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i ABSTRACT

The solution of the continuous waveguide transition problem can be obtained by
discretizing the boundary and applying mode-matching or by using a system of orainary
differential equations. Both approaches involve approximate representations of the
boundary. When using the differential equation approach, it was found necessary to
consider Cie transition as several sections in series in order to avoid numerical instabilities.
When this is done, one may cascade using a generalized scattering matrix approach or a
generalized ABCD matrix method. Results are shown comparing the accuracy of the
boundary discretization approach and the differential equation approach for the Marie
transducer and for linear transitions of various lengths in rectangular waveguide; experi-
mental results are also given for the Marie transducer.
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1. INTRODUCTION

Numerical approaches to the continuous waveguide transition analysis and design
problems have been studied for the past twenty or so years. 5 Recently, the author of
this paper used a novel moment method technique to solve a system of ordinary
differential equations describing such a transition;"- this paper is basically an
extension of the work described in References 4 and 5. The paper compares the
differential equation method with an approach that approximates the transition as a
series of discrete steps and subsequently applies mode-matching, applies these
techniques to linear rectangular transitions, discusses the validity of the differential
equations and associated boundary conditions, and reports experimental and numerical
results for the Marie rectangular TEjo to circular TEol mode transducer. Also included
are new results regarding the sensitivity of the computed solution to the choice of
cascading formulation when (as is a fairly common practice) a transition is analyzed
as several sections in series in order to avoid numerical instabilities.3' 4 -

5

2. METHODS OF SOLUTION

The system of differential equations used in this paper is based on the assumption
that the transverse portion of the electromagnetic field in a transition can be written as
a sum of the uniform waveguide mode functions corresponding to the local transition
cross-section

E,(x,y, z) = .V (z)e, (x,y, z) (1)

I .3=1

H, (x, y, z) = i t. (z)h.(x, y, z) (2)

m.1

where z denotes the direction of propagation, and the parameters V.(z) and l.(z) are
known, respectively, as the equivalent voltages and the equivalent currents. A system
of oidinary differential equations that specifies V.(z) and L.(z) was given by Reiter in
1959,6 and methods of solution are discussed at some length in References 3,4, and 5.

These equations are

dV.3= d 0.4 1. + T.. (3)

I dz
Both TE and TM modes are included in Equations 3 and 4. The variable ,. denotes
the wave number of the mth mode, the variable 7. denotes the wave impedance of the
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mth mode, and the "transfer coefficients" T, (which describe coupling between the
two modes m and n) are given by"

T.W(z= fJ -. dxdy(51
S(z)

The integration in Equation 5 is over the local waveguide cross-section S(z). If the i
system of Equations in 3 and 4 is truncated and then solved for the portion of the
transition between z = zi and z = zi1 , one may specify numerical values for the
associated generalized ABCD matrix I

Lti1)=CjD (Zi)J

where the dimension of the square submatrices Ai, Bi, Ci, and Di is equal to the number
of modes (propagating and evanescent) included in the solution. Cascading the results
for two adjacent portions of the transition may be accomplished by simple multiplica-
tion of the two ABCD matrices, 4- or by translating these two matrices into generalized
scattering matrices and then linking them together.3 One goal of this paper is to
compare the efficacy of these two cascading approaches. The ABCD matrix approach
is computationally less intensive and, therefore, initially more attractive than the
scattering matrix approach.

One well-known altmative to solving the differential equations is to discretize the I
boundary and to apply mode-matching. The boundary discretization geometry used in
this paper is depicted in Figure 1. The iwo uniform waveguides in Figure 1 have cross-
sections equivalent to the transition cross-sections at z and z + AL. As shown in
Appendix A, the difference equation for the equivalent voltages and currents is

v,(z + AL) = I

co(O ~ jos Je. (z) -.(z + AL)dx dy}. W

- Cos ~--jZ.~~(z)sin-AL Je.(z) -e.(z + AL)dx dyJ 5.zW

1-2a 2 If

+jZm(z+AL)sin(1"')X. J sin( )'4iL 3t2 .. ,= T. (z) t,2

ft e. (z) -e. (z + AL)dx (z) VW

S I
2g
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-. 4(z +AL) sin( J CosL 2 JL

(I AL'i (02

[J e. (z).-ei.(z + AL)dx dy}I(Z)

(7)

where the area of integration S is equal to the intersection of S(z) and(z + AL). Rewriting
Equation 7 as a sum of powers of AL and retaining only terms of order (AL) 2 or lower,
one obtains

