
AD-A246 126

A Final Report
Grant No. N00014-91-J-1369

November 1, 1990 - November 30j 1991

i EIGHTH IEEE WORKSHOP ON REAL-TIME OPERATING SYSTEMS

5 Submitted to:
Scientific Officer Code: 1133

Andre M. Van Tilborg D T%
Office of Naval Research

800 North Quincy St. -E £LECTE
Arlington, VA 22217-5000 . FEB 0 51992

Submitted by:

Krithi Ramamritham
Associate Professor

Dept. of Computer Science
f University of Massachusetts

Amherst, MA 01003

!0
This d oen, hs been approvedfor public release nd sale; its

disfributjon is unlimited.

92204033
92027

92-02871 ':
__ IIII! 11 111 II 1111 111 Ii[II!{ J11 II...

ibLAIMEI NOTICE
vooo

~GS

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

-l-
II

*4 1

fri SS'i
-7b!

r-BoQ

fiQ&vx _

- ~ ~~ ~ -- ---------~ -

A Final Report
Grant No. N00014,91-J-1369 t

November 1, 1990 - November 30, 1991

EIGHTH IEEE WORKSHOP ON REAL-TIME OPERATING SYSTEMS

Submitted to:
Scientific Officer Code: 1133

Andre M. Van Tilborg
Office of Naval Research

800 North Quincy St.
Arlington, VA 22217-5000

ISubmitted by:

TKrithi Ramamritham
Associate Professor

Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003

A I

, is;

VI

F ::

-REPORT 'OCUMENTATlON1 PAGE .. 1
Id.rmran fW -m QGW of 'Atomag Is fam""s to SVWaq@ I - "W off POWNH.0= VW am t M-it .W M - wEq, ew~ 1Wa rEIW.

1. AGENOCY USE OlY Lw*Mmk 2 REPORT- OATE -3. 0tEPORT-rYPC AU TECOED
IJan ua ry Y192 IFinal Report 1/19 - 1/-30/91--

4. TITLE AMC SUITIT1MS FUNDIG "UMBERASrEighth IEEE workshop on Reali-Timet Operating Systems N00014-91-J-136§-

r1. AUTHORAS)

Krithi Ramamritham

7. PERFORMNG ORGANIZATION NAME(S) MOO A0ORESS(4S) 'B EFRIGOGNZTO
REPORT NUMBER

Department of Computer Science
University of Massachusetts

1 Amherst, MA 01003

t. SFONSORINGIMONITORNG-AGENY NAME(S) ANO:AWORSS(ES -0 POSmFAMrTOaG

T Scientific Officer Code: 1133
Andre M. Vanf Tilborg
Office of Naval Research

800 North Quincy St., Arlington, VA 222175000________________
-11. SUPUMNTAR NOTES

12&. COOUT1I/ AVAR.AJTY STATEMENlT OIaTUUUON CMO

f unlimitedj

Thswrkshop was held May 15;-41, 1991 in Atlanta, Georgia. It was the
ei th in A continuing series of workshops on real-time operating systems and
software and was held in conjunction with the 17th IFAC/IFfP Workshop on Real-I
time Programming. The workshop was co-sponsored by the IEEE Computer Society
Technical Committee on Real-time Systems and the Office of Naval Research and

-~ - Ihad as its goals:
-to investigate advances.in real-time operating systems, soft-
ware, and programming languages;

I - to promote interaction among researchers and practitioners;
I - to evaluate the maturity and-evolutionary directions of real-

time programing theories and approaches.

I This report contains the Proceedings-of the Workshop as well as the
Final Report to IEEE, the IFAC/iFip Finale Report, And additionial budgetary
information provided to the Office of -Naval Research. - -__________

14. SWECTURMSIS. UX Cf PAGES-

1 ~17. SEIITY O.ASSWIAT=O m- SEcuPrY CL'sswKTInm- 16. SEJRT GASCTO 0 TATON OF ASTRACT
O F naeP T O F-IN dPA "I - COfAUT ACT f un1

runclassified unclassified unclassified unlimited
USFO 734@.O1.5m.S Seauor FofM 293 (Rew. Z.6g)

evrg &xV itO 139-1

JI

I EighthIEEE Workshop on Real-Time
Operating Systems and Software

(in Conjunction with)-
IFAC/IFIP Workshop on Real-Tim

Programing
Acceso Fr e

N T! CRAei
O~TAB0

......................................

4 By

.......

*e S

In Cooperation with:

.IFAC
Technical Committee- on- ComputersIWorking Group in Real--T ime Programming

and
d*FIP Working Group 5.4

_ n omputerized Process Controlon1 r

lyin

I

4 1

I

I
Proceedings

I

7

'1

I
I 1<
I
I
I
]
I

WI

Proceedings of the
EIGHTH IEEE WORKSHOP ON REAL-TIME

OPERATING SYSTEMS AND SOFTWARE
(in Conjunction with)

IFAC/IFIP WORKSHOP ON REAL-TIME
PROGRAMMING

TMAY 15-17, 1991
Atlanta, GA

USA
I

Workshop Chairs: Krithi Ramamritham

University of Massachusetts
Dept. of Computer and Information Science

Wolfgang A. Halang
University of Groningen

jDept. of Computing Science

Local Arrangements Chair: Karsten Schwan
Georgia Institute of Technology,

Program Committee:

Robert P. Cook, University of Virginia
Juan de la Puente, Polytech Univ. of Madrid

Wolfgang Ehrenberger, Soc. of Reactor Safety, Munich
Farnam Jahanian, IBM Yotktown Heights

Hermann Kopetz, Technical University of Vienna
3 Michael RoddUniversity Wales, Swansea

- Karsten Schwan, Georgia Institute of Technology
Alan Shaw, University of Washington

Janos Szlanko, Central Res. Inst. for Physics, Budapest

Hide Tokuda, Carnegie-Mellon University
T.J. Williams, Purdue University

i Wei Zhao, Texas A&M University

kT ABLE DF CONTENTS

SESSION i: OPERATING SYSTEMS

Page
* Multiprocessor Synchronization Primitives with Priorities 1

Evangelos P. Markatos
University of Rochester, New York

* YARTOS: Kernel Support for Efficient, Predictable Real-Time Systems 8
Kevin Jeffay, Don Stone, Dan Poirier
University of North Carolina at Chapel Hill, North Carolina

* Dynamic Scheduling for Hard Real-Time Systems: Toward Real-Time Threads 13
Hongyi Zhou, Karsten Schwan
Georgia Institute of Technology, Atlanta

* A Reliable Multicast Protocol for Distributed Real- Time Systems 22
H. Kopetz, G. Griinsteidl
Technical University of Viennia, Austria

SESSION 2: DESIGN OF REAL-TIME SYSTEMS

*GARTEN: A Programming Environment for Real-Time Software Development 28
Keith J. Ranson and Chris D. Marlin, Wei Zhao
The University of Adelaide, South Australia and
Texas A&M University, College Station

*Schedulability, Program Transformations and Real-Time Programming 33
Alexander D. Stoyenko, Thomas J. Marlowe
New Jersey Institute of Technology, Newark and
Seton Hall University, South Orange, New Jersey

* PIPS: An Integrated Approach- to the Design of Real-Time Systems 42
Chien-Chung Sleni, Rajive Bagrodia
University of California, Los Angeles

* Graphical Prototyping of Tasking Behaviour 47
R. Lintulampi, P. Pulli
Technical -Research Ceintre- ofFinland (VTT), Oulu

SESSION 3: A-PPLICATIONS/EXPE=RIENCE ?__?

*Application of Real-Time Scheduling Theory tO Multiprocessor Pipelines 52
Robert J. Fornaro, William]5. Allen

j North Carolina State University, Raleigh
o Computer Music Performance as a Real-Time Testbed 57

David H. Jameson1 IBM T.J. Watson Research Center, Yorktown Heights, New York
*Spe-ifying Hard Real-Time Software Experience with a Language and a Verifier 64

T Constance Heitmeyer, Bruce Labaw
j Naval Research Laboratory, Washington, DC

. Designing a Hard Real-Time System with Automatic Memory Management 70
Edward E. Ferguson, Dexter S. Cook, David H. Bartley
Texas Instruments Inc., Dallas

I
SESSION 4: TIMING-ANALYSIS/MONITORING

*Application of Partial Evaluation to Hard Real-Time Programming 74
4 Vivek Nirkhe, William Pugh

University of Maryland, College Park
*Predictable Real-Time Caching in the Spring System 80

j Douglas Niehaus, Erich Nahum, John A. Stankovic
UniVersity of Massachusetts, Amherst

.Static Analysis of Timing Properties for Distributed Real -Time Programs 88
Horst F. Wedde, Bogdan Korel, Dorota M. Huizinga
Wayne State University, Detroit, MichiganI *An Integrated Approach to Monitoring and Scheduling in Real-Time Systems 96
Farnam Jahanian, Ragunatha Ra jkumar
IBM T.J. Watson Research Center, Yorktown Heights, New YorkI

I+

1-
I _

=I

TI

1.SO'5 PTORI

9 J~w Pradim s fo Rea.; imeData a--e yste,_n 10
Robet PCook Sag HSon Heny Y OhJuhyoun Le

o~~~~~~~~ ~ ~ ~~ Geeatn Sytei okod o Ra-Tm ytm 0

sNew aaigmles, oreadTm-i Real-TTmeDiaa e Systems,. 103

Robrt Pmcokan Son, Brenrlf Y.Oanou Lee or
e GAnering olSythetic Capblitds f o-xig Real- Time Systems 10

D.. anil- . iks ag G.ara Shin- lc.JySrsi
ThregUieitylof Mnichrian, AnntAbrPnslai

*AaaigBles eieadTm nReal-Time Systems 114
To K. iarPabha Loinath, oWer se
AdaiveMachin TechAunoisolmuOoan

o arth AlTmericanePlips: Corp. iacif Mnori Newoac York

NC. Paudl, A urAsa, B.17n Bihckon J Strosnie
Canegiyo elo rsity PitsurhPenslvni

*lgoittios onrng SOn-chlin Sceuln AlgorDadihms fo O38oae
Rea Tifeti Systems 128Li

University of Texanos,. Austina
*rReal- Time Scheduling: hen Deadlne-onoto i Apyrtach 133

DaiveiBtewart- YorkEadpK

Carnegie Mellon University, Pittsburgh, Pennsyl-vania

F-

N 1 Multiprocessor Synchronization Primitives with Priorities

Evangelos P. Markatds'I "markatos@cs.rochester.edu

University of Rochester
1 Computer Science Department

Rochester, New York 14627

I
Abstract mental synchronization mechanism of a multiprocessorireal-time system: the spinlock. Spinlocks are low-level
Low-level multiprocessor synchronization primitives, synchronization mechanisms for multiprocessor systems
such as spinlocks. are usually designed with little or that are used to provide mutual exclusion. They are
no consideration about timing constraints, which makes usually implemented with the help of atomic instruc-
t',em inappropriate foe r.,al-time systems. In this paper, tions like test-.andset that most multiprocessors pro-
we propose a new synchronization mechanism, the pri- vide. HIowever, spinlock implementations are usually
oriLy spinlock, that takes into account the priorities of proposed with little or no consideration of timing con-
the processes that want to- acquire it, and favors high straints. So, current implementations service requests for
priority processes. We define what a priority spinlock is, the lock randomly or at best FIFO. Random service of
and propose two algorithms to implement- priority spin- requests, are inappropriate for real-time systems; FIFO
locks with local spinning. -Priority spinlocks can-be Used service is appropriate in real-time applications, because
to provide prioritized mutually exclusive-access to shared it bounds the worst case time where a processor has to
resources in real-time multiprocessor systems. They can wait to acquire the spinlock. lowever, FIFO implemen-
also be used as building blocks for higher level priority tations may force a high priority process that wants to
synchronization primitives, such as priority semal hores, acquire a spinlock to wait for all the low priority pro-

cesses that happen to have requested the spinlock before
it. This potentially long wait leads to very conservative1 Introduction scheduling, because although the worst case priority in-
version is bounded. the bound is very large.

Re-.l-time systems have timing constraints that must In this paper we propose a new version of spinlocks
- be met, otherwise catastrophic effects may happen [13]. called priority spinlocks. Priority spinlocks take into ac-

Timing constraints usually take the form of deadlines, count the priority of the process that wants to acquire
earliest starting times, or value functions. Schedulers the lock, and assign the locks to the highest priority pro-
translate these timing constraints along with recourse re- cess that has requested the lock at the time the decision
quirements and criticalities into priorities (2, 3, 5. 7. 12], is being made.
and assign the resources of the system to higher -priority
processes. These priorities must be preserved -through- -

out the system, otherwise the correctness of a real-tine 1.1 Priority spinlocks
system can not be demonstrated. If there is- a server Priority spinlocks ate defined as follows:
where priorities are not preserved, then a high prior-

ity process may be delayed (possibly indefinitely) by a 1. No more than one processor may possess a lock atj low priority process. This event is called priority in- one time.
version, and must be avoided, bounded, or minimized,
otherwise the feasibility of-the schedule and the correct,- 2. Each processor that compete* for a priority spiniock
ness of the scheduler -implementation are- questionable. has a dynamic priority that reflects the importance
Our work tries to minimize the priority inversion that of the process it runs. This priority may change over
can happen in the implementation of the most ffinda- time. All pioessors have different priorities.

This material is based upon work supported by-the National 3. Priority spinlocks have the priority ordering
Science Foundation under Grant number CDA-8822724 property.

!- I :°

A spinlock implementation has the prior- implemented on UMA (Uniform Memory Access) mul-
- i ity ordering property iff there is a con- tiprocessors. Section four describes our second priority,

stant k, such that if a high priority pro- spinlock algorithm that can be efficiently implemented-
cessor requests alock, then lower~priority both in UMA and:NUMA (Non Uniform Memory Ac
processors will acquire the lock at most cess) multiprocessors. Section five compares the com-
k times before the high priority processor plexity of the two algorithms in terms of running time,
acquires it. memory requirements, and remote memory references.

Finally, section six presents our conclusions.
For our proposed algorithms k - 1. This means
that if more than one processor attempts to acquire
t he lock, then the highest priority processor acquires 2 Previous work
it, unless the highest priority processor attempts to
acquire the lock after it has been decided that the Synchronization in multiprocessor hard real-time sys-
lock should be given to some other lower priority tems is a relatively new field. Molesky, Shen and Zlokapa I
processor. [9], describe predictable algorithms for semaphores with

linear waiting. Although their proposed algorithms are
Our assumptions about the execution model are: predictable. they do not take into account the priorities

of the processes that want to acquire the semaphore.
Processors communicate via a medium (e.g. bus, Rajkumar, Sha and Lehoczky [11] presented a multi-

switch) that has bounded access time. This means processor extension of the priority ceiling protocol [10]. T
that a processor can not be prevented from us- The priority ceiling protocol is a protocol that minimizes
ing the medium indefinitely. If the communicationngtemedi m does ndhaended ates o time, t priority inversion fora set of periodic real-time processesmedium does not have bounded access time, there that access exclusively sonde shared data. The multipro
is no way to built a predictable srstem on top of it cess exuiely some share the uipro-[9]. Buses that provide bounded access time include cessor priority ceiling protocol -generalizes the uniproces-

syncronus use, ad aynchonos bsesconig-sor priority ceiling protocol bvy-executing all the criticalsynchronous buses, and asynchronous buses config-reinasoatdWhaempoenapriulrpo
regions associated with a-semaphore on a particular pro-

ured with Round-Robin access, like the VME bus cessor (called synchronzation processor). So, the critical T
t6]. regions in the programs are substituted by an invocation

Processes that request. hold. or release locks are not to a remote server that deals with all the critical regions

preemptable during the time they request, hold or associated with a particular semaphore. Remote invo-.
release the lock i . cation is an attractive alternative to mutual exclusion

algorithms, especially in multiprocessors where the cost
In this paper we describe two algorithms that imple- of accessing nonlocal memory is very high. However, the

ment priority spinlocks. The algorithms are modifica- existence of a remote centralized server limits the scala-
tions of previous algorithms for FIFO spinlocks by Burns bility of the solution, and increases the cost of executing I
[I] and Mellor-Crummey and Scott [8]. The major prop fine grain sharing applications.
erties we add to Burns's algorithm are-priority ordering Anderson [1], and Mellor-Crummey and Scott[8] de-
of the spinlock and local spinnin9. The major properly rived spinlock implementations that service lock requests I
we add to the MCS lock is priority ordering, in FIFO order and can bc used in real-time systems that

The next section summarizes previous work on hard just want to bound (not minimize) the priority inversion.
real-time multiprocessor synchronization primitives, and Our work focuses on how to built prioritized low-level
how it differs from our work. Section three describes our synchronization primitives. In this respect, it is mostly
first priority spinlock algorithm that can be efficiently related to [9], where they describe how to build pre-

dictable FIFO low-level synchronization primitives for -

!TIhis assumption is not as restrictive as it sounds, because spin,-
locks are usually used by the kernel to build high level synchroniza- real-time multiprocessor systems. If
tion primitives. So, the time that a processor holds a spinlock is
very small and known beforehand. In addition, non.preemptability 2.1 Our appirach
of processes that execute spinlock synchronization code enables its -b
to focus on the aspects related to synchronization only and not to Mutual exclusion algorithms for multiprocessors exist for W -

preemptability2A spinlock implementation has the irperty -of local spinning quite a while now. All-these algorithms focus on provid-
if each processor spins on a local memory location, or on a local ing mutual exclusion- along with one or more desired
cache copy, without generating any remote memory referenc", or properties that a multiprocessor mutual exclusion mech- I
bus accesses. Remote memory accesses can easily saturate the anism should have, such as staration avoidance fair-
bus (or switch) and slow down the whole system; Local spinning
is essential for the efficient and predictable behavior of real-time hess, FIFO service of lock requests, local spinning, etc.
systenis. However, none of tlie previous multiprocesor mutual

2

cxclvt;i.n algorithms has considered properties such as oa ti / h i fti rcso
1jfiz1Un.-sQ or priority ordering, wvh: h are vital for real- boolean array want CO. .P-i]
ti;:ie Systemns. So, previous mutual exclusion mechanisms initially for all k: want~k] = FALSE;
service requests for the lock independently of the tinm-
ing cc..,traints of the processes that requests the lock. acquire-lock(l)

In this eport we focus on mutual exclusion algorithms wantCi] = TRUE;//register that I want the I ~ck
that z.- -ider the timing constraints of the processes thztt while ((vant [iJ == TRUE) AND
requ"st, L. The timing constraints should be expressed (test-and-set(l) -locked)) ;// spin
in the .4rm of priorities 3 . so that thle mutual exclusion
irnpkmentation. will be able to service the requests for
the ztc': in priority order. inv j

warht~j1- 4 r... I release the lock
g- tho -.ext processor in line

3 First algorithm %a. -*. 'rantCj] -= FALSE) AND Qj !=M
unile no piocessor wants the lock

This se. sion presents anl algoriti in fot -iequ .. and r~ I go to the next one
leasitij; -iriority spilocks that can be 'fficie!iiti, impkc- j = Q+ . P

11C1,0 oil cachie-coherent nm'lti:)ro_ 7f (i -. J) V/ if none wants the lock
Zil~hclear~l) ;, // release it

e'se /1 hand processor j the lock

3.1 ~3urns's algorithm Tiant(j) =F1;

Our altyorithin is a nodiicau'. -f 3it' Aigorit!.ril
~4.tx:guarantees mutual oxchi si' - near ' -igure 1. B~urns's FIFO lock

:ng. Iinear waiting means dhat, if .~pro .' ,sr trics t.,)
enter the critical region. it will emec: it before is .,thor
processor has entered the critical region more 1lian once. loc.ition. We modify the algorithm in such a way

Bunrns's algorithm uses a shared global array that if~niplemented onl a multiprocessor with colzer-
want [0. . P-l1), where P is the nuiber of processors in ent caches, then processors spin only onl local cache
the system. is processor _4 wants to eniter the critical copies. The spinning code in Burns's algorithm is:
region, ? t sets want[0i to TRUE. Ct r. .t stcrti sp'n-
fling eXccutingm thle testand-set a.4~ instruction -.nd hlwati TRE I.D

checking thre value of waant Ci). (test-and-.set(l) -iacked));
A processor i that exits thle critical regiorn search.? "le

array want sequentially, finds the firtt slinning lproceszor On pnigcdis
with index larger than the index of proressor i (mod-ilo
th *e number of processors), -.aid allowvs it to enter 0, while ((vant Cil - TRUE) AND
critical region. Burns's algorithm car, tc found in figure (okdO

I.test-and-set(l) =- locked));

3.2 Adding priorities to Burns's lock Note that if thle value of lock 1 is cohierently cached,

Our first algorithm is a straightforward modification of then all the processors will spin on local copies for
Burn's lgorthmandachivesthe ollwin proertes: as long as the lock is held. Moreover, we free the
Burn's lgorthmandachivesthe ollwin proertes: lock in such a way, that when the lock is given from

1. Priority ordering : The processor that relezses the one processor to another, the spinning processors do
lock sequentially scans a shared array that contains not cache miss, and so they do not generate any bus
the identity of all the processors that currently spin or switch traffic.ii ~ ~~for this lock, and finds thre highest priority spinninDgThcoefoualrimisnfgre2
processor. Then, it gives the lock to this processor.Thcoefoualrimisnfgre2

2. Local spinning :In Burns's algorithm processorsI ~ ~continually execute the test-and..set atomic in 3.. ecition
struction and poll a (potentially) remote memory For each spinlock there is an array want C0. . P-i) that

3The priorities may represent deadlines, or periods, or sante represents the desire of each processor to use the spin-
other form of timning constraints, lock.4

3

Acquire lock: If processor i wants to acquire the lock gorithm and the MCS lock spin on local memory only 4 ,
then it sets lock(i) to TRUE, and registers its priority require a small constant amount of space per lock, and
(found in local variable my-priority) in the shared array work equally well on machines with and without coherent
priority [.. P-1). Then, it starts spinning waiting for caches. Moreover our algorithm guarantees the Priority
the lock. ordering property.

Release lock: When the spinlock is released, the array 4.1 The MCS lock
want is sequentially scanned to find the highest priority
Processor currently spinning to give it the lock. The spin- Phe MCS lock uses a queue of processors for each lock.
lock is given from processor i to processor j by negat- Processors o i the lock i the que
ing the spinning variable want [j] on which processor j The order in which processors join the queue is the orderspinsin which they acquire the lock. The lock is nothing more

than a pointer to the head of the queue. The tail of the
queue represents the processor that has the lock.

boolean array want(O..P-1]
boolean array priority[O..P-lAo
initially for all k: want(k] = FALSE; Acquire lock: If processor proc wants to acquire the

priorityk] o 0 lock, it joins the queue by executing a fetch-and-store5

local int my-priority ; atomic instruction. If proc is the tail of the queue (no
local int i ; // processor's id predecessor), then it continues (because the tail of the

queue is the holder of the lock), else it busy-waits by
procedure acquire.lock(L) spinning on a local variable. The pseudocode to acquire

// i is the identity of the processor thle lock is:
priority~i] = my.priority -"

want(i] = TRUE ;

while ((vantfiJ == TRUE) AND
(L == locked OR predecessor = fetch-andstore(lock, myrecord)
test.and-set(L) == locked)) ; // my-record now is a pointer to the head
// while the spinlock is held spin 1/ of the queue, and the lock pointer now

I points to my.record
procedure releasespinlock(L) if (predecessor == nil)//I am the holder

want~i] = FALSE

j = find-max-priority() return

/I tind the highest priority spinning processor else

if (j == -1) (//if no processor spins // spin on some local variable
L = free // clear the spinlock

I
else { // if there is a spinning processor Release lock: When processor proc wants to release

/ allow it to continue, without releasing the lock then:
// the spinlock: the spinlock is inherited
// by processor j from processor i If the lock queue is not empty, it gives the lock to
want[j] = FALSE ; its successor. by changing the value of its successor's

spinning variable.

Figure 2: Priority spinlock with local cache spinning * If the queue is empty, then the code is more com-

plicated. If processor proc releases the lock af-

ter it verifies that the queue is empty, then there
is the possibility that in the meantime (after ver-

4 Second algorithm ifying, but before releasing) some other processor
will join the queue and will stay there forever. In

The efficient implementation of the previous algorithm order to avoid this deadlock situation the releas-

requires a multiprocessor with coherent caches. Mul- ing processor (proc) uses the atomic instruction

tiprocessors with coherent caches do not scale to large compare.and.swapS: Processor proc checks if it is

numbers of processors due to bus bandwidth limitations, the head of the queue, and if yes it dequeues itself.

Multiprocessors without coherent caches are widespread 4More precisely, on statically allocated processor specific mem-
and come in configurations with hundreds of processors. ory, wlich will be local to any machine in which shared memory
The algorithm we describe in this section works equally is distributed or coherently cached. I
well on multiprocessors with coherent caches or with lo- Osfetchand~stor*(x,y) atomically sets x to y and returns the
cal meoruioessTheporwity spinrock a or wet p-old value of x
cal memories. The priority spinlock algorithm we pro- 6 cospare.and.swap(x,y,z) atomically compares x and y and if ;

pose is a modified version of the MCS lock [8). Our al- equal, sets x to z and returns TRUE, else it returns FALSE.

4I

- -

M

The check and dequeuing are done atomically with Data structures: We use a global queue of processors
the help of the atomic compareandswap instruc- that spin for the lock. The queue is implemented as a
tion. If thE atomic instruction doesn't succeed, it doubly linked list. Each processor has a record in the
means that some other processor joined the queue. queue that contains some information about the proces-
In this case processor proc gives the lock to the pro.- sor. The lock is a pointer to the head of the queue. If
cessor that just joined the queue. If more than one the queue is empty, then the lock is free. If the queue is
joined it. the first one gets the lock. not empty, then the holder of the lock is the tail of the

queue. The global definitions for the extended MCS lock
The pseudocode for the algorithm is in figure 3. are in figure 4.

struct queue-link { Acquire lock: The acquire.lock operation is not
struct lock.struct * next changed. If a processor wants to acquire the lock it
Boolean locked joins the lock queue atomically, using the help of the

f etch-and-store atomic instruction. If it finds out that
typedef struct queue-link * qlink it is the tail of the queue, then it. continues, knowing that

local qlink I ; t it has the lock. Otherwise, it spins on a local variable,
-i // initialized to point to a queue link record waiting its turn to become the tail of the queue and the

// in the local portion of shared memory holder o! the lock. The code for the acquire.lock op-

procedure acquire-lock (L) eration is in figure 4.
qlink predecessor
I->next = nil ;
predecessor = fe',ch-and.store (L, I) struct queue.link{
if (prececessor ' nil){ // queue was non-empty struct queue.link * next

l1->locked = true struct queue.link * previous
predecessor->next I , int priority

repeat while (I->locked = TRUE) ;// spin Boolean locked
} }

p typedef struct queu-elink * qlinkI ~ procedure release..lock (L)
if (l->next = nil) { // no known successor qlink I ;

if compare.and.suap (L, I, nil) / initialized to point to a queue link record in

return ;I the local portion of shared memory

// assuming compare.and.suap procedure acquirelock W
// returns true iff it swapped

repeat while (l->next == nil) // spin {} qlink predecessor;

I->next->locked = FALSE I->next = nil ; // initialize the fields
I->previcus = nil ;// of the record
I->priority - my.priority ;

predecessor = fetch-and.stote (L, I) // join
Figure .3: The MCS list-based queuing lock if (predecessor != nil) (//queue was non-empty

I->locked = TRUE ; //the lock is locked
I->previous = predecessor ;//join the queue
predecessor->next = I ;

-r repeat uhile (I->locked == TRUE) I/ spini 4.2 Priority lock

Our priority spinlock is very similar to the MCS lock.
The basic difference is that we dequeue the processors
from the lock queue in a priority order, because we want Figure 4. De.faitions and acquire-lock procedure for
to implement priority spinlocks that have the priority the second priority spinlock algorithm (constant space
ordering property. Dequeuing the processors from the and local spinning both on NUMA and UMA machines).
queue in priority order is not trivial because the queue
can be accessed by any processor that wants to join it,
and we need to keep it in consistent state. Of course, Release lock: The processor that releases the lock
we can not use locks for the enqueue and dequeue op- searches the queue to find the highest priority spinning
orations, becadse these locks can only be simple (not processor and gives it the lock. The action of giving the
priority) spinlocks, and they may violate the priority or- lock from processor A to processor B is done by moving
dering property. So, we should protect the queue using processor B to the end of the queue, and removing pro-
only atomic instructions. cessor A from the queue. This is not a trivial task to do,

5

because at the time processor B is being moved to the I the queue is : I->... ->h->.. .<-L
end of the queue, other processors may join the queue, p h->previous ;

and race conditions may happen. Note that we can not if (h->next != nil) {
use a simple (not priority) lock to protect the queue, 1/ the queue: I->...p->h->...<-L

because this lock may introduce priority inversion that // remove h from the Q

may violate the priority ordering property. During tle h->previous->next = h->next;ou
m lae h oprio there are many cases to be the h->next->previous = h->previous ;
release.lock operation here oare qany iss t hiest // put h at the end of the Q
sidered. Depending on where in the queue is the highest h->next = I->next h->locked - FALSE
priority processor, we have to execute different code to h->previous = nil
move it to the end of the queue. return

Define h to be the highest priority processor in the
queue. Define I to be the processor that releases the
lock. The different cases to be considered are: . Processor h is the head of the queue: This case is

more difficuit than the previous ones, because we
I is the only processcr in the queue: In this case I have to move h to the end of the queue, while at
will release the lock. lowever, it has to make sure the same time other processors may join the queue,
that no processor joined the queue after I found that and change the pointers of the record of h. Agam
it Is the only processor in the queue, and before re- g g
leasing the lock. In the case where some processor we use the help of the compareandswap atomic
did .join the queue between the two events, then pro- instruction. Define p to be the predecessor of h.

cessor I should give the lock to this processor7. We will use the compare-and-swap to move p to thehead of the queue, and move h to the tail of the
if (I->next == nil) { // no one in the queue queue without any race conditions. We atomically

if compare-and-swap (L, I, nil) return ; do the following:
/compare-and-swap returns true iff swappedsomeproesdsoru r inet tue if e d if h is the head of the queue then set p

I/ some processor just joined the queue

repeat while I->next = nil ; // spin to be the head of the 4 ueue
// give the lock to the first processor Now, if the above atomic operation succeeded, then
I->next->locked = false p is the head of the queue. and h can be safely moved
return ; without any race conditions. Otherwise, it means

} // else there are spinning processors that one or more processors have just join the queue,

and in this case we can move h to the tail of the
* Processor h is just after processor I in the queue: In

this case there is no need to move h to the end of the
queue, because once I is removed from the queue, p->next = nil
then h will be the last processor in the queue, and if (compare-andswap(L, h, p)) {
the holder of the lock. The code to do this is: // the swap was successful

// after the compare-and-swap the
h highest-priority-spinning-processor() // queue becomes I->...->p<- L
if (I->next - h){ // p is now the head of the queue

//the queue is: I -> h -> ... <- L // move h to the tail

h->previous = nil ; // dequeue I h->next = I->next ; h->previous = nil
// give the lock to processor h h->locked = FALSE; return;
h->locked = FALSE ; } else {
return ;/ some other processor just joined

} // compare and swap did not return true
repeat while h->next = nil ; // spin

* Processor h is neither penultimate, nor first in the h->previous->next = h->next
queue: In this case we can move h to the tail of h->next->previous = h->previous
the queue, without any possibility of race condition, h->next a I->next ; h->previous nil
because processors join the queue through its head, h->locked = FALSE
and alter only the pointers of the processor that is
the head of the queue. The code in this case is:

7 Note that more than one processors, may have joined the queue 5 Complexity
in the meantime. The lock is given to the first of them without
considering priorities. The highest priority processor will acquire
the lock the next time, which is consistent with our definition of We describe the performance of our priority spinlock
priority spinlocks, algorithms in terms of running time, memory require-

61

4 ments, and remote memory references. Both the algo- [3] J. Blazewicz. Deadline scheduling of tasks with
rithms have the same a ymptotic complexity in terms of ready times and resource constraints. Information
running time and remote memory references (or cache Processing Letters. 8(2):60-63, 1979.
invalidations). Suppose that at most P processors want
to lock the spinlock i. The time to acquire a lock may [4] J. E. Burns. Mutual exclusion with linear wait-
be unbounded, because there may always be high prior- ing using binary shared variables. SIGACT News,
ity processors in the systems that request the lock, and 10(2), Summer 1978.
some low priority processor may never get the chance to [5] S.C. Cheng, J.A. Stankovic, and K. Ramamritham.
acquire it. The time to release the lock is O(P). The Scheduling algorithms for hard real-time systems - a
number of remote memory references (or cache invalida- brief survey. IEEE Tutorial on Real-Time Systems,
tions). to acquire a lock is constant, and O(P) referenccs pages 150-173, 1988.
to release it. The memory requirements of the two al-
gorithms are different. If there are P processors in the [6] Motorola Inc. MVME135, MVME135-
system and M locks, then the total memory required 1, MVME135A, MVME136 and MVME136A 32-bit
by the prioritized MCS lock is O(P + I). wh " microcomputers user's manual, 1989.

prioritized Burns's lock is O(P Af).)
p C.L. Liu and J.W. Layland. Scheduling algorithms

for multiprogramming in a hard real-time environ-

6 Conclusions ment. Journal of the ACM, 20(1):46-61, 1973.

In this paper we defined a low level multiprocessor svn- [8] J. M. Mellor-Crummey and M. L. Scott. Algorithms
rnati papeweadefind ca lo lev pruritiprocessor an- for scalable synchronization on shared-memory mul-

cpronzation mechanism called priority spinlock, and we tiprocessors. ACM Transaction5 on Computer Sys-
I proposed two algorithms that implement priority spiln- trs, to appear. Earlier version published as TR

locks. Priority spinlocks take into account the timing 342, University of Rochester. Computer Scince De-

constraints of the processes that want to acquire the lock, partment, Aprir 1990.

and favor high priority processes. Priority spinlocks can

be used in many places in a real-time application. They [9] L.D. Molesky, C. Shen, and G. Ziokapa. Pre-
can be used as described to provide prioritized access to a dictable synchronization mechanisms for multipro-
shared resource, or as a building block for priority binary cessor real-time systems. Journal of Real-Time Sys-
semaphores, priority counting semaphores, and priority terns, 3(2), 1990.
monitors. Our algorithms have predictable implemen-
tations because they are based on local spinning. The [10] R. Rajkumar, L. Sha. and J.P. Lehocsky. Al ex-

first can be used in multiprocessors with coherent caches, perimental investigation of synchronization proto-

and the second, albeit more complicated, can be used in cols. In Proceedings 6th IEEE Workshop on Real-

multiprocessors with and without coherent caches. lime Operating Systems and Software, pages 11-17,
Pittsburgh, PA, May 1989.

7 [11] Ragunathan Rajkumar, Lui Sha, and John P.
Lehoczky. Real-time synchronization protocols for

I would like to thank Tom LeBlanc, Michael Scott and mltiprocessors. In IEEE Real-Time Systems Sym-
John Mellor-Crummey for valuable discussions and sug- posiur, pages 259-169. !988.
gestions in earlier drafts of this paper. [12] L. Sha. J. Lehoczky, and R. Rajkumar. Solutions

for some practical problems in prioritized preemp-

References tive scheduling. In Proceedings of the 7th Real-Time
Systems Symposzum. pages 181-191, New Orleans,

[I] T. E. Anderson. The performance of spin lock alter- LA, 1986.
natives for shared-memory multiprocessors. IE'E [13] J.A. Stankovic. Misconceptions about real-time
Transactions on Parallel and Distributed Systemi. computing: A serious problem for next-generation
1(1):6-16, January 1990. systems. IEEE Computer. 21(10):10-19, Oct 1988.

(2] S.R. Biyabani, J.A. Stankovic, and K. Raman-
ritham. The integration of deadline and criticalness
in hard real-time scheduling. In IEEE RaM-Time
Systems Symposium, pages 152-160, 1988.

| ,

YARTOS: Kernel support for efficient,
predictable real-time systems

Kevin Jeffay, Don Stone, Dan Poirier
University of North Carolina at Chapel Hill

Department of Computer Science
Chapel Hill, NC 27599-3175

January 1991

1. Introduction

Real-time computer systems are loosely defined as the class of computer systems that must
perform computations and I/O operations in a time frame defined by processes in the
environment external to the computer. Real-time systems differ from more traditional
multiprogrammed systems in that real-time systems have a dual notion of correctness. In
addition to being logically correct, i.e., producing the correct outputs, real-time systems
must also be temporally correct, i.e., produce the correct output at the correct time. In this
paper we describe an operating system kernel called YARTOS (Yet Another Real-Time
Operating System) that supports the construction of efficient, predictable real-time systems.
Initially we are focusing on the problem of designing and constructing hard-real-time
systems. Hard-real-time systems are real-time systems that require deterministic guarantees
of temporal correctness. These are systems in which the cost of failing to interact with the
external environment in real-time is high. This high cost can be measured in monetary
terms (e.g., an inefficient use of raw materials in a process control system), aesthetic terms
(e.g., unrealistic output from a computer music or computer animation system), or possibly
in human or environmental terms (e.g., an accident due to untimely control in a nuclear
power plant or fly-by-wire avionics system).

In recent years, numerous real-time operating systems have been developed. Our work is
distinguished by the programming model that YARTOS supports and by the aggressive use
in YARTOS of recent results in the theory of deterministic processor and resource
allocation. The programming model supported by YARTOS is an extension of Wirth's
discipline of real-time programming [Wirth 77]. In essence it is a message passing system

with a semantics of inter-process communication that specifies the real-time response that
an operating system must provide to a message receiver. This allows us to assert an upper
bound on the time to receipt and processing of each message. The exact response time
requirement is a function of such factors as the rate with which a process receives messages
on a given channel. Ultimately, these rates are functions of the rates at which data arrives
from external sources. These semantics provide a framework both for expressing
processor-time-dependent computations and for reasoning about the real-time behavior of
programs. The programming model is described in greater detail elsewhere [Jeffay 89a].

Programs in YARTOS are compiled into a set of sporadic tasks that share a set of serially
reusable, single'unit resources. A sporadic task is a sequential program that is invoked in
response to the occurrence of an event. An event is a stimulus that may be generated by
processes external to the system (e.g., an interrupt from a device) or by processes internal
to the system (e.g., the arrival of a message). We assume events are generated repeatedly
with a (non-zero) lower bound on the duration between consecutive occurrences of the
same event. A resource in YARTOS is a software object (e.g., an abstract data type) that is

8

Ushared (read/write) by multiple tasks. For a given workload, the goal of YARTOS is to
guarantee that (1) all requests of all tasks will complete execution before their deadlines and
(2) no shared resource is accessed simultaneously by more than one task. We have
developed an optimal (preemptive) algorithm for sequencing such tasks on a single
processor [Jeffay 89b, 901. The algorithm is optimal in the sense that it can provide the
two guarantees whenever it is possible to do so. Moreover, an efficient algorithm has been
developed for determining if a workload can be guaranteed a correct execution [Jeffay 90].
Our development and analysis of a formal scheduling model has resulted in a surprisingly
efficient implementation of YARTOS tasking. Specifically, applications consisting of
multiple tasks can be executed on a single run-time stack and no explicit locking mechanism
is required for accessing shared resources. This improves the memory utilization of the
system and yields efficient context switches between tasks. This encourages liberal use of
tasks and data sharing in YARTOS applications.

In this note we concentrate on the YARTOS's scheduling model and its implementation.
The following section describes the scheduling model and the algorithms used for
processor and resource allocation. Section three briefly describes a prototype
implementation of the YARTOS kernel. We conclude with some brief comments on our
experiences with YARTOS.

2. Scheduling Model

YARTOS supports two basic abstractions: tasks and resources. A task is an independent
thread of control that is invoked at sporadic intervals. Each invocation of a task must
complete execution before a well-defined deadline. The invocation intervals and deadlines
for a task are derived from constructs in the higher-level programming model. During the
course of execution, a task may require access to some number of resources. A resource is
a software object (an abstract data type) that encapsulates shared data and exports a set of
procedures for accessing and manipulating the data. Like a monitor, objects require
mutually exclusive access to the data they encapsulate. A set of tasks is said to be feasible
if all requests of all tasks will complete execution before their deadlines and no shared
resources is accesixd simultaneously by more than one task.

We have developed an efficient decision procedure for deciding if a set of tasks is feasible.
Let ri, r2, rn be the rates at which tasks are invoked (measured in terms of minimumI inter-invocation time), sorted in non-increasing order. Let C1, C2, ..., Cn be the maximum
execution times required to execute the tasks. Let ni be the number of operations on shared
resources repositories performed by an invocation of task i, and let Cil, ci2, i be the
maximum execution time required for each operation. Let cio be the maximum execution
time required to execute the remaining code (sequential code in task i that does not require .
acce,'s to a shared resource). Hence Ci = cio + cu, + ci2 + ... + Ci,. A set of tasks will be
feasible on a single processor if:

1 Necessary and sufficient conditions for schedulability are presented in [Jeffay 901. For brevity, we present
a simpler (sufficient) formulation of these conditions.

9

2

n

1) Ci ri < 1,
i= 1

2) Vi, 1 < i.n; Vk, 1 <k5ni; VL, 1/r, <L < 1/ri:
i-I

L t Cik +,LL-1 jc
j= 1

The product Ci ri is the fraction of the processor that must be allocated to processing
invocations of task i. The first condition stipulates that the processor not be overloaded.
Condition (2) applies to tasks that require access to resources (tasks for which ni > 0). It
quantifies the processor demand that occurs when tasks simultaneously access a shared
resource. The right hand side of the inequality in condition (2) is a least upper bound on
the processor demand that can be realized in an interval of length L starting at the time an
invocation of a resource requesting task i is scheduled, and ending sometime before the
deadline for completion of the invocation. Under all circumstances this bound must be less
than or equal to the minimum inter-invocation time (or a fraction thereof) of task i. A set of
tasks can be tested against these conditions in time O(llrn).

The derivation of the feasibility conditions has suggested an algorithm for sequencing the
tasks. The algorithm is a variation of the well-known earliest deadline first (EDF)
scheduling algorithm; a preemptive priority driven scheduling algorithm with dynamic
priority assignment [Liu & Layland 73]. The novel feature of the algorithm is the fact that
it dynamically manipulates the deadline of a of task invocation to ensure that the task
maintains exclusive access to whatever shared resource it might be accessing. This is
similar to the concept of a priority ceiling in priority inheritance protocols [Sha et al. 90].
Our approach is new because (1) it is optimal, and (2) it is based on EDF scheduling. This
manipulation of deadlines ensures that there will exist no contention for shared resources at
run-time. Because of this YARTOS need not provide any special locking facilities for
shared resources.

A second interesting property of our scheduler concerns the implementation of tasks. If a
task P is preempted, it is the case that any task that executes while P is preempted, is
guaranteed to complete execution before P is resumed. Since tasks execute to completion,
we may execute all tasks on a single run-time stack. This greatly improves memory
utilization and reduces context switching overhead. This is similar to Baker's stack
allocation policy [Baker 90]. These two properties of our scheduling algorithm affords us
an extremely efficient implementation of tasks.

3. Implementation

A YARTOS prototype that implements both the tasking model and scheduling discipline
has been constructed. It is implemented in C on an IBM PS/2 computer (Intel 80386
processor) and consists of approximately 1500 lines of code. Its small size is due largely
to the fact that we may implement tasks and resources in a simple and straightforward
manner. YARTOS is being used to experiment with digital audio and video on a local area
network of workstations [Jeffay & Smith 90a, 90b]. Currently we have small number of
workstations interconnected with a 16Mbit token ring network. Each workstation is
connected to a video camera, microphone, speaker, and video monitor, and contains real-
time video encoding/decoding hardware with compression capabilities (Intel's ActionMedia
Digital Video Interactive product [Ripley 891). The goal is to use the workstation and

10

|I

network to emulate a cable television network. This requires real-time data acquisition,

processing and transmission. The motivation for this project is to support the remote, real-
time collaboration of scientific and technical professional [Smith et al. 90].

Previously, YARTOS was used to successfully support an interactive 3-dimensional
graphics display system used for research in virtual worlds [Chung et al. 89]. The

3 graphics system is a head-mounted display system consisting of a helmet with miniature
television monitors embedded in it, and tracking hardware for the helmet and for a hand-
held pointing device. A computer generated image of a 3-dimensional "virtual world" is
displayed in the helmet. The goal of the system is to track the user's head and pointing
device in real-time and to update the image displayed in the helmet so as to maintain the
illusion that the usei is immersed in an artificial world. There are two separate real-time
concerns in this application. First, the system must update the display at a rate sufficient
for ensuring that animate objects displayed in the helmet move in a smooth and realistic
manner. Second, as the user moves her head or pointing device, the displayed image must
appear to move with the user's movements. Such constraints were simple to model and
realize with YARTOS.

YARTOS and its programming system provide a framework for both expressing
processor-time-dependent computations and for reasoning about the real-time behavior of
programs. For example, for our implementation of YARTOS, we can demonstrate that the
maximum time between the arrival of a complete head and hand position report and the
display of an image based on the new position information is approximately lOOms. By
performing some simple restructuring of the program, we were able to reduce this
performance guarantee to approximately 33ms (see [Jeffay 89a]).

4. References

[Baker 90] Baker, T.P., A Stack-Based Resource Allocation Policy for Real-Time
Processes, Proc. Eleventh IEEE Real-Time Systems Symp., Orlando, FL,
December 1990, to appear.

(Chung et al. 89]
Chung, J.C., Haris, M.R., Brooks, F.P., Fuchs, H., Kelley, M.T.,
Hughes, J., Ouh-young, M., Cheung, C., Holloway, R.L., Pique, M.,
Exploring Virtual Worlds with Head-Mounted Displays, Non-Holographic
True 3-Dimensional Display Technologies, SPIE Proceedings, Vol. 1083,
Los Angeles, CA, January 1989.Ii

[Jeffay 89a] Jeffay, K., The Real-Time Producer/Consumer Paradigm: Towards
Verifiable Real-Time Computations, Ph.D. Thesis, University of

j Washington, Department of Computer Science, Technical Report #89-09-
15, September 1989.

[Jeffay 89b] Jeffay, K., Analysis of a Synchronization and Scheduling Discipline forReal-Time Tasks with Preemption Constraints, Proc. Tenth IEEE Real-Time Systems Symp., Santa Monica, CA, December 1989, pp. 295-305.

[Jeffay 90] Jeffay, K., Scheduling Sporadic Tasks With Shared Resources in Hard-
Real-Time Systems, University of North Carolina at Chapel Hill,
Department of Computer Science, Technical Report TR90-038, August
1990. (Submitted for publication.)

1---

[Jeffay & Smith 90a]
Jeffay, K., Smith, F.D., Designing a Workstation-Based Conferencing
System Using the Real-Time Producer/Consumer Paradigm, Proc. of the
First Intl. Workshop on Network and Operating System Support for Digital
Audio and Video, Intl. Computer Science Institute, Berkeley, CA,
November 1990.

[Jeffay & Smith 90b]
Jeffay, K., Smith, F.D., System Design for Workstation-Based
Conferencing With Digital Audio and Video, University of North Carolina
at Chapel Hill, Department of Computer Science, Technical Report, October
1990. (To appear.)

[Liu & Layland 73]
Liu, C.L., Layland, J.W., Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment, Journal of the ACM, Vol. 20, No. 1,
(January 1973), pp. 46-61.

[Ripley 89] Ripley, G.D., DVI - A Digital Multimedia Technology, CACM, Vol. 32,
No. 7, (July 1989), pp. 811-822.

[Sha et al. 90] Sha, L., Rajkumar, R., Lehoczky, J.P., Priority Inheritance Protocols: An
Approach to Real-Time Synchronization, IEEE Trans. on Computers,
Vol. 39, No. 9, (September 1990), pp. 1175-1185.

[Smith et al. 90]
Smith, J.B., Smith, F.D., Calingaert, P., Hayes, J.R., Holland, D.,
Jeffay, K., Lansman, L., UNC Collaboratory Project: Overview,
University of North Carolina at Chapel Hill, Department of Computer
Science, Technical Report TR90-042, November 1990.

[Wirth 77] Wirth, N., Toward a discipline of real-time programming, CACM, Vol.
20, No. 8 (Aug. 1977), 577-583.

12

Dynamic Scheduling for Hard Real-Time Systems:
Toward Real-Time Threads

Hongyi Zhou Karsten Schwan
V College of ComputingI Georgia Institute of Technology

Atlanta, GA 30332

i
1 Introduction
Our experiences with real-time and parallel architectures[25], applications[15], and operating systems[21. 24,
7] have led to the conclusion that the requirements for real-time software may change during the lifetime or
even during the operation of the system being controlled by such software[5, 15, 13, 12]. We call such sys-
tems dynamic when their execution environments exhibit potentially unpredictable behavior. For example,
their control software may have to contend with (1) high variations in the rates with which external events
occur, or (2) a combinatorially large number of possible, joint event occurrences, or (3) variable requirements
in reactions to such events (e.g., multiple operating modes)(21], or (4) unexpected changes in the comput-
ing resources (e.g., increasing error rates[2, 3], unexpected events[7], or dynamic performance/reliability
tradeoffs[l]).

This research addresses the timeliness of thread execution in dynamic real-time systems. Specifically,
we investigate the dynamic scheduling of execution threads with well-defined timing constraints. Like most
researchers in real-time systems[16, 29], we assume that such timing constraints are described by hard
deadlines, which must be mt in order for thread execution to be useful (e.g., to avoid catastrophic failures).
Each individual thread has a well-defined maximum execution time, start time (which need not be equal to
its arrival time), and deadline, as well as precedence constraints with respect to other threads.

We have developed a dynamic optimal uniprocessor scheduling algorithm with an O(n log n) worst case

complexity. The algorithm permits thread preemption and is built upon the earliest-deadline-first scheduling

policy shown optimal in [6]. However, the presented algorithm has higher efficiency than other known
algorithms[6, 9, 22], and it also allows threads to have arbitrary start times (which need not be equal to
their arrival times), deadlines, and precedence constraints. Furthermore and in contrast to [6], our dynamic
algorithm not only selects the next thread to be run at the time of a context switch, but also performs
schedulability analysis and accepts or rejects a thread at the time of its creation.

High efficiency of our algorithm is achieved by the efficient representation of the scheduling information.
Specifically and in contrast to other work in real-time scheduling[29, 22], schedulability analysis does not
rely on an explicit representation of the information regarding the assignment of thread executions to time

periods. Instead, we use a data structure termed a slot list to record only the time periods at which threads
have been scheduled. The selection of threads for execution by the low-level thread multiplexor is performed
using an additional data structure: an earliest deadline list termed the EL. As in [9] and in contrast to [22],
threads are run by the earliest deadline and start time.

The dynamic scheduling algorithm constitutes the necessary basis for operating systems that address
dynamic real-time systems. We have embedded the algorithm in a real-time threads library implemented
on a 32-node BBN Butterfly multiprocessor. This library provides a portable, efficient basis for a family of
real-time, multiprocessor operating system kernels[19, 23] that jointly support highly dependable, parallel
and real-time computing[7, 2]. The algorithm's embedding within the real-time threads library permits its
experimental evaluation. As a result, the analytic model capturing the algorithm's average case behavior

Mcan be validated with actual system measurements. Specifically, since the O(n log n) worst case complexity

13

of the algorithm depends on the number of slots in the slot list, which tends to decrease with increasing
syster load, the algorithm's average case performance sbould be much better than O(nlogn). Both the-
oretical performance analysis and measurements of the algorithm's implementation on the BBN Butterfly

multiprocessor support this conjecture [26].

2 Definitions and Related Research

We consider the problem of scheduling a set of n preemptable threads on a uniprocessor system. Each
thread is characterized by (A, S, C, D), where A is its arrival time, S is the earliest possible time at which

its execution may begin, C is the maximum computation time, and D is the deadline, which are assumed I
known when the thread arrives at the system. A thread is preemptable if its Ci units of computation time
can be satisfied by one or more time slots which sum to C,. f

Given a set of threads, a schedule is feasible if all the threads in the set can be scheduled such that
their timing and precedence constraints are met. A set of threads is schcdulable if there exists at least one
algorithm that can feasibly schedule the set. A static scheduling algorithm is said to be optimal if, for any
set of threads, it finds a feasible schedule whenever any other algorithm can do so. In dynamic systems, this
definition cannot be used, since threads may arrive randomly and since all their characteristics may not be
known a priori. In this case, a newly arriving thread is said schedulable, if all previously scheduled threads
remain schedulable and if the new thread can also be scheduled. Then, a dynamic algorithm is optimal if

any thread determined unschedulable by the algorithm also cannot be scheduled by any other algorithm.

For the problems defined above, two types of uniprocessor schedulers have been developed in the past.
The rate monotonic scheduling algorithm developed by Liu and Layland [14] determines thread schedulability
for periodic threads. Several extensions of that algorithm deal with sporadic threads(18, 10]. However, in
all of their approaches, periodic threads are given higher priorities than sporadic threads. This does not

suffice for the dynamic systems we are considering, in which sporadic threads may handle exceptional and
important events that may exhibit hard deadlines (e.g., a robot vehicle stumbling or dealing with sudden
cross-winds).

The other type of uniprocessor schedulers developed in the past are based on the earliest-deadline-first
scheduling algorithm, which was shown optimal by Dertouzos[6] for scheduling preemptable threads with
arbitrary arrival times. This algorithm can be used for thread scheduling, but, not for thread schedulability
analysis. Moreover, a limitation of the approach is that each thread's arrival time is assumed equal to
its start time. This is not a useful assumption in highly dynamic systems, where threads which handle
exceptions may be pre-created (pre-forked)[7] to reduce the latency of exception handling. Similarly, we
wish to guarantee the scheduling of groups of threads, in each of which all of the threads have the same

arrival time but different start times.

Horn [91 once developed an 0(n 2) static algorithm to schedule threads with arbitrary start times and
deadlines. It was shown that the maximum lateness, for the single machine case, is minimized by executing
all threads in order of increasing deadline.

3 A Dynamic Optimal Scheduling Algorithm

In this section, a brief outline of the dynamic scheduling algorithm is presented, followed by a summary of
the interesting results and extensions. Details can be found in [26].

Scheduling algorithm. In the following, we first assume all threads are preemptable and mutually
independent. According to the earliest-deadline-first scheduling policy, threads are scheduled earliest deadline
first and as close to their start times as possible. Specifically, the scheduling information used by the algorithm
is recorded in a slot list. Each element of the list-represents a time slot already assigned to the threads.

14

II1

To test a thread's schedulability, the algorithm searches the slot list for the available time intervals between
slots. Such search starts at a slot compatible with the thread's start time and ends at a :;lot compatible
with the thread's deadline or when the accumulated length of available time slots is equal ,o the thread's
execution time. The thread is schedulable if sufficient execution time is found during this search, else the

w algorithm reports the thread as unschedulable. After a thread is scheduled, the slot list is updated. When
j the number of slots is large, slots are indexed by a balanced binary tree on their start times. Therefore, a

slot with a particular start time can be located in the slot list by searching the binary tree in O(logn) time.

The resulting thread to slot assignment is not recorded within the slot data structure. Instead, once a
thread's schedulability is determined, it is entered in order into an earliest deadline first list - abbreviated
EL. This list records all threads that have previously been determined schedulable. This is the list from
which the multiplexor selects a thread for execution when it is ready to run a next thread. The EL is a list

i instead of a queue, because the thread chosen to run next is not necessarily the first one in the list. This ;s
because the thread with the earliest deadline may not yet have reached its start time. Thus, it is necessary

jto search the EL for the first 'ready' thread. A thread is ready to run when its start time is earlier than or
equal to the current time. If such a search chooses the i-th thread Ti, for example, this means that the start
times of all threads before T are greater than the current time. For preemptive scheduling, this also implies
that thread Ti should be preempted at the time min.start, which is the minimal start time of all Ti,j < i.
If min-start >= the finish time of 7 or i=l, then T is not preempted. The calculation of min-start can
be performed during the search of EL and therefore, does not require additional work.

It should now be apparent why the assignment of threads to 5lots need not be recorded in the slot
list (in contrast to [22]). Namely, the EL is used for thread scheduling, whereas the slot list is used only
for schedulability analysis of the threads being scheduled. This leads to another simplification in slot list
management. Namely, since the only information of interest is which time intervals are available, slots may
be merged when they are adjacent. For instance, slots [2..18] and [18..30] may be merged to slot (2..30].
Merging significantly reduces the number of slots in the list and speeds up schedulability analysis under high
loads.

For dynamic scheduling in response to a fork operation, we call a newly arriving thread schedulable only
if its scheduling does not jeopardize previously scheduled threads. Such a schedulability analysis, then,
first places the new thread in order into the EL list, which records all previously scheduled threads, then
reschedules a subset of threads in the updated EL using the above slot list based algorithm. If any of the
threads in the subset is unschedulable, the new arrival is considered unschedulable. Otherwise, the new
arrival is schedulable. The threads in the subset are those threads whose scheduling intervals conflict with
the scheduling interval of the new thread. Such subset is easily determined using the slot list [26].

= Given the combination of the slot list and the EL, the complexity of the algorithm is O(n logn) in the
worst case (see (26] for detailed analysis). As will be shown later, on average, only a small fraction of total
threads must be rescheduled, so that the time to test the schedulability of a new thread is much less than
O(n log n).

Summary of results and extensions. We summarize some interesting results regarding the dynamic
algorithm. First, when a system is heavily loaded, relatively more slots in the slot list are likely to be
merged. Therefore, the average time for schedulability analysis should be much less than O(n log n), which

is the worst case time.

Second, the algorithm is easily extended to deal with thread precedence. In [4], Blazewicy proposed
to enforce precedence constraints among threads by having the deadline of the predecessor thread precede
in time the earliest possible start time of the successor thread. This is overly pessimistic since the actual
completion time of the predecessor thread may be much earlier than its deadline. This issue does notI. arise in the algorithm presented here, because a successor thread may be made ready to run as soon as the

15

ai

predecessor completes its execution by simply giving the successor thread a start time of S+ 1 and a deadline

> D + 1, when the predecessor has start time S and deadline D. This ensures that the predecessor thread
is positioned before the successor thread in the EL list. Moreover, because the start time of the successor
thread is later than the start time of the predecessor thread, the successor thread will not be chosen for I
execution by the multiplexor until the predecessor thread completes its execution.

The third interesting result is that in practice, the computation time of a thread can only be estimated
approximately[17] and pessimistically. If a dynamic algorithm performs scheduling based on such estimates,
it would be forced to reclaim unused processor cycles at the time of thread completion. To retain optimality,
such reclaimed time slots would have to be made available for new threads and for currently scheduled
threads, therefore causing additional overhead. In our algorithm, the reclamation of unused processor cicles
is automatically carried out by simply (1) removing a thread from the EL after it completes and (2) executing
the dynamic algorithm when testing the next new thread's schedulability.

A first interesting extension of the algorithm is its use for the scheduling of entire thread groups[20],
where we assume that there exists a start time s-sct and a deadline d-set for the group. For a group that is
considered schedulable only if all of its threads are schedulable, our algorithm can perform the schedulability
analysis for all of its members at once, rather than testing members one at a time. If the number of threads
in such a group is m, the resulting time is O((rn - k) log(m +1- k)), where k is the number of threads (excluding
the threads in the group) involved in the rescheduling.

A second extension of the algorithm concerns periodic threads. Recall that a schedule of n threads is
based on threads' deadlines as well as start times, where start times are not necessarily equal to arrival
times. As a result, a periodic thread can be represented as a set of sporadic threads with known start times
and deadlines. A periodic thread is then said schedulable if and only if all of its periods are schedulable.
Note that a more practical approach, however, would first use the rate monotonic algorithm to determine the
schedulability of a set of periodic threads in the system and then use our algorithm for some time interval
T to perform the detailed schedulability analysis for threads including all the sporadic threads and all the
periods of the periodic threads in the interval T. The interval T may be set to be a time span from the
present time up to a point beyond which the executions of the sporadic threads that have already arrived
will not occur. The length of the interval T is a system parameter that can be tailored by the system
programmer, according to the knowledge of the functionality of the system's sporadic threads.

A third extension concerns the consideration of the overhead of thread preemption. If we assume that
SWAP.OUTTIMEis the time to preempt a thread and SWAP-INTIME is the time for resuming a thread,
then a simple extension of the dynamic algorithm can take into account thread preemption cost. In the
extension, both SWAP.OUTTIME and SWVAP-NTIJUE are added to the execution time of the thread
being presently scheduled, whenever the algorithm crosses a slot in searching for available time.

4 Experimental Evaluation

We have developed an analytic model for capturing the algorithm's average case behavior. The model,
described in detail in [26], applies the queueing theory to calculate the average number of slots in the slot
list. It has shown that the average number of slots in the slot list decrease as the system load increases,
which proves our conjecture that the average case complexity of the algorithm is much better than that of
the worst case. In this section, we present experimental results that validate the analytic model proposed in
[26].

The dynamic scheduling algorithm discussed in this paper is part of a real-time, multiprocessor threads
package[27] being used by our group as a basis for the construction of real-time and multiprocessor operating
system kernels and applications[8, 7]. To permit its use in hard real-time systems, the real-time threads
package guarantees the schedulability of threads dynamically at the time of thread creation (e.g., when

16

forking threads), provided that threads are the smallest schedulable units in the system and that their
deadlines, start times, and maximal computation times are known at their arrival times (e.g., at fork time).
In addition, such guarantees are maintained when threads communicate with each other using threads
package calls, such as locking shared data, sleeping or waiting on condition variables (see [19] for a complete
definition of the real-time threads package).

An implementation of the real-time threads package has been developed on a 32-node GP1000 BBN
Butterfly (a 68020-ba-ed machine). The BBN Butterfly's memory resides on individual nodes, but anyf processor can addr.ss any memory through the machine's interconnection network. A local memory reference
requires approximately 600 nanoseconds and a remote reference requires 4 microseconds, assuming zero
switch contention (a reasonable assumption for many real-time applications exhibiting sparse interprocessor

jcommunication(21]).
To avoid switch contention, the implementation of threads on the target hardware distributes the system

data structures across the nodes of the parallel machine. Furthermore, scheduling bottlenecks are avoided
by having each node performs its own thread scheduling by use of a scheduler thread - termed the local
schcduleq20]. The local scheduler makes decisions regarding all threads assigned to the node, and it is
implemented as a special periodic thread resident on each processor. This special periodic thread is different
from the other regular periodic threads in that its period (which is a system parameter) changes along with
the workload of the corresponding processor.

In addition to possessing a local scheduler, each node also contains a low-level scheduler - termed the
multiplexor. It is implemented as a function call as well as an interrupt handler. When a thread completes
its computation or when a thread is preempted by a software interrupt, the multiplexor is invoked to choose
the next thread to be runfl].

The experiments conducted with the real-time threads package evaluate the actual delay caused by the
scheduling algorithm and the number of slots in the slot list under various system loads. The synthetic
workloads associated with those experiments use both Weibull and exponential functions as thread inter-
arrival time distributions. The Weibull distribution has two parameters: a and -r. The parameter a directly
influences the arrival rate:

1. if a < 1, the arrival rate is decreasing with time;

2. if a = 1, the arrival rate is constant with time, resulting in an exponential distribution; and

3. if a > 1, the arrival rate is increasing with time.

The Weibull distribution is cho.t- since the external events to be handled by dynamically created threads
often occur in a dependent, bursty fashion[28l. This is captured more accurately with the Weibull distribution
with a > 1 than with the exponential distribution.

In the experimentation, a thread's start time is set equal to its arrival time plus a uniformly distributed
random number. For the computation time cf threads, both the uniform and the exponential functions are
used as its distribution. Finally, the deadline of threads is defined as. deadline = start time + computation
time + a random slack time, which is also uniformly distributed.

Figure 1 in the appendix depicts the observed overheads in scheduling a new thread as a function of
the number of threads already in the system. In these measutements, system workload is 0.8. As with
the other experimental results reported below, scheduling cost is almost independent of the distributions
of inter-arrival and computation times used in the experimentation. The worst case overhead depicted in
Figure 1 is obtained by rescheduling all of the threads in the EL when a new thread is scheduled, using the
balanced binary tree in the algorithm. For eamse of display, not all points are shown in the figure.

