
AD-A246 667 MTR-11158

Ada and X Window System Integration

By

C. M. Byrnes

January 1992

Prepared for

Director, Systems & Software
Design Center of Excellence
Electronic Systems Division

Air Force Systems Command
United States Air Force

Harscom Air Force Base, Massachusetts

SDTIC
-ELECT i

92-04933

Project No. 5800
Prepared by

The MITRE Corporation

Approved for public release; Bedford, Massachusetts
distribution unlimited. Contract No. F19628-89-C-0001

2

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

AMES HENSLEE, GS-14 ANDREW HODYKE, GM- 13
V Chief Engineer STARS Deputy Program Manager

FOR THE COMMANDER

R0f4ERTJI.KENT GM-15
Director, Systems & Software

Design Center of Excellence

EXECUTIVE SUMMARY

MITRE's role in the Software Technology for Adaptable and Reliable Systems (STARS)
Ada/X joint development effort was to serve as technical contributor and consensus builder
between the two development teams at Scientific Applications International Corporation
(SAIC, subcontractor to Boeing for Ada/X) and Unisys. Besides working with the two
developers to come up with timely and technically sound compromises for their initial
independent Ada/X approaches to develop a common binding, we also tried to view the
resultant windowing system from the perspective of both the eventual Ada applications
developer and the customers who must eventually maintain it. MITRE attendees at various
Ada/X Technical Interchange Meetings (TIMs) tried to capture as many of the assumptions,
decisions, and rationales as possible in the realization that the user community may need to
know this information before trying these bindings on applications.

One area that has to be considered when developing an application using Ada/X is the
software design method(s) being used. The X Window Systemrml assumes an Object-
Oriented Programming (OOP) approach that is implemented manually in the default C
programming language (Scheifler, 1988). Ada has its own built-in OOP constructs of which
Object-Oriented Designs (OOD) often try to take advantage. The STARS Ada/X work tried
to straddle the boundary between following what the reference X implementations in C
provided (C/X, with which most existing X programmers will be most familiar) and what an
idealized Ada/X binding would provide. This paper provides an overview into some of the
OOD and OOP issues that programmers and customers have to consider when using Ada
and X.

Ada provides a variety of OOP constructs to choose from, and it turns out that SAIC and
Unisys made different choices in their individual implementations of Ada/X. While this
complicated the TIMs' task of developing an Ada/X binding that abstracted the different
implementation details away from the application programmer, there may be some
advantages in having different OOP implementation approaches. Experience with different
Ada compilers has shown that individual compilers do a good job, efficiently handling some
Ada constructs but not others. There are variants across compiler vendors, so one compiler
might do a good job with one approach but not another. The different Ada/X implementation
approaches allow application developers to choose which of the two bindings best matches
the strengths of their compiler. But this does require detailed knowledge by the application
development organization as to the specific strengths and weakness of their chosen
compiler(s).

The STARS program has redirected its efforts towards more commercial acceptance of
whatever tools and products come out of the three STARS prime contractors (Boeing, IBM,
and Unisys). This is due partially to the recognition that government-funded programs
cannot be expected to provide (and fund) the long-term efforts to maintain and evolve
products; this is best handled within the commercial sector. Given that the STARS AdaIX

im X Window System is a trademark of the MIT X Consortium.

,*III

bindings will also be eventually transitioned to commercial support, this report provides some
guidance as to what programmers and customers can expect from eventual commercial
Ada/X products. Laying the foundation for commercialization also means preparing for
formal and de facto standardization efforts as system developers and customers work to
assure portability of applications and programmers across different implementations. This
report discusses what various standards boards might do once the STARS Ada/X work and
other Ada/X efforts move towards commercial acceptance.

In addition to the software development community that must program with Ada/X, there is
also the system acquisition community that is responsible for specifying these applications
and reviewing their products. This paper provides an overview of the X Windowing System
in general, so that the parts of the STARS Ada/X binding can be seen in this larger context.
This paper will also review some of the standard application development in X roles that
apply to both Ada and C development with X. Knowing how these roles work provides an
acquisition person with an idea of what to look for from particular application development
personnel (in terms of training, experience, and resources) in order to reduce development
risk.

iv

ACKNOWLEDGMENTS

This document has been prepared by The MITRE Corporation under Project No. 5800,
Contract No. F19628-89-C-O001. The contract is sponsored by the Electronic Systems
Division, Air Force Systems Command, United States Air Force Hanscom Air Force Base,
Massachusetts 01731-5000.

The author wishes to thank Marlene Hazle, David Emery, and Richard Hilliard for their
support during this work and for their helpful reviews of early draft documents. The author
also wishes to thank the following members of the contractor development teams for their
information and advice during all our meetings: Mark Nelson and Howard Turner (SAIC),
Robert Smith and Timothy Schreyer (Unisys), and David Jones, David Wilson, William
Halley, and Robert Rosen (all of Boeing). Finally, an acknowledgement to Linda Gaudet and
Joan Lavery for all their work in editing and preparing this document.

Ioeslon i,

~ 0

vQ

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 1

2 Historical Background 5

2.1 Overview of X Window System 5
2.2 Earlier Ada/X Bindings 7
2.3 Initial STARS Ada/X Bindings 7
2.4 Other Ada/X Development Efforts 9

3 Ada/Xlib 11

4 Ada/Xt 15

4.1 Xt Callbacks 15
4.2 Widget Packaging 21
4.3 Resource Manager 23
4.4 Widget Typing and Subclassing 28

5 Future Development Work 31

6 Potential Standardization 33

7 Distribution Issues 37

8 Acquisition Guidance 39

List of References 41

Appendix A Detailed Ada/Xlib Changes 43

Appendix B Detailed Ada/Xt Change 55

Glossary 87

Index 89

vii

LIST OF FIGURES

FIGURE PAGE

2-1 X Window System Stack Architecture 5

2-2 X Client/Server Architecture 6

3-1 Ada/X Source Directory Structure 12

4-1 Widget Task Instance 16

4-2 Internals of Widget Task 17

4-3 Propagation of Calls to Parent Widget Task 17

4-4 Propagation of Calls from Parent Widget Task 18

4-5 Display of Widgets on Workstation Screen 18

4-6 Combination of Widget and Application Design Units 19

4-7 Relationship between a Widget's Packages 21

4-8 Relationships between Widget Hierarchy and Application 22

4-9 Simplified Relationships between a Widget's Parts 23

4-10 Relationship of Intrinsics to Widget Hierarchy 24

4-11 Widget and Resource ADT Relationships 25

A-1 Problems with Mask Data Types 44

A-2 Examples of Constant Object Definitions 47

A-3 Example of String Conversion Function 50

B-1 Ada/Xt Subprogram Pointer Template 55

viii

LIST OF TABLES

TABLE PAGE

1-1 List of TIM Dates and Locations 1

1-2 Ada/X Binding Development Roles 2

2-1 Ada/X Binding Efforts 8

B-i Widget Record Layouts 61

B-2 Allocation of Subprograms to Packages 66

ix

SECTION 1

INTRODUCTION

The STARS program is interested in the commercial acceptance of the products its
contractors develop. With the growing popularity of the X Window System as a complement
of many application systems, the STARS program has been interested in bindings between
Ada and the X Window System for a number of years. The early STARS Foundations work
done by SAIC on an Ada/X binding proved to be a seminal project to many future Ada/X
prototypes and applications. As X Window System technology advanced, the STARS
program wanted to update a binding based on lessons learned from the STARS Foundations
binding and new functionality needs.

Ada programmers wanted to minimize the learning curve when applying the X Window
System to their applications. The diverging collection of Ada/X bindings, some derived from
the original STARS Foundations work, was proving to be a barrier to portability and
reusability of applications. The STARS program decided that those Ada/X binding efforts
being done by its contractors and subcontractors should be convergent, so a task was started
to develop a common STARS Ada/X binding applicable to general Ada software
development. This task would stress cooperative development and high levels of technical
interchanges.

Four TIls were held in 1990 to bring together representatives from the STARS contractors
(both prime and subcontractors) and The MITRE Corporation to work out Ada (DOD 83) and
X technical issues that were too complex or controversial for electronic mail. The dates and
locations for these TIMs are shown in table 1-1:

Table 1.1. List of TIM Dates and Locations

DATE LOCATION

23-25 July 1990 Unisys, Paoli, PA
8-10 August 1990 SAIC, San Diego, CA
19-21 September 1990 Unisys, Paoli, PA
15-17 October 1990 Boeing, Renton, WA

The first of these TIMs started with the two incompatible (SAIC and Unisys) Ada/X bindings
and began working towards first identifying and the resolving the differences between the
two implementations. After each of the four TIMs, a detailed report of the changes made to
these initial Ada/X bindings and the progress towards the common specifications was
prepared. This report was extracted from the four earlier TIM reports.

This report presents the STARS Ada/X binding at two levels of detail. The main body of this
report contains a high-level overview of the changes and implementation choices. A detailed
list of all the changes is available in the two appendices to this report.

This report should be useful in a variety of software development roles that may have to use
or interface to an Ada/X binding. Table 1-2 below lists some of these roles. The binding
developers have the toughest role because they must understand all the implementation
dependencies of their target Ada compiler(s) as well as the intricacies of X's OOD and OOP
approaches. Binding developers should have very high programming skill levels; they will
be the most interested in the detailed implementation choices in the appendices. Future
binding developers will include commercial Ada compiler vendors who wish to provide
Ada/X as a Commercial Off-The-Shelf (COTS) product, particularly since the vendor will
best know how to exploit the COP support provided by their Ada compiler.

Table 1-2. Ada/X Binding Development Roles

ROLE DESCRIPTION

Binding developers Ada programmers who create Ada/X
bindings, such as this one,

UIMS developers tool developers who need to interface to
these bindings,

Widget developers programmers creating reusable pieces of
(Ada) window code,

Application developers programmers using the above products in
their domains, and

Acquirers those responsible for checking all these
earlier products.

The developers of User Interface Management Systems (UIMS) are another small but select
group of programmers who will need to know the details of Ada/X. A trend among X
application developers is to use UIMSs as a front-end Computer-Aided Software Engineering
(CASE) tool so the applications programmers do not have a learn the intricacies of X
programming through subroutine calls. Instead, a graphical tool is used to lay out the
position and appearance of display screen entities, and the necessary subroutine calls are
generated automatically. Several Ada UIMSs are under development, such as the National
Aeronautics and Space Administration's (NASA) Transportable Application Environment
Plus (TAE+) (Szczur, 1990), and the Software Engineering Institute's (SEI) Serpent
(SEI, 1989) system. Developers of these Ada UIMSs will need to know the implications of

using different Ada/X subprograms and types in their generated code.

One goal of OOP is to produce reusable pieces of code that future programmers will find
useful. With the X Window System, these reusable code pieces that encapsulate the visual
appearance, end user interaction, and Applications Programming Interface (API) are called
widgets. Because X widgets can be used to provide a common look and feel to applications

2

and because they can be used to represent (to both the end user and the application's
programmer) the concepts of an application domain, these widgets are often written by
widget developers who are experienced in a given domain. When using Ada/X, these widget
developers will have to understand how the OOP concepts of X have been implemented in
Ada to create or reuse widgets that are consistent with other Ada/X widgets.

The application developers (and eventually system acquisition people) will have to write their
Ada programs on top of whatever capabilities the binding developers and widget developers
provide. An Ada/X binding should limit the implementation complexities that the application
developers must deal with; the programmers should be presented with clean interfaces by the
binding developers and widget developers so the common OOD and OOP paradigms the
application developers learned about X will still apply. Application developers will the
system acquisition people who review their work will have to know the overall concepts of
Ada/X, but should not have to know all the implementation details.

As a guide for the readers of this report, they should first review table 1-2 and decide which
of those roles best applies to them. The four developer roles will be interested in the
technical details of appendix B, particularly given tt,¢ importance of widgets. Developers
who will be working with non-widget X interfaces will be interested in appendix A.

Any reader who has not had much exposure to X in general and Ada/X in particular, should
read the historical background (section 2). The acquirers will be particularly interested in the
sections on future development work, distribution issues, and conclusions
(sections 5-8). Any of the development roles will be interested in all of these sections.

3

SECTION 2

HISTORICAL BACKGROUND

2.1 OVERVIEW OF X WINDOW SYSTEM

There are several different ways of viewing the X Window System. Figure 2-1 shows the
overall X system architecture arranged in a stack hierarchy.

application
UIMS st

widget sets
Xt Intrinsics
Xlib
X protocol

Figure 2-1. X Window System Stack Architecture

The lowest level of this stack architecture is the X protocol, which defines the flow and
structure of packets of information around a network. A library of subroutines (known as
"Xlib") is used to create and receive these packets. These Xlib subroutines provide all the
common actions associated with a bit-mapped display terminal, such as drawing a line or
being notified that a keystroke was depressed.

Application developers soon realized tha: trying to write a complex application through these
low-level Xlib calls was an extremely complex task. Eventually, a layer on top of Xlib was
built, known as the intrinsics level. The intrinsics were written to provide an OOP interface.
A major change in an intrinsics layer is the use of event-driven callback routines. No longer
does the application developer call the windowing system from a main line programming
loop provided by the application. Instead, the intrinsics layer contains an application's main
line routine; the application developer provides the address of subroutines to call back in
response to certain events. This completely inverts the flow of control and data in an
application, where OOP message passing becomes the main programming paradigm. The
most popular set of intrinsics functions, used on almost all X applications, are the X toolkit
("Xt") intrinsics provided by the Athena consortium.

The Xt intrinsics provide just a set of OOP routines and conventions for defining actions,
such as how workstation events are passed to the application and how changes are propagated
through the callback functions. The intrinsics' objects (where an object is a data store and a

5

related collection of manipulation subprograms) are known as widgets in X's terminology.
To ensure a common look and feel, as well as provide application developers with a large set
of reusable components to start with, several organizations have written widget sets. Some
widget sets, such as the Athena widgets, are provided at no extra charge on the X distribution
tapes. Other widget sets are developed and maintained for sale by commercial organizations.
The two best known of these X widget sets are the Open Software Foundation's (OSF)
Motf rm2 widgets and UNIX®3 International's (UI) Open Look~m4 (OL).

As discussed earlier, some application developers have found using widget sets such as
Motif and OL to be still too low-level on which to develop programs. They have chosen the
option of using a UIMS to generate the API calls to a widget set. The highest level of an X
architecture remains the application code, which has the option of using one or more of the
lower layers. These lower layers are typically provided to the application as program
libraries that are connected at link time, based on which API calls were used in the
application.

Another way of viewing X's architecture is through a client/server model. Figure 2-2 below
shows a simple example of a client/server architecture.

Clients -Window server
(may be WWca to workstation) network mansages

ClientsI

(may be running on another computer) Workstation display(s)
(a scarce resource)

Figure 2-2. X Client/Server Architecture

The example above shows how an X server is responsible for managing a scarce resource, in
this case the workstation's graphical display surface and input devices (keyboard and mouse).
The application programs (shown at the top of figure 2-1) are the clients in figure 2-2,
communicating with the server through X protocol calls. These clients can be local (running
on the same workstation the server is) or can be running on another computer
(communicating over a network).

2m OSF and Motif are trademarks of the Open Software Foundation.

3s UNIX is a registered trademark of AT&T Bell Laboratories.

4Tm Open Look is a trademark of UNIX International.

6

The X architectures shown above provide a framework or reference model for describing X
software. The actual X Window System software that is sold or distributed can change as
new features are added and bugs are fixed. Over time, the Athena Consortium (the parent
organization for the X Consortium) has made both major new versions of X and minor new
releases of individual versions available for distribution. At the time of this report's
preparation, the current major version of X was #11 and the release level was #4. This is
commonly abbreviated as X11R4. Note that even when the Athena Consortium releases a
new version of the base (or reference) X server implementation and client libraries (such as
X 1R5), there may be a lag time before a commercial widget developer (such as OSF or UI)
or a language binding developer (such as for Ada/X) will upgrade their products to conform
to this new release. Therefore, understanding how version skew can affect these X layers and
the programming language bindings to them is important.

2.2 EARLIER ADA/X BINDINGS

There have been a variety of efforts to create Ada/X bindings; table 2-1 fists just some of
those the author has heard about.

In the table below, the Binding column indicates to which level of the X stack architecture
(Xlib, Xt, and/or widget set) the interface is being bound. The 'R' number indicates for
which X release level the Ada API is being provided, so 'R3' indicates X 11R3. The
Developer column indicates who is (or has been) developing this Ada/X binding and what
year that binding was released for use. As can be seen in table 2-1, most of the Ada/X
binding development work has been done in the last few years.

2.3 INITIAL STARS ADA/X BINDINGS

The STARS program has been involved with the development of Ada/X bindings for a
number of years. The earliest work was done under what is now known as the STARS
Foundations work. SAIC was funded to develop an Ada/Xlib binding to XllR2 as well as an
implementation of lP's Xray widget set. As with the other STARS Foundation's products,
these were generally made available to the contractor and eventually the whole Ada
community. One commercial vendor, GHG, took this Xl 1R2 binding and packaged it into a
product. This STARS Foundation's version of Ada/X has been the basis of much of the
Ada/X prototyping and development work that has been done so far.

The most recent phase of the STARS program included work to extend the initial (X 1R2)
STARS Foundation's Ada/X binding to up-to-date releases of X, and to provide an
implementation of a widget intrinsics level that is more generally accepted by programmers
than Xray. SAIC (as a subcontractor to Boeing) and Unisys were funded to implement this
improved version of Ada/X.

7

Table 2-1. Ada/X Binding Efforts

BINDING DEVELOPER

Ada/Xlib (R2) SAIC for original STARS Foundation work (1988),
Ada/Windows DEC's interface to their Xlib-like DECWindowsTM5 product

(1989),
Ada/Xlib (3) GHG's (and others) commercial version (1989),
Ada/Xlib (R3) current version released by SAIC (1990),
Ada/Xlib (R3) current version released by Unisys (1990),
Ada/Xlib (R4) merged version of SAIC and Unisys work (1991),
Ada/Xt (R2) Software Productivity Consortium (SPC) proprietary binding to

Hewlett-Packard (HP) widget set (1989),
Ada/Xt(R3) initial Xt specifications and bodies from SAIC (1990),
Ada/Xt (R3) initial Xt specifications and bodies from Unisys (1990),
Ada/Xt (R3) forthcoming merged versions with common specs. and different

bodies [both SAIC and Unisys] (1991),
Ada/Xt (R4) Jet Propulsion Laboratory (JPL) work to create Xt binding (1991),
Ada/Motif (R3) OSF-funded Motif bindings work at University of Lowell (1991),
Ada/Motif (R3) NASA's TAE+ UIMS uses Ada bindings to Motif (1991),
Ada/Xt (R4) SEI's Serpent UIMS, generating an Ada interface (1991),
Ada/Xt (R3) TRW's Generated Reusable Ada Man-Machine Interface

(GRAMMI) UIMS (1991), and
Ada/Motif (R3) TeleSoft's TeleUSE UIMS uses Ada bindings to Motif (1991).

Initially, SAIC and Unisys were working independently towards individual (and
incompatible) versions of Ada bindings to XlibAda implementations of Xt and widget sets
that sit above Xt. With the change in direction in STARS management and the increased
emphasis on standardization and commercial acceptance of STARS products, it was decided
that developing incompatible Ada/X bindings was not a very good idea. By this time, SAIC
and Unisys had completed their designs on their respective versions of Ada/X and had nearly
completed the coding.

