
REPORT DOCUM AD-A246 4751111111111,1L 1,W AI. 0704-0188

I m ,.*, lm III mm 9aft m&W manl ftd
14sduaftmSWAN~. Oksctnftefor kftnrA UOw WRpoft. o~~* 0111m of. __~g aid *0UiCS AfWg fbif OfimofC
Mavpffwta NBu&4q Washnom, DC M06.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Final: 07 Nov 1991 to 01 Jun 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Hewlett-Packard, HP 9000 Series 700/800 Ada Compiler, Version 5.35, HP 9000
Series 800 Model 835 (Host & Target), 911107W1.11228

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER
Bldg. 676, Rm 135 AVF-VSR-517-1291
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 Words)

Hewlett-Packard, HP 9000 Series 700/800 Ada Compiler, Version 5.35, Wright-Patterson AFB, HP 9000 Series 800 Model
835 (Host & Target), ACVC 1.11.

DTIC
T: 1. ECT E
FEB 26 W

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIMIL-STD-1815A, AJPO.ODE

SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LMITATION OF ABSTRACT
FOF REPORT OF ABSTRACT
LASSIFIED UNCLASSIFED UNCLASSIFIED

U40-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Sid. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 7 November 1991.

Compiler Name and Version: HP 9000 Series 700/800 Ada Compiler
Version 5.35

Host Computer System: HP 9000 Series 800 Model 835
HP-UX, Version A.B8.00 (release 8.00)

Target Computer System: HP 9000 Series 800 Model 835
HP-UX, Version A.BB.00 (release 8.00)

Customer Agreement Number: 91-09-04-HPC

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
911107W1.11228 is awarded to Hewlett-Packard. This certificate expires on
1 June 1993.

This report has been reviewed and is approved.

* Accesion For

Ada Validation Facility NTiS CrA&I

Steven P. Wilson DIC i,
Technical Director Ua ,.c ed
ASD/SCEL Just
Wright-Patterson AFB OH 45433-6503

z...=,r. __ y.By
Di.t ib,,,,o, I

AaVli iTOrganization
Dir to te nd Software Engineering Division Di-t I i

Alexandria VA 22311

Ad& Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

92 2 24 00292-04666

AVF Control Number: AVF-VSR-517-1291
Date VSR complete: 9 December 1991

91-09-04-HPC

Ada C0OMPILER
VA~LIDATION SUMMARY REPORT:

Certificate Number: 911107W1.11228
Hewlett-l'.ckard

HP 9000 Series 700/800 hd. Compiler, Version 5.35
HP 9000 Series 800 Model 835 -> HP 9000 Series 800 model 835

PreparpAi By:
Ada validat 'i')n Facility

ASD/SCEL
Wright-Patterson APB OH 45433-6503

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Declaration of Conformance

Customer: Hewlett-Packard Company, California Language Lab

Ada Validation Facility: ASD/SCEL, Wright Patterson AFB, OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: HP 9000 Series 700/800 Ada Compiler
Version 5.35

Host Computer System: HP 9000 Series 800 Model 835
HP-UX, Version A.B8.00 (release 8.00)

Target Computer System: HP 9000 Series 800 Model 835
HP-UX, Version A.B8.00 (release 8.00)

Declaration:

I, the undersigned, representing Hewlett-Packard Company, declare that I have no
knowledge of deliberate deviations from the Ada Language Standard ANSI/MIL-
STD-1815A ISO 8652-1987 in the implementation listed above.

_________________Date: iC/II /;',
Hewlett-Packard Company
David Graham
Ada R&D Section Manager

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS 2-2
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTIMN

1.2 REFERNCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, version 2.1, Ada Joint Program
Office, August 1990.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION4

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation sunmary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.

Compliance of The ability of the implementation to pass an ACVC version.

Computer A functional unit, consisting of one or more computers and
System associated software, that uses comon storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTIMZ

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.

Validated Ada The compiler of a validated Ada implementation.

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programing language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

OMMI 2

IMPIDM4TATIN DEPNDUENCIES

2.1 WITHDRANN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1BO2B BD1BO6A AD1BO8A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A4lA CD2A41E CD2A87A CD2Bl5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE217B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CZ3902B

2-1

IMPLETATION DEPE4DENCIES

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commnly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C455&'1 C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55BO7A B55B09C B86001W C86006C CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is leis than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
URATION; for this implementation, there is no such type.

2-2

IMPLEMENTATION DEPENDENCIES

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does
not support decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT--IO
CE2102N OPEN IN FILE SEQUENTIALIO
CE21020 RESET IN-FILE SEQUENTIAL_1O
CE2102P OPEN OUT FILE SEQUENTIAL 10
CE2102Q RESET OUT-FILE SEQUENTIALIO
CE2102R OPEN INcUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUf FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102F RESET Any-Mode TEXT V0
CE3102G DELETE TEXTIO
CE3102I CREATE OUT FILE TXT-IO
CE3102J OPEN IN FILE TXT-IO
CE3102K OPEN afr FILE TXT-IO

The tests listed in the following table check the given file
operations for the given combination of mode and access method; this
implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL 10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE IN-FILE TEXT I

2-3

IMPLEMETATION DEPENDENCIES

CE2401H, EE2401D, and EE2401G use instantiations of DIRECT 10 with
unconstrained array and record types; this implementation raises
USE ERROR on the attempt to create a file of such types.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded;- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3202A expects that function NAME can be applied to the standard
input and output files; in this implementation these files have no
names, and USE ERROR is raised. (See section 2.3.)

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an Tnappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this Tmplementation, the value of
CX3NT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 23 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B23004A B24007A B24009A B28003A B32202A B32202B
B32202C B37004A B61012A B74401F B74401R B91004A
B95032A B95069A B95069B BA1101B BC2001D BC3009C

B85002A was graded passed by Evaluation Modification as directed by the
AVO. This test declares a record type REC2 whose sole component is of an
unconstrained record type with a size in excess of 2**32 bytes; this
implementation rejects the declaration of REC2. Although a strict
interpretation of the LRM requires that this type declaration be accepted
(an exception may be raised on the elaboration of the type or an object
declaration), the AVO accepted this behavior in consideration that such
early error detection is expected to be allowed by the revised language
standard.

2-4

IMPLEMENTA TION DEPENDENCIES

BA2001E was graded passed by Evaluation Modification as directed by the
AVO. The test expects that duplicate names of subunits with a common
ancestor will be detected as compilation errors; this implementation
detects the errors at link time, and the AVO ruled that this behavior is
acceptable.

EA3004D was graded passed by Evaluation and Processing Modification as
directed by the AVO. The test requires that either pragma INLINE is
obeyed for a function call in each of three contexts and that thus three
library units are made obsolete by the re-compilation of the inlined
function's body, or else the pragma is ignored completely. This
implementation obeys the pragma except when the call is within the package
specification. When the test's files are processed in the given order,
only two units are made obsolete; thus, the expected error at line 27 of
file EA3004D6M is not valid and is not flagged. To confirm that indeed
the pragma is not obeyed in this one case, the test was also processed
with the files re-ordered so that the re-compilation follows only the
package declaration (and thus the other library units will not be made
obsolete, as they are compiled later); a "NOT APPLICABLE" result was
produced, as expected. The revised order of files was 0-1-4-5-2-3-6.

CD2A53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-10 value as
'SMALL for a fixed-point type. The AVO ruled that, under ACVC 1.11,
support of decimal 'SMALLs may be omitted.

CE3202A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test applies function NAME to the standard input file,
which in this implementation has no name; USE ERROR is raised but not
handled, so the test is aborted. The AVO ruled that this behavior is
acceptable pending any resolution of the issue by the ARG.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical or sales information about this Ada
implementation system, see:

Marianne Mardesich
California Language Lab
19447 Pruneridge Avenue
Cupertino CA 95014
(408) 447-6973

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS -

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

3-1

PROCESSING INFOPMATION

a) Total Number of Applicable Tests 3791
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 83
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 284

g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked and executed on the computer system, as
appropriate. The results were captured on the computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Switch Effect

-B Produces an output listing.

-e 999 Sets the maximum number of errors to 999.

-W b, -T Suppresses procedure traceback when exceptions
are not caught.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPIM4IX A

M&M~ PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (L1G89 J. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAXINLEN-also listed here. These values are expressed
here as Ada string aggregates, where "VP represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 255

$BIGIDi (1..V-1 W>'A, V Fit'1)

$BIG_1D2 (1..V-1 W>'A, V -> 2')

$BIG_1D3 (l..V/2 W>'A) & 3' &
(1..v-l-V/2 W>'A)

$DIG_1IN (l..V/2 -> 'A) & 4' &
(1..v-l-v/2 => 'A)

$BIGINTLIT (l..V-3 -> 0') & "298"

$BIGREAL-LIT (1..V-5 -> 0') & "690.0"

$BIGSTRINM '' (1..V/2 -> 'A) & r""

$BIGSTRIM2 ' &(1..V-1-V/2 -> 'A) & '1' & "r

$BLA NKS (1..V-20 -

$MAXLENINTBASED LITERAL
"2:" &(1..V-5 -> 0') & "11:"1

$MAX LEN REAL BASEDLITERAL
- - -"16:" (1..V-7 -> 0') & "F.E:"

A-1

MACRO PARAMETERS

SMAX_STRING LITERAL "' & (1..V-2 -> 'A') & "'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC_SIZE 32

$ALIGNMENT 4

$COUNT_LAST 2147483647

$DEFAULT_MEMSIZE 2147483647

$DEFAULT STOR UNIT 8

$DEFAULTSYS NAME HP9000_PA RISC

$DELTA DOC 2#1.0#e-31

$ENTRYADDRESS ENTRYADDR

SENTRY ADDRESS1 ENTRYADDR1

$ENTRYADDRESS2 ENTRYADDR2

$FIELDLAST 255

$FILETERMINATOR ' r

$FIXEDNAME NOSUCHFIXEDTYPE

$FLOAAT_M NOSUCHFLOAT_TYPE

$FORM4_STRING

$ FORM_STRING2 "CANNOT RESTRICT FILE _CAPACITY"

$GREATERTHAN_ DURATI ON
100_000.00

$GREATERTHAN DURATION BASE LAST
TOOOO000.0

$GREATERTHAN FLOAT BASE LAST
- - l.0141E+38

$GREATER_THAN FLOAT SAFE LARGE
- - l.E38

A-2

MACRO PARAMETERS

$GREATER_ THANSHORTFLOAT SAFE LARGE
1.07E308-

$HIGHPRIORITY 16

$ILLEGAL ETNALFILENAM1
not there//not there/*^~

$ ILLEGAL EKTERALFILENAIE2
not there/not there/not-there/././n ot-there///

$INAPPROPRIATELINELENGTH
-1

$ INAPPROPRIATEPAGELENGTH
-1

$INCLUDE PRAiAa PRAGMZA INCLUDE ("A28006D . TST"l)

$INCLUDE PRA.1A PRAGMA INCLUDE ("IB28006D1 .ADA")

$INTEGER FIRST -2147483648

$INTEGER LAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELANGUAGE C

$LESSTHANDURATION -100.000.0

SLESSTHANDURATIONBASE FIRST
-1,60O_000_000.0

$LINETERMINATOR

$LOWPRIORITY 1

SMACINECODESTATEMNT
NULL;

$MACHINECODETYPE NOSUCHTYPE

$MANTISSA._DOC 31

$MAXDIGITS 15

$MAX Iwr 2147483647

$MAXINTPLUS_1 2147483648

$MININT -2147483648

$NAMESHORT SHORTINTEGER

A-3

MACRO PARAMETERS

$NAME LIST HP9000_PA RISC

SNAME SPECIFICATIONI /ACVC/mnt/root5/notrace/Test/ACVCiB/Run/X2120A

$NAME SPECIFICATICN2 /ACVC/ nt/rootS/notrace/Test/ACVCIB/Run/X2120B

$NAME SPECIFICATION3 /ACVC/tnt/oot5/notrace/Test/ACVCiB/Run/X3114A

$NEGBASED INT 16#FF FT FT FD#

$NEW_MEM SIZE 1048576

$NEW STOR UNIT 8

$N WSYSNAME HP90ooPA_RISC

SPAGE TERKM TOR ASCII.FF

SRECORD DEFINITION RECORD NULL; END RECORD;

SRECORD NAME NO SUCH MACHINE CODE TYPE

$TASK SIZE 32

$TASKSTORAGE_SIZE 32768

STICK 0.010

$VARIABLEADDRESS VARIABLE ADDR;

$VARIABLEADDRESS1 VA.RIABLEADDR;

$VA.IABLE ADDRESS2 VARIABLE ADDR2;

$YOUR PRAGMA EXPORT OBJECT

A-4

APPENDIX B

COMILATIC SYSTEM OPTINS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

COMPILATIWN SYSTEM OPTIONS

NAME
ada - Ada compiler

SMNPSIS
ada [options] [files] libraryname

Remarks:
This comand requires installation of optional Ada software
(not included with the standard HP-UX operating system)
before it can be used.

DESCRIPTION
ada is the HP-UX Ada compiler. It accepts several types of
i1e arguments:

(1) Arguments whose names end with .ad?, where ? is any
single alphanumeric character, are taken to be Ada
source files.

(2) The libraryn!mn argument names an Ada library that must
been previously created using the ada.mklib(l)

command. An Ada library is an HP-UX directory
containing files that are used by the various
components of the Ada compilation system. There is no
required or standard suffix on the name of an Ada
library.

The named source files are compiled and each
successfully compiled unit is placed in the specified
Ada library by the compiler. When binding, or binding
and linking, information is extracted from the Ada
library to perform the bind and/or link operation. The
Ada library must always be specified.

To ensure internal data structure integrity of the Ada
libraries, libraries are locked for the duration of any
operations being performed on them. During
compilation, librarname is normally locked for
updating, and other Ada libraries can be locked for
reading. During binding/linking, Ada libraries are
only locked for reading.

If ada cannot obtain a lock after a suitable number of
retri-lis, it displays an informational message and
terminates.

Users are strongly discouraged from placing any
additional files in Ada library directories. User
files in Ada libraries are subject to damage by, or
might interfere with, proper operation of ada and
related tools.

(3) All other file arguments, including those whose names

B-2

COMPILATIN SYSTEM OPTICNS

end with .o or .a are passed on to the linker ld(1) to
be linked into the final program. It is not p-sible
to link-only with the ada(l) command.

(4) Although shown in the preferred order above, options,
files, and libraryname arguments can appear in any
order.

Environment Variables

The environment variable ADA PATH is associated with all
components of the Ada compilation system. It must be set
properly and exported before any component of the Ada
compilation system (including ada) can be used.

Normally this variable is defined and set in the system-wide
shell startup files /etc/profile (for sh(l) and ksh(l)) and
/etc/csh.login (for csh(l)). However,-'t can bi-et by a
user, either interactively or in a personal shell startup
file, .profile (for sh(l) and ksh(l)) or .cshrc (for
csh (1)).

ADA PATH must contain the path name of the directory in
which the Ada compiler components have been installed.

The value of this variable must be a rooted directory (that
is, it must begin with a /) and the directory specification
must not end with a /.

ADAOPTS
The environment variable ADAOPTS can be used to supply
commonly used (or default) arguments to ada. ADAOPTS is
associated directly with ada, and is not-used by any other
component of the Ada compilation system.

Arguments can be passed to ada through the ADAOPTS
environment variable, as wel-as on the command line.
ada(.l) picks up the value of ADAOPTS and places its contents
B-fore any arguments on the command line. For example (in
sh(l) notation),

$ ADAOPTS-"-v -e 10"
$ export ADAOPTS
$ ada -L source.ada test.lib

.is equivalent to

$ ada -v -e 10 -L source.ada test.lib

Compiler Options
The following options are recognized:

-a string Store the supplied annotation string in the
library with the compilation unit. This

B-3

COMPILATICN SYSTEM OPTINS

string can later be displayed by the unit
manager. The maximum length of this string
is 80 characters. The default is no string.

-b Display abbreviated compiler error messages
(default is to display the long forms).

-c Suppress link phase and. if binding occurred,
preserve the object file produced by the
binder. This option only takes effect if
linking would normally occur. Linking
normally occurs when binding has been
requested.

Use of this option causes an informational
message to be displayed on standard error
indicating the format of the ld(l) conand
that should be used to link t e- program. It
is recommended that the user supply
additional object (.o) and archive (.a) files
and additional library search paths (-lX)
only in the places specified by the
informational message.

If the -c option is given along with the -d
or -D option, the binder must assume the name
for the eventual executable file, in order to
determine what to name the debug/profiling
information file (see -d and -D). If no -o
option is given, the debug/profiling
information file will be named a.out.cui, and
you must make sure the eventual executable
file is named a.out. If a -o outfile option
is given, the debug/profiling information
file will be named outfile.cui, and you must
make sure the eventual executable file is
named outfile. If the executable is not
named as expected, neither ada.probe(l) nor
ada.tune(1) will work correctly.

When ld is later used to actually link the
program, the following conditions must be
met:

1. The .o file generated by the binder
must be specified before any HP-UX
archive is specified (either
explicitly or with -1).

2. If -lc is specified when linking, any
.o file containing code that uses
stdio(3S) routines must be specified
Ei-rFe -lc is specified.

B-4

CCMPILATION SYSTEM OPTIONS

-d Cause the compiler to store additional
information in the Ada library for the units
being compiled for use by the Ada debugger
(see ada.probe(1)) or Ada profiler (see
ada.tu-ne(M)). Only information required for

ee eSig-'ing or profiling is saved; the source
is not saved (see -D).

Cause the binder to produce a debug/profiling
information file for the program being bound
so that the resulting program can be
manipulated by the Ada debugger. (Note: if
you intend to use the Ada profiler you should
use the binder option -W b,-p instead of
using -d at bind time.) The binder will
produce a debug/profiling information file
named a.out.cui (unless -o is used to specify
an alternate name). If the debug information
file name would be truncated by the file
system on which it would be created, an error
is reported.

Only sources compiled with the -d or -D
option contribute information to the
debug/profiling information file produced by
the binder. The default is not to produce
the debug/profiling information (see the Ada
Tools Manual for more details). See -c for
informa-tiF onFthi enteraction between the
-0, -d, -D, and -c options.

See the WARNINGS section for information
regarding debugging of optimized programs.

-e nnn Stop compilation after nnn errors (legal
range 0..32767, default-).

-i Cause any pending or existing instantiations
of generic bodies in this Ada library, whose
actual generic bodies have been compiled or
recompiled in another Ada library, to be
compiled (or recompiled) in this Ada library.

This option is treated as a special "source"
file and the compilation is performed when
the option is encountered among the names of
any actual source files.

Any pending or existing instantiations in the
same Ada library into which the actual
generic body is compiled (or recompiled), do
not need this option. Such pending or
existing instantiations are automatically
compiled (or recompiled) when the actual

B-5

COMPILATION SYSTE OPTIONS

generic body is compiled into the same Ada
library.

Warning: Compilation (or recompilation) of
instantiations either automatically or by
using this option only affects instantiations
stored as separate units in the Ada library
(see -u). Existing instantiations which are
"in-line" in another unit are not
automatically compiled or recompiled by using
this option. Units containing such
instantiations must be explicitly recompiled
by the user if the actual generic body is
recompiled.

-k Cause the compiler to save an internal
representation of the source in the Ada
library for use by the Ada cross referencer
ada.xref(1). By default, the internal
representation is not saved.

-lx Cause the linker to search the HP-UX library
named either /lib/libx.a (tried first) or
/usr/lib/libx.a (see Td(l)).

-m nnn The supplied number is the size in Kbytes to
be allocated at compile time to manipulate
library information. The range is 500 to
32767. The default is 500. The default size
should work in almost all cases. In some
extreme cases 'involving very large programs,
increasing this value will improve
compilation time.

-n Cause the output file from the linker to be
marked as shareable (see -N). Do not use the
option -n when also profiling with the option
-W b,-p. For details refer to chatr(l) and
ld(l).

-o outfile Name the output file from the linker outfile
instead of a.out. In addition, if usidwith
the -c option, name the object file out-ut by
the binder outfile.o instead of a.out.o. If
debugging iseiabTed (with -d or -D), name
the debug information file output by the
binder outfile.cui instead of a.out.cui.

If -c is not specified, the temporary object
files used in the link operation are deleted,
whether or not the link succeeded.

-q Cause the output file from the linker to be

marked as demand loadable (see -Q). For

B-6

COM4PIIATICN SYSTEM OPTIONS

details refer to chatr(l) and ld(l).

-r nnn Set listing line length to nnn (legal range
60..255, default 79). This-option applies to
the listing produced by both the compiler and
the binder (see -B, -L, and -w b,-L).

-s Cause the output of the linker to be stripped
of symbol table information (see ld(l) and
strip(l)).

Use of this option prevents ada. robe(l) and
ada.tune(l) from functioning--correct y.

-t c,name Substitute or insert subprocess c with name
where c is one or more of a set Ef
identi-fiers indicating the subprocess(es).
This option works in two modes: 1) if c is a
single identifier, name represents the-full
path name of the new-subprocess; 2) if c is a
set of (more than one) identifiers, name
represents a prefix to which the staHE2ud
suffixes are concatenated to construct the
full path name of the new subprocesses.

The possible values of c are the following:

b binder (standard suffix is adabind)
c compiler (standard suffix is adacomp)

same as c
T linker (itandard suffix is ld)

-u Cause instantiations of generic program unit
bodies to be stored as separate units in the
Ada library (see -i).

If -u is not specified and the actual generic
body has already been compiled when an
instantiation of the body is compiled, the
body generated by the instantiation is stored
"in-line" in the same unit as its
declaration.

If -u is specified or the actual generic body
has not already been compiled when an
instantiation of the body is compiled, the
body generated by the instantiation is stored
as a separate unit in the Ada library.

The -u option may be needed if a large number
of generic instantiations within a given unit
result in the overflow of a compiler internal
table.

B-7

COMPILATION SYSTEM OPTIONS

Specifying -u reduces the amount of table
space needed, permitting the compiler to
complete. However it also increases the
number of units used within the Ada library,
and also introduces a small amount of
overhead at execution time in units which
instantiate generics.

-v Enable verbose mode, producing a step-by-step
description of the compilation, binding, and
linking process on standard error.

-w Suppress warning messages.

-x Perform syntactic checking only. The
librarynae argument must be supplied,
atiough the Ada library is not modified (see
-x and -G).

-B Causes the compiler to produce a compilation
listing, suppressing page headers and the
error summary at the end of the compilation
listing. This is useful for avoiding
mismatches caused by page headers when
comparing a compilation listing with a
previous compilation listing of the same
program. This option cannot be specified in
conjunction with the -L option.

-C Suppress runtime checks except for stack
overflow. Use of this option may result in
erroneous (in the Ada sense) program
behavior. In addition, some checks (such as
those automatically provided by hardware)
might not be suppressed (see -R).

If a generic body, or a procedure or function
that may be included "inline" (see the +0 i
and -I options), is compiled with this option
in effect, this option setting is
"remembered". When the generic is
instantiated, or the procedure or function is
included "inline", the compiler will produce
code for that instantiation or inlining that
is consistent with the "remembered" option
again being in effect (i.e. the runtime
checking level specified to the compiler
which is compiling the instatiation or
inlined procedure or function is ignored for
the duration of the instantiation or inlining
and the runtime checking level specified when
the generic body or orignal procedure or
function was compiled is used instead).

B-8

COMPILATICN SYSTEM OPTIONS

See the Users Guide for more information.

-D Cause the compiler to store additional
information in the Ada library for the units
being compiled, for use by the Ada debugger
(see ada.probe(l)) or Ada profiler (see
ada.tfu-ne(1T. In addition to saving
-f-r-ation required for debugging and
profiling, an internal representation of the
actual source is saved. This permits
accurate source level debugging and profiling
at the expense of a larger Ada library if the
actual source file changes after it is
compiled (see -d). By default, neither
debug/profiling information nor source
information is stored.

Cause the binder to produce a debug/profiling
information file for the program being bound
so that the resulting program can be
manipulated by the Ada debugger (Note: if you
intend to use the Ada profiler you should use
the binder option -W b,-p instead of using -D
at bind time). The binder wil produce a
debug profiling information file named
a.out.cui (unless -o is used to specify an
alt-eri l-- name). If the debug information
file name would be truncated by the file
system on which it is to be created, an error
is reported.

Only sources compiled with the -d or -D
option contribute information to the
debug/profiling information file produced by
the binder. The default is not to produce
the debug/profiling information (see the Ada
Tools Manual for more details). See -c for
infor n-ron the interaction between the
-o, -d, -D, and -c options.

See the WARN IGS section for information
regarding debugging of optimized programs.

-G Generate code but do not update the library.
This is primarily intended to allow one to
get an assembly listing (with -S) without
changing the library. The libraryname
argument must be supplied, although the Ada
library is not modified (see -x and -X).

-H Causes the compiler to produce informational
messages of interest to users of the
INTERRUPT MANAGER package (which is described
by the appropriate Reference Manual for the

B-9

COMPILATICN SYSTEM OPTICNS

Ada Programming Language, Appendix F). Three

types of messages are produced:

1. Information that an Ada runtime system
routine will be called from the
generated code for the indicated
construct. The name of the Ada
runtime system routine will be
indicated.

2. Information that an Ada type support
subprogram (TSS) will be called from
the generated code for the indicated
construct. The name of the Ada type
that the TSS supports will be
indicated.

3. Information indicating the size in
bytes of the parameter block, for a
task entry for which an address clause
has been specified.

The first two kinds of messages are of
interest when compiling the bodies of signal
handlers for use with the INTERRUPT MANAGER
package. The third kind of message is of
interest when compiling the specifications of
tasks which contain entries which will be
called by the INTERRUPTMANAGER package.

If you generate a complete compiler listing
with the -B or -L options, the informational
messages appear in the compiler listing at
the appropriate source lines. If you do not
generate a complete compiler listing, only
the source lines that apply to the
informational message appear with the
informational message. The information
normally produced by -H will be suppressed if
-b is also specified.

-I Suppress all inlining. No procedures or
functions are expanded inline and pragma
inline is ignored. This also prevents units
compiled in the future (without this option
in effect) from inlining any units compiled
with this option in effect.

-L Write a program listing with error
diagnostics to standard output. This option
cannot be specified in conjunction with the
-B option.

B-10

COMPILATICN SYSTEM OPTIONS

-N main Invoke the binder after all source files
named in the command line (if any) have been
successfully compiled. The argument main
specifies the entry point of the Ada program;
main must be the name of a parameterless
]--library-level procedure.

The library-level procedure main must have
been successfully compiled int-o(or linked
into) the named Ada library, either by this
invocation of ada or by a previous invocation
of ada (or ada.!g=r(l)).

The binder produces an object file named
a.out.o (unless -o is used to specify an
alternate name), only if the option -c is
also specified. The object file produced by
the binder is deleted unless the option -c is
specified. Note that the alternate name is
truncated, if necessary, prior to appending
.0.

-N Cause the output file from the linker to be
marked as unshareable (see -n). For details
refer to chatr(l) and ld(l).

-O Invoke the optimizer with full optimizations.
See the description of +0 under the
DEPENDENCIES section for more information.

See the WARNINGS section for information
regarding debugging of optimized programs.

-P nnn Set listing page length to nnn lines (legal
range 10..32767 or 0 to indT'cate no page
breaks-, default 66). This length is the
total number of lines listed per listing
page. It includes the heading, header and
trailer blank lines, listed program lines,
and error message lines. This option applies
to the listing produced by both the compiler
and the binder (see -L and -W b,-L).

-Q Cause the output file from the linker to be
marked as not demand-loadable (see -q). For
details refer to chatr(l) and ld(l).

-R Suppress all run-time checks. However, some
checks (such as those automatically provided
by hardware) might not be suppressed. Use of
this option may result in erroneous (in the
Ada sense) program behavior (see -C).

If a generic body, or a procedure or function

B-l

COMPILATIN SYSTEK OPTINS

that may be included "inline" (see the +0 i
and -I options), is compiled with this option
in effect, this option setting is
"remembered". When the generic is
instantiated, or the procedure or function is
included "inline", the compiler will produce
code for that instantiation or inlining that
is consistent with the "remembered" option
again being in effect (i.e. the runtime
checking level specified to the compiler
which is compiling the instatiation or
inlined procedure or function is ignored for
the duration of the instantiation or inlining
and the runtime checking level specified when
the generic body or orignal procedure or
function was compiled is used instead).

-S Write an assembly listing of the code
generated to standard output. This output is
not in a form suitable for processing with
as(1).

-W c,argl,ar2,...,argN
Cause argl through argN to be handed off to
subprocess c. Each a is of the form

rtion(,ar~value , here arpton is the
name of an option recognized by the
subprocess and argvalue is a separate
argument to argoption where necessary. The
values that c can assume are those listed
under the -t-option as well as d (driver
program).

To pass the -r (preserve relocation
information) option to the linker, use:

-W l,-r

The following sends the options -m 10 -s 2 to

the binder:

-W b,-m,10,-s,2

Note that all the binder options can be
supplied with one -W, (more than one -W can
also be used) and that any embedded spaces
must be replaced with commas. Note that -W b
is the only way to specify binder options.

The -W d option specification allows
additional implementation-specific options to
be recognized and passed through the compiler
driver to the appropriate subprocess. For
example,

B-12

COMPILATION SYSTEM OPTIONS

-W d,-O,eo

sends the option -O eo to the driver, which
sends it to the compiler so that the e and o
optimizations are performed. Furthermore, a
shorthand notation for this mechanism can be
used by inserting + in front of the option as
follows:

+0 eo

This is equivalent to -W d,-O,eo. Note that
for simplicity this shorthand is applied to
each implementation-specific option
individually, and that the argvalue (if any)
is separated from the shortadaoption
with white space instead of a comma.

-X Perform syntactic and semantic checking. The
libraryname argument must be supplied,
although the Ada library is not modified (see
-x and -G).

Binder Options
The following options can be passed to the binder using
-W b,...:

-W b,-b At execution time, the Ada STANDARD INPUT and
STANDARD OUTPUT files will block if-data is
not available (STANDARD INPUT) or if data
cannot currently be written (STANDARD OUTPUT)
or if the data to be read or written Ties in
a locked region. All tasks will be suspended
when an I/O operation on one of these
standard files blocks. This option is the
default if the program contains no tasks (see
-W b,-B for more details).

-W b,-k Keep uncalled subprograms when binding. The
default is to remove them.

-W b,-m,nnn Series 300/400: Set the initial program stack
size to nnn units of 1024 bytes (legal range
1..32767,aefault 10 units - 10 * 1024 bytes
- 10240 bytes).

Series 600/700/800: Set the maximum stack
limit of the program stack to nnn units of
1024 bytes (legal range 512..3 M7, defaults
to a system-defined limit).

-W b,-p Cause the binder to link the program in the
special manner required by ada.tune(1) and to
place additional informatioiin-Tnge

B-13

COMPILATION SYSTEM OPTIONS

debug/profiling information file for use
ada.tune(l). Note that neither -d nor -D
-e-edsF to be specified when binding if this
option is specified, as this option causes
the same binder action as -d and -D plus the
additional actions noted above.

If you specify the -c option when binding,
you will need to specify special options and
object files when linking with ld(l) in order
for ada.tune(l) to function correctly. when
you -cT ;--c, the ld(l) command you need to
use will be displayeT-as an informational
message by the binder. Consult the Ada Tools
Manual for your implementation for fur e-r
inFormation.

-W b,-s,nnn Cause round-robin scheduling to be used for
tasking programs. Set the time slice to nnn
tens of milliseconds (legal range l..3276T-r
0 to turn off time slicing). By default,
round-robin scheduling is enabled with a time
slice of 1 second (nnn - 100).

The time slice granularity is specified under
the DEPENDENCIES section.

-W b,-t,nnn Set the total task 'STORAGE SIZE to nnn units
of 1024 bytes for each task-which do-s-not
have a length clause.

Cause this amount of space to be allocated
for the total task data area which includes
both the task stack and the overhead for the
Ada runtime system.

Series 300/400: The Ada runtime system
overhead is approximately 3600 bytes, so the
minimum usable value of nnn is 4. The
default is 32 units, equal-to 32 * 1024 bytes
- 32768 bytes, less 3600 bytes leaves 29168
bytes for the task stack.

Series 600/700/800: The Ada runtime system
overhead is approximately 5400 bytes, so the
minimum usable value of nnn is 6. The
default is 32 units, equl-to 32 * 1024 bytes
- 32768 bytes, less 5400 bytes leaves 27368
bytes for the task stack.

If insufficient space is allocated either
TASKING ERROR or STORAGE ERROR will occur
during task elaboration or activation.

8-14

COMPILATION SYSTEM OPTIONS

The legal range is 1..32767 units.

-W b,-w Suppress warning messages from the binder.

-W b,-x Perform consistency checks without producing
an object file, and suppress linking. The
-W b,-L option can be used to obtain binder
listing information when this option is
specified (see -W b,-L below).

-W b,-B At execution time, the Ada STANDARD INPUT and
STANDARD OUTPUT files will not block if data
is not available (STANDARD INPUT) or if data
cannot currently be written (STANDARD OUTPUT)
or if the data to be read or written Ties in
a locked region. The task attempting the I/O
operation that cannot currently be completed
will be suspended (and the I/ operation
retried later), but other tasks will continue
to run as appropriate. This option is the
default if the program contains tasks (see
-W b,-b for more details).

-W b,-L Write a binder listing with warning/error
diagnostics to standard error.

-W b,-s,t Specifies which HP-UX timer should be used to
implement task time-slicing. If time-slicing
is not also enabled, this option has no
effect.

The argument t is a single character that
specifies which timer to use. The legal
values of t and their meanings are:

a or K : Use the timer which generates
SIG for time-slicing.

p or P : Use the timer which generates
SIGPROF for time-slicing.

v or V : Use the timer which generates
SIGVTKM for time-slicing.

The default is to use the timer which
generates SIGVTALRM for time-slicing.

-W b,-T Suppress procedure traceback in response to
runtime errors and unhandled exceptions.
This also causes traceback tables to be
excluded from the final executable file.

Locks
To ensure the integrity of their internal data structures,

B-15

CMt~ILATIM~ SYSTK OPTICUS

Ada libraries and families are locked for the duration of
operations that are performed on them. Normally Ada
families are locked for only a short time when libraries
within them are manipulated. However, multiple Ada
libraries might need to be locked for longer periods during
a single operation. If more than one library is locked, ada
places an exclusive lock on one library so it can be
updated, and a shared lock on the other(s) so that they can
remain open for read-only purposes.

An Ada family or library locked for updating cannot be
accessed in any way by any part of the Ada compilation
system except by the part that holds the lock. An Ada
family or library locked for reading can be accessed by any
part of the Ada compilation system desiring to read from the
Ada family or library.

If ada cannot obtain a lock after a suitable number of
retri-I-es, it displays an informational message and
terminates.

Under some circumstances, an Ada family or Ada library might
be locked, but the locking program(s) might have terminated
(for example, due to system crash or network failure). If
you determine that the Ada family or Ada library is locked
but should not be locked, you can remove the lock.

Use ada.unlock(l) to unlock an Ada library and
ada.?iM ociilI to unlock an Ada family. However, unlocking
s i-d Ie one with care. If an Ada family or Ada library
is actually locked by a tool, unlocking it will permit
access by other tools that might find the contents invalid
or that might damage the Ada family or Ada library.

EXTERNAL INFLUENCES

International Code Set Support
Single-byte character code sets are supported within file
names.

DIAGNOSTICS
The diagnostics produced by ada are intended to be self-
explanatory. Occasional messages might be produced by the
linker.

If a program listing (-B or -L) and/or generated code
listing (-S) is requested from the compiler, this listing as
well as compiler error messages are written to standard
output.

If neither a program listing nor a generated code listing is
requested from the compiler, erroneous source lines and
compiler error messages are written to standard error.

B-16

COMPILATION SYSTEM OPTIONS

If a binder listing is requested from the binder (with
-W b,-L), the binder listing as well as binder error
messages are written to standard error.

If a binder listing is not requested from the binder, binder
error messages are written to standard error.

Errors detected during comand line processing or during
scheduling of the compiler, binder, or linker, are written
to standard error. If any compiler, binder, or linker
errors occur, ada writes a one-line summary to standard
error immediately before terminating.

%AFNNGS
Options not recognized by ada are not passed on to the
linker. The option -W l,a-can also be used to pass
options to the linker exp licitly.

ada does not generate an error or warning if both
Timization and debugging are requested. However,
ada.probe is only capable of limited debugging of optimized
code. Certain ada.probe commands may give misleading or
unexpected resuIE-s. For example, object values may be
stored in registers; therefore the value displayed from
memory may be incorrect. For this reason, the ability to
examine or modify objects and expressions may be impaired.
Dead-code elimination or code motion may affect single step
execution or prevent breakpoints from being set on specific
source lines.

DEPENDENCIES
Series 300/400

The compiler option -H is not supported on the Series
300/400.

The binder option -W b,-m behaves differently on the
Series 300/400 versus the Series 600/700/800. See the
section Binder Options for more information.

The time slice granularity for round-robin scheduling
is 20 milliseconds.

The following options are specific to the Series
300/400:

+0 what Selectively invoke optimizations. The *rat
argument mst be specified, and indicates
which optimizations should be performed.
Note that the option -0 is equivalent to
+0 eioE.

The what argument can be a combination of

the le-tters e, i, o, p, E, and P. Either e

B-17

COMPILATION SYSTEM OPTIONS

or p, but not both, can be specified.
Similarly, either E or P, but not both, can
be specified. All other combinations are
permitted, but only one of each letter, at
most, can be specified.

e Same as p (below).

i Permit procedures and functions
not declared with pragma inline to
be expanded inline at the
compiler's discretion. Only
procedures and functions in the
current source file are
considered.

Procedures and functions declared
with pragma inline are always
considered candidates for inline
expansion unless -I is specified;
this optimization only causes
additional procedures and
functions to be considered.

o Peephole optimizations are
performed on the final object
code.

p Optimizations are performed to
remove unnecessary checks,
optimize loops, and remove dead
code.

E Same as P (below).

P Optimizations are performed on
common subexpressions and register
allocation.

+h Bind/link the program to use the specified
tp of hardware floating-point assist for
user code floating-point operations (see
+H). The two types currently supported are
68881 (the MC V88 math coprocessor) and
68882 (the MC 68882 math coprocessor). The
code generated is the same for either te.
This is the default if the host system
provides a MC 68881 or a MC 68882
coprocessor. This option is ignored if
floating point operations were compiled
inline with the +i LM option.

+i tCompile the program to inline the specified

type of hardware floating-point assist for

0-18

COMPILATIO SYSTEM OPTIONS

user code floating-point operations (see
+I). The two types currently supported are
68881 (the MC T9W math coprocessor) and
68882 (the MC 68882 math coprocessor). The
code generated is the same for either type.
This is the default if the host system
provides a MC 68881 or a MC 68882
coprocessor. Once inlined with this
option, the bind/link options +h type and
+11 are ignored.

+H Bind/link the program to use software
floating-point routines for user code
floating-point operations (see +h). This
is the default if the host system does not
provide a MC 68881 or a MC 68882
coprocessor. This option is ignored if
floating point operations were compiled
inline with the +i type option.

+I Compile the program to make calls to a math
library for user code floating point
operations (see +i). The +h or +H options
are then used at bind/link time to specify
whether hardware or software is used for
floating point operations. This is the
default if the host system does not provide
a MC 68881 or a MC 68882 coprocessor.

Unlike other Series 300/400 compilers, it is not
possible to link-only using the ada(l) command. If
separate linking is desired, use--ie ld(l) command.

A successful bind produces a (non-executable) .o file.
The .o file is normally deleted unless the option -c is
specified.

Series 600/700/800

The binder option -W b,-m behaves differently on the
Series 300/400 versus the Series 600/700/800. See the
section Binder Options for more information.

The time slice granularity for round-robin scheduling
is 10 milliseconds.

The following options are specific to the Series
600/700/800:

+DAarchitecture
Generate code for the architecture
specified. architecture is required. The
default code generated for the Series 800
is PARISC_1.0. The default code generated

B-19

COMPIIATIN SYSTEM OPTICNS

for the Series 700 is PA RISC 1.1. The
default code generation may be overriden
using the ADAOPTS environment variable or
the command line option +DA. Defined
values for architecture are:

1.0 Precision Architecture RISC,
version 1.0.

1.1 Precision Architecture RISC,
version 1.1.

The compiler determines the target
architecture using the following
precedence:

1. Command line specification of +DA.
2. Specification of +DA in the ADAOPTS

environment variable.
3. The default as mentioned above.

+DSarchitecture
Use the instruction scheduler tuned to the
architecture specified. architecture is
required. If this option is not used, the
compiler uses the instruction scheduler for
the architecture on which the program is
compiled. Defined values for architecture
are:

1.0 Precision Architecture RISC,
version 1.0.

1.1 Precision Architecture RISC,
version 1.1, general scheduling
for the series 700.

1.la Scheduling for specific models of
Precision Architecture RISC,
version 1.1.

+0 what Selectively invoke optimizations. The what
argument must be specified, and indicates
which optimizations should be performed.
Note that the option -0 is equivalent to
+0 eilE.

The what argument can be a combination of
the le-tters e, i, 0, 1, p, E, and P.
Either e or p, but not both, can be
specified. Similarly, either E or P, but
not both, can be specified. Similarly,
either 0 or 1, but not both, can be
specified. All other combinations are
permitted, but only one of each letter, at
most, can be specified.

B-20

COMPILATION SYSTEM OPTIONS

e Same as p (below).

i Permit procedures and functions not
declared with pragma inline to be
expanded in-line at the compiler's
discretion. Only procedures and
functions in the current source
file are considered.

Procedures and functions declared
with pragma inline are always
considered candidates for inline
expansion unless -I is specified;
this optimization only causes
additional procedures and functions
to be considered.

0 The code generator performs no
optimizations.

1 The code generator performs level 1
optimizations.

p Optimizations are performed to
remove unnecessary checks, optimize
loops, and remove dead code.

E Same as P (below).

P Optimizations are performed on
comon subexpressions and register
allocation.

+T Suppress the generation of traceback
information at compile time. In addition
to suppressing traceback of the current
compilation unit at run time, this also
reduces the size of the object file in the
ada library.

Unlike other Series 600/700/800 compilers, it is not
possible to link-only using the ada(l) command. If
separate linking is desired, use-2(1).

A successful bind produces a (non-executable) .o file.
The .o file is normally deleted unless the option -c is
specified.

AUTHOR
Ada was developed by HP and Alsys.

FILES
file.ad? input file (Ada source file).
libraryname user Ada library (created using

B-21

COMPIATIN SYSTEM OPTICNS

ada.mklib(1)) in which compiled
iiiits are placed by a successful
compilation and from which the
binder extracts the units
necessary to build a relocatable
file for ld(l). Temporary files
generated-ry the compiler are also
created in this directory and are
automatically deleted on
successful completion. Users are
strongly discouraged from placing
any additional files in Ada
library directories. User files
in Ada libraries are subject to
damage by, or may interfere with
proper operation of ada and
related tools.

file.o binder-generated object file or
user-specified object file
relocated at link time.

a.out linked executable output file.
file. cui binder-generated debug/profiling

information file.
SADA PATH/ada Ada compilation driver program.
$ADA-PATH/adacomp Ada compiler.
$ADA- PATH/adabind Ada binder.
$ADA--PATH/ada environ Ada environment description file.
$ADA-PATH/adaargu Ada argument formatter.
SADAPATH/alternate Ada predefined library, sequential

version.
SADA PATH/installation Ada installation family.
SADAPATH/public Ada public family.
$AD_PATH/err_tpl Ada compiler/binder error message

files.
SADAPATH/predeflib Ada predefined library, tasking

version.
$ADAPATH/libada.a Ada run-time HP-UX library.

Series 600/700/800 only.
$ADA_PATH/libada020.a Ada run-time HP-UX library

(MC68020). Series 300/400 only.
$ADAPATH/libada881.a Ada run-time HP-UX library

(MC68881). Series 300/400 only.
/lib/crt0.o C run-time startup.
/lib/libc.a HP-UX C library.
/lib/libm.a HP-UX math library

SEE ALSO
ada.cplib(l), ada.fmgr(l), ada.format(l), ada.funlock(l),
ada.lmgr(l),
ada.lsfam(l), ada.lslib(1), ada.make(i), ada.mkfam(l),
ada.mklib(l),
ada.mvfam(l), ada.mvlib(1), ada.probe(l), ada.protect(l),
ada.rmfam(l),
ada.rmlib(l), ada.tune(l), ada.umgr(l), ada.unlock(l),

B-22.

COMPILATION SYSTEM OPTIONS

ada.xref(1),

Ada user's Guide for Ada/300,

Ada User's Guide - HP 9000 Series 600/700/800,

Ada Tools Manual for Ada/300,

Ada Tools Manual - HP 9000 Series 600/700/800,

Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-181 -, - -

Reference Manual for the Ada Programming Language,
Appendix Fi TAd/-

Reference Manual for the Ada Pro2rammin Language,
ApHendix FS '0 eries 600/700/800.

B-23

c0HPIUMTC1 SYSTEM OPTICNS

LINKER OPTICWS

'The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-24

COMPLATI SYSTEM OPTIONS

NAM~E
Id - link editor

SYNOPSIS
id {-bdz rstvxzENOZ] [-a search] ... [-e epsym] f-h

o ... [-o outfilel f-usymboll ... [-A name) [-B
-T[-L dir] ... -R offsetT-rvnum] [-X num-FT-ixT le 1 .

DESCRIPTION
ld takes one or more object files or libraries as input and
ombines them to produce a single (usually executable) file.

In doing so it resolves references to external symbols,
assigns final addresses to procedures and variables, revises
code and data to reflect new addresses (a process called
"relocation"), and updates symbolic debug information (when
present in the file). By default, ld produces an executable
file that can be run by the HP-UX loader exec(2).
Alternatively, the linker can generate a relocatable file
that is suitable for further processing by ld (see -r
below). It can also generate a shared libriay (see -b
below). The linker marks the output file non-executable if
any unresolved external references remain. id may or may
not generate an output file if any other errors occur during
its operation; see DEPENDENCIES. ld recognizes three kinds
of input files: object files creatRa by the compilers,
assembler, or linker (also known as "1.o'' files), shared
libraries created by the linker, and archives of object
files (called archive libraries). An archive library
contains an index of all the externally-visible symbols from
its component object files. (The archiver command ar(l)
creates and maintains this index.) ld uses this tab-e to
resolve references to external symb-s.

ld processes files in the same order as they appear on the
coimmand line. It includes code and data from an archive
library element if and only if that object module provides a
definition for a currently unresolved reference within the
user's program. It is common practice to list libraries
following the names of all simple object files on the
command line.

Code from shared libraries is never copied into an
executable program, and data is copied only if referenced
directly by the program. The dynamic loader /lib/dld.sl is
invoked at startup time by /lib/crtO.o if a program uses

shared libraries. The dynamic loader attaches each required
library to the process and resolves all symbolic references
between the program and its libraries. The text segment of
a shared library is shared among all processes that use the
library.

B-25

CCMPILATICN SYSTEM OPTIONS

Environment Variables
Arguments can be passed to the linker through the LDOPTS
environment variable as well as on the command line. The
linker picks up the value of LDOPTS and places its contents
before any arguments on the command line.

The LD PXDB environment variable defines the full execution
path for the debug preprocessor p _ . The default value is
/usr/bin/pxdb. Id invokes pd on its output file if that
file is executable and contains debug information. To defer
invocation of pxdb until the first debug session, set
LD PXDB to /dev/null.

Options
ld recognizes the following options:

-a search Specify whether shared or archive
libraries are searched with the -1
option. The value of search should be
one of archive, shared,--or--efault.
This option can appear more than once,
interspersed among -1 options, to
control the searching for each library.
The default is to use the shared version
of a library if one is available, or the
archive version if not. If either
archive or shared is active, only the
specified library type is accepted.

-b Create a shared library rather than a
normal executable file. Object files
processed with this option should
contain psition independent code (PIC).
See the discussion Of PIC in --
f77(i), pc(l), and as(l).

-d Forces definition of "common'' storage;
i.e., assign addresses and sizes, for -r
output.

-e ep Set the default entry point address for
the output file to be that of the symbol
epsym. (This option only applies to
executable files.)

-h syqbol Prior to writing the symbol table to the
output file, mark this name as "local"
so that it is no longer externally
visible. This ensures that this
particular entry will not clash with a
definition in another file during future
processing by ld. (Of course, this only
makes sense witli the -r option.) More

B-26

COMPItATION SYSTEM OPTIONS

than one symbol can be specified, but -h
must precedeach one.

-lx Search a library libx.a or libx.sl,
where x is one or more characters. The
current state of the -a option
determines whether the archive (.a) or
shared (.sl) version of a library is
searched. Because a library is searched
when its name is encountered, the
placement of a -1 is significant. By
default, libraries are located in /lib
and /usr/lib. If the environment
variable LPATH is present in the user's
environment, it should contain a colon-
separated list of directories to search.
These directories are searched instead
of the default directories, but -L
options can still be used. If a program
uses shared libraries, the dynamic
loader /lib/dld.sl will attempt to load
each library from the same directory in
which it was found at link time.

-m Produce A ±ad map on the standard
output.

-n Generate an (executable) output file
with code to be shared by all users.
Compare with -N.

-o outfile Produce an output object file by the
name outfile (default name is a.out).

-q Generate an (executable) output file
tlat is demand-loadable. Compare with-Q.

-r Retain relocation information in the
output file for subsequent re-linking.
The ld command does not report undefined
symboTs. The -r option is incompatible
with -A and -b.

-s Strip the output file of all symbol
table, relocation, and debug support
information. This might impair or
prevent the use of a symbolic debugger
on the resulting program. This option
is incompatible with -r. (The strip(l)
command also removes this information.)

-t Print a trace (to standard output) of
each input file as ld processes it.

B-27

COMPILATICN SYSTEM OPTICNS

-u symbol Enter symbol as an undefined symbol in
the symbol table. The resulting
unresolved reference is useful for
linking a program solely frm object
files in a library. More than one
sblcan be specified, but each must

ceded by -u.

-v Display verbose messages during linking.
For each library module that is loaded,
the linker indicates which symbol caused
that module to be loaded.

-x Partially strip the output file; that
is, leave out local symbols. The
intention is to reduce the size of the
output file without impairing the
effectiveness of object file utilities.
Note: use of -x might affect the use of
a debugger.

-z Arrange for run-time dereferencing of
null pointers to produce a SIGSEGV
signal. (This is the complement of the
-Z option.)

-A name This option specifies incremental
loading. Linking is arranged so that
the resulting object can be read into an
already executing program. The argument
name specifies a file whose symbol table
provides the basis for defining
additional symbols. Only newly linked
material is entered into the text and
data portions of a.out, but the new
symbol table reflects all symbols
defined before and after the incremental
load. Also, the -R option can be used
in conjunction with -A, which allows the
newly linked segment to commence at the
corresponding address. The default
starting address is the old value of
end. The -A option is incompatible

with -r and -b.

-B bind Select run-time binding behavior of a
program using shared libraries. The
value of bind must be one of imuediate
or deferri-. The default is deferred,
which tells the dynamic loader
/lib/dld.sl to resolve procedure calls
o--fir-s? iference rather than at

program start-up time.

B-28

COMPILATICN SYSTEM OPTICNS

-E Mark all symbols defined by a program
for export to shared libraries. By
default, id can mark only those symbols
that are actually referenced by a shared
library.

-L dir Change the algorithm of searching for
libx.a or libx.sl to look in dir before
look ing in de-ault locations. More than
one directory can be specified, but each
must be preceded by -L. The -L option
is effective only if it precedes the -1
option on the command line.

-N Generate an (executable) output file
that cannot be shared. This option also
causes the data to be placed immediately
following the text, and makes the text
writable.

-Q Generate an (executable) output file
that is not demand-loadable. (This is
the complement of the -q option.)

-R offset Set the origin (in hexadecimal) for the
text (i.e., code) segment.

-V num Use num as a decimal version stamp
identi-fying the a.out file that is
produced. This is not the same as the
version information reported by the SCCS
what (1) command, nor is it the same as
U-e version information recorded for
shared library use.

-x num Define the initial size for the linker's
global symbol table. This reduces link
time for very large programs, especially
those with a large number of external
symbols.

-Z Arrange to allow run-time dereferencing
of null pointers> See the discussions of
-Z and pointers in cc(1). (This is the
complemeniof the -i-option.)

Defaults

Unless otherwise directed, id names its output a.out. The
-o option overrides this. tiecutable output files can be
shared. The default state of -a is to search shared
libraries if available, archive libraries otherwise. The
default bind behavior is deferred.

B-29

CCMPILATICN SYSTE OPTIONS

EXTERNAL INFLUECES

Environment Variables
LANG determines the language in which messages are displayed
(Series 700/800 only).

If LAM is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid
setting, id behaves as if all internationalization variables
are set to-"C". See environ(5).

DIAGOSTICS
ld returns zero when the link is successful. A non-zero
ie-turn code indicates that an error occurred.

EXAMPLES
The following command line links part of a C program for
later processing by ld. It also specifies a version number
of 2 for the output ifle. (Note the .o suffix for the
output object file. This is an HP-UX convention for
indicating a linkable object file.)

ld -V 2 -r filel.o file2.o -o prog.o

The next example links a simple FORTRAN program for use with
the cdb(l) symbolic debugger. The output file name will be
a.out since there is no -o option in the conmmand line.
(Note: the particular options shown here are for a Series
300/400 system.)

ld -e start /lib/frtO.o ftn.o -1177 -1F77 -lm -lc

/usr/lib/end. o

This example creates a shared library.

ld -b -o libfunc.sl funcl.o func2.o func3.o

Link a program with libfunc.sl but use the archive version
of the C library:

ld /lib/crt0.o program.o -L . -lfunc -a archive
-lc

Link a Pascal program on a Series 300/400 system:

ld /lib/crt0.o main.o -lpc -im -ic

WARNGS
ld recognizes several names as having special meanings. The
i-mbol end is reserved by the linker to refer to the first
address-beyond the end of the program's address space.

