AD-A24€ 086
AL

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DFQL:
A GRAPHICAL DATAFLOW
QUERY LANGUAGE

by
Gard J. Clark
September 1991

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

92-04
HIIIINIHIMIWMMMM’

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

s REPORTSECURITY CLASSIFICATION
Unclassified

1b.

RESTRICTIVE MARKINGS

22 SECURITY CLASSIFICATION AUTHORITY

3.

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.

[4. PERFORMING ORGANIZATION REPORT NUMBER(S)

MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
Naval Postgraduate School glg Applicable)

Ta

NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

6c ADDRESS (cuy, state, and ZIP code)
Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 6b. OFFICE SYMBOL
ORGANIZATION (If Applicable)

To.

ADDRESS (cuy, siate, and ZIP code)
Monterey, CA 93943-5000

8c. ADDRESS (cuty, siate, and ZIP code)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENTNO. | NO. NO. ACCESSION NO.

[0 TUTLE (aciude Securuy Classification)
DFQL: A GRAPHICAL DATAFLOW QUERY LANGUAGE

12. PERSONAL AUTHOR(S)

| Gard). Clark
13a. TYPE OFREPORT 13b. TIME COVERED 14.
Master's Thesis FROM L)

DATE OF REPORT (year, morshday) | 1 3 1 6AGE COUNT
1991 September

16. SUPPLEMENTARY NOTATION

Defense or the U.S. Government.

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of

In7. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by biock number)
FIELD GROUP SUBGROUP database, query language, dataflow programming, object-oriented programming,

relational model, SQL, human factors

of-use area.

of query writing com favorably to that of SQL.

19, ABSTRACT (Continxe on reverse if necessary and identify by block rumber)
In nearly all large organizations, the Navy and Department of Defense being no exceptions, the use of database
management sysiems (DBMS's) has become widespread. The prevailing data model for modern DBMS's is the relational
model developed by Codd in the early 1970's. The relational model's superiority is due to its well thought out design and
founding in mathematical logic. The de facto standard query language for relational DBMS's is IBM's Structured Query
Language (SQL). Although SQL is the most widely used query language today, it has many problems, especially in the ease-

The purpose of this thesis is to design, implement, and test a new query language, DFQL, which will mitigate SQL's
ease-of-use problems. DFQL provides a graphical query interface based on the dataflow paradigm in order to allow a user to
easily and incrementally construct queries for a relational database. DFQL is relationally complete, maintains relational
operational closure, and is designed to be easily extensible by the end user. DFQL has been implemented on an Apple
Macintosh using an ORACLE relational DBMS. A simple human factors experiment was performed in which DFQL's ease

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS

21.

ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22c OFFICE SYMBOL
C. Thomas Wu (408) 646-3391 CS/Wq
DD FORM 1473, 84 MAR 83 APR edition may be used unul exhsusted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsoiete Unclassified

Approved for public release; distribution is unlimited.

DFQL.:
A Graphical Dataflow
Query Language

by
Gard J. Clark
Lieutenant, United States Navy

B.S., United States Naval Academy, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

/{thember, 1991
Author: <

i / Gard] Clark

Approved by: m

C. Thomév(u, Thesis Advisor

7 7 i s b

A g ——
; CDR B. B. Gml!eader

Robert B. McGhee, Chairman,
Department of Computer Science

ABSTRACT

In nearly all large organizations, the Navy and Department of Defense being no
exceptions, the use of database management systems (DBMS's) has become widespread.
The prevailing data model for riodern DBMS's is the relational model developed by Codd
in the early 1970’s. The relational model’s superiority is due to its well thought out design
and founding in mathematical logic. The de facto standard query language for relaticnal
DBMS's is [BM'’s Structured Query Language (SQL). Although SQL is the most widely
used query language today, it has many problems, especially in the ease-of-use area.

The purpose of this thesis is to design, implement, and test a new query language,
DFQL, which will mitigate SQL’s ease-of-use problems. DFQL provides a graphical query
interface based on the dataflow paradigm in order tc allow a user to easily and
incrementally construct queries for a relational database. DFQL is relationally complete,
maintains relational operational closure, and is designed to be easily extensible by the end
user. DFQL has been implemented on an Apple Macintosh using an ORACLE relational

DBMS. A simple human factors experiment was performed in which DFQL's ease of query

writing compared favorably to that of SQL.

Accaswon For 1
NTIS CRASI \J
0. 1mo |
U. 3.1..0.08d

Jattcaton

L

IL

TABLE OF CONTENTS

INTRODUCTION o it e e i e e e e e e e e e e 1
A. MOTIVATION i i i e e i, 1
B. OBIJECTIVES OF A VISUAL DATABASE INTERFACE 2
C. THESISOVERVIEW iiiiiiiiiiiinnaannn. 3
PREVIOUS WORK i, 5
A. GENERALDISCUSSION00tiiiiiiiiiennenn.. 5
B. PROBLEMSWITHSQL i, 6
1. Basisof SQL i . 6

2. Declarative Nature 0iiiunnenrennn. 7

3. Universal Quantificationc0ienennnnn. 8

4. LackofOrthogonality0vuun... 10

S. Nesting Constructc0iiiniuinrnneeaennnnnnn 11

6. Lack of Functional Notation 12

7. OtherlIssues ittt iieinnannn. 13

C. EXISTING VISUAL QUERY LANGUAGES 13
1. FormsBasedInterfaces 14

a. STBE--Summary Table By Example 16

iv

b AQL--AQueryLanguage...............cccvounnn.. 18
c. RC/S--Relational Calculus/Sets 18
d. Objectives, Benefits, and Drawbacks 19
2. Entity-Relationship Model Interface 20
a. GQL/Andyne--Graphical Query Language 23
b. GDML--Graphical Data Manipulation Language 24
c. QBD*-QueryByDiagram* 26

d. GUIDE--Graphical User Interface for Database Exploration . 27

e. GRAQULA--Graphical Query Language 28
f. Objectives, Benefits, and Drawbacks 32
3. Other Approaches 0., 33

