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1.0 SN4MARY

This document is the Final Report for the Phase 1I Small Business Innovative

Research (SBIR) project, Expert System Management System (ESMS). It was a

2-year project, which began in January 1987 and ended in April 1990.

This research was initiated as an attempt to incorporate expert system

technology1 in an advanced fighter cockpit to reduce pilot workload and

increase mission effectiveness. The increasing complexity of modern avionic

systems and mission requirements has imposed tremendous demands on the pilot

to make decisions quickly and appropriately. With the help of an expert

system such as the ESMS, a pilot will be able to concentrate on the more

important tasks while the expert system assumes the routine problem solving

tasks.

The focus of this project was to develop a distributed fault-tolerant

inference engine enabling multiple expert systems to cooperate and run on one

or more processors. In addition, a set of four domain-specific expert systems

were developed, the Manager Expert System, Route Planner Expert System, Weapon

Expert System, and Situation Awareness and Display Expert (SADE) System. Each

of these expert systems while in e harge of its own area of expertise

communicated and cooperated with ti:'. other expert systems, and interfaced

with the real-time flight simulator, the Generalized Avionics

Simulation/Integration System (GENASIS). The ESMS inference engine was

developed in Lisp and ran on four networked Texas Instruments (TI) Explorer

machines.

The final ESMS was demonstrated to show near real-time distributed fault-

tolerant problem-solving capabilities. It also showed initial pilot aiding in

route planning and weapon control. Therefore, the ESMS did accomplish the

objective of this research, which was to show real-time distributed fault-

tolerant expert system capabilities in an avionic environment. Some valuable

1 Expert system is a branch of Cauter Science which utilizes humn expertise and rule-of-thumb to enable

a computer to aid in mking a decision.



lessons were learned from this SBIR, particularly, that distributed expert

system execution is difficult to trace and the use of processes is very

important to any real-time expert system application.
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2.0 INTRODUCTION

Expert System Management System is a programming tool developed for creating

multiple expert systems in a multiprocessor environment. It provides fault-

tolerance and dynamic resource allocation capabilities, as well as forward and

backward chaining of most traditional Artificial Intelligence (AI) programming

languages. It also supports interfaces to MicroVAXs via Transmission

Communication Protocol/Internet Protocol (TCP/IP) for real-time data access,

such as simulated flight data. The ESMS runs on Symbolics or Texas

Instruments Explorer Lisp machines operating under Common Lisp. In the

network of Lisp machines, the communication protocol is Chaosnet.

The advantage of ESMS is that it provides an easy and flexible mechanism for

multiple expert systems to communicate and share information with each other

in a distributed environment. The cooperating expert systems may all reside

on the same host or on multiple geographically distributed hosts. In

addition, the ESMS also provides a mechanism for near real-time problem

solving, such as context-sensitive knowledge base partitioning and time-

sensitive functions. As opposed to most other Al tools which were designed

for interactive and non-time critical uses, ESMS was conceived and designed

specifically for distributed real-time fault-tolerant problem solving. It

runs independently with input from sensors and/or interactively with input

from a user. The distributed environment under which the ESMS was developed

is shown in Figure 1.

Some of the issues addressed in developing a distributed cooperating expert

system include:

a. Host Indeoendence. In a distributed environment, the execution of an

expert system should be independent of the host on which it resides.

In other words, one or more expert systems may run on one or more

hosts, and the identity of the host on which the expert resides is

unknown until run time.

13



The Flight Simulation

Processor Processor Processor

Terrain/Threat [rfttPilot

Planner Expert Exper

Simulaatione

Processor Proceisir Processor Processor

The Expert System

FIGURE 1. THE DISTRIBUTED ENVIRONMENT OF ESMS

b. Control of Coooerating Exoert Systems. Since each expert system is

running concurrently on its own processor, the system must be able to

handle asynchronous events. In the ESMS, communications between

different expert systems is handled through message passing.

Messages can be sent and received asynchronously; therefore, an

expert will never wait for a reply.

c. Focus of Problem Solving. Since events in the real world occur

unpredictably, a running expert system must be able to focus on the

most critical task/event. In ESMS, the focus of problem solving is

based on event priority and interrupts. The execution of an expert

system can be interrupted based upon the states of the world or the

criticality of an occurring event.
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d. Fault Tolerance. Any of the distributed expert systems may fail in a

number of ways, such as processor malfunction or network

disconnection. Therefore, it is very important that the system

possess the ability to dynamically reconfigure and to transfer

necessary information among various subsystems. Since the execution

of an expert system in ESMS is independent of the host on which it

resides, the level of fault tlerance is very high. Processor

independence helps make fault tolerance possible, although it is only

part of the approach.

e. Problem Solving in Real Time. Due to the nature of the flight

domain, it is critical that an expert system communicate with its

neighbors in real time and arrive at a solution within given time

constraints. In ESMS, a set of timer and default functions are

provided to handle time-sensitive problem solving.

f. Problem Solving in Limited Resource. The expert system must be able

to make decisions within its own available resources, such as

computer time, memory, and communication network load. Each system

must be able to intelligently allocate tasks in respect to resources.

The ESMS is currently capable of dynamic resource allocation in

respect to computer resources. It is not capable of dynamic resource

allocation with respect to the problem requirements of the expert

system.