B-30

COMPILATION SYSTEM OPTINS

Similarly, the symbol edata refers to the first address
beyond the initialized-data, and the symbol etext refers to
the first address beyond the program text. !he linker
treats a user definition of any of these symbols as an
error. The symbols end, edata, and etext are also defined
by the linker, but only if the program contains a reference
to these symbols and does not define them (see end(3C) for
details).

Through its options, the link editor gives users great
flexibility. However, those who invoke the linker directly
must assume some added responsibilities. Input options
should ensure the following properties for programs:

* When the link editor is called through cc(l), a
start-up routine is linked with the user' s program.
This routine calls exit(2) after execution of the
main program. If users call ld directly, they must
ensure that the program alway-calls exit() rather
than falling through the end of the entry routine.

* When linking for use with the symbolic debugger cdb,
the user must ensure that the program contains a
routine called main. Also, the user must link in
the file /usr/lib/end.o as the last file named on
the command line.

There is no guarantee that the linker will pick up files
from archive libraries and include them in the final program
in the same relative order that they occur within the
library.

DEPENDENCIES
Series 300/400

The default entry point is taken to be text location
OxO (which is also the default origin of the program
text) if shared libraries are not used. Otherwise, the
entry point is taken to be the first text location
after the extension header placed at the beginning of
the text segment by ld for use by /lib/dld.sl. This
corresponds to the fT-rst procedure inTt--fT st input
file that the linker reads. If the C startup routine
/lib/crt0.o is the first object file on the command

line, the label start denotes the entry point. Use the
-e option to select a different entry point.

The version number specified with the -V option must be
in the range 0 through 32767. Use of this option is
not recommended because this field is used by several
HP-UX commands that expect particular values here.
Consult the C Pro2rammer's Guide for more details on
the version field.

B-31

COMPILATION SYSTI OPTIONS

The placement of -L options relative to -1 is not
significant.

The Series 300/400 linker does not support the
following options: -m, -z, and -Z.

On Series 300/400 systems, the compilers place an
underscore at the beginning of all external names.
Thus, the symbol end appears to the linker as _end.

ld does not generate an output file if any other errors
occur during its operation.

Series 700/800
The linker searches for the symbol $START$ as the
program entry point. This symbol is defined in the
file /lib/crt0.o, which should be the first file loaded
for all programs regardless of source language. Use
the -e option to select a different entry point.

When invoking ld directly to link a C program whose
main procedure Ts located in a library, the -u main
option should be used to force the linker to load main
from the library, since this symbol is not actually
referenced until the start routine is loaded from the
C library. When using cc(l) to link the program, the
compiler automatically passes this option to the
linker. Because of this behavior, do not use cc to
link a program containing a FORTRAN or Pascal main
program; use f77 or pc instead.

Nonsharable, executable files generated with the -N
option cannot be executed via exec(2). Typically, -N
is used when rebuilding the ke--e or when preparing an
image for dynamic loading.

When the -A option is used to do an incremental link,
the linker generates extra code where a procedure call
crosses a quadrant boundary (a quadrant is one
gigabyte, or one fourth of the addressing space). On
Series 700/800 systems, text is normally in the first
quadrant and data is in the second quadrant. When an
object file is intended to be read into an already-
executing program, both its code and data must be
placed in the second quadrant, since the first quadrant
is set to read-only. Procedure calls from one quadrant
to the other require the extra code, called inter-space
calling stubs. The linker generates an "export" stub
for the entry point designated in the incremental link,
and "import" stubs for each procedure in the basis
program that is called by the new object file. The
import stubs require the existence of a routine in the
basis program called sr4export, which is supplied in
/lib/crt0.o. If a procedure in the basis program is

B-32

COMPILATIO SYSTEM OPTIOS

called indirectly by the new object file, the linker
cannot detect the crossing of the quadrant boundary,
and therefore will not generate the needed stub. A
special vcrsion of $$dyncall placed in /lib/dyncall.o
is provided for handling the inter-quadrant branch.
This routine should be linked in when the -A option is
in effect.

The Series 700/800 linker does not support the -V
option.

The following options are specific to the Series
700/800 linker:

-y symbol Indicate each file in which symbol
appears. many such options canbie
given to trace many symbols, but -y
must precede each one.

-Cn Set the maximum parameter-checking
level to n. The default maximum is
3. See tHe language manuals for the
meanings of the parameter-checking
level.

-D offset Set the origin (in hexadecimal) for
the data space. The default value
for offset is 0x40001000.

-G Strip all unloadable data from the
output file. This option is
typically used to strip debug
information.

-S Generate an Initial Program Loader
(IPL) auxiliary header for the output
file, instead of the default HP-UX
auxiliary header.

-T Save the load data and relocation
information in temporary files
instead of memory during linking.
This option reduces the virtual
memory requirements of the linker.
If the TMPDIR environment variable is
set, the temporary files are created
in the specified directory, rather
than in /tmp.

ld treats both duplicate symbols and unresolved symbols
-n the same manner: an output file is generated and

marked as non-executable if errors occur during its
operation.

B-33

COMPILATICN SYSTM OPTICNS

AUTHOR
Id was developed by AT&T, the University of California,
rkeley, and HP.

FILES
/lib/libx.a archive libraries
Alsr/lib/ljbx.a archive libraries
/lib/libx.sl7 shared libraries
Aisr/lib7libx.sl shared libraries
a.out output file
/lib/dld.sl dynamic loader

Series 300/400
/lib/Crt0.o run-time start-up for C and Pascal
/ib/mcrt0.o run-time start-up for C and Pascal

with profiling (see prof(1))
/lib/gcrto.o run-time start-up .for C and Pascal

with profiling (see gprof(l))
/lib/frt0.o run-time start-up for FORTRAN
/lib/1nfrt0.o run-time start-up for FORTRAN with

profiling (see pro(1))
/lib/gfrtO.o run-time sat-pfor FORTRAN with

profiling (see gpro(l))
Aisr/lib/end~ofor use with cSdb/(l

Series 700/800
/lib/Crt0.o run-time start-up
/lib/dyncall.o used with -A-option links
/lib/mcrt0.o run-time start-up with profiling (see

/lib'milli .a -m-Iricode library automatically searched
by ld

/lib/gcrtO.o ru ntime start-up with profiling (see
qp rof(l))

Aiusr/lib/Xdbend.o o6r use with xdb(l)
/Usr/lib/hls/$LANG/ld. cat

message catalog
/tmp/ld* temporary files

SEE ALSO
ar(l), cc(l), cdb(l), f77(1), gprof(l), nm(l), pc(l),
prof(l), strip(l), exec(2), crt0(3), end(3C), a.out(4),
ar(4), dld.sl(5).

Programuing on HP-UX manual.

STANDARDS CONFOF44ANCE

ld: SVID2, XPG2

B-34

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type SHORTSHORTINTEGER is range -128 .. 127;

type SHORTINTEGER is range -32768 .. 32767;

type INTEGER is range -21 7483648 .. 2147483647;

type FLOAT is digits 6 range -3.402823E+38 .. 3.402823E+38;

type LONG FLOAT is digits 15 range
-1.797693134862315E+308 .. 1.797693134862315E+308;

type DURATION is delta 2#0.00000000000001# range
-86400.0 .. 86400.0;

end STANDARD;

C-1

HP 9000 Series 600, 700, and 800 Computers

Reference Manual
for the

Ada Programming Language,
Appendix F

[HEWLETT
PACKARD

HP Part No. 82425-90001
Printed in U.S.A. 1991

First Edition
E1291

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright
laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)
(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c)
(2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Copyright S 1991 by Hewlett-Packard Company

Print History
The following table lists the printings of this document, together with the
respective release dates for each edition. The software version indicates the
version of the software product at the time this document was issued. Many
product releases do not require changes to the document. Therefore, do not
expect a one-to-one correspondence between product releases and document
editions.

Edition Date Software
Version

First Edition December 1991 B2425A.05.35

iii

iv

Preface
This manual describes the implementation-dependent characteristics of the
HP Ada Development System on the HP 9000 Precision Architecture RISC
(PA-RISC) machines. The PA-RISC family includes the HP 9000 Series 600,
700, and 800 systems. In this manual, the term "Ada" refers to the Ada
Development System running on any Series 600, 700, or 800 computer system.
This compiler has been validated using the Ada Compiler Validation Capability
(ACVC) test suite from the Ada Joint Program Office.

This manual provides information on machine dependencies as stipulated in the
Reference Manual for the Ada Programming Language (Ada RM). This manual
describes the following:

" HP implementation-dependent pragmas and attributes.

* Specifications of the packages SYSTEM and STANDARD.

" Instructions on using type representation clauses to fully specify the layout of
data objects in memory.

" Restrictions on unchecked type conversions.

SInplementation-dependent characteristics of input/output packages.

" Information about HP-UX signals and the Ada runtime environment.

" Instructions and examples on calling external subprograms written in
Precision Architecture RISC Assembly Language. HP C, HP FORTRAN 77.
and HP Pascal.

V

The following manuals provide additional information about the topics
indicated (Hewlett-Packard part numbers are listed in parentheses):

Ada

" Reference Manual for the Ada Programming Language
United States Department of Defense
ANSI/MIL-STD-1815A-1983
Order Number 008-000-00394-7
U.S. Government Printing Office, Washington DC 20402
(97055-90610)

" Ada User's Guide
(B2425-90002)

" Ada Tools Manual
(B2425-90005)

HP-UX Operating System

" HP- UX Reference: HP 9000 Computers, 3 Volumes
(B2355-90004)

" Programming on HP-U X
(B2355-90010)

" Device I/0: User's Guidc
(B1862-90002)

" HP- UX Portability Guide
(B1864-90006)

" Terminal Control: User's Guide
(B1862-90013)

vi

Precision Architecture RISC Procedure Calling Convention

w PA-RISC Architecture Procedure Calling Convention Reference Manual
(09740-90015)

Precision Architecture RISC Assembly Language

" Assembly Language Reference Manual
(92432-90001)

* ADB Tutorial
(92432-90005)

C Language

" HP C/HP- UX Reference Manual
(92453-90024)

" HP C Programmer's Guide
(92434-90002)

HP FORTRAN 77

w HP FORTRAN 77/HP-UX Reference Manual
(92430-90005)

a HP FORTRAN 77/HP-UX Programmer's Reference
(92430-90004)

vii

HP Pascal

" HP Pascal/HP- UX Reference Manual
(92431-90005)

" HP Pascal/HP-UX Programmer's Guide
(92431-90006)

" HP Pascal/HP- UX Quick Reference Guide
(92431-90007)

NFS® Systems

" Using NFS Services
(B1013-90000)

" Installing and Administering NFS Services
(B1013-90001)

NFS® is a trademark of SUN Microsystems, Inc.

viii

Conventions
lowercase nonbold In syntax, represents literals; items are to be entered

exactly as shown.

lowercase boldface In syntax, represents Ada language reserved words.

italics Represents parameters which must be replaced by a
user-supplied variable.

[J Specifies that an element inside brackets is optional.

I When several elements are separated vertically by bars
in a syntax statement, the user must select one of these
elements. For example:

A IB IC

User must select A or B or C.

underlining In a syntax statement, when several elements are
separated by bars, underling indicates the default value.
For example,

ALL I CURRENT

CURRENT is the default value.

A horizontal ellipsis in a syntax statement indicates
that a previous element can be repeated. For example:

[itemname...]

Within examples, ellipsis indicate when portions of the
example are omitted.

ix

Contents

1. F 1. Implementation Supported Pragmas
F 1.1 Interfacing the Ada Language with Other Languages . 1-2

F 1.1.1 Pragma INTERFACE 1-3
F 1.1.2 Pragma INTERFACENAME 1-4
F 1.1.3 Example of INTERFACE and INTERFACE-NAME 1-5
F 1.1.4 Additional Information on INTERFACE and

INTERFACENAME 1-6
F 1.1.5 Pragma EXPORT 1-8
F 1.1.6 PragmaEXTERNALNAME 1-12
F 1.1.7 Example of EXPORT and EXTERNALNAME . 1-13
F 1.1.8 Pragma EXPORT Applied to Ada Subprograms . 1-14

F 1.1.8.1 Calling an Ada Subprogram from Non-Ada Code 1-14
F.1.1.8.2 Exceptions 1-17
F.1.1.8.3 Obtaining the Non-Ada Call Address in Ada at

Runtime 1-18
F.1.1.8.4 Bind-Time Issues 1-19
F.1.1.8.5 HP-UX Signal Handlers in Ada 1-20

F. 1.2 Using Text Processing Tools 1-21
F 1.2.1 Pragma INDENT 1-21
F 1.2.2 Pragma LIST 1-22
F 1.2.3 Pragma PAGE 1-22

F 1.3 Affecting the Layout of Array and Record Types 1-23
F 1.3.1 Pragma PACK 1-23
F 1.3.2 Pragma IMPROVE 1-23

F 1.4 Generating Code 1-24
F 1.4.1 Pragma ELABORATE 1-24
F 1.4.2 Pragma INLINE 1-25
F 1.4.3 Pragma SUPPRESS 1-26

F 1.5 Affecting Run Time Behavior. 1-27
F 1.5.1 Pragma PRIORITY 1-27

Contents-I

F 1.5.2 Pragma SHARED 1-28
F 1.6 Pragmas Not Implemented 1-29

2. F 2. Implementation-Dependent Attributes
F 2.1 Limitation of the Attribute 'ADDRESS 2-2
F 2.2 Attribute SYSTEM.ADDRESS'IMPORT 2-3

3. F 3. The SYSTEM and STANDARD Packages
F 3.1 The Package SYSTEM 3-1
F 3.2 The Package STANDARD 3-10

4. F 4. Type Representation
F 4.1 Enumeration Types 4-2

F 4.1.1 Internal Codes of Enumeration Literals 4-2
F 4.1.2 Minimum Size of an Enumeration Type or Subtype . 4-4
F 4.1.3 Size of an Enumeration Type 4-5
F 4.1.4 Alignment of an Enumeration Type 4-5

F 4.2 Integer Types 4-6
F 4.2.1 Predefined Integer Types 4-6
F 4.2.2 Internal Codes of Integer Values 4-6
F 4.2.3 Minimum Size of an Integer Type or Subtype ... 4-7
F 4.2.4 Size of an Integer Type 4-9
F 4.2.5 Alignment of an Integer Type 4-11
F 4.2.6 Performance of an Integer Type 4-11

F 4.3 Floating Point Types 4-12
F 4.3.1 Predefined Floating Point Types 4-12
F 4.3.2 Internal Codes of Floating Point Values 4-12
F 4.3.3 Minimum Size of a Floating Point Ty,)e or Subtype 4-15
F 4.3.4 Size of a Floating Point Type 4-15
F 4.3.5 Alignment of a Floating Point Type 4-15

F 4.4 Fixed Point Types 4-16
F 4.4.1 Predefined Fixed Point Types 4-16
F 4.4.2 Internal Codes of Fixed Point Values 4-17
F 4.4.3 Small of a Fixed Point Type 4-17
F 4.4.4 Minimum Size of a Fixed Point Type or Subtype . 4-18
F 4.4.5 Size of a Fixed Point Type 4-20
F 4.4.6 Alignment of a Fixed Point Type 4-21

F 4.5 Access Types 4-22

Contents-2

F 4.5.1 Internal Codes of Access Values 4-22
F 4.5.2 Collection Size for Access Types 4-22
F 4.5.3 Minimum Size of an Access Type or Subtype 4-24
F 4.5.4 Size of an Access Type 4-24
F 4.5.5 Alignment of an Access Type 4-24

F 4.6 Task Types 4-25
F 4.6.1 Internal Codes of Task Values 4-25
F 4.6.2 Storage for a Task Activation 4-25
F 4.6.3 Minimum Size of a Task Stack 4-26
F 4.6.4 Limitation on Length Clause for Derived Task Types 4-26
F 4.6.5 Minimum Size of a Task Type)r Subtype 4-27
F 4.6.6 Size of a Task Type 4-27
F 4.6.7 Alignment of a Task Type 4-27

F 4.7 Array Types 4-28
F 4.7.1 Layout of an Array. 4-28
F 4.7.2 Array Component Size and Pragma PACK 4-28
F 4.7.3 Array Gap Size and Pragma PACK 4-29
F 4.7.4 Size of an Array Type or Subtype 4-31
F 4.7.5 Alignment of an Array Type 4-32

F 4.8 Record Types 4-33
F 4.8.1 Layout of a Record 4-33
F 4.8.2 Bit Ordering in a Component Clause 4-35
F 4.8.3 Value used for SYSTEM.STORAG E_ UNIT 4-36
F 4.8.4 Compiler-Chosen Record Layout 4-36
F 4.8.5 Change in Representation 4-37
F 4.8.6 Implicit Components 4-37
F 4.8.7 Indirect Components 4-39
F 4.8.8 Dynamic Components 4-40
F 4.8.9 Representation of the Offset of an Indirect Component 4-43
F 4.8.10 The Implicit Component RECORD-SIZE 4-44
F 4.8.11 The Implicit Component VARIANTINDEX 4-44
F 4.8.12 The Implicit Component ARRAY_-DESCRIPTOR . 4-46
F 4.8.13 The Implicit Component RECORD-_DESCRIPTOR . 4-46
F 4.8.14 Suppression of Implicit Components 4-47
F 4.8.15 Size of a Record Type or Subtype 4-48
F 4.8.16 Size of an Object of a Record Type 4-49
F 4.8.17 Alignment of a Record Subtype 4-49

F 4.9 Data Allocation 4-50

Contents-3

F 4.9.1 Direct Allocation versus Indirect Allocation 4-52
F 4.9.2 Object Deallocation 4-52

F 4.9.2.1 Compiler-Generated Objects 4-52
F 4.9.2.2 Programmer-Generated Objects 4-53
F 4.9.2.3 Program Termination 4-53

F 4.9.3 Dynamic Memory Management 4-54
F 4.9.3.1 Collections of Objects 4-54
F 4.9.3.2 Global Dynamic Objects 4-55
F 4.9.3.3 Local Objects 4-56
F 4.9.3.4 Temporary Objects 4-56
F 4.9.3.5 Reclaiming Heap Storage 4-57

5. F 5. Names for Predefined Library Units

6. F 6. Address Clauses
F 6.1 Objects 0...6-1
F 6.2 Subprograms 6-2
F 6.3 Constants 6-2
F 6.4 Packages 6-2
F 6.5 Tasks 5-2
F 6.6 Data Objects 6-3
F 6.7 Task Entries 6-3

7. F 7. Restrictions on Unchecked Type Conversions

8. F 8. Implementation-Dependent Input-Output
F 8.1 Ada I/O Packages for External Files 8-1

F 8.1.1 Implementation-Dependent Restrictions on I/O
'Packages 8-3

F 8.1.2 Correspondence between External Files and HP-UX 8-3
F 8.1.3 Standard Implementation of External Files 8-7

F 8.1.3.1 SEQUENTIAL-1O Files 8-7
F 8.1.3.2 DIRECT-1O Files 8-8
F 8.1.3.3 TEXTIO Files 8-10

F 8.1.4 Default Access Protection of External Files 8-11
F 8.1.5 System Level Sharing of External Files 8-11
F 8.1.6 1/0 Involving Access Types 8-13
F 8.1.7 1/0 Involving Local Area Networks. 8-13

Contents-4

F 8.1.8 Potential Problems with I/O From Ada Tasks 8-14
F 8.1.9 1/0 Involving Symbolic Links 8-15
F 8.1.10 Ada I/O System Dependencies 8-16

F 8.2 The FORM Parameter 8-18
F 8.2.1 An Overview of FORM Attributes 8-18
F 8.2.2 The Format of FORM Parameters 8-18
F 8.2.3 The FORM Parameter Attribute - File Protection . 8-21
F 8.2.4 The FORM Parameter Attribute - File Buffering . . 8-23
F 8.2.5 The FORM Parameter Attribute - File Sharing . . 8-25

F 8.2.5.1 Interaction of File Sharing and File Buffering . 8-26
F 8.2.6 The FORM Parameter Attribute - Appending to a File 8-27
F 8.2.7 The FORM Parameter Attribute - Blocking 8-28

F 8.2.7.1 Blocking 8-28
F 8.2.7.2 Non-Blocking 8-30

F 8.2.8 The FORM Parameter - FIFO Control 8-31
F 8.2.9 The FORM Parameter - Terminal Input 8-33
F 8.2.10 The FORM Parameter Attribute - File Structuring 8-35

F 8.2.10.1 The Structure of TEXT-IO Files 8-35
F 8.2.10.2 The Structure of DIRECT°IO and

SEQUENTIAL-1O Files 8-37

9. F 9. The Ada Development System and HP-UX Signals
F 9.1 HP-UX Signals Reserved by the Ada Runtime 9-2
F 9.2 Using HP-UX Signals in External Interfaced Subprograms 9-6
F 9.3 HP-UX Signals Used for Ada Exception Handling 9-7
F 9.4 HP-UX Signals Used for Ada Task Management 9-10
F9.5 HP-UX Signals Used for Ada Delay Timing 9-11
F 9.6 HP-UX Signals Used for Ada Program Termination . . 9-12
F 9.7 HP-UX Signals Used for Ada Interrupt Entries 9-14
F 9.8 Protecting Interfaced Code from Ada's Asynchronous

Signals 9-15
F 9.9 Programming in Ada \Vith HP-UX Signals 9-15

Contents-5

10. F 10. LimitaLions
F 10.1 Compiler Limitations 10-1
F 10.2 Ada Development Environment Limitations 10-5
F 10.3 Limitations Affecting User-Written Ada Applications 10-6

F 10.3.1 Restrictions Affecting Opening or Creating Files 10-6
F 10.3.1.1 Restrictions on Path and Component Sizes . . 10-6
F 10.3.1.2 Additional Conditions that Raise NAME-ERROR 10-6

F 10.3.2 Restrictions on TEXTJO.FORM 10-7
F 10.3.3 Restrictions on the Small of a Fixed Point Type . . 10-7
F 10.3.4 Record Type Alignment Clause 10-7

11. F 11. Calling External Subprograms From Ada
F 11.1 General Considerations in Passing Ada Types 11-6

F 11.1.1 Scalar Types 11-6
F 11.1.1.1 Integer Types 11-7
F 11.1.1.2 Enumeration Types 11-7
F 11.1.1.3 Boolean Types 11-8
F 11.1.1.4 Character Types 11-9
F 11.1.1.5 Real Types 11-10

F 11.1.2 Access Types 11-11
F 11.1.3 Array Types 11-13
F 11.1.4 Record Types 11-15
F 11.1.5 Task Types 11-17

F 11.2 Calling Assembly Language Subprograms 11-18
F 11.2.1 Scalar Types and Assembly Language Subprograms 11-19

F 11.2.1.1 Integer Types and Assembly Language
Subprograms 11-19

F 11.2.1.2 Enumeration Types and Assembly Language 11-19
F 11.2.1.3 Boolean Types and Assembly Language

Subprograms 11-19
F 11.2.1.4 Character Types and Assembly Language

Subprograms 11-19
F 11.2.1.5 Real Types and Assembly Language Subprograms 11-19

F 11.2.2 Access Types and Assembly Language Subprograms 11-20
F 11.2.3 Array Types and Assembly Language Subprograms 11-20
F 11.2.4 Record Types and Assembly Language Subprograms 11-20

F 1.3.Calling HP C Subprograms 11-21
F 11.3.1 Scalar Types and HP C Subprograms 11-22

Contents-6

F 11.3.1.1 Integer Types and HP C Subprograms 11-23
F 11.3.1.2 Enumeration Types and HP C Subprograms 11-23
F 11.3.1.3 Boolean Types and HP C Subprograms 11-24
F 11.3.1.4 Character Types and HP C Subprograms 11-24

F 11.3.1.5 Real Types and HP C Subprograms 11-25
F 11.3.2 Access Types and HP C Subprograms 11-26
F 11.3.3 Array Types and HP C Subprograms 11-26
F 11.3.4 Record Types and HP C Subprograms 11-31

F 11.4 Calling HP FORTRAN 77 Language Subprograms . . 11-32
F 11.4.1 Scalar Types and HP FORTRAN 77 Subprograms 11-33

F 11.4.1.1 Integer Types and HP FORTRAN 77
Subprograms 11-33

F 11.4.1.2 Enumeration Types and HP FORTRAN 77
Subprograms 11-34

F 11.4.1.3 Boolean Types and HP FORTRAN 77
Subprograms 11-35

F 11.4.1.4 Character Types and HP FORTRAN 77
Subprograms 11-36

F 11.4.1.5 Real Types and HP FORTRAN 77 Subprograms 11-37
F 11.4.2 Access Types and HP FORTRAN 77 Subprograms 11-38
F 11.4.3 Array Types and HP FORTRAN 77 Subprograms 11-39
F 11.4.4 String Types and HP FORTRAN 77 Subprograms 11-41
F 11.4.5 Record Types and HP FORTRAN 77 Subprograms 11-45
F 11.4.6 Other FORTRAN Types 11-45

F 11.5 Calling HP Pascal Language Subprograms 11-46
.F 11.5.1 Scalar Types and HP Pascal Subprograms 11-48

F 11.5.1.1 Integer Types and HP Pascal Subprograms . 11-48
F 11.5.1.2 EInumeration Types and HP Pascal Subprograms 11-50
F 11.5.1.3 Boolean Types and HP Pascal Subprograms 11-51
F 11.5.1.4 Character Types and HP Pascal Subprograms 11-51
F 11.5.1.5 Real Types and HP Pascal Subprograms 11-52

F 11.5.2 Access Types and HP Pascal Subprograms 11-52
F 11.5.3 Array Types and HP Pascal Subprograms 11-53
F 11.5.4 String Types and HP Pascal Subprograms 11-56
F 11.5.5 Record Types and HP Pascal Subprograms 11-60

F 11.6 Summary 11-61
F 11.7 Potential Problems Using Interfaced Subprograms . . . 11-64

F 11.7.1. Signals and Interfaced Subprograms 11-64

Contents-7

F 11.7.2 Files Opened by Ada and Interfaced Subprograms . 11-67

12. F 12. Interrupt Entries
F 12.1 Introduction 12-1
F 12.2 Immediate Processing 12-2
F 12.3 Deferred Processing 12-3
F 12.4 Handling an Interrupt Entirely in the Immediate

Processing Step 12-4
F 12.5 Initializing the Interrupt Entry Mechanism 12-5
F 12.6 Associating an Ada Handler with an HP-UX Signal . . 12-7

F 12.6.1 Determining If Your Ada Handler Makes Ada Runtime
Calls 12-9

F 12.7 Disassociating an Ada Handler from an HP-UX Signal . 12-11
F 12.8 Determining How Many Handlers are Installed 12-11
F 12.9 When Ada Signal Handlers Will Not Be Called 12-11
F 12.10 Address Clauses for Entries 12-12
F 12.11 Example of Interrupt Entries 12-13
F 12.12 Specification of the package INTERRUPT-MANAGER 12-23
F 12.13 Ada Runtime Routine Descriptions 12-28

Index

Contents-8

Figures

4-1. Layout of an Array...................4-28
4-2. Record layout with an Indirect Component. 4.39
4-3. Example of a Data Layout 4-42

11-1. Passing Access Types to Interfaced Subprograms 11-12

Contents-S

Tables

1-1. Ada Pragmas 1-1
4-1. Methods to Control Layout and Size of Data Objects 4-1
4-2. Alignment and Pragma PACK 4-32
8-1. Standard Predefined I/O Packages 8-2
8-2. User Access Categories 8-21
8-3. File Access Rights 8-21
8-4. File Sharing Attribute Modes 8-25
8-5. Text File Terminators 8-36
8-6. Structuring Binary Files with the FORM Parameter 8-38
8-6. Structuring Binary Files with the FORM Parameter

(Continued) 8-39
8-6. Structuring Binary Files with the FORM Parameter

(Continued) 8-40
9-1. Ada Signals 9-2

11-1. Ada Types and Parameter Passing Modes 11-2
11-2. Ada versus HP C Integer Correspondence 11-23
11-3. Ada versus HP FORTRAN 77 Integer Correspondence 11-33
11-4 Ada versus HP Pascal Integer Correspondence 11-48
11-5. Ada versus ilP Pascal Enumeration Correspondence 11-50
11-6. Modes for Passing Parameters to Interfaced Subprograms 11-61
11-7. Types Returned as External Function Subprogram Results . 11-62
11-8. Parameter Passing in the Ada Implementation 11-63
12-1. Heap Management Routines 12-28
12-2. Collection Management (no STORAGE-SIZE representation

clause) 12-28
12-3. Collection Management (collections with a STORAGE-SIZE

representation clause) 12-29
12-4. Tasking Routines 12-30
12-4. Tasking Routines (Continued) 12-31

12-4. Tasking Routines (Continued) 12-32

Contents-10

12-5. Attributes Routines 12-33
12-6. Attributes for Tasks Routines 12-33
12-7. Support for Enumeration Representation Clauses Routines . 12-34

Contents-11

11

1

F 1. Implementation Supported Pragmas

This section describes the predefined language pragmas and the Ada
implementation-specific pragmas. Table 1-1 lists these pragmas.

Table 1-1. Ada Pragmas

Action Pragma Name

Interface with subprograms written in other INTERFACE
languages INTERFACE-NAME

Support text processing tools INDENT
LIST
PAGE

Determine the layout of array and record types PACK
in memory IMPROVE

Direct the compiler to generate different code ELABORATE
than what is normally generated INLINE

SUPPRESS

Affect tasking programs PRIORITY
SHARED

Allows Ada code and data objects to be EXPORT
referenced by a non-Ada external subprogram. EXTERNAL-NAME

See section "F 1.6 Pragmas Not Implemented" for a list of predefined pragmas
not implemented in Ada.

F 1. Implementation Supported Pragmas 1-1

F 1.1 Interfacing the Ada Language with Other Languages
Your Ada programs can call subprograms written in other languages when you
use the predefined pragmas INTERFACE and INTERFACE-NAME. Ada supports
subprograms written in these languages:

m PA-RISC Assembly Language.
m HP C.
* HP Pascal.
* HP FORTRAN 77 for HP 9000 Series 600, 700, and 800 computers.

Compiler products from vendors other than Hewlett-Packard may not conform
to the parameter passing conventions given below. See section "F 11. Calling
External Subprograms from Ada" for detailed information, instructions, and
examples for interfacing your Ada programs with the above languages.

In addition, data objects declared in other languages can be made accessible
to Ada by using the 'IMPORT attribute of the SYSTEM. ADDRESS type (see
"F 2.2 Attribute SYSTEM.ADDRESS'IMPORT" in Chapter 2). Data
objects declared in a global Ada scope can be referenced by a non-Ada
external subprogram when you use the predefined pragma EXPORT. Alternative
names for a global Ada data object can be defined when you use the pragma
EXTERNAL-NAME.

1-2 F 1. Implementation Supported Pragmas

F 1.1.1 Pragma INTERFACE

The pragma INTERFACE (Ada RM, section 13.9) informs the compiler that
a non-Ada external subprogram will be supplied when the Ada program is
linked. Pragma INTERFACE specifies the programming language used in the
external subprogram and the name of the Ada interfaced subprogram. The
corresponding parameter calling convention to be used in the interface is
implicitly defined in the language specification.

Syntax

pragma INTERFACE (Language-name, Adasubprogram-.name);

Parameter Description

Language-name is one of ASSEMBLER, C, PASCAL, or FORTRAN.

Ada.subprogram-nane is the name used within the Ada program when
referring to the interfaced external subprogram.

It is possible to supply a pragma INTERFACE to a library-level subprogram.

F 1. Implementation Supported Pragmas 1-3

F 1.1.2 Pragma INTERFACE-NAME

Ada provides the implementation-defined pragma INTERFACE.NAIE to associate
an alternative name with a non-Ada external subprogram that has been
specified to the Ada program by the pragna INTERFACE.

Syntax

pragma INTERFACE-NAME (Ada.subprogram. name,

" ExiernaLsubprogram name");

Parameter Description

Ada..subprogram-.name is the name when referring to the interfaced external
subprogram.

EzternaLsubprogram.name is the external name used outside the Ada program.

You must use pragma INTERFACE-NAME whenever the interfaced subprogram
name contains characters not acceptable within Ada identifiers or when the
interfaced subprogram name contains uppercase letter(s). You can also use
a pragma INTERFACE-NAME if you want your Ada subprogram name to be
different than the external subprogram name.

If a pragma INTERFACE-NAME is not supplied, the external subprogram name is
the name of the Ada subprogram specified in the pragma INTERFACE, with all
alphabetic characters shifted to lowercase letters.

The compiler truncates the name to 255 characters if necessary.

Pragma INTERFACE-NAME is allowed at the same places in an Ada program as
pragma INTERFACE (see Ada RM, section 13.9.) Pragma INTERFACE-NAME
must follow the corresponding pragma INTERFACE. If the pragma INTERFACE
appears in a declarative part, the pragma INTERFACE-NAME must appear
within the same declarative part. although it need not immediately follow the
pragma INTERFACE. If the pragma INTERFACE appears outside of any program
unit. s it does when being applied to a library-level subprogram, the pragma
INTERFACE-NAME must appear after the pragma INTERFACE and before any
subsequent compilation unit.

1-4 F 1. Implementation Supported Pragmas

1i
F 1.1.3 Example of INTERFACE and INTERFACENAME

The following example illustrates the INTERFACE and INTERFACE-NAME
pragmas.

package SAMPLELIB is

function SAMPLE-DEVICE (X INTEGER) return INTEGER;
function PROCESS-SAMPLE (X INTEGER) return INTEGER;

private

pragma INTERFACE (ASSEMBLER, SAMPLE-DEVICE);
pragma INTERFACE (C, PROCESS-SAMPLE);

pragma INTERFACE-NAME (SAMPLE-DEVICE, "DevlO");
pragma INTERFACE-NAME (PROCESS-SAMPLE, "DoSample");

end SAMPLELIB;

This example defines two Ada subprograms that are known in Ada code as
SAMPLE-DEVICE and PROCESS-SAMPLE. When a call to SAMPLE-DEVICE is
executed, the program generates a call to the externally supplied assembly
function DevlO. Likewise, when a call to PROCESSSAMPLE is executed,
the program will generate a call to the externally supplied HP C function
DoSample.

*By using the pragma INTERFACE-NAME, the names for the external subprograms
to associate with the Ada subprogram are explicitly identified. If pragma
INTERFACE-NAME had not been used, the external names referenced would be
sample-device and process-sample.

F 1. Implementation Supported Pragmas 1-5

~1

F 1.1.4 Additional Information on INTERFACE and
INTERFACE-NAME

Either an object file or an object library that defines the external subprograms
must be provided as a command line parameter to the Ada binder. The
command line parameter must be provided to the linker ld(1) if you call
the linker separately. If you do not provide an object file that contains the
definition for the external subprogram, the HP-UX linker, Id(1), will issue an
error message.

To avoid conflicts with the Ada Runtime System, the names of interfaced
external routines should not begin with tl'e letters "alsy" or 'A-" because the
Ada runtime system prefixes its internal routines with these prefixes.

When you want to call an HP-UX system call from Ada code, you should use
a pragma INTERFACE with C as the language name. You might need to use a
pragma INTERFACE-NAME to explicitly supply the external name. This external
name must be the same as the name of the system call that you want to call.
(See section 2 of the HP-UX Reference for details.) In this case it is not
necessary to provide the C object file to the binder, because it will be found
automatically when the linker searches the system library.

When you want to call an HP-UX library function from Ada code, you should
use a pragma INTERFACE with C as the language name. You should use pragma
INTERFACE.NAME to explicitly supply the external name. This external name
must be exactly the same as the name of the library function. (See section 3 of
the HP-UX Reference for details.) If your library function is located in either
the Standard C Library or the Math Library, it is not necessary to provide the
object library to the binder because the binder always requests that the linker
search these-two libraries. If your library function is located in any of the other
standard libraries, you must provide the appropriate -lx option to the binder.
The binder will pass Lhis information onto the linker as a request to search the
specified library.

1-6 F 1. Implementation Supported Pragmas

Caution All array and record type parameters are passed by reference
from Ada code to non-Ada interfaced code. In particular,
arrays and records occupying 64 bits or less of storage are
passed by reference and are not passed by copy, as is the
standard PA-RISC calling convention. Therefore, non-Ada
code expecting to receive such array or record parameters
must expect to receive them by reference, not by copy. C
should declare such parameters to be appropriate pointer types;
Pascal should declare such parameters to be VAR parameters;
FORTRAN always expects explicit parameters by reference.
Note that array and record type parameters occupying more
than 64 bits of storage are passed by reference, both by Ada
and by the standard PA-RISC calling convention, and require
no special precautions.

See section 'F 11. Calling External Subprograms From Ada" for additional
information on using pragma INTERFACE and pragma INTERFACE-NAME.

F 1. Implementation Supported Pragmas 1-7

F 1.1.5 Pragma EXPORT

The pragma EXPORT allows for data objects and subprograms declared in
a global Ada scope to be referenced by a non-Ada external subprogram.
Pragma EXPORT specifies the programming language and the name of the
Ada data object or subprogram. The default name for the externally visible
symbol is the name of the Ada object in all lowercase letters. The pragma
EXTERNAL-NAME (described in section "F 1.1.6 Pragma EXTERNALNAME")
can be used to change this default.

Syntax

pragma EXPORT (Language-name, Adanamc)

Parameter Description

Language-name is one of ASSEMBLER, C. PASCAL, or FORTRAN.

Ada-name is the simple name of the Ada data object or Ada
subprogram that is to be made visible to a non-Ada
subprogram.

The pragma EXPORT must occur in a declarative part and applies only to data
objects or subprograms declared in the same declarative part: that is, generic
instantiated objects or renamed objects are excluded. In addition, if an Ada
subprogram name is specified to pragma EXPORT. there must be a unique Ada
subprogram with that name (that is, the Ada subprogram name must not be
overloaded)..

The pragma EXPORT can only be used for data objects with direct allocation
mode (objects i-e allocated with indirect allocation mode if they are dynamic
or have a significant size: see section "F 4.9 Data Allocation", for details) and
for subprograms that are declared in a library package or in a package that is
ultimately nested in a library package. The pragma cannot be used for a data
object or subprogram that is declared within another subprogram, nor can it
be used for a library level subprogram. When applied to an Ada subprogram,
the pragma EXPORT is additionally restricted to only being specified in a librarY
package specification.

1-8 F 1. Implementation Supported Pragmas

The pragma EXPORT cannot be used for a subprogram that:

" has an IN OUT or OUT parameter
" has an unconstrained array parameter
" has a task type parameter
" is a function with an array result type
" is a function with a record result type
" is a function with a task type result type
" has a pragma INTERFACE also specified
* has a pragma INLINE also specified

When using pragma EXPORT with one or more Ada subprograms, the main
program unit must be an Ada procedure. This Ada procedure can call routines
in other languages that themselves call Ada, but the main procedure itself must
be in Ada.

Caution The name of any exported subprogram (either the default name
or the name specified by pragma EXTERNAL-NAME) is a linker
symbol visible to all components of the application. If this
name happens to be the same as an HP-UX system call, it
causes program failure in unexpected situations. For example,
if the name of your exported routine is close, it intercepts all
calls to the system routine close(2). This causes failure of the
Ada I/0 system.

For this reason. make sure that the name you choose is unique.,
and not either a system call or in use by some other part of
your application.

Following is an example of pragma EXPORT applied to an Ada subprogram
and pragma INTERFACE applied to a C subprogram. It consists of two files,
callback. c and callback. ada. and compilation directions.

F 1. Implementation Supported Pragmas 1-9

The callback. c file is as follows:

extern void hi-.there ();

/* procedure GO-TO-.C gets called from Ada MAIN, adds 5 to
argument, and calls Ada routine HI-HERE *

void go..to..c (c-.arg)
int c..arg;

hi..there (c-.arg + 5);

The callback. ada file is as follows:

with TEXT-IO;
package FRDW..C is

-Declaration of Ada routine HI.JHERE, to be called
-from C. This must be in a library package.

procedure HI..THERE (ADA..ARG: in INTEGER);

pragma EXPORT (C, HI-THERE);

end FROM.C;

package body FROM-C is

procedure HI-THERE (ADA-.ARG: in INTEGER) is
-This procedure called from C. It will write a
-message including the value passed into ADA-.ARG.

begin
TEXT.IO.PUT-LINE ("Now in Ada, called from C!");
TEXT.JO .PUT-LINE

("integer passed was" & INTEGER'IMAGE (ADA..ARG));
end HI-THERE;

end FRO?'LC;

1-10 F 1. implementation Supported Pragmas

with FROM.C; -- *** WITH IS NECESSARY SO FROMC GETS
-- **** INCLUDED IN PROGRAM

procedure MAIN is

-- This is an Ada main procedure. It will call a C routine
-- called GOTOC, passing the value S to that routine.

-- GOTOC will call the Ada routine HITHERE to demonstrate

-- callbacks.

-- The C routine that will call Ada:
procedure GOTOC (CARG: in INTEGER);
pragma INTERFACE (C, GOTOC);

begin

-- Call C. C will then call Ada.
GOTOC (5);

end MAIN;

To compile and run the example. invoke the C compiler to compile callback.c

and produce callback.o:

cc -c callback.c

Now invoke the Ada compiler to compile callback.ada: bind and link it with
the file callback.o.

ada callback.ada ada_!ibraryname -M main callback.o

Now run the result:

a. out
Now in Ada, called from C!

integer passed was 10

F 1. Implementation Supported Pragmas 1-11

~1

F 1.1.6 Pragma EXTERNAL-NAME

The pragma EXTERNAL-NAME is used to supply an alternate externally visible
name for a global Ada data object or Ada subprogram that has been exported
using a pragma EXPORT. The pragma EXTERNAL-NAME can be used anywhere
in an Ada program where the pragma EXPORT is allowed. The pragma
EXTERNAL-NAME must occur after the corresponding pragma EXPORT and within
the same library package as the corresponding pragma EXPORT.

Syntax

pragma EXTERNAL-NAME (Ada-name, "ExternaL name");

Parameter Description

Ada-nome is the simple name of the Ada data object or Ada
subprogram that is to be made visible to a non-Ada
subprogram.

External-name is the externally visible name that is to be accessed in
the non-Ada subprogram.

You must use the pragma EXTERNAL-NAME whenever the externally visible
name contains characters not acceptable within Ada identifiers or when the
externally visible name contains an uppercase letter or letters. You can also
use the pragma EXTERNALNAME if you want your Ada data object name or Ada
subprogram name to be different than the externally visible name.

If a pragma'EXTERNAL_-NAME is not supplied, the externally visible name is the
name of the Ada data object or subprogram specified in the pragma EXPORT,
with all alphabetic characters shifted to lowercase letters.

The compiler truncates the ntame to 255 characters if necessary.

1-12 F 1. Implementation Supported Pragmas

1I

F 1.1.7 Example of EXPORT and EXTERNAL-NAME

The following example illustrates the EXPORT and EXTERNAL-NAME pragmas.

package ADAGLOBALS is

MYINT INTEGER;
MY-CHAR : CHARACTER;

procedure MYPROC (X: INTEGER);
function MYIFUN (A: CHARACTER; B: SHORT-INTEGER)

return INTEGER;
function MYFUNC (Z: BOOLEAN) return LONG-FLOAT;

private

pragma EXPORT (ASSEMBLER, MYINT);
pragma EXPORT (C, MYCHAR);
pragma EXPORT (C, MYPROC);
pragma EXPORT (C, MYIFUN);
pragma EXPORT (C, MYFUNC);

pragma EXTERNAL-NAME (MY.INT, "Int-fromAda");
pragma EXTERNAL-NAME (MY-CHAR, "Char-fromAda");
pragma EXTERNAL-NAME (MYPROC, "ProcfromAda");
pragma EXTERNAL-NAME (MY.IFUN, "IfunfromAda");
pragma EXTERNAL-NAME (MY.FUNC, "Func.fromAda");

end ADAGLOBALS;

This example defines two Ada data objects that are known in Ada code as
MYINT and MY-CHAR and three Ada subprograms that are known in Ada code
as MYPROC. MYIFUN, and MYFUNC. The externally visible symbols for the
data objects are. respectively, Int-fromAda and Char-fromAda and for the
subprograms. Proc-fromAda, Ifun-fromAda, and Func-fromAda.

By using the pragrna EXTERNAL-NAME, the names of the external symbols are
explicitly identified. If pragma EXTERNAL-NAME had not been used. the ext'rnal
names would be my-int. my-char, my-proc, my-ifun, and my-func.

F 1. Implementation Supported Pragmas 1.13

F 1.1.8 Pragma EXPORT Applied to Ada Subprograms

In this section, the term "exported Ada subprogram" refers to an Ada
subprogram to which the pragma EXPORT has been applied. An exported Ada
subprogram can be called from Ada code as usual; the subprogram will not
behave any differently just because the pragma EXPORT has been specified.

F 1.1.8.1 Calling an Ada Subprogram from Non-Ada Code

An exported Ada subprogram must not be called from non-Ada code before
the body of the exported Ada subprogram has been elaborated. If non-Ada
code calls an exported Ada subprogram prior to the elaboration of the Ada
subprogram body, the results are unpredictable and could lead to program
failure.

When calling an exported Ada subprogram from non-Ada code, the parameters
passed to Ada from non-Ada code must be compatible with the data types and
sizes of the parameters that the exported Ada subprogram is expecting.

Exported Ada subprograms can only have parameters of mode IN. All record
and array parameters must be passed by non-Ada code to Ada by reference.

If an exported Ada subprogram has default parameter values, these values
are ignored when the exported Ada subprogram is called from non-Ada code.
Non-Ada code must always pass all parameters explicitly to Ada code.

With respect to parameter type compatibility, the action of calling an
exported Ada subprogram from non-Ada code is very similar to calling
non-Ada code (via pragma INTERFACE) from Ada code. Section "' 11. Calling
External Subprograms From Ada", describes the correspondences, or lack
of correspondences, between Ada types and non-Ada types and should be
consulted for information on which non-Ada objects are compatible with which
Ada objects.

1-14 F 1. Implementation Supported Pragmas

Caution All array and record type parameters are expected to be passed
by reference from non-Ada code to exported Ada code. In
particular, arrays and records occupying 64 bits or less of
storage must be passed by reference and must not be passed
by copy, as is the standard PA-RISC calling convention.
Therefore, non-Ada code expecting to pass such array or
record type parameters to Ada must pass such parameters
by reference not by copy. C must pass the addresses of such
parameters cast to appropriate pointer types; Pascal must
declare such parameters to be VAR parameters in the EXTERNAL
declaration; FORTRAN always passes explicit parameters
by reference. Note that array and record type parameters
occupying more that 64 bits of storage are passed by reference,
both by Ada and by the standard PS-RISC calling convention,
and require no special precautions.

The next sections describe general conditions and constraints that apply to

Ada being called from Assembly, C, FORTRAN, and Pascal.

Assembler

Ada expects any parameter passed, except LONG-FLOAT by value, to be
passed as a 4 byte quantity, sign extended as necessary, in the location (register
or memory) appropriate for its parameter type and position in the parameter
list (LONGFLOAT by value is expected to be passed as a 8 byte quantity).

C

Ada expects any parameter passed, except LONG-FLOAT by value, to be
passed as a 4 byte quantity, sign extended as necessary, in the location (register
or memory) appropriate for its parameter type and position in the parameter
list (LONG-FLOAT by value is expected to be passed as a 8 byte quantity).

If an exported Ada subprogram is called from C, and C is operating in
non-ANSI mode, or it is operating in ANSI mode, but lacks a function
prototype for the called function. C will convert all float values to double
when passing them as parameters. Therefore. passing parameters from C
to Ada when Ada is expecting a parameter of type FLOAT requires that C be
operating in ANSI mode with a function prototype for the Ada subprogram.

F 1. Implementation Supported Pragmas 1-15

FORTRAN

The exported Ada subprogram parameters that correspond to parameters
passed explicitly from FORTRAN must all be of an access type or of type
SYSTEM.ADDRESS as FORTRAN passes such parameters by reference.
The exported Ada subprogram parameters that correspond to parameters
passed implicitly from FORTRAN (such as the length of a FORTRAN string
parameter; see "F 11.4.4 String Types and HP FORTRAN 77 Subprograms"
in Chapter 11) must be of an appropriate scalar type (not an access type nor
SYSTEM.ADDRESS). This type is usually INTEGER.

Pascal

Ada expects any parameter passed, except LONGFLOAT by value, to
be passed as a 4 byte quantity, sign extended as necessary, in the location
(register or memory) appropriate for its parameter type and position in the
parameter list (LONG.FLOAT by value is expected to be passed as a 8 byte
quantity). The exported Ada subprogram parameters that correspond to
Pascal VAR parameters must all be of the appropriate access type or of type
SYSTEM.ADDRESS as Pascal passes such parameters by reference. Non-scalar
parameters can only be passed to Ada using Pascal VAR parameters, they may
not be passed using Pascal value parameters. The exported Ada subprogram
parameters that correspond to Pascal value parameters must all be of an
appropriate scalar, access, or SYSTEM. ADDRESS type as Pascal passes such
parameters by value.

1-16 F 1. Implementation Supported Pragmas

The following example shows C calling the exported Ada subprograms
MY-.PROC, MY-IFUN, and MY..FUNC which are declared in the ADA.GLOBALS
example given in "F 1.1.7 Example of EXPORT and EXTERNAL-NAME":

externi void Proc-.from..Ada ();
extern int Ifun-.from-.Ada 0;
extern void Furic-.from-.Ada 0;

call..ada Ui, flag)
short i; int flag;

double dres;

int ires;
short temip;

Proc-from-.Ada Ci * 28);

ires = Ifun-,from..Ada ('!', i);

Proc-.from-.Ada (ires);

" Note the conversion of 'flag' to the appropriate Ada Boolean
" value.

dres = Func-.from-.Ada (flag ? 1 0);

F.1.1.8.2 Exceptions

An exported Ada subprogram must not allow an exception to propagate out of
itself i1 it was called by a non-Ada caller. If an exception is propagated back
to a non-Ada caller. the behavior of the Ada runtime Is unpredlictable and may'
result in program failure. If the exported Ada subprogram wvas called by Ada
code and the Ada subprogram is aware of that fact. it can safely propagate
exceptions out of itself.

F 1. Implementation Supported Pragmas 1-17

11

F.1.1.8.3 Obtaining the Non-Ada Call Address in Ada at Runtime

When pragma EXPORT (and optionally pragma EXTERNAL-NAME) is applied
to an Ada subprogram, an externally visible name is created such that the
Ada subprogram can be called directly by that externally visible name from
non-Ada code. However, the Ada code may need to obtain the address of
an exported Ada subprogram at run time. For example, it might pass such
an address as a parameter to non-Ada code so that the non-Ada code can
use the address to call an Ada subprogram (a "callback" situation). The
function EXPORTED- SUBPROGRAM is supplied in the package SYSTEM to obtain
the "non-Ada call address" of an exported Ada subprogram. The function
SYSTEM.EXPORTED_-SUBPROGRAM is passed a single parameter. the 'ADDRESS
value of an exported Ada subprogram, and it returns the address which
non-Ada code must call to invoke that Ada subprogram. See section "F 3.1
The Package SYSTEM", for more information.

Caution The value of 'ADDRESS of an exported Ada subprogram is
not the address that non-Ada code should call to invoke
the exported Ada subprogram. The address that non-Ada
code must call to invoke an Ada subprogram is obtained as
the result of passing the 'ADDRESS value of the exported Ada
subprogram to SYSTEM.EXPORTED-SUBPROGRAM; the function
result value is the address that the non-Ada code must call. If
non-Ada code attempts to call an exported Ada subprogram
using the 'ADDRESS value for that subprogram, the result is
unpredictable and will most likely result in program failure.

1-18 F 1. Implementation Supported Pragmas

11

F.1.1.8.4 Bind-Time Issues

To ensure that the desired exported Ada subprograms are present in the
executable program produced by the binder, the Ada library level packages
that contain those exported subprograms must be "withed" into at least one
Ada program unit that will be present in the executable program. No special
action is needed if the Ada program already uses any of the facilities from a
library level package that contains exported Ada subprograms because that
package will, of necessity, already be "withed" somewhere in the program.
Only if the Ada program does not use any of the facilities from a library level
package that contains exported Ada subprograms (for example, if that package
only contains exported Ada subprograms that are called directly from non-Ada
code), will it be necessary to take extra action to ensure the presence of the
exported Ada subprograms in the executable program. If no obvious place to
"with" such a package exists, the package can always be "withed" into the
main program procedure.

Note The Ada binder supports a mechanism to eliminate uncalled
subprograms. Within Ada compilation units, subprograms
that are never called (or have their 'ADDRESS taken) can
be eliminated from the executable program produced by the
binder. Because exported Ada subprograms legitimately might
never be called by Ada code (for example, if they are only
called by non-Ada code), they are automatically protected from
uncalled subprogram elimination. Therefore, if your program
"withed" a library level package that declares one or more
exported Ada subprograms, those subprograms will always be
present in the executable file produced by the binder (even if
they are also not called from non-Ada code). In addition, if an%
of the exported Ada subprograms call other Ada subprograms.
those other Ada subprograms (and in turn, repeatedly, any Ada
subprograms they call) will also be present in the executable
program. Therefore. care must be taken with respect to the
placement of exported Ada subprograms in packages and
the "'tithing" of those packages into your program to avoid
including in your executable file the code for Ada subprograms
that your program does not call (either from Ada or from
non-Ada code).

