

Now suppose that we hold in hand a sequence of spaces {Skl}ke 7 , with Sk a 2-k-shift-invariant

space for each k E 2Z. We shall say that (Sk} forms a multiresolution if the following conditions

are satisfied:

(i) Sk C Sk+l, k E 2Z;

(1.3) (ii) US= L2(IR);

(iii) n S = {0}.

In the usual definition of multiresolution analysis as proposed by Mallat [Ma], it is also assumed

that (a) Sk is the 2k-dilate of some fixed principal shift-invariant space S(O), and that (b) the shifts

of k form an orthonormal family. We do not assume these conditions in our definition (1.3) in

order that we can discuss more general situations that are covered by the techniques of this paper.

However, for the remainder of this introduction, in order to keep the discussion simple, we shall

assume (a), i.e., that Sk is of the form

Sk = {s(2 k.) : s E S(O)},

for some principal shift-invariant space S(O). Equivalently, each Sk is generated by the 2-k-shifts

of the dilated function 0(2k.). In this case, the condition (1.3)(i) is already implied by

(1.4) So C S 1.

Previous constructions of wavelets assume that 0 has L2(IRd)-stable shifts, a notion which we

now introduce. For a collection F C L 2(Itd), we say that F is a stable basis (for the space it

generates) if there exist positive constants CI(F) and C2(F) such that, for any finitely supported

a := (af) f EF,

(1.5) Cl(F)lajt,(F) !5 II E ajfjj - C2(F)1a1t,(F).
fEF

In the context of wavelets, the family F is taken to be the 2-k2Zd-shifts of some finite set 4b, with

the totality of shifts taken over all k E 2Z or for some fixed k. Discussions of the stability question,

including earlier references, can be found in [JM] (also for norms other than the 2-norm) and in

[BDR1]. Because the finitely supported sequences are dense in t 2 (7.Zd), the L2-stability of the shifts

of a function 0 implies that the map

12(Zd ) - S(Ob): a 0 (. - j)a(j)

jE2Z
d

is well-defined and induces a Hilbert space isomorphism between t 2 (2Zd) and S(O).

Thus, under the stability assumption, (1.4) is equivalent to having a refinement equation

(1.6) O(x)= 1: 0(2x -j)a(j)

jEzd
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hold for some sequence a E t 2 (TZfd), or, equivalently, to have

for some A E L2(2TI.d), called the (refinement) mask.

Given a shift-invariant space 8 := SO whose 2k-dilates Sk, k E 7Z, satisfy (1.3)(i), we define
the wavelet space W as the orthogonal complement of S o in S':

W := S1 E So.

It follows that Wk := Sk+1 E Sk, k E 7Z, is the 2k-dilate of W. The spaces Wk, k E 7, are
mutually orthogonal.

One can equivalently define W by projections. If P := Ps is the orthogonal projector from
L 2(a d) onto 5, then W = {s - Ps : s E Sl}. If (1.3)(ii) and (iii) are also satisfied, then one has
the orthogonal decomposition

(1.7) L2(l d) w

kE2Z

since, for each f E L 2(lRd), we have
f = 1(Pkf - P-lf), with Pkf - Pk-lf E Wk - l, k E 2Z,

kE2Z

and Pk the L 2(IRd) projector onto Sk (which is obtained from P by dilation). Indeed, the condition

(1.3) (ii) implies that limk-.. Pkf = f, and (1.3)(iii) implies that limk.-_.o Pkf = 0. Note that
Pk - Pk-1 is the orthogonal projector of L2 (IRd) onto Wk- 1.

One obtains wavelets and prewavelets from multiresolution analysis by finding generators for
the space IV. For example, in the univariate case, Mallat [Ma] begins with a function € E L2(IR)
which has orthonormal shifts and satisfies (1.3) (with Sk := Sk(0)) and shows that W is a principal
shift-invariant space W = S(¢) with V an orthogonal wavelet. One can also apply the Mallat

construction to a function € whose shifts are only L2(]R)-stable by first orthonormalizing these

shifts.

Unfortunately, if 0 is of compact support (and its shifts are not orthonormal) then the orthog-
onal wavelet 0 will generally not have compact support. This motivated the study of prewavelets.
We obtain prewavelets 0 by finding generators of W whose shifts form an L2(IR)-stable basis for W

(but not necessarily an orthonormal system). Chui and Wang [CW] and Micchelli [Mi] have shown

in the univariate case that if 0 has compact support and L2 (IR)-stable shifts and (1.3) is satisfied
(again with Sk := Sk(O)) then there is a compactly supported prewavelet 1/ which generates W.
Chui and Wang even characterize the 0 E W of minimal support (in a sense to be made clear in
§5) which generates W. We shall give a simple derivation of (a slightly stronger version of) these

facts in §5.

In the multivariate case, the construction of orthogonal wavelet and prewavelet sets is by far
more involved. Micchelli [Mi] and Jia and Micchelli [JM] have studied multiresolution in the case

the function 4 has L 2(IRd)-stable shifts and satisfies two regularity conditions. The first of these is
that the periodization

(1.8) 101° = - J)l
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of I€] is in L2 (]rLd). (Note that this requirement is satisfied if 4) has suitable decay at oc). Secondly,

they require that 0 satisfies the refinement equation (1.6) with the coefficient sequence a in 1 1 (ad).

In contrast with the present literature, we only need to assume here that the function 4 is in

L2 (IRd), satisfies the refinement condition (1.3)(i), (with SO := S(0), and Sk the 2k-dilate of SO)

and that its Fourier transform 4 satisfies

(1.9) supp= ad .

Here and later, the support of an L 2 (IRd)-function f is defined only modulo a null-set as {x : f(x) #
0) and the Fourier transform of a function f E L 1 (IRd) is defined by

(1.10) f(y) e-yf,

where, here and throughout,

: ix.-

is the complex exponential with frequency 0 E IRd. (We shall use without further mention basic facts

from Fourier analysis including the fact that the Fourier transform has an extension to L 2 (IRd).)

In particular, our analysis applies whenever 4 has compact support since then 4 is -nalytic and

its zero set is of measure zero (unless € = 0). We note that we shall not need to assume that 4)
has L2 (IR d)-stable shifts, nor impose any decay conditions, nor any conditions on the refinement

coefficients a. In fact, we do not even need to assume the refinement condition in the form (1.6),

only in the original form (1.3)(i).

Under the above assumptions, we show in this paper that the conditions (1.3)(ii) and (1.3)(iii)

of multiresolution automatically hold. Further, our derivation of (1.3)(iii) from (1.3)(i) does not

make use of (1.9). We even provide a characterization of property (1.3)(ii) for the case when (1.9)

fails to hold. We also show that (1.3)(ii) and (iii) automatically hold whenever € is of compact

support. Details can be found in §4. Previous results on the matter (cf. e.g., [JM] and [S6]) were

derived under the stability assumption and under suitable decay conditions.

The main goal of multiresolution is to construct a set of IQ of 2 d - 1 functions which generate

the wavelet space W (i.e., W = S(xI)) and have other prescribed properties. We shall index the

elements in IQ by the set V' := V \ {0}, with V the set of vertices of the cube [0.. 1 / 21d . A major

advantage of our approach is that it is almost trivial to find genezating sets IF for W. Once one

such set T is found, we can then find (all) other generating sets by simple operations on the Fourier

transforms of the elements of T.

Two particularly interesting generating sets which are obtained by our construction are dis-

cussed in §3. First of all, we show that (1.9) implies that W always possesses a generating set *

which provides an orthonormal basis for IV, i.e., an orthogonal wavelet set. Secondly, under slightly

more restrictive assumptions on 4, we show that there is a function w E L 2 (IRd) whose half-shifts

W(. + v), v E V', form a generating set for W. Special cases of this latter result have been proved

in [MRU] and [Mil], see also [LM].

5



A more delicate problem is the construction of multivariate wavelets and prewavelets which
have compact support. If the function 4) of multiresolution has compact support, it is quite easy to
find generating sets %P for W whose elements are compactly supported. On the other hand, if 4) has
L2 (IRd )-stable shifts, we would like the shifts of the functions in T to form an L 2(Rd)-stable basis
for W. While it has been shown by Meyer [Me; Chapter III, §6], and Jia and Micchelli [JM1J that
such generating sets always exist, their proofs are not constructive. On the other hand, several
authors, including Riemenschneider and Shen [RS1], Chui, St6ckler, and Ward [CSW], Lorentz
and Madych [LM], and St6ckler [S], have given constructions of prewavelet sets T under various
conditions on 4) and in some cases with restrictions on the space dimension d. We shall discuss
this question in §7 where we shall use our characterizations of the wavelet space W to recover and
slightly improve some of these constructions.

A particularly interesting application of wavelet constructions is to functions 4) which are
B-splines or box splines. In this regard, we obtain the compactly supported univariate spline
prewavelets of Chui and Wang [CW1] and derive various orthogonal wavelets and prewavelets
obtained from box splines.

As we have already noted, our construction of wavelets and prewavelets is based on our earlier
results on the structure of shift-invariant spaces. We use two facts repeatedly. The first is an exact
description of finitely generated shift-invariant spaces. For example, we have shown in [BDR] that
the principal shift-invariant space S(4)) is described by its Fourier transforms:

(1.11) S(k) = {r4 E L2(Rd) : r is 27r-periodic}.

Ifere and later, for a set of functions F, we define P := {f: f E F} to be the set of its Fourier
transforms. A similar characterization holds for a finitely generated space (see §2).

In the case that 4) has L2(IRd)-stable shifts, (1.11) is well-known, and the functions r must be

in L2(Ifd), with
r, d

the d-dimensional torus. Assuming supp5 = 1R, we have shown in [BDR1] that there is always
a function 4). which generates S(O)), (i.e. S(O.) = 8(0))), whose shifts are L2(IRd)-stable; in fact

they can be taken to be orthonormal.

The second result which we frequently employ is the explicit formula (2.11) of the next section

for the orthogonal projector P = P0 from L2 (IRd) onto the principal shift-invariant space S(0)).

With these results in mind, our construction proceeds as follows. We show that if 4) is in
L 2 (IRd) with supp = ir d and if the space sequence (Sk(0))kEZ satisfies (1.3)(i), then we can give

an alternate description for Sl:

(1.12) S, = S(4)

where ' : (4)(. + v))EV. It follows that

W, (. + v) - PO(O(. + v)), v E V',
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are a set of generators for W. We then use our characterization of finitely generated shift-invariant

spaces to obtain other generators with more favorable properties. Because of our description of

the projector P0, all these generators are described in a concrete way in terms of their Fourier

transforms. In this way, we are able to construct an orthonormal basis for the wavelet space without

using either the refinement equation or the mask, and further, without making any assumption on

the stability or orthogonality of the shifts of .Under further assumptions (e.g., when 4) is compactly

supported), generators of the wavelet space that can be written as a finite linear combinations of

0(2. -j), j E 2Zd , are obtained.

As already alluded to in our definition (1.3), we shall actually work in the more general setting
of non-stationary wavelets in this paper, which means that our spaces Sk, while still being

assumed to be generated by the 2-k-shifts of some function Sk, will not be assumed to be the

dilate of S0 or of any other space in the sequence {S}. It turns out that this generalization can
be handled at no additional cost and leads to interesting bases for L 2(IRad). For example, in §6,

we discuss such an example based on exponential splines, and in §8 we discuss their multivariate

analog, the exponential box splines.

An outline of the present paper is a follows. In §2, we review and extend results from our

earlier work which will be needed in the sequel. In §3, we describe generating sets and bases for
wavelet spaces W. In §4, we analyze conditions (1.3)(ii) and (iii) of multiresolution. In §5, we apply

our constructions to derive univariate wavelets and prewavelets with various desirable properties.

In §6. we discuss exponential B-splines as wavelets. In §7, we consider the construction of wavelets

in the multivariate case. We conclude with a brief discussion in §8 of exponential box splines as

wavelets, and describe stable bases for their associated wavelet spaces.

2. Shift-invariant spaces

Our analysis will be based on the structure of shift-invariant spaces given in our earlier work

[BDR] and [BDRl]. In this section, we review some of these facts and develop them somewhat

further in directions pertinent to the construction of wavelets. We have already mentioned in (1.11)

a characterization of S = 8(0) in terms of Fourier transforms. A similar characterization of the

space Sk($.), generated by the 2-k-shifts of 4, easily follows from (1.11) by dilation:

(2.1) Sk(4)) = {T4 E L 2 (IRad) : r is 2k+1 r-periodic}.