A new STARS task was initiated to merge the interfaces between these two implementations.
The two completed but incompatible implementations were still released in 1990, but mainly
to serve as prototypes and proof of concept for the final STARS Ada/X product to be released
in 1991. Meanwhile, SAIC, Unisys, Boeing, and MrTRF representatives would hold a series
of TIMs to develop common specifications towards a single Ada/X interface. This report
documents the progress of those meetings.

5Tm DECWindows is a trademark of Digital Equipment Corporation.

8

2.4 OTHER ADA/X DEVELOPMENT EFFORTS

Many of the Ada/X developments discussed above, including STARS', are based on the idea
of implementing all or parts of Ada/X as a binding on top of an underlying C/X
implementation. Not all Ada developers agree with this assumption; they believe that it is
possible to develop an all-Ada implementation of the entire X Window System so the Ada
programmer is not tied to what the base C/X implementation provides, and Ada's built-in
OOD and OOP constructs can be fully exploited.

Rational Corporation has developed an (almost) all-Ada implementation of Xlib for both
their R100Or 6 computers and Sun 3 m 7 workstations. This is instead of the more traditional
approach of writing a binding to an underlying C/X implementation. They do have some
assembler at the lowest layers to inter o'- protocol, where direct calls to network
sockets are made. While Rational doe_. -. e same Ada/Xlib package specifications as
the joint STARS Ada/Xlib product, Rational believes it is possible to implement the STARS
Ada/Xlib binding through calls to the Rational Ada/Xib implementation. Rational plans to
turn this -33,000 line Ada/Xlib (X 11R4) implementation into a supported product, and
donate the source code the Athena Consortium for distribution on the X 11R5 release tape.

All the Ada/X development work discussed above concentrates on the client side of X's
architecture (see figure 2-2), providing the Ada interfaces and libraries that an application
needs. But there has been work at Sanders/Lockheed to develop an all-Ada implementation
of an X server. See (Lewin, 1989) for a description of how this Ada/X server implementation
was done.

6Tm R1000 is a trademark of Rational.

7m Sun 3 is a trademark of Sun Microsystems.

9

SECTION 3

ADA/XLIB

This section introduces the STARS Ada/Xlib binding to potential users. As figure 2-1
indicates, there is less application development work in this area but Xlib forms the
foundation on which the higher layers are built.

The STARS developers had decided that developing and testing the Ada/X code using the
Ada compilers of Verdix Ada Development System"n s8 (VADS), Digital Equipment
Corporation (DEC) DECAda a 9 , Alsys, and TeleSoft on various UNIX and VAX/VMS Tm

workstations would cover much of the currently installed Ada developer base. This also
corresponded to the Ada compiler and host platforms that the STARS developers had ready
access to. But there was the recognition that there were other Ada compilers that this Ada/X
code has not been tested against. While the STARS developers believe that an Ada/X
implementation that could work on this representative set of compilers would also work on
other compilers, any future commercialization and standardization work may include
working out any (unintended) compiler dependencies left in the STARS code.

One issue discussed during the TIMs was the best way of packaging the Ada/Xlib (and
eventually Ada/Xt) packages into Ada source files, and how to distribute those source files
among a host's directory structure. One alternative would be to use a single directory tree
structure with the different Ada compiler vendor-specific packages stored in files with unique
names. For example, the XLib_Interface package's specification is stored in the files
x_int_alsys_.a, xint tele .a, x int vads_.a, and x int vax_.a, oneforeach
reference compiler vendor (Alsy-s, TeleSoft,-Verdix, and DECAda. A few target compilers
require their own files, as with x int vads mips_. a. There are only three source files that
have to be separated this way, so-initially this would appear easy. But note that this places
duplicate copies of the same Ada package (XLibInterface in the example above) in the
same directory; this can confuse some Ada compiler automatic recompilation systems.

The alternative the STARS developers chose was to isolate these Ada source files in their
own (sub)directories. Since there might be further specialization necessary for these files (as
with new "root" Ada compilers, major version upgrades among existing ones, and/or unusual
X target workstations), a directory structure was deemed easier to expand than a complex
name encoding scheme for the source filenames. Note that this scheme will not work if an
uninformed Configuration Management (CM) organization decides to squeeze all the files
into a common directory (which happened in an earlier STARS Ada/X release, and

9m VADS is a trademark of the Verdix Corporation.

9TM VAX/VMS and DECAda are trademarks of Digitial Equipmant Corporation.

11

resulted in some source files being overwritten). The delivered source files will be organized
on the tapes, for example in a directory structure that looks something like what is shown in
figure 3-1.

Adax

/ X make vads
mu

base vaXirds * spes SAIC Unisysi "orea"I- I I
fls source cocmon implunentaion-
files specific souce -- Xt inzuinsics 5p~ioiis

les scdent bodies -.

Figure 3-1. Ada/X Source Directory Structure

Note that the script files necessary to build a particular X Window System programming
level (such as make_xlib and makext) and a particular compiler's version (such as
make vads and make_.alsys), are placed one or more directory levels from the source code.
These script files are intended to capture only the most important information, such as the
compilation order. Users of Ada/X would have to supply their own creative solutions for
versioning, conditional compilation, etc. Note that Xmu holds utility functions.

There were several design goals the developers of Ada/Xlib wanted to provide or avoid. One
Ada programming construct that is commonly used in other Ada/X bindings is
systemnaddress, as the data type of many parameters and functions used in the underlying
C/Xlib implementation. The STARS binding developers felt that this was a non-portable
construct that would become a major maintenance problem. Few if any uses of
systemraddress appear in any of the Ada/Xlib package specifications.

One decision made by the STARS binding developers was to develop a merged and common
implementation (the Ada specifications and bodies) of the binding to the Xlib layer of
X 11R4. Working on a common SAIC and Unisys Ada/Xlib allows the binding developers

12

to create these bodies only once. The same Ada/Xlib code - consisting mainly of Ada
specifications and pragma Interface calls to underlying C/Xlib implementation - would be
available on both companies' distribution tapes. Working on a common Ada/Xlib also means
that STARS can release a complete "product quality" system (the completed Xlib
specifications and bodies) for potential customers and potential standardization.

The four TIMs covered many detailed technical issues and changes that had to be made in
Ada/Xlib. (See appendix A of this report for a description of each of those changes.) While
these historical changes may be of limited interest to programmers who have not had any
exposure to earlier Ada/X products (such as those directly or indirectly derived from the
STARS Foundation's work), binding developers and widget developers may be interested in
some of the pitfalls to avoid and the rationales of why STARS Ada/X was built the way it is.

13

SECTION 4

ADA/XT

This section provides an overview of different Xt features and how the two STARS Ada/Xt
implementations chose to provide them. Each of these features is crucial to Xt applications,
so any reader should study them carefully.

Because SAIC and Unisys had developed (coded) much of their respective implementations
before this Ada/X integration task began, there was a limit imposed by schedule and funding
as to how much of the existing code could be modified. Both SAIC and Unisys had decided
to create an Ada/Xt implementation (the specifications and bodies) instead of just using a
binding to C/Xt (such as what Ada/Xlib used with CfXlib) because of portability issues and
to exploit Ada's OOD/OOP features. As a result, there was a large amount of Ada/Xt code
that could undergo drastic revisions in the time available. For example, the premerged
Ada/Xt code was written to the Xl R3 intrinsics. At the time the TIMs began, the Athena
Consortium had released a major revision to the intrinsics in X 11R4. The STARS binding
developers decided to keep the Ada/Xt intrinsics subprograms at X 11R3 instead of upgrading
to X 1R4 (as was done with Ada/Xlib) because of the scope of the changes needed. Later in
this report there will be a discussion of the impact of this decision, especially in dealing with
standardization and widget developer work.

Appendix B of this report contains a discussion of the major technical changes made in
Ada/Xt in order to provide a common specification. SAIC and Unisys had elected different
Ada design and coding approaches for implementing Xt. This section of the report will cover
some of the higher level Xt and widget design concepts necessary before any detailed
Ada/Xt discussions. All the Ada/X roles listed in table 1-2 will need to understand these
issues. Binding developers may be the major audience interested in appendix B.

4.1 XT CALLBACKS

The technical difference between SAIC and Unisys implementations is how Ada/Xt callbacks
are implemented. Xt intrinsics use an event-driven model of execution; the widget contains a
pointer to an application routine that is called when a specified event occurs. The main
control of the program exists within the internals of Xt; almost all of the application's code
will be subroutines that are called from within Xt Unfortunately, Ada doesn't handle this
particular OOD concept of being able to point to instances of encapsulated code and data
very well, so both Unisys and SAIC had to design something that would simulate this
concept.

SAIC's approach is to use tasks and task types to encapsulate widget instances. Since Ada
allows pointers (access) to task types, it is possible to set up and assign pointers to which
tasks to call when certain events occur. Ada task types can be dynamically created and
terminated, so the application developer has some flexibility on how and when to construct
widgets.

15

Since Ada tasks exist within Ada's strong typing model, that means there are normal
restrictions on how data is passed as parameters to the task's entry points and even how tasks
of different types are treated separately. This is a problem with Xt intrinsics because a weak
typing model is assumed. Applications programmers and widget developers are supposed to
be able to easily construct higher level widgets from the pieces of lower level widgets. Xt's
"inheritance hierarchy" assures that when an event occurs within one widget, it is propagated
up the hierarchy to all the other related widgets that also need to deal with that widget.
Widget developers provide default methods and "values" that the application programmers
can use to control what is done when these events occur. Application developers are free to
override these default methods through subclassing of a widget class into a new subclass
and/or by manually setting a new method that is run as an alternative to the old one.

All this dynamic definition and reconfiguration of the structure or architecture of who is
allowed to call what tends to conflict with Ada's strong (task) typing model. SAIC's solution
is to separate the different types of widgets and their associated (underlying) Xt intrinsics into
different Ada task types. But instead of different entry points for the different methods of
this type of task (widget class), there's only one entry named handle for all tasks (with each
defined handle having exactly the same parameter profile). The advantage of this approach
is that Ada's Unchecked_Conversion procedure can (hopefully) be used to convert a pointer
of one instance of these task types to another. By converting a task access from one type to
another, the same calls to entry handle can be used to simulate the overwriting or
subclassing of one Ada/Xt "method" by another. Figure 4-1 shows what such a task would
look like using the Buhr (Buhr, 84) notation.

ad widget

Figure 4-1. Widget Task Instance

Looking at figure 4-2, we see the internal details of the widget where a call to entry handle
results in a call to one of the method handlers that have been defined within the widget task.

The invocation of one of these methods results in an Ada subprogram being run, or it might
result in a call to the task that manages the widget's class being called so a predefined class
method is invoked. In figure 4-3, we see that method #2 will result in a call to a subprogram,
while other methods are passed up the inheritance chain (indicated by the thicker arrows) to
the parent or superclass widget class task.

16

7handle

method
#1

method #2

method #1

widget

Figure 4-2. Internals of Widget Task

Figure 4-3. Propagation of Calls to Parent Widget Task

In addition, a widget lass (superclass) may have some of its methods require that

information and calls be propagated down to all the children ("instances") of this class. In
figure 4-4, wese tha three different widgets (numbered #1 through #3) have been created

earlier from this class. t turns out that method #1 in the widget class has to call all the

children of this class, since they need to be informed of some activity as well. So figure 4-4

shows the superclass task calling each of the children tasks.

17

handle id etho hadewdgthnle de

| I

widget

Figure 4-4. Propagation of Calls from Parent Widget Task

Figures 4-4 through 4-11 are simple examples of a widget class hierarchy from a widget
developer's point of view. But the application developers will have their own points of view,
based on the actual usage of widgets within an Ada/X program. For example, let us assume
the widget class described in figure 4-4 was for some sort of shell widget that happens to
have an enclosing box or outline around it. The different styles of enclosing boxes available
are represented by widgets #1 - #3 in figure 4-4. Figure 4-5 shows the window or screen the
application programmer wants to create.

Box, [A I3 .
BOX IX'

Figure 4-5. Display of Widgets on Workstation Screen

Box 'A' is an instance of widget #1 (from figure 4-4), box 'B' is an instance of widget #2,
and box 'C' is an instance of widget #3. The application work to be done whenever the
workstation's cursor is in any of these boxes is allocated to a particular application program

