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Project Summary

(Summary of research carried out under ONR Contract No. N00014-85-K-0661 and
continued under ONR Grant No. N00014-90-J-1 143)

This document serves as the final technical report of ONR Grant No. N00014-
90-J-1 143, which was funded as a continuation of work carried out under ONR Contract
No. N00014-85-K- 0661. As part of the initial project I developed a schema-based
model of teaching and learning for the domain of arithmetic word problems (Marshall,
Pribe, & Smith, 1987). The schemas emphasize the basic situations that can be
contained in such problems. A central focus of the research was to create a model that
applied equally well to issues of memory organization, teaching and learning,
instructional development, and diagnosis of student learning.

A core set of situations was identified, and a series of studies verified that the
situations were sufficient for describing virtually all legitimate word problems (Marshall,
1990). A model of schema knowledge was constructed for each of the basic situations.
Each schema model specified the feature knowledge, constraint knowledge, planning
knowledge, and implementation knowledge required to use the schema successfully. An
extension of the basic schema model yielded ways in which affective components may
also be part of schema knowledge (Marshall, 1989). Attention was also given to ways in
which different types of schema knowledge could be easily assessed (Marshall, 1988).
More recently, I have demonstrated that the schema theory can be applied easily to two
other domains, elementary statistics and rational number instruction (Marshall, in press
a).

The instructional system, called STORY PROBLEM SOLVER (SPS), was
designed to provide instruction about these situations in such a way as to foster the
development of appropriate schemas by individuals (Marshall, Barthul, Brewer, & Rose,
1989). The system consists of (a) a series of lessons requiring about 6-8 hours for
completion and (b) a flexible problem-solving environment. Both of these components
were designed to focus on specific aspects of schema knowledge required in solving
problems.

In the lessons, each component of schema knowledge was addressed implicitly
through short instructional segments and related exercises. Students were introduced to a
set of icons depicting the situations, and they were encouraged to use the icons to
represent the various situations occurring in specific problems. A set of experiments
revealed that students did develop the specific types of schema knowledge targeted by
SPS and that the icons were a key part of their knowledge (Marshall & Brewer, 1990).
Moreover, we were able to chart the development of schemas over the course of
instruction through individual interviews with our subjects (Marshall, in press b).

The second part of the system is a flexible Problem-Solving Environment, PSE,
in which students can experiment with problem representations by manipulating the
icons described above. Students are able to select a subset of icons to represent a
problem and to link these together to represent the connections in the problem. They
have options to expand the icons and explore individual aspects of each one, to carry out
calculations, to select other icons if they so desire, or to have the system display a
possible representation of the problem. This environment was developed under the



original ONR Contract and evaluated under the project continuation as Grant N00014-
90-J-1143 (Marshall, 1991).

The project yielded three major products. First, I created a working computer-
based system of instruction that can be used to teach students about solving word
problems. The system has been used successfully with about 100 subjects to date
(primarily college students with weak problem solving skills). Second, I have developed
and refined a theory of schema structure and acquisition. The theory builds on the
general nature of schema knowledge found in the cognitive science and cognitive
psychological literature but goes considerably beyond it. In particular, the theory allows
operational definition of key components of a schema and thus allows empirical tests of
whether individuals have acquired these pieces. Third, as a direct consequence of
studying the acquisition of schema knowledge and attempting to evaluate students'
learning, I have formulated a new model of assessment. The model is a network model,
and it stipulates the need for assessing both the number of nodes and the connectivity
within the net. Thus, the project results allow us to use the theory of memory
organization (i.e., schema theory) to model learning, instruction, and assessment. This
last result has had the most far-reaching impact. As can be seen from the attached list of
publications and presentations, I have been invited to make a number of contributions
about assessing schema knowledge. The importance here is that the theory developed
during this project is unique in its use of a common model for learning, instruction, and
assessment. Moreover, the theory provides the basis for a linkage between a
psychological theory of memory/learning and a new psychometric theory of testing.

Finally, the project also yielded several important modeling results. We have
simulated successfully the performance of students as they respond to the computer
exercises. The simulation uses estimates of their schema knowledge as revealed in
interviews. Both correct and incorrect responses are equally well estimated. We have
also employed a series of connectionist models which learn to classify the situations
expressed in story problems. The modeling continued under the project renewal and is
the focus of the report which follows. The report has two sections. The first section
describes statistical and cognitive models of performance on the initial recognition task
in the instructional system. The models described therein successfully simulate actual
student performance on an item-by-item basis. The second section describes the full
model of schema instantiation. This is a hybrid model, incorporating both a production-
system and a connectionist network. It successfully evaluates multi-step story problems,
recognizes their important relational components, and solves the problems for the correct
numerical solution.

At the end of this summary is a list of publications, technical reports, conference
presentations, and invited addresses that report research from these two projects. Much
of the work spanned both of them. Most of the research results will be reported in a
book now being prepared for publication by the Cambridge University Press. The book
should be completed by September 1992.
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Statistical and Cognitive Models of
Learning through Instruction'

Sandra P. Marshall
Department of Psychology
San Diego State University
San Diego, CA 92182-0315

Abstract

This chapter uses statistical and cognitive models to evaluate the
learning of a set of concepts about arithmetic word problems by a group of
students. The statistical model provides information about how the group of
students as a whole performed on an identification task involving word-
problem situations and shows differences among subgroups. The cognitive
model simulates the performance of each student and yields details about
how learning varied from one individual to another. It is a con-nectionist
model in which ihe middle layer of units is specified a priori for each
student, according to the student's level of understanding expressed in an
interview. The chapter concludes with a detailed comparison of the
simulated responses with the observed student responses.

INTRODUCTION

The learning investigated here occurred as part of a study in which
students received computer-based instruction about arithmetic word
problems. The central topics of the instruction were five basic situations
that occur with great frequency in word problems: Change, Group,
Compare, Restate, and Vary. The instruction had three main segments:
(1) the introduction, in which the situations were described; (2) an in-depth
exploration, in which details of each situation were elaborated and presented
diagrammatically; and (3) the synthesis, in which combinations of situations

1 To appear in Meyrowitz, A. L. & Chipman, S. (Eds.), Cognitive Models of

Complex Learning. Norwell, MA: Kluwer Academic Publishers.
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were introduced together with planning and goal-setting techniques. 2 For
each of the three parts of instruction, students engaged in multiple practice
exercises. The study reported in this chapter concerns only the first
segment of instruction--the introduction to the situations--and the primary
focus is the nature of the knowledge that individuals gained from that
introductory instruction.

This chapter describes two analyses of what individuals learn from
instruction. Both analyses are needed. In the first case, learning is
examined in a traditional experimental paradigm, using established
statistical procedures. Group features, rather than individual characteristics,
receive greater emphasis in this paradigm, and conclusions drawn from the
analysis describe group commonalities. In the second case, learning is
examined by means of a cognitive model that simulates individual
performance. In this analysis, individuals' characteristics are studied, and
conclusions apply separately to each individual. As I indicate below, the
information gained from each analysis is valuable in a study of learning.
Neither one alone provides the complete picture.

The questions of interest in the research are what is the new knowledge
retained in memory, as a result of instruction, when is it retained, and which
parts of it are later accessed and retrieved. During instruction, some new
information is (presumably) acquired and added to an individual's available
knowledge store. Not all possible information is taken in, and individuals
vary in the type and amount of new knowledge that enter memory. It is the
rare instance in which all learners learn exactly the same thing from a single
instructional lesson. More often, some learners noticeably remember a great
deal of the new information while others remember almost nothing.

The Instructional Domain

This section provides a short description of the five situations used in
instruction. The situations are Change, Group, Compare, Restate, and
Vary, and they represent uniquely almost all simple stories found in
arithmetic story problems (Marshall, 1991).

The Change situation is characterized by a permanent alteration over time
in a measurable quantity of a single, specified thing. Only the quantity
associated with one thing is involved in the Change situation. It has a

2 Details about the computer-based instruction can be found in Marshall,
Barthuli, Brewer, & Rose (1989), a technical report available from the author.
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beginning state and an end state, with some intervention which causes a
transition from beginning to end. Usually, three numbers are of importance:
the amount prior to the change, the extent of the change, and the resulting
amount after the change has occurred.

A Group situation is present if a number of small distinct sets are
combined meaningfully into one large aggregate. Thus, the Group situation
reflects class inclusion. The grouping may be explicit or implicit. If
explicit, the solver is told in the problem statement which small groups are
to be united. If implicit, the solver must rely on his or her prior semantic
knowledge to understand the group structure. For example, in a situation
involving boys and girls, the solver would typically be expected to know
that boys and girls form a larger class called children. The solver also
would be expected to understand that the members of the subgroups (i.e.,
boys or girls) retain their identity even when combined into a larger group
(i.e., children). Three or more numbers are necessary in a Group situation:
the number of members in each of the subgroups as well as the overall
number in the combination.

The Compare situation is one in which two things are contrasted to
determine which is greater or smaller. The numerical size of the difference
between the values is unimportant and may not even need to be computed.
The Compare situation relies heavily on prior knowledge that individuals
have about relations. Most frequently, the Compare situation requires the
solver to choose either the larger or smaller of two values when the
operative relation is stated as a comparative adjective or adverb (e.g.,
faster, cheaper, shorter, more quickly). The objective is the determination
of whether one's response should be the larger or the smaller of the known
values. This situation most typically occurs as the final part of a multi-step
item. For instance, one often sees problems in which the solver is expected
to decide after several problem-solving steps which of two items offered for
sale is the better buy. This final determination is a Compare. It requires
only the recognition of which of the two items is less costly--it does not
require the computation of how much less. 3 Most Compare items involve
values for only two objects, although it is certainly possible to make
comparisons among three or more.