In the context of the principal shift-invariant space S(0)), it will be important to know whether

some given function f E 3(O) generates this space, i.e., whether S(f) = S(O). With the aid of

(1.11), we obtain the following simple answer [BDR1] to this problem:

Corollary 2.2. Let S(0) be a principal shift-invariant space, and let f E S(O). Then f generates

3(O) if and only if supp f D supp4.

Proof. If 4 E S(f), there exists, by (1.11), a 27r-periodic 7 such that 4 = Tf, and hence

supp f D supp 4.

7



For the converse, we as.ume that supp f D supp 4 and want to show that S(f) = S(O). Since we

assume that f E S(O), then, by (1.11), there exists r such that f = rT a.e. Defining r' to be 1/r on

supp r and 0 elsewhere, we obtain that a.e. 4 = r'f on supp r, but since supp T D supp J -) supp 4

(the last inclusion by assumption), the equality holds everywhere. By (1.11), we conclude that

4 E S(f), and hence S(f) = 3(O). 4

The above description of principal shift-invariant spaces in terms of their Fourier transforms

can be generalized to the finitely generated shift-invariant space S(iP) as follows (cf. Theorem 1.6

of [BDR1]):

(2.3) S(O) = {EOEr¢4' E L2(lPd) : r, is 27r-periodic, 4 E 4}.

From the description (1.11) of the principal shift-invariant space S(O), we see that the Fourier

transform of a function s E S(O) is determined by its values on FId (at least when supp = apd).

It is possible to factor out this redundancy with the aid of the bracket product which is defined

for f,g E L2(lRd) by the formula:

(2.4) [f, g] := (fM)o = Z f(. +/3)( +13).

OE2,r2d

Note that [f,gJ is in L,(1 Id) whenever f,g E L2(IRd). Also, by the Cauchy-Schwarz inequality,

(2.5) I[f,g112 < [ff][gg],

with the right side finite a.e. The importance of (2.4) lies in part in the following formula, valid

for f,g E L.,(IRd):

(2.6) f(x - j)g(x) dx = ( efg= ()dE ed[f,,, i E Z a,

which shows that the inner product of f(. - j) with g is the j-th Fourier coefficient of [J,].

It is easy to derive the following three elementary properties of the bracket product. The first

two follow from (2.6), while the third one follows directly from the definition (2.4).

Lemma 2.7. If f, g E L 2 (IRd), then the shifts off are orthogonal to the shifts of g if and only if

[f31 = 0.

Lemma 2.8. If f,g E L2(IRd ) are compactly supported, then [f, ] is a trigonometric polynomial.

Lemma 2.9. If f, g E L 2(IRd) and r has period 2r, then [rfL = r[fL = [ ? ].

The bracket product also appears naturally in the computation of the norms of elements
s E S(O). By (1.11), 9 = r4 and

(2.10) (27r)d/ 211SIIL(R') = I~III,2 (F R) = hIT[, I' 211('Ir)-
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There is a simple description for the orthogonal projector P := PO from L2(IRd) onto the

principal shift-invariant space S(O). For each f E L 2(IRd), Pf is the best L 2(IRd)-approximation

to f from S(O)) and is characterized by the orthogonality of the error f - Pof to S(O). It was

shown in [BDR] that PO is described by

(2.11) P4" f ;1

where we use the convention (throughout this paper) that 0 times any extended number is 0; in

particular 0/0 is defined to be 0. (We note that, by the definition of the bracket product, 4 vanishes

whenever [4, ] does.) There is a similar formula (which we shall not need) in the case 8 is finitely

generated (see [BDRIJ).

There are several interesting points to be made about bracket products and the projector PO.

First of all, from (2.6), it follows that 4) has orthonormal shifts if and only if [, ] = 1 a.e. on "Fld.

In this case, formula (2.11) is the (Fourier transform of the) usual one for projecting onto S(O)). In

the case that 4) does not have orthonormal shifts, but [i, 4)] : 0 a.e., the function 0. with Fourier

transform

(2.12) )

is in S(46), has orthonormal shifts, and generates S(O), i.e., S(O.) = S(O)).

Since the square root of the bracket product appears very frequently, we introduce the following

notation:

(2.13) +:=[$,I1 ,/ -( 0 I )+ 2)1/2,

OE2rZd

with the sum taken, offhand, pointwise, hence defined for any 4) on IRd if we allow it to take

the value oa. From (2.6), we conclude that the map L2 (IRd) - L2 (Fd) : t 4 is non-linear,

norm-preserving, and onto:

Lemma 2.14. The function 4 is in L2(Rd) if and only if 4 E L2(lrd). Moreover, IIIIL,(R') =

Turning back to the orthogonal projection, we can write it in the form

(2.15)

and check that I = 1 on supp4, and therefore, by the above lemma, A E L2 (IRd) if and only

if 1/ E L2(supp4). In such a case, by (2.5), (fjl] E L,(1d), and we can formally write the

orthogonal projection Pof in the form

(2.16) Pof = 0€(. + j)[',](),

9



with [f, ]V(j) the j0- ourier coefficient of [VP].
A special case of the above occurs when 0 has L2(IRi)-stable shifts, i.e., when (0(. + JjE-20

forms a stable basis for S(O). As will be explained below, this stability is equivalent to having

C1 < _< C2 a.e. on 1 " for constants C1,C 2 > 0. In this case, the formal expansion (2.16)
c, .crges (unconditionally) and hence the orthogonal projection takes the explicit form

(2.17) Pof = E 46(- +jAjij(j), jls = W J f(x)p(x + j)dx.
jE2Z

A similar analysis applies to the structure of the spaces Sk(o) generated by the 2-k-shifts of
the function 0. We shall only need the case S'(0) in the sequel. In this case, the bracket product

is replaced by the double-bracket product

(2.18) [f,g := Z f(' + )( + ),
3E4 'rV

which is a 4r-periodic function. The role of f is played by

(2.19) f ( f(_ + 012)112, f E L2 (lRd).
OE41r2Zd

Note that f is a non-negative 4-r-periodic function, and

(2.20) f(X) 2 = 1 f(X +,3)2,
OE47rV

with V the vertices of the cube [0..1/21d .

In particular, € characterizes stability and orthogonality of the half-shifts of 0. Namely, the

orthogonality of the half-shifts is equivalent to = - / 2 a.e., and the stability is equivalent to the

boundedness a.e. of 4 and 1/0.
We next describe in more detail the structure of the finitely generated space S = S(lI); a more

complete discussion can be found in [TIDRIl. First, for s E S, the representation (2.3) for is local
in the sense that we can independently assign the values rT(x) for x E 3 Id and 0 E (IP. The choice
of r0 (x) determines the value of at all points in x + 27rW7. This means that the structure of S is
determined by the vectors ( (x + 1 3))E2r,2, 0 E It, x E ,d. For example, for any fixed x, these
vectors are linearly independent if and only if the associated Gramian matrix

(221) G(f)

has non-zero determinant at x. In particular, if det G(4I') = 0 on a set of positive measure in Jrd,
then the representation (2.3) is not unique.
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We say that the set of generators 4o provides a basis for S (that is, their shifts are a basis) if

the representation (2.3) is unique for each s E S, or, equivalently, if det G(4,) is nonzero a.e. All

bases for S have the same number of elements. We note, [BDR1], that not every finitely generated

shift-invariant space S contains a basis. We also note that G(4') is a non-negative definite matrix,

hence 4 is a basis if and only if det G(4b) > 0 a.e. on " .

We further say that a set of generators 4, provides an L2-stable basis for S(4') if each s E S

has a unique representation

(2.22) s _Z
OE4 jE7ZL

and the coefficients satisfy

(2.23) C,1 : 1: 1 cj,0(S)I < j1sII'.2Rj < C2  l Cj,O(S)I 2

0 E jE2 OEI jE2Zd

with absolute constants CI,CX2 > 0. Any L2-stable basis is obviously a basis. One easily checks

that the present definition coincides with the (seemingly weaker) one given in the introduction.

We recall from [BDRI] that the finite generating set 4D for S is an L2-stable basis for S if and

only if, for some matrix norm 11 II (and hence all matrix norms),

(2.24) IIG(,D)Ii, IIG(,4)-11 E L. (Uid).

In particular, this is the case only if

(2.25) C -S det G(l) : C2, a.e. on U d ,

for absolute constants C 1 ,C 2 > 0.

In the case that the entries of G(41) are continuous, the 'a.e.' in (2.25) can be removed, and

more importantly, (2.25) becomes equivalent to the L2-stability of (D. Furthermore, in this case the

right inequality of (2.25) trivially holds, and thus, due to the continuity of detG(I)), stability is

equivalent to the condition
det G(f')(x) > 0, Vx E U d .

This latter characterization of stability was obtained by Jia and Micchelli [JM] under slightly

stronger assumptions (which imply the continuity assumption).

With the notions of basis and L2-stable basis in hand, the following theorem shows how from

one 4 which provides a (stable) basis for S we can obtain other sets with the same property. In this

theorem, T := (T)0,E,oE denotes a square matrix whose entries are 2r-periodic measurable

functions.

Theorem 2.26. Let ' provide a basis for S = S(4'). For any set 1P of functions from S(f), we

have:

(i) 4I provides a basis for S if and only if = T$ for some T which is nonsingular a.e.;
(ii) T provides a basis for S if and only if it generates S and #IQ = #-t;
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(iii) TP provides a basis for S if and only if # 41 = # and det G(I) 5 0 a.e.

(iv) gT provides an L 2-stable basis for S if 4 does and ' = T$ with IITlO, lIT-111 in L( Ud).

The above is easily proved by noticing the effect of the transformation T on the Gramian:

(2.27) G((T4)v) = TG(-)T*,

with T* the conjugate transpose of T; see [BDR1; Cor.3.31] for more details.

A special case of the above occurs when T is a diagonal matrix. In this case, IF provides a new

basis if and only if q, C L 2(]Rd) and the 2ir-periodic functions {r,P} are different from zero a.e.

on Tdr. Also, T is an L2-stable basis if -t is, and the r,0 and their reciprocals are in L,( rd).

If t provides a basis for S := S(D), then i can be orthonormalized by a Gram-Schmidt

orthogonalization. We summarize this fact in the following theorem whose proof is left to the

reader (and can be found in [BDR1]).

Theorem 2.28. Let 4 provide a basis for S := S(i).

(i) Then, there is a set V" of generators for S that provides an orthonormal basis for S.
(ii) If the functions in D have compact support, then there is a set V" - {4 ,..., €} of compactly

supported functions which give the orthogonal decomposition:

(2.29) S = 5(0*) E... ED S(0,).

The half-shift-invariant space S 1(0), generated by 0, is identical with S((D), 4: (v,

and V the vertices of the cube [0.. 1 / 2]d, as before. Clearly, orthonormality or L2-stability of the
halt-shifts of k is the same as orthonormality or L2-stability of the full shifts of 4P. Thus, there

must be a relation between G(4) and € which we shall now derive.

Given a 47r-periodic function f, the functions

(2.30) Q (f) := e, p)f( v E d/2
,UE47rV

are 27r-periodic. If A has been obtained by choosing exactly one point from each of the cosets

v + ZZd, v E V, then

(2.31) f = Z evQ(f)/2d

yEA

is a decomposition of f into its 27r-periodic components Q,(f)/ 2d, v E A.

Since 2Zd/2 is the disjoint sum V + 2Zd, and e,, is 4ir-periodic for v E TZd /2, we find that, for

v,u E V,

~ e,] =Z e(. ±i3)~(.+ /0)1k( + 03)12

(2.32) 
E2?r2Zd

MAE47rV

With this, we can easily compute the eigenvalues and eigenvectors of G(1).

12



Lemma 2.33. For each IL E 47rV and x E "Ifd, the number 2 do(x + y)
2 is an eigenvalue of G(4 )(x),

with eigenvector a, := (ev(x + /)),Ev.

