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Abstract

This paper summarizes recent research results on applications of
computational learning theory to problems involving rich systems of
knowledge representation, in particular, first-order logic and extensions
thereof.

INTRODUCTION

Science is such a useful activity that people have become interested
in automating it, at least in part. A great deal of fruitful effort has
been devoted to this task (e.g., [9, 10, 30}) but the limitation. of existing
systems lead to reflection about the very character of empirical inquiry.
What is a scientific theory, after all, and what makes one theory better
or worse than another? How should inquiry proceed in order to max-
imize our chances of believing a true theory, and minimize the chance
of believing a false one? And how much success can be expected of
the scientific enterprise, especially when carried out with limited access
to data? Consideration of such matters leads to a set of interlocking
issues at the heart of contemporary epistemology, including questions
about probability, simplicity, approximate truth, hypothetical entities,

*Research support was provided by the Office of Naval Research under contracts
Nos. N00014-87-1K-0401 and N00014-89-J-1725. Correspondence to D. Osherson,
IDIAP, C.P. 609, CH-1920 Martigny, Switzerland, e-mail: osherson@idiap.ch
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and rational belief. Already resistant to clarification and solution, these
questions become even more difficult when scientists are conceived as
resource-limited computational agents

Faced with such conceptual complexity, the natural strategy is to
experiment with alternative, simplifying assumptions about scientific
practice and attempt to derive general theorems about empirical inquiry
within the simpler contexts so defined. It may then be hoped tkat com-
parison and analysis of the results obtained will lead to insights that
bear on the practical problem of building artificial systems of empirical
inquiry in science, industry, medicine, etc. While there is no guarantee
that such a research strategy will succeed, we note that it is analogous
to past endeavours whose impact on technology have been substantial
(for example, the analysis of alternative models of computation).

Thus is born tlie discipline of Computational Learning Theory whose
goal is to define and analyze increasingly realistic models of empirical
inquiry.} Each such model is adapted to a particular discovery problem,
by which we mean a scientific or engineering situation in which (a) it
is desirable to possess an accurate theory of the processes giving rise to
available data, but (b) such a theory cannot be deduced in the strict
logical sense from this data. The solution of a discovery problem thus
requires some kind of inductive reasoning, and the ability to solve a range
of discovery problems requires an inductive method of wide applicability.

Contemporary research within the foregoing framework may be di-
vided into two categories according to the expressiveness of the theories
emitted by envisioned systems of inductive inference. The first category
deals with theories based on knowledge representations like recursive
functions, formal languages, boolean functions, eic. The second deals
with more expressive representational systems like first-order languages
and extensions thereof. Within each of these categories two research ar-
eas have emerged, directed at different models of the data upon which
inductive inference is based. In the first of these models, data is made
available in some arbitrary order with no assumptions about the sta-
tistical processes that govern its generation. In the second model it is
assumed that data arise via independent and identically distributed tri-
als with respect to some underlying probability distribution (we refer
to this below as 7id data). We may thus picture the current state of

! An entry to the literature is provided in [23, 2].




Restricted Expressive
non-tid data 1 11
tid data 111 IV

Table 1: Contemporary Research on Machine Inductive Inference

mathematical research on inductive inference as the 2x2 matrix shown
in Table 1.

Through the early 1980’s most work in machine induction fell in
Quadrant I (see [11] for an overview of this research). In 1984, Valiant
[27] introduced a new model of inductive inference based on iid data.
This model relaxed the requirements on the accuracy and reliability of
inference algorithms. These relaxed requirements made possible the im-
position of more stringent demands concerning efficiency, both in terms
of the amount of data examined, and the resources consumed to examine
them. Valiant’s approach gave rise to the research thrust in Quadrant
IIT which has yielded quantitative results relating the time complexity
of learning algorithms to the level of accuracy and reliability demanded
of the solutions they provide. Blumer et al. [1] elaborated and extended
Valiant’s model of machine induction to give a deep mathematical anal-
ysis of the conditions under which a wide range of discovery problems
can be solved within this model. Their analysis has led to a vigorous
research effort on the part of many researchers devoted to investigating
reliable and efficient inference of classes of geometric concepts, recursive
functions and formal languages (see [23]).

