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ATTACHMENT C
DECLARATION OF CONFORMANCE

Compiler Implementor: Telesoft, AB.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC), Version 1.11

Compiler Name: Cray Ada Compiler
Compiler Version: 2.0

Host Architecture ISA: CRAY X-MP/EA
0S & Version#: UNICCS Release 5.0

Target Architecture ISA: CRAY X-MP/EA
0S & Version#: UNICOS Release 5.0

implementor’s Declaration

I, the undersigned, representing TELESOFT, declare that TELESOFT has
no knowledge of deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A in the implementation listed in this declaration.
I declare that Cray Research, Inc. is TeleSoft’s licensee of the Ada
language compiler listed above and, as such, is responsible for
maintainin id compiler in conformance to ANSI/MIL-STD-1815A. All
certificafes any registrations for the Ada language compiler listed
in this eq&ara ion shall be made only in the licensee’s corporate

Date: 3/15171

Raymond A. Parra, General Counsel

Licensee’s Declaration

I, the undersigned, representing Cray Research, Inc. take full
responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the
final Validation Summary Report. I declare that the Ada
language compiler listed, and it’s host/target performance are
in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

e e~ Date: 2 27/‘11
nc. ! /

Sylvia Crain
Ada Project Manager
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CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90]} against the Ada Standard [Ada83) using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACV” User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311
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1.2 REFERENCES

[(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90) Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

(UGB9] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada standard. The procedure CHECK FILE is used to check the contents of
itext files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.




INTRODUCTION

Page 1-3

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

Conformity

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
quidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user—designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Fulfillment by a product, process or service of all
requirements specified.
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Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

validation

Withdrawn
test
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An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity

testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming

language.




CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 12 October 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026B
B85001L Cc83026A C83041A C97116A €98003B BA2011A
CB7001A CB7001B CB7004A ccl223a BCl1226A CC1226B
BC3009B BD1B02B BD1BO6A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A37A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.
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The following 229 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113J..Y (16 tests) €35705J..Y (16 tests)
C35706J..Y (16 tests) C35707J..Y (16 tests)
C35708J..Y (16 tests) C35802J..Z2 (17 tests)
C452413..Y (16 tests) C45321J..Y (16 tests)
C45421J3..Y (16 tests) C45521J3..Z (17 tests)
€45524J3..Z2 (17 tests) C45621J..2 (17 tests)
C456413..Y (16 tests) C46012J3..2 (17 tests)

The following 21 tests check for the predefined type SHORT INTEGER:

C35404B B36105C C45231B C45304B C454118
C454128B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 21 tests check for the predefined type LONG INTEGER:

C35404C C45231C €45304C C45411cC c45412C
€45502C €45503C C45504C C45504F C45611C
Cc45612C C45613C C45614cC C45631cC C45632C
B52004D CS55B07A B55B09C B86001wW C86006C
CD7101F

C35404D, C45231D, B86001X, C8S006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_ INTEGER, or
SHORT INTEGER.

C35508I..J and C35508M..N (4 tests) include enumeration representation
clauses for boolean types in which the specified values are other than
(FALSE => 0, TRUE => 1); this implementation does not support a change
in representation for boolean types. (See section 2.3.)

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT.

C35702B, C35713C, B86001U, and C86006G check for the predefined type
LONG_FLOAT.

€35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT FLOAT.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, C46034B and CD2AS3A contain 'SMALL
representation clauses which are not powers of two or ten.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OVERFLOWS is TRUE.
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C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT IO, and hence
package REPORT, obsolete. For this implementation, the package TEXT IC
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsclete. (See section 2.3.)

LA3004A, EA3004C, and CA3004E check for pragma INLINE for procedures.
LA3004B, EA3004D, and CA3004F check for pragma INLINE for functions.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD1009E and CD1009F contain length clauses that effectively require
array components to cross storage boundaries; this representation is not
supported by the implementation. (See Section 2.3.,

CD2A84A, CD2AS4E, CD2AB4I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD80O1A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method:

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL_IO
CE2102E CREATE OUT FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE IN FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN _FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE2102Q RESET OUT FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN_FILE DIRECT IO
CE2102v OPEN OUT FILE DIRECT 10
CE2102W RESET OUT FILE DIRECT IO
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT IO
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CE3102G DELETE —_ TEXT IO
CE31021 CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN FILE TEXT_IO
CE3102K OPEN ouT FILE TEXT_IO

AE2101H, EE2401D, ancd EE2401G use instantiations of package DIRECT IO
with unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this compiler.

The following 16 tests check operations on sequential, direct, and text
files wher multiple inte:nal files are associated with the same external
file and one or more are open for writing; USE ERROR is raised when this
association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIAL IO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE_ERROR if the capacity of the
external file is exceeded for DIRECT I0. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or

SET PAGE LENGTH specifies a value that is inappropriate For the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT’LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 30 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

BA1001A BA2001C BA2001E BA3006A BA3006B
BA3007B BA3008A BA3008B BA3013A

€35508I..J and C35508M..N (4 tests) were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests attempt to change the
representation of a boolean type. The AVO ruled that, in consideration of
the particular nature of boolean types and the operations that are defined
for the type and for arrays of the type, a change of representation need
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not be supported; the ARG will address this issue in Commentary AI-00564.

C52008B was graded passed by the Test Modification as directed by the AvVO.
This test uses a record type with discriminants with defaults; this test
also has array components whose length depends on the values of some
discriminants of type INTEGER. On compilation of the type declaration,
this implementation raises NUMERIC ERROR as it attempts to calculate the
maximum possible size for objects of the type. Although this behavior is
accepted for validation in consideration of intended changes to the
standard to allow for compile-time detection of run-time error conditions.
The test was modified to constrain the subtype of the discriminants. Line
16 was modified to declare a constrained subtype of INTEGER, and
discriminant declarations in lines 17 and 25 were modified to use that
subtype; the lines are given below:

16 SUBTYPE SUBINT IS INTEGER RANGE -128..127;
17 TYPE REC1(D1,D2 : SUBINT) IS

25 TYPE REC2(D1,D2,D3,D4 : SUBINT := 0) IS

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit’s body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies contain uses of the types that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete—no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CD1009A, CD1009I, CD1C03A, CD2A21A, CD2A22J, CD2A23A, CD2A24A, and
CD2A31A..C (3 tests) were graded passed by Evaluation Modification as
directed by the AVO. These tests use instantiations of the support
procedure LENGTH CHECK, which uses Unchecked Conversion according to the
interpretation given in AI-00590. The AVO ruled that this interpretation
is not binding under ACVC 1.11; the tests are ruled to be passed if they
produce Failed messages only from the instances of LENGTH CHECK—i.e., the
allowed Report. Failed messages have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

CD1009E and CD1009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests use length clauses for array types with
type INTEGER components that specify the size to be ’'LENGTH * INTEGER'’SIZE;
for this implementation INTEGER'SIZE is 46 (bits) and SYSTEM.STORAGE UNIT
is 64 (bits)—one machine word—; hence, the specified representation
cannot be met without some of the array components crossing word
boundaries, which this implementation does not support.
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PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Sylvia Crane

Cray Research, Inc

500 Montezuma, Suite 118
Santa Fe NM 87501

For a point of contact for sales information about this Ada implementation
system, see:

Sylvia Crane

Cray Research, Inc

500 Montezuma, Suite 118
Santa Fe NM 87501

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.
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a) Total Number of Applicable Tests 3715

b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 145
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 229

f) Total Number of Inapplicable Tests 374
g) Total Number of Tests for ACVC 1.11 4170

All I/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. Wwhen this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 373 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 229 executable tests that use floating-point precision
exceeding that supported by the implementation. 1In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

-0 2

-S

-W +vector=OFF

-W +enable_traceback

-m
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Test output, compiler and linker listings, and job logs were captured
on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.
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MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN—-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
$MAX IN LEN 200
$BIG_ID1 (1..v-1 => 'A’, Vv => '1")
$BIG_ID2 (1..v=1 => 'A", V=> '2")
$BIG_ID3 (1..v/2 => 'A’) & '3 &
(1..v=1-v/2 => ’'A’)
$BIG_ID4 (1..v/2 => 'A’) & "4’ &
(1..v-1-v/2 => 'A’)
$BIG_INT LIT (1..v=3 => '0’) & "298"
$BIG_REAL LIT (1..v=5 => r0’) & "690.0"
$BIG_STRING1 ™y g (1..v/2 => 'A’) & '
$BIG_STRING2 0 g (1..V-1-V/2 => 'A’) & '1' & '"’
$BLANKS (1..v=20 => r ')

$MAX LEN INT BASED LITERAL
"2:" & (1..Vv=5=> r0") & "11:"

$MAX_LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0’) & "F.E:"

$MAX STRING LITERAL Tt & (1..V=2 => 'AT) & '
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The following table lists all of the other macro parameters and their

respective values:

Macro Parameter

Macro Value

$ACC_SIZE
$SALIGNMENT
$COUNT LAST

$DEFAULT MEM SIZE
$DEFAULT_STOR UNIT

$DEFAULT SYS_NAME

$DELTA DOC
$ENTRY ADDRESS
$ENTRY_ ADDRESS1
$ENTRY ADDRESS2
$FIELD LAST
$FILE_TERMINATOR
$SFIXED NAME
$SFLOAT NAME
$FORM_STRING

$FORM_STRING2

22

1
3518437208829
164 3FFFFF#
64

CRAY XMP
241.04E-45
164404
164804
1641004

1000
NO_SUCH_TYPE

NO_SUCH_TYPE

"CANNOT_RESTRICT FILE CAPACITY"

$GREATER_THAN DURATION

100_000.0

$GREATER THAN DURATION BASE LAST

T31 073.0

$GREATER THAN FLOAT BASE LAST

1.80141E+38

$GREATER THAN FLOAT SAFE LARGE

1.80141E+38
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$GREATER THAN SHORT FLOAT SAFE LARGE

1.0E308 ~

$HIGH PRIORITY 63
$ILLEGAL EXTERNAL FILE NAMEl

- ~  TBADCHAR*" /%"
$ILLEGAL EXTERNAL FILE NAME2

- ~ T /NONAME/DIRECTORY"
$INAPPROPRIATE_LINE_LEN?TH
$INAPPROPRIATE_PAGE_LEN?TH
$INCLUDE PRAGMAl 'PRAGMA INCLUDE ("A28006D1.TST");’
$INCLUDE_PRAGMA2 ‘PRAGMA INCLUDE ("B28006F1.TST");’
$INTEGER FIRST -3518437208832
$INTEGER LAST 3518437208831

$INTEGER LAST PLUS 1 3518437208832
SINTERFACE LANGUAGE C
$LESS_THAN DURATION -100_000.0

SLESS_THAN DURATION BASE FIRST
-131 073.0

SLINE _TERMINATOR ASCII.LF
$LOW_PRIORITY 0

$MACHINE CODE_STATEMENT
NULL;

SMACHINE_CODE_TYPE  NO_SUCH_TYPE

SMANTISSA DOC 45

$MAX DIGITS 13

$MAX INT 3518437208831

$MAX INT PLUS 1 3518437208832

$MIN_INT -3518437208832

SNAME NO_SUCH_TYPE AVAILABLE

SNAME_LIST CRAY_XMP
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$NAME_SPECIFICATIONI
$NAME _SPECIFICATION2
$NAME SPECIFICATION3
$NEG_BASED INT
$NEW_MEM SIZE
$NEW_STOR_UNIT
$NEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
SRECORD NAME

$TASK SIZE
$TASK_STORAGE SIZE
$TICK

SVARIABLE ADDRESS
SVARIABLE_ADDRESS1
$VARIABLE ADDRESS2
$YOUR PRAGMA

/tmp/X2120A
/tmp,/X2120B
/tmp,/%X2120C
16#3FFFFFFFFFFE#
1643FFFFF#

64

CRAY XMP
ASCII.FF

NEW INTEGER
NO_SUCH MACHINE CODE TYPE
64

4096

10.0E-3

16400204
16400244
16400284

PRESERVE_LAYOUT
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APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this Appendix are to linker documentation and not
to this report.
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You may also want to compile a series of source files by using an .
input list file. See “Input file: input_spec,” page 98, for more
information.

The ada command After you have created a working library, as described in
3.3 “Creating sublibraries: the acr command,” page 33, you are
ready to use the Cray Ada compiler.

The ada command invokes the compiler. Unless you specify
otherwise, the front end, middle pass, and code generator are
executed each time the compiler is invoked. Specifying the -e
option invokes only the front end.

The general command format for invoking the Ada compiler
when the ~e argument is used is as follows:

{:-1 libname
ada

-e] [-E -v] [(-L] [-T opt [ .,0pt..]] [-k
" sublib[,sublib...]} (mel [-F valuel [-v1 (=L} (=T opf [ ,0pt-1] [-K]

[-a file] input_spec

The general command format for invoking the Ada compiler
when the ~e argument is not used is as follows:

ad -1 libna’ne [‘E Ualue] {—V] [-L] [ T o t[ opt ]] [ ﬁl ]
-t sublib(,sublib...] P o o

(-x] (-k] (-d]) (-ikey) [-j] [-K] (-u key..] [-Okey [ key..]aopt_opts])

[-s] (~f size] [-m unit{ald_opts]) [(~-S key] input_spec
ada command The following table shows the ada command-line arguments
options grouped according to function.
3.4
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Table 13. ada command arguments

Argument Action Page
Library arguments:
-1 libname Uses libname as the library file. This option is not used 82

with -t. Defaultis liblst.alb.

-t sublib[,sublib...]  Specifies temporary list of sublibraries. This option is 82
not used with -1. Default is no list.

Execution control arguments:

-E value Aborts compilation after value number of errors. Default 82
is 999.
-m unit (ald_opts] Specifies the main program unit for compilation. 83

Without this option, no executable code is generated.
You can specify arguments from the ald command in
conjunction with this argument.

-v Displays progress messages during compilation. Default 84
is no display of progress messages.

Output control arguments:

-e Runs only the front-end compiler pass. Default runs 85
front-end pass, middle pass, and code generator.

-d Generates source-level debugging information. Default 85
does not include debug information.

-f size Specifies alternate frame package size. Default is 18 86
words. (CRAY-2 systems only.)

-1 key Suppresses checks and source information; default is to 86
store source line information in the object code.

-k Retains low form and high form of secondary units; 87
default is to discard them.

-0 key [,key] Optimizes object code. You can specify arguments from 88

[aopt_opts) the zopt command in conjunction with this argument.
See the -0 argument documentation for information on
keys.

80 Cray Research, Inc. SR-3014 2.0
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Using the Compiler

Table 13. ada command arguments

(continued)
Argument Action Page
-s Controls sharing of frame packages. By default, there is 91
1 frame package for each routine and noncalling routines
share a package. (CRAY-2 systems only.)
~-x Puts Profiler information into generated code; default 91
does not generate execution-profile code.
Listing control arguments:
~a file Specifies alternate list files; by default writes to file. 1. 91
-3 Joins errors with source code. 92
-K Keeps source file in library. 92
-L Generates interspersed source-error listing. Default 92
does not.
~S key Generates source/assembly listing. Default does not. 93
~T opt{,opt...] Controls terminal display. By default it does not include 95
vectorizer messages; it prints warning-level messages,
and it puts one line of code around error messages.
~-u key Updates the working sublibrary. Default updates the 98
library after all units within a single source file compile
successfully.
Required argument:
input_spec One or more Ada source files or an input list file to be 98
compiled.
The following subsections describe the options according to the
preceding functional groups.
SR-3014 2.0 Cray Research, Inc. 81
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The Ada Linker

Command syntax
4.1.1

The valid syntaxes of the ald command are as follows:

ald (-1 libname]l [-b) [-o file]l] (-d] [-v] [-X] [-x]

[-P ‘'string'] [-p object(,object, ...]]

[-Y size] main_unit

[-S key]

ald (-t sublib[sublib...]] [-bl [-o file] (-d] [-v] (-X] (-x] [-S key]
(-P ’string’] (-p object(,object,...1] (-Y size]l main_unit
Table 14. ald command options
Option Action Default
Library options:
-1 libname Specifies name of library file. Not used with liblst.alb
~-t.
-t sublib(,...] Specifies temporary list of sublibraries. Not None
used with -1.
Command
options:
-b Makes loader quit after creating elaboration Creates executable
code and linking order. module
-0 file Specifies name of executable file. Name of main unit
-d Includes debugging information; specify if you  None
intend to use the debugger.
-v Makes linker send messages to stdout for No messages
each phase of linking.
-X Reports unhandled exceptions in tasks. No reporting of
unhandled exceptions
-X Instructs binder to link in the profiler No profiler support
run-time support routines. linked in
SR-3014 2.0 Cray Research. Inc. 107




The Ada Linker Cray Ada Environment, Volume 1: Reference Manual
Table 14. ald command options
(continued)
Option Action Default
-P 'string’ Passes a string of SEGLDR options to No string passed to
SEGLDR. SEGLDR
-p Passes name of foreign object files to SEGLDR Nothing passed to
objl.obj...] to link with the Ada unit. SEGLDR
=Y size Specifies amount of space allocated for each 4000 words
task.
-v Displays progress messages during No progress messages
compilation. displayed
-S key Generates source/assembly listing No source/assembly
listing generated
Required option:
main_unit Name of the main Ada program unit to be None
linked. The main_unit name must match the
name of the main unit specified in the Ada
library. If the main_unit name is longer than
14 characters, ald truncates the name to 14
characters. If another file exists with a name
equal to the 14-character main_unit name,
the other file is overwritten because of the
14-character UNICOS 5.1 naming restrictions.
In UNICOS 6.0, the parameters are 255
charac_ters.
Command options The following subsections describe the ald command options.
4.1.2

Creating only elaboration

code: -b
4.1.2.1

108

The -b option causes the Ada loader to terminate after it has

created the elaboration code and linking order, before it invokes
SEGLDR. This provides more control over the linking process by
letting the user modify the link order and add SEGLDR
directives. The ald command generates two files; the first file,

Cray Research, Inc.

SR-3014 2.0

e —




APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2**45 .,  2**45-1;
type FLOAT is digits 13 range -1.0E2466 .. 1.0E2466;
type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;
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CPU targeting
1.1

EMA and no EMA
1.2

SR-3082 2.0

Several issues arise with regard to the generation and
movement of executable files between various Cray Research
systems. Generally, the rules for Cray Ada are as follows:

¢ Code can be generated only for the specific model on which the
Ada compiler is running.

e Ada is compatible only at the level of source code.

The specific issues related to Ada support on the various Cray
Research architectures are explained in the following
subsections.

Cray Ada does not support a mechanism that targets code for a
Cray Research system other than the one on which the
compilation occurs. For example, there is no user option that
lets Ada code compiled on a CRAY-2 system produce executable
files for a CRAY Y-MP system.

The issue of extended memory addressing (EMA) is relevant for
CRAY X-MP systems. Currently, the Ada compiler can generate
executable code only for the specific system configuration on
which the compiler is running.

Users must be extremely careful when attempting to execute
code on a machine other than the one on which it was compiled,
because the compiler does not currently notify users when the
addressing scheme used in compiling a given code is
incompatible with or different from that of the target execution
machine. To avoid unexpected execution problems or inaccurate
results, the best (and recommended) practice is to execute code
on only the machine on which it was compiled.

Cray Research, Inc. 1
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CRAY X-MP
system
compatibility
mode

13

Runtime support
1.4

Interfacing to

other languages
1.5

Currently, the Cray Ada compiler does not support the TARGET
environment variable that indicates system hardware. Users
must ensure that the correct libraries are included when linking.
“The Ada Linker,” in Cray Ada Environment, Volume 1:
Reference Manual, publication SR-3014, describes several
appropriate strategies for referencing alternative libraries.
Users should also check with their system support staff to
determine whether a transparent user interface has been
established for their system.

The most common message that indicates a library compatibility
problem resembles the following:

*Warning* File ‘'/usr/lib/libc.a‘’ contains 26
modules with conflicting machine
characteristics

The Cray Ada runtime sublibrary, /usr/1ib/runtime. sub, has
been tailored to support the specific architecture on which it
runs. For CRAY X-MP systems, variations in the runtime

library relate primarily to issues of EMA and
compress-index/gather-scatter hardware support. For CRAY-2
systems, the runtime library differs from that of CRAY X-MP and
CRAY Y-MP systems primarily because of differences in the two
architectures’ instruction sets. Avoid moving the runtime library
from one machine to another.

When mixing Ada with another language such as Fortran, C,
Pascal, or CAL, users must ensure that the hardware attributes
(CPU type, 24-bit addressing, and so on) used to compile the
foreign modules agree with those of the Ada compilation
environment. Compilation of all foreign language modules
should be performed on the machine on which the Ada modules
were compiled and should use the targeting defaults available
with the foreign language compiler.

Cray Research, Inc. SR-3082 2.0
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Limitations on A limitation exists regarding SEGLDR load maps for very large
LD Ada programs. Specifically, version 5.2 of SEGLDR (1d) cannot

ISGEG R map files produce map files for Ada programs containing more than about

16,000 subprograms. By default, ald does not request a map file
from SEGLDR, so this does not usually cause a problem.
However, if you have a very large Ada program and you request
a load map (perhaps for use with cdbx), either with the -p
switch to ald or by modifying the link script, you should be
aware of this restriction.

This limitation was removed in SEGLDR version 6.0 for UNICOS
6.0.

SR-3082 2.0 Cray Research, Inc. 3
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Compiling
specifications and

bodies separately
2.1

Using generics

efficiently
2.2

SR-3082 2.0

This section provides a number of techniques that you are
encouraged to use to get maximum performance and
functionality from the Cray Ada Environment.

You should take full advantage of Ada’s separate compilation
capabilities. In particular, each compilation unit should be
located in a separate source file. This ensures that the minimum
amount of recompilation of dependent units is required when
any particular compilation unit has been modified.

Maintaining the specification and body of a given compilation
unit in one source file may appear to be a reasonable alternative
to completely separate files. However, if you do this, any
recompilation of the body causes the recompilation of the
specification, which in turn requires the recompilation of all
units that either directly or indirectly import that specification.
When such a recompilation involves a low-level package that is
widely used, virtually the entire application may have to be
recompiled. Similar principles apply to the maintenance of
multiple unit specifications in a single source file. In some
instances, a valid compilation order cannot be found when
multiple units reside in one file.

Although the Cray Ada compiler does not currently implement
code sharing for instantiations, there are several ways to use
generic program units effectively. They are discussed in the
subsections that follow.

Cray Research, Inc. 5
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Use preinstantiated
generic units
221

Compiling the instantiation of a generic unit is roughly
equivalent to compiling the source of the generic unit itself at
the point of instantiation. When the generic unit contains a
large volume of code, this operation can use significant machine
resources. Moreover, this overhead is incurred each time the
instantiating package is compiled.

To minimize overhead, you should preinstantiate generic units
by compiling them in the library whenever possible. This is
especially true for the standard predefined 'O generics, which
are relatively large. For your convenience,
/usr/lib/runtime. sub contains two generic instantiations
from package Text_IO. These are Integer_Text_IO and
Float_Text_IO. Additionally, both float and integer
instantiations have been provided for CRAY_LIB. These are
CRAY_MATH_LIB, CRAY_BIT_LIB, and CRAY_UTIL_LIB. See
“Library Interfaces,” page 119, for additional information on
CRAY_LIB.

The following example shows the specifications of these
packages:

with Text_IO;
with CRAY_LIB;

-~ Text_IO instantiations
Package Integer_Text_IO is new Text_IO.Integer_IO(Integer);
Package Float_Text_IO is new Text_IO.Float_IO(IFloat);

-- CRAY_LIB Instantiations

Package CRAY_MATH_LIB is new CRAY_LIB.MATH_LIB(Float):;
Package CRAY MATH_LIB is new CRAY_LIB.MATH_LIB(Integer);
Package CRAY_BIT_LIB is new CRAY_LIB.BIT_LIB(Float);
Package CRAY_BIT_LIB is new CRAY_LIB.RIT_LIB(Integer);
Package CRAY_UTIL_LIB is new CRAY LIB.UTIL_LIB(Float);
Package CRAY_UTIL_LIB is new CRAY_ LIB.UTIL_LIB(Integer):;

Cray Research, Inc. SR-3082 2.0
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You may want to add additional commonly used I/O package
instantiations to your own sublibraries and use the
preinstantiated versions in your application, besides any of your
own generic units. The following is an example of a package
containing generic units:

with Text_IO;

end Numeric_IO_Stuff;

package Numeric_IO_Stuff is
package Float_IO is new Text_IO.Float_IO(Float);

package Int_IO is new Text_IO.Integer_IO{(Integer);

Compile generic bodies
early
2.2.2

Keep generic bodies
small
2.2.3

SR-3082 2.0

Instead of reinstantiating new versions of Integer_IO, other
packages would simply import this package by using the with
Numeric_IO_Stuff line. This method can save compilation
time and code space.

Although the compiler lets you compile an instantiation of a
generic unit at any time after the generic specification has been
compiled, it is best not to compile any instantiations until after
the corresponding generic body has also been compiled.
Otherwise, you will be forced to recompile all instantiations of
that generic unit.

Because the body code is effectively recompiled with each new
instantiation of a generic unit, it is best to keep the body code as
small as possible. Try to partition the functionality of a generic
unit into parts that are specific to the actual parameters of the
unit and parts that can be common to different instantiations.
The latter can be placed in nongeneric program units that are
referenced and called from the generic body. For more
information, see the Cray Ada Environment, Volume 1:
Reference Manual, publication SR-3014.

Cray Reeearch, Inc. 7
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Use pragma INLINE for
optimizing
2.24

Optimizing hints
2.3

Weighted sections of
code
23.1

Nonnegative variables
23.2

Short-circuit Boolean
expressions
233

Many generics involve subprogram parameters to provide
relational operations on generic formal private types. Often, the
subprograms supplied as generic actual parameters are trivial.
In such cases, they should be marked for inlining during
optimization by use of pragma INLINE. Because generic
instantiations are macro expansions of the generic body
template, calls to generic subprogram parameters can be inlined
at the time of the instantiation, avoiding any call overhead.

As specified by the Ada LRM, the pragma must be placed in the
same declarative region as the declaration of the subprogram to
be inlined and must follow the subprogram declaration. If you
do not specify -O on or -0 I as an option on the ada or aopt
command line, pragma INLINE is ignored.

The information in the following subsections will help you
achieve better optimization of your code.

The optimizer, when it assigns weights to sections of code, gives
a higher weight to the IF part of a branch than to the ELSE part.
If one alternative is more likely than the other, arrange the IF
statement to take this into account.

Several optimizations are possible when the compiler knows that
the range of a variable is strictly nonnegative. Therefore, when
possible, declare variables of type Positive or of type Natural.
This is particularly important for integer Divide, Rem, and Mod.

Short-circuit Boolean expressions that are evaluated into a
Boolean variable almost always generate a subroutine call.
Therefore, it is best not to use the short-circuit forms in those
cases. Short-circuit Boolean expression in if statements do not
have this problem.

Cray Research, Inc. SR-3082 2.0
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Using pragma
ELABORATE
2.4

Organizing
sublibraries
2.5

Restrict the number of
sublibraries
2.5.1

SR-3082 2.0

It is syntactically possible but semantically incorrect to call an
Ada subprogram before its body is elaborated. The Ada LRM
requires that the PROGRAM_ERROR exception be raised if such a
call is made. As a default, the code generated by the compiler
must contain checks to ensure that called routines have already
been elaborated.

Pragma ELABORATE lets you specify explicit elaboration order
dependencies beyond those consistent with the partial ordering
defined by with clauses. Pragma ELABORATE must immediately
follow the context clause of a compilation unit, before any
subsequent library unit or secondary unit.

Pragma ELABORATE specifies that the body of a given library
unit must be elaborated before a given compilation unit. For
example, using the pocket_calculator example shown in
Cray Ada Environment, Volume 1: Reference Manual,
publication SR-3014, suppose that a subunit, named sqrt
referenced the specification of package trig. In this case, the
directive, pragma ELABORATE (trig, calc.arith), inserted
after the context clause in sqrt would ensure that the
specification of t rig would be elaborated before the body of
sqrt’s parent unit, calc.arith

The elaboration of an executing program observes these explicit
directives in addition to the implicit ordering required by the
compilation unit interdependencies. Calls to routines in a
compilation unit that is mentioned in pragma ELABORATE do not
have to be checked, because the pragma provides the called
routine that has already been elaborated. Therefore, the
compiler omits elaboration checks and produces smaller, faster
code for interunit calls.

The organization of sublibraries is an important part of
managing an Ada system. The following subsections discuss
guidelines for the management of a sublibrary hierarchy.

Compilation proceeds most rapidly when the number of
sublibraries in a library is kept to a minimum. The number of
sublibraries has a minimal effect on compilation speed when the
number is small, but it can become a significant factor when the
number becomes large (more than five).

Cray Research, Inc. 9
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Restrict the number of
units in the library
2.5.2

10

A compilation rate dependence similar to that for sublibraries
but smaller, applies to the number of units in a library.
Therefore, if a library contains a large number of small units, it
may be advantageous to decrease the total number of units
contained in the library.

Therefore, when compiling moderately large systems (100 - 400
compilation units), you should use the following general
methodology to enhance compilation rates:

1. Compile all of the unit specifications for the system into one
sublibrary.

2. Divide the corresponding unit bodies into two or more
groups. This division should be made along functional lines,
although an arbitrary division also works.

3. Construct a library file that contains only three sublibraries:
an empty sublibrary as the working sublibrary, the
sublibrary containing the unit specifications, and the
standard predefined runtime sublibrary.

4. Compile a group of unit bodies into this library.

5. Set aside the working sublibrary containing the compiled
unit bodies.

6. Repeat steps 3 through 5 until all groups of unit bodies have
been compiled.

A this point, you will have one sublibrary containing the
compiled specifications and a series of sublibraries containing all
of the compiled unit bodies. A library specifying this set of
sublibraries may then be used to bind the main program unit
into an executable Ada program.

This method enhances the compilation rate because at any time
the library contains at most three sublibraries, and the working
sublibrary contains only a subset of the compiled bodies. The
unit specifications, which determine the Ada compilation order
dependencies, are contained in one sublibrary so that the bodies
may be compiled in any order.

This method also provides some procedural advantages. Large
systems are typically compiled with some form of compilation
command file. However, a failure in the compilation of one
specification (for example, because of a syntax error) causes

Cray Research, Inc. SR-3082 2.0
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other subsequent units that depend on that unit to fail. Thus,
either complex logic in the command file or close monitoring by
the developer is required to avoid a chain of compilation failures
subsequent to the first compilation failure of a unit specification.

With the preceding method, the need for prompt error detection
exists only for the compilation of the unit specifications. When
the sublibrary containing the unit specifications has been
compiled without error, the subsequert body compilations may
be allowed to proceed with little or no monitoring; any bodies
that fail to compile may have their source code corrected and be
recompiled without affecting any of the other compiled units.

Note

Bodies of compilation units that contain many subunits should
be treated as specifications, that is, monitored for prompt error
detection.

The sublibrary containing the body of a generic unit or the body
of a subprogram designated with pragma INLINE must be
included in the library list when callers or instantiators of the
subprogram are compiled.

The preceding scheme may be unfeasible for developing very
large systems or, if feasible, not optimal because of the large
number of specifications that would have to be held in one
sublibrary. An optimal strategy also depends on the stability of
the interface specifications.