Proof. In view of (2.32), the v-th component of G(4))a,, is

_(.0 2 )e( (. + 1+ ( 2 (.+ + )2

uEV uEV

where, in the last equality, we used (2.31) as well as the 2ir-periodicity of Q" _u( 2). 4

Corollary 2.34. Ifsupp4)= ld then the set -D (W(.+ v))vEV is a basis for S().

Proof. From Lemma 2.33, det G(4)) = const l,lE4,V 0(" + p)2 . From our assumption on
z

the support of , it follows that 4, hence det G(4)), does not vanish a.e., hence -t is a basis for

3. Generators for the wavelet space

We give in this section various descriptions for wavelet spaces and their generators and bases.

As mentioned earlier, we develop this analysis in the following more general framework than usually

considered in the multiresolution construction of wavelets: We suppose that € and 77 are functions

in L 2 (IRd) with the property

(3.1) S() C S,(7).

As before, S(O) denotes the principal shift-invariant space generated by 4), and S'( 1 ) denotes the

space generated by the half-shifts of ?7. Thus, S1(ii) is also the 2-dilate of S(q(./2)).

We define the wavelet space W as the orthogonal complement of S(O) in S1(q):

w := sl(o) e S(o).

The purpose of this section is to find generating sets and bases for W. The analysis of this section

also applies to the other wavelet spaces

(3.2) Wk := sk+1 e Sk

(which might be generated by some other L2-functions) after a suitable dilation. In the case of

stationary decompositions usually considered in wavelet constructions, we have 77 = 0(2.), and

Sl(}) is the 2-dilate of S(O). However, (3.1) is much more general since we can begin with any

77 E L2(lRd) and take for 4 any element in S1(77). Indeed, 3(4)) C S (77), because S'(77) is invariant

under shifting by half-integers, a fortiori by integers.

Note that we are not assuming that 4 is rcfinable in terms of 7, i.e., we are not assuming that

can be written in the form

(3.3) 7= i(.-j)a(j)

jE2ld/2
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for some sequence a (with convergence in the sense of L2 (IRd)). However, since S(O) C S'(17 ), we

do have

(3.4) A

for some 47r-periodic function A. We call A the refinement mask.

We do assume that

(3.5) supp = supp

Although this assumption is not essential for our wavelet constructions, it significantly simplifies

the underlying analysis. In case 0 and 77 are compactly supported, as is the case in almost all

wavelet constructions, (3.5) automatically holds, since then supp 4 = supp q = IRd .

We shall now describe our first set of generators for W; other generating sets and bases for

TV will be obtained from this set by using the transformations T described in Theorem 2.26. We

let (as earlier) V denote the vertices of the cube [0.. 1/2 1d . We continue to use the abbreviation

V' := V\{O}.
It is clear that the space S'(r7) is generated by the half-shifts (77(. + v)),,,v of r7, and this

is, indeed, the usual starting point for most of the wavelet constructions now in the literature.

However, we will show below that, because of (3.5), Sl(rn) = S1 (O), and therefore S1 (7 ) = S(4)

with

(3.6) 4: (¢, = (" + V))E"V.

The generating set -t is attractive since the generator 4) of 3(-O) is one of its elements.

Theorem 3.7. If S(0) C S3(rq) and supp = supp i, then

(3.8) S'(7) =S1 (4))= 3(4)

with 4o (W(. + v)),Ev.

Proof. The second equality is clear. As for the first equality, let g := 77(./2) and f
0(./2). Since -0 E 8 1 (q) , we have f E S(g). By assumption, supp = suppf. Therefore, by

Corollary 2.2, S(f) = S(g). Our claim then follows from the fact that S1(0) and S1 (7) are the

2-dilates of S(f) and S(g) respectively. 4
It is very simple to find elements of W. If f E 8 1 (q/), then since P0 is the orthogonal projector

onto S(0), the error f - Pof is in W. If we choose 2d - 1 such functions f in an appropriate way,

we obtain a basis for W. Most wavelet constructions begin with the functions f = 77(. + v), v E V.

However, there are too many of these functions and one of them must somehow be eliminated

(destroying symmetry). Our last theorem asserts that S'(r7) is also generated by (0(. + v)) ,EV.

Starting with the (0, : )(. + v)),,, v gives the set

W := (w, := 4, -

It is easy to see that W is a generating set for W, i.e., W = S(W). Indeed, since Poov is in 3(€O),

4v must be in S(O) ED S(w,,). Therefore, {} U W generates S1 (ti). It follows that W generates W.

From (2.11), we obtain a simple description of the Fourier transform of the w-":

(3.9) W , := P_p- ,,P4=),- 14, v E V' V\{0}.
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Theorem 3.10. If S(0) C S1 (i1 ) and supp = supp i, then W S E9 So is a finitely generated

shift-invariant space and W:= (wv,,)EV, (defined as in (3.9)) is a generating set for W:

(3.11) W = S(W).

Ifsupp d= , then W provides a basis for W.

Proof. We have already shown that W is a generating set for W. If supp d= , then by

Corollary 2.34, the set 1 provides a basis for S(t). We have shown that 4. := {} U W is another
generating set for S(Q). Since #4. = #4, Theorem 2.26(ii) asserts that 4. also provides a basis

for S(4). Hence, det G(4.) is nonzero a.e. From the orthogonality between W and S(0), we find

that det G(-.) = 42 det G(W). Therefore, det G(W) is also nonzero a.e., thus W provides a basis

for W. 4
The set W is our first set of generators for W. We shall find several others in the following

sections. The idea is simple. We transform W to a new set of generators by using one of the

matrices T whose entries are 2r-periodic functions. The intent is to choose T in such a way that

the new set (TW)v of generators has more favorable properties. Our next result illustrates this

procedure and provides a set of generators which are compactly supported functions whenever 4)
is, - a property the generators in W lack.

Theorem 3.12. Assume that S(O)) C S'(77), supp4) = supp = pd , and that [4,4)] (or equivalently

0) is bounded. Then the 2 d - 1 functions

w: : = (6 V) ^V

provide a basis for the wavelet space W. If 4) has compact support, then the functions in W, are

also of compact support.

Proof. Since W, is obtained from Y by multiplying by the 27r-periodic scalar matrix

[$, ]I, which is assumed here to be bounded, we conclude that W, C L2(IRd). Furthermore,

supp4) = IRd implies, by Theorem 3.10, that W provides a basis. Hence, by Theorem 2.26, W,

provides a basis for W as well.
It remains to show that the functions in W, are compactly supported whenever 4) is. By Lemma

2.8, [0,, 0] is a trigonometric polynomial. Therefore, the inverse transform of .0,,, 0]0 is a finite

linear combination of the shifts of 4), hence is compactly supported since 4) is. The same argument

shows that the inverse transform of [4, ]& is also compactly supported, and thus, indeed, the

functions in W,, are compactly supported. 4
The next theorem shows that W always has a set of generators consisting of orthogonal

wavelets.

Theorem 3.13. Let 8(0) C 8'(71) and supp = supp a = d . Then:

(i) there is a set of generators T for W which provides an orthonormal basis for W;

(ii) if in addition 4) has compact support, then there is a subset T = of compactly

supported functions from W which provides a basis for W and satisfies
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Proof. (i): By Theorem 3.10, W is a basis for W and therefore we need only apply

Theorem 2.28(i). (ii): By Theorem 3.12, the functions in W, provide a basis for W and are of

compact support whenever 0 is. Therefore, we need only apply Theorem 2.28(ii). 4
We shall next discuss conditions under which the half-shifts w(. + v), v E V', of a function

w E L2(IRd) provide a basis for W. Clearly, w must be an element of 8'(77).

Theorem 3.14. Let S(0) C Sl(i) and supp 4 = q = ]Rd. Then:
(i) If w E S 1(7), then the functions w(.+v), v E V', are all in W if and only if[ iD, 0] is 2ir-periodic.

(ii) If w is a generator for S 1(71) and [iv, €j is 27r-periodic, then the functions (w(-+v))VEV' provide

a basis for W.

Proof. (i): Since w E L2(IRd), the function [lii, 41J is in LI(23rd). Proceeding as in (2.6),

f~; 1 1 e..jiidJ(3.15) w~x - j)41(z)dx = e-j - (2 r d,, /2.

Now, the functions w(. + v), v E V', are all in W if and only if the inner products appearing in
(3.15) are zero whenever j E (2Zd/2) \ 7,4, i.e., if and only if [0, 4] has period 27r.

(ii): From the facts that the half-shifts of w generate S'(7), and suppq = IRd, we easily
conclude that supp iZ = IRd, and therefore, by Corollary 2.34, W. := (w(. + v)),vEV provides a basis
for S1(7). Equivalently, G(W.) is non-zero a.e. on "IId. It follows that the Gramian of any subset
of W., and in particular the subset W.\{w}, is non-zero a.e. as well, while, by (i), this latter set

lies in IV, since we also assume that [i,4] is 27r-periodic. Thus, we have found 2 d - 1 functions
in V (viz., the functions in W.\{w}) whose Gramian is non-zero a.e., while Theorem 3.10 asserts

that W contains a basis of cardinality 2d - 1. Thus, Theorem 2.26(iii) ensures that W.\{w} is
basis for W. 4

We give some examples of functions u; which satisfy the assumptions of Theorem 3.14. Since
any function w E W is in 8'(7), we must have iv = r for some 41r-periodic r, and so

(3.16) Pii$J = [i, J = rK 01J

We would like the function in (3.16) to be of period 21r. One obvious choice is to take r = 1/[ ,4]
which gives the function w0 with Fourier transform

(3.17)o := q1[qA =

The half-shifts w0 (. + v), v E V', will generate W provided Wo E L2(]Rd). Note the intimate
relation between the present w0 and the "dual function" p which was defined in (2.15). Indeed, w0
is orthogonal to each 0(. + j), j E 2Zd/2\{10} since [o, AJ = 1.

In general, w0 will not be in L2 (]Rd) because of the division by [€, 4] = 42. However, we can

multiply Givo by any 2r-periodic function and obtain the Fourier transform of other candidates. For

example, multiplying by flE4,V 0(. + 1) 2 gives the function w with Fourier transform

(3.18) iv- += Y + ")2.
16E4V'
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This function w also has the advantage of being of compact support whenever 4 is. Since .0 is a

generator for S' (t) and 02 > 0 a.e. (because supp € = IRd), the function w of (3.18) is a generator

for 3l(j) (because its support is IRd). Applying (ii) of Theorem 3.14, we obtain the following

Corollary.

Corollary 3.19. Let S(0) C S1 (77) and supp4 = supp = IR d If the function w, defined by

(3.18), is in L2 (IRd), then the set {w(. + v) : v E V'} provides a basis for W. If 4 has compact
support, then so does w.

We note that the above w is in L2 whenever 4 or 4 is bounded. For example, this is the case
whenever 4 has compact support.

We have shown so far that it is easy to obtain generating sets for W with various properties.

They can be chosen to provide a basis or an orthogonal basis for W. They can be chosen to be the
shifts of one function w and to have compact support if 4 has. There is one important problem
we have not yet discussed, and that is how to find an L2(IRd)-stable basis for W consisting of
compactly supported functions. It is easy to see that the generating set W, will have this property
if the half shifts of -0 are L2(IRd)-stable (this assumption is not realistic in the stationary case,
but can be satisfied in other situations, cf. §8). We discuss this problem in §5 (in the univariate

case) and in §7 (for the multivariate case). But, first, we examine in the next section the other two

conditions in (1.3), i.e., (1.3)(ii,iii).

4. Multiresolution

In this section, we analyze conditions (1.3)(ii) and (iii). Our setting is as follows. We have
for each k E 2Z a function Ok E L2(IRd) and the space S k := Sk(0k) generated by its 2-k-shifts.
Alternatively, Sk is the 2k-dilate of the principal shift-invariant space S(Ok(2-k.)). We noted in
(2.1) that the functions in s E Sk are characterized by the representation

(4.1) " = rk, r of period 2k+1
7r.

We first study condition (1.3)(ii). It should be noted that we have completely characterized in

[BDRI density properties of (arbitrary) shift-invariant subspaces of L2 (IRd). However, the present

setting is so simple that it does not require any of this general machinery.

We begin with the following lemma:

Lemma 4.2. Let Sk, k E 2Z, be a nested sequence. Then USk is a closed translation-invariant

subspace of L 2 (IRd).