F 1. Implementation Supported Pragmas 1-19

F.1.1.8.5 HP-UX Signal Handlers in Ada

Although possible, it is not recommended that you apply the pragma EXPORT
to an Ada subprogram so that the Ada subprogram can be specified as an
HP-UX signal handler. If you do so, the Ada subprogram that is to act as a
signal handler must be compiled with checks off (using the -R option) and it
must not call any Ada runtime system routines. The Ada subprogram must
not call HP-UX routines or other non-Ada code, either via pragma INTERFACE
or via a binding. If the Ada subprogram calls another Ada subprogram, the
called subprogram must follow the same constraints.

Using the interrupt entry mechanism to provide Ada subprograms as a signal
handlers is preferred. This is described in section "F 12. Interrupt Entries".

1-20 F 1. Implementation Supported Pragmas

F 1.2 Using Text Processing Tools
The pragma INDENT is a formatting command that affects the HP supplied
formatter, ada. format (1). This pragma does not affect the compilation listing
output of the compiler. The pragmas LIST and PAGE .,e formatting commands
that affect the compilation listing output of the compiler.

F 1.2.1 Pragma INDENT

Ada provides the implementation-defined pragma INDt.NT to assist in
formatting Ada source code. You can place tho-se pragmas in the source code
to control the actions of ada.format(1).

Syntax

pragma INDENT (ON I OFF);

Parameter Description

OFF ada.format does not modify the source lines after the pragma.

ON ada.format resumes its action after the pragma.

The defayilt for pragma INDENT is ON.

F 1. Implementation Supported Pragmas 1-21

~1

F 1.2.2 Pragma LIST
The pragma LIST affects only the compilation listing output of the compiler.
It specifies that the listing of the compilation is to be continued or suspend~d
until a LIST pragma with the opposite argument is given within the same
compilation. The pragma itself is always listed if the compiler is producing a
listing. The compilation listing feature of the compiler is enabled by issuing
one of the compiler options -L or -B to the ada(l) command.

Syntax

pragma LIST (ON I OFF);

Parameter Description

OFF The listing of the compilation is suspended after the pragma.

ON The listing of the compilation is resumed and the pragma is listed.

The default for pragma LIST is ON.

F 1.2.3 Pragma PAGE

The pragina PAGE affects the compilation listing output of the compiler. It
specifies that the program text which follows the pragma should start on a new
page (if the compiler is currently producing a listing).

Syntax

pragma PAGE;

1-22 F 1. Implementation Supported Pragmas

1
F 1.3 Affecting the Layout of Array and Record Types
The pragmas PACK and IMPROVE affect the layout of array and record types in
memory.

F 1.3.1 Pragma PACK

The pragma PACK takes the simple name of an array type as its only argument.
The allowed positions for this pragma and the restrictions on the named type
are governed by the same rules as for a representation clause. The pragma
specifies that storage minimization should be the main criterion when selecting
the representation of the given type.

Syntax

pragma PACK (array- type-.name);

The pragma PACK is not implemented for record types on Ada. You can use a
record representation clause to minimize the storage requirements for a record
type.

The pragma PACK is discussed further in section "F 4.7 Array Types."

F 1.3.2 Pragma IMPROVE

The pragma IMPROVE, an implementation-defined pragma, suppresses implicit
components in a record type.

Syntax

pragma IMPROVE (TIME I SPACE , [ON =>] record-type-name);

The default for pragma IMPROVE is TIME. This pragma is discussed further in
section "F 4.8 Record Types."

F 1. Implementation Supported Pragmas 1-23

F 1.4 Generating Code
The pragmas ELABORATE, INLINE, and SUPPRESS direct the compiler to
generate different code than would have been normally generated. These
pragimas can change the run time behavior of an Ada program unit.

F 1.4.1 Pragma ELABORATE

The pragma ELABORATE is used when a dependency upon elaboration order
exists. Normally the Ada compiler is given the freedom to elaborate library
units in any order. This pragma specifies that the bodies for each of the library
units named in the pragma must be elaborated before the current compilation
unit. If the current compilation unit is a subunit, the bodies of the named
library units must be elaborated before the body of the parent of the current
subunit.

Syntax

pragma ELABORATE (libra ry. unit- name [, library- unit-name ...

This pragma takes as its arguments one or more simple names, each of which
denotes a library unit. This pragma is only allowed immediately after the
context clause of a compilation unit (before the subsequent library unit or
secondary unit). Each argument must be the simple name of a library unit
that was identified by the context clause. (See the Ada RM, section 10.5. for
additional information on elaboration of library units .)

1-24 F 1. Implementation Supported Pragmas

11

F 1.4.2 Pragma INLINE

The pragma IMLINE specifies that the subprogram bodies should be expanded
inline at each call whenever possible; in the case of a generic subprogram,
the pragma applies to calls of its instantiations. If the subprogram name
is overloaded, the pragma applies to every overloaded subprogram. Note
that pragma INLINE has no effect on function calls appearing inside package
specifications.

Syntax

pragma INLINE (subprogramname [,subprogram name] ...

This pragma takes as its arguments one or more names, each of which is either
the name of a subprogram or the name of a generic subprogram. This pragma
is only allowed at the place of a declarative item in a declarative part or
package specification, or after a library unit in a compilation, but before any
subsequent compilation unit. See the Ada RM, section 6.3.2, for additional
information on inline expansion of subprograms.

This pragma can be suppressed at compile time by issuing the compiler option
-I to the ada(1) command.

F 1. Implementation Supported Pragmas 1-25

F 1.4.3 Pragma SUPPRESS

The pragma SUPPRESS allows the compiler to omit the given check from the
place of the pragma to the end of the declarative region associated with the
innermost enclosing block statement or program unit. For a pragma given in
a package specification, the permission extends to the end of the scope of the
named entity.

Syntax

pragma SUPPRESS (checkidentifier [, [ON =>3 name]);

The pragma SUPPRESS takes as arguments the identifier of a check and
optionally the name of either an object, a type or subtype, a subprogram, a
task unit, or a generic unit. This pragma is only allowed at the place of a
declarative item in a declarative part or a package specification.

If the pragma includes a name, the permission to omit the given check is
further restricted: it is given only for operations on the named object or
on all objects of the base type of a named type or subtype; for calls of a
named subprogram: for activations of tasks of the named task type; or for
instantiations of the given generic unit. (See the Ada RM, section 11.7, for
additional information on suppressing run time checks.)

The compiler can be directed to suppress all run time checks by issuing the
compiler option -R to the ada(1) command. The compiler can also be directed
to suppress all run time checks except for stack checks by issuing the compiler
option -C to the ada(1) command.

1-26 F 1. Implementation Supported Pragmas

*I
F 1.5 Affecting Run Time Behavior
The pragmas PRIORITY and SHARED affect the run time behavior of a tasking
program.

F 1.5.1 Pragma PRIORITY

The pragma PRIORITY specifies the priority to be used for the task or tasks of
the task type. When the pragma is applied within the outermost declarative
part of the main subprogram, it specifies the priority to be used for the
environment task, which is the task that encloses the main subprogram. If a
pragma PRIORITY is applied to a subprogram that is not the main subprogram,
it is ignored.

Syntax

pragma PRIORITY (static, expression);

The pragma PRIORITY takes as its argument a static expression of the
predefined integer subtype PRIORITY. For Ada, the range of the subtype
PRIORITY is 1 to 16. Note that during an entry call invoked by an interrupt
handler, the priority of a task is temporarily raised to a value higher than
PRIORITY'LAST. The priority value is specified when the interrupt handler is
installed; see section "F 12.6 Associating an Ada Handler with an HP-UX
Signal", for details.

The PRIORITY pragma is only allowed within the specification of a task unit or
within the outermost declarative part of the main subprogram.

These task priorities are only relative to other Ada tasks that are concurrently
executing with the environment task. This pragma does not change the
priority of an Ada task or the Ada environment task relative to other HP-UX
processes. All the Ada tasks execute within a single HP-UX process. This
HP-UX process executes together with other HP-UX processes and is scheduled
by the HP-UX kernal. To change the priority of an HP-UX process, see the
command nice(l). See the Ada Ril, section 9.8. for additional information on
task priorities.

F 1. Implementation Supported Pragmas 1-27

F 1.5.2 Pragma SHARED
The pragma SHARED specifies that every read or update of the variable is
a synchronization point for that variable. The type for the variable object
is limited to scalar or access types because each read or update must be
implemented as an indivisible operation.

The effect of pragma SHARED on a variable object is to suppress the promotion
of this object to a register by the compiler. The compiler suppresses this
optimization and ensures that any reference to the variable always retrieves the
value stored by the most recent update operation.

Syntax

pragma SHARED (variable.simple-namne);

The pragiria SHARED takes as its argument a simple name of a variable. This
pragma is only allowed for a variable declared by an object declaration and
whose type is a scalar or access type; the variable declaration and the pragma
must both occur (in this order) within the same declarative part or package
specification.

See the Ada RM, section 9.11, for additional information on shared variables.

1-28 F 1. Implementation Supported Pragmas

F 1.6 Pragmas Not Implemented
The following predefined language pragmas are not implemented and will issue
a warning at compile time:

pragma CONTROLLED (access- type-simple- name);

pragma MEMORY-SIZE (n umericliteral);

pragma OPTIMIZE (TIME I SPACE);

pragma STORAGE-UNIT (numeric literal);

pragma SYSTEM-NAME (en umerationdliteral);

See the Ada RAI, Appendix B, for additional information on these predefined
language pragmas.

F 1. Implementation Supported Pragmas 1-29

2 21
F 2. Implementation-Dependent Attributes

In addition to the representation attributes discussed in the Ado RM,
section 13. 7.2, there are five implementation-defined representation attributes:

'OFFSET
'RECORD-SIZE
'VARIANT-INDEX
'ARRAY-DESCRIPTOR
'RECORD-DESCRIPTOR

These implementation-defined attributes are only used to refer to implicit
components of record types inside a record representation clause. Using these
attributes outside of a record representation clause will cause a compiler error
message. For additional information, see section "F 4.8 Record Types".

F 2. Implementation-Dependent Attributes 2-1

2

F 2.1 Limitation of the Attribute 'ADDRESS
The attribute 'ADDRESS is implemented for all entities that have meaningful
addresses. The compiler will issue the following warning message when the
prefix for the attribute 'ADDRESS refers to an object that has a meaningless
address:

The prefix of the 'ADDRESS attribute denotes a program unit that
has no meaningful address: the result of such an evaluation is
SYSTEM. NULL _ADDRESS.

The following entities do not have meaningful addresses and will cause the
above compilation warning if used as a prefix to 'ADDRESS:

" A constant that is implemented as an immediate value (that is, a constant
that does not have any space allocated for it).

" A package identifier that is not a library unit or a subunit.

" A function that renames an enumeration literal.

Additionally, the attribute 'ADDRESS, when applied to a task or task type,
returns different values depending on the elaboration status of the task body.
In particular, the value returned by the attribute 'ADDRESS changes after
the elaboration of the task body. Therefore, the attribute task 'ADDRESS
or iosk_ type 'ADDRESS should be used only after the body of the task is
elaborated.

2-2 F 2. Implementation-Dependent Attributes

F 2.2 Attribute SYSTEM.ADDRESS'IMPORT I
This implementation of Ada defines an additional attribute for the type
SYSTEM. ADDRESS. The attribute ' IMPORT can be applied to the type
SYSTEM. ADDIESS. This attribute is a function with two parameters; the
parameters are described in the table below.

Syntax

SYSTEM. ADDRESS' IMPORT ("Language-name", "ezternaLsyrmbol_ name");

Parameter Description

Language-name Specifies the language. This parameter is a static Ada
string constant that must be either C, ASSEMBLER,
PASCAL, or FORTRAN. The characters used in the
language specification can be uppercase or lowercase
letters.

externaLsymboLname Specifies the name of ani external data object. This
I parameter is a static Ada string constant.

The result is a value of the type SYSTEM.ADDRESS that can be used to denote
this object in ani address clause (see section "F 6. Address Clauses" for
details.)'

F 2. Implementation-Dependent Attributes 2-3

2
The following example shows the use of SYSTEM. ADRES'IMPORT in Ada
address clauses to provide Ada access to global data objects declared in C.

C code:

/* This C code declares a variety of globally visible data
objects that can be accessed from an Ada program that uses
SYSTEM.ADDREZ)S'IMPORT.

extern mnt errno;

struct {
short fl;
short f2;

I ada~info = {-123, -4561;

static mnt ada-.data[1O] = {12, 5, 55, 7, 31, 45, 4, 2, 88, 0};

mnt *ada.data-.ptr = {ada.data};

struct {
mnt *al;
short a2;

}ada-.info-.withptr ={ada..data, -7891;

The sample Ada program follows.

2-4 F 2. Implementation-Dependent Attributes

2l
Ada code:

with SYSTEM, UNCHECKED-CONVERSION;
package IMPORT-EXAMPLE is

-- Import a simple C scalar variable, in this case errno.

ERRNO: INTEGER;
for ERRNO use at SYSTEM.ADDRESS'IMPORT ("C", "errno");

-- Import a C struct which contains no pointer values as
-- an Ada record (see below for importing records which
-- contain pointer fields). Note that a representation
-- specification is used to guarantee that Ada allocates
-- the record fields the same way C allocates the struct
-- fields.

type ADA-INFO is
record

fl: SHORT-INTEGER;
f2: SHORT-INTEGER;

end record;

for ADA-INFO use
record

fl at 0 range 0..15;
f2 at 2 range 0..15;

end record;

AI : ADA-INFO;
for AI use at SYSTEM.ADDRESS'IMPORT ("C", "ada-info");

F 2. Implementation-Dependent Attributes 2-5

-- Import a C pointer object as an Ada access type. If
-- such a pointer was imported directly as an Ada access
-- type value (in a manner similar to ERRNO above), the
-- elaboration code for this declaration section would
-- initialize the Ada access type value to null, modifying
-- the C pointer object. The technique of renaming the
-- dereferenced result of an unchecked conversion prevents
-- Ada from initializing the Ada access type value and
-- leaves the value that C initialized the pointer object
-- with, intact. Of course if you do want Ada to initialize
-- a non-Ada pointer object to null, import it directly
-- similarly to the manner in which ERRNO is imported.

type ADA.DATA is array (1..10) of INTEGER;
type ADADATAACCESS is access ADA-DATA;
type ADADATAACCESSACCESS is access ADADATAACCESS;

function ADDRESSTOADADATAACCESSACCESS is new
UNCHECKED-CONVERSION

(SYSTEM.ADDRESS, ADA.DATAACCESSACCESS);

ADA ADADATAACCESS renames
ADDRESSTOADADATAACCESS.ACCESS

(SYSTEM.ADDRESS'IMPORT
("C", "ada-data-ptr")).all;

2-6 F 2. Implementation-Dependent Attributes

-- Import a C struct which contains a pointer value as an 2 m
-- Ada record. Note that a representation specification is
-- used to guarantee that Ada allocates the record fields
-- the same way C allocates the struct fields. If such a
-- record was imported directly as an Ada record type (in a
-- manner similar to ADA-INFO above), the elaboration code
-- for this declaration section would initialize the Ada
-- access type field of the record to null, modifying the
-- C record object. The technique of renaming the result of
-- an unchecked conversion prevents Ada from initializing
-- the Ada access type field and leaves the value that C
-- initialized the record object with, intact. A similar
-- set of declarations can be used to import any arbitrary
-- record as protection against initializing any access value
-- fields it may have (which could be nested at any depth
-- in the record such that they might be accidentally be
-- overlooked). Of course if you do want Ada to initialize
-- pointer fields or elements of a non-Ada record or array
-- to null, import the record or array directly, similarly
-- to the manner in which ADA-INFO is imported.

type ADA.INFOWITHPTR is
record

al: ADADATAACCESS;
a2: SHORT-INTEGER;

end record;

F 2. Implementation-Dependent Attributes 2-7

2i

for ADAINFOWITHPTR use
record

al at 0 range 0..31;
a2 at 4 range 0..15;

end record;

type ADAINFOWITHPTRACCESS is access ADAINFOWITHPTR;

function ADDRESSTOADAINFOWITHPTRACCESS is new

UNCHECKED-CONVERSION
(SYSTEM.ADDRESS, ADAINFOWITHPTRACCESS);

AIWP : ADAINFOWITHPTR renames
ADDRESSTOADAINFOWITHPTRACCESS

(SYSTEM.ADDRESS'IMPORT
("C", "ada.info.with.ptr")).all;

end IMPORT-EXAMPLE;

with IMPORT-EXAMPLE;
procedure USE-IMPORT (N: INTEGER) is

begin -- USE-IMPORT

if N < 1 or else N > 10 then
-- Change errno to a value from the imported record.

IMPORTEXAMPLE.ERRNO := INTEGER (IMPORTEXAMPLE.AI.F2);

2-8 F 2. Implementation-Dependent Attributes

2
-- Change what the C pointer points at (note that this
-- does not change the contents of the ada-data array in
-- C, it changes the array that the C adadata.ptr
-points at).

IMPORTEXAMPLE.ADA new IMPORTEXAMPLE.ADADATA;

-- Fill in the new array

for I in 1..10 loop
IMPORTEXAMPLE.ADA (I) := I;

end loop;
else

-- Change errno to a value from the imported pointed

-- to array.

IMPORTEXAMPLE.ERRNO := IMPORTEXAMPLE.ADA (N);

-- Change that element of the currently pointed to array.

IMPORTEXAMPLE.ADA (N) := INTEGER(IMPORTEXAMPLE.AIWP.A2);
end if;

end USE-IMPORT;

F 2. Implementation-Dependent Attributes 2-9

33

F 3. The SYSTEM and STANDARD Packages
This, section contains a complete listing of the two predefined library packages:

SYSTEM and STANDARD. These packages both contain implementation-dependent

specifications.

F 3.1 The Package SYSTEM
The specification of the predefined library package SYSTEM follows:

package SYSTEM is

type NAME is (HP9000OPA_-RISC);

SYSTEM-NAME : constant NAME := HP9000OPARISC;

STORAGE-UNIT : constant : 8;

MEMORY-SIZE constant 2**31-I;

MININT constant - (2**31);

MAXINT constant : 2.*31 - 1;

MAX-DIGITS : constant 15;

MAX-MANTISSA : constant : 31;

F 3. The SYSTEM and STANDARD Packages 3-1

FINE-DELTA : constant := 2#1.0#E-31;

TICK : constant 0.010; -- 10 milliseconds

3 subtype PRIORITY is INTEGER range 1 .. 16;

type ADDRESS is private;
NULLADDRESS : constant ADDRESS; -- set to NULL

-- The functions TO-INTEGER and TO-ADDRESS are provided for
-- backwards compatibility with Ada/800 04.35

function TO-INTEGER (LEFT : ADDRESS) return INTEGER;

-- Converts an ADDRESS to and INTEGER.

function TO-ADDRESS (LEFT : INTEGER) return ADDRESS;

-- Converts and INTEGER to an ADDRESS.

function VALUE (LEFT : in STRING) return ADDRESS;

-- Converts a string to an address. The string can represent
-- either an unsigned address (i.e. "16#XXXXXXXX#" where
-- XXXXXXXX is in the range O..FFFFFFFF) or a signed address
-- (i.e. "-16#XXXXXXXX#" where XXXXXXXX is in the

-- range O..7FFFFFFF). Leading blanks are ignored. The
-- exception CONSTRAINT-ERROR is raised if the string has
-- not the proper syntax.

3-2 F 3. The SYSTEM and STANDARD Packages

ADDRESSWIDTH : constant := 3 + 8 + 1;

subtype ADDRESS-STRING is STRING (1.. ADDRESS-WIDTH);

function IMAGE (LEFT : in ADDRESS) return ADDRESSSTRING;
-- --------------------------------

-- Converts an address to a string. The returned string has

-- the unsigned representation described for the VALUE

-- function.

type OFFSET is range -2**31 .. 2**31-1;

-- This type is used to measure a number of storage units

-- (bytes). The type is an Ada integer type.

function SAMESPACEID
(LEFT, RIGHT : in ADDRESS) return BOOLEAN;

-- This function returns true if the two addresses have the
-- same space id.

ADDRESS-ERROR : exception;

-- This exception is raised by "<", "<=1, 1>', ">=", and

-- (with two ADDRESS operands) if the two addresses do not

-- have the same space id. The exception CONSTRAINT-ERROR
-- can be raised by "+" and "-" if the result of ADDRESS does

-- not have the same space id as the ADDRESS operand.

F 3. The SYSTEM and STANDARD Packages 3-3

function "" (LEFT : in ADDRESS; RIGHT : in OFFSET)

return ADDRESS;
function "4" (LEFT : in OFFSET; RIGHT : in ADDRESS)

return ADDRESS;
3 function "-" (LEFT :in ADDRESS; RIGHT : in OFFSET)

return ADDRESS;

-- These routines provide support for address computations.

-- The meaning of the "+" and "-" operators is architecture
-- dependent. For the HP 9000/PA-RISC consider the ADDRESS
-- parameter to be the address of the first byte, of an array
-- of contiguous bytes, that grows from lower toward higher
-- (in an unsigned sense) memory addresses.

-- The "+" function returns the address of the byte at offset
-- OFFSET in the ADDRESS array. In C syntax it returns:
-- &(((char *) ADDRESS) [OFFSET])

-- The "-" function returns the address of the byte at offset
-- -OFFSET in the ADDRESS array. In C syntax it returns:
-- &(((char *) ADDRESS)[-OFFSET])

function "-" (LEFT : in ADDRESS; RIGHT : in ADDRESS)
return OFFSET;

--
-- Returns the distance between the given addresses. The
-- result is signed.
--

3-4 F 3. The SYSTEM and STANDARD Packages

function "<=1 (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

function "<" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function 1>=" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

-- Perform a comparison on addresses. The comparison

-- is unsigned.

function "mod" (LEFT :in ADDRESS; RIGHT :in POSITIVE)
return NATURAL;

-- Returns the offset of LEFT relative to the memory block
-- immediately below it starting at a multiple of RIGHT
-- storage units.

type ROUND-DIRECTION is (DOWN, UP);

function ROUND (VALUE : in ADDRESS;
DIRECTION in ROUND_-DIRECTION;
MODULUS in POSITIVE) return ADDRESS;

-- Returns the given address rounded to a specific value.

F 3. The SYSTEM and STANDARD Packages 3-5

-- The functions ALIGN, ALIGN and IS-ALIGNED are provided for
-- backwards compatibility with Ada/800 04.35

3
function ALIGN (LEFT : ADDRESS) return ADDRESS;

Align the given address up to four bytes boundary

(equivalent to SYSTEM.ROUND (LEFT, SYSTEM.UP, 4);)

function ALIGN (LEFT : ADDRESS; ALIGNMENT : INTEGER)
return ADDRESS;

-- Align the given address up to the alignment boundary if the
-- alignment is positive (equivalent to
-- SYSTEM.ROUND (LEFT, SYSTEM.UP, POSITIVE (ALIGNMENT));).
-- Align the given address down to the alignment boundary if
-- the alignment is negative (equivalent to

-- SYSTEM.ROUND (LEFT, SYSTEM.DOWN, POSITIVE (-ALIGNMENT));).

function IS-ALIGNED (LEFT : ADDRESS; ALIGNMENT : POSITIVE)
return BOOLEAN;

-- Returns TRUE if the LEFT is aligned at the ALIGNMENT
-- boundary (equivalent to

-- SYSTEM."mod" (LEFT, ALIGNMENT) = 0).

3-6 F 3. The SYSTEM and STANDARD Packages

generic
type TARGET is private;

function FETCH_-FROMADDRESS (A : in ADDRESS)
return TARGET;- -- ---- 3 /

-- Return the bit pattern stored at address A, as a value of
-- the specified TARGET type.

-- WARNING: These routines may give unexpected results if used

-- with unconstrained types.

generic
type TARGET is private;

procedure ASSIGNTOADDRESS
(A : in ADDRESS; T : in TARGET);

- -- ------

-- Store the bit pattern representing the value of the
-- specified TARGET object, into address A.

-- WARNING: These routines may give unexpected results if used
-- with unconstrained types.

type OBJECTLENGTH is range 0 .. 2**31 -1;

-- This type is used to designate the size of an object in
-- storage units.

F 3. The SYSTEM and STANDARD Packages 3-7

procedure MOVE (TO in ADDRESS;
FROM : in ADDRESS;
LENGTH : in OBJECT.LENGTH);

3 -- Copies LENGTH storage units starting at the address FROM
- to the address TO. The source and destination may overlap.
- Use of this procedure in optimized code may lead to
unexpected results.

-- Exported subprogram types, exceptions, and functions.

type EXPORTEDSUBPROGRAM_-ADDRESS is new INTEGER;

NOT-_EXPORTED- SUBPROGRAM : exception;

function EXPORTED-_SUBPROGRAM (ADA-ADDRESS : in ADDRESS)
return EXPORTED_- SUBPROGRAMADDRESS;

3-8 F 3. The SYSTEM and STANDARD Packages

-- When the parameter ADA-ADDRESS is passed the 'ADDRESS of
-- an Ada subprogram which has been exported via pragma EXPORT,
-- the function returns as a result, the "address" which must

-- be called by non-Ada code to invoke that Ada subprogram.
-- Note that the address provided by 'ADDRESS must NOT be
-- called directly by non-Ada code to invoke an exported Ada
-- subprogram (the result of doing so is unpredictable and will

-- most probably result in program failure). The result of
-- this function must always be used as the address to be
-- called by non-Ada code. If ADA-ADDRESS is not the
-- 'ADDRESS of an exported Ada subprogram, the function will

-- raise the exception NOTEXPORTEDSUBPROGRAM.

private

-- private part of package SYSTEM

end SYSTEM;

F 3. The SYSTEM and STANDARD Packages 3-9

F 3.2 The Package STANDARD
The specification of the predefined library package STANDARD follows:

package STANDARD is

-- The operators that are predefined for the types declared
-- in this package are given in comments since they are
-- implicitly declared. Italics are used for pseudo-names
-- of anonymous types (such as universal-real,

-- universal-integer, and universalfixed) and for undefined
-- information (such as any.fixed.point-type).

-- Predefined type BOOLEAN

type BOOLEAN is (FALSE, TRUE);

-- The predefined relational operators for this type are
-- as follows (these are implicitly dec2ared):
-- function "=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function /=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function '<" (LEFT, RIGHT BOOLEAN) return BOOLEAN;
-- function ">" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">=" (LEFT, RIGHT BOOLEAN) return BOOLEAN;

-- The predefined logical operands and the predefined
-- logical negation operator are as follows (these are
-- implicitly declared):

-- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "xor" (LEFT, RIGHT BOOLEAN) return BOOLEAN;

-- function "not" (RIGHT : BOOLEAN) return BOOLEAN;

3.10 F 3. The SYSTEM and STANDARD Packages

-- Predefined universal types

-- type universal-integer is predefined;

-- The predefined operators for the type universal-integer 3

-- are as follows (these are implicitly declared):

-- function "=" (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;
-- function "/=" (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;
-- function "<" (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;
-- function "<=° (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;
-- function '" (LEFT, RIGHT : universal- integer)

-- return BOOLEAN;
-- function ">=" (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;

-- function "+" (RIGHT : universal-integer)

-- return universal-integer;

-- function ...-.' (RIGHT : universal-integer)

-- return universal- integer;

-- function "abs" (RIGHT : universal-integer)

-- return universal-.integer;

-- function "+" (LEFT, RIGHT : universal-integer)

-- return universal- integer;
-- function "-" (LEFT, RIGHT : universal-integer)
-- return universal-integer;

-- function 11*" (LEFT, RIGHT universal-integer)

-- return universal-.integer;

-- function "/" (LEFT, RIGHT : universal-integer)
-- return universal- integer;

F 3. The SYSTEM and STANDARD Packages 3-11

-- function "rem" (LEFT, RIGHT : universal-integer)

-- return universal- integer;

-- function "mod" (LEFT, RIGHT : universal-integer)

-- return universal-integer;
3 -- function "**" (LEFT universal-integer;

RIGHT : INTEGER) return universal - integer;

-- type universal-real is predefined;

-The predefined operators for the type universal-real

-- are as follows (these are implicitly declared):

-- function "=" (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;
-- function "/=" (LEFT, RIGHT universal-integer)

-- return BOOLEAN;

-- function "V" (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;

-- function "<=" (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;
-- function ">" (LEFT, RIGHT : universal-integer)

-- return BOOLEAN;
-- function ">=" (LEFT, RIGHT universal-integer)

-- return BOOLEAN;

-- function "+" .(RIGHT : universal-integer)

-- return universal-integer;

-- function "abs" (RIGHT : universal-integer)
-- return universal_integer;
-- function "abs" (RIGHT : universalninteger)

-- return universal-integer;

-- function " (LEFT, RIGHT : universalinteger)
-return universal- integer ;

3-12 F 3. The SYSTEM and STANDARD Packages

-- function "-" (LEFT, RIGHT : universal-integer)

-- return universal-integer;

-- function "*1" (LEFT, RIGHT : universal-integer)
-- return universal-integer;

-- function "/" (LEFT, RIGHT : universal-integer) 3

-- return universal-integer;

-- function "**" (LEFT : universalreal;
-- RIGHT : INTEGER) return universal-real;

-- In addition, the following operators are

-- predefined for universal types:

-- function "*" (LEFT : universal-integer;

-- RIGHT : universal-real)

- - return universal-real

-- function "*" (LEFT : universal-real;

-- RIGHT : universal-integer)

-- return universal- real;

-- function "/" (LEFT : universal-real;

-- RIGHT : universal-integer)

-- return universal-real;

-- type universal-fixed is predefined;

-- The only operators declared for this type are:

-- function "*" (LEFT : any-fixed-point-type;

-- RIGHT : any-fixed-point-type)

-- return universal-fixed;

-- function "/" (LEFT : any-fixed-point-type;
-- RIGHT : anyfixed-pointtype)

-- return universal-f ixed;

F 3. The SYSTEM and STANDARD Packages 3-13

-- Predefined and additional integer types

type SHORTSHORT.INTEGER is range -128 .. 127; -- 8 bits long

-- This is equivalent to -(2**7) .. (2**7)-1
3 -- The predefined operators for this type are as follows

-- (these are implicitly declared):

-- function "-" (LEFT, RIGHT : SHORTSHORT.INTEGER)

-- return BOOLEAN;
-- function "/=" (LEFT, RIGHT : SHORTSHORT_ INTEGER)

-- return BOOLEAN;
-- function "<" (LEFT, RIGHT : SHORT-_SHORT-_INTEGER)
-- return BOOLEAN;
-- function "<=° (LEFT, RIGHT : SHORTSHORT_ INTEGER)
-- return BOOLEAN;
-- function ">" (LEFT, RIGHT : SHORT.SHORTINTEGER)

-- return BOOLEAN;
-- function ">=" (LEFT, RIGHT : SHORT-_SHORT-_INTEGER)

-- return BOOLEAN;

-- function "+" (RIGHT : SHORTSHORTINTEGER)

-- return SHORTSHORT_ INTEGER;
-- function "-" (RIGHT : SHORT.SHORTINTEGER)

-- return SHORT-_SHORT-.INTEGER;

-- function "abs" (RIGHT : SHORTSHORT_.INTEGER)
-- return SHORTSHORTINTEGER;
-- function "+" (LEFT,RIGHT: SHORTSHORTINTEGER)

-- return SHORT-SHORT.INTEGER;

-- function "-" (LEFTRIGHT: SHORTSHORTINTEGER)

-- return SHORT-_SHORT-_INTEGER;
-- function "*" (LEFT,RIGHT: SHORTSHORTINTEGER)

-- return SHORTSHORT_ INTEGER;
-- function "/" (LEFT,RIGHT: SHORTSHORT_INTEGER)

-- return SHORTSHORT_ INTEGER;

3-14 F 3. The SYSTEM and STANDARD Packages

-- function "rem" (LEFT,RIGHT: SHORTSHORT_.INTEGER)

-- return SHORTSHORT_.INTEGER;
-- function "mod" (LEFT,RIGHT: SHORT-_SHORT-_INTEGER)

-- return SHORTSHORT_ INTEGER;
3

function "**" (LEFT : SHORT.SHORT.INTEGER;
-- RIGHT : INTEGER) return SHORTSHORTINTEGER;

type SHORT-INTEGER is range -32-768 32-767; -- 16 bits long

-- This is equivalent to -(2**15) (2**15)-1

-- The predefined operators for this type are as follows

-- (these are implicitly declared):
-- function "=" (LEFT, RIGHT : SHORT-INTEGER) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : SHORTINTEGER) return BOOLEAN;
-- function "<" (LEFT, RIGHT : SHORT-INTEGER) return BOOLEAN;
-- function "=" (LEFT, RIGHT : SHORT-INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT : SHORT-INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT : SHORT-INTEGER) return BOOLEAN;

-- function "*" (RIGHT : SHORT-INTEGER) return SHORT-INTEGER;
-- function "-" (RIGHT : SHORT-INTEGER) return SHORT-INTEGER;

-- function "abs"(RIGHT : SHORT-INTEGER) return SHORT-INTEGER;
-- function "*" (LEFT, RIGHT : SHORT.INTEGER)

-- return SHORT-INTEGER;
-- function "-" (LEFT, RIGHT : SHORT.INTEGER)

-- return SHORT-INTEGER;

-- function "*" (LEFT, RIGHT : SHORT_INTEGER)
-- return SHORT-INTEGER;

-- function "I" (LEFT, RIGHT : SHORTINTEGER)

-- return SHORT-INTEGER;

F 3. The SYSTEM and STANDARD Packages 3-15

-- function "rem" (LEFT, RIGHT : SHORT-INTEGER)

-- return SHORT-INTEGER;
-- function "mod" (LEFT, RIGHT : SHORT-INTEGER)

-- return SHORT-INTEGER;
3

- function "**" (LEFT SHORT_INTEGER;

I G iRIGHT INTEGER) return SHORT-INTEGER;

type INTEGER is range -2-147-483-648 2-147-483_647;
-- type INTEGER is 32 bits long

-- This is equivalent to -(2**31) (2**31)-1
-- The predefined operators for this type are as follows

-- (these are implicitly declared):
-- function "=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<" (LEFT, RIGHT INTEGER) return BOOLEAN;
-- function "<=" (LEFT, RIGHT INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT INTEGER) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : INTEGER) return BOOLEAN;

-- function "." (RIGHT : INTEGER) return INTEGER;
-- function "-" (RIGHT : INTEGER) return INTEGER;
-- function "abs" (RIGHT : INTEGER) return INTEGER;
-- function " " (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "-" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "*" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "/" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "rem" (LEFT, RIGHT INTEGER) return INTEGER;

-- function "mod" (LEFT, RIGHT INTEGER) return INTEGER;

-- function "**" (LEFT INTEGER; RIGHT : INTEGER)

-- return INTEGER;

3-16 F 3. The SYSTEM and STANDARD Packages

-- Predefined INTEGER subtypes

subtype NATURAL is INTEGER range 0 INTEGER'LAST;
subtype POSITIVE is INTEGER range 1 INTEGER'LAST;

-- Predefined and additional floating point types 3

type FLOAT is digits 6 range -- 32 bits long
-2#1. 111_1111_1111_1111_1111_1111#E 127 .
2*I. 111_ 1111_ 1111_ 1111_1111-1111#E+127;

-- This is equivalent to -(2.0 - 2.0**(-23)) * 2.0**127
-- +(2.0 - 2.0**(-23)) * 2.0**127

-- This is approximately equal to the decimal range:

-- -3.402823E+38 .. +3.402823E+38

-- The predefined operators for this type are as follows

-- (these are implicitly declared):

-- function "= (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "" (LEFT, RIGHT : FLOAT) return BOOLEAN;

-- function "<=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function ">" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "." (RIGHT FLOAT) return FLOAT;
-- function "-" (RIGHT : FLOAT) return FLOAT;

-- function "abs" (RIGHT : FLOAT) return FLOAT;

-- function "+" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function - (LEFT, RIGHT : FLOAT) return FLOAT;

-- function "*" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "/" (LEFT, RIGHT : FLOAT) return FLOAT;

-- function "**" (LEFT : FLOAT; RIGHT : INTEGER) return FLOAT;

F 3. The SYSTEM and STANDARD Packages 3-17

type LONG-FLOAT is digits 15 range -- 64 bits long

-- Note: the following ranges are intentionally split
-- over two lines.

3-- In actual Ada programs, the values must be on one line.

11-1_1111_1111_1111_ 1111111#E+ 1023

2#1. 1111_1111_1111_1111_1111_1111_1111_
1111_ 1111_ 1111_1111_ 1111_ 1111#E+ 1023;

-- This is equivalent to -(2.0 - 2.0**(-52)) * 2.0**1023

-- +(2.0 - 2.0**(-52)) * 2.0**1023 ..
-- This is approximately equal to the decimal range:
-- -1.797693134862315E+308 .. +1.797693134862315E+308

-- The predefined operators for this type are as follows
-- (these are implicitly declared):
-- function "=' (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function "1=" (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function "" (LEFT, RIGHT : LONGFLOAT) return BOOLEAN;
-- function "=" (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function "" (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function "=" (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function " m' (RIGHT : LONG-FLOAT) return LONG-FLOAT;
-- function "-" (RIGHT : LONG-FLOAT) return LONG-FLOAT;
-- function "abs" (RIGHT LONG-FLOAT) return LONG-FLOAT;

-- function "4" (LEFT, RIGHT : LONG.FLOAT) return LONG-FLOAT;
-- function "-" (LEFT, RIGHT : LONG-FLOAT) return LONG-FLOAT;
-- function "*" (LEFT, RIGHT : LONG-FLOAT) return LONG-FLOAT;
-- function "I" (LEFT, RIGHT : LONG.FLOAT) return LONG-FLOAT;

-- function "**" (LEFT : LONG-FLOAT; RIGHT : INTEGER)

return LONG-FLOAT

3-18 F 3. The SYSTEM and STANDARD Packages

--This implementation does not provide any other

--floating point types

-- Predefined type DURATION

type DURATION is delta 2#0.000_000_000000_01# 3

range -86-400.0 .. 86-400.0;

-- DURATION'SMALL derived from this delta is 2.0**(-14),
-- which is the maximum precision that an object of type
-- DURATION can have and still be representable in this
-- implementation. This has an approximate decimal equivalent
-- of 0.000061 (61 microseconds). The predefined operators
-- for the type DURATION are the same as for any

-- fixed point type.

-- This implementation provides many anonymous predefined
-- fixed point types. They consist of fixed point types

-- whose "small" value is a power of 2.0 and whose mantissa
-- can be expressed using 31 or less binary digits.

-- Predefined type CHARACTER

-- The following lists characters for the standard ASCII
-- character set. Character literals corresponding to
-- control characters are not identifiers; they are

-- indicated in italics in this section.

type CHARACTER is
(ind, soh, stx, etr, eot, enq, ack, bel,

bs, ht, if, vt, iff, cr, so, si,
die, dc], dc2, dr.-, dc4, nok, syn, atb,
call, em, sub, csc, fs, 9s, rs, us,

F 3. The SYSTEM and STANDARD Packages 3-19

'0',)91, '"2, 13), p<W,)5,, '6), 17),

I', 'A', 'B', 'C' 'D', 'E', 'F', 'G',
PH), 'I$, PJI OKI, ILI, W ,' N , '02,

'Pl 'R', 'S', 'T', 'U', 'V'3 'W',
Jr y , 1z , ;P)\))11 3- - •

"), 'a;, Obl, 2c', Jd), Pei, off,)g",
'hy, Pil, 1j), k), 11, Im n, W , oy

1p) , qy r , s) P t)) V , P l

'x', 3y), Pz ', SP', 31', 1) , . " ,. del);

--The predefined operators for the type CHARACTER are
--the same as for any enumeration type.

-- Predefined type STRING (RM 3.6.3)

type STRING is array (POSITIVE range <>) of CHARACTER;

-- The predefined operators for this type are as follows:
-- function "=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "1= ' (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<= (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">(" LEFT, RIGHT : STRING) return BOOLEAN;

3-20 F 3. The SYSTEM and STANDARD Packages

-- Predefined catenation operators

-- function "&" (LEFT : STRING; RIGHT : STRING)

return STRING;
-- function "&" (LEFT : CHARACTER; RIGHT : STRING)

return STRING; 3

-- function '&" (LEFT : STRING; RIGHT : CHARACTER)

return STRING;
-- function "&" (LEFT : CHARACTER; RIGHT : CHARACTER)
return STRING ;

-- Predefined exceptions
CONSTRAINT_ ERROR exception;

NUMERIC-ERROR exception;
PROGRAM-ERROR exception;
STORAGE-ERROR exception;

TASKING-ERROR exception;

-- Predefined package ASCII

package ASCII is

-- Control characters

NUL constant CHARACTER nul;
SOH: constant CHARACTER soh;

STX constant CHARACTER = stz;

ETX constant CHARACTER etz;

EDT constant CHARACTER = eot;
ENQ constant CHARACTER enq;

ACK constant CHARACTER ack;

BEL constant CHARACTER bel;

F 3. The SYSTEM and STANDARD Packages 3-21

BS : constant CHARACTER :a bs;
HT : constant CHARACTER : ht;

LF : constant CHARACTER If;
VT : constant CHARACTER = vt;
FF : constant CHARACTER := if;
CR : constant CHARACTER = cr;
SO : constant CHARACTER = so;
SI : constant CHARACTER :w si;

DLE : constant CHARACTER : = die;
DC1 : constant CHARACTER = dcl;
DC2 : constant CHARACTER = dc2;
DC3 : constant CHARACTER : = dc3;
DC4 : constant CHARACTER : = dc4;
NAK : constant CHARACTER := nak;
SYN : constant CHARACTER = syn;
ETB : constant CHARACTER : etb;
CAN : constant CHARACTER can;
EM : constant CHARACTER = em;
SUB : constant CHARACTER = sub;
ESC : constant CHARACTER := esc;
FS : constant CHARACTER :fs;
GS : constant CHARACTER : gs;
RS : constant CHARACTER := rs;
US : constant CHARACTER := us;
DEL : constant CHARACTER :z del;

-- other characters
EXCLAM : constant CHARACTER:=
QUOTATION : constant CHARACTER:=
SHARP : constant CHARACTER:= W;
DOLLAR : constant CHARACTER:= T;
PERCENT : constant CHARACTER := ' ;
AMPERSAND : constant CHARACTER:=
COLON : constant CHARACTER:=

3-22 F 3. The SYSTEM and STANDARD Packages

SEMICOLON : constant CHARACTER :
QUERY : constant CHARACTER T;
AT-SIGN : constant CHARACTER W;

LBRACKET : constant CHARACTER
BACK.SLASH : constant CHARACTER 3

RBRACKET : constant CHARACTER

CIRCUMFLEX : constant CHARACTER
UNDERLINE : constant CHARACTER :
GRAVE : constant CHARACTER -

LBRACE : constant CHARACTER T;
BAR : constant CHARACTER = 'I ;

RBRACE : constant CHARACTER T;

TILDE : constant CHARACTER -

-- Lower case letters

LCA constant CHARACTER : a
LCB constant CHARACTER-= 'b';
LC.C constant CHARACTER 'c';

LCD constant CHARACTER : dl;

LCE constant CHARACTER : e ;
LCF constant CHARACTER If';
LC.G constant CHARACTER IV;

LCH constant CHARACTER : h ;
LCI constant CHARACTER : iI"

LCJ constant CHARACTER : j ;
LCK constant CHARACTER : k';

LCL constant CHARACTER 111;

LC.M constant CHARACTER : m* ;
LCN constant CHARACTER In';
LCO constant CHARACTER 'o';

LCP constant CHARACTER : p;
LCQ constant CHARACTER 'q';

LCR constant CHARACTER : r';

F 3. The SYSTEM and STANDARD Packages 3-23

LC..S :constant CHARACTER Is
LC..T :constant CHARACTER It
LC-.U :constant CHARACTER u

LC-V constant CHARACTER =v

3 LC..W :constant CHARACTER II
LC-.X :constant CHARACTER : x';
LC-.Y :constant CHARACTER IV

LC..Z :constant CHARACTER II

end ASCII;

end STANDARD;

3-24 F 3. The SYSTEM and STANDARD Packages

4
F 4. Type Representation

This chapter explains how data objects are represented and allocated by the
HP Ada compiler for the HP 9000 Series 600, 700, and 800 Computer Systems 4
and how to control this using representation clauses.

The representation of a data object is closely connected with its type.
Therefore, this section successively describes the representation of enumeration.
integer, floating point, fixed point, access, task, array, and record types.
For each class of type, the representation of the corresponding data object
is described. Except for array and record types, the description for each
class of type is independent of the others. Because array and record types
are composite types. it is necessary to understand the representation of their
components.

Ada provides several methods to control the layout and size of data objects;
these methods are iisted in Table 4-1.

Table 4.1. Methods to Control Layout and Size of Data Objects

Method Type Used On

pragma PACK array

pragma IMPROVE record

enumeration representation clause enumeration

record representation clause recoid

size specification clause any type

F 4. Type Representation 4.1

F 4.1 Enumeration Types

Syntax (Enumeration representation clause)

for enumeration-type-name use aggregate;

The aggregate used to specify this mapping is written as a one-dimensional
aggregate, for which the index subtype is the enumeration type and the

4 component type is universaLinteger. An others choice is not permitted in this
aggregate.

F 4.1.1 Internal Codes of Enumeration Literals

When no enumeration representation clause applies to an enumeration type,
the internal code associated with an enumeration literal is the position number
.of the enumeration literal. Thus, for an enumeration type with n elements, the
internal codes are the integers 0, 1, 2, .. , n-1.

An enumeration representation clause can be provided to specify the value of
each internal code as described in the Ada RM, section 13.3. The values used
to specify the internal codes must be in the range -(2**31) to (2**31)-1.

The following example illustrates the use of an enumeration representation
clause.

4-2 F 4. Type Representation

Example

type COLOR is (RED, ORANGE, YELLOW, GREEN, AQUA, BLUE, VIOLET);

for COLOR use
(RED => 10,
ORANGE => 20,
YELLOW => 40,
GREEN => 80,
AQUA => 160, 4
BLUE => 320,
VIOLET => 640);

In the above example, the internal representation for GREEN will be the
integer 80. The attributes 'PRED and 'SUCC will still return YELLOW and
AQUA, respectively. Also. section 13.3(6) in the Ada RM states that the 'POS
attribute will still return the positional value of the enumeration literal. In the
case of GREEN, the value that 'POS returns will be 3 and not 80. The only way
to examine the internal representation of the enumeration literal is to write the
value to a file or use UNCHECKEDCONVERSION to examine the value in memory.

F 4. Type Representation 4-3

F 4.1.2 Minimum Size of an Enumeration Type or Subtype

The minimum size of an enumeration subtype is the minimum number of bits
necessary for representing the internal codes in normal binary form.

A static subtype of a null range has a minimum size of one. Otherwise, define
m and M to be the smallest and largest values for the internal codes values of
the subtype. The minimum size L is determined as follows:

Value of m Calculation of L - Representation
smnalest positive integer such that:

m > 0 M < 2L - 1 Unsigned

M < 0 -2L- l < m andMf < 2L- 1 - 1 Signed two's complement

Example

type COLOR is (RED, ORANGE, YELLOW, GREEN, AQUA, BLUE, VIOLET);
-- The minimum size of COLOR is 3 bits.

subtype SUNNY-COLOR is COLOR range ORANGE .. YELLOW;
-- The minimum size of COLOR is 2 bits.
-- because the internal code for YELLOW is 2
-- and (2**1)-1 <= 2 <= (2**2)-1

type TEMPERATURE is (FREEZING, COLD, MILD, WARM, HOT);
for TEMPERATURE use

(FREEZING => -10,
COLD > 0,
MILD => 10,
WARM => 20,
HOT => 30);

-- The minimum size of TEMPERATURE is 6 bits
-- because with six bits we can represent signed
-- integers between -32 and 31.

4-4 F 4. Type Representation

F 4.1.3 Size of an Enumeration Type

When no size specification is applied to an enumeration type, the objects of
that type are represented as signed machine integers. The HP 9000 Series
600, 700, and 800 Computer Systems provides 8-, 16-, and 32-bit integers, and
the compiler automatically selects the smallest signed machine integer that
can hold all of the internal codes of the enumeration type. Thus, the default
size for enumeration types with 128 or less elements is 8 bits, the default size
for enumeration types with 129 to 32768 elements is 16 bits. Because this
implementation does not support enumeration types with more than 32768 4
elements, a size specification or enumeration representation clause must be used
for enumeration types that use a 32-bit representation.

When a size specification is applied to an enumeration type, this enumeration
type and all of its subtypes have the size specified by the length clause. The
size specification must specify a value greater than or equal to the minimum

size of the type. Note that if the size specification specifies the minimum size
and none of the internal codes are negative integers, the internal representation
will be that of an unsigned type. Thus, when using a size specification of eight
bits, you can have up to 256 elements in the enumeration type.

If the enumeration type is used as a component type in an array or
record definition that is further constrained by a pragma PACK or a record
representation clause, the size of this component will be determined by the
pragma PACK or the record representation clause. This allows the array or
record type to temporarily override any size specification that may have
applied to the enumeration type.

The Ada compiler provides a complete implementation of size specifications.
Nevertheless, because enumeration values are coded using integers, the specified
length cannot be greater than 32 bits.

F 4.1.4 Alignment of an Enumeration Type

An enumeration type is byte-aligned if the size of the type is less than or equal
to eight bits. An enumeration type is aligned on a 2-byte boundary (16 bit
or half-word aligned) if the size of the type is in the range of 9..16 bits. An
enumeration type is aligned on a 4-byte boundary (32 bit or word aligned) if
the size of the type is in the range of 1 7..32 bits.

F 4. Type Representation 4-5

F 4.2 Integer Types

F 4.2.1 Predefined Integer Types
The HP 9000 Series 600, 700, and 800 Computer Systems provides these three
predefined integer types:

type SHORTSHORTINTEGER
4 is range -(2**7) (2**7)-1; -- 8-bit signed

type SHORT-INTEGER
is range -(2**15) .. (2**15)-1; -- 16-bit signed

type INTEGER
is range -(2**31) .. (2**31)-l; -- 32-bit signed

An integer ype , eclared by a declaration of the form

type T is range L .. U;

is implicitly derived from a predefined integer type. The compiler
automatically selects the smallest predefined integer type whose range contains
the values L to U, inclusive.

F 4.2.2 Internal Codes of Integer Values

The internal codes for integer values are represented using the two's
complement binary method. The compiler does not represent integer values
using any kind of a bias representation. Thus, one internal code will always
represent the same literal value for any Ada integer type.

4-6 F 4. Type Representation

F 4.2.3 Minimum Size of an Integer Type or Subtype

The minimum" size of an integer subtype is the minimum number of bits
necessary for representing the internal codes of the subtype.

A static subtype of a null range has a minimum size of one. Otherwise, define m
and M to be the smallest and laxgest values for the internal codes values of the
subtype.

The minimum size L is determined as follows:

Value of m Calculation of L Representation4

smallest positive integer such that:

M >= 0 M < 2L 1 Unsigned

M < 0 -2 L- 1 < m and M < 2L- - 1 Signed two's complement

F 4. Type Representation 4-7

Example

type MYINT is range 0 .. 31;
-- The minimum size of MY.INT is 5 bits using
-- an unsigned representation

subtype SOMEINT is MYINT range 5 .. 7;
-- The minimum size of SOMEINT is 3 bits.
-- The internal representation of 7 requires three

4 -- binary bits using an unsigned representation.

subtype DYNAMIC-.INT is MY..INT range L .. U;
-- Assuming that L and U are dynamic,
-- (.e. not known at compile time)

The minimum size of DYNAMIC-INT is the same as its base type,
-MYINT, which is 5 bits.

type ALTINT is range -1 .. 16;
-- The minimum size of MYINT is 6 bits,
-- because using a 5-bit signed integer we
-- can only represent numbers in the range -16 .. 15
-- and using a 6-bit signed integer we
-- can represent numbers in the range -32 .. 31
-- Since we must represent 16 as well as -1 the
-- compiler must choose a 6-bit signed representation

4-8 F 4. Type Representation

F 4.2.4 Size of an Integer Type

The sizes of the predefined integer types SHORTSHORT_ INTEGER,
SHORT-INTEGER and INTEGER are 8, 16, and 32 bits, respectively.

When no size specification is applied to an integer type, the default size is that
of the predefined integer type from which it derives, directly or indirectly.

Example

type S is range 80 .. 100;
-- Type S is derived from SHORTSHORTINTEGER 4

-- its default size is 8 bits.

type M is range 0 .. 255;
-- Type M is derived from SHORT-INTEGER
--its default size is 16 bits.

type Z is new M range 80 .. 100;
-- Type Z is indirectly derived from SHORT-INTEGER
-- its default size is 16 bits.

type L is range 0 .. 99999;
-- Type L is derived from INTEGER
-- its default size is 32 bits.

type UNSIGNED-BYTE is range 0 .. (2**8)-1;
for VNSIGNEDBYTE'SIZE use 8;

-- Type UNSIGNED.BYTE is derived from SHORT-INTEGER
-- its actual size is 8 bits.

type UNSIGNEDHALFWORD is range 0 .. (2**16)-1;
for UNSIGNEDHALFWORD'SIZE use 16;
-- Type UNSIGNEDHALFWORD is derived from INTEGER

-- its actual size is 16 bits.

F 4. Type Representation 4-9

When a size specification is applied to an integer type, this integer type
and all of its subtypes have the size specified by the length clause. The size
specification must specify a value greater than or equal to the minimum size
of the type. If the size specification specifies the minimum size and the lower
bound of the range is not negative, the internal representation will be unsigned.
Thus, when using a size specification of eight bits, you can represent an integer
range from 0 to 255.

Using a size specification on an integer type allows you to define unsigned
machine integer types. The compiler fully supports unsigned machine integer
types that are either 8 or 16 bits. The 8-bit unsigned machine integer type
is derived from the 16-bit predefined type SHORT-INTEGER. Using the 8-bit
unsigned integer type in an expression results in it being converted to the
predefined 16-bit signed type for use in the expression. This same method also
applies to the 16-bit unsigned machine integer type, such that using the type in
an expression results in a conversion to the predefined 32-bit signed type.