V.(z + AL) = V.(z)

-jAL Z.(z)P.(z)4.(z)

I +ALX [fe.(z).(z)dxdtJ V.(z)

_(AL)2 (0.(Z))2 V.(Z)4

-j(AL)2Z,( (z) .e(z)d)I. u(z)2 (8)

j(AL)2 (Z.(z) 0.(Z) + Z.(Z) 0-.(Z)J

f e.,(z) .e.(z)dxj 1.,(z)
SI

where the primes refer to differentiation with respect to z. A similar equation exists for
1.. Clearly, in the limit of vanishing AL, Equation 8 reduces to Equation 3. Therefore,
one might expect that the boundary discretization method should converge to the same
solution as does the differential equation method. Convergence rates can be affected

13
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by the (AL) 2 terms, however, and these terms do, in fact, differ between Equation 8 and
some of the techniques for solving Equations 3 and 4 (e.g., the Runge-Kutta method,
discussed in Appendix B. Similar difference equations can be derived when traveling
waves are considered instead of the equivalent voltages and currents of Equations 1 and
2 (further details are given in Appendix C). The mode-matching approach used in this
paper' is a modification of the method described by Carin, Webb, and Weinreb.8 The
scattering matrix cascading technique described by Chu and Itoh9 is used to link
together the large number of junctions used to approximate a transition. I

Although Equations 3 and 8 indicate that the differential equation method and the
boundary discretization method should converge to a common solution, the two
methods are based on somewhat different representations of the transition boundary. I
The differential equation approach assumes a perfectly smooth boundary, while the
mode-matching approach uses a stepped boundary. It may not be correct to say that the
stepped boundary is a valid approximation of the smooth boundary. This is well
illustrated if one attempts to approximate the diagonal of a unit square as a series of U
steps: the approximate boundary will have a length equal to two, independent of the
number of steps, whereas the actual diagonal has a length equal to -,I2 .Nonetheless,
in spite of these two rather different boundary representations, Equations 3 and 8
appear to indicate that the two methods are equivalent. This can perhaps be explained
as follows. Most standard methods for solving Equation 3 can be written as difference
equations similar to Equation 8. Any difference equation approach for solving
Equation 3 will include terms of (AL) 2 and higher, and, for nonzero AL, these higher
order terms will represent a distortion of the smooth system of Equation 3. This
distortion vanishes as AL vanishes, resulting in the equivalence of Equations 3 and 8.
Yet another interesting issue is whether or not Equations I and 2 are appropiate for
nonuniform waveguides. This will be discussed in Section 4.0. I

z + A 2

------- Discretized boundary 1
Actual boundary

Figure 1. Boundary discretization geometry. 3
41
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3.0 MARIE TRANSDUCER ANALYSIS

IIn this section, the numerical techniques described previously are applied to an X-
band model of the Marie rectangular TEjo to circular TEO, mode transducer,' ° and the
resultant data are compared with experimental results. This device, which has been
informally described as "the best transition to TEol," 11 is shown in Figure 2, and the
desired electric field lines at various locations are shown in Figure 3. (The circular taper
portion in Fig. 2 is not included in some models.)

A detailed study of the Marie transducer was performed by Saad, Davies, and
Davies in the 1970s.'-- '2 One difference between their work and ours is that they
numerically implemented Solymar's small coupling procedure," while we use the
methods described in References 4 and 5. A prerequisite for analyzing a continuous
waveguide transition is to obtain the mode functions in Equations 1 and 2. These modal
solutions and the associated eigenvalues are essential in determining the coefficients
in Reiter's equations.4" As noted in Reference 12, these tasks must be accomplished
numerically when one considers an irregularly shaped device such as the Marie
transducer. The publicly available software we used is described in References 14 and
15, and further details regarding our particular implementation can be found in
Reference 7. In the circular taper portion of the transition, the coefficients for the
differential equations may be determined analytically."

The generation of numerical data describing the transmission and reflection
properties of this device will now be described. These data will be compared with
measurements performed on two Marie transducers connected to each other by a 35-
inch long metallic circular waveguide, i.e., launching and detecting at the two
rectangular ports. Each Marie transducer was 46.35 inches long with circular taper

I
I
I
I
I

Fectio 3 Section 4

Figure 2. The Mane transducer.