Proof. Let X := USk. Then X is certainly closed. Now, let f E X. Since Sk C S k+1,

f E Sk for all k sufficiently large. Since Sk is 2-k-shift-invariant, ft := f(. + t) is in X for any

I = 2-kj, j E Z d, which means that ft is in X for all dyadic t = 2-kj, j E 2Z , k E 2Z. Since

translation is a continuous operation in L 2 (lRd), we obtain that f, is in X for all t E IRd . Moreover,

if g E X, and f E X, then IIgt - fti1 = Ijg - fl. Approximating g by functions f E X shows that

91 E X.4
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It is well known that a closed translation-invariant subspace X of L 2 (IRa ) is characterized by

its Fourier transforms. Precisely, X = L2(f?) for some measurable set D2 (called the spectrum of

X).

Theorem 4.3. Let (Sk Sk(4)k))kE2 be a nested sequence. Then US- L2(IRd) if and only if

110 := U supp 4,k = R (modulo a null-set).

Proof. Let X := US. From the above remarks on translation-invariant spaces, X =

L2(fl) for some measurable set fQ C IRd. We have X = L2(IRd) if and only if 11 = 1Rd modulo a

null-set. We verify that Q = !Q0 modulo a null-set which will complete the proof. Since each 4)k
is in X, we must have supp 4)k C D) modulo a null-set, and so, S2o C D) modulo a null-set. Now

suppose that fQ\Qo contains a set Q, of positive measure. From (4.1), each element in S1, k E 7a,

has Fourier transform which vanishes on Q1. Hence, each element in USk has Fourier transform

which vanishes on f1. Taking the closure, we see that each element in X has Fourier transform

which vanishes on f9l. This is absurd since X contains L 2 (fll). 4

The role of (1.3)(ii) in multiresolution analysis is to guarantee that limk-.o Pkf = f for each

f E L2(rd).

Corollary 4.4. Let (S0 S,(4)k)) kEZ be a nested sequence, and UkE2Z supp) = JRd. Then,

the orthogonal projectors Pk from L2(aRd) onto S' satisfy lim.o Pkf = f for all f E L 2(IRd).

Proof. Since Sk C Sk+1, Theorem 4.3 says that If- PkfJI = dist(f,S) , 0. 4
We next consider in more detail the stationary case S k = Sk(4)(2k.)), k E 2Z, i.e., the case

when Sk is the 2k-dilate of So = S(4)), which is the usual situation treated in multiresolution. The

following is a very simple sufficient condition for (1.3)(ii), in the event of a stationary multiresolu-

tion.

Theorem 4.5. Let 4) be an L 2(1iRd)-function, and for each k E 2Z, let S k be the 2k-dilate of

S(4)). Assume that (Sk), is nested. Then, (Sk)k satisfies (1.3)(ii) if is non-zero a.e. in some

neighborhood of the origin.

Proof. Here 4)k = 4)(2k'), and therefore = cko(./2 ). Thus if 4 is non-zero a.e. on 11,
then Ok is non-zero a.e. on 2 'Q. Now, if 11 is some neighborhood of the origin, we obtain that

Uk supp -0k = a d, since Uk2'Q = ad . By Theorem 4.3, (1.3)(ii) holds. 4
Of course, (1.3)(ii) can also hold when 4 vanishes at every neighborhood of the origin on a set

of positive measure. For example, this is the case if d = 2 and supp = {X E :R < I ,}.

Special cases of Theorem 4.5 have been established by other authors. For example, in the
univariate case and under certain restrictions on the smoothness and decay of 4), Mallat [Ma]
showed that whenever 4) has orthonormal shifts, assumption (1.3)(i) implies that USk = L 2(Rd).

Recently, this was generalized to the multivariate case by Jia and Micchelli [JM] who replaced
orthonormality by L2(Rad)-stability and replaced Mallat's other conditions by the requirements

that 4)0 E L2 (UIrd), and that 4) satisfy the refinement equation (1.6) for a sequence a from t1 (2Zd).
In both of these examples, the conditions used imply that 4 is continuous and 4(0) $ 0, hence

these results indeed follow from Theorem 4.5. Note that, by the same token, Theorem 4.5 certainly

applies whenever 4) E Li(Id) nl L2(Rd) and 4(0) 0 0.
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We return to the general case of the spaces S = Sk'(k) introduced at the beginning of this
section, in order to discuss condition (1.3)(iii). We shall need the notion of Lebesgue points: recall

that if f is locally in L1 (IRd), a point x E lRd is said to be a Lebesgue point of f if

l-" _-1 f(u) du = f(x),

with the limit taken over cubes Q which contain x. For each locally integrable f, almost every
point is a Lebesgue point (see e.g. [BS; p. 121]). We shall need the following simple lemma (which

certainly is known).

Lemma 4.6. IfMQ is a measurable subset of Rd and a 5 0 is a fixed real constant such that for each
dyadic t E IR d, we have Q + at = f? modulo a null-set, then S1 = IR or Q = 0, modulo a null-set.
Moreover, if f is any measurable function on iRd which, for each dyadic t, satisfies f(. + at) = f
a.e. , then f = const a.e.

Proof. By replacing f (respectively, Q) by f(a.) (respectively, a-Q), we can assume that
a = 1. Let a E lRd be a Lebesgue point of X := X.. Then with Q6 := [-6/2._ 6/ 2]d, we have

(4.7) lim 6- X(x + a) dx = X(a).

Now, for any dyadic number t, we have X(x + t) = X(x), a.e. in x. Hence, for any set Q of finite
measure,

(4.8) jx(x+a+t)dx = x(x +a)dx.

If y E IRd is any other Lebesgue point of X, then using the density of the dyadic points, we can, for
each 6 > 0, find a t6 such that y E a + t6 + Q6. Using (4.8), we find

X(y) = lim 6 - d X(x+a+t)dx= fim6 - d j X(x + a) dx =X(a).6- 0 Q, 6 6 0 Q

Hence, X is constant a.e. and our result follows.

If the function f is as described in the lemma's statement, then for each y E IR, the set
{x : f(x) :_ y} satisfies Q + t = Q, modulo a null-set, for each dyadic t. Hence fQ = IRa

or Q = 0, modulo a null-set, and it follows that f is a constant a.e. If f is complex-valued, this

argument can be applied to both its real and its imaginary parts. 4

Theorem 4.9. Given the sequence Sk := Sk(0kk), k E 2Z, set Y := nkSk . Then Y is a linear
subspace of L2 (IRd) of dimension < 1.

Note that the nestedness assumption (1.3)(i) is not made here. Further, as the proof below
makes clear, the result remains valid even when {Sk}k is replaced by a subsequence {$ ki }j, provided
that lim _kj = -oo.
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Proof. Assuming Y {0}, we will show that dim Y = 1. Let f,g be two functions in Y.
We define the following function

d0, fi) = 0x) = 0,
F: IRd -- C2 : x . (fz),j(z)) otherwise.

We shall prove that F is constant on its support. Let K be a measurable subset of C2\{0}, and
assume that A F- 1 (K) has positive measure. Let D be the set of all points of the form 2kjlr,

k E 7Z, j E 7Zd . Let X E A, and t = 2k+ljlr E D. In view of (4.1), there are r and 77 of period
2k+lr such that

(4.10) =77, a.e.

Since F(x) j 0 (since F(x) E K and K does not contain 0), k(x) 5 0, and we have

(f (X + t), ?(X + t)) = Ok(X + t)(r(x + t), 77(x + t)) = Ok(X + t)(r(x), 77(X)) = k(X + t) f(x),(X)).
k(X)

This implies that either F(x+t) = 0 or that F(x) = F(x+t). We conclude that F(A+D) C Ku{0}.

Since A is assumed to be of positive measure, so must be A + D, and hence Lemma 4.6 (when
applied to Q := A + D) implies that A + D = IRd (up to a null-set). Thus (again up to null sets) F
assumes its non-zero values in K, and since K can be made arbitrary small, this can happen only

if F assumes essentially only one non-zero value. Equivalently, the functions f and g are linearly
dependent, which is what we wanted to prove. 4

It can indeed happen that Y has dimension 1. For example if Ok = 4 for each k (not to be
confused with the stationary case: 'k = 0(2k.), all k), then 4) is obviously in Y. Other, less trivial,

examples are also possible (see §6). In passing, we note the following immediate consequence of

Corollary 2.2 (and its scaled versions):

Proposition 4.11. Let f E nfjSk(Ok). Then f generates all the spaces Sk if and only if
supp f = supp 0-k, all k. In particular, the spaces (Sk(k))k are generated all by a single function

only if supp Ok = sUpp 4 k' for all k, k' E 2Z.

We also note that, for any nested sequence Xk C Xk+1 of closed subspaces of a Hilbert space,

the corresponding orthogonal projectors Pk := Px, converge strongly to the orthogonal projector
P-,, onto X-o, := nkXk as k -- -oo (hence converge strongly to the orthogonal projector P,,
onto X,, := UkXk as k -- oo). Therefore, in particular:

Theorem 4.12. Let Sk := Sk(ok), k E 7, be a nested sequence, and let Y = nkE2zSk be the
(one- or zero-dimensional) space of Theorem 4.9. Then limk-..- Pkf = PYf, for all f E L 2 (lRd).

Proof. Here, for completeness, is a proof which only uses the fact that Xk := Sk is a

nested sequence of closed linear subspaces of a lilbert space, with Y := fkXk.

To show that limk-_oo Pkf = Pyf, it is sufficient to show that Pkf -" g weakly implies that
g = Pyf and g = limk--.-o Pkf. For, it implies that Pyf is the only limit point of (Pkf)k, and,

further, implies that (Pkf)k has limit points since, being bounded, it has weak limit points.
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So, let g be the weak limit of (Pkf)k. Since every X is closed and convex, hence weakly
closed, and contains every Pkf with k < j, it must contain g; therefore, g E Y. On the other hand,
Zk := f - Pkf is perpendicular to Xk, hence to Y, therefore, so is the weak limit, x := f - g. In
short, g = Pyf. Since Y is the intersection of the nested sequence (Xk)k, it follows that

im IlxkjI = sup dist(f, Xk) < dist(f,Y) = Ilizl.
k--oo k

Because of the weak convergence we also have (Xk, X) - (x, x), and therefore

0 < IfPkf - g1l 2 = OJx - xk1I2 = IIXI12 - 2 Re(x, Xk) + IjxkjI2  _ 11x1l2 + rm IIxl 2 < 0
k

as k runs to -oo. In other words, limk Pkf = g = PYf. A

Since Y C Sk, it is orthogonal to each of the wavelet spaces Wk := Sk+1 e Sk, k E 2Z. There-
fore, applying Corollary 4.4 and Theorem 4.12 , we obtain the following orthogonal decomposition
of L2(Rd).

Corollary 4.13. Let Sk :. $k(0bk), k E 2Z, be a nested sequence, and let 12o := U supp & = Jfd

(modulo a null-set). If Y is the (one- or zero-dimensional) subspace of Theorem 4.9, then

L2(IRd) = y (@ Wk.
kE2Z

The significance of the last corollary is the following. Let Oby be any nontrivial element of Y
with O1'/yll = 1. If for each k E 2, the set Ilk provides an orthonormal basis for the wavelet space

Wk, then the totality of functions iOy and 0'(- - j2-k), j E 72Z
d , i E 'Qk, k E 72, is an orthonormal

basis for L 2 (IRd). Thus, even when Y is nontrivial, multiresolution produces a basis for L2(IRd).
Similarly, we obtain an L2-stable basis whenever the Tk provide an L 2-stable basis for Wk whose
stability constants are independent of k E Z2.

In the stationary case, i.e., the case when 10k = 0(2k_), the following corollary shows that Y
is necessarily trivial.

Corollary 4.14. For q4 E L2(IRd), define Sk := Sk(0(2k .)), k E 72. Then flSkE26 = {0}.

Note that, as in Theorem 4.9, the nestedness condition (1.3)(i) is not required, hence is not
assumed.

Proof. We suppose that f is a non-trivial function in L2(IRd) which is in each of the spaces
S k and derive a contradiction. By the assumptions here, each Sk is the 2-dilate ofk - , and hence

nkSk is invariant under dilation by 2. On the other hand, by Theorem 4.9, this space is at most
one-dimensional. Therefore, if f E flkSk, then there exists some A such that

(4.15) f(2.) = Af, a.e. on d .