5



3.0 BASIC ESMS CONCEPT

Each expert system in ESMS is self-contained. Each knowledge base in ESMS

(except in the Manager Expert System) consists of domain-specific knowledge

to handle both internal and external events. Since each expert system is

responsible for its own area of expertise, there is no master or slave

relationship between any of the four systems. In the case of the Manager

Expert System, its primary responsibility is to monitor and fault-recover the

other three expert systems. The whole distributed system is very loosely

coupled, so that the addition and deletion of any expert system and/or

processor will not affect the integrity of the rest of the system.

Instead of production rules found in most conventional expert systems, the

knowledge base of an expert system in ESMS consists of event-handlers,

daemons, and functions. As the name implies, an event-handler is event-

driven. It is a portion of procedural knowledge that is invoked whenever an

internal or external event occurs. Each handler within an expert system must

be unique and specific for a particular event, but different expert systems

may have different handlers for the same event. A handler is triggered

whenever the expert is notified of an event by means of a message. The

structure of a handler includes the name of the handler which is global within

the expert, the event to which it can respond, an area that corresponds to the

content of the incoming message, a local data area that is internal to this

handler, and a block of procedural knowledge.

Similar to an event-handler, a daemon is also a portion of procedural

knowledge. However, instead of waiting to be triggered by an event, the

daemons are data-driven and are executed continuously one after another. Its

primary objectives include monitoring the environment and behavior of the

system. For example, daemons can be used to monitor an expert's problem-

solving process and the states of the problem space. They can also be used to

monitor the health of the processor on which the expert resides, or to monitor

some external behaviors/events (such as the states of the aircraft's

subsystems). Each daemon has a specific pattern that it matches. Once

matched, the body (i.e., the action part) of the daemon will be executed.

6



Typically, a daemon sends out messages to alert or notify other expert systems

of impending problems or states.

As pointed out earlier, the expert systems comunicate with one another via

messages. An expert may volunteer to inform others of new information, if it

is valuable to the other experts. Alternatively, an expert may request the

other expert systems to perform some inferences or to evaluate a piece of

data. In the first case, the expert may not expect a reply from the

recipient; while in the latter case, it may. An expert however would never

wait for a reply because in a distributed environment, a reply may never be

received due to network or processor failure.

Conceptually, the ESMS consists of three layers: the highest layer is the

knowledge base of an expert system, the middle layer is the control structure

which is responsible to execute the knowledge base of the expert system (i.e.,

event-handlers and daemons) and to maintain the event queue, and the lowest

layer is the Communication Manager which accepts, maintains, and sends

messages. In addition, there is a global memory that is shared by all the

event-handlers and daemons within the system. This global memory can be used

to exchange information and to maintain a global view of the responsible

domain space. Figure 2 depicts the different components of the system.

Processor #1 Processor #n
System Knowledge Base System Knowledge Base

Control Evn-Control
Structure Handlers Structure H ej

Global Global
MemoryMemo Daemons mm

Comm.Comm.Manager ManagerF

FIGURE 2. A FRAMEWORK OF THE DISTRIBUTED ESMS
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Messages are sent to the expert system by name, so that the sending expert

system does not need to know the location (i.e., network address) of the

recipient in a distributed environment. As a result, one or more experts may

coexist on the same host or reside on different hosts. This feature of host

independence is particularly important for fault tolerance. For example, when

a processor malfunctions due to battle damage, the control structure could

reconfigure and reallocate the expert from the failed processor onto another

less busy processor. This feature is critical to the success of dynamic

resource allocation. In this case, when a new processor/host is added to the

distributed environment, the system could utilize this new resource by

reallocating an expert from a crowded processor to the newly added processor.

The operation of fault tolerance and dynamic resource allocation will be

described further in later sections.

Each message (or event) has a priority and certainty factor associated with

it, so that when an expert is handling an event of a particular priority only

an event of higher priority may interrupt it. If the expert is interrupted

due to a higher-priority event, it will perform the necessary task and then

resume the task previously being processed. The side-effect of this is that

the interrupting event may preempt or alter the behavior of the task to be

resumed. The system is not capable of handling truth-maintenance.

A message can be sent to an expert system from other experts or from within

the expert itself. In the latter case, it is viewed as setting a subgoal.

The content of the messages can be defined arbitrarily depending on the

application, as long as there is an understanding between the sender and

receiver. Typically, a message must have the name of the sender, the name of

the recipient, the message type, a time stamp, a "response-to" ID number, a

priority value, a certainty factor, and application-specific information.

Whenever a message is received, its priority is immediately compared with the

current priority of the system; if it is higher, the executing task is

interrupted to handle the newly arrived event. However, if the priority is

lower, it is put on a message queue according to its priority level. Within

each prioritized queue, the newer message is appended to the end of the queue

.. ..... . .. .. . wmm mmm m m m m n m m 8



so that older messages are processed first. There are procedures that the

user can provide to manipulate the queues if the default First-In First-Out

(FIFO) strategy is inadequate.