18

task (that might be doing something else when not handling window events). From theapplication developer's point of view, the design of this application would look like
figure 4-6.

~~~class / ",

handle wige metethod

F e 4e toidgetad Appcaionesign U

T s(instance of B's new methods incde o nwidget se f e widget scs

19's new methods

Figur 4-6.Comba~on f W ef ans pplication sg m

Ile class hierarchy originlly defined by figure 44 has been expanded to include applicationwidget instances. As in figure 4-3, figure 4-6 shows that either the widget subclass

19



(widgets #1 - #3) or the application's widget instances (Boxes A - C) could override one or
more of the methods (or actions) defined in the original widget class. The various options of
Xt event propagation, method subclassing, predefined versus user-defined methods, and
dynamic widget instance creation will lead to complex application design diagrams. For
example, the thread of behavior that results from a single event (such as a mouse click) might
be propagated through Ada/Xt default methods, widget class methods, (new) widget instance
methods, and applications code in a variety of orders. As Ada/X application developers
attempt to use this combination of Ada units (particularly when debugging the software), they
will need some way of organizing their design choices.

The diagrams above have shown only a very simplistic overview of the tasking structure. In
reality, there are multiple layers to these diagrams, so the hierarchies and the connection
arrows would be much more complex. In addition, the packages, subprograms, and tasks that
the application developer creates would also become part of an overall (graphical) diagram.
Widget developers might have to see this entire structure, while end-application programmers
might only have to see the bottom layers that provide the most useful widget (tasks).

The architecture from both the applications programmer's point of view and the widget
developers point of view can be very dynamic, with the links between Ada tasks (widget
classes and instances) subject to adjustment. From MIRE's experience developing the
Descriptive Intermediate Attributed Notation for Ada (Evans, 83) (DIANA) Query Language
(DQL), which makes extensive use of dynamically allocated tasks arranged in hierarchies,
the authors have learned how hard it can be to conceptualize the design of how all these tasks
fit together (Byrnes, 1988, 1989). SAIC intends to document the interactions between the
predefined Xt (and widget) tasks and task types, and the application's tasks in their
forthcoming Ada/Xt User's Guide, but it will have to be a very detailed document to explain
everything to Ada widget developers and applications programmers.

A similar design issue exists for the Unisys Ada/Xt callback scheme. Instead of using access
to task types, they use pointers to Ada procedures. Since there is no such thing as an access
pointer to an Ada subprogram, Unisys uses the ADDRESS attribute of the procedures as the
values to place and adjust within widget methods. Unisys also uses a generic callback
package, where the action routines are passed into it as a generic procedure parameter. The
work involved to overwrite default methods will require passing system.addresses around
as further parameters. As anyone who has programmed in MYXt can tell you, a variety of
terrible things will happen if these pointers become corrupted or set incorrectly. (See the
Unisys document (Wallnau, 1990) for the diagrams that define the relationships between
these packages.)

Unisys tries to bring some order to the confusion caused when one start passing
subprogram'ADDRESSeS around. There is a single dispatch subprogram that is passed a
private data type which deals with the methods, that centralizes where these callbacks are
handled. But there could be confusion in the minds of application developers about how Xt
events are propagated through the widget classes and instances because there are no tasks to
isolate all these threads of control.

20



4.2 WIDGET PACKAGING

As discussed earlier, an important part of X in general, and Xt in particular, is the support for
encapsulated code collections known as widgets. While many widgets are provided
commercially by widget developers (such as those for Motif and OL), some of the base
widgets that all these other widgets are built in (inherit from) are considered part of Xt. This
section describes how Ada/Xt implements these common widgets.

Ada/Xt had to deal with the interactions between the intrinsics packages and the Ada
packages that contain the definitions of the standard or base widgets that are part of Ada/Xt.
The xtcore widget is one whose behavior is heavily involved with the intrinsics packages.
The other widgets (such as composite, constraint, shell, etc.) are built on top of core.
Each of these widgets is in its own Ada package, where the STARS binding developers
decided to follow Unisys' approach of using "private" packages to encapsulate the widget
developer's information. So for a given widget, the Ada source code for it will be in the
source files widget_. a (the package specifications intended for use by everyone),
widget_p_. a (the [serni]private package specifications containing the [overloaded]
definitions, layouts, and conversion functions used only by the widget developers), and
widget. a (the package bodies that implement the specifications).

The figures below show how these three Ada packages are connected to one another, to other
widgets in the hierarchy (which will eventually involve inheritance), and to the eventual
applications code. Figure 4-7 shows a simple Buhr-style diagram, with the arrows
representing the with relationships between units.

widget_. a

widget_._ a

Figure 4-7. Relationship between a Widget's Packages

Xt widgets are built on top of each other in a hierarchy, so another widget (named widget2)
would be built on top of this first widget. Figure 4-8 shows the relationships between the
public and semi-private parts of this part of the widget hierarchy. Note the with relationships

21



between both the public package specifications (widget2_. a -- widget_. a) and the semi-
private package specifications (widget2_p_. a -4 widgetp_. a). Also note the unit of
applications code that withs in widget2 (through the arrow to widget2). As far as the
application developer is concerned, the connections to widget2'S parent (widget) are
implicit and hidden. This means that the widget developers have to be careful with the
pragma Elaborate statements as this widget hierarchy grows (to be sure the intrinsics body
is elaborated) so there are no unpleasant surprises for the applications programmers.

widget, a

widgidget a

S widget2_, aaplcto

code

k widget2_p_, a

Figure 4-8. Relationships between Widget Hierarchy and Application

As the widget hierarchy becomes more deeply nested, one application design-level question
is how to abstractly represent some of this information without overwhelming the

22



programmers with detail. One idea is to contract the three parts of a widget's source code
(widget_public_, widgetprivate, and widgetpublic) into a small "triangle" that
simplifies the with relationship diagram shown above in figure 4-7. Figure 4-9 shows such
a diagram for one widget.

Figure 4-9. Simplified Relationships between a Widget's Parts

The core widget is generally considered the base or top-level widget in the hierarchy of
classes, although there are four lower level classes (the Object, Rect Object,
Window Object, Composite Object and classes) that provide the abstract foundations
used for non-widget entities in recent versions of Xt (the light weight gadgets). So the core
widget is built on top of these two classes and all other widget (classes) are then built on top
of core. The Ada/Xt xt Intrinsics package is connected to this hierarchy through with
relationships established with the core widget. Figure 4-10 uses the simplified diagram
introduced in figure 4-9 to show this hierarchy.

4.3 RESOURCE MANAGER

X resources are an attempt to provide strongly typed data that follows the class and
inheritance hierarchies of the widgets, allowing the X user to select (through conventional
editing of their -/.Xdefaults file) widget and application code options such as colors and
initial values. These user-defied resources start out as ASCII values (as with the
-/.Xdefaults file), but are converted by the Resource Manager (RM) to the appropriate
internal value. Xt defines an initial set of these resource types (such as integers, colors, and
booleans) but the widget developers are free to create their own types.

The biggest technical issue discussed during the TIMs was how to implement X resources in
Ada/Xt. The existing C/Xt implementations have their own style for implementing a RM,
but there was some feeling that this approach led to a lot of duplication. The binding
developers wanted Ada/Xt's RM to avoid this. Not surprisingly, all the widgets will depend
on the intrinsics package.

Because these resources have to follow the widget class and instance hierarchies, they have to
fit into how Xt inherits properties. From the X end user's perspective, the -/.Xdefaults file
can contain regular expressions that allow the user to wildcard how a resource is assigned to
some or all of the widgets in an application's (dual) inheritance hierarchy. The widget
developers also have to connect in these resources to their code. Consider figures 4-6 and 4-
10 that show examples of widget hierarchies from the application developer and widget
developer points of view. The Ada packages that define the resources and the operations on
them have to be created and placed somewhere within these hierarchies.

23



various shells

RectObj

Figure 4-10. Relationship of Intrinsics to Widget Herarchy

When a widget developer creates a new resource that is to be used in some new widget, a
new Ada package can (optionally) be created that is Withed into the new widget's package
and any applications code using that resource. A standard base package contains all the
definitions and operations on the resources defined by the base widgets. Widget developers
could just bundle the new resources into the middle of the packages containing the widget.
But since these resource Abstract Data Types (ADTs) will be generally useful (to future
resources as well as applications code), separating the resources into separate ADTs from the

24



widgets allows separation of concerns. Figure 4-11 shows how a new resource ADT package
might connect to the other widget packages.

In this example there are three widgets (named core, simple, and label) that are built on
top of each other in a hierarchy, where the arrows (-4) indicate the direction of who gets
withed into what package. Several of these widgets use the base resources package, which is
generic (indicated by the dotted or dashed lines) and provides instances of the primitive RM
packages. The label widget and the application program both use a newresource
package that was written by a widget developer.

0 base resources new r~~(generics) Lne 
r so rc

I core imple label

application

Figure 4-11. Widget and Resource ADT Relationships

One RM issue discussed was where to place these new resource packages with respect to
both Ada packages and Ada source file hierarchies. These new resources could be placed
into the middle of the base resource package, but that would require editing and recompiling
that package (and all the other packages that use it, which could be an extensive fist as figure
4-11 would imply). Placing the new resources in a separate package and separate source file
was a better decision. These Ada resource source files will use a naming convention where
"..._R. a" indicates resources. Despite some arguments that the RM and individual resource
packages (source files) do not deserve to be treated like general utility programs, the binding

25



developers decided to follow the C/Xt conventions and place these source files under the Xmu
directory (see figure 3-1 for the source directory tree).

The Ada/X binding developers wanted to build up resources and widgets (in hierarchies) for
applications without having to pass system.address, because the RM packages (which have
to convert or compile the ASCH -/.Xdefaults file to a binary format) won't have access to
the new resources' type definitions. They also do not want to force massive recompilations
when new resources are created or debugged.

The existing C/Xt implementations use some tricks with C's untyped (and unchecked) data.
With CIXt, one passes the address and length of the place (object) that the new resource's
conversion routines will eventually place the compiled resource. C allows (encourages) the
allocation of untyped data of the appropriate length with the RM (who will not know the type
of the data to be placed in it) for eventual inclusion with the rest of the widget instance's data.

Ada/Xt starts getting into trouble when the compiled resource takes up more than 32 bits of
data. When the resource is < 32 bits (as with a color value), a standard Ada integer can be
allocated and be converted (with the UNCHECKEDCONVERSION function) to the appropriate
type without loss of information. But with compiled data types of > 32 bits, the RM can no
longer make this assumption. The binding developers debated the relative merits of passing
the ADDRESS of an Ada untyped data (such as a character string or a byte array, which is what
Unisys does) or always requiring strongly typed data (which is what SAIC does).

An alternative was to create a generic address type and convert an access type of a new
resource (which might be a record) to an access of this type. This avoids the ugly solution of
passing system.address everywhere. One question this raises is where the conversion
(compilation) functions go (in the base or individual resource packages) and the type of their
arguments. Each resource will have its (overloaded) set-resource subprogram, but with
this new access/address type. The base conversion functions would continue to be placed in
the base widget packages.

While the problem described above applies to widget developers, the application developers
will have a similar problem. The xt_setArg and xtGet Value subprograms are not
provided by the RM but use similar mechanisms to deal with argument values that are < or >
32 bits. Ada/X would like to use the same Ada/Xt implementations for both these
subprograms and the RM's ones. But, there is concern that target data types involving
potential dope vectors (such as the unconstrained arrays in XtLabel) would invalidate these
conversion assumptions. The resolution was to assume that the string (for example) will have
a known length (will no longer be unconstrained) by the time it is passed to conversion
functions such as ToXtArgval.

A related issue is how default resource values are set (usually embedded in the source code).
Again the problem is with resources that are < or > 32 bits. Those values that are < 32 bits
could be inserted into the middle of a static Ada array or record as integers and then
converted as needed. But larger (> 32 bit) resources (that are themselves arrays or records)
would need access pointers and/or some sort of address conversion function. One school of
thought states that there are only a few of these complex resource types, so programmers and
widget developers need to create only a few conversion functions. But another argument is

26



for consistency (either pass everything or nothing by address) and staying within Ada's
strong typing model.

The existing C/Xt RM offers little guidance in this area. Without enumerated functions, C/Xt
forces the widget writer to manually pass in the resource's format as well as its default value.
C/Xt further complicates things by being inconsistent in its usage of immediate and addressed
values. For example, these two C/Xt statements are equivalent:

setresource (...,xtrboolean, &xt_true,...); /* & a address of */
setresource(....xtrimmediate, xt true,...) ;

After a lengthy discussion, the binding developers decided to use SAIC's approach of passing
all default resource values (>32 bits) through the resource's ADDRESS attribute instead of
using Unisys' approach of using generic instantiations. While generics are probably cleaner,
they had problems with some classes of resources in set-resources and getresources.
The ADDRESS values will be passed as XLong_Integer, since there are some odd cases
where addresses such as 10 or -1 are used as special constants. This points out just how hard
it is to deal with "untyped" data in Ada.

They decided to change the set resources subprograms from procedures to functions
(returning resourcerecords) so these functions can be used during elaboration time to
construct resource arrays on the fly. Unlike C/Xt, there is no need to pass the default
resource's format (the xtr... arguments above) because overloaded set resources Ada
functions can be defined instead. Eventually the binding developers decided to overload the
parameter profiles for these data types: XLongInteger, X_Address, String_Pointer,
string, and Xt_DefaultResourceProcs.XtDefaultResourceProc.

One area that was in question was how to handle both Unisys' elaboration-time initialization
of resources and SAIC's explicit calls to compile resources. Any uncompiled (embedded)
resources within the resource-records returned above have to be converted eventually.

The related xt_SetValues and XtGetvalues subprograms will be similar, using
overloaded arguments to support xAddress, String-Pointer, string, and the other data
types. When callback procedures (as described in appendix B) have to be passed, a generic
instantiation is used to create the proc. Generics would also be used with certain new
resource class types, such as those involving enumerated values.

As discussed earlier, new resource classes considered generally useful will be placed in their
own Ada source files (...R_.a for the specification and ... _.a for the body), with any special
conversion routines placed in files under the Xmu source diectory. These conversions would
apply to the STARS Ada/Xt widgets being written; future widget developers can invent their
own conversions.

An issue that affects the RM as well as the rest of Ada/Xt is how to treat boolean values. As
discussed earlier, Ada/Xt needs to use its own xt Boolean data type instead of the
predefined standard.boolean type because precise control of the representation
specification (for compatible record layouts) is needed. The binding developers had to
decide which subprograms should naturally use xt_Boolean and which should use the

27



regular boolean in their arguments. They decided that subprograms that deal directly with
information from these records (such as xt BooleanResources) would use xtBoolean,
while subprograms that are more naturally thought of as asking a yes/no question (such as
IsSomethingTrue) would return a normal boolean. This should reduce the number of
conversion functions between xt_Boolean and standardboolean (as when used in Ada if
statements).

As discussed earlier, C/Xt compiles resource information "in place" (overwriting the original
uncompiled data) while Ada/Xt will use different record fields to hold the uncompiled and
compiled versions of a resource. The compiled versions will be placed first in the record's
layout, just in case Ada/Xt has to interface directly with C/Xt widgets (which will expect to
see the compiled resources at a particular place in the record). In keeping with the Ada/Xt
identifier naming conventions, the data type widgetresource ptr was renamed to
widget-resources.

4.4 WIDGET TYPING AND SUBCLASSING

Another major technical issue discussed by the Ada/X binding developers was how widgets
would be typed and subclassed (in the OOP sense). Part of this issue is how widgets are
created. For example, could an application developer create a widget through an allocator or
an access to the widget's type? Or does the programmer have to make an explicit create
function call? This is related to the xtCreateManaged Widget versus
XtApp_CreateShell issue discussed in appendix B. Ada/Xt would like to follow the C/Xt
convention of having only one subprogram that creates a shell (where special parameters to
XtCreateManagedWidget might be used to circumvent that).

SAIC's approach places a create subprogram in each widget's package instead of having a
central create function in the underlying xt Intrinsics package that needs to have the
SIZE attribute of each widget passed to it. Tis approach uses an allocated new in the Ada
source code and a few simple consistency checks. Note that this approach would break if
C/Xt changed to add new checks and/or calls during creation.

Unisys encapsulates widget building into a central create function, so any future changes
(such as those for X 1R4 and X 1R5 intrinsics) need to be done in only one place. This is
where the widget creation callback procedure ideas discussed earlier would help, since the
nw that allocates the widget's storage would be done in the widget's Ada name-space.

But all these creation procs would prevent the subclassing (through subtyping) of widgets.
An alternative would be to use Unisys' direct calls to the C malloc () function to create
(more) untyped data. As with the RM, there are tradeoffs between who does storage
allocation and whether the creator knows exactly what type and size of data to create. An
alternative discussed was to use the extension field of each widget, but there was resistance
to the idea of using this field since others in the Xt world might also be using it. Eventually
the binding developers decided to use either malloc () calls or allocations of untyped byte
arrays.

28



These widget creation issues have to be considered in light of how widget classes can be
subclasses and inherit information. As shown in figure 4-4, widget classes are arranged in
hierarchies. So from an application developer's point of view, the widget class hierarchy
shown in figure 4-10 above looks something like the Ada code fragment below.

type widget is private;
subtype core is widget; -- subclassing thru Ada type
subtype composite is core; -- hierarchies

private
type widget is access widgetrecord;

But as the widget class record layouts of appendix B show, each level in this hierarchy adds
another layer of fields to hold data particular to this widget class. If just the subtyping
mechanism above were used, how would subprograms that are passed a core widget get at
the fields from a more complete (higher level) widget such as composite? Would
conversion functions be needed to get at the right type? Binding developers do not want to
force the application developers to do everything as a widget; they want to instead encourage
the use of shell, label, command, or whatever is appropriate in the application (without
making programming too difficult for the widget developers either).

Ada/Xt's developers eventually decided to go with visible subtypes (as shown above) in the
package specifications, with the needed conversion and access functions that get mapped to
the full record layout definitions in the package's semiprivate portion (as described earlier)
that contains the real widget class definitions. Note that while this approach works with
subtypes, derived types will not work as cleanly because of potential conversion functions.
Any SAIC or Unisys-specific routines (specific as to the way they handle widgets) go into the
semi-private packages to encapsulate Ada/Xt implementation details. Warning messages will
be issued if a programmer calls an access or conversion routine that is supposed to be used
only on the other Ada/Xt implementation.

The Ada source file naming convention for intrinsics widgets was decided to be:

File Name Contents

xtcore_. a core widget's public specification,
xt_core, a core widget's public body, and
xtcore_p_ .a core widget's semiprivate specification.

The abbreviation of private to p avoids (or at least limits) the problems of lengthy widget
names (such as xtApplication) resulting in file names that are too long for some host
operating systems. Note that non-intrinsics widgets (such as label) would not have the xt_
prefix in front of their file names; instead the source file name would be label.a.

29



SECTION 5

FUTURE DEVELOPMENT WORK

The last of the TIMs brought to an end the formal review and technical exchange portion of
the STARS task. Some open issues remain (besides implementing and documenting the final
software products) that both the binding developers and STARS management should consider