Cray Research, Inc. 11
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Use multiple
sublibraries for unit
testing

2.5.3

12

For very large systems, a four-level hierarchy might be useful; it
should include a separate sublibrary for each of the following:

¢ Predefined runtime library units

¢ Stable interface specifications common to major functional
components

o Specifications local to major functional components

e Bodies for a subgrouping of major functional components

During program development, you may want to try a
modification to the body of an existing compilation unit while
saving the previous version of the unit as a backup. For
example, you may want to experiment with a new algorithm or
insert debugging code. You can accomplish this easily by adding
an empty working sublibrary and compiling the new version of
the unit body into that sublibrary. As long as the test sublibrary
appears in the library file before (above) the sublibrary
containing the previous version, the new unit body will
effectively replace the old one in subsequent binding operations;
the main program must be in the working sublibrary during
binding. Therefore, the main program may have to be
recompiled or copied into the working sublibrary by use of the
acp command.

To return to the previous version, simply remove the test
sublibrary from the library list, or move it lower in the list than

-the sublibrary containing the original version. To replace the

previous version with the new version, use the amv command to
move the new version from the testing sublibrary into the
sublibrary containing the previous version and remove the
testing sublibrary from the library file.

Cray Research, Inc. SR-3082 2.0
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Using input-list
files to compile
2.7

Passing
parameters

efficiently
2.8
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The Cray Ada Environment compression utility recovers disk
space that is lost to internal fragmentation over the course of
many recompilations into a sublibrary. Additionally, it orders
the database elements to promote efficient I/O operations on the
database. Sublibrary compression minimizes library space,
permits faster sublibrary access, and improves compilation
speed. This feature is particularly important to users having
limited disk space, because compressions of more than 50% can
be realized. For more information about this feature and the
command that invokes it, see Cray Ada Environment, Volume 1:
Reference Manual, publication SR-3014.

As mentioned in “Compiling a list of files,” in Cray Ada
Environment, Volume 1: Reference Manual, publication SR-3014,
when you use an input list or name several files to be compiled
on the command line, the files in the list are compiled in one
compiler invocation. This can provide a savings in compilation
time, because the Ada library is opened only once (a relatively
costly operation). In some instances, you may achieve
compilation-time savings of 30% to 50%.

However, when input-list files contain too many entries, they can
slow down the compilation process. This occurs when the
compilation becomes too large to compete successfully for the
memory space. This threshold depends on the memory size of
your Cray Research system and any per-user memory limits set
by the system administrator, the system load, the number of
entries in the input-list file, and the size of each compilation
unit.

For the most efficiency in passing parameters with a CRAY Y-MP
or CRAY X-MP system, the most important (most used)
parameters should be declared first. For the best performance,
users should copy variables defined outside the current
procedure into locally defined variables before heavy use
situations such as loops.

Cray Research, Inc. 13
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System limitations
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Taking the 'address of a variable or parameter restricts it from
being allocated to a register. On CRAY-2 systems, if any of the
parameters are used by variables defined outside the current
procedure into locally defined variables or have their ‘'address
taken, this causes all parameters to be written to the stack. This
can cause a substantial performance degradation.

The Cray Ada compiler was designed to be largely insensitive to
the size of compilation units, in terms of its memory
requirements. Under some circumstances, however, the
compiler takes an exception of STORAGE_ERRCR, indicating
insufficient memory to compile a specific compilation unit. In
most such cases, breaking the compilation unit into smaller
pieces of code should alleviate the problem. For other possible
remedies, see Cray Ada Environment, Volume 1: Reference
Manual, publication SR-3014.

Table 1 shows the Cray Ada compiler’s tested capacities. These
capacities are currently tested values for a CRAY X-MP/416
system; actual limits may be higher or lower, depending on your
hardware configuration.

Cray Research, Inc. SR-3082 2.0
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Table 1. Tested compiler capacities

Category Item Capacity value
Ada source code Length of identifier 200 (or max line width if >80)
Length of labels 200 (or max line width)
Length of qualified identifiers 200 (or max line width)
Length of attributes 200 (or max line width)
Length of strings 4,194,304
Maximum dimensionality of arrays 12
Number of characters per logical line 200
Number of compilation unita 800
Number of distinct declarations 50,000
Number of elaboration pragmas 600
Number of library units 5000
Number of package names in a with clause 16
Number of packages included (using with) in a 600
compilation unit
Number of priorities 64
Number of simultaneously active tasks 1000
Depth of nesting of tasks 128
Compilation unit limits Depth of nesting of blocks 80
Depth of nesting of case statements 128
Depth of nesting of i f statements 128
Depth of nesting of 1cop statements 100
Depth of nesting of subprograms 24 (CRAY Y-MP, CRAY X-MP)
128 (CRAY-2)
Number of 64-bit elements in an array 4,194,304 (CRAY X-MP)
2,147,483,648 (CRAY Y-MP,
CRAY-2)!
Number of attributes 100
Number of declarations 5000
Number of declarations in a block 1000
Number of enumeration values in a type 255
Number of elsif alternatives 256
Number of explicit exceptions 256
Number of identifiers 10000
Number of literals 500
Number of record components 1000
Number of statements and declarations per procedure 32,767
Number of subtypes of a type 1099
100 (CRAY-2)

§ This value is tested for compilation only. Ability to use this size is dependent on your
systems memory.

SR-3082 2.0 Cray Research, Inc. 15




Getting the Most from the Cray Ada Environment

Cray Ada Environment, Volume 2: Programming Guide

Table 1. Tested compiler capacities

(continued)
Category Item Capacity value
Number of type declarations 2000
Number of variant parts 500
Expression limits Depth of parenthesis nesting 25
Number of functions 100
Number of objects 250
Number of operations 250
Subprogram limits Number of declarationa in a subprogram 1000
Number of formal parameters No limit (CRAY Y-MP,
CRAY X-MP)
64 (CRAY-2)
Package limits Number of private declarations/package 1000
Number of visible declarations/package 1000
Task limits Number of accepts 50
Number of delays 25
Number of entries 25
Number of select alternatives 25
Interfacing to To debug foreign language modules at the source code level you
other languages must use cdbx. While you do tlns., however, the Ada program
210 guag can be debugged only at the machine level.
If you use adbg to debug an Ada program at the source-code
level, debugging of foreign language modules with adbg is
available only at the machine level.
16 Cray Research, Inc. SR-3082 2.0
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The following is a list of guidelines for the allocation of arrays:

o If the array is defined in a procedure, it is dynamically
allocated on the stack at runtime.

o If the array is defined by an allocator, it is dynamically defined
on the heap at run time.

o If the array is defined in a package which is then withed, it is
statically allocated at compile time and is part of the total
program field length.

If allocation cannot be done at runtime, a Storage_Error will
be raised.

Cray Research, Inc. 17
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The optimization features include both significant enhancements
to general optimizations and the introduction of general
optimizations such as automatic vectorization and scheduling of
instructions. You can control these features by using the -0 key
option of the ada and aopt commands.

Several optimization options are available through aopt and
through pragmas included in your source code. This section
describes the use of pragmas. For more information on the ada
and aopt commands, see Cray Ada Environment, Volume 1:
Reference Manual, publication SR-3014.

The types of optimizations supported by Cray Ada are as follows:
general optimizations, instruction scheduling, vectorization, and
user-selected optimizations. These optimization types are
described in the following subsections.

Efficient optimizations are very important to Cray Ada because
the language inherently restricts certain types of vectorization
and some movement of instructions. The general optimizations
performed are the following:

e Subprogram inlining

e Common subexpression elimination
¢ Dead code elimination

e Local value propagation

¢ Range calculation and propagation
¢ Constant folding and propagation
e Check elimination

e Subprogram interface optimization
¢ Lifetime minimization

e Tail recursion elimination

¢ Dead store elimination

Cray Research, Inc. 19
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Call graph analysis
optimizations
3.11

Data flow analysis
3.1.2

¢ Induction variable identification
e Copy propagation

The remainder of this subsection describes the specific
optimizations that the optimizer performs. Only the potentially
more significant optimizations are described. Other
optimizations may be performed as appropriate, but they might
not have as significant an impact on the execution efficiency of
some Ada programs.

Call graph analysis optimizations are those based on the
analysis of the call graph for a compilation unit or for a collection
of compilation units. Complete call graph analysis is possible
only when an entire program is optimized as a whole into an
optimized collection. If this is not done, there will be at least
some subprograms in the optimized collection for which no
assumptions can be made regarding their potential callers.
However, these subprograms will be those that belong only to
the external interface of a unit within the collection. For
subprograms that appear in a package body but not in its
specification or for those nested within an other subprogram,
only the calls that the optimizer can see can occur. Full
knowledge of all possible calls can result in significant
optimizations.

The types of optimizations possible from call graph analysis are
inline expansion of subprograms and parameter substitutions.

Although not an optimization itself, data flow analysis is a key
step in the optimization process. It is the foundation from which
many of the subsequent optimizations are derived. The
following are types of data flow analysis:

¢ Local data flow analysis. Local data flow analysis involves
tracing data flow information within basic blocks. A basic
block is a piece of code that has exactly one entry point and
that executes sequentially without halts or branches. A basic
block may have one or more exit paths associated with it.

Cray Research, Inc. SR-3082 2.0
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o Common subexpressions. A common subexpression is a piece
of code that appears more than once and computes the same
value in each instance. At the source-code level for
well-written programs, common subexpressions do not occur
with any significant frequency. In translation of Ada to a
lower-level intermediate representation, however, the compiler
itself generates many instances of common subexpressions.
They arise mainly in connection with address expressions for
array and record accesses. By associating temporary
variables, which are typically registers, with common
subexpressions and replacing subsequent occurrences of the
common subexpression with the temporary variable,
considerable overall code improvement is possible.

o Range analysis. Range analysis is the tracking of the possible
ranges in which expressions and variables are used in a
program. Range analysis is used to substitute a.constant
value in place of an expression that can yield only that
constant value. Range analysis is also used to drive other
optimizations, including elimination of runtime checks and
elimination of dead code.

o Constant folding. Constant folding is the replacing of an
expression that always evaluates to a static literal value with
the resulting literal value.

¢ Runtime check elimination and reduction. Runtime check
elimination occurs when useless or redundant runtime checks
are detected. Ada requires that the compiler insert rather
extensive runtime checks for a variety of purposes if it cannot
determine statically that the checks are redundant. Range
analysis is used to detect runtime checks that can be
eliminated or reduced. A check is reduced by being replaced
with a simpler check. For example, a check to ensure that an
integer variable is within a particular range could be replaced
by a check on only the upper part of the range if it could be
determined that the variable could not underflow the range. If
a runtime check is determined statically to be true, it is
replaced by a raise statement of the appropriate exception.

SR-3082 2.0 Cray Research, Inc. 21
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¢ Dead code elimination. Dead code elimination is the removal

of portions of a subprogram that can never be executed or
whose results will not be used. Range analysis, constant
folding, and value propagation may cause the conditional part
of an IF or CASE statement to evaluate to a constant value or
to a value with a reduced range. This can result in the
elimination of the portion of the IF or CASE statement that
cannot be reached. Assignment to a variable that is not
subsequently used results in the elimination of the source
expression if it has no side effects.

Value propagation. Value propagation is the replacement of a
variable access with the expression that calculates the current
value of the variable, whenever the expression is less
expensive to evaluate than the variable access. A special case
of value propagation is constant propagation, in which the
expression is a literal value.

Lifetime minimization. Lifetime minimization is the
movement of an assignment to a variable as close as possible
to the first use of the variable. Minimizing the span in which
the variable is active can result in improved register
utilization.

Tail recursion elimination. Tail recursion elimination is the
replacement of a recursive call at the end of a subprogram
with a reassignment of parameter values and a jump back to
the start of the subprogram. A tail recursive subprogram call
is the last action performed during the subprogram invocation.
For example, in the following program fragment, the recursive
call on line 6 is tail recursive, but the recursive call on line 8 is
not, because the constant m is added to the function result
before returning from F.

1 function F (I: integer) return integer is
2 Dbegin

3 if I = 0 then

4 return 1;

S elsif I < 10 then

6 return F (I-1);

7 else

8 return m + F (I-1);

9 end if,

10 end F;

Cray Research, Inc. SR-3082 2.0
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Tail recursion elimination can dramatically improve the
running time of certain recursive algorithms by essentially
turning them into iterative algorithms.

¢ Loop invariant code motion. Loop invariant code motion is the
movement of expressions in a loop whose values do not change
during the execution of the loop so that they occur outside of
and before the loop. Loop invariant code motion is one of the
two classic loop optimizations that often result in dramatic
improvements in the running time of programs that make
heavy use of looping constructs. Although user code seldom
exhibits examples of invariant expressions at the source code
level, the compiler often introduces loop invariant expressions
into the lower-level intermediate representation, usually
associated with addressing calculations.

o Induction variable identification. Induction variables are
variables that change by a constant value on each iteration
through a loop or are equal to a linear combination of other
induction variables. After induction variables are detected,
their usage can often be optimized (and sometimes entirely
removed) by the replacement of expressions involving them
with simpler expressions that calculate the same value (called
strength reduction). In the following example, 1oopl can be
replaced by 1oop2, which involves less costly arithmetic

operations:

i:=1;

loopl: while i < 10 loop
j =1 * 5;

aljl := bl3];
i :=1 + 1;

end loop:;
j o= 5;
loop2: while j < 50 loop
alj] := blj]
j =3 + 5;
end loop;

o Dead store elimination. Dead store elimination is the removal
of assignments to variables that are never used after they are

assigned.

Cray Research, Inc.
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Inlining code
3.1.3

Instruction

scheduling
3.2
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o Copy propagation. Copy propagation is the elimination of copy
statements in a program. Copy statements are statements of
the form A := B. The copy is propagated by the replacement
of subsequent uses of A by B. Copy propagation also works on
statements of the form
A := <literal value>.

The inlining of subroutines can greatly decrease the overhead
associated with making subroutine and function calls.

Whenever possible, calls to subprograms are inlined
automatically or when such calls are flagged with pragma
INLINE. In addition, any calls to noninterface subprograms that
are called from only one place are inlined. Finally, calls to
subprograms having bodies small enough that the inlining is
cheaper in code space than the corresponding call are inlined.
The inlining of subprograms <alled from only one place can be
suppressed to preserve a simple mapping between source
subprograms and object code.

Small subprograms fall into two categories, depending on
whether or not they belong to the external interface of the unit
in which they appear. If a small subprogram does not belong to
the external interface of the optimized unit, a body is not
generated for it, and all calls to it are inlined.

When a small subprogram belongs to the external interface of
the optimized unit, a body is generated for it to support external
calls. However, calls within the unit are inlined. Even when the
subprogram is part of the external interface of a unit, if that unit
is a hidden unit within a collection, generation of the body is
suppressed.

Cray Ada includes an instruction scheduler, which reorders
generated instructions such that they execute faster on Cray
Research hardware than they would have otherwise. Because
Cray Research hardware can perform program execution in
parallel both across and within functional units (pipelining),
instruction scheduling can significantly increase the speed at
which programs execute.

Cray Research, Inc. SR~3082 2.0
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Additionally, movement of load instructions to minimize wait
times due to the speed of memory access relative to other CPU
operations can provide substantial gains in performance,
particularly in CRAY-2 systems. On CRAY Y-MP and CRAY X-MP
systems, further improvements in performance may be realized
by the chaining of vector operations.

Vectorization is the process of changing a loop to an equivalent
form which operates on several iterations of the loop in parallel.
This is made possible by special hardware support on Cray
Research systems computers, and is the largest single execution
performance improvement of any optimization available.

Cray Ada does not have a mechanism for directly expressing
vector operations, so the compiler is capable of automatically
transforming sections of code from scalar to equivalent vector
operations. The following three primary criteria are used in
determining whether a construct will vectorize:

e The vectorized code meets the requirements for generated Ada
code described in the Ada Language Reference Manual (LRM).

o The vectorized program produces the same results as does the
scalar version.

e The optimization cost when weighted against the performance
improvements shows the vector support to be important.

The Cray Ada compiler has a mechanism for providing detailed
information about vectorization opportunities in compiled code.
This feature is available through the -T option on the ada
command line. Cray Ada also supports a system-dependent
pragma, VECTORIZE_LOOP, which allows for user control of
vectorization. For more information on this pragma, see Cray
Ada Environment, Volume 1: Reference Manual, publication
SR-3014.
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For your reference, the following terms are used in this
subsection:

o An induction variable is a variable that is incremented or
decremented with each iteration of a loop. The increment or
decrement may be accomplished by +, -, or *. Division is not
supported. Operations of the form : J := 10 - J; arenot
legal for induction variables because of the switching of the
sign of J from iteration to iteration of a loop.

o A dependence is an ordering relationship between operators
that describes the order in which the operation must execute
to get the correct results. Vectorization must preserve this
ordering.

e A recurrence is a situation in which two or more operations are
in dependence with one another. (They depend on one another
for the results of their respective operations.) The
vectorization of recurrences can occur only under special
conditions.

e A vector array reference is the usage of an array with a
subscript that is variant in the loop. Examples of such
subscripts are induction variables or linear functions of
induction variables.

¢ An invariant is an object or constant that is used but not
defined in the loop.

e A scalar temporary is a variable defined in the loop and later
referenced in the loop.

The discussion in the following subsections defines vectorization
as it applies to Cray Ada release 2.0. Ada constructs that form
vectorizable code sequences and those that inhibit vectorization
are defined. The concepts and terms of vectorization are defined.
Examples of Ada code are used throughout to illustrate and
explain. At points, individual statements are labeled with si, in
which i is a digit for the purpose of identifying particular
statements for later discussion.

An understanding of vectorization includes not only the forms of
Cray Ada code that may vectorize but underlying concepts as
well. The following subsections are an introduction to those
concepts.

Cray Research, Inc. SR-3082 2.0
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An induction variable is a variable defined in a loop as a
function of the loop index variable and the loop’s iterations. For
example, k, j, and 1 are induction variables:

FOR i IN 1..100 LOOP
k :=1 + 2;
j = j + 1;
l:=k *1;

END LOOP;

k is defined in terms of i, j is defined by the loop iterations, and
1 is derived from k.

j in this example is a special case of an induction variable called
a constant increment integer (CII). These are variables that are
defined solely as an incr.ment or decrement of themselves and
as constant values.

To allow vectorization to occur, certain restrictions are imposed
upon the assignments and uses of induction variables.

Whenever an induction variable is defined in the loop before it is
used, vectorization can occur.

Example:

FOR i IN 1..100 LOOP

j o= 3 + 2;

a(j) := b(i) * 10;

k :=1 * 2;

c(k) := b(3) * 20;
END LOOP;

The range of values for j and k can be determined as a function
of the loop index variable i, and their definitions and uses can
be vectorized.

However, when an induction variable such as k is used before it
is defined (swap the third and fourth statements shown
previously), the loop is not vectorizable. The first iteration of the
loop would have to be executed separately to account for the
initial value of k.
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Data dependence
33.12

Dependence types
3.3.13

Flow dependence
3.3.13.1
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For CII variables such as j, vectorization will occur regardless of
whether they are used before they are defined.

Other restrictions are the following:

e Induction variables must be integers.
¢ A CII can be self-incrementing or self-decrementing with + and

The CII variable must be on the left-hand side of a subtraction
sign. For example, the following is not a valid CII.
j := 10 - 3;
¢ Induction variables cannot be assigned to an IF or a CASE
construct.

Data dependence is an ordering relationship between two
statements that use or produce the same data. This ordering
must be preserved in order to generate the same results. The
analysis of data dependence determines whether the statements
can be vectorized without violating this ordering.

This section first describes the various types of dependence
relationships between two statements. Following thisisa
discussion of the ways these relationships affect the
vectorization of a given loop.

The types of dependence are flow dependence, antidependence,
output dependence, and unknown dependence. These
dependence types describe the relationship between two
statements and a single variable (scalar or array reference), and
how that relationship affects the execution of the loop.

Statement s2 is flow dependent on statement s1 if an execution
path exists from s1 to s2 and the same variable (scalar or array
element) is assigned in statement s1 and used in statement s2.

Example 1:
FOR i IN 1..100 LOOP
sl: af(i) := b(i) * 5;
s2: c(i) := a(i) + 3;
END LOOP;

Cray Research, Inc. SR-3082 2.0
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In this example, s2 is flow dependent on statement s1. The
order of these two statements must be preserved so that the
value of a (i) is produced before it is used. Vectorization of this
loop does not violate this ordering.

Table 2, is a work tableau showing the execution of the iterations
of this loop. The columns indicate the loop iterations as the loop
index variable increases, and the rows show the iterations in
which the statements indicated define or use a value. Each
arrow points from a statement that defines a value to a
statement that uses that value.

Table 2. Example 1 work tableau

i=1 i=2 i=3 ...1=100
sl sl sl .. 81
' ! ! !
s2 s2 s2 .. S2

The vertical arrows indicate that the value computed in the
given iteration of the loop is used by s2 in the same iteration.
This is true in Example 2.

Example 2:

FOR i IN 1..100 LOOP
sl: a(i) := b(i) * 5;
s2: b(i+l) := c(i) + 3;

END LOOP;

In example 2, s1 is flow-dependent on s2 across an iteration of
the loop. The value of b (i+1)must be computed in each
iteration before it is used in the next iteration. Therefore, this
loop cannot be vectorized as it is written. A transformation
called statement reordering can be performed to switch the order
of the statements and allow vectorization to occur. This
transformation can automatically be done by vectorization.

The work tableau in Table 3 shows why the loop does not have
independent iterations.
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Table 3. Example 2 work tableau

i=1 i=2 i=3 ..1=100

sl

sl sl sl
s2 / s2 / s2 / . S2

The diagonal arrows show that a cross-iteration dependence
exists because the values set by s2 are not used until the next
iteration. For cases such as this, a compiler automatically
reorders statements sl and s2, resulting in the following
tableau in Table 4.

Table 4. Example 2 reordered work tableau

i=1 i=2 i=3 ..1=100

s2 s2 s2 v 82
\
sl \ sl \ sl e 81

Although the cross-iteration dependence still exists from s2 to
s1, the loop is now vectorizable because all of the computations
for b performed in iterations 1 through 100 will be done before
(hence, the downward direction of the arrows) those values of b
are used in statement s1.

Anti dependence Statement s2 is anti dependent on statement s1 if an execution
33.1.32 path exists from s1 to s2 and if the same variable (scalar or
array element) is used by s1 and assigned by s2.

Example 3:
FOR 1 IN 1..100 LOOP
sl: a(i) := b(i) * 5;

s2: b(i) c(i) + 3;
END LOOP;
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Output dependence
33.133
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In example 3, s2 is anti dependent on s1. The order of these two
statements must be preserved so that the value of b (i) is used
before it is redefined. Vectorization does not violate this
ordering. This loop has the same execution tableau as does
Table 2, page 29.

Example 4:
FOR i In 1..100 LOOP
sl: a(i) := 5;
s2: b(i) := a(i+l) + 3;
END LOOP;

Example 4 shows that s1 is antidependent on s2 across the
iterations of the loop. The loop can be vectorized only if the
statements are reordered in a way similar to that as in Example
2 and Table 3, page 30 and Table 4, page 30. The statement
reordering can be done automatically here as well.

Statement s2 is output dependent on statement sl if an
execution path exists from s1 to s2 and if the same variable
(scalar or array element) is assigned in both statements.

Example 5:

FOR i In 1..100 LOOP
sl: b(i) := 5
s2: b(i) := a
END LOOP;

(i+1) + 3;

In example 5, s2 is output dependent on s1. That is, the value
computed for b (i) in sl is recomputed (overwritten) in s2. This
type of dependence has the same properties as flow and
antidependence in terms of cross-iteration dependencies and
statement reordering.
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Unknown dependence
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Recurrence
3.3.1.35
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Sometimes the dependence relationship between statements
cannot be determined. This can happen in cases such as the

following:
¢ A subscript is subscripted (indirect addressing).
¢ The subscript does not contain the loop variable.

¢ A variable appears more than once with subscripts having
different coefficients of the loop variable.

¢ The subscript is nonlinear with respect to the loop variable.

When one of these cases occurs, the compiler assumes that a
dependence exists and will not vectorize the loop. However, if
you know the code well enough to know that a dependence
cannot exist, inserting a pragma VECTORIZE_LOOP will allow
vectorization to occur.

Recurrences are the result of data dependence cycles between
statements and variables in the loop. This occurs when one or
more statements are in dependence with each other. For

example:
Example 6:
FOR i In 1..100 LOOP
sl: a(i) := b(i-1) * 5;
s2: b(i) := a(i) + 3;
END LOOP;

In example 6, s2 depends on s1 for a(i), and s1 depends on s2
for b(i). This loop is not vectorizable because s1 uses values of
b calculated on previous iterations of the loop. The execution
tableau for the loop with respect to b is the same as that in
Table 3, page 30, and Table 4, page 30, showed that statement
reordering could remove this dependence. However, that is not
the case here, because there is also the dependence from s1 to
s2 for a (i). This dependence prohibits reordering because
doing so would cause incorrect values of a (i) to be used in s2.
This is called a multistatement recurrence or cycle.

Another type of recurrence involves a single statement and one
variable.
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Example 7:

FOR i IN 1..100 LOOP
sl: af{i + 1) := a(i) *5;
END LOOP;

Here, there are two dependencies: an antidependence from a (i)
toa(i + 1) in the same iteration of the loop, and from

a(i + 1) toa(i) across an iteration of the loop. This is called
a single-statement recurrence and is not vectorizable.

Recurrences also occur for scalar variables.
Example 8:

FOR i IN 1..100 LOOP
sl: a(i) := b(i) * x;
s2: x:= a(i) * 10;

END LOOP;

Example 8 has the same properties as that of example 6, with
the cross-iteration dependence of s1 on s2 with x. This loop is
not vectorizable. A situation similar to that in example 7 occurs
with scalars for a single statement recurrence. For example:

Example 9:

FOR i IN 1..100 LOOP
sl: x := x * a(i);
END LOOP;

The same dependencies exist in example 8 as in example 7 with
respect to x. There is a difference in example 9, however,
because this is actually a vectorizable reduction.

Certain recurrences involving array references are vectorized by
the Cray Ada compiler.

Example 10:

FOR i IN 1..100 LOOP
sl: a(i +10) := a(i) * b(i);
END LOOP;

The recurrence in example 10 begins on the eleventh iteration
and every iteration subsequent to that. The eleventh iteration is
when the value of a (i) will be that which was computed on the
first iteration. The first ten iterations are vectorizable, however,
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Vectorizations
performed by Cray Ada
3.3.2

Vectorization loop forms
3321

Loop exiting
3321.1

FOR loops
33.212

because values computed there are not used on subsequent
iterations up to the eleventh. This sort of partial vectorization
occurs for recurrences whenever at least three iterations are
proven to be independent.

The Cray Ada 2.0 compiler performs a subset of the possible
vectorizations. The following is a list of the kinds of Ada
constructs that the Cray Ada vectorizer supports. These are
explained further in the following subsections.

e FOR, while and loop loops

¢ Float, integer, Boolean, and enumerated types and subtypes
o Single and multidimensional arrays

e Most Ada cperators

¢ Reduction operations

o Single-level IF statements within loops

¢ Single-level CASE statements within loops

¢ Sequence operations

Loops that vectorize must be of suitable form. The rules for
constructing loops with these forms and examples are defined in
the following subsections.

Vectorizable loops may not be exited by any method other than
those described in the following subsections. Loops with
multiple exits are not vectorized with the Cray Ada 2.0 compiler.

FOR loops with either forward or reverse directions are
supported. The loop parameter or index of a FOR loop is
restricted for enumerated types.

The discrete range of the loop parameter must not be
discontinuous. For Cray Ada 2.0, the enumerated type is
restricted from being defined by an enumeration representation
clause.
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Example:

Type Codes IS (A, B, C, D, E, F);
FOR Codes USE

(A =>1, B =>5,C=> 6, D=8, E=>9, F=>10);
FOR Code IN Codes LOOP

End Loop

In this example, Code would successively take on the values 1, 5,
6, 8,9, and 10. Values 2 through 4 and 7 would be unused. The

gaps in the range cause the loop to be not vectorized.

A : array (INTEGER range 1 .. 100) of float:;
B : array (INTEGER range 1 .. 50) of float;
I, J : Integer;
Inc : Integer;

For I in 1 .. 50 loop -—Forward step
A(I) := B(I);
End Loop;

For I in Reverse 1 .. 50 loop —Reverse step
A(I) := B(I);
End Loop;

Both fixed and variable increment loops vectorize. The form of

the while condition is restricted to the following forms:
<expression> <test> <index variable>

<index variable> <test> <expression>

The <expression> must be loop invariant. The <test> may be any

relational operator.

The loop increment must be the last statement in the loop and

one of the following:

Cray Research, Inc.
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<index variable> : = <index variable> + <increment
expression>

<index variable> := <index variable> — <increment expression>

The <increment expression> must be loop invariant. The <index
variable> must be invariant within the loop.

The following are examples of vectorizable while loops:

100) of float:;
50) of float;

A : array (INTEGER range 1 ..
B : array (INTEGER range 1 ..
I, J : Integer:
Inc : Integer;

While I > 10 loop

A(I) := B(I):
I :=1- 2; —Fixed increment WHILE loop
end loop;

While J <= 50 loop

A(J) := B(J);
J := J + Inc; —Variableincrement wHILE loop
end loop;

Both fixed and variable increment loops vectorize. The following
are loop form requirements.

The loop index increment or decrement statement must either
precede directly or follow the exit statement.

Only one exit may be present in the loop. The exit must be
either the last statement in the loop or the next-to-last
statement followed by the increment or decrement of the loop
index. The exit statement must be in one of the following two
forms:

IF <expression> THEN
EXIT
END IF;

EXIT WHEN <expression>;
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The form of the 1oop condition 1s restricted to the following:
<expression> <test> <index variable>
<index variable> <test> <expression>

The following are 1oop loop examples:

I := 40;
LOOP

A(I) := B(I);

I := I-3;

EXIT WHEN I <= 0;
END LOOP;

J := 2;

LOOP
A{J) := B(J)
J :=J + Inc;
IF J > 20 THEN

EXIT;

END IF;

END LOOP;

A loop that has one of the allowable vectorizable forms may
vectorize if the contents of the loop are themselves vectorizable.
The vectorizable Ada statement patterns for Cray Ada 2.0 are
defined in this section.

Simple single-level 1£/Then/Elsif/Else constructs will
vectorize if the construct is within a vectorizable loop structure.
In the following example, there are no dependencies in the use
and assignments, so the if statement will vectorize:
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A : array (INTEGER range 1 .. 100) of float;
B : array (INTEGER range 1 .. 100) of float;

For I in 1l .. 100 loop
If A(I) > 0.0 then
A(I) := A(I) / B(I);
Elsif A(I) < 0.0 then
A(I) := A(I) - 1;

Else
A(I) := -1.0;
End if;
End loop;
CASE statement Simple single-level CASE statement will vectorize if the
3.3.2.22 statement is within a vectorizable loop structure. In the

following example, there are no dependencies in the use and
assignments, so the CASE statement will vectorize:

A : array (INTEGER range 1 .. 100) of float;
B : array (INTEGER range 1 .. 100) of float:
C : array (INTEGER range 1 .. 100) of float;

For I in 3 .. 63 loop

Case I is
When 6 =>
A(I) := B(I):
When 8 =>;

A(I) := 12*B(1):
When Others =>
A(I) := C(I);

End Case;
End loop;
EXIT statement The EXIT statement may occur only as previously discussed for
3.3.223 the allowable loop forms.
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Reductions are a special class of computations that reduce an
array of values to a single scalar result. These computations can
be vectorized under certain conditions.

The following are examples of vectorizable reductions:

Example 1:
FOR i IN 1..100 LOOP
sl: x:=x + a(i);
s2: y:= (b(i) * d(i)) *y;
s3: z:= 2z - c(i);
s4: x1 := x1 / e(i);
END LOOP;

Arithmetic reduction operations involving integer and
floating-point addition, subtraction, multiplication, and
floating-point division are all vectorizable. For subtraction and
division, however, the scalar reduction variable must be on the
left-hand side of the - or /.