1 5
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I
__ ,, 44t I

'I
I

Figure 3. Desired electric field lines for the Marie transducer. 5
portions, each 11 inches long. The circular ends of the Marie transducer were 1.18
inches in radius, and the rectangular ends were standard WR-90 waveguide. The
numerical data were acquired using the following four schemes:

Approach 1. In the irregularly shaped portions of the Marie transducer, only the
desired rectangular TE10- circular TEO, mode is included in the expansions of
Equations I and 2, and, in the most narrow part of the circular taper, only the desired
TE0, mode was considered. Only a single mode was considered because previous work
indicates that considering only modes near or above cutoff is sufficiently accurate
while it reduces computational complexity' All of these "one-mode" sections were
analyzed using the Runge-Kutta technique to solve the truncated system of differential
equations.' In a middle 1-inch portion of the taper, where the unwanted TE, mode goes
through cutoff, both this mode and the TE., mode were included and the moment I
method of Reference 4 was used. The reason for selecting this technique is that, as
observed in References 3 and 4, evanescent modes cause numerical problems, and the
results reported in Reference 4 seem to indicate that the moment method technique has 5
better stability characteristics than do some conventional techniques (e.g., the Runge-
Kuua method and an iterative integration technique'-). Finally, in the widest part of the
taper, where both modes were above cutoff, the numerically less expensive Runge-
Kuna technique was used. As in Reference 4, cascading was accomplished through the I
simple multiplication of the generalized ABCD matrices representing adjacent cross-
sections. First, the 4 x 4 TE01-TEo0 ABCD matrices representing the circular
waveguide and the wider portions of the circular tapers of the two Marie transducers a
were combined to produce a 4 x 4 ABCD matrix. The four elements of this matrix

describing TE., to TEO, interaction were used to produce a 2 x 2 ABCD matrix, which

6
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was then cascaded with the "single-mode" sections. This new 2 x 2 matrix was then
translated into a 2 x 2 scattering matrix. (For further details, see Chapter 4 of Ref. 7.)

In order to verify these calculations, measurements were performed using a
Wiltron 360 Network Analyzer set to operate between 11 and 12 GHz. These tests
included a calibration procedure that enabled normalization of the test data in the
presence of imperfect connections, cables, etc., between the unit under test and the
network analyzer input and output ports. (To further establish the validity of these tests,
all measurements were repeated several times, and tests were performed on known
devices. We believe that the IS211 data are accurate to within ±0.01 dB and IS 111 to within
+10.0 dB. (For furuier details, see Appendix D.) Figure 4 shows nt rical and
experimental data for the scattering parameter S21 for the two Marie transducers and
the connecting circular waveguide, Figure 5 shows the results forS 1 . The experimental
data indicate very low but observable dissipative loss.

Approach 2. The second method of analysis differed from Approach I in orly one
respect: cascading. The individual 4 x 4 ABCD matrices were converted into 4 x 4
scattering matrices before cascading. Chu and Itoh have published a method for
cascading two devices represented by generalized scattering matrices and connected
by a uniform waveguide.9 In cascading two adjacent portions of the transition, this
method was used with the length of the uniform waveguide set equal to zero in the
computer program. Once the "two-mde" sections were cascaded, the four elements
of the generalized scattering matrix representing TEO, to TEO, interaction were used to
produce a 2 X 2 scattering matrix, which was then cascaded with the "single-mode"
sections. Cascading such 2 X 2 matrices is a trivial task, and was done according to a
technique described in Reference 17. Figures 6 and 7 show the data generatedusing this
approach along with the experimental data from Figures 4 and 5.

0 .I i I i

0Experimental

... Numerical

00

0 .

4A

--0.4 ! I I

11.0 11.2 11.4 11.6 11.8 1&2.0

Frequency tGHz)

Figure 4. Experimental and numerical IS2, 1 for system consisting of two Marie
transducers connected by a circular waveguide. These data were generated using the
ABCD matrix cascading formulation (Approach I in text).

c'7
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0 I -T I

-_ Experimental

-20 ---- Numerical I

° I
- -40

-60 3
-80 i i , i i I I

11.0 11.2 11.4 11.6 11.8 12.0

Frequency (GHz)

Figure 5. Experimental and numerical 1SJ for system consisting of two Marie I
transducers connected by a circular waveguide. These data were generated using the
ABCD matrix cascading formulation (Approach 1 in text). 5

Approach 3. The third approach differed from Approach 2 in only one respect: the
middle part of the circular taper was analyzed using boundary discretization and mode- I
matching. Five modes were considered at five junctions and the resultant scattering
matrix was converted intoa two-mode scattering matrix (by simple truncation) before
cascading with the other "two-mode" sections. Results obtained using this approach
were identical to those of Approach 2, (i.e., Figures 6 and 7).