The concurrency of ESMS is accomplished by having each expert run on its own

processor. Moreover, event-handlers and daemons within each system are

executed as two separate processes so that the expert can solve problems and

monitor its progress simultaneously. In this sense, both interprocessor and

intraprocessor concurrency have been achieved. Since the whole system is

running asynchronously, each section of code in the system must be self-

contained. For example, when a request-reply type action is sent, the request

is written inside of a daemon or event-handler and the accept-reply is written

in another. In this way there is no need for a piece of code to wait for a

reply message, which may never come in a distributed system.

3.1 Fault Tolerance Operation. This is an important feature of the ESMS.

The system is able to detect faults in the network or on the processor and

recover. This operation involves the steps detailed in the following

paragraphs.

3.1.1 Saving of the Exoert System States. Periodically, the states of an

expert system must be saved to a central mass storage medium. This is

accomplished so that in case of a processor or network failure, the

information about the expert system can be recovered and downloaded to a

different processor. The flaw of this approach is that the integrity of the

whole system depends on the fault tolerance of the central mass storage

medium.

3.1.2 Testing of the Expert System. The testing of the three expert systems

is performed by the Manager Expert System, whose primary responsibility is to

monitor and test the other expert systems. The testing is done through a

special type of message which is sent periodically by the Manager to the other

expert systems.

9



3.1.3 Fault Detection. After a Test message is sent to an expert system, the

Manager will wait briefly for a response. If the recipient of a Test message

does not respond within a certain time frame, the Manager immediately assumes

that a fault has occurred and performs a fault-recovery procedure.

3.1.4 Fault Recovery. At this point, the system checks whether any other

processor/host is idle or not being fully utilized. If so, the expert

system(s) from the failed processor is reallocated to this new host. If no

idle processor is available, the Manager then finds the least active or

crowded processor and reallocates the expert system(s) onto it.

3.2 Dynamic Resource Allocation Operation. Another important feature of the

ESMS is the ability of the system to dynamically utilize new processor

resources when they become available. The fault-tolerance aspect of the

system also utilizes this feature in order to reconfigure and reallocate an

expert system from a failed processor to a new one.

10
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4.0 TECHNICAL ACCOMPLISHMENTS

This section covers the following subjects: ESMS distributed inference

engine, domain-specific expert systems, and integration with GENASIS. The

first is the detailed report on the ESMS distributed inference engine. The

second describes the inner workings and accomplishments of the four

cooperating expert systems, and the third details the integration of the

system with the real-time flight simulator.

4.1 ESMS Distributed Inference Engine. Since the primary focus of this

project was to develop a flexible distributed Artificial Intelligence

inference engine, major efforts were allocated for this area. When an expert

system is written under the ESMS, it can take advantage of the features that

the inference engine provides. The following paragraphs cpntain descriptions

of the major features and accomplishments in this area.

4.1.1 Processor Independence. An important feature of distributed processing

is the ability to execute a program independent of the processor on which it

is hosted. Under the ESMS, an expert system can cooperate and communicate

with its peers independent of their location (i.e., network address). As far

as the expert system is concerned, it does not matter whether its peers are

running on other processors in the network or on the same processor. When an

expert system needs to communicate with its peers, all it needs to do is to

specify the expert system's name. An analogy of this is to mail a letter to

someone with only the name of the recipient on the envelope omitting the

address and zip code. Upon receipt of the letter, the post office will

automatically look up the person's address and zip code, and deliver the

letter. The sender does not need to be concerned with a change of address

when the person moves. Of course, this approach is only possible when each

system has an unique name.

11!



The most obvious advantage of this approach is that at run time an expert

system can be reallocated to a different computer while the processing and

reasoning of the whole system remains intact. This is particularly important

for fault-tolerant processing; when a computer fails, the expert system on

that computer can be moved to another computer and continue processing from

the point where it failed. This concept can be visualized in Figure 3, where

Expert I and Expert 2 may run on a single computer or on two separate

computers.

SExpert 1

Case #1:

Computer A

Case #2: Expert 1 Expert 2

Computer A Computer B

Case #3: Expert 1 Expert 2

Computer A Computer B Computer C

FIGURE 3. PROCESSOR INDEPENDENCE

4.1.2 Message Passing. In a distributed cooperating expert system

environment, each expert system is responsible for its own area of expertise,

but it must cooperate and exchange information with the other expert systems

in order for it to behave intelligently. For example, in the avionics domain

the Route Planner cannot re-plan a flight route to a new target until it

consults with the Weapon Expert for weapon and chaffs/flares information. It

12



also must consult with the Manager Expert for fuel information. The

communication among the four expert systems is through messages. They can

communicate with each other regardless of whether or not they all reside on

the same host.

Theoretically, there are three types of messages. 2 However, the ESMS

currently treats them all the same. The first type of message is a request

for information (or action). This type of message will be used when an

expert system requests information from another expert system or requests the

expert system to perform a task. When a request is sent, the sender expects a

reply from the recipient. For example, the Manager Expert System may request

the Route Planner to find a new route. When it finds a solution, the Route

Planner then sends the result to the Manager. The second type of message is

when an expert system voluntarily informs other expert systems of some

interesting information or conclusion it has reached. In this case, the

sender does not expect a reply from the recipient. The third type of message

is a reply. This message is in response to a request; therefore, the sender

of a reply message does not expect a response from the recipient.