3 It should be noted that the Compare situation defined here differs from the
semantic relation of the same name developed by Riley, Greeno, and Heller
(1983).
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The Restate situation contains a specific relationship between two
different things at a given point in time. The relationship exists only for the
particular time frame of the story and cannot be generalized to a broader
context. There are two determining features of a Restate situation. First,
the two things must be linked by a relational statement (e.g.,one of them is
twice as great as, three more than, or one half of the size of the
other).Second, the relationship must be true for both the original verbal
descriptions of the two things and the numerical values associated with
them. Thus, if Mary is now twice as old as Alice, then 20 years--which is
Mary's age--must be twice as great as 10 years, which is Alice's age. Note
that this relationship was not true one year ago nor will it necessarily be true
in five years.

The Vary situation is characterized by a fixed relationship between two
things that persists over time. The two things may be two different objects
(e.g., boys and girls) such that one can describe a ratio as "for every boy
who could perform x, there were 2 girls who could do the same ....", or they
may be one object and a measurable attribute of it (e.g., apples and their
cost) with the problem having the form "if one apple cost $.50 then five
apples ....". An essential feature of the Vary situation is the unchanging
nature of the relationship. If one of the objects is varied, the amount of the
second changes systematically as a function of the known relationship. The
variation may be direct or indirect.

Simple examples of these five situations are given in Table 1. During the
entire course of computer instruction, each of the situations is introduced,
explained, and transformed to a problem setting. Eventually, several are
linked together to form multi-step problems. In the introductory lesson,
each situation is described by means of an example and with the general
features which define it.

Although they are very simple and readily understandable, the five
situations are not intuitively known by students through previous
instruction. Experiments with groups from several different student
populations indicated that students (and teachers) do not typically recognize
or use situational knowledge in story problems (Marshall, 1991). Those
same experiments show that students of all ages are nevertheless able to
learn them.

The present study was designed to investigate how that learning comes
about. Because they were previously unknown to the students, the
situations in story problems were, in fact, five new concepts to be learned.
Thus, the study described here provides a setting for investigating how
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Table 1
The Five Situations

CHANGE To print his computer job, Jeffrey needed special paper. He
loaded 300 sheets of paper into the paper bin of the laser
printer and ran his job. When he was done, there were 35
sheets of paper left.

GROUP The Psychology Department has a large faculty- 17 Professors,
9 Associate Professors, and 16 Assistant Professors.

COMPARE The best typist in the pool can type 65 words per minute on the
typewriter and 80 words per minute on the word processor.

RESTATE In our office, the new copier produces copies 2.5 times faster
than the old copier. The old copier produced 50 pages every
minute.

VARY An editor of a prestigious journal noticed that, for a particularly
wordy author, there were five reference citations for every page
of text. There were 35 text pages in the manuscript.

individuals learn new concepts that have obvious ties to much of their
previous knowledge.

The Nature of Instruction

To model successfully the acquisition of knowledge from instruction, one
must examine the nature of that instruction and the type of information
contained in it. Generally, there are two ways to present new concepts to
students. The instructor can introduce the name of the concept and give a
prototypic example. The example contains specific details and is couched
in a setting that should be well-understood by students. An alternative
approach is for the instructor to provide the name of the concept and give a
general description of its most important features. This information is
abstract and contains basic characteristics that should apply to all possible
instances of the concept. In practice, instructors typically do both. They
introduce a new concept by name, give a representative case in which the
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concept clearly occurs, and then make a broad statement about the concept,
which is intended to help the learner generalize the concept from the given
example to other potential instances.

Some interesting research has been carried out to determine whether
students learn differentially under different instructional conditions. Usual
studies of instructional content tend to contrast one form of information
with another, such that each student sees only one type. An example of this
type of research is found in Sweller's (1988) comparison of problem-solving
performance following rule-based or example-based instruction.

The issue I address is different: Given access to typical instruction in
which both specific information (i.e., examples) and abstract information
(i.e. definitions) are available, which will a student remember? Do
students commit equal amounts of specific and abstract knowledge to
memory? Is one type necessarily encoded first, to be followed by the other?
Are there large individual differences? If so, are these differences related to
performance? The following experiment provides some initial answers to
these questions.

THE EXPERIMENT

Subjects

Subjects were 27 college students with relatively weak problem-solving
skills. They were recruited from introductory psychology classes. On a
pretest of ten multi-qtep arithmetic word problems, they averaged six correct
answers.

Procedure

Each student worked independently on a Xerox 1186 Artificial
Intelligence Workstation. All instruction and exercises were displayed on
the monitor, and the student responded using a three-button optical mouse.
Each student participated in five sessions, with each session comprised of
computer instruction, computer exercises, and a brief interview. Students
spent approximately 45-50 minutes working with the computer in each
session and talked with the experimenter for about 5-10 minutes in the
interviews. As stated previously, orly the first session--the introduction to
the five situations--is of interest here.

10



Data Collection

Data were collected from two sources: student answers to the first
exercise presented by the computer and student responses to the interview
questions. Each is described below.

Identification task. The first source of data was the computer exercise
that followed the initial instructional session. The items in this task
resembled those of Table 1. They were selected randomly for each student
from a pool of 100 items, composed of 20 of each type. During the
exercise, one item at a time was displayed, and the student responded to it
by selecting the name of one situation from a menu containing all five
names: Change, Group, Compare, Restate, Vary. The student received
immediate feedback about the accuracy of the answer, and if the student
responded incorrectly, the correct situation was identified.

The order of item presentation was uniquely determined for each student.
Items of each situation type remained eligible for presentation until one of
two criteria was obtained: Either the student had given correct responses
for 2 instances or the student had responded incorrectly to 4 of them. Thus,
a student responded to at least 2 items of each type and to no more than 4 of
them. The minimum number of items displayed in the exercise for any
student was 10, which occurred only if the student answered each of them
correctly. The maximum number that could be presented was 20 items,
which could happen only if a student erred in identifying the first two items
of all five types. The number of items presented ranged from 10 to 18.

Interview Responses. The second source of data was information given
by the students in the interviews. The interview followed immediately after
the identification task described above. During the interview, each student
was asked to describe the situations as fully as he or she could. The student
was asked first to recall the names of the situations and then to describe
each one that he or she had named. After each of the student's comments,
the experimenter prompted the student to provide additional details if
possible. All interviews were audiotaped and transcribed.

It is the interview data that reveal which pieces of instruction were
encoded and subsequently retrieved by each student. Certainly, not all of
the new knowledge acquired by an individual will be revealed in an
interview. It is expected that students have more knowledge than they can
access (as pointed out by Nisbett & Wilson, 1977). Nevertheless, the
interview data are indicative of how the individual has organized his or her
knowledge of the newly acquired concepts, and they suggest which pieces

11



of knowledge are most salient for the individual. Following well-known
studies such as Collins and Loftus (1975) or Reder and Anderson (1980),
we may assume that individuals will tend to retrieve the most closely
associated features and those with highest salience for the individual.

Knowledge Networks and Cognitive Maps

Data from the student interviews were used to construct knowledge
networks, one for each student. Each network consists of a set of nodes,
representing the distinct pieces of information given by the student, and
links connecting the nodes, representing associations between the pieces of
information.

The interviews were coded in the following way. First, irrelevant
comments were eliminated. These were things such as "Urn, let me think"
or "I'm trying to remember ...." Next, distinct components or elements of
description were identified. These were usually phrases but could also be
single words. These became the nodes of the knowledge networks. Two
nodes were connected in a network if the student linked their associated
pieces of information in his or her interview response. Two research
assistants and the author coded each interview with complete agreement.

In addition to the knowledge network for each student, an "ideal"
network was constructed from the instructional text. As with the students'
networks, nodes were created to represent each distinct piece of
information. Two separate pieces of information appearing contiguously in
the text were represented by two nodes with a link between them. Needless
to say, this network was substantially larger than any student network. It
represents all that a student could possibly encode from the instruction, and
thus it serves as a template against which to measure the amount and type of
information encoded by each student. The "ideal" network for all of the
situational information is presented in Figure 1.

Two things should be noted about the network presented in Figure 1.
First, distances between nodes and spatial orientation of the nodes have no
meaning. Only the presence or absence of nodes and links is of importance.
Second, in this figure, all nodes appear equally important, and the same is
true for the links. Strength and activation are not shown. However, in
theory each node has a measure of strength that is a function of how many
times it appears in the instruction, and each link has a similar measure of
activation, depending upon how frequently the two nodes are linked.

12



Figure 1: THE 'IDEAL* NETWORK

Compare

Key: * Abstract knowledge Q specific Knowledge

Figure 1 represents the ideal case in which all information is included in
the network. Normally students do not retain all of the details, and the
networks one constructs for them appear incomplete when compared with
the ideal situation. Thus, we expect the student networks to be
considerably sparser than that shown in Figure 1.

Several types of information may be gleaned from a student's knowledge
network. First, of course, the network is an indication of how much the
student remembered. The number of nodes in a network provides an
estimate of this information. Second, the network shows which pieces of
information are related for an individual. A measure of association can be
made by counting the number of links and using that number to estimate the
degree of connectivity of the entire network. Node count and degree of
connectivity are standard network measures. I have discussed elsewhere
how they may be used to estimate a student's knowledge of a subject area
(Marshall, 1990).
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In this chapter I examine two additional types of information: (a)
specificity, which is the students' tendency to recall specific or abstract
features to describe the situations and (b) confusions, which show the extent
to which students confused different aspects of the five situations. One
examines nodes to estimate the former and links to estimate the latter.