Approach 4. Boundary discretization and mode-matching were used to analyze
the entire circular taper. Nine modes were used at each junction and the taper was
approximated by fifty junctions. A 2 x 2 scattering matrix was extracted from the results
and cascaded with the irregularly shaped "single-mode" sections. These results were
very close to those of Approaches 2 and 3 (i.e., the thin lines in Figures 6 and 7).

Figures 4 through 7 show that, at least for this example, the computed solution is I
insensitive to whether the differential equation technique or the mode-matching
technique is used. However, this is not true regarding the choice of cascading method.
One might conclude that the ABCD matrix multiplication technique used in Approach
I provided a more accurate solution than the scattering matrix cascading technique
used in the other three approaches, because the numerical and experimental curves are
more close!y coincident in Figures 4 and 5 than in Figures 6 and 7. It should be noted,
however, that these calculations do not take into account conductive losses; a "good"
solution would therefore show insertion losses slightly less than those in the experi-
ment. If observable losses are expected, the scattering matrix cascading data of Figures
6 and 7 appear more credible than the Approach 1 data of Figures 4 and 5. Further, in B
this case the scattering matrix formulation involved manipulating 2 x 2 submatrices
with condition numbers in the range 1(9 to 102, while the generalized ABCD matrix
formulation involved manipulating 4 x 4 matrices with condition numbers of I0. To 3

8
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0.4 1 1 1 1 1 1

i -- Experimental

I.... Numerical

-:01 -.. --- 4 ----I

-0.4'
11.0 11.2 11.4 11.6 11.8 12.0

Frequency (GHz)

Figure 6. Experimental and numerical IS1l for system consisting of two Marie
transducers connected by a circular waveguide. These data were generated using the
scattering matrix cascading formulation (Thin line: Approaches 2 and 3 in text; dotted
line: Approach 4 in text.)

I -20 .

a--40-

Ca 
I I i I 

I

-60 - Experimental

Numerical

-80 i i i I i I i
11.0 11.2 11.4 11.6 11.8 12.0

Frequency (GHz)

Figure 7. Experimental and numerical ISI for system consisting of two Marie
transducers connected by a circular waveguide. These data were generated using the
scattering matrix cascading formulation (Thin line: Approaches 2 and 3 in text; dotted
line: Approach 4 in text.)
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sum up, for this particular example, the scattering matrix formulation utilized smaller
and better conditioned matrices and yielded physically more reasonable results than
does the ABCD matrix formulation.

A comparison of computer run times for the moment-method program and the
mode-matching program used in the preceding examples indicates no substantial I
advantage from the viewpoint of computational efficiency. A similar conclusion is

reached when these programs are used to analyze a simple rectangular taper. It should
be noted that neither of these two programs has yetbeen optimized with respect to either
run time or storage. The Runge-Kutta technique is by far the least expensive of the
methods considered here, and, as indicated in Reference 4, it is sufficiently accurate in
many cases. 3

4. CONTINUOUS VERSUS DISCRETE FORMULATIONS 5
In Section 3, our particular implementations of the differential equation approach

and the boundary discretization approach yielded virtually identical results when
applied to the circular taper portion of a Marie transducer. This taper varies slowly with
respect to wavelength. It also has been reported that the two approaches yield identical
data for a slowly varying rectangular taper7 and several extremely slowly varying
circular tapers.' In this section, we show that the routines are also consistent for rapidly
varying transitions. Our treatment starts with the rectangular taper of Figure 8 with the
taper length L as a parameter. This taper is analyzed for extremely short lengths L using
the previously described techniques. The L = 0 case, which is simply an abrupt
discontinuity, is analyzed using a single-step mode-matching routine. (The differential
equation technique clearly will not work for L = 0.) The idea is to see whether or not,
for diminishing lengths L, the waveguide transition data approaches the abrupt I
discontinuity results and to compare the differential equation data to the boundary
discretization data for these nonzero lengths L.

Figure 8 shows a transition between two rectangular waveguides with different I
heights. For the dimensions given, we shall consider the band between 1.0 and 1.8 GHz,
where only the TEjo mode is capable of propagation. The abrupt (L = 0) case was
analyzed using two methods, namely, a nine-mode mode-matching solution and a 3

Pr I I IPortP
_________________ one i

._n Port3
two

_ __1.
6f in.