Simultaneous with the foregoing developments in Quadrant III, Osh-
erson & Weinstein |14, 16, 18]— building on earlier work of Shapiro [26]
and Glymour [6] — introduced a model of inference for first-order log-
ical structures which extended the research in Quadrant I to the realm
of highly expressive systems for knowledge representation. This work
thus falls into Quadrant II. We obtained general results about the iden-
tification of classes of relational structures and about the behavior of
algorithms satisfying various computational restrictions. In recent work,
we have extended the research thrust in Quadrant III to the quantitative
study of algorithms for inferring properties of relational structures. This




latter work thus belongs to Quadrant IV. In order to pursue this study,
we have developed mathematical definitions of approximate truth which
allow us to extend the iid data model to discovery problems which arise
in the context of first-order logic. It is our hope that these develop-
ments open the way to further quantitative results on machine inductive
inference in the domain of highly expressive knowledge representations.

In this paper, we briefly describe our research on inductive inference
corresponding to quadrants IT and IV. Our work in quadrant II has fo-
cussed on a paradigm of scientific discovery known as “truth detection”
wherein an inductive agent is responsible for determining the truth value
of a first-order sentence in an unknown structure. Within this paradigm,
data are presented in arbitrary order. In contrast, our research in quad-
rant IV has been devoted to articulating concepts of approximate truth
and investigating the inference of approximately true theories on the
basis of #id data drawn from arbitrary relational structures. We now
proceed to describe some highlights of this research, beginning with ap-
proximate truth.

APPROXIMATE TRUTH

Ideally, we desire our inductive inference agents to provide complete
solutions to the problems posed to them, to work with 100% reliability,
and to be computationally feasible. It was thus an essential contribution
to the theory of learning to discover that for many situations of interest
to us, the existence of such inductive inference agents is ruled out in
principle. Such was the message of Gold’s [7] seminal paper and of much
of the research to which it gave rise. Valiant’s [27] paper may be viewed
as a response to the negative theorems of this literature. He showed that
for small sacrifices in reliability and accuracy, efficient inductive inference
algorithms could be designed for nontrivial learning problems. Valiant’s
paradigm came to be known as “Probably Approximately Correct” (or
PAC) learning since the solution sought need not be entirely correct nor
obtained with perfect reliability.

One goal of our research program has been to exploit Valiant’s insight
in the context of learning problems involving highly expressive languages,
notably, first-order logical languages. For this purpose it is first neces-
sary to formulate a sense in which solutions to such problems can be




partial. Two approaches have been pursued. The first approach extends
the PAC framework in a straightforward way to the first order context.
The second approach adopts a new analysis of the sense in which a first-
order sentence may be approximately true and then investigates algo-
rithms designed to discover approximate truth-values for such sentences
in a wide class of potential situations. We give some idea of the results
achieved within each approach, starting with our extension of the PAC
framework.

Learning First-Order Concepts in the PAC Framework

Within the PAC learning framework {(see [1]), a space of points is
selected, along with a collection of its subsets called “concepts”. One
concept, X, is selected arbitrarily, its content being initially unknown to
the learner £. Points are then sampled from the space according to a
probability distribution that is also unknown to £. Each sampled point is
labeled as falling in or out of X. £ must convert the sampled points into
a concept X’ such that the probability of the symmetric difference of X
and X’ is low according to the distribution that governs sampling. It is
desired that regardless of the concept X that was chosen before sampling
began, the probability is high that a sample of points will be drawn that
lead £ to a successful conjecture. In this case, the concept-class is said to
be “learnable” in the space. We assume familiarity with the quantitative
version of this concept-learning paradigm, which is presented in [1]. For
simplicity in what follows, we allow learners to be any function from
labeled samples to concepts, excluding coin tosses as further inputs.

Now in a practical setting, the set of concepts cannot be arbitrary
subsets of the given space. In order to be useful they must at least have
finite descriptions in a well-behaved language; otherwise the learner could
not communicate her findings to anyone else. First-order logic provides
a set of drescriptions of finite character, so we now proceed to embed the
foregoing paradigm in a model-theoretic context. Our discussion will be
relatively nontechnical.

To begin, we fix an arbitrary, nonlogical vocabulary and denote the
resulting predicate calculus (with identity) by £. For example, the non-
logical vocabulary might consist of a single binary relation symbol §.
The set of sentences of £L — that is, the formulas in which all variables




are bound - are also denoted by £. Let z denote a distinguished free
variable of £. By L(z) we denote the set of formulas in which just the
variable x occurs free. Thus, for the language based solely on S, the
following formulas belong to £(z).