For example, the following will not be vectorized. In addition,
reductions are only supported for floating-point data types.

Example 2:

FOR i IN 1..100 LOOP
sl: x := a(i) - x;
s2: y := b(i) / v;
END LOOP;

The reduction variable must be a scalar variable or an invariant
array reference such as an array with a constant subscript, as in
the following:

FOR sl: a(l) := a(l) * b(i);
s2: a(c) := a{c) + b(i); —-cisaconstant
END LOCOP;

The expression from which the result is reduced can be
arbitrarily complex.
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Expression elements
3.3.23
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The base types of vectorization reductions are integer, float, and
Boolean. Examples of Boolean reductions are the following:

For i IN 1..100 LoOOP
sl: X:= x AND Bool_A(i)
s2: y:=y OR (Bool_A(i) AND Bool_B(i);
s3: z:=z XOR Bool_B(i);

END LOOP;

Reductions involving searches for the minimum or maximum
value of an array are vectorizable as well, as shown in the
following examples:

FOR i IN 1..100 LOOP
IF s < a(i) THEN
s := a(i);
END IF;
END LOOP;

FOR i IN 1..100 LOOP
IF t > a(i) THEN
t := a(i);
END IF;
END LOOP

The first loop represents a max reduction and the second loop is
a min reduction where, at the end of the loop, the scalar variable
will contain the maximum or minimum value of the array.

Min/Max reductions can be vectorized only when the data types
are integer or float, and when the IF statement contains no
other code besides the reduction assignment statement. The
reduction variable can be an invariant array reference as with
other reductions.

Some of the allowable elements of expressions that may appear
in vectorizable Cray Ada constructs are described in the
following subsections.
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The closer the compiler comes to knowing the range of values an
object may take on, the better the possibility of vectorization.
This is particularly true in index expressions. The following is
an example:

FOR Index In 1..100 LOOP

Offset := Offset + 1;

A(Index) := B(2*Index + 3*Offset - 2);
END LOOP;

All of the logical, relational and binary adding operators are
supported, with the exception of &. The highest-precedence
operators are supported as well.

Gather/scatter operations are those involving nonstep-wise
access to an array. These operations are supported as long as
overlap can not be found in the array references. For example,
the following loop will automatically vectorize because there are
no dependencies:

A : array (INTEGER range 1 .. 100) of float;
B : array (INTEGER range 1 .. 100) of float;
C : array (INTEGER range 1 .. 100) of float;
D : array (INTEGER range 1 .. 100) of float;
For I in 1 .. 100 loop

A(I) := B(D(I)); —Gather

C(D(I)) := B(I); —Scatter
END LOOP;
For I in 1l .. 100 loop

A(I) := B(I**4); —Gather

C(I/2) := B(I); —Scatter
End Loop:

If the compiler cannot prove that no dependency exists, it will
not vectorize the loop. In these cases, if you are certain that no
dependency exists, pragma VECTORIZE_LOOP can be used
immediately before the loop to attempt to force vectorization.
See page 65 for more information on pragma VECTORIZE_LOOP.
An example in which this pragma is required for the loop to
vectorize is the following:
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A : array (INTEGER range 1 .. 100) of float;
B : array (INTEGER range 1 .. 100) of integer;
C : array (INTEGER range 1 .. 100) of integer;

Pragma VECTORIZE_LOOP(on);
For I in 1 .. 100 loop

A(B(I)) := A(C(I); —This will vectorize because of
End Loop; —VECTORIZE_LOOP Pragma

The VECTORIZE_LOOP pragma affects only the loop immediately

following it.
Vectorizable scalar types Most objects defined as Ada types integer, float, Boolean, and
3.3.24 character are allowable for vectorization. Variables defined as

an enumerated type are also vectorizable.

Vectorizable array types Arrays whose components are of a vectorizable scalar type can
3.3.25 be vectorized.

Vectorizable record types Records, discriminated or not, whose referenced components are
3.3.2.6 of a vectorizable scalar or array type are vectorizable. However,

only the final record referenced in a given record component
qualification may be discriminated.
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Example:

TYPE Ar IS ARRAY (1..100) OF FLOAT
TYPE R1 (S : Boolean := True) IS
RECORD
CASE S IS
WHEN True =>
A : Ar;
WHEN False =>
B : Integer;
END CASE;
END RECORD
TYPE R2 IS
RECCORD
C : Ar;
D : R1;
END RECORD
V1l : R1;
V2 : R2;

FOR I In 1..100 LOOP
V1.A(I) := V2.D.A(I);
END LOOP;

As a general rule, subprogram calls in loop bodies inhibit
vectorization. However, certain of the subprograms described in
“Library Interface,” page 119, are available in vector versions,
and thus, loops containing calls to these routines can still be
vectorized as long as no other vectorization inhibitors are
present.

Vectorizable functions are the following:
¢ Trigonometric functions, which include the following:
Sin, Cos, Tan, Cot, Asin, Acos, Atan, Atan2

o Hyperbolic trigonometric functions, which include the
following:

Sinh, Cosh, Tanh

Cr<y Research, Inc. 43




Optimization and Vectorization

Cray Ada Environment, Volume 2: Programming Guide

Constructs that do not
vectorize
3.33

- String variables,
constants, ecnd cperations
3331

o Logarithmic functions, which include the following:
Log, Logl0, **, Exp, Sqrt

e Boolean array routines, which include the following:
Leadz, popcnt, Shiftl, Shiftr

¢ Miscellaneous arithmetic functions, which include the
following:

Sign, Trunc, Ranf

The vector versions of these routines yield the same results as do
the scalar versions, except that under certain circumstances, the
vector version of Ranf may produce pseudo-random numbers in
a different order than would the scalar Ranf. Programs that
might be sensitive to this should be written and compiled in such
a way that they always use the same version of Ranf (scalar or
vector).

The following subsections describe Ada language constructs that
inhibit vectorization. This is not an inclusive list, but it provides
guidelines to assist you in writing vectorizable code. The best
way to determine whether a specific structure will vectorize is to
compile the source code, using list options that provide details on
the constructs that vectorized.

The subsections contain information on the construsts that will
probably always inhibit vectorization along with those
constructs that could, in theory, be vectorized but are not in Cray
Ada 2.0. For many of the constructs that can be theoretically
vectorized, information is provided to guide users in revising
their code to allow vectorization with Cray Ada 2.0.

Using pragma Vectorize_Loop has no effect on most loops
described here. This pragma can be used to tell the compiler
only that potential dependencies are not true dependencies.

Using strings in any context inside a loop will inhibit
vectorization. For example, the following will not vectorize:
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S : String(l..10);

FOR I IN 1..10 LOOP

S(I) := '0’'; —This will not vectorize
END LOOP;
Fixed-point variables, Loops containing fixed-point variables, constants, or operations
constants, and operations inhibit vectorization.
3.3.3.2
Example:
TYPE F IS DELTA .01 RANGE .0 .. 1.0;
A, B : ARRAY(1l..10) OF F;
FOR I IN 1..10 LOOP
A(I) := A(I) + B(I);
END LOOP;
On Cray Research systems, fixed-point arithmetic is always
much slower than either integer or floating-point arithmetic.
Converting fixed-point types to floating-point subtypes makes
vectorization possible. This is true for only multiplication and
division, and a loss of accuracy will result.
Access type variables, Loops containing access-type variables, constants, or operations
constants, and operations inhibit vectorization.
3333
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Example:

TYPE ACC IS ACCESS INTEGER;
A, B: ARRAY (1 ...100) OF ACC;

FOR I IN 1...100 LOOP

A(I) := B(I);

END LOOP;
Array types with Arrays with components of types record, array, or
nonvectorizable nonvectorizable data types are not vectorizable.
components
3.3.34
Record types with Records whose referenced components are not of a vectorizable
nonvectorizable data type can not be vectorized. Record references whose
components qualification path includes more than one discriminated record,
3.3.35 or that contain a discriminated record that is not the final record

referenced in the path, are not vectorizable.
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Example:

TYPE RO (RO_Kind : INTEGER) IS
RECORD
a0 : INTEGER;
CASE Kind
WHEN 1 =>
al : Array_Typel;
WHEN 2 =>
a2 : Array_Type2;
WHEN OTHERS =>
NULL;
END CASE;
END RECOCRD;

TYPE R1 (R1_Kind : INTEGER) IS
RECORD
CASE Kind
WHEN 1 =>
a : RO(RO_Kind => 1);
WHEN 2 =>
b : RO(RO_Kind => 2);
WHEN OTHERS =>
NULL;
END CASE;
END RECORD;

TYPE R2 IS
RECORD
¢ : INTEGER;
d : RO (Kind => 1);

END RECORD;
vl : R1(Kind => 2);
v2 : R2;

..............

FOR in IN 1..100 LOOP
v2.d.a.al{i) := vl.b.a2(i);
END LOOP;

The previous loop is not vectorizable because there are two
discriminated records referenced in the qualification path (d.a
and v1.b).
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Another limitation in the vectorization of records involves
multiple unconstrained or dynamically allocated components in
a single record. This includes combinations of unconstrained
arrays and discriminated record components whose sizes cannot
be determined at compilation. Whenever a record component

that follows an indeterminably-sized component in the

record-type specification is referenced, vectorization of that

reference cannot occur.

Example:

PROCEDURE Example (Size : IN INTEGER) IS

TYPE Array_Typel IS ARRAY (INTEGER RANGE<>) OF INTEGER;

TYPE RO (RO_Kind : INTEGER ) IS
RECORD
a0 : INTEGER;
CASE Kind
WHEN 1 =>
al : Array_Typel(l..Size):
WHEN 2 =>
a2 : Array_Typel(l..Size);
WHEN OTHERS =>
NULL;
END CASE;
END RECORD;

TYPE Rl IS
RECORD
b0 : INTEGER
bl : RO (R0_Kind => 1);
b2 : ARRAY (1..100) OF INTEGER;
END RECORD;

TYPE R2 IS
RECORD
¢c0 : INTEGER
¢l : Array_Typel(l..Size)
c2 : RO (Kind => 1):
END RECORD;

........
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References to components b2 of record R1 and c2 of record R2
will not be vectorized because the size of components b1 and c1,
respectively, are not known at compile time. However,
references to components b0 and bl, and c0 and c1 are
vectorizable.

The use of pragma PACK or explicit packing of data by
representation specifications inhibits the vectorization of any
object of that type. The example that follows will not vectorize:

SUBTYPE Byte IS Integer RANGE 0..255;
TYPE Byte_Array IS ARRAY (l1..8) OF Byte;
PRAGMA Pack(Byte_Array):;

Byte_Obj: Byte_Array;

FOR I IN 1..8 LOOP
Byte_Obj{I) := Byte_Obj(I) MOD 4;
END LOOP;

Procedure and function calls that are not inlined inhibit
vectorization. The only exceptions to this are most Cray
Research vectorizable library interface routines and most
predefined Ada attribute functions that are fully vectorizable.
The vectorization inhibitors include the following:

o Explicit function or procedure calls that are not inlined
¢ Ada tasking operations

e Ada /O package routines

¢ Ada allocators

e Some Ada attributes

e Operations on some composite types

Examples of each of these vectorization inhibitors follow.

The following example will not vectorize because of the
procedure call.

Procedure Procl is used in the following:
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SUBTYPE Ar_Index IS Positive RANGE 1..65;
SUBTYPE Ar_Value IS Ar_Index RANGE 1..64;
TYPE Ar IS ARRAY (Ar_Index) OF Positive;
A : Ar;

PROCEDURE Proc2(I: IN Ar_Value) IS

B :Ar;
BEGIN
FOR IndexZ2 IN 1..I LOOP
B(Index2) := B(Index2 + 1);
END LOOP;
END Proc2;

PROCEDURE Proc3(I : IN Ar_Value) IS
BEGIN

A(I) := A(I + 1);
END Proc3;

BEGIN
FOR Indexl IN 1..63 LOOP
Proc2 (Indexl);
END LOOP;
FOR Indexl IN 1..63 LOOP
Proc3 (Indexl) ;
END LOOP;
Proc2 (22);
END Procl;

The first loop in Procl will not vectorize because of the presence
of the call to Proc2 within the loop. The body of Proc2 contains
a loop that will vectorize. The second loop in Procl vectorizes
because of the automatic inlining of the call to Proc3. Finally,
the call to Proc2 at the end of Prccl has no effect on
vectorization other than the prohibiting of the inlining of Proc2
in the first loop in Procl. This is true unless an explicit request
was made on the command line to inline procedures or unless a
pragma INLINE is used.

Ada tasking operations that appear in the body of a loop result

in procedure and/or function calls. The appearance of such calls
inhibits vectorization.
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Ada allocators
3.3.3.74

Ada attributes
3.3.3.75

The use of allocators in a loop inhibits vectorization because they
result in procedure and/or function calls to runtime support
routines.

Example:

I_Acc : ACCESS Integer;
A : array (INTEGER range 1 .. 100) of integer:;

FOR I IN 2..12 LOOP
I_Acc := NEW Integer;

A(I) := I_Acc.All;
END LOOP;

Using some attributes results in the calling of procedures and/or
functions. These calls inhibit vectorization. Attributes that are
functions are defined as such in Appendix A of the Ada
Language Reference Manual (LRM).

Example:
TYPE Codes IS (A,B,C,D,E,F):
FOR Codes USE (A=> 1,B=> 5,C=> 6,D=> 320,E=> 321,F=>322);

52

I : Integer;
S : Codes;
A : array (INTEGER range 1 .. 100) of integer:;

FOR J IN 2..100 LOOP

S := Integer'’'Pred(I); —Thisattributzisa function
A(J) := 0;
END LOOP;
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Ada allocators The use of allocators in a loop inhibits vectorization because they
3.3.3.74 result in procedure and/or function calls to runtime support
routines.
Example:

I_Acc : ACCESS Integer:
A : array (INTEGER range 1 .. 100) of integer;

FOR I IN 2..12 LOOP
I_Acc := NEW Integer;

A(I) := I_Acc.All;
END LOOP;
Ada attributes Using some attributes results in the calling of procedures and/or
3.3.3.7.5 functions. These calls inhibit vectorization. Attributes that are

functions are defined as such in Appendix A of the LRM.

Example:

TYPE Codes IS (A,B,C,D

JE,F):
FOR Codes USE (A=> 1,B=> 5

C=> 6,D=> 320,E=> 321,F=>322);

’

I : Integer;
S : Codes;
A : array (INTEGER range 1 .. 100) of integer;

FOR J IN 2..100 LOOP

S := Integer'Pred(I); —Thisattributeisa function
A(J) := 0;
END LOOP;

Most attribute usages do not result in calls to procedures or
functions. Cases that result in calls are described in the
remainder of this subsection.
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Most attribute usages do not result in calls to procedures or
functions. Cases that result in calls are described in the
remainder of this subsection.

o The following is a type attribute and its description:

Attribute
Size

Description

Involves a function call in the case of
objects with a nonstatic discriminated
record suhtype having at least two
discriminants or having a single
discriminant with a very large or nonstatic
range.

¢ The following are discrete type attributes and their

descriptions:
Attribute
Image

Value

Pos, Pred and
Succ

Width

Extended
attributes

Description
A string returning function.

A function complementary to IMAGE, with
a string parameter.

These attributes are implemented by
function calls only when applied to an
enumeration type with an enumeration
representation clause and when the
enumeration codes span a range of more
than 256 values. Pos is used implicitly in
places such as FOR loops and array
indexing.

Always implemented with a function call.

Which include the following:
EXTENDED_IMAGE, EXTENDED_VALUE,
EXTENDED_DIGITS, EXTENDED_FORE,
and EXTENDED_AFT are always
implemented with function calls.

o The following are task attributes and their descriptions:

Attribute

Caliable,

count, and
terminated

Description

These three attributes are implemented as
calls to functions.

Cray Research, Inc.
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Exceptions raised within

o The following are fixed-point attributes and their description:

Attribute Description

Fore, These attributes are implemented as
mantissa, and function calls only when applied to a
large nonstatic fixed-point subtype.

Any loop in which exceptions may be raised, whether predefined

loops by Ada implementation defined, or user defined, inhibits
3.3.3.8 vectorization.
Example:
A : array (INTEGER range 1 .. 100) of integer;

B : Integer;

Raise ZERO_VAL; —User-defined exception inhibits vectorization

For I in 1 .. 100 loop
If A(I) = 0 then
else

A(I) := B / A(I);
end if;

end loop;

Pragma SUPPRESS or pragma SUPPRESS_ALL may be used to
suppress all exceptions not explicitly raised by a RAISE
statement and allow for constructs with predefined exceptions to
vectorize.

With optimization enabled, the compiler attempts to remove as
many of the predefined exception checks as it determines it is
safe to do. However, it cannot generally remove all the checks
from the loop. To ensure that automatic checks are not included
in the loop, use pragma SUPPRESS or pragma SUPPRESS_ALL
inside your code. Alternatively, the Ada command-line option -i
can be used to suppress runtime checks. A loop will not be
vectorized if any checks exist in the loop.
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Example:

A : array (INTEGER range 1 .. 100) of integer;

FOR I IN 2..100 LOOP

A(I) := A(I - 1); —Vectorization inhibited
END LOOP;

You could rewrite the preceding loop so that it would vectorize,
as follows:

A : array (INTEGER range 1 .. 100) of integer;
K : Integer;

K := A(1);
FOR I IN 2..100 LOOP

A(I) := K; —Vectorization allowed
END LOOP;

The following loop cannot be rewritten to support vectorization:

A : array (INTEGER range 1 .. 100) of integer;
B : array (INTEGER range 1 .. 100) of integer;

FOR I IN 2..100 LOOP
A(I) := A(I) - A(I - 1) * B(I);

—Vectorization
inhibited

END LOOP;:
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Dynamically-sized objects Dynamically-sized objects declared in the body of a loop inhibit

declared in loops vectorization.
3.3.3.10
Example:
For I in 501 .. 3000 loop
Declare
S : Array(l .. I) of Integer; —Thisdeclaration inhibits vectoriztion
begin
S(I - 500) := S(I) + 2;
end;
end loop;
Loops with dependencies Some loops contain multiple dependencies that cannot be
3.33.11 removed by statement reordering. Consider the following case:

A : array (INTEGER range
: array (INTEGER range
: array (INTEGER range
: array (INTEGER range

101) of integer;
101) of integer:;
101) of integer;
101) of integer:;

onw
s

FOR I IN 1..100 LOOP

C(I+1l) := C(I) * A(I) + D(I);
D(I+1l) := C(I+1l) * B(I) + D(I);
END LOOP;

There are dependencies on both object C and object D that cannot
be removed by the compiler or by simple manual reordering.
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Conditional dependencies Some loops have dependencies that the compiler cannot

3.3.3.12 determine at compile time because the subscripts are based on
variables that are not known until execution time. These loops
do not vectorize. Two examples are the following:

A : array (INTEGER range 1 .. 101) of integer;
K : Integer;

For I in 20 .. 80 loop
A(I) := A(I - K);
End Loop:

IfK < 0, or K > 64 (the Cray Research systems’ vector length),
there is no dependency, but if 0 < K < 64, this is a true
dependency. Because of the runtime checks required, however,
Cray Ada does not vectorize either case.

Consider the following example:

A : array (INTEGER range 1 .. 101, 1 .. 101) of integer;

For I in 1 .. 100 loop

For Jinl .. I - 1 loop
A(I,J) := A(J,I): —This loop does not vectorize
end loop;
end loop;

This loop will not vectorize, because the compiler cannot
determine that the subscripts do not overlap.
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Array with noncontiguous Arrays declared with noncontiguous index ranges do not
index ranges vectorize. An example of using enumeration types follows:
3.33.13

TYPE Error_Level IS (Comment, Warning, Fatal, Abort):;

FOR Error_Level USE (Comment => 2, Warning => 6, Fatal => 7, Abort =>
11);

TYPE Error_Levels IS ARRAY(Error_Level) OF Integer;

Levels : Error_Levels;

FCR Level IN Error_Level LOOP

Levels(Level) := Levels(Level) + 1; —This loop will not vectorize
END LOCP;
Scalar recurrence A scalar recurrence is an instance in which a scalar object is used
3.3.3.14 in a loop, then later changed in the loop. The loop cannot

vectorize, because the value from the previous iteration is
necessary to complete the next iteration. An example of this is
the following:

A : array (INTEGER range 1 .. 100) of integer;
C : Integer:;
D : Integer;

For I in 1 .. 100 loop
A(I):= A(I) + D;

D:= A(I)*3;

End Loop;
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Slice operations
3.3.3.15

Vectorization messages
3.34
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Slice operations inhibit vectorization. The following is an
example of a nonvectorizable loop with slices:

A : array (INTEGER range 1 .. 200) of float;
B : array (INTEGER range 1 .. 400) of float;

FOR I IN 1..10 LOOP
FOR J IN 5..60 LOOP

A(10 * I ..10 * I + 20) := B(J.. J + 20);
END FOR;
END FOR;

The vectorization process may result in informative messages
that indicate the following:

e Loops that vectorize
e Loops that do not vectorize

The reasons that loops do not vectorize are listed with the
error messages. These messages may be used to assist in
making changes in order to make loops vectorizable. The
terminology used in these messages is explained in Cray Ada
Environment, Volume 1: Reference Manual, publication
SR-3014.

¢ Performance information

Information given in these messages is intended to assist in
enhancing the performance of vectorized code.

A failure in the vectorization process is signalled with an
internal error. When this occurs, vectorization of the current
loop is halted and the loop is compiled without vectorization.

For a detailed explanation of possible error messages, see Cray
Ada Environment, Volume 1: Reference Manual, publication
SR-3014.
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Performance Users of Cray Ada 2.0 may enhance the vectorizability of a
considerations program. Several general rules should be followed:
3.3.5

¢ Define numeric types with as tightly constrained a range as
possible. In the following, the first would be used rather than
the second.

SUBTYPE R1 IS Positive RANGE 1..100;
Vvl : R1;

V1l : Integer:;

The range of values that an Ada object may take is used
during vectorization to determine whether dependencies may
occur. This in turn determines not only whether vectorization
is possible but also how efficient vectorized code may be.

e Minimize the complexity of IF and CASE statements

In general, the more complex the statements, the slower, the
vectorized code will be. Complexity consists of the number of
ELSIF or WHEN statements, the complexity of Boolean
expressions for IF and ELSIF statements, and ranges of
values and numbers of alternatives for a WHEN statement.

o Larger loops provide more opportunities for optimization.

The quality of vectorized code may be enhanced by the
inclusion of more code in a vectorizable loop. The chaining
abilities of the CRAY Y-MP and CRAY X-MP systems may be put
to better use. An example of implementing the matrix
expressions with calls to matrix arithmetic routines is the

- following:
A :=B+C~*D
The previous example is evaluated as the following:

Tl := Times(C,D)
A := Add(B,T1)

This is less efficient than performing all of the operations in a
single loop. Although the matrix routine approach appears at
first to be a good technique, it is in actuality much less efficient
than a single loop approach.
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User-selectable
optimization
features

3.4

Guidelines for using
in-line expansion
3.4.1

Using pragma INLINE
3.4.2
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The following is much more efficient:

FOR I IN A‘First..A’Last LOOP
A(I) := B(I) + C(I) * D(I);
END LOOP;

The following subsections describe user-selectable optimization
features.

You can control inlining in the following four ways:

o Insert pragma INLINE designations in the source code,
indicating the subprograms to be inlined; the optimizer inlines
them.

e Specify the subprograms to be inlined; they are inlined as
through pragma INLINE had been inserted in the source.

¢ Allow the automatic inlining of all subprograms called from
only one place in a program, including those you do not specify.

o Exempt selected subprograms from automatic inlining; you
still get the benefits of the automatic feature.

Inlining is controlled by the -0 option on the ada and aopt
command lines. The following subsections explain the use,
requirements, and effects of inlining.

Cray Ada supports the inlining of calls to subprograms that
users identify through INLINE pragmas. As specified by the
LRM, the pragma must be placed in the same declarative region
as the declaration of the subprogram to be inlined and must
follow the subprogram declaration. In the following example,
the directive to in-line function Drag_Coeff in the package
declaration for package Drag_Calc is placed after the
declaration of the function:

Cray Research, Inc. 61




Optimization and Vectorization

Cray Ada Environment, Volume 2: Programming Guide

package Drag_Calc is
type Plane_Type is

function Drag_Coeff

pragma INLINE (Drag_Coeff);

end Drag_Calc;

(B707, B727, B737, B747, B757, B767);

(Plane: Plane_Type) return Float;

Using automatic
inlining
3.4.3

Using transitive
inlining
3.44

62

If you do not specify -0 on (at a minimum) as an option on the
ada or aopt command line (that is, -0 off cannot be specified),
pragma INLINE is ignored.

Cray Ada also supports automatic inlining, in which
subprograms that are called from only one place and that are not
vigible outside the compilation unit or the collection of units
being optimized are iulined automatically. Such subprograms
are commonly encountered in two instances:

¢ A programmer has separated out a functional block of code as
a subprogram to keep the size of the caller’s source down to a
manageable level. The optimizer helps to eliminate the
penalty for this style of structured design. Elimination of the
call overhead by inlining is especialiy beneficial when the
subprogram will be called inside a loop taat is repeated many
times.

¢ The compiler has inserted one-shot calls to compiler-generated
local subprograms to simplify the implementation of various
language features, such as tasking. When inlining is enabled,
the compiler inlines these subprograms automatically.

The inlining of subprograms is transitive. For example, if
inlined subprogram A is called by inlined subprogram B, and B is
called by subprogram C, optimization will result in A being
inlined in B, and the result being inlined in C.
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Using transitive The inlining of subprograms is transitive. For example, if
inlining inlined subprogram A is called by inlined subprogram B, and B is
3.4.4 called by subprogram C, optimization will result in A being

inlined in B, and the result being inlined in C.

The one exception to this rule is that a subprogram is not inlined
automatically into a subprogram that is itself marked for
inlining, using pragma INLINE. Automatic inlining is inhibited
to ensure that you have full control over the inlining process.
This feature prevents any significant unexpected and undesired
size overhead introduced by the automatic inlining of a called
subprogram. Any subprogram that is to be inlined into another
inline subprogram must be marked explicitly with an INLINE

pragma.

Performance trade-offs In-line expansion is one type of optimization for which

3.45 space/time trade-off is an issue. A subprogram that you have
marked for in-line expansion and that is called from more than
one place can potentially cause object code to be larger after
optimization than before if the inlined subprogram has
significant size. Usually, subprograms identified for inlining
should be small enough that expansion takes little, if any more
space than the call it replaces. In any case, in-line subprogram
designations are honored regardless of code space costs;
therefore, it is up to you to evaluate potential trade-offs.

Requirements for For a subprogram to be inlined in a unit that calls it, the
inlining following conditions must be met:
3.4.6

1. The subprogram must be designated in an INLINE pragma or
be subject to automatic inlining through the -0 option of the
ada or aopt command.

2. The unit containing the subprogram to be inlined must be
optimized through, as a minimum, the -0 on option (that
18, -O off cannot be specified).

3. A unit that calls the inlined subprogram must be optimized.

Conditions 2 and 3 indicate that both the called subprogram
and the code that calls it must be optimized if inlining is to
occur.
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Unit dependencies
created by inlining
3.4.7

Callable bodies for visible
in-line subprograms
3.4.7.1

In-line body dependencies
3.4.7.2

4. A unit that contains the body of an inlined subprogram must
be compiled befo: ¢ the compilation of any units that call the
inlined subprogram.

5. Full intermediate code forms (saved with the —k option of the

ada command) of the unit containing the subprogram to be
inlined must be present in the Ada library.

Inlining fundamentally consists of inserting the code for the
inlined subprogram into the calling subprogram. Thus, the
code for the inlined subprogram must already exist if this
insertion is to take place.

If any of these conditions are not met, inlining will not occur and
a normal call to a noninlined copy of the subprogram will occur.

Because of the nature of the Ada language, inlining may create
new unit dependencies. Programmers must anticipate the
consequences of inlining certain subprograms within a given
configuration.

Because of the possibility that a caller has been compiled before
the compilation and optimization of an in-line body, the compiler
always generates a callable body for a pragma INLINE
subprogram that is externally visible. Generation of a callable
body can be avoided by declaring the subprogram where it is not
externally visible (for example, in the body of a package) or by
designating the unit to be a hidden unit of a collection that
includes all of the subprogram’s callers.

When a subprogram call is expanded inline, a dependency is
created between the unit body in which the expansion occurs
and the unit containing the inlined body. Recompilation of the
in-line body causes the unit in which the expansion occurred to
become obaolete. Unless the unit containing the in-line
expansion is subsequently recompiled, an inconsistency will be
detected when an attempt is made to rebind the main program.

In the following example, assume that main program procedure
Glide_Ratio calls inlined function Drag_Coef f in package
Drag_Calc and that both procedure Glide_Ratio and package
Drag_Calc have been optimized.
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package Drag_Calc is

type Plane_Type is (B707, B727, B737, B747, B757, B767);
function Drag_Coeff (Plane: Plane_Type) return float;
pragma INLINE (Drag_Coeff);

end Drag_Calc;

If the body of package Drag_Calc is recompiled, unit
Glide_Ratio will be rendered obsolete because the actual body
object code of function Drag_Coeff has been placed into the
object code of Glide_Ratio.

When the body of Drag_calc is recompiled, Glide_Ratio must
be recompiled so that the new (potentially modified) code of
Drag_Coeff is included.

Without optimization, a recompilation of the body of package
Drag_Calc would not require a recompilation of Glide_Ratio.

To anticipate the consequences of inlining, you may use library
command arel to obtain a dependency report involving the
relevant units. You may also use arec to check library
consistency at any time and to produce a list of units that
require recompilation. (See Cray Ada Environment, Volume 1:
Reference Manual, publication SR-3014, for more information on

these library utilities.)
Pragma Pragma VECTORIZE_LOOP is an implementation-dependent
VECTORIZE_LOOP pragma that gives the Cray Research system vectorizer greater
348 latitude in vectorizing loops. It allows the vectorizer to vectorize
some loops for which there is insufficient information to
determine vectorizability.
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The basic syntax of this pragma is as follows:

Pragma Vectorize_loop ( ON | OFF );

The pragma must immediately precede a 1oop statement in the
Ada source code (apart from any intervening comments), and it
applies to the entire 1oop statement (including nested loops).

All Ada looping structures (FOR, WHILE, and LOOP loops) are
affected. The effect of this pragma does not extend to statements
following the end of the loop.

If the pragma is specified with the argument ON, permission to
vectorize the loop is granted. If the argument specified is OFF,
the vectorizer is required not to perform any analysis or
vectorization on the loop (including any nested loops). The
vectorizer performs a dependency analysis (even when ON is
specified) and issues appropriate messages, depending on the
outcome of its analysis, to advise you whether the vectorization
is unsafe, that the pragma is not necessary to achieve
vectorization, or that the loop has been vectorized (although it
may not have been proven safe to vectorize).

If you place a pragma Vectorize_loop before a loop construct
but the compiler determines that a dependency exists, the loop
will not vectorize, and a message will be generated.

The following is an example using pragma Vectorize_loop:

procedure Vector (M, N : In Integer) is
A : array (INTEGER range 1 .. 200) of integer;
begin

Pragma Vectorize_Loop{ON);
For I in 1 .. 100 loop

A(I + M) := A(I + N); —This loop vectorizes because of the
End Loop:; pragma Vectorize_Loop
End Vector;

66
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apro
4.1

Optimization
information
42

prof and profview
4.3
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Using the optimization facilities of Cray Ada, you can
significantly increase the execution performance of your Ada
codes. You can often gain additional performance by locating
time-consuming code and modifying it. This subsection
describes various tools available on Cray Research systems that
let you fine tune programs for maximum performance.