a. PICASSO--Picture Aided Sophisticated Sketch Of Database

QUeMES i e e e 33

b. IFO and SNAP--A Graphics-based Schema Manager 36

D. DATAFLOW PROGRAMMING LANGUAGES 38

1. Dataflow Diagram Description 38

2. Visual Dataflow Programming 39

III. DESCRIPTIONOFDFQL i 42
A, CONCEPT ...ttt ettt 42

1. DFQL OPperatorsc.cuouiuiininneenenennnnnnnnnn, 43

a. BasicOperators, 45

(1) Select. ...ttt e e e 47

(2 Project. T, 48

3) Join. e e 49

() Union.0iiiit e e e, 52

) Diff. ... 53

6) Groupent. 54

b. Other Primitivesc.ccu... 56

() Egjoin. ... i e . 56

(2) GroupALLsatisfy. 58

(3) GroupNsatisfy. 59

(4) AgEregate OPerators.evvemeennenns 60

(5) Imtersect., 61

c. DisplayOperators iueeuann. 61

(1) DISPLAY. i, 62

(2) SDISPLAY. i, 62

d. UserDefinedOperatorscovvuun... 64

2. DFQLQuery Constructioncuvuuerenennn.. 68

a. Incremental Queries 69

b. Universal Quantification 73

¢. Nesting and Functional Notation 73

d. Graph Structure of DFQL Query 74

B. USERINTERFACEFORDFQLcccuuu... 75
vi

1. StartingThe Program 76

2. DBINTERFACE Window Items 76
a. Buttons i 76

b Drawing Area, 80

3. QueryResults Windowccvvuion... 82
4. Menultems i 84
a. ApPle .. e e e 85

b. File 85

c. Edit....... ... 87

d Prmitives............ i 89

e UserOps ittt i i e e 89

f OphONS... . ..t e e 94

g Info....... L 95

h. Special... 95

C. IMPLEMENTATIONOFDFQLccuua.. 97
1. Prograph -- Object-Oriented Dataflow Language 97
a. ProgmaphCode 98

b. Object-Oriented Features 104

2. DFQL Implementation Strategy 109
a. User Interface to Stored Query Graph 111

a. QueryGraphtoSQL 113

b. SQLtoQueryDisplay 119

vii

1. Goals of the DFQL Interpreter Class Structure 120

IV. ANALYSISOFDFQL ittt 122
A. HUMAN FACTORS ANALYSIS OF QUERY LANGUAGES 122
1. Testing forEase-of-Use 122

2. Applicable Results of Previous Human Factors Studies 124

B. EXPERIMENTAL COMPARISON OF DFQL WITH SQL 126
1. Assessment of the Experiment 126

a. Subjects e 126

b. TeachingMethod 127

c. Kindsof Tasks i, 127

d TestQuestionsciuiiiiuennernnens 128

e. TestEnvironment 129

f. EvaluationMethod 129

g. Experimenter Attitude 130

2. ExperimentResults i, 130

3. ExperimentConclusions 133

C. ADVANTAGESOFDFQL 134
L Power e i i e 134

2. Extensibility i, 134

3. Ease-Of-Use i 135

a Dataflow Representation 135

viii

b. Orhogonality 135

c. Incremental Query Formulation and Execution 136

4. Visuallnterface i, 136

D. SHORTCOMINGS OF THE DFQL CONCEPT 137

1. InterfaceProblems 137

2. LanguageProblems 138

V. CONCLUSIONS i ittt e et ettt eaneans 140

A. REVIEWOFTHERESEARCH 140

B. FUTURERESEARCH, 140

1. Implementation Enhancement 141

2. Theoretical Investigation 142

C. SUMMARY ... i e e e 144

LISTOF REFERENCES i it 145

APPENDIX A. EXAMPLEDATABASE 148

APPENDIX B. HUMAN FACTORS EXPERIMENTDATA 151

APPENDIX C. DFQLSOURCECODEc.c.vvieninnn... 158

BIBLIOGRAPHY ittt et i e i 293

INITIAL DISTRIBUTION LIST ittt 294
ix

LIST OF FIGURES

Figure 1. Example of QBE Query i, 14
Figure 2. Example of ERDiagram 21
Figure 3. Example Joinin GRAQULA 30
Figure 4. Example PICASSOHypergraph 35
Figure 5. Example Dataflow Diagram 39
Figure 6. Dataflow Program Fragment 40
Figure 7. Operator Constructioncconiuuunenrnn.. 43
Figure 8. DFQL BasicOperatorsccciiriinenennn. 46
Figure 9. TextObject i, 47
Figure 10. Example DFQL Select u.on... 48
Figure 11. Example DFQL Project 49
Figure 12. Example DFQL Joinv.n... 51
Figure 13. Example DFQL Union, 53
Figure 14. Example DFQL Diff, 54
Figure 15. Example DFQL Groupent0iiiunnnn.. 55
Figure 16. Other DFQL Primitives 57
Figure 17. Example DFQL GroupALLsatisfy 59
Figure 18. Example DFQL GroupNsatisfy 59
Figure 19. Example DFQL Groupmax 61

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.

Figure 41.

Example DFQL SDISPLAY it 63

DFQL Select - Project Query 64
Creating a User-Defined Operator 65
User-Defined Groupallsatisfy 67
Complete DFQL Query 69
Incremental Query Constructionvivernnnnn. 71
Incremental Query Execution, 72
Use of Multiple Display Operators0ouu.nnn 72
DFQL Main Windowt 77
Operator Creationttt innennnnn 78
TextObject Creation ottt inenennnn. 79
Example SelectOperatorHelp 81
QueryResults Window L. 83
DFQL Menu Bar. i iiiiiiiiiinnannns 84
FileMenu i i 85
Open..DialogBox, 86
EditMenu i e 87
Primitives Menu i 89
UserOps Menu it 90
User Operator Definition Window 91
User-Defined Operator Selection 92
View User Operator Window 93

Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.

Figure 61.

Options... Menu ittt iiinnannnn 94
InfoMenu e e 95
Table Information i, 96
Starting the SQL*Plus Interpreter 96
Specifying Order of Execution 100
Prograph Case Structureiiiiienennnnnnn 102
Iteration Overa List0 iiiiiiieunnnnnn 103
SimpleIteration i i i, 104
Prograph System Classescci0itiiiuennnnn. 105
Attribute Window L e 106
Method Window 0 iiiiiinannnnn. 107
Method Referencing it iiiiinninnnn. 108
Block Structure of DFQL Interpreter 110
Interface to Object Representation 112
Graph to SQL e 113
Doallopsc. i i i e e 114
Adboprfexeobj i e 116
Dbops/project ittt 118
SQLtoResult i 119
ExperimentResults, 132

xii

ACKNOWLEDGMENTS

I sincerely thank all of the people who assisted me in the conception and
implementation of this thesis.

I am especially indebted to the ADP Division at Los Alamos National Laboratory
for both their technical and logistical support. I particularly wish to thank Jim Hall, Pam
French, Frank Welch, Joe Zowin, Bruce Panowski, Leann Anderson, Ken Sinclair, Lee
Ankeny (C-9), and the ADP-1 Micro Support staff for all of their help and guidance.
Special thanks go also to Doug Lier (A-6) whose support was invaluable.

I also would like to acknowledge Kevin Fontes for introducing me to both Prograph
and the "intricacies” of Macintosh user-friendliness. Thanks also are due the technical
support staff of TGSS for their assistance in implementation of this project. I greatly
appreciate all of the guidance in the conception and implementation of DFQL by my
advisor Dr. C. Thomas Wu.

Finally, I wish to thank my wife Beth for her patience and sacrifice in supporting
me in this endeavor. Without her constant love and support, none of this would have

been possible.

xiii

I. INTRODUCTION

A. MOTIVATION

The relational model for database management was introduced in 1969 by E. F.
Codd (Codd, 1990, p. v). Compared to other actually implemented models, namely the
hierarchical and network models, the relational model has the simplest and most uniform
data structures and is founded much more rigorously in mathematics (Elmasri, 1990, p.
135). These features of the relational model make it a superior tool for most database
implementations. In fact, the relational model has been labeled as "...one of the few
pinnacles of computer science...." (Beech, 1989, p. 29)

The de facto standard query language associated with the relational model is
Structured Query Language (SQL) invented by IBM (Chamberlin, 1974). There are
serious problems with both the design and implementation of SQL as a query language
that inhibit it in allowing the user easy access to the information stored in his relational
database. Several of these problems are discussed by Codd in a two part article "Fatal
Flaws in SQL" (Codd, 1988) and again in (Codd, 1990, chpt. 23). Our research primarily
addresses what Codd terms as "The Psychological Mix-up" or human factors aspect of the
language (Codd, 1990, pp. 379-382). We extend from his concern about the defined type
of nesting in SQL to other psychological, or ease of use, issues. An example of another

one of these issues is the difficulty in expressing the idea of universal quantification in

SQL (Negri, 1989). In general, we believe that a new database query language is

required to allow users to achieve the maximum utility from the relational model.

B. OBJECTIVES OF A VISUAL DATABASE INTERFACE

Because of the problems associated with the current text based query languages
(SQL in particular), we have proposed, designed, and implemented a graphical/visual
interface to the relational model based on a dataflow paradigm. This DataFlow Query
Language (DFQL) retains all of the power of current query languages and is equipped
with an easy to use facility for extending the language with advanced operators, thus
providing query facilities beyond the benchmark of first-order predicate logic. DFQL
meets the following goals for a visual database interface which have been presented

previously in other papers (IBM, 1991, pp. 1-2; Angelaccio, 1990, p. 1150):

* Employ a fully graphical environment as a user-friendly interface to the database
+ Sufficient expressive power and functionality, including relational completeness

* Ease of use in leaming, remembering, writing and reading the language’s constructs
+ Consistency, predictability, and naturalness (in both syntax and function)

« Simplicity and conciseness of features

» Clarity of definition, lack of ambiguity

+ Ability to modify existing queries to form new queries incrementally

» High probability that users will write error-free queries

» Operator extensibility -- allow the user to create new operators in terms of existing
ones, analogous to defining a function in a programming language

Examples of the approaches taken in DFQL to implement the above goals are:
» Complete faithfulness to relational algebra, especially in the requirement for
operational closure
* Elimination of range variables from queries

* Elimination of nesting in query construction

There have been several research efforts directed towards the design of visual database
querying systems, for example: QBE (Zloof, 1977), STBE (Ozsoyoglu, December 1989),
AQL (Miyao, 1986), RC/S (Ozsoyoglu, September 1989), GQL/Andyne (Andyne, 1991),
GDML (Czejdo, 1990), QBD* (Angelaccio, 1990), GRAQULA (IBM, 1991), GUIDE
(Wong, 1982), PICASSO (Kim, 1988), and IFO (Abiteboul, 1987). However, none of
these efforts utilize a dataflow approach to query specification. The dataflow paradigm
provides several advantages, discussed later, that we believe form the basis of a query
language that is superior to the approaches listed above. Perhaps the most important
benefit of this approach is the ability of the user to treat relations as abstract entities
which are operated on by relational operators. This abstraction allows the user to
compose his queries strictly in the realm of relational algebra, rather than having to know

the details of how the operations are carried out, as is the case in SQL.