Specificity. Each node in the "ideal" network reflects one of two types
of detail: specific or abstract. Specific knowledge refers to elements of
information having to do with the examples presented in instruction, and it
reflects the particular details of the example. Abstract knowledge refers to
the general features or definition of the situation. The instruction contains
approximately an equal amount of both types, as can be seen in Figure 1.
The abstract nodes are represented by filled circles, and the specific ones are
indicated by hollow circles. 4

Each distinct piece of information (i.e., each node) recalled by a student
was categorized as being specific or abstract. A response was considered to
be specific knowledge if it pertained to a specific example. Typically,
students giving this sort of response referred to details from the initial
example used in the computer instruction. An illustration is given in the
specific response of Table 2. The italicized phrases are examples of specific
detail. In contrast, a response was considered to be abstract knowledge if it
reflected a general definition or characterization. Table 2 also contains an
illustration of an abstract response, and the italicized phrases indicate the
abstract detail. The final example of a student response in Table 2
illustrates the case in which neither abstract nor specific detail is recalled.

Three measures of specificity were developed: the number of specific
responses, the number of abstract responses, and the ratio of abstract to
specific responses. These measures were used in the statistical analyses
described below.

Confusions. In the networks representing situational knowledge, two
types of links are possible, intra-situational and inter-situational links.
Intra-situational links are judged always to be valuable. That is, if two
nodes are both associated with one situation and they are connected to each
other, then the retrieval of one of the nodes ought to facilitate the retrieval

4 It should be noted that the instruction was not developed under the constraint
that equal abstract and specific details be contained in it. The guiding principle
was to explain each situation as completely as possible, using specific and/or
abstract elements as needed.
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Table 2
Examples of Student Responses

ABSTRACT Q: What do you remember about Group?
A: Group is when you have different items, different

groups of items, that can be categorized into one
general group.

SPECIFIC: Q: What about Group?
A: That was when you bought 7 shirts and 4 pairs of

shorts and they grouped it into clothing. So you had 11
separate things of clothing.

NONE: Q: Tell me about Change.
A: I pressed that review button so many times and I can't

remember anything right now. Um, change was, um
my mind is blank right now. I did okay on the
computer. I've forgotten just about everything. I'm
trying to think of an example. I know they change
something and make something else.

of the other. This is the principle of spreading activation. In general, the
more knowledge the individual has about a concept and the greater the
number of associations connecting that knowledge, the better the individual
understands it. Figure 2 shows how the "ideal" network of Figure 1 can be
represented as a two-layer map. The nodes at the upper level are the five
situations, and those at the lower level are the knowledge nodes developed
during instruction. Connections among the nodes at the lower layer
represent intra-situational links. Generally, a larger number of connections
at this level indicates greater understanding on the part of the individual. It
is these connections that are shown as well in the network of Figure 1.

In contrast, inter-situational links, i.e., links between different situations,
may or may not be of value to the individual's learning, because they are a
potential source of confusion. Such links will not always reflect
confusions; situations could in principle share one or more features. In the
present case, however, the instruction was carefully designed to eliminate
common features among situations. This is reflected in Figure 2 by the
connection from each node at the lower level to a single node at the upper
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Figure 2: THE "IDEAL' MAP

Change Group Compare Restate Vary

level. Given the design of instruction, there should be no inter-situational
links. That is, no tnode at the lower level should connect to more than a
single upper level node. Such linkages would be confusion links and
reflect a misunderstanding about the two situations so linked.

An example of differences in students' inter-situational and intra-
situational links is given in Figure 3. Two student maps are presented in
this figure. Both students encoded a relatively large amount of information
from the instruction, compared with other students in the experiment, but it
is clear from the figure that they recalled different elements of information.
Student S7 remembered distinct pieces of information about each situation
and showed no confusions. S22, on the other hand, expressed a number of
confusions, which are represented in Figure 3 by the dashed links between
the two layers of nodes. These cognitive maps are characteristics of
incomplete mastery. The situational knowledge of every student can be
described by such a map. Obviously, the deficits of a student are highly
individual. These individual differences will be discussed further in a later
section of this chapter.

In summary, the student network and its corresponding map provide
information about the number of details the student remembered about a
situation, the amount of connectivity, the type of knowledge (i.e., abstract
or specific), and the number of confusions in the student's response. The
networks and the measures described here were the bases for the statistical
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Figure 3: TWO STUDENT MAPS

17 :
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822: Confuslons (dashed lines)

Change Group Compare Restat Vary

analyses presented below and also served as input to the simulation model,

which is described in the section following the statistical analyses.

STATISTICAL ANALYSIS

Three questions are addressed by the statistical evaluation. The first is
whether students remember different amounts of detail from instruction, the
second is whether one can characterize the type of information encoded by a
student, and the third is whether these differences are related to the students'
success on the identification task. Evaluation of the student networks
shows that some students were more likely to encode mostly specific
details, some were more likely to encode mostly abstract information, some
encoded both in about equal proportions, and some encoded almost nothing.
The statistical analysis evaluates whether these tendencies are related to
performance on the identification task and whether the relationship can be
generalized to the entire group of students.
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It is evident from the interview data that students varied greatly in the
amount of information they were able to recall about the five situations.
The number of different details retrieved by students extended from a low of
3 to a high of 20. The mean number of details was 13.5, with a standard
deviation of 4.02.

The number of abstract and specific details recalled also varied, and the
ratio of abstract to specific detail ranged from 14:3 to 6:14. Thus, the
answers to both the first and the second questions are affirmative: There
were clear differences in the total amount of information recalled as well as
differences in the amount of abstract and specific information.

Two analyses provide insight into the importance of this difference.
First, on the basis of their interview responses, students could be divided
into three groups: Abstract, Specific, and Both. Students classified as
Abstract gave predominantly definitional responses in the interview. Those
classified as Specific used mostly example information from the computer
instruction to describe the situations. Those classified as Both responded
with approximately equal numbers of abstract and specific detail. For
membership in either the Abstract or Specific group, students had to have
given at least 9 different pieces of information during the interview with at
least twice as many instances of one type of information as the other.
Approximately equal numbers of students could be classified as Abstract or
Specific, with 6 in the former and 7 in the latter. An additional 11 students
were categorized as Both. These students gave at least 9 responses with
approximately equal numbers of abstract and specific details.

Figure 4 shows the relative performance on the identification task of the
three groups described above. A one-way analysis of variance, with a
dependent measure of correct responses to the identification task, 5 indicates
that the groups differed significantly in their ability to recognize the
situations, F(2, 21) = 4.53, p < .025.6 As can be seen in Figure 4,

5 It will be recalled that students viewed differing numbers of items on this
exercise. For purposes of comparison in this analysis, only the first two
exemplars of each type of situation were scored. Thus, each student received a
score from 0-10.

6 Complete data were not recorded for two students. One loss was the result of
computer failure and the second was the result of a malfunction in the recording
of the interview. These two students were excluded from the analyses reported
here. Two other students having only 6 and 3 interview responses respectively
were also excluded from this analysis.
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Figure 4: GROUP PERFORMANCE
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students who responded primarily with abstract characterizations of the five
concepts were most successful, followed by those who used both types of
information. The group relying on examples only were less successful than
those using abstract only or abstract knowledge in conjunction with specific
details. The performance of the abstract group was significantly higher
than the performance of the example group, t (21)= 3.005, p < .01.

The above analysis shows that differences in student performance can be
explained in terms of whether a student remembered abstract or specific
information. One also expects that the absolute number of details that a
student remembers--regardless of whether they are definition or example--
would be a good predictor of performance. Surprisingly, this is not the
case. The Pearson product moment correlation between the number of
correct responses on the performance test and the total number of nodes
encoded from the student's interview is .074, accounting for less than 1% of
the variance.

A second and more informative way of analyzing the data is a multiple
regression analysis based on the type and amount of information, the inter-
situational confusions, and the interaction between the two. In this analysis,
the predictors are (1) X 1 , the ratio of abstract to specific detail, (2) X 2 , the
number of confusions mentioned explicitly by the student, and (3) X 3 , a

product variable of the first two predictors. The dependent measure, again,
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is the 10-item identification task. The resulting prediction equation was:

Y' = 6.667 + .602X1 + .545X2 - .617X3 , with all coefficients reaching the
conventional .05 level of significance. The model accounted for 43% of the
variance and was statistically significant, R2 = 0.43; F(3, 21) = 5.38, p <
.01.

In general, students with higher abstract to specific ratios performed
better on the identification task and made fewer confusion errors. Students
with low ratios (i.e., those with more specific answers) named relatively few
confusions but also responded with fewer correct answers. Students with
approximately the same number of specific and abstract responses had the
greatest number of stated confusions.

Thus, the statistical analyses suggest several group characteristics with
respect to learning new concepts. That is, there are tendencies of response
that apply over many individuals, not just a single one. These analyses are
based on summaries of the cognitive maps and aggregate responses to the
identification task. A more detailed investigation of individuals' responses
provide additional information about the nature of learning in this study.

THE COGNITIVE MODEL

A more exacting analysis of the relationship between each student's
cognitive map and his or her responses to the identification task was carried
out by simulating the responses using a simple feed-lateral connectionist
model. The model simulates for each student his or her response to each
item of the identification task that the student actually attempted to identify.