The Ada profiler apro is a tool that helps you gather information
on subprogram calls and timings. The functionality of this tool
and examples of its’ usage are described in Cray Ada
Environment, Volume 1: Reference Manual, publication SR-3014.

The Cray Ada compiler provides information on specific loops
that have and have not vectorized and inlined. The Ada
compiler also provides details on how to modify code to support
vectorization. Additional information related to this feature can
be found in Cray Ada Environment, Volume 1: Reference
Manual, publication SR-3014.

The UNICOS prof utility indicates the amount of time spent in
various segments of code within routines. Usually, it is used in
conjunction with profview, an interactive tool for displaying
the information collected by prof. These tools can help you in
determining areas on which to focus optimization efforts,
especially when you are using mixed languages, because apro,
the Ada profiling tool, provides no support for foreign languages.
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When you use prof on Ada routines, no symbol names are
provided and routine names follow internal naming conventions.
For example, you may see routines with names such as
test_$2. You can find detailed discussion of this tool and its
options in the UNICOS Performance Utilities Reference Manual,
publication SR-2040. The following is a very simple example
that illustrates the use of prof and profview with Ada.

The following is source code:

Procedure test is

A : array (INTEGER range 1 .. 1000000) of integer;
B : array (INTEGER range 1 .. 1000000) of integer;

begin
For I in 1 .. 1000000 loop
A(I) := B(I) + 3;
End Loop;
End test;

To prepare the test case for profiling, execute the following:

ada -4 test.ada

ald -d -P “-1 prof” test

./test

prof -x -m prof.data test >&! prof.raw
profview prof.raw
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procrpt
44
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Sample output of an alphabetical lisi of modules using the a
option of profview is shown in the following.

Module Name Hit Count PCT ACCUM %

——— — ———— —— —— —— —— — A ——— — - — = ——— — ——

Sexpand 1l 0.08 0.08
creat 1 0.08 0.17
sbreak 2 0.17 0.34
test_$2 1187 99.66 100.00 ***xwxxxx=x

The information provided by prof and apro does not always
map one-to-one. For instance, prof provides information on Ada
routines by using internal naming conventions and UNICOS
library calls made by the Ada run time. apro, on the other
hand, reports at the Ada unit level but does not provide
information on UNICOS routines used in the Ada run time. apro
does, however, provide an analysis of program calling structure
not available with prof; therefore, both tools can be useful in

the tuning process.

The procstat and procrpt routines monitor the execution of
processes and generate statistics about I/O process and memory
activities. See the UNICOS Performance Utilities Reference
Manual, publication SR-2040, for more information.

To use procstat, you could use the following command:

procstat -R raw.data asyncl?7
procrpt raw.data >&! proc¢.report
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The output results found in proc. report would look something
like the following:

(B2 22 RS R RRA RS RRREERSRSE RS 4 PROCSTAT TOTALS IR AR X RS SRS AR NSRS

Total Number of Processes = 3 Total Number of Active Files = 8

------------------- ACTIVE FILES -=---m——ememmm—mmmmmme

PID

87154
87154
87154
87154

87157
87157
87157
87157

Start Date/Time Max Mem #Fls Args
87154 03/19/91 15:35:35 4372071 4 asyncl?
87156 03/19/91 15:35:37 72143 0 sh
87157 03/19/91 15:35:37 120371 4 assign

fd Mod File Size Function #Char Mov Time Filename
1 WO 0 Write 104 .5669 stdout
6 RO 34 Read 34 .0001 read_file
6 RO 34 Read 34 .0000 read_£file
6 R/W 2097152 Async Read 2097152 .0059 fort.2
Async Write 2097152 .0134
Seek n/a .0000
6 R/W 0 Read 0 .0000 read_file
6 RO 34 Read 34 .0000 /tmp/jtmp.000035a/AAAa8715
8 R/W 34 Write 34 .0000 /tmp/jtmp.000035a/AAAa8715
8 WO 34 Write 34 .0000 read_file

70

See the UNICOS Performance Utilities Reference Manual,
publication SR-2040, for additional information on procstat
and procrpt.
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The hpm tool provides information about hardware performance
during execution of a program. This tool is available only on
CRAY Y-MP and CRAY X-MP systems. No special requirements
are necessary to use this routine. For example, using the
following command produces output from hpm:

hpm mflops

The following example represents output from using the hpm
mflops command.

Group 1:

Waiting
Waiting
Waiting
Waiting
Waiting
Waiting
Waiting
wWaiting

CPU seconds : 169.08103 CP executing: 28189568830

Hold issue condition % of all CPs actual # of CPs

on
on
on
on
on
on
on
on

semaphores : 0.00 44858
shared registers : 0.00 0
A-registers/funct.units : 19.69 5551338711
S-registers/funct.units : 44.88 12650916996
V-registers : 0.05 12686456
vector functional units : 0.00 432
scalar memory references: 0.02 4612724
block memory references : 0.26 72404149

SR-3082 2.0

See UNICOS Performance Utilities Reference Manual, publication
SR-2040, for additional information on the usage of hpm.
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The Ada runtime model encompasses all aspects of the structure
necessary for Ada to communicate with the UNICOS operating
system and user environment. This model includes information
on the following areas:

¢ Ada runtime support packages
¢ System and library calls

¢ Internal representation of data
o Storage and task management
o Exception handling

Cray Ada calling sequence

The Cray Ada Environment’s full Ada runtime environment is
called the Ada Execution Environment (AEE). It includes
support for built-in language facilities (such as tasking and
memory allocation) and support for the predefined packages
(such as Text_IO and Calendar) that must be explicitly
included by use of with to become accessible to a user program.

One key set of target-independent runtime components is known
collectively as the Runtime Support Packages (RSP).
Conceptually, each Ada program implicitly imports the RSP
packages it needs, although the RSP specifications are not made
available to the user. When runtime support is required, the
compiler inserts calls to the RSP into the core of a user program.
The RSP supports some of the more complicated aspects of Ada
semantics, such as tasking and dynamic memory management.
The RSP is implemented entirely in Ada.

The Target-dependent RSP (TDRSP) provides the foundation for
the RSP. The TDRSP includes several packages with
target-independent specifications and target-dependent bodies
that implement the fundamental low-level primitives on which
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Contents of the
runtime
sublibrary

5.2

74

the RSP depends. For instance, one of the packages
(TD_Machine_State_Manager) provides the machine-level
context switch operation that occurs as part of an overall Ada
task switch.

The runtime sublibrary contains the Ada packages required to
support program compilation, linking, and execution. Itis
sometimes referred to (loosely) as the runtime library or the
standard library. As previously mentioned, the standard
predefined Ada sublibrary must be specified as part of the
library for each compilation and linking. The /O operations
provided by the runtime library are performed synchronously,
with program execution suspended until the /O operation is
complete.

The following are the units in the runtime library:

o Ada predefined units. The standard library consists of the
following Ada predefined units, which you must not redefine:

Calendar

Direct_1I0
IQO_Exceptions
Sequential_IO

Standard

System

Text_I0
Unchecked_Conversion
Unchecked_Deallocation

If you redefine these units, you may get unpredictable
program results.

¢ Preinstantiated IO packages. Besides the Ada predefined
packages, the standard library provides the following
preinstantiated versions of packages in standard package
Text_IO:

Float_Text_IO
Integer_Text_IO

The specifications of these packages, and information on their
use, are presented in “Use preinstantiated generic units,” page
6.
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o Low-level support packages. Besides Ada predefined and
preinstantiated /O packages, the runtime library consists of
the support packages listed in Table 5.

Caution

These packages are for implementation purposes only and are
not supported for direct user access. If you attempt to call them
from a user program, the program may abort or take an
otherwise undefined action.

Table 5. Runtime library support packages

Support type Package names Support type Package names
Target-independent AR_Abort Target-independent RSP_Enumeration
tasking support AR_Activation runtime support RSP_Fixed
AR_Attributes RSP_H1_Open_Heap
AR_Debugger_Support RSP_H3_Collection
AR_Delay RSP_Discrete_Attributes
AR_Exception RSP_Real_Attributes
AR_Kernel RSP_Composite
AR_Rendezvous RSP_Vector
AR_State Telesoft_Integer_Types
AR_TCB_Operations
AR_Termination
I/O support File_IO Target-dependent  TD_Delay_Manager
Text_IO_Definition tasking support TD_Exception_Manager
UIa TD_Interrupt_Manager
URA TD_Machine_State_Manager
TD_Memory_Manager
TD_Task_Termination
TD_Tasking_Parameters
Target-dependent  TD_Address_Manager
runtime support ngMemo ry_Manager
C
CGS_Debugger_Support
CGS_Exc_Display
CGS_Exception_Manager
ENV
vmmr_Lib
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and C library routines
5.3.1
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e Cray_Lib. The Cray_Lib package contains several routines
that may not be called in addition to the user callable routines.
Routines that are not for use by other than the Cray_Lib
package itself begin with Q8. See “Library Interfaces,” page
119, for a description of Cray_Lib.

e System_Info. The System_Info package contains the
compiler version number in both number and string format.
See “Library Interfaces,” page 119, for a description of
System_Info.

e UNICOS_Signal_Support. The UNICOS_Signal_Support
package contains user callable routines. See “Library
Interfaces,” page 119, for a description of
UNICOS_Signal_Support.

The Cray Ada compiler runtime contains a collection of modules
that forms a direct interface with UNICOS. These modules are
written in a combination of C and CAL. Routines written in
languages other than Ada (CAL, C, Fortran, Pascal, and so on)
should avoid redefining the global names listed in “UNICOS
system calls and C library routines,” and “UNICOS global data
items,” page 77, because they are used by the Cray Ada compiler
runtime. Redefinition of these names causes link-time errors
and incorrect program execution. The Ada compiler translates
package and procedure names into a form that does not conflict
with most user-specified names.

The following routines are called directly by the Cray Ada
runtime and package STANDARD. You can find complete
descriptions of these routines for UNICOS 6.0 in Volume 4:
UNICOS System Calls Reference Manual, publication SR-2012,
Volume 2: UNICOS C Library Reference Manual, publication
SR~-2080.
access(2) ioct1(2) sleep(3C)
close(2) localtime(3C) sprint £(3C)
exit(2) lseek(2) stat(2)
fent1(2) malloc(3C) strcpy(3C)

free(3C) memcmp(3C) strlen(3C)
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get cwd(3C) memcpy(3C) strncpy(3C)
getenv(3C) memset(3C) target(2)
getpid(2) open(2) time(2)
getpwnam(3C) read(2) unlink(2)
gets(3C) rename (3C) write(2)
getwd(3C) signal(2)

$STKCR% and $STKOFEN (asin /libc/gen/stackal.s)§
$STKDE% and $STKUFEX (asin /libc/gen/stackde.s)§
$STKOFEN and $STKRETN (as in 1ibc/gen/csus)§§

UNICOS global data The Cray Ada Environment uses the following global data items
items (as defined in the ct ime(3C) entry in the UNICOS C Library
5.3.2 Reference Manual, publication SR-2080). In software, they are
defined in the UNICOS libc.a library and are referenced by the
UNICOS runtime:
e daylight

s timezone

The Cray Ada Environment uses the following global data items
(as defined in the exec(2) and intro(2) entries in Volume 4:
UNICOS System Calls Reference Manual, publication SR-2012).
In software, these items are defined in the UNICOS 1libc.a
library and are referenced by the UNICOS run time:

e environ
® errno

The Cray Ada Environment uses the following global data items
on CRAY-2 systems with UNICOS 6.0 or previous levels:

e @Qargc
e Qargv

§ Applies to CRAY Y-MP and CRAY X-MP systems
$8 Applies to CRAY-2 systems
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Some UNICOS systems only accept file names of 14 or fewer
characters in length. Because the Ada language allows
compilation unit names of much greater length, an internal
file-naming convention has been established to identify Ada
compilation unit names uniquely within the UNICOS
environment. Users of Ada should never be required to
reference an Ada unit by these internal names, although the
names are referred to when using several of the Ada tools. The
following conventions show how these names are generated.

The Ada compiler’s middle pass (MP) generates subprograms
with names of the following format:

Mp_L source_line_numbers$descriptive_name
For example:
Mp_Ll136$Compatibility_Check_subp

If the compilation unit name is longer than 12 characters, the
compiler and linker generate unique names for object files by
using up to 5 characters of the unit name, appending a processed
version of a 7-character time stamp, and then .o. Because the
time stamp is processed, it does not appear to be a time stamp,
but rather a random character string.

The following gives an example:

Ada unit name Output file name
A_very_long_name A_verBisw9pc.o

A_very_much_longer_name A_verBisw0_3.0

Specifications start with a capital letter. Bodies use the same
time stamp as the specification. If a specification is recompiled,
the time stamp will change.

This subsection describes the representation of various types of
data in the Cray Ada Environment. It provides summary
information about the internal representation of various data
types, and it gives examples for packed and unpacked types and
unconstrained arrays.
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The following list summarizes the default representations of
data in the Cray Ada Environment.

e Numbers are represented as follows:

Type Representation

integer Has an effective range of —2e45 to +2e45-1,
although integer objects occupy full 64-bit
words, unless they have a range requiring
fewer bits and are contained in a packed array
or record.

fixed-point Occupies 64 bits with an effective mantissa
size of 46 bits and is word aligned.
Fixed-point objects cannot be packed. If the
upper bound of a fixed-point type is a power of
2 (not a model number for the type), it is not a
representable value of the type.

float Provides for an effective accuracy of 13
decimal digits. All floating-point objects are
word aligned, and they cannot be packed. For
more information on the specifics of the choice
of Max_Digits, see LRM 3.5.7 Floating-point
Types in the LRM annotations of this manual.

¢ The following rules govern the packing of numeric types:

- Floating-point objects, whether alone, in arrays or in
records, cannot be packed.

~ Fixed-point values, whether alone, in arrays, or in records,
cannot be packed. (Type DURATION is represented by 46-bit,
fixed-point numbers; see, “LRM 9.6: Delay statements,
duration, and time,” page 189.)

~ Integers in arrays or records can be packed.

“LRM 13.1: Representation clauses,” page 192, summarizes the
packing of these data structures and provides information
about the memory layout of packed types.

o Objects of the predefined type character occupy 64 bits and
are word aligned, unless packed within an array or record.

¢ Objects of type STRING are packed 1 character per byte (8
characters per word) and are allocated in the same way as
packed arrays of a character.
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¢ Objects of type boolean occupy 64 bits and are word aligned,

unless packed within an array or record. A value of false is
represented by 0; a value of true is represented by 1.

An enumeration type is represented as an integer range,
with the range depending on the number of elements. The
space allocated for an object is 64 bits, and the object is word
aligned, unless packed within an array or record. The first
element of an enumerated type is represented by the value 0,
unless superseded by an enumeration representation clause.

An access type is implemented as a 64-bit absolute memory
address on CRAY Y-MP; CRAY-2 systems and cannot be packed.
Objects of access type are word aligned. Access types, having
a designated subtype of unconstrained array, point to a
descriptor record that includes the bounds of the array,
followed by the array itself.

Components in a record follow the preceding data
representations. These components are allocated sequentially
as declared in the source code (with gaps between components
as required to obey alignment rules). Components of 64 bits or
fewer never cross word boundaries.

If pragma PRESERVE_LAYOUT is used, the first field in the
record is assigned the lowest memory address; otherwise, in
the absence of a representation clause, it may be arbitrarily
reordered. Variant record fields are always aligned on word
boundaries. Variant records can be packed, subject to the
packing rules governing their elements.

In packed records, arrays are always aligned on a multiple of
the size of their individual components (that is, a string is
aligned on an 8-bit boundary, an array of Booleans is aligned
on a bit boundary, and so on). Components of packed arrays
are bit aligned, but never cross word boundaries. Ifnotin a
packed record, arrays are always word aligned.
Multidimensional arrays are represented in row-major order;
that is, the several collections of objects corresponding to the
innermost (or rightmost) dimension follow each other
sequentially in memory. This order is the same as that used
by Cray C and Cray Pascal, and is the reverse of the order
used by the various Cray Fortran compilers.
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Pragma
PRESERVE_LAYOUT
5.5.1

Internal representation
of unpacked types
5.5.2

Unpacked unsigned
integer types
5.5.2.1
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The Cray Ada compiler reorders record components to minimize
gaps within records. Pragma PRESERVE_LAYOUT forces the
compiler to maintain the Ada source order of a given record type,
thereby, preventing the compiler from performing this record
layout optimization. The syntax of this pragma is as follows:

pragma preserve_layout (ON => record_type_name)

Pragma PRESERVE_LAYOUT must appear before any forcing
occurrences of the record type and must be in the same
declarative part, package specification, or task specification.
This pragma can be applied to a record type that has been
packed. If PRESERVE_LAYOUT is applied to a record type that
has a record representation clause, the pragma applies only to
the components that do not have component clauses. These
components appear in Ada source code order after the
components with component clauses.

The following subsections show the memory layouts in Cray
Research systems for sample objects of Ada’s unpacked data

types.

The following code segment declares and sets simple unsigned
integers and an array of unsigned integers. The resulting
objects, when unpacked, are represented in memory as shown in
the memory maps following the code segment.

subtype small_int is integer range 1 .. 10;
type Short is array (1 .. 3) of small_int;
I : integer := 42;

K : Short := (2,4,6);

0 S7 63

0 0 101010
I

0 60 63

0 0 010
K S ———

Ol 0 100
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Unpacked signed integer

types
5.5.2.2

Unpacked floating-point
types
5.5.2.3

Unpacked fixed-point types
55.2.4

0 0 110

The following code segment declares and sets simple signed
integers and an array of signed integers. The resulting objects,
when unpacked, are represented in memory as shown in the
memory maps following the code segment.

subtype small_int_1 is integer range -5 .. 5;
type Short_1 is array (1 .. 3) of small_int_1;
J : integer := -37;
L : Short_1 := (-3,-2,4);
0 55 63
1 1 11011011
J
0 59 63
1 1 1101
L
1 1 110
0 0 100
Sign MSB LSB

Floating-point values cannot be packed. They are represented in
memory as shown in the following memory map:

01 15 16 63

Exponent Coefficient

Sign

The exponent value has a base value of 40,000 octal added to it;
therefore, to get the true exponent, you must subtract this value
from the represented exponent.

Cray Ada represents fixed-point numbers as the integer number
of DELTAS that comprise the number. The DELTA value is
computed to be the smallest power of 2 less than or equal to the
specified delta. In the first example, the actual DELTA of T1
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Unpacked character types
5.5.2.5
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used by the compiler is T1 ‘' SMALL or /16 (0.0625). T1'SMALL is
the unit value used by the compiler when dealing with
fixed-point numbers, and all numbers of the type can be
represented as some multiple of this value.

In the following section of code, several fixed-point types are
declared and variables of those types are then assigned values.
The resulting fixed-point objects are represented in memory as
shown in the memory map following the code segment.

type Tl IS DELTA 0.1 RANGE -1.0 .. + 1.0;
type T2 IS DELTA 0.2 RANGE -1.0 .. + 1.0;
type T3 IS DELTA 0.5 RANGE -1.0 .. + 1.0;

I : Tl :=0.5;
J : T2 := —0.5;
K : T3 = 0.5,’
L : T1 : 0.3;

0 ‘ 59 63

OI 0 1000
I — —

1 1 00
J

0 0 01
K

0 101

L !

For object I, the number of deltas needed to represent the value
is 8; therefore, 8 x .0625 = .5. For object J, the number of deltas
needed to represent the value is —4; therefore, -4 x.125 = ~0.5.
For object K, the number of deltas needed to represent the value
is 1; therefore, 1 x .5 = 0.5.

In the preceding examples, the value represented (0.5) was
evenly divisible by DELTA. This is not always the case. For
object L, the number of deltas needed to represent the value is 5,
and 5 x 0.0625 = .3125, which is rounded to the nearest
fixed-point number, 0.3.

The following code segment creates three character variables,
assigning them values. Those character objects, when unpacked,
are represented in memory as shown in the memory maps
immediately following the code segment.
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Unpacked string types
5.5.2.6

Unpacked Boolean types
5.5.2.7

char_val_1l :character := 'A’; --"CV1” memory map
char_val_2 :character := ‘B’; --“CV2* memory map
char_val_3 :character := 'C’; --*"CV3”" memory map
55 63

Zeroes A
cvi

Zeroes B
cv2

Zeroes c
cv3

String types are packed by default in Cray Ada. See “Packed
string types,” page 87, for details on how packed strings are
stored in memory.

The following code segment sets two Boolean variables and then
declares and sets a Boolean array. Those Boolean objects, when
unpacked, are represented in memory as shown in the memory
maps following the code segment.

A: Boolean := True;
B: Boolean := False;
type Bool_Array is array (1 .. 3) of Boolean;
Bool_val : Bool_Array := (True, True, True);

--*BV” indicates the boolean array memory map

0 62 63
0 1
A
0 0
B
0 62 63
0 1
BV koo ———— P ———— — -
0 Il
0 il
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The following code segment declares two objects of type
enumeration and then sets three variables. The resulting
enumeration-type objects, when unpacked, are represented in
memory as shown in the memory maps following the code
segment.

type Color is {(Red,Green,Blue);

type enum_array is array (1 .. 3) of color:;
i : color := blue;
J : color := red;
k : enum_array := (green,green,green);
0 6163
. 0 10
1
_ 0 00
J
0 61 63
0 01
k e —————
0 01
0 01

The following code segment defines an access type to an array
of integers. The resulting access type object, when unpacked,
is represented in memory as shown in the memory maps
following the code segment.

type cell is array (1 .. S) of integer;
type Link is access Cell;
P : Link := new Cell;

On CRAY Y-MP and CRAY-2 systems, the object P is represented
as follows:

o

31 63

0 Address
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On CRAY X-MP systems, the object P is represented as follows:
0 39 63
0 Address
P
Unpacked record types The following code segment declares a record type and sets the
5.5.2.10 fields within the record. The resulting record-type object, when
unpacked, is represented in memory as shown in the memory
maps following the code segment.
procedure Record_file is
type Data is
record
Name : String ( 1 .. 10); --*N" in memory map
Date : Integer; --*D* in memory map
Vote : Boolean; -=-*V* in memory map
end Record;
PRAGMA PRESERVE_LAYOUT (ON => Data);
Person : Data := (*"SMITH *, 5, true);
0 7 15 23 31 39 47 58 63
N s M 1 T H sp sp sp
sp sp Undefined
0 60 63
0 101
D
0 62 63
0 1
\
Internal representation The following subsections show the memory layouts within Cray
of packed types Research systems for sample objects of Adas’ packed data types.
5.5.3
Packed unsigned integer The following code segment declares integer types and arrays of
types integer types and then assigns values to variables of those types.
5.53.1 Those variables, when packed, are represented in memory as
shown in the memory maps following the code.
ae Cray Research, Inc. SR-3082 2.0
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subtype small_int is integer range 1 ..10;

type Short .3 array (1 .. 3) of small_int;
Pragma Pack (Short);
K : Short := (2,4,6);
Q 3 T 11 63
K 0010( 0100| 0110 0

The following code segment declares signed integer types and
arrays of signed integer types and then assigns values to
variables of those types. Those variables, when packed, are
represented in memory as shown in the memory maps following
the code.

subtype small_int_1 is integer range -5 .. 5;
type Short_1 is array (1 .. 3) of small _int_1;
Pragma Pack (Short_1);

L : Short_1 := (-3,-2,4);

0 3 7 11
1101} 1110{ 0100 0

The following code segment declares an array of characters and
then assigns it a value. That array object (packed) is
represented in memory as shown in the memory map
immediately following the code segment.

type Char_Array is array (1 .. 3) of Character;
PRAGMA PACK(Char_Array):;
Char_val : Char_Array := ('aA’, 'B’', 'C');
0 7 15 23 63
A B o] Undefined

Strings in Cray Ada are always packed by default and do not
require a pragma PACK statement. The following code
segment declares a string subtype and then assigns a value to a
string object of that subtype. That string object is represented in
memory as shown in the memory map following the code
segment.
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Packed Boolean types
5.5.3.5
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5.5.3.6

Packed record types
5.5.3.7

subtype String type is string (1 .. 3);
s_t_String : String_type := ("ABC");

0 7 15 23 63

A B C Undefined

The following code declares a Boolean array and assigns values
to it. The resulting object, when packed, is represented in
memory as indicated by the memory map following the code.

type Bool_Array is array (1 .. 3) of Boolean;
Pragma Pack (Bool_Array):;
Bool_Val : Bool_Array := (True, True, True);

0 3 63
1111 0

The following code segment declares an enumeration type and
assigns it a value. The result, when packed, is represented in
memory as shown in the memory map following the code

segment.

type Color is (Red,Green,Blue);

type enum_array is array (1 .. 3) of color;
Pragma Pack (enum_array);

k : enum_array := (green,green,green);

0 7 63

01| 01j 01 0

The following code segment declares a record-type object,
asgigning it values. The resulting record, when packed, is
represented in memory as shown in the memory map following
the code segment.
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type Data is
record

end record:;
PRAGMA Pack(Data);

subtype Small_int is integer range 0 .. 2000;

Init_1 : Character;
Init_2 : Character;
Name : String (1 ..
Year : Small_int;
Vote : Boolean;

PRAGMA PRESERVE_LAYOUT (ON => data):

10);

Internal representation
of unconstrained arrays
5.5.4

Memory layout of
unconstrained arrays
5.5.5

SR-3082 2.0

Person : Data := ('J’, ‘X', "SMITH ", 5, true);
0 7 15 23 31 39 47 55 63
J X [ M I T H sp
0 7 15 23 31 39 42 44 63
sp sp sp sp 0 101|1| Undefined

Year Vote

Unconstrained arrays have a descriptor block associated with
them. The following subsection discusses the use of
unconstrained arrays and the descriptor block information
associated with them.

When using unconventional means (such as 'address or an
access type generated by an unchecked conversion) to reference
an unconstrained array, the address pointed to is a descriptor
block containing information about the unconstrained array.
The size of this descriptor block depends on the data type and
dimensionality of the array. Because the descriptor block size
differs with each situation, when using this sort of structure
users must be careful to address the correct structure, and they
may need to determine the number of words being allocated for
the descriptor block of the specific unconstrained array. The

* size attribute provides the actual size of the array, not
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including the descriptor block. Access to the descriptor block is
not needed by application programmers, so care must be taken
to address the array correctly. The following example shows one
way a user can obtain the various addresses to the array:

with System;

procedure vect_test_1lb is
type vect_array is array (integer range <>) of integer;
type point is access vect_array:
subtype vect is vect_array (1 .. 5);

i : point;
k : vect;
L, M, N : system.address;
begin
i := new vect’ (others=>5);
i(1) := 1;
i(2) := 2;
i(5) := 15;
i(3) := 7;
L := i’address; — address of access variable
M := i.all’address; — address of descriptor block
N := i(i‘first)‘address; — address of first element

end vect_test;
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The following shows a sample memory layout for an
unconstrained array:

00120642: 0000000000000000134657
00134657: 0000000000000000000005
00134660: 0000000000000000000001
00134661: 0000000000000000000005
00134662: 0000000000000000000001
00134663: 0000000000000000000001
00134664: 0000000000000000000002
00134665: 0000000000000000000007
00134666: 0000000000000000000005
00134667: 0000000000000000000017
00134670: 0000000000000000000000
00134671: 0000000000000000000000

In the preceding example, object L contains the address to access
type i. In the preceding memory diagram, this value is stored at
memory location 120642. The access type points to the
descriptor block of the array. Object M contains the address to
the descriptor block for the unconstrained array. This descriptor
block begins at address 134657 in the example. Object N
provides the address to the first element of the array. In the
example, the array begins at address 134663 and continues
through address 134667. The value in object N is most likely the
address you may need.

Caution

The sizing of descriptor records may change from release to
release and has no bearing the way other vendors may store
descriptor information. Using ’'address or an access type to
reference the descriptor block of an unconstrained array is done
at the programmer’s risk. CRI does not guarantee consistent
sizing of descriptor records.

Cray Ressarch, Inc. 91




Ada Program Runtime Model

Cray Ada Environment, Volume 2: Programming Guide

Storage

management
5.6

Task management
5.7

The main program and all tasks in it share a single heap used
for all dynamically allocated storage that the program requires.
Stack space for Ada tasks, including the main program task, is
allocated on the heap.

Heap allocation and deallocation requests are ultimately
satisfied by calls to routines in the RSP storage management
module. These routines manage a heap composed of one or more
contiguous areas of memory called pools. If the available pools
cannot satisfy an allocation request, a routine is called to
allocate another pool area, which will be noncontiguous. access
type collections are chained together and released when the
access type declaration scope is exited.

If a constrained subtype of an unconstrained array is freed using
unchecked deallocation, the available memory is returned to the
program heap. This memory is now available for reuse by the
program. Therefore, if a new array is defined dynamically, that
space may be reused by the memory manager to represent the
structure, provided there is sufficient memory in that heap pool.

The Cray Ada runtime manages tasks through a variety of steps.
Tasks are first elaborated, then activated, then executed, with a
number of conditions possible for each step. This subsection
discusses the steps in task management, how tasks are
scheduled, and how you can synchronize them and delay them.
Tasks may not register for hardware interrupts in this
implementation.
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Task elaboration When a task is elaborated, a stack is allocated on the heap for

5.7.1 the task to use. You can specify a task’s initial stack size by
using a length clause. If you do not use a 1ength clause, the
initial stack size is the default of 4000 words. It may also be
specified by using the -Y switch when binding.

If the initial stack size is insufficient, a task’s stack
automatically grows dynamically. A STORAGE_ERROR exception
occurs only when there is no more space in the heap for
additional stack segments. Expansions to the stack are made by
calls to $ STKOFEN, taking the system default for the size of the
increment requested. The default increment size is
site-configurable, so check with your system support staff if you
need to know what the value is for your system. A task’s stack is
deallocated when the task terminates.

A Task Control Block (TCB) is allocated on the heap for each task
and is deallocated only when the master scope for the task is

terminated.
Task delay The delay statement is implemented using the system clock. If
5.7.2 an Ada program is rolled out of execution by the operating

system immediately after processing of a delay statement of x
seconds and is subsequently rolled back in after being suspended
for y seconds, the delay is considered to have expired if y is
greater than x. That is, the time for which a job is suspended
counts against delay times in that job, the clock keeps running
even when the job is suspended.

Note

Because a real-time clock is used to monitor time, and the Ada
program is not the only process on the system, the execution
order of Ada tasks is affected by the priority of the Ada program
and the system workload.
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Task rendezvous
5.7.3

Task scheduling
5.7.4

Tasks that call entries in other tasks are placed on an entry
queue, specific to the entry point they call, in first-come,
first-served basis. In addition to being placed on a
priority-based execution queue, a task making a timed entry call
is also placed in the delay queue based on the specified delay
period.

The server or caller (whichever comes last) places the server on
the ready queue so that the rendezvous can occur. A stack of
callers is maintained during the rendezvous to allow for nested
accept statements and the proper relinquishing of the
appropriate caller at the end of a rendezvous.

Pragma PRIORITY does not affect the selection from pending
entry calls in a selective wait statement.

Parameter passing at a rendezvous depends on a parameter
block built by the caller at the time of the call. A pointer to the
block is passed to the called task when it reaches the rendezvous
point.

This subsection describes the way in which the Ada runtime
schedules tasks for execution based on their relative priorities
and on the synchronization points and entry calls for which they
may wait.