C. THESIS OVERVIEW
Chapter II presents background information for the thesis. We cover the previous
work done in the areas of graphical database interfaces and dataflow programming. We

also expand on the motivation for a new query language to solve problems with the

current de facto standard, SQL. None of the previous work cited has been done in the
area of dataflow querying. However, the different approaches of previous attempts to
produce a usable graphical query interface do bring out some of the reasons for, and
desired qualities of, a graphical query language.

Chapter II describes DFQL first from the conceptual point of view and then
discusses the current user interface and functional details. The implementation description
covers Prograph™, the object-oriented graphical dataflow programming language in which
DFQL was implemented. The method of intermediate code generation and linkage to an
existing backend database management system (DBMS) is discussed. The utility of
programming within an object-oriented model is addressed, especially as it pertains to the
extensibility and portability of our DFQL interpreter.

Chapter IV provides an analysis of the apparent advantages and disadvantages of
DFQL. The results of a simple usability experiment conducted to compare DFQL and
SQL are given. Also provided is background information on human factors analysis of
query languages.

Chapter V provides a summary discussion of the research, and provides suggestions
for future work in two general areas. The first area encompasses additions and
modifications that can be made to the implementation of the DFQL interpreter program
itself. The second area is theoretical investigation into extensions and optimizations of
the actual DFQL language to include in-depth experimental analysis of the human factors

issues of both the use and implementation of DFQL.

II. PREVIOUS WORK

A. GENERAL DISCUSSION

As stated in the introduction, we could find no previous work on a dataflow query
language. In our research we have brought together the two separate ideas of a graphical
query language and the dataflow programming model to create our implementation of
DFQL. The following sections of this chapter discuss previously developed graphical
query languages and provide a brief introduction to the dataflow programming model.
In the discussions on other graphical query languages we stress the ideas behind the
design and/or implementation; in most cases there is no direct comparison possible with
DFQL due to the different approach. The discussion on the dataflow programming model
is very brief, we assume the reader has some knowledge of the dataflow design
methodology from which this model is derived.

We introduce the previous work with a section on problems that have been noted
with the current de facto standard relational database retrieval language SQL. Many of
the problems reviewed will be common knowledge to SQL users. We cover this topic
here to expand on the motivation for the invention of our new query language; many of
the criticisms raised are also applicable to the motivation for the development of some

of the other graphical query languages discussed in the subsequent sections.

B. PROBLEMS WITH SQL

Our approach to exploring problems with SQL concentrates primarily on its human
factors aspects. In several instances, however, items such as ease of use are influenced
by more serious flaws in SQL other than simple interface design. We mitigate these

problems with DFQL.

1. Basis of SQL

Query languages for the relational database model can be divided into three
types: relational calculus based, relational algebra based, and a combination of the
previous two types. In relational calculus, the user provides a predicate calculus
expression which defines the characteristics of the tuples to be retrieved. Tuple variables
are used in order to make the logical connections between separate instances of relations
being combined (joined). In relational algebra the user specifies a sequence of relational
operations to be performed on the tables of his schema in order to produce the desired
result. Both the relational algebra and the relational calculus have equal expressive power
(Elmasri, 1990, p. 212); any query that can be expressed in one can be transformed into
a query in the other (Codd, 1972).

SQL is a mixture of both relational algebra and calculus with some other ideas
(such as nesting to provide a block structure) thrown in also. However, SQL tends more
toward a calculus based approach because it is primarily a declarative rather than a
procedural language. The user specifies what the result should be in one statement, rather
than in a sequence of statements. (Dadashzadeh, 1989, p. 431) This mixture of

approaches resulted from the way in which SQL was designed. Date comments:

| ,

When the language [SQL] was first designed, it was specifically intended to differ
from the relational calculus (and, I believe, from the relational algebra). ...As time
went by, however, it turned out that certain algebraic and calculus features were
necessary after all, and the language grew to accommodate them. (Date, 1987, p.
84)

The result of this design methodology is that SQL is a strict implementation of neither

relational algebra nor calculus.

2. Declarative Nature
SQL is primarily a declarative query language. That is to say that the user is
intended to construct his query basically from the relational calculus or first-order
predicate logic frame of reference. All of the conditions that the query result is desired
to meet are specified in a single statement. This approach is straightforward for simple
queries; for more complex queries however, the logical expression specifying the
conditions to be met can become quite complicated. This problem is exacerbated when

the complex query involves universal quantification (discussed separately below) because

of its negative logic implementation in SQL.

Another problem with the declarative approach is that it may not always
present the clearest representation of the query to the user. The question of clear
representation of the "essence” of the query is in part related to how humans actually
think. The logical, declarative method of expression may be more compact, however, if

- humans think of complex problems in a more sequential fashion it may not be as easy to

formulate or to interpret after formulation. Indeed, in The Relational Model for Database

Management: Version 2, Codd uses the algebraic (procedural) approach to introduce the

operators for the relational model because "upon first encounter, that approach appears

easier to understand.” He goes on to say that the relational calculus provides a better
implementation for an actual database language not because of any of its ease of use
characteristics for the humans but because it is easier for the computer to optimize a
query that is confined to a single condensed command. (Codd, 1990, p. 62) Most
embedded query languages, and even some commercial implementations of non-embedded
query languages, give the user the ability to use the query language in a procedural
manner if desired. This allows the user to take advantage of the features of the host
language to accomplish operations that are difficult or impossible to code in the query
language.

Ease of use issues for database query languages have been of concern for quite
some time as evidenced by Schneiderman’s paper "Improving the Human Factors Aspect
of Database Interactions” published in 1978 (Schneiderman, 1978). Human factors studies
have been done concerning the issue of declarative versus procedural implementations of
query languages. The results of these studies show that, for complex queries, users
perform better when using a procedurally oriented rather than a declarative language such

as SQL. (Welty, 1981)

3. Universal Quantification
The idea of universal quantification is expressed in English by the phrase "for
all." This idea is often required to formulate database queries but is supported only
indirectly in SQL. One of the problems of using universal (or existential -- "there exists")
quantification is that the logical meaning of these operations is not completely intuitive,

especially to persons who are not experienced in the use of predicate logic. The logical

ideas represented by these operators have been shown to be difficult to use correctly even
when the user has experience in the area in which they are being applied. (Negri, 1989,
p. 90) This difficulty is compounded because SQL’s lack of a specific "for all" operator
forces one to use "negative logic" with the existential quantifier (NOT EXISTS) to
achieve the result of universal quantification.

The following example is provided to show how, even with a simple query,
expressing the idea of universal quantification is somewhat complicated. As the query
becomes more complex, the difficulty of composing or understanding it increases rapidly.

Consider a database with the following relations (key attributes are underlined):

COURSE(CNO, TITLE, INO)
ENROLL(CNO, SNO, GRADE, TESTSCORE)
INSTRUCTOR(INO, INAME, PAY)

The desired query is: "list the names of all the instructors who gave all A’s in
at least one of the courses they taught." (This database schema is a subset of our
example database schema described in Appendix A.)