The general model is given in Figure 5. It has three types of units:
inputs, student nodes, and outputs. Inputs to the model are coded
representations of the problems, and outputs are the names of the situations.
As in most connectionist models, activation spreads from the input units at
the lowest level to those of the intermediate level(s) through their
connections. At the middle level, activation spreads laterally from the
nodes directly activated by the lower level units to other nodes at the same
level with which they are linked (this is represented by the two middle
layers in Figure 5). Finally, the total activation coming into each unit at
the output level is evaluated, and the output unit with the highest activation
is the model response. Unlike many connectionist models, the units at the
middle layer, their connections with other nodes at this level, and their
linkages to the upper level are determined explicitly from empirical data.
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Table 3
Item Characteristics Used to Encode Story Situations

General Characteristics:
Set modification
Permanent alteration
Class inclusion (explicit or implicit)
Relation between two objects
Relation between an object and a property of that object
Fixed relation (implied)
Relative size
Size differential
Percentage
Causality
Multiple agents
Multiple objects
Unit measurement
Two identical relatiqus

Key Phrases:
Each/every/per
As many as
Have left
Altogether/A total of
More/less
Cost
Same
If ...Then
Money

Time Features:
Specific time elements (minutes, days, weeks)
Before/after

The bottom layer of units. The inputs consist of information about the
items that comprise the identification task. There are 27 possible
characteristics that can be present in any item. The set of chiaracteristics is
given in Table 3. Each item is coded according to these characteristics as a
27-element vector containing 0's and l's, with 1 indicating the presence of a
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characteristic and 0 its absence. Not all characteristics will be present in
any single item; usually a simple situation requires only a few of them. The
mean number of characteristics for the 100 items used in the identification
task was 4.33. All 100 items were encoded by three raters with complete
agreement.

The middle layers of units. For each student, the middle layers of the
model contains a set of nodes and the connections between them. The two
layers have identical sets. The nodes and links were identified from the
student interviews, as described previously, and they formed the basis of the
statistical analyses of the preceding section. Three trained individuals read
the transcript of each individual's interview and determined which nodes
were present and whether they were linked. As in the characteristics coding
above, the three coders were in complete agreement.

The top layer of units. The outputs for the model are the five situation
names: Change, Group, Compare, Restate, and Vary. Only one output is
produced for a given input vector. The five possible outputs compete, and
the one with the highest accumulated activation wins.

Connections between the bottom and middle layers. Each input
element may connect directly to one or more of the nodes contained in the
student's network (represented by the middle layers of nodes). Two layers
are needed in this model to illustrate the feed-lateral aspect. The lower of
the node layers connects to the input units. The second layer illustrates how
the nodes connect with each other. Each node from the lower node set
connects to itself and to any other nodes to which it is linked, as determined
from Figure 2. Thus, activation spreads from the input units to the lower
node layer. Each node transfers its own activation to the next layer and also
spreads additional activation to any other nodes to which it is connected.
This particular two-layer representation of a feedlateral network preserves
the usual constraint that activation spreads upward through the model.

Some of the input elements (i.e., those units represented at the very
bottom of Figure 5) may activate many nodes in the network, some may
activate only a few, and some may fail to make a connection (if the student
lacks critical nodes). The allowable linkages between the input and middle
layers of units were determined by mapping the input characteristics to the
"ideal" map of the entire instruction. Recall that the input characteristics are
general features. Most of them activate multiple nodes, and these nodes are
frequently associated with different situations. Thus, it is rare that one input
characteristic points to a single situation. The full pattern of possible
activation is shown in Figure 5. Note that this figure illustrates all
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characteristics as they link to all nodes and is thus a theoretical pattern. The
model would never be presented with a problem containing all possible
features, nor did any student have all possible nodes at the middle layers.

Once the student network receives the input, activation spreads from the
nodes directly targeted by the input elements through any links they have to
other nodes at this level. All of the activated nodes then transmit their total
activation to the units at the upper level. The amount of activation for each
situation is determined from the accumulation of activated links leading to
it. The five situations compete with each other for the highest level of
activation, and the one with the highest value becomes the output. Thus,
the model of Figure 5 represents the input of an item, the activation of the
student's semantic network, the competition among situations, and the final
output as a result of total activation throughout the model.

The model depends upon the set of nodes for each student, the pattern of
linkages among them, the overall association of subsets of nodes with the
situation labels, and the input characteristics of the items. All except the
latter are derived from the student cognitive maps described earlier.

Model Verification

As a test of the model's adequacy, a simulation was carried out in which
the ideal network of Figure 2 was used as the student model. The 100 items
available in the identification task were presented to the model, and its
responses were compared with the correct answers. The model performed
with 100% accuracy, successfully identifying the situations for all items.

Simulation Results

A simulation of each student's performance on the identification task was
carried out. For each student, the response to the first item encountered in
the exercise was simulated first, using that item's vector of characteristics
and the student's network information. The second item followed, and then
all subsequent items until the exercise terminated. Thus, the simulation
covered all items presented to the student in the order in which the student
saw them.

As described above, the number of items answered by students varied
from 10 to 18, yielding a total of 360 item responses. A comparison of the
results of the simulation of these 360 responses with the actual student
responses to them is given in Table 4.
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Table 4
Simulation Results

Frequency Frequency
Outcome Observed Outcomes Adjusted Outcomes*

CSM 192 192
C SM 64 64
CS M 19 13
CS M 30 13
Ci S 55 51

Total 360 333

Key. (1) CSM Both model and student answered correctly.
(2) CSM Model and student made the same error.
(3) CSM Model and student made different errors.
(4) CS M Student answered correctly;, model erred.
(5) CMS Model answered correctly, student erred.

(C = correct response; S = student response; M = model response)

*Impossible matches excluded

Table 4 presents the observed classification of the students' responses as
well as an adjusted classification against which the model was compared.
All 360 items comprise the observed classification. In the adjusted
classification, some items have been omitted from consideration because the
model was constrained by a lack of information from the student interview.
This occurred under the following condition: If a student was unable to
remember the name of a situation or anything that described it in the
interview, the model for that student would have no nodes at the middle
layer that could link to the situation name. Thus, the model would be
constrained to ignore that situation and would never generate a response
pointing to it. Consequently, if a student omitted entirely a situation in the
interview, all items for which the student gave that situation as a response
were likewise eliminated. There were 27 of these impossible matches. As
shown in Table 4, 17 of these were items which the student answered
correctly, and 10 were items on which the student erred. It should be noted
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that these are not model failures but are interview failures.
Each application of the model to a vector of item characteristics,

representing a single item, resulted in one of five outcomes, as shown in
Figure 5. Outcomes CSM and C_SM are exact, successful simulations of
the model. In both cases, the model generated a response that was identical
to the one produced by the student. In the first, the response was correct,
and in the second, it was an error. The outcome CS_.M is considered to be
a partial success of the model. Both the student response and the model
response were in error, but they were different errors. In these cases, the
model accurately predicted that the student lacked critical knowledge and
would err.

The remaining two outcomes, CS_M and CMS, represent simulation
failures. The most serious of these is CS._M, reflecting cases in which the
student answered correctly but the model failed to do so. They are serious
failures because they suggest that the model did not capture sufficiently the
student's knowledge about the situations. It should be noted that more than
half of the observed instances of CSM were impossible matches, as
described previously. That is, the student omitted any discussion of the
situation in the interview, and the model was subsequently constrained to
ignore it. As mentioned above, these instances are considered to be
interview failures rather than model failures. Only the remaining 13
instances are true model failures, representing just 3.9% of all responses.

The final outcome category, CM_S, also represents model failure but is
less critical than the failures of CS_M. In this category, the model made a
correct response when the student did not.

Many of the CM_S simulation failures can be explained by considering
the students' experience as they respond to the identification task. During
the actual task, many students made errors on one or more situations and
then apparently learned to classify these same situations correctly. This is
evidenced by their patterns of responses, typically an incorrect response to a
situation followed by two correct responses to the same situation, with no
additional errors. What has happened in such cases is that the student's
knowledge network presumably changed during the course of the task. The
knowledge base that generated the early incorrect responses is not
necessarily the same one that generated the later successful ones. And, it is
only the latter that is reflected in the student's interview. In such instances,
the model would correctly match the two correct responses, but it would
also give the correct response to the first item that the student missed. The
model does not learn. It simulates the state of the student at the end of the
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exercise, as reflected in the interview. If the student learned during the
course of the exercise, we have no way of knowing what node configuration
corresponded to the earlier, incorrect responses. Under the most
conservative criterion of learning--an error followed by two correct
responses--25% of the mismatches can be accounted for by student learning.
In each case the model gave the correct response to all three items. 7

Another 25% of the mismatches occurred when both the model and the
student selected different wrong situations as the response option. In these
cases, the model correctly determined that the student would not give the
correct response. The model's answers may differ from the student's for a
number of reasons, including guessing. These were, after all, multiple
choice exercises, in which students were asked to select the correct situation
from the menu of five possible ones. Students probably guessed at some of
the answers, but the model does not guess.

There are other possible explanations for the model failures. On the one
hand, some students may have been prone to "slip" as they made their
selections using the mouse, resulting in the unintentional selection of the
option residing either above or below the desired one. It is not an
uncommon phenomenon, as those who use a mouse frequently can attest.
Accidental errors 'of this sort are undetectable. Similarly, students may have
used a test-taking strategy, such as avoiding the selection of one response if
they used it on the immediately preceding exercise. These errors are also
undetectable: The model does not take test-taking strategies into account.

If we consider the "probable learning" mismatches (i.e., those that were
followed by two correct matches on the same situation) and the "different
error" mismatches (i.e., those in which the model and student both erred but
selected different errors) as understandable or explainable discrepancies,
the total number of mismatches between students and the model is reduced
from 77 to 51, leaving only 13 CSM and 38 CMS as mismatches. Thus,
the model satisfactorily accounts for 85% of all student responses.