17

*The measurements reported in Figure 1 demonstrate that dynamic thread scheduling is feasible even for
a very large number of threads per processor, resulting in scheduling overhead of less than approximately 20
milliseconds for up to 900 threads. Since most devices for robotics (and other real-time) applications require
execution rates of no more than 100 Iz, this implies that the highest rate threads in such applications [
should not be scheduled dynamically, but that even for large-scale, real-time applications, most medium rate
threads (threads with average maximum execution times of 100 milliseconds) may be scheduled dynamically
with no more than 20% scheduling overhead.

Figure 2 in the appendix illustrates the relationship between two sets of measurements of the dynamic
algorithm in a reduced scale, one set using the binary tree, the other set bypassing it. The figure illustrates
that the binary tree's benefits are consistently apparent only for a relatively large number of threads (e.g.,
more than 200), since the balancing operation of the binary tree itself costs significant time. The high
variation in scheduling cost for large numbers of threads is due to the fact that a substantial threads in the
EL is involved in e'escheduling necessitated by thread arrival.

Table I shows the experimental data obtained in order to (1) verify the analytic model we have developed
and (2) calculate the number of slots in the slot list with different distributions. To achieve exponential inter
start times for threads or to achieve Weibull inter-start times, we let the threads' start times equal their
arrival times in these experiments. At each load level, measurements are performed using thread sets ranging
from size 10 to 600. The table depicts the averages of those measurements. The observed variances are small
and are therefore, not reported here.

p Poisoeo Ssrt Times Poiss.. St.t Tim.. W.ib.i I.t...S.l.n Times WtibU iattt.Sts.s Times

Uaifor., Cop. Tim.. Exp..tstill Comp. Time. Usiforra Comp. Times E-p-l tli-i Comp. Tim..
0.3 0.73 0.72 0.7 0.74

0.4 0,84 0,84 0 63 0.64

0.6 0.37 O.S3 0.35 0 .4

0.8 0.48 0.44 0 45 0,42

0.? 0.42 0.30 0.35 0.32

0.8 0.33 0.21 0.23 0.2,
,,,0 o s i . 2 0 00.9 0.21 0.03 0.09 0.08

0.9$ 0.1_______ 0.03 0.08l 0.05

Table 1: Experimental Value of I(n) with Different Workloads p

5 Conclusions
This paper develops and evaluates a dynamic preemptive scheduling algorithms for hard real-time systems.
The results presented demonstrate that the dynamic algorithm may be used for on-line scheduling of a large
number of threads (up to 2000 in our current experimentation) per processor without undue performance
penalties. The threads being scheduled include sporadic and periodic threads, and straightforward algorithm
extensions can handle thread groups and threads related by precedence constraints.

Not shown in this paper are our additional experiences with a real-time threads package that concern
dynamic scheduling for thread synchronization, such as scheduling performed when threads make dynamic
decisions to wait[21, 27] on certain conditions (with well-defined timeout values). Such scheduling is per-
formed by inspection of condition waiting queues and thread start times and deadlines.

This paper has confined itself to presentation of uniprocessor real-time scheduling- Our current work
concerns the extension to multiprocessor scheduling, based on the uniprocessor algorithms presented here
;d on our previouR work in multiprocessor, real-time scheduling[27, 20, 22].

1Exponential inter-stort time is equal to Poisson start time.

18

A Appendix

I 0
Q 70

110-

I00+ wor i cc**

so-

E

* 50-
E

1O -

201/

1: /

0 0.2 0., 0.6 0.8
(Thousonot)

"umber of IthewoI Ir L Wv

Figure 1: Observed Overhead in Thread Scheduling

24 -

j 22
0 wHhso. b4nory Ie*

20 + wHh binory tre

- 12

E
10 I
4

J 2
0 ... I I I I | I . .

0 0.2 0,4 0.6 0.5 1 1.2 1.4 1.6 1.8 2
(Thousands)

number of Whroods In CL IEla

Figure 2: Scheduling Overhead of the Dynamic Algorithm

1 19

II
II

Reef rences il
[1] T. Bihari, D. Pugh, T. Walliser, and E. Ribble. Timing analysis of a robot motion-planning algo-

rithm. In Seventh IEEE Workshop on Real-Time Operating Systems and Software, Univ. of Virginia,
Charlottesville, pages 104-107, May 1990.

r
[2] T. Bihari and K. Schwan. A comparison of four adaptation algorithms for increasing the reliability of

real-time software. In Ninth Real-Time Systems Symposium, Huntsville, AL, Dec. 1988. Also submitted
to Real-Time Systems.

[3] T. Bihari and K. Schwan. Dynamic adaptation of real-time software for reliable performance. Technical
report, Department of Computer and Information Science, The Ohio State University, OSU-CISRC-
5/88-TR, May 1988. To appear in ACM Transactions on Computer Systems.

[4] J. Blazewicz. Scheduling dependent tasks with different arrival times to meet deadlines. In Modelling
and Performance Evaluation of Computer Systems. North-Holland, 1976.

[5] Gene D. Carlow. Architecture of the space shuttle primary avionics software system. Communications
of the ACM, 27(9):926-936, Sept. 1984.

[6] Michael L. Dertouzos. Control robotics: the procedural control of physical processes. In Proc. of the
IFIP Congress, 1974.

[7] Ahmed Gheith and Karsten Schwan. Chaco-art: Kernel support for atomic transactions in real-time
applications. In Nineteenth International Symposium on Fault-Tolerant Computing, Chicago, ILL, pages

462-469, June 1989.

[8] Ahmed Gheith and Karsten Schwan. Chaos-arc - kernel support for multi-weight objects, invocations,
and atomicity in real-time applications. Technical report, GIT-ICS-90/06, College of Computing, Geor-
gia Institute of Technology, Atlanta, GA 30332, Jan. 1990. Submitted for publication.

[9] W. A. Horn. Some simple scheduling algorithms. Naval Res. Logist. Quart., 21:177-185, 1974.

[10] Lui Sha John P. Lehoczky and Jay K. Strosnider. Enhanced aperiodic responsiveness in hard real-time
environments. In Proceedings of Real-Time Systems Symposium, San Jose, CA, pages 261-270. IEEE,
1987.

[11] A.K. Jones, R.J. Chansler, I. Durham, J. Mohan, K. Schwan, and S. Vegdahl. Staros, a multiprocessor
operating system. In Proceedings of the 7th Symposium on Operating System Pinciples, Asilomar, CA,
pages 117-127. Assoc. Comput. Mach., Dec.10-12 1979.

[12] Korein, Maier, Taylor, and Durfee. A configurable system for automation programming and control.
In IEEE International Conference on Robotics and Automation, San Francisco, CA, pages 1871-1877.
IEEE, April 1986.

[13] Jeff Kramer and Jeff MaGee. Dynamic configuration for distributed systems. IEEE Transactions on
Software Engineering, SE-11(4):424-436, April 1985.

[14] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in hard real-time
environment. Journal of the Association for Computing Machinery, 20(1):46-61, January 1973.

[15] Robert B. McGhee. Vehicular Legged Locomotion, pages 259-284. Jai Press Ltd., 1985.

[16] A. K. Mok and M. L. Dertouzos. Multiprocessor scheduling in a hard real-time environment. In Proc.
of the Seventh Texas Conference on Computing Systems, November 1978.

20

I|

*1

(17] P. Puschner and Ch. Koza. Calculating the maxinmum execution time of real-time programs. Real-Time

Systems, 1(2):159-176, September 1989.

[18] Lui Sha Ragunathan Rajkumar and John P. Lehoczky. On countering the effects of cycle-stealing in
a hard real-time envircnment. In Proceedings of Real-Time Systems Symposium, San Jose, CA, pages

T2-11. IEEE, 1987.

[19] K. Schwan, A. Gheith, and H. Zhou. Chaos-arc: A kernel for predictable programs in dynamic real-time
systems. In Seventh IEEE Workshop on Real-Time Operating Systems and Software, Univ. of Virginia,ICharlottesville, pages 11-19, May 1990.

[20] Karsten Schwan, Thomas E. Bihari, and Ben Blake. Adaptive, reliable software for distributed and
I parallel, real-time systems. In Sixth Symposium on Reliability in Distributed Software, Williamsburg,

Virginia, pages 32-44. IEEE, March 1987.

[21] Karsten Schwan Fem Bihari, Bruce W. Weide, and Gregor Taulbee. 1tigh-performance operating
system primitives for robotics and real-time control systems. ACM Transactions on Computer Systems,
5(3):189-231, Aug. 1987.

122] Karsten Schwan and Ben Blake. A fast scheduling mechanism for real-time systems. Technical report,

- Computer and Information Science, The Ohio State University, OSU-CISRC-5/87-TR16, Sept. 1987.
Being revised for publication.

[23] Karsten Schwan, Ahmed Gheith, and Hongyi Zhou. From chaos-min to chaos-arc: A family of real-time
kernels. To appear in 1990 Real-Time Systems Symposium., May 1990.

[24] Karsten Schwan, Prabha Gopinath, and Win Bo. Chaos - kernel support for objects in the real-time
domain. IEEE Transactions on Computers, C-36(8):904-916, July 1987.

[25] Karsten Schwan and Rajiv Ramnath. Adaptable operating software for manufacturing systems and
robots: A computer science research agenda. In Proceedings of the 5th Real-Time Systems Symposium,
Austin, Texas, pages 255-262. IEEE, Dec. 1984.

[26] Karsten Schwan and Hongyi Zhou. Optimum preemptive scheduling for hard real-time systems: Toward
I real-time threads. Technical report, College of Computing, Georgia Institute of Technology, GIT-ICS-

90/28, Sept. 1990.

[27] Karsten Schwan, Hongyi Zhou, and Ahmed Gheith. A multiprocessor real-time threads package. Tech-
nical report, College of Computing, Georgia Institute of Technology, Oct. 1990. In preparation.

[28] D. Siewiorek and Robert S. Swarz. The Theory and Practice of Reliable System Design. Digital Press,
1982.

[29] Wei Zhao, Krithi Ramamritham, and J. A. Stankovic. Preemptive scheduling under time and resource
constraints. IEEE Transactions on Computers, C-36(8):949-960, August 1987.

2

21

IT

A Reliable Multicast Protocol for Distributed Real-Time
Systems

H. Kopetz, G. Grfinsteidl |

Institut ffir Technische Informatik t
Technical University ViennaA-1040 Vienna, Austria

Abstract

Distributed computer architectures are well accepted in the domain of real-time applica-
tions. To realize fault-tolerance, node computers providing the same service can be clustered
into Fault-Tolerant Units (FTUs). Each FTU provides a specified service as long as at least
one of its node computers is operational. The communication between these FTUs has to
be reliable and timely, i.e. there must be a tight upper bound on the time it takes to send
a message from one FTU to the other FTUs. This paper presents a communication system
suitable for real-time applications that meets these requirements. [

1 Introduction

A computer system for real-time applications must respond to a stimulus from the controlled
object within an interval dictated by the environment, called the response time. This response
time must be guaranteed under all specified load and fault conditions. A common technique I
to realize fault tolerance in distributed real-time systems is the active replication of node
computers in order to provide the specified service despite of failure of a node computer.
Therefore, the set of node computers is partitioned into disjoint subsets, which forms Fault-
Tolerant Units (FTUs). All node computers belonging to a FTU provide the same service.
Each FTU provides a specified services as long as at least one node of it is operational.

The communication between the FTUs of the distributed real-time computer architecture V
has to be reliable and timely despite of communication failures or node failures (i.e. there must
be a tight upper bound on the time it takes to send a message from one node computer to the

other node computers) [Kur84].

To provide the same service all node computers of a FTU have to receive the same messages.
Therefore the communication system should provide a one-to-many communication (multicast)
between the node computers. This multicast service is also useful at the application level.

Protocols providing broadcast (multicast) communication between the node computers of
a distributed system are known for asynchronous architectures [Cha84,Pet89,MS0J and syn-
chronous architectures [Bab85,Cri90j. In asynchronous architectures there exists no bound on
message delays and no global time base (synchronized local clocks) [Cri91].

22- , I

I . . .1

I

To realize communication under real-time constraints our protocol is based on a synchronous E
architecture. Contrary to known synchronous protocols that realize communication on the level
of node computers, we take strongly into account the clustering of the node computers into

I FTUs.I IIn this paper we present a synchronous communication system to realize reliable multicast
communication between the FTUs of a distributed system under real-time constraints. In the
next two sections the system architecture and the objectives of the protocol are introduced.
Section 4 (protocol description) describes how the communication, the shut-down and switch-on
behavior of node computers, and the management of the membership information is realized.

2 System Architecture

We assume that a distributed system for real-time applications consists of a set of n au-
tonomous selfchecking node computers which are interconnected by a broadcast channel (local
area network (LAN)). Each selfchecking node is a selfcontained computer with a CPU, a local
memory, an interface to the LAN consisting of an incoming link and an outgoing link, and a
local real-time clock. It has to contain error detection mechanisms in hardware or software
to detect errors within itself and turn itself off locally. Communication among the nodes is
achieved by the exchange of broadcast messages only, i.e. a message sent by any one node
can be received by all other nodes. All clocks of correctly functioning nodes are synchronized
with a known constant maximum deviation A [Kop87], i.e. at any point in time the deviation1between any two such clocks is always smaller than A, thus establishing a global time base of
known precision.

In order to tolerate failures of the broadcast channel we propose that the nodes are con-F nected by two actively redundant channels. The nodes have access to the channels in a strict
deterministic sequential order by using a suitable access strategy, e.g. a synchronous time
division access (TDMA) strategy. The access sequence is identical for both redundant corn-I - munication channels. Each node has exclusive access for a constant period called slot. Given
n nodes and beginning with node I it takes n slots for every node to communicate with every

[other node in the system by sending a broadcast message. This length of time is called a round.

Each node of a distributed real-time system has to provide a specified service determined by
its application software (real-time tasks). To tolerate the failure of a node two nodes operate

Ii ii in active redundancy. The actively redundant nodes which provide the same service form a
fault tolerant unit (FTU), i.e. all nodes of a FTU which are operating at a particular point in
time contain the same inner state at about the same time, determined by the synchronization

f J accuracy A introduced above. As long as at least one node of the FTUs is operational it will
deliver the specified service. We assume that the nodes forming a FTU have sequential sending
slots assigned to them. The duration of all sending slots assigned to a FTU is called a FTUf slot.

To increase the degree of redundancy we use the concept of shadow nodes (Kop9O]. A
shadow node operates in redundancy with two other actively redundant nodes of a FTU. It
receives and processes messages, and therefore maintains an internal state equivalent to the
states of the active nodes. The difference from the other nodes is that no sending slot is assigned
to it. Consequently, it does not broadcast any message on the broadcast channels. Thus the

23 v

use of shadow nodes does not affect the timing behavior of the communication between the

nodes. In case of a failure of an active node, the slot of the faulty node will be taken up by the
shadow node. |I
3 Objectives of the Protocol

The objectives of the protocol are to realize: I
e reliable and timely multicast communication between the FTUs of a distributed system

* correct shut-down behavior of faulty nodes

* correct switch-on behavior of shadow nodes

* consistent and timely detection of node failures

e consistent and timely detection of node restarts

The shut-down behavior of nodes and the switch-on behavior of the shadow node inside a FTU 1
have to be consistent to guarantee a correct FTU behavior.

4 Protocol Description

4.1 Failure Hypothesis

Failures causing the loss of one or more messages are considered. These failures may concern
the nodes or the communication system (links and channels). We assume that there is enough
redundancy in each message (e.g. a signature and/or CRC check bits) that a mutilation of the
message contents can be detected. The receiver node discards such messages.

Nodes can suffer crash failures and messages can get lost because of omission or crash
failures of the channels or links.

4.2 Communication [

We assume that each non-faulty node will send a broadcast message in each round in its
assigned slot at a predefined point in time known a priori to all other nodes of the system. In
case no application data have to be transmitted, the node will still broadcast an empty message
as a life sign. (It is a property of the TDMA strategy that empty slots cannot be used by other
nodes anyway.)

A non-faulty node sends exactly those messages that are prescribed by its task specification.
A node is active at its sending point if it broadcasts a message at its assigned slot time. A copy
of this message is sent simultaneously over each of the two redundant channels by a non-faulty
node. Every message contains in the header a protocol field providing information about the
messages the sending node has received or not received in the last n slots. This information T
corresponds to positive and negative acknowledgments and therefore will be called the ACK-
field of the header. The ACK-field consists of 2n bits, corresponding to the 2n messages which

are exchanged in one round. i

24

II

In normal operation every node will receive all four redundant messages - two via the
two redundant channels per node and two in the two consecutive time slots comprising the
FTU slot. At least one out of these four redundant messages from a non-faulty FTU must be
received by a node to continue the service. These four messages contain identical application
data. The ACK-field of messages sent from different active nodes of a FTU can differ.

4.3 Shut-Down and Switch-On Behavior of Nodes

To generate a correct message a node has to receive messages from the other nodes. A message
is correct:

9 if it is sent at the specified time known a priori to all other nodes

* if it contains application data as intended

* if its ACK-field is compatible with the ACK-field of the majority of the other messages
(i.e. the sending node has not missed application messages that have been received by
the majority of the other nodes)

In case a node detects that it cannot generate a correct message it has to shut-down. This
decision depends also on the application and on the proper functioning of the node.

At the communication level we can decide whether a node is receiving and sending the
specified messages. A failure to do so is an additional reason for node shut-down. This cannot
always be detected by the sending node, but sometimes only by the receiving nodes. They
refuse to accept and to acknowledge messages positively with an incompatible ACK-field.

Message Rejection Property: If a node s receives the first "incorrect message" from another
node r, then it will discard this message and all further messages of this node, until the
termination of a join protocol (of the node r).

We define the shut-down behavior on the communication level. After a node has sent out a
message it waits for positive and negative acknowledgments for this message. This information
is piggypacked in the messages sent in the next n - 1 slots. To tolerate the loss of (acknowl-
edgment) messages we specify the shut-down behavior and switch-on behavior of nodes as
follows:

Node Shut-Down Property: A node has to shut-down itself (terminate its service)
* if it cannot generate a correct message
0 if it has not received a positive acknowledgment from more than half of the active

nodes for its last output message

Node Switch-On Property: A shadow node has to switch-on itself, if the last output message
of an active node within its FTU has been negatively acknowledged by more than half of
the other active nodes.

In order to evaluate the conditions for shut-down and switch-on of nodes, a node requires a
timely knowledge about those nodes from which it can expect a (negative or positive) acknow-
ledgment. Therefore, each node of the distributed system has to have knowledge about the
operational state of the other nodes (membership information) [Cri88,Kop89b].

* 25

Based on the fact that all acknowledged messages are correct messages and that non-faulty
nodes have to send messages periodically, the messages could be used as life sign messages. If a
node received a correct message sent by another node, it can conclude the activity of this node
directly. In its next message this node will send a positive acknowledgment (in the ACK-field)
for this message. Despite the fact that no message forwarding is realized explicitly, the used
acknowledgment schema corresponds to a forwarding technique for the life sign information.
In the case a node has not received a message from a node directly, it can be informed by the
other nodes about the activity of the sending node whirh is in question.

To detect intermittent or permanent outpat link or incoming link failures of nodes or
chanmel failures which do not cause the shut-down of nodes a passive monitor node (which can
be in addition to the n nodes) must observe the correct operation of all nodes and initiate
maintenance activities if required.

5 Protocol Properties

Error Detection: This multicast protocol provides consistent error detection at the sender and
at the n - 1 receivers of every information exchauge. Error detection at the receivers is
of particular importance in a real-time environment.

Fault Tolerance: The protocol can tolerate up to three message failures in each FTU slot. If
in a single round all four messages fail at any one node, the protocol still guarantees
consistent behavior of the set of nodes.

Promptness: In order to guarantee consistent behavior, the protocol takes one round of infor-
mation exchange. Since one round of information exchange is the theoretical minimum
in order to guarantee consistent behavior in the face of a total FTU loss, this protocol
provides optimal promptness.

6 Conclusion

We have presented a synchronous communication system suitable for real-time applications.
The described protocol realizes reliable multicast communication between the Fault-Tolerant
Units (FTUs) of a distributed real-time system. It is optimal from the point of view of prompt-
ness, provides error detection at the sender and receiver and is fault tolerant.

It is planned to implement this protocol in our new version of the MARS system [Kop89a]
on a dedicated hardware processing unit, such that an application is not impacted by resources
required for the protocol execution.

It depends on the desired degree of fault-tolerance how many redundant channels are used
and how many nodes form a FTU. However, in order to simplify the description how the
communication is realized and to describe the main properties of the presented protocol it was
sufficient to explain the system with two active communication channels and two active nodes -

per FTU.

26

References

[Bab851 0. Babaoglu and R. Drummond. Streets of Byzantium: Network Architectures
for Fast Reliable Broadcasts. IEEE Transactions on Software Engineering, SE-
11(6):546-554, June 1985.

[Cha84] J. M. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. ACM Transac-
I tions on Computer Systems, 2(3):251-273, Aug. 1984.

[Cri88) F. Cristian. Agreeing on Who is Present and Who is Absent in a Synchronous
IDistributed System. In Proc. 18th Int. Symposium on Fault-Tolerant Computing,

pages 206-211, Tokyo, Japan, June 1988.

[Cri90] F. Cristian. Synchronous Atomic Broadcast for Redundant Broadcast Channels.
] Real-Time Systems, 2(3):195-212, Sept. 1990. Kluwer Academic Publisher.

[Cri91 F. Cristian. Utderstanding Fault-Tolerant Distributed Systems. Communications
of the ACM, 34(2):56-78, Feb. 1991.

[Kop87] H. Kopetz and W. Ochsenreiter. Clock Synchronization in Distributed Real-Time
Systems. IEEE Transactions on Computers, 36(8):933-940, Aug. 1987.

(Kop89a] H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Sent, and R. Zain-
linger. Distributed Fault-Tolerant Real-Time Systems: The MARS Approach. IEEE
Micro, 9(1):25-40, Feb. 1989.

[Kop89b] H. Kopetz, G. Griinsteidl, and J. Reisinger. Fault-Tolerant Membership Service
in a Synchronous Distributed Real-Time System. In Int. Working Conference on
Dependable Computing for Critical Applications, pages 167-174, Santa Barbara, CA,
USA, Aug. 1989.

[Kop9o] H. Kopetz, H. Kantz, G. Griinsteidl, P. Puschner, and J. Reisinger. Tolerating Tran-
1sient Faults in MARS. In Proc. 20th Int. Symposium on Fault-Tolerant Computing,

pages 466-473, Newcastle upon Tyne, UK, June 1990.

(Kur84] J. F. Kurose, M. Schwartz, and Y. Yemini. Multiple-Access Protocols and Time-
Constrained Communication. ACM Computing Surveys, 16(1):43-70, March 1984.

[MS90] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast Protocols for Dis-
tributed Systems. IEEE Transactions on Parallel and Distributed Systems, 1(1):17-

1 25, Jan. 1990.

(Pet89] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using con-
text information in interprocess communication. ACM Transactions on Computer
Systems, 7(3):217-246, Aug. 1989.

27

GAR1T EN: A Pr-og-animiig En vironment for-
Real-time Software Developmient

INKEITH1 J. RANSOM S_ CHRis D. MABlLIN WVEI Z I IA
01- ln pa H 1 1/Of C'o I pi r I- C t 1e. DcpaHtill (ant of Co'n ii t ir i- cie 1(Y

A'e~ 4id(Icqli .So(t A ii ,w a .50 'e-ra Stat..i12

Fax: +61 S 22.3 /1206 Fax': + 1 10J9 ,/7 857X

1 Inltr'odU t~loirductinn helil ofiip't lI Ile levst III, phase M idlst
maintaining hle satin' tiarailtevs' of* q~'e porii pmI'lbraiice.

l711i-1iii. I le I). e cade, ml'' il ortiiliat I llnt iou h l e'ii1 Colouied 1The0 Pal-I iiiiep ()2:1.i'11 iiiiii l,1u1-iuage (AUIL and~
foil I lio lexe'loliieiit Of liaid real Ilittle sy stems. lReal-t ilIi its.,; c~ie developent e'iivi'otuiieit (ANTEN ili-

qloll flot~inw pla\ a rciial role III nlianiv real wvorld apph- Imi'0 ice l'valt iies to bothl rediice filie limie spletit i I lie
vat ions ilicilil i iliizile-couitrol . ro01)01 IC eeiil"iiiit . I lie o grannngtesin oylaliel ie'e'e'IIe(ehii'iicv\ o)f

-par. "Ilit IIe. and so oil Ilie Soil ware syst e'ml piolicee. Tlhe lanlguage (A H'lL
S i'eaii-liiiing thle softwar~ie (levelolpiie't r cli'fe' ro eal- [12. 1.11 has bei lesimited as ani extetision to tliet, pr'o-

I iiiie apeplicat ionis i-, lecoillilg iiicreasinl.0 iilipolli at gamn agaei re o rlieastit ae"tI
1lile'lf~,. wit III I Ilie adIen N f (' 3,itiore anId liotel'. Aiitit jolts which Inanl pirograiis will ali'ead\ le'ailuhiai'.

aipplicat ionls suich as 1niiderzea expeloratio i~iobots. andi(Oiie of the principeal prolveiiis rotit ribit jug to I lie hligh
NA*SA ': 'pace st at ionl pro jvct . ally siiall liS 'iagi sax- ost; of' progr.1aiiiiii-iesi iii,- .%(It 'le eeard teal-I illi' sys-

i, Il ihe software developmet' cycle 1ita1 i e'41iii ill a'I ems1~ Nq (I at (by dcliiit iou) Ilie' var-iolus" hard re1al-t line
'ii b-t alit al medlirtionl Ill ox eiall cost eleadliiie.. tujupQSed onl filie 1x'tei I ms be mlet withlout

n' aiexpect 1hatlie'C018 contrc ioll of real-I ne soil- fail. Each of, t lie \xI li olls Comtpomlilits or- ItIS4 5 of I If(ms_-
\\ate 'N steuns will be facilit ated if the pro.lamimin Ian- tent must lbe tested Ito etsin'e Ila hat;n coire'poidimig

gi andai~ developmiient enIVIron n1illitued luax beenl de- l itiie conist raint s are mel-. T[hus. Ihere may be a long" cy-
'.i-ieel to qlupplort (lie particular apperoachi to real-I ine civ of act ix'it v wlieielw a task is code~d, tested and thl
'N stein' ceensI n.loi oll which ks being e'niplo~edl. ai me1-Coded. Ilitil it e\'elil ally ex cutjes Wit lin itallS t
oe'Iie ra Ipurp] ose l rogra imi in lIa ngu ages whlicli pu -poil le eel t ConSt ra i s. (A lI sutbst anial ly reduiices Ilihe
toe hee of' ue ill prograilliting real-timte aplinlit is of- ainint or re-codiing reqired,(I)% allowing thle programi-
It'll pi'om' to beIless 111,1li desirable wh'en ttse'd ;if priae'- i'etr aeavnaeotle ocp fjtpeieCll

Ile. :Iz they itiost ofti'i provide, at best. littitedI con- t ationl [2. 5. 6. 7. 8. 9. 13. 15. I tij Imprecise Coiilt atioii

I ml oxer scheduiling decisionis and p~olicies~ At the aii' iilil liieatis 11 ha tIlie acciulacy oh' ait \alie Coiiipitte'd 1) *

fil)("I liet re'al-t ilile -%steiits piog'aiiiie do01's no wvisht a task. or I lie autiollit I of' work pe'tlou'uiee by t lie task, is
to <a1*tiic.' t Ile benlefits of 11Iodei'n1 luigli-leve'l Su nI imre'lId ill seli'' wva\ jei'0oel' tontal to fte aumot oftI ilue the task

lemgranl IanA lailages (by uising assetliiv laitgmiage. for i., given to execute' . (;A WIIT i. rlis iiipiecise' 4'reiil-
e'xaille') ilOdrto g itmIlou'e Contr l' tait fil -l ~ allowitig Ief, -peceifiv'at ion oel' uimilt iplt- task veru-

i'oa I-ti i ii aspects of a syst em. sions. ea cl hia ving dIiff'ren t i'esoi ice' te iire nitlts. ii teest

Ini any% Form of softxx'are development .anld to ai larger. inipIOrtatit h pero('e' siig tnie. Ibs he'- ,I at i'* proe'e'cs)fl

e'teii i eal-I iie sRvstv'is doe'lopnii't. t lie' testl Iti- liidlif ill' Code andIr'-e. i., si''le'-ed Ie'e t lie ' alil-

ele'buggiiig ihiasco cotstitutes af large prlopor'tion of ile it \ oh' the (GA RTL i-t ine'%.; fite' (e'alled G A 1I'1os) to
total development tie Duet to illi' critical role' ol' naii dy tiaiiicall choose aI task t hat %%ill me'e't thle aplerolriate
i'e':l-timiie syste'iis. particularly t hose whie're italfitti l 11itmie' am!d re'soulre roulst taillI,,.j

ii a v be Ii li-t Iireatlln tg. it, is often tiecessary to etnforce TIe m~ iai n jint of thIiis pa per is to de'scri be I life
lie highte'st standards of quality assutrance t~o he eiiployed GARTEN environmiett. focuissing pritmarily ol Ie

dutring thle testing phlase. As a restilt. this pihase of real- GARTIL kinguag-! and(l GATAAN. alt ailyser-debuigger
11 tune software developtuctt. is oftetn an) order of tmagitude for GA R'L. Sect in 2 provides ai overvii'w of (4ARJTEN
larger t han all others. Thtus. there is inuch to be gained atid briefly dlescribes Life major constituenits. Sectiom 31

28

pro% ides a briefC ilt rod uc ion to the (.A RT L language and uised 1) t lie C code generated by the GAR'rL compiler
highlights thie ii'ainl featutres of interest. The analyser- Perhaps the most. nuportant aspect. of CA;rrOS is itsj
elel'iiggt'i is describ~ed ill Sect ioii .1 ability to predict. the comput at ion I iine of a1 taIsk (tasks

are iltrod iiced inl ec tion :3 Ibelow).T oso I
'10S makes ext ensive use of a (lataIase of execution inl-2 GARTEN forimat ion specific to (lie gi ven a p 1)ica timli . Tilt- nti ire

As ieconp lx t o ne le Iti e apliatonscont~ii-of thie databas- and inforimat ion st-ored wit hini it, will be
to *. ~ ~ ut~ *.'~'l ~ '''e1'0vtrlbeil inl more detail lin Sect ion .1. along with dhe ap)-

ile ito inrae so* to (te edfr l mrvmn plicat ion tester-debtigger (.miPTAAN.
iii re -i es tw ' evlp edi n hology. int eres t inl
recenil yearis il [lhe field of soft warec engineering h as seeni

he emergence of many ideas for' integratod Programmingll 3 Th GA.RrL la gu g
(1iiViroin eis. and liitic:. of' this work call be applied to
real1-tinme app li (tions pr ograming. Hi i owever . tile ve si etoe e ARI, l Ia nguiage h as b een designed'
nature i of, real-time applications. reflected by somie of thle as anl extenlsionl of t he C. pi ogralmiig latiguage [4q. n[is
ptroblemsl hiighilighted ill thet previous sect ion. is sutcli tha~t. setinsre nll ohghih hs xesosrp

Ml tliV1i,iiiiit'ill dedicated to dleve'lopiing t best aplica- resenting thet 111051 inl lport ant aspects of' (AHWI L. More
ti& 11151ul51 coiltaili mlatiy facilities ill addit ion to thlose detailed 0descriptions and e'xamles~t of (CAI1TL progratil-
prest-nt inl other progiunilgtvronctS

We~ dv's tib' the nat oe of (:\H'l'N . a complete tdieca efun n[1.[]
\ ''it'iiiell ''liroi'liiljlit for. leal. im applicait onls which
'1ippoi is thet (ARIIl ;uogialinliil; langulage. A aiivllt 3.1 Support for imprecise computation

of vi e'I ach Ii, th ie tools to b e lproN idlet IY I(; A T EN .\s mniit ined pie viouisly. C ARlI -si 11)1)1 ii p recis'
1 i:ali t,\e ijiiiqt necess;arily be oriented to the timiligciiptaiii1 allowing" the(piogl, afill ier to specify malli-

rhlaiact rriq It 1c., of real-ti inite soft ware. ll leV's 15o s.ecI wtl I hrii snieie
Th'le ''ii vironmi enlt is con prise(l of fou r imajor comp - l ii"lel ters ios uo a Is y.e ithr i dile rviiaill lisc of-

mi.~i s.miaiiel piocc.Solill()c . 1,he1 rim-ti ti system wVill alwvays chooso
* al~miiae 4'ecficedior or A 1Th ~oirc' cd te m1ost dlesirable veisioti of a i ask to 1,11n. withl tile
0 a a~mIm"O. Iwcficedior or ART, ;lll(:(Co e list raint thiat all of its resou. 'e- teyfiritnlews miust be

* 110 (;AI, 'La g '01111)! . at islied. A imiore desi rabIle Versioi of a task is n ittua Ih
vnw t ha t provides a iiiore lrecise i esilit . Typically. tile

u (ART'I'. tfie run-fi h' sw'' foe ; A 1111, aplplICi- miore' precise a resuti. I lie longer a task will take to 'xt'-
I i(0iis. antlI cute. '*lhe it eresteid roadeil;, riM I'er to [121 wher' (lie

* (AIl\A N . a ii jt api catilon 14'~!-Rieldi'Iil ger . Ip con celt of' in t t i- v'rsion asks are discunssed Curt her.
- t'~pi liii" g Iat a ase mllnagei iiei i aimd bro wiug l A similIar method0(for suilport in g impljrecise coml lia-

tv.Iioni is provided by thle p~rograminlg language FLEX
[5. 6l. 1:31. lii FLEX. t iew' Is a Inlechaiiisin whert-by par-

A.Im, laugae-specific '''ltni [Ill] along tit lie hes of thle t ial (or iniprecise) results of a task are maintained. Ii
u111iiiil ipletdow. mnult iple %it'"\ edliting faciiie of' (lie thel task l11tist be pre-emiped (duie to te expirationi of
\IlliiVic%" plograiigll1 enM 11,onliit'iit [1. Ill is rl~its dt'adliu'e. roi. instance). ihi's'' partial reslts art' iiad'

~i mndThis vio:dl alri a lilore si rttcure'' appr'oachi alailable to i he(calle'r ol I lit' Itsk. lhowewr,' (lie approachI ~ ~ ~ i'' vi eal ion of (GA 11' L source Cod e. s ii Ii all edjitor Used'(ill FL EX reqiires a i none i- st ni t' foni of t ask
%t'liild alst' relipe (e i olmi tmhe flie t radlit ional parsi. (It liifiii. ill that a rt'.siilt must alwas bte ready ill rase

Nmage as ii wvould siiupl ol''ralt oil ,lt' absitract m~n*.aX (task is abortedl. lin (,ARhL. thet svystent scheduler is
hrev' c')asil ictt'd 1, filet 'ditoi. T[le curlrent(ersionl of, jt'' liemie' em'l,-v ai task is iii'"'d and1 will dccidb' wili'.1111'1
Ow' (A ITl, comlpile r is unve'l.% a (ARI to C tri'ls!a- a ',i\ enl ask \~ ''ioln w'ill nIeet its tlcadilitli' 'I. il. If I lu'*

(i.wiiig SOtIiC rII eoi'' tex alwe ,,r it, is a 1c~,,t r decrides I hatI a task will nice! it, deadliine. 11iti

1to iimoihiC Ille Comipiler 10 iiutilea uiaiiip- anid otil 1 lien will ibe executed. Once sutch aI dtti. i
" (,i 'i""oet.*ifi saiit rbee. mila'v lit as ui lu'tnhto' iv- ils dlead!-

Sillce' (A 1110 is not fte fociis of' tIiis Ipa per. it will linei. For thlis i"easoii. ai Iarti ctl an ask '.ersiont ji'evo no'.
n1"t be dt' C;'ibed inl detail here; lmowteer. there aire sonic Iliaillitali pait ial m"silis. sincre if it is exteCiii'd t hi'ii it
l';wisiworthyof note. '1Ie Ah''Soea n vteiis shoiildl t'xecit e tifiI cotlIhe ion
designed to be layered upon ai host operat-iig system, pro-

FM viding a suit-able level of abst.ract.ioii to enible (ill 2 Sceue1neatoI appllications to execute over a lieterogeicous iiet.work of
target architectutres. Ini addition, it high level of sup- Apart fromn tle mainj task of a GARTL program. le
port is p~rovidled in dlie form of operating system calls exe!cution) of every subsequent. task is invoked by aioth~er

29

as. n o r ild s mkdb l xsu o The declaratkio ofanmonitored Vaiable cotistvities R

a q* L ~ mu aksnstess~ ce~ hen vA hiem" f nty ne y baot 11nehi'.I o

follwing linfversio colcins'aheclsdicepwheh .Asnl

* I he manneii4r iii which (lie child task should be exe-34 Fite xcu on iis

tedO. and' Au isu of funidatntal importalice ii (AWI'Iprograi
0 wethr Ile esuts f to clidulr's(11cison It,, inlt -:z that of predictability or execut ion times. Sinice
* wet ienthereslt oht le .cheiili' (lcis~ii;tr f?'lL has been de-signed primarily wit h hard real-lilue

I eftird.systems lpi'glimiling inl Imind. ii is %-itll tll-t tile (,Alb

1hreare esseni al ly two ways in whli ch a ci ld ' Us sys tnt scliediler be ablde IQ p)redict thle execui on
a4 iii~ he eectitd. naieh ~I iiile of a lask. ill ol de* to p roy ite gila rant ee-s con cerning

hl on mt'lq. In addit ion. there are towyin hch its 'Axectit on. 11ii titeaus tha gVeIi a sel ol Ijralieter

lie '"'ledue ii1 n ia be called, againl .,chrnnns1/ anid 'alteq to he l);lsyd~ to a task. I be sc-lledni- iu he ahl4'
asip(hrtotqli. IIms.diee ae fur oo.-ild ivyz l .to decie t. bcfhore it Is succes- tully schiediiled. %-iei hetr r)Ir

,chvulig IAi~o tak not t lie ta'k will fiiishi oil I inle, lot I Iliz reasont. it i- nec-
l),-.it I , l- ia i to know Oile he asktap ri- f,;;rY 1),s r h tl ee era eil~ qA al

;Ijar'5ii 14) wlitir Ilcequl hatdued Ill orderl ltl Ibal liileq are bounded.l'l

S1It Infttoitmat ion, it is po"sible to indtcaie to thle sched- lIn ordler to eliqnrt hounded task exectl oll timtes. a
'I IIf Ita I aItf, I teil I I oft IeIf rete fs t are of1 iIIlI o rI alII Ce andh nuimbier of langti:gte roust rtii ale- Iioviileil in (;A ff11
"liotild he retlit-edto 1(Ip- callei. 11hat place, ieft rid Ions --il ol llt'rwise. unbtIounded roui-

1 he iteratlioll thIat i,, perittted h (A HTI appl- s ticts. Ilies' restrict ioiis incltide itandhatory iteration

atllons aw;4 Ilie s-p;teinl '.cieduher is at lilotai aiid n1 I in14 leintis for all loop 401151I ites. ,14 eusv n
ittioxai i feat t-e of (I IVL. Wilst utan ot l14r pro- Voc'atiolt limits, for (GAU ff1 liii-tins. lii addition, there

~i~uitillislai~tig's llo I naitc ;skiiio"~ ~h~i si~'i = n aytiifi4' ll coiitrol t raiisfer sI ateinn ill I;A ffl1,.

Wlatiu~gow pm t nd io tii'ais of obtainilig feedbac'k hii'nlIi'liw ieti,~ l'lei poie i h a,

-r ittll 44%k'4l :a'k. I lit- inokiiig taisk kiiows 44i~thfat

revel \o Iiforiial ion roilceriling Ilie iiivoked task's slt 4 G.ARTAAN
littiie 01 W)ijjtl i nulitus dead~lline are- priovided. Thulis.

iiiset dvadlines; aite liarti to detect ill I lie initoking Mlock. Perhap15 liiinost ilmllativi- feat iie ol I le (.;AITLI [lit-
iiiakhtg afifitofrialte t"'covery actionis (lifficitht to take. gllari is the abilityv to take futll atlvaiiai, e of illie illpre-

6,;vr' oml itatloll It ed i atistin. By prov idlit,~ iii tIi- version

3.3 Monitored vairiables tasks. ;A HTI. allows f'or aq sophistfiralvdl aI model of itii-
li ecise ('t i piita Iion as the p rogrammeit 4r ighit care- to

pImi i'ewe"it o a seIl'IOIlliitg" ret fi e~ I 1m41 aI Ai '.4 task. I 4 -vist-. If lol'ever'. wit ft stichI a l~i n ;e fAc j y cot is H1i4-
ill- ,redlft- -illPi at thI .inso a qwmo a eito aruioyimndw 114't'i''i oll ilnes p . w

Siinitt'l to I.~v l);ls'(l I'o the iKiOMe task. ;aid uses its vo'einno~ of a gi'en tasqK, :if i:'''. 11' 4Oi4'II of iitii-
knowledt ge ga in'd fr'oint fpast execio0ns ol he t ask t o de.- I -r'4 va ribies is support ed I I thei ! ,iONA ItIl a .:ts1 it i0I 15
14'rullit w~'litt Itit is po)0iiW to siiccessfully schledule an1 of' atl~j.11iii. I Ie frogralitiiitr it) 51'4'ify which ,f Iht' il-

:Ic(vpl~Iabde %esll 4i I* the114 task. Thie palramter's to I), r4'-- pill faaranif'le-rs 441 ; a sk ar4- itii'ran il thleiltiniilg
.Autld as Ailiicaii in predictinig re,'ct &l u llis (roit its exenil jolt It for R 'a"Iu of its ghi.''i '.'ersvti.

patst 4 'xec't t itls of aI ta;sk are de" fared wit I thle t ask as As at N't iti 4r cout-4!p~ieuf it l he,~ (;A 11f'I, far'il it it's ii tt'

W~ithl a task defintitioin. moiottoredI variables are nsed h-volit, quliletoi~~' itideed. 'Tius. e'ach G ARI all-
jisi as anty ordinarv variatble. It is ontly I lie itihia values Illiaioi iieaiiaits a datlagm of e4'ctltjm m' to he
lolIw tined54'(I oa~ sceW IniltIt'sk thIiat A iiuport i 'when used for ft tre sclied tilig pedjtiotts. For -'acs task in
Ipredi' ng tile exfecition I inie for ,.ie given task. if a a giveni aplplicatin jolt'a enitry in t lie flat abase is kepti

= task has tno ihoiored %ad'alaqs it is as-stmed that. tlie recording ait array of'exectioii tne iitforniiiton indexed
'eicutio ',inui! for that task i8 inidepetidetit. of the taak's by the versi number of Mhe t ask aind I lie corresponding

;1lnm valttes Natutral~y. thte oiitt is otn progrmmer to partiton of the range of values for each of the nmitored
onisttre that. iniottitorcd variables are chosen wvisely. variables. Ilence. a datab~ase eliqr actily coitis-ati

30

K

i- n+I) d intensioni array for a task with Ii i onIt ored N ar- a delay for somne period of time. filie diurat ion of which
al14-I" m ay hbe derived from i t he ValIue's of' li mon itored vari-

H.'fni'' (eAW l-Ilt, bane allow, (I to t'xtCiite ill its I-i 1ii. ablles.E tnaltS vuvirotninit. ilw(t'utihe databa~t must1 be fillvd To till inl datha coil '.or gixeli ' irsion of a task withI
wit 11 itrtlimlliu; v valies inl each of' t lie datai cell-. Eah pail icular coiibiiiatioi of moulit 'ii'i v-- ibes, it will
iine a (;AHT'IL task is, execuited. (Ilie alute inl the con e- fiorialb biv necessary to eXet-ve Ilike task somei n1uiii-

-poiiding data Cell N% ill he uipdated. 'T'itus, niote, accuirate ltei ol tuns supl itig inpu)tt N alles drawii fromi I~ lie- II r~i i ~areCt tn ntis ~ ~ o~ i01 le q ' i Zil "App ic a- parVt'~~ t it ions sp~ecified f'or the mno .redI %~ari ab 's.

l i' i, I-,xect iinA .At this point thie ;.roienI ar Is he mIi'iost accuraite i a% of filling iii I lie dat a celi wvill ili-
it, litm thev databasoe should lie fille-d izotill\ liefor allN oh\ e petfbrnnlitig IIetS uIiNtg e'VrN olibiiiat loll oft alliesI ijtpli-Iat i ever' -X.-Citedl On)e -olit ionl i-s to execute ia, icli, or tlie n's;poct;e lpaIiit ion, and ecoibiutig lte

,lI e t ask': li t lie- applicat ion wit h al! po'4'able (oitbinla- iesiilts, froni tcaVl uneasm-reiiti itiisoi suitable mianiner.
ioiis of iiioie'd ariales uid x ej -ii niini1beis, 1 iict aI l'livis metod ik. ofI' couirse, prioliibit ite and takes iio di'-

oliti ion iiiigh -i paradoxita. -siince t aic prolei counlt of the ", ay inl whichl tilt- partit ions me -olist ricted
will I'e lfil e i-(ing to put formi I liw test ''Xvlit Iiit. ill Ilit first place. Rlt et t ban ierf'olin exhaustive test-

l'tile Iw,e 11i-1141 for im, letdict'~tioin aill' sti to lpro- 12. I- Ittlt~ IMIa a Qaiiipliiig itohitc Iaw adloplei. wihere
- il ill)O 'mi i1flttIllliii where lihe ta:-ks ol' ant appicat ion lievfn lItuI!i cy of I i aIidii iia It li t ae b% t Itlo

num), It.- \cul- ;''iI nt al withutii aii\ pi-exions' t i iit ~Ir,. lIn each single dala ~ell. v\et pioposi' splilw ilerepo-
-lisbeiiig piI eqeitiI ill Ihe dat abase. 1 o t his etl , (A I?- l'uti mu , aslit' ii'ais ofi pros i lg tiliiiui predlict :ous foi'

1 .A \itsli.'': tfsi~tt'l.lle fiict ioualit y and Iuser ' alut'ctmbhillat ions" that ha'ie no(liteti tested,
11ii-rf-tie l (;A ll'L\ \N will be tiescilied Ill Swit iou -1 2. ,lt Po to I he entllit'al applioac 11isd l (It obtinil Ithe Im)-

Ide-th % sI;lililable' (0o or bi' li abovi v 141'1 W) S \\0iil ii2 a, I'S wit Ii %W ilicli to fill iil am apipit --,I loll -4 datl aase.
1tQo pifvidt Ii' whole rou,,ge of' ['eat tinr-; of at I ratlut tonial (".\H'IAA N I., ronisiramieif with Iiitspe-t to Ie~ architec-

1I-iililiv.s -k,'ti't ink assuriing tlilt logical ,toriit iii' .4 o!l' [i.- ull Ia~t to i,1ii op' vXictlyt Ilie aile iiiachliw that will
fiogali l~~~eei hib ou o~i al aiiiis it) puo~ltile aui 111citl Ilei-al applicat iou. ii dt, leai to 'xt-Ciite ,)il

iiiiigi anl sci o l't log.calest iim anit i iig-anau it I~ iit same coniiuratioit of' uiiachle".

1;' Iui'it-. nav'm' ;itiCtol"i~i i tld4.2 GARTAAN interf'ace and functional-

i ty
4.1 Design issues li i iltifi l A iti i~'

W\lieh atimitjt iuwivt cito il a task wvit iitii lielt tugli fat' %\~ill nt b-e de ,Crilwed ill termis '-,f all\ tine piart ivillat
enM roituiuitn it is 'Ill tl nece;%!or\ to lla~'~c ui 'tjlitat- ltleeua o or tamget titat-hine: i (st'l(i k.''wiig
"I 1114-ug Ii t ink" Ithat tl -iiqak \\ ill lake to t-xt't'u- fit1 %%lili I lit' .igii). it w~-ll Ia' dt'sCt-ile-t ill lt inls aoftit'm

Oli, ",1% ('11 "1f iilpilt valiets. Ptrobleims arise if' (lit, tlata ,fi of' linie-fact capalilit its. Stich as I hat which iii1% ble
1I t'oi-t-esomuliiig 1 iote req~uestedI exet'tliion i., eiilt% foidu onilimot mtodern w~oi k-si at ions:.

lIn - cli a cas- a i ist eintiou lunictlion shoulId ho oprom id ed ' I'h (GARTlA A N iisp la\ ic colt ceptiWa! dy iv itded in to
Mulchi rei ii is anltt lillati' of thle tIm itlJ veilt Itt- a l.litt- lirt iniait areas, iiaiiel
pniuIi' \ tvroit uki tiitbei- atid iuloiitoit'd \ aruale \ alw-' Ilt
4 il' I ito moid il l, pldien. it is possible to) pi-rf')rii * a (otilu pan-I. pio~ idiigac ts to Ililt' fretititnl't

tilie it-i t'x t-ii' o ll of tasks it, such ott order thIat io task lis dt't l l ictiois of, I lit- Ss v 'i l.
tithtiiil d lwfpopi 111v vilt't pltlttit. " da laam (.,I * '1 Cal-giapi tti'indow~ -lisphlyt t h Ile rall-rtapl ofl' -

ie All, 'RTL uoiiipilt'i Imotitct's a1 tatble'it~~tutt~2 lilt', fpia o t'ugolls'.at

t'all-"iapl. (A H'AAN (-anl deterinet which tasks aIrt' u'Xtilal inlbm-iiiat itti
qink, of' t hi' graph. and l'nic' may he t'xt'(iii't witliotit
aliw limintg ilb-tonI'ltiotn being avaiabtle. Ill addition to) tIle'e tlispla\tv t'litnl. G ABI FA.\N Il,)

hDt'e to (lie lat tire of' niaiiy hartI teal-t imie ;tplica- tits;I iiiit fatilit \. b\t iueaiis of Itivi an'liical lipi-
iotis, it wvoid itot lbe ft'asibht' to per-fo'ii analysis of tasks tilfiii ol*tlq l 'iitiotiaf iitetiu-l

whilst oetcuiiig t hemitn lite oni vii'on 1it'lil muIl which I lit' \ s I lit' uiliie sg st.I lit pin~cipal flund ioti of l' b
are- dest iiiet to rill. For- t his teasot. it. i., liki-ly that it(t'all-graptli winldow is to display thle C'all graph of a gitteul

Iprtogrammiter will wanit to slbst it lte ditmuty routintes for (A RTL applicationi. WVithin this window. tie ust'r CanlI cer'taan conitrol routitnes: tbest' dumny rotitities imay be SC i'oll arou~nd the graph by usitng scrioll-bars at tached to
safely executed within (lie shelt ered envirotnment. of (lie lie sides of (Ilie window. MNanly funlct-ions that miay lie
aitalys'i. T\'vpically. stich duiuy r-out ines will consist. of dhos-t fr-omt thle control patiel equir iii e user to perform

31

'"aliipu ilat ionis with li (lie window. ;uich as f'anig an K6 . Lin. S. Na aaai and J, [iu "xpressig and
area oft the gaph for examiple. M\aintaining TJimning C'mshraints in FLEX" Proc.I

Is im ention ed. t he con i'ol pni priov id ed to alIlow IX ICEP. RcaI- Timin Syst ' iq Sq mpnsmn 1 I988
easy ac'cess to lie iiioqt coilillioli munctions pei'riedl ill 96(-105t.

A IA AN. whliich areot hr'wise aLcegsuhle via t he mniii 17 1. Lil K.' Li n ('*. n (Ctordl Pot ot ype
Iied mot o'a'i naye ii ystimni and Riea I-T in e Schedutlim- ii. re. i.E.E.E.

hpuoi inportat fund ion or teanm isnt. Girili 'oiks1iop al cIWA. ri(iliiiy Syisi
lop MPAV ~mon.or absinga 1 ARWTL applicat ion WE1,2-0

Hielm Am traditional debugging act ii es) 1is o that

the' appjlicatlo tol (iniig dat abase imay hed i 'ady [j . [.iui. K. Lini anid S. Nataraiai -Scdli uiliuig Rleal-
Rw " ini Ow li alwold eiivi'iieiit '1' N(cu a (A lR'TL 'liu. Peiodic .Jobs U sinig lIiiprecise Hiesiults' 1'ioc.

1;-kie,-ii to fll in every cell in thle applicat lou's LE I R r unbi- h Synhcins Syqmitun. 1987. Ni).
dauahawecon ejum~iing to the t ask. 'l'hiim.arli task will 252 20.
Wen iied ma iy t liebutiig t he a iia yse Aft er in ng

opeat on lu~ [ceupvrl'orud . it is pos~ibe to view the .1 *'. S. Liu. K.-1. ,iii. IV, 1K. Shiili, A. U. '. t. .1. Y.
~uueit~olI iedalabase \ ia thle (raiii11(Ilntol (T'uinq, ani IV. Twio. 'Algomh Ins fieldliniiii-

fit iiiaiiy coiijpiex real-timie appdicat ioiis, it is lic 111 proiso coiiptit ations'', to akppeal in /I;.P 2 (eoini-
1i-iial to maiiillher')h tasks. in t lemodei oflimir''d Piil(1991.
hi ' tieli cavqos. t lie applicationi ; call- Atudi ina h~e P'' 1illiiY~(.ii'Edti o ~ok
Iinliph liw awl dhIllic"It to i~aliipnat 0 ('onoeqmwl ti I) ai.W Plwgelk!Wo vBok

(,'~~~~~ ~ ~ ~ ~ ~ WFA poloA hmcinllci.um ruct tred Ilrograliniiwg Languages". Iu~nironi

a m,iih-grph~ mlay he treviil am a siligleltdk WO~(o h.mpu r' 1 A~Il. 18. lie. 2. (May 196) pi 4l6-5.v

puoll (d lol wing ! ie graph. [iln (It. Marlin -A IDistribii inidenuelation ola
Pr\#1n l 11 it am iuenuioiit'" that it), h''rivol 'i a ine \lili yle *iew Ilijegraleid Salt war'' lDe\ ''opiient [,:I-

I- vji mrd rv d: ;in criiical louililes %%afll diiiiiiinvy 1:oiit le \i' iroituen' .1 I'oc. .311,. ('mif on It'l (uitIt Sq.1 - Ija, s.1
Ii'al iii:,\ he ea'xe~ctld in the (4tem",i en',iroliuiient .' ofluair c -I staniic 199t. pp). 3N8 10)2,
W AmI ii ieasoni, Whe up/oct Siioii is lo"Ide I his
filii oul ;ullo%%"'th l i'l to alternalt.I'vf~t e'i I lie real (1 1I) \lai'lin. IV'. Zliao, (". Ioliertv and A. lb.-
in I diiiilnlx %crqii('i ot. ariticiula ro'itn" hlomis. -'(ARI: A Real-im Pii'lrograinug Lani-

gil..' Based on \i nut v-',i.olu I'oilipitat ioir" . m (

l1, 1.1 L ll. (tonf. oil C('oiiuui L.Iliift((19910, pp).
Refer-ences 10)7 1 K

I ij F) .alai 131 S Natiaiai anid K. .1. [,in TlIAX 'l'oward lex-
A Alt? A iiianiu. A NX Ilawke 'iu,. C)Mail. hle Heal-lime Pro-2,iallis" Pi'oc. I EL' /.t. it. ('oaf

'All liute'-rat''d lProgianunumii Enviroii an Baned on an (Ipt Laiiquag. 1S Mp, 272 279.
_Nl11l1i1pie (olivilirrenti Vie%;s". A nstialma (? Cinpli'

I.\1d 201. No, 2. (May iAtW8). pp 61 72.[1 .ITJ Ranisonm. Thu (p'. I[lIT. frrcnc(.114'iiiil
(Dept . ('olipIuter Scienice. A'liaide. Soul I Australia.

F'2 K: Chl ('ong, aini[%V Zuao. ''[ask Scln'liilg I '.1)
lfoi l111iip' se C (iuiilitol' Sx 'l'iii 10 it I '.'i C on-
iodied ())) liiii''ai ioll", ill ('.onp 11liq alid I11oroian 15 .1 Stanikovic. .'Msnoclioii abhout Real-Vinue

1/00. IU Jaiiicki and \V IV lKoczkodaj (['d.). pp) Comptiing: A Sejiotis Prioblemu for Next -(;envratioii
Ill 116Iitli-ldlandi Aiisidai P59). Sy seiiC. LE IC. I 'oaih ;'% "ol 21. No. 1t). Ucto-

'd~ '.eiiW~. to appar iii Journal of Silsi tit, (tit(/ Soeft. ftIeliiiCOlilf'Svlii..Iiiiii

nr.1991 (1111 of-ill('. t ('o-ninpiiiwaf i. c o1vns. Il11. 1\O.i.

11] 13. M%' Nerniglian and 1). hl. RAtWli.' 'I'le C Proqrn- February 19,69. pp. 329-3,10.
inung Lannyy (Preutie Hail Inc. Englewood (IRIS.7

New TSPS 978)

[-I K. Lin. S. Natarajaui aiid J. Liul. "Inlprecise lie-
stilts: Utilizing Partial C'oniputations in IRcal-Tiine

Systenm im&Irc I.E.E.E. Real- Time Systems Syntpo-
siumn 1987, pp. 2IA0-217.

32 ~

Wm

Ii
I

Schedulability, Program Transformations and Real-Time
Programming

Alexander D. Stoyenko *

Thomas J. Marlowe t

January 14, 1991

1 Introduction

Schedulability analysis [8,14,15] and related forms of analyses (16,6,5,11,12,9,10,13,17] provide compile-time
verification of deadline satisfaction in a wide spectrum of hard real-time applications. H1owever, the cost of
finding, through the analysis, accurate solutions to this generally NP-complete problem adds significantly
to the cost of program compilation. In this context, additional polynomial-time static analyses of program
semantics, and semantics- preserving polynomial-time program transformations, can be undertaken without
significantly increasing the cost of compilation, and may actually result in reduction of total time for analysis,
if this analysis or program transformations can reduce the cost of the schedulability analysis.

In this paper, we introduce additional static semantic analysis and transformations used in a limited
language to produce simple, analyzable program forms. These forms facilitate accurate polynomial-time
schedulability analysis techniques thu's ,tocr.asihg the cost of the analysis, improve the possibility of deadline
satikfaction, and in some cases provide a completely static schedule for a moderately complicated real-time
program. We anticipate ongoing research to extend these results by eliminating assumptions on the language
and the environment, to produce a set of polynomial-time analysis techniques, and to integrate the static
semantic analysis and transformations and these techniques in a prototype.

2 Model and Assumptions

The Semantics of Real-Time Programs: The semantics of real-time programs must include deadline
j satisfaction. We will say that a program transformation is deadline-isomorphic if the transformed program

will meet deadlines if and only if the original program did; deadline-preserving if the transformed program
will meet deadlines if the original program did; and deadline-extending if the original program would have
met deadlines whenever the transformed program does. Finally, a transformation is deadline-destroying if
it satisfies none of these properties.

The Language Model: We consider initially RTE-O, a restricted.subset of Real-Time Euclid (RTE)
(8]. As in RTE, RTE.O programs consist of a static number of top-level processes and procedures, each of
which is structured, allowing sequences of statements, conditionals, and loops. All loops are bor-loops, with
compile-time knowable loop bounds. There are no recursive calls nor dynamic data structures.

Unlike RTE, RTE.O has no exception handlers and no direct hardware operations. An RTE.O program
contains at most one monitor shared by some or all processes. There are no conditional variables, waits,
signals or broadcasts. The monitor may have multiple entries, however. Multiple monitor entries are modeled
as a collection of critical sections of possibly different sizes, with the property that if a process is executing

'New Jersey Institute of Technology, Department of Computer and Information Science, Newark, New Jersey 07102
tSeton Hall University, Department of Mathematics and Computer Science, South Orange, New Jersey 07079

33

inside any one section, another process requesting entry to this or another section is blocked until the
executing process exits the section. There is a separate processor for each process. All delays are either
fixed, or associated with a wait for the critical section, and there is a mechanism for insertion of fixed delays.
Procedures, other than top-level processes (and "ritical sections), are either called from a single process, or
have no static variables, and do not access globaL, aor use critical sections. Finally, all processes execute
but once, all are available, along with their deadlines, at system startup time and all have no or fixed
compile-time knowable start delays.

In addition, we make the following further assumptions for ease of presentation and without loss of
generality: (1) all procedure calls have been inlined and (2) predicates of conditionals and loops do not use
critical sections.

Symbolic Execution Assumptions: We also make assumptions on symbolic execution common to
most static analyses. For schedulability analysis to give valid negative answers, and for our program trans-
formations to apply, we assume: (1) every branch out of a conditional is either compile-time determinable
as dead code or will be taken on some execution for appropriate input: (2) every combination of branch
decisions determining a flow graph path through a process can be exercised by some appropriate input;
(3) thus, except for the for-test, decisions taken in one iteration of a loop do not affect those taken in
another (since we can view the sequence of decisions as determining a flow graph path in the unwound loop);
and (4) decisions taken in one process do not affect the execution flow path through any other process. In
fiture work, we will consider explicitly paired decisions, including loop-in-,driant conditionals, either in one
process or across processes; implicit pairing of conditionals is much harder to detect and handle.

3 Static Analysis and Clustering

Compile-time analysis: There are two main techniques for compile-time analysis of program semantics:
attribute grammars (1,3,7] and data flow analysis [2,3,4].

Data flow analysis techniques which may prove useful and will be considered in our integrated system,
include dead-code elimination, exception elimination (including range-check elimination), code motion,
constant propagation, and intelligent register allocation. Dead code elimination is deadline-preserving, while
the others, if not implemented carefully, can be deadline-destroying (first, for example, because additional
code that may have to added to implement the transformation may result in extra delays before a critical
section is entered from a loop for the first time; second, because the critical section may be requested
earlier on subsequent iterations, which, depending on the scheduler, may cause problems in other processes).
In our system, we plan to study methods of implementing such "optimizations", and characterizing their
applicability.

The principal transformations used in this paper are clusterng transformations, easily implementable
via attribute grammars. Intuitively, attribute grammars collect properties associable to language constructs
by assigning valuer' to fields of records (attributes) associated with the nodes of the parse tree. These values
are computed and propagated through the tree one production at a time.

The Clustering Algorithm-An Intuition: Essentially, we can view a sequence of delay-free state-
ments as a single statement taking as long as the sum of the lengths of the individual statements. Likewise,
a conditional with two delay-free branches will certainly take no longer than the longer branch, and by above
assumptions, could take that long. We cab also condense a loop without delays into a node taking as long
as the loop would have, that is, approximately, the size of the range times the sum of the length of the
loop body and the time for incrementing the range variable. In a loop with delays, the delay-free tail of an
iteration of the loop can be merged with the delay-free head of the next iteration.

We can, however, do more: we can insert fixed delays into flow branches to make accesses to a critical
section happen at the same time as on other branches. The critical section will then start and finish at the
same time on both branches. Inserted delays that are needed to balance a non-critical section node only
block the process they are inserted in. On the other hand, inserted delays that are needed to balance a
critical section node extend the shorter critical section, and thus not only block the process they are inserted

34

_I IIII I III

Figure 1. Part of An Abstract Grammar for RTEO

Program ::= Process Processes I
Process

Process ::= Stmt
Stint ::= I

assign (var, Expr) I
delay (symb-expr) [
delay (symbexpr) Section
Stmt Stmt2 I
if Test then Stmt else Stint 2 [
for Range do Stmt

in but also other processes seeking entry to a critical section.
Moreover, we can insert varying delays into a shorter branch that does not access a critical section to

mimic the critical section access done in a longer branch. The insertion of delays requires that during
schedulability analysis as well as at runtime' when an inserted delay is reached the process acts and has the
same effect on other processes as if it were trying to execute a critical section of the size of the delay. The
insertion of appropriate delays is our principal deadline-preserving transformation.

Clustering does two things: first, it makes the resulting flow graph smaller and simpler (and thus faster
to analyze); second, it transforms the program into one which is more nearly compile-time schedulable. The
extension of power and expressivity over amalgamation in Real-Time Euclid comes primarily from the use
of more sophisticated tests on conditionals.

A Grammar for RTEO: The clustering algorithm uses an abstract grammar2 for RTEO, the inter-
esting parts of which are given in Figure 1. e is an empty statement. Range is a compile-time knowable
range of integers, Expr and Test are expressions not involving critical sections. Section invokes a critical
section, and may have parameters beyond the name of the calling process. symb-expr is (at compile time) a
symbolic integer expression, whose origin and purpose will be explained later in this section.