A task is placed on one of 64 different execution queues based on
its priority 1 through 64; 64 is the highest priority. You can
explicitly set a task’s priority using pragma PRIORITY, or accept
the automatic default priority of 31. The ordering of tasks of
equal priority (within the same execution queue) is
indeterminate. The first task in the highest priority queue is
activated first and runs until it reaches a synchronization point.
All tasks in the highest priority queue are activated and run
first. When the highest-priority queue is empty, or all its tasks
are blocked, tasks from the next-highest priority queue are
activated and run. This process continues until all tasks in all
priority queues have terminated.
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If an executing task becomes blocked by execution of an Ada
delay statement, it is placed on the delay queue. If a task is
blocked because it is waiting for a synchronization point, it is
placed on the bottom of the execution queue from which it was
taken. If a task is blocked because it is waiting on an entry call
to another task, it is placed on the entry queue for that entry
point.

Tasks are placed in the entry queue and the execution queue in
first-in, first-out (FIFO) order. Tasks are placed in the delay
queue in the order of their specified delays, with the shortest
delay at the front of the queue.

When a task reaches a synchronization point or executes a
delay statement, a task switch occurs if another task of higher
priority is ready to run (having completed a wait). A task switch
is the transfer of the executing task from executing to either
termination or a queue, and the consequent transfer of another
task from its execution queue to executing (see LRM 9.11(2)).

Note

Because the Ada runtime does not use time slicing when
executing tasks, a task can hog the CPU if it is allowed to
execute without reaching a delay or a synchronization point,
such as a rendezvous.

The Ada tasking model implemented in the Cray Ada
Environment does not currently support multiple CPUs. Future
releases of the Cray Ada Environment will support the division
of Ada tasks among multiple CPUs. Because of the current
single-CPU implementation, tasking reduces throughput rather
than increases it, due to the tasking overhead.
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Exception handling Each declared exception is identified by an address that points

5.8

Unhandled exceptions
58.1

to a location to which the exception name resides. When an
exception is raised, the address of the exception identifier and
the address at which the exception occurred are passed in a call
to the runtime system. The occurrence address is then used to
determine in what scope the exception occurred. After that, the
dynamic link is followed until an exception handler that matches
the exception name is encountered. Exceptions cause no
runtime overhead unless raised. The presence of exception
handlers, however, can inhibit certain optimizations. The Cray
Ada Environment adheres strictly to the requirements of
exception handling within tasks.

By default, the only signal that Cray Ada traps is SIGFPE
(UNICOS signal 08). This is mapped to the Ada exception
numeric_error.

A package called UNICOS_Signal_Support allows an Ada
program to trap most UNICOS signals. When enabled, these
signals are mapped to the exception UNICOS_SIGNAL. There are
no default mappings of UNICOS signals to UNICOS_Signal. Any
mappings must explicitly be turned on by the
Set_Signal_Mapping routine.

When an unhandled exception occurs, a message of a standard
format is sent to the standard error, indicating the type of the
exception and where it was raised. For the predefined
exceptions, additional information is provided about the
condition that raised the exception. The general format of these
exception messages is as follows:

>>> UNHANDLED EXCEPTION <<<

Exception : exception_type
Reason : exception_condition

raised in unit_name.proc_name at line line_num

called from unit_name. proc_name at line line_num
called from unit_name.proc_name at line line_num
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The exception_type is the type of exception raised.

The exception_condition describes the cause of the exception for
predefined exception types.

The unit_name is the name of the unit in which the exception
was first raised.

The proc_name is the Ada name of the innermost scope in which
the exception occurred.

The line_num is the line number of the source file at which the
exception occurred.

The exception_type field will be one of the five predefined
exception types or a user-defined type. For the five predefined
types, this consists of one of the following strings:

constraint_error
program_error
storage_error
numeric_error
tasking_error

For user-defined exceptions, the exception_type field will be of
the following form:

exception_name

The exception_name is the Ada name of the exception, as
declared by the user.

For predefined exceptions, exception_condition is the string that
indicates the reason for the exception. Table 6 presents the
possible exception conditions that may occur for each of the five
predefined exceptions. For user-defined exceptions, this item
will not be present.

The unit_name and proc_name identify the scope in which the
exception was first raised. The unit_name is the Ada name of
the unit in which the exception was raised. The proc_name is
the Ada name of the innermost named scope in which the
exception was raised.

The remainder of the message consists of the sequence of
subprogram calls that resulted in the call to the scope in which
the exception occurred. These calls are presented in reverse
order, with the most recent calls appearing first in the list.
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Exception reporting
5.8.2

Table 6. Exception conditions for predefined exception types

exception_type exception_condition

constraint_error: Access check
Discriminant check
Index check
Length check
Range check
Range/index check

numeric_error: Division by zero
Numeric overflow

program_error: Subprogram elaboration
Generic elaboration
Function without return
Task elaboration

storage_error: Allocator failure
Stack overflow
Task stack allocation

tasking_error: Select statement unopen
Child activation
Task not callable

A new function, System.Report_Error, has been added to the
system package. System.Report_Error can be called by the
user program from any exception handler. It prints a traceback
of the most recently handled exception, including a traceback
from the point of the call to System. Report_Error itself.

In the following example proc1 is called, proc?2 is called from
procl. An exception is raised in proc2, procl handles it and
System.Report_Error is called and the traceback is printed.
The program then continues.
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with Text_IO;
with System;
procedure treperr °s

My_Error : Exception;

procedure proc2 is

begin
Text_IO.Put_line ( ”"Raising exception...”);
raise My Error;

end proc?;

procedure procl is

begin
proc2;

exception
when My_Error =>
Text_IO.Put_line(”Handling exception ...");
System.Report_Error;

end procl;

begin
procl;

Text_Io.Put_line( "Continuing after handling exception...”);
end treperr;

Raising exception ...
Handling exception ...

>>> EXception traceback from Report_ Error <<<
Exception: MY_ERROR

raised in sec/treperr.proc2 at line 10

called from sec/treperr.procl at line 15
Report_Error invoked in sec/treperr.procl at line 19

called from sec/treperr.treperr at line 23

Continuing after handling exception ....
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Tasking exceptions
5.8.3

UNICOS signal support
5.8.4

100

The user may alsu specify that all exceptions raised in a task,
handled or not, be displayed. This may be specified through use
of the -X switch when binding a program.

Ths user may also specify that all exceptions raised in a task,
handled or not, be displayed. Four routines are provided for
setting the specific signals to be caught; only those signals
specified through this mechanism (except for SIGFPE) are
caught. All others pass through and are treated in the default
manner defined by UNICOS. This lets you catch signals from
other languages if you so choose.

When a particular signal is set and caught, you will not trap that
signal again, unless you reregister the handler through the
signal mapping mechanism. The specifications for this package
follow.
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Package UNICOS_Signal_Support is

Type Signal is

(SIGHUP, -- Hangup

SIGINT, -- Interrupt

SIGQUIT, -- Quit

SIGILL, -- Illegal instruction

SIGTRAP, -- Trace trap

SIGABRT, -- Hardware error

SIGERR, -- Error Exit

--SIGFPE, -- Floating-point exception (converted to Numeric_Error)

--SIGKILL, -- Kill (Cannot be caught or ignored)

SIGPRE, ~- Program range error

SIGORE, -- Operand range error

SIGSYS, -- Bad argument to syste.c call

SIGPIPE, -- Write on a pipe with no one to read it

SIGALRM, -- Alarm clock

SIGTERM, -- Software termination from kill

SIGUSR1, -- User defined signal 1

SIGUSR2, -- User defined signal 2

SIGCLD, -~ Death of a child process (This is not supported in Ada)

SIGPWR, -- Power failure

SIGMT, -- Multitasking wake-up signal

SIGMTKILL, -- Multitasking kill signal

SIGBUFIO, -- Fortran asynchronous I/0 completion

SIGRECOVERY, -- Recovery signal (advisory)

SIGUME, -- Uncorrectable Memory Error

SIGDLK, -- True deadlock detected

SIGCPULIM, --

SIGSHUTDN, -- System shutdown imminent (advisory)

SIGCRAY4, -- Reserved for Cray Research, Inc.

SIGRPE, -- Register Parity Error

SIGCRAY2, -- Reserved for Cray Research, Inc.

SIGCRAY1, -- Reserved for Cray Research, Inc.

SIGCRAYO, -- Reserved for Cray Research, Inc.

SIGINFO) ; -~ Quota warning or limit reached.

(continued)
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For Signal use (SIGHUP => 101,
SIGINT => 102,
SIGQUIT => 103,
SIGILL => 104,
SIGTRAP => 105,
SIGABRT => 106,
SIGERR => 107,
--SIGFPE => 108,
--SIGKILL => 109,
SIGPRE => 110,
SIGORE => 111,
SIGSYS => 112,
SIGPIPE => 113,
SIGALRM => 114,
SIGTERM => 115,
SIGUSR1 => 116,
SIGUSR2 => 117,
SIGCLD => 118,
SIGPWR => 119,
SIGMT => 120,
SIGMTKILL => 121,
SIGBUFIO => 122,
SIGRECOVERY => 123,
SIGUME => 124,
SIGDLK => 125,
SIGCPULIM => 126,
SIGSHUTDN => 127,
SIGCRAY4 => 128,
SIGRPE => 129,
SIGCRAY2 .=> 130,
SIGCRAY1 => 131,
SIGCRAYO => 132,
SIGINFO => 148);

(continued)
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Type Mapping_States is ( Mapping_off, Mapping_On );
-- Default is Mapping_Of for all signs. The default
-- is to pass the signal on so that a user may write
-- their own signal handler.
Procedure Set_Signal_Mapping ( direction: in Mapping_States };
-- Sets signal mapping for all signals to ‘direction’.
Procedure Set_Signal_Mapping ( sig : in Signal;

direction: in Mapping_States );

-- Sets signal mapping for ‘signal’ to ‘direction’.

Function Signal_Number return Natural;

-- Returns the signal number of the signal that was raised. Tha value
-- returned is the UNICOS value defined in /usr/include/sys/signal.h.

Function Signal_Number return Signal;

-- Returns the number of the signal that was raised. This value
-- is compared against Signal declared above.

UNICOS_SIGNAL: Exception;
-- Exception that signals are mapped to if mapping is on.

UNICOS_SIGNAL_Not_Raised: EXCEPTION;
-- Exception that is raised if it was not possible
-- to raise UNICOS_SIGNAL.

end UNICOS_Signal_Support;

The following example shows signal handling with package
UNICOS_Signal_Support. The handler is turned on only to
catch SIGORE. All other signals will be caught in the default
manner by UNICOS.
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-- This causes a UNICOS exception ORE which is caught in one
-—- exception block, and not in another.

with UNICOS_Signal_Support;
with Unchecked_Conversion;
with Text_IO;

procedure Sigtest is

package SIG renames UNICOS_Signal_Support;
package IO renames Text_IO;

-

~— this causes an ORE signal by referencing nonexistent memory

procedure Raise_ORE IS
type Acctype is access Integer:;
function Int2Acc is new Unchecked_Conversion(Integer, Acctype);
A: Acctype := Int2Acc(-1);

I: Integer:;
begin
I:= A.ALL;

end Raise_ORE;

begin
I0.Put_Line (”"Exception Handling Test”);
IO0.New_Line;

~- turn on signal mapping for ORE, raise an ORE, and catch it
Exception_Block_1l:
begin

SIG.Set_Signal_Mapping(SIG.SIGORE, SIG.MAPPING_ON):;

Raise.ORE;
IO.Put_Line("Test 1: FAILED - ORE didn't get raised”);

(continued)
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exception
when SIG.UNICOS_Signal =>
if SIG.Signal_Number = 11 then
I0.Put_Line("Test 1: PASSED (caught the ORE)”");
else
I0.Put_Line("Test 1: FAILED (caught the wrong signal)"”)
raise
end if;
when others =>
raise;
end Exception_Block_1;

-- turn off signal mapping for ORE, raise an ORE, and fail to
-- catch it

Exception_Block_2

begin
SIG.Set_Signal_Mapping (SIG.SIGORE, SIG.MAPPING_OFF);
Raise_ORE;
IO.Put_Line("Test 2: FAILED (ORE didn't get raised)”);
exception

when SIG.UNICOS_Signal =>

if SIG.Signal_Number = 11 then
I0.Put_Line (*Test 1: FAILED (caught the ORE)

else
IO0.Put_Line(*"Test 1: FAILED (caught the wrong signal)”);
raise;

end if;

when others
raise;
end Exception_Block_2;

end Sigtest;
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The following is the output from the previous program. Notice
that with signal mapping on, as in the first exception handling
block, the program catches and properly identifies the ORE signal
that occurred. In the second exception block, signal mapping is
turned off, and when the ORE occurs again the default UNICOS
action is taken and you get a core dump.

Exception Handling Test

Test 1: PASSED (caught the ORE)
Operand range error (core dumped)

Cray Ada does not allow the following UNICOS signals to be
trapped:

SIGKILL (Signal 09)
SIGCLD (Signal 18)

When any of the preceding signals are trapped, (except for kill
which can not be trapped) the Ada runtime provides a traceback
showing the signal captured and the general location at which
the error occurred or was translated into an Ada exception. The
following information shows the traceback from an unhandled
UNICOS exception when signal mapping has been enabled:

— ™

>>> UNHANDLED EXCEPTION <<<

Exception: UNICOS_SIGNAL
Reason: UNICOS signal #11 (SIGORE) Operand Range Error

raised in sec/sigtest_l.sigtest_1 at line 39

N—— _
_ Exception handling Exceptions that originate in a foreign language routine or that

from foreign languages are propagated up the call chain in a foreign language routine

5.8.5 are not propagated into the Ada caller. Exception messages are

printed out with a complete traceback that specifies the address

from which the exception occurred or from which the routine was
called.
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The program then terminates. It is recommended that an
EXPORT routine have an exception handler to avoid the
possibility that any exceptions will escape.

The following is an exception that occurred in a Fortran
subroutine called from an Ada main program. The exception
used the INTERFACE pragma. Notice that the exception location
in the Fortran routine is given as an address rather than as a
line number.

>>> Unhandleable exception raised in FORTRAN routine <<<
Exception: NUMERIC_ERROR
raised in FORTRAN routine AF_F_FUN at or near address 161c

.called from sec/ada.f.ada_f between lines 11 and 15

In the following example, an exception occurred in an Ada
procedure that was called from a Fortran subroutine using
EXPORT pragma. The Fortran subroutine was in turn called
from an Ada main program using INTERFACE pragma. Notice
that in the exception traceback, the calling location in the
Fortran routine is given as an address rather than as a line
number.

>>> Unhandled exception <<«
Exception: NUMERIC_ERROR
raised in sec/afa_exported.afa_a_ptoc at line 15
called from export interface routine at address 17075a

called from FORTRAN routine AFA_F_UN at or near address 1644
called from sec/ada_f_ada.ada_f_ada between lines 25 and 29

SR-3082 2.0 Cray Research, Inc. 107




Ada Program Runtime Model

Cray Ada Environment, Volume 2: Programming Guide

Exception handling
with optimization
5.8.6

Sometimes, because of optimization, the exact line number, at
which an exception occurs cannot be determined. The following
Ada source code illustrates this.

WITH Text_IO;

PROCEDURE L_E IS

I, J, K, L, M : T;

BEGIN
I10.Get(I);

ERG
Wowon
RO
+ + + +
t‘?=S4H

[

IO.Put (16 times” };
IO.Put( *is”* );

I0.New_Line;
END L_E;

SUBTYPE T IS Integer RANGE -100 .. 100;

PACKAGE IO RENAMES Test_IO;
PACKAGE IIO IS NEW Test_IO.Integer_IO(T);

: —this is line 15

IIO0.Put (I,Width => 0);

IIO.Put (M,Width => 0);

108

The program accepts a number from the input and then doubles
it 4 times. This yields an ultimate result of 16 times the number.
If you enter 4, it says 16 times 4 is 64. However, because
the type of the result is constrained to -100 .. 100, larger
entered numbers yield exceptions.

With no optimization (and thus no scheduling), it gets a
constraint error exception on line 15 if you enter 64, on line 16 if
you enter 32, on line 17 if you enter 16, and on line 18 if you
enter 8.

With optimization (including the scheduler) on, if any of the
additions yields a result greater than 100, the program reports a
constraint error of the following type:
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Subroutine
linkage model
5.9
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>>> Unhandled exception <<«

Exception: CONSTRAINT_ERROR
Reason: value vs range constraint

raised in sec/l_e.l_e between lines 15 and 18

Because of instruction scheduling, lines 15 through 20 may be
scheduled such that it is not possible to determine the exact line
number on which the error occurred.

This subsection describes the basic model used to support
subroutine linkage and data addressing for Ada on CRAY Y-MP,
and CRAY X-MP, and CRAY-2 systems, including register
conventions, stack frame layouts, and parameter passing
mechanisms. Most users do not need this degree of detail, but
some may, particularly if portions of their applications are
written in assembly language.

Because Ada subprograms can, in general, be recursive and
reentrant, subprogram calls must be modeled with a mechanism
involving the allocation of subprogram data and linkage
information on a stack in common memory. To retain
compatibility in the presence of cross-language calls, the stack
grows from low to high addresses.

Implementing this stack model requires two dedicated address
registers: a frame pointer register (FP = A7) and a stack
pointer register (SP = B66 on CRAY X-MP systems and $LM00 +
2 on CRAY-2 systems). The FP register points to the base of the
active stack frame. Parameters, local data, and other data saved
on subroutine entry are addressed by positive offsets from FP.
The SP register marks the top of the stack. It is incremented
and decremented during the entry and exit of a subprogram and
when certain dynamically sized objects are allocated and
deallocated. The FP register marks the base of the new stack
frame on entry to a subroutine. It is updated to reflect the
allocation of all local data required by the called subroutine,
including parameters and various subroutine linkage pointers.

Before calling a subprogram, all parameters are loaded. On the
CRAY Y-MP and CRAY X-MP systems, only the first four scalar
and first four address parameters are loaded into B/T registers.
The rest are passed on the stack in an overflow block. On
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Calling sequence for
CRAY Y-MP and CRAY
X-MP systems

5.9.1

110

CRAY-2 systems, they are all loaded into local memory at
$LM00+8. On entry to the called routine, the CRAY Y-MP and
CRAY X-MP routines will store the parameters that were passed
in auxiliary storage to the base of the new stack frame. On the
CRAY-2 systems, if there is room in the frame package and none
of the parameters are used up-level or referenced by address,
then the parameters will be moved to the frame package.
Otherwise, they will be stored in common memory in the new
stack frame. FP and SP are updated to reflect the allocation of
the new frame. As part of the return sequence, the subprogram
restores the FP and SP registers to the values they had before
the call.

On CRAY Y-MP and CRAY X-MP systems, the stack frame layout
for a subprogram immediately after completion of its entry
sequence is as shown in Figure 1.
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: Low addresses
Frame pointer (FP) —» Link to TNB (stkB77)
Return address (stkB00)
Pointer to caller’s parameter overflow block | (stkB01)
Link to caller’s frame base (stkB02)
Mark set pointer (stkB03)
Saved global display pointer (stkB04)
Al_Save (stkB05)
A6_Save (stkB12)
Address parameter 1 (stkB13)
Address parameter 2 (stkB14)
Address parameter 3 (stkB15)
Address parameter 4 (stkB16)

Address of parameter overflow block (stkB17)

B register save area (stkB20-stkB24)
S1_Save (stkT00)
S7_Save (stkT06)

Scalar parameter 1 (stkT07)

Scalar parameter 2 (stkT10)

Scalar parameter 3 (stkT11)

Scalar parameter 4 (stkT12)

T register save area (stkB13-stkT'17))

Local variables
Stack pointer (SP) —e : High addresses

Figure 1. Subprogram stack frame layout on CRAY X-MP
systems after completion of entry sequence
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The following list shows the basic actions (in outline) that are
performed for subprogram call, entry, exit, and return on
CRAY X-MP systems:

Within the calling subprogram the following events occur:

1. Load the value of each parameter into a B or T register, as
appropriate. Address parameters are loaded into B registers
(starting with B13) and scalar parameters are loaded into T
registers (starting with T07). Only the first four address and
the first four scalar parameters are passed in auxiliary
registers. After that, parameters will be stored on the stack.
B17 will point to the word following the last parameter. This
means that the last parameter would be accessed at B17-1.

2. If an elaboration check is required, check the elaboration
Boolean. Ifit is false, raise ELABORATION_ERROR.

3. Perform a return jump to the entry point for the destination
subprogram.

On entry to the called subprogram, the following actions occur:
1. Set FP to SP (new frame base iis set to current top of stack).

2. Save the A and S registers that the subprogram will use in
B05 .. B12 and T00 .. T06. Notice that A0, A7, and SO need
not be saved here.

3. Allocate the new frame by setting SP to FP + frame_size.
frame_size is the sum of the storage requirements for local
variables, as well as the largest parameter overflow block

- that this routine needs to build.

4. Initialize B77 with the pointer to the subprogram’s Traceback
Name Block (TNB).

5. If the subprogram’s lexical level is less than the global
display size and this subprogram has children that might
reference its data up-level, then save global_display (LL)
in BO4. (This global display is in B35 .. B64.)

6. Save the B and T registers to the stack, starting at B77/T00
and ending at the last B/T register that will be used by the
subprogram (for parameter lists and local data). This is
generally B24 and T17. This has the effect of saving the TNB
pointer, the return address, the static link, the caller’s FP, the
saved global display point, the saved A and S registers, and
the parameters on the stack. It also saves any further B/T
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registers the subprogram will use for parameter lists and
local data.

Compare SP to the stack limit (contained in B67). If the limit
is exceeded, call runtime support to extend the stack or raise
the exception STORAGE_ERROR if the stack cannot be
extended.

If this subprogram has children that might reference its data
up-level, save FP in global_display (LL).

Save the new FP in B02.

Save B17 in B01. BO1 will now contain the pointer to the
parameter overflow block.

Copy SP into B17. This is where parameters for routines this
routine calls will be put.

On exiting from the called subprogram the following actions
occur:

1.

5.
6.
7.

If the subprogram is a function, move the function return
value into S1.

Restore B0O through B24, T00 through T17. This has the
effect of restoring the subprogram linkage, the first few
parameters, and the auxiliary registers used for local data
allocation.

If the subprogram’s lexical level is less than the global
display size and a display pointer was saved on entry to the
subprogram, the restore global_display (LL) from B04.

Restore the saved A and S registers from the newly restored
B and T registers.

Restore SP from FP.
Restore FP from B02.
Jump back to calling subprogram by using B0O.

On returning to the calling subprogram, check and copy any
scalar access parameters of mode out and of mode in out
back into the appropriate variables. If the subprogram called
was a function, then use the result from S1.
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Calling sequence for On CRAY-2 systems, the stack frame layout for a subprogram
CRAY-2 systems immediately after completion of its entry sequence is as shown
5.9.2 in Figure 2.
: Low addresses
Frame pointer (FP) —= #args/line#/entry point address
Save area for previous frame
package for this procedure
(63 words)
Local variables
Stack pointer (SP) —ef : High addresses

Figure 2. Subprogram stack frame layout on CRAY-2 system
after completion of entry sequence
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The following lists show th.e basic actions performed for
subprogram call, entry, exit, and return on CRAY-2 systems
within the calling subprogram:

1.
2.

Load each parameter into local memory starting at SLM00+8.

Load S0 with the entry point of the destination subprogram,
copy SO to AQ, and perform a return jump by using A0 (R,A0
A0). If an elaboration check is required, then check the
elaboration Boolean and raise ELABORATION_ERROR if the
called routine is not elaborated.

On entry to the called subprogram, the following actions occur:

10.

11
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1. Set FP to SP (new frame base is set to current top of stack).
2. Save A0, SO and Al ..A6, S1.. S7 in $LMADA.

3.

4. Compare SP to the stack limit (contained in $LM00+1). If the

Allocate the new frame by setting SP to FP + frame_size.

limit is exceeded, call runtime support to either extend the
stack or raise the exception STORAGE_ERROR if the stack
cannot be extended.

Set $LMO0O to point to this frame package ($FPK).

If this is a recursive call to a subprogram that is already
active in the current call chain, save SO and the current
contents of the subprogram frame package in the stack

starting at FP-1.

If this is not a recursive call, save SO (#args/line#/entry
point) in the stack at FP-1.

Store return address, FP, and address of caller’s frame
package in the frame package. If this is a recursive call (that
is, if you just saved the frame package in the stack frame),
also store the frame base of the owner of the saved frame

package in the frame package.

Save caller’s A’'s and S’s in the frame package. They are
currently in $LMADA,

If necessary, store previous global display pointer for this
lex-level in $FPK+4, and overwrite it with the value in A7.

Zero the mark set pointer at $SFPK+3.
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12. Move parameters from $LM00+8 to frame package or stack
frame, depending on whether any of them need to be in
common memory.

13. Save the address of the subprogram’s frame package in
$FPK+2.

On exiting from the called subprogram the following actions
occur:

1. If this is a function then move the function return value into
S1.

Restore the return address into A0 from the frame package.
Store the address of the caller’s frame package in $LM00+0.

If necessary, restore previous global display from $FPK+4.

SAE o o

If there were any OUT or IN OUT parameters, copy them
from either the stack or the frame package back to SLM00+8.

Restore caller’s A and S registers from my frame package.

o

7. If this was a recursive routine (in other words, thereis a
frame package saved in the stack frame) then restore the
frame package from the stack. If this was not a recursive
routine, mark the frame package as inactive by zeroing the
top half of the first word of the frame package (the pointer to
the previous owner of the frame package).

8. Restore SP from FP.
9. Jump back to calling subprogram by using A0.
On return to the calling subprogram, the following actions occur:

1. Restore FP from $FPK+2. (This is done here, rather than in
the exit sequence, because if there was a stack overflow in
the called subprogram, the stack segment release performed
as part of the return will destroy the contents of FP.)

2. Check and copy any scalar and access parameters of mode
out and in out from local memory back in to the
appropriate variables. If the subprogram called was a
function, use the result from S1.

116 Cray Research, Inc. SR-3082 2.0




Cray Ada Environment, Volume 2: Programming Guide Ada Program Runtime Model

Parameter passing in
Ada
5.9.3

SR-3082 2.0

This subsection discusses parameter passing in Ada, common to
CRAY Y-MP, CRAY X-MP and CRAY-2 systems.

Parameters in Ada are passed either by value or by address,
depending on the data type of the parameter. For parameters of
array and record types, the address of the actual parameter is
passed. Parameters of scalar and access types are passed by
value (even for parameters of modes out and in out). In the
case of scalar and access parameters of modes out and in out,
the called routine must store the output values for such
parameters back in the same locations used to pass them (either
in B and T registers, the stack, or in the $1.M00 area) so that the
calling routine can retrieve these values on return. The storage
order of parameters corresponds to the order of formal
parameter declarations in the Ada subprogram declaration. For
CRAY X-MP systems, parameters passed by address or access
types passed by value are passed in B registers, starting with
B13. All other parameters are passed in T registers, starting
with TO7.

For calls to subroutines in other languages, the calling
conventions of the target language are obeyed. (See “Interfacing
to Other Languages,” page 133, for more information on
cross-language calls and restrictions on parameter passing.)

For CRAY Y-MP and CRAY X-MP systems, the first four
parameters that are passed by address or are access types are
passed in B registers, starting with B13. The rest are passed on
the stack, indexed at negative offsets from B17. The first four
scalar parameters are passed in T registers, starting with T07.
The rest are passed on the stack, indexed at negative offsets
from B17. For CRAY-2 systems, all parameters are passed in
local memory, starting at $LM00+8.
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Package CRAY_LIB
6.1

Cray Ada supports a set of library interface routines which
provide support directly from Cray Ada to basic math and utility
routines. These routines are available in the following two

packages:

e CRAY_LIB
e SYSTEM_INFO

The routines provided in CRAY_LIB provide transpar “nt efficient
interfaces to logarithmic, trigonometric, bit manipulation and
various utility routines. The compiler has special knowledge of
these routines thereby allowing for vectorization of these
routines to occur within Cray Ada code. CRAY_LIB contains
three generic packages which are MATH_LIB, BIT_LIB, and
UTIL_LIB with pre-instantiations as follows:

PACKAGE Cray_Math_Lib IS NEW Cray_Lib.Math_Lib(Float, Integer)};
PACKAGE Cray_Bit_Lib IS NEW Cray_Lib.Bit_Lib(Integer);
PACKAGE Cray_Util_Lib IS NEW Cray_Lib.Util_Lib(Float, Integer);

SR-8082 2.0

The specification for the package CRAY_L1IB is found beginning
in the following discussion.
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The routines in the CRAY_LIB package are actually interfaces to
existing Cray library routines written in Cray Assembly
language and Fortran. Additional details on these routines can
be found in Volume 3: UNICOS Math and Scientific Library
Reference Manual, publication SM~2081. By default, the only
errors that are trapped in these routines are UNICOS
floating_point (SIGFPE) signals. These are mapped to
numeric_error. If you wish to trap any other signals while
doing processing in the library routines, you must use the
UNICOS_SIGNAL_Support package and specify the signals you
want to handle.

The following is the specification for the CRAY_LIB package:
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PACKAGE Cray_Lib IS
GENERIC

TYPE Flt IS DIGITS <>;
TYPE Int IS RANGE <>;

PACKAGE Math_Lib IS

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION
FUNCTION
FUNCTION

FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION
FUNCTION
FUNCTION

A 2 X (Val

Power :

~xxe(Val

Power :

LR 2 X/ (Val

Power :

Sqgrt(vVal

Log(Val :
Logl0(Val
Exp(Val :

Cos (Val :
Sin(vVal :
Tan (Val
Cot (Val

Acos (Val
Asin(Val
Atan(Val
Atan2 (Val

vValz

Cosh(val
Sinh(val
Tanh(Val

: IN Int;

: IN Flt;

: IN Flt;

IN Flt) RETURN Flt;

IN Flt) RETURN Flt;
IN Flt) RETURN Flt;
IN Flt) RETURN Flt;

IN Flt) RETURN Flt;
IN Flt) RETURN Flt;
IN Flt) RETURN Flt;
IN Flt) RETURN Flt;

: IN Flt) RETURN Flt;

: IN F1lt) RETURN Flt;
IN Flt) RETURN Flt;
IN Flt;

: IN Flt) RETURN Flt;
: IN Flt) RETURN Flt;
IN Flt) RETURN Flt;

IN Int) RETURN Int;

IN Int) RETURN Flt;

IN Flt) RETURN Flt;

IN Flt) RETURN Flt;

PRIVATE

END Math_Lib;

(continued)

SR-3082 2.0 Cray Research, Inc.
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GENERIC

TYPE Int IS RANGE <>;
PACKAGE Bit_Lib IS
SUBTYPE Word_Range IS Natural RANGE 0 .. 63;
SUBTYPE Word IS Integer;

FUNCTION Leadz(Item : IN Word) RETURN Int;
FUNCTION Popcnt(Item : IN Word) RETURN Int;
FUNCTION Maskl(Val : IN Int) RETURN Word;
FUNCTION Maskr(Val : IN Int) RETURN Word:;
FUNCTION Shiftl(Item : IN Word;
Val : IN Int) RETURN Word;
FUNCTION Shiftr(Item : IN Word;
Val : IN Int) RETURN Word;

PRIVATE

end Bit_Lib;

(continued)
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GENERIC

TYPE Flt IS DIGITS <>;
TYPE Int IS RANGE <>;

PACKAGE Util_Lib IS
TYPE RTC_range IS RANGE O .. 35_184_372_088_831;
-- 0 to 2**45-1.

-~ RTC_Float_Range is from O to 2**64-1.