(1) (a) Jyz(Szy A Syz)
(b) Vy(z =y v Szy)
(c) Vy(z = y v Syz)

Suppose now that a model M of £ is given. Such a model consists
of a nonempty set |[S| (called M’s domain) plus interpretations of the
nonlogical vocabulary in that set. For example, O = (w, <) is a model of
the language based on S; the domain |O] of O is the set w = {0,1,2,...}.
Each model determines the truth value of every § € L; for example,
JaVy(z = yV Szy)is true in O and JaVy(z = yV Syz) is false. Similarly,
each model assigns a subset of its domain to every ¢ € L(z); this set
consists of exactly the domain elements a such that ¢ is true in the model
when z is interpreted as a. To illustrate, O assigns the sets {2,3,...},
{0}, and @ to (1)a,b,c, respectively. It may thus be seen that any pair
(M, ®) consisting of a model M for £ and a subset  of L(x) determines
a concept-learning problem of the PAC variety. For example, O and (1)
determine the problem in which w is the underlying space of points, and
the extensions of (1)a,b,c in O are the collection of concepts.

Given a class K of models and ® C L(z), ® is said to be learnable in
K just in case ¢ is PAC-learnable in every S € K. Within this analysis
two mathematical problems arise. They may be stated as follows.

(2) (a) Given a set & C L(z), characterize the models in which &
is learnable, and the models 11 which @ is not learnable.

(b) Given a collection K of models, characterize the sets of for-
mulas that can be learned in K, and the sets of formulas
that cannot be learned in K.

To address these questions, a fundamental tool is the work of Blumer et
al. [1) relating VC-dimension to learnability. Relying on their results,
we have been able to prove a variety of theorems bearing on (2)a,b. One
finding of a positive character followed by one of a negative character
may be described here; details, proofs, and further results are provided




in [19]. The following standard terminology will be helpful. A set T C £
is called a theory. Given theory T and model S, we write S = T just in
case every member of T is true in S.

First finding: A theory T is called strong just in case it
meets the following conditions, for all models S, U':

(a) if S = T then |S| is infinite;

(b) if SET,U =T, and both S and & have denumerable
domains, then § and ¥ are isomorphic (in other words,
T is “w-categorical™).

For example, the theory of dense lincar orders without end
points is strong (see [3, Proposition 1.4.2]). The following
theorem shows that the class of all first-order concepts can
be learned in any model of a strong theory.

(3) THEOREM: Suppose that T is a strong theory. Then
L(z) is learnable in {S | S = T}.

Second finding: Given aset & C L(z), we say that a theory
T expresses the learnability of ® just in case for all models S,
® is learnable in S iff S |= T. Such theories have the useful
property of providing a test for learnability in given situa-
tions. Unfortunately, no theory expresses the learnability of
even relatively simple subsets of £(z). This is the content of
the next theorem, stated with the following notation. The
subset of L(z) of form 3yVzp(zyz), with ¢ quantifier-free is
denoted by Lay(z).

(4) TueoreM: Suppose that £ contains at least one bi-
nary relation symbol. Then there is no theory that
expresses the learnability of Lav(z).




Determining the Approximate Truth of First-Order Theories

Our second approach to Discovery Problems within Quadrant TV
starts from a definition of the concept “first order sentence 6 is approx-
imately true in relational structure S.” We shall here limit ourselves to
brief discussion of this idea; details are provided in {12, 13]. Our theory
starts from consideration of the degree to which one structure approx-
imates another. Approximate truth in a structure is then construed as
(exact) truth in an approximating structure. It is not claimed that this
approach illuminates every aspect of the problem of approximate truth.
Rather, our theory is designed for situations of the following kind.

Let us conceive of a narrow strip of land (e.g., a coastline) undergoing
mineral exploration. A point along the strip is to be designated randomly
according to some unknown probability distribution. Once the site is
designated, it will be decided whether to drill at that location. Let p be
a variable for points along the strip, and consider the following predicates
and hypothesis (5).

Lp = alode exists within 1000 feet of the surface at point p.
Rp = there is superficial igneous rock at point p.

(5) (Vp)(Lp — Rp)

Even if false about the actual strip under exploration, (5) might be useful
if true about a fictitious strip that approximates it. In this case, (5) can
be considered to be approximately true about the actual strip.