Semantic Functions and Attributes: Figure 2 gives the attributes and semantic functions used by
the clustering algorithm. Some of these attributes and functions, such as sequence and new-dclay, are used
only in more sophisticated rules for conditional.

Each symb-expr may involve (an arbitrary number of instances of) the max function, together with non-
negative integer combinations, possibly including constant terms, of integer variables generated by new.delay.
For instance, if d1 , d2 , d3 are delays for calls to the critical section, one possible symbolic expression is givenI by yma{d, + max{d 3 , 12}, d2 + d3 + 2, 2d3 + 7}

Except for the conditional and loop statements, the attribute rules are mostly self-evident. For simple
statements, stint.end will be given by stnzt.start plus its duration (given by clock plus delays); for other
compound statements, such as sequence, by the end of its last component. For instance, for assign: delay-
jr:e and combinable are true, sequence is empty, length is 0, start is inherited, end is clock(assign)+start,
gray'; is a single node labeled with clock(assign), clock returns the amount of time it takes to compute the

expression and do the assignment, and newdelay is not used.
Handling loop statements is conceptually easy, requiring one case when the loop body is delay-free, and

one when it includes delays, but moderately tricky to specify precisely; details will appear in the full paper.
There are a variety of tests on conditionals; these are described in the next section.

IThat is, during both symbolic and real execution.2 A concrete grammar for RTE can be found in [15). An ab.tract grammar ignores features irrelevant to the semantic aspects
of interest, in this case, for example, declarations and keywords. The parse is given by the concrete grammar, but use of the
abstract grammar makes the semantics easier to comprehend.

S35

Figure 2. Attributes and Semantic Functions for Clustering

Attributes
niame type description
delay-free boolean true iff there is no varying3 delays in the argument
combinable boolean true iff can combine the argument with others, a tunable parameter
time int code execution time, excluding variable delays
sequence int list chunks of execution time between delays
length int the maximum number of delays on a path
start, end symb...expr schedule time
graph flow graph clustered flow graph for code

Semantic Functions -

name domain -. range description
clock stmt - int execution time for non-delay stmts
new-delay - symb-expr generates a new integer variable

361

4

4 Clustering of Conditionals
There are at least three dimensions on tests for conditionals: (1) what structure (in particular, loops orconditionals) can t,.- branches involve?, (2) what can the delay structure of the branches be?, and (3) how
can we compare the times of the two branches?

We can easily (a) compare two delay-free branches, or (b) take any branch over an empty branch; a small
e.. tension of (b) lets us (b') take a branch with arbitrary structure and time T over a delay-free branch withsmaller time T'. In either case, we can insert delays; in the first case, the delays are constant, but in the
second they can be symbolic, but still cannot result in a program which fails to satisfy a deadline if the
original program (modulo symbolic execution assumptions) would.

Otherwise, our system will compare branches only if neither contains a conditional or loop statementwhich itself contains a delay, that is, if both branches are effectively linear. 4 In this case, we may be able to
select one branch and insert delays in the other, to constrain calls to the critical section to occur exactly at
times when calls would be made on the other branch, without violating a deadline.

We use two versions of such tests. The first (c) applies to branches of the same length, and compares
the sequences of execution times. We say that one sequence dominates another if its elements are pairwise
greater than or equal to the other's. If the sequence for the branch with greater total time dominates the
other branch sequence, then delays can be inserted in a deadline-isomorphic manner. Our current algorithm
assumes the sequences are sequences of known constants; a slightly more powerful version might allow
comparison of sequences of symb-exprs.

The second (d) applies to branches of different lengths: if the ionger also has the greater total time, andif the sequence of times for that branch can be partitioned (by adding consecutive elements together) so as
to dominate the other sequence, then we can still insert delays in a deadline-isomorphic manner.

We illustrate these tests ((a), (b'), (c) and (d)) in Figure 3; the full paper will contain proofs of these
claims. The ith non-critical section straight-line node is represented as a circle labeled s, = x on the inside,
where clock(node)=z. The ith critical section straight-line node is represented as a square labeled ci = z on
the inside, where clock(node)=z. The ith delay prior to entering a critical section is represented as a blackdisk labeled di on the outside. All resulting delays are generated and inserted in the right branches. In (a),
a fixed delay of 2 is inserted between s3 and S4. In (b'), a varying delay of 4 + d, is inserted between s 3and s 4 . In (c), a fixed delay of 3 is inserted between S3 and d2 , another fixed delay of 2 is prepended to c2
and yet another fixed delay of 2 is inserted between s5 and s6 . In (d), a varying delay of 6 + di is inserted
between s3 and d 3 and a fixed delay of 3 is inserted between s6 and d7 .

5 Deadline-Extending Transformations
Although our tests can insert delays, and eliminate conditionals from schedulability analysis, some simple
conditionals may remain irreducible, resistant to clustering. Consider, for instance the graph in Figure 4.The graph was obtained by taking the graph (c) of Figure 3 and setting cl and c2 to 2 and 6 respectively.Now, the two branches remain different but neither dominates the other. Thus, clustering delay insertions
are no longer guaranteed to be deadline-preserving. However, if we insert a fixed delay of 3 between s, and
S3 and prepend cl with a fixed delay of 4, then the new conditional is reducible (by inserting a fixed delay of2 between ss and sr). Unfortunately, the effec(of the two insertions is not deadline-isomorphic or preserving,
but is deadline-extending.

In general, deadline-extending transformations involve delay insertions on multiple branches. Anotherinteresting class of transformations involves introducing only some steps of a complete deadline-extending
transformation. In the same example, a simpler (than the original) graph with a partially-reduced conditional
results if only the delay of 3 between s, and s 3 is inserted, but cl is not prepended with a delay of 4. This
transformation, while potentially deadline-destroying, nevertheless preserves more of the original conditional

4 We are assuming that only conditional branches which are linear are combinable. We will attempt to relax this assumption~in our future work.

37I

Figure 3. Four Conditional Clustering Tests

2 3 di d2 d2 d3

1=1 d1 4 C2=2 C2=4 C3 3

2= (a) 3= c 4 (b') 4 (C) 5= 5= (d) F6

38

-Z3

|
I

jI

dd

4 4

} 39

i ~i

structure. The transformation is of interest because we believe that even such partially-reduced graphs may
already be analyzed for schedulability in polynomial time using incremental techniques.

TWhile more work is needed to understand fully the effects of such deadline-extending and other related
transformations, we have undertaken preliminary studies on random flow graphs modelling programs in
RTE_0 to determine how often these transformations will find a deadline-satisfying schedule for the original
program. The results we have gathered so far are encouraging.

A Dual Scheduling Algorithm: The resulting, post-clustering program is, of course, much easier to
analyze, than the original program. Furthermore, when a deadline is not satisfied, we can undo the deadline-
extending transformations one at a time until the deadline is satisfied. In some sense, this is analogous
to dual algorithms for linear programming: we begin with an optimal program, and iterate until we find
a feasible one. The early steps of this algorithm will be quite inexpensive, since most processes will be
represented by straight-line flow.

6 Future Work

Extend the Model: We intend to include more general language constructs. At the very least, we would
like to re-introduce most if not all currently omitted RTE featues, including multiple monitors, different
start times, periodic and aperiodic processes and so forth. We will also attempt restricting processors to a
limited number.

Data Flow Analysis: We intend to categorize applicability of classical compiler optimizations to hard
real-time programming, determine transformations and preconditions, and apply interprocedural analysis
(in particular, aliasing).

Heuristics for Dual Scheduling: The choice of deadline-extending transformations to reverse will
significantly affect both the number of such steps required and the cost of performing those expansions.
We need to determine suitable heuristics, considering the amount and the difference of inserted delays
on branches, their position in the flow graph, and the amount by which a given process fails to satisfy a
deadline. In addition, we will consider the possibility of incremental analysis of scheduling as transformations
are undone. The fact that schedules are monotonic under expansion (times can only decrease, since we can
always keep the old schedule) may allow efficient incremental analysis.

References

[1] Deransart, P., Jourdan, M., Lorho, B., Attribute Grammars: Definitions, Systems, Bibliography, No.
323, Springer-Verlag, Lecture Notes in Computer Science, May 1988.

[2] Allen, F. E., Rosen, B., Zadeck, F. K., Compilers, Optimization, ACM Press/Addison-Wesley, (to
appear), 1991.

[3] Aho, A. V., Sethi, R., Ullman, J. D., Comptlers: Principles, Techniques, Tools, Addison-Wesley,
Reading, MA, 1986.

[4] Itecht, M., Flow Analysis of Computer Programs, Elsevier Sequoia S.A., Lausanne, Amsterdam, the
Netherlands, 1977.

(5] lalang, W. D., "A Proposal for Extensions of PEARL to Facilitate Formulation of Itard Real-Time
Applications," Informatic-Fachberichte 86, pp. 573-582, Springer-Verlag, September 1984.

[6] Hlaase, V. H., "Real Time Behavior of Programs," IEEE Transactions on Software Engineering, pp.
494-501, SE-5, No. 7, September 1981.

[7], Knuth, D., "Semantics of context-free languages," Mathematical Systems Theory, pp. 127-145, Vol. 2,
No. 2, February 1968, Correction, 5 (1), 95-96, March 1971.

t 40

tt

(8] Kligerman, E., Stoyenko, A. D., "Real-Time Euclid: A language for reliable real-time systems," IEEE
Tronsactions on Software Engineering, pp. 941-949, SE-12, No. 9, September 1986.

[9] Puschner, P., Koza, Ch., "Calculating the Maximum Execution Time of Real-Time Programs,"
International Journal of Time-Critical Computing Systems, pp. 159-176, Vol. 1, No. 2, September
1989. r

[10] Shaw, A. C., "Reasoning About Time in Higher-Level Language Software," IEEE Transactions on
Software Engineering, pp. 875-889, SE-15, No. 7, July 1989.

[11] Zedan, H., "On the Analysis of OCCAM Real-Time Distributed Computations," Microprocessing and
Microprogramming, pp. 491-500, Vol. 24, 1988.

[12] Mok, A. K., Amerasinghe, P., Chen, M., Tantisirivat, K., "Evaluating Tight Execution Time Bounds of
Programs by Annotations," IEEE Workshop on Real-Time Operating Systems and Software, Pittsburgh,
PA, pp. 74-80, May 1989.

[13] Park, C., Shaw, A. C., "Experiments with a Program Timing Tool Based on a Source-Level Timing
Schema," IEEE Real-Time Systems Symposium, Orlando, FL, December 1990.

[14] , Stoyenko, A. D., "A Schedulability Analyzer for Real-Time Euclid," IEEE Real-Time Systems
Symposium, San Jose, CA, December 1987.

[15] , Stoyenko, A. D., A real-time language with a schedulability analyzer, University of Toronto, Department
of Computer Science, Technical Report CSRI-206, December 1987.

[16] Shaw, A. C., A Formal System for Specifying, Verifying Program Performance, Carnegie-Mellon
University, Computer Science Department, CMU-CS-79-129, June 1979.

(17] Shaw, A. C., Determinstic Timing Schem ; for Parallel Programs, University of Washington, Depart-
* ment of Computer Science and Engineering, 89-05-06, May 1990.

41

I

I

I
i

-t I
14

* 4I

PIPS: An Integrated Approach to the Design of Real-Time Systems 1

Chien-Chung Shen and Rajiv Bagrodia

Computer Science Department
University of California

t Los Angeles, CA 90024

1 Introduction

In the paper, we present an integrated approach to the design of real-time systems2. The goal of this
approach is to allow timing constraints of a proposed design to be evaluated in the early stages of
system design and subsequently monitored through system implementation. The novel feature of this
approach lies in its use of Partially Implemented Perfoi-mance Specifications (PIPS) as the paradigm
to both model and design real-time systems. A PIPS model is a partially implemented system where
some system components exist as simulation models and others as operational modules. A PIPS
model may be iteratively transformed into an operational system, while its timing properties are
mo:iitored during critical stages of model refinement. A language and its execution environment have
been defined to support the use of PIPS models for system design. The language, called RTM, may
be used to program a real-time system as well as its simulation model and is used to develop the
initial model, its subsequent refinements and the operational system. RTM supports interrupts and
task/message priorities, and may be used to program sporadic, periodic, and adaptive[MH89] tasks.
An RTM program may be executed in an appropriate environment to evaluate its satisfaction of
timing constraints under various workload.

Section 2 outlines the PIPS approach. The RTM language is briefly described in section 3. An
example together with its experimental results is presented in section 4 to illustrate the applicability
of the PIPS approach.

2 PIPS Approach |

Traditional real-time system design methodologies suggest that a simulation model be constructed
first in a special language. After evaluating the satisfaction of timing constraints, the model is then
implemented entirely in a real-time programming language, like Ada. These approaches imply that
system modeling and system design/implementation are carried out independently. Unlike other
design methodologies, the PIPS approach uses the RTM language to write both a simulation model
and fts operational system, and suggests how an initial model may be transformed iteratively into an
operational system where the design process is monitored from initial modeling to final implementation
to ensure that it is consistent with th-! specification. The PIPS approach is based on the following
concepts.

a PIPS Model: A PIPS model consists of both simulation steps and operational steps. For
a simulation step, the notion of physical time is captured by the simulation clock, where the
notion of progress of physical time is modeled by the increment of the simulation clock. When
executing a simulation step, the simulation clock is incremented by the amount estimated to be
the physical time required to actually execute the corresponding operational step. In contrast, an
operational step is a sequence of actual program statements, where its physical time consumption
is measured by a physical clock.

Logical Element: The concept oi Logical Element (LE) is introduced to facilitate the allo-
cation of processes to processors. The simulation or operational steps of all processes mapped
to a common LE are executed sequentially, and those mapped to different LEs are executed
(logically) in parallel. Each Li is assigned its own clock, and will eventuahy be replaced by a
physical target processor when the designed system is operational.

'Partially supported with a grant from Hughes Aircraft Co.-State of Caifornia MICRO Project and also by NSF
(CCR 88 10376).

2We use the term real-time systems to include distributed real-time systems.

42

The key issue of the PIPS approach lies in its ability to integrate the execution of simulation
steps together with operational steps, where both logical time and physical time are used to update
the common notion of time to obtain overall timing characteristics. The PIPS design paradigm is
summarized as follows. A complete description of the PIPS approach can be found in [BS90].

@ Given the functional and timing specifications for a real-time system and an initial system

design, an-initial simulation model is developed. The satisfaction of timing constraints imposed
on the system can be evaluated by executing the initial model under the proposed operating[i enviror, ment (workload). !

'After being evaluated to satisfy timing specifications, the model is refined iteratively by elab-

orating a simulation step into an operational step, or by replacing a hardware model by the
hardware itself. This suggests a PIPS model which consists of operational software and hard-
ware components interspersed with logical models of other software and hardware subsystems.
Note that in a PIPS model, the physical time consumed by an operational step will also be mea-
sured to update the corresponding clock. The refined model may again be executed to ensureI that the specified timing constraints are satisfied under the proposed operating environment.
This process is repeated until the model is transformed into an operational system.

3 RTM Language

The unique feature of the RTM language is its ability to program real-time systems as well as the;
simulation models. RTM is a process-based language derived from C. Simulation constructs are
provided to support model development, while constructs to specify timing constraints, interrupts,
process communication and synchronization are added to facilitate real-time programming. A com-
plete description of the RTM language can be found in [BS]. The following are some of its language
features.

e Process Definition and Process-to-Processor Mapping: The entity construct is used toj represent processes. When created, an entity may be mapped to a specific LE and assigned a
priority by using the new statement together with on and priority phrases.

9 Physical Time Modeling: An entity executes a hold statement to model the progress of
physical time, where the clock associated with the LE on which this entity resides is updated
by the amount specified. A hold statement may subsequently be replaced by actual program

r statements in model refinements.
* Process Corn Aunication: Entities communicate with each other using buffered message-

passing. The invoke statement deposits a message in the message buffer of the destination
entity. Each message carries a timestamp and its scheduling information (described next). An
entity receives messages from its message buffer by executing a wait statement, which specifies
messages that ae accepted by the entity and also defines their subsequent actions. Messages
are received in the order of priority and timestamp.

Scheduling Information Specification: RTM provides a new type as a general notation to
describe scheduling information by which timing constraints for each individual activity initiated
by a message may be specified. The information is then used by the scheduler to schedule the
activities appropriately. This type, named type.scheduler-info, is implicitly defined by the
language and consists of three fields, priority, deadline and ptime; ptime refers to the processing
time needed for the activity, deadline refers to the deadline for completion of the activity and
priority refers to the priority of the message.

__Interrupt Specification: The interrupt phrase is used to denote an interruptible computa-
tion step (either simulation or operational). where interrupting messages are specified together
with their interrupt service actions.

I 443
! 3 ,
Ii

4 An Example: Modified Landing System

A centralized prototype PIPS environment has been implemented at UCLA on a Sun 3/60 worksta-
tion. The environment consists of the RTM language compiler and the PIPS runtime system.

We use a modified version of the Martian Lander[JM86] to illustrate the design of a real-time
system by the PIPS approach, where the satst'action of a timing constraint is evaluated at different
stages of its development. The lander entity repetitively invokes an.I/O entity (Lo) to read the
acceleration which takes a constant time (10 time units) to complete. In addition, we assume that
the I/O entity shares a. non-preemptible processor with a navigation entity (nvg) which is repetitively
requested by a pilot entity to perform some navigation function. As a result, the start of an I/O
operation may be delayed and thus even though it takes less than 100 time units, it may not be able

f to complete within 100 time units. Figure 1 shows the simulation model written in RTM. Note that
both I/O and navigation entities are allocated to a common I.E, le't, and therefore are executed
sequentially. In addition, they are initiated by lander and pilot entities respectively using invoke
statements, and hold statements are used to moJel the I/O and navigation operations.

We then refine the preceding simulation model into a PIPS model by elaborating the hold state-
ment of the I/O entity into operational code. Note that the code for the I/O entity changes only
to the extend that actual statements, represented by function io.action, is included in the entity,
as shown in figure 2. The PIPS runtime system measures the physical time consumed by the I/O
operation to support overall timing measurements. The refinement process can proceed further mntil
the entire system is operatio..al, where the timing characteristics is evaluated at every stage of model
refinement.

We now present the performance measurements for the modified landing system, where both the
percentage of missed I/O deadlines and the average I/O response time are measured at the following
three stages of model refinement. In stage one, the system exists as a simulation model. For the
first experiment (figure 3(a)), I/O and navigation operations are performed alternatively. The time
taken by a navigation operation is sampled from an exponential distribution. The metrics are plotted
as functions of the mean navigation time. As seen from figure 3(a), the percentage of I/O misses
increases monotonically as the mean navigation time increases. Also, the average I/O response time
is prolonged by the amount equal to the mean navigation time. For the second experiment, the mean
navigation time is fixed at 20, and the navigation activity is initiated for a percentage of the I/O
activities. Let p be the probability that a navigation activity will be initiated together with an I/O
activity. Figure 3(b) plots the metrics as functions of p. As seen from the figure, both the percentage
of I/O misses and th,. average I/O response time increase as the probability p increases. In the
second stage, the I/O entity executes an operational step to perform an I/O action. The physical
time required to perform an I/O operation is generated by using a for loop. To validate the PIPS
approach, the physical time consumed by the for loop on a Sun 3/60 workstation is kept equal to 80
time units. In the last stage, the simulation step for the navigation entity is also elaborated into an
operaticnal step. The above two experiments are repeated for these two stages, and their results are
plotted on the same figure. As seen from the figure, the measurements are in reasonable agreement
for each of 'he three stages.

References

[BS] R. Bagrodia and C.-C. Shen. Integrated design, simulation and verification of real-time sys-
tems. to appear in Proceedings of the l1th International Conference on Distributed Computing
Systems, 1991.

[BS90] R. Bagrodia and C.-C. Shen. MIDAS: Integrated design and simulation of distributed sys-
tems. Technical Report, CSD-900027, Computer Science Dept., UCLA, September 1990.

[JM861 F. Jahanian and A.K. Mok. Safety analysis of timing properties in real-time systems. IEEE
Transactions on Software Engineering, SE-12(9):890-904, September 1986.

[MH89 A.H. Muntz and E. Horowitz. A framework for specification and design of software for
advanced sensor systems. In Proceedings of 1Oth Real-Time Systems Symposium, pages 204-
213, Santa Monica, California, December 1989.

44

def ine N00F-I0 1000 / Sof 1/0 requests* *

eniydrivrI
{e..name io, id, nv, p1; le..nazne le7, 103, le4;
io =new i-o{ I on le7; /* 1/0 entity *
nv =new nvgj I on 1:7; /* navigation entity *

j d = new lander{ io I on 103; /* lander entity *
p1 =new pilot{ nv '.on 104; 1* pilot entity *

entity lander{ io}
e..naine io;

I clock-.type ss, tt; message joint; mnt i;
for (i = 0; i < !NO-.OF-.IO; 4++)

ss =current-clocko;
invoke io with begin f self }; 14 start 1/0 request *
wait until mtyr-,ioint) f /* 1/0 complete *11

tt = current..clocko;
- s) ; / / e p n e t mprintf("I/O takes = %~d seconds.\n', (tt-3); /*/Orsoetie/

entity pilot{ nv I
e-.name nv;
f message complete; mnt i;

for (i =0; i < NO.,.OF..NVG; i++) f
invoke nv with start{ self }; /* start navigation request *j wait until mtype(complete); 1* wait for its completion *

entity i..o{ I
{message begin { e-name lander; };

5 for (;;)
S! wait until mtype(begin){

hold(I..TILME); 1* a simulation step for 1/0 action *
A invoke msg.begin.lander with ioint; /* 1/0 complete *

entity nvg{ I
f message start{ e-.name pilot; }

for (;;)
wait until mtype(start){

hold(exp(MEA..NVG-.TIME)); /* a simulationi step for navigation *
invoke msg.start.pilot w.th complete; /* navigation complete *

Figure 1: Modified 1.. ding system simulation model.

45

1 2
entity i..o.

{ message begin { e-name lander; }; 5
for (;;)

wait until mtype(begin) {
io-actiro); /* an operational step for I/O action */
invoke msg.begin.laaider with ioint; /* I/O complete */

Figure 2: Modified landing system PIPS model: operational I/O entity.

I
0: Simulation Model o: Operational 1/0 0: Operational Navigation

55 -- , . , | 120 [.. ..

401r 25 Average 100
'/C of 30 I/O

I/O i 5 Response F
2I0sse - Time 90

15

1so

10 2570
10 15 20 25 30 10 15 20 25 30

Mean Navigation Time Mean Navigation Time F
(a) Alteriative case.

5 I , -- r 120
50

45 1101

35 - Average 100 -

%of 30 I/0
1/0

Missed Response

20 Time 90

10 80 _

5

0 70
.2 .4 .6 .8 1 .2 .4 .6 .8 1
Navigation Probability (p) Navigation Probability (p) r

(b) Probabilistic case (mean navigation time = 20).

Figure 3: Performance metrics for the modified landing system.

46
I-

Graphical Prototyping of Tasking Behaviour

R.Lintulampl, P.Pulli
Technical Research Centre of Finland (it

Computer Technology Laboratory
P.O. Box 201 SF-90571 Oulu Finland

E-mail: tkorli@flnvtt

supposed to do. Structural prototypes define
Abstract how the system will accomplish its behaviour.

An ideal prototyping environment supports
both behavioural and structural prototypes.

The Espex tool is a graphical simulation and Prototypes must be quick to be built and
prototyping tool for Structured Analysis for modified and easy to gather data during
Real-Time Systems (SA/RTI. Petri net like about their use.
Espex graphs are used for modeling a system.
The execution principle for a logical model In the field of real-time embedded systers a
and a task model is described. Pre-emptive nthfe of relime embedesystems a
priority based scheduling Is simulated in the embedded behaviour languages has proven
execution of a task model. Experience in very useful. Well known examples of these
using the Espex tool on real examples are veryusef We WnreMe o f these
also reported. The Espex tool has beenWard&Meor Ward&851
iloeented. n the toaolabeeHatley&Pirbhai's Structured Analysis
implemented in the Smalltalk-80 extension [Hatley&871 and Harelrs
programming environment and it runs on Statecharts [Harel87I. Recently tools which
SSun-3 and Maclntoshl! workstations, also support the execution of these languages

have been reported [Harel&90, Athena89].

1 Introduction These tools support only the requirements
phase of software development. In this paper
we present the Espex tool which supports

Prototyping of software systems has been both behavioural and structural prototyping
suggested as an alternative approach for of software specifications and designs.
software development fvonk9o,
Hekmatpour&88, Connell&891. The
prototyping approach can be used with the 2 The Espex Tool
conventional waterfall model of software
development. In recent years a new software
development concept, the spiral model, has
been presented where prototyping is a part of
the development process [Boehm88, TRW89I.
Recently, interest In using prototyping in the The ESPEX tool is a graphical simulation and
development of real-time system has prototyping tool for Ward&.Mellor's SA/RT. It
increased [Gabriel&89]. has been developed from the SPECS tool

originally designed at ETH in Zrich.

A prototype is an executable model of a [Dhler&87, Puli88] and it has been

system. In the early phases of software implemented In the Smalltalk-80

development prototypes can be built directly programming environment on Sun-3 and

by using an executable graphical specification MacIntoshl workstations. A logical model, a
lascan be divided into processor model, a task model, andbehavioual prototypes and struitdrnl combinations of these models can be

prototypes- (Gabriel&891. Behavioural simulated in the Espex tool.

prototypes- define what-, the system is

The Espex tool uses Espex graphs which are 2.3 Sin Time i
based on combining channel/instance Petri 2. iuafnTU

nets, predicate/transition Petri nets, and the
object-oriented paradigm. SA/RT and Espex The present Espex tool supports only the
graphs make up a hybrid method which is at simulation of central clock systems, by using
the same time communicating, flexible, for- global simulation time. The simulation time
mal, and executable, has not been bound to any real time clock,

because we did not find a convenient way to

The modeling elements have several scale the real-time clock in different

attributes which differentiate the behaviour of simulation situations.

the elements in the execution of different
models. The continuous attribute specifies if 3 Execution of Logical Model
an S-element represents a propagating or
non-propagating element. The arrival of a
data token at a propagating element activates The implementation free user-observable

the transformation connected to it. Signals requirements for the system are the basis for

and discrete data flows are propagating a logical model. It describes the behaviour to

elements but stores and continuous data be implemented by the specified system. The

flows are not. A delay defines how long a data portions outside the specified system are
included in terminators.

token has to stay in an S-element before It Is
available for its next transformation. A delay
simulates the communication time that is The main objective of the simulation of a
independent from the simulated execution logical model is to find out how a system to
resource. A delay inside the simulated be modelled should work. The executable J
execution resorce is simulated by giving extra logical model constitutes a behavioural t
processing time to transformations. Capacity prototype of a system.
defines how many data tokens an S-element
can carry at the same time. The processing -
time of a transformation is an estimate of how c
long the execution of the implementation
takes in the target environment. (1)timeO

Each data token and stimulus consists of Otme0 irue:[c <-1)
some data and a unique time stamp. Data ifalse:id <- 1
can be any Smailtalk object. A special case of
data tokens is a future token. The time stamp
of a future token is not constant as a
scheduler can modify it. For example, all I)Ume0

tokens produced by simulated software are ti
future tokens. <

ifrrue:[c <- 11

lfFalse:[d <- 11
2.2 User Interface

The Espex tool consists of a model editor and Figure 1. th e ninispecification is executed

a model simulator. It has been implemented when the transformation is fired. Depending
on the basis of windows, pop-up menus, and on the minlspeciflcation, a data token may be j
a mouse pointing device. The simulator has produced for a single S-element.

been integrated Into the model editor. At any
time during the modeling process, the model Execution rules for a logical model are based 1
can be simulated, on the combination of the transformation

schema presented In [Ward86]:and Petri net
behavio r; Basic rulesar:e

48

- All input flows must have a data token. The user can freely choose how to allocate
- Transformation will be fired when a data transformations to different tasks and
token arrives at a discrete data flow or a interrupt handlers. Interrupts can take place
signal flow. at any time and they are served immediately.
- After the firing, a data token is produced Espex does not offer a methodology for the
into flows specified by a minispecification. allocation but a designer can do the
Figure 1 illustrates the firing principle. allocation as he wants. After allocation, the

model Is reorganized to make It more
Model readable and priorities are set to tasks and

interrupt handlers. The allocation and

reorganization mechanism has been
A task model simulated in the Espex tool is described earlier in [Pulli89.
based on a redistributed logical model to
which physical characteristics have been

j added. A task is an independently 5.2 Execution Order Numbers
schedulable piece of software which

implements transformations assigned to it.
Tasks are executed concurrently by an The execution of a task model is
operating system in a target environment, deterministic. The order of the execution of
Transformations allocated to a task are the transformations within each task must be
executed sequentially. The graphical specified explicitly in the allocation by giving
presentation of a task model resembles that execution order numbers to the lowest-level
of a logical model. An executable task model transformations.
constitutes a structural prototype of a
system. A task is an infinite loop in the Espex tool.

The task's entry point is the point where the
Simulation allows the testing of several execution starts after activation and where
diferent task allocations to find out the effects the execution is returned after all possible
they have on a system's behaviour, paths are executed within the task. The task
Simulation can be divided into three phases: can have only one entry point.
(1) validate priorities, synchronization and
logical correctness of task interfaces, (2) find
requirements for the implementation and (3)
estimate the timing and complexity of a task

Imodel.
Processing time has to be given to each

Tworlowest-level transformation in a model before~~~~The following functions of a real-time tesmlto.I sa siaino o

operating system are simulated in the Espex the simution It ismanestim ation of h
tool: the execu~lon of the implementation of the
- t btransformation takes in a target environment.
- Priority based preemptive scheduling.to the simulation- Signals(semaphores). time.
- Mallboxes.

- Interrupts.
- Timers.I

5.4 Timers

5 From Logical Model to Task
Model Timers can be simulated in two ways: (1)

using delay operations with flows and (2)
using simulated hardware timers. A delay

5.1 Allocation of the Logical Model to operation is useful In situations where thereI" is no need to reset the timer. Otherwise a
Tasks simulated hardware timer. is neede.

49

I

!I

6 Modeling Terminators 7 Scheduler

Terminators are presented as black boxes in There is a two-level scheduling mechanism in
SA/RT. Event lists describe the interaction the Espex tool. The system scheduler
between a model and terminators. The maintains a set of allocated processors and
description of the interaction has to be logical units (Figure 2). It randomly chooses
precise and executable in the simulation of a an unit from the set and activates the unit
model. This can be done in three ways in the scheduler. The unit scheduler of a simulated
Espex tool: processor has a task list which has been
- Terminators can be modelled in the same sorted in the order of priority. The unit sche-
way as the system is modelled. This is a duler goes through the task list until a firable
useful way when terminators are simple or transformation is found or it notices that the
when they communicate interactively with the execution of an earlier activated task is not
model. yet finished. After that the control is returned
- The user can give all input data before a to the system scheduler. All allocated units
simulation session or the input data can be are scheduled after each increment of the
read from a file. simulation time. The new simulation time is
-The user can give data interactively during a the lowest value of time stamps of all data
simulation session. and future tokens in the system to be

simulated.

Execution units

SYSTEM SCHEDULER

LOGICAL SCHEDULER

TASK SCHEDULER Task lst

PROCESSOR Interrupt
SCHEDULER handler I

..... Interrupt
~handler 2

Task 1

~Task 2

i Task 3

Figure 2. Two-level scheduling mechanism is used by the Espex tool I
The Espex tool has been used to validate the

8 Experiences specflcation of a complex robot system. Only j
50 the control part of the specification was

50I

St

modelled in the Espex environment. The Evolutionary Approach to Software
control system consisted of twelve data flow Development," Prentice-Hall Inc., New Jersey.
and state transition diagrams. The Espex tool 1989.
was found to be very suitable for validating IDthlfer&87] J.Dhler, B.Gerber, H.-P.Gisiger.
complex control sequences. It will also be A.Kfindlg, "A Graphical Tool for The Design
used in the validation of a processor model and Prototyping of Distributed Systems,"
and a task model later in the project. ACM Software Engineering Notes. vol. 12. no

7, 1987, pp. 25-36.
The Espex tool has also been used i [Gabriel&891 RP.Gabriel(editor), "Draft

modeling a specification of one OSI protocol Report on Requirements for a Common
ltfPrototyping System," SigPlan Notices, vol. 24.layer and a task model of that model no3Mac19 .
[Heikkinen90]. The original specification had n3ar 1 99.[Harel87l D.Harel, "StateCharts: A Visual
been made using a commercial SA/ RT-tool 1n Formalism for Complex Systems," Science of
a real industrial project and it was not
executable. It consisted of 14 data flow and Coper Pr mi 8(1987), p.25-36.state transition diagrams and 30 [Harel&90] D.Harel, H.Lachover, A.Naamnad,

A.Pnueli, M.Politi, R.Sherman, A.Shtull-
minispecifications. The executable Espex Trauring, M.Trakhtenbrot, "STATEMATE: Aspecification consisted of 80 data flow and TarnMT~he~rt SAEAE
state transition diagrams (176 lowest level Working Environment for the Development of
transformations, from which 28 diagrams Complex Reactive Systems." IEEEdescribed terminators not modelled In the Transactions on Software Engineering, vol.original specification. The effort of converting 16, no 4. 1990, pp.403-413.

to an lHatley&87] D.Hatley, I.Pirbhai, "Strategies
the non-executable specification to an for Real-Time System Specification." Dorset
executable one was one man-month.

House 1987.
[Hekmatpour&88 S.Hekmatpour, D.Ince,

The following conclusions can be derived from "Software Prototyping, Formal Methods and
the experiences: VDM," Addison-Wesley Publishers Ltd.
- Executable models are very well suited for a Wokingham GB, 1988.
validation of complex systems. [Heikkinen90] M.Heildcinen, 'The Prototyping

The graphical simulation of different models of Executable RTSA-Models," diploma thesis,
indicated the correct behaviour of the models. University of Oulu, 1990. (in Finnish).
- The effort to convert a draft logical model to [Pulli88 P.Pulli, "Execution of Structured
a strict executable model may be quite large. Analysis Specifications with an Object
- The Espex tool supports the work to be Oriented Petri Net Approach," Proc. ICCL'88
carried out in the analysis and design phases Conference, 1988, Miami Beach, Florida.
very well. pp.286-293.

When time is included in modeling [Pulli891 P.Pulll. "An Object Oriented
elements, and well defined semantics are Approach to Distributed Prototype Execution
used In task nterfaces and inside tasks, we of SA/RT Specifications." Proc. STA5
found it straightforward to derive different Conference. Chicago, Illinois, 1989, pp.80-91.
executable task models from an executable [TRW89) "Process Model for High Performancelogical model. Trusted Systems in Ada," TRW Systems

Division, Fairfax, USA. 1989.

[Ward&85] P.Ward, S.Mellor, "Structured
References
[Athena89j Athena Systems Inc., "Foresight: Development for Real-Time Systems," Volume

Modeling and Simulation Toolset for Real- II, Yourdon Press, New York, 1935.
Time System Development," User's Manual, [Ward86] P.Ward, 'The Transformation
March 1989. Schema: An Extension of the Data Flow
[Boehm88I B.W.Boehm, "A Spiral Model of Diagram to Represent Control and Timing,"

Software Development and Enhancement," IEEE Transactions on Software Engineering
IEEE Computer Surveys, May 1988, pp.61- 12(1986)2, pp.198-210.
72. [Vonk90] R.Vonk, "Prototyping - The Effective
[Connell&89] JL.Conell, L.Shafer, Use of CASE Technology," Prentice-Hall Ltd.
C &Cnhr London, 1990.I "Structured Rapid Prototyping - An

.51

APPLICATION OF REAL-TIME SCHEDULING THEORY
TO MULTIPROCESSOR PIPELINES

Robert J. Fornaro & William D. Allen
Precision Engineering Center

North Carolina State University

ABSTRACT

Cyclic serial computational applications can be decomposed into multiple tasks for implementation
on a multiprocessor system. In a hard real-time system this is usually for the purpose of meeting
computational deadlines. Such a decomposition results in a pipelining of the computation with
each processor being a stage of the pipeline. A shared resource (memory, bus) is utilized for inter-
task communication. This study reviews the applicability of well-known real-time scheduling
protocols for deadline analysis in such a system. Additionally, the impact of tasks whose
execution time is data dependent is addressed. Given the timing characteristics of the task set a
priority assignment for resolving conflicting requests for the shared resource can be determined.
Further, this analysis gives a method for establishing or evaluating the validity of the application's
cyclic deadline.

TilE APPLICATION

A real time machine control application can be abstractly described as: read data from a sensor,
perform a series of calculations on that data, and output results. If this is a periodic process
operating at a high frequency and the combined input/output and computation time is greater than
that available for a given periodic requirement this computation will not meet its deadlines. Two
solutions are possible: 1: use a processor fast enough to accomplish the application within its time
constraints, or 2: divide the application across multiple processors achieving the needed speedup.
The first solution is obvious and in principle trivial. The second must be carefully considered. If
an initial delay can be tolerated, the application can be divided into several steps and the process
pipelined thus overlapping portions of the calculation. Thus the periodicity of the application will
be determined by the step having the longest duration. Dividing the application into tasks (steps)
has its own set of ramifications. In particular, the issue of the exchange of data from one step to
the next in the pipeline must be considered. In this study a blocking data passing protocol was
utilized.

In the above scenario, assume a one task (step) per processor configuration. Then there is no
intra-processor task scheduling required for this system. An implicit scheduling of task requests is
created by the periodic scheduling of the data acquisition cycle and by the blocking nature of the
inter-task communications. Since the assumed configuration uses a common resource (bus) for
interprocessor communications the scheduling requirement is for this resource. Without some
scheduling regime in place, it is possible for one task to unduly delay another by seizing the
common resource thus causing a deadline failure.

SCHEDULING

Scheduling of a common resource implies the existence of either a scheduling/allocation entity
separate from the processing nodes of the system or some form of inter-processor negotiation [I].
It is assumed that the latter is too costly in overhead and thus to be avoided in this case. If an a
priori scheduling regime can be established, resource scheduling could be accomplished by an
intelligent hardware arbiter or a runtime environment. Since a resource, not a task, is being

52

iI

Ischeduled the hard real-time scheduling regimes normally used for task scheduling do not directly
apply. They may, however, provide guidance in the development of a resource scheduling
protocol for these applications. The most common scheduling scheme for hard real-time systems
is the rate monotonic approach where priority is based on the periodicity of each task (with the
shortest period receiving the highest priority). In the application considered here, the pipelining of
tasks creates a situation where all tasks have the same periodicity. In this situation, rate monotonic
scheduling reduces to a FCFS protocol since there is no basis for differentiating between tasks.
Thus alternatives must be considered. Two dynamic scheduling protocols often considered are
earliest deadline [2] and least slack [3].

With an earliest deadline scheduling protocol, what constitutes a deadline must be determined.
Since all tasks have the same period, the only deadline criteria is that the task must be ready to
exchange data at the next scheduling point. While earliest deadline is a dynamic scheduling
algorithm, the fact that all tasks have the same period means that all task requests occur at the same
relative point in time within each cycle resulting in deadlines which are fixed within the execution
cycle. Since there is no dynamic behavior of the deadlines, this scheduling problem may be solvedi statically.

Least slack, while also normally a dynamic algorithm, can likewise be addressed as a static
problem due to the common periodicity of the set of tasks. Since each task has a fixed period and
all periods are identical, the slack times of each task are fixed. Thus given the execution time of
each task and the required system periodicity, the slack times can be established and priorities
established. Here of course the highest priority will be given to the task with the least slack. Since
slack is readily determined and is directly related to establishing the magnitude of delay which can
be accommodated by each task, it brcomes the logical criteria for setting priorities for resource
allocation.

Even with a resource scheduling regime in place, the problem of priority inversion caused by
blocking delays can still occur just as in uniprocessor systems [5], [4]. As an example of how

j priority inversion can affect the applications being studied, consider the following example. A
_, uniprocessor implementation of a certain application performs the following sequence of

operations:
1. Read an input value x from a sensor.
2. Perform computations requiring 25 units of time.
3. Write adjusted values x' and y to controllers.

Assuming that input and output operations take one time unit each, this task requires 28 time units
for each cycle.

If the application requires a sampling rate greater than one sample every 28 time units, it is possible
to divide the application across multiple processors with each processor performing part of the
computation. Assume the following partitioning of the application across four processors (P1 -
P4):

V PI: Input of x and first 6 time units of computation.IP2: 12 time units of computation.
P3: 4 time units of computation and output of x'.
P4: Remaining 3 time units of computation and output of y.

This decomposition provides a pipelining of the computations to achieve the needed speedup. (It
should be noted that this arrangement assumes that there is no requirement for the results to be
output before the next sample is taken.) Since data must be passed from one processor to the next,
interprocessor data exchange points must be inserted in the tasks. If interprocessor communication
is blocking, then there is an implicit synchronization between processors which occurs on each
data exchange. Assuming that each data exchange takes 2 time units, then the maximum
processing rate of this system becomes one sample every 16 time units (by P2). Figure 1 depicts
this multiprocessor computation scenario.

53

_U]

P1 P2 P3 P4

read x exch a exch b exch C
6 6 4 3

exch a exch b write x' write y
6 exch c |

(9 units) (16 units) (9 units) (6 units)
[Data exchange = 2 units]

FIGURE 1 - Multiprocessor Computation

With this implementation, after a startup delay the system would be expected to operate with a
cycle of 16 time units. However, analysis of the timing of this application shows that after the
startup delay the system produces results every 17 time units instead of the 16 units expected.
Figure 2 shows this analysis.

P2: r======ar======aaaaaaaaaar==-===aaaaaaaaar-====aaaaaaaaa
P2: aaaaaaaa .. bb aaa aa aa
P3: bbbbbbbbbbbbbbbbb ... wccbbbbbbbbbh=...wccbbbbbbbbbbwcb
P4: CCCCCCCCCCCCCCCCCCCCCCC===wcccccccccccc===wccccccceccc.=

[xxx: waiting for synchronization, xxx: data exchange,]
[r: data input, w: data output, ===: computation]

FIGURE 2 - Multiprocessor Timing Analysis

Inspection of the timing lines for P2 and P3 show what has happened. The request for data
exchange between P3 and P4 (exch C) occurs 1 time unit before the request for a PI->P2 (exch A)
exchange. Since no other request is pending the exchange begins and lasts for 2 time units. The I
data exchange process is indivisible so the PI->P2 exchange must wa;, until the P3->P4 exchange
completes. Since there is no slack time in P2's cycle, this delay '-..?ses a missed deadline.
Assuming that timings are continuous rather than discrete as in the analysis, it can be seen that P2
will be delayed if P3's computation time lies between 3 and 5 time units. If P3's time is 3 time
units or less, the P3->P4 data exchange will be complete before the PI->P2 request. Likewise if
P3's time is 5 units or more the P1->P2 exchange will get priority. Thus the delay can be as much t
as the length of time for the data exchange, in this example 2 time units. Therefore for the system
to be intrinsically deadline safe either the deadline cycle must be set to 18 time units (giving P2 a
slack time equal to the worst case delay) or P3 must be designed such that it can never execute in
the 3 - 5 time unit range.

As can be seen from the example above, allowance must be made for the potential blocking of a
task causing a deadline failure. Since execution of these tasks is deterministic, one solution is to
adjust (lengthen) the execution time of the task creating the blocking delay so that the 'critical' task
is not delayed. In this example, simply lengthening the task in P3 by one time unit would cause
the requests for the PI->P2 exchange and the P3->P4 exchange to occur simultaneously. The
priority scheme will then give resource access to the PI->P2 exchange which will thus allow P2 to
continue without delay.

In performing an analysis of the blocking patterns of a task set, the possibility of the occurance of
'chains of blocking' must be considered. That is to say that the blocking delay of one task could
cause that task to create a blocking delay on another task. Likewise, the adjustment of the ;

54 i

ii I

execution time on one task to eliminate a critical blocking could cause a blocking delay to appear
elsewhere. Thus the blocking analysis/execution time adjustment must be an iterative process.

While there is a relatively simple solution to the blocking delay problem when task execution timesI are fixed, consider what happens when task execution times are data dependant. Consider the
scenario presented above with the execution time of the task in P3 varying between 2 and 7 time
units. As note before, delay of P2's task occurs only when the computation time of P3's task falls
between 3 and 5 time units. As noted before, one solution to this problem would be to make the
execution time of the task fixed at a value outside the timing region which will cause delays. This
solution implies the necessity of having the capability of analyzing and establishing the timing of all
possible paths through the task code.

Solution of the delay problem when tasks have variable execution times is simplified by the
constrained nature of this particular application, primarily by the fact that all tasks have the same
periodicity. As noted before this allows a static solution -3 the resource scheduling problem to be
formulated. In the example above, there are several potential solutions. One is to insert delaying
code into the task so that it will never execute in the 3 to 5 tine unit range. This implies that a
complete path analysis can be accomplished and that the code allows such an insertion. Another
solution would be to have tasks schedule data exchanges according to a clock time relative to the
initiation of the task's cycle. In the example above, if P3's task is not allowed to initiate the
P3->P4 exchange until 9 time units after initiation it will not cause a delay to occur in P2's task. A
third approach would be to have an intelligent arbiter allocating the resource. Since there is a fixed
pattern of synchronizations which allows the critical task to meet its deadline, this intelligent arbiter
would allow resource allocations only in the order specified by the desired execution pattern.
While each of the approaches shown above provide a solution to the delay problem, they are
awkward and restrictive. Now consider a different approach. The previous solutions are
predicated on preventing a delay of the critical task in the pipeline. Instead, suppose delays are
allowed to occur and a way is found to bound the worst case delay of the critical task. Then the

rpipeline cycle will be established by the execution time of the critical task plus the worst case
Jblocking delay caused by other tasks. Now it becomes necessary to determine and control the

worst case blocking time. The example above shows that a delay equivalent to the time required
-t for a single data exchange is possible. Further delays created by preemptions or chains of delay

1are also possible. The priority ceiling protocol [4],[5] limits the blocking of a task to the duration
°I of one (the longest if they are not equal length) critical section and asssures that deadlock will not

occur. (In relating to these works, note that the shared resource considered here is directly
equivalent to a critical section. i.e. use of the resource is not preemptable.) Since the application is

Sj[implemented as one task per processor and there is only a single resource being shared, deadlocks
are not an issue and chains of blocking are not possible. Thus the maximum delay which can be
imposed on any task in the system is that which can be caused by a single usage of the resource byI a task of lower priority. Additionally, application of the concept of a priority ceiling establishes
that the priority of a data exchange should be the maximum of the priorities of the sending and
receiving tasks.

Due to the constraints created by this application decomposition, many of the commonly used

scheduling and synchronization techniques either do not apply or have only limited applicability.
In particular, the following results have evolved:

1. Due to the fixed cycle of the pipeline structure of the multiprocessor implementation of the
application, dynamic scheduling algorithms reduce to a static scheduling problem.

2. Since all tasks have the same period, rate monotonic scheduling reduces to a FCFS
protocol.

3. Since only a single resource is involved, priority inheritance protocols provide no
improvement in avoiding delays.

55

4. Establishment of priorities for data exchanges should be based on the least slack U
principle.

What has thus been shown is that an application which can be decomposed into a pipelined
implementation can be structured such that hard deadlines can be assured. For the task set of such
a decomposition, a resource allocation priority assignment can be estab!,hed which will assure that
the critical (pacing) task of the pipeline will meet a deadline equal to its maximum execution time t
plus the maximum resource lock time by any other task. This scheme accommodates the problems
of tasks with data dependent execution times without necessitating special treatment of those tasks.
The resource allocation priorities of tasks are set using least slack as the criteria. Physical
implementation of such a system does not require a separate synchronization processor or use of an
intelligent arbiter for the resource. Simple fixed priorities will be sufficient.

CONCLUSIONS AND FUTURE WORK

A cyclic serial computational application can be decomposed into multiple small tasks for
implementation on a multiprocessor system with the goal of reducing the cycle of computation. In
a hard real-time system this is usually for the purpose of meeting computational deadlines. Such a
dccomposition results in a pipelining of the computation with each processor being a stage of the
pipeline. Communication of results from stage to stage of the computation is accomplished
through a shared resource. This study has reviewed the applicability of well-known real-time
schcduling protocols to the problem of guaranteeing deadlines in such a system. The pipelined
nature of this implementation produces a constraint which significantly impacts these protocols.
Due to the pipelining, all tasks of the system execute with the same periodicity. .This results in
nullifying the use of rate monotonic scheduling and converts normally dynamic scheduling
protocols into static i oblems. Frther the impact of tasks whose execution time is not fixed is
addressed. Given knowledge of the minimum and maximum execution times of each task in the
application's decomposed task set and the locking times of the shared communication resource, it
is possible to establish a priority assignment for resolving conflicting requests for the shared
resource. Further, given this scheduling and the task characteristics, it is possible to e'ther
establish the minimum cycle time (deadline) of the application which can be guaranteed or given a
deadline requirement to predict whether the deadline can always be met.

While these results focused on a decomposition which resulted in a serial data flow, extension of
these findings to systems where there exists parallelism in the data flow is anticipated. Also
consideration of the merger of this work with work relating to automated or computer assisted
decomposition of real-time applications is planned, the intent being to provide a tool for facilitating
the implementation of hard real-time applications on multiprocessor systems.

REFERENCES

1. J. P. Lehoczky & L. Sha, "Performance of Real-Time Bus Scheduling Algorithms",
Performance 86, 1986

2. C. L. Liu & J. W. Layland, "Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Enviromnent" Journal of the ACM, Vol.20, No. 1, Jan. 1982

3. A. K. Mok, "Fundamental Design Problems of Distributed Systems for the Hard Real-Time
Environment", PhD Thesis, MIT, May 1983

4. R. Rajkumar, L. Sha, & J. P. Lehoczky, "Real-Time Synchronization Protocols for
Multiprocessors", IEEE Real Time Systems Symposium, Dec. 1988

5. L. Sha, R. Rajkumar, & J. Lehoczky, "Priority Inheritance Protocols: An Approach to
Real-Time Synchronization", IEEE Transactions on Computers, Vol.39, No.9; Sep. 1990

56

Computer Music Performance as a
Real-Time Testbed

David H. Jameson
IBM TJ. Watson Research Center

Yorktown Heights, New York
dhj@rhun.watson.ibm.com

January 14th 1991

Abstract

Traditionally, researchers in real-time think about sophisticated embedded systems such as
controllers for nuclear power plants, aircraft and rockets, or robotics. Experimentation in
these areas can be impractical, often expensive and potentially deadly. The domain of
computer music offers an excellent and inexpensive testbed that exhibits real-time
properties. Several features of the language ORE are used to simplify greatly the
programming of a MIDI songfile player.

Introduction

Apart from soothing the savage beast, what else is music good for? Marvin Minsky has a
wonderful analogy:

f- Each child spends endless days in curious ways; we call it "play". He plays with
blocks and boxes, stacking them and packing them; he lines them up and ktwcks
them down. What is that all about? Clearly, he is learning Space! But how on earth
does one learn Time? Can one Timefit inside another, can two of Them go side by

-side? In Music, we find out!

[Minsky 82]

Of course, we have many more questions than the child but surely the principle is the same.
In attempting to state what music really is, F. Richard Moore says "... that music addresses
a sense for which our minds are the primary (if not the only) organ: our sense of time"
[Moore 90).

Who among us has not at one time or another danced to the rhythm or sung along with the
tune? Music is an art with which most people are intuitively comfortable. With time playing
a major role in music it seems reasonable that given the tools to manipulate musical events,
we can build systems to experiment with time-related issues and use our intuition andj experience with music to help us.

MIDI

The introduction of MIDI (Musical Instrument Digital Interface) in the early 80s has led to
a revolution in computer music. MIDI is a simple byte stream protocol that allows
electronic musical instruments to communicate with each other. MIDI data is transmitted at
a speed of 31Kb/s. For example, playing a note on one instrument could cause the

- corresponding note to be sounded on several other instruments. Thus the MIDI protocol

57

consists of control information. This information is divided up into commands such as
NoteOn or NoteOff. These commands are examples of MIDI events. I
It is important to remember that there is no explicit notion of time in the MIDI protocol to
determine when notes should be played. In other words, when the sequencer sends a
NoteOn (say) event out, it must be played immediately. The protocol does not support the
concept of timestamped packets to be buffered by the receiving instrument for later
playback.

If a computer is connected via MIDI, then it can record (store) incoming events and send
those (possible transformed) events out again later. The best analogy to this process is the
multi-track tape recorder except that instead of storing audio on each track, we only store
events. Such a program is called a sequencer.

It is the responsibility of the sequencer to make sure that the appropriate data is sent to the
correct synthesizer at the right time. Over the years, a variety of sequencers have been built
for different computers and operating systems, each using a unique internal representation
(of course!) of the data. Thus it was difficult to transfer music from one system to ai.uther
except by connecting the systems together via MDI, difficult to do if the systems are in
different loca:ions.

Therefore, a standard interchange format was devised and documented1 . All modem
sequencers can optionally store or load the music from a MIDI standard songffle. As part of 1
the infrastructure for some experiments in interactive performance, I recently built a system
that plays back standard songfiles. Using many of the concepts from
ORE [DonnerJameson 86], several tricky issues were addressed and solved rather
elegantly.

The MIDI songfile format I
A songfile consists of a simple header followed by a set of tracks. The header specifies the
number of tracks following and the clock resolution used when the file was created. The
clock resolution is simply the number of ticks per quarter note. Typical values range from
120 t/q to 480 t/q. The number of ticks per second depends on the ticks per quarter note
and the current temp. For example, if the current tempo is 120 bpm (beats per minute)2 and I
the clock resolution is 480 t'q then the tick rate is 960 t/s, just over a milisecond per tick.

Tracks are of arbitrary length. Each track consists of a sequence of MIDI events, with each
event being preceded by a delta. (Fig 1) The delta specifies, in ticks, how much time
should pass before the following event occurs. Using ticks rather than an absolute time
stamp makes it easier to apply some time transformations such as changing the tempo. If
absolute time stamping were used, it would be necessary to modify the time stamp for
every event whenever we wanted to change the speed of the music. By simply changing the
speed at which ticks arrive, the tempo can be changed smoothly. 1

I The format is Standard MID Filc 1.0 and is specified by the International MID! Association. An excellent
description of this format is given by Steve De Furia [DeFuria et a 89] I
2 One beat = I quarter note. I's confusing that the *standard terminology* is ticks/quarter and not ticks per
beat.

58

Piano Drums Guitar

82

EE2 83iE1i -
E31

Figure 1 hi MMI Songf'de tracks

Playing songfiles

To play a songfile, the player must send the MIDI data in each track to the appropriate
synthesizer at the correct time. To do this, the data of all tracks is typically merged into one4buffer that is sorted by time of occurrence (measured in ticks).

The player discussed here is implemented using a different strategy. We take that the view
ti, A racks should be treated as separate entities. A lightweight process (thread) is created to
n, ",ge each track. There are two major reasons (other than aesthetics) why this view is
taken. In the first place, it is much easier to manipulate (change, add or remove) specific
track data when the track,; are distinct. This is very useful in case we wish to influence in
real-time the performance of a piece of music, an important goal in. this research. In the
second place, keeping tracks separate provides for the opportunity to distribute the
sequencer across multiple machines, allowing experiments with distributed real-time.

Associated then with each thread is a countdown timer. At the beginning, and after each
MIDI event has been processed, the countdown is incremented by the delta preceding the
next event. As ticks occur, the timer is decremented. When the timer reaches zero or goes
negative, the thread wakes up and the next MIDI event is processed. Going negative
means that the deadline has been missed. Incrementing the counter with the next delta rather
than simply assigning the next delta assures that missed deadlines are not accumulated.

If processing a MIDI event just meant sending the bytes out, then the problem would be
quite simple. We would just wait fo: the countdown to reach or pass 0 and then send the
bytes out. Unfortunately there are two problems, one simple and one very subtle.

The simple problem is this - how do we know where the MIDI event starts and stops.
There is no explicit length information available. For example, a NoteOn event consists of
3 bytes, 9x n v where n and v are the note number and velocity bytes respectively. x is a
nibble specifying which one of 16 MIDI channels (0..15) is being used for the note. Some
other events have a different number of bytes.

The second problem is the issue of "stuck" n&es. For every NoteOn event sent, there must
be a corresponding NoteOff event later on. If this-is not so then some notes will just s, and
continuously. Normally the corresponding NoteOff event-is in the songfile. But suppose
we are playing a song and decide to stop in the middle. It is possible that we will stop

59

.. .l-il -1I II I 1 1 II I II II " I I I I i l I II I. ---"

~+2Z

sending data before the NoteOff events have been seen causing notes to sound
continuously 3.

To solve both of these problems, we must parse the songfile. Because we are playing the
songfile directly, it must be parsed on the fly, as fast as possible. For this reason, I use a
finite state machine that recognizes the complete MIDI grammar. The FSM also
understands the delta and meta-events that occur only in songfiles.4

Transient information such as the current state is stored in a MIDI Control Block (MCB)
one of which is created for each thread in the system that needs to parse MIDI.

Also defined in each MCB is an inpat function (IF) that specifies how to get the next byte.
Further result functions (RF) exist that indicate what should be done when a MIlI event is
recognized. Every one of these functions can be defined independently for each thread. An
IF may get bytes from a track in a songfile or it may get bytes as they arrive from an
external source if a musician is playing an instrument. The FSM uses the IF to read
incomin data and the RFs are executed upon recognition of some event.

The default action for most RFs is to send the parsed even: out to the MDI interface. Since
there is a separate RF for NoteOn and NoteOff events, it becomes trivial to define functions
to keep track of these events. It is also possible to build functions to transform events in
arbitrary --+ dys.

In the next section we will see how this mechanism combined with ORE functionality
allows for some sophisticated requirements to be implemented with ease.

Program structure

The core of the songfile player is a set of concurrent threads, one for each track, with each
thread responsible for playing the music in its respective track. Using ORE notation and
ignoring initialization of the MIDI control block variable mcb, the code for this is simple:

< VAR mcb; GetByte(mcb); Transition(mcb); > -- Track 1

< VAR mcb; Get~yte(mcb); Transition(acb); > -- Track n

Unfortunately, ORE has no mechanism for creating processes dynamically. Although there
is some justification for this restriction on the grounds that it can be expensive to instantiate
processes on the fly, if the number of processes needed can be determined during the
initialization phase of the system, which is often the case, then a mechanism for dynamic
creation of processes would be very convenient.

3 Some keyboards come with a button called "panic" whose sole purpose is to send Out all possible NoteOff
events.

4 Examples of meta events are commands to change the tempo or set the time signature. A discussion of
these events is beyond the scope of this paper j

60

The procedure GetByte is an input function .(IF) that gets the next byte from a track. The
procedure Transition updates the state of the finite state machine. A result function (RF)
may be triggered as a consequence of the transition. So, for example, should the FSM
recognize the variable length delta preceding each event, then the RF will cause the thread
to sleep delta ticks.

In ORE, the threads above are siblings in the same lexical scope. Executing the program
causes the songfile to be played in its entirety. However, we would like to add a little more
control to this program. In particular, we would like the ability to stop the music at any
time. In principle this is simple. We simply add the following sequence to the set of
siblings above.

< Watch (KeyAvailable); Preempt; Break; >

This sequence sleeps until a key is pressed on the console. If a key is pressed, the thread
will wake up, preempt all the siblings and then exit. Unfortunately, simply preempting
threads is likely to cause the "stuck note" phenomenon described above. To solve this
problem, we take advantage of the Last Will & Testament or LWT construct. The LWT
allows us to define some code that should be executed if the sequence in which it is
contained is subsequently preempted. Each thread responsible for playing a track now has
the following structure.

VAR mcb;
LWT("Send NoteOf'L for each unmatched Note0n"
GetByte (mcb);
Transition(mcb);

The RFs for NoteOn and NoteOff are extended so that they keep track of what notes are
pending. Now, should the threads be preempted, each thread is able to die gracefully,
making sure that it has left no stuck notes behind.

Discussion

The facility with which the songfile player was implemented shows the usefulness of
ORE's semantics. The bookkeeping is trivial because it is not necessary for threads to have
any global information, drastically simplifying the code and the ability to understand it.

I

Code was also added to display how well the system was meeting deadlines, although the
system played music very well, it turned out that-threads were often late by a tick or two.
DIepending on the clock resolution, this translated into several milliseconds, not enough to
affect the output 5. The missed deadlines occurred when notes in several tracks needed to
be played simultaneously. There was then contention for the one shared resource in the
system, the MIDI interface. Since it takes about Ims to send the average MIDI event
consisting of 3 bytes, it was easy to explain why deadlines were being missed.

It was rather gratifying however to find that the very simple scheduling scheme employed
worked so well. Nevertheless, there is plenty of room to experiment with different

5 Delays less than 8ms are undetectable by humans.

61

scheduling algorithms. Gross misbehavior in such algorithms will be quickly noticed due i
to the "strange" sound of the music that is heard 6.

Conclusion and future work
The songfile player is a simple but very useful application exhibiting deadline requirements. I
The equipment required was a PC and a synthesizer that cost under $400. The semantics
found in ORE have been instrumental (no pun intended) in facilitating the development of

the player.

Although the current system just plays "canned" songs, work is underway to add the ability k
to interact with it in various interesting ways. One interesting possibility is to attempt to
model the interaction amongst the musicians in an orchestra and to influence (conduct) that
orchestra. Although there have been several "conductor" projects, the focus seems to have
been on controlling simple parameters such as global time and volume via novel user
interfaces. [Mathews et al 80]

When several musicians play together, many new factors must be taken into consideration.
For example, what do the cello players do when they notice (subconsciously?) that the
violin section has speeded up slightly? Does the cello section increase to the same speed as
the violin section or do they meet half-way? Do they perhaps get louder (or softer) as they
change speed? How long does this response take? Some of this information is explicit in
the score. Much of it requires interpretation and is influenced by the group. There are
questions of synchronization of individual musicians and of feedback amongst them.

Another interesting issue involves using music notation concepts. Music nottion is
different from other languages in that time is built in. Since this notation has been working
well for hundreds of years, one must ask if it is feasible to make a useful programming
language out of it. One group [LoPall 89] has already suggested using music notation as an
alternative for Gantt charts with time includdd. That paper defines the notation in terms of
Real Time Logic [JahamianMok 86].Conversely, it might be reasonable to use music
notation as a means of monitoring the real-time behavior of a system.

References

[DeFuria et al 89] "MDI Programmer's Handbook"
Steve De Furia, Joe Scacciaferro, M & T Publishing, 1989

[DonnerJameson 88] "Language and Operating System Features for Real-time
Programming"
Marc D. Donner, David H. Jameson, Computing Systems,
Vol 1 No 1, Winter 1988

[JahamianMok 86] "Safety Analysis of Tuning Properties in Real-Tune
Systems"
Farnam Jahamian & Al Mok, IEEE Transactions on
Software Engineeiing, Vol 12 #9, September 1986

6 Not to be confused with the strange music one often-hears on the radio these days!

62

. ; ,, -- -. .u I, J.L _ -

i|f

114

[LoPall 89] "RAGA: Musical Gantt Charts for Scheduling in Distributed
Real Time Systems"
Virginia M. Lo, Gurdeep Singh Pall, Dept. Computer
Science, University of Oregon, Unpublished?, October 20,
1989

[Mathews et a] 80] "The Sequential Drum"
Max Mathews & Curtis Abbott, Computer Music Journal,
Vol 4 #4, 1980

[Minsky 82] "Music, Mind and Meaning"
Marvin Minsky, Chapter 1, Music, Mind, and Brain: The
Neuropsychology of Music, edited by Manfred Clynes,
Plenum Press, 1982

[Moore 90] "Elements of Computer Music"
F. Richard Moore, Prentice Hall, 1990

] 6

!I
I
I

I

63

!

SPECIFYING HARD REAL-TIME SOFTWARE:

EXPERIENCE WITH A LANGUAGE AND A VERIFIER

Constance Heitmeyer and Bruce Labaw
Naval Research Laboratory
Washington, D.C. 20375

Introduction

Hard real-time (HRT) computer systems must deliver results within specified time intervals or face catas-
trophe. To detect timing problems in HRT systems, current development practice depends on exhaustive
testing of the software code and extensive simulation. Unfortunately, this expensive and time-consuming
process often fails to uncover subtle timing and other software errors. To improve this situation, research is
needed in methods for specifying and verifying HRT systems.