However, Ada does not allow the definition of an unsigned integer type that
has a greater range than the largest predefined integer type. INTEGER is the
largest predefined integer type and is represented as a 32-bit signed machine
integer. Because the Ada language requires predefined integer types to be
symmetric about zero (Ada RM, section 3.5.4), it is not possible to define a
32-bit unsigned machine integer type because the largest predefined integer
type, INTEGER, is also a 32-bit type.

If the integer type is used as a component type in an array or record definition
that is further constrained by a pragma PACK or record representation clause,
the size of this component will be determined by the pragma PACK or record
representation clause. This allows the array or record type to temporarily
override any-size specification that may have applied to the integer type.

The Ada compiler provides a complete implementation of size specifications.
Nevertheless, because integers are coded using machine integers, the specified
length cannot be greater than 32 bits.

4-10 F 4. Type Representation

F 4.2.5 Alignment of an Integer Type

An integer type is byte-aligned if the size of the type is less than or equal to
eight bits. An integer type is aligned on a 2-byte boundary (16 bit or half-word
aligned) if the size of the type is in the range of 9..16 bits. An integer type is
aligned on a 4-byte boundary (32 bit or word aligned) if the size of the type is
in the range of 17..32 bits.

F 4.2.6 Performance of an Integer Type 4

The type INTEGER is the most efficient of the integer types in Ada/800 because
the hardware can access these integers and perform overflow checks on them
with no additional cost. For the smaller integer types (SHORT-INTEGER and
SHORTSHORTINTEGER), the compiler must emit additional instructions for
access and overflow checking that increase both the execution time and the size
of the generated code.

F 4. Type Representation 4-11

F 4.3 Floating Point Types

F 4.3.1 Predefined Floating Point Types
The HP 9000 Series 600/700/800 Computer Systems provides two predefined
floating point types.

type FLOAT is digits 6 range
-(2.0 - 2.0**(-23))*(2.0**127)
+(2.0 - 2.0**(-23))*(2.0**127);

-- This expresses the decimal range -3.40282E+38 .. 3.40282E+38

type LONG-FLOAT is digits 15 range
-(2.0 - 2.0**(-$2))*(2.0**1023)
+(2.0 - 2.0**(-52))*(2.0**1023);

-- This expresses the decimal range:
-- -1.797693134862315E 308 .. +1.797693134862315E+308

A floating point type declared by a declaration of the form

type T is digits D [range L .. U];

is implicitly derived from a predefined floating point type. The compiler
automatically selects the smaller of the two predefined floating point types,
FLOAT or LONG-FLOAT, whose number of digits is greater than or equal to D and
that contains the values L to U inclusive.

F 4.3.2 Internal Codes of Floating Point Values

The internal codes for floating point values are represented using the IEEE
standard formats for single precision and double precision floats.

The values of the predefined type FLOAT are represented using the single
precision float format. The values of the predefined type LONG-FLOAT are
represented using the double precision float format. The values of any other
floating point type are represented in the same way as the values of the
predefined type from which it derives, directly or indirectly.

4-12 F 4. Type Representation

The internal representation of the IEEE floating point types can be described

by the following Ada specification

type BIT is range 0..1;
for BIT'SIZE use 1;

-- IEEE representation for 32-bit FLOAT type

FLOAT32-BIAS : constant := 2**7-1; 4

type FLOAT32-EXPONENT is range 0 .. 2**8-1;

for FLOAT32_EXPONENT'SIZE use 8;

type FLOAT32-MANTISSA is array(O..22) of BIT;

for FLOAT32-MANTISSA'SIZE use 23;

type FLOAT32-REC is
record

SIGNBIT BIT;
EXPONENT FLOAT32_EXPONENT;
MANTISSA FLOAT32_MANTISSA;

end record;
for FLOAT32-REC use

record
SIGN-BIT at 0 range 0 .. 0;
EXPONENT at 0 range 1 .. 8;
MANTISSA at 0 range 9 .. 31;

end record;
for FLOAT32.REC'SIZE use 32;

-- IEEE representation for 64-bit FLOAT type

FLOAT64-BIAS : constant := 2**10-1;

type FLOAT64-EXPONENT is range 0 .. 2**11-1;

F 4. Type Representation 4.13

for FLOAT64-EXPONENT'SIZE use 11;

type FLOAT64-MANTISSA is array(O..51) of BIT;
for FLOAT64-MANTISSA'SIZE use 52;

type FLOAT64-REC is
record

SIGN-BIT : BIT;
EXPONENT : FLOAT64_EXPONENT;

4 MANTISSA : FLOAT64_MANTISSA;
end record;

for FLOAT64-REC use
record

SIGN-BIT at 0 range 0 .. 0;
EXPONENT at 0 range 1 .. 11;
MANTISSA at 0 range 12 .. 63;

end record;
for FLOAT64_REC'SIZE use 64;

4-14 F 4. Type Representation

F 4.3.3 Minimum Size of a Floating Point Type or Subtype

The minimum size of a floating point subtype is 32 bits if its base type is
FLOAT or a type derived from FLOAT; it is 64 bits if its base type is LONG.FLOAT
or a type derived from LONG-FLOAT.

F 4.3.4 Size of a Floating Point Type

The only size that can be specified for a floating point type in a size 4
specification is its default size (32 or 64 bits).

F 4.3.5 Alignment of a Floating Point Type

A floating point type FLOAT is aligned on a 4-byte boundary (32 bit or word
aligned). The floating point type LONG-FLOAT is aligned on an 8-byte boundary
(64 bit or double-word aligned).

F 4. Type Representation 4-15

F 4.4 Fixed Point Types

F 4.4.1 Predefined Fixed Point Types
To implement fixed point types, the HP 9000 Series 600, 700, and 800
Computer System provides a set of three anonymous predefined fixed point
types of this form:

4 type SHDRT-FIXED is delta D range
-C2**7)*SMALL .. C+(2**7)-1)*SMALL;

for SHORT-.FIXED'SMALL use SMALL;

for SHORT-,FIXED'SIZE use 8;

type FIXED is delta D range
-(2**1S)*SMALL .. ((2**1S)-l)*SMALL;

for FIXED'SMALL use SMALL;
for FIXED'SIZE use 16;

type LONG-.FIXED is delta D range
-(2**31)*SMALL .. ((2**31)-l)*SMALL;

for LONG-.FIXED'SMALL use SMALL;
for LONG-FIXED'SIZE use 32;

-In the above type definitions SMALL is the largest
-power of two that is less than or equal to D.

A fixed point type declared by a declaration of the form

type T is delta D range L ..U;

is implicitly derived from one of the predefined fixed point types.

4-16 F 4. Type Representation

The compiler automatically selects the smallest predefined fixed point type
using the following method:

" Choose the largest power of two that is not greater than the value specified
for the delta to use as SMALL.

" Determine the ranges for the three predefined fixed point types using the
value obtained for SMALL.

" Select the smallest predefined fixed point type whose range contains the
values LeSMALL to U-SMALL, inclusive.

Using the above method, it is possible that the values L and U lie outside the 4

range of the compiler-selected fixed point type. For this reason, the values used
in a fixed point range constraint should be expressed as follows, to guarantee
that the values of L and U are representable in the resulting fixed point type:

type ANY-FIXED is delta D range L-D .. U+D;
-- The values of L and U are guaranteed to be
-- representable in the type ANY-FIXED.

F 4.4.2 Internal Codes of Fixed Point Values

The internal codes for fixed point values are represented using the two's
complement binary method as integer multiples of 'SMALL. The value of a fixed
point object is 'SMALL multiplied by the stored internal code.

.F 4.4.3 Small of a Fixed Point Type

The Ada compiler requires that the value assigned to 'SMALL is always a power
of two. Ada does not support a length clause that specifies a 'SMALL for a fixed
point type that is not a power of two.

If a fixed point type does not have a length clause that specifies the value to
use for 'SMALL. the value of 'SMALL is determined by the compiler according to
the rules in the Ada RM. section 3.5.9.

F 4. Type Representation 4.17

F 4.4.4 Minimum Size of a Fixed Point Type or Subtype

The minimum size of a fixed point subtype is the minimum number of binary
digits necessary to represent the values in the range of the subtype using the
'SMALL of the base type.

A static subtype of a null range has a minimum size of one. Otherwise, define
s and S to be the bounds of the subtype, define m and M to be the smallest
and greatest model numbers of the base type, and let i and I be the integer
representations for the model numbers m and M. The following axioms hold:

S < Mn < M <= S
m - T'BASE'SMALL <= s
M * T'BASE'SMALL >= S
M = T'BASE'LARGE
i = m / T'BASE'SMALL
I = M / T'BASE'SMALL

The minimum size L is determined as follows:

Value of t Calculation of L - Representation
smallest positive integer such that:

i > 0 1 < 2L 1_ Unsigned

< 0 -2 L - 1 < i and I < 2 L- 1 - 1 Signed two's complement.

4-18 F 4. Type Representation

Example

type UF is delta 0.1 range 0.0 .. 100.0;
-- The value used for 'SMALL is 0.0625
-- The minimum size of UF is 11 bits,
-- seven bits before the decimal point
-- four bits after the decimal point
-- and no bits for the sign.

type SF is delta 16.0 range -400.0 .. 400.0;
-- The minimum size of SF is 6 bits, 4

-- nine bits to represent the range 0 to 511
-- less four bits by the implied decimal point of 16.0
-- and one bit for the sign.

subtype UFS is UF delta 4.0 range 0.0 .. 31.0;

-- The minimum size of UFS is 9 bits,
-- five bits to represent the range 0 to 31
-- four bits for the small of 0.0625 from the base type
-- and no bits for the sign.

subtype SFD is SF range X .. Y;
-- Assuming that X and Y are not static, the minimum size
-- of SFD is 6 bits. (the same as its base type)

F 4. Type Representation 4-19

F 4.4.5 Size of a Fixed Point Type

The sizes of the anonymous predefined fixed point types SHORT-FIXED, FIXED,
and LONG-FIXED are 8, 16, and 32 bits, respectively.

When no size specification is applied to a fixed point type, the default size
is that of the predefined fixed point type from which it derives, directly or
indirectly.

4 Example

type Q is delta 0.01 range 0.00 .. 1.00;
-- Type Q is derived from an 8-bit predefined

-- fixed point type, its default size is 8 bits.

type R is delta 0.01 range 0.00 .. 2.00;

-- Type R is derived from a 16-bit predefined

-- fixed point type, its default size is 16 bits.

type S is new R range 0.00 .. 1.00;

-- Type S is indirectly derived from a 16-bit predefined
-- fixed point type, its default size is 16 bits.

type SF is delta 16.0 range -400.0 .. 400.0;
for SF'SIZE use 6;
-- Type SF is derived from an 8-bit predefined
-- fixed point type, its actual size is 6 bits.

type UF'is delta 0.1 range 0.0 .. 100.0;
for UF'SIZE use 11;
-- Type UF is derived from a 16-bit predefined

-- fixed point type, its actual size is 11 bits.

-- The value used for 'SMALL is 0.0625

4-20 F 4. Type Representation

When a size specification is applied to a fixed point type, this fixed point type
and all of its subtypes have the size specified by the length clause. The size
specification must specify a value greater than or equal to the minimum size
of the type. If the size specification specifies the minimum size and the lower
bound of the range is not negative, the internal representation will be that of
an unsigned type.

If the fixed point type is used as a component type in an array or
record definition that is further constrained by a pragma PACK or record
representation clause, the size of this component will be determined by the
pragma PACK or record representation clause. This allows the array or record 4
type to temporarily override any size specification that may have applied to the
fixed point type.

The Ada compiler provides a complete implementation of size specifications.
Nevertheless, because fixed point objects are coded using machine integers, the
specified length cannot be greater than 32 bits.

F 4.4.6 Alignment of a Fixed Point Type

A fixed point type is byte-aligned if the size of the type is less than or equal
to eight bits. A fixed point type is aligned on a 2-byte boundary (16 bit or
half-word aligned) if the size of the type is in the range of 9..16 bits. A fixed
point type is aligned on a 4-byte boundary (32 bit or word aligned) if the size
of the type is in the range of 17..32 bits.

F 4. Type Representation 4-21

F 4.5 Access Types

F 4.5.1 Internal Codes of Access Values

In the program generated by the compiler, access values are represented
using 32-bit machine addresses. The predefined generic function
UNCHECKED-CONVERSION can be used to convert the internal representation
of an access value into any other 32-bit type. You can also use
UNCHECKED-CONVERSION to assign any 32-bit value into an access value. When
interfacing with externally supplied data structures, it may be necessary to use
the generic function UNCHECKED_-CONVERSION to convert a value of the type
SYSTEM. ADDRESS into the internal representation of an access value. Programs
that use UNCHECKED-CONVERSION in this manner cannot be considered portable
across different implementations of Ada.

F 4.5.2 Collection Size for Access Types

A length clause that specifies the collection size is allowed for an access type.
This collection size applies to all objects of this type and any type derived
from this type, as well as any and all subtypes of these types. Thus, a length
clause that specifies the collection size is only allowed for the original base type
definition and not for any subtype or derived type of the base type.

When no specification of collection size applies to an access type, the attribute
STORAGE-SIZE returns zero. In this case, the compiler will dynamically manage
the storage for the access type and it is not possible to determine directly the
amount of storage available in the collection for the access type.

4-22 F 4. Type Representation

The recommended format of a collection size length clause is:

UNUM: constant := 50; -- The maximum number
-- of elements needed

USIZE: constant : <U size>; -- Substitute the value
-- of U'SIZE here

-- The constant USIZE should also be:
-- 1. a multiple of two

-- 2. greater than or equal to four 4

-- Additionally, the type U must have a static size

type P is access U; -- Type U is any
-- non-dynamic user defined type.

for P'STORAGESIZE use (U.SIZE*UNUM) 4;

In the above example we have specified a collection size that is large enough to
contain 50 objects of the type U. There is a constant overhead of four bytes for
each storage collection. Because the collection manager rounds the element size
to be a multiple of two that is four or greater. you must ensure that USIZE
is the smallest multiple of two that is greater than or equal to U'SIZE and is
greater than or equal to four.

You can also provide a length clause that specifies the collection size for a type
that has a dynamic size. It is only possible to specify an tipper limit on the
amount of memory that can be used by all instances of objects that are of this
dynamic type. Because the size is dynamic, you cannot specify the number of
elements in the collection.

F 4. Type Representation 4-23

F 4.5.3 Minimum Size of an Access Type or Subtype

The minimum size of an access type is always 32 bits.

F 4.5.4 Size of an Access Type

The size of an access type is 32 bits, the same as its minimum size.

The only size that can be specified for an access type in a size specificationI ~ clause is its usual size (32 bits).

F 4.5.5 Alignment of an Access Type

An access type is aligned on a 4-byte boundary (32 bit or word-aligned).

4.24 F 4. Type Representation

F 4.6 Task Types

F 4.6.1 Internal Codes of Task Values

In the program generated by the compiler, task type objects are represented
using 32-bit machine addresses.

4

F 4.6.2 Storage for a Task Activation

The value returned by the attribute 'STORAGE-SIZE has three cases.

" For a task type without a length clause and using the default storage size at
bind time, the attribute 'STORAGE-SIZE returns the default task storage size.

" For a task type without a length clause and using the bind-time option -W
b,-t,nnn to set the task storage size, the attribute 'STORAGE-SIZE returns
nnn*1024.

" For a task type with a length clause, the attribute 'STORAGE-SIZE returns
the value used in the length clause.

When a length clause is used on a task type it specifies the number of storage
units reserved for an activation of a task of this type (Ada RM 13.2 (10)).
This space includes both the task stack space and a private data section of
approximately 5400 bytes. The private data section contains the Task Control
Block which has information used by the Ada runtime to manage the task.
The size specified in the length clause must be greater than this minimum
size. otherwise a TASKINGERROR exception will be generated during the
elaboration of the activation of a task object of this type. The stack space
requirements for the task object must also be considered. If the stack space is
insufficient during the execution of the task, the exception STORAGE-ERROR
will be raised and the task object will be terminated.

F 4. Type Representation 4.25

An example that sets the storage usage for a task type that needs 4K bytes of
stack space:

task type MY.TASK.TYPE is
entry START;
entry STOP;

end MY_TASK.TYPE;

for MY.TASKTYPE'STORAGESIZE use 5400 + (4 * 1024);
-- Allocates a 4K stack.

4

F 4.6.3 Minimum Size of a Task Stack

The task object will use 800 bytes of stack space in the first stack frame. Some
additional stack space is required to make calls into the Ada runtime. The
smallest value that can be safely used for a task with minimal stack needs is
approximately 2000 bytes. If the task object has local variables or if it makes
calls to other subprograms, the stack storage requirements will be larger. The
actual amount of stack space used by a task will need to be determined by trial
and error. If a tasking program raises STORAGE-ERROR or behaves abnormally,
you should increase the stack space for the tasks.

F 4.6.4 Limitation on Length Clause for Derived Task Types

If a task type has a storage size length clause, the storage size applies to all
task objects of this type and any task type derived from this type. Thus, a
length clause that specifies the storage size is only allowed for the original task
type definition and not for any derived task type.

4-26 F 4. Type Representation

F 4.6.5 Minimum Size of a Task Type or Subtype

The minimum size of a task type is always 32 bits.

F 4.6.6 Size of a Task Type

The size of a task type is 32 bits, the same as its minimum size.

The only size that can be specified for a task type in a size specification clause
is its usual size (32 bits).

F 4.6.7 Alignment of a Task Type

A task type is aligned on a 4-byte boundary (32 bit or word aligned).

F 4. Type Representation 4-27

F 4.7 Array Types

F 4.7.1 Layout of an Array

Each array is allocated in a contiguous area of storage units. An the
components have the same size. A gap may exist between two consecutive
components (and after the last component). All the gaps are the same size, asI shown in Figure 4-1.

C~offlt Gap Co"amn Gap Coenporem Gap

iL02=073033

Figure 4-1. Layout of an Array

F 4.7.2 Array Component Size and Pragma PACK

If the array is not packed, the size of each component is the size of the
component type. This size is the default size of the component type unless a
size specification applies to the component type.

If the array is packed and the array component type is neither a record nor
array -type. the size of the component is the minimum size of the component
type. The minimum size of the component type is used even if a size
specification applies to the component type.

4-28 F 4. Type Representation

Packing the array has no effect on the size of the components when the
component type is a record or array type.

Example

type A is array(1..8) of BOOLEAN;
-- The component size of A is the default size
-- of the type BOOLEAN: 8 bits.

type B is array(1..8) of BOOLEAN; 4
pragma PACK(B);
-- The component size of B is the minimum size

-- of the type BOOLEAN: 1 bit.

type DECIMAL-DIGIT is range 0..9;
-- The default size for DECIMAL-DIGIT is 8 bits
-- The minimum size for DECIMAL.DIGIT is 4 bits

type BCDNOTPACKED is array(1..8) of DECIMAL-DIGIT;
-- The component size of BCDNOTPACKED is the default
-- size of the type DECIMAL-DIGIT: 8 bits.

type BCD-PACKED is array(1..8) of DECIMAL-DIGIT;
pragma PACK(BCDPACKED);
-- The component size of BCD-PACKED is the minimum
-- size of the type DECIMAL-DIGIT: 4 bits.

F 4.7.3 Array Gap Size and Pragma PACK

If the array type is not packed and the component type is a record type
without a size specification clause, the compiler may choose a representation
for the array with a gap after each component. Inserting gaps optimizes access
to the array components. The size of the gap is chosen so that each array
component begins on an alignment boundary.

If the array type is packed, the compiler will generally not insert a gap between
the array components. In such ca.ses, access to array components can be slower

F 4. Type Representation 4-29

because the array components will not always be aligned correctly. However,
in the specific case where the component type is a record and the record has
a record representation clause specifying an alignment, the alignment will be
honored and gaps may be inserted in the packed array type.

Example

type R is
record

4 K :INTEGER; -- Type Integer is word aligned.
B : BOOLEAN; -- Type Boolean is byte aligned.

end record;
-- Record type R is word aligned. Its size is 40 bits.

type A is array(1..10) of R;
-- A gap of three bytes is inserted after each array
-- component in order to respect the alignment of type R.
-- The size of array type A is 640 bits.

type PA is array(i..10) of R;
pragma PACK(PA);
-- There are no gaps in an array of type PA because
-- of the pragma PACK statement on type PA.
-- The size of array type PA is 400 bits.

type NR is new R;
for NR'SIZE uso 40;

type B'is array(1..10) of NR;
-- There are no gaps in an array of type B because
-- of the size specification clause on type NR.

-- The size of array type B is 400 bits.

4-30 F 4. Type Representation

F 4.7.4 Size of an Array Type or Subtype

The size of an array subtype is obtained by multiplying the number of its
components by the sum of the size of the component and the size of the gap.

The size of an array type or subtype cannot be computed at compile time if
any of the following are true:

" If the array has non-static constraints or if it is an unconstrained type with
non-static index subtypes (because the number of components can then only
be determined at run time) 4

" If the components are records or arrays and their constraints or the
constraints of their subcomponents are not static (because the size of the
components and the size of the gaps can then only be determined at run
time). Pragma PACK is not allowed in this case.

As indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components, if possible. The
consequence of packing an array type is thus to reduce its size.

Array packing is fully implemented by the Ada compiler with this limitation:
if the components of an array type are records or arrays and their constraints
or the constraints of their subcomponents are not static, the compiler ignores
any pragma PACK statement applied to the array type and issues a warning
message.

A size specification applied to an array type has no effect. The only size that
the compiler will accept in such a length clause is the usual size. Nevertheless,
such a length clause can be used to verify that the layout of an array is as
expected by the application.

F 4. Type Representation 4-31

F 4.7.5 Alignment of an Array Type

If no pragma PACK applies to an array type and no size specification applies to
the component type, the array type is aligned as the component type would
have been.

If a pragma PACK applies to an array type or if a size specification applies to
the component type (so that there are no gaps), the alignment of the array
type is as given in Table 4-2

4 Table 4-2. Alignment and Pragma PACK

Component Component
(Normal (Alignment Within the Array)

Alignment) Double-Word Word Half-Word Byte Bit

Double-Word Double-Word Word Half-W-\ord Byte Bit.

Word Word Word Half-Word Byte Bit

Half-Word Half-Word Half-Vord Half-Word Byte Bit

Byte Byte Byte Byte Byte Bit

Bit Bit Bit Bit Bit Bit

4-32 F 4. Type Representation

F 4.8 Record Types

Syntax (record representation clause)

for record-type-name use
record [alignment-clauseI

[component-clause I

end record;

Syntax (alignment clause)

at mod static-expression

Syntax (component clause)

record-component-name at static-expression
range static-expression static-expression

F 4.8.1 Layout of a Record

A record is allocated in a contiguous area of storage units. The size of a record
depends on the size of its components and the size of any gaps between the
components. The compiler may add additional components to the record.
These coxmponents are called implicit components.

The positions and sizes of the components of a record type object can be
controlled using a record representation clause as described in the Ada RM,
section 13.4. If the record contains compiler-generated implicit components,
their position also can be controlled using the proper component clause. For
more details, see section "F 4.8.6 Implicit Components*. In the implementation
for the HP 9000 Series 600: 700, and 800 Computer Systems, there is no

restriction on the position that can be specified for a component of a record.
If the component is not a record or an array. its size can be any size from the

minimum size to the default size of its base type. If the component is a record
or an array. its size must be the size of its base type.

F 4. Type Representation 4-33

Example (Record with a representation clause):

type PSWBIT is new BOOLEAN;
for PSWBIT'SIZE use 1;

type CARRY-BORROW is array (..8) of PSWBIT;
pragma PACK (CARRYBORROW);

FIRST-BYTE : constant 0;
CABO-BYTE : constant 1;
THIRD-BYTE : constant 2;
SYSMASKBYTE: constant 3;

type PSW is

record
T :PSWBIT;

H PSWBIT;
L PSWBIT;
N PSWBIT;
X PSWBIT;

B PSWBIT;
C PSWBIT;
V PSWBIT;
M PSWBIT;
CB CARRY-BORROW;
R PSWBIT;
Q PSW.BIT;
P PSW.BIT;

D' PSWBIT;
I PSWBIT;

end record;

-- This type can be used to map the status register of
-- the HP-PA processor.

4-34 F 4. Type Representation

for PSW use
record at mod 4;

T at FIRST-BYTE range 7..7;
H at SECOND-BYTE range 0..0;
L at SECOND-BYTE range 1 .1;
N at SECOND-BYTE range 2 .2;
X at SECOND-BYTE range 3. .3;
B at SECOND-BYTE range 4. .4;

C at SECOND-BYTE range 5 .5;
V at SECOND-BYTE range 6. .6; 4
M at SECOND-BYTE range 7. .7;
CB at CABO-BYTE range 0. .7;
R at SYSMASKBYTE range 3 .3;
Q at SYSMASKBYTE range 4. .4;
P at SYSMASKBYTE range 5..5;
D at SYSMASKBYTE range 6..6;

I at SYSMASKBYTE range 7..7;
end record;

In the above example, the record representation clause explicitly tells the
compiler both the position and size for each of the record components. The
optional alignment clause specifies a 4-byte alignment for this record. In this
example every component has a corresponding component clause, although
it is not required. If one is not supplied: the choice of the storage place for
that component is left to the compiler. If component clauses are given for all
components, including any implicit components, the record representation
clause completely specifies the representation of the record type and will be
obeyed exactly by the compiler.

F 4.8.2 Bit Ordering in a Component Clause

The HP Ada compiler for the HP 9000 Series 800 Computer System numbers
the bits in a component clause starting from the most significant bit. Thus, bit-
zero represents the most significant bit of an 8-bit byte and bit seven represents
the least significant bit of the byte.

F 4. Type Representation 4-35

F 4.8.3 Value used for SYSTEM.STORAGEUNIT

The smallest directly addressable unit on the HP 9000 Series 600/700/800
Computer Systems is the 8-bit byte. This is the value used for
SYSTEM. STORAGE-UNIT that is implicitly used in a component clause. A
component claufr, specifies an offset and a bit range. The offset in a component
clause is measured in units of SYSTEM. STORAGE-UNIT, which for the HP 9000
Series 600/700/800 Computer Systems is an 8-bit byte.

The compiler determines the actual bit address for a record component by
4 combining the byte offset with the bit range. There are several different

ways to refer to the same bit address. In the following example, each of the
component clauses refer to the same bit address.

Example

COMPONENT at 0 range 16 .. 18;
COMPONENT at 2 range 8 .. 10;
COMPONENT at 2 range 0 .. 2;

F 4.8.4 Compiler-Chosen Record Layout

If no component clause applies to a component of a record, its size is the size
of the base type. Its location in the record layout is chosen by the compiler so
as to optimize access to the component. That is, each component of a record
follows the natural alignment of the component's base type. Moreover. the
compiler chooses the position of the components to reduce the number of gaps
or holes in the record and additionally to reduce the size of the record.

Because of these optimizations, there is no connection between the order of
the components in a record type declaration and the positions chosen by the
compiler for the components in a record object.

4-36 F 4. Type Representation

F 4.8.5 Change in Representation

It is possible to apply a record representation clause to a derived record type.
This allows a record type to possibly have several alternative representations.
Thus, the compiler fully supports the "Change in Representation" as described
in the Ada RM, section 13.6.

F 4.8.6 Implicit Components 4m
In some circumstances, access to a record object or to a component of a
record object involves computing information that only depends on the
discriminant values or on a value that is known only at run time. To avoid
unnecessary recomputation, the compiler reserves space in the record to store
this information. The compiler will update this information whenever a

discriminant on which it depends changes. The compiler uses this information
whenever the component that depends on this information is accessed. This
information is stored in special components called implicit components. There
are three different kinds of implicit components:

" Components that contain an offset value.

" Components that contain information about the record object.

" Components that are descriptors.

F 4. Type Representation 4-37

Implicit components that contain an offset value from the beginning of the
record are used to access indirect components. Implicit components of this
kind are called offset components. The compiler introduces implicit offset
components whenever a record contains indirect components. These implicit
components are considered to be declared before any variant part in the record
type definition. Implicit components of this kind cannot be suppressed by
using the pragma IMPROVE.

Implicit components that contain information about the record object are used
when the record object or component of a record object is accessed. Implicit
components of this kind are used to make references to the record object
or to make record components more efficient. These implicit components
are considered to be declared before any variant part in the record type
definition. There are two implicit components of this kind: RECORD-SIZE and
VARIANT-INDEX. Implicit components of this kind can be suppressed by using
the pragma IMPROVE.

.The third kind of implicit components are descriptors that are used when
accessing a record component. The implicit component exists whenever the
record has an array or record component that depends on a discriminant of
the record. An implicit component of this kind is considered to be declared
immediately before the record component it is associated with. There are two
implicit components of this kind: ARRAY.DESCRIPTOR and RECORD_-DESCRIPTOR.
Implicit components of this kind cannot be suppressed by using the pragma
IMPROVE.

Note The -S option (Assembly Option) to the ada(l) command is
useful for finding out what implicit components are associated
with the record type. This option will detail the exact
representation for all record types defined in a compilation unit.

4-38 F 4. Type Representation

F 4.8.7 Indirect Components

If the offset of a component cannot be computed at compile time, the compiler
will reserve space in the record for the computed offset. The compiler computes
the value to be stored in this offset at run time. A component that depends on
a run time computed offset is said to be an indirect component, while other
components are said to be direct.

A pictorial example of a record layout with an indirect component is shown in
Figure 4-2. 4m

Reewd Cmnpore Nmek Sb. of CouuoOllset ,
o Comp*AW A to ib

2 MM tor Component 0 o Ms

4 Component a 32 b ts

S Compoeq C <Ste knoewni r me.

12

14

Stowag to, < S-We known at ni te >

Compoent 0

LG200073034

Figure 4-2. Record layout with an Indirect Component

In the above example. the component D has an offset that cannot be computed
at compile time. The compiler then will reserve space in the record to store the
computed offset and will store this offset at run time. The other components
(A, B. and C) are all direct components because their offsets can all be
computed at compile time.

F 4. Type Representation 4.39

F 4.8.8 Dynamic Components
If a record component is a record or an array, the size of the component may
need to be computed at run time and may depend on the discriminants of the
record. These components are called dynamic components.

Example (Record with dynamic components):

type URNG is range 0..255;

type UCARRAY is array(URNG range <>) of INTEGER;

-- The type GRAPH has two dynamic components: X and Y.

type GRAPH (XLEN, YLEN: URNG) is
record

X : UCARRAY(1 .. XLEN);
-- The size of X depends on X.LEN

Y : UCARRAY(I .. YLEN);

-- The size of Y depends on YLEN
end record;

type DEVICE is (SCREEN, PRINTER);

type COLOR is .(GREEN, RED, BLUE);

Q : URNG;

4-40 F 4. Type Representation

-- The type PICTURE has two dynamic components: R and T.

type PICTURE (N : U.RNG; D : DEVICE) is

record
R : GRAPH(NN); -- The size of R depends on N
T : GRAPH(Q,Q); -- The size of T depends on Q

case D is

when SCREEN => C : COLOR; 4
when PRINTER => null;

end case;
end record;

Any component that is placed after a dynamic component has an offset
that cannot be evaluated at compile time and is thus indirect. To minimize
the number of indirect components, the compiler groups the dynamic
components and places them at the end of the record. Due to this strategy,
the only indirect components are dynamic components. However, all dynamic
components are not necessarily indirect. The compiler can usually compute the
offset of the first dynamic component and thus it becomes a direct component.
Auy additional dynamic components are then indirect components.

F 4. Type Representation 4.41

A pictorial example of the data layout for the record type PICTURE is shown in
Figure 4-3.

Record D : SCREEN D- PRINrER

Oltet N <ANY> N .- ANY.

rOFFSET T'OFFSET

WCPPSEt 'OFFSET

4 N N

4 6 RECOROPESCRIPTOR R.RECORoaESCPIPTOR
SD 0

SPICTUREVARIAHTINDEX PICTLFEVARTANr NDEX

10 C <GAP>

11 cGAP> cGAP>

12 Slan of R Sun of A

----- o.So f T Staflof T

LG20007a30

Figure 4-3. Example of a Data Layout

4-42 F 4. Type Representation

F 4.8.9 Representation of the Offset of an Indirect Component

The offset of an indirect component is always expressed in storage units, which
for the HP 9000 Series 600, 700, and 800 Computer System are bytes. The
space that the compiler reserves for the offset of an indirect component must
be large enough to store the maximum potential offset. The compiler will
choose the size of an offset component to be either an 8-, 16-, or 32-bit object.
It is possible to further reduce the size in bits of this component by specifying
it in a component clause.

If C is the name of an indirect component, the offset of this component can 4
be denoted in a component clause by the implementation-generated name
C 'OFFSET.

Example (Record representation clause for the type GRAPH)

for GRAPH use
record

XLEN at 0 range 0..7;
YLEN at 1 range 0..7;
X'OFFSET at 2 range 0..15;

end record;

-- The bit range for the implicit component
-- X'OFFSET could have been specified as 0..11

-- This would make access to X much slower

In this example we have used a component clause to specify the location of
an offset for a dynamic component. In this example the compiler will choose
Y to be the first dynamic component and as such it will have a static offset.
The component X will be placed immediately after the end of component Y by
the compiler at run time. At run time the compiler will store the offset of this
location in the field X'OFFSET. Anyv references to X will have additional code to
compute the run time address of X using the X'OFFSET field. References to Y
will be direct references.

F 4. Type Representation 4-43

F 4.8.10 The Implicit Component RECORD-SIZE

This implicit component is created by the compiler whenever a record with
discriminants has a variant part and the discriminant that defines the variant
part has a default expression (that is, a record type that possibly could be
unconstrained.) The component 'RECORD-SIZE contains the size of the storage
space required to represent the current variant of the record object. Note that
the actual storage allocated for the record object may be more than this.

The value of a RECORD-SIZE component may denote a number of bits or a
4 number of storage units (bytes). In most cases it denotes a number of storage

units (bytes), but if any component clause specifies that a component of the
record type has an offset or a size that cannot be expressed using storage units,
the value designates a number of bits.

The implicit component RECORD-SIZE must be large enough to store the
maximum size that the record type can attain. The compiler evaluates this
size, calls it MS, and considers the type of RECORD-SIZE to be an anonymous
integer type whose range is 0 .. MS.

If R is the name of a record type, this implicit component can be denoted in a
component clause by the implementation-generated name R'RECORDSIZE.

F 4.8.11 The Implicit Component VARIANT-INDEX

This implicit component is created by the compiler whenever the record type
has a variant part. It indicates the set of components that are present in a
record object. It is used when a discriminant check is to be done.

Within a variant part of a record type, the compiler numbers component lists
that themselves do not contain a variant part. These numbers are the possible
values for the implicit component VARIANT-INDEX. The compiler uses this
number to determine which components of the variant record are currently
valid.

4-44 F 4. Type Representation

Example (Record with a variant part):

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION(KIND VEHICLE := CAR) is
record

SPEED : INTEGER;
case KIND is

when AIRCRAFT I CAR =>
WHEELS : INTEGER;
case KIND is 4

when AIRCRAFT => -- VARIANT-INDEX is 1
WINGSPAN : INTEGER;

when others => -- VARIANT-INDEX is 2
null;

end case;
when BOAT => -- VARIANT-INDEX is 3

STEAM : BOOLEAN;
when ROCKET => -- VARIANT-INDEX is 4

STAGES : INTEGER;
end case;

end record;

In the above example. the value of the variant index indicates which of the
components are present in the record object; these components are summarized
in the table below.

Variant Index Legal Components

1 KIND, SPEED, WHEELS, WINGSPAN

2 KIND, SPEED, WHEELS

3 KIND, SPEED. STEAM

4 1KIND, SPEED, STAGES

F 4. Type Representation 4-45

The implicit component VARIANT-INDEX must be large enough to store the
number of component lists that do not contain variant parts. The compiler
evaluates this size, calls it VS, and considers the type of VARIANt-INDEX to be
an anonymous integer type whose range is 0 .. VS.

If R is the name of a record type, this implicit component can be denoted in a
component clause by the implementation-generated name R'VARIANT-INDEX.

4 F 4.8.12 The Implicit Component ARRAY-DESCRIPTOR

An implicit component of this kind is associated by the compiler with each
record component whose type is an array that has bounds that depend on a
discriminant of the record.

The structure and contents of the implicit component ARRAY-DESCRIPTOR are
not described in this manual. Nevertheless, if you are interested in specifying
the location of a component of this kind in a component clause, you can obtain
the size of the component by supplying the -S option (Assembly Option) to the
ada(l) command.

If C is the name of a record component that conforms to the above definition,
this implicit component can be denoted in a component clause by the
implementation-generated name C'ARRAYDESCRIPTOR.

F 4.8.13 The Implicit Component RECORD-DESCRIPTOR

An implicit component of this kind may be associated by the compiler when a
record component is a record type that has components whose size depends on
a discriminant of the outer record.

The structure and content of the implicit component RECORDDESCRIPTOR are
not described in this manual. Nevertheless, if you are interested in specifying
the location of a component of this kind in a component clause, you can obtain
the size of the component by applying the -S option (Assembly Option) to the
ada(1) command.

4-46 F 4. Type Representation

If C is the name of a record component that conforms to the above definition,
this implicit component can be denoted in a component clause by the
implementation-generated name C' RECORD-.DESCRIPTOR.

F 4.8.14 Suppression of Implicit Components

Ada provides the capability of suppressing the implicit components
RECORD-SIZE and VARIANT-INDEX from a record type. This can be done using
an implementation defined pragma called IMPROVE. 4

Syntax

pragma IMPROVE (TIME I SPACE , [ON =>] record-type-name);

The first argument specifies whether TIME or SPACE is the primary criterion for
the choice of representation of the record type that is denoted by the second
argument.

If TIME is specified, the compiler inserts implicit components as described
above. This is the default behavior of the compiler. If SPACE is specified,
the compiler only inserts a VARIANT-INDEX component or a RECORD-SIZE
component if a component clause for one of these components was supplied.
If the record type has no record representation clause, both components will
be suppressed. Thus, a record representation clause can be used to keep one
implicit component while suppressing the other.

-A pragma IMPROVE that applies to a given record type can occur anywhere that
a record representation clause is allowed for this type.

F 4. Type Representation 4-47

F 4.8.15 Size of a Record Type or Subtype
The compiler generally will round up the size of a record type to a whole
number of storage units (bytes). If the record type has a component clause
that specifies a record component that cannot be expressed in storage units,
the compiler will not round up and instead the record size will be expressed as
an exact number of bits.

The size of a constrained record type is obtained by adding the sizes of its
components and the sizes of its gaps (if any). The size of a constrained record

4 will not be computed at compile time if:

" The record type has non-static constraints.

" A component is an array or record and its size cannot be computed at
compile time (that is, if the component has non-static constraints.)

The size of an unconstrained record type is the largest possible size that
the unconstrained record type could assume, given the constraints of the
discriminant or discriminants. If the size of any comp.nent cannot be
evaluated exactly at compile time, the compiler will use the maximum size that
the component could possibly assume to compute the size of the unconstrained
record type.

A size specification applied to a record type has no effect. The only size that
the compiler will accept in such a length clause is the usual size. Nevertheless,
such a length clause can be used to verify that the layout of a record is as
expected by the application.

4-48 F 4. Type Representation

F 4.8.16 Size of an Object of a Record Type

A record object of a constrained record type has the same size as its base type.

A record object of an unconstrained record type has the same size as its base
type if this size is less than or equal to 24576 bytes. The size of the base type
is the largest possible size that the unconstrained record type could assume,
given the constraints of the discriminant(s). If the size of the base type is
larger than 24576 bytes, the record object only has the size necessary to store
its current value. Storage space is then allocated and deallocated dynamically
based on the current value of the discriminant or discriminants. 4

F 4.8.17 Alignment of a Record Subtype

When a record type does not have a record representation clause, or when a
record type has a record representation clause without an alignment clause,
the record type is word-aligned to the maximum alignment required by any
component of the record (8, 16, 32, or 64 bits). Any subtypes of a record type
also have the same alignment as their base type.

For a record type that has a record representation clause with an alignment
clause, any subtypes of this record type also obey the alignment clause.

An alignment clause can specify that a record type is byte, half-word, word, or
double-word aligned (specified as 1, 2, 4, or 8 bytes). Ada does not support

alignments larger than an 8-byte alignment.

F 4. Type Representation 4-49

F 4.9 Data Allocation
This section explains how data objects are allocated by the HP Ada compiler

for the HP 9000 Series 600, 70Q, and 800 Computer System.

Data objects are allocated into:

" A stack frame.
" The global data area.
" The heap.

4 or have no storage allocated to them.

A stack frame is used for objects declared within a subprogram or task body,
or within a declare block. The stack frame contains the data objects that are
dynamic if each invocation of the subprogram or block creates a new data
object. Each object allocated in a stack frame has a lifetime that begins after
the elaboration of the subprogram or block enclosing the object and ends after-the subprogram or the block is exited.

The global data area is used for objects declared in library level packages,
either in the specification or in the body. The global data area contains the
data objects that are allocated in a static manner. Each object allocated in the
global data area has a permanent lifetime. The global data area is allocated in
the $DATA$ segment of the HP-UX object file (see a.out_800(4)).

The heap is used for objects that are created by an Ada allocator as well as
objects created via indirect allocation. Storage for task objects, including the
task stack, are also allocated into the heap. The heap contains the data objects
that are dynamic in the broadest sense. Each object allocated in the heap has
a lifetime that begins after the allocator operation and ends only when an
implicit or explicit deallocator operation is performed. The heap is allocated
using the sbrk(2) system call.

4.50 F 4. Type Representation

For constants that are scalar in type, no storage is allocated or used. The
values are stored in a compile-time data structure. Because these scalar
constants do not have an allocation address, it is illegal to refer to their address
(using the attribute 'ADDRESS) or to supply an address for them (using an
address clause.) Constants that are aggregates or non-scalar are allocated into
one of the above three locations.

Objects that are created by the compiler, such as temporaries, also obey the
above rules.

F 4. Type Representation 4-51

F 4.9.1 Direct Allocation versus Indirect Allocation

The HP Ada compiler determines whether to allocate each object directly in
the frame or in the global data area, or to allocate it dynamically in the heap
and access it indirectly via a pointer. These two modes are called direct and
indirect, respectively. The determination is based on the object's size or its
maximum possible size. An allocation map will list the size of all objects and
can be produced by using the -S assembly option.

Note that objects of the unconstrained type STRING, including those returned
4 by functions that return the type STRING, are allocated in the heap.

F 4.9.2 Object Deallocation
This section describes compiler-generated objects, programmer-generated
objects, and program termination.

F 4.9.2.1 Compiler-Generated Objects

All objects that the compiler chooses to represent in an indirect form will
automatically be freed and their storage reclaimed when leaving the scope in
which the objects are declared. Moreover, all compiler-generated temporaries
that are allocated on the heap in a scope will be deallocated upon leaving the
scope. These compiler temporaries are often generated by such operations
as function calls returning unconstrained arrays, or by using the STRING
concatenation operator (&). By enclosing the statements in a begin ... end
block, you can force the heap to reclaim the temporaries associated with any
statement.

The storage associated with a task object, including its stack space, is
automatically freed when the task terminates.

4-52 F 4. Type Representation

F 4.9.2.2 Programmer-Generated Objects

Whether the storage for an object created with an Ada allocator is reclaimed
depends on where the access type is declared.

For access types declared in a nested or non-library level scope, all objects
created with an Ada allocator will automatically be freed and their storage
reclaimed when leaving the scope in which the type was declared. Thus,
pragma CONTROLLED is effectively applied to all access types by default. Upon
exiting a scope that declares an access type, the lifetime of objects of this
access type expires and the storage can be reclaimed safely. 4

For access types declared in a library level scope or with library package
visibility, objects that are created using a type declared in a library level
package will not be freed by the Ada Runtime System. The compiler cannot
determine the lifetime of the object and thus must assume that a future
reference to the object could occur at any time. For these kinds of objects, it is

the programmer's responsibility to reclaim their storage through the careful use
of UNCHECKEDDEALLOCATION.

F 4.9.2.3 Program Termination

All memory used by a program, including code, global data, I/O buffers, and so
on. is released when the program terminates and returns to HP-UX. This is the
standard behavior of any program under HP-UX.

F 4. Type Representation 4-53

F 4.9.3 Dynamic Memory Management

This section explains how dynamic memory is managed by the Ada Runtime
System.

F 4.9.3.1 Collections of Objects

Every access type has a corresponding collection of objects associated
with it. Each use of an allocator queries the corresponding collection and
then reserves the correct amount of space within the heap. Each use of

4 UNCHECKEDDEALLOCATION updates the collection data structures and effectively
gives back the space for future use.

The size of the space taken from the heap depends on:
" The designated type.
" The access value type.

" Possibly, for an unconstrained record access type, the supplied value of the
discriminant or discriminants either when the object is created or again when
a new value is given to the object.

The effective size of the object can be obtained using the predefined attribute
'SIZE. For an unconstrained array access type, a descriptor is added that holds
the unconstrained actual dimension or dimensions with the actual size of the
array; thus, the descriptor size is the sum of the size container (generally 4
bytes) and all the actual constraints (array bounds) implemented the same way
as their index type (either 1, 2, or 4 bytes each).

The heap manager applies the following rules to each object:

" The size of the object is rounded up to an even number of bytes.

" The minimum size is 12 bytes. Thus, if the object is less than 12 bytes, it is
increased to 12 bytes.

" To the above size. the following is added: a 8-byte descriptor if the collection
is global (is declared within a library level package) or a 40-byte descriptor
if the collection is in a nested scope (declared within a procedure or task
body).

4-54 F 4. Type Representation

A special rule applies for collections where the objects of the designated type
are of static size and are smaller than 64 bytes. Instead of allocating one
object at a time within the heap, blocks of several objects are allocated. The
size of the block is either 128 bytes or 16 times the object size plus 10 bytes,
whichever is greater. To the size of this block, the heap manager applies the
above rules; that is, the heap manager adds either a 8- or 40-byte descriptor.

When a collection size is specified using a length clause for an access type (that
is, for T'STORAGESIZE use <nnn>), the heap manager allocates a single block
of the specified size. The size of this block will be exactly the size specified in
the length clause. Individual objects will then be allocated from this block. 4

The minimum size of an individual object allocated from this block is four
bytes. Whenever UNCHECKEDDEALLOCATION is performed on an object, the
collection will add the object to the free list associated with the collection.
This free list is maintained as a linked list of pointers contained directly within
the collection. No additional stcrage is required to maintain the free list. When
space in the collection is exhausted, the exception STORAGE-ERROR is raised.

F 4.9.3.2 Global Dynamic Objects

A global dynamic object is a user-declared object whose size is not known until
execution time and is declared within a library package (in a specification or
body including nested packages and blocks, but not subprograms or tasks.)

The compiler also considers an object as dynamic if the size is bigger than 1024
bytes, even if this size is known statically at compile time. The compiler also
considers any object as static if the maximum size is smaller than 128 bytes,
even if this size must be dynamically computed at execution time.

All such global dynamic objects are allocated within the heap. The size of
these objects can be obtained using the predefined attribute 'SIZE and the
heap manager applies the same rules to them as it does for collections of
objects, as described ini section "F 4.9.3.1 Collections of Objects".

F 4. Type Representation 4-55

F 4.9.3.3 Local Objects

Local objects, declared within a subprogram or task, are normally allocated in
the stack. This is done either in the frame associated with the subprogram or
task execution, or dynamically on top of the stack at the time of elaboration of
the object declaration when the size of the object is dynamic.

The heap is used for an unconstrained record if the object discriminant
or discriminants can be changed during the lifetime of the object. This
discriminant change has a potentially large effect on the object size. In this

4 case, the object is allocated in the heap, and when the discriminant changes, a
new space of the desired size is allocated and the old space is given back to the
heap.

The heap manager applies the same rules for object size as described in
"F 4.9.3.1 Collections of Objects".

F 4.9.3.4 Temporary Objects

During code execution, it is sometimes necessary to take some memory space
from the heap to hold temporary object values. This only happens when the
memory size is not known at compiler time, or memory size is big enough
(more than 128 bytes) to be considered dynamic rather than static for this
implementation.

The following cases are possible:

" Function results that are of a dynamic size.

" Evaluation of large aggregates.

" Operations on dynamic arrays (such as catenation of object of type STRING;
also the predefined operators and, or, xor, and not used on dynamic Boolean
arrays).

" Evaluation of the predefined attribute 'IMAGE.

4-56 F 4. Type Representation

F 4.9.3.5 Reclaiming Heap Storage

Heap storage is reclaimed as follows:

" For the collection of an access type, all storage allocated is returned
upon exiting the scope in which access type was declared. Reclaiming
occurs whether the exit is normal or abnormal (that is, due to exception
propagation.)

" The storage of a task, (including its' stack) is reclaimed when the task
terminates.

" For an object passed to an instance of the generic procedure 4

UNCHECKED_-DEALLOCATION, the storage associated with the object is
reclaimed immediately.

For a temporary object, storage is returned no later than on exit from the
scope (subprogram or block) that contained the allocation of the temporary
object.

For objects of an access type declared in a library package. automatic
reclaiming is not performed. This would require automatic garbage
collection with its' inherent overhead at runtime. You should perform
UNCHECKEDDEALLOCATION to reclaim this storage.

Reclaimed heap storage is managed internally by the Ada Runtime System.
Such memory is never released back to HP-UX using the sbrk(i) system call.
Reclaimed heap storage is available for the Ada Runtime System to reuse;
however, to the HP-UX kernel, it appears that the memory is still in use by the
Ada Rurltime System.

F 4. Type Representation 4-57

5
F 5. Names for Predefined Library Units

Names that are available, but should be avoided if you want access to packages
that are provided by Hewlett-Packard:

ELEMENTARYFUNCTI ONSEXCEPTIONS
GENERICELEMENTARYFUNCTIONS

MATHLIB
MATHLIB.LIBM 5

SYSTEM-ENVIRONMENT

The above packages are documented in the Ada User's Guide.

F 5. Names for Predefined Library Units 5-1

6
F 6. Address Clauses

This chapter describes the available address clauses.

F 6.1 Objects
An address clause can be used to specify an address for an object as described
in the Ada RM, section 13.5. When such a clause applies to an object, no
storage is allocated for it in the program generated by the compiler. Storage
for the object must be allocated for the object outside of the Ada program unit
unless the address is a memory mapped hardware address. The Ada program
accesses the object by using the address specified in the address clause. 6

An address clause is not allowed for unconstrained records whose maximum
size can be greater than 24576 bytes.

Note that the function SYSTEM. VALUE, defined in the package SYSTEM, is
available to convert a STRING value into a value of type SYSTEM.ADDRESS (see
section "F 3.1 The Package SYSTEM" for details). Note that the IMPORT
attribute is available to provide the address of an external symbol (see section
"F 2.2 Attribute SYSTEM.ADDRESS'IMPORT" for details).

F 6. Address Clauses 6-1

F6.2 Subprograms
Address clauses for subprograms are not implemented in the current version of
the Ada compiler.

F 6.3 Constants
Address clauses for constants are not implemented in the current version of the
Ada compiler.

F 6.4 Packages
Address clauses for packages are not implemented in the current version of the
Ada compiler.

6

F 6.5 Tasks
Address clauses for tasks are not implemented in the current version of the Ada
compiler.

6-2 F 6. Address Clauses

F 6.6 Data Objects
An address clause can specify the address for an object as described in the
Ada RM, section 13.5. The address supplied must be either an integer
constant or the value returned by the implementation-defined attribute
SYSTEM.ADDRESS' IMPORT. This attribute is defined to return a reference
value that can be used as the address of an external static data object. This
attribute takes two parameters: the language and the name of the external
data object. Both of these parameters are Ada strings.

Example

IMPORTOBJ: INTEGER;

for IMPORTOBJ use at SYSTEM.ADDRESS'IMPORT("c", "cobj");

MEMORYMAPPEDOBJ: INTEGER;

for MEMORYMAPPEDOBJ use at 16#6FFF_0400#;

See section "F 2.2 Attribute SYSTEM.ADDRESS'IMPORT" for more details.

F 6.7 Task Entries
An address clause can be supplied for an Ada task entry. The actual address of
the Ada task entry is not bound to the value supplied by the address clause.
Instead, this kind of address clause is used to provide the interrupt entry
mechanism (see section "F 12. Interrupt Entries- for details).

F 6. Address Clauses 6.3

1

7
F 7. Restrictions on Unchecked Type
Conversions

The following limitations apply to the use of UNCHECKED-_CONVERSION:

" Unconstrained arrays are not allowed as target types.

" Unconstrained record types without defaulted disciminants are not allowed as
target types.

" Access types to unconstrained arrays or unconstrained strings are not allowed
as source or target types.

* If the source and target types are each scalar types, the sizes of the types
must be equal.

* If the source and target types are each access types, the sizes of the objects
that the types denote must be equal.

* If the source or target type is a composite type, the sizes do not have to be
equal. See the warning below for more details.

If the source and target types are each of scalar or access types or if they are
both of composite type with the same static size, the effect of the function is to 7
return the operand.

In other cases, the effect of unchecked conversion can be considered as a copy
"operation.

F 7. Restrictions on Unchecked Type Conversions 7-1

Caution When you do an UNCHECKED-CONVERSION among types whose
sizes do not match, the code that is generated copies as many
bytes as necessary from the source location to fill the target.
If the target is larger than the source, the code copies all of
the source plus whatever follows the source. Therefore, an
UNCHECKEDCONVERSION among types whose sizes do not match
can produce meaningless results, or can actually cause a trap
and abort the program (if these memory locations do not
actually exist).