I I

6.500 in. -H I I

z=O z=L

Figure . Steep rectangular waveguide taper.
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simple procedure used data from Figure 5.26-3 in Marcuvitz's book.'s Figure 9 shows
the dominant mode reflection coefficient SnI obtained by these two methods and that
the two sets of data are coincident. Subsequently, results were generated for the lengths
L = 0.054o, 0.025,, O.OO1o, and 10 m, where Ao is the free-space wavelength at 1.0
GHz. These results were generated taking into account the nine lowest modes and by
using two analytical techniques. First, boundary discretization and mode-matching
were applied with 100 junctions between z = Oand z =L. Second, the Galerkin's method
version of the moment-method technique4 was used with two cascaded sections
between z = 0 and z = L, and with five triangle weighting functions per section. For each
length, both sets of curves were indistinguishable; these curves are shown in Figure 10.
The results forL = 10-9Wo are very close to theL = 0 results shown in Figure 9 generated
by using a nine-mode, single-step, mode-matching routine.

For the short transition example just described, the differential equation technique
and the boundary discretization technique are in agreement, just as they were for

1.0 i

,0.5-110 I I I I I I

IJ I

01

0 I

1.0 1.2 1.4 1.6 1.8

Frequency (GHz)

Figure 9. Computed reflection coeff icient for the steep taper of Figure 7 for the abrupt
discontinuity (L -0) case. The solid line was generated using mode-matching with nine
modes. The dots were generated using Fig. 5.26-3 from Reference 18.
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gradual tapers. Indeed, consistency between these two methods is what one would
expect after examining Equations 3 and 8. This agreement between the two techniques
might be theoretically important. This is because, as observed in Reference 19, the
magnetic field expansion (Equation 2) cannot satisfy the transition wall boundary
condition exactly. At the wall, the magnetic field must satisfy (see Fig. 11):

H.m=0 (9)

The individual terms of the expansion satisfy: I
h.. -U = 0 (10)

(The boundary condition for the electric field is satisfied by the individual terms of
Equation 1.) If the transition is a slowly varying (i.e., nearly uniform) one, Equations

1.11.0 i II I I I

I~0.5

S................................

0 I I I I I I Ii

360

10

(0

1.0 1.2 1.4 1.6 1.8

Frequency (GHz) 3
Figure 10. Computed reflection coefficient for the steep taper of Figure 7 for the cases
L - 0.05. o (dots), L - 0.025k (dash), L = 0.001 X (chaindot), and L - 1 0-*X. (chaindot),
where is the free-space wavelength at 1.0 GHz. Each of these four sets of data was I
generated using the differential equation method and the boundary discretization
method (nine modes). The two methods yielded identical results. 3
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Figure 11. Wavguide transition geometry for electromagnetic boundary conditions.

9 and 10 are approximately the same, but for rapidly varying tapers, the unit vectors m
and a become less coincident, the approximation breaks down, and one might question
the validity of the differential equation methodl. For the steep taper in Figure 8,
however, the differential equation method yields the same results as the boundary
discretizaion technique, and these two idential sets of results converge to the abrupt
discontinuity solution for diminishing values of L. Moreover, consistency among these
same techniques when applied to a steep circular waveguide taper has also been
reported (see Appendix E). Thus, the differential equation formulation appears to be
suitable even for rapidly varying tapers. One possible explanation for this may be found
in an idea advanced by Unger,' 9 namely, that the expansion Equation 2 is valid, that it
converges to the correct field values inside but not on the boundary, and that this
expansion therefore suffers a discontinuity on the boundary. Recently, it has been
argued that the mathematics of the derivation of Reiter's equations are fully consistent
with the existence of an expansion with these attributes (Ref. 7).

13



The Johns Hopkins University

Applied Physics Laboratory
Laurel, Maryland 20723-6099

5. CONCLUSION

Several waveguide transitions have been analyzed using two different methods,
discretizing the transition boundary and using mode-matching, and by solving a system I
of ordinary differential equations. For gradual transitions, the two methods lead to
identical results and use comparable amounts of computer time (assuming the same
number of modes is used in both cases). For extremely steep transitions (excluding the
step transition), our results still indicate agreement between the two methods. Our
results also indicate that the scattering matrix cascading method (previously used by
Flugel and Kuhn3) leads to results that are more credible than those obtained when
cascading is performed by multiplying generalized ABCD matrices. The differential
equation technique may be more generally applicable for continuous transitions in that
artificial discontinuities are not introduced, and an arbitrary number (including zero)
of evanescent modes can be introduced. I
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I APPENDIX A.
DERIVATION OF EQUATION 7i