At the Naval Research Laboratory (NRL), we advocate a three-phased approach to developing HRT
systems that emphasizes the requirements phase of the software life-cycle. With this approach, 1) mathe-
matically precise specifications of the timing and other system requirements are developed, 2) machine-based
verification and other analysis tools are applied to the requirements specifications to improve their consis-
tency and to insure compliance with critical timing and other properties, and 3) a semiautomated procedure
is used to develop an implementation from the specifications. This implementation must meet the timing
and functional constraints imposed by the requirements specifications.

NRL's current effort is focused on the first two phases of this approach. As part of this effort, we
are building a software requirements toolset, containing tools developed at NRL as well as promising tools
developed elsewhere. The toolset's goal is to help software developers specify, analyze, and verify the
functional and timing requirements of HRT systems. Of special interest are tools that scale up, i.e., tools
that are useful in specifying and verifying requirements of real-world, practical HRT software. Included in
the NRL toolset are requirements generation tools and mechanical verifiers [Heitmeyer90]. The language
supported by requirements generation tools should lead to formal, yet intuitive, specifications. Verifiers
provide formal proof that given assertions about functional behavior and timing can be derived from the
specifications; of special interest for real-time software are proofs that certain critical events occur within
specified time intervals.

Although current commercial tools supporting HRT requirements specification are few and limited in
capability, the SARTOR project at the University of Texas has developed two promising experimental tools.
The first. a requirements generation tool. supports a graphical language, called Modechart [Jahanian88a,
Jahanian9l], that is designed to specify a system's timing requirements. The second, a verification tool.
provides mechanical proof that a specification satisfies critical timing properties [Jahanian88b, Stuart90].
These prototype SARTOR tools are based on methods for s-pecifying and analyzing timing properties that
complement methods for specifying functional requirements [HeningerT7$. Heninger8O] invented in NRL's
Software Cost Reduction (SCR) project.

Recently, we developed Modechart specifications of several example systems and used SARTOR's pro-
totype verifier [Stuart9O] to prove the consistency of the specifications and -elected timing assertions. Below,
we present the Modechart specifications and timing assertions for one of these exampies and summarize
NRL's experience with both the Modechart language and the verifier, identifying their contributions to
real-time software technology and recommending enhancements.

1. Example Modechart Specifications

This section introduces an example, provides Modechart specifications for the example, and presents two
timing assertions that we proved about the specifications. The example, which is taken from the software
requirements document of a real avionics system, the A-7E aircraft's Operational Flight Program (OFP)
[Heninger78], has important features that make the specifications nontrivial, a shared resource (the display)
and several different environmental inputs and outputs. The Modechart semantics used to construct the spec-

ifications are based on (Jahanian88a, Jahanian9l]. The timing assertions are expressed in Real-Time Logic
(RTL), a form of first-order logic invented by the SARTOR researchers to reason about time (Jahanian86].

64
r-

Example: Pilot Data Entry and Display. Figure 1 provides Modechart specifications for a function
performed by the OFP. The OFP software reads a character sequence (e.g., latitude or longitude) typed by
the pilot and writes the sequence to a display panel. To initiate data entry, the pilot first presses the DATA
ENTRY button. The software responds by turning on a keyboard light and clearing the display panel. Next,
the pilot types a sequence of characters, which the software writes one character at a time to the display
panel. Finally, the pilot presses the ACCEPT button to indicate that he has completed data entry. In response,
the software turns off the keyboard light and clears the display panel.

To specify this example in Modechart, Figure 1 shows three top-level modes, called Pilot Input Rec-
ognizer, Data Entry and Display Function, and Output Generator. The Pilot Input Recognizer consists of
three input drivers, one for each of the three hardware devices that the pilot uses to communicate with the
software, namely, the DATA ENTRY button, the ACCEPT button, and the alphanumeric keyboard. The Data
Entry and Display Function specifies 'ow the system responds (i.e., what outputs it produces) to a sequence
of inputs. The software response depends on both the event history as well as the input. In Modechart, a
set of modes captures the event history, and state variahles can be used to represent input and output data
items. The Data Entry and Display Function receives .nput via changes to input data items and produces
output by changing output data items. The Output Generator translates output data items into specific
outputs (e.g., turn the keyboard light on). It consists of two drivers, one controlling the keyboard light, the
other writing characters to the display panel.

Timing Assertions. Using the verifier, we proved the consistency of two timing assertions with the
Modechart specifications. One assertion states that each data character is displayed within some fixed time
interval after it is entered. Specifically, if t is the time that the pilot entered the ith character, then the time
that the ith character appears on the display panel is at or before t + 200. To express this in RTL, we write

Vi@((HAVEDATUM := T), i) <_ @((DISPLAYED T), i) A

@((DISPLAYED T),i) <@((HAVEDATUM T),i)+ 200. (1)

Proving this assertion required the addition of two constraints to the Modechart specifications. First, we
needed to bound the pilot's input rate. Given human performance limitations (humans can only type so
fast). we assume a lower bound on the time interval between any two consecutive pilot key presses. Second,
we needed to impose an order on the sequence of pilot inputs, since this assertion is only valid for certain
pilot input sequences. The specifications in Figure 1 permit all possible pilot input sequences, even illegal
sequences. The assertion in (1) is true only when the pilot enters a legal sequence: a DATA ENTRY followed
by one or more data characters followed by an ACCEPT.'

A problem in proving (1) is that the ith entry into mode HAVE DATUM (i.e., pilot entry of the ith data
character) does not correspond to the ith entry into mode DISPLAYED, because mode HAVE DATUM is
only entered when the pilot enters a data character but mode DISPLAYED is entered when a data character

- is displayed and when one or more blanks are displayed. One solution is to replace the START DISPLAY
mode in the display driver specification with two modes: START DISPLAY VAL (displays a data value)
and START DISPLAY BLANK (displays one or more blanks). To express this in RTL, we write

Vi@((HAVEDATUM := T), i) <_ @((STARTDISPLAYVAL := F), i) A

@((STARTDISPLAYVAL := F), i) < @((IAVEDATUM := T), i) + 200.

Because the verifier cannot prove formulas of this form, the assertion was rewritten in Modechart and proved
with a reachability argument. To use such an argument, the Modechart specifications were augmented by
adding an unsafe state, a state that violated the RTL assertion. Then, the verifier was executed on the
augmented specifications to determine whether entry into the unsafe state was feasible. Because it was not,
the assertion is considered proven. (We note that a solution that replaces the START DISPLAY mode with
two new modes is undesirable for ease of change reasons. The output driver specifications should not be
influenced by the requirements of the verification process.)

1 In a con plete specification of this example, the Data Entry and Display Function would also recognize
illegal input sequences and gent.-te appropriate responses (e.g., error messages).

65

A

The second timing assertion states that a minimum delay exists between the time that the last character
of the character string is displayed and the time that a pilot press of the ACCEPT key is allowed. The rationale
is that, before the pilot presses ACCEPT, he needs a minimum time to read and validate the string of characters
that appear on the display. This assertion is expressed in RTL as2

|

Vi3j@((HAVEDATUM := T),j) < @((HAVEACCEPT:= T), i) A

@((HAVEACCEPT := T), i) < @((HAVEDATUM := T),j + 1) A

@((STARTDISPLAY := F), 2i + j - 1) + 225 < @((HAVEACCEPT T), i). (2)

To prove this assertion, we needed to augment the two constraints above with a third constraint that defines F
an upper bound on the character string length and that requires an ACCEPT to terminate each character
string.

In developing the proofs of (1) and (2), an important consideration was whether the thre_± constraints
were requirements missing from the original specifications (shown in Figure 1) or whether they were simply
logical statements needed to complete the verification process. We decided that two of the constraints should
be added to the requirements specifications, in particular, the constraint describing human performance
limitations and the constraint limiting character string length and requiring termination of a character
string by an ACCEPT. How to specify these constraints (i.e., in Modechart, RTL, or some other format) and
how to integrate them with the specifications in Figure 1 remains an issue, especially for the constraint
describing human performance limitations. In contrast to the first two, the remaining constraint, which
defines the legal pilot input sequences, was simply needed to complete the verification process; the statement
we wished to prove concerns the system's response given legal pilot input. Hence, assertion (2) is incomplete:
a complete statement of the assertion includes (2) as a consequent and a description of legal pilot input as
an antecedent. flow to specify this constraint is also an issue.

2. Contributions of Modechart and the SARTOR Verifier

Modechart. The SARTOR research effort has contributed to real-time software technology by providing
an integrated approach to the specification and verification of critical timing properties. A crucial aspect
of SARTOR is the Modechart language. While specifications in logic-based languages, such as RTL, other
first-order languages (Heitmeyer83], and temporal logics like CTL [Clarke87] and RTTL [Ostroff89], facili-
tate machine-based analysis and verification, humans find such specifications hard to produce and hard to
understand (e.g., see (Jaffe89]). In contrast, we found the graphical Modechart specifications highly readable
and relatively easy to generate. Although complete graphical specifications of the requirements may be
impractical for large systems, the readability of the Modechart specifications make them very useful during
the process of constructing the requirements specifications.

A fundamental contribution of Modechart is the ease with which specifiers can use the language to
understand and reason about a system's timing behavior. Specifiers can first use modes, actions, events,
and state variables to define the parallelism and sequential behavior inherent in the application domain. We
found that Modechart's hierarchical structure facilitated the construction of our specifications by allowing us
to combine top-down and bottom-up approaches. Once the system's functional behavior (sometimes called
control structure) is defined, then timing behavior can easily be added in terms of deadlines and delays.

Unlike temporal logics, such as CTL and RTTL, which are designed to specify the temporal ordering of
events, Modechart and RTL are designed to specify both the temporal ordering of events and the temporal
distance between events. In real-time systems, constraints on the temporal ordering of events are insufficient.
In such systems, certain critical events (e.g., the firing of a weapon, an alert signaling the spill of a hazardous
substance) need to occur within specified time intervals. Unlike languages based on temporal logic, Mod-
echart and RTL provide a compact notation for defining the timing constraints imposed on critical events.
These constraints are described in Modechart by delays and deadlines, in RTL by the occurrence function.

In addition to producing highly readable specifications that compactly express both temporal ordering
and temporal distance, Modechart has additional benefits lacking in other specification languages. Unlike

2 The second clause of the formula is only checked if @((IIAVEDATUM:= T),j+ 1) is defined, that is, if

the pilot has entered a character following the ACCEPT.

66=i

I!

I[Heninger78], which describes only the software requirements (represented in our specifications by the Data
Entry and Display Function), Modechart can describe the complete system requirements. The inclusion in
Modechart of external events as well as action completions makes the specification of the complete system
requirements possible. An additional benefit is Modechart's support for concurrency. In a HRT system,
input devices, output devices, and computers need to operate concurrently, and their behavior needs to
be synchronized. The parallel modes included in Modechart make the description of concurrency possible,
while Modechart's state variables enable synchronization and communication among parallel modes. A third
benefit is Modechart's support of nondeterminism. As Gabrielian has noted [Gabrielian9O], in some parts
of a specification, an event or condition may trigger a transition from one mode to more than one other
mode. If the actual requirements permit all possible transitions. forcing a transition to exactly one mode is a
premature design decision. Modechart's semantics allow the specifications to express such nondeterrninism.

Prototype Verifier. We found the prototype verifier useful in improving the correctness and the com-
pleteness of our sample specifications. While human proofs of timing assertions are feasible, such proofs
often contain errors, first, because proofs involving inequalities and substitutions are tedious, and, second,
because humans may fail to provide complete proofs, especially for boundary cases. The specifier not only
allowed us to detect such errors but also increased our overall understanding of the specifications, especially
the interactions of individual components. However, while helpful, verification tools do not free the human
from thinking about the logic of the specifications They provide mechanical assistance for checking the
logic. Our experience suggests that humans working with a mechanical verifier are more likely to find errors
in tle specifications' logic than humans doing manual verification alone.

3. Limitations of Modechart and the Verifier

As noted earlier, the SARTOR tools are prototypes. Below, we identify problems that emerged when we
applied the Modechart language and the SARTOIR verifier to our examples and suggest ways in which the
tools could be more fully developed. For a full discussion and examples of these and some additional problems,
see [Heitmeyer9l]. One general comment about both Modeciart and RTL concerns expressiveness. In some
cases, a constraint was more easily expressed in one language than the other. For example, a Modechart
specification of the legal pilot input sequences is straightforward, whereas a specification of the sequences in
first-order logic is tedious and less intuitive, requiring considerable notaticn for bookkeeping purposes. In
contrast, given a set of Modechart specifications, defining timing constraints involving nonadjacent modes
(see below) is easier in RTL than in Modechart. Further analysis is needed to identify other classes of
constraints that are more easily expressed in one language than in the other.

Modechart Limitations.

No Support for Shared Resources. When a resource, such as a display device, is shared by more
than a single action, relating the ith occurrences of two events, one involving the shared device, may be
impossible in Modechart.

Restricted Modechart Functionality. In generating sample Modechart specifications, we identified
some cases in which Modechart's functionality was overly restricted. One example of limited functionality
concerns self-looping: Modechart currently prohibits a transition from a mode to itself.J Inability to Define Timing Constraints on Non-Adjacent Modes. By non-adjacent modes, we
mean two modes between which no mode transition exists. In Modechart, it is impossible to express timing

constraints involving Pon-adjacent modes without creating dummy modes. (We 'egard dummy modes as
undesirable artifacts that add to the specifications' cmplexity.)

Verifier Limitations.

Lack of User-Friendly Feedback. As [Rushby89] has stated, determining whether an assertion is
valid is only one of the useful functions that a verifier performs. In addition, a verifier should support
an interactive human-computer dialogue that enhances human understanding of the specifications and that
facilitates reasoning about them. To date. little attention has yet been paid to the SARTOR verifier's user
interface. Although a high-quality user interface was no: a g,.al of the effort producing the current SARTOR
verifier, a better user interface is needed before the tool can be used in a production environment.

Inability to Determine Bounds on Timing Variables. Ii some cases, specifiers may have estimates
of some timing constraints. In such cases, it shouid be possible to represent unknown processor times (e.g., -

67° I

the time needed by the computer to perform a particular computation) with variables and to use the known 3
timing information and global timing assertions to derive bounds on these variables. Future versions of the
verifier should derive bounds on timing variables.

Limited Formula Repertoire. At present, the verifier only supports a small number of RTL formulas I
(see [Stuart90]). To prove the assertions presented in Section 1, we needed several additional formulas (e.g.,
A , B, where A and B are logical statements). A version of the verifier is needed that proves such formulas
in their original form. f

Inflexible Input Form. In some cases, we wished to prove an assertion about a combination of
Modechart specifications and one or more RTL assertions. Unfortunately, the current verifier can only prove
assertions about Modechart specifications. Enhancing the verifier to prove properties about a combination
of Modechart specifications and RTL assertions would be useful.

4. Summary

In our view, Modechart and the SARTOR verifier represent a significant advance in the state-of-the-art
of specification and verification of HRT systems. A major advantage of Modechart specifications is their
readability and the ease with which specifiers can use the language to reason about timing. Moreover,
unlike temporal logics, Modechart specifications can compactly express both temporal distance and tempo-
ral ordering. The SARTOR verifier demonstrates the feasibility of machine-based proofs that Modechart
specifications have selected timing properties.

A final comment concerns the scaleability of Modechart. Little is known about the utility of Modechart,
RTL, and the SARTOR verifier for building real-world systems. Our experiments suggest that Modechart's
scaleability is limited: specifying large quantities of requirements data in graphical form is probably im-
practical. But this doesn't mean that Modechart isn't useful. In our view, more than a single approach
to real-time requirements specification is needed. Because it produces highly readable, intuitivi specifica-
tions, Modechart may be most appropriate during the process of building the requirements specification.
In contrast, the tabular formats for requirements specification introduced in SCR (see [Heninger78, van-
Schouweng0] for examples) are more appropriate in a reference document. These formats provide the reader
with less intuition about the requirements than the graphical notation but do concisely and formally describe
the large volume of requirements data associated with real-world, practical software. For these reasons, the
toolset we are constructing supports both the Modechart and the SCR 'views' of the requirements data. Our
future goal is to develop a single conceptual model that supports both *views'.

Acknowledgments. We are especially grateful to Paul Clements of the University of Texas and NRL and
John Gannon of the University of Maryland for many valuable discussions. We also thank Al Mok and
Doug Stuart of the University of Texas for allowing us to experiment with the SARTOR tools and for their
openness to our suggestions concerning extensions. Finally, we thank the other members of our project team,
Carolyn Brophy and Anne Rose.

REFERENCES

[Clarke87I E.M. Clarke and 0. Grumberg, "Research on Automatic Verification of Finite-State Con-
current Systems," Ann. Rev. Comput. Sc:. 2, 269-90, 1987.

[Gabrielian9O A. Gabrielian et al., "Specifying Real-Time Systems with Extended Hierarchical Multi-State
(HMS) Machines," Thomson-CSF, Inc., report 90-21, Jan. 1990.

[Heitmeyer83] C. Heitmeyer and J. McLean, "Abstract Requirements Specifications: A New Approach and
Its Application, IEEE Trans. Softw. Eng. SE-9, 5, Sep. 1983, 580-589.

[Heitmeyer90] C. Heitmeyer and B. Labaw, "Software Development for Hard Real-Time Systems," Pro-
ceedings, Seventh IEEE Workshop on Real-Time Operating Systems and Software, Char-
lottesville, VA, 10-11 May 1990.

(Heitmeyergl] C. Heitmeyer and B. Labaw, "Requirements Specification of Hard Real-Time Systems: Ex-
perience with a Language and a Verifier," NRL report (in press).

(Heninger78] K.L. Heninger et al., "Software Requirements for the A-7E Aircraft," NRL Rep. 3876, Nov.,
1978.

[Heninger80] K.L. Heninger, "Specifying Software Requirements for Complex systems: New Techniques
and Their Application," IEEE Trans. Softw. Eng. SE-6. 1, Jan. 1980.

68

fJaffe89] M.S. Jaffe and N.G. Leveson, "Completeness, Robustness, and Safety in Real-Time Software
Requirements," Univ. of Calif., Irvine, TR 89-01.

[Jahanian86] F. Jahanian and A. K. Mok. "Safety Analysis of Timing Properties in Real-Time Systems,"
IEEE Trans. Softw. Eng. SE-12, 9, Sep. 1986, 890-904.

(Jahianian88a] F. Jahanian et al., "Semantics of MODECHART in Real Time Logic," Proceedings, 21stI Hawaii Intern. Conf. on System Sciences. Jan. 5-8. 1988.
[JahianianS8bj F. Jahanian and D.A. Stuart, "A Method for Verifying Properties of MODECHART Speci-

fications," Proceedings, Real-Time Systems Symposium, Huntsville, AL, Dec., 1988.
f.]ahanian9l] F. Jahanian and A. K. Mok, "Modechart: A Specification Language for Real-Time Systems,"

IEEE Trans. Sofiw. Eng. (in press).
[Ostroff89] i.S. Ostroff, "Real-Time Temporal Logic Decision Procedures." Proceedings, Real-Time Sys-

tems Symnposium, Santa Monica, CA, Dec. 5-7, 1989. 92-101.
[Rushby89] J. Rushby and F. von Henk'e. "Formal Verification of the Interactive Convergence Clock

Sync hronization Algorithm using EIIDM," SRI-CSL 89-3, SRI International, Menlo Park.
CA. Feb. 1989.

LSurt0 D.A. Stuart. "Implementing a Verifier for Real-Time Systems," Proceedings, Real-Time Sys-
tems Symposium, Orlando. FL, Dec. 5-7, 1990, 62-71.

[,vanSc houwen9ol A.J. van Schouwen,"The A-7 Requirements Model: Re-examination for Real-Time Systems

and an Application for Monitoring Systems," Queen's Univ., Kingston, Ontario, TR 90-276,
May 1990.

PILOT ENTRY AND DISPLAY
parallel OTNPUT RECOGNIZER DATA ENTRY AND DISPLAY FUNCTION

parallelaeia

DATA ENTRY BUTTON MONITOR DENTRY. K

START(ACP AT Ai1A7Aj$1 rR Y b
0 5 "GUN BEGI AtoNVI-

Action: ~Ads Son:.-ZE
DENTRY:.E7 AMM.b DE DISPY:.r Action:

A 0IPLA..~.oV AVAIL.I' DISPLAV..Y~ALACCEPT DATA

DATA MONITOR OUTPUT GENERATOR
inodal prallell

START nRl haiC~ nflA

daoimnjSTART
AWAIT DATUM pio ss Acin AUM (KBXu1E2W
Action; ~ a Aio:EIZKSUEQIDAVAIL'.E cbnm xal DAVAlL:.L- F GH OI Action: turn (K8LI7E.~ Acton: turn

K80 iMot (-DM K80I hton

ACCEPT BUTTON MONITOR DISPLAY DRIVER

START START
AC~PT ~rn ISPLAYzlif)k

A I C P DISPLAYED STRT DISPLAY
AtETbsum. o " DSPA. Action:

ACCEPT-.E'- AAMT 1

*timoe to Complete acti~ons it 20 timeunits'

Figue 1 Modchat Specificastion of
Pilo0t Entry and.1Display Example

Designing L Hard Real-Time System with Automatic
Memory Management

Edward E. Ferguson, Dexter S. Cook, and David H. Bartley
Computer Systems Laboratory

Computer Science Center
Texas Instruments Incorporated

Dallas, Texas

January 15, 1991

1 Automatic Memory Management

Run-time support systems for most modern programming languages provide a memory manage-
ment package with which the user can dynamically allocate and deallocate storage for objects.
Some memory management packages are automatic in the sense that they reclaim the storage
associated with an object when the package can determine that the application can no longer use
that object. The component that performs this service is commonly called the garbage collector.

Automatic memory management is a valuable tool for complex applications. It can simplify
the task of an application programmer since he can use complex dynamic data structures without
having to explicitly determine constituent lifetimes. This freedom can result in more robust
applications since subtle errors involving premature or missed deallocation are not possible [4].
Automatic memory management is fundamental to LISP-based languages and is desirable in
languages such as Ada, C, and C++.

Many garbage collection algorithms have been described in the literature (e.g., [7,2,5,1]) that
are real-time in the sense that they can be guaranteed to reclaim memory faster than the ap-
plication can allocate it. This macro-level property is not sufficient for a hard real-time system
since it is still possible for deadlines to be missed due to micro-level side effects of executing the
collector. We have developed a new reclamation algorithm that is compatible with hard real-time
execution.

2 Our Project

Our group has prepared an experimental programming system for embedded applications which
require both hard real-time scheduling and automatic memory management. The system includes
tools witb which to conipute or estimate an upper bound on-the execution time of a task and to
evaluate the worst-case scheduling behavior of an application based on the timing parameters of
its tasks. The run-time system supports- several languages, has an operating system kernel for

.0

jstand-alone execution, and interleaves execution of multiple tasks with a priority-based preemptive
t scheduler. The system is general-purpose in the sense that it is intended to be used for a numberI of types of embedded applications with both hard and soft real-time components. This requires

a general-purpose automatic memory management package, not one that call be tailored to the
special characteristics of one class of application. For example, it is not acceptable to achievePa bound on the execution time of the collector by demanding that an application not generate
objects larger than some specified small size.

1 3 Design Problems

We encountered three primary problem areas when we added automatic memory management toI bard real-time system:

e Providing adequate computational resources to reclaim storage.
The time recuired to reclaim memory is typically much longer than the execution times (and
deadlines) of the hard real-time tasks since reclamation must access a significant fraction
of system memory. For the system to be responsive to external events while reclamation is
occurring, an algorithm must be designed so its execution can be interleaved with application
tasks.

* Minimizing the impact of the collector on the schedulability of application tasks.
Reclamation algorithms typically involve scatiming objects, relocating pointers, and copying
objects. These operation- cannot be safely interrupted by application tasks that use the
automatic memory management abstraction and thus become critical sections during which
execution of the application is blocked. It is essential that the durations of such atomic
operations be tightly bounded so the reclamation process's interference with the application
tasks call be assessed and held to practical values. For example, an algorithl that must
copy an object atomically is undesirable if worst-case behavior must be handled: any task
has the potential to be delayed for the time required to copy the largest allocated object.

* Maintaining predictable execution times for application tasks.
The choice of reclamation algorithm can affect the execution time of al application task due
the overhead associated with invoking the memory management abstraction. For example,

I some designs (e.g., [2]) potentially require that an application task pause to copy al object
1 l on any access. It is important to design an algorithm that has a uniform and tightly bound

overhead so it is possible to automatically or manually determine the execution time ofj application tasks.

4 Our Design

We designed and implemented an automatic memory management abstraction 16) that solves the
problems enumerated in the previous section:

* Providing adequate computational resources to reclaim storage.
-I The garbage collector is implemented as a separate task that executes concurrently with

the application and can be preempted by time-critical tasks. Executing the collector as a

1 71
7

separate task means the rate at which storage is reclaimed can be adjusted via standard
scheduling parameters of the collector. Thus any techniques that are developed to make
dynamic changes to the characteristics of application tasks can also be employed to tune
the behavior of the collector.

Minimizing the impact of tile collector on the schedulability of application tasks.
Each critical section in the collector has a bounded duration that is independent of object
size so the worst-case blockage of application tasks can be determined. For example, if a
scheduling policy based on [3] is used, then an application task with higher priority than
the collector can be delayed by at most the duration of the longest single critical section of
the collector.

Maintaining predictable execution times for application tasks.
The abstraction provides the following operations to application tasks:

- Create an object

- Read a field in an object

- Write a field in an object

- Determine if two pointers refer to the same object

The critical sections in these operations execute for bounded intervals that are independent
of object size.

Since the application continues to allocate storage while the collector executes, the choice of the
collector's scheduling parameters is subject to a number of tradeoffs. For example, assume that a
reclamation algorithm is used that copies usable objects to implicitly find unusable ones (e.g., [1]).
Since the collector executes concurrently with the application, collectirri iust begin early enough
to ensure that there is enough free space to hold both the storage allocated concurrently by the
application and the storage copied by the collector. If the collector is given a low percentage of
the processor time, the net amount of memory available to the application is reduced because
collection must begin relatively early to compensate for the relatively long elapsed time required

for the collector to finish. If the collector is given a high percentage of the processor time,
memory is used more efficiently but the reclamation process may degrade the response time of
the application. Typical parameters required to configure the collector are the size of managed
memory, the rate at which the application allocates storage, the maximum percentage of allocated
storage that will contain usable objects, and the internal time constants of the collector.

5 Conclusions

We have briefly described some of the design issues that arose while 1,tilkiv a development
system for embedded applications t.hat integrates automatic niemory inaiautnent with hard
real-time scheduling. We have implemented an automatic memory management abstraction with
the property that each associated critical section has a fixed execution bound that is independeit
of object size [6). Reclamation is performed in a standard task that executes concurrently with the
application. This system :urrently executes on embedded computers based on the MIPS R3000
processor. We are now c!aracterizing the behavior of the collector so it can be made adaptive I
via dynamic changes to its scheduling parameters.

72

References

[1] Andrew W. Appel, John R. Ellis, and Ki Li. "Real-Time Concurrent Collection on Stock
Multiprocessors," Proceedings of the SIGPLAN 88 Conference on Programming Language
Design and Implementation, pages 11-20, 1988.

- [2] Henry G. Baker, Jr. "List Processing in Real Time on a Serial Computer," Communications .
of the ACM, 21(4):280-294, April 1978.

[3] T. P. Baker. "A Stack-Based Resource Allocation Policy for Realtime Processes," Proceedings
of the 11th IEEE Real-Time Systems Symposium, pages 191-200, 1990.

[4] Hans-Juergen Boehm and Mark Weiser. "Garbage Collection in an Un.ooperative Environ-
ruent," Software - Practice and Experience, 18(9), 807-820, September 1988.

[51 Rodney A. Brooks. "Trading Data Space for Reduced Time and Code Space in Real-Time
Garbage Collection on Stock Hardware," Conference Record of the 1984 A CM Symposium on
LISP and Functional Prc ramming, pages 256-262, 1984.

[6 dv'ward E. Ferguson, Dexter S. Cook, and David H. Bartley. To appear.

[7 Fhilip i Wadlkr. "Analysis of an Algorithm for Real Time Garbage Collection," Communi-
cations of the ACM, 19(9), 491-500, September 1976.

o 1

*73

|

I

Application of Partial Evaluation to
Hard Real-Time Programming

Vivek Nirkhe' William Pught [

Department of Computer Science V
University of Maryland
College Park, MD 29742

Abstract guage has to facilitate both the expression of the time
constraints of ai, application and the ability to pre-

Many real-time programming languages restrict the dict its execution time or an upper bound thereof.
use of high-level programming features since their use Some examples of the time constraints of real-time
makes it difficult to determine the maximum execu- application are the earliest start-time, the latest end-
tion time of program at compile-time. This makes time, and the periodicity. The execution time -f an
it difficult to write truly reusable real-time programs. application program depends on factors such as the
In this paper, we claim that the technique of partial algorithm, the programming language, and the hard-
evaluation provides a solution to this problem. Par- ware. The ability to find the execution time of an
tial evaluation allows us to use information about the application program is complicated by many language
execution environment to create specialized versions features. These include conditional statements, loops,
of genera! programs. A program specialized for a par- recursion, use of files, dynamic data structures, and
ticular environment displays the same behavior as the non-deteminism. These features make it impossible
original program and has predictable execution time. to predict in sufficient detail the execution path the

application will take at run-time to obtain a tight up-
1 Introduction per bound on the execution time. A naive solution

to this problem is to restrict the use of these features

This paper deals with programming language support or forbid them altogether. However, such a restric-
tion forces the system designers to develop programs

for hard real-time systems. In these systems, failure to tifres th s em esine t eveo poram
meet deadlines of the application is fatal and thus has dedicated to each new environment. It is not possi-
to be avoided. Predictable timing behavior of these bp to write general programs, which are not tied to a
applications can be ensured using scheduling algo- particular environment and reuse them without any
rithms that use the application deadlines and the ex- changes to the source code.

ecution times to make scheduling decisions. The key Our approach to this problem is based on the tech-

requirement of these algorithms is the complete and nique of partial evaluation. In this technique, partial

deterministic knowledge of timing properties of the data (partial information available about the execu-

aopiications before run-time. The traditional stochas- tion environment) is used to derive a specialized ver-

tic information such as average execution time are not n of a general program. For a real-time program,

appropriate for hard real-time systems. In some in- we use this technique to determine the branches ofconitonas heprogram wudtake, and to unwindstances the time needed for different parts (or blocks) cniinl h rga ol ae n ouwn
of the code and precedence relations between blocks the loops and recursion where necessary to meet theofate lod r id opredeeeling, betwetime constraints. It also allows us to determine theare also required for proper scheduling. maximum loop counts. The new program is devoid of

Hence, a real-time programming programming lan- the conditional statements, loops, or recursion which
'Supported ir part by contract DSAG60-87-C-006',erom the affect the prediction of the execution time. LFrom

U.S. Army Strategic Defense Command. a given program, partial evaluation produces a new
t Supported by NSF grant CC1-8908900. program where the execution path can be obtained

74

accurately. The new also program has the same be- in most instances. Hence, we want to estimate the
havior as the original for the given data. execution time for each eyecution environment sepa-

In order to predict the execution time, it is nec- rately. In addition, we need to know the execution
essary that the bounds of loops and recursion are time required for each block separately to facilitate
known. Hence, our technique allows the use of these. pre-scheduling. Apart from these goals, we wish to
features such that their bounds can be determined remove the language restrictions such as disallowing
from the source code at compile-time itself. Parame- recursion and putting fixed upper bounds on the loop
terl of the target environment that affect the execu- counts as we feel that they are unnatural restrictions.
tion path and its length are distinguished in the pro-
grams and hence can be extracted easily. It forbids I
the loop3 and recursion whose bounds do not depend 2 Partial Evaluation
upon the execution environment making it impossi-
ble for the compiler to predict the execution time. In The central concept of partial evaLuation is to create,
our language, we piovide a type distinction to distin- from a general purpose program, a version of a pro-
guish the variables which affect the execution path gram specialized for a specific environment[Ers82]. A

and hence must be known at compile-time and the partial evaluator uses partial data to evaluate portions

ones which do not. Thus, knowing the environment, of the program in advance and create a new program
the execution time can be accurately predicted. Us customized for the specific environment.the xectio tim ca beaccuatey pediced.Us- The following simple (but contrived) example illus-
ing this technique, real-time programmers can develop t he ow simpe Conied ee ll us-
truly reusable programs employing high level control
structures while still meeting the requirements of hard gram fragment, which finds the value of (a + b) -n:

real-time operating systems. for i = 1 to n do

if (i == f)
1.1 Related Work p a + b;

else
Mo.it research in this area has been directed towards e(se

finding the maximum execution time of real-time pro-

grami. The group at the University of Texas at A partial evaluator will specialize this program for an
Austin has designed a timing tool that uses anno- environment where it is known that n is 2 and b is 0,
tations of the source programs to find the worst case producing the folowing program fragment to find the
path in the assembly language programs produced by square of a:
a compiler[Mea89. In the MARS project[PK89], a
tree, similar to the syntax tree, of the timing infor- P a;

mation of the program - created and the time of the P P * a;
longest path is obtained. This tree can be edited in- While the example given above is trivial, partial
teractively by the designer to improve the timing es- evaluation has been applied to interpreters to obtain
timates. In the Real-Time Eucid[KS86] project, the compilers[JSS85]. Partial evaluation has also been ad-
aim is also to find the worst case execution time. Lan- vocated for situations where a general-purpobe pro-
guage constructs such as loops and semaphores are gram must be run very efficiently on a computation-
augmented with the addition of time bounds that they ally expensive problem. Often, enough information
must adhere to. The language forbids recursion anddynaic atastrctues.Par an Shw[P901areabout the environment is available at compile-time to

dynamic data structures. Park and Shaw[PS90] are allow the partial evaluator to perform advance data
concerned with finding the lower and upper bounds manipulation. This approach ieduces or eliminates
on the execution time and base their work on the con- the programmer's high level data and control abstrac-
cept of timing schemas. They take into account both tion tn obtain efficient lower-level programs[Ber90,
machine independent and machine dependent parts of GMT8.5].

the code produced by a compiler. The current version
of the tool requires programmer intervention for tim-
ing decisions of loops and does not permit recursion.

We feel that the worst case estimate is not an ap-
propriate measure as it can involve waste of resources

1 N 75

I

3 Partial Evaluation in the deadlines. Moreover, it promotes a useful program-

Real-Time Domain ming discipline.

We look to partial evaluation to solve a number of 3.1 Maruti Partial Evaluation I
problems in hard real-time programming, arising from Maruti is a testbed for research in hard real-time
the fact that we must be able to pre-schedule the exe- systems and is based on the technique of pre-
cution. We need a tight compile-time upper bound scheduling[LA0 . In this technique, the application
on the execution time of any block of code. This seduing[iA 90].aInethis technie the applicto rwould seem to prohibit the development of reusable excution is guaranteed by reserving the required re-

sources prior to run-time. This takes into account
programs. By reusable programs, we mean the same the time constraints, time requirements, and depen-
source code that can be translated into different exe-
cutable versions for different applicat'ins (where they rencies due to communication and synchronization.
will take different amounts of time). This same re- Pre-scheduling does away with run-time contention
striction also seems to prohibit recursion and first- for resources thus reducing the unpredictability.class functions i.e. the ones that can be stored in The knowledge of the maximum execution time
tables, copied and executed, alone is not sufficient for pre-scheduling. In addi-For example, consider an interrupt polling module, tion, pre-scheduling requires separate execution timesForexaple cosidr a inerrpt ollng odueof blocks and the temporal relations between them.
that takes as an input a table of interrupts to be polled The temporal relations between blocks can be ob-
and actions to be taken on them. A generic polling tained using the time constraints of each block and
module can not be constructed, since while compil- the tme trant of ea bloc
ing the generic module, we would not know an upper the precedence between them. MPL (Maruti Pro-
bound on the time taken for a round of polling, as it gramming Language)[NTAri, an object-oriented i an-
depends on the size of the table and each of the indi- guage, provides support for this by allowing expres-
vidual actions. In an application, the interrupt polling sion of explicit timing cnstraints. In Maruti, the
module might be used from several places. Each use compiler (with the help of related tools such as partial
would call the polling module with a specific interrupt evaluator) produces a computation graph which de-
table known at compile time. By using partial eval- pics the temporal and precedence relations between
uation to automatically produce a specialized version blocks. The edges are annotated with timing con-
of the generic polling module for each use, we can still
perform hard real-time scheduling of the program. An ments. The scheduler uses this information to derive

error will be reported 11 the interrupt polling module a schedule and verify that the constraints are met.
is called with arguments that can not be adequately In Maruti, the first phase of compilation is partial

determined at compile-time. This technique can also evaluation which performs source-to-source transfor-
be applied to a variety of problems such as a gener mation of programs. It also produces a computation

gnrcgraph of the program. The original programs may
assembly line controller, or a recursive merge sort rou-
tine which are discussed below in brief, incorporate unbounded while loops, recursion, first-

We believe that this approach would allow real-time class functions, and generic modules. If no errors
to write programs that are not dedi- are found during partial evaluation, a new programprogrammers wowieporm ta r o e il

cated to one target environment. They can use the wll be produced in a restricted form where all loops

high-level, reuse-oriented programming styles as are have known naximum upper bounds, the depth of
usedy other pas- the recursive procedures is known and the executionby pogramer. Wecontnd hatthe time of all blocks is determinable. The known tech-
sumption that the partial data is available at compile- time of predctis eerminable The n ech-

time is a valid assumption for hard real-time systems. niques of predicting execution time can then be used

Due to the nature of these systems, the system de- for such programs. The resulting computation graph

signers know the environment of the target system in describes the time constraints and precedence rela-

detail. tions, such as message passing, remote procedure call,

This approach requires that the programs should and synchronization between blocks. A block consists

not involve unbounded loops or recursion that can- of statements that have the same temporal scope (i.e.
nhe time between the earliest start-time P.nd the lat-not be bounded at compile-time. This is not an uin-etedtm) h P emoa osrcsNA

due restriction as the real-time programs must have
define the temporal scope of statements, whereas the

bounded execution times to meet thme appica~tion

76

I control flow statements, communication primitives, sions if any statement in the loop body requires sepa-
and concurrency and synchronization primitives de- rate scheduling. In this case the loop gets unrolled. If
fine precedence relations. Blocks denote the units the limits are not compile-time expressions, the max-
which require separate scheduling decisions. imum number of loop iterations must be specified to

In order to facilitate .partial evaluation, we de- be able to predict the execution time of the block.
fine two kinds of variables in the language, namely, Other loop statements are handled similarly, except
compile-time variables and run-time variables. The that the partial evaluation may not terminate for the
restriction on compile-time variables is that their val- while and repeat ... until loops. A possible error
ues have to be known at every step of partial evalu- can be signaled after a sufficiently large number of
ation (with some exceptions, see below). Hence, it is loop body evaluations.
a type error to assign a run-time value to a compile- Given the definitions of procedures and calls to
time variable. The remaining variables, similar to the them with sort e compile-time variables as parame-
usual variables, are called run-time variables. We also ters, we specialize the definitions for each call sepa-
define an expression to be compile-time if it does not rately. For each call, the body of the procedure is then
refer to a run-time variable, which is a type restric- further partially evaluated. Even the recursive proce
tion. dures can be handled in this manner. However, it is

The above distinction provides us with simple type possible that the partial evaluator may never termi-
inferencing and easy partial evaluation without the nate while evaluating recursive procedures. In such
combinatorial explosion of the state of the partial a case also, a possible error can be signaled after a
evaluator. In order to ensure that the upper bounds large number of evaluations of recursive calls. Par-
of the loops (and depth of the recursion) are known at tial evaluation of the temporal statements is similar
compile-time, we require that they are represented us- to other control flow statement except that they are
ing compile-time variables. Use of loops and recursion used to create and annotate the computation graph
whose bounds are run-time variables is a type error, with timing constraints.
Similarly, if the index of the loop Loes beyond the
known maximum upper bound an error is detected. 3.2 Examples
Thus ,.'- above distinction is useful for good error
reporting during partial evaluation. The following example illustrates the application of

partial evaluation to a generic polling module, men-
Partial Evaluation of Statements tioned above. The polling module uses a table that

lists the periodicities of polling each interrupt, inter-
Here we consider the restrictions placed by partial rupt flag routines, and the actions to be taken. The
evaluation on each control flow statement and de- specified action is taken only if the interrupt is ready
scribe the resulting program. For brevity, we do not i.e. the function, which retarns the interrupt flag,
go into details; they can be found in [NP90]. evaluates to true.

During partial evaluation, each assignment state-
ment either results in a new value being assigned to a struct f
compile-time variable or results in a new assignment int period;

statement for the residual program. This depends boolean (*ready)();

upon the types of the two sides of the assignment void (*action) ();

statement. I. intpt;

For a conditional statement, we require that the
condition must be a compile-time expression, if the void

conditional statement encloses a statement requiring { (

separate scheduling. Depending upon the value of compiletime var
the condition, a conditional statement, is replaced by int cm, small, large, i;
one of its branches. If the condition is a run-time runtime var
variable, a new conditional statement is created in int dev, cycle;
the new program.

For the the loop statement, the lower axid upper /* find the common multiple of the periods */

limits of the loop index must be compile-time expres- cm = 1;
77for i I to N do

J7

I

small = min (cm, table(i].period); if (ready1O) then actionlO; U
large = max (cm. table[iJ.period); if (ready20) then action2(;
if (large mod small -= 0) then if (ready3)) then action3);

cm - large }
else

cm = small * large;
This technique can also be applied to recursion e.g.

a recursive merge-sort routine where the dimension I
/* poll all devices during that period */ of the array is known. The partial evaluator will un-
for cycle - 1 to cm do wind the recursion prior to run-time to create a non-
within onecycle do recursive code to perform the sort. The resulting code

for dev = 1 to N do can be analyzed to get a tight upper bound on the ex-if ((cycle % table~dev .period)==O) then ecution time.

if ((*table Edev] .ready) 0) than
(*table[dev] .action)(0; Another application of this technique would be a

generic assembly line controller. Such a module can
be used in different settings provided the number of

compiletime var stations, time to service in each station and the dis-
int tot.dev = 3; tar.ce between them. At the same time, the turn
intpt loc.tab[3] = {{2, &readyl, &actionl}, around time and other parameters can be predicted.

{1, Aready2, &action2},
{3, &ready3, &action3}}; 3.3 Work in progress

from starttime to endtime every bigperiod do We havi defined the partial evaluator for a subset of
(void) poll (totdev, loctab); the MPL in terms of denotational semantics[NP90.

Given the partial information about the periodicity, The partial cvaluator provides two outputs, namely,

the interrupt flag routines, and the interrupt handlers, the computatin graph and the residual program.

the above code can be partially evaluated. The code The nodes of tke computation graph denote blocks

for polling module is produced assuming the inline of the residual program, whereas, the edges denote
expansion of procedures, though, we have a choice precedence relations. This graph is augmented withexpasio ofp~oeduesthouh, e hve chicethe timing constraints of the blocks.
between an inline expansion and an actual call at run- te tiin cosrinso the blocks.We have also defined the denotational semantics for
time to a modified procedure. For the lack of space, the MPL. We have been able to prove the correctnes;
routines ready and act~ion are not expanded. of the partial evaluator. In brief, it can be proved that

from startt_:ee to endtime every bigperiod do { for a given program p, CpJ = C[Cp,jap]] , where
within onecycle do { C and Cpartiai are the semantics of the interpreter and
if (ready2()) then action2(); the partial evaluator respectively. This states that the

} semantics of a given program is the same irrespective
within onecycle do { of whether it is intcrpreted directly or first evaluated

if (readyl()) then actionl(); partially and then the residual program is interpreted.
if (ready20) then action2(); This shows that the partially evaluated program be-

haves in the same manner as the original program and
wi.thin onecycle do { the semantics of the program is not changed.

if (ready20) then action2();

if (ready3()) then action3();
4 Future Work 7

within onecycle do 4
if (readyl()) then actionl 0; We are currently working on extending this approach
if (tto concurrency and synchronization primitives of the

within onecycle do (MPL. The difficulty in applying partial evaluation to
if (ready20) then action2(); these statements lies in predicting the order of execu-

} tion between concurrent statements that share read-
within onecycle do { write variables. If the order chosen for partial evalua- [

7
78|

!I

I

tion is different from that chosen by the scheduler, the Software Technology and Theoretical Corn-
results of the partial evaluation will be wrong. We are puter Science, pages 116-128. LNCS 206,

I also trying to apply this technique to exception han- 1985. I
dling and interrupt processing; some work has already
been done in this direction. This approach can be ex- [3SS85] N. D. Jones, Peter Sestoft, and Harald
tended ea.sily to obtain the memory requirement of a Sendergaard. An Experient in Partial Eval-
process. This is possible since we know the bounds uation: The Generation of a Compiler Gen-
on all loops in the program after partial evaluation. erator. In J.P. Jounnaud, editor, Rewrit-

Future work will consist of implementing the partial ing Techniques and Applications, volume

I evaluator and the compiler of the language and then LNCS 202, pages 124-140. Springer Verlag,

interfacing them with the remaining Maruti compo- 1985.

nents includ',g the scheduler. [KS86] E. Kligerman and A.D. Stoyenko. Real-
jTime Euclid: a Language for Reliable Real-

5 Conclusion Time Systems. IEEE Transactions on
Software Engineering, pages 941-949, Sep.

We feel that the technique of partial evaluation is ap- 1986.
propriate frhrralteprrmin . cn L90] Shem-Tov Levi and Ashok Agrawala. Real

poraefor hard real-time programming. In con-[L
trast to many current hard real-time programming Time System Design. McGraw Hill, 1990.
languages, it will allow the use of high-level program-

ming language features to develop reusable programs [Mea89] Al Mok and et. al. Evaluating Tight Ex-
that are not dedicated to a specific environment. ecution Time Bounds of Pzograms by An-

The distinction between compile-time and run-time notations. In 6th Workshop on Real-Time
variables in the language is useful. It helps (and Operating Systems and Software, pages 74-
forces) the programmer to write programs where exe- 80. IEEE, May 1989.
cution time can be predicted at compile-time from the
available environment information. These programs [NP90] Vivek Nirkhe and William Pugh. Denota-
will have bounded execution times and fatal errors tional semantics of the partial evaluator for
such as unbounded execution time will be caught at mpl. Technical report, Department of Coin-
compile-time d puter Science, University of Maryland, Col-

I lege Park, 1990. Under Preparation.

Acknowledgements [NTA90 Vivek Nirkhe, Satish Tripathi, and Ashok
We would like to thank John Gannon and Satish Tri- Agrawala. Language Support for the

I pathi who provided valuable comments. Maruti Real-Time System. In 11th IEEE
Real-Time Systems Symposium, pages 257-
266, Dec. 1990.

References [PK89] P. Puschner and Ch. Koza. Calculating the

[Ber90 Andrew A. Berlin. Compiling Scientific Maximum Execution Times of Real-Time
Code Using Partial Evaluation. IEEE Programs. The Journal of Real-Time Sys-
Computer Magazine, 23(12):25-37, Dec. tems, 1(2):159-176, Sep. 1989.
1990. [PS90] ChangYun Park and Alan C. Shaw. Ex-

[Ers82] A.P. Ershov. Mixed Computation: Poten- perimenting With A Program Timing Tool
tial Applications and Problems for Study. Based On Source-Level Timing Schema. In

Theoretical Computer Science, 18:41-67, 11th IEEE Real-Time Systems Symposium,
pages 72-81, Dec. 1990.

[GMT85] Carlo Ghezzi, Dino Mandrioli, and Anto-
nio Tecchio. Program Simplification via
Symbolic Interpretation. In Foundations of

79

I1

Predictable Real-Time Caching in the Spring System

Douglas Niehaus, Erich Nahum, John A. Stankovic
Department of Computer and Information Science

University of Massachusetts
Amherst, Massachusetts 01003

1 Introduction

Designers of real-time systems, in common with all designers, seek the best possible perfor-

mia.nce. For conventional systems this generally means the best average case performance. In
real-time systems, however, average case performance is not sufficient because the correct-
ness of the system's results depend on when they are produced as well as what the results
are. Real-time system designers must thus be able to predict the behavior of the system at
development time in ways which are unnecessary for conventional systems. The predictions
most often used are those for worst case execution time (WCET), since the designers are
usually concerned with guaranteeing the correctness of the system's behavior under all pos-
sible circumstances. As a result, calculation of WCET for programs is an active research

area [10][1][3][5].
Estimation of WCETs must consider the properties of the system within which the pro-

grams will be executed. The most obvious factor is the execution times of processor in-
structions, but other system properties are equally if not more important. These include
the system's methods for handling interrupts, how it controls process's access to shared re-

sources, the properties of the system's scheduling paradigm, and the presence of caches. A

WCET estimate is valid if it is greater than or equal to the actual WCET. A WCET which
is less than the actual WCET is obviously wrong. The ultimate goal, perhaps unattainable,
is to produce WCET estimates which are exact. Failing this, we try to produce estimates
which are valid but not too pessimistic.

This paper addresses the problem of how to make valid predictions about the effects
of caching on the system so that the predicted WCET can be less pessimistic. The cache's
effects, and our ability to predict them, depends strongly on the scheduling paradigm around
which the system is designed. We will look at the rate monotonic and Spring paradigms, and
discuss how the differences in their properties affect our ability to consider caches in WCET
calculation. We will then discuss to what extent we can make predictions about the effects

of caches on the system, and the extent to which these predictions can be used to reduce the
pessimism of WCET estimates while preserving their correctness. Finally, we describe some
of the open problems we are considering.

'This work is part of the Spring Project at the University of Massachusetts funded in part by the Office
of Naval research under contract N00014-85-K-0398 and by the National Science Foundation under grants
DCR-8500332 and CDA-8922572.

80
g 80

JI

2 Scheduling Paradigms and Program Translation

I Real-time programs execute on real-time systems, whose properties are the result of a
plethora of design. decisions. Among these, one of the most fundamental aspects of the
system is the set of assumptions made by its scheduling paradigm. Programs are specified
using the programming model, and their execution is managed using their run-time repre-
sentation. Both the rate monotonic and Spring approaci,,s to 3cheduling assume a process
based programming model, but they assume different run-time representations.

The process model assumes that processes run until blocked for one of several reasons;
resource contention, communication delays, scheduling preemption, or external interrupts.
The rate monotonic research uses the process for both the programming and run-time models.
Under rate monotonic scheduling processes run to completion unless blocked by resource
contention or preempted by a higher priority process [6] [12]. Research in WCET estimation
generally assumes the process run-time model and is thus conducted within its limitations,
particularly the assumption of preemption at arbitrary times [51 [10] [1].

The Spring project assumes the process model for programming, with processes having
separate address spaces [9], but the Spring scheduling paradigm assumes a very different run-
time model. This significantly changes the properties of the system and thus the context
within which WCETs are estimated. The Spring scheduling paradigm considers tasks with

i specified WCETs and resource requirements, and constructs an explicit plan for executing
these tasks in a way that satisfies all deadline and resource constraints [14]. The Spring
scheduling paradigm thus avoids blocking due to resource contention and can easily support
the assumption that tasks execute without preemption, while the design of the Spring system
isolates application code from external interrupts [13].

These properties are desirable, but require a significant effort to translate between the
programming and run-time representations. The programming model describes computa-
tions in terms of processes contending for resources and blocking when necessary, while the
run-time system represents them to the scheduler as groups of non-blocking tasks with known
resource requirements. The translation process takes a reasonably novel approach with po-
tentially significant properties, and is the subject of thesis research described elsewhere [8].
This paper considers how the translation can be used in the context of the Spring system to
calculate WCET estimates in the presence of caches.

We will, however, describe the general outlines of the translation process. During trans-
lation, points at which the process may suspend are called scheduling points. Such points
appear at the beginning and end of critical sections, at synchronous communication calls, or
where explicit suspend calls appear in the code. When the process is running, each episode of
its execution begins and ends at a scheduling point. The translation method is based on first
producing a minimal size representation of the process's structure including these scheduling
points, and then analyzing this representation to determine the WCET and resource use of

jeach execution episode.
We call our representation a time graph since it combines the control flow structure of

M the pro, -ss's basic block graph with the execution time for each block. The original time
graph is isomorphic to the basic block graph used by the compiler for emitting code, and is
reduced to minimum size using subgraph reductions. These reductions identify portions of
the time graph which can be replaced with a single node containing the WCET of the original

81I

subgraph. A simple example is the reduction of the subgraph for a conditional statetment
from three nodes, a node each for the test and the two branches, to a single node containing
the sum of the test time and the maximum time of the two branches. These reuctions can
be modified to consider caches, to some extent, as they simplify the process's time graph.
Subgraph reduction proceeds until further reduction is impossible.

Processes without internal scheduling points reduce to a single node, since they have
only a single execution episode. Processes containing critical sections or other scheduling
points will reduce to larger graphs, reflecting the fact that the process will exhibit more than
one execution episode. The analysis of the minimal time graph determines the WCET and
resource use of each execution episode. The worst case episodic behavior description is then
given t0, the scheduler as the group of tasks representing the process. A number of interesting
structural, scheduling, and computational issues arise, but they are discussed elsewhere [8].
In this discussion the important point is that the execution episodes will not be interrupted.

3 Caching in the Spring System

As a process executes under a traditional priority driven scheduling scheme it can be inter-
rupted by external events, be preempted by a higher priority process, or block for resources
at the start of a critical section. These events cause context switches, making it difficult to
predict the hit rate of a cache in the system. This is precisely the run-time environment of
systems using priority based scheduling, including those using the rate-monotonic approach.
Research on predicting cache hit rates for these systems has eliminated some sources of un-
certainty by allocating sections of the cache to tasks for the duration of their execution[4],
which eliminates the cold start problem after context switches. However this research.has
not addressed all of the issues required to produce valid WCETs for real-time tasks in the
presence of caches. The problem lies in determining the worst case path through the process
code, which depends on the cache's properties.

The Spring paradigm for system design eliminates the sources of arbitrary interruption.
Tasks are shielded from external interrupts in, a Spring node by the use of dedicated appli-
cation processors [13]. We assume a scheduler which constructs execution plans where tasks
in the plan do not require preemption. Finally, tasks do not block for resources, because the
schedule is constructed to avoid resource conflicts. As a result, we can consider conventional
cache designs when making valid WCET predictions. As we consider ways to make our
predictions less and less pessimistic, we may well wish to add features to our cache design.
However, we believe a direct mapped virtual addzess instruction cache provides an interest-
ing starting point. Data caching might be done, but is not considered here. We believe that
iRs benefitz will tend to be limited, though we will certainly consider it in our future work.

The benefits of our approach arise in several ways. First, the use of a virtual cache
decreases the reference time for a hit, si:ice cache processing can take place in parallel
with address translation. Since context switches happen only at the large granularity of
task boundaries, we can flush the cache at every context switch, and still gain a significant
benefit from its presence. Flushing the cache at each context switch eliminates the aliasing
problems commonly associated with virtual caches, simplifying the design. Direct mapped
caches have several attractive properties including; generally lower cost, faster response, and
an easily understood replacement policy. The rest of this section explains our simple methods j

82 I

of including the cache in our WCET calculations, and the extent to which they can improve
on the WCET estimates for a system without a cache, while maintaining their validity.

3.1 Worst Case Time Calculation

For this discussion, we will consider a simple architecture with a CPU, instruction cache and
main memory connected by busses, but with the bus between the cache and main memory
wider than that between the cache and the CPU. We will also assume a memory speed of
100ns, a cache speed of 10ne, an average of four instructions per cache line, and a c; ' 1
miss penalty of from lOOns to 300ns. These are reasonable values taken from discussiok
121.

Our WCET calculation method considers instruction caches in two contexts; instruction
prefetch and loops. When the CPU prefetches an instruction, it specifies an instruction
address. If this instruction is not already in the cache, the block containing it will be

retrieved. For sequential code execution, three of four instruction fetches will thus be cache
hits. Assuming a cache miss penalty of 200na, we would thus have an execution time of 230ns
with the cache, as opposed to 400ns without it; an improvement of 42.5%. Non-sequential
code will, of course, reduce this. Our WCET calculation method can consider this effect
quite easily. Recall that we create the original time graph from the basic block graph used
for code emission. Eah node in the time graph will note the number of instructions and
bytes represented by the corresponding basic block, as well as its uncached execution time.
During subgraph reduction, the linear portions of the graph are easily identified, and the
speedup from cache nrefetching accounted for.

The other way we can take caching into account is by noting when loops can be entirely
contained in the cache. It is important to note that under our programming model, an upper
bound on the number of times through t' l loop is necessary. This situation is slightly more
complex, and can be divided into three cases. The simplest case is when the body of the loop
is entirely sequentil. The body of the loop will have been reduced to a single node giving
the total number of bytes, instructions, and uncached execution time. The total number of
bytes occupied by the loop is easily calculated at this point, and will either fit in the cache
or not. For a direct mapped cache, the starting and ending addresses are not important. We

Aonly depend on the common property that the compiler will generate contiguous code for
the loop. In this case the time for the loop is the uncached time for the first iteration, but
the fully cached time for all subsequent passes.

The second case, when the body of the loop contains branches, is more difficult because
the CPU will follow only one of the conditional branches on any given pass. It may, therefore,
take several passes to bring the code for the entire body of the loop into the cache. This is
illustrated by the cached and uncached times for the two branches of a conditional in the
body of a loop. Call these branches A and B. Let us assume that the uncached and cachedjtimes of A are greater than the corresponding times of B, but that the cached time for A is
less than the uncached time for B.

Now consider the WCET on each iteration of the loop. On the first iteration the uncached
time for A is clearly part of the WCET. However, on the second pass the code for this branch
is cached, and the uncached branch B is on the worst path. On all successive iterations, the
cached time for A is on worst path. This clearly illustrates that the worst case path through

83

the code is different for the cached and uncached cases. Simply considering the cached time
for the uncached worst case path would have produced an invalid WCET estimate. This also
shows that the subgraph reductions must take such execution scenarios into account when
calculating the WCET for the loop as a whole. This turns out to be fairly easy to do, and
gives some idea of the flexibility of the subgraph reduction calculation method.

The third case is when the body-,f the loop contains subroutine calls. For a direct mapped
cache, this could invalidate the caching of the loop body, since the footprint of the subroutine
might overlap that of the loop body. If we are unable to consider how the subroutine code
will act within the cache, we will have to assume the loop is not cached, which will increase
the pessimism of our estimate. However, we can ensure no overlap in two ways. First, the
code for the subrout;"e could be "inlined", which would convert the problem to the previous
case. Inlining is appropriate for loops requiring optimization where the space penalty is
acceptable, and is currently a feature of many compilers to permit saving subroutine call
overhead. The second method would require assigning virtual addresses to the loop and
subroutine code so that they would not overlap. This would require modifications to the
loader to permit this kind of manipulation. Some investigators have taken this approach
for conventional systems [11][7], but are considering the effects on average case performance.
We will be developing approaches that address the effects on WCET.

It is important to note that the subroutine footprint problem could also be affected by
the associativity of the cache. At this time we are interested in seeing how much benefit can
be derived from the simplest cache design, but a set associative or fully associative cache
are alternatives that we can investigate if the simplest design proves insufficient. However,
even with a fully associative cache, subtle control problems will arise, indicating that we may
eventually wish to use a custom cache design in order to calculate less pessimistic WCET
estimates.

3.2 Potential Benefits
-. i

One of the problems with evaluating real-time systems is the lack of representative programs.
However, as an illustrative computation, let us consider multiplying two square matrices of
size 50 on a machine with the properties discussed in the previous section. This is a triply
nested looping calculation with a deterministic data path, and is a reasonable model for one
class of comDutationally intensive real-time application activities. We wrote it in C, and
produced the MIPS R3000 assembler code using the "-S" option of the compiler. The nested
loops broke into seven basic blocks, of which five were non-trivial.

The example in Figure 1 illustrates several important points. It is important to note
that since the data path is deterministic the hit rate can be determined by simulation of the
cache on an address trace, and is thus a case for which the approach in [4] is sufficient to
determine the worst case hit rate. If there were more than one path through the code, this
would not be true. Further, since we have assumed that all the code fits in the cache, this
is a situation where the cache provides a significant advantage. Other situations would Pot
necessarily show such a marked improvement.

The horizontal line on the graph gives the execution time for the code on a machine f
without a cache, using just the lO0ns memory access time. . 4C three slanted lines give
the execution times under various combinations of cache miss penalty and percentage of the

8
84

, I

2400- WCET w/o Cache, lOOns

220.0 o-0- O WCET Est, 300ns Miss

- 200.0 - WCET Est, 200ns Miss for(i0; 1<50; i++) { -
W 180.0 x-x WOET Est, lO0ns Miss foroj0; J<50; j++){

160.0 result = 0;
140.0 for(k=0; k<50; k++){
120.0 result += matrixl i][k]*rnatrix2[k][fl;

, ~100.0 ,_ti3,.e0.o }
Pn.0 matrix3[D] result;S 60.0}

40.0 -!
20.0 1 1, 1 1

50 60 70 80 90 100
% Actual Hits Predicted

Figure 1: Execution Time vs. Predicted Hit Rate and Test Code

actual hit rate predicted. These lines rise above the horizontal for low hit rates because of
the cache miss penalty. This long recognized effect has important implications for real-time

tI system design, since the WCET estimate must be based on the hit rate we can reliably
predict for the system to support guarantees.

The justifications for including a cache in conventional and real-time systems thus differ
-- iin which hit rate is relevant. Conventional systems can use the actual rate, while real-time

systems must use the predictable rate. The figure shows that unless we can predict a signifi-
- cant percentage of the worst case hit rate, we could actually decrease the number of processes

the system could guarantee by adding a cache. This highlights the fact that principles which
are familiar in conventional systems can have significantly different implications for real-time

i systems.
The graph shows that any method which tries to predict WCET time by analyzing the

- i code must be able to identify significantly more than half of the actual hits in order to give a
significant benefit. The actual percentage of the hit rate is impossible to determine without
analyzing specific cache and process code properties, but we believe an adequate level of
prediction is possible. For example, with the si- ple prefetch approach, we can easily predict
a hit rate of 75% for the sequentially executed code. The frequency of sequential instructions
for a RISC machine given in [2], is 85%. This would lead us to expect a hit rate of roughly
60% without taking loops into account. This prediction level is roughly that required to
make the predicted WCET with the cache equal those without it for the 200ns miss penalty
case. However, our ability to handle the looping cast, particularly subroutine calls, is crucial
to providing predictions of WCET that will permit us to realize a significant benefit fromI adding caches to real-time systems.

I 4 Summary and Future Work
This paper has discussed the problem of predicting WCET in the presence of caches. We
have also given some idea of why the scheduling paradigm underlying thc system design
has a significant influence on how caching effects can be predicted. We gave the basics of

- our method for computing WCET, and some illustration of how it can be used to consider
caching effects. The signific -it problem of predicting cache hits inside loops with subroutine

85

I |
calls remains an open problem which will be addressed in our future work. As the work
progresses, several interesting approaches are possible including: manipulation of the code

layout in logical address space to improve the predictable speedup, use of a fully associative 3
cache, and customization of the cache design. Beyond this, cache coherence will be an issue
for data caching in multiprocessor systems, and we are interested in how very large caches
would influer-. system design.

The ability to correctly estimate the WCET of a program is basic to all real-time schedul-
ing paradigms, and.is thus a question that must be answered adequately. The potential
performance benefits of caching are so substantial that we must develop ways to use them I
predictably.

References I
[1] P. Amerasinghe. An Interactive Timing Analysis Tool for the SARTOR Environment. j

Master's thesis, University of Texas at Austin, 1985.

[2] J. Hennessey and D. Patterson. Computer Architecture: A Quantitative Approach. I
Morgan Kaufmann Publishers, 1990.

[3] K. Kenney and K. Lin. Structuring Large Real-time Systems with Performance Poly-
morphism. In IL2E Real-Time Systems Symposium. IEEE, December 1990.

[4] D. Kirk and J. Strosnider. SMART(Strategic Memory Allocation for Real-Time) Cache
Design Using the MIPS R3000. In Proceedings of the IEEE Real-Time Systems Sympo-
sium. IEEE, December 1990.

[5) E. Klingerman and A. D. Stoyenko. Real-Time Euclid: A Language for Reliable Real-
Time Systems. IEEE Transactions on Software Engineering, September 1986.

[6] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a Hard I
Real-time Environment. JACM, pages 46-61, February 1973.