A final evaluation of the model's performance comes from examining
how well individual student performance was simulated by the model. The

7 Several other instances exist in which the student made multiple errors on a
situation and then responded correctly to one final instance of that situation.
While it is very plausible that learning also occurred in these cases, one hesitates
to draw a conclusion based only on one response. Thus, these errors remain
unexplained.
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Table 5
Simulation of Individual Performance:

A Comparison of Model Responses with Observed Student Responses

Student No. of No. of Percent Percent Total
Items "Impossible" Exact "Explained" Percent

Matches Matches Matches Matches

1 13 3 100% 0 100%
2 15 0 80% 7% 87%
3 13 3 90% 10% 100%
4 13 3 80% 10% 90%
5 16 0 75% 6% 81%
6 11 0 100% 0 100%
7 14 0 86% 7% 93%
8 13 0 92% 0 92%
9 14 5 100% 0 100%
10 15 2 85% 7% 92%
11 15 3 67% 8% 73%
12 16 0 63% 31% 94%
13 14. ,0 71% 0 71%
14 13 0 69% 8% 77%
15 14 3 100% 0 100%
16 13 3 90% 10% 100%
17 15 0 73% 14% 87%
18 14 0 79% 7% 86%
19 14 0 79% 7% 86%
20 18 0 67% 7% 72%
21 13 0 69% 0 69%
22 16 0 69% 12% 81%
23 16 0 56% 13% 69%
24 16 2 57% 7% 64%
25 16 0 69% 12% 81%

results for each student simulation are given in Table 5. Two measures of
success are given in the table. The first is the number of exact matches,
excluding the "impossible" ones. The second is the overall percentage of
satisfactory matches for each individual and is given in the extreme right-
hand column of the table. This percentage is based on the number of
satisfactory matches, including the "probable learning" and "different error"
mismatches described above but eliminating from consideration the
"impossible" matches. As can be seen in Table 5, the performance of 6 of
the 25 students was fit exactly by the model with 100% agreement. The
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model simulated the performance of an additional 12 students with accuracy
between 80-99%. The model's success rate fell below 70% for only 3
students, to a low of 64%.

DISCUSSION

There are several important implications that result from this study. They
are discussed below with respect to the three questions posed in the
introduction: What do they learn, when do they learn it, and what can they
retrieve?

What specific information does a student learn from initial instruction
about a new topic?

One of the most striking findings was that students tended to encode and
use specific details from the initial examples used in instruction. Almost all
of the example nodes had to do with the five introductory examples, despite
the fact that several other examples were given later in the instruction. (See,
for example, the Specific response of Table 2.) This finding suggests that
the very first example of a concept is highly important and should,
therefore, be careflully developed. For many students, the initial examples
provided the scaffolding for the semantic networks. Some of the details of
those examples led to erroneous connections. As a case in point, the
example for one of the situations was based on money, leading some
students to expect (incorrectly) this situation to be present whenever money
was in the problem. These faulty connections were very evident in their
interview responses.

A general pattern of encoding was apparent from the students' responses.
Several students described the situations only in terms of the examples.
When prompted, they were unable to embellish their descriptions by using
abstract characterizations. No instance of example information followed by
abstract information was observed. In contrast, students having abstract
knowledge always used it in preference to giving example details. That is,
their initial responses were generalizations. When prompted for more
information, they used example details to support their abstract descriptions.
These findings suggest that students may first encode the example
information and then build the abstract network around it. Once formed, the
abstract portion of the network becomes stronger upon exposure to
additional examples, whereas the example portion does not augment its
activation or strength. If the abstract information is not encoded, the details
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of the example--which received high strength initially--remain the most
salient elements of the network.

How is the information that the student encoded in memory related to
the student's performance?

The statistical analyses suggest that the degree to which a student is able
to use his or her abstract information is positively related to the student's
success on the identification task. Those able to express mainly abstract
knowledge apparently had the best understanding of the five concepts and
were most easily able to identify them. Those for whom the abstract
characterizations were somewhat incomplete (e.g., those who were able to
give abstract description for some concepts but needed example details to
describe others) performed less well but still were more successful than
those who predominantly relied on example details.

The primary implication of this finding is that instruction should be
developed to facilitate the linkage of abstract knowledge to easily
understood example knowledge. The examples were undoubtedly salient
and easily encoded. For some students, the abstract characterizations were
equally easy to encode, but this was not universally true.

Does the cognitive model reflect this relationship?
The connectionist model is a useful way to examine individual

performance of students as they identified these concepts. The simulation
of individual performance was extremely successful. The high level of
agreement between model performance and student performance suggests
that the model captures most of the salient and discriminating information
actually used by the students. Most important, the model demonstrates the
impact of missing nodes and erroneously linked pairs of nodes. In many
cases, knowledge of which nodes were missing led to accurate predictions
of subjects' erroneous responses. In others, incorrect linkages among nodes
also led to accurate predictions of errors. The model and its simulation
provides strong support for the use of cognitive networks to represent
learning of concepts.
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An ongoing controversy in the cognitive science community centers on the
nature of the models used to represent cognitive phenomena. The two primary
contenders are production-system models (such as ACT* and SOAR) and
connectionist models (such as those produced by McClelland and Rumelhart or
Grossberg and his associates). Critics of both sides argue that the other cannot
suffice to capture human behavior. Both appear to be right. Perhaps what is needed
is a model that combines the best--and lessens the worst--features of both kinds of
model. A hybrid model having these characteristics is the topic of this report.

The recognition that hybrid models are needed is not new. A number of
prominent researchers (from both sides of the argument) have suggested that some
union of the two representations is in order. For example, in The Computer and the
Mind, Philip Johnson-Laird hypothesized that one way to get around some of the
dilemmas posed by existing models of cognition was to "postulate different levels
of representation: high-level explicit symbols and low-level distributed symbolic
patterns" (p. 192). The opinion of a long-time connectionist is reflected in the title
of a recent article: "Hybrid Computation in Cognitive Science: Neural Networks
and Symbols" (J. A. Anderson, 1990). And, Marvin Minsky echoes the sentiment
in his 1991 paper, "Logical Versus Analogical or Symbolic Versus Connectionist or
Neat Versus Scruffy," where he states explicitly that we "need integrated systems
that can exploit the advantages of both" (p. 37).

The need to combine the two representations derives from the fact that
neither alone has been entirely satisfactory in modeling complex cognition.
Symbolic production systems, as the oldest and most widely used of the two, have
been very successful in describing some important aspects of rule-based problem
solving. They have been widely used in artificial intelligence and have greatly
influenced the development of intelligent tutoring systems (Winger, 1987).

At the same time, such systems are noted for their inflexibility on some
relatively simple tasks, such as object recognition and classification. Bereiter
(1991) provides a good discussion of some of the central problems with rule-based
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cognitive models. As he (and others) point out, humans are not particularly good at
working out extended logical sequences. They make mistakes. A production
system does not make mistakes, and one difficulty in working with production
models is to produce human-like errors from the model. Many models consistently
have better performance than the humans they are intended to mimic.

A second difficulty lies in the way that production systems work, namely
systematically, orderly, and efficiently. People don't seem to have those
characteristics. We see this difficulty when we try to model complex problem
solving, using protocols generated by experts or by novices. Very few individuals
start at the beginning of a problem and proceed carefully through a top-down
process to reach the solution. To model their performance, we all too often are
forced to disregard some of the protocol material in our quest for sequential rule-
based performance. Moreover, many individuals simply cannot articulate what they
are doing or explain why one part of a problem triggers a particular response from
them, which suggests that their activity is not entirely a neat and orderly process.

Nonetheless, there are clearly many instances in which individuals do
engage in rule-based cognition, and production systems have to date provided our
best means of modeling them. This is particularly apparent in well-specified
domains from mathematics such as arithmetic, algebra, or probability, and in areas
of physics such as electricity and magnetics. What is common in these domains is
that there are highly specific rules that need to be acquired and applied by
individuals in order to operate successfully in the domain. As a simple example,
consider arithmetic operations. It would be the rare person who performed
multiplication or long division without resorting to the use of a standard algorithm.
Modeling the acquisition and use of such algorithms are precisely the areas in which
production models excel.

On the other hand, connectionist models are weak in just these areas.
Connectionist models excel in pattern recognition rather than in logical sequences of
actions. Unlike production systems, connectionist models do not depend upon the
firing of independent units such as rules. Rather, a collection of units (nodes)
spread activation through their connections to other units. One does not trace the
history of a cognitive process very easily in a connectionist model because of this
feature. Subtle differences in the connection weights may yield large differences in
model response. At any point in the process, it is the pattern of weights that
matters, not the presence or absence or a particular unit.

A particular strength of connectionist models is the flexibility allowed for
inputs. Because the models depend on the of weights over a great many units, the
presence or absence of any single unit is usually unimportant. Any input typically is
characterized by a great many units.
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Given the unique and complementary nature of the two approaches--the
strength of the symbolic system for modeling sequences of actions and the strength
of the connectionist approach for modeling pattern recognition--it is reasonable to
anticipate hybrid models that will capitalize on their individual strengths.
Surprisingly, few true hybrid models have yet emerged, although one suspects that
the number under development is somewhat greater. One of the best examples
available now was developed by Walter Schneider to model controlled or automated
processes (Schneider & Oliver, in press).

The remainder of this report describes a particular hybrid model, a model of
schema instantiation in arithmetic problem solving. This model utilizes both
production systems and connectionist networks to represent schema knowledge.

Overview

Types of Schema Knowledge

Schema knowledge for problem solving consists of four major components:
constraint knowledge, feature knowledge, planning knowledge, and execution
knowledge (Marshall 1990; in press a, b, c). There are key issues involved in each
type of knowledge, and each one demands its own distinct representation in the full
model of a schema.