In Fig. A-1, the electromagnetic fields in the z-plane are given by:

E(z) = X1V.(z)e.(z) (A-2)

Similarly, the fields in the (z + AL) plane are given by:

E(z +AL)=XV,(z +AL)e. (z +AL) (A-3)

H(z + AL)= i,,(z+AL)b.,(z+AL) (A-4)

By applying the ABCD matrix for a uniform waveguide, the equivalent voltages andScurrents at z + AL/2 are seen to be related to Equations A-I and A-2 by:

5 V.(z+-L =cos( .)V.(z)-jZ.(z)sin(-_ )l.(z )  (A-5)

z + A LJ2

---------" Discretized boundary

Actual boundary

I ..

3 Figure A-i. Boundary discretization geometry.
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1-2 sin( 2A (z)+cos( > (z) (A-6)

The equivalent voltages and currents on the left sides of Equations A-5 and A-6 are the 3
coefficients of the mode functions e(z) and hn(z). When expanding the fields at z+ AL/
2 in terms of the mode functions em(z + AL) and h.(z + AL), we shall denote the
corresponding coefficients Vm (z + ALt2) and lm(z + AL/2). These new variables are
related to those of Equations A-3 and A-4 by:

V. z A) os AL JZ ( +AL)sin(~4-Jz

(A-7) 1

1.'I, (z + AL si +L
Z(z+AL) 2 (' I + 2

(A-8) I
Enforcing the field continuity condition at z + AL/2, one obtains:

+ V.(Z+ )e.(z)=XV(z+L)e,(z+AL) (A-9) 1

1id, Z+AL -Izh- z) = +AL) (A- 1)

Furthermore, utilizing the well known orthonormality relationships among the mode
functions,

V,.Z +-L)= v. +A V- e.(z)e/.(z + AL)ddy (A- 1)

iZ +AL=i Xnz + ')ffh(z>h.(z + AL)dxdy (A-12)

as=I S

The remainder of the derivation is straightforward but tedious. First, one substitutes
Equations A-5 and A-6 into Equations A-11 and A-12, thereby obtaining new
expressions for V.(z + AL/2) and lm(z + AL/2). These new expressions are substituted
into Equation A-7, immediately yielding Equation 7 from the main text.

A
I
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I N(')j co sa) )LJe(z)e.(z+Ldd C L]I 3
2 .1 2 S

I ~+Z.(z+M)sin(')X j si(a3 A)

If [Je.(z) -e. (z + AL)dx dJV. (z)()

If [e. (z) e. s(z + AL)dx dyjl. (Z)
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IAPPENDIX B.
APPLICATION OF THE RUNGE.KUTITA METHOD TO EQUATION 3

I
dV. - IJ.z.,. + T.V (3)

dz

dt. _joindz -- Z-j . . . I" . (4)

Equations 3 and 4 from the main text may be written symbolically as

±YC() (B-i)

I dz
I where:

"vlz)

v2(z)
Y= i(Z )  (B-2)

1 12(Z)

and

I. -jAz..
I c= L(B-3)

Zn

The Runge-Kutta method may be summarized as follows. We define the four
vectors:

K, =A C(z)y(z) C3-4)

K2 =AL at L c --- ((z) + -(-5

B-I
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I
KT3 = ALC(z + 2 Xy(Z) +. 2j2 (B-0)

K(4 =ALC(z + 2 J(Y(z) + KO) (B-7)3

The estimate for y(z + AL) is:

y(z +AL) =y(z) + (K + zK 2 +zK 3 +K4 ) (B-8)3

Expanding the matrix C in the form of a Taylor's series, and retaining only the terms
of order (AL) 2 or lower, one obtains for the vectors Kt, K2 , K 3, and K4: I

K1 = AL C(z)y(z) (B-9) 3

K2=ALC(z)y(z) +-(AL)2 (C(z)) 2 y(z)+ 2(AL)2 C'(z)y(z) (B-10)

K=K2(B-i11)3

K(4 = AL C(z)y(Z) +(AL) (C(Z))2 y(Z) + (AL) 2 C'(z)y(z) (B -12)

Substituting these terms into Equation B-8, one obtains: I
y(z + AL) = y(z) + AL C(z)y(z) 1

+I(AL)2(C(Z))2y(z) (B- 13)

2

I
I
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The next step is to substitute the explicit expressions for y and C (Equations B-2 and
B-3) into Equation B-13. This yields:

V.(z + AL) = V.(z)- jALZm I.(z)+ AL IT.V. (Z)

+!(AL)2[' (-J. .aZT. +JO.T.a)n(Z)I 2
(B-14)

-(j' Z, + j#,,,Z,)1,(z) +
a=!