7-2 F 7. Restrictions on Unchecked Type Conversions

8
F 8. Implementation-Dependent Input-Output

Characteristics

This chapter describes the I/O characteristics of Ada on the HP 9000 Series
600, 700, and 800 computers. Ada handles I/O with packages, which are
discussed in section "F 8.1 Ada I/O Packages for External Files". File types
are described in section "F 8.1.3 Standard Implementation of External Files"
and the FORM parameter is discussed in section "F 8.2 The FORM Parameter".

F 8.1 Ada I/O Packages for External Files
In Ada, I/O operations are considered to be performed on objects of a certain
file type rather than directly on external files. An external file is anything
external to the program that can produce a value to be read or receive a value
to be written. In Ada, values transferred to and from a given file must all be of
the same type.

Generally, the term file object refers to an Ada file of a certain file type,
whereas a physical manifestation is known as an ezternal file. An external file

-is characterized by:

" Its NAME, which is a string defining a legal pathname for an external file on
the underlying operating system. HP-UX is the underlying operating system 8
for Ada. The rules that govern legal pathnames for external files in Ada
programs are the same as those that govern legal pathnames in HP-UX. See
section "F 8.1.2 Correspondence between External Files and HP-UX;; for I
details.

" Its FORM. which allows you to supply implementatioii-dependent information
about the external file characteristics.

F 8. Implementation-Dependent Input-Output 8-1

Both NAME and FORM appear explicitly in the Ada CREATE and OPEN procedures.
These two procedures perform the association of the Ada file object and the
corresponding external file. At the time of this association, a FORM parameter is
'oermitted to specify additional characteristics about the external file.

Ada I/O operations are provided by several predefined standard packages. See
the Ada RM, Chapter 14 for more details. Table 8-1 describes the standard
predefined Ada I/O packages.

Table 8-1. Standard Predefined I/0 Packages

Package Description and Ada RM Location

SEQUENTIALIO A generic package for sequential files of a single
element type. (Ada RM, section 14.2.3)

DIRECTIO A generic package for direct (random) access
files of a single element type. (Ada RM, section
14.2.5)

TEXTIO A non-generic package for ASCII text files.
_(Ada RM, section 14.3.]0)

IOEXCEPTIONS A package that defines the exceptions needed
by the above three packages. (Ada RM, section

114.5)

The generic package'LOW-LEVELI0 is not implemented.

18
8-2 F 8. Implementation-Dependent Input-Output

F 8.1.1 Implementation-Dependent Restrictions on I/O Packages

The upper bound for index values in DIRECTIO and for line, column, and page
numbers in TEXTIO is:

COUNT'LAST a 2**31 - 1

The upper bound for field widths in TEXTIO is:

FIELD'LAST = 255

F 8.1.2 Correspondence between External Files and HP-UX

Files

When Ada I/O operations are performed, data is read from and written to
external files. Each external file is implemented as a standard HP-UX file.
.owever, before an external file can be used by an Ada program, it must be

asso.'ited with a file object belonging to that program. This association is
achieved by supplying the name of the file object and the name of the external
file to the procedures CREATE or OPEN of the predefined I/O packages. Oncc the
association has been made, the external file can be read from or written to with
the file object. Note that for SEQUENTIAL-IQ and DIRECTIO. you must first
instantiate the generic package to produce a non-generic instance. Then you
can use the CREATE or OPEN procedure of that instance. The example at the
end of this section illustrates this instantiation process.

The name of the external file can be either of the following:

" an HP-UX pathname

" a null string (for CREATE only)

The exception USE-ERROR is raised by the procedure CREATE if the specified
external file cannot be created. The exception USE-ERROR is also raised by the
procedure OPEN if you have insufficient access rights to the file.

If the name is a null string, the associated external file is a temporary file
created using the HP-UX facility tmpnam(3). This external file will cease to
exist upon completion of the program.

F 8. Implementation-Dependent Input-Output 8-3

When using OPEN or CREATE, the Ada exception NAME-ERROR is raised if any
path component exceeds 255 characters or if an entire path exceeds 1023
characters. This limit applies to path components and the entire path during
or after the resolution of symbolic links and context-dependent files (CDFs).

Caution The absence of NAME-ERROR does not guarantee that the
path will be used as given. During and after the resolution
of symbolic links and context-dependent files (CDFs), the
underlying file system may truncate an excessively long
component of the resulting pathname. For example, a fifteen
character file name used in an Ada program OPEN or CREATE
call will be silently truncated to fourteen characters without
raising NAME-ERROR by an HP-UX file system that is configured
for "short filenames".

If an existing external file is specified to the CREATE procedure, the contents
of that file will be deleted. The recreated file is left open, as is the case for a
newly created file, for later access by the program that made the call to create
the file.

Example

-- This example creates a file using the generic
-- package DIRECT-IO. It also demonstrates how
-- to close a file and reopen it using a
-- different file access mode.

8 with DIRECTIO;
with TEXT.IO;
procedure RTEST is

-- here we instantiate DIRECTIO on the type INTEGER

package INTIO is new DIRECTIO (INTEGER);

-- Define a file object for use in Ada

8-4 F 8. Implementation-Dependent Input-Output

IFILE INTIO.FILE-.TYPE;

IVALUE INTEGER :=0; -- Ordinary integer object

I'egin
INTIO.CREATE CFILE => IFILE,

-- Ada file is IFILE
MODE => INTIO.OUT-.FILE,
-- MODE allows WRITE only
NAME => "myfile"

-file name is "myfile"

TEXT-IO.PUT.LINE ("Created "&

INTIO.NAME (IFILE)
",mode is "' &

INTIO.FILE.MODE'IMAGE
(INTIO.MODE (IFILE)))

INTIO.WRITE (IFILE, 21); -- Write the integer 21 to the file

-- Close the external file
INTIO.CLOSE (FILE => IFILE);

TEXT-.IO.PTLINE("Closed file");

INTIO.OPEN CFILE => IFILE,
-Ada file is IFILE

MODE => INTIO.INOUT.FILE,
-- MODE allows READ and WRITE
NAME => "myfile"8

-file name is "myfile"

TEXT-.IO.PUT-.LINE ("Opened "& 8
INTIO.NAME (IFILE)&

",mode is "1 &
INTIO .FILEJ'IODE' IMAGE

CINTIO.MODE (IFILE)))

F 8. Implementation-Dependent input-Output 8-5

INTIO.READ (IFILE, IVALUE); -- Read the first item

TEfXT_IO.PUTLINE("Read from file,
IVALUE = " & INTEGER'IMAGE(IVALUE));

INTIO.WRITE (IFILE, 65); -- Write the integer 65 to the file

TEXTIO.PUTLINE("Added an Integer to :
" & INTIO.NAME (IFILE));

INTIO.RESET (FILE => IFILE,
-- Set MODE to allow READ only
MODE => INTIO.INFILE);
-- and move to the beginning of the file.

-- (IFILE remains open)

TEXTIO.PUTLINE ("Reset : " &
INTIO.NAME (IFILE) &

mode is " &

INTIO.FILEMODE'IMAGE(INTIO.MODE (IFILE)));

while not INTIO.ENDOFFILE(IFILE) loop
INTIO.READ (IFILE, IVALUE);
TEXTIO.PUTLINE("Read from file, IVALUE = "&

INTEGER'IMAGE(IVALUE));
end loop;

TEXTIO.PUTLINE("At the end of file, IFILE");

INTIO.CLOSE (FILE => IFILE);
8 TEXTIO.PUTLINE("Close file");

end RTEST;

In the example above, the file object is IFILE, the external file name relative to
your current working directory is myfile, and the actual rooted path could be
/PROJECT/myfile. Error or informational messages from the Ada development
system (such as the compiler or tools) may mention the actual rooted path.

8-6 F S. Implementation.Dependent Input-Output

Note The Ada development system manages files internally so
that names involving symbolic links (see in(1)) are mapped
back to the actual rooted path. Consequently, when the Ada
development system interacts with files involving symbolic
links, the actual rooted pathnane may be mentioned in
informational or error messages rather than the symbolic name.

F 8.1.3 Standard Implementation of External Files

External files have a number of implementation-dependent characteristics, such
as their physical organization and file access rights. It is possible to customize
these characteristics through the FORM parameter of the CREATE and OPEN
procedures, described fully in section "F 8.2 The FORM Parameter". The
default of FORM is the null string.

The next three subsections describe the Ada implementation of these three
types of external files: SEQUENTIALIO, DIRECTI0, and TEXTIO files.

F 8.1.3.1 SEOUENTIAL-1O Files

A SEQUENTIALIO file is a sequence of elements that are transferred in the
order of their appearance to or from an external file. Each element in the file
contains one object of the type that SEQUENTIAL_IO was instantiated on. All
objects in the file are of this same type. An object stored in a SEQUENTIAL.IO
file has exactly the same binary representation as an Ada object in the
executable program.

The information placed in a SEQUENTIALIO file depends on whether the type 8
used in the instantiation is a constrained type or an unconstrained type.

For a SEQUENTIAL-I0 file instantiated with a constrained type, each element
is simply the object. The objects are stored consecutively in the file without
separators. For constrained types, the number of bytes occupied by each
element is the size of the constrained type and is the same for all elements.
Files created using SEQUENTIAL-10 on constrained types can be accessed as

F 8. Implementation-Dependent Input-Output 8.7

DIRECTIO files at a later time. The representation of both SEQUENTIALIO and

DIRECTIO files are the same when using constrained types.

For a SEQUENTIAL-IO file instantiated with an unconstrained type, each

element is composed of three parts: the size (in bytes) of the object is stored in

the file as a 32-bit integer value, the object, and a few optional unused trailing

bytes. These unused trailing bytes will only be appended if the FORM parameter

RECORD-UNIT was specified in the CREATE call. This parameter instructs the
Ada runtime to round up the size of each element in the file to be an integral
multiple of the RECORD-UNIT size. The default value for RECORD-UNIT is one
byte, which means that unused trailing bytes will not be appended. The
principle use for the RECORD-UNIT parameter is in reading and writing external

files that are in formats that already use this convention. Files created using
SEQUENTIAL-IO on unconstrained types cannot be accessed as DIRECTIO files
at a later time. The representation of SEQUENTIAL.IO and DIRECTIO files are
not the same when using an unconstrained type. See section "F 8.2.10.2 The
Structure of DIRECT-1O and SEQUENTIAL-IO Files" for more information
on file structure.

A SEQUENTIAL.IO file can be buffered. Buffering is selected by specifying a
non-zero value for the FORM parameter, BUFFER-SIZE. The I/O performance
of an Ada program will be considerably improved if buffering is used. By
default, no buffering takes place between the physical external file and the
Ada program. See section "F 8.2.4 The FORM Parameter Attribute - File
Buffering" for details on specifying a file BUFFER-SIZE.

F 8.1.3.2 DIRECT-IO Files

A DIRECT-IO file is a set of elements each occupying consecutive positions in a

linear order. DIRECT.IO files are sometimes referred to as random-access filesI because an ol, :ct can be transferred to or from an element at any selected

position in th, 'e. The position of an element in a DIRECT.IO file is specified
by its index, v. .ch is a number in the range 1 to (2**31)-l of the subtype
POSITIVE-COUNT. Each element in the file contains one object of the type
that DIRECTIO was instantiated on. All objects in the file are of this same
type. The object stored in a DIRECT-IO file has exactly the same binary
representation as the Ada object in the executable program.

8-8 F 8. Implementation-Dependent Input-Output

Elements within a DIRECT0I file always have the same size. This requirement
allows the Ada runtime to easily and quickly compute the location of any
element in a DIRECTIO file.

For a DIRECTID file instantiated with a constrained type, the number of bytes
occupied by each element is the size of the constrained type. Files created
using DIRECTIO on constrained types can be accessed as SEQUENTIALIO files
at a later time. The representation of both DIRECTIO and SEQUENTIALIO files
are the same when using a constrained type.

For DIRECT-I0 files instantiated with an unconstrained type, the number
of bytes occupied by each element is determined by the FORM parameter,
RECORD-SIZE. All of the unconstrained objects stored in the file must have an
actual size that is less than or equal to this size. The exception DATA-ERROR
is raised if the size of an unconstrained object is larger than this size. Files
created using DIRECTIO on unconstrained types cannot be accessed as
SEQUENTIALIO files at a later time. The representation of DIRECTIO and
SEQUENTIAL.I0 files are not the same when using an unconstrained type. See
section "F 8.2.10.2 The Structure of DIRECT-1O and SEQUENTIALIO
Files" for more information on file structure.

If the file is created with the default FORM parameter attributes (see section
"F 8.2 The FORM Parameter"), only objects of a constrained type can
be written to or read from a DIRECT-IO file. Although an instantiation of
DIRECTIO is accepted for unconstrained types, the exception USE-ERROR
is raised on any call to CREATE or OPEN when the default value of the FORM
parameter is used. You must specify the maximum RECORD-SIZE for the
unconstrained type.

A DIRECT.IO file can be buffered. Buffering is selected by specifying a non-zero
value for the FORM parameter, BUFFER-SIZE. The I/O performance of an Ada
program will normally be considerably improved if buffering is used. However,
for a DIRECT-IO file that is accessed in a random fashion, performance can 8
actually be degraded. The buffer will always reflect a contiguous set of
elements in the file and if subsequent I/O requests lie outside of the current
buffer, the entire buffer will be updated. This could cause performance
to degrade if a large buffer is used and each I/O request requires that thebuffer be updated. By default, no buffering takes place between the physical

external file and the Ada program. See section "F 8.2.4 The FORM Parameter
Attribute - File Buffering" for details on specifying a file BUFFERSIZE.

F 8. Implementation-Dependent Input-Output 8-9

F 8.1.3.3 TEXT-1O Files

A TEXTIO file is used for the input and output of information in readable
form. Each TEXTI0 file is read or written sequentially as a sequence of
characters grouped into lines and as a sequence of lines grouped into pages. All
TEXT.IO column numbers, line numbers, and page numbers are in the range 1
to (2**31)-1 of subtype POSITIVE-COUNT. The line terminator (end-of-line)
is physically represented by the character ASCII.LF. The page terminator
(end-of-page) is physically represented by a succession of the two characters,
ASCII. LF and ASCII. FF, in that order. The file terminator (end-of-file) is
physically represented by the character ASCII.LF and is followed by the
physical end of file. There is no ASCII character that marks the end of a file.
An exception to this rule occurs when reading from a terminal device. In
this case, the EOF character defined by HP-UX is used by the Ada runtime
to indicate the end-of-file (see stty(1) and termio(7) for details.) See "F
8.2.10.1 The Structure of TEXT_IO Files"in this section for more information
about the structure of text files.

If you leave the control of line, page, and file terminators to the Ada runtime
and use only TEXT-IO subprograms to create and modify the text file, you
need not be concerned with the above terminator implementation details.
However, you must not output the characters ASCII.LF or ASCII .FF when
using TEXT.IO.PUT operations because these characters would be interpreted
as line terminators or as page terminators when the file was later read using
TEXT.IO. GET. If you affect structural control by explicitly outputting these
control characters, it is your responsibility to maintain the integrity of the
external file.

If your text file was not created using TEXTI0, your text file may not be in a
format that'can be interpreted correctly by TEXTID. It may be necessary to
filter the file or perform other modifications to the text file before it can be

8 correctly interpreted as an Ada text file. See section "F 8.2.10.1 The Structure
* of TEXT..IO Files" for information on the structure of TEXT-IO files.

The representation of a TEXTIO file is a sequence of ASCII characters. It is
possible to use DIRECT-I0 or SEQUENTIALIO to read or write a TEXTI0 file.
The Ada type CHARACTER must be used in the instantiation of DIRECT.IO or
SEQUENTIALI0. It is not possible to use DIRECTIO or SEQUENTIAL.IO on the
Ada type STRING to read or write a TEXTIO file.

8-10 F 8. Implementation-Dependent Input-Output

A TEXT.IO file can be buffered. Buffering is selected by specifying a non-zero
value for the FORM parameter, BUFFER-SIZE. The I/O performance of an Ada
program will be considerably improved if buffering is used. By default, no
buffering takes place between the physical external file and the Ada program.
However, terminal input is line buffered by default. See sections "F 8.2.4
The FORM Parameter Attribute - File Buffering" and "F 8.2.8 The FORM
Parameter - FIFO Control" for details.

F 8.1.4 Default Access Protection of External Files

HP-UX provides protection of a file by means of access rights. These access
rights are used within Ada programs to protect external files. There are three
levels of protection:

" User (the owner of the file).

" Group (users belonging to the owner's group).

" Others (users belonging to other groups).

For each of these levels, access to the file can be limited to one or several of
the following rights: read, write, or execute. The default HP-UX external file
access rights are specified by using the umask(1) command (see umask(1) and
umask(2) in the HP-LIX Reference.) Access rights apply equally to sequential,
direct, and text files. See section "F 8.2.3 The FORM Parameter Attribute -
File Protection" for information about specifying file permissions at the time of
CREATE.

F 8.1.5 System Level Sharing of External Files 8

Under HP-UX, several programs or processes can access the same HP-UX file
simultaneously. Each program or process can access the HP-UX file either for
reading or for writing. Although HP-UX can provide file and record locking
protection using fcntl (2) or lockf (2). Ada does nol utilize this feature
when it performs I/O on external files. Thus. the external file that Ada reads
or writes is not protected from simultaneous access by non-Ada processes, or
by another Ada program that is executing concurrently. Such protection is

F 8. Implementation-Dependent Input-OutDut 8-11

outside the scope of Ada. However, you can limit access to a file by specifying
a file protection mask using the FORM parameter when you create the file. See
section "F 8.2.3 The FORM Parameter Attribute - File Protection" for more
information.

The effects of sharing an external file depend on the nature of the file. You
must consider the nature of the device attached to the file object and the
sequence of I/O operations on the device. You also must consider the effects of
file buffering if you are attempting to update a file that is being shared.

For shared files on random access devices, such as disks, the data is shared.
Reading from one file object does not affect the file positioning of another
file object, nor the data available to it. However, writing to a file object may
not cause the external file to be immediately updated; see section "F 8.2.5.1
Interaction of File Sharing and File Buffering" for details.

For shared files on sequential devices or interactive devices, such as magnetic
tapes or keyboards, the data is no longer shared. In other words, a magnetic
record or keyboard input character read by one I/O operation is no longer
available to the next operation, whether it is performed on the same file object
or not. This is simply due to the sequential nature of the device.

By default, file objects represented by STANDARDINPUT and STANDARIOUTPUT
are preconnected to the HP-UX streams stdin and stdout (see stdio(5)),
and thus are of this sequential variety of file. The HP-UX stream stderr is not
preconnected to an Ada file, but is used by the Ada runtime system for error
messages. An Ada subprogram called PUTTO.STANDARDERROR is provided in
the package SYSTEM-ENVIRONMENT which allows your program to output a line
to the HP-UX stream stderr.

Note The sharing of external files is system-wide and is managed by
the HP-UX operating system. Several programs may share one
or more external files. The file sharing feature of HP Ada using
the FORM parameter SHARED, which is discussed in section
"F 8.2.5 The FORM Parameter Attribute - File Sharing",
is not system-wide, but is a file sharing within a single Ada
program and is managed by that program.

8-12 F 8. Implementation-Dependent Input-Output

F 8.1.6 I/O Involving Access Types
When an object of an access type is specified as the source or destination of an
I/O operation (read or write), the 32-bit binary access value is read or written
unchanged. If an access value is read from a file, make sure that the access
value read designates a valid object. This will only be the case if the access
value read was previously written by the same execution of the program that is
reading it, and the object which it designated at the time it was written still
exists (that is, the scope in which it was allocated has not been exited, nor has
an UNCHECKED_-DEALLOCATION been performed on it). A program may execute
erroneously or raise PROGRAM-ERROR if an access type read from a file does not
designate a valid object. In general, I/O involving access types is strongly
discouraged.

F 8.1.7 I/0 Involving Local Area Networks

This section assumes knowledge of networks. It describes Ada program I/O
involving Local Area Network (LAN) services available on the Series 600, 700.
and 800 computers.

The Ada programs discussed here are executed on a local (host) computer.
These programs access or create files on a remote system, which is connected to
a mass storage device not directly connected to the host computer. The remote
file system can be mounted and accessed by the host computer using NFSt
LAN services. NFS systems are described in the manuals Using NFS Services
and Installing and Administering NJFS Services.

t NFS is a trademark of Sun Microsystems, Inc. /

F 8. Implementation-Dependent Input-Output 8-13

If an Ada program expects to access or create a file on a remote file system
using NFS LAN services, the remote volumes that contain the file system must
be mounted on the host computer prior to the execution of the Ada program.

For example, assume that a remote system exports a file system /project.
/project is mounted on the host computer as /ada/project. Files in this
remote file system are accessed or created by references to the files as if they
were part of the local file system. To access the file test .file, the program
would reference /ada/project/test.file on the local system. Note that
test. file appears as /project/test.file on the remote system.

The remote file system must be exported to the local system before it can be
locally mounted using the mount (lm) command.

F 8.1.8 Potential Problems with I/O From Ada Tasks

In an Ada tasking environment on the HP 9000 Series 600, 700, and 800, the
Ada runtime must ensure that a file object is protected against attempts to
perform multiple simultaneous I/O operations on it. If such protection was
not provided, the internal state of the file object could become incorrect. For
example, consider the case of two tasks each writing to STANDARD-OUTPUT
simultaneously. The internal values of a text file object include information
returned by TEXTI0.COL, TEXTI0.LINE, and TEXTIO.PAGE functions.
These internal values are volatile and any I/O operations that change these
values must be completed before any other I/O operations are begun on the
file object. Thus, the file object is protected by the Ada runtime for the
duration of the I/0 operation. If another task is scheduled and runs before the
I/O operation has completed and this task attempts to perform I/O on the
protected file object, the exception PROGRAM.ERROR is generated at the point of
the I/O operation. If this exception is not caught by the task, the task will be8 terminated.

8-14 F 8. Implementation-Dependent Input-Output

Note that the file protection provided by the Ada runtime is not the same
as the protection provided by the use of the SHARED attribute of the FORM
parameter of CREATE or OPEN calls. The FORM parameter either prohibits or
allows multiple Ada file objects to share the same external file. In contrast, the
file protection provided by the Ada runtime prohibits the simultaneous sharing
of the same Ada file object between tasks. The SHARED attribute always deals
with multiple Ada file objects.

The file protection provided by the Ada runtime will only be a problem when
the same Ada file object is used by different tasks. When each task uses a
separate file object, it is not necessary to provide explicit synchronization when
performing I/O operations. This is true even when the file objects are sharing
the same external file. However, for this case, you will need to consider the
effects of the SHARED attribute and/or file buffering.

Caution It is your responsibility to utilize proper synchronization and
mutual exclusion in the use of shared resources. Note that
shared access to a common resource (in this case, a file object)
could be achieved by a rendezvous between tasks that share
that resource. If you write a program in which two tasks
attempt to perform I/O operations on the same logical file
without proper synchronization, that program is erroneous.
(See Ada RM, section 9.11)

F 8.1.9 I/O Involving Symbolic Links
-Some caution must be exercised when using an Ada program that performs I/O
operations to files that involve symbolic links. For more detail on the use of
symbolic links to files in HP-UX, see ln(1). 8

Creating a symbolic link to a file creates a new name for that file; that is, an
alias for the actual file name is created. If you use the actual file name or its
alias (that is, the name involving symbolic links), Ada-1/0 operations will work
correctly. However, the NAME function in the TEXTIO, SEQUENTIALIO, and
DIRECTIO packages will always return the actual rooted path of a file and not
a path involving symbolic links.

F 8. Implementation-Dependent Input-Output 8-15

F 8.1.10 Ada I/O System Dependencies

Ada has a requirement (see Ada RM, section 14.2.1(21)) th.' the NAME
function must return a string that uniquely identifies the external file in
HP-UX. In determining the unique file name, the Ada runtime system may
need to access directories and directory entries not directly associated with
the specified file. This is particularly true when the path to the file specified
involves an NFS remote file system. This access involves HP-UX operating
system calls that are constrained by HP-UX access permissions and are subject
to failures of the underlying file system, as well as by network behavior.

Caution It is during the Ada OPEN and CREATE routines that the name
which uniquely identifies the external file is determined for later
use by the NAME function. If it is not possible to determine that
name, an exception is raised by the call to the OPEN or CREATE
routine.

If, during name determination, the underlying file system or
network denies access (possibly due to a failed remote file
system) or the access permissions are improper, the OPEN or
CREATE call will raise an exception. Or, for some conditions of
network failure, the call might not complete until the situation
is corrected.

During file name determination, the Ada runtime temporarily
changes the current working directory of the Ada program.
However, it first determines the fully rooted path to the current
working directory so it can restore the correct current working
directory before returning control to the Ada program. If
the runtime cannot determine the fully rooted path to the
current working directory (usually because some directory in
the fully rooted path to the current working directory lacks
read (r) or search (x) permission for the effective user of the
Ada program), the OPEN or CREATE of the file also fails with an
exception.

If the permissions for any directory on the fully rooted path
to the current working directory are changed while the Ada

8-16 F 8. Implementation-Dependent Input-Output

runtime is in the process of determining the name of a file, the
Ada runtime may be unable to restore the current working
directory. This can only occur if the permission change denies
the effective user of the Ada program read (r) or search (x)
access to the directory whose permission changed. Because it is
unsafe for the program to continue execution with an incorrect
current working directory, the Ada runtime will abort the Ada
program with a diagnostic message to stderr and a non-zero
exit status. This abnormal termination can only occur if:

1. The permissions for a directory (such as /A) in the rooted
path to a directory (such as /A/B/C) are changed while an
Ada program is running with /A/B/C as its current working
directory.

2. The effective user of the Ada program loses read (r) or
search (x) permission (such as /A) because of the change.

3. The Ada runtime was in the process of determining the
name of a file when the permission changed.

For example, whcn opening a file, the Ada exception NAME-ERROR is raised if
there are any directories in the rooted path of the file that are not readable or
searchable by the "effective uid" of the program. This restriction applies to
intermediate path components that are encountered during the resolution of
symbolic links.

Also. if access to an NFS "hard" mounted remote file system is lost (possibly
due to a network failure), subsequent OPEN or CREATE calls on a file whose

"actual rooted path contains the parent directory of the NFS mount point might
not complete until the NFS failure is corrected (whether or not the actual file
being accessed is on the failed NFS volume.) 8

F 8. Implementation-Dependent Input-Output 8-17

F 8.2 The FORM Parameter
For both the CREATE and OPEN procedures in Ada, the FORM parameter specifies
the characteristics of the external file involved.

F 8.2.1 An Overview of FORM Attributes

The FORM parameter is a string composed from a list of attributes that specify
the following:

" File protection.
" File buffering.
" File sharing.
" Appending.
" Blocking.
" FIFO control.
" Terminal input.
" File structuring.

F 8.2.2 The Format of FORM Parameters

Attributes of the FORM parameter have an attribute keyword followed by the
Ada "arrow symbol" (=>) and followed by a qualifier or numeric value.

The arrow symbol and qualifier are not always needed and can be omitted.

Thus, the format for an attribute specifier is

KEYWORD

s or

KEYWORD => QUALIFIER

8-18 F 8. Implementation.Dependent Input-Output

The general format for the FORM parameter is a string formed from a list of
attributes with attributes separated by commas. (FORM attributes are distinct
from Ada attributes and the two are not related.) The FORM parameter string
is not case sensitive. The arrow symbol can be separated by spaces from the
keyword and qualifier. The two forms below are equivalent:

KEYWORD => QUALIFIER

KEYWORD =>QUALIFIER

In some cases, an attribute can have multiple qualifiers that can be presented
at the same time. In cases that allow multiple qualifiers, additional qualifiers
are introduced with an underscore (_). Note that spaces are not allowed
between the additional qualifiers; only underscore characters are allowed.
Otherwise, a USE.ERROR exception is raised by CREATE. The two examples that
follow illustrate the FORM parameter format.

The first example illustrates the use of the FORM parameter in the
TEXTIO. OPEN to set the file buffer size.

-- Example of opening a file using the non-generic
-- package TEXTIO. This illustrates the use of the
-- FORM parameter BUFFERSIZE.
-- Note: "input.file" must exist or NAME-ERROR will be
-- raised.
with TEXTIO;
procedure STEST is

--Define a file object for use in Ada
TFILE : TEXTID.FILETYPE;

8

F 8. Implementation-Dependent Input-Output 8.19

begin -- STEST
TEXTIO.OPEN (FILE => TFILE, -- Ada file is TFILE

MODE => TEXT.IO.INFILE, -- Access allows

-- reading

NAME -> "input-file", -- file name is
-- "inputf ile"

FORM => "BUFFER-SIZE -> 4096"
-- Buffer Size is 4096 bytes

end STEST;

The second example illustrates the use of the FORM parameter in
TEXTIO.CREATE. This example sets the access rights of the owner (HP-UX file
permissions) on the created file and shows multiple qualifiers being presented at
the same time.

TEXTIO.CREATE (OUTPUT-FILE, TEXTI0.OUT.FILE, 0UTPUT.FILENAME,
FORM=> "owner=>read-write-execute");

18

8-20 F 8. Implementation-Dependent Input-Output

F 8.2.3 The FORM Parameter Attribute - File Protection

The file protection attribute is only meaningful for a call to the CREATE
procedure.

File protection involves two independent classifications. The first classification
specifies which user can access the file and is indicated by the keywords listed
in Table 8-2.

Table 8-2. User Access Categories

Category Grants Access To

OWNER Only the owner of the created file.

GROUP Only the members of a defined group.

WORLD Any other users.

Note that WORLD is similar to "others" in HP-UX terminology, but was used in
its place because OTHERS is an Ada reserved word.

The second classification specifies access rights for each classification of
user. The four general types of access rights, which are specified in the FORM
parameter qualifier string, are listed in Table 8-3.

Table 8-3. File Access Rights

Category Allows the User To

READ Read from the external file.

WRITE Write to the external file.

EXECUTE Execute a program stored in the external file. 8
NONE The user has no access rights to the external file. (This qualifier

overrides any prior privileges).

F 8. Implementation-Dependent Input-Output 8.21

More than one access right can be specified for a particular file. Additional
access rights can be indicated by separating them with an underscore, as noted
earlier. The following example using the FORM parameter in TEXTIO .CREATE
sets access rights of the owner and other users (HP-UX file permissions) on
the created file. This example illustrates multiple qualifiers being used to set
several permissions at the same time.

TEXT.IO.CREATE (OUTPUT-FILE, TEXTIO.OUTFILE, OUTPUTFILENAME,
FORM=>"owner=>read-write.execute, world=>none");

Note that the HP-UX command umask(1) may have set the default rights
for any unspecified permissions. In the previous example, permission for the
users in the category GROUP were unspecified. Typically, the default umask will
be set so that the default allows newly created files to have read and write
permission (and no execute permission) for each category of user (USER, GROUP,
and WORLD).

Consider the case where the users in WORLD want to execute a program in an
external file, but only the owner may modify the file. The appropriate FORM
parameter is:

WORLD => EXECUTE,

OWNER => READWRITEEXECUTE

This would be applied as:

TEXTIO.CREATE (OUTPUT-FILE, TEXTI0.OUTFILE, OUTPUTFILENAME,

FOk-=>"world=>execute, ovner=>readvriteexecute");

Repetition of the same qualifier within attributes is illegal:

WORLD => EXECUTE-EXECUTE -- NOT legal

But repetition of entire attributes is allowed:

WORLD => EXECUTE, WORLD => EXECUTE -- legal

8-22 F 8. Implementation-Dependent Input-Output

F 8.2.4 The FORM Parameter Attribute - File Buffering

The buffer size can be specified by the attribute:

BUFFER-SIZE => size-in.bytes

The default value for BUFFER-SIZE is 2048 bytes. A value of zero specifies no
buffering. Note that a BUFFER-SIZE value of one also specifies no buffering
and is treated identical to the value zero. Using the file buffering attribute
will improve I/O performance by a considerable amount in most cases. If I/O
performance is a concern for disk files, the attribute BUFFER-SIZE should be set
to a value that is an integral multiple of the size of a physical disk block. The
size of a physical disk block can be found in <sys/param.h> and is 1024 bytes
for the HP 9000 Series 600, 700, and 800.

An example of using the FORM parameter in the TEXT-IO. OPEN to set the file
buffer size is shown below:

-- An example of creating a file using the non-generic
-- package TEXTIO. This illustrates the use of the
-- FORM parameter BUFFER-SIZE.

with TEXTIO;
procedure TTEST is

BFILE : TEXTIO.FILETYPE; -- Define a file object

-- for use by Ada

begin -- TTEST

TEXTIO.CREATE (FILE => BFILE,
-- Ada file is BFILE

MODE => TEXTIO.OUTFILE, 8
-- MODE is WRITE only

NAME => "txt-file",
-- External file "txt-file"

FORM => "BUFFER-SIZE => 8192"
-- Buffer size is 8192 bytes

end TTEST;

F 8. Implementation.Dependent Input-Output 8-23

I I _

The BUFFER-SIZE attribute can be applied to files associated with terminals
operating in TERMINAL-INPUT => LINES mode and to files associated with
pipes/FIFOs. However, there are additional considerations to take into account
when doing this. See section "F 8.2.9 The FORM Parameter - Terminal
Input" in this manual and the section "Ada I/O Operations on a Terminal or
Pipe/FIFO" in Chapter 7 in the Ada User's Guide for additional information.

18

8-24 F 8. Implementation-Dependent Input-Output

F 8.2.5 The FORM Parameter Attribute - File Sharing

The file sharing attribute of the FORM parameter allows you to specify what
kind of sharing is permitted when multiple file objects access the same external
file. This control over file sharing is not system-wide, but is limited to a
single Ada program. The HP-UX operating system controls file sharing at the
system level. See section "F 8.1.5 System Level Sharing of External Files" for
information on system level file sharing between separate programs.

An external file can be shared; that is, the external file can be associated
simultaneously with several logical file objects created by the OPEN or CREATE
procedures. The file sharing attributes forbids or limits this capability by
specifying one of the modes listed in Table 8-4.

Table 8-4. File Sharing Attribute Modes

Mode Description

NOT-SHARED Indicates exclusive access. No other logical file can
be associated with the external file.

SHARED=> READERS Only logical files of mode IN can be associated with
the external file.

SHARED=> SINGLE-WRITER Only logical files of mode IN and at most one file
with mode OUT can be associated with the external
file.

SHARED=> ANY No restrictions; this is the default.

8

F 8. Implementation-Dependent Input-Output 8-25

A USE-ERROR exception is raised if either of the following conditions exists for
an external file already associated with at least one logical Ada file:

" The OPEN or CREATE call specifies a file sharing attribute different than the
current one in effect for this external file. Remember the attribute SHARED =>
ANY is provided if the shared attribute is missing from the FORM parameter.

" A RESET call that changes the MODE of the file and violates the conditions
imposed by the current file sharing attribute (that is, if SHARED => READERS
is in effect, the RESET call cannot change a reader into writer).

The current restriction imposed by the file sharing attribute disappears when
the last logical file linked to the external file is closed. The next call to CREATE
or OPEN can and does establish a new file sharing attribute for this external
file. See section "F 8.1.8 Potential Problems with I/O From Ada Tasks" for
information about potential problems with I/O from Ada tasks.

F 8.2.5.1 Interaction of File Sharing and File Buffering

For files that are not buffered (the default), multiple I/0 operations on an
external file shared by several file objects are processed in the order they occur.
Each Ada I/O operation will be translated into the appropriate HP-UX system
call (read(2). write(2), creat(2), open(2), or close(2)) and the external
file will be updated by the HP-UX I/O runtime. Note that if file access is
performed across a network device, the external file may not be immediately
updated. However, additional I/O operations on the file will be queued and
must wait until the o)riginal operation has completed. This allows multiple
readers and multiple writers for the external file.

For files tha't are buffered, multiple I/O operations each operate sequentially
only within the buffer that is associated with the file object and each file object

8 has its own buffer. For write operations, this buffer is flushed to the disk either

when the buffer is full, or when the file index is positioned outside of the buffer,
or when the file is closed. The external file only reflects the changes made by
a write operation after the buffer is flushed to the disk. Any accesses to the
external file that occur before the buffer is flushed will not reflect the changes
made to the file that exist only in the buffer.

8-26 F 8. Implementation-Dependent Input-Output

Due to this behavior, shared files should not be buffered if any write operations
are to be performed on this file. This would be the case for file objects of the
mode OUT-FILE or INOUTFILE. Thus, when using buffered files safely, no
writers are allowed, but multiple readers are allowed.

File buffering is enabled by using the FORM parameter attributes at the time
you open or create the file. If file buffering is enabled for a file, you should also
specify a file sharing attribute of either NOT-SHARED or SHARED=>READERS to
prevent the effects of file buffering and file sharing interfering with one another.
The Ada runtime will raise the exception USE-ERROR if any attempt is made
to share the file or to share and write the file, when the above file sharing
attributes are provided as FORM parameters.

If the possibility of shared access exists in your Ada program for sequential
devices or interactive devices, you should specify a file sharing attribute of
NOT-SHARED. This will prevent the negative effects of file sharing on these kinds
of devices.

F 8.2.6 The FORM Parameter Attribute - Appending to a File

The APPEND attribute can only be used with the procedure OPEN. Its format is:

APPEND

Any output will be placed at the end of the named external file.

Under normal circumstances, when an external file is opened, an index is set
that points to the beginning of the file. If the APPEND attribute is present for a
sequential or text file, data transfer begins at the end of the file. For a direct
access file, the value of the index is set to one more than the number of records
in the external file.

The APPEND attribute is not applicable to terminal devices. 8 1

F 8. Implementation-Dependent Input-Output 8-27

F 8.2.7 The FORM Parameter Attribute - Blocking

This attribute has two alternative forms:

BLOCKING

or

NON-BLOCKING

The default for this attribute depends on the Ada program. The default is
BLOCKING for programs without any task declarations and is NON-BLOCKING for
programs containing tasks.

The NON-BLOCKING default allows tasking programs to take advantage of their
parallelism in the presence of certain I/O requests. There is normally little
advantage in specifying NON-BLOCKING within a non-tasking program because
the program must wait for the 1/0 request to complete before continuing its
sequential execution. H wever, if a non-tasking program declares interrupt
handlers, and if the interrupt handler or handlers are likely to be invoked
frequently, NON-BLOCKING may be appropriate to provide more reliable data
transfer (see the warning in section "F 8.2.7.1 Blocking" for additional
information).

F 8.2.7.1 Blocking

If the FORM parameter BLOCKING is specified (or is the default), I/O operations
will "block". at the HP-UX level awaiting completion of the I/O operation.
However, this does not guarantee that all Ada tasks will be blocked from
running until the "blocked" 1/0 operation is complete. If there are one or more

8 active delay statements, or if time-slicing is enabled, or if interrupt handlers
or entries have been enabled. HP-UX signals may be received by the program
during the "blocked" I/O operation. These HP-UX signals will cause HP-UX
to terminate the I/O operation as interrupted and may cause the Ada runtime
systerp to permit other tasks to execute. When the task that was performing
the "blocked" I/O operation is permitted by the Ada runtime to execute again.
the interrupted "blocked'" I/O operation will be automatically restarted.

8-28 F 8. Implementation-Dependent Input-Output

Caution If a "blocked" I/O operation is frequently interrupted
and restarted as described above, the operation may be
unable to complete successfully. In addition, under some
circumstances, data could be lost by HP-UX when an I/O
operation is interrupted and restarted. To avoid these
difficulties, either specify (or default) the FORM parameter
to NON-BLOCKING or, if a "true blocking" I/O operation is
needed, specify (or default) the FORM parameter to BLOCK
and additionally surround the "blocking" I/O operation
with calls to SYSTEM_-ENVIRONMENT. SUSPENDADATASKING
and SYSTEM-ENVIRONMENT. RESUME-_ADA-TASKING. The
SYSTEMENVIRONMENT. SUSPENDADATASKING call will disable
or block the HP-UX signals associated with delay, time-slicing,
and interrupt handlers or entries during the I/O operation.

F 8. Implementation-Dependent Input.Output 8-29

F 8.2.7.2 Non-Blocking

The NON-BLOCKING attribute specifies that when a read or write request cannot
be immediately satisfied, the Ada runtime should attempt to schedule another
task to run and retry the I/O operation later. The current implementation of
this attribute allows for the following three cases:

1. Non-blocking read operations are performed on all terminal devices. Refer
to the section "Ada I/O Operations on a Terminal or Pipe/FIFO" in
Chapter 7 in the Ada User's Guide for additional information.

2. For HP-UX pipes and FIFO special files, read requests will not block when
the pipe/FIFO contains no data and write requests will not block when the
pipe/FIFO is full. Refer to the section "Ada I/O Operations on a Terminal
or Pipe/FIFO" in the Chapter 7 in the Ada User's Guide for additional
information.

3. The non-blocking attribute sets the HP-UX flag ONONBLOCK, a flag
to open(2), that allows non-blocking access to a normal disk file with
enforcement-mode recording locking set (see lockf (2)).

For this case, read and write requests will not block only if the portion of
the file being accessed is currently locked by another process. Most files will
not have enforcement-mode record locking enabled.

The normal behavior of HP-UX I/O operations on disk files is to block until
the I/O request completes. Thus, in an Ada tasking program, when a single
task performs a read operation upon a disk file, HP-UX blocks the process until
the I/O request can be satisfied. However, HP-UX will automatically perform
disk cacheing so that a write operation will return before data is physically
written to the disk.

iS

8-30 F 8. Implementation-Dependent Input-Output

F 8.2.8 The FORM Parameter - FIFO Control

The FIFO control attribute has one of two alternate forms:

FIFOEOF => YES

FIFOEOF => NO

The default value of FIFOEOF is YES.

The FIFOEOF attribute controls the behavior of an Ada file associated with a
FIFO special file, as follows:

" When a FIFO special file is opened for reading (IN-FILE), by aefault
(FIFOEOF => YES) the Ada ENDOFFILE condition becomes true when the
last process having the FIFO open for writing closes the FIFO special file.

" When a FIFO special file is opened for reading (IN-FILE) and
FIFOEOF => NO is specified, the Ada ENDOFFILE condition never becomes
true and so another mechanism is needed to signal that no further attempts
to read from such a FIFO should be attempted. This mode of operation
would most likely be used by a monitor or daemon type program that
monitors (reads) a FIFO that does not always have a writing process
attached to it. This mode of operation may also be necessary when a FIFO
special file is opened for reading, in NON-BLOCKING mode, to avoid premature
signaling of the Ada ENDOFFILE condition when there are currently no
processes with the FIFO open for writing.

" When a FIFO special file is opened for writing (OUT-FILE), by default
(FIFO.EOF => YES). There are no special conditions or behaviors if the FIFO
is opened in BLOCKING mode (the default in non-tasking programs). If the
FIFO is opened in NON-BLOCKING mode (the default in tasking programs).
the open will fail with a USE.ERROR if the FIFO is not already open for
reading by another (or the same) process. 8 1

F 8. Implementation-Dependent Input-Output 8-31

" When a FIFO special file is opened for writing (OUT-FILE) and
FIFOEOF => NO is specified, there are no special conditions or behaviors if
the FIFO is opened in BLOCKING mode (the default in non-tasking programs).
If the FIFO is opened in NON-BLOCKING mode (the default in tasking
programs), an attempt is made to open the FIFO such that a USE-ERROR
does not occur if the FIFO is not already open for reading by another (or the
same) process. The Ada I/O system attempts to avoid the USE-ERROR by
performing the HP-UX open of the FIFO to permit both writing and reading
(although Ada I/O only permits writing to the associated Ada file). Because
opening a FIFO for both writing and reading provides a reader of the FIFO
in the HP-UX sense, the open for writing will not fail with a USE-ERROR if no
process already has the FIFO open for reading. Note that if FIFOEOF => NO,
but the FIFO rannot be successfully opened for both writing and reading
(that is, you do not have read access to the FIFO), the Ada I/O system
reattempts the open for writing only. If the Ada I/O must reattempt the
open for writing only, it is then possible for the open to fail with USE-ERROR
if there is not already a process with the FIFO open for reading even though
FIFOEOF => NO was specified.

" Once a FIFO special file is successfully opened explicitly for writing
(OUT-FILE), and the open specified or defaulted to NON.BLOCKING mode, the
Ada program receives no notification (that is, no exception is raied) when the
last reading process closes the read end of the FIFO. If FIFOEOF => NO was
specified, there is always at least one reader in the HP-UX sense, and the
last reader does not close the read end until the Ada file opened for writing
is closed (for example, the Ada open for writing opened for FIFO for both
reading and writing). If FIFOEOF -> YES was specified (or defaulted), a last
reader can close the FIFO, but the Ada program is not notified. The Ada
I/O system continues to write data to the FIFO until the FIFO fills up and
internally retries further write requests. In a non-tasking Ada program, some

8 Ada write operations to the FIFO eventually blocks the entire program. In a
tasking Ada program, no single Ada write operation to the FIFO blocks the
entire program, although Ada write operations to the FIFO eventually blocks
the tasks performing them.

Refer to the section "Ada I/O Operations on a Terminal or Pipe/FIFO" in
Chapter 7 in the Ada User's Guide for additional information.

8-32 F 8. Implementation-Dependent Input-Output

_ I I _

F 8.2.9 The FORM Parameter - Terminal Input

The terminal input attribute has one of two alternative forms:

TERM4INAL-INPUT => LINES,

TERMINAL-INPUT => CHARACTERS,

Terminal input is normally processed by Ada (and HP-UX) in units of one
line at a time. An Ada program attempting to read from the terminal as an
external file does not receive any data from the terminal until a complete line is
typed. At that time, the outstanding read operation (and possibly subsequent
read operations) is satisfied. In this mode, the HP-UX line editing characters
"kill" and "erase" can be used to edit the input characters before the Ada
program is given access to the characters.

The TERMINAL-INPUT => LINES attribute, the default case, specifies the one line
at a time mode of transfer. Note that the BUFFER-SIZE attribute may be set
to any value greater or equal to zero when LINES mode is in effect. However,
if the BUFFER-SIZE is greater than one, no characters are available to the Ada
program until at least BUFFER.SIZE of them have been entered (which may
require multiple lines of input). Once BUFFER-SIZE number of characters has
been entered, only BUFFER-SIZE number of characters are available to the
Ada program until the next BUFFER-SIZE number of characters are entered.
Because BUFFER-SIZE number of characters may be reached in the middle of a
line, the behavior of the program may be confusing to the person entering data.
A BUFFER-SIZE greater than one is not recommended if a person is entering
data, alt hough it may make sense if the "terminal" is a data communication
line from a device that is producing the data. Refer to the section on "Ada
I/O Operations on a Terminal or Pipe/FIFO" in Chapter 7 in the Ada User's

Guide for additional information.

Terminal input can optionally be processed by Ada (and HP-UX) in units 8
of one character at a time. An Ada program attempting to read from the
terminal as an external file will receive data from the terminal as it is typed.

In this mode, the HP-UX line editing characters "kill" and "erase" mav not be
used to edit the input characters before the Ada program is given access to the
characters.

F 8. Implementation-Dependent Input-Output 8-33

The TERMINAL-INPUT => CHARACTERS attribute specifies that data transfers
occur character by character, so a complete line does not need to be entered
before one or several read operations are satisfied. Note that the BUFFER-SIZE
attribute can only be set to zero or one when CHARACTERS mode is in effect.

When CHARACTERS mode is in effect, the ICANON bit is cleared in the c-lflag
of the HP-UX termio structure. This bit changes the line discipline of the
terminal device. The line discipline state is not maintained on a per file
descriptor basis, so changing the line discipline for one terminal file does affect
the line discipline of all terminal files that refer the same physical terminal
device or pseudo terminal process or terminal window. Care must be taken
if the same terminal device is to be accessed via multiple Ada files; the line
discipline caused by the most recent OPEN operation is applied to all Ada files
associated with the same terminal. See termio(7) and the section "Ada 1/0
Operations on a Terminal or Pipe/FIFO" in Chapter 7 in the Ada User's
Guide for additional information.

Because the TERMINAL-INPUT attribute is only available for explicitly opened
files, the TERMINAL-INPUT attribute of the default STANDARD-INPUT file
cannot be changed and the default STANDARD-INPUT file always operates
in LINES mode. If a terminal is associated with STANDARD-INPUT, it
can be accessed in CHARACTERS mode if opened explicitly with the FORM
parameter TERMINAL-INPUT => CHARACTERS. The external file name of the
terminal associated with STANDARD-INPUT can be obtained with the HP-UX
ttyname(3C) function by passing it an argument of zero, or the file name
/dev/tty can be used to open the same terminal device as that associated with
STANDARD-INPUT.

18

8-34 F 8. Implementation-Dependent Input-Output

F 8.2.10 The FORM Parameter Attribute - File Structuring

This section describes the structure of Ada files. It also describes how to use
the FORM parameter to effect the structure of Ada files.

F 8.2.10.1 The Structure of TEXT-1O Files

There is no FORM parameter to define the structure of text files. A text file
consists of a sequence of bytes containing ASCII character codes.

The usage of Ada terminators depends on the file's mode (IN-FILE
or OUT-FILE) and whether it is associated with a terminal device or a
mass-storage file.

8I

F 8. Implementation-Dependent input-output 8-35

Table 8-5 describes the use of the ASCII characters as Ada terminators in text
files.

Table 8-5. Text File Terminators

File Type TEXT-1O Characters
Functions

Mass storage files ENDOFLINE ASCII.LF
(INFILE) Physical end of file

ENDOFPAGE ASCII.LF ASCII.FF
ASCII.LF Physical end of file
Physical end of file

ENDOFFILE ASCII.LF Physical end of file
Physical end of file

Mass storage files NEW-LINE ASCII.LF

(UTFILE) NEWPAGE ASCII.LF ASCII.FF

ASCII.LF Physical end of file

CLOSE ASCII.LF Physical end of file

Terminal device ENDOFLINE ASCII.LF
(IN_FILE) ASCII .FF

ASCII .EOT

ENDOFPAGE ASCII. FF
ASCII .EOT

ENDOFFILE ASCII.EOT

Terminal device NEW-LINE ASCII.LF

8 (OUTFILE) NEWPAGE ASCII.LF ASCII.FF

CLOSE ASCII.LF

See section "F 8.1.3.3 TEXT.IO Files" for more information about terminators
in text files.

B-36 F 8. Implementation-Dependent Input-Output

F 8.2.10.2 The Structure of DIRECT-1O and SEQUENTIALIO Files

This section describes use of the FORM parameter for binary (sequential or

direct access) files. Two FORM attributes, RECORD.SIZE and RECORD-UNIT,

control the structure of binary files.

Such a file can be viewed as a sequence or a set of consecutive RECORDS. The

structure of a record is

[HEADER] OBJECT [UNUSED-PART)

A record is composed of up to three items:

1. A HEADER consisting of two fields (each 32 bits):

m The length of the object in bytes.
a The length of the descriptor in bytes; for this implementation of Ada. the

length is always zero.

2. An OBJECT with the exact binary representation of the Ada object in the

executable program, possibly including an object descriptor.

3. An UNUSED-PART of variable size to permit full control of the record's size.

The HEADER is implemented only if the actual parameter of the instantiation of
the I/O package is unconstrained.

The file structure attributes take the form:

RECORD-SIZE => size-in-bytes

RECORD-UNIT => size.in-bytes

The attributes' meaning depends on the object's type (constrained or

unconstrained) and the file access mode (sequential or direct access).

8

F 8. Implementation-Dependent Input-Output 8-37

There axe four types of access that axe possible:

" Sequential access of fixed size, constrained objects.

" Sequential access of varying size, unconstrained objects, with objects rounded
up to a multiple of the RECORD-UNIT size.

" Direct access of fixed size, constrained objects.

" Direct access of fixed size, unconstrained objects, with a maximum size for
the object.

The consequences of the above are listed in Table 8-6.

Table 8-6. Structuring Binary Files with the FORM Parameter

Object Type File Access RECORD-UNIT RECORD-SIZE
Mode Attribute Attribute

Constrained Sequential I/O The RECORDIIIT If the RECORD-SIZE
Direct I/O attribute is illegal, attribute is omitted, no

UNUSEDPART is
implemented. The
default RECORD-SIZE is
the object's size.

If present, the
RECORD-SIZE attribute
must specify a record
size greater than or
equal to the object's
size. Otherwise, the
exception USE-ERROR is
raised.

8

Continued on the next page.

II age

8-38 F 8. Implementation-Dependent input-Output

Table 8-6.
Structuring Binary Files with the FORM Parameter (Continued)

Object Type File Access RECORD-UNIT RECORD-SIZE
Mode Attribute Attribute

Unconstrained Sequential I/O By default, the The RECORD-SIZE
RECORD-UNIT attribute attribute is illegal.
is one byte.

The size of the record is
the smallest multiple of
the specified (or default)
RECORD-.UNIT that holds
the object and its eight
byte HEADER (which is
always present in this
case). This is the only
case where different
records in a file can have
different sizes.

Continued on the next page.

81

F 8. Implementation-Dependent Input-Output 8-39

Table 8-6.
Structuring Binary Files with the FORM Parameter (Continued)

Object Type File Access RECORD-UNIT RECORD-SIZE
Mode Attribute Attribute

Unconstrained Direct I/0 The RECORD-UNIT The RECORD-SIZE
attribute is illegal, attribute has no default

value, and if a value is
not specified, the
exception USE-ERROR is
raised. The
RECORDSIZE value must
include the size of the
eight byte HEADER, which
is always present in this
case. The minimum
value for RECORD-SIZE
for a file of objects of the
unconstrained type
OBJECT is listed below
this table. If you
attempt to input or
output an object larger
than the given
RECORDSIZE, a
DATA-ERROR exception is
raised.

The minimum value for RECORD-SIZE for a file of objects of the unconstrained
type OBJECT accessed with Direct I/0 is:

((OBJECT'SIZE + SYSTEM.STORAGEUNIT - 1) / SYSTEM.STORAGEUNIT) + 8

8-40 F 8. Implementation-Dependent Input-Output

9
F 9. The Ada Development System and
HP-UX Signals

The Ada runtime on the HP 9000 Series 600/700/800 uses HP-UX signals to
implement the following features of the Ada language:

" Ada exception handling.
" Ada task management.
" Ada delay timing.
" Ada program termination.
" Ada interrupt entries.