To give substance to the foregoing idea, let the actual and fictitious
strips be represented by the same, real interval I. Let L, R be the
extensions of L and R in the actual strip, and L', R’ be their extensions
in the fictitious strip. For the fictitious strip to approximate the actual
one we require that every point in L’ be near to some point in L, and
that every point in the complement of L’ be near to some point in the
complement of L; similarly for R’ and R. It is natural, however, to ask
{or greater nearness in high probability subregions than in low probability
subregions since our judgment about drilling is more likely to be put to
the test in the former than in the latter. We thus define the “probability
distance” of two points to be the probability mass of the interval that
separates them. It can be seen that two points separated by a small




probability distance are either metrically close in a high mass interval or
else common members of a low mass interval.

Now fix b € (0,1). The fictitious strip is called a “b-variant” of the
actual strip just in case for every point p’ there is a point p such that p’
is within probability distance b of p, and p' € L’ iff p € L; likewise for R’
and R. Thus, for the fictitious strip to be a b-variant of the actual one,
every point p’ € L’ must be justified by a nearby point p € L; likewise,
every point p' € L' must be justified by a nearby point p ¢ L —and
similarly for R’ and R. In this case, we consider the fictitious strip to
approximate the actual one, up to the parameter b. Sentences like (5)
are considered to be “b-true” in the actual strip just in case they are
standardly true in at least one of its b-variants.

The following example illustrates the potential usefulness of b-true
sentences. Let I, L, and R be as described above. We imagine that
has been partitioned into ten regions. A point will be drawn randomly
from I according to unknown, continuous probability distribution P, and
the following question will be posed.

(6) p € L for all p in the region from which the sampled point was
drawn?

Suppose that inspection reveals there to be no superficial igneous rock in
the region actually sampled, and that hypothesis (5) is known to be .01-
true in the strip. Then, it may be proved that (6) is false with probability
at least .80.

Our theory is a generalization of the foregoing illustration. We have
pursued its development from both the deductive and inductive points
of view. For brevity, only the inductive logic of approximate truth will
be considered here. Qur approach is based on a paradigm of empiri-
cal inquiry that may be called “probably approximately correct truth
detection.” Within this paradigm scientists convert a given first-order
sentence ¢ along with accuracy and reliability parameters b,c into a set
of queries. The queries bear on the interpretation of predicates within a
fixed but unknown structure S. Hlustrating with a unary predicate A,
these queries take the form:

Does the nth randomly sampled point from the domain of &
fall into the S-extension of 4?7




The scientist has no knowledge of the probability distribution that gov-
erns random sampling from S’s domain. On the basis of a set of queries
whose size grows no faster than polynomially in } and 1 the scientist
must emit, with reliability at least 1 —¢, a b-truth-value for # in S. In {12]
we show that there is a formal scientist that succeeds in this task with re-
spect to a wide class of first-order sentences and structures. Specifically,
the class of sentences for which our method is provably successful includes
all sentences in which no predicate letter occurs both negatively and pos-
itively. Such sentences are called “monotone.” The class of structures in
which the scientist can infer an approximate truth-value for monotone
sentences includes all structures with continuous domain and measurable
extensions for predicates. Placed in an arbitrary and unknown member
of this extensive class of structures, and parameterized by any monotone
sentence § and any choice of accuracy and reliability parameters b,c, the
scientist we define makes only polynomially many queries in } and 1 and
emits, with reliability at least 1 — ¢, a b-truth-value for € in the unknown
structure.

Our current work on this topic is devoted to extending the foregoing
result to nonmonotone sentences, to exploring alternative conceptions
of approximate truth, and to investigating other paradigms of scientific
discovery in which approximate truth is a satisfactory goal.

TRUTH DETECTION

By a paradigm of scientific discovery let us understand any specifi-
cation of the concepts “scientist” and “discovery problem” along with a
criterion that determines the conditions under which a given scientist is
credited with solving a given problem. In our research in quadrant II we
have investigated several paradigms of scientific discovery in which dis-
covery problems are characterized using first-order logical languages and
extensions thereof. We here describe one such paradigm, truth detection,
and some of the recent results obtained about it.

Let a countable, first-order language £ with identity be fixed, suit-
able for expressing scientific theories and data in some field of empirical
inquiry. Prior research in the field is conceived as verifying a set T of
L-sentences, which constitute the axioms of a theory already known to
be true. Each model of T thus represents a possible world consistent
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with background knowledge. Nature has cliosen one of these models -
say, structure S — to be actual; her choice is unknown to us. (For ease of
exposition, we will suppose that Nature’s choice is limited to countable
models of T'.)