Constraint knowledge has to do with recognizing patterns. The question of
interest is: Does the stimulus problem contain a pattern of elements sufficient to
activate an existing schema? This pattern recognition is accomplished by a
connectionist component of the model.

Feature knowledge, on the other hand, has to do with deciding whether the
necessary elements are provided in the problem, given that the pattern has already
been recognized as characteristic of a schema, so that the schema can be
instantiated. This is a question best answered by a production system. There is also
a connectionist part to this knowledge. Several potential patterns within one schema
may exist in a problem, and the most reasonable or most likely one for solution
needs to be recognized. This is a special case for competitive performance by all
pattern candidates, to determine which pattern most strongly reflects the identified
schema.

Planning knowledge is for the most part sequential and consists of setting
goals and selecting operations for obtaining them. Again, a production system is
appropriate. Planning knowledge guides the entire problem-solving process, and it
calls on feature knowledge and constraint knowledge when it needs more detail or
more elaboration about the problem.
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Finally, execution knowledge involves the step-by-step execution of
already-learned algorithms, which again calls for a production system. Execution
knowledge comes into play only when the plans call for it.

These types of schema knowledge have been the focus of a number of
experimental studies as well as the target of our modeling efforts. Each experiment
typically spanned several weeks and required subjects to participate in a number of
different tasks at various times. All of the experiments involved the Story Problo-
Solver (SPS), a computer-based instructional program about arithmetic sz-.
problems, and/or the Problem Solving Environment (PSE), a graphical system in
which students could practice what they learned under SPS. These systems are
described elsewhere (Marshall, Barthuli, Brewer, & Rose, 1989; Marshall, 1991).

Both SPS and PSE were designed around schema theory. In particular, they
were developed so that each of the four components of knowledge described above
could be isolated and evaluated as students acquired their schema knowledge. The
results of the experiments using these systems are given in several other papers
(Marshall, 1991; Marshall, in press a, c). The importance of the experiments for the
present report is that they provide empirical evidence against which our computer
models can be evaluated.

The Performance Model of Constraint Knowledge

We focused our attention initially on models of constraint knowledge. We
did so for two reasons: First, problem solving typically involves two general
aspects: recognition of the important parts of the problem and appropriate
application of techniques to these components to obtain a solution. The recognition
aspect demands constraint knowledge, suggesting that constraint knowledge is Rn
important initial point of access to schema knowledge. Second, we were interested
in how individuals understand and retain new information about a concept or set of
concepts. This, too, falls under constraint knowledge.

Constraint knowledge can be modeled very well using relatively common
connectionist models. Two models were created: a model that can mimic the
performance of subjects and a model which learns when given appropriate feedback.
Both of these were developed and evaluated as a first step in building the complete
hybrid model.

The model that simulates subject performance in identifying the situations
given in simple story problems is described in full in Marshall (in press)1 . It is a

1 The article referenced in this citation is reproduced in the chapter immediately
preceding the present one in this fial report. Details of the model are presented there.
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three-layer feed-forward (and feed-lateral) model consisting of input units, a middle
layer of interconnected units, and a set of output units. 2 The model takes as its
input a binary vector having elements of 0 or 1, which represent 25 problem
characteristics. The model produces as its output the identification of one of five
situations that may occur in the story problem.

The input units are connected to a middle layer of units representing a
subject's knowledge about the situations. This layer of knowledge nodes
corresponds to the typical hidden unit layer found in many connection models, but it
is not hidden in this instance. The nodes here derive from student interviews. Each
student's interview about the situations was coded and transformed into a set of
nodes and links among nodes. The model used this information to derive its output
response. Again, full details of the simulation are given in Marshall (in press).

The performance simulated by the model is student response to a computer-
based identification task. The model performed very well, simulating the
performance of a number of students exactly and accounting for a large majority of
responses for the rest. Both correct responses and specific errors were modeled.

The Learning Model 3

The performance model provided the initial framework for the subsequent
learning model. The input units for this model are essentially the same as for the
performance model, as are the output units. A layer of hidden units replaces the
knowledge nodes that derived from the student interviews in the performance
model. Thus, these hidden units are hypothesized to exist but are unknown.
Moreover, the nature of their connections to the inputs and outputs are unknown.
The question of interest in this model is whether a connectionist model of this form
can learn to make the appropriate classification of the five situations.

The optimum number of hidden units for this case is undetermined.
Theoretically, it depends upon the optimum number of knowledge nodes that a
student should acquire, and this number is not known. From the instructional

2 The model can also be conceived as a four-layer feed-forward model in which the
second and third layers contain the same units. This eliminates the problem of having
activation spreading laterally among units at any level. To achieve independence at all
levels, we insert a third layer of units that duplicates the units at the second layer.
Connections exist from all original units at the second layer to their counterparts at the
third layer and also to any other units to which they may be conceptually related.
3 In developing this model, we have drawn substantially from the models described in
chapter 8 of Rumeihart & McClelland (1986) by Rumelhart, Hinton, & Williams as well
as the extension of them in chapter 5 of McClelland & Rumelhart (1989).
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experiment reported in Marshall (in press), the maximum number would be 33, the
number of possible knowledge nodes. However, no student ever acquired all
possible nodes, and it is not clear that having all of them would produce maximum
performance. Several students made more than 90 percent successful responses
with many fewer nodes. In SPS-based experiments, we observed that students
typically acquired an average of 14 nodes. The range was 6 to 17. In general,
having more nodes did not necessarily mean that students performed more
successfully on the task.

Using the instructional experiment as a guideline, we include 14 hidden
units in the learning model. As an initial simplification, the model is constrained
to have 3 layers, eliminating the feed-lateral feature of the performance model. The
three layers are the input layer, containing information about the problem to be
classified; the hidden layer, containing units that correspond roughly to the
knowledge nodes of the performance model; and the output layer, containing the
names of the five possible situations.

The model requires specification of a learning rate, r7. This rate defines
how strongly the model reacts to incorrect answers with each trial. The learning rate
must be chosen carefully so that the system will converge to the correct solution in a
reasonable amount of time. A learning rate which is too large may cause the system
to converge to an incorrect solution while a learning rate which is too small may
prevent convergence in a practical amount of time (and perhaps at all). In general,
for the network to stabilize (i.e., for learning to occur), the larger the number of
hidden units, the lower the learning rate. We found that learning rates between .05
and. 10 were most satisfactory.

For this model we also include a momentum factor, P. This factor allows
the system to carry over learning from previous problems when new problems are
presented. As Rumelhart and McClelland (1989) point out, without the inclusion of
a momentum factor, the system may converge to a "local" solution and stabilize
there, even though there is a better "global" solution (p. 132). A suitably large AL
prevents the model from getting stuck in such local solutions. In addition, a
momentum term tends to speed up the model, because it allows the specification of
a higher learning rate.

Testing the model corresponds to running it over enough trials for it to
reach some pre-determined criterion. Each trial proceeds through the steps listed
below:

o presentation of a randomly selected input vector;
o forward propagation of activation from input to hidden units

and from hidden to output units;
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o calculation of the errors associated with each output unit;
o backward propagation of errors from output to hidden units;
o modification of the weights of the connections between all

layers of units based on the errors.
Each of the main components of the model are described briefly below.

The Task The task for which this model was developed is to learn the
appropriate classification of a set of 100 story problems according to the situations
depicted in them. Each problem is represented by a set of characteristics which the
model uses in making its classification. Five output responses are possible.

Inputs. The inputs to the model are the set of 100 binary vectors nearly
identical to the ones described for the performance model (see above and Marshall,
in press). Each vector represents one arithmetic story problem. The problem is
coded according to the presence or absence of several general characteristics.

The difference between these input vectors and those of the performance
model is the inclusion here of coded information about the form of the question
stated in the problem. In the performance model and in the empirical studies
simulated by it, the items were situational descriptions and contained no questions.
Both the learning model and the hybrid model described below require problems
rather than situation if we are to model the full problem-solving process.

In general, there are two options for item presentation: either the entire set
is presented again and again in some fixed order, making an orderly cycle through
the entire stimulus list and insuring that each item is presented an equal number of
times; or each presentation is randomly determined at the time of the trial, so that
every item in the set has an equal chance of being selected on every trial. We have
implemented the latter, primarily because we wished to avoid any possible order
effects and also because items were always randomly generated for students in our
empirical learning experiments.

Outputs. The model outputs correspond to the identifications of situations
given in the story problems. For each problem presented, the model can make one
of five possible responses, one for each situation.

Input Units. In a single trial the layer of input units is comprised of one
input vector. Each element of the input vector takes a value of 1 (if the
characteristic it represents is present in the selected item) or 0 (if it is absent). The
input vector to the learning model contains the original 25 elements used in the
performance model plus the additional 2 elements to code the question, resulting in
a 27-element vector.

Hidden Units. The middle layer of the model contains hidden units. Each
of these is connected to every input unit in the layer below it and each in turn
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contributes to the activation of all output units above it. As mentioned previously,
there are 14 hidden units.

Output Units. Each situation is represented by one output unit. On each
trial, following activation from the hidden unit layer directly below, each output unit
has some level of activation. The one with the highest level is the model response
for that trial.

Bias. Each hidden and output unit has a bias associated with it. The bias is
added to the incident activation upon the units and functions like a threshold for the
unit (cf Rumelhart). If insufficient activation is received at the unit to overcome the
effect of the bias, then the output of the unit will be insignificant.

Input-to-Hidden Weights. As in most connectionist models, each of the
input units connects to each of the units in the layer immediately above it, i.e., the
hidden unit layer, and each connection has its own unique weight. When an input
vector is presented to the model, activation spreads from the input units to the
hidden units. The amount of activation spread is determined in part by the strength
(i.e., weight) of the connection.