F 9. The Ada Development System and HP.UX Signals 9-1 I

F 9.1 HP-UX Signals Reserved by the Ada Runtime
Table 9-1 lists the HP-UX signals reserved and used by the Ada runtime.

Table 9-1. Ada Signals

Signal Description

SIGALRM Used for delay and optionally for time-slicing.

SIGVTALRM Optionally used for time-slicing (default time-slicing signal).

SIGPROF Optionally used for time-slicing.

SIGILL Causes the PROGRAM-ERROR exception.

SIGSEGV Causes the PROGRAM-ERROR exception.

SIGBUS Causes the PROGRAM-ERROR exception.

SIGFPE Causes the CONSTRAINT-ERROR, NUMERIC-ERROR,
STORAGE-ERRDR, or PROGRAM-ERROR exceptions.

H g 9-2 F 9. The Ada Development System and HP-UX Signals

Note The signals SIGSEGV, SIGBUS, and SIGILL are not reserved
by the Ada runtime. These signals are never deliberately
produced by generated code or by the Ada runtime to cause
an exception to be raised. If, due to a programming error,
access is attempted on misaligned or protected data (causing
SIGSEGV or SIGBUS) or an illegal instruction is executed
(causing SIGILL), a PROGRAM-ERROR occurs. When receiving
these signals, a PROGRAM-.ERROR is raised unless the application
has overridden the Ada runtime and an alternative action
has been specified. If the Interrupt Entry mechanism (see
Chapter 12) is used to specify an Ada handler for one or more
of these signals, and the ORIGINAL-HANDLER parameter to
INSTALL-HANDLER was not REPLACED, the "original handler"
that will be invoked (either FIRST or LAST) will be the default
Ada runtime handler that will raise PROGRAM-ERROR. Therefore,
ORIGINAL-HANDLER => REPLACED is recommended when using
INSTALL-HANDLER with one of these signals.

F

F 9. The Ada Development System and HP-UX Signals 9-3

Note The signals listed as causing exceptions in Table 9-1 will induce
an exception even if non-Ada code is executing at the time the
signal is received. If interface code causes one of these signals
or is running when a signal is received from an outside source,
the Ada code that called the interface code will receive an Ada
exception.

Note The alarm signals SIGALRM, SIGVTALRM, and SIGPROF are not
always used or reserved in an Ada program. See the rest of this
section for details.

The HP-UX signals SIGALRM, SIGVTALRM, and SIGPROF are reserved by the Ada
runtime for some Ada application program configurations and are not reserved
by the Ada runtime for other Ada application program configurations.

If the Ada program contains no tasks, the following is true:

If the Ada program contains
no delay statements one or more delay

statements

SIGALRM not reserved SIGALRM reserved

SIGVTALRM not reserved SIGVTALRM not reserved

SIGPROF not reserved SIGPROF not reserved

I9
9-4 F 9. The Ada Development System and HP-UX Signals

If the Ada program contains tasks, the following is true:

If the Ada program contains
no delay statements one or more delay

statements

If time-slicing SIGALRM not reserved SIGALRI(reserved

is disabled with SIGVTALRM not reserved SIGVTALRI not reserved

-W b,-s,0 SIGPROF not reserved SIGPRDF not reserved

If time-slicing SIGALRM reserved SIGALRM reserved
is enabled with SIGVTALRM not reserved SIGVTALRK not reserved
SIGALRM timer SIGPROF not reserved SIGPROF not reserved
with -W b, -S, a

If time-slicing SIGALRM not reserved SIGALRN reserved

is enabled with SIGVTALRM reserved SIGVTALRM reserved
SIGVTALRM timer SIGPROF not reserved SIGPROF not reserved
with -W b,-S,v

If time-slicing SIGALIJ not reserved SIGALRM reserved

is enabled with SIGVTALRM not reserved SIGVTALRM not reserved
SIGPROF timer SIGPROF reserved SIGPROF reserved
with -W b, -S ,p

If a timer signal is not reserved in an application program configuration shown
above, the signal can be used for any application-defined purpose, including
being associated with an interrupt entry (see "F 9.7 HP-UX Signals Used for
Ada Interrupt Entries" and section "F 12. Interrupt Entries" for details.)

F 9. The Ada Development System and HP-UX Signals 9-5 I

F 9.2 Using HP-UX Signals in External Interfaced
Subprograms
When your Ada code uses external interfaced subprograms, you must take the
following into consideration:

" If the external interfaced subprograms want to manipulate any of the
signals reserved by the Ada runtime, they use the sigvector and
sigsetmask(2)/sigblock(2) mechanism or a compatible mechanism. Using
the non-compatible signal (2) mechanism might produce unpredictable
program behavior.

* If the external interfaced subprograms change the signal handling action
(that is, SIG-DEL, SIGIGN, or user handler) for any HP-UX signal reserved
by the Ada runtime, the original signal handling action must be restored
before returning control to Ada code. Failure to restore the Ada signal action
will produce unpredictable program behavior.

" If the external interfaced subprograms change the signal mask bits of any of
the HP-UX signals reserved by the Ada runtime, the original mask bits for
those signals must be restored before returning control to Ada code. Failure
to restore the original signal mask will produce unpredictable program
behavior.

Additional considerations are detailed in section "F 11.7 Potential Problems
Using Interfaced Subprograms".

I 9

9-6 F 9. The Ada Development System and HP-UX Signals

F 9.3 HP-UX Signals Used for Ada Exception Handling
The Ada implementation uses signals to raise exceptions. The Ada runtime
handlers for these signals are set during the elaboration of the Ada runtime
system. Defining a new handler for any of these signals subverts the normal
exception handling mechanism of Ada and will most likely result in an
erroneous runtime execution.

If your Ada program uses external interfaced subprograms, you must ensure
that these external interfaced subprograms do not redefine the signal behavior
for any of the HP-UX signals reserved by the Ada runtime. If you change the
signal behavior for the signal used for Ada exception handling (SIGFPE) and
your Ada program attempts to raise an exception, unpredictable program
behavior will result.

The SIGFPE signal has a predefined meaning and is reserved for use by the
Ada runtime for exception handling. The SIGFPE signal is generated in
your compiled Ada code whenever one of the predefined runtime checks fail,
including null access value checks. The runtime examines the context in which
the signal occurred and raises the appropriate exception: CONSTRAINTERROR,
NUMERIC. ERROR,STORAGEERROR, or PROGRAM-ERROR. An unexpected SIGFPE
signal that was generated outside of Ada code or sent to the process from
an outside source causes the exception PROGRAM-ERROR to be raised. If
the unexpected signal occurred in a context where the runtime believed a
legitimate exception could have occurred, that exception is raised instead of
PROGRAM.ERROR.

F 9. The Ada Development System and HP.UX Signals 9-7 1

The signals SIGSEGV and SIGBUS are not reserved by the Ada runtime. They
are generated by access to an illegal or improperly aligned address. Normally
these signals are not generated in an Ada program because access values

" are initialized to null

" are only assigned legal and properly aligned values by generated code

" have runtime checks performed on them to detect attempts to dereference a
null access value (causing CONSTRAINT_ERROR using SIGFPE as mentioned
above)

Such illegal or improperly aligned addresses are usually produced by the
improper use of UNCHECKED-CONVERSION or are supplied by interfaced code. In
response to receiving SIGSEGV, the Ada runtime raises PROGRAM-ERROR. An
unexpected SIGSEGV signal that was generated outside of Ada code or was sent
to the process from an outside source also causes the exception PROGRAM-.ERROR
to be raised.

The signal SIGILL is not reserved by the Ada runtime. It is generated by
the execution of an illegal instruction. Normally this signal is not generated
in an Ada program because generated Ada code does not contain any illegal
instructions. Execution of an illegal instruction usually occurs in interfaced
code. In response to receiving SIGILL, the Ada runtime raises PROGRAM-ERROR.
An unexpected SIGILL signal that was generated outside of Ada code or
was sent to the process from an outside source also causes the exception
PROGRAM-ERROR to be raised.

Note User code can define its own handler (or change the signal
action) for SIGSEGV, SIGBUS, and SIGILL without directly
compromising the operation of the Ada program. However,
ignoring a synchronous instance of one of the signals or
continuing execution after handling a synchronous instance
of one of these signals is not advised without a thorough
understanding of the causes and continuation strategies for such
signals under HP-UX on PARISC.

9-8 F 9. The Ada Development System and HP.UX Signals

Note The Ada binder does not specify -z or -Z to the linker (ld(1))
to control the system action on a dereference of a null pointer.
Either the ld(1) defau]t or a user-specified value (using -W 1)
will therefore take effect.

If Ada code is compiled with checks enabled (the default case),
the Ada Runtime System will operate properly with either -z
or -Z linker options. This is because Ada generates software
checks for null pointer dereferencing.

If Ada code is compiled with pointer dereference checks
disabled (using the -C or -R compiler options or using pragma
SUPPRESS), some null pointer checking can be restored with no
runtime overhead by using the -z linker option.

If -z is specified, the system will send SIGSEGV when a null
pointer is dereferenced; the Ada Runtime System will map that
signal to PROGRAMERROR. The Ada software checks for null
pointer dereferencing are intended to handle all cases where a
null pointer could appear. CONSTRAINTERROR will be raised if
such a dereference occurs. SIGSEGV, enabled by the -z linker
option, will only be sent when the final result of an address
calculation is the null pointer. The resulting exception will be
PROGRAMERROR instead of CONSTRAINT-ERROR.

F 9. The Ada Development System and HP-UX Signals 9-9 1

F 9.4 HP-UX Signals Used for Ada Task Management
When an Ada program contains tasks and time-slicing was enabled (or enabled
by default) at bind time, the Ada runtime system uses one of the following to
control the time-slice interval: SIGALRM, SIGVTALRM (the default), or SIGPROF.
The Ada runtime allocates the available processor time among ready-to-run
tasks by giving each task one or more time-slice intervals.

When an Ada program does not contain tasks, or contains tasks but
time-slicing was disabled at bind time, neither SIGVTALPM nor SIGPROF
is reserved by the Ada runtime. If an Ada program contains tasks but
time-slicing is disabled, SIGALM may or may not be reserved (see
"F 9.1 HP-UX Signals Reserved by the Ada Runtime" for more information).

If your Ada program uses external interfaced subprograms, you must ensure
that these external interfaced subprograms do not redefine the signal behavior
for any of the HP-UX signals reserved by the Ada runtime. If you change
the signal behavior for the signal used for Ada task management (SIGALRM,
SIGVTALRN, or SIGPROF) and your Ada program is using time-slicing,
unpredictable program behavior will result.

9-10 F 9. The Ada Development System and HP-UX Signals

F 9.5 HP-UX Signals Used for Ada Delay Timing
When an Ada program contains delay statements, the Ada runtime system
uses SIGALRM to time the delay intervals. The resolution of the SIGALRM timer
is 1/100 of a second. Thus, all delay statements are implemented using actual
delays that are integral multiples of 1/100 of a second. Non-zero delays for
periods smaller than 1/100 of a second will delay for at least 1/100 of a second.
Zero delays will not cause an actual delay, but will provide an opportunity for
the Ada runtime to change the currently running task to a different task (if
appropriate).

If an Ada program contains delay statements, SIGALRM is reserved. If an Ada
program contains tasks but does not contain any delay statements, SIGALRM
may or may not be reserved (see "F 9.1 HP-UX Signals Reserved by the Ada
Runtime" for details).

If your Ada program uses external interfaced subprograms, you must ensure
that these external interfaced subprograms do not redefine the signal behavior
for any of the HP-UX signals reserved by the Ada runtime. If you change the
signal behavior used for Ada delay timing (SIGALRM) and your Ada program
contains a delay statement, unpredictable program behavior will result.

F 9. The Ada Development System and HP-UX Signals 9-11 1

F 9.6 HP-UX Signals Used for Ada Program Termination
The signals SIGHUP, SIGINT, SIGQUIT, SIGTERM, and SIGPIPE are recognized by
the Ada runtime as attempts to terminate the Ada program. The Ada runtime
initially arranges to catch each of these signals. If the Ada runtime catches one
of these signals, Ada runtime cleanup actions are performed and the program
is terminated in such a way that the parent program sees the Ada program
as having been terminated by the signal. The Ada runtime cleanup actions
include flushing file buffers and closing files, as well as restoring terminal
characteristics that have been altered by the Ada I/O system. However, these
signals are not reserved by the Ada runtime and the application is free to use
one or more of these signals for application-defined purposes.

If the application-defined purpose is also to signal that the program should be
terminated, when the application is finished handling the signal it should:

1. Restore the original Ada signal handler (the handler the application saved
when it altered the signal behavior for its own purposes).

2. Ensure that the signal is not masked.

3. Send the same signal to itself again to invoke the Ada runtime signaled
termination process.

I9
9-12 F 9. The Ada Development System and HP-UX Signals

Caution If a signal is not currently reserved by the Ada runtime (see the
appropriate sections of F 9) or is not recognized as an attempt
to terminate the Ada program (see the list of such signals
above) and is received by the Ada program, the HP-UX action
may be to terminate the program. Such a termination will
not be intercepted by the Ada runtime and the Ada runtime
cleanup actions will not occur. This could cause corrupted files
and/or corrupted terminal states. If an Ada program is likely
to receive such signals, the program should arrange to ignore or
mask such signals or to catch and handle such signals. If such a
signal terminates the Ada program, the Ada program should
arrange to catch and handle such a signal, and should then
send one of the defined termination signals (see list above) to
itself to trigger the Ada signaled termination process. The Ada
program should ensure that the original Ada handler is in effect
for that termination signal and that the signal is not masked
before sending the signal to itself.

F 9. The Ada Development System and HP-UX Signals 9-13 I

F 9.7 HP-UX Signals Used for Ada Interrupt Entries
Any HP-UX signal that is not reserved by the Ada runtime and that HP-UX
permits to be caught can be associated with an interrupt entry. Interrupt
entries provide a facility equivalent to that described by the Ada RM,
section 13.5.1, although the actual mechanism supplied is more general.

The interrupt entry facility is described in detail in section "F 12. Interrupt
Entries".

The HP-UX signals that are reserved by the Ada runtime are specified earlier
in this section. Those subsections should be consulted to determine which
signals can be safely associated with interrupt entries. The interrupt entry
mechanism will actually not prohibit the use of signals reserved by the Ada
runtime, but using such signals for interrupt entries will cause unpredictable
program behavior.

Caution Associating an interrupt entry with a HP-UX signal that can
be invoked synchronously (that is, by the execution of faulty
code within the Ada program) should only be done with a
thorough understanding of the behavior of the underlying
hardware and of the behavior of HP-UX in the presence of such
faults. Failure to correctly adjust the execution context before
resuming after such faults can lead to repeated occurrences
of the fault condition and/or other unpredictable program
behavior.

9-14 F 9. The Ada Development System and HP-UX Signals

F 9.8 Protecting Interfaced Code from Ada's
Asynchronous Signals
The SIGALRM, SIGVTALRM, and SIGPROF signals (described in sections "F 9.4
HP-UX Signals Used for Ada Task Management" and 'F 9.5 HP-UX Signals
Used for Ada Delay Timing") occur asynchronously. Because of this, they may
occur while your code is executing an external interfaced subprogram. For
details on protecting your external interfaced subprogram from adverse effects
caused by these signals, see the section in the Ada User's Guide on "Interfaced
Subprograms and Ada's Use of Signals."

F 9.9 Programming in Ada With HP-UX Signals
If you intend to utilize signals in external interfaced subprograms, refer to
section F 11.7, "Potential Problems Using Interfaced Subprograms." This
version of HP Ada supports the association of an HP-UX signal, such as
SIGINT, with an Ada signal handling procedure (and via such a procedure with
a task entry). Refer to section "F 9.7 tIP-UX Signals Used for Ada Interrupt
Entries" and section "F 12. Interrupt Entries" for additional information.

F 9. The Ada Development System and HP-UX Signals 9-15 1

11

10

F 10. Limitations

This chapter lists limitations of the compiler and the Ada development
environment.

F 10.1 Compiler Limitations

Note It is impossible to give exact numbers for most of the limits
listed in this section. The various language features may
interact in complex ways to lower the limits.

The numbers represent "hard" limits in simple program
fragments devoid of other Ada features.

F 10. Limitations 10-1

10

Limit Description

255 Maximum number of characters in a source line.

253 Maximum number of characters in a string literal.

255 Maximum number of characters in an enumeration type element.

32767 In an enumeration type, the sum of the lengths of the IMAGE attributes
of all elements in the type, plus the number of elements in the type,
must not exceed this value.

32768 Maximum number of enumeration elements in a single enumeration
type (this limit is further constrained by the maximum number of
characters in the IMAGESs of the elements of an enumeration type, as
noted above).

2047 Maximum number of actual compilation units in a library.

2047 Maximum number of "created" units in a single compilation.

1020 Maximum number of units that a single unit can with.

1020 Maximum number of units that can be declared separate within a
single unit.

1020 Maximum number of pragma ELABORATE specifications that can be
present for units withed by a single unit.

1020 Maximum number of other dependencies that can exist in a single unit
(typically generic instantiations or inlined subprograms). Refer to
chapter 3 in the Ada User's Guide for additional information on other
dependencies.

2**31-1 Maximum number of bits in any size computation.

2048 Links in'a library.

2048 Libraries in the INSTALLATION family (250 of which are reserved).

2047 Libraries in either the PUBLIC or a user defined family. (For more
information, see the Ada User's Guide, which discusses families of Ada
libraries and the supported utilities (tools) to manage them).

10-2 F 10. Limitations

101

Limit Description

- Maximum number of tasks is limited only by heap size.

255 Maximum number of characters in any path component of a file
specified for access by the Ada compiler. If a component exceeds 255
characters, IAME-ERROR will be raised.

1023 The maximum number of characters in the entire path to a file
specified for access by the Ada compiler. If the size of the entire path
exceeds 1023 characters, NAME-ERROR will be raised.

The pathname limits apply to the entire path during and after the
resolution of symbolic links and context-dependent files (CDFs) if they
appear in the specified path.

F 10. Limitations 10-3

10

The following items are limited only by overflow of internal tables (AIL or
HLST tables). All ihternal data structures of the compiler that previously
placed fixed limits are now dynamically created.

Maximum number of identifiers in a unit. An identifier includes
enumerated type identifiers, record field definitions, and (generic) unit
parameter definitions.
Maximum "structure" depth. Structure includes the following: nested
blocks, compound statements, aggregate associations, parameter
associations, subexpressions.

- Maximum array dimensions. Set to maximum structu.e depth/10. f

- Maximum number of discriminants in a record constraint. t

- Maximum number of associations in a record aggregate. t

- Maximum number of parameters in a subprogram definition. t

- Maximum expression depth. t

- Maximum number of nested frames. Library-level unit counts as a
frame.

- Maximum number of overloads per compilation unit.

- Maximum number of overloads per identifier.

t A limit on the size of tables used in overloading resolution can potentially
lower this figure. This limit is set at 500. It reflects the number of possible
interpretations of names in any single construct under analysis by the compiler
(procedure call, assignment statement, and so on.)

10-4 F 10. Limitations

10

F 10.2 Ada Development Environment Limitations
The following limits apply to the Ada development environment (ada.umgr(1),
ada.fmgr(1), and Ada tools).

Limit Description

200 The number of characters in the actual rooted path of an Ada program
LIBRARY or FAMILY of libraries.

200 The number of characters in the string (possibly after expansion by an
HP-UX shell) specifying the name of an Ada program LIBRARY or
FAMILY of libraries. This limit applies to strings (pathname
expressions) specified for a LIBRARY or FAMILY that you submit to tools
such as ada.mklib(1) or ada.umgr(1).

512 Maximum length of an input line for the tools ada.fmgr(l) and
ada.umgr(1).

255 The maximum number of characters in any path component of a file
specified for access by an Ada devei ..ment environment tool. If a
component exceeds 255 characters, NAME-ERROR will be raised.

1023 The maximum number of characters in the entire path to a file
specified for access by an Ada program or an Ada development
environment tool. If the size of the entire path exceeds 1023 characters,
NAME-ERROR will be raised.

The pathname limits apply to the entire path during and after the
resolution of symbolic links and context-dependent files (CDFs) if they
appear in the specified path.

F 10. Limitations 10-5

10

F 10.3 Limitations Affecting User-Written Ada
Applications
The Ada compiler and Ada development environment is expected to be used
on versions of the HP-UX operating system that support Network File Systems
(NFS), diskless HP-UX workstations, long filename file systems and symbolic
links to files. To accommodate this diversity within a file system used in
both the development and target systems, the HP Ada compiler places some
restrictions on the use of the OPEN and CREATE on external files. This section
describes those restrictions.

F 10.3.1 Restrictions Affecting Opening or Creating Files

Unless you observe the following restrictions on the size of path components
and file names, the OPEN or CREATE call will raise NAME-ERROR in certain
situations.

F 10.3.1.1 Restrictions on Path and Component Sizes

The maximum number of characters in any path component of a file specified
for access by an Ada program is 255.

The maximum number of characters in the entire path to a file specified for
access by an Ada program is 1023.

The pathname limits apply to the entire path during and after the resolution
of symbolic links and context-dependent files (CDFs) if they appear in the
specified path.

F 10.3.1.2 Additional Conditions that Raise NAME-ERROR

When opening a file, the Ada exception NAME-ERROR will be raised if there
are any directories in the rooted path of the file that are not readable by the
"effective uid" of the program. This restriction applies to intermediate path
components that are encountered during the resolution of symbolic links.

10-6 F 10. Limitations

10

F 10.3.2 Restrictions on TEXTIO.FORM

The function TEXTI0.FORM will raise USE-ERROR if it is called with either of
the predefined files STANDARD-INPUT or STANDARD-OUTPUT.

F 10,3.3 Restrictions on the Small of a Fixed Point Type

A length clause may be used to specify the value to use for ' SMALL on a fixed
point type. However, this implementation requires that the value specified
for 'SMALL is a power of two. The compiler rejects a compilation unit with a
length clause specification with an IMPLEMENTATION RESTRICTION if 'SMALL is

not an exact power of two.

F 10.3.4 Record Type Alignment Clause

A record type alignment clause can specify that a record type is byte,
half-word, word, or double-word aligned (specified as 1, 2, 4, or 8 bytes). Ada

DS does not support alignments larger than an 8-byte alignment.

F 10. Limitations 10-7

11 "

F 11. Calling External Subprograms From Ada

In Ada, parameters of external interfaced subprograms are passed according
to the standard PA-RISC calling conventions (see PA-RISC Architecture
Procedure Calling Convention Reference Manual). This convention is used by
Hewlett-Packard for other language products on the HP 9000 Series 600, 700,
and 800 family of computers. The languages described in this section are the
HP implementations of HP-PA Assembler, HP C, HP FORTRAN 77, and HP
Pascal on the HP-UX Series 600, 700, and 800 systems.

When you specify the interfaced language name, that name is used to select
the correct calling conventions for supported languages. Subprograms written
in PA-RISC Assembler, HP C, HP FORTRAN 77, and HP Pascal interface
correctly with the Ada subprogram caller. This section contains detailed
information about calling subprograms written in these languages. If the
subprogram is written in a language from another vendor, you must follow the
standard calling conventions.

In the Ada implementation of external interfaced subprograms, the three
Ada parameter passing modes (in, out, in out) are supported, with some
limitations as noted below. Scalar and access parameters of mode in are
passed by value. All other parameters of mode in are passed by reference.
-Parameters of mode out or in out are always passed by reference. (See
Table 11-1 and section "F 11.1.2 Access Types" for details.)

F 11. Calling External Subprograms From Ada 11-1

Table 11-1. Ada Types and Parameter Passing Modes

Ada Type Mode Passed Mode Passed
By Value By Reference

SCALAR, ACCESS in out, in out

All others except TASK in, out, in out
and FIXED POINT

TASK and (not passed) (not passed)
FIXED POINT

The values of the following types cannot be passed as parameters to an
external interfaced subprogram:

" Task types (Ada RM, sections 9.1 and 9.2),

" Fixed point types (Ada RM, sections 3.5.9 and 3.5.10).

A composite type (an array or record type) is always passed by reference (as
noted above). A component of a composite type is passed according to its type
classification (scalar, access, or composite).

Only scalar types (enumeration, character, Boolean, integer, or floating point)
or access types are allowed for the result returned by an external function
subprogram.

11-2 F 11. Calling External Subprograms From Ada

Caution All array and record type parameters are passed by reference
from Ada code to non-Ada interfaced code. In particular,
arrays and records occupying 64 bits or less of storage are
passed by reference and are not passed by copy, as by the
standard PA-RISC calling convention. Therefore, non-Ada code
expecting to receive such array or record parameters must
expect to receive them by reference, not by copy. C should
declare parameters to be an appropriate pointer type; Pascal
should declare parameters to be VAR parameters; FORTRAN
always expects explicit parameters by reference. Note that
array and record type parameters occupying more that 64 bits
of storage are passed by reference, both by Ada and by the
standard PA-RISC calling convention, and require no special
precautions.

F 11. Calling External Subprograms From Ada 11.3

1 Note There are no checks for consistency between the subprogram
parameters (as declared in Ada) and the corresponding external
subprogram parameters. Because external subprograms have
no notion of Ada's parameter modes, parameters passed by
reference are not protected from modification by an external
subprogram. Even if the parameter is declared to be only of
mode in (and not out or in out) but is passed by reference
(that is, an array or record type), the value of the Ada actual
parameter can still be modified.

The possibility that the parameter's actual value will be
modified by an external interfaced subprogram exists when
that parameter is not passed by value. Objects whose attribute
'ADDRESS is passed as a parameter and parameters passed by
reference are not protected from alteration and are subject to
modification by the external subprogram. In addition, such
objects will have no run-time checks performed on their values
upon return from interfaced external subprograms.

Erroneous results may occur if the parameter values are altered
in some way that violates Ada constraints for the actual Ada
parameter. The responsibility is yours to ensure that values
are not modified in external interfaced subprograms in such a
manner as to subvert the strong typing and range checking
enforced by the Ada language.

11-4 F 11. Calling External Subprograms From Ada

Caution Be very careful to establish the exact nature of the types of
parameters to be passed. The bit representations of these
types can be different between this implementation of Ada and
other languages, or between different implementations of the
Ada language. Pay careful attention to the size of parameters
because parameters must occupy equal space in the interfaced
language. When passing record types, pay particular attention
to the internal organization of the elements of a record
because Ada semantics do not guarantee a particular order of
components. Moreover, Ada compilers are free to rearrange
or add components within a record. See section "F 4. Type
Representation" for more information.

F 11. Calling External Subprograms From Ada 11-5

I ii
F 11.1 General Considerations in Passing Ada Types
Section F 11.1 discusses each data type in general terms. Sections F 11.2
through F 11.5 describe the details of interfacing your Ada programs with
external subprograms written in PA-RISC Assembler, HP C, HP FORTRAN
77, and HP Pascal. Section F 11.6 provides summary tables.

The Ada types are described in the following order:

" Scalar

o Integer
o Enumeration
o Boolean
o Character
o Real

" Access

" Array

" Record

" Task

F 11.1.1 Scalar Types

This section describes general considerations when you are passing scalar types
between Ada programs and subprograms written in a different HP language.
The class scalar types includes integer, real, and enumeration types. Because
character and Boolean types are predefined Ada enumeration types, they are
also scalar types.

Scalar type parameters of mode in are passed by value. Scalar type parameters
of mode in out or out are passed by reference.

11-6 F 11. Calling External Subprograms From Ada

F 11.1.1.1 Integer Types

In Ada, all integers are represented in two's complement form. The
type SHORTSHORT_ INTEGER is represented as an 8-bit quantity, the type
SHORT-INTEGER is represented as a 16-bit quantity, and the type INTEGER is
represented as a 32-bit quantity.

All integer types can be passed to interfaced subprograms. When an integer is
used as a parameter for an interfaced subprogram, the call can be made either
by reference or by value. If passed by reference, the value of the actual integer
parameter is not copied or modified, but a 32-bit address pointer to the integer
value is passed. If passed by value, a copy of the actual integer parameter value
is passed, based on its size, as per the standard PA-RISC calling convention. If
passed in a register, it will be sign extended as required. See sections
"F 11.2.1.1 Integer Types and Assembly Language Subprograms", "F 11.3.1.1
Integer Types and HP C Subprograms", "F 11.4.1.1 Integer Types and HP
FORTRAN 77 Subprograms", and "F 11.5.1.1 Integer Types and HP Pascal
Subprograms"for details specific to interfaced subprograms written in different
languages.

Integer types may be returned as function results from external interfaced
subprograms.

F 11.1.1.2 Enumeration Types

Values of an enumeration type (Ada RM, section 3.5.1) without al
enumeration representation clause (Ada RM, section 13.3) have an internal
representation of the value's position in the list of enumeration literals defining
the type. These values are non-negative. The first literal in the list corresponds
to an integer value of zero.

An enumeration representation clause can be used to further control the
mapping of internal codes for an enumeration identifier. See section -F 4.1
Enumeration Types," for information on enumeration representation clauses.

Values of enumeration types are represented internally as either an 8-, 1G-.
or 32-bit quantity (see section "F 4.1 Enumeration Types"). \'hen an
enumeration value is used as a parameter for an interfaced subprogram. the
call can be made either by reference or by value. If passed bv reference, the
value of the actual enumeration parameter is not copied or modified. but

F 11. Calling External Subprograms From Ada 11-7

a 32-bit address pointer to the enumeration value is passed. If passed by
value, a copy of the actual enumeration parameter value is passed, based
on its size, as per the standard PA-RISC calling convention. If passed in
a register, it will be zero extended as required. See sections "F 11.2.1.2

Enumeration Types and Assembly Language", "F 11.3.1.2 Enumeration
Types and HP C Subprograms", "F 11.4.1.2 Enumeration Types and HP
FORTRAN 77 Subprograms", and "F 11.5.1.2 Enumeration Types and HP
Pascal Subprograms"for details specific to interfaced subprograms written in
different languages.

Enumeration types may be returned as function results from external interfaced
subprograms.

F 11.1.1.3 Boolean Types

Values of the predefined enumeration type BOOLEAN are represented internally
as an 8-bit nuantity. The Boolean value FALSE is represented by the 8-bit value
2#0000_00,-.-# and the Boolean value TRUE is represented by the 8-bit value
2#0000-0001#. This representation is the same as that of any two-valued
enumeration type whose size and internal code values have not been modified
with a representation clause.

Boolean values are passed the same as any other enumeration values.

Boolean types can be returned as function results from external interfaced
subprograms.

See sections "F 11.2.1.3 Boolean Types and Assembly Language Subprograms",
"F 11.3.1.3 .3oolean Types and HP C Subprograms", "F 11.4.1.3 Boolean
Types and HP FORTRAN 77 Subprograms", and "F 11.5.1.3 Boolean Types
and HP Pascal Subprograms"for details specific to interfaced subprograms
written in different languages.

11-8 F 11. Calling External Subprograms From Ada

F 11.1.1.4 Character Types

The values of the predefined enumeration type CHARACTER are represented as
8-bit values in a range 0 through 127.

Values of the character type are passed as parameters and returned as function
results, as are values of any other 8-bit enumeration type.

Character types may be returned as function results from external interfaced
subprograms.

See sections "F 11.2.1.4 Character Types and Assembly Language
Subprograms", "F 11.3.1.4 Character Types and HP C Subprograms",
"F 11.4.1.4 Character Types and HP FORTRAN 77 Subprograms", and
"F 11.5.1.4 Character Types and HP Pascal Subprograms"for details specific to
interfaced subprograms written in different languages.

F 11. Calling External Subprograms From Ada 11.9

F 11.1.1.5 Real Types

Ada fixed point types and Ada floating point types axe discussed in the
following subsections.

Fixed Point Types

Ada fixed point types (Ada RM, sections 3.5.9 and 3.5.10) are not supported as
parameters or as results of external interfaced subprograms.

Fixed point types cannot be returned as function results from external
interfaced subprograms.

Floating Point Types

Floating point values (Ada AM. sections 3.5.7 and 3.5.8) in the HP
implementation of Ada are of 32 bits (FLOAT) or 64 bits (LONG-FLOAT). These
two types conform to the IEEE Standard for Binary Floating-Point Arithmetic.

The Ada type FLOAT is a 32-bit real type and is passed as a 32-bit real; this
type is never extended to a 64-bit real. The Ada type LONG-FLOAT is a 64-bit
real type and is passed as a 64-bit real.

Both floating point types can be passed to interfaced subprograms. When a
floating point value is used as a parameter for an interfaced subprogram, the
call can be made either by reference or by value. If passed by reference, the
value of the actual floating point parameter is not copied or modified; a 32-bit
address pointer to the floating point value is passed. If passed by value, a copy
of the actual floating point parameter value is passed, based on its size, as per
the standard PA-RISC calling convention.

See sections "F 11.2.1.5 Real Types and Assembly Language Subprograms",
"F 11.3.1.5 Real Types and HP C Subprograms", "F 11.4.1.5 Real Types and
HP FORTRAN 77 Subprograms". and "F 11.5.1.5 Real Types and HP Pascal
Subprograms"for details specific to interfaced subprograms written in different
languages.

Floating point types may be returned as function results from external
interfaced subprograms, with some restrictions. See section "F 11.3.1.5 Real
Types and HP C Subprograms" for details.

11-10 F 11. Calling External Subprograms From Ada

F 11.1.2 Access Types

Values of an a ccess type (Ada RM, section 3.8) have an internal representation
which is the 32-bit address of the underlying designated object.

If you need to get a SYSTEM.ADDRESS containing the address of the accessed
object and have the following declarations

type PTR is access <something>;
P: PTR;

A: SYSTEM.ADDRESS;

you can just declare

function CONV is
new UNCHECKED-CONVERSION (PTR, SYSTEM.ADDRESS);

and then declare

A:= CONV(P);

This converts the pointer into a SYSTEM. ADDRESS.

An access type object has a value that is the address of the designated object.
Therefore, when an access type is passed by value, a copy of this 32-bit address
is passed. If an access type object is passed by reference, however, the address
of the access type object itself is passed. This will effectively force references to
the designated object to be double indirect references.

See Figure 11-1 for details.

F 11. Calling External Subprograms From Ada 11-11

Acces Type Passed by Value

Per'ow Area

- I - objectssd"lhe as:
fte Pmtrrie AML

Figure 11-1. Passing Access Types to Interfaced Subprograms

Access types may be returned as function results from external interfaced

subprograms.

Ada access types are pointers to Ada objects. In the implementation of HP
Ada for the Series 600, 700, and 800 Computer System, an address pointer
value will always point at the first byte of storage for the designated object
and not at a descriptor for the object. This may not be the case for other
implementations of the Ada language and should be considered when Ada
source code portability is an issue.

Note If a pointer to an unconstrained array object is passed to
interfaced code, the information that describes the run-time
constraints needs to be passed explicitly.

11-12 F 11. Calling External Subprograms From Ada

F 11.1.3 Array Types

In the HP implementation of Ada, arrays (Ada RM, section 3.6) are always
passed by reference. The value passed is the address of the first element of
the array. When an array is passed as a parameter to an external interfaced
subprogram, the usual checks on the consistency of array bounds between
the calling program and the called subprogram are not enforced. You are
responsible for ensuring that the external interfaced subprogram keeps within
the proper array bounds. You may need to explicitly pass the upper and lower
bounds for the array type to the external subprogram.

The external subprogram should access and modify such an array in a manner
appropriate to the actual Ada type. Note that Ada will not range check the
values that may have been stored in the array by the external subprogram.
In Ada, range checks are only required when assigning an object with a
constraint; thus, range checks are not performed when reading the value of an
object with a constraint. If an external subprogram modifies elements in an
Ada array object, it has the responsibility to ensure that any values stored
meet the type constraints imposed by the Ada type.

Array element allocation, layout, and alignment are described in section "F 4.7
Array Types".

Values of the predefined type STRING (Ada RM, section 3.6.3) are
unconstrained arrays and are passed by reference as described above. The
address of the first character in the string is passed. You may need to explicitly
pass the upper and lower bounds or the length of the string to the external
subprogram.

Returning strings from an external interfaced subprogram to Ada (such as OUT
parameters) is not supported. See section "F 11.3.3 Array Types and HP C
Subprograms" for a complete example that shows how to return STRING type
information from interfaced subprograms.

Array types cannot be returned as function results from external interfaced
subprograms. However. an access type to the array type can be returned as a
function result.

F 11. Calling External Subprograms From Ada 11-13

Caution All array type parameters are passed by reference from
Ada code to non-Ada interfaced code. In particular, arrays
occupying 64 bits or less of storage are passed by reference
and are not passed by copy, as is the standard PA-RISC
calling convention. Therefore, non-Ada code expecting to
receive such array parameters must expect to receive them
by reference, not by copy. C should declare such parameters
to be an appropriate pointer type; Pascal should declare
such parameters to be VAR parameters; FORTRAN always
expects explicit parameters by reference. Note that array type
parameters occupying more than 64 bits of storage are passed
by reference, both by Ada and by the standard PA-RISC
calling convention, and require no special precautions.

11-14 F 11. Calling External Subprograms From Ada

F 11.1.4 Record Types

Records (Ada RM, section 3.7) are always passed by reference in the HP
implementation of Ada, passing the 32-bit address of the first component of
the record. The external subprogram should access and modify such a record
in a manner appropriate to the actual Ada type. Note that Ada will not range
check the values that may have been stored in the record by the external
subprogram. In Ada, range checks are only required when assigning an object
with a constraint; thus, range checks are not performed when reading the
value of an object with a constraint. If an external subprogram modifies a
component in an Ada record object, it has the responsibility to ensure that
any values stored meet the type constraints imposed by the Ada type for that
component.

When interfacing with external subprograms using record types, it is
recommended that you provide a complete record representation clause for
the record type. It is also your responsibility to ensure that the external
subprogram accesses the record type in a manner that is consistent with
the record representation clause. For a complete description of record
representation clauses, see section "F 4.8 Record Types".

Caution All record type parameters are passed by reference from
Ada code to non-Ada interfaced code. In particular, records
occupying 64 bits or less of storage are passed by reference
and are not passed by copy, as is the standard PA-RISC
calling convention. Therefore, non-Ada code expecting to
receive such record parameters must expect to receive them
by reference, not by copy. C should declare such parameters
to be an appropriate pointer type; Pascal should declare
such parameters to be VAR parameters, FORTRAN always
expects explicit parameters by reference. Note that record type
parameters occupying more than 64 bits of storage are passed
by reference, both by Ada and by the standard PA-RISC
calling convention, and require no special precautions.

F 11. Calling External Subprograms From Ada 11-15

If a record representation clause is not used, you should be aware that the
individual components of a record may have been reordered internally by
the Ada compiler. This means that the implementation of the record type
may have components in an different order than the declarative order. Ada
semantics do not require a specific ordering of record components.

When interfacing record types with external subprograms, you may want to
communicate some or all of the offsets of individual record components. One
reason for doing this would be to avoid duplicating the record information in
two places: once in your Ada code and again in the interfaced code. Software
maintenance is often complicated by this practice.

The attribute 'POSITION returns the offset of a record component with respect
to the starting address of the record. By passing this information to the
external subprogram, you can avoid duplicating the record type definition in
your external subprogram.

The starting address of a record type can be passed to an external subprogram
in one of three ways:

" The record object passed as a parameter (records are always passed by
reference).

" The attribute 'ADDRESS of the record object passed as a parameter.

" A value parameter that is of an access type to the record object.

11-16 F 11. Calling External Subprograms From Ada

Direct assignment to a discriminant of a record is not allowed in Ada (Ada
RM, section 3.7.1). A discriminant cannot be passed as an actual parameter
of mode out or in out. This restriction applies equally to Ada subprograms
and to external interfaced subprograms written in other languages. If an
interfaced program is given access to the whole record (rather than individual
components), that code should not change the discriminant value because that
would violate the Ada standard rules for discriminant records.

In Ada, records are packed and variant record parts are overlaid; the size of
the record is the longest variant part. If a record contains discriminants or
composite components having a dynamic size, the compiler may add implicit
components to the record. See section "F 4.8 Record Types" for a complete
discussion of these components.

Dynamic components and components whose size depends upon record
discriminant values are implemented indirectly within the record by using
implicit 'OFFSET components.

Record types cannot be returned as function results from external interfaced
subprograms. However, an access type to the record type can be returned as a
function result.

F 11.1.5 Task Types

A task type cannot be passed to an external procedure or external function as
a parameter in Ada. A task type cannot be returned as a function result from
an external function.

F 11. Calling External Subprograms From Ada 11-17

1 11 F 11.2 Calling Assembly Language Subprograms
When calling interfaced assembly language subprograms, specify the named
external subprogram in a compiler directive:

pragma INTERFACE (ASSEMBLER, Adasubprogram- name

Note that the language type specification is ASSEMBLER and not ASSEMBLY. This
description refers to the HP assembly language for the PA-RISC processor
family upon which the Series 600, 700, and 800 family is based.

Interfaced subprograms written in PA-RISC Assembly Language that conform
to the PA-RISC procedure calling conventions can be called from Ada with
no special precautions. See the PA-RISC Architecture Procedure Calling
Convention Reference Manual and the Assembly Language Reference Manual
for additional information.

Only scalar types (integer, floating point, character, Boolean, and enumeration
types) and access types are allowed as result types for an external interfaced
function subprogram written in PA-RISC Assembly Language.

11-18 F 11. Calling External Subprograms From Ada

F 112.1 Scalar Types and Assembly Language Subprograms 111
See section "F 11.1.1 Scalar Types" for details.

F 11.2.1.1 Integer Types and Assembly Language Subprograms

See section "F 11.1.1.1 Integer Types" for details.

F 11.2.1.2 Enumeration Types and Assembly Language

Subprograms

See section "F 11.1.1.2 Enumeration Types" for details.

F 11.2.1.3 Boolean Types and Assembly Language Subprograms

See section "F 11.1.1.3 Boolean Types" for details.

F 11.2.1.4 Character Types and Assembly Language Subprograms

See section "F 11.1.1.4 Character Types" for details.

F 11.2.1.5 Real Types and Assembly Language Subprograms

See section "F 11.1.1.5 Real Types" for details.

F 11. Calling External Subprograms From Ada 11-19

111 F -11.2.2 Access Types and Assembly Language Subprograms

See section "F 11.1.2 Access Types" for details.

F 11.2.3 Array Types and Assembly Language Subprograms

See section "F 11.1.3 Array Types" for details.

F 11.2.4 Record Types and Assembly Language Subprograms

See section "F 11.1.4 Record Types' for details.

11-20 F 11. Calling External Subprograms From Ada

F 11.3 Calling HP C Subprograms

When calling interfaced HP C subprograms, the form

pragma INTERFACE (C, Ada.subprogram.name)

is used to identify the need to use the HP C parameter passing conventions.

To call the following HP C subroutine

void c-sub (valparm, ref.parm)
int valparm;
int *refparm;
{

}

Ada requires an interfaced subprogram declaration:

procedure C.SUB (VALPARAM in INTEGER;
REFPARAM : in out INTEGER);

pragma INTERFACE (C, CSUB);

In the above example we provided the Ada subprogram identifier CSUB to the
pragma INTERFACE. If a pragma INTERFACE-NAME is not supplied, the HP C
subprogram name is the name of the Ada subprogram specified in the pragma
INTERFACE, with all alphabetic characters shifted to lowercase.

Note that the parameter in the preceding example, VALPARAM., must be of
mode in to match the parameter definition for val-parm found in the HP C
subroutine. Likewise, REFPARAM, must be of mode in out to correctly match
the C definition of *ref parm. Also. note that the names for parameters do not
need to match exactly. However, the mode of access and the data type must be
correct]y matched, but there is no compile-time or run-time check that can
ensure that they match. It is your responsibility to ensure their correctness.

You must use pragma INTERFACE-NAME whenever the HP C subprogram name
contains characters not acceptable within Ada identifiers or when the HP
C subprogram name contains uppercase letter or letters. You can also use
a pragma INTERFACE-NAME if you want your Ada subprogram name to be
different than the HP C subprogram name.

F 11. Calling Exte-nal Subprograms From Ada 11-21

Note that the Ada compiler does not automatically convert 32-bit real
parameters to 64-bit real parameters. See section "F 11.3.1.5 Real Types and
HP C Subprograms" for details.

Only scalar types (integer, floating point, character, Boolean, and enumeration
types) and access types are allowed as result types for an external interfaced
function subprogram written in HP C.

When binding and linking Ada programs with interfaced subprograms written
in HP C, the librarie3 libc. a libM. a, and libcl. a are usually required. The
Ada binder automatically provides the -1M -Ic -icl directives to the linker.
You are not required to specify "-lM -ic -1il" when binding and linking the
Ada program on the ada{1) command line.

For more information about C language interfacing, see the HP C/IP- UX
Reference Manual and the HP C Programmer's Guide. For general information
about passing Ada types, see section "F 11.1 General Considerations in Passing
Ada Types".

F 11.3.1 Scalar Types and HP C Subprograms

See section "F 11.1.1 Scalar Types" for details.

11-22 F 11. Calling External Subprograms From Ada

F 11.3.1.1 Integer Types and HP C Subprograms

See section "F 11.1.1.1 Integer Types" for details.

When passing integers by reference, note that an Ada SHORTSHORT_ INTEGER
(eight bits) actually corresponds with the HP C type char, because C treats
this type as a numeric type.

Table 11-2 summarizes the integer correspondence between Ada and C.

Table 11-2. Ada versus HP C Integer Correspondence

Ada HP C Bit Length

CHARACTER char 8

SHORTSHORTINTEGER char 8

SHORT-INTEGER short and short int 16

INTEGER int, long, and long int 32

All Ada integer types are allowed for the result returned by an external
interfaced subprogram written in HP C if care is taken with respect to
differences in the interpretation of 8-bit quantities.

F 11.3.1.2 Enumeration Types and HP C Subprograms

See section "F 11.1.1.2 Enumeration Types" for details.

'HP C enumeration types have the same representation as Ada enumeration
types. They both are represented as unsigned integers beginning at zero. In
HP C, the size of an enumeration type is always 32 bits. When HP C passes
enumeration types as value parameters, the values are zero extended to 32
bits. Because Ada also performs the zero extension to 32 bits for enumeration
type values, they will be in the correct form for HP C subprograms. If a
representation specification applies to the Ada enumeration type, the value
specified by the representation clause (not the 'POS value) will be passed to the
HP C routine.

F 11. Calling External Subprograms From Ada 11-23

1 11 F 11.3.1.3 Boolean Types and HP C Subprograms

See section "F 11.1.1.3 Boolean Types" for details.

Booleans are passed as other enumeration types are passed; see section
"F 11.3.1.2 Enumeration Types and HP C Subprograms" for details.

The type Boolean is not defined in HP C and the Ada representation of
Booleans does not directly correspond to any type in HP C. However, an Ada
Boolean could be represented in C with an appropriate two-valued enumeration
type or with an HP C integer type.

Boolean types are allowed for the result returned by an external interfaced
subprogram written in HP C, when care is taken to observe the internal
representation.

F 11.3.1.4 Character Types and HP C Subprograms

See section "F 11.1.1.4 Character Types" for details.

The Ada predefined type CHARACTER and any of its subtypes correspond with
the type char in HP C. Both the Ada and HP C types have the same internal
representation and size. However, in Ada the type CHARACTER is constrained to
be within the 128 character ASCII standard.

11-24 F 11. Calling External Subprograms From Ada

F 11.3.1.5 Real Types and HP C Subprograms

This section discusses passing fixed point types and floating point types to
HP C.

Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external
subprograms. Ada fixed point types cannot be returned as function results
from interfaced subprograms written in HP C.

Floating Point Types

When HP C is operating in compatibility mode (non-ANSI mode), the
default calling convention for passing parameters of floating point types by
value requires that 32-bit single precision reals be converted to 64-bit double
precision reals before being passed.

When HP C is operating in ANSI conformant mode (or in compatibility
mode with the +z- Bag specified), 32-bit single precision reals are passed as
parameters without being converted to 64-bit double precision.

Consequently, an interface parameter of type FLOAT or of a type 'erived
from a type whose base type is FLOAT. can only be passed directly to
float parameters of HP C code compiled in ANSI conformant mode or in
compatibility mode with r specified.

To interface with compatibility mode HP C code (no +r specified). the
Ada type LONG-FLOAT, or a type derived from a type whose base type is

'LONGFLOAT. must be used for all parameters of HP C type float.

This limitation on passing the Ada type FLOAT only applies to parameters
that are of the type FLOAT or derived from a type whose base type is FLOAT.
A parameter of a composite type, such as an array or record. can have
components that are of the type FLOAT. Also. the type FLOAT can be passed by
reference to an external HP C subprogram. The HP C calling convention does
not require conversion in these cases in any compiler mode.

F 11. Calling External Subprograms From Ada 11-25

F 11.3.2 Access Types and HP C Subprograms

See section "F 11.1.2 Access Types" for details.

F 11.3.3 Array Types and HP C Subprograms

See section "F 11.1.3 Array Types" for details.

Note that constrained Ada arrays with SHORT.SHORT_ INTEGER or with 8-bit
enumeration type components can be most conveniently associated with an HP
C type of the form char [] or char *.

In Ada, the predefined type STRING is an unconstrained array type. It is
represented in memory as a sequence of consecutive characters without any
gaps in between the characters. In HP C, the string type is represented as
a sequence of characters that is terminated with an ASCII null character
(\000). You will need to append a null character to the end of an Ada string
if that string is to be sent to an external interfaced HP C subprogram. When
retrieving the value of an HP C string object for use as an Ada string, you will
need to dynamically allocate a cc,y of the HP C string. The HP C type char
* is not compatible with the unconstrained array type STRING that is used by
Ada.

The examples on the following pages illustrate the handling of strings in HP C
and in Ada. In the first example, an Ada string is passed to HP C. Note the
need to explicitly add a null character to the end of the string so that string is
in the form that HP C expects for character strings.

11-26 F 11. Calling External Subprograms From Ada

HP C routine:

/* Receiving an Ada string that has an ASCII.NULL appended
to it in this C routine

*/

void receive-ada-str (varstr)
char svar.str;

printf ("C: Received value was : %s \n", var-str);
}

Ada routine:

-- passing an Ada string to a C routine

procedure SENDADASTR is

-- Declare an interfaced procedure that sends an
-- Ada-String to a C-subprogram

procedure RECEIVEADASTR (VARSTR : STRING);
pragma INTERFACE (C, RECEIVEADASTR);

begin -- SENDADASTR

-- Test the. passing of an Ada string to a C routine
RECEIVEADASTR ("Ada test string sent to C " & ASCII.NUL);

end SENDADASTR;

F 11. Calling External Subprograms From Ada 11-27

In the second example, a C string is converted to an Ada string. Note that
Ada must compute the length of the C string and then it must dynamically
allocate a new copy of the C string.

HP C routine:

1* Sending a C string value back to an Ada program */

char *send-c-str()
{

char *local-string;

local-string = "a C string for Ada.";
return local-string;

I

Ada routine:

-- We import several useful functions from the package SYSTEM
-- the generic function FETCHFROMADDRESS
-- to read a character value given an address
-- the function "+"(address,integer)
-- to allow us to index consecutive addresses

-- (See section F 3.1, for the complete specification
-- of the package SYSTEM)

with SYSTEM;
with TEXTIO;
procedure READC.STRING is

type CSTRING is access CHARACTER;
-- This is the C type char *

type A-STRING is access STRING;
-- The Ada type pointer to STRING

11-28 F 11. Calling External Subprograms From Ada

-- Declare an interfaced procedure that returns a pointer
-- to a C string (actually a pointer to a character)
function SENDCSTR return CSTRING;
pragma INTERFACE (C, SENDC_STR);

function FETCH-CHAR is
new SYSTEM.FETCHFROMADDRESS (TARGET => CHARACTER);
-- Create a non-generic instantiation of the function FETCH

function CSTRINGLENGTH (SRC : CSTRING) return NATURAL is
use SYSTEM; -- import the "+"(address,offset) operator
LEN NATURAL := 0;
START SYSTEM.ADDRESS;
CUR CHARACTER;

begin
START SRC.all'ADDRESS;
loop

CUR FETCH-CHAR (FROM => START + OFFSET (LEN));
exit when CUR = ASCII.NUL;
LEN := LEN + 1;

end loop;
return LEN;

end CSTRINGLENGTH;

F 11. Calling External Subprograms From Ada 11-29

function CONVERTTOADA (SRC : CSTRING) return A-STRING is
use SYSTEM; -- import the "+"(address,offset) operator
A-STORAGE : A-STRING;
LEN : NATURAL;
CSTART : SYSTEM.ADDRESS;
CCUR : CHARACTER;

begin
LEN :z CSTRINGLENGTH (SRC);
A-STORAGE new STRING (I .. LEN);
CSTART SRC.all'ADDRESS;
for INX in 0 .. LEN - 1 loop

CCUR := FETCH-CHAR (FROM => CSTART + OFFSET (INX));
ASTORAGE.all (INX + 1) := C-CUR;

end loop;
return A-STORAGE;

end CONVERTTOADA;

begin -- Start of READCSTRING
declare

A-RESULT : A-STRING;
CRESULT : CSTRING;

begin
-- Call the external C subprogram

CRESULT := SENDCSTR;

-- Convert to an access Ada STRING

ARESULT':= CONVERTTOADA(CRESULT);

-- Print out the result.
TEXTIO.PUTLINE(ARESULT.all);

end;
end READCSTRING;

11-30 F 11. Calling External Subprograms From Ada

F 11.3.4 Record Types and HP C Subprograms 11IB
See section "F 11.1.4 Record Types" for details.

Ada records can be passed as parameters to external interfaced subprograms
written in HP C if care is taken regarding the record layout and access to
record discriminant values. See section "F 4.8 Record Types" for information
on record type layout.