for the future. The X Window System, any language bindings to it, the commercial
(consortia) widget sets sold for it, and even the Ada language that programmers intend to use
with it, are all scheduled for change during the 1990s. The STARS program, commercial
interests, and other interested parties need to begin planning about what to do next with
Ada/X.

SAIC and Unisys have created a tutorial on their Ada/X work that was first presented at the
January 1991 Fifth X Technical Conference in Boston, MA. This tutorial was based on
some of the earlier talks they have given, such as at the recent Association for Computing
Machinery (ACM) Special Interest Group on Ada (SIGAda) Summer 1990 Conference. This
tutorial assumed that the attendees had a working knowledge of Xt, so the talks concentrated
on how Ada/Xt is used and how it makes Ada applications programming easier by hiding
many of the messier details of Ada/Xlib. Beyond this tutorial and the final Ada/X
documentation to be delivered by the two developers, there are no announced plans for
application developer or widget developer documentation or instructional/training materials.
Given the large amounts of instructional and reference material that has been written for C/X,
similar levels of documentation for Ada/X may be required for general acceptance.

The STARS task produced an Ada/Xlib binding to the Xl 1R4 release of the X Window
System and an Ada/Xt implementation to X 1R3. The Athena consortium is well on its way
to preparing X 1R5 (and then eventually X11R6), as more features and improvements are
added to the reference implementation of X. Beyond the hope that the Ada/X work
transitions quickly to commercial Ada compiler and binding reseller concerns, there are no
real plans for handling future upgrades to X. Transitioning the control of this language
binding standard to the appropriate standards group for formal definition and periodic
upgrades remains to be done.

The STARS policy toward commercial widget sets such as Motif and OL remains undecided.
With application developers tending to use one widget set or the other to avoid writing a lot
of widgets from scratch (instead, one just reuses and/or subclasses from the widgets
available), Ada application developers will expect bindings or implementations of one or
both of these widget sets. The decision of when and which widget set(s) to implement rests
with STARS, commercial binding developers, and/or with the consortia themselves.

This and other decisions will depend on what the STARS direction for the future will be. As
STARS holds more workshops and other feedback sessions, there may be decisions that
affect ongoing (or previous) STARS products such as this Ada/X work. For example, the
impending upgrade to the Ada language (Ada 9X, resulting in MIL-STD- 1815B) may
provide language features that COTS package interfaces (such as databases and this Ada/X

31



work) will want to exploit. Already Ada 9X has announced plans to explore an Ada/X
binding for the new version of Ada, to see just how improved the 9X OOD/OOP features are.
The relationship of the STARS technology work (such as Ada/X) with all the other groups
developing future Ada technology remains to be worked out.

Another future development area is the creation of widget sets for specific application
domains. Most current widgets are for very general use. A particular application domain
will want (reusable) widgets that capture both the user interface and behavioral semantics of
a set of applications. A related development area is the creation of widgets, Ada/X libraries,
and client/server relationships that are usable in time-critical applications. Plenty of
opportunities remain for binding developers, UIMS writers, widget developers and
application developers in this area.

32



SECTION 6

POTENTIAL STANDARDIZATION

The STARS Ada/X binding developers agreed that there needs to be some sort of standards
group responsible for just the Ada bindings to the rest of X. As STARS and other
organizations listed in table 2-1 generate Ada/Xlib, Ada/Xt and other specifications, they will
need to transition these specifications to a standards group to be maintained. The initially
incompatible Ada/X systems from just within the STARS program are examples of what can
go wrong for the entire Ada/X community if too many incompatible bindings are developed.
The X Window System levels that this STARS Ada/X task tried to bind to (Xlib, Xt, widget
sets, and UIMSs as outlined in figure 2-1), are all in a state of flux as new technical
improvements are continuously being added. Each of these changes might be implemented
differently by the binding developers, hurting overall Ada/X portability. These changes to
CX (at least) will be controlled by a series of standards groups; some are American National
Standards Institute (ANSI) groups (such as X3H3) and some are Institute of Electrical and
Electronic Engineers (IEEE) groups, such as the Portable Operating System Interface to
UNIX (POSIX) committee P1201.

Currently, there are no clear plans on how (or who) to set up such an Ada/X standards group,
or how that group might be related to the overall STARS effort in this area. There appears to
be some time left before major decisions about Ada/X binding standards groups have to be
made. But, it may be time to start laying some of the groundwork for such an effort, and
starting to build interest both inside and outside of STARS based on the competitive quality
products that (hopefully) will come out of this task and/or the commercialization follow-ons.

Any standardization work has to start with something; in this Ada/X binding work, the initial
base products and specifications that will form version 0 of any standards could come out of
this STARS task. So before a standardization group formally begins its work, it would be a
good idea for the products of this task and some of the other Ada/X developments to be
completed so the standards get off to a running start. Since this STARS task produced
deliverables that will jump start a major Ada industry standardization effort, it is important
that this STARS task get some external technical feedback to begin building some broad
consensus (and catch any major design errors early) beyond the small membership of the
STARS binding developers. This is a reason to continue communicating with the broad Ada
community as in upcoming SIGAda conferences.

Any Ada standardization group would be within the structure of an existing standards group;
there is no point in creating some all new group just for Ada bindings. This means that the
Ada group would have to conform to practices being used by its related groups. For
example, the IEEE POSIX effort already has a committee (P1201) looking specifically at
creating industry standards for X, so P1201 could be a good place to form a subcommittee for

33



dealing just with Ada bindings. POSIX already has a subcommittee that deals with just Ada
binding standards to the base operating system (P1003.5), so language-specific bindings are
not new to POSIX.

One issue to consider in the timing of the formation of any Ada/X binding standardization
group is the progress being made by the related standards groups. In POSIX, the trend is
toward the development first of language-independent standards for the functionality of some
system, with language-specific bindings then developed on top of this standard. For X, this
trend leads to some confusion because there are different groups working on different
standards (at different rates of completion) for the various layers of X.

At the base of the X Window System is the X protocol defining the bits and bytes that are
passed between client and server (see figures 2-1 and 2-2 for overviews). The ANSI X3H3.6
subcommittee is almost done with this standard. Since this protocol layer is well below what
any Ada application program would have to deal with (with the possible exception of the
Rational Ada/Xlib implementation) and since Ada/X generally abstracts away this layer by
only dealing with the X Window System through higher layers, there may be no need for an
Ada-specific binding standard at the protocol layer.

The next layer up is Xlib. The development of the functionality (specification of behavior) is
done by the Athena Consortium itself, with the proposed IEEE P1201.4 group responsible for
creating the formal standard. A problem has arisen here in that the Athena Consortium wants
to hold off any standardization (in C, Ada, or anything else) at the Xlib layer until they have
come up with a solution to the tricky problem of internationalization (the support of non-
Roman alphabets such as Kanji, Hangul, Arabic, and Hebrew) in Xl IRS.

One product that came out of this STARS task was the common SAIC/Unisys Ada/Xlib
binding, yet it is not clear that P1201.4 will have a language-independent Xlib specification
for this Ada binding to claim conformance to. It is quite possible (and likely) that the
products that come out of STARS and/or a commercial concern could become de facto
standards that serve the Ada community's need until formal IEEE POSIX standards become
available. But in the short-term, there could be problems in specifying conformance to
standards that really do not exist yet.

When moving above Xlib, an application developer moves into X toolkits, widget sets, and
controversy. While the standardization community has settled on using the same Xt
intrinsics that this STARS task developed Ada implementations of, the widget sets and "look
and feel" issues remain highly competitive. P1201.1 is trying again with a very high level
abstract interface known as the Virtual Application Programming Interface (VAPI) that was
developed for the XVT commercial virtual toolkit that claims conformance to almost any
windowing system (including Motif and OL).

All this has greatly slowed the efforts by P1201.1 to produce a formal standard. MITRE's
experience in this area is that standards take at least two years to get through the review and
balloting process. The outlook for the Xlib layer standard is relatively hopeful. Assuming
that the Athena Consortium can remain on schedule in producing an X1 IR5 in 1991 that
addresses the internationalization issue so P1201.4 can have a language-independent

34



specification of Xlib ready to go to standard, a related Ada/Xlib binding standards committee
(perhaps numbered P1201.5) could be formed. But the outlook for Xt standards remains
clouded.

There are ways to speed up the (nominally two-year) standardization effort if preparations
and consensus are built ahead of time. If STARS used the time between now and the release
of XI 1R5 in 1991 to get Ada industry feedback on the evolving Ada bindings, then the
balloting step could be moved up. A new P1201 group could go almost straight to balloting,
saving nearly a year in the standardization effort. Note that there are some risks in early
solicitation of industry comments. The STARS Ada/X binding may have made good
progress just because the number of participants was small.

The Ada/X community will have to address the widget set issue at some point. The X
application development community seems to be lining up behind commercial widget sets
such as Motif's and OL's, with older and smaller widget sets such as the Athena and Xray
sets falling into disuse. In addition to the size of these commercial widget sets (Ada bindings
and/or implementations would be a major undertaking), there are difficult copyright and
commercial advantage issues to consider. Do government programs such as STARS want to
become involved with one or both of these industrial consortia?

Another standardization issue to consider is the moving targets being followed. The original
STARS Foundation's Ada bindings were to X 11R2; the initial releases of both the SAIC and
Unisys Ada bindings are to X 1R3; the final STARS Ada/Xlib bindings are to X1 1R4; any
P1201.5 standardization work in future years would have to deal with the coming XI IR5;
and there are already plans for X11R6 (that will include threads, where Ada tasking can
really make an impact). The commercial widget sets are also moving targets (such as Motif
versions 1.1, 1.2, 1.3, 2.0, etc.). Note that the commercial X vendors don't always release
their products in synchronization with the latest Athena Consortia releases (Motif remained at
X 1R3 for a while after X 1R4 was released). This means that Ada/X binding development
will remain an ongoing process, requiring a consistent source of support for both the
programming and standards maintenance.

With confusion and competition reigning at the widget set layer, STARS might want to look
toward the higher UIMS layer for standards that are also of use to application developers.
POSIX P1201.3 was looking at standards for this area before this effort collapsed. Serpent
and TAE+ are examples of UIMSs that handle Ada APIs. An issue for Ada/X binding
developers to consider is whether the Ada/Xlib and Ada/Xt interfaces can handle the Ada
source code generated by these UIMSs, particularly given the Ada host compiler problems
noted by application developers using machine-generated Ada code.

Another question that Ada/X binding developers should consider is how they should deal
with the recent National Institute of Science and Technology (NIST) Federal Information
Processing Standard (FIPS) on user interface models (FIPS 158). NIST has defined a seven-
layer reference model (patterned after the Open Systems Interconnection [OSI] network
reference model) that is used to organize standards. FIPS 158 defines a user interface
reference model that is closely patterned after the X Window System's architecture stack
(see figure 2-1).

35



FIPS 158 Model X11R4 Reality

application application
dialog UIMS
presentation ?
toolkit widgets (maybe)
subroutine foundation Xt intrinsics
subroutines Xlib
byte stream X protocol

Note that while FIPS 158 is promoted as a reference model, it is only very loosely connected
to other NIST reference models such as the one being created for Ada Programming Support
Environments (APSE). The integration of COTS (as with an XlI package) and application
models of behavior (as in using a common client/server model) is more complicated than
many application developers realize. Also note that FIPS 158 avoids the Motif/OL question
by leaving the widget set issue open.

It is possible that FIPS 158 will have little, ff any, impact on Ada/X bindings because the
FIPS' reuse of the X architecture stack helps ensure that whatever products come out of the
binding, developer will automatically conform with the spirit of this FIPS. Experience with
other FIPS have shown them to be mainly placeholders for other standards. The FIPS
dealing with the POSIX operating system specification (being done by P1003) even contains
a forward reference: the POSIX P1003 standards (and there will eventually be many of
them) have not gone through the formal balloting and approval steps yet; this has not
prevented NIST from issuing FIPSs requiring conformance to draft standards.

These FIPSs also seem to be automatically upgraded as whatever real standards they point to
are upgraded. So ff the current FIPS 158 contains a reference to Xl IR3, as X 11R4 and later
releases are done, then they become effective within the FIPS. An issue that FIPS 158 really
does not address is standards skew as different organizations upgrade their work. Earlier,
this report noted how the higher level widget sets sold by one organization may not be the
latest X release (as was the case with Motif). Upgrading the bindings to specific languages
such as Ada could also fall behind the release of an upgrade to a base specification. Ada/X
standardization efforts should keep the evaluation of related standards such as FIPS 158 in
mind as Ada/X matures.

Another standardization issue to consider for FIPS 158 and Ada bindings is the extensions
being made to the X Window System by various developers and researchers. For example,
the Video Extensions to X (VEX) and the Programmer's Hierarchical Interface for Graphics
Systems (PHIGS) Extensions to X (PEX) both define functionality that some application
developers will need but which lies outside the traditional X Window System reference
modelAt some point, Ada application developers might want bindings to extensions such as
PEX and VEX.

36



SECTION 7

DISTRIBUTION ISSUES

One issue addressed during the STARS Ada/X development was the distribution of products
in general and the software (source code) for the Ada/X binding in particular. There were a
variety of complaints expressed by the Ada community about the distribution of the earlier
AdaIXlib binding developed under the STARS Foundation's work. No one seemed to be in
charge of collecting and distributing the bug notices and fixes for this early product.
Eventually, commercial companies (such as GHG) would turn this problem into a sales
opportunity, but the delay between initial release and commercial support was still troubling.

One reason the X Window System has gained its popularity is the ease by which the software
(particularly the base or reference version) can be obtained. The source code is publicly
available by both magnetic tape and FTP (File Transfer Protocol, a direct computer-computer
network connection) distribution means. The STARS Ada/X binding developers received
permission to distribute the software via FTP access as well, to aid in quick distribution.

The Unisys version of the completed Ada/X software is available via anonymous FrP from
the STARS repository on STARS. rosslyn.unisys .com. The SAIC version is available via
magnetic tape from the STARS office at Boeing. Other sites such as the grebyn.com
computer have made this software available for FTP access.

The eventual application developers who use these bindings will need opportunities to sit
down with each other and the binding developers to provide feedback on binding use. This is
especially true as Ada/X is used with new Ada compilers of modified versions or existing
reference compilers. Some of this can be done electronically, such as through the existing
x-ada@expo. .cs. mit. edu mailing list maintained by the Athena Consortium.

One distribution issue that proved to be more difficult than originally expected concerned the
file and unit "headers" that are placed in the source code. A final header scheme needed a
resolution of exactly which copyright notices (for Athena, STARS, etc.) should be placed
into the different files. Complicating this were the different copyright notices that the
Ada/Xlib source code (which is a thin shell around copyrighted Athena C code) and the
Ada/Xt source (developed under STARS funding from scratch to conform to Xt intrinsics
behavioral specification) would need. If the choice of which (commercial) widget set (such
as Motif) is resolved, then another set of copyright notices for the widget source files may
need to be created.

37



SECTION 8

ACQUISITION GUIDANCE

This paper has reviewed the progress made by the STARS Ada/X binding developers and
presented a high-level overview of their products. Besides capturing lessons for future
application developers, widget developers, UIMS writers, and binding developers, this paper
tried to give some guidance to acquisition support people who must review or guide the
efforts of others.

One point is that the X Window System is a very complex set of interrelated products and
interfaces (as figures 2-1 and 2-2 implied). Acquisition documents containing language such
as "shall use X Windowing System" are of little help to developers because of the many
levels of interfaces the programmers may choose to use for supporting different parts of an
application. Even language such as "shall use a binding to X" is not helpful; as discussed
above, there have been products that provide full Ada implementations of parts of X and so
requiring a binding is over-specification.

Another point is the rapidly shifting nature of X. As discussed above, products and bindings
can conform to a variety of X standards such as X 1R3, X 11R4, and X 1R5. Commercial
tools, products, and widget sets may be up to date or lag behind these base Athena
Consortium releases. Formal (ANSI and/or IEEE) standardization is a rapidly developing
and evolving area. Acquisition people should be very precise as to the release number,
versions, and product dates of subsystems and bindings that any (Ada) applications code
must interface to, #that is an important requirement to a program. Otherwise the acquisition
staff should not over specify a latest version number that is likely to change in the near
future. If the X Window System is an important part of a system's software, then the project
should keep up to date with technical and commercial developments in this area.

Acquisition support people should also be aware of the tradeoffs between design abstractions,
run-time performance, software portability, and other factors. As figure 4-6 showed, the
design of an application using X can rapidly become complex. The software architecture and
flow of data/control, perhaps once represented entirely within applications code, now must
include COTS behavior as provided by X intrinsics and widget sets. OOD concepts such as
subclassing and inheritance provide new paradigms for the application developer to exploit,
but require that the acquisition people review the software from a different perspective.
Traditional deliverables as called for in DOD-STD-2167A (DOD, 88) may not be as
applicable to applications using X's architectures.

Reusability and COTS integration are not free; the complex architectures shown in
figure 4-6 impose at least some run-time performance penalty over custom-written
windowing systems. Systems with strict performance requirements should be careful in how
they benchmark and track performance since so many parts of X (and Ada bindings to it)

39



contribute to overall performance. Acquisition support people must also balance the relative
ease of programming and portability of Ada/X at the higher levels of figure 2-1 with the run-
time overhead of dealing with more abstract layers.

40



LIST OF REFERENCES

Buhr, R. J. A., 1984, System Design With Ada, Prentice-Hall.

Bynes, C., 1989, "A DIANA Query Language for the Analysis of Ada Software,"
Proceedings of the Seventh National Conference on Ada Technology, U. S. Army
Communications - Electronic Command.

Byrnes, C., 1990, "Formal Design Methods for Dynamic Ada Architectures," Proceedings
of the Eighth National Conference on Ada Technology, U. S. Army Communications -
Electronic Command.

Department of Defense, Ada Joint Program Office, 1983, Ada Language Reference Manual,
ANSI/MIL-STD-1815A.

Department of Defense, Joint Logistics Commanders, 1988, Defense Software Development
Standard, DOD-STD-2167A.

Emery, D., 1990, "A Prototype Implementation of the Ada Binding to POSIX," Proceedings
of the TRI-Ada '90 Conference, Association for Computing Machinery.

Evans, A, and K. Butler, 1983, Descriptive Intermediate Attributed Notation for Ada
Reference Manual, TL-83-4, Tartan Labs.

Latour, L., 1990, "A Methodology for the Design of Reuse Engineered Ada Components,"
Proceedings of the First International Symposium on Environments and Tools for Ada,
Association for Computing Machinery.

Lewin, S., 1989, "Ada Implementation of an X Window System Server," Proceedings of the
TR1-Ada '89 Conference, Association for Computing Machinery.

Luckham, D., et al, 1987, Anna: A Language for Annotating Ada Programs, Lecture Notes
in Computer Science #260, Springer-Verlag.

Scheifler, R., J. Gettys, and R. Newman, 1988, X Window System: C Library and Protocol
Reference, DEC Press.

SEI, 1989, Serpent Overview, ESD-TR-89-08, Software Engineering Institute.

Szczur, M., 1990, "The Transportable Applications Environment Plus (TAE+): A User
Interface Development Tool for Building X Window-based Applications," Proceedings of the
Fourth X Technical Conference, MIT Athena Consortium,.

Wa~lnau, K., 1990, UR20 - Process/Environment Integration Ada/Xt Architecture: Design
Report, STARS-RC-01000/001/00, STARS CDRL 01000, AD-A228-827.

41



APPENDIX A

DETAILED ADA/XLIB CHANGES

This appendix lists the detailed technical issues related to an Ada/Xlib binding that were
identified and the resolutions on which the STARS binding developers decided. The listing
of resolutions and rationales are Tim Schreyer's, with some additional commentary to give a
flavor of what an Ada application developer might say.

A.1 RENAME THE MAIN INTERFACE PACKAGE XWINDOWS TO XLIB

The rationale for renaming the main package of Ada/Xlib was that it would improve the way