[7) S. McFarling. Program Optimization for Instruction Caches. In Proc. 3rd Interna- I
tional Conference on Architectural Support for Programming Languages and Operatng
Systems, pages 183-191, ACM, 1989. 1

[8] D. Niehaus. Program Representation and Execution in Real-Time Multiprocessor Sys-
tems. Phd. Thesis Proposal, University of Massachusetts-Amherst, 1991.

[9] D. Niehaus, C. Kuan, and J. Stankovic. Spring System Programming and Run-Time
Models. Technical report, Spring Project Documentation, 1990.

[10] C. Park and A. Shaw. Experiments with a Program Tir- ng Tool Based on Source-Level I
Timing Schema. In IEEE Real-Time Systems Sympostum. , December 1990.

[111 K. Pettis and R. Hansen. Profile Guided Code Positioning. In Proceedings of the ACM
SIGPLAN '90 Conference on Programming Language Design and Implementation, pages
16-27. ACM, 1990.

86

I-

[12] R. Rajkumar, L. Sha, and L. Lehockzy. Real-Time Synchronization Protocols for Muii-
tiprocessors. In Proceedings of the IEEE Real- Time Systemns Symposium. IEEE, 1988.

il.-T[13] J. A. Stankovic and K.Ram am ritham. TheSpring Kernel: A New Paradigm for Real-
Time Operating Systems. Special Issue of OS Review, 23(3), July 1989.

[14] W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive Sc~heduling under Time

and Resource Constraints. IEEE Transactions on Computers, pages 949-960, August
1987.

3

I8

STATIC ANALYSIS OF TIMING PROPERTIES FOR
DISTRIBUTED REAL-TIME PROGRAMS*

Horst F. Wedde, Bogdan Korel, Dorota M. Huizinga
Computer Science Department

Wayne State Unluersity
Detroit, M1 48202

flbstr_

In this paper a static analysis approach for verifying timing properties of real-time
distributed programs is presented. We concentrate on the worst case response time of
concurrent tasks which run independently but share logical or physical devices. For
such tasks, prediction of the worst case response time involves estim-,tion of time
spent waiting for synchronization events. In particular, we investigate the class of
Client-Server distributed programs in which independent, time-critical tasks (Clients)
are synchronized only through additional Server tasks, playing the role of monitors or
resource managers. This model follows the real-time design guidelines proposed to
enhance schedulability and synchronization analysis. The analysis technique is flow
graph oriented and leads to generating reduced program paths each of which represents
a sequence of ordered local and global operations. While local operations are
completely independent and can be performed concurrently, global operAtions require
mutually exclusive access to shared logical or physical devices. For each -) eration an
estimate of the minimum and maximum execution times is used for the actual worst
case analysis in this model. We show that the problem of evaluating the worst case
waiting (blocking) time is NP-complete. We show further that a previously held
conjecture about NP-completeness of a reduced problem is wrong, by giving a
polynomial algorithm for its solution of which we have proven the correctness. This
solution provenly provides for a good upper bound of the original analysis problem.
The effectiveness and complexity of the method are discussed.

I. Motivations

Recent developments in hardware and software technology have led to considerable
progress in distributed real-time computing. This new and quickly evolving field lacks any
"'ell-established testing and verification methods, especially those which would explicitly
take into account timing aspects of the system. The need for automated analysis tools
derives from at least two different, although not unrelated concerns. First: the necessity for
reducing testing costs, which account for up to 50% of the software development process
[Mye79]. Second: increasing system complexity which renders manual testing all

*This work was partially supported by IBM Endicott (Research Agreement No. 6073-86)
and by General Dynamics Land Systems (#DEY-605089).

88

but impossible. Automated or semiautomated tools would enhance chances of selecting
appropriate test cases and result in producing more reliable and dependable software. These
techniques are crucial for real-time computing especially, when a probabilistic approach
seems to be unsatisfactory [Sta88]. The necessity of producing predictable timing behavior
derives from the applications of real-time computing in which time errors might have very
costly or even catastrophic consequences.

II. Related Work

J Several formal models for specification and analysis of real-time programs have been
proposed recently. These include RTL (Real-Time Logic [Jah86], [Jah87]), RTTL (Real-
Time Temporal Logic [Nar88]), and some other extensions of temporal logic like Interval
Logic ([Sch83]) or Metric Temporal Logic [Koy9O]. The focus of these studies is on
determining timing (and other) assertions of the system with respect to the specification
expressed in the corresponding formal model formulas, rather than on the timing analysis
of distributed programs.- We took a complementary approach to timing analysis of
distributed programs in which verification of timing properties is separated from
verification of logical correctness of the program. The idea was first suggested in [Wir77],
and recently has been discussed in [Hsi89] and [Shc88].

The work reported in [Sha89] and [Pus89] utilizes the same concept of analysis as our
own. Both studies describe high level language approaches to reasoning about time
constraints (including the maximum execution time) of sequential programs. However, the
analysis techniques presented are limited to singular programs, and possible blocking time
due to shared data or resources is not considered. In [Sto87] the optimal worst case
blocking time for resource contention is calculated usingframe superimposition. The frame
superimposition method shifts frames exhaustively, for every time unit, process, and
combination of frames possible. Although very effective, this technique may well be
infeasible for large systems due to its complexity. In [Lei82] a polynomial time algorithm
for finding an approximate upper bound on the worst case blocking time has been
proposed. Our method outperforms the one reported in [Lei82] with respect to both the
actual results (i.e. it finds a better upper bound on the blocking time) and the algorithm
complexity.

III. System Model.

Following the Ada real-time design guiaelines [Sha9O] we limit our studies to the Client-
Server type of distributed programs. Our system consists of a set T of time-critical tasks
(e.g. Ada-like tasks) which we call Client tasks and a set S of Server tasks (e.g. Ada
rendezvous) which play the role of monitors or resource managers. Each task runs on a
designated logical or physical processor; however for analysis purposes we assume a pure
maximal physical parallelism. Server tasks run in infinite loops and accept Clients
according to a FCFS rule. (This assumption can be easily generalized for any priority
driven policy, like priority inheritance or priority ceiling.) All other loops are assumed to
have a known and bounded maximum number of iterations. The programs follow structural
coding guidelines which allow for easy reductions of corresponding flow graphs. In
addition for each time critical task, there is a time frame (minimum and maximum time)
representing the time interval within which the task starts.

IV. Analysis Technique.

This paper is an extension of our previous work reported in [Wed9l] in which the systemj modej consisted of a singular Server task and several Client tasks. Subsequently we sketch

a flow,-graph reduction technique which leads to the generation of reduced paths for each
task. Details of this technique as well as a correctness proof of the reduction procedure can
be found in [Wed9l]. More details will be offered in the final paper.

Flow Graph Reduction.
A distributed Ada-like task system defines a control flow graph (or forest) in which each
basic block [Hec77] (a group of sequentially executed simple statements) is
represented by a corresponding node and edges represent possible transfer of control
between blocks. For each task t there is a designated initial node N. Our time oriented
analysis first refines the control flow graph and then reduces it to create a reduced
graph. The refinement procedure consists of "splitting" each node bf the flow graph into
two nodes representing the beginning and the end of the corresponding block and adding a
new edge between these two. This edge is labelled with a pair representing the best and the
worst case execution time of the basic block. The best and the worst case execution time
for any basic block is estimated by repeated module execution. The reduction algorithm
of the refined graph eliminates all internal loops (i.e. the loops which do not include any
synchronization statements) and it works by replacing innermost cycles with singular edges
and expanding outward. The singular edge weight is set equal to the pair representing the
best/worst case execution time of the loop. Loops which include synchronization
statements are eliminated by the repetition of the (already reduced) body of the loop. For
each remote server call (remote rendezvous) a bounded communication delay is added.

The above procedures having been applied successively to a distributed Client-Server type
of program create a corresponding acyclic directed graph (or forest) with a set of designated
nodes N representing the beginning of each task, and a set of designated nodes M
representing the end of each task. Edges in the reduced Directed Acyclic Graph
(DAG) correspond to the control flow in the original program and they are labelled with
the minimum and maximum execution time of the basic blocks.

Path Oriented Timing Analysis.
A set of reduced paths, one for each involved task, is generated form the DAG. Each of
the reduced paths consists of an ordered sequence of local and global operations and it is
called a task-oriented reduced path. Each operation is labelled with a pir corresponding to
the best and the worst execution time of it. In particular, we choose the task for which the
worst case analysis is to be performed. Such a task starts within its time frame and
performs its local and global operations according to the order described by its path. The
worst case response time of the task depends on local operations as well as the waiting
(blocking) time due to global operations. If two or more tasks submit their requests for the
same global operation at the same time, we assume that the task of interest will be served
last. This assumption guarantees the worst case response estimation. Consideration of
starting time frames, Server request orders and times of local and global events riiake
timing analysis very accurate but increases problem complexity. Subsequently we define
blocking rules and the general worst case blocking (waiting) time problem.

FCFS Worst Case Blocking Time Rules,
Task Ti requesting access to server S is blocked at S by task Tj iff:

1. Tj requested access to S before Ti and it is either still waiting for the
service or it has been granted access toS but it did not-complete yet. (FCFS
requirement.)
2. Tj requested access to S "simultaneously" with Ti. (Ti will be served
after Tj - worst case requirement.)

90

: 1

U7

REDUCED PATH FOR TI:

Time Intervals: Sa=[7,12], Sb=[5,10], Sc=[6,11], L=[5,1]

CORRESPONDING GO-PATH FOR TI:IWorst Case Time: Sa=[12], Sb=(10], Sc=[11]

() Global operations U Local operations

Figure...1 Example of a Reduced Path and the corresponding GO-Path

Worst Case Blocking Time (WCBT) - General Problem.
Given a set of n tasks T=(T1,T2,...,Tn~repr_-sented as a set of task oriented reduced paths
P=(PI, P2,...,Pn) (each Pi consisting of a sequence of local and global operations with an
execution time interval assigned to each operation), starting time frames for each task: F1,
F2,...Fn, and designated task Ti from T, find the worst case blocking time of Ti by tasks
T1, T2,...Ti-I,Ti+,...,Tn, assuming that paths P1, P2,...,Pn are executed.
Note that the solution to the WCBT-general problem consists of:

1. The starting times stl,st2,..., stn for each task, s.t. sti is in Fi.j2. The acceptance order fOr"simultaneous" requests (for the tasks other than Ti)

Theorem 1: The WCBT-general problem is NP-hard. Moreover the problem remains
I NP-hard even if time interval are reduced to single points (operations take constant amount

of time) and are all equal.

We will give an outline of the proof in the paper.

Our theoretical findings about evaluating the worst case blocking time led us to the
formulation of the "relaxed" version of the WCBT problem.The relaxed problem disregards
the starting time frames and the times between server requests, however it preserves the
order of requests and the execution times of servers. Subsequently, we define the relaxed
version problem and show the polynomial time dynamic programming algorithm whichI solves it.

First we define a task oriented global operation subpath of Pi (called GO-path Pd to be a
subsequence of all global operations of Pi with the worst case execution time of each
operation (see Fig. 1).

9
91

I

GO-PATH FOR TI: T

GO-PATH FOR T2:

Array B:

0 1 2 3 4 5 6
Execution Time:

0 0 0 0 0 0 0 Sa = 12
Sb = 10
Sc =111 0 0 0 12 12 12 12

2 0 0 10 12 12 22 22

0 11 11 23 23 23 23 7

4 0 11 11 23 23 23 35 Worst Case Blocking
Time OF T2 BY T1

0 11 21 23 23 33 35

6 0 11 21 23 34 34 35

E£ilZM.Worst Case Blocking Time of T2 By Ti. I

Worst Case Blocking Time - Relaxed Version Problem.
Given a set of n tasks T=(Ti,T2,...,Tn) projected into a set of GO-paths
P=(PI,P2,...,Pn) (each Pi consisting of a sequence of global operations with the worst
case execution time assigned to each operation), and designated task Ti from T, find the
worst case blocking time of Ti by tasks T1, T2,...,Ti-1,Ti+l,...,Tn assuming that the GO-
paths P1, P2,...,Pn are executed. I
It was a conjecture that the WCBT-relaxed version problem was NP-hard for n=2 [Lei82].
In contrast to this, we have

Theorem 2: There is an algorithm which solves the problem in polynomial time for
arbitrary n.
A proof will be outlined in the paper.

92 3

j Furthermore: The solution of the WCBT-relaxed version problem, can be utillzed as a
good upper bound for'the general problem. Ile idea of the solution originated from the
Longest Common Subsequence problem [H1r06].
To simplify the description of the algorithm we assume that Tjis the task for which the
worst case blocking time is to be found and that all GO-paths are of the same length k.
(None of this assumptions is needed for the algorithm to work.)
Let each GO-path Pi be represented an ordered sequence of records each consisting of

U two fields: one co'ntaining the name of the server and the second containing the worst case
execution time of the server. Therefore, for Il<=k<lc, we have:

Pi[I.server name - name of the l-th global operation in GO-path Pi

Pi[I].server time - worst case execution time of the l-th operation in GO-path Pi

Function Block(X,Y: record)
(returns server time if X and Y contain the same server name, otherwise it returns 0)

begin
if (Xserver_name=Yserver _name) then

return(Xserverj ime)
else

retum(O);
end;

Function Initialize(B)
(*initializes blocking array called B*)
begin

Ifor l:=O to kdo

for 1:-0 to k do
B[0,1]=0;

end;

Function MaxBlock(PI,P2,....Pn: GO-paths);
(returns the solution WCBT-relaxed version problem for task T1 *

begin
1MAXB: ;(maximum blocking time *

2 For r:=2 to n do (*for all paths other than P1I*
13 Initialize (B);

4 For!:= Ito kdo
5 For m:=l to kdo

1 6 B[l,m] :=max(Btl-l1,m], B[l,m- 11, Bfl-l1,m- 11+ Block(P1 [l],Pr[mD);
7 end for,
8 end for,~

19 MAXB:=MAXB+Bfk,kI;
= 1 10 end for,

11I retun(MAXB);

end;

1 93

Function MaxBlock calculates the worst case blocking time of TI by tasks T2,T3,...,Tn
(lines 3 to 8) and sums the results (line 9). We have shown that the above procedure
correctly calculates the solution for the WCBT-relaxed version problem.The order of
complexity of MaxBlock is n*k2 in the size of the problem encoding. It outperforms in
both accuracy and time complexity the results published in [Lei82] in which a heuristic
algorithm for the WCBT-relaxed version has been developed.
The results of MaxBlock are then utilized to calculate an upper bound on the actual task
response time.

V. Conclusions and Future Work.

In this paper an approach to automated analysis of distributed real-time programs has been
presented. We have concentrated on the timing criterion of system correctness for which no
automated verification methods or tools exist, to our knowledge. The method described is
based on the static analysis of the task system and generation of GO-paths (global operation
paths) for which actual timing analysis is applied. We have shown that a good upper bound
on the worst case blocking time can be found using low complexity procedures, however
the optimal solution is intractable.- In our further research we intend to generalize the
WCBT -reduced version problem flow graphs (or at least flow trees) to reduce the lengthy
process of repeated path generation.

References.

[Hec77] M.S. Hecht; Flow Analysis of Computer prograwns, Elsevier North-Holland, 1977.

[Hir751 D.S. Hirschberg; A Linear Space Algorithm for Computing Maximal Common Subsequences;
CACM, vol 18, No 6, pp. 341-349.

[Hsi891 C.S Hsieh, Timing Analysis of Cyclic Concurrent Programs, pp. 312-318.

[Jah871 F. Jahanian, A.K. Mok, A Graph Theoretic Approach for Timing Analysis and its
Implementation, IEEE Transactions on Computers, vol 36, No 8 ,1987, pp. 961-975.

[Jah861 F. Jahanian and A.K. Mok, Safety Analysis of Timing Properties in Real-Time Systems, IEEE
Transactions on Software Engineering, vol.12, No 3, 1986, pp. 890-904.

[Koy90] R.Koymans, Specifying Real-Time Properties with Metric Temporal Logic, Real-Time
Systems, vol 2, No.4, 1990, pp.255-299.

[Lei821 D.W. Leinbaugh, M-R. Yamini; Guaranteed Response Time in a Distributed hard .Real-Time

Environment; Proc. of Real-Time Systems Symposium; Dec. 1982, pp. 157-169.

[Mye791 G.J.Myers; The arts of software testing, John Wiley & Sons, 1979.

[Nar881 K.T. Narayana. A.A. Aaby; Specification of Real-Time Systems in Real-Time Temporal
Interval Logic; Proc.Rcal-Time Systems Symposium, Dec.1988, Huntsville, Al., pp.86-95.

[Pus891 P.Puschner, Ch. Koza; Calculating the Maximum Execution Time of Real-Time Programs,
Real-Time Systems, vol.1, No 2, Sept. 1989, pp. 159-176. [

[Sch831 R.L.Schwartz, P.M. Melliar-Smith, and F.H. Vogt, An Interval Logic ft.r High -Level
Temporal Reasoning, Proc. 2-nd Annual ACM Symposium on Principles of Distributed
Computing, 1983, pp. i73-185. j

[Sch88] R.L.Schneider, Critical Issues in Real-Time Systems, Technical Report 88-914, Dept. of
Computer Science, Cornell University (May 1988).

94 1

I

I
[Sha89J A.C. Shaw; Reasoning About Time in Higher-Level Language Software, IEEE Transactions on

Software Engineering, vol.15, No 7, July 1989.

[Sha901 L.Sha, J.B. Goodenough; Real-Time Scheduling Theory and Ada; IEEE Computer, April 1990;
pp.53-62.

I [Sta88] J.A. Stankovic; Misconceptions About Real-Time Computing, IEEE Computer, Oct. 1988,
pp.10-19.

[Sto87] A.D. Stoyenko, A Schedulability Analyzer for Real-Time Euclid; Proc. Real-Time Systems
Symposium, Dec 1987, San Jose, Ca, pp. 218-227.

(Wed9l] H.F. Wedde, B.Korel, D.M. Huizinga; A Critical Path Approach for Testing Distributed Real-
Time programs; Proc. 24-th International Conference on System Sciences; Jan. 1991, Ha, vol 2,

-pp. 400-407.

[Wir77] N.Wirth; Toward a Discipline of Real-Time Programming, CACM, vol 20, No 8, 1977,
pp.577-583.

I95

I

I

I

1 9

An Integrated Approach to Monitoring and Scheduling
in Real-Time Systems

Farnam Jahanian
Ragunatham Rajkumar

IBM Thomas J. Watson Research Center
Yorktown Heights

Abstract i
In real-time systems, interactions with the physical environment can lead to unexpected conditions such as system
overload and the missing of deadlines. It is highly desirable that these error conditions do not lead to total system f
failure and that the critical functions of the system are still performed. In addition, when an error condition arises, 1
the system designer may prefer to invoke an error-specific operation to correct or recover from the error. The ability
to detect violation of design assumptions or occurrence of unexpected conditions requires an integrated approach in
which system timing constraints can be expressed and monitored, and appropriate action taken when a constraint is
violated. However, the run-time monitoring of the system constraints consumes time and must not intrude upon the
ability of the system to meet its constraints. Our approach allows the run-time monitor to be scheduled as a
time-constrained activity and therefore can be part of the schedulability test for the system. This approach can then
be further extended beyond simple timing constraints to complex timing assertions as well as the specification and
monitoring of arbitrarily complex safety requirements.

1. Introduction I
In designing real-time systems, we often make assumptions about the behavior of the system and its environment.

For example, each task is assumed to have a worst-case execution time, and some asynchronous signals are assumed -
to have a minimum interarrival time. However, the unpredictable nature of the environment may not always satisfyI.
these requirements, and any violations of these assumptions must not cause the system to fail. A limited amount of
work has been carried out in dealing with potential violations of the design assumptions. For example, the ability of

a system to perform critical activities under a transient overload is referred to as stability [81, and is a major
motivation for use of the Ram-Monotonic Scheduling (RMS) framework. The concept of stability can be extended
to possible hardware, software and operational failures. [

Our approach is to express as invariants the design assumptions and system properties that must be maintained,
and to monitor these invariants at run-time. If the violation of an invariant is detected, the system will perform an
appropriate action to correct or recover from the error. Unfortunately, run-time monitoring of system constraints K
consumes resources and can intrude upon the normal timing behavior of the system. Our solution is to integrate the
run-time monitoring with the scheduling methodology, by treating the monitoring activity as another real-time task
to be scheduled. The resulting real-time system, therefore, would be predictable when there are no violations of
design assutpions, and robust in their presence.

In addressing the implications of run-time monitoring, it is helpful to distinguish between the language and the
scheduling issues. The language related issues concern the formal specification of properties and the mechanisms
for testing the satisfiability of these constraints at run-time. The run-time constraints can represent, for example,

* Timing constraints ranging from simple deadline requirements to complex end-to-end timings,

* Fault tolerance requirements which may specify that in case of certain hardware failures or software
conditions, a mode change (reconfiguration or a degraded mode of operation) must be initiated, or

* Execution order constraints such as precedence constraints on a set of events or actions.

The monitoring facility provides a real-time system designer with a host of capabilities. The programmer should

96 -

be provided a notation for specifying arbitrarily complex constraints which must be checked at rm-time. This
notation can be part of a programming language or it can take the form of a specification language (e.g., based on
relation query language or logic) superimposed on top of an existing programming language. An important issue is
how to establish a bound on the computational requirements in evaluating a condition at nm-time. For example,
calculating the overhead in determining whether a deadline has been missed is straight-forward. However, a
powerful specification language may allow expression of complex cnst ts. Testing for a violation of a constraint
at run-time may require remembering and examining a history of past events. Making a system predictable
necessitates establishing a bound on the event histories that must be examined at nm-time. The monitoring facility
should also provide the capability so that a programmer has the option to specify conditions that can be tested either
synchronously or asynchronously. Furthermore, the programmer should be able to specify special handlers to be
executed when a certain condition is violated. If no handlers are specified, the system can perform a default action

jas well. Many other language-related issues ams which are beyond the scope of tis paper.

A related set of issues concerns scheduling real-time tasks when a rn-time monitoring facility is supported.

Since monitoring constraints consumes resources, it is crucial to determine its intrusiveness on the normal activities
of the system. For example, the monitoring activity itself can be treated as a set of tasks to be scheduled. Given a set
of real-time tasks and a set of conditions to be monitored, the requirements imposed on the monitor can be

I determined and its worst-case performance can be guaranteed. More importantly, suppose that a methodology such
as the rate-monotonic scheduling framework is used. Then, both monitoring and the application tasks can use the
same scheduling mechanisms such that the benefits of predictability and analyzability of the framework will be

j available for both. In this paper, we shall address the issue of scheduling real-time tasks along with activities which
monitor system events to detect and handle any violation of system requirements.

jThe rest of this paper is organized as follows: Section 2 reviews our event-based model for expressing and
monitoring run-time constraints. Section 3 presents how the monitor described in Section 2 can be scheduled using
the Rate-Monotonic Framework. Finally Section 4 presents the concluding remarks.1
2. The Run-time Monitor Model

The run-time monitor model that we consider in this paper is based on the model proposed in (3,2]. A system
computation is a sequence of event occurrences. Informally, events represent things that happen in a system. An
event occurrence defines a point in time at which a particular instance of an event happens in a computation.

jTiming assertions about a system can be expressed as relationships among these event occurrences.

Events can fall into one of two categories. Label events are used to denote the initiation and completion of a
sequence of program statements. Trc.nsition events capture assignments of values to a particular type of variables.
It may not be sufficient to remember only the last occurrence of each event to detect the violation of a timing
property. An event history stores the times (and values for transition events) of a finite number of previous

occurrences.

The model distinguishes between two general ways in which event histories can be utilized in specifying and
monitoring timing assertions: sinchronous vs. asynchronous. In synchronous monitoring, the programmer can
explicitly check for the satisfiabiity of a property at a particular point in the execution of the program. This is done
by directly manipulating the event histories which are shared by the cooperating tasks. Thus, testing and handling ofI any violation is carried out synchronously. This category of timing constraint is referred to as-embedded constraints.
As described in [31, an RTL-like notation can be used to specify embedded constraints in a program. The following
code segment illustrates an embedded constraint.

9
197

/* temperature is a variable */
if (@val(temperature, i) > threshold) I

shutdown nuclear reactoro;

The event histories are accessed by two RTL-like functions: the occurrence function @(ej) which returns the time
of theio ccurrence of event e. and @vl(vj) which returns the value of variable v at itsh ocm"mc I

Alternatively, in asynchronous monitoring, the constraint is enforced during the entire execution of the program.
This category of constraints is referred to as monitored constraints. Thus, testing and handling of exceptions are [
performed asynchronously. The events generated by the tasks are sent to the system monitor (a separate task) which
is responsible for maintaining the event histories. Whenever an event occurs that may violate the satisfiability of the
constraint, the system monitor re-evaluates the expression and invokes the appropriate handler if the expression is
violated.

A monitored constraint, where an acknowledgement must occur no later than 5 time-units after a ;cnd, can be
expressed as shown in the following code segment. The notation @(send, -1) denotes the time of the most recent

occurrence of the event send.

@ (send, -1) <@ (ack, -1) A @ (ack, -1) 5@ (send, -1) + 5

In synchronous monitoring, since the event history is shared, a synchronous access to the event history results in
the caller being blocked. Thus, blocking can be caused both when writing to the event history or when testing a
constraint. Asynchronous monitoring represents non-blocking testing where the testing done by the monitor is
transparent to the programmer (except for the time penalty, which shall be addressed in Section 3).

This monitoring model proves useful in multiple ways. For example, z

* Typically, a monitored expression would be used for detecting the violation of a timing constraint. For
instance, it can be used to check the satisfiabiity of a deadline where the constraint can be simple as in
the first code segment example, or could be complex such as an end-to-end deadline between events
happening across multiple processors.

" These expressions can also be used to detect that a timing constraint will not be met at a later time. For
instance, one can express the property that an intermediate point must be reached at a time that would
make it possible to meet a later deadline. As a result, the system can detect that a deadline will be
missed even before it happens and corrective action can be taken.

" It is also possible to express and enforce precedence constraints using this model. For instance, suppose
that the £ul occurrence of event B must succeed the ii occurrence of event A. Event B could represent in
this case the beginning of a subtask with a precedence constraint while A could represent the end of
another subtask. If the subwsk generating B tests for the occurrence of event A, then the subtask will be f
blocked until the event A occurs, thereby achieving the desired effect.

" The asynchronous monitoring model can also be used to implement graceful degradation,
reconfiguration or mode changes. Based on the occurrences of certain events, a system monitor can
change the execution mode of a system to deal with unexpected conditions. Similarly, the synchronousi
monitoring model can be used to test an assertion in a program and change the execution of the task
based on some event occurrences, for example, to evaluate an acceptance test (in a recovery block)
before the task execution can continue.

Currently, a uniprocessor implementation of the model is operational at IBM Reseach [1], A set of library
routines in C provides the appropriate functions for specifying and monitoring assertions. The implementation, on J
AIX running on IBM RS/6000 workstations, hides the operating system depeadencies in a well-defined layer or. top
of which the monitoring library is built. Error handlers we user-programmable and can, for example, triggr mode
changes or a degraded mode of operation. A default handler is also provided by ft system. j

98 3

-i

3. Scheduling Monitoring Activities
The monitoring model helps to detect violation of timing constraints syncln.mxtously or asynchronously. Its

primary disadvantage, however, is that the maintenance of the event histories ar.l. te checking of events consume
time, and .;erefore can be intrusive in a real-time system. -Our approach is to tre.t the monitoring activity as a
schedulable entity so that it can be addressed within the same framework as the real-time tasks running in the
system. In scheduling theory, a common assumption is that each task has a known worst-case execution time.
Similarly, it makes sense to assume an upper bound on the number of events that each 'ask can generate and the time
taken to test an expression or to uttate the event history. A related issue is the se of the history that must be
maintained for each event. It Iha- been shown in [3] that for a set of expressive subc, -'ses of properties, an upper
bound can be established for the hi ;torv size for each event.

I We now discuss scheduling isst,,, s on uaiiroj.- and multiprocessor systems, brzed on the Rate-Monotonic
Scheduling (RMS) framewurk.

]The monitor model can be htplemente on tooth uniprocessors and multiple processor systems. However, the
scheauling intrwt - .. i impler1,tition depends heavily on the underlying platform and whether the monitoring is
synchronous L r asynchmnotts. - -1 sic difference between synchronous and asynchronous monitoring from a
sc L.duhng r ~{ ' V'- is that tb - o .(L'ing overhead is imposed on the application task in the former and on the
system in 'he i.i -r. In either zas.. it is e.sendal that Lhe time consumod by monitoring be bounded and accounted
for in t'je schei alability av.,ysis %; zh' system.

3.1. Unip:- , grchcduJlh-- : -E.

Async-,'oaous tvai ol -ng: The sched, ling issue to fr addressed is that the instants at which the various events
will be generated (cv,.'n by periodAc tasks) will not be strictly regular. The following example illustrates several
features of the problem and our solution.

IExecution of E task 1 0 task 2 task 3 Esporadic server
--s n 1 ---e-nent 2 -- event 3

(a 10 20 3 40 o 60 70 80 90 100 110 120

(a) Event generation pattern with no event processing.

10 20 30 40 50 60 70 80 90 100 110 120
(b) Execution sequence with event processing by a sporadic server and no background processing.

11 i I 'I I ki kI t ! [! I ki I ki I il I k! I

0 10 20 30 40 50 60 70 80 90 100 110 120

(c) Sporadic server replenishment pattern.

Figure 1: An Asynchronous Monitoring Sequence

1 99

Example 1: Suppose that asynchronous monitoring is used, and that there are three tasks with periods 20,30
and 60 units, and execution times 8, 10 and 8 units respectively. Each task instance generates an event after 8
units of execution. The event generation sequence iN illustrated in Figure l. As can be seen, the events
generated by task I and task 3 are periodic, with event of task I occurring at time 8, 28, 48,... and events of
task 3 occurring at time 52, 112,.--. On the other hand, the.events generated by task 2 (at time 16, 38, 76, 98,
•..) do not correspond to exact periodic intervals. The event sequences of task I and 3 would also not be I
periodic if the stochastic execution nature of a task is taken into account. A server task which processes these
events would therefore violate the behavior of a pure periodic task [5] and can cause deadlines to be missed
earlier [4].

The solution to this "jitter" problem is the use of a sporadic server task (11] to process the asynchronous
events. The sporadic server executes at a high priority, and is assigned a period as well as some computational
time during that period. Any continuous computational time consumed by servicing monitor requirements, can
be replenished a server's period after the beginning of this consumption.

The execution pattern repeats every hyperperiod which is 60 time-units (LCM of 20, 30 and 60) for this task
set. Suppose that each event can be processed in I time-unit. A total of 6 events are generated during the
hyperperiod, and hence a server task must have a capacity of at least 6 units every 60 time-units to process these
events. The server task can be assigned the highest priority by giving it a jeriod of 20 and a per period capacity

of 2 units. The total utilization of the task set with the server is M + 5 + 3 + M = 0.96, and a critical zone

analysis shows that the task set is schedulable.

The execution sequence with the server, and the server replenishment profile are also shown in Figure 1.b and
l.c respectively. Note that at times 57, 117,... , an event of task 3 has occurred, but the server does not have

any capacity. Hence, the processing of the event takes place after 1 time-unit when the server's capacity is
replenished by I unit. Events are processed immediately at the highest priority at all other times. If the sporadic
server executes at background priority in the absence of capacity, this event could have been processed
immediately as welL In other cases, additional capacity may have to be assigned to the sporadic server if an

expression must be tested immediately after an associated event occurs.

If some expressions to be tested by the asynchronous monitor are mutually independent, multiple sporadic server
tasks each responsible for one set of inter-dependent expressions can be created. If the possibility of an overload is
present, events, expressions and handling of violations can themselves be prioritized. As a result, if an overload I
does arise, the more critical expressions would still be tested and the appropriate error handlers would be invoked.
Given a sporadic server implementation, 'he model is relatively straightforward to implement on a uniprocessor.]

Synchronous monitoring: This case is much simpler. The event processing time can be treated as part of the
execution time of the task generating the event. The shared event history can be a source of blocking and a real-time
synchronization protocol such as the priority ceiling protocol [9] can be used to access it. As a result, a task can be I
blocked for at most one event processing of a lower priority task, and the corresponding schedulabiity test can be
carried out [9]. If blocking occurs on events that are yet to occur, its schedulability impact would be application-

dependent and is beyond the scope of fti paper.

3.2. Multiprocessor and Distributed Implementations J j
This section outlines possible extensions of the uniprocessor scheme to multiple processor systems. Additional

requirements consist of

a schedulable communication medium (such as a priority-based backplane bus or a token-ring) and

100

I
I

0 a message-passing model to pass event histories between processors for asynchronous monitoring.

* a shared memory model or a remote procedure call model for synchronous monitoring.

In a multiple processor system, centralized, distributed or hybrid implementations are possible. In a centralized
implementation, there is a a single monitor just like in the uniprocemr case, and events happening on otherI processors must be communicated to the central monitor. Clearly, this scheme involves more overhead and is
inefficient. In addition, if a common clock is absent, clock variations (even for synchronized clocks on different
processors) must also be taken into account and specified as part of the timing expressions. In a decentralizedIenvironment, a monitor would exist on each processor. During initialization, each monitor would query other
monitors in the system and maintain a list of events being monitored by each. Whenever an expression has to be
evaluated, the monitor attempts to perform the evaluation locally, if possible. If not, it contacts the monitors thatI maintain the required event histories to obtain the information not locally available. Alternatively, each monitor
also obtains during initialization the expressions evaluated by other monitors. When a local event that is of interest
to other monitors occurs, each monitor multicasts the event to the monitors which need access to this event history.
As a result, when an expression has to be evaluated, a monitor would have all information locally. In a hybrid
scheme, a local monitor on each processor and a global monitor would be present. When an event of external
interest occurs, each local monitor performs a write-through to the global monitor. Therefore, when the evaluation
of an expression requires external event history, only the global monitor needs to be contacted. A demand-based
version of this scheme is also possible, where the global monitor acts as a repository of information about which
monitor maintains which event history.

For asynchronous monitoring, the messages to be transmiued between distributed monitors must be scheduled
such that they will be guaranteed to reach their destinations by specific points in time. As a result, it is possible
determine when the event histories required to evaluate an expression would be available at a monitor. Naturally,
the workload to be scheduled on the communication medium depends on the type of scheme adopted. Since the
transmitted messages will not be exactly periodic, they would need to be scheduled again using a sporadic server.
The reader is referred to [10] for a detailed schedulability analysis of such a message-passing paradigm. Finally,
since events can be generated in physically separate processors, expressions cannot be tested as soon as they happen,
and there will a time-lag between event occurrence and expression evaluation.

For synchronous monitoring, the multiprocessor priority ceiling protocol [7] may be used in shared memory
systems, and the multiple processor priority ceiling protocol [61 may be used in distributed systems. TheIcommunication medium must still be scheduled using a sporadic server task.

j4. Concluding Remarks
This paper described our current studies on integrating the notion of monitoring system behavior with scheduling

real-time tasks. Our objective is to design real-time systems which are not only predictable in a benign environment
but also robust in the presence of failures. We present how the monitor can be scheduled on a uniprocessor, and
outline implementation schemes for multiprocessors and distributed systems. The approach illustrates that
synchronous or asynchronous monitoring of constraints can be integrated with scheduling real-time activities of theJsystem. Th chief advantage of the approach ii that the explicit scheduling of monito-ing activities allows
arbitrarily complex expressions to be evaluated at runtime.

I01

Im

References

1. Chodrow, S., Jahanian, F., and Donner, M. A Run-Time Monitor for Real-Time Systems. IBM Research
Report, April, 1991.

2. Donner, M. and Jahanian, F. "RTL meets ORE". Proc.of IEEE Workshop on Real-Time Operating Systems and
Software (May 1990), 55-61.

3. Jahanian, F. and Goyal, A. "A Formalism for Monitoring Real-Time Constraints at Run-Time". Proc. of 20th
Fault-Tolerant Computing Symposium (June 1990), 148-155.

4. Lehoczky, J. P., Sha, L. and Strosnider, J. "Enhancing Aperiodic Responsiveness in A Hard Real-Time
Enviropment". IEEE Real-Time System Symposium (1987).

5. Liu, C. L. and Layland J. W. "Scheduling Algorithms for Multiprogramming in a Hard Real Time
Environment". JACM 20 (1) (1973), 46 -61.

6. Rajkumar, R., Sha, L., and Lehoczky J.P. "Real-Time Synchronization Protocols for Multiprocessors".
Proceedings of the IEEE Real-Time Systems Symposium (1988), 259-269.

7. Rajkwnar, R. "Real-Time Synchronization Protocols for Shared Memory Multiprocessors". The Tenth
International Conference on Distributed Computing Systems (1990).

8. Sha, L., Lehoczky, J. P. and Rajkumar, R. "Solutions for Some Practical Problems in Prioritized Preemptive
Scheduling". IEEE Real-Time Systems Symposium (1986).

9. Sha, L., Rajkumar, R. and Lehoczky, J.P. "Priority Inheritance Protocols: An Approach to Real-Time
Synchronization". IEEE Transactions on Computers (September 1990), 1175-1185.

10. Sha, L., Rajkunar, R., Locke, C. D. "Real-Time Applicatiori Using Multiprocessors: Scheduling Algorithm
and System Support". Submitted for publication (1991).

11. Sprunt, H. M. B. Aperiodic Task SchedulingforReal-Time Systems. Ph.D. Th., Carnegie Mellon University,
August 1990.

10Io2

New Paradigms for Real-Time Database Systems

Robert P. Cook, Sang H. Son, Henry Y. Oh, Juhnyoung Lee

Department of Computer Science
University of Virginia

*Charlottesville, VA 22903

1. Introduction
*Real-time database systems (RTDBS) are database systems where transactions have timing con-

straints such as deadlines. The correctness of the system depends not only on the logical results but also
on the time within which the results are produced. In RTDBS, transactions must be scheduled in such a

' way that they can l- ., J L.A --e their corresponding deadlines expire. For example, both the update
and query in the trac rang data 13; nission must be processed within given deadlines.

Conventio. , '.,,abase systems are typically not used in real-time applications due to poor perfor-
mance and lack o, prdictability. In other words, paradigms used in conventional database systems are
not suitable in real-time database systems [Son90]. To address this problem, we have been investigating
new database technology and paradigms for real-time systems using both theoretical as well as experi-
mental approaches. They can be grouped into the following research tasks: (1) investigating new proto-
cols for transaction scheduling, concurrency control, and checkpointing, and (2) developing experimental
database systems that can provide real-time features over conventional relational databases. New schedul-
ing and concurrency control protocols developed in the first task are being implemented in the experimen-
tal database systems and the prototyping environment for performance evaluation.

Our research effort in the area of real-time transaction scheduling has resulted in two new protocols:
one based on locking [Lin90] and the other on timestamp ordering. In the area of experimental database
systems, we have been developing a suite of database systems on several platforms. Currently, our
research utilizes the UNIX, StarLite [Cook90], and ARTS operating systems [Tok89]. Experimental data-
base systems we have developed on these platforms are the Multi-user Real-time Database (MRDB),
Parallel Real-time Database (PRDB), and Real Time Database (RTDB), respectively [Son9l], All three
systems are based on the relational paradigm. Much of our development consists of implementing new
functionality on the most appropriate platform, and where applicable, porting the result to one of the oth-
ers. In this paper, we outline the scheduling protocol based on timestamp ordering and our experience
with PRDB development.

j 2. An Optimistic Concurrency Control for Real-Time Transaction Scheduling
In real-time transaction scheduling, the actual execution order of operations is determined by two

factors: priority order and serialization order among transactions in system. The difficulties in real-time
transaction scheduling arise from the fact that these two factors have different natures and are constructed
in different ways. While serializable execution order is strictly bound to the past execution history, the
priority order does not reflect the past execution history and may dynamically destroy the order set up in
the past execution, hence serializability. By identifying the effects of the interactions between serializa-
tion order and priority order in scheduling real-time transactions, we can build more intelligent conflict
resolution schedulers.

One approach to real-time transaction scheduling is to make the priority order and serialization
order compatible as much as possible in order to increase the probability of satisfying both timing and

'This work was supported ia part by ONR contract # N00014-88-K-0245, by NOSC, and by IBM FSD.

103

consistency constraints. One way to make the two orders compatible is to adjust serialization order I-
dynamically to priority order. This approach can be justified because serialization order is not subject to
timing constraints as long as it enforces serializability, while we assume that the priority order of a tran-
saction is statically determined when it arrives in the system.

Integrating a concurrency control protocol with priority-based scheduling methods has the inherent
disadvantage of being limited by the concurrency control protocol on which it depends. Two-phase lock-
ing and timestamp ordering depend on the immediate validation of operations, and do not provide a facil-
ity to adjust serialization order dynamically to priority order. To adjust the serialization order, we need to
delay determining the serialization order of conflicting operations, because once the serialization order is
determined, the orders of operations from transactions cannot be adjusted dynamically.

In optimistic concurrency control in which the serializability test (called the validation test) is made
only at the end of a transaction, the serialization order can be constructed dynamically in compliance with
transaction timeliness and criticality. Furthermore, owing to its potential for a high degree of parallelism,
optimistic concurrency control is expected to perform better than two-phase locking or timestamp order-
ing in real-time transaction scheduling.

We have developed an optimistic concurrency control protocol based on the notion of dynamic
timestamp allocation [Bok87]. In this protocol, the serialization order is dynamically constructed by
using intervals of timestamps. The protocol uses a backward validation scheme, in which validating a
transaction is performed against committed transactions. It also updates the timestamp intervals of active
transactions to adjust their serialization order. As in other optimistic protocols, the execution of a transac-
tion in our protocol is divided into three phases: read, validation, and write. However, unlike other
optimistic protocols, conflicts and nonserializable executions are detected during the read phase of tran-
saction execution, minimizing wasted work due to later restarts of transactions. I

The goal of this protocol is to enforce serializability by satisfying the following two conditions (CI)
and (C2) through every read, prewrite, and validation. As long as (CI) and (C2) are satisfied, serializa-
tion order can be adjusted in favor of priority order without violating data consistency.

(C1) Each timestamp interval constructed when a transaction accesses a data object should preserve the
order induced by the timestamps of all committed transactions which have accessed that data
object. r

(CI) The order induced by timestamp values of a validating transaction should not destroy the serializa-
tion order constructed by the past execution, i.e., by committed transactions.

Before describing the algorithms for the read and validation phases, we summarize the information
used to keep track of the dependencies among transactions:

* for each active transaction T, its readset, RS (T), and writeset, WS (T); I I
* for each committed transaction T, a timestamp ts (T) assigned in its validation phase;
* for each active transaction T and for each data object x it has read or written in its read phase, an inter- I.

val of timestamps I (Tx); and
* for each data object x, RTS (x) and WTS (x), which denote the largest timestamps of the committed

transactions having read or written x, respectively. I U
In order to decide whether a transaction T is involved in a nonserializable execution, all the times-

tamp intervals of T are grouped as 1(T) = r) I (Tx) for X being the set of data objects accessed by T.
XEX N

I (T) preserves the order between T and committed transactions. Any operation of an active transaction T
which introduces a nonserializable execution can be detected by checking whether the execution of the
operation results in I(T =0. I i

104 3

In the implementation, with each transaction T is associated its current interval 4,(T) instead of
I (Tx)'s and 1(T). At the start of T, l,(T) is initialized as [0, -e) (the whole set of allowable timestamps).
For each read or prewrite-made by T, (T) is adjusted according to dependencies induced by the opera-
tion to satisfy (C1). A transaction T must be restarted when ((T) = 0. The gradual construction of a
serialization order by using lc(T) makes it possible to detect nonserializable executions even before the
transaction reaches its validation phase. Furthermore, every transaction that reaches its validation phase
is guaranteed to commit in this protocol.

We present the protocol via the following pseudo code. We bracket a critical section by "<" and
">", and assume that timestamp intervals contain only integers.

Read phase

< for every data object x in RS (Ti) do
4M(T) := I'(Ti)n1 WTS (x)+I, .) >

if t,(Ti)=O then restart(T)

< for every data object x in WS(Ti) do
t(T) := 1(T)n[WTS (x)+l, -c) -[RTS (x)+l, ,,)>
if 1(Ti)=0 then restart(Ti)

Validation and Write phase

< choose ts (Ti) in l4(Ti)
update RTS (x) and WTS (x) for every x in RS (Ti) and WS (Ti)
adjust 4,(Tj) >
make its updates permanent in the database

The validation of a transaction means that the execution of the operations from the transaction is
serializable, and the execution should be reflected in the serialization order of committed transactions.
Thus we should choose a timestamp for the transaction to satisfy (C2), update RTS and WTS for data
objects it accessed, if necessary, and adjust the timestamp intervals of all active transactions which
conflict with it to satisfy (Cl). Any timestamp tsE l(Ti) satisfies the condition (C2). The adjustment pro-
cedure is as the following:

Interval Adjustment Operation

j< for every data object x in RS (Ti) do
for every transaction Ty which has written x do

l Ic,(Tj) := I'(Tj)n~ts (Ti)+l, **) >

if I,(Tj)=O then restart(T/)

< for every data object x in WS (Ti) do
for every transaction Tj which has read x do

I :- t (Tj)n[O, ts (Ti)-1]
for every transaction Tj which has written x do

4 (T) := IC(Tj)nttS (T*)+l,) >
if tc(Tj)=O then restart(Tj)

The Adjust procedure given above can be modified in several ways to integrate priority scheduling
with this protocol. As a simple approach, we can adjust the size of lc(Tj) of an active transaction Tj.
Because the size is correlated with the probability of restarting of the transaction, for priority scheduling,
a transaction with higher priority needs to have a larger timestamp interval than a transaction with lower
priority. When adjusting the timestamp intervals of active transactions, if we give larger timestamp

105

intervals to transactions with higher priority over transactions with lower priority, then we can decrease
t the risk of restarting higher priority transactions. The choice of a timestamp of the validating transaction

also has a definite effect on the active transactions which conflict with it, because the timestamp intervals
of those transactions are adjusted according to the timestamp chosen.

As another approach, the priority wait strategy [Har90] in which the validating transaction waits for
the conflicting transactions with higher priority to complete, can also be used in this protocol. The advan-
tage of this strategy is that a higher priority transaction is not restarted due to the validation of a lower
priority transaction. While a lower priority transaction is waiting, it is possible that it will be restarted
due to the validation of one of the conflicting higher priority transactions.

3. A New Parallel Paradigm for Real-Time Database System
One important advance in computing technology is the emergence of parallel computers. In a data- I

base system, there are at least two levels in which parallelism can be exploited. The first level contains
the basic database operations. The basic idea behind these algorithms is to partition a single database 7
operation into multiple sub-operations, perform those sub-operations simultaneously and then combinethe separate results into one. For example, the join operation can be performed in parallel by dividing one
of the two relations into several blocks and joining each block with the other relation simultaneously. As
a large amount of data are usually involved in each database operation, it is essential from a performance F
standpoint that accessing the data should be done efficiently. New techniques to organize indices and to
structure data files are needed.

The second level is the query processing level in which different queries can be executed simultane-
ously if they do not conflict. For example, two CREATE operations can be executed in parallel on dif-
ferent processors or the interpretation of two expressions can be done simultaneously. Here we are only
concerned with parallelism at the second level.

PRDB is an experimental, real-time database system that runs on an emulated tightly-coupled,
shared-memory multiprocessor system in the StarLite software development environment, running on
UNIX under SunView/X Windows. The overall design goal of PRDB is to provide a general paradigm
for exploring parallelism and implementing different real-time scheduling policies in database systems. 1
The paradigm has evolved from the WorkCrew model [Rob89]. The major advantage of the WorkCrew
paradigm is its efficient mechanisms to control and manage parallelism by creating the minimum number r
of processes in the system and the employment of a lazy evaluation technique for posted work. The syn- [
chronization of concurrent tasks and the overhead of task decomposition are minimized.

In the WorkCrew paradigm, tasks are assigned to a finite set of workers. A task may consist of
several subtasks. If some of the subtasks can be executed in parallel, they are put into a "request-help"
queue of the worker. Any idle worker can take over the subtasks and execute them. The WorkCrew para-
digm has two advantages. First, much of the work associated with task division can be deferred until a
new worker actually undertakes the subtask, and avoided altogether if the original worker ends up execut-
ing the subtask serially. Second, the number of active workers in the system is always equal to the
number of processors.

However, the WorkCrew paradigm has two limitations that prevent it from becoming a general
framework for parallel computing. The first limitation is that there is no general mechanism to retrieve
results. In the WorkCrew model, the results of operations are reflected in the preallocated space. If opera-
tions produc- some new results apart from the results stored in preallocated space, which is usually the [
case for most of the applications, there is no way to retrieve those results. The second limitation is that
there is no way to specify different operations to be performed on data, i.e., the procedure to manipulate a
set of data cannot be explicitly passed to each worker so that the worker can perform different operations.
Further, the WorkCrew model does not address the real-time requirements of the application. I

In our paradigm, the first limitation is addressed by providing a result queue for the crew. The
second limitation is dealt with by passing the handler for operations as a parameter to each worker. hese

106 {

improvements require the extension of the concept of work. The concept of work in the WorkCrew para-
digm is a passive entity and consists only of the data items to be manipulated. In the PRDB paradigm, the
concept of work is still a passive entity, however, the contents of work not only consist of data items to be
manipulated, but also the operation to be performed on the data items and the timing-constraint informa-
tion for the work to be performed.

The real-time transaction scheduler and the CPU schedulers (called dispatchers) are separated. The
real-time transaction scheduler is implemented by the crew, while the dispatcher is implemented within
each worker. The real-time transaction scheduler schedules tasks according to its own policies and puts
them onto two work queues residing on the crew. One of these two queues is for hard deadline tasks and
the other is for soft deadline tasks. Since each worker has also its own "request-help" queue, the search
path of work to do by an idle worker begins with the hard-deadline queue of the crew, then the
"request-help" queues of the workers, and finally the soft deadline queue of the crew. If the deadline has
passed, the workers immediately write the result into the result queue indicating the missing of a dead-
line. Otherwise, the work is performed and results are returned through the result queue. In the case where
a worker has to synchronize with other workers in performing a task, the worker blocks and a new worker
is created to help the other workers' work. Thus, the number of the active workers is always equal to that
of the processors in the system, if the work load is high.

IThe data structures of a unit of work and a unit of result are as follows:

WORK = RECORD
critical : CARDINAL; (* hard vs soft deadline *)
deadline : Time; (* the deadline is checked before executing the operation *)
operation: PROCEDURE; (* specifying the operation *)
paramAddr: ADDRESS; (* pointer to the work to be done *)I N; size : CARDINAL; (* the size of the work data structure *)

END;

RESULT -RECORD
I missDeadline: BOOLEAN; (* missed deadline? *)

finishTime • Time; (* the finished time of a unit of work *)
resultAddr ADDRESS; (* pointer to the result data structure *)
size : CARDINAL; (* the size of the result data structure *)

END;
The major functions provided by the paradigm are starting a crew of workers, destroying a crew ofj_ workers, modifying the number of workers in a crew, assigning work to a crew, requesting help by a

worker, testing whether the requested work has been done by other workers, and waiting for some work to
be finished.

Each basic database operation is written by using the functions provided above if some part of the
basic database operation can be done in parallel. Initial results have indicated the soundness of the para-
digm for parallel real-time database computing. More thorough experiments are being carried out. We
believe that this new paradigm will scale well to large number of processors in the system and will be
efficient in scheduling real-time transactions.

The data given below are the relative speedups of PRDB over the RDB system. The workload for
the experiments is the same for the uniprocessor which runs the RDB system and the multiprocessor sys-
tern which runs PRDB. The first experiment (Testl) consists of 26 "Create" operations and 22 "Insert"'
operations. Each "Insert" operation inserts 15 tuples in a different relation with three attributes each.
Other experiments (Tests 2 and 3) consist of the same operations as Testl, however, each "Insert" opera-Ition in Test2 inserts 25 tuples, while each "Insert" operation in Test3 consists of 50 Tuples. The results
show that PRDB favors coarse-grained parallelism in the computation.

107

-- --

re RDB erRDB
Numher of nrocegor 1. 2 3 4 5 6
Testi Time Units 4613 3704 3074 2593 2515 2447

Sneedup 1.24 1.50 1.77 1.83 1.88
Test2 Time Units 9046 5761 4170 3471 3120 2904

Speedup 1.57 2.16 2.60 2.89 3.11
Test3 Time Units 26195 14276 9878 7813 6752 5841

Seeduo 1.83 2.65 3.35 387 4.48

4. Concluding Remarks
A real-time database manager is one of the critical components of a real-time system. To satisfy

timing requirement, transactions must be scheduled considering not only the consistency constraints but
also their timing constraints. In addition, the system should support a predictable behavior such that the
possibility of missing deadlines of critical tasks could be informed ahead of time,, before their deadlines
expire. In this paper, we have presented new paradigms that exploit the ideas of dynamic adjustment of
serialization order and parallel computing. We are currently working on the performance evaluation of
new paradigms using the prototyping environment as well as experimental database systems.

REFERENCES

[Bok871 C. Boksenbaum, M. Cart, J. Ferrie, and J. Pons, "Concurrent Certifications by Intervals of
Timestamp6 ip Distributed Database Systems," IEEE Transactions on Software Engineering,
Vol. SE-13, No. 4, April 1987.

ICook90 R. Cook, and Y. Oh, "The StarLite Project," The 3rd Sym. on Frontiers of Massively Parallel
Computation, Univ. of Maryland,College Park, Oct.1990.

[Har9O] J.R. Haritsa, M.J. Carey, and M. Livny, "Dynamic Real-Time Optimistic Concurrency Con-
trol," IEEE Real-Time Systems Symposium, Orlando, Florida, December 1990.

[Lin90] Y. Lin and S. H. Son, "Concurrency Control in Real-Time Database Systems by Dynamic
Adjustment of Serialization Order," IEEE Real-Time Systems Symposium, Orlando, Florida,
December 1990.

[Rob89] E. S. Roberts, and M. T. Vandevoorde, "WorkCrews: An Abstraction for Controlling Parallel-
ism," DEC SRC Technical Report, April 1989.

[Son90] S. H. Son, "Real-Time Database Systems: A New Challenge," Data Engineering, vol. 13, no.
4, Special Issue on Directions for Future Database Research and Development, December
1990.

[Son9l] S. H. Son, M. Poris, and C. lannacone, "Implementing a Distributed Real-Time Database
Man.ger," The Second International Symposium on Database Systems for Advanced Applica-
tions (DASFAA '91), Tokyo, Japan. April 1991.

[Tok891 H. Tokuda and C. Mercer, ARTS: A Distributed Real-Time Kernel, ACM Operating Systems
Review, 23 (3), July 1989.

108

Generating Synthetic Workloads for Real-Time Systems

Daniel L. Kiskis and Kang G. Shin

IReal-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

I
ABSTRACT

In this paper, we describe a software system which generates synthetic workloads for use
in the performance evaluation of distributed real-time computer systems. The software system

consists of a high-level description language and its compiler. The language provides a flexible,
easy-to-use description of the structure and behavior of the real-time workload. The compiler,
called a synthetic workload generator (SWG), uses this description to produce an executable
synthetic workload (SW). The SW may then be used to drive the system under evaluation while
measurements are being made.

1 Introduction

Real-time systems have strict performance requirements. To determine if these require-
ments are met, the performance of a system is evaluated through experimentation. During
the experiments, the values of selected performance indices are measured while the system is
running a workload. The selection of the drive workload directly influences the results of the

1evaluation.
One possibility in the selection of the drive workload is to use the actual application software.

However, there are a number of situations where the real workload is unavailable or unrealistic.
ISuch situations include new systems where an application workload has not yet been developed

and critical systems where, for safety reasons, performance evaluations must be done off-line.
In these cases, we advocate the use of an SW as the drive workload. An SW consists primarily

Iof a set of parameterized synthetic application tasks (SATs) which execute on a system and
-= produce demands for resources. It also includes a driver task which controls the actions of the

SW to facilitate the use of the SW during experimetitation. It controls when the SW starts and
stops. It also determines when the individual tasks execute.IIn this paper, we describe a suite of software tools which we have designed and implemented
to support the specification, generation, and execution of SWs for a distributed real-time sys-
tem. This suite provides the high level support necessary to efficiently produce SWs which are
customized for a particular evaluation. The suite consists of the synthetic workload generator
(SWG) and some minor support programs. The SWG compiles a description of the workload

The work reported in this report was supported in part by the NASA under Grant No. NAG-1-296 and NAG-

1-492 and the Office of Naval Research under Contract No. N00014-85-K-0122.

1- 109

LI

I

I

that is specified in the synthetic workload specification language (SWSL). SWSL describes the
structure of the SW based on a dataflow model.

There are two primary goals in the design of the SWG suite. The first is to be capable of
accurately representing actual real-time workloads. This goal is met through the selection of
an appropriate workload model. The model was chosen to reflect the structure of the software
which composes the workload being modeled. By accurately modeling the structure of the
workload, we also capture many of its behavioral characteristics. Representativeness is enhanced
by the selection of parameters for the objects in the workload. Parameters are defined for both
the SATs and the resources that they use and, possibly, share. These parameters were selected
to reflect both common software properties and those properties which are specific to real-time
software.

The second goal in the design of the SWG suite is ease of use. All components of the suite
should be eaby to use while retainiiig their flexibility and power. Ease of use is enhanced by the
simple, regular structure of SWSL. The language structures allow one to change both the values
of parameters and the interactions between SATs with little effort. We also provide a simple
user interface to the SWG. It is completely automated to handle all the various compilation
stages and their corresponding intermediate files.

This paper is organized as follows. In Section 2 we describe the notation used to specify
the SW. In Section 3 we discuss the functions of the SWG, and in Section 4 we discuss the SW
which is being supported by the SWG suite. Section 5 we give our summary and discuss our
future work.

2 The Workload Model

The workload model provides a high level description of the structure of the workload. We
represent this structure using a dataflow notation. A dataflow notation was chosen because
it is commonly used to specify software structure. Workload specifications in other dataflow
notations may be easily translated into our dataflow notation. The translated workload will
retain the structure of the original. Hence, it will be quite representative. Using our notation,
we can specify both the individual tasks and the interactions between tasks.

2.1 Task Level Notation

The notation is divided into two levels of abstraction. The higher level, or task level,
defines the tasks, the resources they use, and their interactions. The task level notation uses
formalisms borrowed from the area of structured analysis (SA). In particular, we base the
notation on ESML, an SA notation created by Bruyn et al. [2]. ESML was developed for the
high-level specification of real-time software. It is a combination of the Ward/Mellor [10, 9]
and Boeing/Hatley [4] SA notations. These two notations were independently derived and
use differing approaches to add timing and control information to the basic data flow model
developed by DeMarco [3].

By basing our notation on the SA notation, we accomplish our primary goals. First, we tie
the structure of the SW directly to the structure of the workload, thus improving the ability
of the notation to accurately model actual workloads. Our notation is the first to be based on
a high-level software specification notation. Previous systems were based either on low-level

- 110

I
specifications such as flowcharts [1, 8] or on high-level notations such as UCLA graphs [6] which
are not related to software specification notations. Second, we make it easier for the user of
the SWG suite to produce workloads. The SA notations are commonly used by CASE tools for
high-level software specification. Hence, it is likely that the actual or proposed workload being
modeled has been specified in terms of an SA or similar notation. To produce a description of
the workload in our notation, the user must translate the specifications. This process may be
performed manually, or may be automated as part of a CASE tool. By using a similar notation,
we simplify the translation.

SWSL defines the workload in terms of transformations, flows, stores, and terminators.
Transforma.'ons represent units of computation, generally tasks. Flows are data and control
paths. Stores are units of data storage, and terminators are interfaces between the workload
and the environment. The parameters for these objects define characteristics such as task
interactions, scheduling requirements for tasks, and access properties of shared objects.

2.2 Operation Level Notation

The lower level abstraction in the notation is the operation level. It defines the task's internal
structure, behavior, and the manner in which it uses resources. This notation is similar to that
used by Singh and Segall [7] in the Pegasus system. A task is defined in terms of sequences of
operations and control logic. Each operation represents the use of a single resource by the task,
and the control logic determines the sequence in which the resources are used.

The control structures consist of loops and branches. They execute probabilistically to
simulate the variation of program execution based on the value of the task's input data. Hence,
the SATs simulate the random execution time distributions of real application tasks. The
control structures also cause the SATs to simulate the resource usage patterns of the real
application tasks and not just the quantities of resources used. By simulating the random
execution times and the resource usage patterns, the SW models the workload more realistically.
This realism is necessary when studying real-time systems. The SW must express the time-
specific behavior of the workload. It is this behavior which affects the real-time aspects of the
system.

3 The Synthetic Workload Generator

The SWG compiles the SWSL specification to produce the SW. It reads the task level de-
scription and produces parameter tables. These tables describe the structure and parameters
of the task level notation in a form that may be used by the SW driver. The SWO compiles the
operation level description to produce C code. Each operation in the description is expanded

4 into its equivalent code. This code is stored in a library containing code for all possible oper-
ations. Later, the SWG invokes the C compiler to create the object code for the SATs. This
object code is then linked with the parameter tables and the object code for the SW driver to

jproduce the complete executable SW.

The SWG offers a number of support features to aid in the creation of SWs. It performs
syntax and semantic error handling on the input files. It also does consistency checking on
the datafiow graph for the workload. It enforces the construction rules for the notation, thus
reducing the probability of logical errors in the SW.

11

The SWG provides another important feature. It supports the automatic creation of repli-
cated objects from templates in the SWSL specification. This feature is used when multiple
tasks in the workload have the same parameter values. The user specifies the structure of one
instance of the task. The task definition states that a copy of the task be executed on each
of a number of different processors. Those copies are then generated automatically. The user
does not need to individually program the specifications of each copy of the task. The SW
specifications are therefore smaller and less likely to contain errors.

Replicating tasks involves both creating copies of the task and resolving naming conflicts
caused by the replication. Copying the task is simple; resoiving the naming conflicts is more
difficult. Name resolution involves processing each task in the workload. Any reference to the
replicated task must be replaced with a reference to the appropriate copy of the task. SWSL
defines rules for determining which copy to reference. These rules may be superseded in the
specification of an individual Lomponent by explicitly specifying which copy is to be used.

4 The Synthetic Workload

The output of the SWG is an executable SW. Our prototype SW is described in [5]. The SW
executes on a distributed system. Each processor executes a driver task and the appropriate
SATs. The driver controls the activities of the SW in the context of the experiment. An
experiment is divided into a number of independent runs. A run is a single execution cycle
of the SW. During each run, the SW is initialized by the driver, and the SATs execute and
eventually terminate. In the SWSL description of the SW, the user specifies the number of
runs. For each component of the workload, different parameter values may be specified for each
run.

At the beginning of each run, the driver initializes the SW. It reads the parameter tables
which were produced by the SWG and creates the specified SATs. Next, the drivers on all
processors synchronize. Once synchronized, they begin the execution of their respective SATs
as specified by the SATs' parameters for that run. By synchronizing at the beginning of each
run, the driver ensures that the SW's behavior will stabilize quickly. The SW must be executing
stably before accurate measurements may be made on the system. There are two ways to specify
the end of a run in the SWSL specification. The first is to specify a time limit for the run.
The second is to specify a condition, which, when met, indicates to the driver that the run
has completed. An example of such a condition is the completion of N executions of a specific
periodic SAT. When the driver determines that a run is over, it stops the execution of the SW.
All SATs are reset and system resources are returned to their initial states. The driver then
waits before beginning the next run. This wait gives the user an opportunity to upload locally
stored performance data or to reset external measurement devices. The driver begins the next
run when it receives a signal from the user.

The SW is designed to be compatible with a wide range of performance measurement
techniques. It executes as an application on the target system. Therefore, it may be used
with any measurement mechanism which is part of the hardware, system software, or which
is external to the system. It requires no special support and therefore will not interfere with
these mechanisms. It also may be used with software measuremek.. mechanisms which are not
part of the system software. These measurement tasks may be specified as SATs. They will be
invoked by the driver and will execute for the duration of the run.

112

5 Summary and Future Work

3As real-time systems become larger and more complex, we need more sophisticated tools
to analyze their performance. The SWG suite is one such tool. It is designed to produce
SWs which execute on distributed real-time systems. The workload model and corresponding
language are specifically defined to describe the structure and behavior parameters of real-time
workloads. The SWG supports features such as replication of tasks which facilitate its use on
a distributed system. Finally, the SW is designed to support experimentation.