-- type of a real-time clock starting time (for RTC_Timer_Start
-- and RTC_Timer_Elapsed)

TYPE RTC_Value IS LIMITED PRIVATE;

-- type returned by Ranget and accepted by Ranset
;;PE Seed IS LIMITED PRIVATE;
-- Floating point
FUNCTION Ranf RETURN Flt;
FUNCTION Sign( vall: IN Fit;
Val2: IN Flt) RETURN Flt;

-- integer

-~ get a random seed

FUNCTION Ranget RETURN Seed;

-- set the random number generator’s seed

TYPE RTC_Float_Range IS DIGITS 10 RANGE 0.0..18_446_744_073_709_551_615.0;

(continued)
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PROCEDURE Ranset (Val: IN Seed);

-- convert an Int to a Seed

FUNCTION Int_To_Seed(I: IN Int) RLCTURN Seed;

-- the ‘IMAGE and ‘VALUE of a random number generator seed
FUNCTION Seed_Image(S: IN Seed) RETURN String;
FUNCTION Seed_Value(S_Image: IN String) RETURN Seed;

FUNCTION Sign(Vall : IN Int;
Val2 : IN INT) RETURN Int;
FUNCTION Trunc(Vall : IN Flt) RETURN Int;

--real-time clock elapsed time routines which avoid problems with
--integer overflow; the RTC_Timer_Elapsed function enforces a limit
--of Int’LAST on its return value, and raises Constraint_Error if
--the result is too big (with type Integer, this is sufficient for
--(((2**45) -1) / (1000000000 / CT)) / 3600 hours, which is about
--1.6 days on a 4 ns CRAY-2 and 2.5 days on a 6 ns CRAY Y-MP)
PROCEDURE RTC_Timer_Start (RTC_Start_Time: OUT RTC_Value):

FUNCTION RTC_Timer_Elapsed(RTC_Start_Time: IN RTC_Value) RETURN Int;

-- Version 1 - The legal range of this version is 46 bits, however

- this value may be exceeded within 2 to 3 days depending
-- on the system. This routine actually returns a 64 bit

- value. In order to make use of this value checks must be
- turned off.

FUNCTION RTC RETURN RTC_Float_Range;

-- Version 2 - Return RTC as a floating point value.
- This is an actual Ada routine, not an external one.
FUNCTION RTC RETURN RTC_Range;
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-- Version 3 - Return clock ticks as a microsecond value in integer.
- This is an actual Ada routine, not an external one.

FUNCTION Cpu_Usec RETURN Int;

PRIVATE

END Util_Lib;

END Cray_Lib;

CRAY_LIB contains several internal routines beginning with the
alphanumeric Q8. It is best to avoid routines beginning with
these values.
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Table 7 summarizes the CRAY_L1IB functions available with Cray
Ada 2.0. The following lists define the conventions used in
Table 7.

The level of vectorization is as follows:

F Full vectorization
N No vectorization

The type of code generated is as follows:

E External
I Inline
L Language supported

In the Definition column, y is the function’s result and the x
values are function arguments. The following example shows
this:

A := SQRT(B) K := ATAN2(X,Y)

Square brackets indicate the truncation of a term. Ifxhas a
value of 5.67, [x] equals 5.

Data types shown in the Function and Arguments columns are
the following:

 { Integer
F Float
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Table 7. CRAY_LIB function summary
Purpose Definition Function Arguments Codes
Name Type No Type Range

Natural =In(x) log F 1 F O<x<infinity FE
logarithm

Common y=log(x) logl0 F 1 F 0<x<infinity F E
logarithm

Square y=sqrt(x) sqrt F 1 LF O<=x<=infinity F E
root

Exponent y=exp(x) exp F 1 LF Ixl <213 In2 FE
Sine y=sin(x) sin F 1 F x| <224 FE
Cosine y=cos(x) cos F 1 F Ixl <224 FE
Tangent y=tan(x) tan F 1 F Ixl <224 FE
Cotangent y=cot(x) cot F 1 F Ixl <224 FE
Arccosine y=arccos(x) acos F 1 F Ixi <=1 F E
Arcsine y=arcsin(x) asin F 1 F Ixl <=1 FE
Arctangent y=arctan(x) atan F 1 F 1x| < infinity FE

y=arctan(xl,x2) atan2 F 2 F Ix1| < infinity F E
Ix21 /=0

Hyperbolic y=cosh(x) cosh F 1 F Ixl <213 In2 F E
cosine

Hyperbolic y=sinh(x) sinh F 1 F Ixl <2 In2 FE
sine

Hyperbolic y=tanh(x) tanh F 1 F Ixl <2 In2 FE
tangent

Truncation y=I[x] trunc | 1 F Ix| <246 Fl

No rounding
Transfer if x2 >=0 sign F 1 F Ix| <infinity FlI
sign y:=x1,x2>=0
= -x]1, x2< 0

Leading Counts number leadz 1| 1 I FI
zero count § of leading O bits.

Population Counts number popent | 1 I FI
count of bits set to 1.

§ leadz vectorizes on CRAY-2 systems.

SR-3082 2.0 Cray Research, Inc. 127




Library Interfaces

Craoy Ada Environment, Volume 2: Programming Guide

Table 7. CRAY_LIB function summary
(continued)

Purpose

Definition Function Arguments Codes
Name Type No Type Range

Shift left

Shift right

Mask left
Mask right

Exponentiation §

Random number
generator §§

Get random seed

Set random
seed §§3

Shift x1 left x2 shiftl 1 2 I O<=x2 <64 F1
positions;

leftmast

positions lost;

rightmost

positions set to

zero.

Shift x1 right x2 shiftr I 2 I 0 <=x2 <64 FI
positions;

rightmost

positions lost;

leftmost

positions set to

zero.

Left-justified maskl I 1 I Fl
mask of x bits.

Right-justified maskr I 1 I F1
mask of x bits.

y=x1%2 o LF 2 IF F E
x1 is raised to
the x2 power.

y :=rin whichr ranf F 0 FE
is the first or
next in a series
of random
numbers
(0.0 <y <1.0).

Gets the current ranget [ 0 I Ix! < infinity NE
random number
seed.

Sets the curren: ranset [ 1 1 Ix1 < infinity N E
random number
seed.

§ Exponentiations where x1 is an integer and x2 is a float will not vectorize

§§ If ranf is called more than once in a vectorized loop it may produce random results in a different
order than scalar mode.

§88 See Volume 3: UNICOS Math and Scientific Library Reference Manual, publication SR-2081, for

details.
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Table 7. CRAY_LIB function summary
(continued)
Purpose Definition Function Arguments Codes
Name Type No Type Range
Elapsed real Determine the RTC_Timer_Start 1 I NL
time elapsed real time  RTC_Timer_Elapsed 1 I NL
between two I
events.
Elapsed real Determine the RTC_Timer_Start 1 I NL
time elapsed real time RTC_Timer_Elapsed 1 I NL
between two I
events.
Real-time clock Returns the rtec LF 0 NL
real-time clock
value in a 46-bit
integeroras a
floating-point
value.
Clock ticks Clock ticks in cpu_usec I 0 NL
microseconds as
an integer value.
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The following is an example showing how to reference CRAY_LIB

from an Ada program.

WITH Cray_Lib;
PROCEDURE Use_C(Cray_Lib IS

-~ instantiate each package whose routines will be used
PACKAGE Math_Lib IS NEW Cray_Lib.Math_Lib{(Float, Integer):
PACKAGE Bit_Lib IS NEW Cray_Lib.Bit_Lib(Integer):

PACKAGE Util_Lib IS NEW Cray_Lib.Util_Lib(Float, Integer);

FUNCTION #**~ (Value: IN Float; Power: IN Integer)
RETURN Float RENAMES Math_Lib.~***;
FUNCTION Popcnt (Value: IN Bit_Lib.Word)
RETURN Integer RENAMES Bit_Lib.Popcnt;
FUNCTICN Ranf RETURN Float RENAMES Util_Lib.Ranf;
FUNCTION Int_To__Seed (Value: IN Integer)

RETURN Util_Lib.Seed

RENAMES Util_Lib.Int_To_Seed;
PROCEDURE Ranset (Value: IN Util_Lib.Seed)

RENAMES Util_Lib.Ranset;

A: Float;
BEGIN
Ranset (Int_To_Seed(12345));
A := Ranf;
FOR I IN 1 .. 4 LOOP
A := (A ** I) + Float(Popcnt(l));
END LOOP;

END Use_Cray_Lib;
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System_Info The System_Info package may be used to identify which
package compiler was used to compile a program. The package interface
6.2 is the following:

Package System_Info is

Compiler_Version_Reference_Number: Constant := 2.0;
Compiler_Version . : Constant String := *2.0”";

end System_Info:

An example showing use of the package interface is the
following:

PACKAGE Compiler_Identification IS

PROCEDURE Report_Compiler_ID;
END Compiler_Identification;

WIITH System_Info;
With Text_I0;
PACKAGE BODY Compiler_Identification IS
PROCEDURE Report_Compiler_ID IS
BEGIN
Text_IO.Put (’"The compiler ID is”);
Text_IO.Put (System_Info.Compiler_Version);
Text_IO.New_Line;

END Report_Compiler_ID;

END Compiler_Identification;
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The Cray Ada Environment supports interfaces to other
languages, as discussed in subsection 13.9 Interface to other
languages of the Reference Manual for the Ada Programming
Language (LRM). This means that routines written in Fortran,
C, Pascal, and CAL can be called directly from Ada if they meet
the following restrictions:

¢ Pragma INTERFACE can be applied only to subprograms for
which users could have provided bodies. Examples of invalid
pragma INTERFACE subprograms/names include names used
as enumeration literals, attribute names, predefined
operators, derived subprograms, and package bodies.

o In the case of overloaded subprogram names, pragma
INTERFACE is allowed to stand for several subprograms.
However, only subprograms declared earlier in the same
declarative part or package specification are satisfied.

o If pragma INTERFACE is accepted and is applied to certain
subprograms, it is invalid to provide a body for any of those
subprograms, whether the pragma appears before or after the
body.

o If the subprogram specified in pragma INTERFACE was
declared by a renaming declaration, the pragma applies to the
denoted subprogram, but only if the denoted subprogram
otherwise satisfies the requirements.

o Nesting of pragma INTERFACE calls is supported. The level of
nesting is limited only by available memory.

As noted in the LRM, all communication between foreign
language routines and the Ada program must be achieved by the
use of parameters and function results, and the subprograms
must be as follows:

o Described by an Ada subprogram specification in the calling
program

o Specified with an appropriate pragma INTERFACE directive in
the calling program
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In addition, the routines must be assembled or compiled by a
language processor having data representation, calling, and
runtime conventions that are compatible with the forms
supported by the Cray Ada Environment, and whose object-file
format is compatible with the UNICOS linker.

Users must ensure that any foreign object modules linked with
Ada routines follow the same restrictions for addressing and
code generation as those used in compiling the Ada modules.
Cray Ada supports neither a mechanism for CPU targeting nor
the UNICOS target command.

Currently, access to the following Cray Research system
languages is supported from Cray Ada (see Table 8):

Table 8. Languages with interfaces supported in Ada

Language/interface Language name
CF177,CFT Fortran

C, UNICOS C

CAL Cray Assembly Language
Pascal Pascal

No industry-wide standards exist for interlanguage
programming. The conventions described in this manual apply
only to software running on Cray Research systems. You can
find descriptions of these conventions in Interlanguage
Programming Conventions, publication SN-3009.

Ada also supports callback. A foreign routine can call an Ada
routine by using the pragma EXPORT. In this case, the main
program must be Ada. An additional restriction is that the
foreign language caller must not include multitasking. See

“Calling Ada from foreign languages,” page 160.
See “Exception handling from foreign languages,” page 106.
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Data types
7.1

Cautions
7.2
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All the data structures defined within any one of the languages
listed in the Cray Ada Environment, Volume 1: Reference
Manual, publication SR-3014, cannot necessarily be defined in
the other languages. Some restrictions result from intrinsic
characteristics of the languages and some result from the
particular implementations. The rules that follow are for data
mappings on Cray Research computer systems and do not
necessarily apply to other vendors’ implementations.

The only data types having values that can be shared directly by
all languages previously listed are as follows:

¢ 64-bit integer

e Single-precision floating point

¢ One-dimensional arrays of 64-bit integers

¢ One-dimensional arrays of single-precision floating point

Data types that can be shared between these languages, but only
with some special processing, are as follows:

¢ Character strings
e Boolean (logical) values

o Multidimensional arrays of 64-bit integer, single-precision
floating point, and Boolean values

o Word pointers to values of 64-bit integer, single-precision
floating point, or logical values, or to arrays of those types of
values

Remember the following cautions when using pragma
INTERFACE:

¢ Setting your own error conditions, such as floating-point
exceptions, while in a foreign language module can invalidate
Ada. If this is done, the integrity of the remaining Ada
execution cannot be ensured as correct and complete.

¢ Do not call sbreak; use malloc instead. The use of sbreak
may cause unpredictable results.
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Calling and
parameter-passing
conventions

7.3

136

o Currently, only one language at a time should perform I/O. If
you write an Ada program that calls a C routine and both Ada
and C modules attempted /O, the result from Ada may be
erroneous I/O or no /O at all. This is because of the difference
in the way output file identifiers are mapped between various

languages.

o Pragma INTERFACE is portable only on Cray Research
systems.

e Only scalars and access types can be returned to Ada modules
from foreign module function calls.

e Ada, Fortran, C, and Pascal all provide ways of representing
strings of characters, but the semantics of these
character-string types vary a great deal among languages and
Cray Research systems. Details about this are beyond the
scope of this manual. See Interlanguage Programming
Conventions, publication SN-3009.

o Foreign code segments may be debugged only at the machine
level if you use adbg. At the machine level, you can also use
CDBX.

Two different calling and parameter-passing conventions are
supported by the Cray Ada Environment: an internal format
and UNICOS standard format.

The C and UNICOS format is specified with the following
statement:

pragma INTERFACE (C, subprogram_name)

An interface using the name “UNICOS” is not supported. The
pragma INTERFACE to C is intended for interfacing to code
generated by C language compilers, or by any other language
compilers that follow UNICOS conventions. It is discussed in
detail in Cray Ada Environment, Volume 1: Reference Manual,
publication SR-3014.

When interfacing to either Fortran or Pascal, the same pragma
interface specification is defined as for both Cray Assembly
Language and C, except that the appropriate language identifier
is substituted. Each of these language interfaces is discussed in
detail later in this section.
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After the Ada units are compiled and the foreign language code
is compiled and assembled, the combined code must be bound
and linked. This is accomplished by using the ada command
with the ~m option (see Cray Ada Environment, Volume 1:
Reference Manual, publication SR-3014) or by using the ald
command (see Cray Ada Environment, Volume 1: Reference
Manual, publication SR-3014).

General The Ada name of the designated subprogram is referenced
interfacing directly as a global symbol; it must resolve to an identical

. A symbol defined at link time, presumably by the foreign language
considerations routine to be called. One implication of this fact is that the name
74 of the foreign routine must conform to Ada identifier rules (such

as starting with a letter, containing only letters, digits, or
underscore characters, and so forth). Another is that pragma
INTERFACE cannot be used for overloaded subprograms.

These name restrictions may be circumvented by using one of
the Cray Ada Environment implementation-defined pragmas:
LINKNAME or INTERFACE_INFORMATION.

Either pragma must be specified immediately following an
INTERFACE pragma. These pragmas cannot apply to multiple
overloaded subprograms (unlike pragma INTERFACE).

Note

Pragmas LINKNAME and INTERFACE_INFORMATION are
supported in Cray Ada 2.0. Pragma INTERFACE_INFORMATION
provides all of the functionality of LINKNAME and adds some
functions. LINKNAME is being retained for purposes of upward
compatibility. When Cray Ada 3.0 is released, however, Cray
Research will no longer support pragma LINKNAME.

Using both pragma INTERFACE_INFORMATION and LINKNAME
against the same pragma INTERFACE call is illegal, because both
are required to follow the pragma INTERFACE call immediately.

SR-3082 2.0 Cray Research, Inc. 137




Interfacing to Other Languages

Cray Ada Environment, Volume 2: Programming Guide

Pragma
INTERFACE_INFORMATION
7.4.1

138

Pragma INTERFACE_INFORMATION takes three arguments. The
first argument is a subprogram name that has been previously
specified in pragma INTERFACE. The second is a string literal
specifying the exact link name to be employed by the code
generator in emitting calls to the associated subprogram. The
third specifies the mechanism by which the routine will be
called.

If pragma INTERFACE_INFORMATION is used, it must
immediately follow pragma INTERFACE for the associated
subprogram; otherwise a warning is issued, indicating that
pragma INTERFACE_INFORMATION has no effect.

Linking many foreign object modules by using the ald command
may become cumbersome. The user of a SEGLDR directives file
may simplify the procedure. See Cray Ada Environment, Volume
1: Reference Manual, publication SR-3014, for more information
about linking foreign object modules.
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The syntax of pragma INTERFACE_INFORMATION is as follows:

pragma INTERFACE_INFORMATION ( Name => subprogram_name,
[ (Link_Name =>] string_literal, )
[ [Mechanism =>] “PROTECTED” | “UNPROTECTED” , I:

subprogram_name
You must specify a subprogram_name. All other
arguments are optional.

Link_Name=> string_literal
Provides the link name to be used in generating calls
to the subprogram. In the absence of this argument,
the lowercase form of the subprogram’s Ada name is
used for the linkage. This argument supplants the
functionality provided by the LINKNAME pragma.

{Mechanism =>] *“PROTECTED” | "UNPROTECTED”
Specifies whether calls to the given subprogram are
protected against exceptions caused by the foreign
interface routine. The default for this argument is
*PROTECTED”. In certain cases, the code generator
must generate extra code to protect the runtime
support from being confused because of the lack of
standard trace name blocks (TNBs) in foreign code
(particularly for calls to assembly).

An example of the use of pragma INTERFACE_INFORMATIONis
as follows:

procedure Do_Something(Addr: System.address; Len : Integer);

Pragma INTERFACE (C, Do_Something):;

Pragma INTERFACE_INFORMATION (Name => Do_Something,
Link_Name => “CHANGE”,
Mechanism => *UNPROTECTED");
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Pragma LINKNAME The syntax of pragma LINKNAME is as fcllows:
7.4.2

pragma LINKNAME (subprog_name, string lit);

The following is an example of pragma L INKNAME:

procedure Dummy_Access({ Dummy_Arg : System.Address );
pragma INTERFACE (assembly, Dummy_Access );
pragma LINKNAME (Dummy_Access, ”"_access”):

System users are urged to use pragma
INTERFACE_INFORMATION instead of pragma LINKNAME.

Pragma EXPORT provides a means by which foreign code can
make calls to Ada programs, provided that the main subprogram
is an Ada routine. See "Calling Ada from foreign languages,”

page 160.
Interlanguage data A new function, label, in a package System has been added to
access Cray Ada. label provides for more convenient interlanguage
7.4.3 access to data, namely, common blocks. This mechanism
provides not for the actual declaration of common blocks but for
the referencing of them.

It is not possible for a program composed of only Ada elements to
declare and use common blocks. To use common blocks, a
program must be composed of elements written in languages
other than Ada as well as elements written in Ada.

The declaration of 1abel is the frllowing:
function label (Name:string) return Address;
The value of the Name parameter is the following:

*<linkname>, <linkage>,”
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<linkage> is defined as one of the following:

External <linkname> is the name of a normal
external variable.
Common The <linkname> is the name of a named

Fortran block. If <linkname> is empty,
blank common is referred to.

C-external The <linkname> is the name of an
external C variable. This is actually a
synonym for the <linkage> common
because C external actually references the
named Fortran blocks. Tue <1i- xacz>
name is the name of the common block.

For further information, see “Package system,” page 203.

Pragma INTERFACE One usage of pragma INTERFACE that is currently supported by
for assembly the Cray Ada Environment is to call assembly language
75 modules. Its syntax is as follows:

pragma INTERFACE (assembly, Ada_subprogram_name) ;

The calling conventions for the call to the assembly language
routine are the same as those for a call to a
Fortran-implemented routine. The restrictions for an interface
to Fortran also apply.
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Pragma INTERFACE

for C and UNICOS
76

The Cray Ada Environment supports pragma INTERFACE to
routines written in C and other languages that adhere strictly to
C interface conventions. Because UNICOS system calls are
written in C, this pragma works as an interface to UNICOS. Its
syntax is as follows:

pragma INTERFACE (C, Ada_subprogram_name);

The rules for naming subprograms are the same as those for
pragma INTERFACE to assembly; that is, the name of the C
routine being specified in the INTERFACE pragma must be a
legal Ada identifier (unless pragma INTERFACE_INFORMATION
is used), and the name may not be overloaded. For example,
given a pragma INTERFACE statement such as the following:

pragma INTERFACE (C, Get_Argument) ;

If the earlier version of C were used, one of the following two
pragma Interface_Information statements would also be
required:

pragma Interface_Information (Name => Get_Argument, “getfargument); -- X-MP
pragma Interface_Information (Name => Get_Argument, “"get@argument); -- CRAY-2

C usage considerations
7.6.1

C underscore changes
7.6.1.1

142

The following subsections include C underscore changes, C
parameter passing, C string parameters, and C special global
names.

Earlier versions of the Cray Research C compiler (those prior to
C 4.1) translated an ‘_’ character to either a ‘$’ character (on
CRAY X-MP systems) or an ‘@’ character (on CRAY-2 systems). If
you call a C routine that is compiled using an older version of the
Cray C compiler, you must have a pragma
INTERFACE_INFORMATION statement.
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C parameter passing
7.6.1.2

C string parameters
7.6.1.3

SR-3082 2.0

Because the C programming language specifies the passing of
arguments strictly by value, only in arguments may reliably be
passed to C functions. Although a C routine may legally include
an assignment to a formal parameter, it is not guaranteed that
the assignment will result in an update to the stack copy of the
parameter on exit from the routine, as required for Adas’ model
for out and in out parameters. To pass values back to the
calling program, you may specify that the value is returned
through the function return mechanism. This permits the
return of nonaggregate data types. If you want to return objects
of other types, you may pass pointers to the objects in the calling
program (such as arrays) in which the results are to be stored.
The called routine can then access these objects through the C
pointer mechanism.

The use of pragma INTERFACE to C limits the types of data that
may be passed to a C subroutine. The types currently supported
for parameters in C interface routines are scalar types (integer,
enumeration, and floating point), access types, and type
system.address. All parameters in the Ada subprogram
declaration must have mode in. These data type restrictions on
parameters also apply to the return types of functions that
interface to C.

Strings in C, by convention, are null-terminated, and they are
passed by the address of the first element. There are no implicit
index values or lengths associated with a string, and it is up to
the code that handles the string to test for the null character
that terminates the string. Strings in Ada, on the other hand,
carry implicit index values for the first and last elements, and
they are not null-terminated.

The recommended (and most efficient) way to pass strings
between Ada and C routines is for the Ada code to follow the C
conventions explicitly. Tb pass a string to a C routine, the Ada
code would store a null terminator at the end of the string and
pass the address of its first element. A C function returning a
string would be declared as an Ada function returning a value of
type system. address. Only string values that start on word
boundaries should be passed to C. It is safe to pass string
variables and string literals as parameters, but not arbitrary
string slices.

A specific example of string passing is provided in
“Command-line argument example,” page 146.
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C special global names The following global names have been declared in the run-time
7.6.14 code specifically for use in C programs:
extern int rtargc; /* Number of command line arguments*/

extern char **environ;

extern char **rtargv; /* Pointer to array of argument strings*/

/* Pointer to the environment variable string*/

C usage examples
7.6.2

The three variables are used in the same way as are the main
program arguments argc, argv, and envp.

This subsection provides examples that explain the use of
pragma INTERFACE to C. Table 9 shows a generalized mapping
of Ada to C data types and the method used for passing them.
This information is very system-dependent, is neither portable
nor standard and is recommended only for specialized
applications by knowledgeable users. There is no direct
mapping for data types other than scalars, arrays of scalars, and
access types. It is recommended that you contact your system
support staff for information based on your specific Cray
Research system and language environment.

Table 9. Summary of parameter types for Ada calling C

Parameters sent by Ada Parameters received by C Ada function
Type Passed by Type Passed by Results
integer integer int/short/long value integer
float float float value float
array array (array‘FIRST) ’address array reference legal’
access access pointer value access

§ You can use an access type to point to this structure.
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Calling C library This subsection is the first of two that show how pragma
routines INTERFACE to C may be used in Ada applications. In this
7.6.2.1 subsection, an Ada procedure, Random_Number, is provided as

an example. Random_Number generates and prints a random
integer based on a user-entered seed value. It generates this
number by making a direct call to C library functions Srand and
Rand. No user-written C code is required, and users are not
required to load library 1ibc, because the Ada linker (ald
command) does this by default.

-~ Ada procedure Random_Number -

with Text_Io;
procedure Random_Number is

-- I/0
package Iio is new Text_Io.Integer_Io (Integer);
Number : Integer;

-- Set up for pragma interface to Srand and Rand
function Srand (Seed : Integer) return Integer;
pragma Interface (C, Srand);

function Rand return Integer;

pragma Interface (C, Rand);

begin
Text_Jo.Put (”Enter seed for random number generator: *);
Iio.Get (Number);
Text_Jo.New_Line;
Number := Srand (Number):;

Number := rand;
Text_Io.Put (”“Random number is as follows: *);
Iio.Put (Number);
Text_Io.New_Line;
end Random_Number;

In the declarative part of the program, the specifications for
Rand and Srand are defined in the usual fashion. The pragmas
immediately follow the specifications. For information on the
Ada rules for preparing pragma INTERFACE specifications, see
subsection 13.9 of the LRM.
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7.6.2.2
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To make the Ada procedure Random_Number executable, compile
and link the file random. ada, which contains the main program
random_number. A copy of random. ada is in the
/usr/lib/ada/examples directory. During linking, the C
library is searched automatically for the Srand and Rand
routines.

ada -m random_number random.ada

This subsection provides another example of the use of pragma
INTERFACE to C. This time, an Ada procedure, Show_Argument,
calls C procedure Get _Argument to return command-line
arguments. The C procedure uses global variables rtargc and
rtargv.

The text of the calling Ada procedure follows; a copy of ‘he
procedure is also available in file show_args.ada in the
/usr/lib/ada/examples directory. Note the use of C pointer
types and the Ada system. address type to give the C routine
access to the string object that is to contain the returned

argument.
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-- Ada procedure Show_Argument --

with System;
with Text_Io;
procedure Show_Argument is
-- 1/0
package Iio is new Text_Jo.Integer_Io (Integer);
Position : Integer;
Argument : String (1 .. 1000);
Arg_Len : Integer;

-~ Set up for pragma INTERFACE to Get_Argument

function Get_Argument (Parameter_1l : Integer;
Parameter_2 : System.Address)
return Integer;

pragma Interface (C, Get_Argument);

begin
Text_Io.Put (”"Enter position number of argument: *);
Iio.Get (Position);
Arg_Len := Get_Argument (Position, Argument (Argument’'FIRST)‘ADDRESS) ;
Text_Io.Put_Line (“Argument is as follows: * & Argument (1 .. Arg_Len));

end Show_Argument;

SR-3082 2.0 Cray Research, Inc.
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The following is the text of the C routine called from Ada
procedure Show_Argument:

/ B e e e e o > " T o i o S D ek S il o S D o A T . S e S S S S o o T —— —— * /
/* -- C routine get_argument -- */
/ B e e o e = o e 0 e A o S S —— A — ————— T _ ki A 2 o o g S . A W T —— . i — ———— — T — - ———— — * /

short get_argument (position, arg_ptr)

short position; /* position number of argument to be returned */
char *arg ptr; /* pointer to string in which to store argument */

{
extern int rtargc; /* number of command-line arguments */
extern char **rtargv; /* pointers to command-line arguments */

short strndx; /* loop counter/string index */
char c¢; /* temporary character */

/* check argument position number*/
if (position > rtargc - 1) return (0);

/*one pass for every character in the parameter */

/* until the null character at the end of the */
/* parameter is found */
for (strndx = 0 ; ¢ = rtargv(position] [strndx] ; strndx++)

arg_ptr(strndx] = c;

return (strndx); /* return the length of the string */

Ada integer types have 46-bit precision and are passed as 64-bit
quantities. Chosing a C data type of int, short, or long
depends on the application. A short integer is used in the
preceding example. See the Cray Standard C Programmer’s
Reference Manual, publication SR-2074, or the Cray C Reference
Manual, publication SR-2024, for information about C integer

types.
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The steps involved in making the Ada procedure executable are
as follows:

1. Compile the C routine. To do this, compile Get _Argument
with the native C compiler, as in the following example:

scc -c get_arg.c

In this example, scc invokes the Cray Standard C compiler,
and the -c option tells the compiler to compile the source
code in file get_arg.c without linking it. The resulting
object code is stored in the get_arg. o file. Remember to
target your C code for an EMA system when compiling on a
CRAY Y-MP or CRAY X-MP system.

2. Compile and link the calling Ada procedure. First invoke the
Ada compiler and then the Ada linker, as in the following
example:

ada /usr/lib/ada/examples/show_args.ada
ald -p ‘get_arg.o’ show_argument

In this example, show_args.ada is the source file containing
the Ada pr- ‘edure Show_Argument, show_argument is the
executable Je the linker produces and puts in the current
working directory, and get _arg.o is the object module
produced by the C compiler. The -p option directs the
compiler to include object file get _arg.oin the link. The
-p option can also appear on the command line for ada when
the -m option is used. In this case, the compiler passes the
option to the linker. For details on the ada and ald
commands, see Cray Ada Environment, Volume 1: Reference
Manual, publication SR-3014.

Accessing C global The following example uses System.Label to access external
variables variable errno. When errno is used, external must be specified
7.6.2.3 in the declaration for System. Label.
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with SYSTEM;
package LIBC_ROUTINE is

-- Declaration for a LIBC routine used to create a file
function CREATE_FILE(FILENAME : in SYSTEM.ADDRESS;
MODE: in INTEGER) return INTEGER;

pragma INTERFACE (C, CREATE_FILE);
pragma INTERFACE_INFORMATION (CREATE.FILE, "create”);

end LIBC_ROUTINE;
with System, UNCHECKED_CONVERSION, TEXT_IO, INTEGER_TEXT_IO;
with LIBC_ROUTINE;

procedure lab003 is
-- an example of how to map global C variables to Ada variables.
~- The L1IBC routine “creat” creates a file in a directory. If the
-- file creation fails, the global C variable "errno” is updated
-- with the reason for the failure. 1In order for an Ada program to
-- examine this global value, an address clause is used to map
-- the global C variable to a local Ada object.

ERROR1 : INTEGER;
ERRNO : INTEGER;
for ERRNO use at System.Label (“errno,external”);

FILE _CREATION_FAILED : exception;

FILE_NAME : STRING (1 .. 14);
SUCCESSFUL_CREATE : constant INTEGER := 0; --
FILE_DESCRIPTOR : INTEGER;

LAST : INTEGER;

begin

TEXT_IO.PUT ("Enter file name to create:");
TEXT_IO.GET_LINE (FILE_NAME, LAST):;
FILE_DESCRIPTOR := LIBC_ROUTINE.CREATE_FILE (FILE_NAME'ADDRESS,
8#7T77#);
ERROR! := ERROR1;
(continued)
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Cray Research, Inc. SR-3082 2.0




Cray Ada Environment, Volume 2: Programming Guide Interfacing to Other Languages

if FILE_DESCRIPTOR < 0 then
raise FILE_CREATION_FAILED;
end if;

exception
when FILE_CREATION_FAILED =>
TEXT_IO.PUT ("File creation failed with error number: *);
INTEGER_TEXT_IO.PUT (ERROR1);
TEXT_IO.NEW_LINE;

end 1lab003

Pragma INTERFACE
to Fortran

7.7

The Cray Ada Environment supports pragma INTERFACE to
routines written in Fortran. The format for pragma INTERFACE
to a Fortran routine is as follows:

pragma INTERFACE (Fortran, Ada_subprogram name) ;

SR-3082 2.0

Fortran specifies the passing of arguments by address
(reference). Therefore, the compiler will pass the address of
parameters, unless the actual is an address or access types.