people think about and refer to the bindings and make Ada/Xlib a closer fit as a binding to
Athena's C/Xlib. Automated support for existing applications would make this change
relatively painless.

There was concern that this name change would cause heartburn to the existing users of
Ada/Xlib bindings, going all the way back to the original STARS Foundation's binding. The
developers felt that a UNIX sed script and/or emacs macro could automatically make the
binding change painless. This was an example of the sort of change that needs to be made
now before the world assumes that package x windows means all of X instead of just Xlib.

One issue the single interface package raises is the name-space management issues caused by
a monolithic Ada/Xlib binding package. Some who have looked at the Ada/Xlib binding
were worried about the huge name-space (all those Xlib subprograms, packages, and types)
that suddenly become visible to the application when a with XLib; is done. The binding
developers are hopeful that a smart Ada linker will silently eliminate all the dead Xlib which
is visible but never used in an application; given the Ada compiler problems noted during
these TIMs, that may be wishful thinking. The ideal solution would be to separate the
gigantic X._Lib package into its major (currently nested) subpackages. Both SAIC and
Unisys have attempted this, with the attempts failing because so many of the Xlib (nested)
packages have intertwined dependencies that a linear compilation order couldn't be found.
Some Ada application developers will not be happy with the idea of having to fully qualify
all the names of the nested (at two levels) XLib packages/subprograms and/or having to use
the dreaded Ada use statement as a shortcut.

A.2 CHANGE THE TYPE OF XLIB.EVENTS.EVENTTYPE

This would change the type from an Ada enumeration type to a new Long-derived type of an
integer type (Long is a 32 bit integer type in Ada/Xlib). The rationale for this is to allow
additional event types to be added with ease to the implementation at the Ada/Xlib level and
above.

43



A.3 CHANGE THE BASE TYPE FOR MASKS IN ADA/XLIB

The change would be from boolean array subtypes to private 32 bit integers. Ada/Xlib
provides mask type operations like and and or in a visible package. The binding developers
defined a base MaskType as a new long (32 bit integer). This can be subtyped for specific
mask types. They also defined an operations package for Mask_Type and determined the
location and visibility of the MaskType.

The rationale for this was because attempts to implement masks as boolean arrays caused
difficult problems in a binding like Ada/Xlib where masks travel frequently through the
interface. This change will improve AdalXlib and higher interface level performance by
removing expensive conversions between boolean arrays and integers and elaboration
overhead for boolean arrays. In addition, this change will circumvent many compiler checks.
A potential problem concerns derived types, being used here to encapsulate Xlib masks.
Consider the following code fragment, where the lines in underline indicate areas of trouble:

package X_Lib is

type x mask tv_. e is private: -- trouble below

type x_masktype is new long; -- forced to use instead

package events is -- nested package
tg- event mask-type 4s nov x maktype: -- illegal

subtMe event mask type is x-mask type: -- O.K., but
keyress mask : event mask type 2: -- illegal private assign

type event mask tvne Is private: -- again O.K., but
key Dress mask ! event masktype = 2: -- illegal private assign

type eventmasktype is new xmasktype; works with derived type

private
t-_a event mask type is new x mask type: -- doesn't solve assign

-- to keypress mask
end events; -- problem

end XLib;

Figure A- 1. Problems with Mask Data Types

The problem described above also shows up with types drawable, context, and x Id,
where these must be defined as new card32 instead of private because of some direct
assignments and conversions that are done.

44



A.4 EXAMINE PACKAGING FOR OPTIMAL VISIBILITY AND COMPILER

INDEPENDENCE

The developers defined two new configuration dependent packages, containing

a) ConfigurationDependent:
-- base numeric types and size constants
-- system configuration constants
-- a byte of the Ada null access type (null-byte)
-- a zero System.Address (nulladdress)
b) systemutilities:
-- command line argument interface
-- C + Ada string interface

The rationale for this change was that besides providing compiler independence by keeping
compiler dependent code in the bodies of these packages, this would minimize the number of
small dependent packages for Unisys, and move dependent information from bindings
packages to separate packages for SAIC.

The goal here was to straighten out the tangled mess of low-level packages that SAIC and
Unisys developed to encapsulate the com" h1er-,;ipendent and operating system-dependent
features of an Ada/Xlib binding. This was p'rcularly for tricky Ada representation
specifications.. There were other problems caused by different compiler interpretations of
pzagma Interface, command-line argument passing, and Alsys' use of a predefined
SystemEnvironment package.

A.5 DETERMINE THE ROLE OF EXCEPTIONS IN THE ADA/XLIB BINDING

The STARS Foundations bindings had some Ada exceptions sitting unused in various
package specifications. The resolution of what to do with these exceptions was to remove the
unused exceptions from the specification of the x Lib package. The rationale was that these
exceptions represent errors that occur as a result of X protocol errors, after the flow of control
has passed through the bindings to the C/Xlib code. As such, they are handled by the default
C error handler and are not passed back to the Ada scope. The exceptions that now exist in
the x Lib package are unused and should be removed to prevent users from implementing
exception handlers for exceptions that cannot/will not be raised.

Error handling is tricky in Xlib; so it is hard to come up with a clean Ada binding that
handles errors. For example, as an application sends commands to the X client, the lowest
level (the X protocol) might delay the actual transmission over the network until some ideal
cache or buffer state is reached. As result, if those commands contained an Xlib error, the
error would not be reported to the application (server) until after several other legal Xlib
commands were issued. So even ff the Ada/Xlib binding decided to raise these (deleted)
exceptions, the exceptions might be raised in the scope of some subprogram that did not even

45



issue the offending commands and might not have a clue of how to recover from the
exception. There might be ways around this, such as passing an Ada error handling
procedure to the binding (perhaps as a generic parameter), or having a distinguished Ada
task for handling and reporting these Xlib (X protocol) errors.

A.6 DECIDE WHICH TYPES SHOULD BE PRIVATE AND WHICH NEED TO BE
PUBLIC

Both of the binding developers had their own ideas as to what should or should not be a
private type. They had to decide on a case-by-case basis which types should be made public
or private. The rationale for this was that during the development of the Ada/Xlib bindings,
certain types that were originally private were made nonprivate so higher level interfaces
could access their structure. Although hiding of types is desirable in AdaIXlib, some types
must be nonprivate so that layers based on Ada/Xlib have a suitable interface. This was one
of those clean ADT versus efficient implementation arguments. The STARS Ada/X binding
developers leaned towards the clean ADT approaches, which should help in presenting a
sound binding for standardization.

A.7 DECIDE WHICH CONSTANTS NEED TO BE MADE INTO OBJECTS FOR
ADDRESS RESOLUTION

The developers examined and incorporated both teams' changes from constants to objects,
and on a case by case basis decided if additional constants should become objects. The
rationale for this was that Ada allows compilers to use registers to store constants. Some
constants in Ada/Xlib binding need 'address resolution at run-time to be used in the X RM.
On a selective basis, changing these constants to objects will allow the desired address
resolution.

Another discussion concerned how to best represent the base C/Xlib use of enumerated
values. In some cases C uses its enum construct, while in other cases explicit #define
constants are used. Ideally these would be represented in Ada/Xlib with Ada's enumerated
types. But a problem will quickly arise in Ada/Xt, where the original "base" collection of
some enumerated types in Xlib has to be extended with additional values that are used only
within Xt. That is why C/Xlib uses #define constants - so C/Xt code can create new
constants by increments from the last #defined one. AdaIXt cannot use this trick because
one cannot extend an Ada enumerated type after it has been defined. One also does not want
to force the new Ada/Xt-specific enumerated values down into the Ada/Xlib type definition
level. Ada private types will also have problems when trying to extend the values.

This overall problem is similar to the XLib. Event issue raised in section A.2 above.
Events are allowed to be extended by the application programmer, so there was no way to
statically determine in the binding what the range of event numbers would be (that is why
they become integers instead of enumerations). A workaround for this would be to define a
convenience function that Ada/Xt programmers could use to convert the C/Xt #define
constants into Ada deferred constants. The code fragments below show how this function
would be used. First there would be an overloaded function such as:

46



function createconstant(X: long) return XMode;

-- where XMode would vary

package X_Lib is -- where base of type defined

type XMode is private; --so user doesn't play with it
input: constant XMode; -- a deferred constant
output: constant XMode; -- another deferred constant

private
type XMode is new long; -- treated as another number
input: constant XMode := 0;
output: constant XMode := 1;

end XLib;

package Xt is -- now extend XMode data type

inputoutput: constant XLib.X Mode := createconstant(4);
end Xt; -- woe to incorrect values here!

Figure A-2. Examples of Constant Object Definitions

Another "convenience" function that's needed is:

function toAda boolean(val: long) return boolean;

because there are C/Xlib functions that return hidden status values in the return codes. For
example, a return value of - 1 or - 2 might both indicate that the function call failed, but for
different reasons. The Ada/Xlib function has to get a true boolean value on its type boolean
so that constraint-errors is not raised.

A.8 STANDARDIZE THE X RESOURCE INTERFACE FOR ADA/XLIB

An analysis of each implementation of the Xlib RM was done to complete a common
interface for Xlib resources and resource types. The rationale was that the original
implementation of Ada/Xlib did not include bindings to the resource portion of Xlib.
Therefore, both SAIC and Unisys have developed resource managers that must be merged to
provide a standard interface to all the Ada/Xfib bindings.

Note that the Xlib resourcemgr package is an additional burden to implement because the
original C binding took some abuses with C's pointer-passing mechanisms. Some of the Ada

47



binding problems caused by trying to duplicate C's pointer and array passing can be traced to
this package. The binding developers created a resource package that is more Ada-like in
passing actual array back and forth, instead of forcing the use of access types for everything.

A potential problem with the Xlib-level X resource manager (Xrm) was resolved when a
code inspection revealed that there were no instances of applications code needing to see or
access the internal hash-bucket types within package resource mgr. That eliminated the
need to make that type visible and to worry about both the Ada and C sides allocating records
that need to be reclaimed. A related Xrm issue was how to treat the "arrays of records" (such
as user-defined search lists) that are passed around the software. This turned out to be
another instance of the string passing problem discussed above. The "simple" solution is to
pass these lists around with system. address parameters; but this could fail at run-time if the
records (particularly variant records) used dope vectors to control the record instance. In this
case the access search-lists is not equal to system. address because the address will be
to the start of the dope vector or record descriptor, not the start of the actual record data.
Improper representation specifications can also lead to memory leakages as an application
program runs.

A convention for dealing with arrays and records with embedded pointers was defined as:

records with pointers use record. all' ADDRESS, and
arrays with (embedded) pointers use array' FIRST' ADDRESS

Note that f C's NULL address/pointer is present, then the Ada/Xlib constant zero address
would be used. A check that Ada compilers (particularly those that do not assume Ada's
null = 0) can accept this was done.

One question raised about memory leaks was whether an Ada/Xlib binding should add new
Ada procedures (above the standard strict binding routines) to allow the declaration of C data
structures (such as linked lists). There are already some new Ada procedures that are not in a
strict or simplistic Ada/Xlib binding; so these new deallocation or free procedures would not
represent a major change. A single (overloaded) free procedure could deallocate Ada as
well as C structures. The binding developers decided that calls to free would be added on a
case-by-case basis.

A.9 STANDARDIZE THE NAMES OF VISIBLE TYPES, SUBROUTINES, AND
PACKAGES

The developers converted all procedural interfaces to Xlib style names. The rationale was
that renaming the visible interface of Ada/Xlib would make the bindings a better match to
C/Xlib, and a more worthy candidate for standardization. Renaming would also allow the
easy reuse of the large existing body of Xlib documentation for C to be used as a functional
reference for Ada/Xlib.

Some of the Ada/Xlib subprograms had an "x_" prefix before the name, while others did not.
The same thing occurred at the Ada/Xt binding level, where some but not all subprograms

48



and packages had an "xt_" prefix. Even worse, SAIC and Unisys had different naming
standards for who did and did not get these prefixes. While this will be a fairly major change
(at least at the cosmetic level), there was agreement that an Ada/Xlib and Ada/Xt binding
standard would never get approved with an inconsistent naming standard. So the binding
developers decided to bite the bullet now and change over to a consistent scheme. As with
the earlier change from x windows to XLib, much of this change could be done
automatically with the appropriate UNIX sed script.

A.10 HAVE LESS EMPHASIS ON BACKWARD COMPATIBILITY

The development strategy was to concentrate on producing the best and most lasting
Ada/Xlib binding, and provide a measure of automated support for upgrading the source code
of existing applications. The rationale was that the convergence of SAIC's and Unisys'
Ada/Xlib produced a more stable and tighter binding to Xlib than many existing applications
have. The number of existing applications is now at the lowest that can be expected. The
production of an Ada/Xlib binding of the higher, quality is important for the goals of
standardization.

This means dropping support for an Ada/Xlib binding for X1 1R3 and going straight to
X1 1R4. The rest of the world is going to X 1R4, so there is no reason for the Ada binding to
be left behind. As explained below, the impact to the remaining X 1R3 users should be
minimal through the availability of dummy X 1R4-specific interface routines.

A.11 DEFINE INTERFACE TO COMMAND LINE ARGUMENTS AT THE
ADA/XLIB BINDINGS LEVEL

The command line argument interface is compiler dependent and should be separated from
the bulk of the bindings. The POSIX P1003.5 people have a standard interface to command-
line arguments; future binding developers should look at using that interface (along with a lot
of other good ideas in the P1003.5 Ada binding) to minimize duplication of effort.

A.12 DEFINE ONE REPRESENTATION OF THE MANY X EVENT STRUCTURES
IN ADA/XLIB

After some discussions, SAIC and Unisys decided to keep the existing two different
representations. The rationale was that currently one representation is kept for the Ada
interface to the user, and the other for the interface to C through the bindings. Changing to
one representation is an implementation task (not affecting the common specification)
beyond the scope of this effort.

The feeling was that the Xlib event structure details would be hidden in the bodies of the
various Xlib packages, so Ada application developers would never see that there are

49



differences in the implementation. Both development teams thought events were a complex
enough issue to leave to compiler-specific maintainers. Hopefully, details of this are so low-
level that they will not affect standardization.

The AdaIXlib binding should not assume that Ada's access string is the same as C's "char
*". The binding instead assumed that all those pragma Interface (C) routines that are
called return the only safe assumption for a value: system. address. If this address happens
to be the start of a C string (char *), then one should use a conversion function on the Ada
side to convince the Ada compiler that the address can be treated as the start of the "data"
portion of the (Ada) array. A portability issue is how different C compilers (such as cc and
gcc) would generate the layout of the records that Ada/X source code has access through
representation specifications. Ada compilers (and this Xlib binding should support them all)
can chose to implement access in a variety of ways. While with some compilers (such as
Verdix) the access value is indeed the pointer to the start of the real data, other Ada
compilers (such as Meridian, especially with an access to an unconstrained array) will return
pointers to allocated "dope vectors" with the actual data pointer located somewhere else. The
STARS Foundation's Xlib binding will be very nonportable across validated Ada compilers,
and will therefore run into a lot of opposition if someone tries to turn it into a standard.

Our standard workaround [described in (Emery, 1990)] is to define a function like this, with
the bold line below indicating where the connection to the string is made:

function address to string(pointer: system.address) return string
is

result : string(1 .. Xstrlen(pointer));
for result use at pointer; -- let the compiler figure it out!

begin
return result;

end address to-string;

Figure A-3. Example of String Conversion Function

There was some question whether this approach (that uses Chapter 13 features from the Ada
Language Reference Manual) would work on all compilers. For example, at one point the
DECAda compiler would not accept such specifications.

Another issue is the general question of whether it is better to be passing around an Ada
access pointer to arrays or to be passing around the actual Ada arrays themselves. For
example, the Xlib quark entity is passed around as a quark list (an access pointer) instead
of as the base quark array (which is an array). From the C mindset, using quark list
makes more sense because treating values as pointers to the start of arrays is what he
underlying C/Xlib implementation does. But to Ada applications programmers, being able to

50



deal with the quark array directly makes more sense. Ada has rather extensive language
support for dealing with arrays, why not let the application programmer always deal with
them directly?

POSIX P1003.5 is already handling strings between C and Ada. P1003.5 was forced to
develop their own custom Posix. Posixstrings type and associated operations (forming an
entire PosixStrings ADT) because they (by definition) have to deal with the operating
system directly. The Ada/Xlib binding should eventually have the operating system calls
abstracted away; so use of Ada's standard strings was used to make the application
programmer's life easier.

A.13 MOVE wziNm ID FIELD OF ADA/X EVENT STRUCTURE TO THE NON-
VARIANT PART

This change removed the need for extra non-Xlib functionality. This happens to be a
complaint that Ada/Xlib binding users have had since the STARS Foundations binding
originally came out.

A.14 INCLUDE A TRANSITION FROM X11R3 TO Xl1R4 WITH CONVERGENCE
OF ADA/XLIB

The binding developers examined the changes from X 11R3 to X 11R4 and integrated them
into the Ada/Xlib binding. They also provided alternate make scripts of dummy C functions
to allow building and execution of the bindings with X 11R3. The rationale was that many
users require X 11R4 bindings for their work and adding the additional interfaces now will
save the convergence from extra work in the future.

There are already some low-level C functions in both the SAIC and Unisys bindings for
dealing with the bit-level boolean and mask operations. The solution to this issue would just
add some dummy X1R4 C/Xlib procedures to this existing C library, so any Xl1R3 users
would not get complaints about undefined functions from their Ada linker.

A.15 SPARSE TYPE RANGES

There were some other quirky Xlib type definitions that were worked out. Originally the
definition of an angle was defined as:

type angle is range 0..359; -- you'd think this was obvious

but an existing STARS Foundation's Ada/Xlib binding user pointed out to us that Xlib has
some odd assumptions on how to represent fractional angles, so the correct type definition is:

type angle is range 0.. (360*64)-1;

51



Another quirk in Xlib is the definition of key codes, which are nominally defined as being

between 8 and 255. Unfortunately, a type definition of:

type keycodeis range 8..255; -- this won't work!

is incorrect because the C/Xlib code Ada binds to allows the use of 0 as a special key code
indication (not unlike the earlier example of nulladdress). So the corrected definition is:

type key_codeis range 0..255;

A more rigorous Ada specification notation - such as Stanford University's Annotated Ada
(Anna) (Luckham 87) - could have been used to document this noncontinuous type/value
assumption (where the values 1.. 7 are really not supposed to be used). The type would
look like:

type key_code is range 0..255;

-- I V K: key-code * K-0 or K28; -- Anna annotation

A.16 RECTANGLE AND POINT PARAMETERS

The binding developers decided that making the changes to Ada/Xlib to eliminate all the
references to the non-CQXlib types rectangle and point was unnecessary. There were over
70 Ada procedures that used these types; in some cases the parameters are legitimate
references to rectangle and points instead of convenient bundlings of loosely-related
parameters. SAIC and Unisys changed only those Ada/Xlib procedures that really do not
need to use these types.

A.17 OTHER ADA/XLIB ISSUES

One philosophical (or religious) issue that applies to Ada/Xlib as well as Ada/Xt was whether
to pass subprogram arguments as in out or in mode parameters when those arguments are
access pointers. In some cases the subprogram's body will not change the (access) pointer to
the object being pointed to (so in mode would be legal), but the internal value of the object
being pointed to will change (where the access pointer is followed and to memory pointed to
is modified). The binding developers decided as a matter of politeness to always pass such
parameters as in out so the subprogram's caller realizes that the object might change.

The X_Address data type is defined a subtype of system.address instead of a private type.
This would allow the definition of zeroXAddress in AdaXlib to be xAddress (0). This
will eliminate the need for Ada/Xt programmers from having to write many conversion
functions (to get an address of 0) since they will be able to use the definition of Ada/Xlib's
configuration dependent value.

To satisfy the linker, the routine XWidthDrawWindow was renamed XWithdrawWindow in the
source file R4_stubs.c (yes, the dangers of those case-sensitive languages). The routines

52



XrmDestroyDatabase and XrmDatabase were also added for Xl1R3 compatibility. The files
or.c and and.c were eliminated, with their routines placed in mask.c. The pragma Interface
definitions for " or" and " and" were removed from the XLibInterface package
because they were causing linker problems.

Because of the dope vectors used on some Ada compilers, the arrays screen list and