F 11. Calling External Subprograms From Ada 11-31

* 1 F 11.4 Calling HP FORTRAN 77 Language Subprograms
When calling interfaced HP FORTRAN 77 subprograms, the following form is
used:

pragma INTERFACE(FORTRAN, Ada.subprogram..name)

This form is used to identify the need for HP FORTRAN 77 parameter passing
conventions.

To call the HP FORTRAN 77 subroutine

SUBROUTINE fsub (parm)
INTEGER*4 parm

END

you need this interfaced subprogram declaration in Ada:

procedure FSUB (PARM : in out INTEGER);
pragma INTERFACE (FORTRAN, FSUB);

The external name specified in the Ada interface declaration can be any Ada
identifier. If the Ada identifier differs from the FORTRAN 77 subprogram
name, pragma INTERFACE-NAME is required.

Note that the parameter in the example above is of mode in out. In
HP FORTRAN 77, all user-declared parameters are always passed by reference;
therefore, mode in out or mode out must be used for scalar type parameters.
The HP FORTRAN 77 compiler might expect some implicit parameters that
are passed by value and not by reference. See section "F 11.4.4 String Types
and HP FORTRAN 77 Subprograms" for details.

Only scalar types (integer, floating point, and character types) are allowed for
the result returned by an external interfaced function subprogram written
in HP FORTRAN 77. Access type results are not supported. For more
information, see the following manuals:

" HP FORTRAN 77/HP- UX Reference Manual
" HP FORTRAN 77/HP-UX Programmer's Reference
" HP FORTRAN 77/Quick Reference Guide

For general information about passing types to interfaced subprograms, see
section "F 11.1 General Considerations in Passing Ada Types".

11-32 F 11. Calling External Subprograms From Ada

F 11.4.1 Scalar Types and HP FORTRAN 77 Subprograms

FORTRAN expects all user-declared parameters to be passed by reference.
Ada scalar type parameters will only be passed by reference if declared as
mode in out or out; therefore, no scalar type parameters to a FORTRAN
interface routine should be declared as mode in (except for certain implicit
parameters; see section "F 11.4.4 String Types and HP FORTRAN 77
Subprograms" for details.) No error will be reported by Ada, but you will most
likely get unexpected results.

F 11.4.1.1 Integer Types and HP FORTRAN 77 Subprograms

See section "F 11.1.1.1 Integer Types" for details.

See section "F 11.1.1 Scalar Types" for details.

Table 11-3 summarizes the correspondence between integer types in Ada and
HP FORTRAN 77.

Table 11-3.

Ada versus HP FORTRAN 77 Integer Correspondence

Ada HP FORTRAN 77 Bit Length

SHORTSHORTINTEGER BYTE 8

SHORT-INTEGER INTEGER*2 16

INTEGER IINTEGER*4 32

The compatible types are the same for procedures and functions. Compatible
Ada integer types are allowed for the result returned by an external interfaced
function subprogram written in HP FORTRAN 77.

Ada semantics do not allow parameters of mode in out to be passed to
function subprograms. Therefore, for Ada to call HP FORTRAN 77 external
interfaced function subprograms, each scalar parameter's address must be
passed. The use of the supplied package SYSTEM facilitates this passing of the

F 11. Calling External Subprograms From Ada 11-33

object's address. The parameters in an HP FORTRAN 77 external function
must be declared as in the example below:

with SYSTEM;
VAL : INTEGER; -- a scalar type
VAL2 : FLOAT ; -- a scalar type
RESULT INTEGER;
function FTNFUNC (PARM1, PARM2 : SYSTEM.ADDRESS) return INTEGER;

The external function must be called from within Ada as follows:

RESULT := FTNFUNC (VAL1'ADDRESS, VAL2'ADDRESS);

F 11.4.1.2 Enumeration Types and HP FORTRAN 77 Subprograms

See section "F 11.1.1.2 Enumeration Types" for details.

The HP FORTRAN 77 language does not support enumeration types.
However, objects that are elements of an Ada enumeration type can be passed
to an HP FORTRAN 77 integer type because the underlying representation
of an enumeration type is an integer. The appropriate FORTRAN type
(BYTE, INTEGER*2, or INTEGER*4) should be chosen to match the size of the
Ada enumeration type. If a representation specification applies to the Ada
enumeration type, the value specified by the representation clause (not the
'POS value) will be passed to the FORTRAN routine.

11-34 F 11. Calling External Subprograms From Ada

F 11.4.1.3 Boolean Types and HP FORTRAN 77 Subprograms

See section "F 11.1.1.3 Boolean Types" for details.

An Ada Boolean that has the default 8-bit size is compatible with the default
mode HP FORTRAN 77 type LOGICAL*1 both as a parameter and as a

function result.

An Ada Boolean type with a representation specification for a larger size (16
or 32 bits) is not compatible with the larger sized HP FORTRAN 77 logical
types (LOGICAL*2 or LOGICAL*4). Such Ada Booleans can be passed to the
appropriately sized FORTRAN integer type (INTEGER*2 or INTEGER*4) and
treated as integers that have the value of 'POS of the Ada Boolean value.

If the HP FORTRAN 77 routine is compiled with one of the HP FORTRAN 77
options that changes the size or representation of logical types to other
than the default, you will have to determine what Ada types, if any, are
compatible with the altered FORTRAN behavior by consulting the appropriate
FORTRAN documentation.

F 11. Calling External Subprograms From Ada 11.35

* 1 F 11.4.1.4 Character Types and HP FORTRAN 77 Subprograms

See section "F 11.1.1.4 Character Types" for details.

There is no one-to-one mapping between an Ada character type and any
HP FORTRAN 77 character type. An Ada character type can be passed to
HP FORTRAN 77 or returned from HP FORTRAN 77 using one of several
methods.

HP FORTRAN 77 considers all single character parameters to be
single-element character arrays. The method that HP FORTRAN 77 uses to
pass character arrays is described in section "F 11.4.4 String Types and HP
FORTRAN 77 Subprograms". ' 'he method requires that an implicit value
parameter be passed to indicate the size of the character array. Because HP
FORTRAN 77 uses this method for passing character types, it might be more
convenient to convert Ada character types into Ada strings and follow the rules
that govern passing Ada string types to HP FORTRAN 77.

An Ada character that has the default 8-bit size can be passed to a default
mode HP FORTRAN 77 parameter of type CHARACTER*1. This can be done
if the interface declaration specifies the additional size parameters that
HP FORTRAN 77 implicitly expects and passes the constant value one (the
size of the character) when the HP FORTRAN 77 subprogram is called. See
section "F 11.4.4 String Types and HP FORTRAN 77 Subprograms" for
an example of implicit size parameters for strings; to pass an Ada character
instead of a string, simply use the Ada character type in the Ada interface
declaration in place of the Ada string type and CHARACTER*1 in the HP
FORTRAN 77 Jeclaration in place of the CHARACTER *(*). Note that the
size parameter or parameters are not specified in the HP FORTRAN 77
subprogram declaration; they are implicit parameters that are expected by the
HP FORTRAN 77 subprogram for each character array (or character) type
parameter.

An Ada character type that has the default size cannot be returned from an
HP FORTRAN 77 function that has a result type of CHARACTER*1 (it can be
returned as a BYTE; see below for details).

An Ada character type that has the default 8-bit size can also be passed to
an HV FORTRAN 77 parameter of type BYTE without having to pass the
additional length parameter. The BYTE will have the value of 'POS of the Ada
character value.

11-36 F 11. Calling External Subprograms From Ada

An Ada character type that has the default size can also be returned from an
HP FORTRAN 77 function that has a return type of BYTE. The BYTE to be
returned should be assigned the 'POS value of the desired Ada character.

An Ada character type with a representation specification for a larger size (16
or 32 bits) is not compatible with any HP FORTRAN 77 character type. Such
Ada characters can be passed to the appropriately sized FORTRAN integer
type (INTEGER*2 or INTEGER*4) and treated as integers that have the value of
'POS of the Ada character value.

F 11.4.1.5 Real Types and HP FORTRAN 77 Subprograms

This section discusses passing fixed and floating point types to subprograms
written in FORTRAN.

Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external
interfaced subprograms written in HP FORTRAN 77. Ada fixed point types
cannot be returned as function results from external interfaced subprograms
written in HP FORTRAN 77.

Floating Point Types

See section "F 11.1.1.5 Real Types" for details.

The Ada type FLOATcorresponds to the REAL*4 format in HP FORTRAN 77.
The Ada type LONG-FLOAT corresponds to the tIP FORTRAN 77 type DOUBLE
PRECISION (or REAL*8).

There is no Ada type that corresponds to the HP FORTRAN 77 type REAL*16.

F 11. Calling External Subprograms From Ada 11.37

11 F 11.4.2 Access Types and HP FORTRAN 77 Subprograms

See section "F 11.1.2 Access Types" for details.

Ada access types have no meaning in HP FORTRAN 77 subprograms because
the types are address pointers to Ada objects. The implementation value of
an Ada parameter of type ACCESS may be passed to an HP FORTRAN 77
procedure. The parameter in HP FORTRAN 77 is seen as INTEGER*4.
The object pointed to by the access parameter has no significance in
HP FORTRAN 77; the access parameter value itself would be useful only for
comparison operations to other access values.

HP FORTRAN 77 can return an INTEGER*4 and the Ada program can declare
an access type as the returned value type (it will be a matching size because in
Ada, an access type is a 32-bit quantity.) However, care should be taken that
the returned value can actually be used by Ada in a meaningful manner.

11-38 F 11. Calling External Subprograms From Ada

F 11.4.3 Array Types and HP FORTRAN 77 Subprograms

See section "F 11.1.3 Array Types" for details.

Arrays whose components have an HP FORTRAN 77 representation can be
passed as parameters between Ada and interfaced external HP FORTRAN 77
subprograms. For example, Ada arrays whose components are of types
INTEGER, SHORT-INTEGER, FLOAT, LONG-FLOAT, or CHARACTER may be passed as
parameters.

Array types cannot be returned as function results from external
HP FORTRAN 77 subprograms. However, an access type to the array type can
be returned as a function result.

Caution Arrays with multiple dimensions are implemented differently
in Ada and HP FORTRAN 77. To obtain the same layout of
components in memory as a given HP FORTRAN 77 array, the
Ada equivalent must be declared and used with the dimensions
in reverse order.

F il. Calling External Subprograms From Ada 11-39

Consider the components of a 2-row by 3-column matrix, declared in
HP FORTRAN 77 as

INTEGER*4 a(2,3)

or

INTEGER*4 a(1:2,1:3)

This array would be stored by HP FORTRAN 77 in the following order:

a(1,1), a(2,1), a(1,2), a(2,2), a(1,3), a(2,3)

This is referred to as storing in column major order; that is, the first subscript
varies most rapidly, the second varies next most rapidly, and so forth, and the
last varies least rapidly.

Consider the components of a 2-row by 3-column matrix, declared in Ada as:

A : array (1..2, 1..3) of INTEGER;

This array would be stored by Ada in the following order:

A(1,1), A(1,2), A(1,3), A(2,1), A(2,2), A(2,3)

This is referred to as storing in row major order; that is, the last subscript
varies most rapidly, the next to last varies next most rapidly. and so forth,
while the first varies least rapidly. Clearly the two declarations in the different
languages are not equivalent. Now, consider the components of a 2-row by
3-column matrix, declared in Ada as:

A : array (1-.3, 1..2) of INTEGER;

Note the reversed subscripts compared with the FORTRAN declaration. This
array would, be stored by Ada in the following order:

A(1.,1), A(1,2). A(2,1), A(2,2), A(3,1), A(3,2)

If the subscripts are reversed, the layout would be

A(1,1), A(2,1), A(,2), A(2,2), A(1,3), A(2,3)

which is identical to the HP FORTRAN 77 layout. Thus, either of the
language declarations could declare its component indices in reverse order to be
compatible.

11-40 F 11. Calling External Subprograms From Ada

To illustrate that equivalent multi-dimensional arrays require a reversed order
of dimensions in the declarations in HP FORTRAN 77 and Ada, consider the
following:

The Ada statement

FOO : array (1..10,1..5,1..3) of FLOAT;

is equivalent to the HP FORTRAN 77 declaration

REAL*4 FO(3,5,10)

or

REAL*4 FOO(1:3,1:5,1:10)

Both Ada and HP FORTRAN 77 store a one-dimensional array as a linear list.

F 11.4.4 String Types and HP FORTRAN 77 Subprograms

When a string item is passed as an argument to an HP FORTRAN 77
subroutine from within HP FORTRAN 77, extra information is transmitted
in hidden (implicit) parameters. The calling sequence includes a hidden
parameter (for each string) that is the actual length of the ASCII character
sequence. This implicit parameter is passed in addition to the address of the
ASCII character string. The hidden parameter is passed by value, not by
reference.

These conventions are different from those of Ada. For an Ada program to call
an external interfaced subprogram written in HP FORTRAN 77 with a string
type parameter, you must explicitly pass the length of the string object. The
length must be declared as an Ada 32-bit integer parameter of mode in.

F 11. Calling External Subprograms From Ada 11-41

The following example illustrates the declarations needed to call an external
subroutine having a parameter profile of two strings and one floating point

* variable.

procedure FTNSTR is
SA: STRING(l. .6):= "ABCDEF 1 ;
SB: STRING(1. .2):= "GH16;
FLOAT-VAL: FLOAT:= 1.5;
LENGTH..SA, LENGTH-.SB :INTEGER;

procedure FEXSTR (S1 STRING; -- passed by reference
LS1 in INTEGER; -- len of string S1,

-must be IN
F :in out FLOAT; -- must be IN OUT
S2 :STRING; -- passed by reference
LS2 :in INTEGER); -- in of string S2,

-must be IN

pragma INTERFACE (FORTRAN, FEXSTR);

begin - - procedure FTNSTR
LENGTH-.SA :SAILENGTH;
LENGTH-.SB :SB'LENGTH;

FEXSTR (SA, LENGTH.SA, FLOAT-VAL, SB, LENGTH.SB);
end FTNSTR;

Note Note that the string lengths immediately followv the
corresponding string parameter. The string lengths must be
passed by value, not by reference.

11-42 F 11. Calling External Subprograms From Ada

The HP FORTRAN 77 external subprogram is the following:

SUBROUTINE Fextr (si, r, s2)
CHARACTER *(*) sl, s2
REAL*4 r

END

Returning A String From FORTRAN

It is not possible to declare, in Ada, an external FORTRAN function
that returns a result of type STRING (character*N or character*(*) in
FORTRAN). However, such a FORTRAN function can be accessed from Ada
by declaring the function to be an Ada procedure with two additional initial
parameters. The first parameter should be declared as an out parameter of
a constrained string type; the second parameter should be declared as an in
parameter of type INTEGER. The string that is to hold the result is passed as
the first parameter, and the length of that first parameter (the number of
characters that FORTRAN can safely return in that first parameter string) is
passed as the second parameter.

If the maximum number of characters specified by the second parameter is
greater than the number of characters in the string being returned as the
FORTRAN function result, the Ada string will be padded with blanks out to
the number of characters specified as the second parameter. If the maximum
number of characters specified by the second parameter is less than the
number of characters in the string being returned as the FORTRAN function
result, only the number of characters specified as the second parameter will be

-returned in the Ada string.

F 11. Calling External Subprograms From Ada 11-43

The following Ada program calls a FORTRAN function that returns a STRING
function result:

procedure FORTRAN-.STRING-FUNC is

subtype RESULT is STRING (l. .80)

procedure FORTRAN-.FOO (RES: out RESULT;
MAX: in INTEGER;
X :in out INTEGER;
Y :in out INTEGER);

pragma INTERFACE (FORTRAN, FORTRAN FOO);
pragma INTERFACE-.NAME (FORTRAN-.FOO, 110o1");

S RESULT;
A :INTEGER;
B INTEGER;

begin - -FORTRAN.STRING-.FUNC
A :28;
B 496;
FDRTRAN..FOO (S, S'LENGTH, A, B);

end FORTRAN-.STRING..FUNC;

The FORTRAN function looks like this:

CHARACTER *()FUNCTION foo (%,y)
INTEGER*4 x,y

I 00 = 'RETURN THIS STRING TO ADA'
RETURN
END

11-44 F 11. Calling External Subprograms From Ada

F 11.4.5 Record Types and HP FORTRAN 77 Subprograms

See section "F 11.1.4 Record Types" for details.

Ada records may be passed as parameters to external interfaced subprograms
written in HP FORTRAN if care is taken regarding the record layout and
access to record discriminant values. See section "F 4.8 Record Types" for
information on record type layout.

Record types are not allowed as function results in HP FORTRAN functions.

F 11.4.6 Other FORTRAN Types

The HP FORTRAN 77 types COMPLEX, COMPLEX*8, DOUBLE COMPLEX, and
COMPLEX*16 have no direct counterparts in Ada. However, it is possible to
declare equivalent types using either an Ada array or an Ada record type. For
example, with type COMPLEX in HP FORTRAN 77, a simple Ada equivalent is a
user-defined record:

type COMPLEX is
record

Real FLOAT;
Imag FLOAT;

end record;

Similarly, an HP FORTRAN 77 double complex number could be represented
with the two record components declared as Ada type LONG-FLOAT.

While it is not possible to declare an Ada external function that returns the
above record type, an Ada procedure can be declared with an out parameter

*of type COMPLEX. The Ada procedure would then need to interface with an
HP FORTRAN 77 subroutine, which would pass the result back using an in
out or out parameter.

F 11. Calling External Subprograms From Ada 11-45

*F 11.5 Calling HP Pascal Language Subprograms
When calling interfaced HP Pascal subprograms, the form

pragma INTERFACE (Pascal, Ada.subprogram-name)

is used to identify the need to use the HP Pascal parameter passing
conventions.

To call the following HP Pascal subroutine

module modp;
export

procedure p.subr (val-parm : integer;
var ref.parm : integer);

implement
procedure p.subr (val-parm : integer;

var ref.parm : integer);
begin

end;

end.

Ada would use the interfaced subprogram declaration:

procedure PSUB (VALPARAM : in INTEGER;
REFPARAM : in out INTEGER);

pragma INTERFACE (Pascal, PSUB)

In the above example we provided the Ada subprogram identifier PSUB to the
pragma INTERFACE.

Note that the parameter in the example, VALPARAM, must be of mode in
to match the parameter definition for val-parm found in the HP Pascal
subroutine. Likewise. REFPARAM, must be of mode in out to correctly match
the HP Pascal definition of var ref..parm. Also, note thai the names for
parameters do not need to match exactly. However, the mode of access and the
data type mu, st be correctly matched, but there is no compile-time or run-time
check that can ensure that they match. It is your responsibility to ensure their
correctness.

11-46 F 11. Calling External Subprograms From Ads

When Ada interfaces to HP Pascal, it refers to the HP Pascal procedure
or function by the procedure or function name. In the above example, the
pragma INTERFACE was sufficient to specify that name, although a pragma
INTERFACE-NAME could also have been used (and would be necessary if the
name given to the Ada routine did not map correctly to the desired HP Pascal
name). Because Ada uses only the HP Pascal procedure or function name,
there is a difficulty if that name is not unique.

The names of the procedures and functions declared within an HP Pascal
module must be unique within a single module. A given module can only
contain one procedure or function name (for example, FO0), but another
module could also contain a procedure or function named FOO. If a single
program uses both modules, it is necessary to properly resolve references to
FOO. To properly resolve such references, procedure and function names in
modules are qualified with the name of the module that contains them. This
qualification is internal to the object file and is not accessible to user code.
The linker (ld(1)) uses the qualification information to resolve references by
HP Pascal code to identically named procedures or functions.

This qualification mechanism poses a difficulty when attempting to interface
Ada to HP Pascal because Ada can only specify the unqualified HP Pascal
procedure or function name. There will be no difficulty if the HP Pascal
procedure or function being called has a name that is unique within all the
HP Pascal modules used in the Ada program (if the qualification mechanism
is not needed for the name). If the procedure or function name is not unique,
the linker (Id(1)) will, without producing an error or warning, select one
(usually the first one) of the multiple HP Pascal procedures or functions that
it encouiters during the link that has the name specified by Ada. As this
unpredictable selection is likely to lead to an incorrect program, interfacing
to HP Pascal procedures or functions that are not uniquely named is not
recommended.

For more information on Pascal interfacing, see the HP Pascal/HP- UX
Reference Manual. Additional information is available in the HP-U"
Portability Guide.

For Pascal, scalar and access parameters of mode in are passed by value;
the value of the parameter object is copied and passed. All other types of in
parameters (arrays and records) and parameters of mode out and in out are
passed be reference; the address of the object is passed. This means that, in

F 11. Calling External Subprograms From Ada 11-47

11 general, Ada in parameters correspond to Pascal value parameters, while
Pascal var parameters correspond to the Ada parameters of either mode in out
or mode out.

Only scalar types (integer, floating point, character, Boolean, and enumeration
types) and access types are allowed for the result returned by an external
interfaced Pascal function subprograms.

For general information about passing parameters to interfaced subprograms,
see section "F 11.1 General Considerations in Passing Ada Types".

F 11.5.1 Scalar Types and HP Pascal Subprograms

See section "F 11.1.1 Scalar Types" for details.

F 11.5.1.1 Integer Types and HP Pascal Subprograms

See section "F 11.1.1.1 Integer Types" for details.

Integer types are compatible between Ada and HP Pascal provided their ranges
of values are identical. Table 11-4 shows corresponding integer types in Ada
and HP Pascal.

Table 11-4. Ada versus HP Pascal Integer Correspondence

Ada HP Pascal Bit Length

predefined type INTEGER predefined type integer 32

predefined type predefined type shortint or 16
SHORT-INTEGER user type I16 = 0..65535:

predefined type user-defined type 8
SHORTSHORTINTEGER type 18 = 0-.255:

11-48 F 11. Calling External Subprograms From Ada

Note In HP Pascal, any integer subrange that has a negative lower
bound is always implemented in 32 bits. Integer subranges
with a non-negative lower bound are implemented in 8-bits if
the upper bound is 255 or less, in 16-bits if the upper bound
is 65535 or less, and in 32-bits if the upper bound is greater
than 65535. Therefore, in table Table 11-4, the user-defined
subrange 0 ... 255 is shown as the HP Pascal equivalent to the
Ada type SHORT-SHORT-_INTEGER; however, the Ada type is a
signed type with the range -128..127. To convert the unsigned
value back to a signed value in HP Pascal, if the unsigned value
is greater than 127, you will need to subtract 256 to obtain the
actual negative value.

Whether passed from Ada to HP Pascal by value or by reference, the
appropriate HP Pascal type, as shown in Table 11-4, must be used to properly
access the Ada integer value from HP Pascal.

All Ada integer types are allowed for the result returned by an external
interfaced subprogram written in HP Pascal if care is taken with respect to
ranges defined for integer quantities.

F 11. Calling External Subprograms From Ada 11-49

F 11.5.1.2 Enumeration Types and HP Pascal Subprograms

See section "F 11.1.1.2 Enumeration Types" for details.

Ada and HP Pascal have similar implementations of enumeration types. In
Ada and HP Pascal, enumeration types can have a size of 8, 16, or 32 bits.
However, Ada normally considers enumeration types to be signed quantities
and HP Pascal considers them to be unsigned. Table 11-5 shows corresponding
enumeration types in Ada and HP Pascal.

Table 11-5. Ada versus HP Pascal Enumeration Correspondence

Ada HP Pascal Bit Length

<= 128 elements <= 256 elements 8

<= 32768 elements <= 65536 elements 16

> 32768 elements > 65536 elements 32

If the Ada enumeration type has 129 through 256 elements or 32769 through
65536 elements, there are additional requirement to passing or returning values
of such an Ada type. A size specification on a representation clause for the
Ada enumeration type should be used to specify the minimum size for the
enumeration type (see section F 4.1 for details.) When such a size is used and
none of the internal codes are negative integers, the internal representation
of the Ada type will be unsigned and will conform with the HP Pascal
representation.

11-50 F 11. Calling External Subprograms From Ada

If such a size specification representation clause is not used, it is still possible
to pass a simple variable or expression of such a type to HP Pascal, by value
or reference, or to return one from HP Pascal. Although the Ada enumeration
object is stored in a larger container than HP Pascal expects, the valid values
are actually all stored within the part of the container that HP Pascal will
access.

However, unless a size specification representation clause is used, there will be
difficulty passing arrays of Ada enumeration values of such types or passing
records containing fields of such types. HP Pascal will not properly access the
correct elements of such arrays or fields of such records because it will assume
the enumeration values to be smaller than they actually are and therefore will
compute their location incorrectly.

If a representation specification is applied to the Ada enumeration type to
alter the internal value of any enumeration elements, care must be taken
that the values are within the HP Pascal enumeration type to which the Ada
enumeration value is being passed.

Ada supports the return of a function result that is an enumeration type from
an external interfaced function subprogram written in HP Pascal.

F 11.5.1.3 Boolean Types and HP Pascal Subprograms

See section "F 11.1.1.3 Boolean Types" for details.

F 11.5.1.4 Character Types and HP Pascal Subprograms

See section "F 11.1.1.4 Character Types" for details.

Values of the Ada predefined character type might be treated as the type CHAR
in HP Pascal external interfaced subprograms.

F 11. Calling External Subprograms From Ada 11-51

F 11.5.1.5 Real Types and HP Pascal Subprograms

The following subsections discuss passing Ada real types to interfaced
HP Pascal subprograms.

Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external
subprograms. Ada fixed point types cannot be returned as function results
from interfaced subprograms written in HP Pascal.

Floating Point Types

See section "F 11.1.1.5 Real Types" for details.

Ada FLOAT values correspond to HP Pascal real values. Ada LONG-FLOAT values
correspond to HP Pascal longreal values.

F 11.5.2 Access Types and HP Pascal Subprograms

See section "F 11.1.2 Access Types" for details.

Ada access values can be treated as pointer values in HP Pascal. The Ada
heap allocation and the HP Pascal heap allocation are completely separate.
There must be no explicit deallocation of an access or pointer object in one
language of an object allocated in the other language.

11-52 F 11. Calling External Subprograms From Ada

F 11.5.3 Array Types and HP Pascal Subprograms

See section "F 11.1.3 Array Types" for details.

Arrays with components with the same representation have the same
representation in Ada and HP Pascal.

Arrays cannot be passed by value from Ada to HP Pascal. An Ada array can
only be passed to a VAR parameter in an HP Pascal subprogram.

Array types cannot be returned as function results from external interfaced
subprograms written in HP Pascal.

Pascal conformant array parameters passed by reference (VAR) can be passed
from Ada to Pascal. To pass such parameters, additional implicit parameters
expected by Pascal must be added in the Ada declaration of the Pascal
procedure or function. For each dimension, except the last dimension, these
additional parameters are the bounds of the array followed by the size of the
array elements in bytes and they must immediately follow the conformant array
parameter or parameters. The bounds and element size parameters must be
declared as in parameters of an integer or enumeration type.

When more than one conformant array parameter is declared in a
comma-separated formal parameter list in a Pascal procedure or function
heading, all the actual parameters passed to the formals in that list must have
the same number of dimensions and the same lower and upper index bound in
each dimension. Therefore, only one set of implicit bound parameters is needed
for the two formal parameters A and B in the following example (no element
size is passed to A and B because they have only one dimension). The actual
parameters passed to the formal A and B parameters must have the same index
bounds.

F 11. Calling External Subprograms From Ada 11-53

Note that two sets of implicit bound parameters and one element size
parameter are needed for the two-dimensional conformant array formal
parameter C (one set of bounds for each dimension and an element size for the
second dimension). If there are additional two-dimensional conformant array
parameters, and they are all declared in the same comma-separated parameter
list in Pascal (with the C parameter), only the two sets of implicit bound
parameters and the one element size parameter is required for the entire list.
For example, if the Pascal function heading is

function VectorThing
(VAR a,b: ARRAY [i..j: INTEGER] of INTEGER;

VAR c : ARRAY [p..q: INTEGER] of ARRAY [r..s: INTEGER]
of INTEGER) INTEGER;

11-54 F 11. Calling External Subprograms From Ada

The Ada declaration to call such a Pascal function follows:

with SYSTEM;

procedure PASCAL-CONFORM..FUNC is

type VECTOR is array (INTEGER range -492. .+500)
of INTEGER range -100. .4100;

type VECTOR2 is array (INTEGER range 1..10) of VECTOR;

function VECTORTHING (A, B: VECTOR;
I, J: INTEGER

C: VECTOR2;

P, Q: INTEGER;
R, S: INTEGER;
ELSIZE: INTEGER) return INTEGER;

pragma INTERFACE (PASCAL, VECTORTHING);

-An appropriate pragma INTERFACE-.NAME is needed here
-to properly access the Pascal function because the
-actual function name depends on the Pascal module
-in which the function appears.

VECTOR-.SIZE : constant INTEGER
VECTOR'SIZE / SYSTEM.STORAGE-.UNIT;

W, V: VECTOR;
X :VECTOR2;
I :INTEGER;

begin -- PASCAL.CONFORM-FUNC

I := VECTORTHING (W, V.
VECTOR'RS, 'PTRIAT

X,
VECTOR2'FIRST, VECTOR2 'LAST,
VECTOR 'FIRST. VECTOR 'LAST,
VECTOR.SIZE);

end PASCAL..CONFORM..FUNC;

F 11. Calling External Subprograms From Ada 11-55

F 11.5.4 String Types and HP Pascal Subprograms

See section F 11.1.3 for details.

Passing variable length strings between Ada and HP Pascal is supported
with some restrictions. Strings cannot be passed by value from Ada to HP
Pascal. An Ada string can only be passed to a VAR parameter in an HP Pascal
subprogram.

String types cannot be returned as function results from external HP Pascal
subprograms.

Although there is a difference in the implementation of the type STRING in the
two languages, with suitable declarations you can create compatible types to
allow the passing of both Ada strings and HP Pascal strings. An Ada string
corresponds essentially to a packed array of characters in Pascal. However,
the Ada string type must be one character longer than the corresponding
string type in the HP Pascal procedure or function. HP Pascal adds such an
implicit extra byte to its own packed arrays of characters and expects to be
able to utilize this extra byte during some string operations. The following
example illustrates the declaration of compatible types for passing an Ada
string between an Ada program and an HP Pascal subprogram.

HP Pascal subprogram:

(* passing an Ada STRING type to an HP Pascal routine *)
module p;
export

type stringSO= packed array [1..80] of char;
procedure exi C var s : string8O; len : integer);

implement
procedure exi;
begin

... (* update/use the Ada string as a PAC *)
end;

end.

11-56 F 11. Calling External Subprograms From Ada

Ada program:

-- Ada calling HP Pascal procedure with Ada STRING
procedure AP.1 is

-- Define Ada string corresponding to
-- HP Pascal packed array of char
subtype STRING80 is STRING (1..81); -- 80+1 for HP Pascal

-- Ada definition of HP Pascal procedure to be called,
-- with an Ada STRING parameter, passed by reference.
procedure EXI (S in out STRING8O;

LEN INTEGER);
pragma INTERFACE (PASCAL, EXi);

pragma INTERFACE-NAME (EXi. "exl");

S : STRING80;

begin -- APi

S(I..26) := "Ada to HP Pascal Interface";
EXI (S, 26); -- Call the HP Pascal subprogram

end AP_ 1;

F 11. Calling External Subprograms From Ada 11-57

An HP Pascal STRING type corresponds to a record in Ada that contains
two fields: a 32-bit integer field containing the string length and da' Ada

STRING field containing the string value. The following example illustrates the
declaration of compatible types for passing an HP Pascal string between an
Ada program and a Pascal subprogram.

Pascal subprogram:

(s passing an HP Pascal STRING type from Ada to *)
(* an HP Pascal routine
module p;
export

type string80 = string[80];
procedure ex2 C var s : string8O);

implement

procedure ex2;
var

str : string80
begin
... --update/use the HP Pascal string

end;
end.

11-58 F 11. Calling External Subprograms From Ada

Ada program:

-- Ada calling HP Pascal procedure using a HP Pascal string[80)
procedure AP_2 is

-- Define an Ada record that will correspond exactly
-- with the HP Pascal type: string[80]

type PASCAL-STRING80 is
record

LEN : INTEGER;
S : STRING (1..81); -- 80+1 for HP Pascal

end record;

-- Here we use a record representation clause to
-- force the compiler to layout the record in
-- the correct manner for HP Pascal

for PASCAL.STRING80 use
record

LEN at 0 range 0 .. 31;
S at I range 0 .. 81*8; -- 80+1 for HP Pascal

end record;

-- The Ada definition of the HP Pascal procedure to be
-- called, with an HP Pascal STRING parameter, passed
_- by reference.

procedure EX2 (S : in out PASCALSTRING8O);
pragma INTERFACE (PASCAL, EX2);
pragma INTERFACE-NAME (EX2, "ex2");

PS PASCALSTRING80;

begin -- AP.2

-- assign value field
PS.S(1..26) := "Ada to HP Pascal Interface";

F 11. Calling External Subprograms From Ada 11-59

PS.LEN := 26; -- set string length field

EX2 (PS); -- call the HP Pascal subprogram

end AP_2;

F 11.5.5 Record Types and HP Pascal Subprograms

See section "F 11.1.4 Record Types" for details.

Records cannot be passed by value from Ada to HP Pascal. An Ada record can
only be passed to a VAR parameter in an HP Pascal subprogram.

Record types cannot be returned as function results from external HP Pascal
subprograms.

11-60 F 11. Calling External Subprograms From Ada

F 11.6 Summary
Table 11-6 shows how various Ada types are passed to subprograms.

Table 11-6.

Modes for Passing Parameters to Interfaced Subprograms

Ada Type Mode Passed By

ACCESS, in value
SCALAR
-INTEGER
-ENUMERATION
-BOOLEAN
-CHARACTER
-REAL

ARRAY, in reference
RECORD

all types except TASK in out reference
and FIXED POINT

all types except TASK out reference
and FIXED POINT

TASK N/A not passed
FIXED POINT

F 11. Calling External Subprograms From Ada 11-61

Table 11-7 summarizes general information presented in section "F 11.1
General Considerations in Passing Ada Types".

Table 11-7.
Types Returned as External Function Subprogram Results

Ada Type Precision HP C HP FORTRAN HP Pascal
Architecture

RISC Assembly
Language

INTEGER allowed allowed allowed allowed

ENUMERATION allowed allowed not allowed (1) allowed

CHARACTER allowed allowed not allowed allowed

BOOLEAN allowed allowed allowed allowed

FLOAT allowed allowed (2) allowed allowed

FIXED POINT not allowed not allowed not allowed not allowed

ACCESS allowed allowed not allowed (1) allowed

ARRAY not allowed not allowed not allowed not allowed

STRING not allowed not allowed not allowed (3) not allowed

RECORD not allowed not allowed not allowed not allowed

TASK not allowed not allowed not allowed not allowed

Notes for Table 11-7:

(1) Pass as an integer equivalent.

(2) Some restrictions apply to Ada FLOAT types (in passing to HP C
subprograms).

(3) Accessible if function called as a procedure with "extra" parameters.

Table 11-8 summarizes information presented in sections F 11.2 through F 11.5.

11-62 F 11. Calling External Subprograms From Ada

Table 11-8. Parameter Passing in the Ada Implementation

Ada Type Precision HP C HP FORTRAN HP Pascal
Architecture

RISC Assembly
Language

INTEGER allowed allowed allowed allowed

ENUMERATION allowed allowed not allowed (1) allowed

CHARACTER allowed allowed not allowed (2) allowed

BOOLEAN allowed allowed not allowed (1) allowed

FLOAT allowed allowed allowed allowed

FIXED POINT not allowed not allowed not allowed not allowed

ACCESS allowed allowed not allowed allowed

ARRAY (3) allowed allowed allowed (4) allowed (8)

STRING allowed allowed (5) allowed (6) not allowed (7)

RECORD allowed allowed allowed allowed

TASK not allowed not allowed not allowed not allowed

Notes for Table 11-8:

(1) Can be passed as an equivalent integer value.

.(2) Must be passed'as a STRING.

(3) Using only arrays of compatible component types.

(4) See warning on layout of elements.

(5) Special handling of null terminator character is required.

(6) Requires that the length also be passed.

(7) Ada strings can be passed to a Pascal PAC (Packed Array of Characters)

(8) Conformant arrays.require that "extra* parameters be passed.

F 11. Calling External Subprograms From Ada 11-63

F 11.7 Potential Problems Using Interfaced Subprograms

F 11.7.1. Signals and Interfaced Subprograms
The Ada run-time on the HP 9000 Series 600, 700, and 800 computers
uses signals in a manner that generally does not interfere with interfaced
subprograms. However, some HP-UX routines are interruptible by signals.
These routines, if called from within interfaced external subprograms, may
create problems. You need to be aware of these potential problems when
writing external interfaced subprograms in other languages that will be called
from within an Ada main subprogram. See sigvector(2) in the HP-UX
Reference for a complete explanation of interpretability of operating system
routines.

The following should be taken into consideration:

" SIGALRN is sent when a delay statement reaches the end of the specified
interval.

" One of SIGALRM, SIGVTALIU! (the default), or SIGPROF is sent periodically
when time-slicing is enabled in a tasking program.

" Interruptible HP-UX routines (see sigvector(2)) may need to be
protected from interruption by the signals used by the Ada run-time
system. The SYSTEM-ENVIRONMENT routines SUSPEND_-ADA-TASKING and
RESUME-_ADATASKING can be used to implement this protection. As
an alternative, the knowledgeable user can use the sigsetmask(2) or
sigblock(2) mechanism to implement the same protection.

" If a signal is received while it is blocked, one instance of the signal is
guaranteed to remain pending and will be honored when the si, -,a is
unblocked. Any additional instances of the signal will be lost.

" Any signals blocked in interfaced code should be unblocked before leaving the
interfaced code.

11-64 F 11. Calling External Subprograms From Ada

The alarm signals sent by delay statements and sent to implement time-slicing
(noted above) are the most likely signals to cause problems with interfaced
subprograms. These signals are asynchronous; that is, they can occur at any
time and are not caused by the code that is executing at the time they occur.
In addition, SIGALRM and SIGPROF (but not SIGVTALRM) can interrupt HP-UX

routines that are sensitive to being interrupted by signals.

Problems can arise if an interfaced subprogram initiates a "slow" operating
system function that can be interrupted by a signal (for example, a read(2)
call on a terminal device or a wait(2) call that waits for a child process to
complete). Problems can also arise if an interfaced subprogram can be called
by more than one task and is not reentrant. If an Ada reserved signal occurs
during such an operation or non-reentrant region, the program may function
erroneously.

For example, an Ada program that uses delay statements and tasking
constructs causes the generation of SIGALRM and optionally either SIGVTALRM
or SIGPROF. If an intefaced subprogram needs to perform a potentially
interruptible system call or if the interfaced subprogram can be called from
more than one task and is not reentrant, you can protect the interfaced
subprogram by blocking the potentially interrupting time signals around the
system call or non-reentrant region. If one of these timer signals does occur
while blocked, signifying either the end of a delay period or the need to

reschedule due to time-slice expiration, that signal is not lost; it is effectively
deferred until it is later unblocked.

F 11. Calling External Subprograms From Ada 11-65

Assuming a tasking program, which contains one or more delay statements,
with time-slicing enabled using the default time-slicing signal (SIGVTALRM), the
following example shows a protected read(2) call in the C language:

#include <signal.h>
void interface.routo;
{

long mask;

/* Add SIGALRM and SIGVTALRM to the list of currently
blocked signals (see sigblock(2)). ,/

mask = sigblock (sigmask (SIGALRM) I sigmask (SIGVTALRM));

... read (...); /* or non-reentrant region */

/* restore old mask so Ada run-time can function */
sigsetmask (mask);

}

11-66 F 11. Calling External Subprograms From Ada

If any Ada reserved signal other than SIGALRM or the alarm signal (if any)
being used for time-slicing is to be similarly blocked, SIGALRM and the alarm
signal used for time-slicing must already be blocked or must be blocked at the
same time as the other signal or signals.

Any Ada reserved signal blocked in interfaced code should be unblocked before
leaving that code, or as soon as possible thereafter, to avoid unnecessarily
stalling the Ada run-time executive. Failure to follow these guidelines will
cause improper delay or tasking operation.

An alternative and preferred method of protecting interfaced code from signals
is described in the Ada User's Guide in the section on "Execution-Time
Topics." The two procedures SUSPEND-ADA_-TASKING and RESUME-_ADATASKING
from the package SYSTEM-ENVIRONMENT supplied by Hewlett-Packard can be
used within an Ada program to surround a critical section of Ada code or a call
to external interfaced subprogram code with a critical section.

F 11.7.2 Files Opened by Ada and Interfaced Subprograms

An interfaced subprogram should not attempt to perform I/0 operations
on files opened by Ada. Your program should not use HP-UX I/O utilities
intermixed with Ada I/0 routines on the same file. If it is necessary to perform
I/0 operations in interfaced subprograms using the HP-UX utilities, open and
close those files with HP-UX utilities.

F 11. Calling External Subprograms From Ada 11-67

12122
F 12. Interrupt Entries 121
This chapter describes interrupt entry processing.

F 12.1 Introduction
The Ada compiler supports a limited form of interrupt entries as defined by
the Ada RM, section 13.5.1. In addition, the compiler provides the following
features:

m Interrupt entries are associated with HP-UX signals, but are not directly
invoked by an HP-UX signal. Instead, the interrupt entry is called from
an Ada signal handling procedure. An Ada signal handling procedure can
be associated with one or more HP-UX signals. If an Ada signal handler
wants to call an interi pt entry, it can only call the interrupt entry that is
associated with the same HP-UX signal that caused the Ada signal handler
itself to be invoked.

w Interrupt entries associated with HP-UX signals can have parameters.

a If the interrupt entry call cannot be processed immediately by the server
task, the interrupt entry parameters are buffered so that the interrupt is not
lost and the entry is processed as soon as conditions permit.

n All signals except the ones reserved by the Ada runtime and the HP-UX
system can be handled with up to seven different priorities. The interrupt
entry mechanism will not prohibit the use of signals reserved by the Ada
runtime or by HP-UX. but using such signals for interrupt entries will cause
unpredictable program behavior.

F 12. Interrupt Entries 12-1

F 12.2 Immediate Processing
If an Ada handler has been associated with an HP-UX signal, when that
signal occurs, an internal signal handler installed by the runtime system

12 is entered. That internal handler then calls the user-defined Ada handler.- One parameter of type SYSTEM. ADDRESS is passed to the user handler; the
parameter is the "signal number" that caused it to be invoked (a function is
provided to convert the integer representation of a "signal number" into an
object of type SYSTEM. ADDRESS). The Ada handler can make an entry call to
a task entry associated with the particular signal and/or it can update global
state information (for example, variables) that is meaningful to the program.
It should then return, giving control to the internal handler in the runtime
system.

If the Ada handler makes an entry call to an entry previously declared with
a representation clause as an interrupt entry, the rendezvous does not occur
immediately. The kernel saves the parameters passed by the signal handler in a
buffer taken from a pool of free buffers and links the buffer to the entry queue
for the interrupt. The actual rendezvous will take place in deferred processing
(see section "F 12.3 Deferred Processing"). The pool of free buffers is allocated
once at the program startup by calling INIT_INTERRUPT-MANAGER with the
number of buffers specified (see section "F 12.5 Initializing the Interrupt Entry
Mechanism").

Note The Ada handler must not call any Ada Runtime System
routines and must be compiled with checks off. See sections
"F 12.6 Associating an Ada Handler with an HP-UX Signal"
and "F 12.6.1 Determining If Your Ada Handler Makes Ada
Runtime Calls" for details.

12-2 F 12. Interrupt Entries

F 12.3 Deferred Processing
The deferred processing step is the execution of the accept statement for the
interrupt entry. It is performed with signals enabled and with an Ada task
priority specified by the user (but higher than any software priority as required 12
by the Ada RM, section 13.5.1.2). The accept statement has access to the IN
parameters provided by the Ada handler when the Ada handler made the entry
call. There are no limitations on the code of the zccept statement; run-time
calls are allowed.

The connection between the immediate and deferred processing is made by
the Ada runtime. At the end of the immediate processing step, when the
Ada handler returns control to the internal handler in the Ada runtime, Ada
runtime checks to see if any immediate processing steps remain active (that is,
an Ada signal handler has been called in response to a signal but has not yet
returned). If any immediate processing steps remain active, the Ada runtime
simply returns control to the interrupted context, which will be one of the
currently active Ada signal handlers.

If no immediate processing steps remain active (that is, the Ada signal handler
that is currently returning control to the Ada runtime is the only currently
active Ada signal handler), the Ada runtime identifies all of the tasks and
entries that immediate processing steps have requested be called. There may
be more than one interrupt entry call pending because multiple different
signals may have been received, causing multiple Ada signal handlers to be
simultaneously active. Only when the last active Ada signal handler returns
control to the Ada runtime will the pending tasks or entries be considered as
callable. The Ada runtime will determine for each pending interrupt entry
call whether the accept statement can be executed immediately. If so, the
current task is preempted unless it is of equal or higher priority than any of the
pending interrupt entry calls (for example, the current task is itself executing
an accept statement for a higher priority interrupt). Pending interrupt entry
calls for which the accept can be executed, but which are of a lower priority
than the currently running task, will be made as their priority permits (note
that calls to interrupt entries with identical priorities may occur in an arbitrary
order).

If the accept statement cannot be executed immediately, the rendezvous will
take place according to normal Ada semantics when the server task executes an
accept or select statement for the given entry.

F 12. Interrupt Entries 12-3

There are no restrictions on the number of interrupt entries one task can use,
nor on the number of tasks that can use interrupt entries. The only restriction
is that only one entry may be associated with a given HP-UX signal and that
signals reserved by the Ada runtime may not be associated with an interrupt

12 entry.

The buffering of the interrupt entry call from the Ada handler to the interrupt
entry attempts to ensure that no signal will be lost. It is important that the
average execution time of the interrupt entry be smaller than the signal rate
for the associated signal, otherwise the pool of buffers to hold interrupt entry
parameters will be quickly exhausted. Each buffer is released immediately
before execution of the accept body for the interrupt entry after the parameters
have been copied to the stack of the acceptor task. It is also important that
the execution time of the Ada signal handlers be minimized as the deferred
processing step is not performed when any Ada signal handler remains active.

F 12.4 Handling an Interrupt Entirely in the Immediate
Processing Step
Calling an interrupt entry in response to a signal is optional. Interrupts can
be handled in a sequential program that has no tasks to call or in a tasking
program without calling an interrupt entry if the Ada handler performs all the
required processing. This can improve performance because the overhead of
task switching is avoided. However, because the Ada handler cannot make Ada
run-time calls and must be compiled with checks off (using the -R option), the
amount of processing that an Ada handler can do is limited. In addition, if
the Ada handler does all the processing, the Ada program must generally poll
global state information to determine that the signal has been received.

12-4 F 12. Interrupt Entries

F 12.5 Initializing the Interrupt Entry Mechanism
The compiler provides the package INTERRUPT-MANAGER to support interrupt
entries. This package is in the predefined library.

To use interrupt entries, you must initialize the interrupt manager by calling 12

this procedure:

procedure INITINTERRUPTMANAGER
(NUMBEROFBUFFERS in BUFFER_NUMBER;
MAXPARAMAREASIZE : in BYTE-SIZE;

INTERRUPTSTACKSIZE in BYTE-SIZE := 2048);

This procedure allocates the given number of buffers to hold parameters of
interrupt entries that cannot be processed immediately and allocates a signal

stack of the given size. The size of each buffer is the maximum parameter area
size specified to the call, plus a fixed overhead of 28 bytes used by the Ada
runtime. If the given signal stack size is zero, all signals are handled on the
current stack; therefore, all stacks must have sufficient buffer space. Using an
interrupt stack allows better usage of available memory.

The MAX_-PARAMAREA_-SIZE parameter must be the size, in storage units, of
the largest parameter block required by an interrupt entry call. A parameter

block is an area of memory in which the generated code for a task entry call
temporarily stores the actual parameters of the task entry call. The address of
the parameter block is passed to the Ada run-time routine ENTRY-CALL which
makes the parameters available to the called task entry when the rendezvous
actually occurs. In the case of an interrupt entry, the Ada runtime copies the
parameter block into one of the buffers allocated by INITINTERRUPTMANAGER
.until the deferred processing step is reached.

F 12. Interrupt Entries 12-5

The parameter block sizes for the task entries to be called by Ada signal
handling procedures can be obtained by compiling the specifications of the task
for such entries with the -H option. An informational message is produced
indicating the parameter block size for each task entry specification that has

12 an address clause, indicating it is a candidate for calling from an Ada signal
*handling procedure.

The procedure INITINTERRUPT_ANAGER must be called at program startup
before any call is made to an interrupt entry from an Ada signal handler.
Entry calls will be lost if the number of buffers is insufficient. The required
number of buffers depends on the frequency of signals. A zero number of
buffers can be used when the signal handler only buffers information and never
calls an interrupt entry.

This procedure raises STORAGE-ERROR if there is not enough memory to allocate
the required buffers and the interrupt stack.

12-6 F 12. Interrupt Entries

F 12.6 Associating an Ada Handler with an HP-UX Signal
You can install a signal handler by calling the following procedure:

procedure INSTALLHANDLER
(HANDLER-ADDRESS in SYSTEM.ADDRESS;
SIG : in SYSTEM.ADDRESS;
PRIORITY in INTERRUPT-PRIORITY

:= INTERRUPTPRIORITY'FIRST;
ORIGINAL-HANDLER in ACTION := REPLACED);

This procedure installs an Ada routine, specified via HANDLER-_ADDRESS, as the
Ada handler for the specified HpoUX signal (SIG) after saving the address
of the original handler. If the Ada handler calls an interrupt task entry, the
signal number passed to this procedure as SIG must be the same as the one
specified in the interrupt entry address clause (see "F 12.10 Address Clauses
for Entries") for that task entry. The PRIORITY parameter specifies the priority
of the entry call to be made by the handler (all accept statements will run
with this priority unless they are themselves within an accept statement
executed at higher priority.) The ORIGINAL_-HANDLER parameter controls
whether the current signal handler, the one the Ada handler is replacing, is to
be called before (FIRST) or after (LAST) the new Ada handler or not called at
all (REPLACED).

The INSTALL-HANDLER procedure must be called from a scope that encloses the
declaration of the Ada procedure that is being installed as the Ada handler.
A convenient technique is to declare the Ada handler procedure immediately
within a library level package and place the call to INSTALL-HANDLER in
the package body block. INSTALL-HANDLER will not detect any error if this

.restriction is violated; however, unexpected program behavior or program
failure may occur when an incorrectly installed Ada handler is invoked.

The Ada handler must be a procedure with one parameter of type
SYSTEM.ADDRESS and without inner units. The procedure can only reference
local or global objects, excluding objects of an enclosing frame, and must be
compiled with checks off (using the -R option). If an entry call is made in an
Ada handler, the task the entry belongs to must be a global object.

The Ada handler must not call any Ada Runtime System routines (either
explicitly or implicitly) other than simple entry calls to interrupt entries
because some of the Ada run-time routines update critical run-time data

F 12. Interrupt Entries 12-7

structures and must not be reentered during such updates. Specifically, neither
timed nor conditional entry calls may be made.

The Ada handler must not call HP-UX routines or other non-Ada code, either
via pragma INTERFACE or via a binding.

If the Ada handler calls another Ada procedure or function, that procedure or
function must follow these same constraints.

For certain complex data structures, the compiler produces Type Support
Subprograms (TSS). These subprograms perform actions such as initializing
record fields, comparing records, changing record representation, and so on.
The compiler then adds implicit calls to these routines when needed. Some
calls to TSS routines are not safe in Ada handlers. If the TSS calls Ada
Runtime System routines, that TSS should not be called from an Ada handler.
To remove the call, you have to simplify the code so that the action that needs
the call is no longer present. The -H option, if used when compiling the Ada
handler, causes an informational message to be produced if the generated code
contains a call to one or more TSS routines. Additionally, the massages specify
the type that the TSS supports.

In general, the code in an Ada handler should be kept extremely simple. It is
recommended to only set a global flag or make an entry call to an interrupt
entry to actually do the required processing.

The IIP-UX signal currently being handled is masked for the duration of the
Ada handler.

The address of the Ada procedure to use as the Ada handler can be obtained
by the 'ADDRESS attribute, which is only valid after elaboration of the
procedure body.

The procedure INSTALL-HANDLER raises STORAGE-ERROR if MAX-HANDLERS
handlers have already been defined.

12-8 F 12. Interrupt Entries

F 12.6.1 Determining If Your Ada Handler Makes Ada Runtime Calls

If you are not sure your Ada handler makes specific Ada Runtime System
routine calls, you can compile the Ada source file containing the Ada handler
with the -H option. The -H option causes the compiler to produce a warning 12
message each time it generates code to call an Ada Runtime System routine.
If you generate a complete compiler listing with the -B or -L options, the
warnings appear in the compiler listing at the appropriate source lines. If you
do not generate a complete compiler listing (with -B or -L options), only the
source lines that apply to the warning appear in a listing with the warning.
Check the names of the Ada Runtime System routines that appear in the
warning messages; if calls to any of the following Ada Runtime System routines
appear, your Ada handler is "unsafe".