Scientisits are conceived as attempting to divine the truth-valuein §
of specific sentences not decided by T. Suppose that scientist ¥ wishes
to determine the truth-value of 6 in S. At the start of inquiry, ¥ knows
no more about S than what is implied by T. As inquiry proceeds, more
and more information about S becomes available. This information has
the following character. We conceive of ¥ as being able to determine, for
each atomic formula ¢ of £ and any given sequence of objects from the
universe of § whether or not that sequence satisfies ¢ in S. ¥ receives
the entire universe of S in piecemeal fashion and bases its conjecture at a
given moment on the finite subset of the universe of S examined by that
time. In response to each new datum, ¥ emits a fresh conjecture about
the truth of 4 in S, announcing either “true” or “false.” To be counted
as successful, ¥’s conjectures must stabilize to the correct one. Notice
that no assumption is made about the process generating the data ¥
receives; in particular, in order to successfully detect the truth of § in
S, we require ¥ to stabilize to a correct conjecture no matter what data
sequence is presented. (This distinguishes the current model from the
iid data model presented in the preceding section where data sequences
are generated by randomly sampling points from a structure according
to some time invariant probability distribution over the universe of that
structure.)

Let us summarize the above discussion with the following definition:
we say a scientist ¥ detects the truth-value of a sentence 8 with respect
to background knowledge T just in case for every countable model S of
T and every data sequence e generated from S, ¥ stabilizes to a correct
conjecture about the truth-value of 8 in S.

Qur research on truth detection has addressed the following ques-
tions, among others:

o For which sentences 8 and theories T do there exist scientists who
detect the truth of  with respect to T'?

o Are there theories T such that some single scientist detects the
truth-value of all sentences with respect to 77
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o How are the answers to the preceding questions altered if we impose
computational or methodological constraints on the scientists in
question?

We have also examined a further question, the answer to which provides
considerable information about the choice of first-order logic as a mode of
representation for background knowledge. The remainder of this section
is devoted to this matter.

With respect to the paradigm of truth detection, we may view dis-
covery problems as parameterized by a theory T which represents the
background knowledge available to a scientist at the outset of investiga-
tion. When discovery problems are so viewed the following uniformity
question naturally presents itself. Is there a uniform method Af for solv-
ing the problem posed by T, if that problem is solvable at all? Such a
method Af might be uniform in T in the following sense. In the course
of computing its conjecture about the truth-value of the sentence 8, M
could receive answers to any queries it chose about the membership of
individual sentences in T. M’s computation of its conjecture in the face
of incoming data would then be entirely effective relative to the answers
it received to its queries. Such a method M may be represented by a Tur-
ing machine with oracle. If M is such an oracle machine, we write A/7
to denote the scientist computed by Af when equipped with an oracle for
T. Given this understanding of uniform method for the solution of dis-
covery problems, the following theorem provides an affirmative answer
to the above question.

(7) TueoreM: There is au oracle machine A such that for all sets
of first-order sentences T and all first-order sentences 6, if there
is a scientist who detects the truth-value of § with respect to T,
then M7 detects the truth-value of 8 with respect to 7.

Proof of the theorem is provided in {17].

Theorem (7) leads to a fundamental question about the role of first-
order logic in inductive inference. We ask: In making possible the uni-
form solution of scientific discovery problems, what is the role of our
choice of first-order logic for representing background knowledge? Could
some yet more expressive logical language be used to represent back-
ground knowledge that would still allow for a uniform solution of tne
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discovery problems thus represented? Our research has provided a par-
tial answer to these questions. In order to give the answer, we will need
to consider a slight strengthening of the paradigm of truth detection and
introduce some concepts from the theory of models.

Let £’ be a regular logical language which contains our first-order
language L. (For the concept regular logical language see [4]; suffice it to
say that first-order logic itself is a regular logical language as are most
examples of extensions of first-order logic, such as second-order logic,
extensions by the addition of cardinality quantifiers, etc.) Let T be a set
of L' sentences, 6 a sentence of £, and S a model of T. We say that e
is a restricted data sequence for § and 4 just in case e is the result of
removing all information about atomic formulas containing vocabulary
not present in 6 from some data sequence ¢’ generated from S. We say
that scientist ¥ strongly detects the truth-value of 8 with respect to T
just in case for every countable model S of T and every restricted dala
sequence e for § and 0, ¥ stabilizes to a correct conjecture about the
truth-value of € in S. Finally, we say that £’ has the uniform strong
detection property just in case there is an oracle machine M such that
for all sets of L’-sentences T and all first-order sentences 4, if there is
a scientist who strongly detects the truth-value of § with respect to T,
then M7 strongly detects the truth-value of § with respect to 7. Our
preceding theorem may be strengthened to exhibit further uniformity in
the solvability of discovery problems characterized by first-order theories
as follows.