It is now easy to show that this is impossible for f E L2 (IRd)\{10). Indeed, for each C > 0, the sets
k x=:{x 2 k < IxI < 2k+1 and If(x)l > CIAIkI satisfy

Fk = 2Fk_ and meas(Fk) = 2dmeas(Fk_), for all k.
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If f is not the zero function, then for some C > 0, meas(F) # 0. From (4.15), If(x)l >_ CA k for
x E 2kF0 . Therefore,

SI112> C2 meas(Fo) Z(2dIA 2)k,
R kEZ

which shows that f is not in L 2 (IRd) because the series diverges. A
The importance of Corollary 4.14 is that, in the stationary case, it is not necessary to assume

property (1.3)(iii). Moreover, in the case that 4 has compact support, condition (1.3) (ii) is already

implied by (1.3)(i). We have therefore the following corollary.

Corollary 4.16. If, for the compactly supported function 4) in L 2 (IRd), the sequence Sk

Sk(0( 2 k.)), k E 2Z, is nested, i.e., satisfies (1.3)(i), then the conditions (1.3)(ii,iii) are automat-

ically satisfied and we have the orthogonal decomposition

L2(,Rd) = G w k

kE2Z

with W := S' e 30 the wavelet space and Wk its 2k-dilate, k E 7Z.

5. Univariate wavelets and prewavelets

After showing in the last section that conditions (ii) and (iii) of (1.3) hold in quite a general set-

ting, we now turn our attention back to wavelet constructions. We start with a separate discussion

of the univariate case, since this case is significantly simpler than its multivariate counterpart.

As in §3, we are only interested in studying one of the wavelet spaces, namely, W := S' e So.

The other wavelet spaces, Wk := Sk+' E Sk, are obtained by identical methods, and furthermore,

in the stationary case each of the wavelet spaces is obtained from W by dilation.

We work in the same setting as in §3: We assume that 4, 77 E L2 (IR) satisfy

(5.1) 8() C S'(77)

and

(5.2) supp4 = supp = IR.

As before, we remind the reader that this last assumption is always satisfied when 4) and 7 are

compactly supported.

We have seen in §3 that W is a principal shift-invariant space and there is always a generator
w. for W whose shifts form an orthonormal system. However, in general we can say nothing about

the support of w., or the decay of w.(x) as lx[ -- oo. In this section, we want to go further and

find other generators for W with favorable decay properties. In particular, in the case 77 = 0(2-)
usually studied in wavelet constructions, we shall recover various generators for W given by other

authors.
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Our starting point is the function w of Theorem 3.10, i.e., the function whose Fourier transform

is

(5.3) iv' := el/24 [e ).

We know from Theorem 3.10 that w provides a basis for W.
We wish to express the generators that follow in terms of q/. For this we shall use the refinement

relation (1.6):

(5.4) =A

with A a 4r-periodic function.

Theorem 5.5. Let

(5.6) := 2e-1 2 A(. + 2 .)(- + 2,r)2 q = 2e-1 /2 [, 0(- + 2,r)q.

If ' E L2 (IR), then its inverse transform 0 is a generator for the wavelet space. Moreover, 0, has
orthonormal (respectively, stable) shifts if the shifts of 4) and the half-shifts of q are orthonormal

(respectively, stable).

Proof. We already know that the function w of (5.3) is a generator for W. We will show

that iv-/1 is 2wr-periodic. Since (5.2) implies that supp 0 = IR, this will prove, by (1.11), that

w E S(ip) and hence 4, generates W.

Since el/ 2 (.+2r) = -el/ 2 , and e1 /2 is 4-periodic, we see that Iel/20, 01 = e1 / 2 (0 2 -0(-+27r) 2 ),

while [0, 0] = 4)2 + 0(. + 21.) 2 . Substituting this into (5.3), we obtain that

20 (.+ 27) 2  ^
=el/20.

Since = A , and A is 4--periodic, J -AIl. Therefore, we see that

r := = (4) 2 A A(. + 2w)e.

Since A is 4r-periodic and 4 and el are 27r-periodic, we conclude that, indeed, the ratio i/ is

2wr-periodic and hence 4' generates W.

To prove the rest of the theorem, we first compute 4, as follows:

= 4 {IA(. + 21r)12 1(. + 2,r)4 =2 + IA12 =4 =(. + 2T )2}

(5.7) = 4 q(. + 27r)2 {IA(. + 2 )l (- + 27r) + IAI 77}

=477(- + 21ri~ {77 ( + 2w)r 2 477(- + 2) 2 2 7r 2

If 4 has orthonormal shifts and q has orthonormal half-shifts, then 2 = 1 a.e., and 2 1/2 a.e.

We conclude that b = 1 a.e., and hence ; has orthonormal shifts. Similarly, if 4) has L2(IR)-stable

shifts and q/ has L2(IR)-stable half-shifts, then the functions and = and their reciprocals are
bounded. It follows that 4 has the same property and hence the shifts of ;b are L2(IR)-stable.
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Remark 5.8. It also follows from (5.7) that the stability constants Cj(?),C2(0) > 0 for 1P, i.e.,

the positive constants in the inequality C,(k) _ V _ C2(4') a.e., can be chosen as

Ci(O) = 2Cj(O)Cj(i7)2, j = 1,2,

where Cj(O) and Cj(71 ), j = 1,2, are the stability constants associated with 0 and i respectively.

Note that when 77 = vr (2.), the orthogonality assumption or the stability assumption on the
half-shifts of 7 is equivalent to the corresponding assumption on the shifts of q. Further, in the

orthogonal case, 1i(. + 21r) 2 = 1/2, hence the formula (5.6) is reduced to

(5.9) =e-1/2;[(. + 2r)q,

which gives the usual wavelet obtained by multiresolution. Note also that the theorem incidentally

proves that v E L2(IR), hence 0 is in L2 (IR) whenever 7 has L2(IR)-stable half-shifts.

Mallat has proved the orthonormal part of the above theorem (for q} := Vf2'(2-)) without
the assumption (5.2), but with additional hypotheses on the decay and smoothness of 0. Several

authors have used Mallat's approach to construct orthonormal wavelets, including Daubechies [D]
in her celebrated construction of wavelets w of compact support and arbitrary high orders of dif-

ferentiability. However, the difficult part of the Daubechies construction is to show the existence of
compactly supported functions k which satisfy (5.4), have arbitrarily high orders of differentiability,

and have shifts which are orthonormal.

As an example, if € is the B-spline 0 = N(.10 ... ,r) of order r with knots at 0,...,r, then
S(0) is the space of all cardinal splines of order r which are in L2(IR). The function 0 is then the
spline wavelet of Battle and Lemarie (see [13]).

The prewavelet part of Theorem 5.5 has been proved by Micchelli in [Mi], but under different
hypotheses. lie does not assume (5.2), but assumes that 0 satisfies the refinement equation (1.6)
with coefficients a E tj(Z). Similar ideas have been employed by Chui and Wang [CW], [CWI].

In particular, when 0 is the cardinal B-spline, the prewavelet 0 of Theorem 5.5 is their compactly

supported spline wavelet (except for an integer shift).

The remainder of this section will be devoted to the important case when the functions 0 and 17
are compactly supported. We shall be interested in finding functions w from W which have minimal

support. In the context of compact support, one encounters the notion of linear independence: We
say that the shifts of the compactly supported 0 are linearly independent if, for each sequence
c, the sum E,, " 0(. - j)c(j) is identically zero if and only if c(j) = 0 for all j E & (note that for
each z E IR, the series has only a finite number of nonzero terms and hence converges pointwise).

We remark that linear independence of the shifts of € implies that these shifts are L2(IR)-stable,

(cf. [JM]).
In what follows, we denote by diam Q the length of the smallest interval containing the subset

0 of IR. With the aid of [R2], the following result on linearly independent generators was proved

in [BDR1].

Result 5.10. Let S be a univariate principal shift-invariant space which is generated by a com-

pactly supported function. Then, there exists a compactly supported 0 E 5 that satisfies all of the

following conditions:
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(a) The shifts of 4 are linearly independent.

(b) Every compactly supported f E S can be written as a finite linear combination of the shifts

of 4.
(c) diam supp 4 _ diam supp f, for every f E S.

Furthermore, up to a shift and a scalar multiplication, 4 is characterized by any of these three

properties.

Corollary 5.11. If 4 has compact support, then the wavelet space W has a compactly supported

generator whose shifts are linearly independent. This generator enjoys all the properties of 4 in

Result 5.10.

Proof. By the case d = 1 in Theorem 3.12, W is principal and has a compactly supported
generator. It is therefore enough to apply Result 5.10. 4

In view of the attractive properties of a linearly independent generator, it is desirable to find

a constructive method to find the linearly independent generator of W. For this, we shall assume
(without loss of generality in view of Result 5.10) that the generator 77 for 8 1(77) has linearly

linearly independent half-shifts. In view of Result 5.10, any compactly supported function in Sl(r)

has Fourier transform r with r a 4r-periodic trigonometric polynomial. We are interested in the

properties of r that characterize linear independence of the shifts of (r )V.

If r is a non-trivial 47r-periodic trigonometric polynomial, then r = eml 2  0 a(j)ej21 with

a(O)a(n) $ 0 and m E 2Z. We call n the modified degree of r and write mdeg r := n. From

this it easily follows that if f and g are compactly supported and = rf for some 4r-periodic

trigonometric polynomial, then

(5.12) diam supp g = diam supp f + (mdeg r)/2.

If r and C are two 4r-periodic trigonometric polynomials, we say that C divides r if r/( is also

a 41r-periodic trigonometric polynomial. With this, we have the following characterization of the
linearly independent generators of W.

Proposition 5.13. Assume i is compactly supported and has linearly independent half-shifts.

Let w be any compactly supported generator of the wavelet space W. Then w is the linearly

independent generator of the wavelet space (and thus enjoys all the properties of the 4 in Result

5.10) if and only if the 4r-periodic trigonometric polynomial T in the representation i = r is not

divisible by a non-constant 2r-periodic trigonometric polynomial.

Proof. By Result 5.10, every compactly supported w E W C S'(rl) can be expressed in

the form iv- = rq for some 4r-periodic trigonometric polynomial r. If r = A(, where A is a 2r- and

C is 4r-periodic trigonometric polynomial, then, by Corollary 2.2, w' (C )v is also a compactly

supported generator for W.

By (5.12),

diamsuppw = diamsuppir+ (mdegr)/2, diamsuppw' = diamsuppt7+ (mdegC)/2,

hence diam supp w' < diam supp w, with equality if and only if mdeg C = mdeg r, i.e., if and only
if mdegA = 0. Our claim follows then from the fact (cf. Result 5.10) that the linearly independent

generator is characterized by the minimality of its support.
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In view of the last result, the search for the linearly independent generator of W can be carried
out as follows: assuming tj has linearly independent half-shifts, we find some particular compactly
supported w E W, and write iii = Ti. Then r is necessarily a trigonometric polynomial. Factoring
T = A( where A is a 27r-periodic factor of maximal degree, ai. defined by ?k = i7 is the linearly

independent generator of W.

Corollary 5.14. Assume that 4 and 77 are compactly supported and the half-shifts of 77 are linearly
independent, and that 0 is compactly supported, and 4 =: Ai. Then the linearly independent
generator 7. for the wavelet space W = S1(,q) E S(0) is given by

where ( := r/A, and A is a 2Ir-periodic trigonometric polynomial of maximal degree that divides

r-:= + 2r)'(. + 2r)' = e-112, 4)(. + 2r).