When an expert system makes a request of its peers, it does not wait for a

reply before it continues processing. This is the implementation chosen for

this distributed environment because the network and/or the processor may fail

and a reply may never arrive. In the ESMS, the sending of a request and the

receiving of a reply are in two separate pieces of self-contained code.

Again, using the post office as an analogy, a person does not wait in the post

office for a reply after sending a letter.

In order to trace and keep track of the problem-solving process of each expert

system, a message also implicitly possesses some context-sensitive

Information 3 (i.e., an expert system's problem-solving states). This

information will be implicitly incorporated in the outgoing message based on

2 In this document. smetimes mssage is interchangeable with event.

For more information on context-sensitive problem-solving, please refer to 4.1.6.

13



the sender's current context. For example, under the context of GOING-TO-A-

TARGET, the Manager Expert requests the Route Planner to plan a new route.

The behavior of the Route Planner would be very different if the context is

COMING-BACK-FROM-A-MISSION. This information is critical for an expert

system's fault-recovery, which is described later.

In a fault-tolerant system, a failed expert system can be recovered if its

problem-solving states prior to the failure are recoverable. In the ESMS, an

expert system's problem solving states are its outgoing and incoming messages

which must be saved periodically. When an expert system is recovered from a

failed processor, the saved outgoing messages are used by the expert to recall

what it is expecting to receive from the other expert systems, while the

incoming messages are used to determine what other expert systems are

expecting. When the messages are recovered, only the relevant ones under the

appropriate context(s) are used and the rest are discarded.

4.1.3 Event-Driven and Data-Driven Inference. When the Manager Expert System

is alerted of an aircraft malfunction, it determines that it should request

the Route Planner to find an emergency landing site. The action taken by the

Manager Expert is called event-driven because it is triggered by an event

which occurred. An event can be a conclusion reached by another expert system

or a subgoal set by the expert system itself. Detecting a malfunction is a

data-driven process because a system is continuously monitoring the aircraft

states for abnormal readings. The aircraft states and similar information are

pieces of data which may change over time. Depending on the changes in the

data, the system must respond appropriately.

In the ESMS, event handling is encoded in an event-handler, and data

monitoring is encoded in a daemon. Both of these inferences may occur

concurrently. For example, an expert system may simultaneously respond to an

event using an event-handler and monitor other data using a daemon. An

advantage of having concurrency is that an expert system may use a daemon to

monitor the problem-solving progress of an event-handler.
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Since each event may have a different urgency or priority, it is important i
that the system be capable of responding accordingly. An event may have one

of four priority levels: emergency, top-priority, high-priority, and normal.

The meaning of the priority levels is self-explanatory. The handling of

different priority events is described in the section on Interruptible

Inference.

The execution of daemons is governed by their context. In other words, not

all daemons may be active at once. Only the daemons under the appropriate

context may execute, and the daemons under the Universal-Context will execute

under all situations. The details on the context-sensitive processing is

provided in the section on Context-Sensitive Problem Solving. In short,

context is used to provide an efficient way for an expert system to focus its

problem-solving process. For example, there are daemons to monitor and

respond to problems under the context of Take-off, and different daemons for

the context Combat. Figure 4 shows the flow of the system problem solving as

well as the relationships between event-handlers and daemons.

Eternal NotteyNotaf

State(s) Ste(s)

oMr

Monitor tModf

Stt(s) Staels)
User User

FIGURE 4. RELATIONSHIP BETWEEN DAENONS AND EVENT-HANDLERS
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4.1.4 Interruptible Inference. A shortcoming of most traditional inference

engines is that they are incapable of handling interrupts. One reason is that

they were originally developed for non-real-time applications involving human

interaction. In that case, there is no interrupt. However, in a real-time

domain such as flight control and pilot aiding, asynchronous events with

different priorities may occur. Therefore, when the expert system is

resolving an event and a different event of higher priority occurs, the expert

temporarily suspends its present task and responds to the higher priority

event. Upon completion of the latter task, the expert then resumes the

interrupted one. For example, the Route Planner is in the process of

re-planning a route based on the available information, and suddenly it is

alerted of a nearby pop-up threat. The Route Planner must then preempt the

re-planning and utilize the new information for another re-planning. In the

case of a lower priority event, it will be appended to the rear of a message

queue based on the event's priority level.

The ESMS is capable of handling interrupts because inference engines for

event-handlers and daemons are implemented using processes. As in most

computers, the processes on a Lisp machine are interruptible and so the

inference is interruptible. However, a drawback of using processes on the

Lisp machine is that they are not efficient. When there is a lot of context

switching 4 between multiple processes, a noticeable degradation in performance

may occur.

It has also been observed that the use of certain process functions may

produce unpredictable behavior. For example, when an expert system has no

message/event to execute, its event-handler process will be arrested5 or

suspended until the expert system is notified of a new event. At that time,

the event-handler process will be enabled again by the control structure. For

4 Context switching occurs when the operating system (OS) temporarily suspends a process and saves all the

state informttio about the process. Once this is completed, the OS starts another process with a different

set of state information.

5Arresting of a process means that it is forbidden to run. Therefore, it becomes inactive until it is

given a run reason.
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some reason, it seems that when the process is enabled, it is not scheduled or

allowed to run. As a result, the expert system remains Inactive. In some

instances, the process is suddenly allowed to run when it receives a second

message, and it imediately handles both pending events.