Hidden-to-Output Weights. Each hidden unit is connected to every output
unit, and each has a strength or weight. The values of these weights are also
randomly generated for the initial trial, using the same constraints as for the input-
to-hidden weights.

Model Parameters and Initialization Values

The model requires that two parameters be set: the learning rate 1 and the
momentum it. For most of our tests, we have used 1 = .07 and L = .9.

Additionally, the model requires that each unit i have a bias term fli and

that each connection between a pair of units i and j have a starting weight W, . The

bias terms and the weights are generated initially from a uniform distribution
ranging from -.005 to +.005.

Finally, the learning criterion must be set. This requires choosing a
tolerance value that indicates how many--if any--errors will be allowed and
specifying how large the output value must be in order to be considered correct. We
use a 90 percent tolerance standard; that is, the model must correctly identify at least
90 of the 100 test items. To be considered a correct response, the appropriate output
unit must have a value that is at least .25 larger than the next largest output unit.

Under the parameter selections and initialization values described here, the
model converges at approximately 7,000 trials.
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Technical Details of the Learning Model 4

The model consists of the three-layer network shown in Figure 1, with each
layer comprised of a set of units. Typically, one thinks of the input units as being at
the bottom level of the model and the output units at the top, as in Figure 1. The
hidden units make up the middle layer. Each layer is fully connected to the layers
immediately above and/or below it, as shown in Figure 1.

We define the following elements of the model:
17 the learning rate;
A the momentum factor;

ai the activation that accumulates in each hidden or
output unit i;

A, the activation that spreads from unit i to units
above it;

Wy the weight associated with the connection
between units i and j;

A the bias associated with unit i;

?ri the target level of output activation; externally set
as 1 if the output unit i represents the correct
situation or 0 if it does not;

Vi the error associated with unit i.

The mode' learns by processing an input vector and forward propagating
activation from the lowest level to the highest, by calculating the error at this
highest level and then backward propagating the error down through all levels, and
by adjusting all weights connecting pairs of activated units accordingly.

The activation spreading out from a unit is defined as:

1 or 0 if i is an input unit

S1 +fli if i is a hidden or output unit

4 All programs for the models in this report were written in C+ + and run on a PC-80486
workstation.
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where P, is the bias associated with unit i and ai is the activation that has
accumulated into the unit from the layer of units below. The accumulated activation
is determined by:

J
ai -- EO#;iJPJ

j=1

If i is a hidden unit, j refers to input units, and the summation occurs over all

weights between a hidden unit and the input units at the level below and the 1 j 's of
the input units. If i is an output unit, j refers to hidden units. Each of the units j at

the level below unit i will have an associated ,j which influences unit i. Note that

Gi is defined only for hidden and output units.

The spread of activation begins with the input units. Those with values of 1

activate their associated hidden units which in turn pass some of the activation to
the output units by means of their A'i 's) . When the forward propagation of

activation is completed, for every output unit i the difference between ?ri and ;,i is

used to compute the error E,-:

da1
where the derivative can be expressed as

dac

thus yielding a final form for the unit's error of

with all terms as defined above. The error signal is then passed to the hidden units
by:

SdA
1,q d' - C Xe #;o (1-A,)
J-1 •ai j-

for each hidden unit i. The summation occurs over all output units j. Input units do
not accumulate error.
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After the error signal has propagated backwards through the network, the
weights are adjusted by:

40 (t) = 4 (t- 1) + ACo4 (t)

where t indicates the current trial and (t -1) is the previous trial. The amount of

change is determined by:
Awo Wt = 7/iAi +/ (Awo Qt- W)

Note that wij emanating from input units with initial values of 0 will receive no

adjustment. A similar adjustment is made for the bias terms, with

fA t) = fA (t- 1) + Afli (t)

and the amount of change is computed by

A.8, W = teA i +(A, (t- 1)).

After the weights and biases have been adjusted, the activation and error
terms are reset to zero for the next trial. The only carryover from trial to trial is
contained in the weights, the biases, and their delta values (o # i, AaO4 ,and AP)"

The model runs with alternating learning and testing phases. The learning
phase runs in blocks of 100 trials. At the conclusion of every block of trials, the
model suspends the backwards propagation of error and runs a performance test
over all input vectors to determine whether it has yet reached a specified criterion
for successful learning. During a testing phase, the model maintains an unchanging
set of weights, which is the set reached on the last trial of the previous learning
phase.

The criterion for learning is the correct response to at least 90 of the 100
input items, with "correctness" established as the activation of the appropriate

output unit i and with A at least .25 larger than the next largest activation value for
any output unit. In practice, the system typically converges with 94-97 items correct
in the testing phase. Given the fact that A, ranges only from 0 to 1, a difference
between two values of .25 is highly significant.

During the testing phase, each of the 100 input vectors is presented in a
fixed order to the model and a response is generated following the spread of

44



activation as before. The response is scored as correct or incorrect, and the next
vector is presented. If the model fails to reach the defined criterion (i.e., errs on
more than 10 of the items), the learning phase resumes with another block of trials.
When the model reaches the defined criterion, the weights are stored for later use, to
be described below.

The Hybrid Model

The hybrid model developed to solve story problems has the form shown in
Figure 2.5 It has three main components: two production systems, represented in
the figure by the decision boxes and arrows, and a connectionist network,
represented in the figure as a set of nodes and links. All of these interact with each
other, indicated in the figure by the arrows leading into and out of the rectangle in
the middle of the figure. The connectionist model of Figure 2 is the identical model
described under the learning model. It performs here in its testing mode; at this
point the model is presumed to have learned the classifications, and no additional
changes in weights occur. The weights used to compute a response for the hybrid
model are those that were saved when the learning model reached its learning
criterion.

The problem input to the full model now includes more than the vector of
characteristics used in the performance and learning models. In addition to this
vector--which remains the input to the connectionist part of the hybrid model--
problem input consists of specific detail about the quantities found in the problem.
This information is encoded by dividing the problem into several clauses. Each
clause contains three types of information: owner, object, and time.

An example of clause coding for a specific problem is given in Table 1.
Owner contains two fields: name and type. Object contains four fields: name,
type, value, and action. The action will contain such information as is necessary to
determine which arithmetic operation to use. For example, an action might be
increase, decrease, more, or less. The final type of clause information is Time,
which contains just one field that indicates a relative time of occurrence within the
problem. A clause may contain multiple owners and multiple objects, and it may
omit time. The clause information is provided as input to the smaller production
system (indicated by the arrow in Figure 2).

5 In this figure and others depicting hybrid models, we do not attempt to represent all
units of the model. Rather, in the interest of having simple and easy-to-understand
representations, we show only a few units at each level. Likewise, we do not show all
rules that are part of the production system.
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When a problem is presented to the model, the connectionist network makes
the appropriate recognition of the situation using the input vector as before, and it
passes that information into a common area accessed by all parts of the model
(represented by the rectangle). From here the information is available to the smaller
production system (on the left side of the figure). This production system has as its
goal the recognition of relevant elements of the problem once the situation is
known. It passes its results back into the common area to be used by the
connectionist network again if necessary or by the larger production system, which
will produce a numerical solution.

The additional information derived from the clauses is used by the
production system to determine which values of the problem are known, which are
unknown, and their relationship to each other. Just as the recognition of the
situation uses constraint knowledge about story problems, the selection of relevant
pieces of the problem uses feature knowledge. To illustrate what we mean by
feature knowledge, we describe briefly the change situation. A change situation is
characterized by a permanent alteration over time in a measurable quantity of a
single, specified thing. Thus, the model must confirm that only one thing is
represented in the clauses. There are three aspects to a change situation: a starting
amount, an amount by Which it is to be changed, and an ending amount. The model
must check that there are three available amounts, even if one of them is unknown.
A change takes place over time, so the model looks for three distinct times to be
represented in the change situation. The production system works through the
clauses, confirming that similar elements are involved and placing the values from
the problem on a list that can be used by the larger production system in the model.

Thus, for the hybrid model of Figure 2, the constraint knowledge is
modeled by the connectionist network, and the feature knowledge is modeled by a
production system. In the full hybrid model of schema knowledge, relevant feature
and constraint knowledge are used to plan a solution. Thus, the input to the
planning component of the hybrid model is the output from the feature production
system coupled with the output from the connectionist model of constraint
knowledge. Together, they provide sufficient information for the planning
production system to set a series of goals and to call on the appropriate execution
knowledge for achieving them. Table I illustrates some of the production rules.

Of the four types of knowledge that comprise a schema, we consider
execution knowledge to be the least interesting, and we have made little attempt to
model how individuals learn the basic arithmetic operations. We take as given that
these are in place. Our argument here is that there already exist production systems
designed to model the acquisition and use of the algorithms of addition, subtraction,
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multiplication and division. The model here focuses instead on the selection of the
appropriate values from the problem to use in carrying out necessary computations.
Thus, the errors that can be modeled are those reflecting mistakes in selecting pieces
of the problem or in selecting an operation to be carried out. Errors of computing
are not possible (i.e., 3 x 4 = 7). The consequence of this assumption about
algorithms is that we have not constructed a separate production system to make the
computations, although it would be easy to do so. 6

The model is instantiated with input to the connectionist model in the lower
portion of Figure 2. The input consists of a single binary vector representing all
information in the multi-step problem. Thus, pointers to more than one situation
typically occur. The connectionist network identifies the most salient situation, and
passes that information to the feature identifier (represented in Figure 2 as the
smaller of the two production systems). Using the output from the connectionist
network together with the clause information, this part of the model determines the
best configuration of data to represent the selected situation. Several configurations
may be possible. The production system selects a subset of clauses to represent each
one. If there are multiple configurations, each one is then evaluated using the
original connectionist model. For each configuration the production system creates
a new input vector that contains only the information of the selected clauses. The
output values associated with each input vector are compared, and the input vector
leading to the highest value is selected as the immediate problem to be solved. The
identified situation and its subset of clauses are then passed to the planning
component of the schema. Thus, feature knowledge (i.e. the production system) and
constraint knowledge (i.e., the connectionist network) interact to provide the
necessary information that will be used to plan the solution.