Functions may also be declared as being interfaced to Fortran,
but their result type is restricted to being either a scalar type,
access type, or system. address type (Ada access types
correspond to Fortran pointer types).

Table 10 shows a generalized mapping of Ada to Fortran data
types and the method used for passing them. This information
is very system dependent, is neither portable nor standard, and
is recommended only for specialized applications by
knowledgeable users. There is no direct mapping for data types
other than scalars, arrays of scalars, and access types. Itis
recommended that you contact your system support staff for
information based on your specific Cray Research system and
language environment.
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Table 10. Summary of parameter types for Ada calling Fortran

Parameters received by
Parameters sent by Ada Fortran Ada function
Type Passed by Type Passed by Results
integer integer’address integer Reference integer
float float’'address real Reference float
array(l..n,1l..m) array (array’'FIRST) ' ADDRESS array Reference Ilegal ¢
access access’address pointer Reference access

§ You could use an access type to point to this structure.

Fortran usage The following subsections describe considerations specific to
considerations Fortran. These include both parameter passing and string
7.71 parameters.

Fortran parameter passing The interlanguage programming conventions described in this

7.7.1.1 manual apply to Fortran. Ada programmers must transform
data to conform to these conventions if they intend to write
programs that may have to interface with either programs or
library routines that may be written in other languages. (Many
Cray Research library routines are written in Fortran.)

Fortran stores multidimensional arrays differently than do Ada,
C, and Pascal; it keeps them in column-major order, because that
is how Cray Research library routines operate on them. (UNIX
library routines may be different than those in UNICOS.)
Because of this difference between Fortran and Ada (as one
example), routines that are written in Ada, declare
multidimensional arrays, and that may be used with Fortran
code or passed to library routines should be careful to do the

following:
¢ Reverse the order of the dimensions in the declarations

* Reverse referencing subscripts in the code to conform to the
column-major storage system
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Fortran string parameters
7.7.1.2

Fortran usage examples
7.7.2

Calling a Fortran library
routine
7.7.2.1

SR-3082 2.0

See the listing for get _copy . ada on page 156 for an example of
this.

Fortran passes strings by using a Fortran character descriptor.
There is no direct mapping from an Ada character string to a
Fortran character descriptor in Cray Ada release 2.0. Contact
your local Cray Research representative for information specific
to your system and language environment.

This subsection provides several examples explaining the use of
pragma INTERFACE for Fortran. The test cases do not
necessarily do any useful work; they are meant to be simple,
concise examples of how to pass parameters between Ada and
Fortran. Source files for each example are in the
/usr/lib/ada/examples directory.

In this example, an Ada program, ada_sin.ada, uses pragma
INTERFACE to call a Fortran math library routine, sin. The Ada
routine follows:
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with System;
with Text_Io;

procedure Ada_Sin is

-- I/0

package Fio is new Text_Io.Float_Io
(Float);

-~ Define Variables

X : Float;-- input value to sin

Y : Float;-- return value from sin

-- Set up for pragma interface to Sin

function Sin (X : System.Address) return
Float;

pragma Interface (Fortran, Sin);

begin
X := 1.570795;
Y := Sin (X'Address):
Text_Io.Put (“sin of *);
Fio.Put (X);
Text_Io.Put (" is *);
Fio.Put (Y);
Text_Io.New_Line;

end Ada_Sin;

The Ada program can be compiled and linked by the following
commands:

ada -v ada_sin.ada
ald -v ada_sin

The first of these two command lines calls the Ada compiler to
compile ada_sin.ada. The ald command calls the Ada linker
to bind and link the object files in the Ada library. The Fortran
SIN routine is located in UNICOS library libm.a. Because this
is one of the libraries that SEGLDR searches by default, it is not
necessary to specify this library explicitly on the linkage
command line. The executable module is called ada_sin.
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Calling a user-defined
Fortran routine
7.7.2.2

In the following example, an Ada program, chng_£1t . ada, calls
a Fortran routine, change. £, passing an iuteger value io it.
The integer is changed to a floating-point number, multiplied by
a floating-point value, and the result is passed bzck to the Ada
routine, which then prints it. The Ada routine, chng_f1t.ada,

follows.

Send_value
Return_value
with System;

with Text_Io;

procedure Chng_Flt is

-- I/0

subtype Flt
subtype Int
package Fic
package Iio

is
is
-- Define Variables
Send_Value : Int;

Return_Value Flt;

function Change

begin
Send_Value
Return_Value

Text_Io.Put

Iio.Put

Text_Io

Fio.Put

Text_Io.New_Line;
end Chng_Flt;

JPut (”

integer;
float;

is Float;

is Integer;
new Text_Io
new Text_TIo.Integer_Io

-- Set up for pragma interface to Change
{(Intarg
pragma Interface (Fortran, Change):

1025032;

:= Change (Send_Value’Address);
-- preceding line is call to Fortran
("Integer Value = *);
{(Send_value);

Float Value =
{Return_vValue) ;

(Flt);
(Int);

.Float_Io

System.Address) return Float;

")

SR-3082 2.0
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The Fortran routine change is as follows:

c

returns 15.325 times the Input Value.
function change(ival)
integer ival
change = float(ival) * 15.325
return
end

The example can be compiled and linked by the following
commands:

cf77 change.f
ada -v -m chng_f1lt -p ‘change.o’ chng_£flt.ada

The CF77 compilation uses its default parameters and produces
an object file, change.o. Remember to target your Fortran code
for an EMA system when compiling on a CRAY X-MP EA system.
The Ada command line asks for verbose messages and
automatically calls the Ada linker, producing an executable file,
chng_£1t. The -p option is sent to the linker, and it requests
that the object module be included at link time. The
chng_f1t.ada file is the Ada module to be compiled.

Accessing Fortran common This subsection includes two examples. They are examples of

blocks
7.7.2.3

156

accessing Fortran common blocks and external data. In the
second example, the Ada routine copies the Fortran array.

The following is an example of using system. label. A common
block is set up in Fortran. The Ada program calls the Fortran
subroutine, and the Fortran subroutine assigns values to the
variables in the common block. On return to Ada, the values are
printed to show that the two routines are sharing the data.

To compile and link this code, perform the following:

ada -v lab001l.ada
cf77 lab002.f
ald -v -p ‘lab002.0’ lab001
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RECORD

END RECORD;

BEGIN

Lab002;

END;

Fortran code:

ix=5
iy=6
iz=7

END

with SYSTEM, TEXT_IO;

PROCEDURE lab001 IS

TYPE common_rec IS
X: INTEGER;
Y: INTEGER;
Z: INTEGER;

PRAGMA PRESERVE_LAYOUT (common_rec) ;

COmm_rec_vVar:common_rec;
for comm_rec_var use at system.label(”Cl,COMMON”);

package Iio is new Text_Io.Integer_Io{Integer);’
procedure Lab002;
pragma INTERFACE(Fortran, Lab002);

text_IO.Put_Line(”test 1ab001*);

Iio.Put (comm_rec_var.X);
Iio.Put (comm_rec_var.Y);

SUBROUTINE LABQ0O02 ()
COMMON/Cl/ix,iy.,iz

SR-3082 2.0

The previous example shows how to copy an array from a
Fortran common block by using the Ada get_copy .ada routine,
which calls a Fortran subroutine, copy . £. Because the array is
copied, rather than shared as in the previous example, any
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assignments to the copied array in Ada do not affect the Fortran
version of the array. The dimensions and order of the subscripts
must be reversed, because Fortran stores array elements by
column-major order.

The source codes for both of the routines in this example are
located in /usr/lib/ada/examples.

The Ada routine, get_copy . ada, follows:

with System;
with Text_Io;
procedure get_copy is

-- Data

X_copy: array(l..2,1..3) of Float;

-- I/0

package Fio is new Text_Io.Float_Io (Float);

-- Set up for pragma interface to Copy
procedure Copy(I: In System.Address):
pragma Interface (Fortran, Copy):

begin

Copv (X_copy'address) ;

Text_Io.Put ("The values of array x are: *);

Text_Io.New_Line;

for I in 1..2 loop
for J in 1..3 loop

Fio.Put (X_copy(I,J));

end loop;
Text_Jlo.New_Line;

end loop;

Text_Io.New_Line;

end get_copy:
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The Fortran routine, copy . £, follows.

subroutine copy (v)
C reverse dimensions
common /block2/x(2,3)
dimension y(3,2)
data x/1.1,2.1,1.2,2.2,1.3,3.3/
write (*,*) x(1,1),x(1,2),x(1,3)
write (*,*) x(2,1),x(2,2),x(2,3)
C reverse subscripts
do 10 i=1,2
do 10 j=1,3
10 y(i,i) = x(i,3)
return
end

You can compile and link the preceding example, producing an
executable file named get_copy, with the following UNICOS
command lines:

cf77 /usr/lib/ada/examples/copy.f
ada -m get_copy -p ‘copy.o’ /usr/lib/ada/examples/get_~opy.ada

Pragma INTERFACE The Cray Ada Environment supports pragma INTERFACE to
for Pascal routines written in Pascal. The format for a pragma that
78 provides an interface to a Pascal routine is as follows:

pragma INTERFACE (Pascal, Ada_subprogram_name);

The Pascal routine must be declared Exported, as follows:

procedure Ada_subprog_name; Exported
(ada_subprog_name) ;
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Calling Ada from
foreign languages
7.9
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The Exported statement is necessary, and it must have as its
argument the all-lowercase name of the routine as declared in
the INTERFACE pragma. If pragma INTERFACE_INFORMATION
is used instead of INTERFACE, the routine-name argument is
specified exactly as declared in INTERFACE_INFORMATION.

Pascal routines called from Ada are limited to having only value
and VAR parameters that are scalars. pointers, composites
(though no conformant arrays are permitted), or strings. Pascal
functions may return only scalars or pointers.

To pass a variable to a Pascal VAR parameter, the Ada
declaration of that Pascal routine must declare that parameter
as in out. Pascal value parameters must be declared in Ada as
in parameters. All other combinations are currently
unsupported and can cause unpredictable results.

Ada composites passed to Pascal must be constrained. Ada
strings passed to Pascal must be constrained and word aligned.

Note

If any of the parameters are access types, Pascal pointer
checking must be disabled. Insert (*#RPN*) into your Pascal
subroutines that are called from Ada.

Pragma EXPORT provides a means by which foreign code can
make calls to Ada programs. Routines written in Fortran, C,
Pascal, and assembler languages can call Ada subprograms,

provided that an Ada routine is the main subprogram.
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This pragma is allowed to be given only for a library subprogram
or for a subprogram declared immediately within a package
specification or body that is itself not declared within another
subprogram, task, or generic unit. The pragma must be given
within the same task or generic unit and in the case of a library
subprogram within the same specification or declarative part
that contains the subprogram declaration. No more than one
EXPORT pragma is allowed for a given subprogram name. If the
name denotes more than one subprogram declared earlier within
the same package specification or declarative part, a warning is
issued and the pragma is ignored.

Parameters used in the exported routine must be of type access
or system. address.

The calling foreign language routine must not be multitasked in
any way (microtasked, macrotasked, or autotasked), nor should
any of its callers be multitasked. The Ada compiler does not
necessarily generate reentrant code for subprograms, and
reentrance of code is a requirement for multitasking. This
restriction applies to only multitasking and not to Cray Ada
tasking. Ada tasks can call foreign language routines, which can
subsequently call back into Ada, without any problems.

Note

The EXPORT pragma does not allow the specification of language
unlike pragma INTERFACE.

The syntax of pragma EXPORT is the following:

pragma EXPORT ([NAME =>
<subprogram>
{, [LINK_NAME =>] <string_literal>];

SR-3082 2.0 Cray Research, Inc. 161




Interfacing to Other Languages

Cray Ada Environment, Volume 2: Programming Guide

Calling Ada from

assembly language
79.1

Calling Ada from
Fortran
7.9.2

162

subprogram

string_lite
ral

This argument must be the simple name of
a subprogram, subject to the restrictions
specified previously.

The name is allowed to be a name given by
a subprogram. Renaming is allowed only
if the renaming declaration occurs
immediately within the same package
specification or declarative as the
subprogram that is renamed and an
EXPORT pragma does not otherwise apply
to the subprogram. The name is not
allowed to denote a subprogram for which
an INTERFACE pragma has been specified.

Similarly, an INTERFACE pragma may not
be specified for a subprogram for which an
EXPORT pragma has been specified.

This argument is a string literal defining
the link name that external languages will
use to access the named subprogram. The
link_name must be specified.

The calling conventions for calling Ada from Cray Assembly
Language using pragma EXPORT are the same as those for
calling Ada from Fortran.

The following example shows a pragma EXPORT using Fortran.
The main program is Ada, and it calls the Fortran routine,
caller. caller then invokes the Ada subprogram, exported.
This routine prints out the values. Control then returns to
Fortran, then back to Ada, and the program exits.
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— The program will display the values of

— In exported:
—a.all =27
— b.all = 28
—call=29
—d.all =30
package exporter is
type alInt is access Integer;

i, 3, k, 1 integer;
begin

1 := 27;

j := 28;

k := 29;

1 := 30;

caller (i, j, k, 1);

end texport;

— a, b, c and d, they will be 27, 28, 29 and 30, respectively.

procedure exported (a, b, ¢, d : in alnt);
pragma export (exported, *“EXPORTED”);
end exported;
with Text_IO;
package body exported is
procedure exported (a, b, ¢, 4 : in alInt) is
begin
Text_IO.Put_line(”In exported:”);
Text_IO.Put_Line(”a.all = "& integer’image(a.all));
Text_IO.Put_line("b.all = *& integer‘'image(b.all));
Text_IO.Put_line(”c.all = “& integer’image(c.all)});
Text_IO.Put_line("d.all = “& integer’image(d.all)):
end exported;
end exported;
with System;
with Text_IO;
with exporter;
procedure texport is
procedure caller (d, e, £, g : in Integer);

pragma interface ( FORTRAN, caller);

SR-3082 2.0
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Fortran Source Code:

subroutine caller (I,J,K,L)
call exported (I,J,K,L)

end

Calling Ada from C
7.9.3

164

The following is an example of the EXPORT pragma using C. The
Ada main program calls the C function, caller. The C function
calls the Ada subprogram exported. The exported
subprogram prints the values. Control is then returned to C, a
return value of 0 is sent back to the Ada main program and the
value is printed.
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— The program will display the values of

— a, b, ¢ and d, they will be 27, 28, 29, and 30, respectively.
— Status is equal to zero.

— In exported:

—a=27

—b=28

—c=29

—d=30

— Status = 0

package exporter is
type aInt is access Integer;
procedure exported {(a, b, ¢, d : in alInt);
pragma export (exported, “exported’);

end exporter;

with Text_I0;
package body exporter is
procedure exported (a, b, ¢, 4 : in alInt) is
begin
Text_IO.Put_line(”In exported:”*);
Text _I0.Put_line(”a *& integer’'imagef(a.all)):
Text _IO0.Put_line("b *& integer’image(b.all));
Text_IO0.Put_line(”*c *& integer’'image(c.all));
Text_IO.Put_line(”d *& integer’image(d.all));
end exported;
end exporter:;

with System;

with Text_IO;

with exporter;

procedure texport is
function caller (d, e, £, g : in integer) return Integer;
pragma interface (C, caller);
i, j, k, 1, status: integer:

begin
i := 27;
j = 28;
k := 29;
1 := 30;
status := caller(i, j, k, 1);

Text_IO.Put_line(”Status =" & integer’image(status));

end texport;
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C source code:

short caller(i,j,k,1)
short i,3.k,1;
{

exported (&i, &7, &k, &1);

return(0);

Calling Ada from
Pascal
7.9.4

186

The following is an example of the EXPORT pragma using Pascal.
The Ada main program calls the Pascal function, caller. The
caller then calls the Ada subprogram, exportpascal. The
exportpascal subprogram prints the values. Control is then
returned to Pascal. A value of 0 is returned to the Ada main
program, and the value is printed.

Cray Research, Inc. SR-3082 2.0




Cray Ada Environment, Volume 2: Programming Guide Interfacing to Other Languages

— The program will display the values of

— a, b, c and d, they will be 27, 28, 29, and 30, respectively.
— Status is equal to zero.

— In exported:

—a=27

—b=28

—c=29

—d=30

— Status =0

package exporter is
type alnt is access Integer;
procedure exportpascal (a, b, ¢, d : in alnt);
pragma export (exportpascal, "EXPORTPASCAL");
end exporter:

with Text_IO;
package body exporter is
procedure exportpascal (a, b, ¢, d : in alInt) is
begin
Text _IO.Put_line("In exported:”);
Text_IC.Put_line(” a = * & integer'image(a.all));
Text_IO.Put_line(” b " integer’image(b.all));
Text_IO.Put_line(” ¢ = ~ integer’'image(c.all));
Text_IO.Put_line(” 4 integer'’'image(d.all));
end exportpascal;
end exporter;

|
R R R

with System;

with Text_IO;

with exporter;

procedure texport is
function caller(d, e, £, g : in Integer) return Integer;
pragma interface (PASCAL, caller);
i, j, k, 1, status: integer:

begin
i = 27,‘
j = 28,‘
k := 29;
1l := 30;
status := caller(i, j, k, 1);

Text_IO.Put_line(” Status = " & integer'image(status));

end texport;

(continued)
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Pascal Source Code:

Module mod004;

procedure exportpascal(a : INTEGER; (*External Ada routine definition*)
b : INTEGER;
¢ : INTEGER;
d : INTEGER); EXTERNAL;
function caller(a : INTEGER;
b : INTEGER;
¢ : INTEGER;

d : (INTEGER) INTEGER; EXPORTED;

(*Necessary for creating a.o without a main program¥*)

begin
exportpascal(a,b,c.d);
caller := 0;
end.
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The Cray Ada compiler supports the full ANSI Ada language as
defined by the Reference Manual for the Ada Programming
Language (LRM) publication ANS/MIL-STD-1815A. This
subsection describes the sections of the language that are
designated by the LRM as implementation dependent for the
compiler and runtime environment. These ianguage-related
issues are presented in the order in which they appear in the
LRM. Each section answers the corresponding section of
questions presented in Ada-Europe Guidelines for Ada Compiler
Specification and Selection (J. Nissen and B. Wichmann, MPL
Report DITC 10/82).

This subsection describes the parts of section 2 of the LRM that
are applicable to the Cray Ada implementation.

The host and target character set is the ASCII character set.

The maximum number of characters on an Ada source line is
200.

The Cray Ada compiler implements all language-defined
pragmas. Pragmas PAGE and LIST are supported in the context
of source and error listings.

The implementation-defined pragmas for the Cray Ada compiler
and their documentation are as follows:

¢ COMMENT, described in this subsection

e EXPORT, described on page 160
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¢ IMAGES, described on page 171

e INTERFACE_INFORMATION,described onpage 138

PRESERVE_LAYOUT, described on page 81

SUPPRESS_ALL, described on page 190
e VECTORIZE_LOOP, described on page 65

e NO_SUPPRESS, described on page 190

» LINKNAME,described on page 140
Pragma COMMENT Pragma COMMENT embeds a comment into the object code. Its
Al131 syntax is as follows:

pragma COMMENT (string_literal) ;

The string_literal represents the characters to be embedded in
the object code. Pragma COMMENT may appear at any location in
the source code of a compilation unit except the generic formal
part of a generic unit. You may enter any number of comments
into the object code by using pragma COMMENT.

Pragma Pragma INTERFACE_INFORMATION provides an interface to any
INTERFACE_INFORMATION routine whose name can be specified by an Ada string literal. It
A132 may appear in any declaration section of a unit. This allows

access to routines whose identifiers do not conform to Ada
identifier rules. Pragma INTERFACE must always appear
immediately before pragma INTERFACE_INFORMATION for the
associated program. The syntax is as follows:

pragma INTERFACE (subprogram_name);
pragma INTERFACE_INFORMATION (subprogram_name,string literal) ;
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Pragma OPTIMIZE
Al1321

LRM section 3:
Declarations and
types

A2

LRM 3.2.1: Object
declarations
A2l

LRM 3.5.1:
Enumeration types
A22

Pragma INTERFACE__INFORMATION takes two arguments. The
subprogram name argument was previously specified in a
pragma INTERFACE. The second is a string literal argument

that specifies the exact link name to be used by the code
generator in emitting calls to the associated subprogram. See
“Interfacing to Other Languages,” page 133, for more information.

Pragma OPTIMIZE is supported with limitations. The -0 option
must be specified for this option to take effect.

This subsection describes the parts of LRM section 3 applicable
to the Cray Ada implementation.

The Cray Ada compiler produces warning messages about the
use of uninitialized variables if the optimizer is run. The
compiler does not reject a program merely because it contains
such variables.

The theoretical maximum number of elements in an
enumeration type is (245) -1. The actual limit is much lower due
to hardware address limits, and can be realized only if
generation of the image table for the type has been deferred and
there are no references anywhere in the program that would
cause the image table to be generated. The image table is
actually two tables: a string literal consisting of all the literals
concatenated together, and an index table consisting of an array
of integers of length (numer_of _literals + 1)

It is obvious from this that for a very large enumeration type,
the length of the image table can become quite large.

The Cray Ada implementation-defined pragma IMAGES controls
the creation and allocation of the image table for an enumeration
type. This pragma may appear only in a compilation unit. The
syntaxes of this pragma are as follows:
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pragma IMAGES

(enumeration_type, deferred):;
(enumeration_type, immediate);

LRM 3.5.4: Integer

types
A23

LRM 3.5.5: Operations
of discrete types
A24

172

The default clause is deferred. This saves space in the literal
table by not creating an image table for an enumeration type
unless the ' image, ‘' value, or ‘width attribute for the type is
used. If one of these attributes is used, an image table is
generated in the literal pool of the compilation unit in which the
attribute is used. If the attributes are used in more than one
compilation unit, more than one image table is generated,
eliminating the benefits of deferring the table. Using the default
clause, deferred, for all enumeration types lets users declare
very large enumeration types. Using the immediate clause
generates the literal table.

There is one predefined integer type: INTEGER. The attributes
of type INTEGER are shown in Table 11. Using explicit integer
type definitions rather than predefined integer types result in
more portable code. Types Short_Integer and Long_Integer
are not implemented.

Table 11. Attributes of predefined type INTEGER

Attribute Type INTEGER

'First -35,184,372,088,832 (-2**45)
‘Last 35,184,372,088,831 (2**45)-1
'Size 46

'Wwidth 15

Cray Ada supports implementation-dependent attributes for
discrete types as described on the following pages.
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Extended_Image
attribute for discrete types
A24.1

Extended_Image
attribute for integer types
A24.2

The Extended_Image attribute returns the string image
associated with its first parameter (either an integer or
enumeration type), based on the appropriate type Text_I0
definitions found in the LRM.

The definition for the Extended_Image attribute for integers
states that the value of ITEM will be consistent with the LRM
integer Text _IO definition for put: an integer literal with no
underlines, no exponents, no leading zeros (but a single zero for
the zero value), and a minus sign if negative. If the resulting
sequence of characters to be output has fewer than width
characters, leading spaces are first output to make up the
difference. See LRM subsections 14.3.7:10 and 14.3.7:11. The
Extended_Image attribute has the following syntax when used
with integer types:

T'Extended_Image (Item, Width,Base, Based, Space_If Positive)

SR-3082 2.0

For a prefix T that is a discrete type or subtype, this attribute is
a function that may have more than one parameter. Named
association cannot be used with any of the parameters.
Parameter Item must be an integer value. The resulting string
is without underlines, leading zeros, or trailing spaces.

The parameter descriptions for the Extended_Image function
for integer types are as follows:

Parameter Description

Item Item for which an image is desired. This
parameter is required.

Width Minimum number of characters to be in the
returned string. If a width is not specified, the
default is 0.

Base Base in which the image is to be displayed. Ifa

base is not specified, the default is 10.
Based Specifies (true or false) whether the returned

string is in base notation. If a preference is not
specified, the default is false.
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Parameter Description

Space_If_Positive
User may specify whether the sign bit of a
positive integer is included in the string
returned. If a preference is not specified, the
default is false.

Example of To see how this attribute can be used, suppose the following
Extended_Image for subtype were declared:

integer types

A243 Subtype T is Integer Range -10..16;

The following would then be true:

T'Extended_Image(5) = "5~
T'Extended_Image(5,0) = *5”
T'Extended_Image(5,2) = " 57
T’'Extended_Image(5,0,2) = *101~
T'Extended_Image(5,4,2) = * 101~
T'Extended_Image(5,0, 2, True) = "2#101#"
T'Extended_Image(5,0,10,False) = "5~
T'Extended_Image(5,0,10,False, True) = * 5~
T'Extended_Image(-1,0,10,False,False) = *-17*
T'Extended_Image(-1,0,10,False, True) = *-1"
T’'Extended_Image(-1,1,10,False, True) = *-1"
T'Extended_Image(-1,0,2,True, True) = "-2#1%"
T'Extended_Image(-1,10,2,True,True) = “-2#1#"
Extended_Image The definition for the Ext ended_Image attribute for
attribute for enumeration enumeration types states that, given an enumeration literal, the
types Extended_Image attribute outputs the value of the
A244 enumeration literal (either an identifier or a character literal)

consistent with the LRM integer Text_IO definitions for
enumeration types. The character case parameter is ignored for
character literals. See LRM subsection 14.3.9:9. The

Ext ended_Image attribute has the following syntax when used
with enumerat ion types:
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T'Extended_Image (Item, Width, Uppercase)

For a prefix T that is a discrete type or subtype, this attribute is
a function that may have more than one parameter. The Item
argument must be an enumeration value. The image of an
enumeration value is the corresponding identifier, which may
have character case and return string width specified.

The parameter descriptions for the Ext ended_Image function
for enumeration types are as follows:

Parameter Description

Item Item for which an image is desired. This
parameter is required.
Width Minimum number of characters to be in the

returned string. If a width is not specified, the
default is 0. If the width specified is larger than
the image, the return string is padded with
trailing spaces. If the width specified is smaller
than the image, the default is used, and the
image is output completely.

Uppercase  Specifies the case of the returned string. The
default, t rue, is uppercase, and falseis

lowercase.
Example of To see how this attribute can be used, suppose the following
Extended_Image for types were declared:
enumeration types
A245 Type X is (red, green, blue, purple)};

Typeyis (Ial' IBI’ Icl, 'D'),'

Given the preceding type declarations, the following would be

true:

X'Extended_Image(red) = "RED”
X'Extended_Image(red, 4) = "RED *
X’'Extended_Image(red, 2) = "RED”"
X'Extended_Image(red, 0, false) = "red”
X'Extended_Image(red, 10, false) = "red”
Y’'Extended_Image(’a’) = #rg'n
Y 'Extended_Image(‘B’) = "B
Y'Extended_Image('a’,6) = "'a3'"
Y'Extended_Image(’'a’,0,true) = *"'a’'”
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Extended_Vvalue
attribute for discrete types
A24.6

Example of
Extended_value for

integer types
A2417

Example of
Extended_value for
enumeration types
A248

178

The Extended_Value attribute returns the integer or
enumeration value associated with a string item in a manner
consistent with the LRM Text_IO definition for the discrete
type. The Extended_Value attribute begins reading from the
beginning of the string as described in LRM subsections
14.3.7.14 and 14.3.9:11 for the get procedure. The
Extended_value attribute has the following syntax:

X'Extended_value (Item)

For a prefix X that is a discrete type or subtype, attribute
Extended_Value is a function with a single parameter. The
actual parameter, Item, must be of predefined type string. Any
leading or trailing spaces in string X are ignored. In the case
where an illegal string is passed, a CONSTRAINT_ERROR is
raised.

The parameter description for the Extended_Value function for
discrete types is as follows:

Parameter Description

Item Parameter of predefined type st ring. The type
of returned value is the base type X.

To see how this attribute can be used with integers, suppose the
following subtype were declared:

Subtype X is Integer Range -10..16;

Given the preceding type declaration, the following would be
true:

X'Extended_value(”5*) =5
X’'Extended_Value(” 5*) =5
X'Extended_Value(“2#101#") =5
X'Extended_Value(”"-1") = -1
X'Extended_Value(” -17) = -1

To see how this attribute can be used with enumeration types,
Suppose the following type were declared:

Type X is (red, green, blue, purple);
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Extended_width
attribute for discrete types
A249

Extended_width
attribute for integer types
A24.10

Example of
Extended_width for
integer types

A24.11

SR-3082 2.0

The following would then be true:
X'Extended_value(*red”) = RED
X’'Extended_Vvalue(” green”) = GREEN
X'Extended_value(* Purple”) = PURPLE
X'Extended_value(” GreEn *) = GREEN

The Ext ended_width attribute returns the width value of type
Natural for a parameter, depending on its type.

For a prefix X that is a discrete subtype, the Extended_width
attribute is a function that may have multiple parameters. This
attribute yields the maximum image length over all values of
type or subtype X. Its syntax, when used with integer types, is
as follows:

LRM Annotations

X'Extended_width (Base, Based, Space_If_Positive)

The parameter descriptions for the Extended_wWidth function
for integer types are as follows:

Parameter Description

Base Base in which the image is to be displayed. Ifa
base is not specified, the default is 10.
Based Specifies (true or false) whether the returned
string is in base notation. If a preference is not
specxﬁed, the default is false.
Space_If Positive

User may specify whether the sign bit of a
positive integer is included in the string
returned. If a preference is not specified, the
default is false.

To see how this attribute can be used with integer types, suppose

the following subtype were declared:

Subtype X is Integer Range -10..16;
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Given the preceding type declaration, the following would be

true:

X'Extended_width
X'Extended_Width(10)
X’'Extended_wWidth(2)
X'Extended_Width (10, True)
X'Extended_Width(2, True)

X'Extended_width(10,False, True)
X’'Extended_wWidth(10,True, False)
X'Extended_Width (10, True, True)

X'Extended_width(2, True, True)

X’'Extended Width(2,False, True;

Extended_Width

AW IJJWwow-~Junww

“_10"

“_10"
~1000C"
"-10#10#"
*2#10000#~
~ 161
“-10#10#%~

“ 10#16#"

© 2#10000#~
* 10090"

For a prefix X that is a discrete type or subtype, the

attribute for enumeration Extended_width attribute is a function yielding the maximum
types image length over all values of enumeration type or subtype X.
A24.12 Ita syntax, when used with enumeration types, is as follows:

FUNCTION Extended_Width RETURN Natural;

There are no parameters to this function. It returns the width of
the largest (width) enumeration literal in the enumeration type

specified by X.
Example of To see how this attribute can be used with enumeration types,
Extended_width for suppose the following types were declared:
enumeration types
A24.13 T™vpe X is (red, green, blue, purple):

Type Z is (X1, X12, X123, X1234);

The following would then be true:

X'Extended_width = 6 -- *purple”

Z'Extended_wWidth =5 -- "X1234"
LRM 3.5.7: Using the formulas defined in subsection 3.5.7 of the LRM, you
Floating-point types would expect MAX_DIGITS to equal 15 on a Cray Research
A25 system. On a Cray Research system, floating-point accuracy is

defined differently in Ada than in Fortran.
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Theoretically, the maximum number of digits of accuracy that
can be obtained from a floating-point number with a 48-bit
mantissa is 14 (for more information, see subsection 3.5.7 of the
LRM). However, the rounding errors introduced by the hardware
in performing floating-point division using a reciprocal
approximation cause slight variations in the accuracy of the
low-order bits. This can affect the accuracy of the last decimal
digit of the result, violating the Ada rules of the accuracy of
floating-point arithmetic. For this reason, the maximum
number of decimal digits was defined as 13, allowing for a
mantissa of only 44 bits. This eliminates the accuracy problems
encountered from the rounding of the low-order bits.