The term r,,, (where the prime denotes differentiation with respect to z) can be
evaluated by invoking the differentiation the, ,em oi surface integrals with variable
surface (Ref. 20, main text):

K ff xdx dy= Jf -ird y + f x(tan0) dt(B15
S(S) S(1) C(z)

where 0 is shown in Figure 11 and C(z) is the contour defining S(z). The relation can
be used to show:

J[ de. .edxdY+ ±e,,,d "- dx dy+ f-L-. e,(tan )dt (B-16)
S(z) S(3) C(s)

Equation B-14, with the term T',, given by Equation B-16, gives the AL and (AL) 2

terms for the difference equation representation of the Runge-Kutta method. The
differences between this method and the boundary discretization technique are
embodied in terms of order (AL)2 or higher - the AL terms are exactly the same. In the
limit of vanishing AL, the differences between the two methods vanish and both
Equations 7 (from the main text) and B-14 reduce to Equation 3 of the main text.

B-3
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APPENDIX C.
TRAVELING WAVE FORMULATION OF THE

WAVEGUIDE TRANSITION PROBLEM

The forward-traveling wave coefficient Ap (z) and the backward-traveling wave
coefficientA.-(z) are related to the equivalent voltage and equivalent current of the pth
mode via the relations

a VP = 2(A + + AP-) (C-1)

Ip = JYp (Ap+ -A p-) (C-2)

where the modal wave admittance Y is the inverse of the modal wave impedance Z,.
Using the boundary discretization approach, the equations relating the wave coeffip-

cients at z and z + AL (Fig. 1) are:

XK,, 4Z()e-D (z)AL
2

A+ (z) - eZp (z + L.) e-DP(z+AL) I
1 2

A (z + AL) =
1-I

-,K*p47Zj(z) e+ ) 12 A (z)+ 4ZP (z+ AL) e +m p (
z

+A L) 2 A, (z + AL)
1-1 (C-3)

I YJ&eAz L2 A; (z)+ ( +AL) Ke 5J('+ALA'(z +,AL)=

4 Y(PZ-+(zA/A (zP ~1( L 4 ~''~'A( L (C-4)

I where: 1=1

I K, = ffe,(z).e,, dxdy (C-5)
S

I In implementing Equations C-3 and C-4, a solution is obtained and scattering matrices
are determined according to Reference 7 (Chap. 5). One might attempt to use the
equivalent voltages and currents in conjunction with the boundary discretization
approach (Equation 7), but the problem with this scheme is that the complex trigono-
metric functions associated with the evanescent modes will quite often exceed the
numerical range of the computer. In this study this problem was circumvented by using
traveling waves according to the procedure described by Chu and Itoh'

C-I
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The differential equations for the wave amplitudes are found by substituting
Equations C-I and C-2 into Equations 3 and 4. These equations (from Ref. 2 and 13)
are:

• "I; " + ld(lnZ)A I

-JeA - - A+ (S+ A* + S7PA-) (C-6)
dz P dz i

I
'; =-_I d<z-A++ S-;A+ + S A-) (C-7)
dz P 2 dz 'I I

where: 3
S = . 4 T e . (C-8)3

In many instances, Equations C-6 and C-7 are hard to implement numerically
because, if a particular mode goes through cutoff in the transition, the associated
parameter 42; will diverge if the mode is TE, and the associated parameter 4 -will
diverge if the mode is TM. Therefore, in our work, we have used Equations 3 and 4

instead of Equations C-6 and C-7.3

I
I
I
I
I
I
I
I
I
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APPENDIX D.
CALCULATION OF MEASUREMENT ERRORS

As an aid in establishing rough estimates for the measurement errors in our tests,
scattering parameter data were obtained for a PRD Xl1OV rotary attenuator. This
attenuator consists of a rectangular waveguide with a movable resistive card in iL If
this card is oriented perpendicular to the modal electric field lines, little or no
attenuation should occur. Rotation of this card away from this position increases the
transmission loss, which is read from a dial. Figure D- 1 shows the measured S2 1 for the
settings 0.0 dB and 0.2 dB. The difference between the two sets of measured data is
0.2 dB, ± 0.01 dB. Therefore, based on these data, we make the claim that our IS21 I data
are accurate to within ±0.01 dB.