windowlist have to be fixed before any access is made to them (particularly
screen-list [0)) so one gets the right numbers. There was concern that some VAX/VMS
compilers, such as the new Karlsruhe Ada compiler, would have problems with big endian
versus little endian data.

53



APPENDIX B

DETAILED ADA/XT CHANGES

B.A ADA PROCEDURE POINTERS

One of the issues that the STARS binding developers resolved was how to construct an
abstract Ada callback construct that could transparently be used to encapsulate both SAIC's
implementation approach (using task type pointers) and Unisys' approach (using the
'ADDRESS attribute of a subprogram). A code extract outlining this callback is shown below:

package subprogram pointer is
type func_ptr is private;
nullfuncptr : constant funcptr;

procedure execute (the obj: in funcptr;
widget-id : in widget;

closure : in xaddress;
calldata : in xaddress);

function execute (the_obj : in funcptr;
widget-id : in widget;

closure : in xaddress;
calldata : in xaddress) return boolean;

generic
type localptr is private;
proc-id : in out LocalPtr;
with procedure userspecified (widget-id in out widget;

closure : in x address;
calldata : in xaddress);

package procptr is
end proc_ptr; -- no callable subprograms!

private
type func; -- deferred until package body

type func ptr is access func;

nullfuncptr : constant funcptr :- null;
end subprogrampointer;

Figure B- 1. Ada/Xt Subprogram Pointer Template

55



This program extract uses a fairly common Ada data type information hiding technique,
where one defines a data type (func_.ptr) that is an access to another type (func), which is
declared in the private part of the (subprogram Pointer) package and does not have to be
fully defined until the package's body is written. In SAIC's implementation, func will be
implemented as an Ada task type. In Unisys' implementation, func will be one of their
Procedure Control Blocks (PCB) that will hold the subprogramADDRESS of the Ada
subprogram to call back.

The execute procedure is what calls either the handle task entry point of SAIC's approach
or works through the subprogram'ADDRESS of Unisys' approach (depending on the
procedure's implementation in the Subprogram Pointer package body). The execute
function is used for those Ada/Xt callbacks that return a value. Note that the execute
subprograms have four arguments in contrast to the usual X convention of having just three
arguments in the callbacks (the widget id, closure, and call data). The fourth argument
(the obj that holds the callback) should not be that confusing to widget developers using the
C/Xt coding styles and documentation.

The generic procptr package represents a compromise between Ada's private type
visibility rules, the need for passing user-defined procedures around, and a desire to limit the
damage caused by incorrect widget specifications. In addition to encapsulating the different
SAIC and Unisys approaches from the widget developer's point of view, they also want to
encapsulate the whole Ada/X widget callback mechanisms from the Ada application
developer's point of view. The application developer will pass the local application
subprogram to call in response to some X activity through an instantiation of the procptr
package with that subprogram as the UserSupplied generic formal subprogram parameter.
The arguments to the User_Supplied subprogram are the standard ones for Xt intrinsics, so
application developers will not notice much of a change from the C(Xt style.

The localptr type and proc id object are used to pass in the (private) func-ptr type
defined earlier and the instance of that type that will be managing the callback. Because the
application developer as well as the widget developer is allowed to modify the (Ada)
subprogram that is called back in response to some Xt activity, everyone needs in out
access to the callback object. The proc.ptr package is a convenient way to bind all these
related data types, objects, and subprograms together so they can have at least some compile-
time checking and still be modifiable during the execution of an application. The binding
takes place at run-time when the proc.ptr package is elaborated and statements in the
elaboration code within the package's body can set up various pointers and objects. Note that
there are no visible (exported) subprograms or types within the specification of procptr; an
actual call to the User-Supplied procedure is made through passing the proc id callback
object and the three arguments of UserSupplied tO the execute subprogram.

Also note that both the localptr and func.ptr types are visible, and yet appear to be
duplicates of each other. The binding developers decided to do this because they did not
want to force implementation details (either tasks or generics) of Ada/Xt into each callback's
body, which would complicate the widget definitions.

Some test programs were written and tried on all of the Ada compilers to which the STARS
binding developers had access. They found that this callback approach works with either the

56



SAIC task type or the Unisys subprogram'ADDRESS approach. One question was, what would
happen if either the widget writer or the application developer passes arguments of the wrong
qype into the instantiations of the generic procptr package? Since private types are used as
the formal arguments, what happens when someone is foolish enough to instantiate with an
integer type instead of the func._ptr type? Obviously things would blow up, but would they
do so at compile or at run-time? Several programmers have noted that one problem with
existing C/Xt intrinsics is that one does not learn of these subtle errors until run-time (when
the user gets a UNIX core dump file). After some experimentation, the STARS binding
developers decided that all the Ada compilers that were tried would detect (at compile-time)
major instantiation errors. There remain more subtle errors (such as where the subprogram's
profile matches what the user supplied subprogram expects, but the semantics are wrong)
that the Ada compiler will not detect. Here the Ada/Xt implementors (SAIC and Unisys) and
any future Ada/X widget developers will have to be very careful in documenting the
assumptions on these callback subprograms. Perhaps careful English, Anna, Library
Interconnect Language [LIL (Latour, 1990)], or other documentation aids would have to be
provided.

One question is how to add an inherit procedure and/or function (placed immediately
below the execute ones) in the Subprogram Pointer package. They implemented an
inherit subprogram to handle all the work needed to pass information through both
inheritance paths. Ada/Xt will have two potential inheritance hierarchies. One is the
subclassing hierarchy, largely defined by the widget developers, where a child widget class
will inherit information from its parent class. The second is the hierarchy defined largely by
the application developer, where (enclosing) widgets can inherit information (such as run-
time user interaction events). As with the assumptions on the User Supplied subprogram
described above, the widget developers and application developers will have to be very
careful in documenting the use of this inherit subprogram.

Within the body of SubprogramPointer, the SAIC implementation would set up a task type
pointer and Unisys would set up another PCB to the inherit subprograms. One question
that this approach raises is whether all these pointers and objects will be elaborated before
they are used. The STARS binding developers decided that the widget developers will have
to insert the appropriate pragma Elaborate calls in their source code so the application
developers can be sure everything is set up as they define and use widget callbacks. There
was some concern that objects of type funcptr (such as proc id) would not be initialized
to their values before they are used as elements in a record (e.g., in top-level widgets like a
shell). Since these objects do not get initialized until the statements of the procptr
package body are executed, the object may not be fully elaborated yet.

Declaring inherit as an explicit subprogram will add some call overhead, but it does insure
that objects are elaborated and visible to the outside world. An explicit call to inherit will
force the elaboration of the procptr package and so cause the creation of the proper
procid object. Naturally the application developer should not abuse this visible inherit
subprogram either.

The SubprogramPointer package described earlier in figure B-I is really a template for the
actual Ada/Xt intrinsics packages that will be in Ada/X. SAIC and Unisys have identified 34
major callback packages that correspond to the major base widget types (such as the shells),

57



where the parameter profiles and function return values (if any) will vary slightly between
callbacks. Unisys has defined a UNIX awk script that generates these callback packages from
a template file and the appropriate arguments. These awk scripts could be modified to
generate the different implementation calls (SAIC's task entry points or Unisys' PCBs) as
needed. SAIC and Unisys have held some discussions with several European Ada compiler
vendors (Systeam and the University of York) to see if the coming generation of Ada
compilers can make this even easier. Note that these Subprogram Pointer gymnastics used
by the widget developers are not visible to the application developers, who will continue to
use the visible subprograms to define the callbacks.

One application design level question is how best to represent this SubprogramPointer

paradigm within the design of an Ada application. Figures 4-3 through 4-6 used a Buhr-style
notation to show the interconnections between Ada units in general and Ada/X widgets in
particular. Ada application developers may want to use similar high-level graphics to show
the interactions between their custom-developed units and those reused from Ada/X. An
important part of using these high-level graphical notations is showing the callback
connections and interactions between the application and Ada/Xt. But as shown in figure B-1
with Subprogram Pointer, the physical source code connection (involving generic package
instantiations, private objects, etc.) are much more complicated than the more abstract
connection semantics of Xt callbacks. Application developers may want simple (perhaps
provided canonical forms) abstract representations of the Ada/Xt package(s) design, so the
important concepts of their application's design does not get lost in the details of the coding.

B.2 WIDGET RECORDS

The widgets developed by SAIC and Unisys (especially the common base widgets, such as a
shell) are different layouts for the fields of data within the Ada records that encapsulate
each widget. If a common Ada/Xt intrinsics specification allows common widgets to be built
on top of it, then common layouts of base widgets have to be used.

A further widget record issue has to do with how early users of the Ada/Xt work would be
able to transition their widgets from the current implementation choices of a base widget set
(currently the Athena widgets) to whatever widget set(s) STARS and other organizations
eventually decide to use (such as Motif and/or OL). SAIC and Unisys are assuming that Ada
application developers can start using the Athena widgets and then cut over to Motif (or
something else) when that becomes supported within Ada/Xt. Given the differences between
widget records and class hierarchies, a cut over effort may be more difficult than the binding
developers think.

One issue that is related to Ada/Xt widget record layouts are the convenience functions that
commercial widget sets (such as Motif) use to give application developers easier access to Xt
intrinsics information. If Ada/Xt work is to support a commercial widget set, will all the
convenience functions have to be programmed in addition to standard Xt functions?

An issue with the current C/Xt intrinsics implementations is that when a widget instance is
created from it parent class, any placeholder information (such as character strings that refer
to some other named entity) are compiled into pointers to the actual entity location. With

58



CjXt, this compilation is done in place, so the new pointer information overwrites the old
data in the C stru .are. Neither SAIC nor Unisys compiles in place the Ada records that
encapsulate widgets; instead a new record is used. This is a much cleaner way of creating
widgets and filling out their record information, cutting down on abuse of system. address
and memory leakage.

SAIC and Unisys had used fairly compatible names in their two implementations, so coming
up with a common specification was not that hard. There was some cleanup of remaiing
uses of the now-banished (or encapsulated) system. address data type. The alignment of
record components on 32 bit boundaries for clean heap usage during RM usage was defined.
They also set up boolean data types that have 8 or 16 bits, as needed. The goal is to allow
widget developers to share whatever widgets are developed on top of either SAIC's or
Unisys' Ada/Xt implementation. The question of whether or how to support a commercial
widget set (such as Motif's or OL's) remains open.

One discussion was about what needs to be done if Ada/X has to use existing widgets. If
existing C/Xt widgets are to be (re)used, then these Ada/Xt record layouts may need an extra
field to handle the compiled and uncompiled forms of resource (from the RM). C/Xt
addresses this by having only one field that initially points to the uncompiled version. When
compiled, the new binary data overwrites in place the old data so the same record field can
point to either version. Since Ada's strong typing model does not allow one to cheat like this,
extra fields may have to be added to the records to hold the compiled and uncompiled
versions. This changes the length and/or the order of the record components, making them
incompatible with the existing C/Xt widgets and defeating interoperability.

There are some drastic hacks binding developers could employ to try to reuse other record
components to point to the compiled and uncompiled versions of resources. For example, the
size field isn't used in some cases so size could be used to point to a compiled resource. But
using size as resource pointer is hardly intuitive from the application developer's point of
view; this hack could cause more confusion than solving the real problem. Some pointed to
this problem as another reason not to try to integrate existing C/Xt widgets in favor of all Ada
widgets.

There are other problems associated with C/Xt widget reuse as well. For example, an Ada
program would have to go through a C/Xt widget's components to make sure that values such
as null are correct as far as Ada's concerned (not all Ada compilers assume 0 = null). If
such an Ada application made that change, would it be obligated later to change the widget
back to what C/Xt expects?

A question related to widget record layouts was whether the shell widgets can be created by
calls to either the xt_App_CreateShell or Xt_Create_ManagedWidget subprograms.
This problem eventually went away when the binding developers determined that
XtAppCreate_Shell was defined only for X 1R2 backward compatibility, and so the
X1 1R3-based Ada/Xt work did not have to support it.

The binding developers discussed whether the (compiled) resources should be done using
untyped byte arrays and how to allocate such arrays. One could create such an array, throw
the data into it, and then convert it to the appropriate widget class record. There was con (m

59



that these arrays would introduce array dope vectors with some Ada compilers that would
throw all our elaborate record length calculations off. Some wanted to use arrays instead of
records to handle cases such as Change_Geometry, where local copies of widgets are made
and then copied to their destination. This work is done in the xtIntrinsics package,
which does not have visibility into the current widget's data structure (see figure 4-10), and
so will not know how long the widget record is. C/Xt addresses this by passing a length
field so the intrinsics can use a byte copy on whatever is in the widget record structure. The
Ada/Xt binding developers want to use a similar scheme for Ada.

An alternative discussed again was to find some unused (or little-used) field in the record and
reuse it as a pointer to an Ada creation function that returns an instance of the widget record.
Note that this would not be carefully controlled like the callbacks described earlier, this
would instead be a simple C-style subprogram pointer hack. Some felt we should try this
because of the inconsistency problems discussed earlier and the dangers associated with
blindly passing Ada subprogram ADDRESSeS around.

Another area for discussion was just how to represent such untyped data. Some advocated
arrays of bytes, others wanted to use the existing string data type. A byte array would
involve a call to UNIX's malloc function, while strings could use existing Ada creation
and destruction functionality. Untyped Ada data makes some nervous; they lean toward
typing the widget record data more and worrying less about C/Xt compatibility. An
alternative discussed was getting the consortia (OSF and UI) to add another field (unused by
them) that Ada/Xt could use for its purposes. Other language bindings to Xt could make
good use of this field as well.

The binding developers discussed what should be returned to a caller when a call is made to
create a widget. Currently, Unisys returns a system. address while SAIC returns an access
to the appropriate widget. Eventually, they decided to attempt a more abstract return data
type, with the implementation details hidden. This looks somewhat similar to the abstract
SubprogramPointer callbacks described earlier.

With some of these higher level issues out of the way, they worked out the specifics of how
the different Ada/Xt widget record layouts are done. These are given in the code samples in
table B-l:

60



Table B-i. Widget Record Layouts

type Core_-Part is record
self :widget;
widgetclass widget -class;

parent widget;
xrmnanie XrmName;
being diestroyed XtBoolean;
destroy calibacks XtCallbackList; -- starts as an

-- array, compiled to linked list
constraints XAddress; -- it's really integer data
x, y, width, height dimension;
managed :XtBoolean;
sensitive XtBoolean;
ancestor sensitive XtBoolean;
event table XtEvent_-Table;
tM TmRecord;
accelerators XtTranslations;
borderpixel pixel;
borderpixmap pixmap;
popup_ .list :widget -list;
numpopups :cardinal; -- used with Unisys, for C/Xt
name :stringpointer;
screen id :screen;
colormap :color map;
window id :window;
depth :depth -type; -- possibly cardinal instead
backgroundpixel pl:xel;
backgroundpixmap pixmap;
visible :XtBoolean;
mapped when -managed XtBoolean;
pad :16 bits; -- to be sure widget ends on 32

end record; -- bit boundary (with Booleans)

type core-classpart in record
superclass :widget -class;
class name :stringpointer;
widget-size cardinal;
class-initialize XtProc;
classjpart-initialized :Xt WidgetClassProc;

61



class inited Xt_-Booleani;

initialize :Xt -Iit_-Proc;

initialize -hook Xt-InitProc;

realize :Xt_-RealizeProc;

actions :XtActionsList -- could be compqiled
-- and result in date overwritten

num-actions cardinal;

resources :resource -list; -- also could be compiled

num-resources cardinal;

xrmclass :XrmClass;

compress motion XtBoolean;

compress-exposure XtBoolean;

compress-interleave XtBoolean;

visible-interest XtBoolean;

destroy XtWidgetProc;

resize Xt_ Widget Proc;

exposure XtExpose-Proc;

set-values XtSetValuesFunc;

set-values-almost XtAlmostProc;

getyvalues-hook :XtArgs-Proc;

set-values-hook :XtArgsFunc;

accept_ocus XtAccept-FocusProc;

version :XtVersion,_Type;

callbacks-yrivate: XtOffsetListPtrs;

tm-data :XtTmData;

query geometry Xt_-GeometryHandler;

display__accelerator Xt_String Proc;

extension X Address;

end record;

type composite-rec is record
children :widget-list;

num, children cardinal;

num slots :cardinal;

insertyposition XtOrderProc;

end record;

type comnposite-class is record

geometry manager Xt_-Geometry Hiandle;

changejilanaged Xt_-Widget Proc;

insert -child :XtWidget.Proc;

delete-child :XtWidget-Proc;

extension XAddress;

end record;

62



type constraint widget_rec is record
empty : X_Address; -- dummy placeholder

end record; -- may get rid of this empty record

type constraintclasspart is record
resources XtResourceList;.

-- could get compiled over itself
numresources cardinal;
constraint size cardinal;
initialize : XtInitProc;
destroy : Xt_WidgetProc;
setvalues : XtSetValueFunc;
extension X_Address;

end record;

type objectwidgetpart is record
self : widget;
widgetclass widget class;
parent widget;
xrmname XrmName;
beingdestroyed XtBoolean;

destroy_callbacks XtCallbackList; -- starts as an

-- array, compiled into linked list
constraints X_Address; -- it's really integer data

end record;

The related objectclasspart recOrd has the identical fields of the earlier

objectclasspart record type. The remaining widget records (such as those for the
shells) had similar layouts and record definitions (except for the occasional ordering of a
pair of components).

B.3 WIDGET CREATION

When Xt widgets are created, some computer memory must be dynamically allocated.
Naturally that means the memory should be reclaimed at some later point to prevent memory
leakage or loss. If all the Ada/Xt widgets are written entirely in Ada, then they can manage
their own memory. If Ada/Xt interfaces or reuses C widgets, then there would have to be
explicit calls to the C/Xt widget's create () entry point. The binding developers identified
some alternatives for creating widget memory for Ada:

63



* explicit calls to C malloc (), which is what C widget reuse would require,
" a new byte function within Ada that does the same thing from the Ada side,
• place a create function in each widget package, and
* use a generic create package that's instantiated for each widget.

Note that the first and second alternative above will do the creation work in the intrinsics,
while the third and forth do the creation within each widget.

B.4 INTRINSIC WIDGET PACKAGING

In Ada/Xlib, there is a giant package xLib that is withed into any Ada applications program
that wishes to make any Xlib calls. For Ada/Xt, there will be a corresponding package
xt intrinsics that application developers will need to with in to make Xt calls. In
addition, applications will have to "with" in the packages that define various base widget
classes such as shell and object. SAIC and Unisys initially had different assumptions
about how different packages (such as xt_core) are withed in. Straightening this out
required looking at how widget subclassing was done so new widgets (and their packages)
are visible.

A related part of packaging is how to document all the methods and other class information
provided in the Xt intrinsics and the widgets built from it. Unisys made a start at textually
defining in the package headers how method information is visible (and inherited) to
applications. As described above, documenting the relationships between Ada execution and
Xt inheritance behavior is nontrivial.

A naming convention was established that all the Ada/Xt identifiers would follow. As with
Ada/Xlib, underscore separators will be used between words in an identifier (e.g.,
XtSeperateWithUnderscores). As shown in the Subprogram-Pointer package earlier,
the (public) specification part of Ada/Xt will hide the use of System. address from the
application developer. As shown earlier, either an opaque type (such as XAddress) is used
or the data type/object uses a more descriptive name.

As discussed earlier, C/Xt uses different data structures with the same name (differentiated
only by a '_' prefix character). The binding developers decided to use Ada's name
overloading, so the same (C/Xt) identifier name can be used for both the '_' prefixed case
(used by widget developers) and thenonprefixed case (used by application developers). As
part of the overall Xt intrinsics packaging issue, they agreed to follow Unisys' idea of using
semiprivate packages to encapsulate those types and operations used only by the widget
developers. This means the overloaded Ada types, of interest mainly to the widget
developer, will be separated from the types used by the application developers anyway. As
with the callback and inheritance mechanisms defined earlier, careful documentation will