Proof. From Theorem 5.5, we know that 0:= (Trq)v generates W. Thus the claim will fol-

low from the argument preceding this corollary, as soon as we show that T indeed is a trigonometric

polynomial.
The function 17- is a trigonometric polynomial by the analogue of Lemma 2.8, since it is the 47r-

periodization of I 1 2 for the compactly supported 77. The mask A is also a trigonometric polynomial
by Result 5.10, since 77 and € are compactly supported and '9 is a linearly independent generator
of S (77). 4

Result 5.10 tells us that the search for a linearly independent generator is, necessarily, the same
as the search for a minimally supported generator in the sense that we are minimizing diam supp w
among all generators w. Chui and Wang, [CW], considered a slightly different notion of minimality:
they were interested in finding a generator w for IV which can be expressed in the form iv, = ni, with

r a trigonometric polynomial of minimal degree (they assume that the refinement mask A = O/q
is a polynomial, to guarantee the existence of such r). Thus, while we minimize diam supp w over
all possible generators w, Chui and Wang minimize diam supp w only over those w which can be
written as a finite linear combination of the half-shifts of 77. However, because of Result 5.10, the two
notions coincide if we assume (as we do) that the half-shifts of 7j are linearly independent. In any
event, with straightforward modifications, the arguments used in Proposition 5.13 and Corollary

5.14 can be applied to show that the same characterization holds for the "minimal w" in the [CW]
sense.

Chui and Wang stated their results in terms of the symmetric zeros of the trigonometric
polynomials involved. Let us pause for a moment to see how symmetric zeros enter into the
characterizations provided above. If r is a 47r-periodic trigonometric polynomial, then, up to some
exponential factor, we can write r = p(el/ 2) for some algebraic polynomial p with deg p = mdegr.
But, for any algebraic polynomial q, q(e,1 2) is 2r-periodic if and only if it can be written as an
algebraic polynomial in el = e/2 2 , i.e., if and only if q involves only even powers, or, what is the
same, if and only if all the zeros of q occur in symmetric pairs. Thus the quotient r/A in Corollary

5.14 can be equivalently characterized by the lack of symmetric zeros in p/q.
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If we take for € a cardinal B-spline and for 1r its 2-dilate, then the half-shifts of 77 are linearly

independent. In this case, the spline wavelet 0 of Chui and Wang (given by Theorem 5.5) is

the minimally supported wavelet for W guaranteed by Corollary 5.11 because the function r of

Corollary 5.14 is known to have no 27r-periodic polynomial factor. It thus follows that 7P has

linearly independent shifts.

6. An example of non-stationary decompositions: exponential B-splines

We have carried out the analysis in this paper without making the assumption that q is the
2-dilate of 40. The reason for this is two-fold: first, the assumption r7 = 0(2-) does not simplify

either the idea or the details of our approach. Second, and more importantly, there are various

interesting examples where the "finer" function 17 is not obtained from € by dilation. This is the case
for example for exponential B-splines, exponential box splines, and various radial basis functions.

In this section, we briefly discuss what seems to be the simplest example in this direction: the
exponential B-splines.

The exponential B-spline N\ := NA(.I0, ... ,n) is a generalization of the (polynomial) B-spline

N(.10 , ... ,n). It can be defined by its Fourier transform as follows. Let A be a parameter vector
(At,,..., An) E C n . Then

~ Then
11 (A,,, - i

Ml

The polynomial B-spline corresponds to the choice A = 0. Splines in tension correspond to the

choice n = 4, A1 = A2 = 0, A3 = -, 4.

In general, N\ is (n - 2)-times continuously differentiable and is supported on [0..n]. On

each interval [j..j + 1], N\ coincides with a function in the kernel K\ of the differential operator

) := I'I.=I(D - Am). The shifts of N\ are linearly independent if and only if

(6.1) An - Aj 27ri2Z\0, Vm,j.

Furthermore, when (6.1) holds, every f E K\ can be expressed as a linear combination of the shifts

of N,\.

With the above knowledge in hand, it should be clear that NA cannot be written in terms of

its 2-dilate, unless A = 0: upon dilating N\ we obtain a function which is piecewise in K2\ and
therefore every element of S'(N\(2.)) is piecewise in K2X while N\ is piecewise in KA. Thus, the

usual framework of multiresolution analysis cannot be applied to exponential B-splines.

On the other hand, from the Fourier transform of N\, we see that

( )) e, / 2iY/ 2 + 1 n e \-/ 2-iy/ 2 - 1(62) (Y) = 2 (Am/2 iy/2)

The second factor on the right hand side of (6.2) is recognized as R,/2(./ 2 ), and thus

N\ = AA/2NA/2(./ 2 ),
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with A the 4r-periodic trigonometric polynomial

n e-\" -iY/2 + 1A,,(y) := II 2

M=1

Note that 9,/ 2 (./2) is the Fourier transform of 2N,/2(2.) which is supported on [0..n/2], and is

piecewise in K,\ (with breakpoints at the half-integers).

We fix a vector A and define the spaces S k := Sk(0k), k E Z, with Ok := N,/2k(2k.). The

generators 41k then satisfy the non-stationary refinement equations

& = 2A\/21+'('/2k)&+1.

We observe that 2A,\l 2k+(./2k) can be written as
n

2 - n ( e /2k ' " ./2k ) e- iJy/2k+l '

j=0

where aj(ti, ... , tn) is the homogeneous symmetric polynomial of degree j in tI, ... , tn.

The scale of spaces Sk, k E 2Z, clearly satisfies condition (1.3)(i) of multiresolution. Since

supp ok, = IR, (1.3) (ii) follows from Theorem 4.3. According to Theorem 4.9, the space Y := nkSk

has dimension < 1. The following theorem, which is a special case of Theorem 8.4, provides a

complete description of this space.

Theorem 6.3. Let {S k } be a multiscale of spaces generated by exponential B-splines. Let Y

nkfEZ Sk. Then Y is one-dimensional if and only if Re Aj 0 0, j = 1, ... , n. Otherwise, Y is trivial.

In case Y is one-dimensional, it is spanned by the Green's function G (or more precisely the

fundamental solution of the differential operator D) whose Fourier transform is given by

n

(6.4) G(y) = ( (Am - iY)-.
m=1

In this case, Sk = Sk(G) for every k.

For convenience, we define from now on W-,, := nkSk, and obtain in this fashion the decom-

position
L2 (IR)= ( Wk,

-oo<k<+oo

valid for the wavelet decomposition based on any exponential B-spline.

An interesting and important problem in the context of non-stationary subdivisions is the

stability question. Let Ok be the compactly supported wavelet function given by (the appropriate

scaled version of) Theorem 5.5 for Ok := N, 12k (2k_). Then the wavelet space W k := Sk+1 E) S k is a

principal 2-k-shift-invariant space generated by Tk. The 2-k-shifts of Ok are linearly independent

iff

(6.5) Am - Aj V 2 k+,ri2Z\0,
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as can be easily concluded from (6.1) by rescaling. We see that for large enough k (say, k > k0 >

-00), Ok is always a linearly independent generator, and in particular a stable generator of its

space. Further, if A E lR ' , then the linear independence (and hence the stability) holds for all k.

By Theorem 5.5, V!k provides a stable basis for the wavelet space Wk for every k > k0 . At the same

time, the sum @k Wk is orthogonal, a fortiori the sum (k>ko Wk is orthogonal. Nevertheless, these

arguments do not imply that {7k("- 2-kj)}k>k,jE7Z forms a stable basis for (ek>ko Wk, since one

still needs to show that the stability constants associated with the basis {k(" - 2 -kj) jEd of Wk

can be chosen independently of k > k0. This question does not arise in the stationary case, since
then 4k is obtained by dilating i0 and the stability constants do not change with k.

The main tool in this discussion of stability is the following consequence of Theorem 5.5 and

Remark 5.8:

Corollary 6.6. Let (Sk = Sk k(k))k be a nested sequence of spaces in L 2(IR), and, for k E 7Z,

define Ik := 2 k/2 0(2 k.), with 0 the wavelet generator of Theorem 5.5 corresponding to the choice

S:= Ok(./2 k), 77 := Ok+1 (./2k) in that theorem. Let lk := Ok(-/2k), k E 2Z, and -co < ko < k, _

o. Then, the set

T {:= kO& - 2 kj )k<k<kl~jE2Zd

is an L 2-stable basis for the space EE)k0 <k<k, Wk (with Wk := ,S k+ E) Sk) if and only if there exist

positive constants C 1 and C2 such that

I1IklL.('Ir) !5 C 2 and <1 1kR L C]I') 1/Cl,

for every ko < k < kj. Furthermore, the stability constants Cj( ') for the choice F := I in (1.5)

then can be taken as C], j = 1,2.

Proof. As explained in the paragraph preceding this corollary, we only need to check, for
each k, the stability constants associated with the basis 9k :2 (,(" - 2kj))jrd for Wk. By

Theorem 5.5 and Remark 5.8, these constants are determined by the constants associated with the

sequence (€,(. - 2-mj))je 4 , m = k, k + 1. By scaling, these latter constants are observed to be

identical with the constants associated with the sequences (77m( -j)) , m = k, k+ 1. With this,
the bounds C., j = 1,2, follow from Remark 5.8. 4

Corollary 6.7. Let (Sk(Ok))k be a nested sequence of exponential B.-spline spaces, i.e., Ok =

N /2(2 k.) for some (fixed) A E C'. Let ko > -oo be chosen such that (6.5) holds for every k > ko.

Let Vo be the generator of Wo defined by Theorem 5.5, and let 'Ok be the analogous generator of

Wk, k E 2Z. Let

% =('k(' - 2- i))k koJE2Zd.

Then 19 forms a stable basis for @k>ko Wk.

Proof. We observe that 77k := Ok(2 - k _) is the function NX12h, and, by the assumption

here, the shifts of each 77k form a stable basis for S(1k). All the functions 77k, k E 7, are supported

in [0.. n] and they converge uniformly as k -* co to the polynomial B-spline No. From this it easily

follows the k converges uniformly, as k -- co, to N0 . Thus, for sufficiently large ki, and for every
k > kj,

I14kI (Id) !5 IIoItL-(rd)2
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and
IIl/11 klIL.(1r) -< II/OIIL, Cr) + e.

It follows, thus, that sUPk>ko IIklILh('Ir), and supkko 1/1kIIL.('T,) are finite, and our claim

follows from Corollary 6.6. 4
A more subtle analysis is required in the consideration of the stability of the full basis

(Ok(" - 2-ki))kj • We omit these details here.

7. Multivariate prewavelets

We have given in §3 various sets of generators for the wavelet space W. In particular, we

have shown how to obtain generating sets which provide an L 2-stable basis or more generally an

orthonormal basis for W. However, our constructions were lacking in the following sense: If q has

compact support, then the elements in the generating sets which provide an L 2-stable basis need

not be of compact support, nor can they be shown to decay at any rate. On the other hand, it has

been proved by Meyer [Me; Chapter II, §6] (and also Jia and Micchelli [JM1]) that, under some

general assumptions on the generator 4) of So (e.g., 4) is compactly supported and provides a stable

basis for 30), there always are generating sets consisting of nicely decaying functions which provide

an L2-stable basis for W. However, the proofs of these facts are not constructive, hence leave open

the question of how to obtain such generating sets explicitly. We shall not provide a solution to

this problem in its entirety, but we shall build on previous constructions, of Lorentz and Madych

[LM] and Riemenschneider and Shen [RS], which can be applied in certain special but important

cases.
We assume throughout this section that 4 and r7 are L2(lRd)-functions that satisfy

(7.1) 5(4)) C S'(r0)

and

(7.2) supp =supp =IRd.

As before, we denote the refinement mask by A, i.e.,

The refinement mask plays a major role in the context of orthogonal wavelets (cf. (5.9)). But, as

already observed in Theorem 5.5, the construction of prewavelets is based on the function

(7.3) B :- 7 = 2,

and for that reason we assigned it the above special notation, B.

The derivations of generators and bases for W that were carried out in §3 involved only the

function 4). In order to construct stable bases for W from 4) that imitated the decay properties of

4), we would have to assume that 4) has L2-stable half-shifts, and this is a restrictive assumption,

and applies only to non-stationary refinements (see the next section). Thus, we change our focus

from 4) to t, under the assumption that the half-shifts of the new generator, 77, are stable. Indeed,

it is the L2-stability of q which will allow the construction of an L2-stable basis for W.

We recall the operator Q0 of (2.30).
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Corollary 7.4. Assume that .0 and 77 satisfy (7.1) and (7.2). A necessary and sufficient condition

that w E L2(lRd) be in W is that there is a 4r-periodic function T such that

(7.5) iw = T7r

and

(7.6) Qo('rB) = Z (rB)(. + v) = 0.
vE47rV

If 77 has compact support, then a sufficient condition that w have compact support is that r" is a

trigonometric polynomial (of period 4r). Moreover, this last property characterizes the compactly

supported elements of W, whenever 7i has linearly independent half-shifts.