It is strongly believed that interruptible inference is critical to any real-

time expert system application; therefore, this is implemented in the ESMS.

4.1.5 Shared Global Variables. There are two primary reasons that the shared

global variable feature is included in the ESMS. The first is to improve the

efficiency of information sharing among cooperating expert systems being run

on multiple processors. In the domain of pilot aiding, mission information

and aircraft states are some of the information that can be shared among

multiple expert systems. For example, aircraft state information is needed by

three of the expert systems. When the Route Planner needs to know about the

fuel quantity, it explicitly requests this data from the Manager Expert by

sending a message. However, this approach is very inefficient.

Alternatively, whenever the fuel quantity information is changed, it is

automatically updated locally within the Route Planner (as in the other two

expert systems). Therefore by the time the Route Planner tries to use this

data, it should have the latest value locally. (See Figure 5)

The second reason for using shared global variable is to test the real-time

issue of a software implementation of this feature (as opposed to a hardware

implementation). The performance of shared variables with the software

approach is more than adequate when there is limited processing on the

processors that share global variables. However, when the expert systems are

busy problem solving, the throughput of employing shared global values drops

off sharply. For this reason, it seems that a hardware implementation may be

needed.

The testing of the real-tim response of global variable sharing is performed
rather unscientifically. It is based on observation by the naked eye instead

of computer tabulation. For example, when two processors devote all resources

to perform global variable sharing, the setting of a new value on one

17



processor can be accessed instantaneously on the other processor. However,

when there is other processing on one or both of these processors, one can

observe a noticeable degradation in performance. This observation makes

sense, but such degradation may prove intolerable.

The declaration and use of global variables is similar to that of Lisp

variables. To declare a global variable, use DEFGLOBALVAR (as opposed to

DEFVAR). To set, use GLOBAL-SETQ (as opposed to SETQ). They are accessed in

the same manner as Lisp variables.

DNtriued Approach:

Proc #1 Proc #2 Proc #3

• Centralized Approach:

x

Proc # 1 Proc #2 Proc #3

FIGURE 5. SHARED GLOBAL VARIABLES

4.1.6 Context-Sensitive Problem Solving. As pointed out briefly in the

section on event-driven and data-driven inference, context-sensitive problem

solving is used to improve efficiency and to focus problem solving. It helps

to improve system throughput with contexts since the inference engine does not

waste its resources searching for solutions in the irrelevant problem space.

Presently, only the data-driven inference (i.e., daemons) is run using
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contexts. The contexts for event-driven inference (i.e., event-handlers)

could be developed in the future.

In the ESMS, context is used to group together related daemons for a

particular type of problem solving. Therefore, when a context is active, only

the daemons in that context become active. This is in contrast with

traditional rule-based systems such as OPS5 where all rules can potentially be

fired at any one time. When a limited set of daemons is active, there is less

overhead and the system becomes more efficient. This is best described by the

following example.

In the avionic domain, there are many different contexts, i.e., Taxi,

Take-Off, Cruise, Combat, etc. When the system is in the middle of the Combat

Context, only the daemons relevant to this context can potentially be fired.

It does not make sense to check the daemons under the Taxi Context or the

Take-Off Context until either of these contexts becomes active. For each

context, there is a metarule associated with it. This metarule is used by the

control structure to activate the appropriate context when the conditions are

met. Therefore, all context switching is done automatically by the control

structure. At any one time, more than one context may be active.

Context is also useful for fault recovery. For instance, when an expert

system is in the middle of solving a problem under one context and the

processor fails, the expert system upon recovering from this failure may not

want to resume the previous task because the context has changed and that task

is no longer relevant. In order to implement such a fault-tolerant system, a

global context common to all expert systems seemed to be necessary. This

means that in addition to the local contexts specifiL to an i'ldividual expert

system there needed to be some contexts that are shared by all expert systems

so that they all have the same view of the world.

4.1.7 Fault Tolerance. The execution of an expert system is host independent

as described earlier, so that when a processor fails the expert system can be

reallocated and run on another processor. This feature was demonstrated

successfully in the Avionics Laboratory at Wright-Patterson Air Force Base.
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The approach used is that an expert system must periodically save some of its

state information (i.e., incoming and outgoing messages/events). This saving

of information is done automatically on a set time interval as specified by

the user. Each message must have an implicit context associated with it, so

that when a failed expert system is recovered, only the messages under the

relevant context is restored. The expert system may resume its problem

solving process based on the recovered incoming and outgoing messages and on

the global context described earlier.

it is the responsibility of the Manager Expert to check on the health of the

expert systems periodically. This is accomplished by sending the expert

systems test messages. When an expert does not respond within a certain time

frame or when the message cannot be sent, the Manager assumes that the

processor or expert has failed. The Manager then reloads the knowledge bases

and data bases of this expert onto another less busy computer, and re-

establishes the communication links with the rest of the system. Once an

expert system is recovered, it should be able to produce the same output as

before if it is given the same set of input. However, since more than one

expert system is now running on the same processor, the throughput of the

expert systems on that processor will degrade. Such graceful degradation is

important for most distributed Al applications.