In SQL the above query could be expressed as:

(1 SELECT DISTINCT INAME

0)) FRGM INSTRUCTOR, COURSE, ENROLL El
3) WHERE INSTRUCTOR.INO = COURSE.INO
4) AND COURSE.CNO = E1.CNO

(5) AND NOT EXISTS

6) (SELECT *

@) FROM ENROLL E2

(8) WHERE E2.CNO = E1.CNO

9) AND E2.GRADE !="A’),

A direct english translation of the SQL query above is: "Retrieve the names
of instructors (line 1) who taught courses (line 3) which had students enrolled (line 4)
in which there was at least one of these courses in which there was not any student who
received a grade that was not an 'A’ (lines 5-9)." This translation describes only the
basic semantics of the SQL statement. In order to derive the full meaning of the SQL
query and how it will function, a knowledge of the differences between relation names
and range variables and their scoping rules is required. This example query would not
be possible without the correct use of range variables; the linkage between the "inner" and
"outer” SELECT statements depends entirely on understanding and correctly employing
range variables to represent the ENROLL relation. The specification required to form this
simple query is thus not straightforward at all; even at this fairly low level of complexity,
the query formulation involves subtleties of logic that are extremely easy to mixup, even
for the experienced user. A final comment on this SQL example is on its readability:
How difficult is it to read the SQL query and know what is actually being specified? If
one has to intensely study a previously written query to determine exactly what it is going
to do, the implication is that there is a comprehension problem caused by the language.
Lack of easy comprehension of the language will affect not only query readability but

also the capability of the user to formulate correct queries.

4. Lack of Orthogonality
"Orthogonality in a programming language means that there is a relatively
small set of primitives that can be combined in a relatively small number of ways to build

the control and data structures of the language.” (Sebesta, 1989, p. 6) SQL does not

10

present the user with a simple, clean, and consistent structure. In SQL there are
numerous examples of "arbitrary restrictions, exceptions, and special rules." (Date, 1987,
p. 84) An example of an unorthogonal construct in SQL is allowing only a single
DISTINCT keyword in a SELECT statement even if the SELECT statement contains
other nested SELECT’s. Lack of orthogonality in a language increases the number of
special rules that must be memorized by the user, decreases the readability and writability
of the language, and in general decreases the usability of the language. Unorthogonal
features are not something that we have to live with to have a powerful query language,

this fact is evidenced by the orthogonality of DFQL.

5. Nesting Construct
SQL permits a nesting structure of the form--'
SELECT
FROM

WHERE attribute IN
SELECT ...

This format allows for a block structure type of construct. In fact, it is from
this construction that the "Structured” in "Structured Query Language” is derived from.
The original purpose of this nesting construct was to allow the specification of certain
types of queries without resorting to the use of relational algebra or relational calculus.
However, with the introduction of these same relational algebra and calculus operations

into SQL the need for the "IN subquery” construct was eliminated. (Date, 1987, p. 84)

'There are also other forms of nesting allowed.

11

Codd refers to the nesting construct as part of the "psychological mixup" in
SQL. While all queries that are specified using the nesting construct should be directly
translatable into queries using an equi-join instead, Codd shows that if allowing for the
existence of duplicate rows in tables (as SQL does), one will come up with a different
result when performing the equi-join version of the query than when performing the
nested version (Codd, 1990, p. 380). There is also a problem in the optimization of
nested queries by the DBMS. Although work has been done to demonstrate the
translatability of nested queries into their non-nested counterparts (Kim, 1982), most
optimizers perform poorly, if at all, in optimizing through levels of nesting in SQL
queries. Thus, a performance related issue is thrust onto the user simply through tne

design of the query language. (Codd, 1990, pp. 379-382)

6. Lack of Functional Notation

The use of functions in programming languages allows the abstraction of
operational detail to whatever level is appropriate for the environment in which the
function will be executed. In the same fashion, complex queries that provide an
intermediate result that is used for a higher level query could effectively be hidden from
the user at the higher level through the use of functional notation. This concept is used
in all modern programming languages, even including newer versions of BASIC, but is
not implemented in SQL. The use of functions to produce intermediate results for further
processing also provides a good alternative to query nesting by allowing the hiding of
complex query structures from the user. User-defined functions are discussed by Codd

as a desired part of the relational model (Codd, 1990, p. 340-344).

12

7. Other Issues

There are other various problems with the SQL database language, however,
most of these are not germane (or at most peripheral) to our thesis on DFQL. Many of
these arguments are not necessarily with the "language" portion of SQL but in its actual
DBMS implementation of the relational model. Examples of these types of arguments
are: lack of adequate support for keying and referential integrity (Date, 1987, p. 84), lack
of support for three or four valued logic (Codd, 1990, pp. 383-386), and allowance of
duplicate rows in tables (Codd, 1990, pp. 372-379). Our research concentrates on the
interface to the underlying relational DBMS. We assume the underlying DBMS supports

the relational model as defined by Codd (Codd, 1990).

C. EXISTING VISUAL QUERY LANGUAGES

In our overview of previous research efforts into the area of visual database
interfaces, we have found that there have been two basic directions pursued. The first
direction is a forms based interface to the relational model as exemplified by QBE (Zloof,
1977). The second direction uses the entity-relationship model’s representation of
database objects as the basis on which the user can construct his queries. We will group
our discussion irto these two areas, citing particular efforts in each, and list the
objectives, benefits, and drawbacks of each approach. An additional section is also
provided which discusses interfaces that do not fall into either of the two preceding

categories.

13

1. Forms Based Interfaces

The ancestor of all of the forms based interfaces is QBE (Query by Example),
developed at IBM circa 1976 (Zloof, 1977). The basic idea behind QBE is that the user
calls up a form which represents the attributes in a given table. This idea should be
familiar t0 anyone who has used a spreadsheet type program. The user types example
values into columns which represent attributes in a specified relational table, and the
DBMS then returns the tuples that match the example values that the user entered.

Figure 1 shows an example query in QBE based on the example database
specified in Appendix A. The english translation of this query is: "Retrieve the names

of the instructors who gave at least one ’F’ in any of their classes.”

|couRse] cno | TiTLE | IND .
T 1 variable

ENROLL | CNO | SNO | GRADE | TESTSCORE

C F
|INSTRUCTOR INO | INAME | PAY example
 JP.UNQ. value

Figure 1. Example of QBE Query

QBE uses variables to specify queries, in the spirit of domain relational
calculus. In the example above, the variables "_C" and "_I" are used to join the three
tables required to answer the query. They are free domain variables which can represent
any value in the domain of their specific column. By using the same variable name in

more than one table, the user specifies a join on that column. Conditions to be satisfied

14

by the query are also entered into the column they reference. Hence, in our example we
place an "F" in the GRADE column of the enroll table to specify that we only want to
retrieve rows where the GRADE attribute was equal to "F". Other relationships can also
be specified such as >, <, !=, etc; equality is the default relationship. For complex
relationships it would be unwieldy to specify the condition by writing it in the actual
column box. A separate box, called the condition box, is called up for this purpose. "P."
specifies columns to print out as the result of the query. "P.UNQ." means to print out
only unique values of the specified column, much like the "SELECT DISTINCT ..."
statement in SQL. Thus, in our example, we will produce as output a list of INAME’s
meeting our desired condition with each name only appearing once.

Although QBE is very nice for allowing relatively inexperienced users to
specify simple queries, it becomes less and less useful as query complexity grows.
Expressing universal quantification in QBE is difficult. While there was provision for
expressing universal quantification in the proposal for QBE, it has not been implemented.
In fact IBM’s QMF (Query Management Facility as implemented under DB2), which was
used as the basis for our example, provides no support for existential or universal
quantification and thus is not relationally complete; universal quantification cannot be
specified (Elmasri, 1990, pp. 241-249). This means that the example query we presented
in section A.3 could not be expressed using QBE.

QBE is one of the first query languages to support a two-dimensional syntax.
This places it among the earliest "visual" database interfaces, where here "visual" means

not purely textual. Use of a form template in which to express the query was viewed as

15

a natural interface for people in offices who were accustomed to dealing with fill in the
blank type forms (Shu, 1988, pp. 239-240). The design of the QBE interface was also
directly influenced by the type of hardware available at the time of development. In the
late 1970’s, bit-mapped graphics terminals were not widely available, so the developed
interface had to run on standard character based terminals. This limits the format of
information displayed to tables, as shown in our example.

The success of QBE in providing a user-friendly interface for relatively simple
ad hoc queries has led to a number of other database query languages being developed
along the forms based design. We briefly discuss several of these languages in the

following sections.

a. STBE--Summary Table By Example

STBE (Ozsoyoglu, December 1990) has been developed to solve problems
unique to the area of statistical database applications. The primary motivation is the
repetitive production and comparison of summary tables in these applications. The basic
query facility provided is very similar to that of QBE. The extensions provided allow
STBE to deal with relations that have set-valued attributes, summary tables, and aggregate
functions using queries that by nature have a hierarchical subquery structure. STBE is
based heavily on set and aggregation operations because of the type of data manipulations
that are expected to be performed. While there is no explicit implementation of universal
quantification, STBE uses set comparison operators (which may be nested) to achieve the
same effect. STBE could be considered relationally complete since it can implement

Cartesian product, projection, selection, set union, and set difference; however, STBE

16

departs from the pure relational model by allowing summary tables and relations with set-
valued attributes.