Proof. The first equality in (7.6) is merely the definition of Q0. As for the second, since

W C S1 (r1 ), any function in WV has Fourier transform of the form (7.5). Since, for any functions

f,g E L2(Ild), [f,g] - Oo([f,gJ), we conclude that

[rv, 0] = QoCr ,0]) = Qo(r-B).

Since w E W if and only if [rv, 4] = 0, the main claim of this corollary follows.
If 7 is a polynomial and q7 is compactly supported, then 7q certainly is the Fourier transform

of a compactly supported function. In case r has linearly independent half-shifts, Theorem 1.3 in

[BR] implies that 7 = r.j, with r a trigonometric polynomial, whenever f E S'(71) is of compact
support. 4

With Corollary 7.4 in mind, we would like to find a set V C V of cardinality 2 ' - 1 and

41r-periodic functions r,, v E Vo, that satisfy Qo(rB) = 0. Then, the functions r?, v E Vo, are

in W. Under certain conditions we can choose the rT, v E Vo, so that the wv, := (r)v, v E V0,
provide an L2-stable basis for W. We begin by generalizing a construction used by Lorentz and

Madych [LM] (see also [JM] and [S6]).
We can decompose the function B = [i, 4] into its 27r-periodic components, as in (2.31):

(7.7) B = ,,B,,, B, := Q,,(B)/2.
VEV

If 7 and 4, are of compact support, then (by the half-shift analog of Lemma 2.8), B = Ii, 4l is a
47r-periodic polynomial. In such a case, the functions B,, are 27r-periodic polynomials.

For our first construction, we assume that B is bounded, and that, for some vo E V, B o is

bounded away from zero a.e., and set Vo := V \ {vo}. These requirements are fulfilled, for example,
for v0 = 0, hence VO = VI, whenever 77 has L2-stable half-shifts, and, further, the 47r-periodic

refinement mask A is real, nonnegative and continuous, with no 2ir-periodic zeros.

Theorem 7.8. Assume that 0 and 17 satisfy (7.1) and (7.2), and let B,, be as in (7.7). Let vo E V,

V0 := V\{vo}. Then the functions

(7.9) r,, := e,,oB,, - e,,B,,, v E Vo,
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satisfy Qo(rB) = 0, hence the functions wv,, v E V0, with Fourier transform i, := r,,, are in W,

provided that W_, E L2(IRd). If' 7and 4) have compact support, then the w,, v E Vo, have compact

support as well. If q has L 2-stable half-shifts, and both B and 1/B,0 are essentially bounded on

ard, then (wV)lEvo provides an L2-stable basis for W.

Proof. Let v, u E V. Since B, is 2ir-periodic,

Qo(eBB) = BQo(euB) BQu(B) = B,B,2d.

Application of this equality, once with v = v, u = vo and then with the opposite choice, proves

that
2-dQ0(r,,B) = B,,B,o - B,,oB,, = 0.

Hence (7.6) is satisfied and the functions w,,, v E V0 , are in W.
If q and .0 have compact support, then, by the half-shift analog of Lemma 2.8, B = [77, 0] is a

trigonometric polynomial, hence so is each B,, and each r,,. This implies that each W,, is compactly

supported.
To show the L2-stability of the (W,,vEVo, we consider the matrix T (r,,),,,uEV with

diagonal elements r,,,:= -Bvo, v E V, and with off-diagonal elements r,,v,, B,,, V E V0 , and
with all other entries zero. We observe that T(e v) EV coincides with ( E)Vo in all the V0 -

entries, and therefore, for proving the desired stability it suffices to show that the shifts of the
inverse transforms of T(e, ),,V are stable. Recall that we are assuming that the half-shifts of q
are stable, or, equivalently, that the full-shifts of (77(. + v)),,EV are stable. Thus, by (iv) of Theorem

2.26, it remains to show that [ITI1 and (IT-'(( are essentially bounded on y d . Since we assume
that B is bounded, so is each component B,,, hence T has all entries bounded. On the other hand,

IdetTi = IB,,,, 12d hence by our assumption, is bounded away from 0. This implies that both I[T[
and IT-1i1 are bounded a.e. 4

We note that the boundedness assumption on B is automatically satisfied whenever the full-

shifts of 77 and 4) are stable, since JBI = 0, with each factor on the right being bounded because

of the stability assumption.
The other assumptions of Theorem 7.8 are also met in many instances. The most important

example is recorded in the following corollary, which also admits straightforward extensions to the

non-compact support case.

Corollary 7.10. Let 4) and q1 be two compactly supported functions with the half-shifts of 77

and the full-shifts of 4 being L2 -stable. Suppose that (7.1) and (7.2) are satisfied, and that the
refinement mask A is a trigonometric polynomial (continuity of A would suffice, as well). Then

01 := 0 * 0(-.) and q, := 9 * q(-.) satisfy the conditions of Theorem 7.8 for v0 = 0, and hence the
sequence (w,),EV, of (compactly supported) functions defined there (with respect to 01 and 771)

forms a stable basis for the corresponding wavelet space.

Proof. We observe that j = 112 and j = I I2, and hence 4) = IAI2f'. Because of the

compact support of r1, and 4)1, the non-negative function

B :'h,)1l = IAI2 i 2
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is a trigonometric polynomial (Lemma 2.8), hence bounded (alternatively, it is bounded because

of the stability assumptions on q and 4,). Since the half-shifts of 7 are stable, i possesses no 47r-

periodic zero, hence neither does 9i - Ii12 Consequently, %1 vanishes nowhere. Also, because of

the stability of the shifts of 4,, A has no 27r-periodic zeros (since such zeros would be inherited by

0, hence by 0). This means that B is a non-negative 4ir-periodic function without any 27r-periodic

zeros. Consequently, B0 is a strictly positive (21r-periodic) trigonometric polynomial. Now apply

Theorem 7.8. 4

We next describe a general procedure for constructing functions r which satisfy (7.6). The

vertices V form a group under addition modulo one. If J is one of its subgroups, then the distinct

cosets v + J form a partition of V. We let R C V be a set of representers for these distinct cosets.

A partition R = R0 U R1 into disjoint sets gives the sets Kj := UvERj (v + J), j = 0, 1, which are

a partition of V. Note that if e,, v E V, is an exponential which is not constant on 47rJ, then

E.E4WJeV) = 0.

Theorem 7.11. Assume that 4, and 77 satisfy (7.1) and (7.2), and define, as before, B 0[i,41.

Let J be any subgroup of the group V, let v be any element of V for which e" is non-constant on

4 rJ, and let A' be any union of cosets (in V) of J which contains 0. Then the function W,K, with

Fourier transform

wV,,K :=e,1 B(. + a)
OE4rK\O

is in IV provided it is in L 2(]Rd). Moreover, if qj aad 4, have compact support, then w is also of

compact support.

Proof. In case 77 and 4 are compactly supported, B - [i, 4] is a trigonometric polynomial,

and hence each Wv,K (which is then a well-defined L2-function) is compactly supported.

To prove the main claim of this theorem, it is enough, in view of Corollary 7.4, to show that

r:= 1 B(. + a)
OE4wK

satisfies
+,( + P=( 0.

pUE4irV

Since r(- + v) = r, v E 4rJ, we can write this last sum as

Z Z e,(. + r + vr(. + r+v) = 1: e,(. +r)T(.±+r) 1:e,()
rE4,rRgE4rJ rE4,rR vE4,rJ

The last sum is 0 because e, is not constant on 4irJ. A
The choice K = V in the last theorem shows that all the (2Zd/2)\2Zd-translates of the function

w, defined by

i i B(.+a),
aE41rV'
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are in W, provided that iv E L2. It is then easy to prove that the V'-shifts of w provide a basis

for the wavelet space. There is a close relation between the function w here and the generator

w of W of Corollary 3.19, only that there we used 2 = [4,kJ, while here we use the function

B = [i, A. It follows, for example, that if 0 and q are compactly supported and the refinement

mask A is a polynomial, w here enjoys a smaller support than w of Corollary 3.19. However, unless

the half-shifts of 0 are stable, neither of these generators is expected to provide a stable basis for

W.
The simplest instance of Theorem 7.11 occurs when J := {0,a} is a group of order 2. We

obtain the following extension of Theorem 5.5 to the multivariate setting. Here, as before, B is

defined as [q, 01 = A 1.

Corollary 7.12. Assume that 4 and 77 satisfy (7.1) and (7.2). If v E V' and a E 4rV' satisfy

e'(a) = -1, then the function w with Fourier transform

i'= e,, B(. + a)

is in W provided it is in L 2(IRd). Moreover, if ql and 0 are of compact support, then w is also of

compact support.

In some instances, it is possible to find an L2-stable basis from among the functions of Corollary

7.12, as is shown in the following theorem of flemenschneider and Shen [RS] (see also [JM], [RS1]
and [CSW]):

Theorem 7.13. Assume that 0 and 77 satisfy (7.1) and (7.2) and that B : is real-valued.

Assume that 0 has L2-stable full-shifts and 77 has L2 -stable half-shifts. Assume further that there

is a one-one mapping a from V' to 47rV' that satisfies the following two conditions:

(a) e,(a(v)) = -1, for every v E V';
(b) e,-,(a (v) - a (u)) = -1, for all v,u E V', unless v = u.
Then, the functions w,,, v E V', defined by their Fourier transforms

i := 2dev B(. + a(v))f, v E V',

provide an L 2-stable basis for W. Furthermore, if the full-shifts of 4' are orthonormal and the

half-shifts of 17 are also orthonormal, then (w),,)V v provides an orthonormal basis for W. If 77 and

4' have compact support, then the functions WV, v E V', are also of compact support.

Proof. It is easy to conclude from the stability assumption on 77 that each uv,, v E V', is

in L2(IRd), and hence each w,, is a well-defined L2-function. From Corollary 7.12 and assumption
(a), we conclude that each w,, is in W. This corollary also implies that w,, is compactly supported

wh,-never r and 4' are.

We introduce the functions w , v E V' with Fourier transform ti3, = iv-,,/i. These functions
are in L2(Ild) because i is bounded away from zero, thanks to the stability assumption on the

half-shifts of Y7. We now compute the Gramian of these functions. First, we see that

-2dl@*3, g,: = e_. B(. + a(v))B(. + a(U))1, ql/2 = ,,B(. + a(v))D(. + a(u)).
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(Here, we wrote B(. + a(u)) is instead of W(. + a(u)), since B is assumed to be real.) Therefore,

(7.14) [ii*, iv-] = [i, ](" + a) = 22d 1 evu(.+ p)B(.+a(v)+ p)B(.+o(u)+ ).
pE4?rV UE4rV

For any I E 47rV, the terms in (7.14) corresponding to p and p + a(v) - a(u) are negatives

of one another because of our assumption (b), and the (o(v) - a(u))-periodicity of the term B(. +

a(v) + p)B(- + a(u) + y). Hence [iwv*, iu] = 0, v j u. On the other hand, for v = u,

(7.15) [i3v, t-] = 22d E B(. + o(V) + 2 2 2d Z B(. + t1)2 22dQO(B 2 ).
,uE4?rV s&E4rV

Since B2 = - IAI2 4 = and Qo(0 2) = 02 we have

Qo(B 2 )(x) E [M. .Mj((x)2 a.e.,

with m and M the essential infimum, respectively, supremum of = 2. Since both m and M are

positive and finite by the stability assumption on q7, while 2 is essentially bounded away from 0

and infinity by the stability assumption on .0, we conclude that also QO(B 2) is essentially bounded
away from 0 and infinity. We thus conclude that the Gramian associated with (w:)Ev, is diagonal,
with the diagonal entries bounded above and below by positive constants. On the other hand,

W: (:= UEv is obtained from (w )V v, by multiplying by the scalar matrix T := =21. Again,

the stability assumption on the half-shifts of 71 implies that = and 1/2 are bounded, hence that 11Tlh
as well as T-1I are bounded. Thus, from Theorem 2.26(iv), we conclude that the basis (w,)vv,

is stable.

Finally, when 77 has orthonormal half-shifts, 2-d/2 a.e., and hence

22dQO(B 2 ) - 2 2dQo(k2j1 2) = 2 dQo(o2) = 2do 2.