The assumption of this approach is that when a processor fails, the knowledge

bases and data bases of an expert system can be recovered from a central mass

storage medium. This assumption is in-line with the PAVE PILLAR architecture

where a central file server is used for all disk I/O.

Key design decisions for this fault tolerance feature include

a. the types of information/data which must be saved and which are

pertinent to the recovery and consistency of an expert system. There

are two types of information: information that is specific to a

particular domain, and information that is about the state of an

expert system. For example, information specific to the route

planning domain includes current route, next waypoint, threats, and
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the map display. The information about the state of the Route Planner

includes its event queue, current event, and monitor list.

b. the frequency of saving the information. For example, the developer

could specify that once every minute the states of the Weapon Expert

System should be saved. It may be the case that the states of the

Route Planner Expert System should be saved more often because they

change more often. Presently, the states of the expert systems are

saved once every minute.

c. the frequency that the state of an expert system and its processor

(i.e., TI Explorer) must be tested by the Manager Expert System in

order to detect and recover from any failures. Presently, each

expert system is tested once every second. Again, this value can be

changed when necessary.

4.2 Domain Soecific Exoert Svstemp. To demonstrate the validity of the ESMS

architecture, a set of four cooperating expert systems for pilot aiding has

been developed. Each of these experts is responsible for its own area of

expertise, but they also must communicate and cooperate with each other in

order to behave intelligently. It has been demonstrated that these expert

systems do indeed cooperate with each other, whether they all run on a single

computer or on multiple computers.

Since the primary focus of this project is to develop the distributed Al

inference engine, a smaller amount of effort has been devoted to developing

the knowledge bases of these expert systems. As a result, they may lack the

depth of truly intelligent systems. In any case, a detailed description of

each of the expert systems is presented.

4.2.1 Manager Exoert System. The responsibility of the Manager Expert System

is to oversee the operation of the other three expert systems and to ensure

that the needs of the pilot are met. It also monitors the status of the

mission progress and development. When there is a change of mission, it

immediately requests that the Route Planner re-plan for a new flight route.
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When a pop-up threat occurs, it alerts the pilot of the situation as well as

the Weapon Expert and the Route Planner. In this case, the Weapon Expert may

discharge chaffs and flares to confuse the threat, and the Route Planner may

plan a quick escape route to avoid the threat.

Periodically, the Manager sends out messages to check the status of the three

expert systems. If an expert does not respond within a certain time frame, it

assumes the expert has failed and the Manager will try to re-configure the

system to alleviate this failure.

4.2.2 Route Planner Expert System. The present state of this knowledge base

allows the Route Planner to plan and re-plan flight routes to avoid known and

pop-up threats. Prior to takeoff, when the Route Planner is given the threat

situation and the mission statement (i.e., set of waypoints and targets), it

plans a route to the targets and back to a friendly base avoiding all the

threats. However, when enroute to the target, unexpected threats may be

detected. Depending on the location of the threat relative to the aircraft,

the Route Planner must determine quickly a new route in order to avoid the

threat and to ensure maximum safety.

There are four cases for handling unexpected pop-up threats:

a. The Route Planner is alerted of a pop-up threat, but the threat is

not along the path of the planned route, so it is ignored.

b. The threat pops up along the route but is further down the flight

path and far enough away from the current position of the aircraft,

so the Route Planner can take its time to re-plan a new route around

the threat.

c. The threat is along the route and the aircraft is Just outside of the

threat envelope; therefore, the Route Planner must quickly re-plan to

avoid entering it.
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d. An unexpected threat pops up near the aircraft and its envelope

encompasses the aircraft; the Route Planner must quickly determine

whether it is worthwhile to escape outside of the threat or to

continue its original course. In either case, chaffs and flares must

be dispensed to confuse the threat.

In all of the above situations, the Route Planner will try its best to avoid

the threat. Only when it fails to find a new route or when the aircraft is

already too deep inside the threat envelope does it become necessary for the

aircraft to continue its original course and fly inside the threat envelope.

Many heuristics are still needed in order for the expert to handle other

situations.

In addition to handling threat avoidance during the flight, the pilot or the

Manager Expert may decide to use an alternate mission. When notified of a

mission change, the Route Planner must be able to re-plan quickly using the

new mission statement.

4.2.3 Weaoon Exoert System. For this expert system, there is a display

showing the outline of an aircraft with all of its weapons/missiles and its

self-defense countermeasures such as chaffs and flares. When the aircraft

unexpectedly enters a threat envelope, this expert system may be instructed to

dispense some of its chaffs. The dispensing of the chaffs is displayed on the

output window in real time.

The Weapon Expert is also responsible for matching and allocating weapons

against threats. For example, prior to entering a threat, the Weapon Expert

may suggest firing some of its missiles to destroy the threat so that it is

unnecessary for the Route Planner to re-plan around the threat. When the

aircraft enters the target area, it will suggest dropping its bombs to destroy

the target. Again, the firing of weapons and missiles is displayed on the

output window.
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4.2.4 Situation Awareness and Disolav ExDert System. When presented with two

or more alerts, the SADE first prioritizes the alerts prior to presenting them

to the pilot. Therefore, the pilot is not overwhelmed and confused by

multiple alerts. For example, when flame-out and fuel-leak alerts occur

simultaneously,5 the SADE System should alert and advise the pilot to take

care of the flame-out first, prior to presenting the second problem.