The graphical interface for STBE is much like that of QBE in its format. It
uses skeleton tables that are filled in with variables and conditions to compose the query.
STBE introduces the idea of scoping by allowing nested queries. A nested query is
implemented by placement of the table skeletons for the query in nested windows. The
variables in each table skeleton in a given window are bound throughout that window.
In a nested query, each window contains a subquery and behaves somewhat like a
function returning an output. This output is specified by either an output relation skeleton
or an output summary table skeleton in the owning window. The outermost window is
always named ROOT; the ROOT window’s output is returned as the response to the
query. This structure of nested windows leads directly to a digraph representation of the
query which can be formed by decomposition of the STBE query into a parse tree. The
condition box in STBE performs the same function as in QBE but also allows set
membership (€, ¢) and set comparison (C, D, etc.) along with the normally supported
relational (<, >, =, etc.) and boolean (AND, OR) operators.

The powerful aggregation features, handling of summary tables and
relations with relational attributes, and nesting structures make STBE "not very simple
as a language" as admitted by its designers. This language is intended for the specific
field of Statistical Database Management where it would be used by advanced users and

not novices. (Ozsoyoglu, 1989, p. 566)

17

b. AQL--A Query Language

AQL (Miyao, 1986) is implemented for the AIDE-II (An Intelligent
Database System for End Users) prototype database management system. AQL is another
two dimensional query language that is extremely similar to QBE. The major difference
between the two is that in AQL there is no need to express joins between tables. This
is due to the design of the AIDE-II data model in which a "user view" is specified that
is supposed to contain all of the possible relationships in the database. The expressive
power of AQL is contained in that of QBE. (Miyao, 1986, p. 27)

The lack of the ability to express joins and universal quantification are
serious drawbacks of AQL. The elimination of the join operation from the query simply
splits the query up into two dissimilar parts: first specifying the user view required for
the query, and then actually specifying the conditions for the query on that user view.

AQL’s inability to support the relational model is a fatal drawback.

¢. RC/S-Relational Calculus/Sets
RC/S (Ozsoyoglu, September 1989) is a relational calculus which uses
set comparison and set manipulation operators to replace universal quantification in query
formulation. Two graphical implementations of RC/S have bzen designed, both of which
are heavily based on QBE. The first implementation uses nested windows to specify
complex queries, as discussed for STBE above (however RC/S is for a simple relational
database). The second implementation provides the same functionality as the first, but

uses hierarchical windows to express the nesting concept. RC/S was developed by the

18

same principal as STBE; the query constructs are nearly identical with the exception of

RC/S handling only simple relations.

d. Objectives, Benefits, and Drawbacks

The initial objective of forms based interfaces was to provide the user
with a way to construct queries based on objects that he was familiar with, namely forms
(Shu, 1988, p. 239). QBE was the first implementation of a two dimensional query
language and for simple queries seems to be "easy to use." However, QBE (as
implemented in QMF) is not even relationally complete and therefore cannot express
some types of queries that a user may desire (for example, queries involving universal
quantification). STBE and RC/S (graphical) attempt to mitigate this problem while
retaining the ease of use characteristics of QBE. We believe that they are only partially
successful. The implemented nesting and the use of set comparison do allow the
expression of the categories of queries that are not expressible in QBE; however, these
same added features detract greatly from the simplicity of the language. The correct use
of set operations to solve the universal quantification problem requires at least some
knowledge of set theory. This is an additional burden placed on the user on top of
learning the semantics of the query language itself. AQL eliminates the user specified
join from the actual query by requiring a "user view" schema to be set up prior to the
execution of the query. We believe that this unnecessarily separates the query building
process into schema manipulation (the creation of the user view) followed by actual query

specification and is not an aid to the user. Also the AIDE-II DBMS for which AQL is

19

designed falls outside of the definition of the relational model due to its requirement of

user views.

2. Entity-Relationship Model Interface

The entity-relationship (ER) model was introduced in (Chen, 1976). The ER
approach has been used extensively as a high-level conceptual data model. The idea
behind the model is to illustrate the concepts of entities and relationships between entities
in a graphical way in order to enhance understanding of the structure desired for a
database. In the past, the ER model was used as an aid in developing the structure of the
database that would then be implemented using a relational DBMS and its associated
query language, but recently several query languages have surfaced which are based
closely on the ER model.

The normal visual representation of the ER model is shown in Figure 2 (using
the example database described in Appendix A). The rectangles represent entities and the
diamonds represent relationships between entities. Both entities and relationships may
have attributes which are represented by the connected ovals. This representation is
intended to specify some of the semantics which are contained in the database.

One of the drawbacks to the ER approach is that just because certain
relationships are currently specified does not necessarily mean that there are no other
relationships that exist between entities. When this type of representation is used as the
basis for a query language, it tends to force the user to depend on the specified
relationships. Indeed, the idea for using the ER diagrams is that the user need not worry

about the specific "join" conditions between entities. These "relationships” are all

20

E INSTRUCTOR

@
Can)
Cgpa)

enrolled in COURSE

STUDENT

Figure 2. Example of ER Diagram

displayed for him. (Although someone at some time has to define these relationships.)
This is similar to the idea in AQL where user views are specified so that all joins are
eliminated from the user’s purview. Dependence on predefined relationships may provide
benefits to the novice user who doesn’t really understand how the data in the database fits
together; but it seems somewhat dangerous to write queries which depend on relationships
that the user may not fully understand. The ability to easily use a relationship without
knowing how it is actually set up increases the chance of syntactically correct queries that
will produce the wrong results.

The ER query languages also present a severe restriction on the advanced user
if they do not allow relationships other than those previously specified in the ER schema.

This is the case in several of the ER query language products. Since most relationships

21

in the ER model are based on equi-joins on keys and foreign keys of the entities, the
restriction may not seem too onerous; indeed, it may appear that if the ER schema is set
up correctly, there could be no relationships that are left out. However, if the user desires
a theta-join based on some relationship other than equality, even if this theta-join uses the
same key attributes as one of the defined relationships, it would be impossible to perform
without adding it as a "new" relationship to the ER schema. In any case, the ER type
query languages require the formulation of the query to be divided into two distinct
phases. First, the appropriate relationship (or relationships) must be found in the schema
(or created). Second, the actual query conditions must be specified.> Requiring the user
to perform two dissimilar steps in order 10 construct a query does not allow him to
maintain a smooth train of thought while formulating the query.

Most of the graphical query language implementations based on the ER model
are designed around providing the user ways in which to manipulate the displayed schema
in order to specify his query. The idea has some intuitive relation to QBE; instead of
placing conditions on forms representing the schema, one places the conditions on the ER
diagram. The actual method of graphical implementation of the ER diagrams seems to
depend primarily on the type of hardware that the implementation was designed on or
intended to run on. Thus, the interface types run the gamut from Macintosh point-and-
click to more simplistic line drawings. We briefly discuss some ER type query languages

in the following sections.

*This is the same as the problem caused by user views in AQL (p. 18).

22

a. GQL/Andyne--Graphical Query Language

GQL (Andyne, 1991) is a commercial product developed by Andyne
Computing Limited of Kingston, Ontario, Canada. It is designed to run as a front end to
a user’s existing relational DBMS. GQL runs on Macintosh computers and thus the
Apple "look and feel” is very much a part of the GQL query interface. In this discussion,
unless otherwise stated, we are referring to the product called GQL/User which is the
Andyne’s user query language interface.

On startup, GQL displays the appropriate ER diagram for the database
that the user desires to run his queries on. Also provided on the startup screen may be
several "executive buttons” which are used to run previously stored or "canned" queries
that may have been written by or for the user. To perform single table (or perhaps more
appropriately single entity) queries, the user double-clicks on the icon in the ER diagram
representing the desired entity. A window with a list of the entity’s attributes is then
displayed. Attributes may then be selected for printing. A “filter" dialog’® is provided
to aid the user in formulating requests to sort the data or actually "filter" it by only
including items meeting certain criteria: minimum, maximum, or value ranges may be
specified. Queries for specific items, such as "list the name and address of student with
sno = S123 or sno = S$321", are formulated with the assistance of GQL’s "qualify"
feature. To "qualify” an attribute, a dialog is displayed where the user enters the

condition to satisfy; if previous conditions exist, the user must also select whether to

*For consistency we use the Apple spelling of "dialog” throughout this thesis.