have to be provided so application developers do not accidently (there being no way to
prevent deliberate misuse) use the wrong data types.

One packaging issue was how to handle the inconsistent naming conventions used at various
points in the C/Xt binding. Unisys tried to support multiple names for the same entity by

64



defining a Renamed Xlib_Types package that a programmer could with, and then use to
support both C/Xt naming styles. After further checking, it was decided this
Renamed XlibTypes package was an unneeded duplication of an already crowded name-
space. The duplicate C/Xt names were either eliminated or moved to the appropriate
Ada/Xlib or Ada/Xt package.

An overall intrinsics packaging question was how to place the various Ada/Xt subprograms
into the right packages so there would be a minimum amount of duplication, and yet not force
the widget developers and application developers to have to with in large numbers of Ada
packages. Coming up with a common intrinsics packaging scheme was complicated because
SAIC and Unisys had different conventions on what had to be withed in. Since C/Xt did not
define a packaging scheme, often SAIC and Unisys took different choices of which Ada
packages into which to place a given subprogram. Even when the same general packages
were used; there were cases where SAIC used amanagement suffix on some package names
where Unisys did not. Unisys had their own ComandLineArguments package that
allowed access to the original (UNIX) argc and argv arguments before the X-specific (as
with geometries) arguments were filtered out.

As with Ada/Xlib, there was an argument whether the Ada/Xt functionality should be
encapsulated into several Ada library packages or grouped together into one giant package.
As with Ada/Xlib, the argument for using multiple library packages so the name space is
somewhat limited and the application program has some choice as to what is withed in a
program was lost. Instead there will be a giant xtIntrinics package that will contain
subpackages that group the major Ada/Xt types and subprograms together. As with
Ada/Xlib, an argument was made that the Ada/Xt entities were so mutually intertwined that it
was impossible to figure out a clean way of separating them into different library packages.
Both the widget developers and application developers will need only one "with
Xt_Int rinics; " statement to make all these entities (and subpackages) available.

The original Ada/Xt work used an xt_Ancillary_Types package that held a loose collection
of various data types. The STARS binding developers decided to eliminate this package in
favor of moving all the data types up to the specification of xt_Intrinics. This makes data
types such as XtBoolean visible to all the lower level subpackages. An Xt_Boolean type is
used instead of the standard Ada boolean type because compatibility with (Ada/Xlib) layouts
and different compiler representations require that the (XtBoolean)' WIDTH attribute be
settible. To avoid having each programmer create own objects of this type, XtTrue and
XtFalse objects are defined so that programmers can take the 'ADDRESS of.

As with Ada/Xlib, the widget developers and application developers should not have to
define their own versions of UncheckedDeallocation for all the objects of Ada/Xt data
types that they create. Overloaded Xt.Free procedures are defined to encapsulate this.

Another long discussion was over where to place the 34 instances (such as those created with
awk scripts) of the SubprogramPointer package used for the callbacks. Initially, all of
these callback packages are encapsulated in an Xt_ProcedureTypes (sub)package so all
these packages are grouped together. As explained earlier, the widget developer and
application developer may have to deal (at the specification level) with the proc_ptr generic
package that is within SubprogramPointer. So procptr is a subpackage of

65



SubprogramPointer, which is a subpackage of xtProcedureTypes, which is a
subpackage of xt_Intrinics. There is concern that sub-sub-sub-packages are just a little
too complicated for an average Ada programmer to deal with. Some thought the
Xt_ProcedureTypes package should be eliminated, with the Subprogram Pointer
instances moved up to the top level of the xt_Intrinics package specification.

The TIM attendees decided to use the Unisys approach of semi-private packages (sub-
subpackages within the overall xt_Intrinics package being used) to encapsulate those
Ada/Xt entities within an xt_Intrinics subpackage that is of interest only to a widget
writer. Note that it is these semi-private packages that introduce many of the complex
interrelationships among the xt nt rinics subpackages.

After a lengthy discussion of what goes where, the STARS binding developers came up with
a preliminary description of the xt Intrinics subpackages, and the Ada/Xt subprograms
that would be placed in each of them. Note that the list below does not show all the semi-
private packages; one can assume where C/Xt defined them, then Ada/Xt will have them.
There were some instances of documented semi-private entities that were not used anywhere;
these will still be in Ada/Xt since C/Xt's specification defines them as well, and future
widget developers might use them. These will be placed in the (sub-sub)package bodies
instead of the specifications until someone can determine ff anyone really uses them.
Someone could look at the Motif and OL source code to see if these obscure routines are ever
used, but there was some concern about violating various copyright agreements if that same
person then went on to write widgets (perhaps influenced by the source code they saw). Note
that there are many subprograms that have been documented as being for X1 1R2 backward
compatibility-only that were not implemented (such as all those non-app routines that used
the now-discouraged default application context instead of the user defined one). The
allocation to packages is shown in table B-2 below.

Table B-2. Alocation of Subprograms to Packages

Package Name Subprograms

XtResources all the conversion subprograms, which do not have to
be enumerated here,

XtEventManagement XtAddInput, XtRemoveInput,XtAdd Timeout,
XtRemoveTimeout, Xt_AddGrab,
Xt_RemoveGrab, Xt_Set KeyboardFocus,
Xt CallAcceptFocus, XtPending,
Xt_PeekEvent, Xt NextEvent,
XtProcessEvent, XtDispatchEvent,
Xt MainLoop, XtAddWork_Proc,
XtRemoveWorkProc, XtAddEventHandler,
XtRemoveEventHandler,
Xt AddRawEvent Handler,
Xt_RemoveRawEventHandler,

66



XtBuildEventMask,
Xt-Add Exposure To Region

Xt-WindowTo_Widget*,
AddForwardingHandler*,
GetWindowFromEvent*t,

Xt_MakeToolkitAsynch§,
Xt_SetAsynchEventHandler§ ,
XtTimerCallback,

XtTranslationManagement XtAddActions, Xt_Parse_TranslationTable,
XtArgument_Translations,
XtOverride Translations,
Xt-Uninstal_T Translate,
XtParseAcceleratorTable,
XtInstallAccelerators,
Xt_InstallAllAccelerators,
XtSetKeyTranslator, Xt_TranslateKeycode,
XtCase Cvt, XtRegisterCaseCvt,
XtConvert Case, Xt InitializeStateTable,
GetTMTrans_Offset , Compile_ActionTablet,
CompileActionListt,

XtGeometryManagement XtMakeGeometryRequest, XtQueryGeometry,
XtMakeResizeRequest, XtMoveWidget,
XtResizeWidget, XtConfigure Widget,
XtTranslateCoords,

XtSelectionManagement XtSetSelectionTimeouta ,
Xt-Get-Selection-TimeoutA,
XtGetSelectorValue,
XtGetSelectorValues, XtOwnSelection,
Xt-DisownSelection,

Xt_Popups XtCreate Popup Shell, XtPopup, XtPopdown,
Callback-Procst, MenuPopu, MenuPopdownA,

XtCallbacks XtAddCallback, XtAddCallbacks,
XtRemoveCallback, Xt Remove Callbacks,
Xt-RemoveAllCallbacks?, XtCall Callbacks,
Xt-HasCallbacks, GetCallback_Listt,

may be moved to the xtUtilities package instead of here.

t note no xtjprefix.

§ not in XII documents.

A could be X 1R2 only.

67



XtAddCallback, XtCallCallbacks,
XtRemove_Al l_Calibacks,
XtFree CallbackList,
XtCompile_CallbackList,
Xt_GetCallbackList,
Xt_GetUncompiledCallbackList,

XtInstanceManagement XtGetGC, XtSetGC, XtDestroyGC,
XtToolkitInitialize,
Xt_Create_ApplicationContext,
XtDestroy_ApplicationContext,
XtDisplay_Initialize, XtOpen__Display,
XtCloseDisplay, XtAppCreateShell,
XtCreate_Widget, XtDestroy Widget,
Xt CreateManaged Widget,
XtSetMappedWhenManaged, Xt MapWidget,
XtUnmapWidget, XtRealizeWidget,
Xt_UnrealizeWidget, XtCreateWindow,
Xt ManageChild, XtManageChildren,
XtUnmanageChild, XtUnmanageChildren,

XtErrorManagement XtErrorMsg, XtWarningMsg, XtError,
XtWarning, XtSetDefaultErrorHandlers,

XtUtilities XtNameToWidget,
Xt Widget To Application Context,
Set _AncestorSensitive, -Xt_Is_Sensitive,
XtSetSensitive, XtIsRealized,
Xt_Is Composite, XtDisplay, XtScreen,
XtWindow, Xt Parent, XtIs Managed,
XtClass, XtSuperclass, XtIsSubclass,
XtCheckSubclass, and xtIs-Shell.

Note that many of the subprograms above that do not have the xt prefix are used as local
Ada/Xt convenience functions (such as providing offsets for RM) instead of implementing
some behavior specified for C/Xt as well.

In the current xtResources (sub)packages, there are a collection of subprograms (and their
arguments) that pass apointer around that can either be the address and length of the array
to fill up or a null (this a a common C programming paradigm). Binding developers would
like to eliminate having to pass the length parameter around, since Ada allows the
subprogram being called to determine the length through the 'LENGTH attribute. Given the
way the Xt._Resources arrays are defined, some wondered if empty arrays that are declared
by "array a [ 1.. 0 ] ;" would still return a I LENGTH attribute of zero. After some checking,
the developers decided that all the Ada compilers they had access to (which doesn't include
Meridian or other compiler vendors who use dope vectors) would correctly return zero in this
case. So they could eliminate all those extra length parameters.

68



SAIC and Unisys have very different approaches on how to implement RM, so the binding
developers came up with a common specification (with different bodies) for the
Xt Resources package. Even with the same specification, there are subtle implementation
differences that a user will have to be aware of. For example, the predefined resources are
compiled (in the RM sense, not the Ada source code compiler sense) differently between
them. Unisys does this at package elaboration time, while SAIC waits until an explicit call is
made.

SAIC points out that the current X 1R4 RM uses compiled resource caching versus the
scheme used in Xl1R3 (on which what both the Ada/Xt RMs are based). Xl1R4 has chosen
to make use of some of the strange side effects of the internals of this (cached) compilation
process. For example, the X1 1R4 RM will note the starting and ending quark number into a
range that is used by later functions to determine which resources were really precompiled.
This scheme will eventually break Unisys' approach, which intersperses resource
precompilation with all the other activities that take place during elaboration. Therefore,
there is no longer a clean range of quarks deep within the RM that can be destroyed and
reclaimed at will; some of the quarks used by Unisys may have nothing to do with RM.
SAIC believes the current X 11R3-based Ada/Xt RM should reflect this change that future
X 11R4-based Ada/Xt implementation will have to deal with.

Other issues such as the representation specifications for raw and private resources would
flow from these issues. There was some concern that the visibility of these representation
specifications would prevent widget data types (such as the Core widget) from being private
data types. It is not clear if the setarg subprogram needs to convert its input arguments as
a standard integer type or whether a generic instantiation needs to be done for each type
(such as was done earlier with the Subprogram Pointer package [template]). These
implementation details are deferred to the Xt_Resources package body.

B.5 VARIABLE/PROCEDURE NAMING CONVENTIONS

SAIC and Unisys had different naming conventions for the different Ada entities in Ada/Xt
(as they did in Ada/Xlib). An example of this is how the C/Xt private information (normally
preceded by a '_' character) is represented in Ada (where one cannot begin a name with a
'_'). These Ada names could be differentiated from their public cousins (in C/Xt one would
drop the' ' for the public name) by fully qualified (sub)package names. A truly ugly
solution would be to use Bar_ as the prefix to those entities whose names are supposed to be
private. The best solution was to use Ada overloading; since different data types are being
used, the Ada compiler can differentiate through parameter profiles.

B.6 C WIDGET SUPPORT

If SAIC and Unisys were to come up with a standard way of representing widgets, the
question came up whether the Ada/Xt intrinsics should be able to handle existing (written in
C) widgets. This would be a quick way to exploit (reuse) all the existing C/Xt (commercial)

69



widget sets being used, making an Ada application developer's job easier. This would also
limit the need for STARS to fund a massive widget writing effort.

But there are some problems with attempting a C/Xt widget reuse approach. Ada/Xt would
have to know the internal layout of class method (value) information within a widget class
and instance. That information is typically provided in the widget link module's symbol
table (since there would be no general source code access to a commercial widget set such as
Motif or OL). There are known UNIX hacks for extracting this information out of a symbol
table; but what if the widget developer has chosen to strip (i.e., use the UNIX utility) the
symbol table off the load module to save space (a common practice)?

A way around stripped widgets is to write a special binder subprogram in C that provides
routines into the needed methods, and then use pragma interface to allow Ada/Xt to call
them. The existing Ada/Xt widgets would have to be adjusted so they exactly match the C/Xt
widget layouts. Application developers would then have the choice of using C widgets or
developing their own in Ada.

But there are some problems here as well. Application developers could not subclass off of
the existing C widgets because the links in the class inheritance chain would be broken at the
cross-language boundary. Ada widgets would have to be built from scratch. Losing the
ability to subclass and inherit with X widgets would be a major loss of functionality, and
would represent a major violation of X's OOD spirit.

Another problem with mixed language widgets are secondary routings into the underlying
Xlib layer. Using C widgets means that the underlying C/Xt intrinsics will call their
underlying C/Xlib functions directly, bypassing Ada/Xlib. Ada widgets will usually go
through Ada/Xt and eventually through Ada/Xlib. Besides the memory allocation and
reclamation problems this will cause, the application developer will have to make sure that all
the called-back Ada applications functions are elaborated before they are called back to
prevent program-error from being raised.

This wrapper approach introduces nontechnical problems as well. Applications using Ada/Xt
and these pseudo-Ada widgets would have to incorporate and maintain all the C binder code.
Unlike the few low-level logical mask operators written in C for Ada/Xlib, this would
introduce a lot of C code for the application developers to see (and in some cases, write).
Writing this widget binder would require reading the source code of the existing commercial
C widgets, so a widget developer knows what the layout of information really is. This could
violate the copyrights' and proprietary secrets' clauses of the original writers such as OSF
has on Motif.

Deciding whether to support (or not) existing C/Xt widgets requires some tough technical and
nontechnical trade-offs. The STARS binding developers lean towards doing everything in
Ada as an application maintenance aid, and because reimplementing existing C widgets in
Ada is not perceived as being a major effort (done with simplistic brute force programming).
Others who have tried direct Ada bindings to commercial widget set implementations (such
as Motif) have reported problems with inheritance of widget information.

70



B.7 INTRINSIC PACKAGING

A packaging issue was how to implement the Xt intrinsics' concept of public and private
information within Ada/Xt's specifications and bodies. In C/Xtthepublic definitions of the
widgets (the structs that a C application developer would [through #include] into the
source code) are defined in one header (a * .h) file. The private definitions of the internal
details of the widget are defined in a separate header file (named *P. h). This private header
file is #included only by C programmers who are widget developers and so who need to see
the internal details. As described above, normally the private structs use a'-' character as
a prefix to the struct' s name.

Ada/Xt also has to package both this public and private intrinsics information so both the Ada
application developer and the Ada widget developer can get the data they need. SAIC and
Unisys initially took different implementation approaches. SAIC placed each Ada/Xt widget
in one Ada package. One source file will contain the package specification (defining all the
visible entities) and the other file will contain the package body (where those entities are
implemented). The drawback to this approach is that the widget's private definitions (those
used only by widget developers, not application developers) are visible to everyone through
the common package specification. There is some concern that Ada application developers
could access and misuse these private (in the Xt but not in the Ada sense of the word)
definitions. To be fair, there is nothing to prevent the determined or foolish C/Xt applications
programmer from including and then using the private structs.

Unisys could not find a way of preventing Ada application developers from seeing these
private specifications either, but they used one of the awkward bugs of the Ada language and
turned it into a feature! Earlier, there were some concerns about Ada/Xlib's use of Ada
nested packages within the giant xLib interface package. Unisys has placed all the private
specifications into nested subpackages that are implemented as Ada separate packages.
While normally such separate subpackages introduce major visibility and usability problems
to a programmer, in this case they help separate the (possibly inexperienced) Ada application
developer from the details the (hopefully experienced) Ada widget developer must handle.
Unisys calls their separate files semiprivate packages.

Both SAIC and Unisys claim that it would require a major redesign and repackaging effort to
prevent an Ada application developer from seeing this semi-private information. One Ada-
like argument is to point out that the encapsulation of Xt's conceptual widgets (which are
object-oriented in that there is a hierarchy of classes and inheritance of information) really
does not map well onto either SAIC's or Unisys' use of Ada packaging. On the other hand,
Xt intrinsics really do not map well onto C's even weaker model of packaging through
#include) files either. SAIC and Unisys believe that having Ada/Xt follow the same basic

C/Xt implementation for packaging allows Ada/X to reuse all the existing C/Xt
documentation to define how Ada programmers would use the intrinsics and widgets.

71



B.8 ADDRESSING

As with Ada/Xlib, there were questions about how to address all the information being
created by both C and Ada. SAIC took the approach of trying to avoid the use of
system. address as much as possible, while Unisys initially used system. address
throughout their Ada/Xt code. The question is what to use as the opaque pointer to widgets:
the values returned by an access allocation or a more conventional system. address.
Eventually, the binding developers decided to provide higher level interfaces because the Ada
application developer should see as little of system. address as possible.

B.9 XT RESOURCES

If there was to be a common Ada/Xt intrinsics specification, then that implied that the widget
sets that are built on top of Ada/Xt should be shareable across the SAIC and Unisys
implementations. Initially that was not the case; SAIC could use Unisys widgets but not the
other way around. The problem has to do with how Xt resources were being defined.

Unisys does the compilation of resource information (such as the available widget
class/instance slots and their initial values) when the generic Ada package bodies that
encapsulate widgets are instantiated. The Unisys Xt RM allows the use of a variety of static
class values, such as direct insertions of Ada strings in a class' record. Overridden class
values would use dynamic values, such as access string data. User-defined widgets are
created from UNIX awk scripts that generate the Ada encapsulation package source code
from templates.

SAIC encapsulates its widgets within Ada tasks and task types. The classfinstances values
are more dynamic here, so strings are always being represented through access string data.
This means that the current mechanisms for overriding default widget class values were
different and incompatible. Eventually, a potential work-around to this problem was
identified. SAIC's create_widget functions could be encapsulated in a generic package that
could be instantiated with the different types of widgets (such as Xt_BoxWidget) and widget
classes (such as Xt_BoxWidgetClass) as needed.

B.10 TREATMENT OF LISTS AND ARRAYS

As with the Ada/Xlib binding, there were variations between how cleanly SAIC and Unisys
encapsulated Ada lists and arrays. In some cases, Ada access values are passed around; in
other cases they fall back to system. address usage. These differences had to be reconciled,
much as the Ada/Xlib differences were. Using Ada/Xlib's conventions for operations such as
C to Ada string conversions means that Ada/Xt does not have to deal with that interface.
There were some problems with Xt's inconsistent use of argument lists that had to be
resolved.

72



B.11 PROPAGATION OF XLIB CHANGES TO XT CODE

The TIMs have established a long list of changes to the underlying Ada/Xlib packages.
These changes rippled through the Ada/Xt code that was built on top of Ada/Xlib. Both the
common Ada/Xt specifications and the different bodies had to be changed to use the new
common Ada/Xlib. Care was exercised so the names of various types were not changed so
much that application developers could not look up things in the existing Athena
documentation.

B.12 PORTABILITY

Just as Ada/Xlib revealed Ada programming practices that proved to be nonportable to
different Ada compilers, the two existing Ada/Xt implementations may have used
nonportable or inefficient programming practices that will cause application developers grief
when they try to compile and run. These will have to be cleaned up if Ada/Xt is to be
considered product quality.

An example of this is SAIC's assumption that an access to a task type can be treated just like
a system. address. This may not always be true; Ada compilers can do all sorts of weird
things with the Task Control Blocks (TCB) that are being pointed to. SAIC also assumes that
different task types that have identical entry points with identical parameter profiles can have
their access pointers converted from one type to another. This may seem logical, but it
depends on the good graces of the internals of Ada tasking run-time executives.

Another assumption shared by SAIC and Unisys is that the run-time executive is smart
enough to clean up memory after it is finished with it. For example, SAIC's dynamic task
instances are supposed to be cleaned up and have any TCBs that were allocated reclaimed.
Not all Ada compilers have followed this theory. Unisys assumes that all the generic
instantiations of the callback packages are done efficiently (as with generic body sharing) and
reclaimed as needed. But full generic body sharing is not as common as everyone would
hope. There is the danger that over the life of a large Ada/Xt application, all the memory will
get used up.

B.13 REPRESENTATION SPECIFICATIONS

SAIC and Unisys initially used different conventions for defining the representation
specifications used for the various Ada/Xt records. If common Ada/Xt specifications and
shared widgets are to be provided, these had to be changes so they were in agreement.
Eventually both decided on how to use common definition of bit and byte offsets.

B.14 XT ERROR HANDLING

Initially Unisys had a Xt_Error exception defined that was raised when Ada/Xt noticed that