The only predefined floating-point type is FLOAT. The
attributes are shown in Table 12. Using explicit real type
definitions will lead to more portable code. Types Short_Float
and Long_Float are not implemented.

Table 12. Attributes of predefined type FLOAT

Attribute Type FLOAT

'Machine_Overflows TRUE
‘Machine_Rounds TRUE
‘Machine_Radix 2
‘Machine_Mantissa 45

'‘Machine_Emax 8191

‘Machine_Emin -8192

‘Mantissa 45

'Digits 13

'Size 64

' Emax 180

'Safe_Emax 8190

‘Bpsilon 5.684341886081E-14

'First ~2.726870339049E+2465
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Table 12. Attributes of predefined type FLOAT

(continued)

Attribute Type FLOAT
‘Last

2.726870339049E+2465
'safe_Large 2.726870339049E+2465
'Safe_Small 1.833603867555E-2466
‘Large 1.532495540866E+54
‘Small 3.262652233999E-55

Cray Ada supports system-defined attributes for floating-point
types as described on the following pages.

The Ext ended_Digits attribute returns a number of type
Natural, showing the number of digits in the mantissa of model
numbers of subtype X as if they were expressed in the specified
base. Extended_Digits has the following syntax:

T'Extended_Digits (base)

The parameter description for the Extended_Digits function
for floating-point types is as follows:
Parameter  Description

base Base in which the image is to be displayed. Ifa
base is not specified, the default is 10.

Suppose the following type were declared:
Type X is digits 5 range -10.0 .. 16.0;
The following would then be true:

X'Extended_Digits =5
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The Extended_Image attribute returns a string image
associated with its floating-point parameter that is consistent
with the LRM floating-point Text_IO definition for put. The
Text_I0 definition states that this attribute returns the value of
a floating-point parameter as a decimal literal with the format
defined by the other parameters. If the value is negative, a
minus sign is included in the integer part of the value of the
parameter. If Exp is O, the integer part of the output has as
many digits as are needed to represent the integer part of the
value of the parameter, or is 0 if the value of the parameter has
no integer part. See LRM subsections 14.3.8:13 and 14.3.8:15.
The Ext ended_Image attribute has the following syntax:

X' Extended_Image (Item, Fore, Aft, Exp, Base, Based)

For a prefix X that is a discrete type or subtype, this attribute is
a function that may have more than one parameter. Parameter
Item must be a real value. The resulting string is without
underlines or trailing spaces.

The parameter descriptions for the Extended_Image function
for floating-point types are as follows:

Parameter Description

Item Item for which an image is desired. This
parameter is required.
Fore Minimum number of characters for the integer

part of the decimal representation in the return
string. This includes a minus sign if the value is
negative, and the base with the # symbol if based
notation is specified. If the integer part to be
output has fewer characters than specified by
Fore, leading spaces are output first to make up
the difference. If Fore is not specified, the
default is 2.

Aft Minimum number of decimal digits after the
decimal point. If the delta of the type or subtype
is greater than 0.1, Aft is 1. If Af? is not
specified, the default is X' Digits-1. Ifbased
notation is specified, the trailing # symbol is
included in Af2.
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Parameter Description

Exp Minimum number of digits in the exponent will
consist of a sign and the exponent. Additionally,
it may contain leading zeros. If Exp is not
specified, the defaultis 3. If Expis 0, an

exponent is not used.

Base Base in which the image is to be displayed. Ifa
base is not specified, the default is 10.

Based Specifies (t rue or false) whether the returned

string is in base notation. If a preference is not
specified, the default is false.

Suppose the following type were declared:
Type X is digits 5 range -10.0 .. 16.0;
The following would then be true:

X'Extended_Image(5.0)
X'Extended_Image(5.0,1)
X'Extended_Image(-5.0,1)

* 5.0000E+00"
*S.0000E+00"
*-5.0000E+00"

X’'Extended_Image(5.0,2,0) = * S.0E+00”
X'’'Extended_Image(5.0,2,0,0) =" 5.0"
X'Extended_Image(5.0,2,0,0,2) = *101.0"
X’'Extended_Image(5.0,2,0,0,2,True) = “2#101.0#"
X’Extended_Image(5.0,2,2,3,2,True) = "2#1.14E+02"

The Extended_Value attribute returns a value of a
floating-point type or subtype associated with its parameter in
the same manner as does floating-point Text_I10. The Text_I0
definition skips leading zeros, reads a plus or minus sign (if
present), and then reads the string according to the syntax of a
real literal. The return value corresponds to the sequence input.
See LRM subsections 14.3.8:9 and 14.3.8:10. The syntax of
Extended_vValue is as follows:

X'’'Extended_value (Item)
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For a prefix X that is a discrete type or subtype, this attribute is
a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string are ignored. When an illegal string is
passed, a CONSTRAINT_ERROR is raised.

The parameter description for the Extended_value function for
floating-point types is as follows:
Parameter Description

Item Parameter of predefined type string. The type
of the returned value is base type X.

Suppose the following type were declared:
Type X is digits 5 range -10.0 .. 16.0;
The following would then be true:

X'Extended_Value(”5.0") = 5.000E+00
X'Extended_VvValue(”"0.5E1”) = 5.000E+00
X'Extended_Value("2#1.01%#E2") = 5.000E+00

The LRM specifies the model numbers of a fixed-point type. In
the following, the end points are not model numbers:

type My_Fixed is delta 0.25 range -8.0 .. +8.0;

The set of model numbers for this type is {-7.75, -7.5, ..., =0.25.
0.0, +0.25, ..., +7.5, +7.75). This means that it is legal to raise
Constraint_error when the value 8. 0 is assigned to an object
of type My_Fixed. The expression My_Fixed'Last will return
+7.75.
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Cray Ada supports the system-dependent attributes for
fixed-point types that are described in this subsection.

The Extended_Aft attribute returns the natural number
representing the minimum number of characters required to
represent, in a specified base, the fractional part of a declared
fixed-point type (not including the decimal point).
Extended_Aft has the following syntax:

T'Extended_Aft (Base, Based)

The parameter descriptions for the Extended_Aft function for
fixed-point types are as follows:

Parameter Description

Base Base in which the image is to be displayed. Ifa
base is not specified, the default is 10.

Based Specifies (t rue or false) whether the returned

value is in base notation. If a preference is not
specified, the default is false.

Suppose the following type were declared:
Type X is delta 0.1 range -10.0 .. 17.1;
The following would then be true:

X'Extended_Aft
X'Extended_Aft (2)
2#0.0001#

1 — *1” from 0.1
4 -- "0001” from
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The Ext ended_Fore attribute returns the natural number
representing the minimum number of characters required to
represent, in a specified base, the integer part of a declared
fixed-point type (not including the decimal point).
Extended_Fore has the following syntax when used with
fixed-point types:

T'Extended_Fore (Base, Based)

The parameter descriptions for the Extended_Fore function for
fixed-point types are as follows:

Parameter Description

Base Base in which the subtype is to be displayed. Ifa
base is not specified, the default is 10.

Based Specifies (t rue or false) whether the returned
value is in base notation. If a preference is not
specified, the default is false.

Suppose the following type were declared:
Type X is delta 0.1 range -10.0 .. 17.1;:
The following would then be true:

X'Extended_Fore
X'Extended_Fore(2)

3 -- "-10”
6 -- * 10001~
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The Extended_Image attribute for fixed-point types returns the
string image associated with its fixed-point parameter, based on
the same definition as that used by floating-point Text_I10. The
attribute returns the value of a fixed-point parameter as a
decimal literal with the format defined by the other parameters.
If the value is negative, a minus sign is included in the integer
part of the value of the parameter. If Exp is 0, the integer part
of the output has as many digits as are needed to represent the
integer part of the value of the parameter, or is 0 if the value of
the parameter has no integer part. See LRM subsections
14.3.8:13 and 14.3.8:15. The Extended_Image attribute has the
following syntax when used with fixed-point types:

X' Extended_Image (Item, Fore, Aft, Exp, Base, Based)

For a prefix X that is a discrete type or subtype, this attribute is
a function that may have more than one parameter. The
parameter Item must be a real value. The resulting string is
without underlines or trailing spaces.

The parameter descriptions for the Extended_Image function
for fixed-point types are as follows:

Parameter Description

Item Item for which an image is desired. This
parameter is required.
Fore Minimum number of characters for the integer

part of the decimal representation in the return
string. This includes a minus sign if the value is
negative, and the base with the # symbol if based
notation is specified. If the integer part to be
output has fewer characters than specified by
Fore, leading spaces are output first to make up
the difference. If Fore is not specified, the
default is 2.

Aft Minimum number of decimal digits after the

decimal point. If the delta of the type or subtype
is greater than 0.1, Aft is 1. If no Af? is specified,
the default is X' Digits-1. If based notation is

specified, the trailing # symbol is included in Af2.
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Parameter Description

Exp Minimum number of digits in the exponent, will
consist of a sign and the exponent. Additionally,
it may contain leading zeros. If no Exp is
specified, the default is 0. If Exp is 0, no
exponent is used.

Base Base in which the image is to be displayed. If a
7 base is not specified, the default is 10.

Based Specifies (t rue or false) whether the returned

string is in base notation. If a preference is not
specified, the default is false.

Suppose the following type were declared:
Type X is delta 0.1 range -10.0 .. 17.0;
The following would then be true:

X'Extended_Image(5.0) = * 5.00"
X'’'Extended_Image(5.0,1) = *5.00"
X'Extended_Image(-5.0,1) = *-5.00"
X'Extended_Image(5.0,2,0) =" 5.0
X'Extended_Image(5.0,2,0,0) =" 5.0
X'Extended_Image(5.0,2,0,0,2) = *101.0"
X’Extended_Image(5.0,2,0,0,2,True} = *2#101.0#"

X'Extended_Image(5.0,2,2,3,2,True) "2#1.14E+02"

The Extended_vValue attribute for fixed-point types returns a
value of a fixed-point type or subtype associated with its
parameter. This parameter is described in the same manner as
the fixed-point Text _IO definition; the attribute skips any
leading zeros, reads a plus or minus sign (if present), and then
reads the string according to the syntax of a real literal. The
return value corresponds to the sequence input. See LRM
subsections 14.3.8:9 and 14.3.8:10. Extended_Value has the
following syntax when used with fixed-point types:
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X'Extended_vValue (Image)

For a prefix X that is a discrete type or subtype, this attribute is
a function with a single parameter. The actual Item argument
must be of predefined type string. Any leading or trailing
spaces in string X are ignored. When an illegal string is passed,
a CONSTRAINT_ERROR is raised.

The parameter descrintion for the Extended_Value function for
fixed-point types is as follows:

Parameter Description

Image A parameter of predefined type string. The
type of the returned value is the base type of the

input string.

Suppose the following type were declared:
Type X is delta 0.1 range -10.0 .. 17.0;
The following would then be true:

X'Extended_value(”5.07)
X’'Extended_value(”0.5E1”")
X'Extended_value(“2#1.01#E2")

n W u
v uowm
O OO

This subsection describes the parts of LRM section 4 applicable
to the Cray Ada implementation.

The action of pragma CONTROLLED is the default action of the
Cray Ada compiler. By default, no automatic storage
reclamation is done.

There is no limit on the range of literal values for the compiler.
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There is no limit on the accuracy of real literal expressions.
Real literal expressions are computed by an arbitrary-precision
arithmetic package.

This subsection describes the parts of LRM section 9 that are
applicable to the Cray Ada implementation.

This implementation uses 46-bit fixed-point numbers to
represent type DURATION. The attributes of the DURATION are
shown in Table 13.

Table 13. Attributes of type DURATION

Attribute Value

‘Delta 6.103515625000x107> (2714)
‘Small 6.103515625000x107> (2714)
'First -86400

'Last 86400

'Size 32

'Safe_large 1.310719999390x10°

'Large 1.310719999390x10°

Sixty-four levels of priority are available to associate with tasks
through pragma PRIORITY. Predefined subtype Priority is
specified in package SYSTEM as follows:

subtype Priority is Integer range 0..63;

Currently, the priority assigned to tasks without a pragma
PRIORITY specification is 31; that is the following:

(System.Priority’'First + System.Priority’'Last) , 2
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The only restrictions on shared variables are those specified in
the LRM. Distributed tasking model does not exist in Cray Ada,
80 pragma SHARED is supported de facto. Any reference to a data
object is a synchronization point.

All main programs are assumed to be parameterless procedures
or functions that return an integer result type. The integer
value returned is stored in the UNICOS and status variable.

This subsection describes the parts of LRM section 11 applicable
to the Cray Ada implementation.

Numeric_Error is raised for integer or floating-point overflow
and for divide-by-zero situations. Floating-point underflow
yields a result of 0 without raising an exception.

Program_Error and Storage_Error are raised by those
situations specified in LRM subsection 11.1.

Pragma SUPPRESS_ALL suppresses all checks. It can appear
anywhere that a SUPPRESS pragma can appear (as defined in
the LRM), and its scope is the same as that of pragma SUPPRESS.
It is the equivalent to the following call to pragma SUPPRESS:
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NO_SUPPRESS is a pragma defined by Cray Ada that prevents
the suppression of checks within a particular scope. It can be
used to override pragma SUPPRESS in an enclosing scope.
Pragma NO_SUPPRESS is particularly useful when you have a
section of code that relies on predefined checks to execute
correctly, but you need to suppress checks in the rest of the
compilation unit for performance reasons.

Pragma NO_SUPPRESS has the same syntax as pragma
SUPPRESS and may occur in the same places in source code. The
syntax for pragma NO_SUPPRESS is as follows:

pragma NO_SUPPRESS (identifier([, [ON=>) [namel) ;

identifier Type of check you want to suppress (for example,
access_check).

name Name of the object, type/subtype, task unit, generic
unit, or subprogram in which the check should be
suppressed.

Pragma SUPPRESS_ALL works the same way as pragma
SUPPRESS when mixed with pragma NO_SUPPRESS.

If neither SUPPRESS nor NO_SUPPRESS is present in a program,
checks are not suppressed. SUPPRESS may also be controlled
using the -i option. See Cray Ada Environment, Volume 1:
Reference Manual, publication SR-3014.

If either SUPPRESS or NO_SUPPRESS is present, the compiler
uses the pragma that applies to the specific check to determine
whether that check is to be made. If both SUPPRESS and
NO_SUPPRESS are present in the same scope, the pragma
declared last takes precedence. The presence of pragma
SUPPRESS or NO_SUPPRESS in the source code takes precedence
over the -i option on the command line.
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This subsection describes the parts of LRM section 13 applicable
to the Cray Ada implementation.

Cray Ada supports most LRM section 13 facilities. The following
subsections document the LRM section 13 facilities that are not
implemented or that require explanation. Facilities
implemented exactly as described in the LRM are not described.

LRM subsections 13.1 through 13.5 discuss representation
clauses, which let you specify the way objects are represented. If
you do not use representation clauses, the compiler assumes
default data representations for each type and stores objects as
it chooses.

Representation clauses are not supported for derived types.
Records that are packed using pragma PACK adhere to the
following conventions:

o The allocated size of an element of an array is always a power
of 2(1, 2, 4, ... ). The allocated size for record elements is the
minimum number of bits required, except for character types
(which are always 8).

¢ Scalar components of records may not cross word boundaries.

o Components that are array types are allocated on a boundary
that is a multiple of the size of an array element. Components
that are record types are aligned on word boundaries.
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Table 14 shows the objects that can and cannot be packed:

Table 14. Packing of objects

Type Packable Packing in composites
Unsigned integer  Yes Elements must be constrained
Signed integer Yes Yes

Fixed point No No

Float No No

Character Yes Yes

String Yes § Yes

Boolean Yes Yes

Enumeration type Yes Yes

Task No No

Access type No No

Records Yes Yes &

Arrays Yes Yes $

§  Strings are packed by default as 1 character per byte.
§§ Subject to the packing rules of the components.

See “Internal representation of packed types,” page 86, for an
examples illustrating the use of pragma PACK.

The following conventions apply to length clauses in Cray Ada:
¢ Size specification: T'size

The Cray Ada compiler lets users specify the size of certain
Ada objects in a length clause. Integer, character, and
enumeration types, or arrays of these types are affected by
length clauses. Length clauses are not allowed for
floating-point types, fixed-point types, and record types.

e Specification of collection size: T'storage_size

The storage_size attribute is supported for collections.
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¢ Specification of storage for a task activation:

T’'storage_size

The Cray Ada compiler lets users specify the stack size for a
task activation by using the Storage_Size attributein a
length clause. The size specified is the initial amount of
storage allocated for tasks of that type. Using a length clause
applied to a task type does not indicate a ceiling on the
amount of space allocated to that task, and if that task needs
more space during its execution, it will make calls to the
system to increase its stack size.

Length clauses of the form in the following example (T is a
task type), specify a task’s initial stack size allocated at run
time. The use of this clause is encouraged in all tasking
applications to control the size of applications and to improve
their performance. Without this clause, the compiler may use
a large default value (consuming inordinate amounts of
memory) or, if the default value is too small, the task may
make numerous calls for additional stack space (slowing
execution).

for T'storage_size use expression

¢ Specification of small for a fixed-point type: T’small

The small attribute for fixed-point types is supported only for
powers of 2.

Cray Ada supports enumeration representation clauses for all
types other than Boolean.

Be aware that the use of such clauses can introduce considerable
overhead into many operations that involve the associated type.
Such operations include indexing an array by an element of the
type, and computing the ’ POS, ' PRED, or ‘ SUCC attributes for
values of the type.
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LRM 13.4: Record Record representation clauses are supported by Cray Ada.

representation clauses Because record components are subject to rearrangement by the

A74 compiler, you must use representation clauses to provide a
particular layout. Such clauses are subject to the following
constraints:

o Each component of the record must be specified with a
component clause.

o Each component of the record must be constrained such that
its size is less than or equal to the number of bits in the
component specification.

¢ The constraint on a record component must be in a positive
range. Negative values cannot be represented in record
components.

o The alignment of the record is restricted to mod 1, word
aligned; therefore, records may be aligned starting at any
word address.

o The order of bits within a word is left to right (from most
significant to least significant).

e Scalar components may not cross word boundaries.

The following example shows two different representations for
the same data items:
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-- define component types
type Bits_32_Type is range 0..(2**32)-1;

-- define record type
type Rep_Record is record

A : boolean;

B : Bits_32_Type:

C : Bits_32_Type:
end record;

-- one representation
for Rep_Record use Record
at mod 1;
-~ whole record is word-aligned.
-- no other value is allowed.
A at 0 range 0..0 ;
B at 0 range 1..32 ;
C at 1 range 0..31 ;
-- field can’'t cross 64-bit boundary
end record;

-~ alternate representation: 32-bit-aligned
fields
for Rep_Record use record
A at 0 range 0..31 ;
B at 0 range 32..63 ;
C at 1 range 0..31 ;
end record;

Records may be packed by use of pragma PACK. Packed records
follow the convention that scalar components of records do not
cross word boundaries.
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Address clauses for subprograms, packages, and tasks are not
supported, but they are supported for objects and entries.

For address clauses applied to objects, a simple expression of
type address is interpreted as a position within the linear
address space of the machine. The address of an object that is
not aligned on a word boundary (for example, a string slice that
begins in the third byte of a word) returns the address of the
start of the word, rather than the exact address of the object. In
general terms, this means that an expression that appears in an
object address clause is interpreted as the address of the first
storage unit of the object.

Address clauses for objects may be used to access known
memory locations. For the Cray Ada Environment, literal
addresses are represented as integers, so an unchecked
conversion must be applied to these literals before they can be
passed as parameters of type system.address. The Location
function is declared in system for this purpose.

The following example shows a hypothetical case of an
application that defined a specific memory location to hold a
status value. An address clause is used to map the
Status_Value to the predefined location.
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PACKAGE Application_Status_Manager IS

-~ Set status of application in communication area.
PROCEDURE Set_sStatus(Status : IN Natural);

-- Fetch status of application from communication area.
FUNCTION Status RETURN Natural;

END Application_Status_Manager;

WITH System;
PACKAGE BODY Application_sStatus_Manager IS

Status_Value : Natural;
FOR Status_Value USE AT System.Location(8#152#);
-- An applications status flag has been defined to reside at a
~~ particular location.
PROCEDURE Set_sStatus(Status : IN Natural) IS
-— Set_Status sets the status flag for an application
-- in the predefined status location.

BEGIN
Status_Value := Status;

END Set_Status;
FUNCTION Status RETURN Natural IS
-~ Status returns the value of the applications status
-~ read directly from the predefined status location.
BEGIN
RETURN Status_Value;

END Status;

END Application_Status_Manager;

LRM 13.6: Change of Changes of representation are not supported for types with
representation record representation clauses.

A6
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LRM Annotations

LRM 13.7: The SYSTEM

package
A7

System-dependent named
values
A771

The pragmas SYSTEM_NAME, STORAGE_UNIT, and MEMORY_SIZE
are supported with limitations. These pragmas are allowed only
if the argument to them does not change the existing value
specified in the system package.

Two system-dependent named values are available through a
package called System_Info. A WITH must be used to access
these value. The package contains the following:

end System_Info;

Package System_Info is

Compiler_Version_Reference_Number: Constant := 2.0;
Compiler_Version: Constant String := *2.0";

LRM 13.7.2:

Representation attributes
A1172

LRM 13.7.3:
Representation attributes
of real types

A7.73
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The ' Address attribute is not supported for packages.

' Address is also not supported for constants evaluated at
compile time, because the values they represent are substituted
into code during compilation. ‘Address is available, however,
in cases in which the value of the constant cannot be determined
at compilation time (such as assignment of the constant by use
of a function call). ‘Address is supported for labels.

The representation attributes for the predefined floating-point
type FLOAT are shown in Table 12, page 179.
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LRM 13.8: Machine code
insertions
A8

LRM 13.9: Interface to

other languages
A9

LRM 13.10.1: Unchecked
storage deallocation
A791

LRM 13.10.2: Unchecked
type conversions
A792

Machine code insertions are not supported.

Pragma INTERFACE is supported for the following Cray
Research system languages:

¢ Fortran (CF77)

¢ C (and therefore, UNICOS system calls)
e Pascal

e Cray Assembly Language (CAL)

Additionally, Cray Research system-defined pragma EXPORT
exists to allow for calling Ada routines from other Cray Research

languages. See “Calling Ada from foreign languages,” page 160.

Unchecked storage deallocation frees memory, making it
available for other processes or tasks within the scope of the Ada
job that initially requested the memory. Because of the memory
management scheme currently used by UNICOS, however, the
memory freed by unchecked storage deallocation cannot be
returned to the operating system to reduce the overall process
size of the Ada job. See “Storage management,” page 92, for
further information on unchecked deallocation.

Unchecked conversions are allowed between types (or subtypes)
T1 and T2 if the following are true:

¢ They have the same static size.

o They are not unconstrained array or record types.
¢ They are not private.

o They are not types with discriminants.

The size used in the unchecked conversion is the ' size of the
target, which may not be the same as the static size of the
target. Also, unchecked conversion of addresses can be very
misleading because only a portion of the bits in the word are
address bits (24 bits on CRAY X-MP systems and 32 bits on
CRAY Y-MP and CRAY-2 systems). The remaining bits in the
word should be considered undefined in this context. Therefore,
an unchecked conversion can produce erroneous results.
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LRM section 14:
Input-Output
A8

LRM section 14.2.1: File

This subsection describes the parts of LRM section 14 applicable
to the Cray Ada implementation.

The form parameter available with the open and create

management procedure calls in packages sequential_I0, direct_I0, and
AS8.1 text_IO has no effect when specified in the procedure call. The
default settings for the file type are always used.
LRM section 14.6: Cray Ada does not provide the predefined Low_Level_I0
Low-level input and package. The capabilities of this package are provided by the /O
output redirection feature of UNICOS.
AB82
LRM appendix B: Table 15 lists each of the Cray Ada predefined language
Predefined language pragmas and, if implemented, the location in this manual of
pragmas additional information.
A83
Table 15. Predefined Cray Ada pragmas
Pragma Section Page
CONTROLLED LRM 4.8 Allocators 188
ELABORATE Using pragma ELABORATE 9
INLINE Using pragma INLINE for optimizing
Using pragma INLINE 61
INTERFACE Pragma INTERFACE for Pascal 189
LIST Using pragmas PAGE and LIST §
MEMORY_SIZE LRM 13.7: The package SYSTEM 199
OPTIMIZE Pragma OPTIMIZE 171
PACK LRM 13.1: Representation clauses 192
PAGE Using pragmas PAGE and LIST §
PRIORITY LRM 9.8: Priorities 189
SHARED LRM 9.11: Shared variables 190

§ See Cray Ada Environment, Volume 1: Reference Manual, publication SR-3014.

SR-3082 2.0
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Table 15. Predefined Cray Ada pragmas

(continued)
Pragma Section Page
STORAGE_UNIT LRM 13.7: The package SYSTEM 199
SUPPRESS LRM 11.7: Suppressing checks 190
SYSTEM_NAME LRM 13.7: The package SYSTEM 199
LRM appendix F: The Ada language definition allows for certain target
T dependencies. These dependencies must be described in the
ImPlementatlon reference manual for each implementation, in an “Appendix F”
dependen.t ) that addresses each point listed in LRM Appendix F.
characteristics _ ) , ) _
A9 The following subsections constitute Appendix F for this
implementation.
Implementation-defined Cray Ada supports the following implementation-defined
pragmas pragmas listed in Table 16.
A9l
Table 16. Implementation-defined pragmas
Attribute Section title Page
COMMENT Pragma COMMENT 170
EXPORT Calling Ada from a foreign language 160
IMAGES LRM 3.5.1: Enumeration types 171
INTERFACE_INFORMATION Pragma INTERFACE_INFORMATION 138
LINKNAME Pragma LINKNAME 140
NO_SUPPRESS LRM 11.7: Suppressing checks 190
PRESERVE_LAYOUT Pragma PRESERVE_LAYOUT 81
SUPPRESS_ALL LRM 11.7: Suppressing checks 190
VECTORIZE_LOOP Pragma VECTORIZE_LOOP 65

Cray Research, Inc.
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T’'Size attribute when T
is an integer type

Caution should be used in applying the T’ Size attribute to
integer types. T'Size applied to integer types or subtypes

A92 returns the minimum number of bits required to hold any
possible object of the type or subtype T. The minimum value of
T’ Size for integer types or subtypes is 46 or less. It does not
accurately represent the size of an object of that type. For
integer types and subtypes, the value is always 64 bits unless it
is a packed object in which case it may be less.
Implementation- Cray Ada supports the following implementation-dependent
dependent attributes attributes. These are listed in Table 17, along with their types
A93 and the location of their documentation.
Table 17. Implementation-dependent attributes
Attribute Type LRM subsection Page
T'Extended_Aft fixed 3.5.10 184
T'Extended_Digits float 3.5.8 180
T'Extended_Fore fixed 3.5.10 185
T'Extended_Image integer 3.5.5 172
enumeration 3.5.5 174
float 3.5.8 181
fixed 3.5.10 186
T'Extended_value integer 3.5.5 176
enumeration 3.5.5 176
float 3.5.8 182
fixed 3.5.10 187
T'Extended_Width integer 3.5.5 177
enumeration 3.5.5 178

Package SYSTEM
A94

SR-3082 2.0

The current specification of package SYSTEM for CRAY Y-MP
systems is as follows:
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with Unchecked_Conversion;

package System is

Type NAME is (CRAY_YMP):

System_Name : constant name := CRAY_YMP;

Memory_Size : constant := (2 ** 32) -1; --Available memory, in storage units
Tick : constant := 0.01; --Basic clock rate, in seconds
Storage_Unit : constant := 64;

Min_Int : constant := -(2 ** 45);

Max_Int : constant := (2 ** 45) -1;

Max_Digits : constant := 13;

Max_Mantissa : constant := 45;

Fine_Delta : constant := 1.0 / (2 ** Max_Mantissa);

subtype Priority is Integer Range 0 .. 63;

type Memory 1ls private;
type Address is access Memory;

-- Ensures compatibility between addresses and access types.
-~ Also provides implicit NULL initial value.

(continued)
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Null_Address: constant Address := null;

-- Initial value for any Address object

type Address_Value is range 0 .. (2**32) ~-1;

--A numeric representation of logical addresses for use in address clauses

function Location is new Unchecked_Conversion (Address_Value, Address);
-- May be used in address clauses:
- Object: Some_Type:
- for Object use at Location (8#4000#);

function Label ( Name: 1in String ) return Address;

-- The LABEL function allows a link name to be specified as the address
-- for an imported object in an address clause:

~- Object: Some_Type;

-- for Object use at Label ("Object$SLINK_NAME, EXTERNAL”®) ;

-- System.Label returns Null_Address for non-literal parameters.
procedure Report_Error

-~ The Report_Error routine can be called from within exception
-- handlers. It will print out a traceback for the most recently
-- handled exception, including a traceback from the point of call

-- to System.Report_Error itself.

private

end System;
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type name
System_Name
Memory_Size
Address_Value

Representation clause
restrictions
A9.5

Implementation-
generated names
A9.6

Address clause
expression
interpretation
A9.7

Unchecked conversion
- restrictions
A9.8

The SYSTEM package for CRAY X MP and CRAY-2 systems is the
same except for the following four lines:

CRAY X-MP systems CRAY-2 systems
CRAY_XMP CRAY_2

CRAY_XMP CRAY_2

(2 ** 24) -1 (2 ** 32) -1

0 .. (2 ** 24) -1 0 .. (2 ** 32) -7

MEMORY_SIZE is a predefined number of words. This number of
words is not necessarily the number of words for the machine on
which your code is running. Tbo determine the total number of
words available or the process size, use UNICOS system call
limit(2).

Restrictions on representation clauses in the Cray Ada compiler
are discussed in “LRM section 13: Representation clauses and
implementation-dependent features,” page 192.

There are no implementation-generated names to denote
implementation-dependent components.

Expressions that appear in address specifications are
interpreted as the first storage unit of the object. “LRM 13.5:
Address clauses,” page 197, contains a discussion of address
clauses.

Unchecked conversions are allowed between any types or
subtypes unless the target type is an unconstrained record or
array type. A further discussion of these restricticns on
unchecked conversions is available in “LRM 13.10.2: Unchecked
type conversions,” page 200.
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Implementation-
dependent
characteristics of the
I/O packages

A99
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The following characteristics of Ada I/O packages are specific to
the Cray Ada implementation:

In Text_I0, type COUNT is defined as follows:

type COUNT is range 0..2_147_483_646;
In Text_I0, type Field is defined as follows:

subtype Field is integer range 0..1000;

Sequential_IO and Direct_IO cannot be instantiated for
unconstrained array types or unconstrained types without
default values.

The standard library contains preinstantiated versions of
Text_I10.Integer_1IO for type integer and of
Text_I0.Float_IO for type float. Additionally, both float
and integer instantiations have been provided for CRAY_LIB.
It is suggested that the following be used to eliminate multiple
instantiations of these packages:

Integer_Text_IO
Float_Text_IO
CRAY_MATH_LIB
CRAY_BIT LIB
CRAY_UTIL_LIB

Multiple files opened to the same external file may be opened
only for reading.

In Text_I0, Direct_IO, or Sequential_IO, calling
procedure CREATE with the name of an existing external file
does not raise an exception. Instead, it creates a new version
of the file.

In Direct_I0, type COUNT is defined as follows:
type COUNT is range 0..35_184_088_831;

According to the latest interpretation of the LRM, during a
Text_IO.Get_Line call, if the buffer passed in has been
filled, the call is completed and any succeeding characters
and/or terminators (such as line, page, or end-of-file markers)
are not read. The first Get_Line call reads the line up to, but
not including, the end-of-line mark, and the second Get _Line
call reads and skips the end-of-line mark left by the first call.
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