Currently, all of the output from this expert system is text. A synthesized

voice (i.e., DECTalk) for this function was demonstrated but with limited

usefulness. The first limitation of the synthesized voice is that it was very

unhumanlike. Perhaps a digitized voice may be more realistic. The second

limitation is that the throughput of the system (DECTalk) was inadequate.

This is partially due to the slow baud rate (2400) that the DECTalk accepts

from the RS232 port. In any case, the digitized voice and graphics display

for pilot aiding needs to be further investigated.

4.3 Integration with GENASIS. Prior to integrating with the GENASIS flight

simulator, the four cooperating expert systems were first linked to the

NavModel simulator enabling each of these systems to run on four TI Explorers

and to request and receive flight data from the NavModel. For example, on the

Route Planner output window one can visualize the flight of a simulated

aircraft with its position, heading, and other related information while a

pseudo pilot is controlling the aircraft from the NavModel simulator on a
MicroVAX. For the purpose of this application, only the Route Planner Expert

System and the SADE System request aircraft data from the simulator. The

frequency of the requests can be set dynamically before each run of the expert

system. For example, the Route Planner Expert System is currently requesting

data every 1/3 of a second.

The interface development between the expert systems (i.e., TI Explorers) and

the GENASIS flight simulator took place toward the end of the project. By

November 1989, the ES4S was able to request and receive real-time flight data

from the GENASIS simulator. In addition to aircraft state information, the

In this example, flame-out and fuel-leak are two separate and unrelated problems. When the fuel-leak

caum the fire. the ful-le*k problem should be addressed first.
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Manager Expert System was also able to request mission information from the
simulator. The Interface between the TI Explorers and the simulator was
synchronous in nature. In other words, an expert system must make a request
in order to receive any data. In the following paragraphs, a detailed account

of the final demonstration of the ESMS system is presented.

Prior to the demonstration of the system, UFA and Air Force personnel met and

discussed the accomplishments and future directions of this project. The
participants agreed that this research benefited and tremendously interested
the Air Force, particularly the Fault Tolerance feature of the system.

For this demonstration, each of the four expert systems (i.e., Manager Expert

System, Route Planner Expert System, Weapon Expert System, Situation Awareness
and Display Expert System) reside on their own TI Explorer Lisp machine. The

GENASIS cockpit was controlled by a pilot. When the whole system was brought
up, the Manager Expert System first requested a mission from the cockpit. It
in turn requested the Route Planner Expert System to plan a route to and from

the target(s) avoiding all threats based on this mission. After a route was
found, the Route Planner then sent the route to the Manager. Upon receiving
this information, the Manager notified the Situation Awareness and Display

Expert System, so that it could monitor the target(s) and any pop-up threats.

At this point, the Route Planner Expert System started requesting aircraft

state information from the GENASIS cockpit. The display of the aircraft could

be visualized on the output window of the Route Planner. (See Figure 6) By

now the Situation Awareness and Display Expert System also requested aircraft

data from the cockpit. The output format of this expert system is similar to
the one shown in Figure 7. The output of the Weapon Expert System is similar

to the one displayed in Figure 8.

25



... . . .. . . . . . .. ...... .. .. . .. -. .

.

.. .. . *. . . ... . . . . . . .. . .. . .. . . .. . . . . . . . . .

W

... .. .. .. ... .. .. .. .. .. . .. .. ... .. .16.. ..... .. .. ... ... .........

... . .... ... .. .. . ...... ........ ........ ...... .

IQ

. . . . . . ..... . . . . . . . . . .. .. . . . .. . . . . . .4

-- !-
I-

. ......~e~e6 3.9oeoeeo'goeeeoeleeee~eeo

.. .. . . . . .. .. .. . ..... . .

LAJ

0 0
* Sn

LL.

. . . ........ ..... ...

.. .... . . .. .. . . . .

26 S e

* 4 .- i a
4ee e ~ . Soeee~oeeekoeoeoe

*oe o o o 4 o o oe e o 4e ee e

.eeeoe ee oo oeoeeeeeee oe~oe e~ee oeeoeeeeoe oo ••eeeeeeeo• o

q'

LU



I aIf

LLJ*ICA:

27-



>C

,a

0n



While the aircraft was flying, a pop-up threat was added to the system

manually from the keyboard. This threat was detected and the Route Planner

was alerted to plan an alternate route avoiding the threat. For the purpose

of the demonstration, the envelope of this threat was shown to encompass the

aircraft. As a result, the Situation Awareness and Display Expert System

detected this danger and alerted the Weapon Expert System to discharge chaffs

and flares. It could be seen on the output window of the Weapon Expert System

that a number of chaffs were dispensed. Next, the Route Planner concurrently

re-planned and found a route outside of the threat, which was shown on the

output window o' the Route Planner. It can be noted that each of these expert

systems solved problems independently and in parallel. Therefore, a problem

could be resolved quickly. This is the advantage of distributed AI.

At this point, one of the processors on which the Weapon Expert System resided

was shutdown unexpectedly to simulate processor failure due to battle damage.