23

"and" or "or" the new condition with the previous ones. The user is stepped through all
of the qualification steps by GQL.

The information represented by the relationships in GQL is accessed by
selecting the desired relationship from the screen along with its two (all relationships are
binary) adjoining entities. Now, when a query is formed, all of the attributes from both
entities are available for qualification and display. The relationships that the user sees
must be entered by the database administrator (DBA). These relationships are neither
changeable or extensible by the user. Another problem, due to the representation of the
ER model, is that for a complex database with many relationships the diagram will be too
large to fit on the screen at any one time. This may be even more likely to happen with
GQL than other ER products because GQL is designed to be run on top of an existing
relational DBMS. Each of the tables in the existing database becomes an entity. The
DBA must then define a relationship for each of the possible join conditions in the
database. If the underlying database has many tables (which is especially true of large
database schemas that have been reduced to third norma! form (3NF)) with many join
conditions the resulting ER diagram will necessarily be very large. The ER diagram will

not be easy to use if it does not all fit on the screen at the same time.

b. GDML--Graphical Data Manipulation Language
GDML (Czejdo, 1990) uses much of the same type of pictoral
representation as the general ER model and GQL/Andyne. This query language is based

"

on an extended version of the ER model that incorporates "...various forms of

generalization and specialization, including subset, union, and partition relationships.”

24

(Czejdo, 1990, p. 26) Queries are formed in GDML by removing parts of the ER
diagram. An editor is provided to allow the user to erase parts of the ER diagram. All
of the items in the database represented by the diagram remaining on the screen are then
displayed as the result of the query. A method of restriction is provided by allowing the
user to place conditions on the attributes in the diagram. Although GDML is based on
the ER model for the user interface, as implemented it runs on top of a relational DBMS.
The GDML entities are simply relations from the underlying database and the GDML
relationships are represented by database relations containing the appropriate keys from
cach of the connected entities. Again, as with GQL, these relationships must be
established manually.

As an example, we will use the schema from Figure 2 to solve the query:
"Retrieve the names of students who received one or more "A’ and also the name of the
course they received it in.™ First, remove the INSTRUCTOR entity from the diagram.
Removing an entity will also remove all attributes and relationships tied to it. Thus, the
"teaches" relationship is also removed. Then remove all of the attributes from the
diagram with the exception of the ones to print, namely "title” and "sname”. Next, use
the restrict operator to add the condition "grade = 'A’" to the relationship "enrolled in".
The construction of the query is now completed. The results are produced by selecting
the display operator. When display is selected all of the necessary joins are performed

and the tuples from the resulting relation are displayed for the user.

“We are intentionally using different queries for our examples in order to best display
the unique characteristics of the particular languages.

25

¢. (OBD*--Query By Diagram*

QBD* (Angelaccio, 1990) is intended 1o be a "user-friendly"” query
language based on the ER model which allcws the expression of queries with a recursive
nature. QBD* uses the ER diagram as a navigational tool for forming queries. The
actual conditions to be satisfied by the query are specified in separate query specification
windows.

To use QBD*, the user first selects items of interest from the displayed
ER diagram. When an item is selected, a window is opened to allow the user to place
conditions, including recursive conditions, on the attributes of that item. The conditions
are built up by the use of icons representing the standard comparison operations such as
>, <, =, for example. The query condition window displays the attributes of the selected
item in a column on one side of the screen. To compare a given attribute to a value, the
value is entered on the opposite side of the screen and a line is then drawn between the
attribute and the specific value. A comparison operator is then selected from the icon list
at the top of the screen and is attached to the line connecting the attribute and the value.
By placing two separate entities on either side of the screen, join conditions can be
specified between two separate relations. By duplicating the same entity on both sides
of the screen recursive queries may be specified. (Angelaccio, 1990, p. 1154)

The two types of windows that are used in QBD* are quite different from
each other. This is because they serve entirely different purposes, however the
dissimilarity makes the linkage between the ER diagram and the actual query specification

seem somewhat tenuous. The two types of windows are used to accommodate the

26

designers’ choice to implement the query formulation process as a series of phases: First
the user browses the schema. Then he picks the required items (or concepts as QBD*
calls them) from the ER diagram. Next, the selected sub-schema is transformed to "bring
it *close to the query’ (Angelaccio, 1990, p. 1152). Finally, the "navigation phase" is
entered where the actual query is formed in the query condition windows. This series of
steps seems unnecessarily complex. The formulation of the query in the query condition
windows also allows the user many options which are not based on the relationships
specified in the given ER model. For example, QBD* allows the specification of joins
(relationships) which are not reflected in the ER schema being used. If a query system
is to be based on the ER model, then the implementation should stay within the bounds
of that model. If these joins are truly necessary, then they should be reflected as part of
the ER model, according to the philosophy of that model. This anomaly arises from an

attempt to provide flexibility that is missing from the underlying ER model.

d. GUIDE--Graphical User Interface for Database Exploration

GUIDE (Wong, 1982) has been developed especially to allow the
browsing of metadata in large databases with many complex relationships. Its design and
display methodology is based on the ER model, but GUIDE allows the user to select a
level of detail with which to look at the database. To handle metadata, entities are
organized into a "hierarchical subject directory” and attributes are organized into a
"hierarchical attribute directory.” The purpose of these directories is to guide the user to
the part of the ER schema that is relevant to him. Also, a facility is provided to "rank"

objects according to their expected relevancy to a certain group of users. This ranking

27

is based on the objects expected "importance” in the system. The ranking does not
necessarily correspond to the hierarchical organization discussed above, but should reflect
the interests of the group of users and the frequency of access to that object by them.
To formulate a query, GUIDE asks the user to first select the level of
detail to display for the schema. The ER diagram is then presented at the desired level
of detail. Indirect relationships between entities (the actual connections are not shown
because they involve objects at a lower level of detail) are represented by dotted lines
between entitics. Next, the attributes of the displayed entities and relationships can be
examined by selecting the desired object and then "examining" that selected node.
Examining a node will again present the user with a hierarchical description of the
attributes of that node; information is also provided on what that attribute represents and
what values or codes are allowable for the attribute’s data. Restrictions can be placed on
selected attributes in order to specify the query. The user may select separate portions
of the schema to run partial queries, while still maintaining any previous queries. These

separate partial queries may then be combined to form a final query.

e. GRAQULA--Graphical Query Language
GRAQULA (IBM, 1991) is being developed by IBM as a graphical
language for querying and updating a database. GRAQULA has both an ER and a
relational implementation, but we have placed it in the ER category of query languages
because the basis of GRAQULA is more related to the ER model. The syntax of both
the ER and relational versions of GRAQULA is similar; the relational version depends

on the specification of referential integrity constraints and, optionally. expected joins to

28

provide the connections between relations that would be given by the relationships in the
ER model. We will discuss only the ER version here.

GRAQULA is based on the definition of a database schema that is
presented to the user in the form of an ER diagram. The relationships are dispiayed
simply as directed arcs between the entities with the appropriate relationship name
attached to the arc. The database schema is displayed in one window while the query is
built up in a separate query window (as shown in Figure 3). The query window is
initially empty. The user selects entities from the schema window; they are then
displayed in the query window for further manipulation. To formulate the query on the
items the user has placed in the query window, the items may be expanded to show their
attributes. The attributes are listed in a tabular fashion and restriction conditions can be
entered for them somewhat as in QBE. Joins between items which are unrelated in the
schema can be performed by specifying the join attribute from one entity in the other
entity’s value column.