The SWG as described is operational. All functions described in this paper have been
implemented. We will be using the SWG to make baseline performance measurements of the
experimental, distributed real-time system HARTS and its operating system HARTOS. Both
tHARTS and HARTOS are under development at the Real-Time Computing Laboratory at the
University of Michigan. As we use the SWG suite and become more experienced with the
problems of performance evaluation, we will be upgrading the SWG software to incorporate
new features.

References

[1] R. Baird, "APET - a versitile tool for estimating computer application performance,"
Software - Practice and Experience, vol. 3, pp. 385-395, 1973.

[2] W. Bruyn, R. Jensen, D. Keskar, and P. Ward, "ESML: An extended systems modeling
language based on the data flow diagram," ACM Software Engineering Notes, vol. 13, no.
1, pp. 58-67, 1988.

[3] T. DeMarco, Strucured Analysis and System Specification, Prentice-Hall, New Jersey,
1978.

[4] D. J. Hatley and I. A. Pribhai, Strategies for Real-Time System Specification, Dorset House
Publishing, New York, 1987.

(5] D. L. Kiskis and K. G. Shin, "A synthetic workload for real-time systems," in Proc. Seventh
IEEE Workshop on Real-Time Operating Systems and Software, pp. 77-81, May 1990.

[6] A. Singh, Pegasus: A Controllable, Interactive, Workload Generator for Multiprocessors,
Master's thesis, Carnegie-Mellon University, December 1981.

[7. A. Singh and Z. Segall, "Synthetic workload generation for experimentation with multi-
-ocessors," in Proc. Int'l Conf. on Distributed Computing Systems, pp. 778-785, 1982.

[8] R. E. Walters, "Benchmark techniques: a constructive approach," The Computer Journal,
vol. 19, ro. 1, pp. 50-55, February 1976.

(9] P. T. Ward, "The transformation schema: An extension of the data flow diagram to
represent control and timing," IEEE Trans. Software Engineering, vol. SE-12, no. 2, pp.
198-210, February 1986.

[10] P. T. Ward and S. J. Mellor, Structured Development for Real-Time System, volume 1-3,
Yourdon Press, Englewood Cliffs, 1986.

113

I
Managing Beliefs, Desires, and Time in Real-Time Systems

Tom Biharit Prabha Gopinath Tom Wallisert

tamteagle. eng.ohio-state.edu I psg(philabs.philips.com

Adaptive Machine Technologies Philips Laboratories

1218 Kinnear Road North American Philips Corp.

Columbus 345 Scarborough Road
OH 43212 Briarcliff Manor, NY 10510

January 11, 1991

1 Introduction

Interest has been increasing in intelligent hard-real-time systems. This interest is driven by applications such as
the Pilot's Associate (3] and others, which require high-level reasoning abilities within a hard-real-time environment.
Tackling these applications requires combining hard-real-time technology with intelligent-system technology. Much
of the existing research in hard-real-time systems (HRTS) has been directed at specifying, expressing, and fulfilling
the timing requirements of a system. Such efforts have been oriented towards the concrete design-implementation
models (5] of a system (e.g., processes and deadlines). Timing constraints for a system are usually determined by the
interactions of the system with the external environment. Existing hard-real-time systems are designed to satisfy
real-time constraints in applications where timing errors can have serious consequences. However, such systems are
not usually required to exhibit intelligent "reasoning" behavior. A typical example of such a hard-real-time system
is a control computer for a dynamically unstable, fly-by-wire aircraft.

In contrast, much of the research in intelligent real-time systems (IRTS) has been directed at reasoning about time
with respect to abstract models of a system (e.g., tasks, environments, and intelligent agents [6]). Such reasoning may
include choosing timing constraints based on the goals of the system. Existing prototype systems exhibit intelligent
behavior and some degree of real-time behavior. However, such systems are not usually driven by hard-real-time
constraints. Typical examples of intelligent real-time systems include wheeled robots which are required to negotiate
a room containing obstacles, using ultrasonic or vision sensors. The robots are usually permitted to stop and "think"
as necessary.

Lately, however, driven by advances in both IIRTS and IRTS technology, and by the increasing complexity of
potential applications, the two areas of interest are beginning to converge. We believe that there is a need for design
methodologies that are consistent with both areas and that can be used for designing well-integrated systems.

Existing systems. such as the Adaptive Suspension Vehicle (2], which combine the need for high-level reasoning
with the need for hard-real-time performance, are often organized in distinct layers, where the higher-level layers
ire responsible for functions, such as planning, which are typically associated with the IRTS domain. These layers I
typically have flexible timing constraints. However, as one moves down the layers of the system, the functionality

of the layers shifts towards HRTS technology, with greater emphasis being placed on meeting deadlines and other
time-related specifications.

In this paper we describe an object-oriented programming methodology, and examine its appropriateness as a
model for comi'in-ng the HRTS and IRTS technology. As a specific example, we discuss the notions of desires and
beliefs taken from IRTS, and the implications of their application to the HRTS problem of controlling a robot arm.
We propose that complex applications, such as these, are best represented as a hierarchy of objects, where the desires I
and beliefs of objects are represented as object attributes.

2 Agents, Beliefs, Desires, and Goals

Shoham (6] describes agent-oriented programming as a computational framework in which agents - intelligent objects
- relate to one another, and the environment, based on such concepts as beliefs, desires, and goals. Agents believe j

114 ii

T_5

propositions about the world. Agents have desires about the world. When an agent decides to actively pursue a
desire. it formulates an appropriate goal. In this paper, we will equate desires with goals for simplicity. We assume
that if an agent desires something, it immediately forms a corresponding goal. In Shoham's language, for example,

< 9: 15, Btuarold < 9: 30. Gcatvin < 10 : 00, weld(Calvin, Carl4) >>>

means that at 9 : 15. Harold believes that at 9 : 30, Calvin will have the goal of welding Carl4 at 10 : 00. When
parsed in an LR fashion, such a statement can be viewed as being a hierarchy of beliefs and goals. However, at
any point during the execution of the application, there may exist a discrepancy between the beliefs (goals) of oneIlayer and the goals (beliefs) of an immediately neighboring layer. Such discrepancies result from race-conditions,
timing-skews, or simply delays in propagating information through the hierarchy. Therefore, when such high-level
statements are translated into lower-level constructs, they must be augmented with timing constructs which capture
the acceptable granularity of belief (goal) discrepancy.

Agents communicate by sending messages with well defined semantics. Two important message classes are Inform
messages and Request messages. Inform messages transfer beliefs and goals between agents. Request messages allow
agents to ask that other agents perform actions.

Shoham's research objectives include the automatic translation of such high-level statements into language con-
structs that can directly control the associated machines. Our goals are somewhat similar. We believe that, as
intelligent real-time systems become more complex, it will become necessary to continually trade the timeliness of
an action for the quality of its result. To do so in actual operation, it will be necessary to encode the meanings of
izeliness and qhialitv in a form that can be accessed by both human and automated decision-makers (e.g., processor

.schcd lers).

3 Timeliness

In real-time applications, time constraints are derived from the entities in the real world (e.g., agents, environments
and tasks) and the relationships among them. In robotics, for example:

Servo-control time constraints derive from the structures and dynamics (e.g., natural frequencies) of the objects
being controlled (e.g., the aluminum links of a robot manipulator), and how they interact.

Elemental-move motion-planning (i.e., planning how to move from point A to point B) time constraints derive
from the position and velocity required of the object and the positions and velocities exhibited by other objects
(obstacles).

lligh-level, task-planning time constraints derive from the overall capabilities of the agent (e.g., a robot fire-
fighter), the characteristics of the environment (e.g., a fire site), and the requirements of the task (e.g., putting
out the fire).

The flexibility of these time constraints (hard deadlines vs soft deadlines), and the degree to which they can be
traded for various levels of quality of the result, depend on the characteristics of the real world from which they are
derived, For example, it is difficult to dynamically change the natural frequency of a physical robot arm, so the arm's

scrvo eontrolier must operate near a given frequency. Fortunately, at the servo level, the arm's world is fairly static
and well understood. The servo computations usually take a fixed or tightly bounded amount of time. In contrast,
the task planner fo. a firefighting robot is operating in a more dynamic and less understood world. It is not possible
to plan optimally, using any fixed amount of computing resources, since there is always too much information, someof which is wrong, and some of which will become outdated by new information. Fortunately, the task planner may

be able to generate acceptable sub-optimal plans. as time and resources allow.

j 4 The Object-Oriented Model

Our model for integrating ItRTS concepts and design with IRTS concepts and design is built around our prior work
on hierarchical interacting objects [1, 4]. Objects typically correspond to real-world entities (e.g., manipulators,
sensors, etc.), although this is not strictly necessary. Figure 1 shows a system containing two objects: a Robot Arm

which can move to different positions and grasp payloads, and a Planner which generates task plans for the Arm to
perform.

' 115 _ _
I.

7F.

PLANNERAR

LGrippu

Si'oam

hsiboflFw

Figure 1: A Real-Time System

10 t Jof' ,

N0

H epwr
"w

mrI Gnppw

Figure 2: The Arm Object and Its Sub-Objects

Objects have attributes which have values. These values typically represent some aspect of the associated entity

(e.g., the velocity of a robot arm) represented by the object. Specifically, attributes can represent the beliefs and

desires of the objects. Attribute values are tuples with the form
< GenerationTime, ValidTime, Value >

The ValidTime is the time at which the Value is supposed to correspond to the state of the associated real-world

entity. The GenerationTime is the time at which the tuple was created. This creates a two-dimensional space of

values for each attribute. Values themselves may be complex entities, containing, for example, the expected value,
tolerances, probabilities, and so on

Objects are typically composed of sub-objects. Figure 2 shows the sub-objects of the Arm in Figure 1. The

attributes of such a composite object may be synthesized from those of its sub-objects (e.g., mass), or they may

reflect features unique to the composite object which are not found in the sub-objects (e.g., An Arm can "lift" a
payload, but a Gripper cannot.).

Objects interact by passing values among their attributes. Consider the Planner-Arm system. At any instant, the

Planner's desires and beliefs concerning the Arm may be separate from the Arm's desires and beliefs. For example,
the Planner and Arm may have the following attribute values:

Object Attribute Value

Planner BelievedArmPosition < 12:00, 1:00. 111 >
Planner DesiredArmPosition < 12:00, 1:00, 222 >
Arm BelievedArmPosition < 12:00, 1:00, 333 > -

Arm DesiredArmPosition < 12:00, 1:00, NONE >

This says that, at 12:00, the Planner believes that the Arm's 1:00 position will be Iil, but desires that it be
222. At 12:00, the Arm believes that its 1:00 position will be 333, and it has no desired position. T

'The attribute boxes in Figure I should not be confused with single buffers which are written and read. They simply represent the
objects' desires and beliefs, In actual implementation. these boxes might contain multiple buffers and queues.

116 1

PLANNER ARM

Move Arm

T()

T(M)

T(4)T

Drop Pryn

T(31 T

Figure 3: A Real-Time System

In a real-time system, objects frequently operate in Choose -. Ezecute -. Evaluate cycles. Based on its
existing beliefs, an object chooses a plan of action. It executes the action (by informing other objects of-its desires),
then evaluates the results (by updating its own beliefs). In thb Piauner-Arm system, this cycle might include the
transmission of an Inform message containing the value of the Arm's Believed-Arm-Position to the Planner's Believed-
Arm-Position and transmission of an Inform message containing the value of the Planner's Desired-Arm-Position to
the Arm's Desired-Arm-Position.

5 An Example

In this section, we will describe an example application, specify its required behavior, analyze the information content
and flow, and discuss design and implementation alternatives.

5.1 Task Specification

Consider the system in Figures 1 and 2. Suppose that in this application, the Arm is required to ungrasp (and drop)
a payload, which it is already holding, at a specific position P(drop), at a specific time T(drop). If the Arm is not
in position P(drop) at time T(drop), the payload should not be dropped.

The task plan generated by the Planner consists of two statements:

1. The Planner desires that the Arm be in position P(drop) at time T(drop).

I 2. IF the Planner believes that the Arm will be in position P(drop) at time T(drop), THEN the Planner desires
that the Arm ungrasp the payload at time T(drop).

5.2 Information Analysis

Figure 3 shows a possible sequence of events for the task. Based on its beliefs at time T(O), the Planner decides to
I begin the two-step plan. At T(1), the Planner informs the Arm that it desires the Arm to be in position P(drop) at

time T(drop). At T(2), the Arm begins the activities necessary to move the Arm. This may include iterations of the
Arm's own Choose - Execute - Evaluate, made up of small-grain motion planning, sensing, and servo control.
The Arm actually finishes moving to P(drop) at T(move done). This time may vary, depending on the previous
position of the Arm.

The Planner must know the likely success or failure of the Arm's movement by T(4), if the Planner is to request
that the Arm open its gripper by T(drop). Therefore, the Arm must inform the Planner of its expected position at

3 T(drop) no later than T(3).
The critical consideration for the belief accuracy of this system is the relationship between 'T(3) and T(move done).

If T(3) is before T(move done), then at T(3) the Arm cannot know for certain that its move will be successful. It
must send its current belief to the Planner. Suppose the Arm informs the Planner that it anticipates a successful
move. Between T(3) and T(move done), the Arm may encounter an obstacle or other problem preventing its move
to P(drop) by T(drop). The Arm no longer believes that it will be at P(drop) at T(drop), but the Planner still does,
and acts accordingly.

117- a

Assuming that the relationship between T(3) and T(move done) varies, it may be necessary to trade the timeliness
of the task (i.e., opening the gripper at exactly T(drop)) for the accuracy of the Planner's beliefs about the Arm's
position. Several options exist:

1. The Planner may wait until it is confident that the Arm is at P(drop), but waiting may prevent the Arm from 3
dropping the payload until after T(drop). U

2. The Planner may request that the Arm drop the payload at exactly T(drop), without high confidence that the
Arm is at P(drop). f

3. The Planner may choose to abort the task, and not drop the payload anywhere, unless there is a high degree
of confidence that the Arm is at P(drop) at T(drop). j

The choice depends on the relative costs of dropping the payload on the wrong position, at the wrong time, or
not dropping the payload.

5.3 Information Design

Figures 1 and 2 show the major components and interactions of the application. The desires and beliefs of the objects r
are encoded as attributes of the objects. For example, the statement: "At T(4), the Planner believes that the Arm
Position at T(drop) will be P(drop)." is described by giving the Planner an attribute called Believed-Arm-Position,
and giving the attribute the value: < T(4), T(drop), P(drop > where T(4) is the Generation Time described in
Section 4, T(drop) is the Valid Time. and P(drop) is the Value.

The transfer of desires and beliefs between objects via Inform messages consists of transferring attribute values.
For example, the statement: "At T(1), the Planner informs the Arm that it desires the Arm Position to be P(drop) at
T(drop). The Arm receives the information at T(2)." is represented as follows. The Planner's Desired-Arm-Position
attribute has the value: < T(1), T(drop), P(drop) >. The < T(drop),P(drop) > sub-tuple is transferred to theI1
Arm's Desired-Arm-Position attribute, resulting in the value: < T(2),T(drop), P(drop) >.

Notice that only the < ValidTime, Value > sub-tuple is transferred. This amounts to the Arm "internalizin-
the desires of the Planner - it accepts the Planner's desires as a command. That is, the Arm records the statement:
"At T(2), the Arm desires the Arm Position to be P(drop) at T(drop).". In general, it is possible to have arbitrarily
complex attributes, such as the Arm attribute: "The Arm's belief about the Planner's desire about the Arm's Position".

However, we believe that, for most hard-real-time systems in the robotics domain, "internalizing" beliefs can be
used to simplify designs and maintain acceptable real-time performance. I
5.4 Design and Implementation Choices

Detailed design and implementation of the Planner-Arm system requires many decisions which may affect the time-
liness and belief accuracy of the system. Passing beliefs and desires between objects involves sending and receiving
Inform messages, and associated issues such as message initiation and message transmission delays.

In the Planner-Arm system, which object(s) should initiate the transfer of information? In our object model, as
in others, two types of information transfei dre possible:

1. Value = Get(Object,Attribute,ValidTime) t

2. Put(Object,Attribute,ValidTime,Value)

The Put operation is simply an Inform message. The Get operation is actually two messages: a Request message
asking for the information and an Inform message containing the information. Both operations transfer information.
They differ in the control of the transfer. For example, if the-Planner needs to know the Arm's believed position at
"'(drop), there are two options: j

1. The Arm could send "Put(PlannerBelieved-Arm-Position,T(drop),Position)" to the Planner each time the Arm's
belief about its position at T(drop) changes. The Arm controls when the information is transferred.

2. The Planner could periodically send "Get(Arm,Believed-Arm-PositionT(drop))" to the Arm. The Planner con- I
trols when the information is transferred.

21

• :119

Option (1) may make sense when the Arm's belief changes significantly at well-defined points. When asked to
move to P(drop) by T(drop), for example, the Arm might first determine if P(drop) is in its possible range of motion;I then determine if the move from its current position to P(drop) is possible by T(drop); then execute the move. The
Arm's belief may become more certain after each step, and pass the updated information to the Planner.

Option (2) may make sense when the Arm itself cannot judge the significance of its beliefs. This is true, for
example, when the Planner is gathering general information about the Arm's state before it puts any plan into
action.

As a rule, the mechanism for transferring beliefs and desires between objects is driven at least in part by the
constraints on each object's ability to use the new information. If the Arm cannot abort a move in mid-motion, it
makes little sense for the Planner to pass its new desires to the Arm. It may make more sense for the Arm to ask
for the Planner's new desires only when the Arm has reached a state where it can process new information.

When transferring beliefs and desires, which object should keep track of message transmission delays? If we
assume fixed or bounded transmission delays and that a global time base is available, each message can include the
time at which the message was sent, and the receiver knows when the message was received. Therefore, it may make
sense for the receiver of a message to record the transmission times of messages it receives. Then, if an object is

Iexpecting a response by a certain time, it can include the expected transmission delay for the response message in
the deadline. For example, the Planner can tell the Arm that a response must be sent by T(3), because the Planner
wants to receive it by T(4).jA general note: It might seem that one way to get around the problem of inconsistent beliefs in the Planner-Arm
example is that the Planner tell the Arm the precondition for opening the gripper. That is, the Planner can tell the
Arm "Open the gripper at T(drop) only if the position is P(drop) at T(drop)". This is just moving the problem, however.
As Figure 2 shows, the Arm object is really just a shell containing several sub-objects. The Gripper-Controller could
be requested to ask the Joint-Controller for the position before dropping the payload, or a new "Sub-Planner" object

icould be added to coordinate the Gripper-Controller and the Joint-Controller. That would just move some of the
functionality (and belief inconsistency problems) of the Planner into the Arm. In fact, the original Planner-Arm
system can be thought of as encapsulated in a larger "Smart-Arm" object.

I

6 Conclusion

Intelligent, distributed, real-time systems can never maintain perfect, consistent information about a complex and
changing environment, particularly given the hard time constraints on their operation. System specification and
design languages which represent the meanings of timeliness and quality and which can be mapped to hard-real-time
implementations are needed.

We have proposed a particular object-oriented system model which can represent high-level concepts such as
beliefs and desires and have discussed the translation of these concepts to practical designs and implementations.

IDynamically trading belief and desire consistency for timeliness may allow tasks which cannot be performed
on-time and with complete confidence in the results to be carried out slightly late or with less confidence. Practical
approaches to this problem are needed.

1References
j[1] Thomas Bihari, Prabha Gopinath, and Karsten Schwan. Object-Oriented Design of Real-Time Software. In

Proceedings of the 10th Real-Time Systems Symposium, pages 194-201. IEEE, 1989.

[2] Thomas Bihari, Thomas Walliser, and Mark Patterson. Controlling the Adaptive Suspension Vehicle. Computer,I. 22(6):59-65, June 1989.

[3] Jay S. Lark et al. Concepts, Methods, and Languages for Building Timely, Intelligent Systems. Real-Time
Systems: The International Journal of Time-Critical Computing, pages 127-148, May 1990.

1 [4] P. Gopinath, T. Bihari, K. Schwan, and A. Gheith. Operating System Constructs for Managing Real-Time
Software Complexity. In Proceedings of the Workshop on Operating Systems for Mission Critical Computing,
pages UI-U9. ONR et al, 1989. Available as Philips Technical Note TN-89-110.

([5] Aloysius Ka-Lau Mok. The Design of Real-Time Programming Systems Based on Process Models. In Proceedings
of the 5th Real-Time Systems Symposium, Austin, Texas, pages 5-17, Dec. 1984.

[6] Yoav Shoham. Agent Oriented Programming. Technical report, Stanford University, 1990.

1 119A _ _ _ _ _ _ _ _ _ _ _

Adding Problem-Solving Capabilities to Existing Real-Time
Systems

C. J. Paul', Anurag Acharya 2 , Bryan Black' and Jay Strosnider l

Strosnider@usa.ece.cmu.edu
(412) 268-6927

Abstract

This paper examines the fundamental difference between Al tazks and conventional real-time tasks,
and discuss the problems posed by the integration of the two kinds of tasks on the same computing
platform. We then develop an architecture to address the temporal isolation and responsiveness issues
raised. We demonstrate the performance of this architecture and the directions for future research.

1 Introduction

Contemporary production-quality real-time systems provide little or no support for dynamic problem-solving.
An important reason for this is these systems are geared towards handling processes with predictable runtime
behaviour while the search-based nature of dynamic problem-solving renders its runtime behaviour inherently
unpredictable. This unpredicatability has also been instrumental in preventing a widespread acceptance of
the Real-time AI architectures being developed in research labs. Ideally, one would like to incorporate
problem-solving capabilities into current real-time systems as seamlessly as possible.

We have developed CROPS5 (Concurrent Real-Time OPS5), an architecture for embedding problem-
solving capabilities into existing real-time systems. In this paper, we present the architecture, and discuss
issues in scheduling Al tasks in real-time systems.

2 Source of Execution Time Variance in AI Tasks

First, we exomine the fundamental difference between conventional real-time tasks and Al tasks, and use
this as the basis for developing the scheduling methodology.

Let us consider the run-time variance of conventional RT tasks. Typical real-time signal processing
algorithms have little to no variance associated with their run-times. This is because, regardless of the
complexity and size of most signal processing algorithms (FFT's, filters, etc.) there are generally no data
dependencies which can cause the execution times to vary. The input data is simply processed in a uniform,
deterministic fashion. On the other hand, control oriented, RT tasks will have data dependencies. As the
system to be controled increases in complexity, the number of data dependencies will likely increase resulting
in increased variances in RT tasks run-times. We now argue that for RT tasks and Al tasks of comparable
complexity, the run-time variance of the Al tasks will be generally larger.

To address this issue, we pose the question, "What is the fundamental difference between conventional
RT processes and AI processes?" Figure 1 illustrates a continum between conventional RT tasks and Blind
Search Al tasks. On the far left, RT tasks are completely known, and there exists an explicit algorithm
that transforms a given set of inputs to an appropriate output. There is no notion of search at this end
of the spectrum. Any variations in run-time are associated solely with data dependencies. AI tasks also
have data dependencies which cause variations in run-times, but an additional source of run-time variance
is introduced due to search. As one moves to the right, either the task characteristics or their interactions
with the environment are not completely known. A hueristic is now required to search the state space
for an appropriate result. At the far right, there is no knowledge to direct the search resulting in a blind
search. In this case, one would expect to have a large variance in run-times. As one moves back to the
left, increasing knowledge may be applied to reduce the variations due to search. We thus argue that the

1 Department of Electrical and Computer Engineering, Carnegie Mellon University, PA 15213
2Sdiool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

120

I difference between conventional RT tasks and Al tasks is due to the introduction search. Further, that
this search process increases the variance of typical Al processes over their conventional RT counterparts of
comparable complexity.

Given the large variance of Al tasks, and the fact that the worst case execution time is either too large or
unknown, traditional methods for the design of real-time systems cannot be directly applied to Al tasks. An
attempt to blindly apply these techniques will result in systems which are grossly underutilized. Innovative
architectural and problem-solving approaches are required. This paper examines the architectural issues
in adding problem-solving tasks to real-time systems, and presents a Real-Time Problem-Solving (RTPS)
architecture to address some of these issues.I
3 Background

In this section, we explore the impact of Al processes in real-time environments from a real-time scheduling
point of view. We discuss what form of timing guarantees we can provide for Al tasks in real-time systems,
and the scheduling implications of providing such guarantees.

Researchers in the real-time scheduling community have been developing different approaches to real-time
task scheduling and the associated schedulability analysis. Algorithms like the rate monotonic scheduling
algorithm have been gaining wide acceptance. The schedulability of real-time tasks can be determined using
these algorithms. The notions of schedulability are predicated by a knowledge of worst case execution times,

iA and periodicity.
-But in the case of AI tasks, there is a large variance in execution time. The worst case execution time

of such tasks is often many orders of magnitude larger than the average case execution time. In some
cases, the worst case execution time is not known. From the scheduling standpoint, in cases where the
run-time variance is large, the schedulable utilization of the computational resources is very low, resulting
in very inefficient implementations. If we are willing to accept the inefficient implementation resulting from
the worst-case analysis, then AT tasks can be directly integrated into existing real-time systems with little
modification.

On the other hand, if we want to build systems with Al tasks, and still be able to guarantee a reasonable
level of utilization, new paradigms are needed. In this paper, we present a combination of architectural and

-7problem-solving methodologies that solve this problem.

3.1 Temporal Isolation

_Given an AI task with a large variance, the Al task can be run as a background task with no modification
to any of the existing scheduling algorithms. The only requirement is that the Al task be pre-emptable. But
with the Al task running in the background, we cannot provide any guarantees on the response time of the
AI task for any given instantiation.

To improve the predictability of the Al task, we may need to run it at a higher priority level. In this
case, real-time tasks of a lower priority than the Al task will be affected by the execution time variance
of the Al task, leading to potentially frequent and unpredictable load-shedding of the lower priority tasks.
This is not acceptable. To enable the Al task to run at high priority, and still be able to guarantee the
performance of lower-priority tasks requires that we place strict upper bounds on the guaranteed amount of
time made available for the execution of the Al task. This is achieved by providing for a fixed upper limit on
execution time of the AI task, and then continuing it later if background cycles are available. In this fashion,
lower priority real-time tasks get a chance to execute. Some of these concepts are based on the Imprecise
computation methodology developed by Jane Liu.

Restricting the computational time of the AI task in order to provide temporal isolation presents us with
other problems. On what basis is the guaranteed upper bound selected? Obviously, the Al task must be
able to produce some sort of a result within the time available, refining it if additional time is available

I later. This calls for problem-solving methodologies which can produce solutions of which are monotonically
non-decreasing in quality.

iIi121

. . .

I

This is one possible approach to providing temporal isolation between Al tasks and conventional real-time
tasks. We are evaluating scheduling mechanisms for providing temporal isolation.

We now examine the issue of responsiveness.

3.2 Responsiveness

Like other tasks in the system, problem-solving tasks need to be adequately responsive to events in the
external environment. Real-time problem-solving (RTPS) architectures should, therefore, have provision for
low-latency interruptibility of the problem-solving tasks.

A complex real-time control system will be controlling a large number of subsystems and be monitoring
an equally large number of sensors. Under such conditions multiple contingencies can arise, which require
dynamically shifting priorities. Depending on the current operational state, it would be necessary to focus
the attention of the problem-solving to particular subproblems. Therefore, multiple sireams of problem-
solving could be simultaneously active (but only one currently in focus of attention). There are two possible
approaches to handling such situations:

" Dedicate a problem-soiving task to a stream of reasoning. This would require the top level scheduler
to be sophisticated enough to deal with dynamically changing system priorities for focus-of-attention.
Introducing such problem-solving capability into the central scheduler would make the scheduler inef-
ficient for scheduling regular periodic tasks. Also, this approach would introduce the unpredictability
of problem-solving into the kernel of the system, adversely affecting the ability of the system to meet
hard deadlines.

* Support the specification of multiple streams of problem-solving in the same problem-solving task.
This would require the RTPS architecture to schedule the streams. The primary advantage of this
approach would be that the unpredictable computational load associated with dynamic prioritization
and the scheduling of these streams would be isolated from the top-level scheduler and encapsulated
in the problem-solving task.

The second approach appears to be significantly better. Therefore, RTPS architectures should support
the specification of multiple problem-solving streams within a problem-solving task and provide for scheduling
between these streams.

To ensure fast reactivity and fast switch in focus-of-a tiention, it is necessary that the problem-solving r
task be able to switch between different streams at a rapid rate. Therefore, the RTPS architecture should
provide for a low-latency switch between the problem-solving streams.

4 CROPS5: Concurrent Real-Time OPS5
We have designed the CROPS5 architecture in accordance with the broad design principles outlined above.

It is based on the production system model and borrows heavily from OPS5[BFKM85] for syntax and
semantics. CROPS5 is based on CParaOPS5[KTG+88], which is an OPS5 to C compiler developed at CMU.
The system uses the Rete[For82] pattern match algorithm. CParaOPS5 supports match-level parallelism on
parallel machine architectures. Our system extends OPS5 in the following significant ways:

Focus of Attention As opposed to the single problem-solving stream in OPS5, CROPS5 supports multiple
problem-solving streams. Individual streams have disjoint sets of productions (and hence disjoint RETE
nets). Each stream has a private working memory. In addition to the private working memory, the
system also maintains the abstraction of a global working memory that can be matched against by
productions belonging to any stream. Each stream has its own conflict set.

Fast Stream Switching: Associated with each stream is a stack of tokens that are yet to be matched and
a buffer of working memory elements yet to be processed. A stream can therefore be characterized by

122

a (Rete net, token-stack, wme-buffer) triple. Fast switching between streams is achieved by switching

between the corresponding tuple pointers.
The smallest unit of computation during the match process is the time taken to process a token. It
has been shown that this is relatively constant and is of the order of 200-300 machine instructions.
CROPS5 recognizes new data at every token processing boundary, and can perform stream switchesto immediately start processing the data.

Multi-level Scheduler CROPS5 provides a scheduler for the streams. The unit of time for the scheduler
is the token-processing time. Two step response is supported by permitting conflict resolution to
operate after a specific number of tokens have been processed and then again when the match has been
completed. Correctness issues are being investigated.

Enironment Interface The interface to the external world is through a Data Handler. The Data handler
accepts input from the other tasks and interrupt service routines in the system. The data is then
written to the global memory, and pointers to the new data are put in the buffers of each of thestreams. When the stream executes next, the data is matched, and the stream can take action on the

data.

IHigh Performance CRCPS5 is based on CParaOPS5. Earlier versions of OPS5 were implemented in Lisp,
and shared its garbage collection based memory management. Garbage collection is a problem from
the real-time point of view, since it is not possible to predict a priori, the amount of time required for
garbage collection. CROPS5 does its own memory management and does not suffer from the problems
associated with garbage collection.

CROPS5 also offers high performance from the perspective of parallelism. Its substrate, CParaOPS5,
is a parallel version of OPS5 supporting match-level parallelism. CROPS5 extends this to support task
level parallelism. Given a parallel processor, CROPS5 can potentially run in parallel.

Integration with Conventional Systems CROPS5 is very portable, and runs on most UNIX and Mach
uniprocessor machines. Some parallel processors are also supported. CROPS5 also runs on the
ARTS[TM89] and CHIMERA II[SSK90) real-time operating systems and is currently being ported
to Real-Time Mach.

CROPS5 also supports mechanisms to facilitate easy integration between the rule-based component
and with existing procedural software. A C-language interface is provided from the right-hand-sides of
productions, allowing external C functions to access and modify internal Working Memory Elements of
the production system. In addition, the environment interface allows CROPS5 to accept data directly
from sensors, allowing CROPS5 to run on embedded platforms.

5 Evaluating the CROPS5 Architecture

This section looks at some of the performance measures of the CROPS5 architecture.
The time to detect an event depends on the granularity at which the system checks for external data.

-While previous systems recognized events on rule firing boundaries, our system can recognize events on
token firing boundaries. The responsiveness of this system can be evaluated as the difference in the token
processing time vs the typical rule firing time. Experiments with CROPS5 running on a SUN 3/60 under -
the CHIMERA II Real-Time Operating System provide the following average numbers for token firing and
rule firing:

* Token Firing: 133.8 microseconds

* Rule Firing: 2350 microseconds

I123

_I12 , ti

Based on the above numbers, we see that the time to recognize an event has improved by at least an order
of magnitude.

Once an event has been recognized at a token boundary, the system can choose to ignore and continuei
6 processing the same stream, or it can elect to switch to a different stream. In our system, the times for these

operations are given as:

* Ignore and continue processing: 9.41 microseconds

* Switch to a different stream: 54.83 microseconds

From these numbers we see that we pay a penalty of about 7.2 percent (9.41/133.8) if we pop up to check
for n-:- events at each token boundary. In return, we get an order of magnitude improvement in detection
time.

If the input event is an alert-class event which is to be processed by a separate stream, our system can
accomplish a stream switch in 54.83 microseconds. Since each stream has its own RETE net, processing can
immediately start on the new stream. We do not incur the overhead of having to delete the current context
element and matching the context element of the alert-class stream, as is done in current implementations.
The deleting of the old context element, and the creation of the new context element takes a few match
cycles. Based on the rule firing time of 2350 microseconds, the time to delete the old context element~and
creating a new one will take on the order of 4700 microseconds, depending on the number of rules in the
affected contexts. Our stream switch time of 54.83 microseconds is about two orders of magnitude better.

The third element of responsiveness is the time to process the stream, arid plan a response to the event.
Since this element of responsiveness is very much situation and application dependent, we do not analyze it
here. A paper in the upcoming August issue of the Communications of the ACM discusses these issues in
greater depth.

CROPS5 has been used to develop test applications on the ARTS testbed. This includes a Collision
Avoidance System for aircraft, and a prototype dynamic scheduling pacing system for steel mills.

6 Limitations

CROPS5 is a production system environment, and does not support full functionality for dynamically build-
ing rules at run-time. Hence, it has limited application in learning. Also, the language does not explicitly
support representations and reasoning about time. This has to be done implicitly by the programmer.
Current research is addressing these issues.

7 Current Work

We are currently working on extending this system, and are concentrating on developing a combination of
architectural and problem-solving methodologit- for integrating Al tasks into existing real-time systems. We
are looking at scheduling approaches which will allow the Al task to run at any priority level in the system,
without compromising the timing characteristics of the lower priority real-time tasks. We are currently
developing models to characterize these facets of responsiveness. The eventual goal is to be able to a prioriI predict the responsiveness of the system to alert-class events. We are working on problem-solving and
scheduling mechanisms to ensure both inter-task and intra-task stability.

As a result of this research, we hope to develop a combination of architectural features and problem-
J solving methodologies for building predictable problem-solving systems for real-time applications.

124

References

[BFKM85] Lee Brownston, Robert Farell, Elaine Kant, and Nancy Martin. Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming. Addison;Wesley Publishing Company,

Inc., 1985.

[For821 C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence, 19(1):17-37, 1982.

[KTG+88] D. Kalp, M. Tambe, A. Gupta, C. Forgy, A. Newell, A. Acharya, B. Milnes, and K. Swedlow.
Parallel ops5 user's manual. Technical Report CMU-CS-88-187, Computer Science Department,
Carnegie Mellon University, November 1988.

[SSK90) David Stewart, Donald E. Schmitz, and Pradeep Khosla. Implementing real-time robotic systems
using chimera ii. In Proceedings of the 1990 IEEE International Conference on Robotics And
Automation, pages 598-603, May 1990.

[TM89] Ilideyuki Tokuda and Clifford Mercer. Arts: A distributed real-time kernel. ACM Operating
Systems Review, 23(4), July 1989.

125

Reason for Search:
Insufficient Knowledge

Insufficient Knowledge Insufficient Knowledge
of number andlor values of ways of combining
of variables variables to discriminate

between states

Knowledge-Poor Knowledge-Rich

Blind Search Heuristic Search Problem-Solving
Algorithm

(no search)

Search Spectrum

126

Supervisory Program

1. (block 'color blue) Data
2.HadlrDat Incoming

Buffer LWM Root Buffer LWM ~Ro~ Buffer, WM .Root
Node Node-

-~l~t ~ RTNet REMENet

Stream Stream Stream

IL

127

Limitations concerning on-line scheduling algorithms for overloaded ,

real-time systems*

Sanjoy K. Baruah and Louis E. Rosier
Department of Computer Sciences
The University of Texas at Austin Ii

Austin, Texas 78712-1188

Abstract

With respect to on-line scheduling algorithms that must direct the service of sporadic task requests we quantify
the benefit of possessing knowledge concerning tile timing of future events. Consider the problem of preemptively
scheduling sporadic task requests in a uniprocessor environment. If a task request is successfully scheduled to
completion. a value equal to the request's execution time is obtained; otherwise a value of zero is obtained. We
prove that no on-line scheduling algorithm can guarantee a cumulative value greater than (V'-- 1) times the value
obtainable by a clairvoyant scheduler, i.e., we prove a performance guarantee limitation of 41.4%. Over intervals
where the loading factor does not exceed one the performance guarantee limitation is 100%. As the loading factor
exceeds one we show that the performance guarantee limitation immediately drops to 61.8%. and as the loading
factor increases from one to two, we show that the performance guarantee limitation falls from 61.8% to 41.4%.
Beyond two the performance guarantee limitation remains at 41.4%.

1 Introduction. I
Everyone no doubt believes that possessing knowledge concerning the timing of future events can be advantageous -
hut how advantageous? Within the domain of real-time scheduling we quantify the benefit of possessing knowledge
about the future. Our treatment concerns on-line scheduling algorithms that must direct the service of sporadic task I
requests. An on-line scheduling algorithm is an iterative scheduling algorithm that makes a scheduling decision -

about which task request to allocate a processor to -at each instant of time with no knowledge about what task
requests will be made in the future. As a comparision vehicle, we consider clairvoyant on-line scheduling algorithms -

that know the arrival time. computation time and deadline of all future task requests. We then quantify the value
of knowing the future by establishing limitations concerning how responsive on-line algorithms can be as compared
to their clairvoyant counterparts.

We consider the problem of preemptively scheduling sporadic task requests in a uniprocessor environment. If V.
a task request is successfully scheduled to completion, a value equal to the request's execution time is obtained:

otherwise a value of zero is obtained. A sporadic real-time environment is said to have a loading factor b iff it is -

guaranteed that there will be no interval of time [ti, t.) such that the sums of the execution-times of all task-requests[I
making requests and having deadlines within this interval is greater than b.(t,-t,). A sporadic real-time environment
is overloaded unless it has a loading factor no greater than 1. Liu and Layland's deadline algorithm (3] constitutes
an optimal on-line scheduling algorithm for feasible task systems (1], and for all task systems during intervals where F
the system is not overloaded [2]. (A scheduling algorithm is optimal if it generates the maximum possible cumulative -

value - the value obtainable by the cleverest clairvoyant algorithm.) A number of other algorithms work well
- though not optimally - during non-overloaded intervals. These range from the ever-popular rate-monotonic r
algorithm (3] to the various scheduling schemes tested by Locke (4].

Experimental results suggest that the algorithms mentioned above perform extremely poorly during overloaded
intervals, however [4]. As a result. Locke [4] designed a dynamic priority scheduling algorithm that experimentally

*This work was supported in part by U.S. Office of Naval Research Grant No. N00014-89-J-1913.

128 1

i i.

- • _ -

I_

] performs quite well even though there are pathological situations where it performs very badly. The algorithm, knownas Locke's Best-effort scheduler, has one major drawback - it meets no absolute performance guarantee. That is, itis not guaranteed to behave in a manner that wil! generate a cumulative value that comes within a constant factor ofI the maximum possible. Recently, Mishra, Raghunathan, and Shasha [5] unveiled an on-line scheduling algorithm thatj always achieves optimal performance during non-overloaded intervals and 25% of the optimal performance duringoverloaded intervals. Furthermore, the algorithm experimentally compares well with Locke's Best-effort scheduler.A performance guarantee of 25% may not seem extremely good. but we will show that one cannot do much better.j In Section 2, we prove that no on-line scheduling algorithm can have a performance guarantee greater than (v21- 1)times the optimal - about 41.4%. We also generalise this result by considering environments where there is an upperbound on the amount of overloading allowed within an interval, i.e., a bound on the loading factor within an interval.Whenever the loading factor does not exceed one the performance guarantee limitation is 100% - obviously. As theloading factor exceeds one we show that the performance guarantee limitation immediately drops to 61.8%, and asthe loading factor increases from one to two, we show that the performance guarantee limitation falls from 61.8%to 41.4%. Beyond two the performance guarantee limitation remains at 41.4%. We conclude in Section 3 with aI discussion of future research.

2 Performance Guarantee Limitations
Consider a uniprocessor environment as defined by Locke [4] and Mishra Raghunathan, & Shasha [5], where taskrequests are characterised by two parameters - an execution time e and a deadline d. If task request T = (e, d)makes a request for the processor at time to, then a value equal to the execution time e is obtained by allocating theprocessor to T for e units of time in the interval {Ito < t < to + d}. Failure to allocate the processor to T for e unitsof time in this interval results in a value of z,ro An on-line sebeduling algorithm is an iterative algorithm thatmakes a scheduling decision - i.e., decides which request to ali,_iate the processor to - at each time instant withno knowledge about what requests will be made in the future. Au on-ine algorithm has performance guaranteer. 0 <r< 1. iff it is guaranteed to achieve a cumulative value at least r times the cumulative value achievable by aclairvoyant algorithm on any sequence of task requests. (Hence the Mishra, Raghunathan, and Shasha [5] algorithmhas a performane guarantee of 25%, and Locke's Best-effort scheduler has a performance guarantee of 0%.)

aLemma 1 There doe-s not exist an on-line scheduling algorithm with a performance guarantee greater than (V 2- 1)
- bout 41.4%.

Proof : Our proof is via an adversarial argument. We illustrate a situation such that, no matter what decision aschedaling algorithm makes, there is always a sequence of task requests for which the ratio of the performance ofthis algorithm to the performance of a clairvoyant scheduling algorithm is bounded from above by xi1'- 1.
Conside: the following scenario:

Let t be the current time. At time (t - el + 6 1) (where 61 is a very small positive real number: 61 < ei), task-requestT, = (e I. cI) made a request and was allocated the processor. T will therefore complete execution at time (t + 61)if allowed to execute without interruption. Currently there are no other requests in the system. At time t, a taskT11 = (e2,.e2), e2) el, makes a request. Clearly, no scheduling algorithm can hope to successfully schedule both
requests T and 7'. We consider the following two cases:

Case A The on-line scheduting algorithm continues the execution of request T1 .
lI the event of there being no other requests ever made to the system, the performance of this algorithm is el/e 2times that of a clairvoyant scheduler. The performance guarantee of this algorithm is therefore no greater than el /e2.

Case 13 The on-line scheduling algorithm preempts T1, and commences the execution of 71'.(.onsider an adversary who makes a sequence of requests based on the decisions made by the on-line algorithm, as
described below:

1

129
"I

I

begin
/* Variable clock represents the current time */ I
/* Let e3 be a very small positive real number; e3 < el and e2. */
wait until clock = t + b1;

while clock + e3 < (t + 2) loop
Tsk-request T3 = (e3, e3) makes a request;
if the on-line algorithm preempts task T2 in favour of task T3, then goto finis;
wait e3 units: I
end loop

Task request T4 = (e2, () makes a request;
finis no further requests ai- -iade;
end.

If the loop is exited by means of the goto statement, then the performance of the on-line algorithm is < e3/e2 times
that of a clairvoyant scheduler on this particular request sequence. If the loop is exited the normal way (T4 makes
a request in the time interval ft' : (t + e2 - e3) < t' < (t + e2)}), then, for this sequence of requests, a clairvoyant
scheduling algorithm would choose to execute TI, all the requests T3 and the request T4 . Thus, the clairvoyant
algorithm gets a value el + e?+ (the sums of the values of the requests T3). By an appropriate choice of 61 and
C3, the third term in this sum may be made arbitrarily close to e2. In contrast, the on-line algorithm may schedule
either T'j or T4 - for a net value of e . Its performance is therefore no more than e2/(ei + 2e 2) times that of the
clairvoyant scheduling algorithm. For U = (V2- 1), therefore, the performance guarantee for both case A and case

B are < (W - 1). For -. = (v'- - 1), therefore, no on-line algorithm can make a performance guarantee greater

than (v '- 1). This proves the lemma.

E

In deriving the upper bound above, an adversary argument was used wherein the malevolent adversary was allowed
to introduce new tasks at will. For example, there were requests for a total of 2e2 units of processor time with both
request-times and deadlines in the time-interval [t. t+e ,) - an interval of size less than e2 . A natural question to ask
at this stage would be - is the amount of overloading permitted by the environment related to the best performance

guarantee that may be guaranteed by an on-line algorithm? To answer this question, let us quantify the notion of
overioading.

We say a sporadic reai-:ime environment has a loading factor b iff it is guaranteed that there will be no interval
of time [ti, tYj) such that the sums of the execution-times of all task-requests making requests and having deadlines
within this interval is greater than bi (t - t,). A sporadic real-time environment is overloaded unless it has a
loading factor no greater than 1.

Example I : The sporadic real-time environment discussed in the proof of Lemma 1 must have a loading fac-
tor areater than 2. This is since the sums of the execution-times of all requests that the adversary comes up with in
('ase B. along with the request 7., with both request-times and deadlines in the time-interval [t, t + e2) is 2e2.

o

Notice that the loading factor is defined with respect to an environment and not with respect to a sequence of task
equests - this is important. The on-line algorithm knows a prori what the loading factor for the environment is.

arid may use this information in making on-line scheduling decisions. Consider, as an example, on-line scheduling
in an environment which is known to have a loading factor no larger than 1 (i.e., a non-overloaded environment).
Dertouzos (2] has shown that the Deadline algorithm is optimal in such an environment. The deadline algorithm is,
therefore. an on-line scheduler with a performance guarantee of 1.0 in sporadic real-time environments with a loading
factor no larger than 1. At the other extreme, Lemma I proves that no on-line scheduler can offer a performance
guarantee larger than .414 in environments where the loading factor may be larger than 2 (see Example 1).

The following lemma quantifies the relationship between the loading factor and the upper bound on the perfor-

mance guarantee of an on-line algorithm in environments where the loading factor is between 1 and 2.

1
: 1301 I

ii I
S1.0

S 0.618 - - - - -

0.414 -- - - - - - - - -

I I

0.0 1.0 2.0

b

Figure 1: Performance guarantee as a function of the loading factor

Lemma 2 No on-line scheduling algorithm operating in an environment with a loading factor b, 1 < b < 2, can

make a performance guarantee greater than

2

Proof: The proof of this lemma mirrors the one for Lemma 1. Consider the same scenario as in Lemma 1, with the

following change

Task-request T3 = ((b - 1) 6e, e3) (as before, e3 is a very small positive real number: e3 < e, and e2).

In this (modified) scenario, the sums of the execution-times of all requests with both request-times and deadlines in

lie time-interval ft, t + e2) in Case B is e2 + (b- e).e2 = b. e2. The adversary's request-sequence does not, therefore,

ioiate the loading-factor of the environment.
When - = (7v' +4 - b)/2, the performance guarantee for both case A and case B are < (v/'PW4- b)/2. For

--= bv-- -b)/2: therefore, no on-line algorithm can make a performance guarantee greater than (v'*-T4-b)/2.

This proves the lemma.
0

The Deadline algorithm is an on-line scheduling algorithm with a performance guarantee of 1 for environments where

I he loading factor b is at most 1.0. For environments with 1 < b < 2., Lemma 2 provides an upper bound for the

:-rformance guarantee of on-line algorithms. while 0.414 is an upper bound for the performance guarantee of on-line

.igorithnis in environments where b > 2 (see Lemma 1). These results are summarised in the following theorem:

Theorem 1 For a loading factor b < 1, there exist on-line schedulers which make a performance guarantee of 1.0.

For b = I + c where c is an arbitrary small positive number, 0.618 is an upper bound on the performa.nce guarantee

Of aniu on-line scheduler. For 1 < b < 2. (Vb' + 4- b)/2 is an upper bound on the performance guarantee of any

on-line scheduler. and for b > 2, no on-line scheduler can make a performance guarantee qreater than 0.414.

Figure 1 plots the upper bounds on the performance guarantee described in Theorem 1 as a function of the loading

factor b.

1

131

II

3 Conclusions and directions for future research

We have studied the performance limitations of on-line algorithms in environments where a value equal to the
request's execution time is obtained for the full execution of a request and no value is obtained for the partial
execution of a request. One might argue that it may be more realistic to consider systems where some task-requests I
are more important than others, i.e., the value obtained by completing the execution of a task-request depends on

the importance of the request to the system as well as the execution-time of the request. To model systems of this
type. each request is parametrised by three parameters: the importance i in addition to the execution-time e and
the deadline d. By successfully executing task-request T = (i, e, d), a value i x e is obtained (as before, no value is
obtained for incomplete execution of a task). All of our results can be generalised for such systems. Unfortunately,
the performance guarantees that can be made by an on-line algorithm in such an environment is even less than
what's stated above. We will elaborate on this in an expanded version of this paper currently under preparation.

Recently G. Koren, B. Mishra, A. Raghunathan. and D. Shasha have revised (5], yielding a slightly reduced
performance guarantee. More recently, we in collaboration with Koren, Mishra, Raghunathan, and Shasha have
made substantial improvements in the upper bounds reported herein. A manuscript discussing all of these new
results will soon be available.

References

(11 S Baruah. A. Mok. and L. Rosier. The preemptive scheduling of sporadic. real-time tasks on one processor. In
Eleventh Real-Time Systems Symposium, pages 182-190. Orlando, Florida. 1990.

2] M. Dertouzos. Control robotics : the procedural control of physical processors. In. Proceedings of the IFIP
Congress. pages 807-813. 1974.

C] (Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal
of the ACM. 20:46-61, 1973.

'4) C D. Locke. Best-effort Dects on Making for Real-Time Scheduling. PhD thesis. Computer Science Department.
Carnegie-Mellon University, 1986.

B5] B. Mishra. A. Raghunathan. and D. Shasha. A competitive on-line algorithm for overloaded real-time systems
.xtended abstract). Unpublished manuscript. 1990.

1-

I
132 1

HARD REAL-TIME SCHEDULING:
THE DEADLINE-MONOTONIC APPROACH1

N.C. Audsley A. Burns M. F. Richardson A.J. Wellings
Department of Computer Science,

University of York,
York.

YO1 5DD
England.

neil@uk.ac.york.minster

1. INTRODCTON distributed system can be modelled as a sequence
A real-time system is one in which failure of periodic processes (one per processor). The

can occur in the time domain as well as in the inevitable communication delay is modelled as an
more familiar value domain. If the consequence interval of "dead time" at the end of each
of such failure is cataseophic then the system is processes period (apart from the last process in
often referred to as a hard real-time system. Such the sequence). These periodic processes must
systems are needed in a number of application therefore complete their computations by a dead-
domains including air-traffic control, process con- line that is before the end of the period. Such a
trol, and numerous embedded systems. model has been used to good effect in a process

allocation scheme 110] in which network com-In the development ofapplicationprograms munication overhead is traded against local
it is usual to map system timing requirements onto schedulability. The greater the inter-processor
process deadlines. The issue of meeting deadlines traffic the greater the "dead time" and hence the
therefore becomes one of process scheduling, lower the schedulability bound. Tindell's analysis
The development of appropriate scheduling algo- [101 uses the schedulability tests discussed in this
rthms has been isolated as one of the crucial chal-
lenges for the next generation of real-time sys-
tems (91. Another important motivation for weaken-

ing the "deadline equal to period" constraint is to
One scheduling method that is used in hard cater for sporadic (aperiodic) events in an efficient

real-time systems is based upon rate-monotonic manner. Here the required response time is not,
theory [6]. At runtime a pre-emptive scheduling in general, related to the worst case arrival rate.
mechanism is used: the highest priority runnable Indeed the characteristics of such events often
process is executed. Priorities assigned to demand a short response time compared to
processes are inversley proportional to the length minimum inter-arrival time. Hence polling in a
of period. That is, the process with the shortest periodic manner for sporadic events produces a
period is assigned the highest priority. Rate- non-optimal respoose time for sporadic processes.
monotonic scheduling has several useful proper-
ties, including a simple "sufficient and not neces- This paper outlines the deadline-montonic
ary" schedulabilty test based on process utilisa- scheduling approach together with new simple

tions (6]; and a complex sufficient and necessary and complex schedulability tests that are sufficient
schedulability test [4]. However, the constraints and in the latter case, necessary. The approach is
that it imposes on the process set are severe: then shown to encompass sporadic processes that
processes must be periodic, independent and have have hard deadlines without any alteration to the
deadline equal to period. theory and without resorting to the inefficiencies

Many papers have successively weakened of a polling approach.

the constraints imposed by the rate-monotonic
approach and have provided associated schedula- 2. DEADLINE-MONOTONIC SCHEDUL-
bility tests. Reported work includes a test to ING THEORY
allow aperiodic processes to be included in the
theory 181, and a test to incorporate processes that We begin by observing that the processes
-'nchronise using semaphores [7). One constraint we wish to schedule are characierised by the fol-

th-at has remained within rate-monotonic literature lowing relationship:
is that the deadline and period of a process must computation time _ deadline < period
be equal. i.e. for each process i (where process 1 has the

Deadline-monotonic [5] priority assignment highest priority and process n the lowest in a sys-
.keakens this constraint within a static priority tem containing n processes):
scheduling scheme. However, no schedulability c. <D.<T.
t ests were given in[5] for the scheme. where C gives computation time, D the deadline

The weakening of the "period equals dead- and T the period of process i.
line" constraint would benefit the application Leung et al [5] have defined a priority
designer by providing a more flexible process assignment scheme that caters for processes with
model. For example, precedence constraints in a the above relationship. This is termed inverse-
I. This work is supported. in part, by the Information Engineering Advanced Technology Programme. Grant GR/F
359201411/1214

133

deadline or deadline-monotonic priority assign- Di. In the above, the interference is composed of I
ment. No schedulability tests were given how- the computation time of all higher priority
ever. processes that are released before the deadline of u

Deadline-monotonic priority ordering is ..This test is sufficient, but not necessary for the
similar in concept to rate-monotonic priority ord- following reason. When the interference is being
ering. Priorities assigned to processes are calculated, account is taken of executions of
inversely proportional to the length of the dead- higher priority processes that start before Di and
line [5]. Thus, the process with the shortest dead- could possibly complete execution after Di.
line is assigned the highest priority and the long- Therefore, i could be greater than the actual
est deadline process is assigned the lowest prior- interference encountered by ti before Di.
ity. This priority ordering defaults to a rate- A more accurate test is given by4:
monotonic ordering when period =deadline. C. 1,

Deadline-monotonic priority assignment is Vi : 1 < i < n -a + - _1 (2)
an optimal static priority scheme (see theorem 2.4 Di
in [51). The implication of this is that if any
static priority scheduling algorithm can schedule a where

process set where process deadlines are unequal to L- +[min Di1]their periods, an algorithm using deadline- I, = y- C mi C -i -monotonic priority ordering for processes will T' = Jalso schedule that process set. The above test compensates within i for the parts

It is true, of course, that any process sets of executions of higher priority processes that
whose timing charactenstics are suitable for rate- could not occur before Di even though they were
monotonic analysis would also be accepted by a released before D,. The test is not necessary as a
static priority theory permitting deadlines and pessimistic valuation is made of the time that will
periods of a process to differ. be utilised by higher priority processes before Di.

In general the deadline-monotonic scheme The schedulability constraints given by
has not been employed because of the lack of ade- equations (1) and (2) are sufficient but not neces-
quate schedulability tests. Rate-monotonic sary in the general case. To form a sufficient and
scheduling schedulability tests could be used by necessary schedulability test the schedule has to
reducing the period of individual processes until be evaluated so that the exact interleaving of
equal to the deadline. Obviously such tests would higher priority process executions is known. This
not be optimal as the workload on the processor is costly as this would require the solution of Di
would be over-esumated, equations per process ti.

New schedulability tests have been
developed by the authors for the deadline-
monotonic approach (1]. These tests are founded t1 : T1 =4; Ct =
upon the concept of critical instants (6]. These 10 'C2: T2 = 5, C2 =
represent the times that all processes are released 9 T3: T3 = 6; C 3 = 2
simultaneously. When such an event occurs, we 8 T4:cD4 10
have the worst-case processor demand. Impli- 7C 3 "
citly, if all processes can meet their deadlines for 14 6" Releasetl
executions beginning at a critical instant, then C-
they will always meet their deadlines. Thus, we 5 C " .Release r3
have formed the basis for a schedulabilty test: 4 Release'r2
check the executions of all processes for a single 3 Release 'T
execution assuming that all processes are released 2
simultaneously. One such schedulability test is I Release'rlt 2 and '3"
given by2: 0o eescT n'3

C' /, 0 1 2 3 4 5 6 7 8 9 10Vil<t< D ,<I Figure 1. WD4
DI, DI,

where I, is a measure of higher priority The number of equations can however be
pro 4esses intcrtlrng with the execution ot reduced by observing that if T, meets its deadline
',: at ',, where t', lies in [0, Di], we need not evalu-

ate the equations in (t'j, D1]. Further reductions
,'1 in the number of equations requiring solution can

be made by limiting the points in [0, Di] that are
The test states that for a process 'ri to be schedul- considered as possible solutions for t 'j. Consider
able, the sum of its computation time and the the times within [0,D] that ti could possibly
interference that is imposed upon it by higher meet its deadline. We note that the interference
piurity processes executing must be no more than due to high-priority processes is monotonically

increasing within this interval. The points in time
2,4. for d eation see (11. that the interference increases occur when there is

o evaluates tothe smallest integer>;lx; a release of a higher priority process. This is3. Note: T eillustrated by Figure 1. In the figure there are
evaluates to the IlageSt nteger < X three processes with higher priority than z4.We

see that as the higher priority processes are

134

released, 14 increases monotonically with respect release of each process occurs in [0, teo, the

to t. The graph is stepped vath plateaus represent-ing intervals of time in which no higher priority constraint will fail if there have beenany releasingintrvls f imeinwhih n hghe piorty f hi [her prirt processes within the interval
processes are released. It is obvious that only one tfThe prort proesses woi theiterval
equation need be evaluated for each plateau as the 0, to, . The exact amount of work created by
interference does not change. iigher priority processes in this interval is given

To maximise the time available for the exe- by:
cution of ci we choose to evaluate at the right- I
most point on the plateau. Therefore, one possible
reduction in the number of equations to evaluate The next point in time at which 'r may complete
schedulability occurs by testing ";: at all points in execution is:
[0,Dj] that correspond to a higher priority pro.
cess release. Since as soon as one equation t I + Ci
identifies the process set as schedulable we need This gives a schedulability constraint of:
test no further equations. Thus, the effect is to fI! C.
evaluate equations only in [0, t'j]. - +- < 1

The number of equations has been reduced t
in most cases. We note that no reduction will
occur if for each point in time in [0, D,) a higher Again, the constraint w l Ifai if releases have
priority process is released with ;j meeting its occurred in the interva I 0 , . Thus, we can
deadline at D,. The number of equations is build a series of equations to express the schedu-reduced yet further by considering the computa- lability of ti.
tion times of the processes. Consider Figure 2. '

(I) m + - < 1
: 1 T I = 4 ; C I 1t o t 0

10 t2: T2 = 5; C, I
o :T3 =6; C3 = 2 C1 where to = C8 t4: D4 = I();C4 /'

C3 2 C 3 (2) t CA <
S6 ti1Lt50: where r,= I* + C,S4t=: Release; (3)"2 "L..4
3 t=: Releas e , T3 C,

t=6: Release c3 where t2 = + C,
0 "t=8: Release '-3

Figure 2. 4)

I ,". C,
(k) - ' < 1

In Figure 2 the total computation requirement of t
k

t k
the process set (C,) is plotted against time. At the where tk = I ," C,
first point in time when the outstanding computa. and where
tion is equal to the time elapsed, we have found
t',. In the above diagram this point in time coin-
c ides with the deadline of ' 4. Y =C

Considering Figure 2, there is little merit in

testing the schedulability of T t in the interval If any of the equations hold, 'T1 is schedulable.
[0, C,). Also, since time 0 corresponds with a Obviously, the equations terminate if tk > Di for
critical instant (a simultaneous release of all process t and equation k. At this point T, is
processes) the first point in time that t could pos- unschedulable.
sibly complete is: The series of equations above is encapsu-

0 C' lated by the algorithm given in Figure 3. The
o= Calgorithm progresses since the following relation

/ =always holds:
This gives a schedulability constraint of: f, > ti-i

+- When t, is greater than D, the algorithm ter-
t0 o minates since 'i is unschedulable. Thus we have a

where maximum number of steps of D. This is a
y-i r'1 worst-case measure. We note that the algorithm1=". C can be used to evaulate the schedulability of any

: = fixed priority process set where process deadlines=are no greater than periods, whatever the assign-
Since the value of t I assumes that only one ment rule used for priorities.

135

algorithm to guarantee the deadlines of sporadic
Algorithm processes without resorting to the introduction of

polling processes.foreach r. do

3.1. Sporadic Processes: the Polling Approach 2
= ,Ci To allow sporadic processes to execute

J=t within the confines of a static schedule
continue = TRUE (such as that generated by the rate-

te) monotonic algorithm) computation time must be
while yontinue do reserved within that schedule. An intuitive solu-

C, tion is to set up a periodic process which polls for
if + I sporadic processes [3]. Strict polling reduces the

t -bandwidth of processing as
continue = FALSE * processing time that is embodied in

an execution of the polling process is
1* NB Tr, is schedulable wasted if no sporadic process is

else active when the polling process
becomes runnable;

• sporadic processes occurring after the
endif polling process's computation time in

I D one period has been exhausted or just
if > D, passed have to wait until the next

ext period for service.
A number of bandwidth preserving algo-

P' NB 'r, is unschedulable */ rithms have been proposed for use with the rate-
endif monotonic scheduling algorithm [3,81. These

algorithms are founded upon a periodic serverendwhile process being allotted a number of units of com-
endfor putation time per period. These units can be used

by any sporadic process with outstanding compu-
U tational requirements. The computation time for

Figure 3. the server is replenished at the start of its period.Problems arise when sporadic processes

require deadlines to be guaranteed. It is difficult to
accommodate these within periodic server

3. SCHEDULING SPORADIC PROCESSES processes due to the rigidly defined points in time
at which the server computation time is replen-Non-periodic processes are those whose ished. The sporadic server [8) provides a solution

releases are not periodic in nature. Such to this problem. The replenishment times are
processes can be subdivided into two categories related to when the sporadic uses computation
[21: aperiodic and sporadic. The difference time rather than merely at the period of the server
between these categories lies in the nature of their process. However, this approach still requires
release frequencies. Aperiodic processes are those additional processes with obvious extra over-
whose release frequency is unbounded. In the heads.
extreme, this could lead to an arbitrarily large
number of simultaneously active processes. 3.2. Sporadic Processes: the Deadline Mono-
Sporadic processes are those that have a max- tonic Scheduling Approach
imum frequency such that only one instance of a
particular sporadic process can be active at a time. We now show how deadlines of sporadic

processes can be guaranteed within the existingWhen a static scheduling algorithm is deadline-monotonic theory. Consider the timing
employed, it is difficult to introduce non-periodic characteristics of a sporadic process T.. The
process executions into the schedule: it is not demand for computation time is illustrated in Fig-
known before the system is run when non- ure4.
periodic processes will be released. More
difficulties arise when attempting to guarantee the
deadlines of those processes. It is clearly impos- TS CS s
sible to guarantee the deadlines of aperiodic Released D Released D Released
processes as there could be an arbitrarily large Re

number of them active at any time. Sporadic _

processes deadlines can be guaranteed since it is ________ ._,____t
possible, by means of the maximum release fre- m m
quency, to define the maximum workload they Figure 4.
place upon the system.