ABORTSTMT END-ACTIVATION FREETEMPGH
ACCEPT..STMT ENUMN1__PRED FREE_ VAR_.SSELT
ACTIVATECOLLECTION ENUM1_SUCC INITCOLLECTION
ALLOCFIXSSELT ENUM1_VALTOPOS INITFIXSSELT
ALLOCGO ENUM2_PRED INITHANDLER
ALLOCLO ENUM2_SUCC INITMASTER
ALLOCSMALLFIXELT ENUM2_VALTOPOS INITSMALLFIXELT
ALLOCTEMP ENUM4_PRED INITVAR.SSELT
ALLOCTEMPGH ENUM4_SUCC INTEGER-IMAGE
ALLOCVAR-SSELT ENUM4_VALTOPOS INTEGER-VALUE
CALLABLE ENUMPOS INTEGER-WIDTH
COMPLETE-MASTER ENUMWIDTH NULLBODY_ ACCEPTSTMT
COMPLETE-TASK ENVTASKMASTER SELECTWITHTERMINATE
CONDCALL FIXED-FORE SIMPLE-SELECT
CONDSELECT FIXED-LARGE SIMPLETIMEDSELECT
COUNT FIXED-MANTISSA TERMINATED
CREATE-TASK FREEFIXSSELT TERMINATION-COMPLETE
CURRENTOBJECTOFTASKTYPE FREE-LIST TIMED-CALL
DELAYSTMT FREESMALLFIX.ELT TIMED-SELECT
DESTROY-COLLECTION FREETEMP

F 12. Interrupt Entries 12-9

A call to ENTRY-CALL is safe as long as it is calling the task entry declared as
an interrupt entry for the HP-UX signal that caused the Ada signal handler to
be invoked.

To help you understand what Ada language construct might cause such a callI 12 to be made, a description of each of the above Ada run-time routines is listed

in section "F 12.13 Ada Runtime Routine Descriptions".

12-10 F 12. Interrupt Entries

F 12.7 Disassociating an Ada Handler from
an HP-UX Signal
The Ada handler for a given HP-UX signal can be removed and the original
HP-UX signal handler (or signal behavior) restored with this procedure 12

procedure REMOVE-HANDLER (SIG : in SYSTEM.ADDRESS);

This procedure only needs to be called when it is no longer necessary to
have a handler for a particular signal. All Ada handlers are automatically
disassociated from their HP-UX signals when the main program terminates.

The procedure REMOVE-HANDLER raises PROGRAIMERROR if no handler has been
installed for the given signal.

F 12.8 Determining How Many Handlers are Installed
Use the following procedure to determine how many handlers have already
been installed:

function HANDLERCOUNT return HANDLER-NUMBER;

F 12.9 When Ada Signal Handlers Will Not Be Called
When the procedure .SYSTEMENVIRONMENT. SUSPENDADA.TASKING is called,
the HP-UX signals for which Ada signal handlers have been installed,
will be masked. That is, the Ada signal handlers will not be called if
one of the signals should occur. At most one instance of any given signal
will be remembered while the signals are masked. W\'hen the procedure
SYSTEMENVIRONMENT.RESUME-ADAJASKING is called, the signals for which Ada
signal handlers have been installed will be unmasked. Any signal that occurred
while the masking was in effect will then be delivered to the Ada program and
will invoke the associated Ada signal handlers (at most one instance of any
such signal will have been remembered while the signals were masked).

F 12. Interrupt Entries 12-11

Caution The Ada program, as well as interface code called by the Ada
program, should not unmask any of the HP-UX signals for
which Ada signal handlers are installed while Ada tasking has
been suspended. Doing so will cause unpredictable and possibly

12 erroneous program behavior.

F 12.10 Address Clauses for Entries
According to section 13.5.1 of the Ada RM, an address clause for an interrupt
entry has the following form:

task INTERRUPT-HANDLER is
entry INTERRUPT(...);
for INTERRUPT use at ...

end INTERRUPT-HANDLER;

An interrupt entry may have zero or more parameters of mode IN. Parameters
of mode IN OUT or OUT are not permitted; see section 13.5.1(1) in the Ada
RM for details. The expression in the address clause must be of type
SYSTEM. ADDRESS and is interpreted as a signal number by the runtime system.
A function SIGNAL is provided by the INTERRUPT- MANAGER package to convert
an integer to a SYSTEM.ADDRESS. Note that a with statement for the package
SYSTEM must be specified for the context in which such an address clause
appears.

12-12 F 12. Interrupt Entries

F 12.11 Example of Interrupt Entries
The following is a program that uses interrupt entries. The program could
be written using only Ada tasking and not using HP-UX signals or interrupt
entries; however, this version provides a sample of declaring and using the 12
interrupt entry mechanism. A machine readable copy of this program is
provided in $ADAPATH/samples/intent/intentexl. ada (although the text
and line breaks are different).

-- This program simulates an elevator which takes passengers from

-- floor to floor.

-- There are three tasks : PASSENGER, ELEVATOR and MANAGER.

-- The MANAGER task manages the elevator by determining the floor

-- number and the direction to go. The PASSENGER task generates
-- passengers and sends a signal to the ELEVATOR task. The

-- ELEVATOR loads and unloads passengers and sends a signal back
-- to the PASSENGER task after loading new arrivals or placing

-- them in a queue (the elevator has a maximum capacity, the
-- queue holds any passengers who have to wait).

with SYSTEM, INTERRUPT-MANAGER, TEXTIO;
procedure MAIN is

-- user signals
SIGUSRI: constant SYSTEM.ADDRESS:= INTERRUPTMANAGER.SIGNAL(16);
SIGUSR2: constant SYSTEM.ADDRESS:= INTERRUPTMANAGER.SIGNAL(17);

subtype PROCESSID is INTEGER;

-- NP-UX calls
procedure KILL (PID : PROCESSID; SIG : SYSTEM.ADDRESS);
pragma INTERFACE (C, KILL);

function GETPID return PROCESSID;
pragma INTERFACE (C, GETPID);

F 12. Interrupt Entries 12-13

function RAND return INTEGER;
pragma INTERFACE (C, RAND);

~12
.MYPID : PROCESSID := GETPID;

-- elevator capacity, directions, floor numbers,
-- arriving passengers

MAX-CAPACITY : constant := 16;

type DIRECTION is (NONE, UP, DOWN);
subtype MOTION is DIRECTION range UP .. DOWN;
ARRDIR, CUR-DIP : MOTION;

subtype FLOOR is INTEGER range 1 .. 5;
ARRFLR, CURFLR : FLOOR;

ARRPASS : INTEGER;

-- random floor and direction selectors

function RANDFLR return FLOOR is
begin

return (RAND rem (FLOOR'LAST - FLOOR'FIRST W 1)) + 1;
end RANDFLR;•

function RAND-MOTION return MOTION is
MOTIONS : constant INTEGER := MOTION'POS (MOTION'LAST)

-MOTION'POS (MOTION'FIRST);
begin

return MOTION'VAL (MOTION'POS(MOTION'FIRST)

+ (RAND rem MOTIONS));
end RAND.MOTION;

-- show passenger/floor information

12-14 F 12. Interrupt Entries

procedure SHOW-PASS (WHERE: in FLOOR; PASS: in INTEGER;
DOING: in STRING; WHICH: in DIRECTION := NONE) is

FNUM constant STRING FLOOR'IMAGE (WHERE);
PNUM : constant STRING : INTEGER'IMAGE (PASS); 12

begin
TEXTIO.PUT ("On floor " & FNUM ((FNUM'FIRST+1)..FNUM'LAST)

casePAS is& " there ");I

when 0 => TEXTIO.PUT ("are no passengers");
when 1 => TEXTIO.PUT ("is 1 passenger");
when others => TEXTIO.PUT

("are " & PNUM ((PNUM'FIRST 1)..PNUM'LAST)
& " passengers");

end case;
TEXTIO.PUT (DOING);
if WHICH /= NONE then

TEXTIO.PUT (DIRECTION'IMAGE(WHICH) & ".");

end if;
TEXTIO.NEWLINE;

end SHOW-PASS;

task OUTPUT is
entry LOCK; -- This task implements a lock/unlock

-- mechanism for

entry UNLOCK; -- output, so that messages do not
-- get intermixed.

end OUTPUT;

task PASSENGER is
-- This task generates passengers at various floor levels
-- and sends SIGUSRi to the ELEVATOR task. The elevator
-- task sends SIGUSR2 back to acknowledge that passengers

-- have been served.
entry START;
-entry CONTINUE;
for CONTINUE use at SIGUSR2;

F 12. Interrupt Entries 12-15

end PASSENGER;

task ELEVATOR is
-- This task loads and unloads passengers.

12 entry START;
entry LOADARRIVINGPASS;
entry UNLOAD;
entry LOADYAITINGPASS;
for LOADARRIVINGPASS use at SIGUSRI;

end ELEVATOR;

task MANAGER is
-- This task determines the floor number and direction of
-- the elevator. It calls ELEVATOR task to load and unload
-- passengers on each floor.

entry START;
end MANAGER;

task body OUTPUT is
begin

loop
accept LOCK;
accept UNLOCK;

end loop;
end OUTPUT;

task body PASSENGER is
begin

accept START;
loop

ARR.FLR := RANDFLR; -- Determine the floor number.

if ARRFLR = FLOOR'FIRST then
ARRDIR UP; -- The bottom floor only goes up.

elsif ARRFLR = FLOOR'LAST then
ARRDIR := DOWN; -- The top floor only goes down.

else
ARRDIR RAND-MOTION;

-- Any other floor can go either way.

12-16 F 12. Interrupt Entries

end if;
ARRPASS := RAND rem MAXCAPACITY;

if ARKPASS > 0 then
OUTPUT.LOCK; 12
SHOW-PASS (ARRFLR, ARR.PASS,

" arriving to go ", ARRDIR);

OUTPUT.UNLOCK;

end if;

KILL (MYPID. SIGUSR1);
-- Send SIGUSRi to the ELEVATOR task.

accept CONTINUE;
-- Passengers loaded or waiting in the queue.

end loop;
end PASSENGER;

task body ELEVATOR is
-- This task loads and unloads passengers.
-- It loads the arriving passengers when the elevator
-- arrives on the right floor when going in the right
-- direction. Each passenger decides which floor to exit
-- when he or she enters the elevator. If the number of
-- passengers exceeds the maximum capacity, the excess
-- passengers have to wait for the next elevator visit.

LOADED-PASS : INTEGER := 0;
DESTINATION : array (FLOOR) of INTEGER := (others => 0);
WAIT : array (FLOOR, MOTION)

of INTEGER := (others => (0, 0));

procedure CHOOSE-DEST (FROM-FLOOR FLOOR; GOING :MOTION;
PASS INTEGER) is

-- Each passenger picks a destination floor.

DEST-FLOOR FLOOR;
begin

for I in I .. PASS loop

F 12. Interrupt Entries 12-17

loop
DEST-FLOOR := RANDFLR;
-- The destination floor should be different
-- from the starting floor and in the

12-- desired direction.

if GOING = UP then
exit when DEST-FLOOR > FROM-FLOOR;

else
exit when DEST-FLOOR < FROM-FLOOR;

end if;

end loop;
DESTINATION(DESTFLOOR):= DESTINATION(DESTFLOOR) + 1;

end loop;
end CHOOSE-DEST;

procedure LOAD-PASS (ARRFLR : FLOOR; ARRDIR : MOTION;
ARRPASS : INTEGER) is

-- Load the new arrivals and any people
-- waiting in the queue.

REQUESTPkSS : INTEGER :-
WAIT (ARRFLR, ARRDIR) + ARRPASS;

TAKE : INTEGER;
begin

if REQUEST-PASS + LOADED-.PASS > MAX-CAPACITY then
TAKE := MAX-CAPACITY - LOADED-PASS;

else
TAKE':= REQUEST-PASS;

end if;

CHOOSE-DEST (ARR.FLR, ARRDIR, TAKE);
WAIT (ARRFLR, ARRDIR) := REQUEST-PASS - TAKE;
LOADED-PASS := LOADED-PASS * TAKE;

OUTPUT.LOCK;
if TAKE > 0 then

SHOW-PASS (ARRFLR, TAKE,
" being loaded to go ", ARRDIR);

end if;

12-18 F 12. Interrupt Entries

SHOW-PASS (ARRFLR, LOADED-PASS, " on the elevator.");

if WAIT (ARRFLR, ARRDIR) > 0 then
SHOW-PASS (ARRFLR, WAIT (ARRFLR, ARRDIR),

" waiting for the next elevator to go ", ARRDIR);

end if; 12
OUTPUT.UNLOCK;

end LOAD-PASS;

begin -- ELEVATOR

accept START do
PASSENGER.START; -- Start the passengers.

end START;

loop
select

when CUR.FLR = ARRFLR and then CURDIR = ARRDIR =>

accept LOADARRIVINGPASS do
-- Load new arrivals if possible.

if ARRPASS > 0 then
LOAD-PASS (ARRFLR, ARR.DIR, ARR.PASS);

end if;
-- Send SIGUSR2 to the PASSENGER task to inform

-- that passengers are either loaded or put in

-- the queue.

KILL (MYPID, SIGUSR2);
end LOADARRIVINGPASS;

or

accept UNLOAD do
-- Unload passengers whose destinations are the

-- current floor.

if DESTINATION (CURFLR) > 0 then
OUTPUT.LOCK;
SHOW-PASS (CURFLR, DESTINATION (CURFLR),

" being unloaded before going ", CURDIR);

OUTPUT.UNLOCK;
LOADED-PASS := LOADED-PASS -

DESTINATION (CURFLR);
DESTINATION (CURFLR) := 0;

F 12. Interrupt Entries 12-19

end if;
end UNLOAD;

or
accept LOADWAITINGPASS do

12 -- Load any passengers waiting in the queue.
if WAIT (CURFLR, CUR.DIR) > 0 then

LOAD-PASS (CURFLR, CURDIR, 0);
end if;

end LOADWAITINGPASS;
end select;

end loop;
end ELEVATOR;

task body MANAGER is
-- This task determines the floor number and direction of
-- the elevator. It calls ELEVATOR task to load and unload
-- passengers on each floor.

begin
accept START do

-- Initialize the direction, and floor number.
CURDIR UP;
CURFLR FLOOR'FIRST;
ELEVATOR.START; -- Start the elevator.

end START;

loop
-- Unload passengers whose destinations are the
-- current floor.

ELEVATOR.UNLOAD;
-- Load passengers waiting in the queue.
ELEVATOR.LOADWAITING.PASS;

if CURDIR = UP then
CURFLR CURFLR + 1;
if CURFLR = FLOOR'LAST then

CURDIR DOWN; -- Reached the top floor,

-- change the direction.
end if;

12-20 F 12. Interrupt Entries

else
CUR.FLR :=CUR..FLR -1;

if CUR.FLR =FLOOR'FIRST then
CUR..DIR UP; -- Reached the bottom floor,

-change the direction. 1
end if;

end if;1 1
end loop;

end MANAGER;

procedure HANDLE-.PASSENGER (SIG :SYSTEM.ADDRESS) is
-This is the handler for SIGUSRi. It calls the ELEVATOR
-task to load the new arrivals.

begin
ELEVATOR.LOAD-ARRIVING-.PASS;

end HANDLE-.PASSENGER;

procedure ACKNOWLEDGE (SIG :SYSTEM.ADDRESS) is
-This is the handler for SIGUSR2. It calls the PASSENGER
-task to continue generating passengers.

begin
PASSENGER. CONTINUE;

end ACKNOWLEDGE;

begin -- MAIN

-Initialize the interrupt entry manager.
INTERRUPT-.MANAGER. IN IT-.INTERRUPT.MANAGER

(NUMBER.OF-.BUFFERS => 4,
MAX-.PARAM-.AREA.SIZE => 1024,
INTERRUPTSTACK.SIZE => 8024);

-- Install handlers.
INTERRUPT-MANAGER. INSTALL-HANDLER

(HANDLER-.ADDRESS => HANDLE-.PASSENGER 'ADDRESS,
SIG => SIGUSR1,
PRIORITY => INTERRUPT..MANAGER. INTERRUPT-PRIORITY 'LAST);

F 12. Interr upt Entries 12-21

INTERRUPT..NANAGER. INSTALL..HANDLER
(HANDLEFLADDRESS => ACKNOWLEDGE 'ADDRESS,
SIG => SIGUSR2,
PRIORITY => INTERRUPT-KANAGERINTERRUPT-.PRIORITY'FIRST);

MANAGER. START;
end MAIN;

12.22 F 12. Interrupt Entries

F 12.12 Specification of the package
I NTERR UPTMANAGER

package INTERRUPT-MANAGER is 12

-- This package provides support for signal handlers.

-- It must NOT be recompiled as it is already compiled in the

-- predefined library.

INTERRUPT-LEVELS : constant := 7;

-- Number of priority levels for interrupt entries.

type INTERRUPT-PRIORITY is range
SYSTEM.PRIORITY'LAST + 1 .. SYSTEM.PRIORITY'LAST

+ INTERRUPT-LEVELS;
for INTERRUPTPRIORITY'SIZE use 32;

-- This type defines the range of allowed priorities for calls
-- to interrupt entries.

type ACTION is (FIRST, LAST, REPLACED);
for ACTION use (FIRST => 0, LAST => 1, REPLACED => 2);

-- This type defines the actions to be taken with regard to the
-- previous handler for the signal (if any):
-- * FIRST: previous handler is to be called before

-- the Ada handler.
-- * LAST: previous handler is to be called after
-- the Ada handler.
-- * REPLACED: previous handler is not to be called.

F 12. Interrupt Entries 12-23

type BUFFER.._NUMBER is range O..2**15-1;

-- Number of buffers to hold parameters of interrupt entry
-- calls that cannot be processed immediately.

type BYTE.SIZE is range 0..2**15-1;

-- Used to specify sizes in bytes.

MAX-HANDLERS : constant := 32;

-- Maximum number of installable handlers.

type HANDLER-NUMBER is range O..MAXHANDLERS;

-- Number of installed handlers.

NOFREEBUFFERS : BOOLEAN := FALSE;

-- Set to TRUE if a signal could not be handled because no
-- buffer was available to hold the parameters. (In such cases
-- it is not possible to raise TASKING-ERROR because the entry
-- call was not made by a normal task.) If NOFREEBUFFERS
-- becomes true it is recommended that the number of buffers
-- specified when calling INITINTERRUPTMANAGER (see below)
-- be increased, or if possible increase the priority of the
-- called task. The user can reset this variable to FALSE at
-- any time.

pragma SHARED (NOFREEBUFFERS);

TASK-NOTCALLABLE : BOOLEAN :=-FALSE;

-- Set to TRUE if a signal could not be handled because the

12-24 F 12. Interrupt Entries

-- called task was not callable (it was completed or
-- terminated). The user can reset this variable to FALSE
-- at any time.

pragma SHARED (TASKNOTCALLABLE);

-- Signal definition:

type SIGNAL-NUMBER is range 0..32;
function SIGNAL is

new UNCHECKED-CONVERSION (SIGNAL-NUMBER, SYSTEM.ADDRESS);

procedure INITINTERRUPTMANAGER
(NUMBEROFBUFFERS in BUFFERNUMBER;
MAXPARAMAREASIZE in BYTE-SIZE;
INTERRUPTSTACKSIZE : in BYTE-SIZE := 2048);

-- This procedure allocates the specified number of buffers to
-- hold the parameters of interrupt entry calls that cannot be
-- processed immediately, and allocates a signal stack of the
-- given size. The size of each buffer is the maximum
-- parameter area size plus a fixed overhead of 28 bytes used
-- by the Ada runtime. If the given signal stack size is zero,
-- all signals are handled on the current stack, and all stacks
-- must then have sufficient buffer space.

-- This procedure must be called before any Ada signal handler
-- can be installed and hence before any interrupt entry call
-- can be made from an Ada signal handler. Signals can be
-- lost if the number of buffers is insufficient. The number
-- of buffers required depends on the frequency of signals.
-- The number of buffers can be specified as zero if all Ada
-- signal handlers completely handle their signal and never
-- call an interrupt entry.

-- This procedure raises the exception STORAGE-ERROR if there

F 12. Interrupt Entries 12-25

-- is not enough memory to allocate the required buffers and/or
-- the signal stack.

12 procedure INSTALL-HANDLER
(HANDLER-ADDRESS in SYSTEM. ADDRESS;
SIG in SYSTEM.ADDRESS;
PRIORITY in INTERRUPT-PRIORITY

:= INTERRUPTPRI ORITY' FIRST;
ORIGINAL-HANDLER :in ACTION := REPLACED);

-- This procedure installs the Ada routine at the specified
-- address, as the Ada signal handler for the specified signal,
-- after saving the address of the current signal handler (if
-- any). The specified priority determines the priority of all
-- entry calls made by the handler (all accept statements will
-- run with this priority).

-- The address of the Ada signal handler can be obtained with
-- the attribute 'ADDRESS (which is only valid after
-- elaboration of the procedure body). The Ada signal handler
-- receives control with the signal it is handling blocked, but
-- other non-reserved signals are only blocked if they have an
-- Ada signal handler routine and it is currently active (has
-- been called in response to the signal but has not yet
-- returned). The Ada signal handler must not make implicit
-- or explicit calls to the Ada runtime, other than a simple
-- entry call to the interrupt entry with the address clause
-- corresponding to the signal being handled. Neither timed
-- nor conditional entry calls may be made from an Ada signal
-- handler.

-- The Ada signal handler must be a procedure with one
-- parameter of type ADDRESS, and without inner units. The
-- procedure can only reference local or global objects
-- (excluding objects of enclosing frames). The Ada signal
-- handler procedure must be compiled with checks off
-- (using the -R option).

12-26 F 12. Interrupt Entries

-- This procedure raises the exception STORAGEERROR if
-- MAX.HANDLERS handlers have already been defined.

12
procedure REMOVEHANDLER (SIG : in SYSTEM.ADDRESS);

-- This routine removes the handler for the given signal and
-- restores the original handler. This procedure may be useful
-- if for some reason the task that normally handles this
-- signal is temporarily (or permanently) no longer able
-- to do so.

-- This procedure raises ti exception PROGRAM-ERROR if no
-- handler has been installed for the given signal number.

function HANDLER-COUNT return HANDLER-NUMBER;

-- This function returns the number of installed Ada signal
-- handlers.

end INTERRUPT-MANAGER;

F 12. Interrupt Entries 12-27

F 12.13 Ada Runtime Routine Descriptions
Tables 12-1 through 12-7 lists Ada Runtime System routines and their
function. If calls to any of these routines appear in your Ada handler, the

12 handler is "unsafe", as described in section "F 12.6 Associating an Ada
Handler with an HP-UX Signal".

Table 12-1. Heap Management Routines

Routine Description

ALLOC-GO Allocates a global object.

ALLOCLO Allocates a local object.

ALLOC-TEMP Allocates a temporary object.

ALLOCTEM PGH Allocates a global temporary object.

FREE-LIST Cleans up head objects at the end of a block.

FREETEMP Frees a temporary object.

FREETEMPGH Frees a global temporary object.

Table 12-2.
Collection Management (no STORAGE-SIZE representation clause)

Routine Description

ALLOCSIALLFIXELT Allocates n space for a new object in the collection.

FREE_.SMALLFIXELT Frees the space allocated to the object of the
corresponding collection.

IIITSMALLFIXELT Initializes the descriptor for a collection with small
and fixed size elements.

12-28 F 12. Interrupt Entries

Table 12-3.
Collection Management (collections with a STORAGE-SIZE

representation clause)

Routine Description 12

Fired element size

ILLOCFIXSSELT Allocates a space for a new object in the collection.

FREEFIXSSELT Frees the space allocated to the object of the
corresponding collection.

INITFIXSSELT Initializes the descriptor for a collection with fixed
size elements.

Variable element size

ALLOCARSSELT Allocates a space for a new object in the collection.

FREEVARSSELT Frees the space allocated to the object of the
corresponding collection.

INITVARSSELT Initializes the descriptor for a collection with
variable size elements.

F 12. Interrupt Entries 12-29

Table 12-4. Tasking Routines

Routine Description

ABORTSTMT Aborts the tasks in the argument lists and abort all
12 their dependents.

ACCEPTSTNT Implementation of a simple accept statement.

ACTIVATE-COLLECTION Called after the elaboration of a declarative region
that contains task objects and at the end of the
execution of an allocator of an object with one or
more task components. This routine activates a
collection of tasks in parallel.

COMPLETE-IASTER Called when exiting a block or subprogram master
unit to complete a master unit and deallocate its
resource.

COMPLETE..TASK Called when a task body completion point is
reached and is about to execute the cleanup
sequence of its task body to terminate the task and
its dependents.

CONDCALL Implementation of a conditional entry call.

CONDSELECT Implementation of a select statement with an else
part.

CREATE-TASK Called when a single task specification or task
object declaration is elaborated and when an
allocator is executed that has task components.
This routine creates a new task object.

CURRENTOBJECT_ Called when a task is referenced from the task body
OFTASKTYPE of a task type. This routine maps a task unit name

to the referenced task when the unit name is used
to refer to a task object within its body.

DELAYSTMT Implementation of a delay statement.

Continucd on thf, nczi 1ayc.

12-30 F 12. Interrupt Entries

Table 12-4. Tasking Routines (Continued)

Routine Description

DESTROY-COLLECTION Called when an exception is raised during the
execution of an allocator for an object with one or 12
more task components. This routine terminates any
unactivated tasks in the collection.

END-ACTIVATION Called at the end of a successful task activation to
make the activated task eligible to run.

ENTRY-CALL Implementation of a simple entry call. This call is
safe as long as it calls a task entry declared as an
interrupt entry for the HP- UX signal that caused
the Ada signal handler to be invoked.

ENVTASKMASTER Called when either the main program has not been
invoked and a library package is being elaborated,
or the main program has been invoked and an
allocator is to be executed for an access type in a
library package. This routine initializes an
activation collection for tasks directly dependent on
a library package.

INITCOLLECTION Called at the beginning of a unit that declares
static task objects, and as the first action of the
execution of an allocator for an object containing
any tasks. This routine initializes an empty
collection of tasks to be activated in parallel.

INITHANDLER Called at the occurrence of an address clause for a
task entry. This routine declares that an entry is
associated with an interrupt in the calling task.

Contitnued on the next page.

F 12. Interrupt Entries 12-31

Table 12-4. Tasking Routines (Continued)

Routine Description

INIT-KASTER Called at the beginning of a master unit to initialize
12 an internal data structure MASTER-INFO.

NULLBODYACCEPTSTNT Implementation of an accept statement that has a
null statement list in its body.

SELECTITIBTERIIATE Implementation of a select statement with a
terminate alternative.

SINPLE-SELECT Implementation of a select statement with only
accept alternatives.

SIPLETINEDSELECT Implementation of a select statement with one
delay alternative without a guard or with a static
open guard.

TERMINATE-COMPLETE Called when task body is complete and cleanups
have been performed. The routine propagates the
termination information up the hierarchy and
deallocates the work space; the run-time schedules
another task.

TIMED-CALL Implementation of a timed entry call.

TIMED-SELECT Implementation of a select statement with several
delay alternatives or with one guarded delay
alternative.

12-32 F 12. Interrupt Entries

Table 12-5. Attributes Routines

Routine Description

ENUMPOS Implementation of T 'POS, where T is an
enumeration type. 12

ENUMWIDTH Implementation of T'WIDTH, where T is an
enumeration type.

FIXED-FORE Implementation of T'FORE, where T is a fixed point
subtype.

FIXED-LARGE Implementation of T'LARGE, where T is a fixed point
subtype.

FIXED-MANTISSA Implementation of T 'MANTISSA, where T is a fixed
point subtype.

INTEGER-IMAGE Implementation of T'IMAGE, where T is an integer
type.

INTEGER-VALUE Implementation of T'VALUE, where T is an integer
-type.

INTEGER-WIDTH Implementation of T'WIDTH, where T is an integer
type.

Table 12-6. Attributes for Tasks Routines

Routine Description

CALLABLE Implementation of T'CALLABLE, where T is a task.

COUNT Implementation of E'COUNT. where E is an entry of a
task.

TERMINATED Implementation of T'TERMINATED, where T is a task.

F 12. Interrupt Entries 12-33

Table 12-7.
Support for Enumeration Representation Clauses Routines

Routine Description

12 ENUMIPRED Implementation of T'PRED attribute for types whose
VAL is implemented on one byte; that is, types with
no more than 128 values.

ENUM2_PRED Implementation of T'PPRED attribute for types whose
VAL is implemented on two bytes; that is, types with
more than 128 values but less than 32768 values.

ENUM4_PRED Implementation of T'PRED attribute for types whose
VAL is implemented on four bytes; that is, types
with more than 32767 values.

ENUMISUCC Implementation of T'SUCC attribute for types whose
VAL is implemented on one byte; that is, types with
no more than 128 values.

ENUM2_SUCC Implementation of T'SUCC attribute for types whose
VAL is implemented on two bytes; that is, types with
more than 128 values, but less than 32768 values.

ENUM4_SUCC Implementation of 'SUCC attribute for types whose
VAL is implemented on four bytes; that is, types
with more than 32767 values.

ENUMlVALTOPOS Convert T'VAL to T'POS for types whose VAL is
implemented on one byte; that is, types with no
more than 128 values.

ENUM2_VAILTOPOS Convert T'VAL to T'POS for types whose VAL is
implemented on two bytes; that is, types with more
than 128 values, but less than 32768 values.

ENUH4_VALTOPOS Convert T'VAL to T'POS for types whose VAL is
implemented on four bytes; that is, types with more
than 32767 values.

12-34 F 12. Interrupt Entries

Index

Index

A address clauses

access constants, 6-2

direct, 8-38 data objects, 6-3

sequential, 8-38 objects, 6-1

access protection, 8-11 packages, 6-2

access rights, 8-3, 8-7 subprograms, 6-2

access types task entries, 6-3

alignment, 4-24 tasks, 6-2

as function results, 11-12 alignment

bit representation, 11-11 array types, 4-32
caution, 11-12 enumeration types, 4-5

collection size specification, 4-22, 4-23 integer types. 4-11

FORTRAN, 11-38 record types, 4-35, 4-49

general considerations, 11-11 alignment clause, 10-7

illustration of passing methods, 11-11 APPEND, 8-27

internal representation, 4-22 'ARRAYDESCRIPTOR, 2-1

I/O operations, 8-13 'ARRAY-DESCRIPTOR implicit

minimum size, 4-24 component, 4-46

not returned as function results, 11-38 array objects, 11-26

passing to 'external subprograms, arrays

11-11 as function results, 11-39

size, 4-24 caution, 11-39

value of 'STORAGESIZE, 4 -22 unconstrained, 7-1

Ada array types

handler, 12-7, 12-11 alignment. 4-29

subprograms, 1-14 as function results, 11-13, 11-53

Ada Runtime System (Ada RTS), 1-6, C language, 11-26

12-2, 12-9 correspondence with HP Pascal types,

'ADDRESS, 2-2 11-53
address default size, 4-28

pointer, 11-38. 11-49, 11-52 gaps between components, 4-28

scalar parameter, 11-33 general considerations, 11-13

Index-1

layout, 1-23, 4-28 component clause, 4-35
minimum size, 4-28 blocked signal, 11-65, 11-67
Pascal, 11-53 BOOLEAN'POS(FALSE), 11-51
passing to external subprograms, BOOLEAN'POS(TRUE), 11-51

11-13, 11-39, 11-53 Boolean types
pragma PACK, 4-28 as function results, 11-8
size of dynamic arrays, 4-31 bit representation, 11-8

string types, 11-13 C language, 11-24
ASCII, 3-21, 8-10 converting to integer types, 11-24

assembly language general considerations, 11-8
access types, 11-20 Pascal, 11-51
array types, 11-20 passing to external subprograms, 11-8
Boolean types, 11-19 predefined, 3-10
calling conventions, 11-18 returned as function results, 11-24
character types, 11-19 buffering, 8-8, 8-11, 8-23
enumeration types, 11-19 BUFFER-SIZE, 8-23
floating point types, 11-19
integer types, 11-19 C

record types, 11-20 calling conventions, 1-3, 11-1
scalar types, 11-19 catenation operators, 3-21
subprograms, 11-18 change in representation, 4-37

asynchronous signals, 9-15 char, 11-26, 11-51
attributes CHARACTER, 11-23, 11-24, 11-39,

'ADDRESS, 2-2 11-51
'ARRAY-DESCRIPTOR, 2-1 CHARACTER type, 3-19
for tasks routines, 12-33 character types
implementation-dependent, 2-1 as function results, 11-9
'OFFSET, 2-1 bit representation, 11-9, 11-51
'RECORD-DESCRIPTOR, 2-1 calling FORTRAN, 11-32
'RECORD-SIZE, 2-1 calling Pascal, 11-51
routines, 12-33 correspondence with HP C types,
SYSTEM.ADDRESS. 11-24

A DDRESS'IMPORT, 2-3 general considerations, 11-9
'VARIANTINDEX, 2-1 checks, 11-4, 11-13

C language
B access types as function results, 11-22

binar. files, 8-37 array types, 11-26
binder bit representation of parameters passed

and pragma INTERFACE, 1-6 to, 11-21
bind-time issues. 1-19 Boolean types. 11-24
bit ordering calling. 11-21

Index-2

Index

character types, 11-24 direct access, 8-38
enumeration types, 11-23 direct files
integer correspondence, 11-23 elements, 8-8
integer types as function results, index, 8-8

11-23 DIRECT-1O files, 8-8, 8-37
real types, 11-21 DOUBLE COMPLEX, 11-45
record types, 11-31 DOUBLE PRECISION, 11-37
scalar types, 11-21, 11-22 double precision reals, 11-25
scalar types as function results, 11-22 DURATION type, 3-19
types returned as function results, dynamic components, 4-40, 11-17

11-22 dynamic memory management, 4-54
collection management, 12-28, 12-29
collections of objects, 4-54 E
compiler ELABORATE pragma, 1-1, 1-24

limitations, 10-1 ELEM ENTARYFUNCTIONSEXCEPTION S.
compiler-generated objects, ,1-52 5-1
COMPLEX, 11-45 elements, 8-8
components of a record, organization ENDOFFILE, 8-10

of, 11-5 END-OFPAGE, 8-10
composite types, 11-2 enumeration
consistency checks, 11-4 alignment, 4-5
constants, 6-2 enumeration types
CONSTRAINTERROR exception, as function results, 11-8, 11-51

3-21, 9-7 bit representation, 11-7, 11-50
CONTROLLED, 1-29 default size, 4-5
COUNT'LAST, 8-3 FORTRAN, 11-34
CREATE procedure, 8-1, 8-3, 8-7, 8-8, general considerations, 11-7

8-18 internal representation, 4-2, 4-4, 4-5
minimum size, 4-4, 4-5

D Pascal. 11-50
data' allocation. 4-50 passing to external subprograms,
data objects, 6-3 11-7, 11-34, 11-50
default access protection. 8-11 syntax, 4-2
deferred processing. 12-3 unsigned representation, 4-5
delay statement, 9-11, 11-65 errors
device USEERROR exception, 8-25

disks, 8-12 exceptions, 1-17
terminal, 8-10, 8-24 CONSTRAINTERROR. 3-21, 9-7

dimensions handling, 9-6, 9-7
declared in reverse order, 11-39 NUMERIC-ERROR, 3-21, 9-7
illustration of reversed order. 11-41 predefined, 3-21

Index-3

Index
PROGRAM-ERROR,

3-21, 9-7
passing record types to, 11-60

STORAGE-ERROR, 3-21, 9-7 passing string types to, 11-13, 11-26,
TASKING-ERROR, 3-21 11-41

execution passing task types to, 11-17
of delay statements, 11-65 potential problems using, 11-64

EXPORT pragma, 1-1, 1-2, 1-8, 1-18 pragma INTERFACE, 1-4
extension, 11-7, 11-23 protecting code with a critical section,
external files 11-67

access rights, 8-7 signals, 9-11
appending to, 8-27 types not passed as parameters to,
associating Ada file objects with, 8-1, 11-2

8-11 external subroutines names, 1-6
correspondence with HP-UX files, 8-3
definition, 8-1 F
errors, 8-25 FIELD'LAST, 8-3
existing file specified to CREATE. FIFO

8-4 control, 8-31
names, 8-3 FIFOEOF, 8-31
protection of, 8-11 files
shared, 8-11, 8-12 Ada definition, 8-1
standard implementation of, 8-7 appending, 8-27

EXTERNALNANIE pragma, 1-1, 1-2, associate NAME with file object, 8-I
1-12, 1-18 associating external with file object,

external subprograms 8-1
calling conventions, 11-1 binary, 8-37
delay statements. 9-11 blocking, 8-28
exceptions to calling conventions, buffering, 8-23, 8-26

11-1 characteristics, 8-1
general aspects of calling, 11-1 correspondence of Ada with external,
I/O on files opened by Ada, 11-67 8-1
parameter values. 11-4 direct, 8-8, 8-11
passing access types to, 11-11 DIRECTIO, 8-37
passing array types to, 11-13. 11-39, disk, 8-23

11-53 external, 8-3, 11-4
passing Boolean types to. 11-8 HP-UX pathname, 8-1
passing enumeration types to. 11-34, 1/0, 8-1

11-50 length of elements, 8-8
passing floating point types to, 11-10, name of external, 8-3

11-25 object, 1-6, 8-1
passing integer types to, 11-7. 11-33. protecting, 8-21

11-49 protection flags, 8-21

Index-4

IndexI

sequential,
8-7, 8-11, 8-12, 8-27

customizing
characteristics,

8-7
I

SEQUENTIALIO, 8-37 FIFO control, 8-31
shared, 8-11, 8-12, 8-26 file buffering, 8-23
tasking, 8-11 files protection flags, 8-21
terminal input, 8-18 file structuring, 8-35
terminator, 8-10 format, 8-18
text, 8-10, 8-11, 8-27, 8-35 shared files, 8-25

fixed point terminal input, 8-33
predefined, 4-16 FORTRAN
types, 4-16 access types, 11-38

fixed point types array types, 11-39
alignment, 4-21 calling subprogram, 11-32
as function results, 11-10, 11-25, 11-52 enumeration types, 11-34
default size, 4-20 equivalence of types, 11-45
external subprograms, 11-2 fixed point types, 11-37
general considerations, 11-10 floating point type correspondence,
internal representation, 4-17 11-37
minimum size, 4-18, 4-21 floating point types, 11-37
parameters, 11-25 integer correspondence, 11-33
unsigned representation, 4-18, 4-21 integer types, 11-33
value of 'SMALL, 4-17 other types, 11-45

FLOAT, 3-17, 11-25, 11-37, 11-39, 11-52 record types, 11-45
floating point types scalar types, 11-33

alignment, 4-15 string types, 11-41
as function results, 11-10 function results
bit representation, 11-10, 11-25 access types as, 11-38
calling FORTRAN, 11-32 array types as, 11-39, 11-53
default size, 4-15 Boolean types as, 11-24
FORTRAN, 11-37 enumeration types as, 11-51
general considerations, 11-10 fixed point types as, 11-52
iiternal representation. 4-12 floating point types as, 11-25
minimum size. 4-15 integer types as, 11-33
Pascal, 11-52 record types as, 11-31, 11-45, 11-60
passing to external subprograms, types returned as, 11-22

11-10 types returned from HP C, 11-23
passing to HP C. 11-25 types returned from HIP FORTRAN
predefined. 4-12 77. 11-32

FORM parameter, 8-1 types returned from HP Pascal, 11-48
appending to a flc, 8-27
attributes, 8-18
blocking. 6-28

Index-5

Index

G INTEGER, 11-7, 11-23, 11-39

gap sizes, 4-29 integer types

generating code, 1-24 alignment, 4-11

GENERICELEMENTARYFUNCTIONS, as function results, 11-7, 11-33
5-1 bit representation, 11-49

global dynamic objects, 4-55 calling FORTRAN, 11-32

GROUP (user access categories), 8-21 compatibility with HP Pascal types,
11-48

H correspondence between Ada and HP

handler, 12-11 C, 11-23

HANDLER-COUNT, 12-11 correspondence with FORTRAN

heap management routines, 12-28 integers, 11-33
heap storage, 4-57 default size, 4-9
HeP- UX general considerations, 11-7

library function, 1-6 internal representation, 4-6
pragma INTERFACE, 1-6 minimum size, 4-7, 4-10
signals, 9-1, 9-2, 9-15 Pascal, 11-49
system calls 1-6 passing to external subprograms,
utilities and routines, 11-67 11-7, 11-33, 11-49

performance, 4-11

predefined, 4-6

immediate processing, 12-2 size, 4-9

implementation-dependent unsigned representation, 4-7, 4-10

attributes, 2-1 interactive devices, 8-12, 11-65

characteristics of external files, 8-7 INTERFACE

implicit components, 4-37 pragma, 11-21, 11-32, 11-46

'ARRAY-DESCRIPTOR, 4-46 INTERFACE-NAME pragma, 1-1, 1-2,
'OFFSET, 4-43 1-4
'RECORDDESRIPTOR, 4-46 INTERFACE pragma, 1-1, 1-2, 1-3
'RECORD-SIP, 4-4 6 internal codes of enumeration literals,
'RECQRDSIZE, 4-44

4-2'\VARIANTINDEX, 4-*444-
'VARINT-IDEX,4-44interrupt, 11-64, 11-65

implicit parameters, 11-32, 11-41 interrupt entries
'IMPORT, 2-3inerpetis
'IMPRTE p a 1address clauses, 12-12
INDENT pragma, 1-1, 1-21 examples, 12-13
index HP-UX signals, 9-14

direct files, S-S immediate processing step, 12-4
set when file opened. 8-27 initializing. 12-5

indirect components. 4-39 INTERRUPTHANDLER, 12-12
INLINE pragnia. 1-1. 1-25 NM E a
INSTALL HANDLER, 12-7

Index-6

Indexl

INTERRUPT-MANAGER

specification,
path and component

sizes, 10-6
I

12-23 user-written applications, 10-6
I/O line terminator, 8-10

access types, 8-13 link editor, 1-6
calls to interactive devices, 11-65 LIST pragma, 1-1, 1-22
considered as external files, 8-3 Local Area Networks (LAN), 8-13
implementation-generated local objects, 4-56

characteristics, 8-1 LONG-FLOAT, 3-18, 11-25, 11-39,
intermixing HP-UX utilities and Ada 11-52

routines, 11-67 LONGREAL, 11-52
Local Area Networks, 8-13
multiple operations, 8-11 M
operation, 8-12 MASK, 8-11
packages, 8-1, 8-2 MATHLIB, 5-1
performed on objects, 8-1 MATHLIBLIBM, 5-1
readable, 8-10 MEMORY-SIZE, 1-29
system dependencies, 8-16

N
K NAME parameter, 8-1

keyboards, 8-12 names
for predefined library units, 5-1

L networks, 8-13
LAN (Local Area Networks), 8-13 NFS, 8-13, 8-14
length clauses non-blocking, 8-30

collection size specification, 4-22. 4-23 NONBLOCKING attribute, 8-30
size specification, 4-1, 4-5, 4-9. 4-10. NOT-SHARED mode, 8-25

4-15, 4-20. 4-21. 4-28, 4-29, 4-31. NUMERICERROR exception. 3-21.
4-32, 4-33, 4-48 9-7

'SMALL of a fixed point type. 4-17
storage, 4-25 0
task activation size specification, 4-25 object deallocation, 4-52

libraries object files, 1-6
HP C, 11-22 object library. 1-6

library units, 5-1 objects
limitations collections, 4-54

Ada development environment, 10-5 compiler-generated, 4-52
compiler, 10-1 global dynamic, 4-55
on pragma PACK. 4-31 local dynamic, 4-56
on record representation clauses, 4-37 programmer-generated, 4-53
on the value of 'SMALL. 4-17 temporary. 4-56
opening or creating files. 10-6 'OFFSET, 2-1

Index-7

Index
offset, 11-16

string types, 11-56

'OFFSET implicit component, 4-43 subprograms, 11-46
OPEN, 8-27 passing conventions, 1-2
OPEN procedure, 8-1, 8-3, 8-7, 8-8, pathname, 8-1, 8-3

8-18 performance
operating system, 8-1, 11-64, 11-65 integer types, 4-11
OPTIMIZE, 1-29 pointer, 11-7, 11-8, 11-11
order POSITIVE-COUNT, 8-8, 8-10

reversed, 11-39 pragmas
row major, 11-40 CONTROLLED, 1-29

other types, 11-45 ELABORATE, 1-1, 1-24
OWNER (user access categories), 8-21 EXPORT, 1-1, 1-2, 1-8. 1-18

EXTERNAL-NAME, 1-1, 1-2, 1-12,
P 1-18
packages, 6-2 implementation-specific, 1-1

ASCII, 3-21 IMPROVE, 1-1, 1-23, 4-1, 4-38, 4-47
1/0, 8-2, 8-3 INDENT, 1-1, 1-21
STANDARD, 3-10, 3-11, 3-13, 3-15, INLINE, 1-1. 1-25

3-17, 3-19, 3-21, 3-24 INTERFACE, 1-1, 1-2, 1-3, 11-21,
SYSTEM, 3-1 11-32, 11-46

PACK pragma, 1-1, 1-23 INTERFACENAME, 1-1, 1-2, 1-4
PAGE pragma, 1-1, 1-22 INTERRUPTNIANAGER, 12-5
page terminator, 8-10 LIST, 1-1, 1-22
parameters MEMORYSIZE, 1-29

modification of values, 11-4 OPTIMIZE, 1-29
vassing conventions, 11-21, 11-32, PACK, 1-1. 1-23, 4-11, 4-5, 4-10, 4-21,

11-33. 11-41, 11-46, 11-49 4-28, 4-29, 4-31, 4-32, 4-33
passing modes, 11-1, 11-4, 11-32, PAGE, 1-1, 1-22

11-33 predefined, 1-1
values and bit rcpresentations, 11-5 PRIORITY. 1-1. 1-27

Pascal SHARED, 1-1, 1-28
access types. 11-52 STORAGE-UNIT. 1-29
array types. 11-53 SUPPRESS. 1-1. 1-26
Boolean types. 11-51 SYSTEMNAME. 1-29
character types, 11-51 tasking programs. 1-27
cnumeration types, 11-50 unimplemented, 1-29
fixed point types, 11-52 predefined
floating point types. 11-52 inttger types. 4-0
integer types, 11-48, 11-49 library units, 5-1
record types, 11-60 predefined exceptions

scalar types. 11-48 CONSTRAINT-ERROR. 3-21

Index-8

Index

NUMERIC-ERROR, 3-21 'RECORD-SIZE, 2-1
PROGRAM-ERROR, 3-21 RECORD-SIZE, FORM attribute, 8-37
STORAGE-ERROR, 3-21 'RECORD-SIZE implicit component,
TASKING-ERROR, 3-21 4-44

predefined types record types
CHARACTER, 3-19 alignment clause, 10-7
DURATION, 3-19 as function results, 11-17, 11-31,
STRING, 3-20 11-45, 11-60

PRIORITY pragma, 1-1, 1-27 assignment to a discriminant, 11-17
procedures bit representation, 11-15

CREATE, 8-1, 8-3, 8-7, 8-8, 8-18 C language, 11-31
INSTALL HANDLER, 12-7 compiler adds implicit components.
OPEN, 8-1, 8-3, 8-7, 8-8, 8-18 11-17

PROGRAMERROR exception, 3-21, components, default size, 4-33, 4-36
9-7 components, minimum size, 4-33

programmer-generated objects, 4-53 components reordered by compiler,
program termination, 4-53, 9-12 11-15
protection composite components, 11-17

external files, 8-11 direct components, 4-39
of interfaced code from signals, 9-15, dynamic components, 11-17

11-67 FORTRAN. 11-45
parameter, 11-4 general considerations, 11-15

PUT. 8-10 implicit component
'ARRAY-DESCRIPTOR, 4-46

R implicit component 'OFFSET, 4-43

random access devices, 8-12 implicit component
ranges, 11-26, 11-48 'RECORD-DESCRIPTOR,
REAL, 11-65 4-46
real types implicit component 'RECORD-SIZE,

bit representation, 11-10 4-44
fixed point types, 11-10, 11-25, 11-37, implicit components, 4-37

11-52 implicit component
floating point types, 11-10. 11-25, VARIANTINDEX, 4-44

11-37, 11-52 indirect components, 4-39
general considerations. 11-10 layout, 1-23, 4-33. 4-36, 11-15

'RECORDDESCRIPTOR. 2-1 offset, 11-16
'RECORD-DESCRIPTOR implicit parameter passing modes, 11-4

component. 4-46 Pascal, 11-60
records passing to external subprograms.

rppresentation clauses. 11-16 11-15, 11-60
size, 11-17 record representation clauses. 11-13

Index-9

Index
size of record,

11-17

SHARED
mode, 8-25

syntax, 4-33 SHARED pragma, 1-1, 1-28
unconstrained, 7-1 SHORT-INTEGER, 3-15, 4-10, 11-7,

RECORD-UNIT, FORM attribute, 11-23, 11-39, 11-49
8-37 SHORTSHORTINTEGER, 3-14,

reformatter, 1-21 11-7, 11-23, 11-26, 11-49
REMOVE-HANDLER, 12-11 SIGALRM signal, 9-2, 9-10, 9-11, 9-15,
representation clauses 11-65, 11-67

data objects, 4-1 SIGBUS signal, 9-2, 9-8
enumeration, 4-1, 4-2 SIGFPE signal, 9-2, 9-7
enumeration types, 11-7 SIGHUP signal, 9-12
pragma PACK, 1-23 SIGILL signal, 9-2, 9-8
record, 4-1, 4-5, 4-10, 4-21, 4-33: 4-35. SIGINT signal, 9-12

4-36, 4-43, 4-44, 4-46, 4-47. 4-49 signals
reserved signal, 11-67 asynchronous, 9-15
restrictions, 7-1, 8-3, 10-1, 11-25 blocked, 11-67
RESUMEADATASKING, 11-67 handlers, 1-20
reverse order, 11-39 HP-UX, 9-1, 9-2, 9-15
row major order, 11-40 interrupt entries, 9-14
run-time, 11-64, 11-67 interruption, 11-65

checks, 11-4 SIGALRM, 9-2, 9-10, 9-)], 9-15,
system, 1-6 11-65, 11-67

runtime SIGBUS, 9-2, 9-8
descriptions, 12-28 SIGFPE, 9-2, 9-7

SIGHUP, 9-12
S SIGILL, 9-2, 9-8
scalar types SIGINT, 9-12

Boolean types, 11-8, 11-51 SIGPIPE, 9-12
calling FORTRAN, 11-32 SIGPROF, 9-2, 9-10, 9-11, 9-15
calling Pascal, 11-51 SIGQUIT, 9-12
characfer types, 11-9 SIGSEGV, 9-2. 9-8
enumeration types, 11-7, 11-50 SIGTERM, 9-12
FORTRAN, 11-33 SIGVTALRM, 9-2, 9-10, 9-11, 9-15,
general considerations, 11-6 11-65, 11-67
integer types, 11-7, 11-33. 11-4, subprograms. 11-64
Pascal, 11-48 SIGPIPE signal, 9-12
real types, 11-10. 11-37. 11-52 SIGPROF signal, 9-2, 9-10. 9-11, 9-15
string types. 11-41, 11-43 SIGQUIT signal, 9-12

scheduling, 11-65 SIGSEGV signal, 9-2, 9-S
sequential access. 8-38 SIGTERM signal, 9-12
SEQUENTIALIO files, 8-7.8-37 sigvector(2), 11-64, 11-65

Index-lO

Index/

SIGVTALRM
signal, 9-2, 9-10, 9-11,

SYSTEM_ENVIRONMENT.

I

9-15, 11-65, 11-67 SUSPENDADATASKING, 12-11
single precision reals, 11-25 SYSTEMNAME, 1-29
size of record, 11-17
slow HP-UX routines, 11-65 T

stack, 11-21 tapes, 8-12
STANDARD, 3-21 TASKING-ERROR exception, 3-21
STANDARDINPUT, 8-12 tasking routines, 12-30
STANDARD-OUTPUT, 8-12 tasks, 6-2
STANDARD package, 3-10, 3-11, 3-13, entries, 6-3

3-15, 3-17, 3-19, 3-24 management, 9-1, 9-10
stderr, 8-12 minimum size of stack, 4-26
stdin, 8-12 rescheduling, 11-65
stdout, 8-12 scheduling, 11-65
STORAG EERROR exception, 3-21, time-slice amount, 11-65

9-7 task types
storage for a task activation, 4-25 alignment, 4-27
STORAGE-UNIT as function results, 11-17

pragma, 1-29 external subprograms, 11-2
record representation clause, 4-36 general considerations, 11-17

STRING type, 3-20 internal representation, 4-25
string types minimum size, 4-27

Pascal, 11-56 passing to external subprograms,
passing to external subprograms, 11-17

11-13, 11-41 temporary objects, 4-56
scalar types, 11-43 terminal
special case of arrays, 11-26 device. 8-10, 8-24

subprograms, 1-14, 6-2 input. 8-33
predefined, .8-10 terminating programs, 9-12

support for enumeration representation, terminator
,12-34 character, 11-26

SUPPRESS pragma, 1-1, 1-26 file, 8-10
SUSPENDADATASKING, 11-67, line. 8-10

12-11 page. 8-10
symbolic links, 8-15 representation, 8-35
system text

dependencies. 8-16 files. 8-35
SYSTEM, 3-1, 11-33 processing tools, 1-21
SYSTEM.ADDRESS'IMPORT, 2-3 TEXT-1O files, 8-10
SYSTE\LENVIRONMENT. 5-1 time-slicing, 11-65

TSS routines, 12-8

Index-11

IIndex
type conversions,unchecked, 7-1 universal types, 3-11
type representation, 4-1 USE-ERROR, 8-3, 8-8, 8-19, 8-25
type support subprograms, 12-8 user access categories

GROUP, 8-21
U OWNER, 8-21
UNCHECKED_CONVERSION WORLD, 8-21

access types, 4-22 user-written applications, 10-6
enumeration types, 4-3
interfacing with external data V

structures, 4-22 VAR, 11-53, 11-60
limitations, 7-1 'VARIANT-INDEX, 2-1

UNCHECKEDDEALLOCATION, variant index, 11-17
8-13 'VARIANT-INDEX implicit component,

unchecked type conversions, 7-1 4-44
unconstrained record types, 7-1
unconstrained strings, 11-26 W
universal-fixed, 3-13 WORLD (user access categories). 8-21
universal-integer, 3-11

Index-12