The Manager Expert System quickly detected this failure and immediately

determined onto which available processor to reallocate the Weapon Expert

System. It then reloaded the knowledge base and the saved states of this

expert system onto the new processor. Upon reloading the knowledge base, the

Weapon Expert System was initialized to run based upon its previously saved

states. The whole distributed system was restored to its previous

capabilities (i.e., all four expert systems were again interacting). However,

the systems were running on three processors instead of four. This exercise

demonstrated the fault-tolerance feature of the system.

After a minute or so, the "failed" processor was manually rebooted. Within

seconds, the Manager Expert System detected this re-booted machine. It then

directed this new processor to load in the ESMS inference engine, the

knowledge base, and other peripheral information of the Weapon Expert System.

When completed, all four of the expert systems were running on four separate

processors. Therefore, the integrity of the distributed systems was
maintained and all of its computer resource was restored (i.e., all four
processors were running concurrently). This exercise demonstrated the dynamic

resource allocation of the ESMS.
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While the above activities were taking place, the aircraft continued to fly.

As viewed on the Route Planner output window, the aircraft was approaching its

target which was specified in the original mission statement. When it finally

closed in on the target, the Situation Awareness and Display Expert System

alerted the Weapon Expert System to fire its weapons. The firing of the

weapons could be visualized on the Weapon Expert System's output window.

After the target was destroyed, the aircraft continued on its course and

followed its flight path back to base. This ended the demonstration.
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5.0 CONCLUSIONS

5.1 Real-Time Al ADolications. Use of processes is important for real-tim
Al applications. For most traditional real-time applications such as process

control and avionics, the ability to preempt a less important task/process is

critical to the success of the whole system. Therefore, a real-time Al

software must also be able to behave in a similar fashion. Similar to

traditional real-time systems, the use of processes will lend itself nicely to

such control. In the ESMS, each expert system has its internal state a-.

priority. The higher priority process will run first. If an impending evnt

has an even higher priority, the expert system will temporarily suspend the

current task and take care of the impending event. Upon the completion of the

interrupting event, it then resumes the previous task. With the use of

processes, the internal states of the process will be automatically saved when

it is interrupted. These states will be restored when the process resumes.

5.2 Real-Tim Processing. Lisp machines are not fast enough for real-time

processing. Actually, the term realtime must be qualified here. It is

referring to any processing, such as avionics, that requires a response time

of a second or less. Lisp machines are not considered fast enough for such

applications due to the following two reasons: First, as pointed out in 1.,

processes are important for real-time Al applications. Lisp machines do not

handle processes very well, particularly when there are multiple processes and

the system must interrupt and swap among these processes. Second, due to the

non-deterministic nature of the Lisp language itself, the system cannot be

depended on for things to happen at exactly the right moment.

5.3 Li Language. Lisp language is still good for rapid prototyping and

initial developmnt. Due to the interactive nature of the language, Lisp is

still good for rapid prototyping and initial development. Therefore, it is

relatively quick and simple to incorporate new changes to the system, i.e.,

new changes can be loaded in while the system is still running. The new

changes will be imediately put into effect without disrupting the rest of the

system. In other languages, such as C, when a part of the program is changed,

that part must be re-compiled and re-linked with the rest of the program.
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Such a task can be time-consuming. Another benefit of the Lisp language is

that it is excellent for symbolic programming, allowing the developer to

conceptualize the problem at a higher level.

5.4 Distributed Exoert System Execution. Distributed expert system execution

is difficult to trace in contrast to a traditional system where a single

thread of logic is followed by the system, i.e., execution is sequential in

nature. Here there are multiple threads and each is acting independently of

each other. Therefore, at any one time, more than one thing could occur and

sometimes it is difficult for the developer/user to understand exactly what

sequence of events has taken place in the system.

5.5 Seoaration of Knowledae Bases/ESMS Inference Engine. Separation of the

expert system knowledge bases and the ESMS inference engine is critical to its

success. Since both the knowledge bases and the inference engine undergo

continual revisions and changes, their separation has made the process of

enhancing the system much easier. For example, if there is a change to the

knowledge base, it can be done without disturbing the inference engine and

vice versa. Furthermore, the fact that the two entities are separate has made

the overall size of the program much smaller and well modularized.

5.6 System Development. System development must be done with close user

interaction and feedback. This is true for all software development projects.

In this case however, one of the UFA engineers spent many months at the

Avionics Laboratory defining the needs and requirements of the Air Force.

Such close interaction is particularly critical when the interface had to be

worked out between the ESMS and the flight simulator. The fact that an

engineer from UFA was working in the laboratory side by side with the

engineers from the Air Force eliminated any communication barrier that may

otherwise have interfered with progress.

5.7 Real-Tim Distributed Fault-tolerant Al System. Implementing a real-tim

distributed fault-tolerant Artificial Intelligent system is a difficult
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6.0 RECOMMENDATIONS

This project demonstrated how it is possible to incorporate expert systems to

reduce pilot workload and increase effectiveness. The simulation developed

showed how a pilot would be able to concentrate on the more important tasks

while the system handles routine tasks.

A recomendation for future research is that further testing of the ESMS occur

with the focus toward fault-tolerant problem-solving capabilities. It is

further recommended that testing and fine tuning of the fault-tolerant expert

system take place. Further research is needed on the distributed expert

system and the use of processes which is very important in any real-time

expert system.
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