One approach is to- use static periodic pol-
ling processes to provide sporadics with execu-
tions time. This approach is reviewed in section The minimum time difference between sue-
3.1. Section 3.2 illustrates how to utilise the pro- che minimum ntwe-

perie o th dadin innoonc sheulng cessive releases of T is the minimum inter-arrival
perties of the deadline inonotonic scheduling time m. This occursbetween the first two releases

136

j . _ _

of T,. At this point, T. is behaving exactly like a simple test. Again, the test was pessimistic.periodic process with* period m: the sporadic is Ti rbe a eovd wt hishdislprtole sufn resolved with the
being released at its maximum frequency and so is development of a sufficient and necessary schedu-
imposing its maximum workload. When the lability test. This was the most complex of all the
releases do not occur at the maximum rate tests having a complexity related to the periods
(between the second and third releases in Figure and computation times of the processes in the set.
4) c behaves like a periodic process that is inter- The complexity was reduced substantially when

4 mitt'ently activated and then laid dormant. The the number of equations required to determine the
workload imposed by the sporadic is at a max- schedulability of a process were minimised. This
imum when the process is released, but falls when test is able to determine the schedulability of any
the next release occurs after greater than m time fixed priority process set where deadlines are no
units have elapsed. greater than periods, whatever the priority assign-

In the worst-case the; behaves exactly like ment criteria used.
a periodic process with period m and deadline D Proposed methods for guaranteeing dead-
where D :i m. The characteristic of this lines of sporadic processes using sporadic servers
behaviour is that a maximum of one release of the within the rate-monotonic scheduling framework
process can occur in any interval [t, t + m) where were shown to have two main drawbacks. Firstly,
release time t is at least m time units after the pre- one extra periodic server process is required for
vious release of the process. This implies that to each sporadic process. Secondly, an extra run-
guarantee the deadline of the sporadic process the time overhead is created as the kernel is required
computation time must be available within the to keep track of the exact amount of time theI interval [t, t + D I noting that the deadline will be server has left within any period. The deadline-
at least in after the previous deadline of the monotonic approach circumvents these problems
sporadic. This is exactly the guarantee given by since no extra processes are required: the sporadic
the deadline-monotonic schedulability tests in sec- processes can be dealt with adequately within the
tion 2. existing periodic framework.

For schedulability purposes only, we can A number of issues raised by the work out-
describe the sporadic process as a periodic process lined in this paper require further consideration.
whose period is equal to in. However, we note These include the effect of allowing processes to
that since the process is sporadic, the actual synchronise and vary their timing characteristics.
release times of the process will not be periodic, These issues remain tor further investigation,
but successive releases will be separated by no although it is the authors' contention that the
less than m time units. analysis that has been focussed upon the rate-

For the schedulability tests given in section monotonic approach shows that deadline-
2 to be effective for this process system, we monotonic schedulability theory is easily extensi-
assume that at some instant all processes, both ble to address such issues.
periodic and sporadic, are released simultaneously
(i.e. a critical instant). We assume that this occurs REFERENCES
at time 0. If the deadline of the sporadic can be N, C. Audsley. "Deadle Monotonic Scheduling".
guaranteed for the release at a critical instant then YCS 1146, Dept. of Comp. SCi., Univ. of York (1990).
all subsequent deadlines are guaranteed. Exam- A. Bums, "Scheduling Hard Real-Time Systems: A
pies of this approach are g n in [I]. No limita- Review".Software Eng.Journal (io appear) (1991).
tions on the combination of periodic and sporadic 3. J. P. Lehoczky, L Sha and J. K. Strosnider, "'Enhanced
processes are imposed by this scheme. Indeed. Apenodic Responsiveness in Hard Real-Time Environ-
the approach is optimal for a fixed priority ments". Proc IEEE Real.Time Sys. Symp., pp. 261-270
scheduling since sporadic processes are treated in (1987).
exactly the same manner as periodic processes. 4. J. Lehoczky, L Sha and Y. Ding, "The Rate.Monotonic
All three schedulability tests outlined in section 2 Scheduling Algorithm: Exact Characterization and
ahAverage Case Behaviour". Proc IEEE Real.Time Sys.are suitable for use with sporadic processes. To Smp., pp. 166-171 (1989).
improve the responsiveness of sporadic proceses S..p. 166ng (n99.5 1 . Y. T. Leung and J. Whitehead. "On the Complexitytheir deadlines can be reduced to the point at of Ftxcd-Piority Scheduling of Periodic, Real-Time
which the system becomes unschedulable. Tasks". Perf. Eval. (Netherlands) 2(4), pp. 237-250

(1982).
4. CONCLUSIONS 6. C. L. Liu and J. W. Layland, "Scheduling Algorithms

The fundamental constraint of rate- for Muluprogramming in a Hard Real-Time Environ-
ment",JACM 20(1), pp. 40-61 (1973).

monotonic scheduling theory has been weakened 7. L. Sha and 1. B. Goodenough, "Real-Time Scheduling
to permit processes that have deadlines less than Theory and Ada". CMU/SEI-88-TR-33. SEl.
period to be scheduled. The result is the Carnegie-Mellon University (1988).
deadline-monotonic scheduling theory. Schedula- 8. L Sha, B. Sprumt and I. P. Lehoczky. "Aperiodic Task
bility tests have been presented for the theory. Scheduling for Hard Real-Time Systems", Journal of

Initially a simple sufficient and not neces- Real-Time Sys. 1. pp. 27-69 (1989).
sary schedulability test was introduced. This 9.].A. Stankovic, "Real-Time Computing Systems. The

Next Generation", COINS Tech. Rep. 88-06. Dep of
required a single equation per process to deter- Comp. and Inf. Sci., Univ. of Massachusets (1988).
mine schedulability. However, to achieve such 10. K. Tindell, "Allocating Real-Time Tasks (An NP-Hard
simplicity meant the test was overly pessimistic. Problem made Easy)", YCS 147, Dept. of Comp. ScL,
The simplifications made to produce a single Univ. of York (1990).
equation test were then partially removed. This
produced a sufficient and not necessary schedula-
bility test which passed more process sets than the

137

Algorithms for Flow-Shop Scheduling to Meet Deadlines

R. Bettati and Jane W.S. Liu

Department of Computer Science
University of Illinois, Urbana, IL 61801, USA

1. Introduction

A flow shop [1-6] models a multiprocessor or distributed system in which processors and devices (also
modeled as processors) are functionally dedicated. Each task executes on the processors in turn, following the
same order. For example, a real-time control system containing an input processor, a computation processor,
and an output processor can be modeled as a flow shop if each task in the system executes first on the input
processor, then on the computation processor, and finally on the output processor. Many hard real-time
systems can be modeled as flow shops in which every task has a deadline, the point in time by which its
execution must be completed. The primary objective of scheduling in such systems is to find schedules in
which all tasks meet their deadlines whenever such schedules, called feasible schedules, exist. A scheduling
algorithm is said to be optimal if it always finds a feasible schedule whenever feasible schedules exist.

The problem of scheduling tasks in flow shops to meet deadlines is NP-hard, except for a few special
cases (1,2]. We describe here a heuristic algorithm for scheduling tasks with arbitrary processing times and
discuss its performance. We also consider two variations of the traditional flow-shop model, called flow shop
with recurrence and periodic flow shop. In a flow shop with recurrence, each task executes more than once on
one or more processors. A system that does not have a dedicated processor for every function can often be
modeled as a flow shop with recurrence. As an example, suppose that the three processors in' the control
system mentioned earlier are connected by a bus. We can model the bus as a processor and the system as a
flow shop with recurrence. Each task executes first on the input processor, then on the bus, on the
computation processor, on the bus again, and finally on the output processor. In a periodic flow shop, each
task is a periodic sequence of requests for the same computation.

In the following, we begin by deacribing the flow-shop models in Section 2. Section 3 describes a
heuristic algorithm for scheduling tasks with arbitrary processing times and the simulation results on its
performance. Section 4 describes an optimal algorithm for scheduling in flow shops with recurrence where
tasks have identical processing times and ready times. Section 5 describes a way for scheduling in periodic
flow shops. Section 6 is a summary.

2. Flow Shop Models
In (traditional) flow shops, there are m different processors PI, P2, " " " Pm. We are given a task set T

of n tasks T 1, T2, - " ", T,. Each task Ti consists of m subtasks Ti, Ti2, " , Tim. These subtasks have to
be executed in order: the subtask Tii executes on processor P, after the subtask T;(i_.) completes on processor
P(i-l), for j = 2,3, ''' , m. Task T; is ready for execution at or after its release time ri and must be
completed by its deadline di . Let rij denote the processing time of Tij, the time required for the subtask Ti
to complete its execution. We occasionally refer to the totality of release times, deadlines, and processing
times as the task parameters. The task parameters are rational numbers unless it is stated otherwise.

In the more general flow-shop-with-recurrence model, each task Ti in T has k subtasks, and k > m.
The subtasks are executed in the order Til, Ti2, " • ", Tik. We characterize the order in which the subtasks
execute on the processors by a sequence V = (v1 , v2, " ' ', vk) of integers, where vi is one of the integers in
the set {1, 2, • , m}. vi being I means that the subtasks Tij are executed on processor P1. For example,
suppose that each task in the given set T has 5 subtasks to be executed on 4 processors. The sequence V
(1, 4, 2, 3, 4) means that all tasks first execute on P1, then on P4, P 2, P3 , and P4 in this order. We call this
sequence the visit sequence of the tasks. If an integer I appears more than once in the visit sequence, the
corresponding proessor P, is a reused processor. In this example P4 is reused, and each task visits it twice.

The periodic flow-sho model is a generalization of both the traditional flow-shop model and the
traditional periodic-job w, del (7-9]. Thc periodic job system J to be scheduled in a flow shop consists of n
independent periodic jobs; each job consists of a periodic sequence of requests for the same computation. In
our previous terms, each request is a task. The period pi of a job J in J is the time interval between the
ready times of two consecutive tasks in the job. The deadline of the task in each period is some time d after

138

the ready time of the task. In an m-processor flow shop, each task consists of ?a subtasks that are to be
executed on the m processors in turn following the same order.

3. Flow-Shop Scheduling

II Unfortunately, with arbitrary task parameters, the problem of scheduling in a flow shop to meet
deadlines is NP-hard [10]. For this reason, we focus on a heuristic algorithm designed for scheduling tasks
with arbitrary task parameters. This algorithm, called Algorithm H, is described in Figure 1. It makes use of
the effective deadlines of subtasks. The effective deadline dli = di - E Tik for the subtask Tij is the point in

k=i+1
time by which the execution of the subtask Tij must be completed to allow the later subtasks, and the task

i-I
Ti, to complete by the deadline di . Similarly, the effective release time rli = ri + E rik of a subtask Tij is the

k=.1
earliest point in time at which the subtask can be scheduled.

a The effective release times and deadlines of subtasks are computed in Step 1 in Algorithm H. In Step 2,
a processor Pb, called the bottleneck processor, is identified; a subtask on this processor has the longest
processing time rm. among all the subtasks on all the processors. Step 3 inflates all the subtasks Tij on Pb by
making their processing times equal to T.,.. Each inflated subtask Tib consists of a busy segment with
processing time 7 ib and an idle segment with processing time r.. - r,b. Now, all inflated subtasks on Pb have
identical processing times. We then use the classical earliest-effective-deadline-first (EEDF) algorithm (11l in
Step 4 to schedule the inflated subtasks Tib nonpreemptively on Pb. The resultant schedule Sb is used as a
starting point for the construction of the overall schedule S on all the processors. In Step 5, subtasks on the
other processors are scheduled in the same order as the subtasks Tib in Sb; hence the resultant schedule is a
permutation sehedule. In this step, every subtask is assigned rm. units of time on its p.ocessor. Both Step 3
and Step 5 add idle times on all the processors and therefore generate schedules that can be improved. Thec chduewhn uh sheue xit.)Intisstpiletie o alprocessors aerdcda uha
compaction in Step 6 is a way to improve the performance of Algorithm H (that is, the chance for it to find a
feasible schedule when such a schedule exists.) In this step, idle times on all processors are reduced as much as

possible.

The classical EEDF algorithm used in Step 4 is priority driven. It assigns priorities to the inflated
subtasks Tb according to their effective deadlines: the earlier the deadline, the higher the priority. In
particular, we use the more complicated version designed by Garey et al. and described in [111]; it is optimal
for nonpreemptive scheduling to meet deadlines of tasks with identical processing times, and with release
times and deadlines that are arbitrary rational numbers. This algorithm first identifies forbidden regions in
time where tasks are not allowed to start execution and postpones the release times of selected tasks to avoidj| the forbidden regions. In Figure 1, by release times of Tib, we mean the postponed release times produced by
this initial step of the EEDF algorithm from the parameters rib and di6 as computed in Step 1.

Algorithm H is relatively simple, with complexity O(nlogn + nm). In the special case where the
subtasks Tij have identical processing times, that is ij = rj for all j = 1,2, • m, Step 3 introduces no
additional idle time. Furthermore, Step 4 is optimal. If the schedule S found by the classical EEDF
algorithm is not feasible, then { Tib) cannot be feasibly scheduled. Steps 5 and 6 always produce a feasible
schedule S of all subtasks on all the processors if the schedule Sb on Pb is feasible. We therefore have the
following theorem whose proof follows directly from these arguments 1121.

Theorem 1. For nonpreemptive flow--shop scheduling of tasks that have arbitrary release times and
deadlines and whose subtasks on each processor P1 have the same processing times Tj, Algorithm H is optimal.

For the general case of arbitrary processing times -rij, however, Algorithm H is not optimal. This is
caused by the suboptimal scheduling algorithm on a single processor in Step 4 and by the restriction on
permutation schedules. Figure 2 shows the results of a simulation experiment to investigate the probability
for the Algorithm H to succeed in producing a feasible schedule when feasible schedules exist. In this
experiment, Algorithm H was used to schedule task sets which have randomly generated task parameters but
are known to have feasible schedules. The fraction of time Algorithm H succeeded in finding a feasible
schedule is plotted as a function of m, the number of processors in the flow shop, for different standard
deviations (stdv) in the processing times ef the subtasks on each processor. We see that when the difference
between processing times of subtasks T41 on each processor Pi i3 small (for example, when the standard
deviation is 0.05 or 0.15) Algorithm H performs well. Its performance decreases as the difference in processing
times increases.

3 139

II

4. Flow-Shop With Recurrence I
The order in which tasks execute on processors in a flow shop with recurrence can also be represented by

a visit graph, whose set of nodes {Pi} represents the processors in the system. There is a directed edge cii

from Pi to Pi with label a if and only if in the visit sequence V = (vl, V2, , va, Va+,• , vk), v. = i and
V"+1 = i. A visit sequence can therefore be represented as a path with increasing edge labels in the visit
graph. An example of a visit graph for the visit sequence V = (1, 2, 3, 4, 2, 3, 5) is shown in Figure 3. We
confine our attention here to a class of visit sequences that contain simple recurrence patterns, called loops:

tsome sub-sequence of the visit sequence containing reused processors appears more than once. In the example
~shown in Figure 3 the labeled path that represents the visit sequence contains a loop. The sub-sequence (2, 3)

occurs twice and makes the sequence (4, 2, 3) following the first occurrence of (2, 3) into a loop. In j
particular, the visit sequence in Figure 3 contains a simple loop which contains no subloop. The length of a
loop is the number of nodes in the visit graph that are on the cycle. The loop in Figure 3 therefore has length

The problem of scheduling to meet deadlines in a flow shop with recurrence, being a generalization of
the flow shop scheduling problem, is NP-hard when task parameters are arbitrary. However, in the special
case where (1) all tasks have identical release times, arbitrary deadlines, and the same processing time r on all T

processors and (2) the visit sequence contains a singl" simple loop, there is an optimal, polynomial-time
algorithm for scheduling tasks to meet deadlines. This algorithm, called Algorithm R, is shown in Figure 4.

Algorithm R is essentially a modified version of the classical EEDF algorithm. We observe that if a
loop in the visit graph has length q, the second visit of every task to a reused processor cannot be scheduled
before (q-1)r time units after the termination of its first visit to the processor. The key strategy used in
Algorithm R is based on this observation. Let Til be the subtask at the first visit of T; to the processor P, in
the loop of length q, and Tio+d be the subtask at the second visit of Ti to the processor. Ti(L+1) is dependent I
on Til. While T1 is ready for execution after its release time, Ti(,+ is ready after its release time and after L
the completion of Til. Step 1 of Algoithm R differs from the classical EEDF algorithm because the effective
release times of the second visits are postponed whenever necessary as the first visits are scheduled. T
Therefore, the optimality of Algorithm R no longer follows in a straightforward way from the optimality of
the EEDF Algorithm. Algorithm R is optimal, however, as stated by the following theorem, the proof of
which is given in [10!.

Theorem 2. For nonpreemptive scheduling of tasks in a flow shop with recurrence, Algorithm R is
optimal, when the tasks have identical release times, arbitrary deadlines, identical processing times, and the
visit graph contains a single, simple loop.

5. Periodic Flow Shops
To explain a simple method that can be used to schedule jobs in periodic flow shops, we note that each

job Ji in a periodic flow-shop job set can be logically divided into m subjobs Jip" The period of J.i is pi. The
subtasks in all periods of Jii are executed on processor Pi and have processing times ri. The set of n periodic
subjobs Ji = {Jii} is scheduled on the processor Pi. The total utilization factor of all the subjobs in Ji is

u, = Er~i/pi . We call the subtask in the kth period of subjob J~i T~i(k). For a given j, the subjobs J of -

different jobs Ji are independent, since the jobs are independent. On the other hand, for a given i, ;he
subjobs .ij of Ji on the different processors are not independent since Tij(k) cannot begin until Ti_(1)(k) is
completed. Unfortunately, there are no known polynomial-time optimal algorithms that can be used to
schedule dependent periodic jobs to meet deadlines, and there are no heuristic algorithms with known
schedulability criteria. Consequently, it is not fruitful to view the subjobs of each job Ji on different
processors as dependent subjobs. A more practical approach is to consider all subjobs to be scheduled on all
processors as independent periodic subjobs and schedule the subjobs on each processor independently from the
subjobs on the other processors. We effectively take into account the dependencies between subjobs of each
job in the manner described below.

For the sake of concreteness, let us for the moment give the periodic jobs in our model the following
specific interpretation: the consecutive tasks in each job are dependent, that is, the subtask Til(k) cannot
begin until the subtask T;,(k-1) is completed. Let -1 denote the time at which the first task T.i(1) becomes
ready. 7I is also called the phase of Ji; it is also the phase -1i, of the subjob Jl of Ji on the first processor.
Hence the kth period of the subjob J.4 begins at yi, + (k-l)pi. Without loss of generality, suppose that the

140 1

set J, is scheduled on the first processor P, according to the well-known rate-monotone algorithm [7).
Suppose that the total utilization factor u1 of all the subjobs on P1 is such that we can be sure that every

subtask Til(k) is completed by the time 6&pi units after its ready time -yi = (k-1)p i for some 61 < 1. Now, we
let the phase of every subjob Ji2 of Ji on processor P 2 be '42 = Iii + SiP 1. By postponing the ready time of
every subtask Ti2(k) in every subjob Ji2 on processor P 2 until its predecessor subtask Tit(k) is surely
completed on processor Pi, we can ignore the pr-.cedence constraints between subjobs on the two processors.
Any schedule produced by scheduling the subjobs on Pi and P2 independently in this manner is a schedule
that satisfies the precedence constraints between the subjobs Jil and Ji 2. Similarly, if the total utiization
factor u2 of all subjobs on P2 is such that every task in Ji2 is guaranteed to complete by the time instant 62Pi
units after its ready time, for some 62 < 1-61, we postpone the phase -yi3 of Ji3 by 62, and so on.

Suppose that the total utilization factors ui for all j = 1, 2, • -. m are such that, when the subjobs on
each of the m processors are scheduled independently from the subjob. -!! the other processors according to
the rate-monotone algorithm, all subtasks in Jii complete by 6i p i units of time after their respective ready

m
times, for all i and j. Moreover, suppose that each bi is a positive fraction, and E6. <_ 1. We can postpone

1imi

the phase of each subjob Ji, on Pi by bip i units. The resultant schedule is a feasible schedule where all
deadlines are met. Given the parameters of J, we can compute the set {u1 } and use the existing schedulability

bounds given in [8,9] to determine whther there is a set of {6i} where 6i > 0 and E5 i _ 1. The job system
j-i

J can .= feasibly scheduled in the manner described above to meet all deadlines if such a set of65' exists. It is
easy to see that with a small modification of the required values of bi, this method of scheduling in periodic
flow shops can handle the case where the deadline A of each task in a job with period pi is equal to or less
than m pi units from its ready time. Similarly, this method can be used when the subjobs are scheduled
according to other algorithms, or even different algorithms on different processors, so long as schedulability
criteria of the algorithms are known.

6. Summary
We considered here the problem of end-to-end scheduling of tasks with hard deadlines in flow shops.

The objective of scheduling is to find a feasible schedule in which all tasks complete by their deadlines
whenever feasible schedules exist. The flow-shop model can be used to characterize hard real-time
applications on a system containing functionally-dedicated processors and devices. In addition, they also
model other types of workload and systems, from data transmissions through a series of iiks and nodes, to
executions of instructions in a pipeline processor, to sequencing of operations in a logic circuit. We have
described: 'I) a heuristic algorithm for scheduling tasks with arbitrary processing times in flow shops, (2) a
polynomial-time optimal algorithm for scheduling task with identical processing times and release times in
simple flow shops with recurrence, and (3) an effective method for preemptive scheduling of jobs in periodic

j flow shops.

Acknowledgement

This work was partially supported by the Navy ONR Contract No. NVY N00014 89-J-1181.

References
[1] Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. 1. Freeman and Company, New York, 1979.
[2] Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. "Sequencing and scheduling:

Algorithms and complexity," Centre for Mathematics and Computer Science, Amsterdam, 1989
[3] Garey, M. R. and D. S. Johnson, "Scheduling Tasks with Nonuniform Deadlines on Two Processors," J.

Assoc. Comput. Mach. 1976 vol. 23, pp. 461-467.
[4] Garey, M. R., D. S. Johnso:%, and R. Sethi, "The Complexity of Flowshop and Jobshop scheduling,"

Math. Oper. Res. 1976 vol. 1, pp. 117-129.
[51 Woodside, C. M. and D. W. Graig, "Local Non-Preemptive Scheduling Policies for Hard Real-Time

Distributed System," Proceeding of Real-Time Systems Symposium, Dec. 1987.
16) Sha, L., J. P. ! P1 oczky, and R. Rajkumar, "Solutions for Some Practical Problems in Prioritized

Preemptive S-;,.,, .'," Proceeding of Real-Time Systems Symposium, Dec. 1986.

141

t

171 Liu, C. L. and J. W. Layland, "Scheduling algorithms for multiprogramming in a hard real-time
environment," J. Assoc. Comput. Mach. vol. 20, pp. 48-61, 1973.

181 Lehoczky, J. P. and L. Sha, "Performance of Real-Time Bus Scheduling Algorithms," ACM
Performance Evaluation Review, 14, 1986

[9) Peng, D. T. and K. G. Shin, "A New Performance Measure for Scheduling Independent Real-Time
Tasks," Technical Report, Department of Electrical Engineering and Computer Science, University of
Michigan, 1989.

1101 Bettati, R. and J. W.-S. Liu, "Algorithms for End-to-End Scheduling to Meet Deadlines," Technical
Report No. UIUCDCS-R-1594, Department of Computer Science, University of Illinois, 1990.

111] Garey, M. R., D. S. Johnson, B. B. Simons, and R. E. Tarjan, "Scheduling Unit-Time Tasks with
Arbitrary Release Times and Deadlines," SIAM J. Comput. 1981 vol. 10-2, pp. 256-269.

1121 Bettati, R. and J. W.-S. Liu, "Algorithms fcr End-to-End Scheduling to Meet Deadlines," Proceeding of
the Second IEEE Symposium on Parallel and Distributed Processing, Dec. 1990.

Algorithm H

Input: Task parameters ri, di and ri of T.

Output: A feasible schedule of T, or "the algorithm fails".

Step 1: Determine the effective release time.; ri and effective deadlines dq of all subtasks.

Step 2: Determine the bottleneck processor P on which there is a subtask Tib with the longest processing
time Tjb. In other words, for some 1, -rib _ rq for all i and j. Let r rt.

Step 3: Inflate all the subtasks in { Tij} by making their processing times equal to Tm.
Step .4: Schedule the inflated subtasks in (Tib} on Pb using the EEDF algorithm. The resultant schedule is

Sb.

Step 5: Let t,b be the start time of T;b in Sb on Pb. Propagate the schedule Sb onto the remaining processors
as follows: . Jr any task T, we schedule T,(6+1 to start at time t, + rm, on processor Pb+l, Ti(i+ 2)
at time t,b 2 rm on P6+2, and so on until T,, is scheduled at time tib + (m-b)rm.x on P.. Ti(&-1)
is scheduled to starL at time tib - r;(b_) on processor Pb-., T(b- 2) at time tb - Tm&x - rt(b- 2) on
Pb- 2 , and so on, until Til is scheduled to start at time t,b - (b-1)rm. - rl on P1.

Step 6: Compact the schedule by eliminating as much as possible the lengths of idle periods that were
introduced in Step 3 and Step 5. Stop.

Figure 1. Algorithm H for scheduling arbitrary tasks in flow shops.

100l-- (96% conadfnce)

93 -- " ,tdv = 0.05
Success 97-

Rate 96 - stdv = 0.15

(%) 95-
941- X stdv=0.30
93-

92
4 5 6 7 8 9

Number of Processors

Figure 2. Performance of Algorithm H.

I
Ira= 142

- 44

I

5

Figure 3. Visit graph for visit sequence V = (1, 2, 3, 4, 2, 3, 5).

Algorithm R:

Input: Task parameters rfl, d~i , r, and the visit graph G. P1, is the first processor in the single loop of

length q in G.

Output: A feasible schedule S or the conclusion that the tasks in { Tj} cannot be feasibly scheduled.

Step 1: Schedule the subtasks in {T~t} j {Ti(lf)} on the processor P,, using the modified EEDF algorithm

described below: the following actions are taken whenever P,, becomes idle

(i) If no subtask is ready, leave the processor idle.

(ii) If one or more subtasks are ready for execution, start to execute the one with the earliest effective
deadline. When a subtask Tit (that is, the first visit of Tj to the processor) is scheduled to start its

execution at time tit, set the effective release time of its second visit Ti(p+,) to ti + qi.
Step 2: Let t, and ti(,+f) to be the start times of T1, and Ti(I+q) in the partial scheduie SR produced in Step

1. Propagate the schedule to the rest of the processors according to the following rules:

(i) If j < 1, schedule Ti at time t, - (/-j)r.
(ii) If I < j _ I +q, schedule Ti; at time t, + (j-1)r.
(iii) If l+q < 5 < m, schedule Tij at time ti(I+q) + (j-l-q)r.

Figure 4. Algorithm R to schedule flow shops with single simple loops.

1143

Real-Time Scheduling of Sensor-Based Control Systems

David B. Stewart and Pradeep K. Khosla

De-partment of Electrical and Computer Engineering and
The Robotics Institute,

Carnegie Mellon University,
Pittsburgh, PA 15213

Abstract: Many sensor-based control systems are dynamically changing, and thus require a flexible scheduler. The
rate monotonic (RM) real-time scheduling algorithm does not support such dynamic systems very well. On the other
hand, with earliest-deadline-first (EDF) and minimum-laxity-first (MLF) dynamic scheduling algorithms, a transient
overload in the system may cause a critical task to fail, which is certainly undesirable. This paper proposes a new real-
line scheduling aigorithna, which we call maximum-urgency-first (MUF), which combines the advantages of the RM,

EDF, and MLF algorithms. Like EDF and MLF, MUF has a schedulable bound of 100% for the critical set. And like
RM, a critical set can be defined that is guaranteed to meet all its deadlines. The MUF algorithm also allows the sched-
uler to detect three forms of deadline failures, and callfailure handler routines for tasks which fail to meet their dead-
lines.The MUF scheduler has been implemented as the default scheduler of CHIMERA 11, a real-time operating system
being used to control sensor-based control systems both at Carnegie Mellon University and elsewhere. There are still
many issues to be addressed with regards to the MUF algorithm. This paper also presents those issues, with possible
approaches that should be investigated further.

Keywords: real-time scheduling, dynamic scheduling, sensor-based control, maximum-urgency-first, rate monotonic
algorithm, earliest-deadline-first, minimum-laxity-first, CHIMERA 11 Real-Time Operating System.

1 Introduction
Many sensor-based control systems are dynamically changing, and require a flexible scheduler. For example consider
the case of a tactile sensor, on the end of a robotic manipulator, that is used to explore an object. Assume the tactile
sensor has a resolution of 2 by 2m taxels, where n and m can vary dynamically between 1 and 5. When exploring un-
interesting parts of an object, such as the straightedge of a table, it is desirable to use the lowest resolution, so that
computation time is minimized and sample frequency is fastest, and the robot can follow the edge quickly. As the ob-
ject becomes more interesting, such as the rounded comer of the table, it is desirable to increase the resolution of the
tactile sensor. In doing so, the computational time required to process the data increases, and the frequency of data
samples must be decreased (and not necessarily linearly).

The rate monotonic (RM) real-time scheduling algorithm does not support such dynamic systems very well. On the
other hand, with earliest-deadline-first (EDF) and minimum-laxity-first (MLF) dynamic scheduling algorithms, a tran-
sient overload in the system may cause a critical task to fail, which is certainly undesirable. This paper proposes a new
real-time scheduling algorithm, called maximum-urgency-first (MUF). It combines the advantages of the RM, EDF,
and MLF algorithms. Like EDF and MLF, MUF has a schedulable bound of 100% for the critical set. And like RM, a
critical set can be defined that is guaranteed to meet all its deadlines. The MUF algorithm also allows the scheduler to
detect three types of timing failures, and call failure handler routines for tasks which fail to meet their deadlines.

Section 2 briefly describes the RM, MLF, and EDF algorithms, and Section 3 describes our new MUF scheduling al-
gorithm. Section 4 describes our implementation of the MUF scheduler as the default scheduler of the CHIMERA II
Real Time Operating System[8]. It is being used to control several sensor-based robotic systems at Carnegie Mellon
University and elsewhere. The flexibility of the MUF algorithm provides many new possibilities in real-time schedul-
ing of sensor-based control systems. A brief discussion in Section 5 is included to stimulate the reader's interest in the
MUF algorithm, and to present a few ideas for further research.We also show that RM, EDF, and MLF are special cases
of the MUF algorithm.

144

I

I 2 Related Work
Liu and Layland presented the rate monotonic algorithm as an optimal fixed priority scheduling algorithm, and the ear-
liest-deadline-first and minimum-laxity-first algorithms as optimal dynamic priority scheduling algorithms.H4] Two
disjoint scheduling philosophies emerged: static priority scheduling and dynamic priority scheduling. The former con-
sists of using RM, while the latter uses either EDF or MLF as the baseline scheduling algorithm.

2.1 Rate Monotonic Algorithm (RM)
The rate monotonic algorithm is a fixed priority scheduling algorithm which consists of assigning the highest priority
to the highest frequency tasks in the system, and lowest priority to the lowest frequency tasks. At any time, the sched-
uler chooses to execute the task with the highest priority. By specifying the period and computational time required by
the task, the behavior of the system can be categorized apriori.

One problem ,vith the rate monotonic algorithm is that the schedulable bound is less than 100%. The schedulable
bound of a task set is defined as the maximum CPU utilization for which the set of tasks can be guaranteed to meet
their deadlines. The CPU utilization of task Pi is computed as the ratio of worst-case computing time Ci to the period
Ti. The total utilization Un for n tasks is calculated as follows:

A Ci
U n Ti (1)

i=1 £

For the RM algorithm, the worst-case schedulable bound Wn for n tasks is

Wn = n(2 1) (2)

From (2), W, = 100%, W2 = 83%, W3 = 78%, and in the limit, W.. = 69% (In 2). Thus a set of tasks for which total
CPU utilization is less than 69% will always meet all deadlines. A'l tasks will be guaranteed to meet their deadlines if
U,5 < W,. If U, > Wn, then the subset of highest-priority tasks S such that U :< W, will be guaranteed to meet all dead-
lines, and will thus form the critical set. Note that the worst case values are pessimistic, and it has been shown that for
the average case W., = 88%[3].

Another problem with RM is that it does not support dynamically changing periods very well, a feature required by
I some sensor-based control systems. For example, a task set with three tasks P1, P2, and P3, of periods T1 = 30ms, T2

= 50ms, and T3 = l00ms would have the following fixed priority assignment (from highest to lowest): P1, P2, P3.Sup-
pose the period of P1 changes to T1 = 75ms. Under the RM algorithm, we would require that the priorities of each task
be reassigned to the ordering P2, P1, P3, which violates the condition that priorities are static.
The problems with RM encourage the use of dynamic priority algorithms. Although many such algorithms exist, we
restrict our attention in this paper to EDF and MLF.

3 2.2 Earliest-Deadline-First Scheduling Algorithm (EDF)
As the name implies, the earliest-deadline-first algorithm uses the deadline of a task as its priority. The task with the
earliest deadline has the highest priority, while the task with the latest deadline has the lowest priority. One advantage
of this algorithm is that the schedulable bound is 100% for all task sets. Secondly, because priorities are dynamic, the
periods of tasks can be changed at any time.

A major problem with the EDF algorithm is that there :s no way to guarantee which tasks will fail in a transient over-
load situation. In many systems, although the average case utilization is less than 100%, it is possible that the worst-
case utilization is above 100%, leaving the possibility of one or more tasks failing. In such cases, it is desirable to con-
trol which tasks fail and which succeed during such a transient overload. In the RM algorithm, low priority tasks willft always be the first to fail. However, no such priority assignment exists with EDF, and thus there is no control of which
task fails during a transient overload. As a result, it is possible that a very critical task may fail at the expense of a lesser
important task.

1 2.3 Minimum-Laxity-First Scheduling Algorithm (MLF)
Our purpose in describing the minimum-laxity-first algorithm in thls section is not to compare it to RM or ED, but
rather to introduce it as a basis for the maximum-urgency-first algorithm proposed in this paper. The minimum-laxity-

145*

II

first algorithm assigns a laxity to each task in a system, then selects the task with the minimum laxity to execute next.
Laxity is defined as follows:

laxity = deadline_time - currenLtime - CPU..ime _still_needed (3)

Laxity is a measure of the flexibility available for scheduling a task. A laxity of tl means that even if the task is delayed
by tj time units, it will still meet its deadline. A laxity of zero means that the task must begin to execute now or it will

r risk failing to meet its deadline.

The main difference between MLF and EDF is that MLF takes into consideration the execution time of a task, which
EDF does not do. Like the earliest-deadline-first algorithm, MLF has a 100% schedulable bound, but there is no way
to control which are guaranteed to execute during a transient overload. In the next section, we present the MUF algo-
rithm, which allows the control of task failures during transient overload, while maintaining the flexibility of a dynamic
scheduler, and 100% schedulable bound for the critical set.

3 Maximum-Urgency-First Algorithm (MUF)
The maximum-urgency-first scheduling algorithm which we have developed is a combination of fixed and dynamic
priority scheduling, also called mixed priority scheduling. With this algorithm, each task is given an urgency. The ur-
gency of a task is defined as a combination of two fixed priorities, and a dynamic priority. One of the fixed priorities,
called the criticality, has higher precedence over the dynamic priority. The other fixed priority, which we call user pri-
ority, has lower precedence than the dynamic priority. The dynamic priority is inversely proportional to the laxity of a
task.

The MUF algorithm consists of two parts. The first part is the assignment of the criticality and user priority, which is
done apriori. The second part involves the actions of the MUF scheduler during run-time

The steps in assigning the criticality and user priority are the following:

1. As with RM, order the tasks from shortest period to longest period.

2. Define the critical set as the first N tasks such that the total worst-case CPU utilization does not
exceed 100%. These will be the tasks that do not fail, even during a transient overload of the sys-
tem. If a critical task does not fall within the critical set, then period transformation, as used with
RM,[61 can also be used here.

3. Assign high criticality to all tasks in the critical set, and low criticality to all other tasks.

4. Optionally assign a unique user priority to every task in the system.

The static priorities are defined once, and do not change during execution. The dynamic priority of each task is as-
signed at run-time, inversely proportional to the laxity of the task. Before its cycle, each task must specify its desired
start time, deadline time, and worst-case execution time.

Whenever a task is added to the ready queue, a reschedule operation is performed. The MUF scheduler is used to de-
termine which task is to be selected for execution, using the following algorithm:

1. Select the task with the highest criticalness.

2. If two or more tasks share highest criticalness, then select the task with the highest dynamic prior-
ity (i.e. minimum laxity). Only tasks with pending deadlines have a non-zero dynamic priority.
Tasks with no deadlines have a dynamic priority of zero.

3. If two or more tasks share highest criticalness, and have equal dynamic priority, then the task
among them with the highest user priority is selected.

4. If there are still two or more tasks that share highest criticalness, dynamic priority, and highest user
priority, then they are serviced in afirst-come-first-serve manner.

The optional assignment of unique user priorities for each task ensures that the scheduler never reaches step 4., thus
providing a deterministic scheduling algorithm. We have yet o investigate the best method for assigning the user pri-
orities.

146

!I

To demonstrate the advantage of MUF over RM and EDF, consider the task set shown in Figure 1. We assume that the
deadline of each task is the beginning of the next cycle. Four tasks are defined, with a total worst-case utilization of
over 100%, thus in the worst-case, missed deadlines are inevitable. Figure 1(a) shows the schedule produced by a static
priority scheduler when priorities are assigned using the RM algorithm. In this case, only P and P2 are in the critical
set, and are guaranteed not to miss deadlines. Expectably, both P3 and P4 miss their deadlines. When using the EDF
algorithm, as in Figure 1(b), tasks P1 and P2 fail. However, any task may have failed, since with EDF there is no way
to predict the failure of tasks during a transient overload of the system.

With the MUF algorithm, all tasks in the critical set are guaranteed not to miss deadlines. In our example, the combined
worst-case utilization of P1, P2, and P3 is less than 100%, and thus they form the critical set. Only task P4 can miss
deadlines, because it is not in the critical set. Figure l(c) shows the schedule produced by the MUF scheduler. Note
the improvement over RM: because of a higher schedulable bound for the critical set, task P3 is also in the critical set
and thus does not miss any deadlines. Also, unlike EDF, we are able to control that the only task that may fail is P4.

The choice of using MLF to calculate the dynamic priority instead of EDF enables the scheduler to detect missed dead-
lines. 'There are three failures which the MUF scheduler can detect:

1. A task has not completed its cycle when the deadline time has been reached;

12. A task was given as much CPU time as was requested in the worst-case, yet it still did not meet its
deadline;

3. The task will not meet its deadline because the minimum CPU time requested cannot be granted.
This case also requires that the minimum amount of CPU time required by a task is specified.

The first case is the standard notion of a missed deadline. The second case will detect bad worst-case estimates of ex-
ecution time. The third case allows the MUF scheduler to make the most of its CPU time, and it will not start executingI a task if that task has no possibility to finish before its deadline, thus providing the early detection of missed deadlines.
Instead, the CPU time can be reclaimed for ensuring that other tasks do not miss deadlines, or to call alternate, shorter
threads of execution.

4 Implementation
JOne concern of the MUF scheduler is the overhead that would be required during each reschedule operation. The over-

head of the MUF scheduler can be reduced by encoding the algorithm into a single urgency value, hence the name of
the algorithm. Figure 2 shows an n-bit urgency value, which was encoded using c bits for criticality, d bits for the dy-
namic priority, and u bits for the user priority. With such an encoding, the range of criticalities, dynamic priorities, and
user priorities are 0 to 2cl-,0 to 2a-I, and 0 to 2"-1 respectively. The MUF scheduler must then only calculate a single
dynamic priority for each task, then select the task with the maximum urgency. This encoding scheme can be used to

_ implement the MUF algorithm as long as c, d, and u are all greater than or equal to log2(max number of tasks in system).V Such encoding allows the maximum urgency scheduler to be implemented efficiently.

Bit (n-1) Bit 0

criticality dynamic priority I user priority 7

c bits d bits u bits

Figure 2: Encoded n-bit Urgency Value

We have implemented the MUF scheduler as the default scheduler of the CHIMERA II Real-Time Operating
System [8]. CHIMERA II is being used both at Carnegie Mellon University and elsewhere, on a variety of sensor-
based control systems, including the CMU Direct Drive Arm II [2 and the CMU Reconfigurable Modular Manipulator
System [5].

On an Ironies 1V3220 Single Board Computer, with a 20 MHz M68020 processor, a reschedule operation with four
ready tasks (excluding context switch time), takes 28 microseconds. The context switch takes another

.141

F j 147

1. !

11
Task Prioritv(RM) Criticality(MUEl) Period CPU time Utilization Lenend l

P1 High High 6 2 33%

P2 Med High High 10 4 40%

P3 Med Low High 12 3 25% I
P4 Low Low 15 4 27%

f

CPU time requested by each task (deadline Is beginning of following cycle):
1 2 3 4 5

1 2 3

1 2 3
F\717717\71 I 1I I I Ii I I \7777\\1777 1 I I1 I I I I I I MN\

1 2

(a) Schedule generated when using Rate Monotonic algorithm:

0 2 4 6 8 10 12 14 16 18 20 22 24

P3 misses P4 misses

first deadline first deadline

(b) Schedule generated when using Earflest-Deadline-First algorithm:

0 2 4 6 8 10 12 14 16 18 20 22 24

P2 misses P1 misses -

second deadline fourth deadline

(c) Schedule generated when using Maximum-Urgency-First algorithm:

2 4 6 8 10 12 14 16 18 20 22 24

P4 misses
first deadline

Figure 1: Example comparing RM, EDF, and MUF algorithms

148 I

F

66 microseconds, for a total of 94 microseconds. With a 1 millisecond clock, we maintain over 90% CPU utilization,
while with a 10 millisecond clock we maintain over 98% utilization. This type of performance allows the scheduler to
be used with sensor-based control applications that have tasks with frequencies as high as 1000 Hz.

Our implementation also offers deadline failure handling. Whenever a task fails to meet its deadline, an optional failure
handler is called on behalf of the failing task. The-failure handler can be programmed to execute either at the same or
different criticality and user priority than the failing task. Such functionality is essential in predictable and fault-toler-
ant systems. Much emphasis in hard real-time systems has gone into ensuring that critical tasks always meet their dead-
lines. However, very little has been said about what to do about those tasks which fail to meet their deadlines during a
transient overload. Possible actions include the following: aborting the task and preparing it to restart the next period;
sending a message to some other part of the system to handle the error, modifying the priority of the task, and continu-
ing its execution; performing emergency handling, such as a graceful shutdown of part of the system or sounding an
alarm; maintaining statistics on failure frequency to aid in analyzing the system; in the case of iterative algorithms,
returning the current approximate value regardless of precision. Any of these actions and other user-defined actions
can be implemented using the deadline failure handling available with our MUF scheduler.

Estimating the execution time of tasks is oftendifficult. For example, most commercially-available hardware is geared
towards increasing average performance via the use of caches and pipelines. Such hardware is often used to implement
real-time systems. As a result, the execution time cannot necessarily be predicted accurately. Under-estimating worst-
case execution times can create serious problems, as it is possible that a task in the critical set also fails. The use of
deadline failure handlers is thus recommended for all tasks in a system, and not only those tasks which are not guar-
anteed. Our MUF scheduler provides this ability.

5 Discussion of MUF Algorithm
There are still many issues to be addressed with regards to the MUF algorithm. This section presents those issues, with
possible approaches, which should be investigated further.

Aperiodic Events: The presentation of the MUF algorithm in this paper assumed only periodic tasks. Most real-time
systems also have aperiodic events. Because MUF is a dynamic scheduler, aperiodic events can readily be included in
the system without changing the basic MUF scheduler. However, such events must not cause tasks from the critical set
to fail. Several methods have been adopted with the RM algorithm, including the sporadic server [7]. Similar methods
can possibly be used with the MUF algorithm. For example, an aperiodic server can be given a criticality higher than
the critical set. Its CPU utilization is included in the computation of the critical set, and calculated such that no critical
tasks will miss deadlines if the aperiodic server does not use more CPU time than it is allotted. As with any periodic
task, a deadline and maximum execution time is specified. If the server uses up all its time, then the failure handler is
called, which replenishes the server's execution time, or blocks the server until its CPU time can be safely replenished

Task Synchronization: Real-time tasks are usually not independent. The sharing of limited resources, and the com-
munication between tasks require appropriate synchronization or scheduling. With the RM algorithm, priority ceiling
protocol [6] semaphores are often used for ensuring critical tasks still meet their deadlines in the presence of task de-
pendencies. For the dynamic scheduling algorithms, both dynamic priority ceiling protocol semaphores [1] and re-
source scheduling [9] have been proposed. Adaptation of one or more of these methods to the MUF algorithm may be
possible.

Varying Time Constraints: In the introduction of this paper we gave an example of dynamically changing timing
constraints that may be encountered in sensor-base control systems. The MUF algorithm supports such tasks. Because
the MLF algorithm is used to schedule tasks within the critical set, their frequencies and worst-case execution times
can change dynamically. In order to guarantee tasks in the critical set in a dynamically changing environment, the
worst-case utilization Up for every task P is defined as Up = max (Cp/Tp), which is the maximum utilization of task
P during any one cycle. Any combination of period and CPU execution time can then be used, as long as C,/Tp, 5 Up
for every cycle Pc. This is a signficant improvement over RM, where a change in period and CPU execution time may
cause the critical set to change, even though utilization remains constant. When defining the MUF algorithm in
Section 3, we first ordered tasks from shortest to longest period. This step can be relaxed, and MUF will still perform
properly, but at the cost of non-critical tasks possibly failing unnecessarily.

149

Modular Design: In developing modular systems, it may-be desirable tD specify timing constraints on a per-module
instead of per-task basis. For example, a module may consist of two dependent tasks, such that the combined worst-
case CPU utilization is less than the sum of the utilization of the two tasks. In assigning priorities using RM, the fre-
quency of the tasks plays an important role. However, with the MUF algorithm, only the utilization plays a role. By
taking advantage of combined utilizations, it is possible to have a critical set in which the sum of the utilizations of all
tasks within the set is over 100%, but the worst-case utilization for any one time slice is still less thani 100%.

RM, EDF, and MLF as Special Cases of MUF: Without any modification, the MUF scheduler can also be used to
schedule task sets using either the RM, EDF, or MLF algorithm. For exanmple, instead of assigning criticalities accord-
ing to the MUF algorithm, assign criticaities to tasks in the same way as priorities are assigned using the RM algo-
rithm. Every task thus has a different criticality, and MUF behaves as a static-highest priority scheduler. Deadline and
execution times can still be specified to the MUF scheduler, even though they will not be used in the selection of which
task to execute. This allows the MUF scheduler to still detect deadline failures, even though the RM priority assign-
ment is used. Most fixed priority schedulers do not have such capabilities. If all tasks are given the same criticality,
then the MUF scheduler behaves as an MLF scheduler. If the tasks all specify zero as the worst-case execution time,
then the MUF scheduler reduces to an EDF scheduler, since the urgency of the task reduces to a function of deadline
time. Note that in the latter case, early detection of deadline failures and failures due to under-estimating worst-case
execution times cannot be detected.

6 Acknowledgments
The research reported in this paper is supported, in part, by U.S. Army AMCOM and DARPA under contract DAAA-
2 89-C-0001, by the Department of Electrical and Computer Engineering, and by The Robotics Institute at Carnegie
Mellon University. Partial support for David B. Stewart is provided by the Natural Sciences and Engineering Research
Council of Canada (NSERC) through a Graduate Schclarship. Special thanks also goes to Donald E. Schmitz, with
whom numerous discussions eventually led to the development of some of the ideas presented in this paper.

7 References
[I) Chen, M.-I., and K. J. Lin, "Dynamic Priority Ceilings: a Concurrency Control Protocol for Real-Time Systems,"

Univ. lsinois at Urbana-Champaign, IL, Tech Report UIUCDCS-R-89-15 11, April 1989.

[2] Kanade, T., P.K Khosla, and N. Tanaka, "Real-Time Control of the CMU Direct Drive Armt 1 Using Customized
Inverse Dynamics," in Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas, NV,
December 1984, pp. 1345-1352.

[3] Lehoczky, J., L. Sha, and Y. Ding,lTe Rate Monot d icheduling Algorithm: Exact Characterization and Aver-
age Case Behavior," in Proceedings 10th IEEE Real-Time Systems Symposium, Santa Monica, CA, December
1989, pp. 166-171.

[4] Liu, C. L., and n. W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard Real Time Environment,"
Journal of the Association for Computng Machinery, v.20, n.1, January 1973, pp. 44-61.

[5e Schmitz, D. E., P. K. Khosla, and T. Kanade, "te CMU Reconfigur-able Modular Manipulator System," in Pro-
ceedings of the International Symposium and Exposition on Robots (designated 19th ISIR), Sydney, Australia,
Nov. 1988, pp. 473.488.

[61 Sha, Lj. P. Lehoczky, and R. Rajkumar, "Solutions for Some Practical Problems in Prioritized Preetive Sched-
uling," in Proceedings 10th IEEE Real-Time Systems Symposium, Santa Monica, CA, December 1989.

[71 Sprun, B., L. Sha, and J. Lehoczky, "Aperiodic Task Scheduling for Hard Real-Tme Systems," Journal ofReal-
i.me Systems, v.1, n.1, Nov 1989, pp. 27-60.

[81 Stewart, D. B., D. E. Schmitz, and P. K. Khosla, "Implementing Real-Time Robotic Systems using CHIMERA I,"
in Proceedings of 1990 IEEE international Conference on Robotics and Automation, Cincinnatti, OH, May
1990, pp. 598-603.

[9] Lhao, W., K. Ramamritha, and J. A. Stankovic, "Scheduling Tasks with Resource Requirements in Hard Real-
Tune Systems", IEEE Transactions on Software Engineering, vSEr 13, n.5, May 1987, pp. 564-577.

150

EIGHTH IEEE WORKSHOP ON REAL-TIME
OPERATING SYSTEMS AND SOFTWAREI (in conjunction with)

17th IFAC/IFIP WORKSHOP ON REAL-TIME PROGRAMMING

CALL FOR PAPERS

May 15 - 17, 1991
Atlanta, GA, USA

aW RSO HJR This workshop has several goals:
Kriihi RaMgmrit hamIDept. of Computer & Info. Science * to investigate advances in real-time operating
Lederle Graduate Research Center systems, software, and programming languages,

TUniversity of Massachusetts e to promote interaction among researchers and
Amherst, MA 01003 practitioniers,
USA II to evaluate the maturity and evolutio nary
413 545.0196 directions of real-tino- programming theories and approaches.
1crithi~nirvancs.uinass.edu

T- Wolfgany A. Halen; Workshop attendees will explore current ideas on real-time software, programmring
~ Det. o Coputig Soncelanguages, and operating systems. Position papers describing new ideas, promnisirn
Univrsit of ronigenapproaches, and work in progress are considered particularly appropriate.

P. 0. Box 800
5 -NL-9700 AV Groningen Possible topics of this workshop include:
11 The Netherlands

+31.50.63 39 3911 Re.&.time operating systems,
halang~cs.rug.nl * Real-time programming, requiremenxts analysis and specification,

PROGRAM COMMITTEE e Evaluation of real-time systems~,
9 Real-time scheduling and resource management,

0Robert P. Cook, University of Virginia * Examples of real-time (control) systems with challenging time constraints.
9 Juan A. de la Puente, Polytech Univ. of Madrid
a Wolfgang D. Ehrenberger, Soc. of Reactor Safety, Munich
#* Farnamn Jahanimn, IBM Yorktown Hleights

* H rman Kopetz, Tech University Vienna
V* Michael G. Rodd, University Wales, Swansea Prospective attendees should send 10 copies of a (no mnore than) 5-page position

Karsten Schwan, Georgia Tech paper to Krithi Ramamntlusm by January 15,1991. To facilitate the reviewing
*Alan Shaw, University of Washington process, it is recommended that submission also be sent electronically-in the form
eJanos Szlanko, Central Res. Inst. for Physics, Budapest of plain ASCII files. The position paper should focus on insights and lessons gainec
*Hide Tokuda, Carnegie-Mellon Univ.,PA from recent research and practical experience in real-time operating systems and

III T. J. Williams, Purdue University software. Complete details regarding the workshop will be sent to all participants
* Wei Zbao, U. of Adelaide, SA along with acceptance letters by March 15, 1991. Preprints of the accepted papers

will be made available at the Workshop. Proceedings will be published after the
3Co-a ponaned r workshop by Pergamon Press in the IFAC Proceedings Series. Attendance will be

*EEComputer Society limited to approximately 75 active workers in the field.
Technical Committee on Real-Time Systems

-oOfficc of Naval Research

IEEE wl. n eein i:

*IJFACI Techuical Committee on Computers
Working Group on- Real-Time Programming

*IFIP Working Group 5.4f
on Computerized Process Control

ADVANCE REGISTRATION

Joint
Eighth IEEE Workohop on Real-Time Operating Systems and Software

and
17th IFAC Workshop on Real-Time Programming Languages

May 15-17, 1991
Atlanta, GA, USAI

Tel. 413-545-0196 Fax: 413-545-1249

NAME:
AFFILIATION:
ADDRESS:
CITY/STATE/ZIP:
ELECTRONIC MAIL ADDRESS:
PHONE/FAX:

MEALS: Any dietary restrictions, i.e., vegetarian or other?

ADVANCE REGISTRATION FEES:

Before April 15 kfter Arpil 15

IEEE Members $130 $150
Non-Members $155 $185
Student $ 55 $ 55

IEEE Membership #:

Proceedings and social functions are included in the price.

After completing this form, return with check (U.S. Dollars) made payable to Eighth IEEE
Workshop on Real-Time to:

Ms. Betty Hardy

University of Massachusetts
Computer and Information Science Dept.

Lederle Graduate Research Center, A243

Amherst, MA 01003 USA

NOTE: Additional information regarding hotel and airlines is attached.

Final Program

JOINT
IEEE WORKSHOP ON REAL-TIME OPERATING SYSTEMS AND SOFTWARE

IFAC WORKSHOP ON REAL-TIME PROGRAMMING

MAY 15-17, 1991
Atlanta, GA

I

--- -ii IIi a

Wednesday, May 15, 1991

* LUNCHEON for Speakers and Panelists 12:00 - 1:15
(Hotel Restaurant)

*WELCOME Krithi Ramamritham 1:30 1:35
Wolfgang Halang

Karsten Schwan

SESSION 1 OPERATING SYSTEMS 1:35 - 3:15
Chair: Kwei-Jay Lin
University of Illinois

I. Multiprocessor Synchronization Primitives with Priorities
Evangelos P. Markatos, University of Rochester, New York

2. Y4RTOS: Kernel Support for Efficient, Predictable Real-Time Systems
Kevin Jeffay, Don Stone, Dan Poirier
University of North Carolina at Chapel Hill, North Carolina

3. Dynamic Scheduling for Hard Real-Time Systems: Toward Real-Time Threads
Hongyi Zhou, Karsten Schwan, Georgia Institute of Technology, Atlanta

4. .4 Reliable Multicast Protocol for Distributed Real-Time Systems
H. Kopetz, G. Grfinsteidl, Technical University of Vienna, Austria

* BREAK 3:15 - 3:45

i
e PANEL DISCUSSION: "Operating Systems: 3:45 - 5:00

Interfaces/Standards"

C. Douglass Locke, IBM (Chair)

Hide Tokuda, Carnegie Mellon University
Karen Gordon, IDA/CSED

j Robert Cook, University of Virginia

o RECEPTION Evergreen Conference Center 7:30 - 10:30
(Busses leave hotel at 6:30)

I

Thursday, May 16, 1991 - Mvorning

J B REAKFAST for Speakers and Panelists 7:00 - 8:15
t HoteI Restaurant)

SESSION 2 DESIGN OF REAL-TIME SYSTEMS 8:30 - 10:151

Chair: Juan de la Puente
Universidad Politenica de Madrid

1. GARTEN: A Programming Environment for Real-Time Software Development
Keith Ranson, C. Marlin, WVei Zhao,
The UniverFty of Adelaide, South Australia and
Texas A&M University, College Station

2. Schedulability, Program Transformattons and Real-Time Programming
Alexander D. Stoyenko, Thomas J. Marlowe
New Jersey Institute of Technology, Newark and
Seton Hall University, South Orange, New Jersey

3. PIPS: An Integrated A4pproach to the Design of Real-Time Systems
Chien-Chung Shen, Rajive Bagrodia
University of California, Los Angeles

4. Graphical Prototyping of Tasking Behaviour
R. Lintulampi, P. Pulli

Technical Research Centre of Finland, Oulu

*BREAK 10:15 - 10:451

*PANEL DISCUSSION: "Languages: Ada? object-oriented ?" 10:45 - 12:00I

Ted Baker, Forida State University (Chair)j
N. tatrqjnPennsylvania State University

Wolfgang Halang, Groningen University
Offer Pazy, Intermetrics, Inc.

I Thursday, May 16, 1991 - Afternoon

f LUNCHEON Poolside, weather permitting 12:00 - 1:30

SESSION 3 APPLICATIONS/EXPERIENCE 1:30 - 3:15
Chair: Andre van Tilborg
Office of Naval Research

1. Application of Real-Time Scheduling Theory to Multipr, cessor Pipelines
Robert J. Fornaro, William D. Allen,
North Carolina State University, Raleigh

2. Computer Music Performance as a Real-Time Testbed
David H. Jameson, IBM T.J. Watson Research Center,
Yorktown Heights, New York

3. Specifying Hard Real-Time Software: Ezperience with a Language and a Verifier
Constance Heitmeyer, Bruce Labaw,
Naval Research Laboratory, Washington, DC

4. Designing a Hard Real-Time System with Automatic Memory Management
Edward E. Ferguson, Dexter S. Cook, David H. Bartley,
Texas Instruments Inc., Dallas

. BREAK 3:15 - 3:45

I
I
I
I
I
I.

I

IL

Thursday, May 16, 1991- Afternoon

I SESSION 4 TIMING-ANALYSIS/MONITORING 3:45 - 5:30

Chair: Al 3fokfUniversity of Texas at Austin

11. Application of Partial Evaluation to Hard Real-Time Programming
Vivek Nirkhe, William Pugh, University of Maryland, College Park

2. Predictable Real-Time Caching in the Spring System
Douglas Niehaus, Erich Nahum, John A. Stankovic
University of Massachusetts, Amherst

3. Static Analysis of Timing Properties for Distributed Real-Time Programs
Horst F. Wedde, Bogdan Korel, Dorota M. Huizinga
Wayne State University, Detroit, Michigan

4. An Integrated Approach to Monitoring and Scheduling in Real-Time Systems
Farn.n Jahanian, Ragunathan Rajkumar..
IBM T.J. Watson Research Center, Yorktown Heights, New York

"Birds of a Feather" Sessions 8:00 - ?

ii0

I!

I
?1
1
I

-I

I
j Friday, May 17, 1991- Morning

* BREAKFAST for Speakers and Panelists 7:00 - 8:15
*(Hotel Restaurant)

SESSION 5 POT POURRI 8:30 - 10:15
Chair: Insup Lee
University of Pennsylvania

1. New Paradigms for Real-Time Database Systems
Robert P. Cook, Sang H. Son, Henry Y. Oh, Juhnyoung Lee,
University of Virginia, Charlottesville

2. Generating Synthetic Workloads for Real-Time Systems
Daniel L. Kiskis, Kang G. Shin, The University of Michigan, Ann Arbor

3. Managing Beliefs, Desires, and Time in Real-Time Systems
Tom Bihari, Prabha Gopinath, Tom Walliser
Adaptive Machine Technologies, Columbus, Ohio and
North American Philips Corp., Briarcliff Manor, New York

4. Adding Problem-Solving Capabilities to Existing Real-Time Systems
C.J. Paul, Anurag Acharya, Bryan Black, Jay Strosnider
Carnegie Mellon University, Pittsburgh, Pennsylvania

* BREAK 10:15 - 10:45

* PANEL DISCUSSION: "Fault-Tolerance and 10:45 - 12:00
Real-Time Systems"

Kang Shin, University of Michigan (Chair)
Farnam Jahanian, IBM
Jay Strosnider, CMU

4Gary Koob, Office of Naval Research

lI

I Friday, May 17, 1991 - Afternoon

1 . LUNCHEON Poolside, weather permitting 12:00 - 1:30

SESSION 6 SCHEDULING POT POURRI 1:30 - 3:15
John Lehoczky, Chair

Carnegie Mellon University

1. Limitations Concerning On-Line Scheduling Algorithms for
Overloaded Real-Time Systems
Sanjoy K. Baruah, Louis E. Rosier, University of Texas, Austin

2. Hard Real-Time Scheduling: The Deadline-Monotonic Approach
N.C. Audsley, A. Burns, M.F. Richardson, A.J. Wellings
University of York, England

3. Algorithms for Flow-Shop Scheduling to Meet Deadlines
R. Bettati, Jane W.S. Liu, University of Illinois, Urbana

= 4. Real- Time Scheduling of Sensor-Based Control Systems
David B. Stewart, Pradeep K. KhoslaJ Carnegie Mellon University, Pittsburgh, Pennsylvania and
The Robotics Institute, Pittsburgh

* BREAK 3:15 - 3:45

1 PANEL DISCUSSION: "Who needs one more scheduling 3:45 - 5:00
algorithm (for yet another task model)?"I
Jane Liu, University of Illinois (Chair)

IJack Stankovic, University of Massachusetts
Karsten Schwan, Georgia Institute of Technology
Marc Donner, IBM
Ed Ferguson, TI

I

U
-I'

II

READ ME FIRST
This READ ME FIRST gives you organizational information about the workshop.

Enclosures At the time of registration you shoula receive the following items.

1. Conference Proceedings (separate).

2. Envelope (large) containing all other items except for the conference proceedings.

3. READ ME FIRST (this sheet).

4. Badge (clip-on style) with your name and affiliation. The name tag will be printed if
you are preregistered or lucky. Otherwise it will be written by hand when you check

in. Please wear your badge during the conference.

S 5. Speaker ribbon (blue) (only if you are presenting a paper). Please claim a blue speaker
ribbon if you should have one.

6. Program Committee Member ribbon (red) (only if you are a program committee mem-
ber). Please claim a red program committee member ribbon if you should have one.

7. Final Program of the workshop (7 pages) in protective transparent binder.

If 8. Envelope (small) with meal tickets:

(a) Pink: Wednesday night reception and bus ticket.

(b) Yellow: Thursday lunch.
(c) Blue: Friday lunch.

9. Stone Mountain Park Brochure.

10. Buckhead Brochure.

Wednesday Night Reception/Laser Light Show The Wednesday night reception will be
I held at the Evergreen Conference Center in Stone Mountain Park with the following time

schedule:

6:30 pm Chartered bus departs from Sheraton Century Center hotel. Please use the
pink ticket as bus ticket and keep it for later use at the reception.

* 7:30 pm Reception at the Evergreen Conference Center. Reuse the pink ticket as your
dinner ticket.

9:00 pm Departure of bus from Evergreen Conference Center to the Laser Light Show

on the other side of Stone Mountain Park. Please don't leave anything behind at the
Evergreen Conference Center because the bus will not return to it. In case of rain
the laser light show will be cancelled and the bus will return directly to the Sheraton

Century Center hotel at this time. Do not plan on walking from one side of the park
to the other because the park is huge.

* 9:30 pm Laser Light Show. The daily laser light show at Stone Mountain Park is an
open air event. You will either stand or sit on the grass. You may want to bring a
towel from the hotel to sit on.

o 10:30 pm Departure of bus back to the Sheraton Century Center hotel.

) i 1

If you choose to drive to Sionc Nimoulii fl Park your,,elf. be prepaiel io pay an ei ranc fIu,
at the gate (it is free if you go by bus) and follow the following direciionis:

* From the Sheraton Century Center hotel take l-S5 North to I-2S5.

* Take 1-285 East to Exit 30B (Hwy 7S/Stone Mountain Pkwy).

* Go east (no choice hear) on Stone Mountain Pkwy for 7.5 miles to the East Gate of

Stone Mountain Park.II

IInside the park, turn left at the first opportunity.

* Go for 2 miles past the beach, golf course, and campground. The Evergreen Conference
Center is on your right directly after the dam.

Dietary Restrictions If you are a \egetarian. please say so \\ hen you check in. \We will try to
accomodate you as best we can. We need to give the hotel 24h notice of the number ofjvegetarian meals.

Address List Address lists of the conference attendees will be available at the registration desk
for urattended pickup on the last day of the workshop.

Message Board There will be a message board at the registration desk for general information

and personal messages. To leave a personal message, write it on a 3"x5" index card (pro-
vided at the desk). Please include "to:" and "from:" fields. A helper will put the name of
the addressee on the board.