input parameters were bad. They also had an Xt Exit exception that could be raised when
an application developer wished to terminate the entire program. Since the Ada/Xt internal

73



intrinsics code will have no handlers for xtExit when raised, it will propagate control out
of the intrinsics and back to the original application's main program that called the intrinsics'
main loop.

SAIC also allowed application developers to raise an exception to break out of Ada/Xt back
to their main program; in this case, the application developer would call a designated
subprogram that raises this exception. Unisys and SAIC had to be sure they use common
exception names and they have common schemes for handling errors. For example, are all
the current Xt errors that result in calls to CIXt's xt error () function now going to be
mapped into one or more Ada exceptions? The STARS binding developers felt it was better
to raise an exception to break out of Ada/Xt than to call the UNIX exit () routine directly.

B.15 MULTI-THREADED X SERVERS

At some point the X Window System will go to multi-threaded servers as a standard.
Already some X vendors have their own private extensions to support multiple threads.
Initial reports are that X11R6 will add this. Whenever this comes, an Ada/Xt implementation
should (theoretically) be ready since Ada already supports multiple (lightweight) threads in
the tasking model.

Currently SAIC's design uses tasks, but all the work being done by the task is done within
the rendezvous itself. To be truly multithreaded, the work done by each task would have to
be moved to after the rendezvous so both the task and its caller could be running
simultaneously. Priorities on these different task (types) would also have to be established.
The current SAIC design is tasking-safe since everything is really single-threaded due to
work done solely in rendezvous. Modifying either SAIC's or Unisys' design to be
multitasking save would take a lot of checking (before any standardization would pass). The
emerging POSIX P1003.5 standard could provide ways of encapsulating these issues.

B.16 OTHER ADA/XT INTRINSICS CHANGES

This section contains the list of 117 proposed Ada/Xt intrinsics changes from the initial
Ada/Xt bindings and what the STARS binding developers have decided to do about them.
This list was prepared by Bill Rosen; any additional comments beyond what Bill stated will
be placed after each item.

No. Propoail Resolution

1 Use conf iguration dependent clause for arithmetic approved
operations

2 delete with Xt_Utilities clause; not needed in approved
xt_Intrinsics package specification

74



3 add with devices clause for sockets definitions for alternate approved
event input

The devices package (with the definitions of the sockets, file descriptions, and other
operating system-dependent data types) would be placed in the devices.a and devices.a
source files. There are other implementation-specific subprograms (such as those dealing
with UNIX environment variables), but these are generally hidden within a package's body.
Only devices contain generally visible data types. The xtutilities subprograms might
eventually be included in some package's body, so the whole xtUtilities package might
go away.

4 change type modifiers to x mask type approved

5 the xt_Interval_Id, Xt_InputId, and Xt_WorkProc_Id approved
data types are changed to private data types

6 add type processcontext for semi-privates approved

7 add subtype device for sockets refer to item
#3 above

8 add private types convertertablerec, approved

converter_table, and Xt PerDisplay for semi-privates package

9 type Xt_InputMask moved to eventmanagement approved

10 XtVersionType changed to cardinal approved

11 delete the extra Ada exception definitions approved

The binding developers discussed whether Ada/Xt should define and use additional Ada
exceptions such as XtErrorRaised, IllegalBit Test, and xt List Overflow in
addition to the xt Exit exception described in section A-5 above. Since STARS is
developing an Ada/Xt implementation instead of a binding (unlike Ada/Xlib), could the
toolkit catch and process errors better than C/Xt does (with the oblivion of a UNIX core file
dump)? They were not sure C/Xt really separates the fatal errors from simple warnings; there
are places in the C/Xt code where execution continues after the error is spotted (no matter
what it was).

Ada/Xt could try to go back and characterize every possible error, deciding which can be
reported with just a warning message and which also need something like xt Error Raised
issued. But they decided this binding does not have the time for that level of-thorough
analysis. Instead Ada/Xt will issue a warning message and press forward.

75



The binding developers also discussed whether the whole application should be killed when
unrecoverable errors - such as overflowing the resource database - occur, or should warning
messages only be output? There is nothing the applications developer can do in this case
(besides using fewer resources and/or using default values). Even here they decided that
outputing warning messages will have to be enough. Most of these errors should never
occur. For example, the xt List Overflow exception would have occurred only if someone
developed a resource and widget class hierarchy such as resource.classl.class2...class99,
where the built-in limit of 100 in the internal arrays would finally be exceeded. A future
reimplementation of Ada/Xt to X11R4 or X11R5 might have the time to do this right since
they can go through on a case-by-case basis to see which errors are fatal to an application.

12 delete Xt_UnspecifiedPixmap, maxpathlen and none examine all to see
objects, define instead in widget semi-privates or sub-package if they can be
bodies removed

13 change xtVersion value to MIT-style version number approved
(version + revision) for checking X 1R3 +- X 1R4 mismatches

14 move mod to keysymtable_rec and approved
mod to keysym table data types to XtTranslationManagement
package specification and body

15 change widget and widget-class to follow approved
Tim Schreyer's proposed widget definition

16 delete towidget and towidgetclass conversions; approved
not needed

17 move Xt_GrabRecord and XtGrabType to approved
EventManagement'S package body

18 move Xt_HashRecord and related declarations to approved
EventManagement'S package body

19 move exclusive-type tO EventManagement body approved

20 move callback record and related declarations to deferred to check callback
package's specification and body
callbackrecord some more

21 move xtcwClear, XtCw_QueryOnly, and approved
XtSmDontChange objects to geometry management package

76



22 change XtFree (XtWidgetGeoPtr) to actual approved
function because of deferred widget definition

23 move callback struct to callbacks package spec refer to issue #20
and make some of these
packages private

As mentioned earlier, there is some question whether the 34 packages that encapsulate
Ada/Xt callback procedures should be grouped into their own (sub) package under
Xt_Intrinsics, placed near the intrinsics subpackages they support (such as errorproc
next to the error-handler package), moved to the private part of intrinsics (for those
callbacks an external programmer does not use), or some combination of these. Ideally, the
callback procedures would be encapsulated with the related ADTs, but there are some
callbacks used in many places. Spreading them out could make finding individual packages
difficult.

The binding developers eventually decided to treat each of these callback packages on a case-
by-case basis. Only those callbacks that are used solely within a subpackage's semiprivate
code will be moved into the specification of that package. The others will be placed
(alphabetically) together near the front of the xtIntrinsics package's specification.

24 delete callbackstructptr from the Xt_OffsetRecord refer to issue #20
definition; not in the C or Unisys intrinsics

25 move xtGrabKind and Xt_PopdownId to popupmanagement approved

package

26 change xt_ConvertArg_Record' s size field to type cardinal approved

27 delete converterrecord_ related declarations; these should be in approved
intrinsics package body

28 delete compiled-translations declarations; can't find where they approved
are used

29 move xtActionRecord to translationmanagement approved
package specification and body

30 delete signature field of Xt_ActionRecord approved

31 delete Xt_ActionList and its Xt_Free; not used approved

32 move xt_CompiledActionTable to translation-management approved
private

77



33 move actionsrecord, XtEventRecordtO approved
translation-management body

34 move staterecord and statepointer to private and body approved

35 move eventobj_record tO translationmanagement body approved

36 move tm kind to translationmanagement body approved

37 move xtBoundAccActionRec and approved
XtBoundAccActionRecPtr to translation-management body

38 move XtTranslate_Op tO translationmanagement semiprivate approved

package specification

39 move translation-data record tO translationmanagement body approved

40 move Xt_Translations, XtAccelerators, and approved
modto keysymtable tO private part

41 delete to translations function; not sure why it's needed approved

move the-following to translation-management body:

42 tmconvertrec approved

43 late-bindings approved

44 Xt MatchProcs approved (see issue #23)

45 XtEventRecord approved

46 eventseq_record approved

47 tm-event record approved

48 name value-record approved

49 delete destroylistentry; not found in C or Unisys deferred to check
for use

50 change tmrecord to private type deferred to check
some more

78



The binding developers wanted to check if Unisys' added access functions are used
anywhere. They do not want application programmers to access the state field, but they do
not want to cut off access to needed fields either.

51 change Xt_Free and Xt Tm Data to actual functions refer to issue #50

because of private tm_record

52 add xt_Compile ActionTable; unique to Unisys approved

53 move mergetables procedure to translationmanagement body deferred

54 translationmanagement sub-program declaration changes:

Xt ParseTranslation Table (passing an object approved
instead of a pointer)

XtTranslateInitialize (move to semiprivate) approved

XtInstallTranslations (move to semiprivate) approved

compile action-table (change to function and move approved
to semi-private)

XtPopupInitialize (propose to be added) approved

55 move xtBoundActions type to private maybe
remove if xt Action Proc List isn't found or ever used

56 delete Xt_MenuPop[up, down]_Action declarations, approved (see
These should be added to the app-contexts action list at issue #54)
app_context creation time

57 add get tm translationoffset function; unique to deferred
Unisys; tentatively move to semiprivate if record becomes private

58 add translation-management semiprivate spec. approved

59 change Xt_EventTable type to private approved (see
issue #50)

60 add new xt_InputMask event type and null_event table object approved

61 remove xt_<no _App>_* subprograms approved

79



62 delete add_forwardinghandler procedure; should be in approved
event-management body

63 event management subprogram declaration changes (in versus in out parameters):

Xt_DispatchEvent approved
Xt_AppMainLoop approved
Xt Free Event Table deferred
we-will c-onsider-removal vs. making this semi-private
XtAdd Exposure To Region (move to events?) approved
Xt Window-To Widget (move to events?) approved

64 XtGeometryManagement subprogram declaration deferred
changes (use position and dimension for parameters instead of
pixel). In subprograms below. They will check widget id
parameter mode before committing to these changes.

XtResizeWidget
XtConfigure Widget
XtMake_Resize_Widget
XtMove Widget

XtTranslateCoords

65 add cvtstringto_boolean proc procedure pointer deferred (see
issue object. We need to check if this is used anywhere; otherwise #63)
it can move to the body of the conversion package.

66 delete Xt Dependencies procedure; should be in approved
resource_management package body

67 resource management subprogram declaration changes
(mostly changes from pointer to array parameters, and in out
versus in and using cardinals instead of naturals)

XtGetResources approved
XtGetSubresources approved
XtGetApplicationResources approved
XtGetValues approved
XtGetSubvalues (no widget id arg.) approved
XtSetSubvalues (no widgetid arg.) approved
XtSetValues approved

68 add xt_GetResource_Offset tO semiprivate; unique to approved
Unisys (Mark Nelson will examine usability for SAIC)

80



69 make changes to setresource after interface decided deferred

70 add semiprivate package to resource management; deferred
check if pointers should be moved to semiprivate and procedures
to body

delete the following; should be in xtconvert package body or in deferred

semiprivate

71 XtSetDefaultConverter_Table

72 xtFr~eConverterTable

73 XtTableAddConverter

74 delete xtAppConverter; Xl 1R2-only procedure approved

75 Xt_Convert_SubProgram specification changes approved
(mostly changes from pointers to array parameters and in out
versus in)

XtAppAddConverter
XtDirectConvert
XtConvert

76 delete xt_Convert (with app parameter) procedure; approved
should be in xtconvert package body instead

77 move XtEventInitialize, Xt_RegisterWindow, and approved
XtUnregisterWindow to eventmanagement semiprivate

78 move these objects to d. dy of eventmanagement: approved

table
grab-list

freegrabs
focus-list
XtDestroyList
onlykeyboard._grabs

focus_tracegood
expose region

81



appdestroy_list
Xt_AppDestroyCount
Xt_DpyDestroyList

79 move xt_CompileCallbackList procedure to approved

XtCallbacks package semiprivate

80 delete the following; should be in Xt_Intrinsics body approved

call classpart init

classinit
call-initialize
call constraint initialize

81 move subprograms to xt_InstanceManagement: approved

XtCreate
XtCreateWidget
XtCreateWindow
XtAppCreateShell
XtRealizeWidget

XtUnrealizeWidget
XtDestroyWidget

82 delete xt_CreateApplicationShell function; for Xl IR2 - approved
compatibility only; not needed

83 delete xt_Phase_2_Destroy callback object; should be in approved
instance_management body

84 change xtCallbackList to private type approved

85 add Xt_CallbackStruct tO XtCallbacks package approved

86 xtCallbacks subprogram declaration changes (in out) approved

XtAddCallback
XtRemoveCallback
XtAddCallbacks
XtRemoveCallbacks

XtCallCallbacks

87 add Xt_Callbacks semiprivate package approved

82



88 add private section to xt_Callbacks approved

89 move xt_SetArg and Xt_Merge_Arg_Lists to approved
XtResourceManagement, with arrays passed for the
command line arguments (see the earlier RM discussion)

90 delete Xt_AddActions; X 1R2 compatibility function approved

91 move Xt_BindActions to translation-management approved

92 move xt ParseAcceleratorTable, approved
XtInstallAllAccelerators, and xt_SetKeyTranslator
tO translationmanagement

93 change Xt Free (Xt Popdown) to an actual function because of approved
private widget definition.

This Xt_Free procedure, and many of the other overloaded xt Frees, will do an
UNCHECKED DEALLOCATION of both the record being passed in and any private data allocated
within that record.

94 declaration change for xt_CreatePopupShell function in approved
xtPopups package

95 delete menuypopup and menupopdown procedures; need not be approved

visible; added to action list at appcontext initialization

96 add xtPopups semiprivate (with xt_Popup procedure) approved

97 xtInstance_Management subprogram declaration changes:

XtDisplayInitialize deferred, check if
argc need

XtOpenDisplay approved
XtCreate (moved to semiprivate) approved
XtManageChildren approved

98 add xt_Create_ManagedWidget function to approved
XtInstanceManagement specification

99 delete Xt_Create_ApplicationShell; XI1R2 only approved

100 add xt_Instance_Management semiprivate approved

83



101 overload xtCreate in semiprivate to provide make single
Unisys and SAIC semiprivate functions operation

102 move errordb and error_file objects to approved
environment specific package because of filename path

103 move Xt_ErrorMsgHandlerProcs package with approved
intrinsics procedure pointer routines

104 remove Xt_<no app_>* routines; Xl 1R2-only keep
xt_warning error handling functions and Xt_Error

XtWarning and Xt__Error will use a default application context since a user defined
context might not have been created by the time one of these error handling subprograms are
called. This default context is hidden in the package body and is used as a last resort.

105 delete xt_InitErrorHandling procedures; unless these needed deferred to
in semi-private check it out

106 Xt_ErrorManagement subprogram declaration changes: approved

Xt_App_Error Message (change to msg, remove params parameter)
Xt_App_Wa rning_Mes sage (ditto)

107 delete procedure pointer packages in selection; leave approved
in xt_Selection_Management package body:

XtCancelConvertSelectionProcs
XtConvertSelectionIncrProcs
XtCancelSelectionCallback_Procs

108 move procedure pointers with rest of procedure approved
pointer packages:

XtSelectionCallback_Procs
XtCloseSelectionProcs

XtSelectionDone_Procs
XtConvertSelection_Procs

109 delete xt_Set_SelectionTimeout and approved
XtGetSelectionTimeout; XIIR2 only subprograms

110 add Xt_Selection_Management semiprivate approved

84



111 delete xt_Get-cursor, not part of Xt approved

112 move package utilities functions to intrinsics; delete utilities approved

113 intrinsics subprogram declaration changes: approved

XtSetSensitive (widgetid is now in out parameter)
XtSetMapped WhenManaged (function returns XtBoolean value)

114 add xt class Is Subclass function; was seniprivate in utilities; approved (see
now fuly public because of the widgets call this issue #112)

115 delete convenience routines xt To Address, approved
Xt To X Long-Integer, and XtFree for actions-pointer as
these are used only by RM

116 delete corepart and core_class_part type declarations, moved approved
elsewhere

117 add new types to xt_intrinsics private part approved

85



GLOSSARY

Ada/X Ada binding and/or implementation of the X Window System
Ada/Xiib Ada binding or implementation to Xlib
Ada/Xt Ada binding or implementation to the Xt intrinsics toolkit
ACM Association for Computing Machinery
ADT Abstract Data Type
Anna Annotated Ada
ANSI American National Standards Institute
API Applications Programming Interface
APSE Ada Programming Support Environment

C C programming language
CASE Computer-Aided Software Engineering
CM Configuration Management
COTS Commercial Off-The-Shelf
C/X C binding/implementation of the X Window System
C/Xfib C binding/inplementation of Xlib
C/Xt C binding/implementation of Xt

DEC Digital Equipment Corporation
DIANA Descriptive Intermediate Attributed Notation for Ada
DQL DIANA Query Language

FIPS Federal Information Processing Standard
FrP File Transfer Protocol

GRAMMI Generated Reusable Ada Man-Machine Interface

HP Hewlett-Packard

IEEE Institute of Electrical and Electronic Engineers

JPL Jet Propulsion Laboratory

L1L Library Interconnect Language
LRM Language Reference Manuala
NASA National Aeronautics and Space Administration
NIST National Institute of Science and Technology

OL Open Look
OOD Object-Oriented Design
OOP Object-Oriented Programming
OSF Open Software Foundation
OSI Open Systems Int:rconnection

87



PCB Procedure Control Block
PEX PHIGS Extensions to X
PHIGS Programmer's Hierarchical Interface for Graphics Systems
POSIX Portable Operating System Interface to UNIX

RM Resource Manager

SAIC Scientific Applications International Corporation
SEI Software Engineering Institute
SIGAda Special Interest Group on Ada
SPC Software Productivity Consortium
STARS Software Technology for Adaptable and Reliable Systems

TAE+ Transportable Application Environment Plus
TCB Task Control Block
TIM Technical Interchange Meeting

UI UNIX International
UIMS User Interface Management System

VADS Verdix Ada Development System
VAPI Virtual Application Programming Interface
VEX Video Extensions to X

X X Window System
Xlib X library
Xt X toolkit

88



INDEX

Ada 9X 31, 32 Configuration Dependent 45
Ada/X 1,2,7,8,9, 11, 12, 13, 15, 18,20,26, constraint 21

28,31,32,33,35,36,37,39,40,56,57, constraint classpmrt 63
58,59,66 constrantwidgetrec 63

Ada/Xlib 7, 9, 11, 12, 13, 15, 31, 33, 34, 35, context 44
37,43,44,45,46,47,48,49,50,51,52, core 21, 23, 25, 29, 69
64, 65, 69, 70, 71, 72, 73, 75 core classpart 61

Ada/Xt 11, 15, 16, 20, 21, 23, 26, 27, 28, 29, Core Part 61
31, 33, 35, 37, 46, 49, 52, 56, 57, 58, 59, COTS 1, 36, 39
60, 63, 64,65, 66,68,69,70,71,72,73, create-widget 72
74,75,76,77

ADT 24, 25, 46, 51, 77 DECAda 11, 50
Alsys 11, 45 DECWindows 8
ANSI 33, 34, 39 devices 75
API 2, 6, 7, 35 DIANA 20
application developer 2, 5, 6, 15, 16, 18, DQL 20

20,22,23,26,28, 29, 31, 32, 34, 35, 36, drawable 44
37, 39,43,49,56,57,58, 59,64, 65,70,
71,72,73,74 emacs 43

APSE 36 error handler 77
Athena 5, 6, 7, 9, 15, 31, 34, 35, 37, 39, 43, error"proc 77

58,73 Events 46
awk 58, 65, 72 execute 56, 57
binding developer 1, 2, 7, 12, 13, 15, 21, extension 28

23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36,
37, 39, 43, 44, 46, 48, 49, 51, 52, 55, 56, FIPS 158 35, 36
57, 58, 59, 60,63, 64,65,66,68,69,70, framework 7
72,74,75,77,78 FTP 37

func 56
C/X 9, 31, 33 func.ptr 56, 57
C/Xiib 12, 15, 43, 45, 46, 47, 48, 50, 51, 52,

70 gadgets 23
C/Xt 15, 20, 23, 26, 27, 28, 46, 56, 57, 59, 60, gcc 50

63, 64, 65, 66, 68, 69, 70, 71, 74, 75 get resources 27
call_data 56 GIUG 7, 8, 37

CASE 2 GRAMMI 8
cc 50 grebyn 37
Change Geometry 60
closure 36 handle 56
CM 11 hash bucket 48
command 29 HP , 8
Command Line Arguments 65
composite 71, 29- IEEE 33, 34, 39, 50
composite-class 62 inherit 57
compositerec 62

89



intrinsics 5, 7, 15, 16, 21, 23, 28, 29, 37, 39, R1000 9
56,58,59, 60, 64, 65, 69,71,72,74 Rational 9, 34

rectangle 52
JPL 8 reference model 7, 36

Renamed Xlib Types 65
Karlsruhue 53 ResourceTanager (RM) 23
key..code 52 resource mgr 47, 48

resource records 27
label 25,29 RM 23, "5, 26, 27, 28, 46, 47, 59, 68, 69, 72
LIL 57
local-ptr 56 Sanders 9

screen list 53
malloc 28, 60 search-lists 48
Mask Type 44 sed 432'49
Meridian 11, 50, 68 SEI 2, 8
Motif 6, 8, 21, 31, 34, 35, 36, 37, 58, 59, 66, Serpent 2, 8, 35

70 set arg 69
NASA 2, 8 set resource 26
NIST 35, 36 set-resources 27
null-address 52 shell 21, 29, 57, 58, 59, 64

SIGAda 31, 33
object 64 simple 25
object classpart 63 SPC 8
object widgetpart 63 STARS Foundation 7
OL 6,21, 31, 34, 35, 36, 58, 59, 66, 70 STARS Foundation's 7, 13, 37
OOP 28 STARS Foundations 8, 35, 43, 50, 51
OSF 6, 7, 8, 34, 60, 70 strip 70
OSI35 SubprogramPointer 56, 57, 58, 60, 64, 65,

66,69
P1003 36 Systeam 58

.5 34,49,51,74 System Environment 45
P1201 33 System-Utilities 45

.1 34
.3 35 TAE+ 2, 8, 35
.434,35 TCB 73
.535 TeleSoft 8, 11

PCB 56, 57, 58 TeleUSE 8
PEX 36 the obj 56
PHIGS 36 To..XtArgval 26
point 52 translation management 78
POSIX 33, 34, 35, 36, 49, 51, 74 TRW 8
Posix Strings 51
proc jd 56,57 UI 6, 34, 60
proc.ptr 56, 57, 65 UIMS 2, 6, 8, 32, 33, 35, 36, 39
quark 50,69 User-Supplied 56, 57
quark array 50, 51
quark-list 50 VADS 11

VAPI 34

90



Verdix 11, 50 Xt Exit 73,74,75
VEX 36 Xt-Free 65, 83

Xt-Geometry Management 67
widget developer 2, 6, 7, 13, 15, 16, 18, 20, Xt Get Value-26

21,22,23,24, 25,26,27,29,31, 39, 56, Xt"Get-Values 27
57, 58, 59,64,65,66,70,71 Xtinstaince Management 68

widgetid 56 Xtlintrinics-65, 66
widget resourceptr 28 Xt-intrinsics 23, 28, 60, 64, 77
widget-resources 28 Xt-Label 26
window list 53 Xt-List Overflow 76

Xt:Popups 67
X protocol 5, 6, 9, 34, 36, 45 Xt Procedure Types 65, 66
x-ada 37 XtResources 66, 68, 69
X11R2 7,35,60,66 Xt-Selection Management 67
X11R3 15, 31, 35, 36, 39, 49, 51, 53, 60, 69 Xt-SetArg 76
X11R4 7, 12, 15, 28, 31, 35, 36, 39, 49, 51, Xt Set Values 27

69,76 XtTranslation Management 67
X1IR5 7, 9, 28, 31, 34, 35, 39, 76 Xt-Utilitie" 68,75

:X11R6 31, 35, 74 Xt-Warning 84
X3H3 33 XtIrore 21

.634 XVT 34
X Address 52 XWithdrawWindow 52
XId 44
X-Lib 43,45,49,64,71 York 58
X-Lib Interface 11, 53
X-Wiidows 43 zero address 48
Xiib 5, 7, 8, 9, 11, 12, 33, 34, 35, 36,43,45, ZeroX Address 52

46,47,48,49,50,51,52,64,70
Xmu 12
Xray 7, 35
Xrm 48
XrmDatabase 53
XrmDestroyDatabase 53
Xt 5, 7, 8, 15, 16, 20, 21, 23, 28, 31, 33, 34,

35, 36, 37, 46, 56, 58, 60, 63, 64, 71, 72,
74

Xt Anciallary Types 65
Xt"AppCreate Shell 28, 59, 60
Xt"Boolean 27, 28, 65
Xt"Box Widget 72
Xt-Box"Widget Class 72
Xt-Calibacks 6f
Xt"Core 64
Xt"Create ManagedWidget 28, 59
XtError T3, 84
Xt-Error Management 68
Xt Error-Raised 75
Xt-Event Management 66

91