In order to get an estimate of the error in IS1 1i, we performed measurements on two
rotary attenuators in series. First, measurements on all four scattering parameters were
made for both phase and magnitude. In the second test, a short was placed on port 2,
and the reflection coefficient was measured. We denote the reflection coefficient in the
second testS 1 1.This parameter is easily shown to be related to the scattering parameters
of the first test by:

Sl= SI 812S21  (D-l)

1+S 22

The relationship between the actual reflection coefficients and the measured data can
be written as:

Sill = e S'l,, (D-2)

S1 =eS 1 , , (D-3)

S2 = e S2,. (D-4)

Since all three measured parameters were in the same range (30 to 35 dB), it seems
reasonable to postulate that e takes on the same value in all three relationships.
Substituting Equations D-1, D-2, D-3, and D-4 into Equation D-1, one obtains thefollowing equation for e:

S22. (Sl,, - S11,.,)e
2 + (Sl ,. - S1 ,,,,I)e+ S12,,,S 2 1  = 0 (D-5)

Equation D-5 has two roots, one of which oscillates in the range 30 to 40 dB between
11 and 12 GHz. Since this root would result in a reflection coefficients near 0 dB in
Figures 5 and 7 (of the main text), it can be rejected as unphysical. The other root is

shown as a function of frequency in Figure D-2. From these data, the calculated error
in IS1 1I, is seen to be within _t10.0 dB. Perhaps not coincidently, this is the magnitude
of the oscillations in the data of Figures 5 and 7.

Finally, it should be noted that these error bounds are somewhat greater than those
described in the Wiltron 360 manual. One possible reason for this is that the efficacy

D-1
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of the calibration procedure can be degraded due to faulty cables and connectors even
if the network analyzer is in excellent condition.

S 2 1 Forward Transmission I
Log. Mag. v , Ref-0.000 dB 0.100 dB/Div

I
~I

I
~I

I I I 
a I

11.000000 12.000000

Frequency (GHz)

Figure D-1. Measured IS211 for a precision rotary attenuator. Top line: Attenuator setting

at 0.0 dB. Bottom line: Attenuator setting at 0.2 dB.
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Figure D.2. Estimated error in IS,1 1.
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I APPENDIX E.
NUMERICAL ANALYSIS OF THE STEEP CIRCULAR

i WAVEGUIDE TAPER

Figure E-1 shows a circular waveguide iris with steeply tapered sides. Each of
these two sides can be thought of as a linear transition of lengthL. Experimental results
forL = 0 can be found in Ragan's book (see the Reference list following the main text,
Ref. 21, pp. 213-214). Figure E-2 shows these experimental results along with
numerical results obtained using a nine-mode, mode-matching routine. The two
abscissas in Figure E-2 represent the diameter of the waveguide aperture, and the two
ordinates represent the reflection coefficient S I magnitude and phase. It should be
mentioned that Carin has previously investigated this device and has published results
for the magnitude of S, I very similar to our own (Ref. 8), but no results for the phase
of S, 1 . We have also generated results for L = 0OI.X and L = 10- 9 k, where , is the
free-space wavelength at the operating frequency 9.375 GHz.

These data were generated taking into account nine modes and using two
analytical techniques. First, boundary discretization and mode-matching were applied
with 100 junctions between z = 0 and z = L. Second, the Galerkin's method version of
the moment technique 4 was used with six cascaded sections and five triangle weighting
functions per section. This procedure was executed at six iris diameters and, at each
diameter, the results for S, I (mode-matching vs. method of moments, L = 0,001X. vs.
L = 10-9Xo) were indistinguishable; these data are shown in Figure E-3 along with the
L = 0 mode-matching results. The nonzero L results converge to values close to the L
-0 results in magnitude and to values indistinguishable from theL = 0 results in phase.

Figure E-. Circular waveguide iris: 2d. 15/16 inch, to 1/32 inch,
frequency.- 9.375 GHz.
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Figure E-2. Computed reflection coefficient for the circular ids of Fig. E-1 forthe L -0 I
case. The solid line was generated using mode-matching with nine modes. The dots
were generated using experimental data from Reference 22. A. Magnitude, 8. Phase. 3
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Fgure -3. Computed reflection coefficient for the circular waveguide iris of Fig. E-1.

The solid line was generated for the L - 0 case using mode-matching with nine modes.
In addition, data were generated for L - 0.001 N and L - 10 Xo using the moment
method and the boundary discretization method. The same results (shown using
crosses) were obtained for both lengths and both methods. A. Magnitude, B. Phase.
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