(8) TueoreM: First order logic has the uniform strong detection
property.

We are now in a position to show the extent to which first-order logic
is unique in affording uniform solution of discovery problems. A regular
logical language £ has the Lowenheim-Skolem property just in case every
satisfiable £’-sentence has a countable model. It is a fundamental fact of
model theory that first-order logic has the Lowenheim-Skolem property.
The following theorem provides a characterization of first-order logic as
a maximal regular logic with the Lowenheim-Skolem and uniform strong
detection properties (see [17] for proof).

(9) THEOREM: Let L’ be a regular logical language containing first-
order logic £. If £’ has the Lowenheim-Skolem property and the
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uniform strong detection property then £’ = L.

Theorem (9) indicates that first-order logic has a special status as
a knowledge representation language for scientific discovery problems.
This result also suggests important topics for further research. First,
are there proper extensions of first-order logic which fail to have the
Lowenheim-Skolem property but do allow for uniform solution of discov-
ery problems? Second, are there languages whose expressive power is
incomparable with that of first-order logic which allow for uniform solu-
tion of discovery problems? Such languages might arise as fragments of
proper extensions of first-order logic. The answers to both these ques-
tions may have significance for the choice of knowledge representation
languages for discovery problems which arise in scientific or technolog-
ical contexts. We plan to investigate these and related issues in our
continuing research on automated scientific discovery.

CONCLUDING REMARKS

Each paradigm of empirical inquiry studied within Computational
Learning Theory is a mathematical abstraction from the complex web
of issues indicated in the introduction above. Study of these models
is aimed at faciliating the development of practical algorithms for the
automated solution of discovery problems arising in practice. It may
also be hoped, as well, that results within the theory partially clarify
some of the questions that surround the nature of scientific activity itself.
Some of our work has been focussed on such questions (e.g., [5, 15, 21]).
The present discussion concludes with a brief summary of one pertinent
result.

Scientific inference is an essentially non-deductive affair inasmuch
as true theories — apart from trivial, exceptional cases — cannot be
deduced from the data available to scientists. Nonetheless, deductive
logic is widely recognized to play a central role in scientific thought,
for example, in drawing out the consequences of a theory for empirical
test. For this reason deductive logic has been central to the analysis
of several components of scientific activity. To illustrate, it has been
suggested that the confirmation of a scientific theory is a function of the
empirical verification of its logical consequences (see {8] for discussion).
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Unfortunately, a simple analysis of confirmation on this basis founders
on the richness of the set of logical consequences of a given theory. Thus,
one consequence of the axiom A is 4 V .§ for arbitrary sentence .S; yet
verification of S (hence of AV S) need not confirm A.

To save the insight behind the idea that confirmation of consequences
yields inductive support, it is tempting to exclude inferences like A |=
AV S from the set of “scientifically relevant” deductions. After all, this
latter inference has a suspicious character inasmuch as it does not de-
pend on any particular relation between A and §. Following this line
of thought, several definitions of scientifically relevant deduction have
been advanced, leading to fruitful analyses of confirmation and theory-
comparison (sce [29, 28, 24, 25]). To be pertinent to our understanding
of scientific practice, however, a definition of relevant deduction must
satisfy a further criterion. It must be the case that scientists whose de-
ductive reasoning is limited to relevant inferences are just as scientifically
competent as scientists not so limited. That is, for every scientific prob-
lem that is solvable in principle, there must exist a scientist who never
reasons in deductively irrelevant fashion yet who also succeeds in solving
that problem. Otherwise, the proposed definition of relevant deduction
does not allow us to fully understand how it is that science sometimes
succeeds.

Starting with a simple definition of relevant deduction due to Schurz
& Weingartner (25] we have shown that for every solvable problem of the
kind described in the last section there is indeed a successful scientist
whose deductive reasoning conforms to the definition. Details are given
in [22]. Evidence is thereby provided that the kind of definition proposed
in Schurz & Weingartner [25] is plausible as a representation of the de-
ductive component of scientific reasoning. In this way, study of formally
defined paradigms of inductive inference within Computational Learning
Theory can shed some light on the foundations of scientific inquiry.
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