If also .0 has orthonormal full-shifts, 4 = 1 and hence 22dQo(B 2 ) = 2 d
. Thus, (7.15) implies that

v,*, ] =r 2d, hence [97i, iv] = ;2[ij3,,,v] = 2-d2 d = 1, and we conclude that G('V) = I, or
equivalently, that W is an orthonormal basis. A

We make the following additional remarks concerning Theorem 7.13. As Riemenschneider and

Shen [RS] note, it is easy to construct mappings with properties (a) and (b) in the case d = 1,2, 3.
However, Riemenschneider and Shen also note that there are no such mappings when d > 3. On the
other hand, there is some hope that turning to the more general elements of W given in Theorem

7.11, an analogue of Theorem 7.13 may be established in higher dimensions.

We have assumed in Theorem 7.13 that the function B = [ , 01 is real. Since also B = 7-2, B
is real if and only if the mask A is real. This is true for example if 4 is real-valued and symmetric
about the origin and q = .0(2.). Moreover, the assumption that B (or A) is real can be somewhat
weakened. For example, the proof given above supports the following claim.
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Remark 7.16. The construction detailed in Theorem 7.13 remains valid in case B = ejB' for

some real B' and some j E 7Zfd/ 2 .

8. Box Splines

Box splines were introduced by the first two authors in [BD] and their exponential general-

ization (sometimes referred to as "exponential box splines") was introduced by the third author

in [R1. Box splines have become a main theme in Multivariate Spline Theory, and it is certainly

beyond the scope of this section to provide a good account on box splines. We do not even attempt

to provide an overview of box splines in the context of wavelet decompositions, because of the

already rich literature on that matter. Thus, our only aim here is to illustrate the material detailed

in previous sections via a discussion of this class of examples.

To define a box spline, we let F be a finite index set consisting of pairs of the form

-Y = (XY, A.y), z-y E IRd\O, A E C.

The box spline M := M\ can then be defined via its Fourier transform as

(8.1) M(Y) H 1A

The notation is indicative of the fact the we usually hold the directions (x')'Yr fixed, but may

vary the parameters A :- (A'Y)IE r . Assuming that span (XI)I. r - ] (as we do throughout), the

box spline is a compactly supported piecewise-exponential-polynomia function supported in the

zonotope
Zr :={Z tZ.y : ty E [0..I}.

-yEr

The polynomial case corresponds to the choice A = 0. Exponential B-splines are obtained when

d = 1 and x.Y = 1, all y. Tensor splines are obtained whenever all the directions are standard unit

vectors. The box spline is positive in the interior of Zr whenever A is real-valued.

We first observe that
MA(y) = AA/2(y12)MX/2(y/ 2 ),

with
AAe3y -i: '  + 1

-YEr 
2

This suggests the choice
2' -~kdjA2 (/k

since then 2 2XA/ 2 b+(/2 )k+. To ensure the fact that A, is a 27r-periodic polynomial,

we assume that

(8.2) Xy E 2Zd\0, V'y E r.
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Assuming (8.2), we can define the multiscale generated by the box spline M,\ as

(8.3) Sk := 3 k(ok), k := MA/2(2k.).

As before, we use special notation for 40 and 01:

0 := €0, 7:= 01.

Note that this is a stationary multiscale if and only if A = 0, i.e., if and only if M\ is a polynomial

box spline.

Since each Ok is compactly supported, we know that property (1.3)(ii) is satisfied here. With

regard to (1.3)(iii), we have the following extension of Theorem 6.3:

Theorem 8.4. Let {Sk } be a multiscale of spaces generated by the box spline MA (as in (8.3)).

Let Y := nkE2ZS k . Then Y is one-dimensional if and only if Re A1, 5 0, - - P. Otherwise, Y is

trivial. In case Y is one-dimensional, it is spanned by the fundamental solution of the differential

operator D := rIEr(DX, - A.,) (where D_ is the directional derivative in the x-direction) whose

Fourier transform is given by

(8.5) d(y) = V l-( - iy' - .

YElr

In this case, S" = Sk(G), for every k.

Proof. Let 4' E nklS k be a non-zero function. Since 4' E S - k , it is a linear combination

of the 2k-shifts of the box spline Ok := M2Jk(/2k). Since the ratio &/G is (a trigonometric

polynomial) of period 2k+iir, (2.1) implies that every function in S k must have the form

f = TA G,

with rk 2k+l7r-periodic. From the fact that supp G = IRd, we conclu e that aLl %- agrcc a.e. with one

measurable function r, and this function is necessarily invariant under all 27r-dyadic shifts. Lemma

4.6 then implies that T = const, hence the Fourier transform of every function in the intersection

is a scalar multiple of G. Therefore, this intersection is trivial if and only if it does not contain

G, and otherwise it is spanned by G. Since the ratio &,/G is 2k+ "r, then, again by (2.1), G E Sk

if and only if G E L2(lRd). Consequently, the proof of the theorem is reduced to the proof of the

following claim:

"G E L 2(lRd) if and only if Re A, $ 0 for every -f E r."
If Re Aj $ 0 for every characteristic value Aj, then we easily verify that, because Xr is of rank

d, 05 is in L2 , hence so is G. On the other hand, if, for some y, Re A = 0, then G cannot lie in

L2(IRd), since it is not even in L2(Q) whenever the open set Q contains points from the zero set of

y - A1 - iY. 4
Assuming (8.2), the shifts of M\ are linearly independent only if r is unimodular, which

means, by definition, that every d x d matrix whose rows are taken from the multiset (X'Y)-yr has

determinant -1,0 or 1. Further, if A is real-valued, the unimodularity assumption is also sufficient

for linear independence. For these reasons, we assume for the remainder of this section that F is

unimodular and A is real-valued.
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We want now to consider the possible applications of the constructions proposed in the last

section to box splines. It is hard to apply Theorem 7.8 directly, since it requires information on the

function B, while the available information here is on the mask A. Nevertheless, if A has the form

A = constxe-jA',

where j E 2Z'd/ 2 and A' is non-negative, then we might choose v E V such that j - v E 2Zd to

obtain

B, := Q,,(B)I2d = const E e.(. + I)e-j(. + y)B'(. + Ms) = e.-jQo(B'),
pE47rV

where B' := (1/const)ejB. Since B' = A'= 2 , and A' is non-negative, so is B'. This, together with

the stability assumption on the half-shifts of q and the shifts of 0, implies that Qo(B') does not

vanish, hence l/B,, is bounded, and we arrive at the following conclusion:

Corollary 8.6. Let M be a box spline defined by a unimodular F with real parameter vector A.

Assume that F satisfies also the following "parity" condition: "r can be partitioned into pairs such

that each pair (7, 7') satisfies
(x.7, A,) = 60,T')(X.Y,,-A-Y,),

where E(yI,y') E {±1}." Let B : [$,, &J, with Ok defined as in (8.3). Then B,,0 vanishes nowhere

on 11 'd, where vo E V is determined by the condition

VO = E z.. /2, mod 2d

Consequently, the construction detailed in Theorem 7.8 can be applied with respect to this vo.

Proof. Since B here is a polynomial, it is clear that the functions iv, defined in Theorem

7.8 are in L2 . Also, for the same reason, B is bounded. Thus, to apply Theorem 7.8, we, indeed,

need only to prove the boundedness of 1/B,,,. In view of the remarks preceding this corollary, it

suffices to show that the mask A in the equation 0 = 2dA~1 is of the form

A = ejA',

with A' non-negative and j - vo E 2Zd . Here,

e-, 1 2-ix,.y12 + 1

A(y) = 1I 2

-YEr 2

Let (-I,y') be a pair in the partitioning of r. Then

e;,/2- ix , 'y/2 + 1 eN,D 2 - i xt 'y//2 + 1

2 2
( E 0 ) A, 2 + 1 +) co s , + cos( x y y/2)).

4 4
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The second factor above is non-negative. Multiplying the first factor over all pairs (7,7'), we obtain
an expression of the form

const kei/2,

where j := ,-,'h1 x1, = 1/2 E- r x. E 2d, since each direction appears either as an X-Y or an
X.v, and x1,1 = Xz1 if -(-y,-y') = 1 while xy, = -X ,̂ otherwise. 4

It should be clear that, under the assumptions of the last corollary, Theorem 7.8 can be applied
to obtain stable bases for all the wavelet spaces of the multiscale generated by the box spline M.

Also, the assumption that A is real is convenient but not essential. In general, to obtain a box spline
that satisfies the above assumptions, one can start with any M that is defined by a unimodular
r, and replace M by M * M(-.). The box spline obtained in this way corresponds to the choice

vo = 0 in the above corollary. The other variants can be obtained the shifting that box spline by

jE V.

If d < 3, we can also try to employ the construction detailed in Theorem 7.13. Here, given a
unimodular IF, we want the mask A to be of the form

A = ejA'

for some real A'. In the polynomial case (i.e., when A = 0), this assumption is always satisfied
since then for A := A 0 we have

A(y) = ej(y) f1 ces(y, x-y) ,
-YEr

with j -1/2 " r. x1,. This observation immediately extends to the case when A E iRpd, but,
however, does not extend to an arbitrary . On the other hand, if Al is a box spline as in Corollary
8.6, and M' is a polynomial box spline (with a unimodular set of direction), then M * M' satisfies
the requirements of Theorem 7.13.

We mentioned previously that for non-stationary subdivisions one should not exclude the
possibility that the half-shifts of 0 are stable. Box splines provide an excellent illustration of this
point. In order to check the stability of the half-shifts of 0, we consider, as before, the function

= IA (./2.2)j . By our assumptions, the half-shifts of 1r are linearly independent, hence stable,

which means that 2 is positive on IR . Therefore, the zeros of 4 are identical with those of the
mask

AA((y/2) = eXj 12- i(/
2 "  + 1)

'yer 2

We observe that the factor eA , /2 - i y /2 "x, + 1 has zeros in IR d if and only if A, = 0 (recall that we
are already assuming that \, is real). Thus we obtain the following interesting result:

Corollary 8.7. Let M\ be the box spline given by a unimodular F and a real A. Then M\ vanishes
nowhere if and only if A contains no zero entry. Consequently, this last condition is equivalent to

the stability of the half-shifts of M\.
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Stronger results a be obtained by a finer analysis. It can be shown that, assuming only (8.2)
(which is imbedded in the last corollary in the unimodularity assumption on 17), the stability of

the half-shifts of M\ is equivalent to the existence of non-trivial functions in the intersection nkSk,

with (Sk)k the multiscale generated by the box spline M\.

The stability of the half-shifts of M\ leads to painless constructions of compactly supported
stable bases for the wavelet space. Here is a sample result in this direction:

Proposition 8.8. Assume that 4' and q! satisfy (7.1) and (7.2), and assume that the half-shifts of

4, are stable. Let w be either the generator for the wavelet space introduced in Corollary 3.19 or in

the paragraph after Theorem 7.11. Then w provides (i.e., the (2Zjd/2)\2Zjd-translates of w form) a

stable basis for W.

The last result is less impressive than it might look at first. Indeed, considering the box
spline multiscale and assuming, say, that A is real and contains non-zero entries, we can easily

find single compactly supported stable generators to each of the wavelet spaces associated with the
multiscale (0,k)k generated by M. Still, as mentioned already in section 6, it is crucially important

to understand the behavior of the stability constants as k varies, and in the case of box splines

these constants deteriorate fast as k increases. This can be observed as follows: if we rescale each

4,k and k+j by 2 k+1, and denote the functions obtained by 7k and 77k+1 respectively, we obtain a
refinement equation of the form

k = 2d AA/2k+1 fk+l.

Thus complex zeros of the kth order mask converge (exponentially) to the real domain, as k

increases. One might attempt to choose very large initial entries for A, yet the results of [DR]

indicate that the asymptotic approximation properties of Sk(0,k) deteriorate exponentially with

the growth of A.

The above discussion demonstrates the difficulty of controlling the stability constants in case

the wavelet constructions are based on the stability of the half-shifts of MA. On the other hand, the

constructions that make use of the refinement equation (such as the one detailed in Corollary 8.6)

require only the stability of the half-shifts of MA/2(2.). Using methods similar to those employed

in §6, it can be shown that for such constructs the stability constants do not blow up as k -+ oo.
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