Telephone Unfortunately, we cannot provide a telephone for incoming messages. The main
number of the Sheraton Century Center hotel is 325-0000. The hotel has payphones for
outgoing calls.

I

II

* Attendee List
Joint

Eight IEEE Workshop on Real- Time Operating Systems and Software
Sand

17th IFA C Workshop on Real- Time Programming Languages

if May 15-17, 1991
4Atlanta, GA, USA

Allen, William D., North Carolina State Univ., Precision Engin. Center, Campus Box 7918,
Raleigh, NC 27695-7918, USA, allen@pevsa.nesu.edu, Tel: 9.9 737-3096.

Audsley, Neil C., University of York, Dept. of Computer Science, York, England,
neil@uk.ac.york.minster, Tel: +904-432-761.

Bagrodia, Rajive, UCLA, 3531F Boelter Hall, Los Angeles, CA 90024, USA,

rajive@cs.ucla.edu, Tel:213 825-0956, Fax: 213 825-2273.

Baker, Ted, Florida State Univ., Dept. of Computer Science B-173, Tallahassee, F1 32306-4019,
I USA, baker~nu.cs.fsu.edu, Tel: 904 644-5452, Fax: 904 644-0058.

Baruah, Sanjoy K., Dept. of Computer Sciences, The Univ. of Texas at Austin, Austin, TX
178712-1188, USA, sanjoy@cs.utexas.edu, Tel: 512 471-9588, Fax: 512 471-0616.

Bettati, Riccardo, Univ. of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana,

II 61801, USA, bettatiOcs.uiuc.edu, Tel: 217 244-0432.

Bihari, Tom, Adaptive Machine Technologies, 1218 Kinnear Road, Columbus, Ohio 43212,

USA, amt@eagle.eng.ohio-state.edu, Tel: 614 486-7741.

Brockmann, Uwe, Georgia Institute of Technology, College of Computing, Atlanta, GA 30332-
0280, USA, uwe~cc.gatech.edu, Tel: 404 894-3982, Fax: 404 853-9378.

I Chronaki, Catherine, Computer Science Dept., University of Rochester, Rochester, NY 14627,
USA, chronaki@cs.rochester.edu, Tel: 716 275-7230.

Cook, Robert P., Univ. of Virginia, Thornton Hall, Charlottesville, VA 22903, USA,I cook~cs.virginia.edu, Tel: 804 982-2215.

Puente, Juan A. de Ia, Grupo de Ingeneria de Control, ETSI Telecomunicacion,
* j Ciudad Universitaria, E-28040 Madrid, Spain, jpuente@dit.upm.es, Tel:(34-1)3367342, Fax:

(34-1)5432077.

I Donner, Marc, IBM Research, P.O. Box 218, Yorktown Heights, NY 10598, USA,
-] donner@watson.ibm.com, Tel: 914 945-1234.

Ferguson, Edward E., Texas Instruments, PO box 655474, Mail Station 238, Dallas, TXI 75265, USA, fergusonOcsc.ti.com, Tel: 214 995-0348, Fax: 214 995-0304.

i m li~l =========== i :.2• w m ,,w . w ,.. .• ,= ,. . -......

Jk

Forbes, Harold C., Georgia Institute of Technology, College of Computing,
Atlanta, GA 30332-0280, USA, harold@cc.gatech.edu, Tel: 404 894-3982, Fax: 404 853-
9378.

Fornaro, Robert J., NC State University, PO Box 8206, Raleigh, NC 27695, USA,
fornaro@adm.csc.ncsu.edu, Tel: 919 737-7848, Fax: 919 737-3964.

Fujinami, Nobuhisa, Sony Computer Science Laboratory, Inc., Takanawa Muse Bldg., 3-14-13
Higashi-gotanda Shinagawa-ku, Tokyo 141 JAPAN, fnami~csl.sony.co.jp, Tel: +81-3-3448-

4380, Fax: +81-3-3448-4273.

Gheith, Ahmed, IBM, 1400 Burnet Rd. #2812, Austin, TX 78758, USA,
gheith@futserv.austin.ibm.com, Tel: 512 823-2406.

Ghosh, Kaushik, Georgia Institute of Technology, College of Computing, Atlanta, GA 30332-
0280, USA, kaushik@cc.gatech.edu, Tel: 404 894-6169, Fax: 404 853-9378.

Gordon, Karen D., Institute for Defense Analyses, 1801 N. Beauregard St., Alexandria, VA
22311, USA, gordonDida.org, Tel: 703 845-6630, Fax: 703 845-6848.

Gruensteidl, Guenter, Institut fuer Technische Informatik, Technical University of Vienna,
Treitlstrasse 3 182 1, Vienna, Austria, A-1040, gruen@vmars.tuwien.ac.at, Tel: +43 222
58201 8170, Fax: +43 222 569149.

Halang, Wolfgang A., Groningen University, PO Box 800, 9700 Av. Groningen, The Nether-
lands, halang@cs.rug.nl, Fax: 001-31-50-633800.

Haritsa, Jayant R., Univ. of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706,
USA, haritsa@cs.wisc.edu, Tel: 608 262-6625.

Heitmeyer, Connie, Naval Research Lab, Code 5534, Washington, DC 20375, USA, heit-
t meyer@itd.nrl.navy.mil, Tel: 202 767-3596.

Huizinga, Dorota M., Wayne State University, Detroit, MI 48165, USA, dmb@cs.wayne.edu
(or is it dmh~cs.wayne.edu?), Tel: 313 486-0047.

Jahanian, Farnam, IBM Research, P.O. Box, Yorktown Heights, NY 10598, USA,
farnamDwatson.ibm.com, Tel: 914 784-7498.

Jameson, David H., IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NYj10598, USA, dhj@rhun.watson.ibm.com.

Jeffay, Kevin, University of North Carolina, CB #3175 Sitterson Hall, Chapel Hill, NC 27514,
USA, jeffay~cs.unc.edu.

Kamenoff, I. Nick, Fordharn Univ., 336 John Mulcahy Hall, Bronx, NY 10458-5198, USA,
bitnet: kamenofflfordmurh, Tel: 212 579-2588, Fax: 212 579-2708.

Kiskis, Daniel L., Real-Time Computing Laboratory, The University of Michigan,
EECS Building, 1301 Beal Ave., Ann Arbor, MI 48109-2122, USA, dlk@eecs.umich. edu,
Tel: 313 763-6131.

Koob, Gary M., Computer Science Division, Office of Naval Research, Code 1133, 800 N.
Quincy St., Arlington, VA 22217-5000, USA, koobOnrl-css.arpa, Tel: 202 696-0872.

2
t1

i9

£4i

Kopetz, Hermann, Technical University of Vienna, Treitistrasse 3 182.1, A-1040 Vienna, Aus- i
tria, hk~vmars.tuwien.ac.at, Tel: +43-1-58801 8180, Fax: +43-1-569149.

Labaw, Bruce, Naval Research Lab, Code 5534, Washington, DC 20375, USA,
labaw@itd.nrl.navy.mil, Tel: 202 767-3249

Lee, Insup, University of Pennsylvania, Dept. of CIS, Philadelphia, PA 19151, USA,
I lee@central.cis.upenn.edu, Tel: 215 898-3532.

Lee, Juhnyoung, Dept. of Computer Science, University of Virginia, Charlottesville, VA 22903,
USA, jl2q@virginia.edu, Tel: 804 982-2296.

Lee, Yann-Hang, University of Florida, Computer & Information Sciences Dept. Gainesville,
FL 32611, USA, yhlee~cis.ufl.edu, Tel: 904 392-1536, Fax: 904 392-1220.

Lehoczky, John P., Carnegie Mellon University, Department of Statistics, Pittsburgh, PA
15213-3890, USA, jpl~k.gp.cs.cxnu.edu, Tel: 412 621-5473.

Lin, Kwei-Jay, Universit of Illinois, 1304 W. Springfield Ave., Urbana, IL 61801, USA,
klin@cs.uiuc.edu, Tel: 217 333-1424.

Lintulanpi, Raino, VTT, Comp Tech Lab, PO Box 201, SF-90571 OULU; Finland, Tel: +358
18 509 111, Fax: +358 18 509 680.

Liu, Jane W. S., University of Illinois, 1304 W. Springfield Ave., Urbana, IL 61801, USA,
janeliu@cs.uiuc.edu, Tel: 217 333-0135.

Locke, Doug, IBM Corp., 6600 Rockledge Dr., Bethesda, MD 20817, USA, cdl@cs.cmu.edu,
Tel: 301 493-1496, Fax: 301 493-1746.

Markatos, Evangelos, Computer Science Dept., University of Rochester, Rochester, NY 14627,
USA, markatos@cs.rochester.edu, Tel: 716 275-7230.

Marlowe, Thomas, Seton Hall University, 400 So. Orange Ave., South Orange NJ 07079, USA,
marlowe@paul.rutgers.edu, Tel: 201 761-9784.

Maynard, David, Carnegie Mellon University, Department of ECE, Pittsburgh, PA 15213,
USA, dpm~cs.cmu.edu, Tel: 412 268-7101.

Mok, Al, University of Texas at Austin, Dept. of Computer Science, Austin, TX 78712, USA,
mok@cs.utexas.edu, Tel: 512 471-9542.

Natarajan, Swaminathan, Dept. of Computer Sciences, Texas A&M University, College Sta-
tion, TX 77843-3112, USA, swami*cs.tarmu.edu, Tel: 409 845-8287, Fax: 409 847-8578

Niehaus, Douglas, Dept. of Computer and Information Science, University of Massachusetts,
Amherst, MA 01003, USA, niehaus@legato.cs.umass.edu, Tel: 413 545-4753, Fax: 413 545-
1249.

Nirkhe, Vivek, Dept. of Computer Science, University of Maryland, A.V. Williams Bldg.,
College Park, MD 20742, USA, vivek@cs.urnd.edu, Tel: 301 405-2724.

Oh, Henry Y., Dept. of Computer Science, University of Virginia, Thornton Hall, Char-
lottesville, VA 22903, USA, yosu@virginia.edu, Tel: 804 982-2291.

I3

! = :-

I

Paul, Chakkalamattam J., Carnegie Mellon University, ECE Department, Pittsburgh, PA
15213, USA, cjpaul@bahamas.ece.cmu.edu, Tel: 412 268 7121, Fax: 412 268-3890.

Pazy, Offer, Intermetrics, 733 Concord Ave., Cambridge, MA 02138, USA,
offer@inxnet.inmet.com, Tel: 617 661-1840.

Rajkumar, Ragunathan, IBM Research, P.O. Box 704, Yorktown Heights, NY 10598, USA,
rajkumrwatson.ibm.com, Tel: 914 784-7931, Fax: 914 784-7455.

Ramamritham, Krithi, COINS, University of Massachusetts, Graduate Research Center,
Amherst, MA 01003, USA, krithi@cs.umass.edu, Tel: 413 545-0196, Fax: 413 545-1249.

Rosenbaum, David, Georgia Institute of Technology, College of Computing, Atlanta, GA
30332-0280, USA, daver@cc.gatech.edu, Tel: 404 894-3982, Fax: 404 853-9378.

Schwan, Karsten, Georgia Institute of Technology, College of Computing, Atlanta, GA 30332-
0280, USA, schwanOcc.gatech.edu, Tel: 404 894-2589, Fax: 404 853-9378.

Shin, Kang G., University of Michigan, Dept of EECS, 2225 Engineering Bldg. 1, Ann Arbor,
MI 48109-2122, USA, kgshinOalps.eecs.umich.edu, Tel: 313 763-4617.

Smith, James G., Office of Naval Research, Code 12-Room 528, 800 North Quincy St., Arling-
ton, VA 22217-5000.

Son, Sang H., University of Virginia, Dept. of Computer Science, Charlottesville, VA 22903,
USA, son@cs.virginia.edu, Tel: 804 982-2205, Fax: 804 982-2214.

Stankovic, J., Dept. of Computer and Info. Science, University of Massachusetts, Amherst,
MA 01003, USA, stankovicOcs.umass.edu, Tel: 413 545-0720, Fax: 413 545-0196.

Stewart, David B., Carnegie Mellon University, ECE Dept., Pittsburgh, PA 15213, USA, stew-
art@faraday.ece.cmu.edu, Tel: 412 268-7120, Fax: 412 268-3890.

Stone, Don, University of North Carolina, CB #3175 Sitterson Hall, Chapel Hill, NC 27514,
USA, stone@cs.unc.edu, Tel: 919 962-1836.

Stoyenko, Alexander D., New Jersey Institute of Technology, University Heights, Newark, NJ
07102, USA, alex~vienna.njit.edu, Tel: 201 96-5765, Fax: 201 596-5777.

Strosnider, Jay K., Carnegie Mellon University, ECE Dept., Pittsburgh, PA 15213, USA,
jks~usa.ece.cmu.edu, Tel: 412 268-6927, Fax: 412 268-3890.

Tokuda, Hideyuki, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA
15213-3890, USA, hxtOcs.cmu.edu, Tel: 412 621-5473.

van Tilborg, Andre M., Office of Naval Research, Director, Computer Science Division, Code
1133, 800 North Quincy Street, Arlington, VA 22217-5000, USA, avantil~nswc-wo.arpa, Tel:
202 696-4302.

Vila, Juan, College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280,
USA, jvila@cc.gatech.edu, Tel: 404 894-6169, Fax: 404 853-9378.

Wedde, Horst, Wayne State University, Detroit, MI 48202, USA, hwedde@zeus.cs.wayne.edu,
Tel: 313 577-0731.

4

1i

Zhao, Wei, Texas A&M University, Computer Science Department, College Station, TX 77843-
3112, USA, zhaotcs.tamu.edu, Tel: 409 845-5098.

M ohou, Hongyi, Georgia Institute of Technology, College of Computing, Atlanta, GA 30332-
0280, USA, hongyi@cc.gatech.edu, Tel: 404 894-3982, Fax: 404 853-9378.

5

II

5I

II

a-

A

-4

I

'B

*1
I

* I

Final Report to IEEE
I

I

I

I

I

-- I j

UNIVERSITY OF MASSACHUSETTS Krithi Ramamritham, COINS Dept.

AT AMHERST Lederle Graduate Research Center

Amherst, MA 01003
Tel: (413) 545-0196

FAX: (413) 545-1249

3 CSNet address: KrithiDNIRVAN.CS.UMASS.EDU

January 23, 1992

Ms. Anne Marie Kelly
Director of Conferences and Tutorials
IEEE Computer Society
1730 Massachusetts Ave., NW
Washington, DC 20036-1903

Dear Ms. Kelly:

Enclosed is our final TMRF for the 8th IEEE Workshop on Real-Time Operating Systems
which was held May 15-17, 1991 in Atlanta.

Also included is a detailed analysis of the otal expenditures for this workshop which
includes the fu:.%Js in the amount of $10,000 which were received from the Office of Naval
Research.

The assistance afforded us by you and your staff was greatly appreciated.

Sincerely,

Krithi Ramamritham
Enclosures

1
I

i | -

IEEE COMPUTER SOCIETY
TECHNICAL MEETING REQUEST FORM

Request for Computer Society Approval of a
Con ference, Symposium or Workshop

1. ABOUr THIS FORM

This form is to be used to (1) request that the Computer Society (CS) "sponsor", "co-sponsor", or "cooperate
in" a technical meeting (Conference, Symposium. Workshop), or (2) file part of the final report for an
approved technical meeting. For the request, complete the "estimates", for the final report, complete the IS".actuals".
To request sponsorship or co-sponsorship, please complete all sections of the form. To request cooperation.
please complete sections I through 10, and M11 and T9. I
For all meetings for which support is being sought for the first time, or for which there is reason to believe
that supplementary information would speed the Computer Society review process, a supplementary
information sheet should be attached which addresses the following points if they are not addressed
elsewhere on the form: 1) Sponsors: if there is reason to believe that the Computer Society might not know a
sponsoring or cooperating entity, for example, if it was recently formed, it would be best to include a brief
description of the sponsor, its charter, its founders, its membership, and indicate if it is or is not a for-profit
organization; 2) Technical Program: indicate what steps will be taken to assure the quality of the technical
program, what will the paper review process be, etc. 3) Registration fees: what will registration fee structure
be, will IEEE Computer Society members and members of other sponsoring and cooperating organizations
be ,iigible for lowest registration rates (except for student rates and other special discounted rates, such as
for retired members). 4) Publicity: will the meeting be publicized in such a way that IEEE members will have
the opportunity to become aware of it, 5) Computer Society members involvement: what will be the
involvement of Computer Society mrembers in the technical and administrative operation oi the meeting, 6)

ASchedule: adequate time (at least 9-12 months) should be allowed between proposal submission and meeting
dates, 7) Attachments: the Draft Call for Papers and other relevant information should be enclosed, 8)
Proceeds: a clear statement should be made indicating to whom proceeds are to go.

Pler, follow tie guidelines in the Computer Society Conference tiandbook; they are keyed to this form.
Tablc r p;.wvL s "aule-of-Thumb Costs" to help complete the form.

Since a number of copies will be made of the completed forms, please use a typewriter or felt pen to make
the entries, which should be made in US dollars. For meetings held odtside the USA, indicate here the local
currency (e.g., Swiss Francs) and the conversion rate used.

Local Currency Conversion Rate - . - Local currency units per US dollar

This form will be valid until the end of 1989; after that time, contact the Director of Conferences for a more
recent one.

Send completed form to: IEEE Comlutar Society, Director of Conferences, 1730 Massachusetts

Avenue, N.W., Washington, D.C., 20036-1903. (Phone 202-371-1013. Fax 202 728-9614)

CHECK ONE:
REQUEST FOR CS SPONSORSHIP CO-SPONSORSHIP
COOPERATION X**-

'" Co-sponscred bo':e Q \aval Research

**In Cooineration d4VIFIP. i ;1 1

...... . . , "I .'

.... 08/8

tGAL~'. 08/89

-PLEASE PRLNT OR TYPE-

2. MEETING TITLE, DATES, LOCATION

ic ie e g Eighth IEEE ',orskhon on Real-Time erating Systems an oz"
Official Title of Meeting:

8th RTOS
Lcaon

Georgia Tech, Atlanta, GeorgiaLocation(fll address):

Housing Facilities (if different)

Dates: I!ay 15, 16, 17, 1991

3. STATEMENT OF GENERAL CHAIR A FINANCE CHAIR

I have a copy o" the Computer Society's "Conference Handbook" and I understand my responsibilities as outlined there.

This form including the budget has been prepared to the best of my ability and is complete and accurate. I understand that

whenever it appears that the meeting may be in financial trouble, the Director of Conferences must be consulted.

I agree to provide the final report. to return the Computer Society advance loan, if any, to return the Computer Society share

of the surplus funds, if any, and to close all accounts, all within four months after the meeting.

Further, I understand that all rights to this technical meeting are the property of and belong to the sponsoring entities.

General Chair Name Prof. KIrithi ranritham IEEE/CS Member No. 0A51609

Signature Date 6/5/90 Phones:Office 4 1 3 54 5-019 6Home4 13 549-6101

AddressComnuter and Information Science Dept., Lederle raduate Research Center, 305

University of ? assachusetts, Amherst, xA 01003

Fax: 413 545-1249 Compimil/EMail Address: krithi@nirvan.cs.umass.edu
Fax: CompmVictoriYodaikens

Finance Chair Name__ Victor Yodaiken IEFE/CS Member No.

Signature /' '?-" Date 6/5/90 Phones:Office 4 1 3 5 4 5 4 7 53Home

Address Computer nd Information Science Dept., Lederle Graduate Research
Center, A305

University of Massachusetts, Amherst, !A 01003

Fax: 413 545-1249 Compmail/EMail Address: yodaiken@cs.umass.edu

I 3A. STATEMENT OF TECHNICAL COMMITTEE CHAIR (if sponsored by Technical Committee)
I recommend approval of this meeting as submitted.

If the meeting has already been designated for a T/C Surplus Account, I understand sponsorship involves a financial corn-
mitment by the Technical Committee and that surpluses and losses will be apportioned as governed by current Computer
Society policy.

T/C#lName Real-Time Systems T/C Chair Signature
Andre van Tilborg

T/C #2 Name T/C Chair Signature

T/C #3 Name_ ___ T/C Chair Signature.

A-2Il
LI!

-0

> • .

4. MEETING SCOPE, BENEFITS, ATTENDANCE
For first-time meetings, define scope and discuss overlap with approved Computer Society M't-ngs. ,

This is zhe Eighth IEEE Real-Time Ooerating Systems and Software 'okshot _Ctfli'junfrion

with 17th IFAC/IFIP WorkshoD on Real-Time Programming

State benefits to society members: IEEE members will have -ia opportunity to investigate advances in
I real-time operating systems, software, and programming languages; to promote interaction

among researchers and practitioners; to evaluate the maturity and evolutionnry, direcrions

real-time programming theories and approaches.

ESTIMATED ACTUAL

Attendance (from MIV 100 68

Sessions 1 0 10

No. of invited papers 0 0

No. of refereed papers submitted 55 63

No. of refereed papers accepted 20 2A

S. SPONSORING & COOPERATING ENTITIES, & FINANCIAL COMMITMENT
List all entities, indicate if for-profit.
Entity Representatives Name & Telephone % Financial Commitment

Commsiwent Obtained
Prelim. Final

TC Real-Time Systems 100%Computer Society:

TC (if applicable) Dr. Andre van Tilborg (202) 696-4312

TC (if applicable)

ACM:

SIG (if applicable)

Office of Naval Research $10,000

6. St'RPLUS I ADVANCE ESTIMATED ACTUAL

Total income (from SI)k -5C $ 6,875.00

Total expenses (from S2).,z-o,&7- 16,875.00

Surplus (from S3) 2 z " -0-

A-3

S. SUPLUS&ADVACE i'-a--.uod

Itmi xedtrsreurn navne
Ite Amun

1. Admnsrtv oss(otg,,ycss
,0

5$

Ttml expenditures requirtengfan avaopnce ..

1.ta Administoaraieusts (rmoposte, Scopty co.s _..........

Total Advance Loan requested from Computer Society......................eeded:__

$4,000.00/ 9/ 30/v ____/ / / ___ / / / ____

7. ENCLOSURES

Enclose draft Call for Papers. If requesting sponsorship or co-sponsorship list below and enclose all contracts including Hotel
and Exhibits. and any other material relating to financial obligations.

Enclosures yes No
Call for Papers Enclosed -

Hotel Contract Enclosed - X

Other Contract Enclosed ___

8. STEERING COMMITTEE MEMBERS

Name Employer Phone-Office Phone-Home

Chair

9. TECHNICAL MEETING COMMITTEE MEMBERS

Please fill in this section completely with information on all committee members.

Name Employer Phone-Office Phone-Home
Co- 413 545-0196 435960

Generalthair #1l Krithi Ramamritham Univ. of Massachusetts 435960
GenralCo-har (2 WlfgngA. ialng Univ. of Groningen 31.50.633939 FAX 31.50.633976

Program Chair4 a_______ _____

(as above) VitrYdie nv f1fs413 545-4753 FAX 413 545-1249
Finance Chair VtoYoiknUv.fMasachusetts _______

Tutorials Chair* n/A ________ ________________

$Please attach page showing maing address.

A-4

0. TECHNICAL MEETING COMMITTrEE MEMBERS (Continued)
Name Employer Phone-Office Po'-1 n

Exhibits Chair

Publicity Chair Krithi Ramamritham U. Massachusetts 413 545-019-6 413 549-6101

mrs. Betty Hardy U. M-assachusetts 413 545-4842 FAXX 413 545-L249
Registration Chair _______

Karsten Schwan GA Inst. of Tech. 404 894-2 589
Local Arrangement Chair

Publications Chair________ ________

i~ Audio-Visuals Chair

Contact (Note: to be
listed in Technical

Meeting Schedule).

10. PUBLICATIONS

Proceedings N

Published by CS....................... -

No. to be printed....................... 100

Sold by which Societies__________ _________

170
No. of pages _________

n/a
Copyright assignted to IEEE...............

If not, to whom

Special issue of publication planned I

If yes, name of publication................ Real-Time Systems Newsletter

Approved by publication editor -

**Proceedings will be published after the workshop by Pergarnon Press in the TFAC
Proceedings Series.

A-5

11. MILESTONES

I Meeting Date

Where a range if given, longer time is for Conference, shorter for Workshops. Asterisked items generally not applicable to
Workshops. Only items with "-" in front must have Name and Date entered to obtain CS approval.

Respoible Date Minimum Time
BEFORE MEETING Pet.o(s) Name Due Before. Mtg.

o Krithi RamarnrithanCo-

-Define meeting, scope, etc. General thairs Woif gang Halang X 12-18 mos.

Appoint Committee General Chair Ramamritham/Halang 9-12 "

Schwan/Ramamritham 8/31/90Sign Hotel Intent Letter Local Arrangements Chair & Dir of Conf. - 10-14 "

Ramamritham X
Submit Proposal for Approval General Chair 9-12 "

Schwan/Ramamritham 8/31/90
-Hotel Contract Signed Dir. of Conferences _ 9-12 "

nr/aCommittee Meeting General Chair r_/a_ _ _9-12 "

-Exhibit Sales Contract Exhibit Chair & Dir. of Conferences n/a _ "-12 "

Open Bank Account Finance Chair & Dir. of Conferences Ramamritham/Yodaiken 9/30/90 -1

-Call for Papers Prepared' Program Chair Ramamri8ham/-aang X"

-Place Call for Papers Magazine Ad' Program Chair 8,11 "

-Finalize Publication Plans Publ'ecation Chair Raiamnritharn/Halang 12/1/90 "-I1

Raiarmr ithar 1 / 15 /91
-Papers/Summaries from Authors Program Chair a-II "

-Advance Announcement Prepared' Publicity Chair 5- 6

-Advance Announcement Mag. Ad Prepared' Publicity Chair 5- 6

Tutorial Speakers Contracts Tutorial Chair & Dir. of Conferences _- 6

Program Committee Meeting Program Chair (see note page A9#12) _ 4- "

Acceptance to Authors Program Chair Ramamritham/Halang 3/15/91 4 5

-Author Kits to Authors Publications Chair n/a "- 5

Plan Membership Booth Local Arrang. Chair & Dir. of Press "- 5

-Exhibit Sales Completed Exhibits Chair n/a _ "- "

Committee Meeting General Chair (see note page A9#12) 5- 5 "

-Advance Program Prepared' Publicity Chair aRaamritham 4/15/91 4- 4

-Press Release Publicity Chair n/a 3- 4 "

j -Place Advance Program Magazine Ad' Publicity Chair n/a _ 3- 4 "

-Final Papers irom Authors Publicity Chair "- 3

Footnotes:
(1) All magazine ad copy 6 weeks prior to month of desired issue. All advertising pieces takes 7-8 weeks effort: Typesetting 5-7 days; Proofing 1-3 days:

Printing 5.7 days: Mailing Lists 3 weeks: Mailing 3-5 days: Postal Service 3 weeks for third class mail.

A-6

11. MILESTONES (Continued)

BEFORE MEETING Resonsible Date %inimua "T=.
Person(s) Name Due 4fjre lMtg.

Audio-Visuals Quality Reviewed Audio-Visuals Chair --. J WKS.

-Proceedings to Printer Publicity Chair n/a -10 "

Final Session Room Assignments Local Arrangements Chair Ramamritham/Schwan 4/15/91 8

Tutorial Notes to Director of Conferences Tutorial Chair N/A • - 6wks.

Session Signs Ordered Local Arrangements Chair N/A "-_5 "

-Final Programn Publicity Chair Ramamritham/Halang 4/5/91 5 "

-Advance Registration Closes Registration Chair Hardy 4/15/91 -

-Fnal Program Delivered Registration Chair Hardy 5/10/91 *- 3

Badges/Ribbons Ordered Registration Chair Schwan 5/10/91 3

Hotel Food Quantity Estimated Local Arrangements Chair Schwan/Raramritham 6/30/90 2- 2

-Proceedings Delivered to site Publications Chair Hardy 5/8/91 -3days

Hotel Food Quantity Guaranteed Local Arrangements Chair Schwan/Ramamritham 4/15/hs.befor
event

AFTER MEETING

Committee Debriefing General Chair Day after

Recommend Committee Awards General Chair 4- 4 wks.

-Submit Interim Report & Return Advance Gen. & Finance Chairs _ 2- 2 mos.

-Submit Final Report & Monies Gen. & Finance Chairs Ramamrithan 9/1/91 4- 4 mos.

-Send Meeting Attendee List General & Registration Chair Ramamritham 6/30/9 1 4- 4mos.

Footnotes:
(1) All magazine ad copy required 6 weeks onor to month of desired issue. All advertising copy taxes 7-8 weeks effort. Typesetting 5-7 days: Proofing 1-3 da.

Pnnung 5-7 days: Mailing Lists 3 weeks: Mailing 3-5 days; Postal Service 3 weeks for third class mail.
f

X=already completed
n/a= Not applicable

A-

A-7

12- WRIGHT

I MEMF'NM2 XENSrm M A==E
(Hxd.ds cmialt and exhibits)

141 Adwvrddng (iadudq ptbrcb& heAn4 mail~ng)

A1TACNEW ADVUTIO WORK5E! MUST M COUPtzrMg.

1535.30 45.00
(b) A o ,cc==cat (021) 4............ _j _ _

(c~ A v~ c Pj~ - (0 2 3) ~j 9~ 3 0 1 5 3.9 3
(c) AAVa Progm (020) $ -5 3 $ 1 5 g

.. $ -0- -

(C) Other (spect.) (01,) Ls

465.90 S 4-5.91
Subtotafor adv ng....... s

(c) T"mrda emmeus (toria adverd is nt b ed s,, l,/
subtwt 2C)% and 2dd it to TI)

MI Toml Advertising . . 465.90 $ L45. Q3

K2 Committee Rx~ens

(a) Secretary (851) No. hu . X S/brS... S-......

(b) Telephone &V0) ... 50 12.70

(C) pove(SM... Sl2

(d) Committ Tmvel (8 7 1) 1,000

(e) Reproduction. (190). s 1

if()Compmal -- (830) ... 100qrp~q.prii 7o02.00

Adver~~~~~~~~g~o at! z m e o t(I [).................... s

(Z) Other(sp&c*) (517) L.o$ _

M 2 Toad Co m lrwe E) Q-. 0

Footnotes A

f) O~ca etb (sp W57 Ove SM Sbs -- e&dfra -~=zl -

I

12. BUDGET (Continued)

REMARKS it is our intent to conduct all "meectngs" for cnis workshoD 'ia

electronic mail; therefore, we will not be holding a committee meet. ig duringi the

3 planning stages.

I

M3 Operating Expenses Estimate Actual

(a) Advance Registration

(1) By Computer Society (761)
(70% est. attendance X C, from Table IV) _ _ s

(2) or by other means (show computation) (768)
30 hrs x S17.34 mail/telephone/registration 520 -0-

(b) On-site registration' (762) one.p!erson. 1/2. dav..4.x- $.1.9...70 $ 78 250.00

(c) Badges, tickets, evaluation forms (761) 5_,_5

(d) Security (771)..
(e) Gratuities, awards, attendee travel' (030) $__

(f Keynote and special addresses' (875) S _ S

70 130.25(g) Audio Visuals and Microphones-Labor & Equipment (719) 5. S

(h) Typewriters and other equipment (713) $

(i) Final program (artwork and printing) (600) $.$

(j) Proceedings for attendee (615) . . $_S
918 502

No. copies i00 xS/page.054 xl70 No. pages.. $ 90.21

Freight (615) $ 100 $ -0-

(k) Signs (meeting rooms, other) (795) $ $.

(I) Shipping to Meeting () $ 5
300 -0-

() Meeting space rental (715) ... $ $.

M3 Total Meeting Operating Expenses 1,986 $ 970. 6
Fotnotes
(I) These items must be explained under Remarks.
(3) If done by CS Staff. enter Cz from Table IV per staff member plus travel expenses.(4) Cotu per page€ if' done by CS Pres is given on Table 111.

A-9

12. BUDGET (Continued)I
M4 Other Technical Meeting Expenses

Include and describe any expense not identified on previous pages.

(a) Bank charges; Credit card service charges (070) . ,

I (b) Rebates (670)

(c) Bad debts (650) 5 $

(d) Insurance (396) , ,

(e) Audit()__ _ ,

(f) OtherA(511)Administrative costs - badges, attendee list, repoorts, $ 187.05
0, hrs. x $17.34

187.05M4 Total Other Meeting Expenses S ..i: _. 2 1

MS Meeting Expenses Subtotal 7,."08.14
Add MI, M2. M3, M4

M6 Contingency (180) 1,000
Enter 5 to 15% of line M5 ($1000 minimum) $ $.-0-

M7 Computer Society Administrative Services' (780) S73
Enter 14% of line M5 .. $.,_

Footnotes:
(5) This is a mandatory entry for all meetings: it helps recover expenses incurred by the Computer Society for all technical meetings. For co-sponsoredmeetings, this expense will be remitted to the sponsors in proportion to their financial commitment as provided in Section 5, page A-3.

REMARKS

A-1O

Ir
12. BUDGET (Continued)

M8 Social Functions

(a) Coffee, pastries. etc., between sessions (472) 3002027
No. Breaks ___ X No. people 100 X S/person $6.'0000 2O.3

(b) Luncheons (471)

No. Luncheons 2.I X No. people 1220. X S/person, 15 00 3,000 $2_L378.8

(c) Receptions (473)j No. Recepdons..I....X No. people 10X S/person 25.00 S2.500 $3,4 9L 14

(d) Banquets (474)

ANo. Banquets - X No. people - X S/pe mon -S_____ S_____

(e) Speakers Hospitality (475)

No. people .. 20..X $/person 11. 50 .x. .2. .days 4606.9

Mt Transportation (courtesy bus, etc.) (861)_____ $____$_

(g) Other social function expenses (specify) (476)S__$ ___ S_____

NOTE: M8 above includes gratuities, taxes, and any related service fees.

M8 Total Social Function -Expenses s8,960 s8,52 9.7 1

Social cost pet attendee -90 123.43)

M9 Services from Computer Society Staff

Use Tab.n V to find the charge for any service desired and enter the amount below.
4SERVICE YES CHARGE

Call for Paper-- Artwork/Typesetting Coordination Include in W. & Worksheet

A nnouncement Artwork/Typesetting coordination Include in M I & Worksheet

_4 Advance Program Artwork/Typesetting Coordination -Include in MlI & Worksheet

Final Program Artwork/Typesetting Coordination Include in M3 & Worksheet

A-1 1

1!t~ -- -

12. BUDGET (Continued)

M9 Services from Computer Society Staff (Continued)

SERVICE CHARGE

Esdimc'd -xctumJ

Print & Mail Call for Papers Include in M II
Print & Mail Announce.aent Include in M I

Print & Mail Advance Program Include in M I

Print Final Program Include in M3

Prepar. iudget (763) - $ _i

Treasurer's Service (764) - $ _

Advance Registration' Include in M3

On-Site Registration Include in M3

Hotel Negotiations (765) -$_$

Other Negotiations (specify) (766) - $

Prepare & Place Press Releases Include in M I & Worksheet

Prepare Advertisements Include in MI & Worksheet

On-site Publications Sales No charge

On-site Membership Booth No charge

Proceedings Publication X Include in M3

Other services of the Headquarters or
Publication offices (specify) (767)
Real-Time Systems Newsletter - X $6,000* S_5,600.00

*this is based on $5,200 for printing and
SR00 frir ma-iling We antieioate aooroxiEaey $ S_
150 pages."

6,000 - 5,600.00
M9 TOTAL $_____

M0 To=. Technical ... ,,g Expenses L. 16,87 5.00
Add M5, M6, M7, M8, M9 $ 16,875.00

Footnotes:

(6) The Director of Conferences should be treasurer for all conferences requesting advance registration promessing by the Computer Society. A Finance Chair
should still be appointed to the conference committee in this case.

A-12

i

MEETING INCOME
i Exclude tutorials & exhibits)

M1I Registration Estimated Actual

Advance Registration

Members7'..6$=$__ 0 19 $ 130 =$___,_,7
15.$ 5 ,325 5 @$ 155 775

N o n -m e m b e rs ' 50. 15@5 5 2 "@5 5 = S 8 2 5

Full-time student members' 10 @ $.__5_=__ 550 15 @ . 55_=___82

Other'0 (specify below) . @._=$ $_ __ @$_=_$

Late / On-site Registration"

Members 7 10 @ $150 =$ 1,150 16 62 150 =$.2,400

Non-members' . .. @._185 =$ 925 ... L @ $ 1 5 s L85

Full-time student members' @ $5 -0- 4 @ 55 =$ 220

*8
Complimentary'0

Other'0 (specify below)................. @_$- =S - -,@S - =$

Total attendance 2 . 100 68

Last year's paid meeting attendance..........

Ml I Total Registration Income $ 12,750 6,875

M12 Other Income (specify)
0

Publication sales (300) S_ $

0
Interest (140) $ $

Grant from Offi e of Naval Research 10,000
Other (706) s 5

j M13Total Income (M ll plus MI2) $ $6, 75

Remarks
8 complimentary: 4 students from Georgia Tech were conference workers; Drs. oob and

Van Tilborg (ONR); and Krithi Ramamritham and Karsten Schwan.

Footnotes
(7) Members of the Computer Society, IEEE. co-ponsorin cooperating entities
(8) Nor-member rates should be 25.50% higher than member rIte.
(9) Student rates usually are for sessions only and do not include Proceedings or social functions: if otherwise, please indicate under Remarks.

(10) Specify under Remarks. who will receive complimentary or special rates, and indicate if the rate includes a copy of the Proceeding and attendance at
social functions. I committee members, speakers. session chairs, etc.. will receive complimentary or special rates. they must be listed hem or mtey must pay
the appropriate member or aon-memberrate. Usediscmton. Retired members ar entitled to reduced rates. Special combination rates oucnng dLsount for
attending two functions must be shown ie. Coal. + I Tutonal. Conf. + 2 Tutorials or 2 Tutorials etc.(I 1) Late/On-site Registration rates should be at least 20% higher than advance.

(12) An estimate more than 10% higher than last year's actual should be explained.

A-13

m~

Ii

....

J~

TUTORIAL EXPENSES VA Esmated Actual

T11 Advertising (including print:ng, handling, mailing). Complete attached
worksheet. If tutorial advertising is nor budgeted separately, enter amount
from Ml.e

TI Total Tutorial Advertising (026) ..

T2 Operating Expenses

(a) On-site registration13 (768)

(b) Security (772)_...._._...

(c) Gratuities (031) .. $

(d) Audio Visuals and Microphones-Labor & Equipment (717)...

(e) Typewriters and other equipment (720)5$

(f) Texts (613). No. copies X S/copy . S_$

(g) Notes (514) .. . No. copies X $/copy.

(b) Signs (798) _ _ _

(i) Speaker fees and travel expenses

No. of tutorials No. of days

No. of full-day speakers x Rate 4__ (637) s

No. of half-day speakers x Rate"__ (637) $ $

No. of speakers X travel expense/speaker (872) $ S
7I

(j) Meeting space rental t721) ... $S5.

T2 Total Tutorial Operating Expenses $5 S

T3 Other Tutorial Expenses (512)
include and describe any expense not identfled above

S S

T3 Total Other Tutorial Expenses $ $

Footnotes
(13) 1f this will be done by Computer Society staff, enter C2 from Table IV plus travel expenses.
(14) Refer to Table V.

A- 14

EXHIBIT EXPENSES sated Atua1
El Advertising (including printing, handling, mailing) (015)

I Complete attached advertising worksheet. If exhibit advertising is not budgeted separately,
enter a pro-rated amount of the advertising budget for the meeting.

El Total Exhibit Advertising .. $

E2 Operating Expenses

(a) Registration Services 5$.

(b) Space Rental (714) $ S

(c) Management Fee (635) $ $

(d) Security (773) $_._.

(e) Insurance (397) $ $.

(f) Busing (862) $ $

(g) Drayage (712) .. $_ $

(h) Other expenses (specify' (516) $

$__ _ S__ _

S__ _ $__ _

E2 Total Exhibit Operating Expenses $ $

E3 Exhibit Expenses Subtotal
Add El. E2 $. $

E4 Contingency
Enter 5 to 15% of line E3.. % (182) 5

E5 Computer Society Administrative Services' (782)
Enter 14% of line E3 $

E6 Total Exhibit Expenses
Add E2, E3. E4, E5 5...$

Footnote:

(5) This is a mandatory entry for al meetings: it helps recover expenses incurred by the Computer Society for all technical meetings. For co-sponsoredmeetings. ts expense will be remitted to the sponsors in proportion to their financial commitment as provided in Section 5. page A.3.

A-17

1ii

EXHIBIT EXPENSES (Continued) Stunated ,cruai

EXHIBIT INCOME

U E7 Exhibitor Fee Income

No. Exhibitors - X S/Exhibitor (410)

or No. Booths X$/Booth..- -(410). =....... $_

] ES Other Exhaibit Income (specify) (708) 2

E9 Total Exhibit Income (E7 plus E8) $ $

REMARKS
1. Describe exhibit facilities, state cost per sq. ft. sales price of booth space, attach copy of any contracts, etc.

S BUDGET SUMMARY Estimated Actual

- Si INCOME

M 13 Total Meeting Income .. $ 224750 S ,875
-0-

T l I Total Tutorial Income .. $ _

-0-
E9 Total Exhibit Income _ 22,750 $

SI TOTAL INCOME .. 6,875

S2 EXPENSES

] M i0 Total M eeting Expense $ $ 16,875

-0-
T8 Total Tutorial Expense $

-0-
E6 Total Exhibit Expen,- .. $ S.

S2 TOTAL EXPENSES 2- - 1'

l '--.5A r10,0001

3 SURPLUS'" (SI minus S2) $. 00.

Footnotes:
(15) Estimated surplus should be at least 10% of estimated expenses.

A-18

'I i

EIGHTH IEEE WORKSIIOP
ON REAL-TIME OPERATING
SYSTEMS AND SOFTWARE

(in conjunction with)

17th IFAC/IFIP WORKSHOP
%VORKSHOP CHAIRS ON REAL-TIME PROGRAMMING

Krithi Ramamritham
Dept. ol Computer & Info. Science CALL FOR PAPERS
Lederle Graduate Research Center May 15 - 17 1001
U n iv e rsity o f M a ssa ch u se tts A tl a nt a , 1 7 , U S A

*\mherst, MA 01003] USA
A413 545-0196

This workshop has several goals:I krithi(Onirvan.cs.umass.edu i to investigate advances in real-time operating
ll'olfgang A. Ifalan systems, software, and programming languages,

Dept. of Computing Science * to promote interaction among researchers and
University of Groningen practitioners,
P. 0. Box 800 0 to evaluate the maturity and evolutionary
NL-9700 AV Groningen directions of real-time programming theories and approaches.
the Netherlands
+31-50.63 39 39
ialang~cs.rug.nl Workshop attendees will explore current ideas on real-time software, programming

languages, and operating systems. Position papers describing new ideas, promising
PROGRAM COMMITTEE approaches, and work in progress are considered particularly appropriate.

* Robert C. Ccok, University of Virginia
I Juan A. de la Puente, Polytech Univ. of Madrid Possible topics of this workshop include:

* Wolfgang D. Ehrenberger, Soc. of Reactor Safety, Munich
• Farnam Jehanian, IBM Yorktown Heights * Real-time operating systems,

Hermann Kopetz, Tech University Vienna * Real-time programming, requirements analysis and specification,

I Michael G. Rodd, University Wales, Swansea * Evaluation of real-time systems.
* Karsten Schwan, Georgia Tech * Real-time scheduling and resource management.

* Janos Szlanko, Central Res. Inst for Physics, Budapest * Examples of real-time (control) systems with challenging time constraints.

Hide Tokuda, Carnegie-Mellon Univ.,PA
P T. J. Williams, Purdue University Prospective attendees should send 10 copies of a (no more than) 5-page position paper

' Wei Zhao, U. of Adelaide, SA Krilhi Ramamritham by January 15, 1991. To facilitate the reviewing process, it is
recommended that suibmission also be sent electronically-in the form of plain ASCII

Co.,ponjored by: files. The position paper should focus on insights and lessons gained from recent researc
-IEEE Computer Society and practical experience in re1l-time operating systems and software. Complete details

Technical Committee on Real-Time Systems regarding the workshop will be sent to all participants along with acceptance letters by
*Office of Naval Research March 15, 1991. Preprints of the accepted papers will be made av-ailabl= at the

kVorkshop. Proceedings will be published after the workshop by Pergamon Press in the
4 fn cooperation with: IFAC Proceedings Series. Attendance will be limited to approximately 75 active worker

• [FAC in the field.
Technical Committee on Computers
Working Group on Real-Time Programmio

.nd
-PIFIP Working Group 5.4

on Computerized Process Control

IEEE. A

*(1

t",

Re: Page A-4, Item .9

i Prof. Irithi Ramamritham
Computer and Information Science Dept.
University of Massachusetts

1" Lederle Graduate Research Center, Room A309

.1 Amherst, MA 01003I]
Prof. Wolfgang A. Halang
Dept. of Mathematics and Computing Science
University of Groningen
PO Box 800
NL-9700 AV Groningen

The Netherlands

4

krc

Is '
V1

Is

LlI

--

LI I
I I

I
I
I

I

IFAC/IFIP Report

I

j July 31, 1991

Prof. Juan A. de la Puente
Grupo de Ingeneria de Control
ETSI Telecomunicacion
Ciudad Universitaria
E-28040 Madrid
SPANJE

Dear Juan,

Enclosed please find the Final Report on the 17th IFAC/IFIP Workshop on
Real Time Programming. I should highly appreciate if you could take this report
along to the forthcoming meeting of the IFAC Technical Committee on Computers
and hand it over to the chairman. A copy of the report has already been sent to the

IFAC Secretariat.

Thank you very much in advance and best regards.

Yours sincerely,

Prof. Dr. Wolfgang A. Halang

encl: Final Report

cc: IFAC Secretariat Laxenburg

I
I

NJoint
17th IFAC/IFIP Workshop on Real Time

I Programming
and

j Eight IEEE Workshop on Real-Time Operating
Systems and Software

Final Report
15 - 17 May 1991

Atlanta, GA, U.S.A.

1. Breakdown of Attendance by Country

Austria 2
Finland 1
Great Britain 1
Japan 1
The Netherlands 1
Spain 1
U.S.A. 61

2. Method and Statistics of Paper Selection

Out of 63 submissions to the Workshop 24 papers were selected for presentation.
The contributions came from Europe, North America, and South America: 46 from
academia, 16 from industry, and one from a government agency. Of the 63 papers
submitted

47 were from U.S.A. 37 from universities

9 from industry
I from government

13 from Europe 7 from universities
6 from industry

3 from elsewhere 2 from universities

1 from industry

Of the 24 accepted papers

21 were from U.S.A. 16 from universities
4 from industry

4 2

1 F~

I from government
2 from Europe 1 from university

1I from industry
1 from elsewhere 1 from university

Each paper was refereed by four reviewers, who gave marks. The highest scoring
papers were selected for acceptance and assigned to presentation in six sessions.

3. Brief Summary of Programme and Discussion

The event's primary focus was on software development for real time systems and on
real time operating systems. The six sessions addressed the subject areas scheduling,
operating systems, design and tools, programming languages, timing analysis, and

experience and case studies.

In addition to the discussions that took place in each of these sessions and during
the breaks, the Workshop devoted ample time for focussed discussions by arranging
four panels addressing the following topics: fault tolerance, programming languages,

zscheduling, and operating systems. After short statements by .he panelists lively
discussions ensued with a large number of contributions from the audience. The
Proc.-edings contain reports summarising the opinions expressed during the panel
discussions.

4. Comments on Translation Arrangements

The Workshop was held in English and no translation into other languages was
provided.

5. Budget and Actual Expenses

In the following financial record the abbreviation ONR stands for Office of Naval
Research, an agency of the United States Navy which co-sponsored the Workshop.

INCOME:

Registration fees:

19 members Q$130 2470
16 late-pay members 0$150 2400
35 Total Members

5 non-members 0$155 775

I late-pay non member Q$185 185
6 non-members

19 students ($55 1045
60 Total Paid Participants

4 Complimentary

4 Conference Workers

3

68 Total Attended
Total Registration Income $6,875
Grant Office of Naval Research $10,000I TOTAL INCOME $16,875

I MEETING EXPENSES: IEEE ONR
Meeting Functions:
Conference Preprints and Programme 777.26 514.03
Printing, copying, binding,
mailing, fax, courier service

Total Promotion: $1291.29
Meeting Facilities:
Meeting Facilities Complimentary
Audio-visual equipment 130.25

Total Meeting Functions: $130.2S
Administrative Costs:
Clerical *$17.34/hour 600.00
On-site registration 250.00
Computer costs 100.00

Total Administrative Costs: $960.00

SOCIAL FUNCTION EXPENSES:
Reveption: 3416
Speakers' Breakfasts: 576
Luncheons: 2379
Breaks: 2083
Birds of Feather Session 165
Total Food and Function: 8465 ($124 per person

Exact Total Social Functions: $8453.51
IEEE share $5717.78

ONR share $2737.22

GRAND TOTALS: IEEE ONR Total
, EXPENSE: $6875.29 $3951.25 $10826.54

1 INCOME: $6,875 $10,000 $16,875

6. Comments on New Features Tested

1 4
I

I

I

Since the participation in the Workshop from North America was unsatisfactory in
recent years, the Working Grotvp on Real Time Programming decided in 1988 to hold
the meeting in the United States in 1991. To avoid competition and fragmentation,
the Workshop was organised jointly with a thematicall3 related national event, viz.,
the IEEE Workshop on Real-Time Software and Operating Systems. As a member of
the American Automatic Control Council, IFAC's National Member Organisation in
the U.S.A., the IEEE sponsored this joint Workshop and took the financial respon-
sibility. As the above-mentioned attendance figures show, this kind of collaboration
with other organisations having a similar scope as the IFAC WGRTP seems to open

new interesting possibilities for future events.

7. Comments on IFAC/Automatica Publicity

The Workshop was publically announced in the IFAC Newsletter, the Informatik-
Spektrum of (the German) Gesellschaft ffir Informatik, the IEEE Computer Mag-
azine, the IEEE Real-Time Systems Newsletter, on electronic bulletin boards, and
by mailing electronic or hard-copy versions of the call-for-papers to several hundred

addresses.

8. Publication

Preprints were prepared and handed out at the Workshop containing the accepted
position papers. The full-length papers are published in the official proccedings ap-
pearing in the IFAC Symposia Series. The deadline for submitting the camera-ready
versions to Mr. Strange in Oxford was 31 July 1991. No paper was recommended
for publication in Automatica.

Wolfgang A. Halang Krithi Ramamritham
University of Groningen University of Massachusetts
Chairman, IPC Chairman, NOC

5

iI -
Ii

APPLICATION FOR IFAC SPONSORED MEETING

1. National Member Organization Name IEEE (in cooneration with AACC)
accepting full financial Mailing Adress
responsibility T

~TeL./Telex:

2. The proposed meeting is to be a Symposium C Conference r Workshop [R (check one)

3. Proposed meeting title Joint 8th IEEE Workshop on Real-Time Software and
Operating Systems and 17th IFAC/IFIP Workshop on 7eaL-ime

4. Brief statement of meeting scope ?rogramming

Engineering aspects of software for real-time systems, esp. computer control systems.

Particular areas of interest include specification and design methods for real-time
qV'tPmR, langiiag, q fnr rPl-H, prngrnmming, ral-rmp niprng gv-qrpm~q reaa-rimp

daita basis and programming mn~ironmmnAtsr 2;nd Cools for ran'l-t;Me s~emq_
5. Suggested IFAC Technical Committee(s) Sponsor TC on Computter.

6. Suggested other international IEEE Computer society

organizations co-sponsoring
with IFAC

7. Location and date of meeting Atlanta, Georgia May 15, 16, and 17, 1990

8. Relationship of meeting to other
events known to the applicant none
such as other IFAC activities,
other non-IFAC activities, exhibits

9. Expected attendance 80 - 100

10. Approximate registration fee (including preprints) in Swiss Francs 225

I1. Conference language(s)? English
Will simultaneous translation be used during the meeting? no

12. Will proceedings be pub!ished in other language(s) in addition to English? -no

If so what language(s)?

13. Chairman
National Organizing Committee
Name Krithi Ramamritham

Title/Position Associate Professor. Computer and Information Science Dept

Mailing Address lniuerysi t nf MaaehutqPttq
T.Pdprlp Graduate Research Center, Amherst, MZA 01003

Tel./Telex tel. 413 545-0196 . fax 413 545-1249

14. Chairman
International Program Committee Krithi Ramamritham
Name
Title/Position Associate Professor, Computer and ILLJ.Utiw, - DXpt
Mailing Address University of assachusetts

T.Pdprle Graduate Research Center, Amherst, MA 01003

Tel./Telex tel. 413 545-0196 fn i1 545-949

15. Symposium Editor AND

Name Wolfgang A. Halang
Title/Pc.,ition Professor
Mailing Address University of Groningen. Dept. of Computing Science

R_ 0 RO 80 970n AV croningen Tho 7Vrhor1n-en
Tel./Telex /41^ .3 .-- '339'5 Fa 3-50-633976, ' 1' rug-o

16. Person submitting this application
Name W. A. Halang and K. Ramamritham

Title/Position
Mailing Address same as #14 and 15

Tel./Telex _

I agree to abide by the IFAC Regulation laid down in the appropriate Guideline including the r.quirement that the IFAC
Publications Managing Board will determine whether or not the Proceedings are to be published by Pergamon Press. the official i
IFAC pub misher.

~~Sienature of submitter Jv../ e-I -"(Submission Date,- '-,,.

I

~Budget Detail

I

Ii,

I

EIGHTH IEEE WORKSHOP ON REAL-TIME OPERATING SYSTEMS AND SOFTWARE
(in conjunction with)

17th IFAC/IFIP WORKSHOP ON REAL-TIME PROGRAMING

FINAL FINANCIAL REPORT

i egistration fees: IEEE 0NR Total
19 members 8$130 2470
16 late-pay members 8$150 2400
25 Total Members

5 non-members @$155 775

1 late-pay non member 8$185 185I 6 non-members
19 students 0 $55 1045

60 Total Paid Participants
4 Complimentary
4 Conference Workers

68 Total Attended

Total Reigstration Income $6815
Grant/Office of Naval Research $10000
TOTAL INCOME $2:6,875

tovETING EXPENSES: IE.A Ooy. TOTAL

Meating Functions:
Conference Proceedings and Program 777.26 * 6.63
Printing, copyirg, bitdi.,g
Mailing, fax, fe6ral expr,..-

Total Promotion: $1235.89

Meeting Faciliti'i:
Meeting a'.1i~ies Comp1e:.:%Cy
Audio-visual equipwint 13.25
Parking ConI tr.tary

Total Meetinq Fvnc.tons: $130.25

Administrative Cost&:Registration/mail/i %L.,,r"
Fiscal Aministrati, .
Submissions procesr;.,g
On-site registratitn 2.0,0c
Computer costs '92.00

Total Administrativ* Cobt s $1042.00

Total Meeting Expensec $1157.51 :11250.63 $2408.14

SOCIAL FUNCTION EXPRNS'Cl:
Reception: , 4, .
Speakers' Breakfasts: 298
Luncheons: 2493
Breaks: 2083
Birds of Feather Session 165

Total Food and Function 8530 5717.49 q2812.22 $ 8529.71
$125 per rer~ooa

---..- -----------------

TOTAL EXPENSE $6875.00 $4062.85 $10937.85

14% of Total meting Expenses to IEEE 337.15
PO for Netwletter 5600.00
Total Expense $6875.00 $10000.00 $16875.00

TOTAL INCOME: $6875.00 $10000.00 $16875.00I

GRANT NO: N00014-91-J-1369
DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH, CODE 1513:GDB R&T PROJECT: 4331791--- 01E 800 NORTH QUINCY STREET ACO CODE: N68883~CAGE CODE: 4B831

ARLINGTON, VIRGINIA 22217-5000 DISBURSING CODE: N00179

'SYMPOSIUM GRANT

GRANTEE: University of Massachusetts
Munson Hall
Amherst, MA 01003 UPLICATE ORIGINAL

APPROPRIATION: AA 1711319.WIAE
Object Class: 000
Unit Ident Code: RA434
Suballctment: 0
Auth. Acct. No: 068342
Transaction Type: 2B
Prop. Acct. Act.: 000000
Cost Code: 015080000100
Amount: $10,000.00
FRC: 4331

R&T Project Code: 4331791---01, Dated: 08 AUG 1990

TOTAL GRANT AMOUNT: $10,000.00

AUTHORITY: 10 USC 2358 as amended, and 31 USC 6304.

GRANT PURPOSE: The Purpose of this Grant is to provide partial funding
to support the Eighth IEEE Workshop in Real-Time Operating Systems.

The conduct of the workshop, the personnel and effort and the use of funds
for direct and indirect expenses shall generally be as set forth in the
Grantee's proposal entitled "Eighth IEEE Workshop on Real-Time Operating
Systems and Software", dated 29 JUN 1990 which proposal is incorporated
herein by reference. The Grantee agrees to obtain concurrence of the
Grantor for any desired deviation from the proposal.

PERIOD: The Grant is for the period 01 NOV 1990 through 30 NOV 1991.

PRINCIPAL INVESTIGATOR: The Principal Investigator, Professor Krithi
Ramamritham shall be continuously responsible for the conduct of the
project. The Grantee agrees to obtain approval of the Grantor before
changing the Principal Investigator.

SCIENTIFIC OFFICER: The Scientific Officer representing the United States
Government under this Grant is Andre M. Van Tilborg, Code 1133, Office of
Naval Research, 800 North Quincy Street, Arlington, Virginia 22217-5000.

GRANTS ADMINISTRATOR: The Grants Administrator for this Grant is:
Office of Naval Research
Resident Representative N68883
Charles S. Draper Laboratory

ZRA:;: NO: :;. :;:4.' - . __

1555 Technology Square MS54
Cambridge, MA 02139-3539

PAYMENTS: Upon submission of invoices by the Grantee in accordance with
the provisions of this Grant, the amount specified herein shall be paid as
follows: $10,000.00 payable an 01 NOV 1990. Invoices hereunder shall be
submitted by the Grantee in sextuplicate to the Grants Administrator for
certification and transmittal to the Navy Regional Finance Center, Crystal
Mall #3, Rm. 260 Attn: Code 431, Washington, D.C. 20371-5400, where
payment will be made.

The Grantee is participating in the cost of this effort.

PERFORMANCE REPORTS AND/OR PROCEEDINGS: (a) The Grantee shall submit
to the attached distribution list the following documents within 60 days
after the end date of this grant:

5 copies of the Proceedings.

(b) The Grantee shall include a complete "Document Control Data -
R&D" form (DD Form 1473) as the last page of each copy of every
scientific and technical report prepared under this Grant. The form
contains instructions for preparation. The cognizant Government Grant
Administrator will provide assistance to the Grantee in obtaining the
required forms. Administrative type reports, managerial (status)
reports, and reprints submitted as technical reports are excluded from
this requirement.

PATENTS AND COPYRIGHTS: (a) With respect to patents and other rights
arising out of inventions, improvements or discoveries conceived or
first actually reduced to practice during the effort, Grantee shall
(1) give and hereby does grant to the United States Government an
irrevocable, non-exclusive, non-transferable royalty-free license to
practice or have practiced for its benefit, each invention (whether or
not patentable) throughout the world, (2) advise Grantor of the filing
of each patent application in any country and furnish a copy thereof to
Grantor, (3) give Grantor the right to file patent application(s) for
any invention on which Grantee does not intend to file, as to which
inventions the Government is hereby granted sole and exclusive title,
and (4) on request, furnish grantor duly executed instruments fully
confirmatory of said license and/or title rights.

jPage 2

AN T N;O:

(b) The Government shall have the right to publish, translate, reproduce,
deliver, and dispose of all data, including reports, drawings,
blueprints, and technical information which are delivered to the
Government under this Grant, and to authorize others to do so. With
respect to data which are not originated during the effort Grantee shall
give a similar license but only to the extent that Grantee and those in
privity with Grantee have the right to give such license without paying
compensation to others because of giving the license. At the time of
giving or reporting any such data, Grantee shall make all reasonable
effort to advise Grantor (1) of all invasions of the right of privacy
contained therein and, (2) of all portions of such data copied from
work noc composed or produced during the effort and not licensed under
this provision.

(c) Notwithstanding the provision of the preceding paragraph, the
Grantee and the Government may agree that specifically designated data
shall not be published for sale by the Government, nor shall the
Government authorize others to do so when such data are published by
the Grantee, and shall so refrain so long as the data are protected by
copyright.

RESTRICTIONS ON PRINTING: Unless otherwise authorized in writing by the
Grants Officer, reports submitted hereunder shall be reproduced only
by duplicating processes and shall not exceed 5,000 single page reports
or a total of 25,000 pages of a multiple-page report. To satisfy the
requirement of the Defense Technical Information Center the copy of the
technical report submitted to the Defense Technical Information Center
must be black typing or reproduction of black on white paper or suitable
for reproduction by photographic techniques. Reprints of published
technical articles are not within the scope of this paragraph.

PUBLICATIONS:
1. Any publication resulting from work under this Grant shall contain
the following on the title page or on the page immediately following the
title page:

This work relates to Department of Navy Grant N00014-91-J-1369
issued by the Office of Naval Research. The United States
Government has a royalty-free license throughout the world in all
copyrightable material contained herein.

2. Any transfer of copyright ownership in such publication will provide
that the transfer of copyright ownership is subject to the U.S.
Government's royalty-free license :hroughout the world in all
copyrightable material contained in the publication.

CIVIL RIGHTS ACT: This Grant is subject to the compliance requirements
of the "Civil Rights Act of 1964," 78 Stat. 241 (Public Law 88-352)
relating to nondiscrimination in Federally assisted programs. The
Grantee has signed an Assurance Compliance with the nondiscriminatory
provisions of the Act.

P

i Page 3

FINANCIAL RECORDS AND REPORTS: The Grantee shall maintain adequate
records to account for the expenditures made under this Grant and, when
applicable to this document the actual amount of cost participation.
Upon completion or revocation of this Grant, whichever occurs earlier,
the Grantee shall furnish to the Grants Administrator, a Financial
Status Report in accordance with OMB Circular A-l10, Attachment G,
Exhibit 1, showing a breakdown of expenditures made in performance of
this Grant. Such financial statement may be on a cash or accrual
basis depending upon the Grantee's accounting system. Such financial
statement may be in the same detail as contained in the Grantee's
approved budget for this Grant and shall be submitted no later than 90
days after the end of the annual reporting period or completion or
revocation of the Grant. The Grantee's financial records are subject
to audit by the Government when desired by the Grantor.

UNEXPENDED FUNDS AND EARNED INTEREST: After the end of the Grant period,
any uncommitted funds and any interest earned by Grant funds on deposit
shall be returned to the Office of Naval Research by check made payable
to "Office of Naval Research."

RESTRICTION ON TRAVEL: The Grantee must obtain prior written approval
from the Grants Officer, befor- frds provided under this Grant may be
expended to provide for tray -:.x pez, ons from Communist Bloc countries.

TRAVEL BY GOVERNMENT EMPLOI " Funding of travel by employees of the
U. S. Government with funds :,rcvided under this Grant is prohibited.

REVOCATION: This Grant may be revoked in whole or in part by the Grants
Officer after consultation and agreement with the Grantee, provided that
such revocation shall not affect any commitment which, in the judgment
of the Grants Officer and the Grantee, has become firm prior to the
effective date of the revocation; and funds not committed by the Grantee
prior to the revocation shall be returned to the Office of Naval Research.

UNITED STATES OF AMERICA

FOR THE OFFICE OF NAVAL RESEARCH

BY: GAIL D.130GLR
FICER ANTSOFFICER

(DATE)

P

3Page 4

G3RANT NO: u.,

ATTACHMENT NUMBER 1

Distribution List for Reports

ADDRESSEE NUMBER OF COPIES

Scientific Officer Code: 1133 3 copies of proceedings
Andre M. Van Tilborg
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217-5000

Grant Administrator 1 copy of proceedings
Office of Naval Research
Resident Representative N68883
Charles S. Draper Laboratory
555 Technology Square MS54
Cambridge, MA 02139-3539

Defense Technical Information Center 1 copy of proceedings
Building 5, Cameron Station
Alexandria, Virginia 22314

4