A plan begins with the creation of a goal stack in which the top level goal
is to produce a numerical solution. Additional goals are added to the stack and
removed as they are achieved. A number of different goals are addressed by the
production system. Some have to do with locating the unknown in the problem.
Others center on carrying out the appropriate computations. Like feature knowledge
and constraint knowledge, planning knowledge is schema-specific. The model uses
its knowledge about the current schema to develop plans for solving the problem.

Table 1 illustrates a number of different goals and the steps the model takes
to achieve them. The model attempts to solve the first subproblem it recognizes. If
it is successful at this point, the solution is passed back to the planning component

6 An additional reason to omit the modeling of computational errors is that the subjects
whose performance we have studied rarely make these errors. All of our subjects have
been college students with poor problem-solving skills. They are proficient in
computation but not in problem solving.
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which then must determine whether the entire problem has been solved or only a
sub-problem. A number of things feed into this determination. First, the
connectionist network is called upon to find any other plausible situations after the
first one has been removed from the problem. A check is carried out to see if there
are additional unknowns anywhere in the known problem structure. If potential
subproblems are discovered, their clauses and relevant input information is fed back
into the model, and the entire cycle begins again. If no additional sub-problems are
recognized, the model produces as its answer the computed value for the last sub-
problem it solved. Table 1 contains a complete trace of the model's activity for a
multi-step problem.

The hybrid model is able to solve problems having more than one unknown.
Such problems are common in arithmetic and algebra, and they are frequently
studied because students do not routinely solve them easily. The different
components of the model pass information back and forth as necessary. For some
problems, a re-cycling through the connectionist network will be unnecessary
because only one configurauon will be possible. For other problems, the model
may move back and forth between the connectionist network and the production
systems until it develops enough information to create a workable plan.

Thus far, .the hybrid model successfully solves problems of the type
illustrated in Table 1. Extensions of the model to deal with more complex problems
are ongoing, as are comparisons of human and model solutions. The initial findings
are encouraging. The hybrid model presented here can solve single or multiple-step
problems, and it produces solutions that appear similar to human subjects' solutions.
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Table 1: Hybrid Model Output for a Multi-Step Problem

Model Output: Annotated Description of Output:

Joe won $100 in the state lottery. fie -pcnt some ,nf it on toys Problem Text
for his two children. He bought a doll for Sue that cost $25 and
he bought a stuffed bear for Ellen that cost $28. How much of
his lottery winnings did he have after he bought the toys?

111010000010100001001000100 Input Vector for Connectionist Model

owner Joe person First Clause
object dollars dollars 100.000000 none
time 0

owner Joe person Second Clause
object dollars dolIarsUNKNOWN decrease;

toys toys UNKNOWN none
time 1

owner Joe person Third Clause
object amount dollars 25.000000 decrease;

doll toys 1.000000 increase
time I

owner Joe person Fourth Clause
object amount dollars 28.000000 decrease;

stuffed-bear toys 1.000000 increase
time 1

owner Joe person Fifth Clause
object dollars dollars UNKNOWN none
time 2

0-369 0.388 0.301 0.280 0.321 - > GR First sub-problem identification by connectionist model.

* Combo: I The possible configurations. 0 indicates the one that
Combo: 2 yields the highest activation value (found via small
Combo: 3 production system and evaluated with connectionist

model).

owner Joe person The clauses that contribute to the configuration
object dollars dollars UNKNOWN decrease; selected by the connectionist model as best. The

toys toys UNKNOWN none identification of the GROUP situation and the clause
time 1 information is passed to the next component of the model

which sets the initial goal and determines which values will be
owner Joe person used in solving the problem.
object amount dollars 25.000000 decrease;

doll toys 1.000000 increase
time 1

owner Joe person
object amount dollars 28.000000 decrease;

stuffed-bear toys 1.000000 increase
time 1
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Table 1 continued:

Model Output: Annotated Description of Output.

Entering ExecuteRules IF (the top goal is SOLVE, the situation is GROUP,
Production Rule: 25 and the number of subgroups is not known)
Goal Stack:: ID NUMBER-SUBGROUPS SOLVE THEN {add a new goal of identifying the number of
ProblemValues: UNKNOWN 25.00 28.00 subgroups.)

IF {the number of subgroups is unknown and the goal
Production Rule: 26 is to find the number of subgroups)
Goal Stack: ID NUMBER-SUBGROUPS SOLVE THEN (count the number of subgroups and store the
ProblemValues: UNKNOWN 5.00 28.00 value)

IF (the goal is to fred the number of subgroups and
Production Rule: 27 that number is now known)
Goal Stack: SOLVE THEN {delete the goal from the goal stack)
ProblemValues: UNKNOWN 25.00 28.00

IF {the goal is SOLVE, the situation is GROUP, the
Production Rule: 28 number of subgroups is known, and there is an
GoalStack: ID PARTGR SOLVE unknown in the problem)
ProblemValues: UNKNOWN 25.00 28.00 THEN (set a new goal to find out which part of the

problem is unknown)

IF {the answer is unknown, the goal is to identify where
Production Rule: 30 the unknown is located, and if it is in the
Goal Stack SUPERGROUP ID PART GROUP SOLVE supergroup location)
ProblemValues: UNKNOWN 25.00 28.00 THEN (add the goal of computing the supergroup to the

goal stack)

IF (the answer is unknown, and the goal is to find the
Production Rule: 32 supergroup)
Goal Stack: SUPERGROUP IDPARTGROUP SOLVE THEN (add all subgroup values and store the result as the
ProblemValues: UNKNOWN 25.00 28.00 answer)

IF (the goal is to find the supergroup, and the answer is
Production Rule: 33 known)
Goal Stack: SUPERGROUP IDPARTGROUP SOLVE THEN (store this information in the problem values)
ProblemValues 53.00 25.00 28.00

IF (the goal is to find the supergroup and it is known)
Production Rule. 34 THEN {delete the goal from the goal stack)
Goal Stack ID PART GROUP SOLVE
ProblemValue 53.00 25.00 28.00

IF (the goal is to identify the missing part of a group
Production Rule: 29 problem but there are no missing parts)
Goal Stack: SOLVE THEN (delete the goal from the goal stack)
ProblemValues: 53.00 25.00 28.00

IF (the goal is to solve the problem but there are no
Production Rule: 24 unknowns)
ProblemValues: 53.00 25.00 28.00 THEN (remove the goal from the goal stack)

IF (the goal stack is empty)
Production Rule: 0 THEN (return the answer)
Partial Answer - 53.000000

The first sub-problem has been solved.
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Table 1 continued:

Model Output: Annotated Description of Model Output:

0.481 0.357 0.381 0.370 0.368 -> CH At this point the system re-examines the original input to
determine if there are other situations containing other

Combo: 1 problems to be solved. It finds a CHANGE, and there is only

one possible configuration.

owner Joe person The necessary clauses are identified for the planning and
object dollars dollars 100.000000 none execution components.
time 0

owner Joe person The system recognizes that there is an unknown value for the
object dollars dollars 53.000000 decrease; object toy but disregards it in favor of the selected change

toys toysUNKNOWN none configuration.
time 1

owner Joe person
object dollars dollars UNKNOWN none
time 2

The production begins a new cycle:
Entering ExecuteRules IF {the goal is to solve the problem; the
Production Rule: 1 situation isCHANGE; and there is
Goal Stack: ID PARTCHANGE-SOLVE an unknown value on the value list)
ProblemValues: 100.00 53.00 UNKNOWN THEN {add a new goal of identifying which

part of theChange situation is unknown)

Production Rule: 16 IF (the goal is to identify the which part of the
Gol StalEND ID- PARTCHANGE SOLVE problem has an unknown and if the last
ProblemValues: 100.00 53.00 UNKNOWN element of the value list is unknown}

THEN {add a new goal of finding the end-result)

Production Rule: 18 IF {if the goal is to find the end result and
Goal Stack: END ID_PART CHANGE SOLVE the direction of change is negative)
ProblemValues: 100.00 53.00 UNKNOWN THEN {set ANSWER to the difference between the

start-amount and the amount of change)

Production Rule: 19 IF {the goal is to find the endresult and there
Goal Stack: END ID PART CHANGE SOLVE is only one unknown value in the value list
ProblemValues: 100.00 53.00-47.00 and if a value is known for ANSWER)

THEN (replace the unknown in the value list
with the value of ANSWER)

Production Rule: 20 IF {the goal is to find the end result and
Goal Stack: IDPART CHANGE SOLVE there are no unknowns in the value-list)
ProblemValues: 100.00 53.00 47.00 THEN (delete the goal from the goal stack)

Production Rule: 5 IF (the goal is to identify a missing part but
Goal Stack: SOLVE all parts are known)
ProblemValues: 100.00 53.00 47.00 THEN (delete the goal from the goal stack)

Production Rule: 4 IF (the goal is to solve the problem but
ProblemValues 100.00 53.00 47.00 there are no unknowns)
Partial Answer - 47.000000 THEN (pop the goal from the goal stack)

Final Answer - 47.000000 IF (the goal stack is empty)

THEN (return the answer)
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