In Figure 3 some of similarities between GRAQULA and QBE are
apparent. The query represented by this figure is: "List the name and salary of each
employee whose salary exceeds 50,000 and whose year of hiring equals the Research
division’s year of formation." (IBM, 1991, p. 13) This query requires a join between the
EMPLOYEE entity and the DIVISION entity on the YEAR_HIRED and
YEAR_FORMED attributes. The join is represented by including
DIVISION.YEAR_FORMED as a comparand for YEAR_HIRED in the EMPLOYEE

entity. If any relationship had been previously specified between the EMPLOYEE and

29

SCHEMA—

DIVISION

1

mv

CONTAINS

DEPARTMENT

1

PAYS EMPLOYS

1

mv mv
EMPLOYEE
(1BM, 1991, p. 7)
I QUERY
- EMPLOYEE
ATTRIBUTE oP VALUE (AND)
NAME
SALARY > 50000
YEAR _HIRED DIVISION.YEAR FORMED
- DIVISION
ATTRIBUTE oP VALUE (AND)
NAME ' RESEARCH'
BUDGET
YEAR FORMED

(IBM, 1991, p. 13)

Figure 3. Example Join in GRAQULA

30

DIVISION entities, there would be a line drawn by the system between the two entities
with the name of the relationship on it. In GRAQULA, conditions are specified by filling
in the VALUE column of the displayed entities. The relational operator (OP column) is
assumed to be equality ("=") if it is left blank. In this case, the conditions are all
conjunctive, as indicated by the "(AND)" in the right corner of the value column. As in
QBE, complex conditions can be formed in a condition box that is then attached to the
query.

Additional power is added to GRAQULA by nesting simple entities and
relationships inside various frames. A frame is indicated by a box drawn on the screen
which may contain one or more entities and their associated conditions and relationships.
These frames are used to specify logical operations such as simple conjunction and
disjunction (AND and OR), negation with conjunction and disjunction (NAND and NOR),
and implication and consequent. The logical operations are scoped over any of the
entities and relationships that are contained in their frame. Nesting of operations can thus
be performed by nesting frames, providing a clear way of showing the scope of each of
the operations. The inclusion of implication and consequent frames is intended to ease
the problem of specifying universal and existential quantification. As stated previously,
the predicate logic approach for these ideas is not simple. The implementation of the
implication and consequent ideas does not do much to simplify the process of
quantification specification because of the complex nature of the idea involved. Sockut

proposes a method for transforming quantification queries from English into GRAQULA

31

statements (IBM, 1991, p. 23). This procedure is non-trivial and the meaning of the

resulting GRAQULA query is not obvious.

J. Objectives, Benefits, and Drawbacks

The primary objective in the proposal of the ER model based query
languages is simplification of the query specification process for the end user. A
significant benefit of the ER query approach is that the database schema is displayed so
that the user does not have to memorize the specific relationships between database
objects. However, this is also a drawback. Using the actual schema to define queries
limits the user to the predefined relationships that have been coded into the schema. Even
in systems that allow the user to define his own relationships, the user is forced to break
up a single logical query into two disjoint and dissimilar steps.’

Most ER systems assume relationships based on the equi-join of keys
between entities. This does not take into consideration relationships based on other
attributes or on other types of theta-joins. In systems that do allow the user to perform
joins without having them defined in the ER schema, GRAQULA for example,
convenience is added at the expense of violating the ER model. If the user is joining
entities based on certain attributes and conditions, then this relationship should be
indicated in the ER diagram. Without enforcing this rule, the semantics of the database

schema and its associated ER diagram are lost by a buildup of stored queries based on

32

specified joins. The actual relationships that are being used may never make their way
into the database ER diagram; semantic correctness of the model is lost.

Another problem with the ER model in general, is that the distinction
between entities and relationships in the schema is not necessarily straightforward: "...one
person’s entity is another person’s relationship.” (Codd, 1990, p. 477) An example of this
ambiguity is presented in the representation of an airline flight. To an accountant it exists
as an entity--a concrete object. To a scheduler it exists as a relationship between a
specific aircraft, aircrew, routing, date, etc. (Codd, 1990, pp. 477-478) Neither of these
determinations are wrong, they are just based on the different points of view of the people
involved. However, this lack of concrete distinction could cause problems when queries
must be made from a single ER schema by multiple users, each with a different point of

view,

3. Other Approaches
Although most of the graphical query languages proposed fall into one of the
previous two categories (forms based or ER model based), we will briefly discuss two

approaches that differ somewhat from either of these two previously discussed categories.
a. PICASSO--Picture Aided Sophisticated Sketch Of Database Queries

PICASSO (Kim, 1988) is a graphical query language that is structured

heavily on the universal relation database model. The idea behind a universal relation

database is that all of the join dependencies are included in the universal relation itself.

33

This relieves the user from the necessity of knowing which relations database attributes
are attached to, since there is only one relation--the universal relation.

PICASSO uses hypergraphs to represent the semantics of the database.
Attributes of the universal relation become nodes in the hypergraph. Hyperedges are
formed by collecting the attributes that have fundamental relationships; thus, the
hyperedges form conceptual objects. A second hypergraph is then constructed with the
conceptual objects as nodes and the hyperedges representing maximal objects, or the
maximal sets of objects in which queries "make sense.” (Kim, 1988, p. 172) Attributes
that are in common between two (or more) maximal objects are shown by having those
parts of the hypergraph overlap. Figure 4 depicts an example PICASSO hypergraph.
This PICASSO example contains information only on courses and instructors from the
schema of Appendix A.

To form a query based on this hypergraph, the user would use a pointing
device to place a question mark next to the attributes that he would like to be returned
from the query. Simple selection can be performed by attaching selection conditions to
attributes on the screen. PICASSO allows selection conditions using not only the normal
relational comparison operators (<, >, =, etc.) but also grouping and set operators. An
example query based on Figure 4 would be constructed by appending " = 'SMITH’" to
INAME. If the TITLE attribute had a question mark next to it, the query thus formed
would produce a listing of the course titles that 'SMITH’ taught. This is a very simple
example of how a query is formed in PICASSO. There are many other rules for forming

more complex queries.

34

Figure 4. Example PICASSO Hypergraph

One of the major drawbacks of PICASSO is the limited amount of
information that can be displayed on the screen at any one time. The hypergraph drawing
for even our simple example is rather large, and most actual databases would have
schemas much more complicated than two maximal objects. Also, when several related
hypergraphs are displayed on the screen simultaneously, the picture rapidly becomes
confusing.

The expression of joins in PICASSO is made possible by allowing the
user to create copies of a selected hypergraph and the: relate the attributes from one copy
of the hypergraph to the other. Again, this representation does work, but the idea of the

universal relation database model is that this type of query is abnormal; performing a join

35

actually violates the universal relation paradigm. In fact, the designers of PICASSO
admit that their graphical representation is not well suited for some complex types of
queries. Their solution to this shortcoming is the use of a textual/windowing tool called
"ANSWERTOOL" in which partial queries can be processed (Kim, 1988, pp. 189, 191).
A single interface to the database is superior if it can be demonstrated that it is easy to

use for all types of queries.

b. IFO and SNAP--A Graphics-based Schema Manager

The IFO model (Abiteboul, 1987) is an actual incarnation of a semantic
database model. The ideas embodied in IFO have much in common with the precepts
involved in object-oriented approaches to data modeling. Various types of atomic and
composite objects are specified by the IFO model. Aggregation and ISA relationships are
directly represented. Relationships between objects are specified in a functional manner.
One end of the relationship serves explicitly as the domain and the other end as the range
of the function. This specification supports the hierarchical construction of fragments.
Fragments allow portions of the schema to be condensed (inside the fragment) in order
to provide a modular view of the schema. This feature is somewhat similar to GUIDE’s
ability to provide views of the database schema at various levels of abstraction.®
However, the IFO model is much more complex than the ER model.

The SNAP system (Bryce, 1986) is the interactive, graphical interface to

the schemas of the IFO model. SNAP is primarily configured for the creation and

pp. 27-28

36

maintenance of IFO schemas, however, a limited query facility is also provided. This
query facility permits the expression of only selection-type queries (Bryce, 1986, p. 156).
SNAP presents a screen display of the IFO schema containing the IFO objects and their
connections. To place a query, the condition to be satisfied is entered in the
corresponding object box. The version of SNAP discussed here only supports simple
conditions; logical conjunction, disjunction, and negation are not supported. The idea of
joins can be expressed in SNAP by using comparitor arcs to specify a comparison (<, >,
=, etc.) between objects. Set comparisons can also be specified with comparitor arcs.
The information to be printed upon execution of the query is indicated by highlighting
the desired objects with the pointing device. If the object highlighted is an abstract,
non-printable type, the appropriate printable key value for instances of the object meeting
the query criteria are printed. (In IFO it is required that each object have a unique
printable attribute to be used as a key.)

Due to its limited capabilities, SNAP is not complete as a query language.
The data model aside, SNAP’s provided query facility is similar to several of those
proposed for use with the ER model and as such has many of the same types of strengths
and weaknesses as those languages. However, the [FO model is much more complicated
than the ER model, adding an additional level of difficulty in formulating IFO queries

which is not mitigated by the SNAP system.

37

D. DATAFLOW PROGRAMMING LANGUAGES

Dataflow diagrams have been used in computer science as an aid in systems
analysis and systems design for about 15 years. The same methodology has been used
by operations research scientists for nearly 70 years. The idea behind the dataflow
diagrams is to provide an easy to understand way of describing a network of functional
processes which are interacting with each other based on the flow of data from one
process to another. (Yourdon, 1989, pp. 139-140) Dataflow programming languages take
the ideas specified by the dataflow diagram and make them directly executable. In other
words, rather than using the dataflow diagram as a tool in designing a computer program,

the diagram becomes the program itself.

1. Dataflow Diagram Description

A traditional dataflow diagram makes use of several distinct graphical symbols
to convey its meaning. Dataflow diagrams have a strong tie to the depiction of directed
graphs. In a dataflow diagram, the processes, data stores, and terminators are the nodes
and the dataflows are the arcs of the directed graph. A circle is used to represent a
process that is performed on data.” Arrows indicate data flowing from one node (most
often a process) to another. These arrows are labeled with the name of the data that they
represent. A square represents a terminator, an entity external to the system being
modeled. (Yourdon, 1989, pp. 141-149) Figure 5 is an example of a simple dataflow

diagram that depicts a query processor running on top of a backend DBMS.

"There are several "camps” of symbology; we are using the Yourdon notation for this
discussion.

38

USER

retrieval
command

formatted
results

2,
raw

FORMAT rasuits

RESULTS DBMS

Figure 5. Example Dataflow Diagram

In this example, data (the user’s query) flows from the USER to Process 1.
The parsed query is then passed to the DBMS, which is external to the query processor
in this example. The external DBMS then returns a result, which is formatted by Process
2. and then passed back to the user. The sequence in which the functions of the system
are carried out is specified in the model only through the availability of data for each
given process. All processes that have data available may theoretically execute
simultaneously. For example, in Figure S if the user has entered another query while the
first one is still being executed, both Process 1. and Process 2. could be running

simultaneously.

2. Visual Dataflow Programming
Shu defines a visual programming language as "a language which uses some
visual representations (in addition to or in place of words and numbers) to accomplish
what would otherwise have to be written in a traditional one-dimensional programming
language.” (Shu, 1988, p. 138) Dataflow diagrams are inherently visually oriented. A

graphical dataflow programming language allows construction of dataflow diagrams that

39

are not simply models but are directly translatable (by the computer) into executable code.
Davis and Keller discuss the advantages of using a graphical representation for dataflow
programs and give the following four main reasons (Davis, 1982, pp. 26-27):
* A dataflow graph conveys the mental image which suggests conceptually the data
dependencies and flows between nodes.
* Dataflow programs are easily composable into larger programs.

* Dataflow programs avoid describing a specific execution order; they describe
dependencies instead.

* Graphs can be used to attribute a formal meaning to the given dataflow program.

The two dimensional representation and the use of the value oriented computation method
also help to increase the understandability of graphical dataflow programs (Washington
University, 1986, p. 1).

Figure 6 is an example of a program fragment written in the graphical dataflow

language Prograph. This fragment represents the equation y = mx + b. The values for

LAL LS SSSS SIS LSS SIS TS LS SIS SIS S S SIS
- L) L)

This method
calculates
y=mx+b

SSLLLSS LSS ISLS LSS R LS LSS 1SSV SS LY

Figure 6. Dataflow Program Fragment

m, X, and b are expected as inputs, and the value for y is generated as the output.
Prograph is a fully functional, object-oriented programming language based entirely on
the graphical dataflow representation. Prograph is one of the few graphical dataflow
languages that have been developed, and to the best of our knowledge, is the only
commercial dataflow programming language on the market today. Our DFQL interpreter

is written in the Prograph language. Prograph and how it was used to implement DFQL

is discussed in detail in the implementation section of Chapter III.

4]

III. DESCRIPTION OF DFQL

A. CONCEPT

DFQL is a visual relational algebra to be used for the manipulation of relational
databases. It has been designed with sufficient expressive power and functionality to
allow the user to casily express database queries. As such, DFQL is relationally complete
and includes an implementation of aggregate functions. A facility is provided for the user
to easily create his own DFQL operators, thus allowing great extensibility. Orthogonality
has been stressed in the design of the language. The concentration on orthogonality
provides a clarity of definition and lack of ambiguity that is missing from most other
query languages (both visual and textual). Overall, the intent has been to provide the user
with a simple to use, yet powerful and extensible tool to implement database queries at
all levels of complexity.

DFQL has been developed as a token model graphical dataflow language. The use
of the token model (Davis, 1982, pp. 27-31) implies that each of the defined cperators are
designed to operate on a sweam of tokens over their lifetime. Our language does not
allow the specification of iteration or recursion; each operator will execute once over the
life of the given query. Iteration and recursion could be added to our language well
within the dataflow paradigm. However, we feel iterative and recursive dataflow

structures are not necessary for querying the database.

42

Queries are defined by the user connecting the desired DFQL operators graphically
on the computer screen. The arguments for the operators flow from the bottom or "output
node” of the operator to the top or "input node" of the next operator. Operator execution
is controlled simply by the presence of the requisite input data for that operator’s
execution. When the data becomes available the particular operator may execute or fire.
If there were facilities available, all fireable operators could be executed simultaneously.
In our present implementation, only one operator is executed at a time since the system
is being run on a single processor. The structure of DFQL queries directly mimics that
of standard dataflow diagrams. The specifics of how this structure is implemented for

DFQL are discussed in the following sections.

1. DFQL Operators
All DFQL operators have the same basic appearance. This has been done in
order to enhance the orthogonality of the language. Each operator is made up of three
types of components: the input nodes, the body, and the output node. A sample operator

(with no name) is shown in Figure 7 below. The input nodes are where the data required

nput

C Do

\ou'put

node

Figure 7. Operator Construction
by the operator enters. They are represented by small circles that are then connected to
other operators by lines drawn by the user. The body of the operator is the large oblong

to which the input nodes and output node are connected. For identification, the name of

43

the operator is displayed centered on the body. The output node is where the result of
the operator exits. The output node may then be connected to other operators’ terminals
to pass the intermediate result along in the query.

The functional paradigm is fully supported by the DFQL notation. The inputs
to each operator, or function, arrive at the input nodes of the operator and the result
leaves from the output node. All of the operators of DFQL implement operational
closure. This means that the inputs to the operators are relations and associated textual
instructions, and the output from each operator is always a relation. Maintaining this
concept is very important in the ability to understand large and complex queries. A lack
of operat’nnal closure on query operators leads to complications in the formulation of
complex queries. The complications are caused by the inability to orthogonally combine
query operators when some operators yield relations as outputs whereas others yield some
different type of data. Thus, the operators can only be combined in certain ways; if a
scalar is output, it cannot then serve as input to an operator requiring a relation for input.
It would necessarily be up to the user to construct his query in a manner consistent with
all of the different data types output by the operators when operational closure is not
enforced. This burden is especially great when the query being formulated is complex
in its own right. Because all DFQL operators maintain operational closure, any output
from a DFQL operator can be used an input to other operators.

There are two broad categories of DFQL operators that are based on their
method of implementation. A primitive operator is one that has been defined directly in

the native language of the DFQL interpreter. Primitives have a one-to-one

correspondence with an actual method in the implementation language of the interpreter.
A user-defined operator is one that has been constructed by the user from primitives and
possibly other previously created user-defined operators. The primitives can be further
broken down into the categories of basic operators, other primitives, and display

operators.

a. Basic Operators

In DFQL, the user is provided a set of basic query operators which he can
then combine to build more complex operators as necessary. DFQL provides six basic
operators derived from the requirements for relational completeness and also the
requirement to provide a form of grouping or aggregation. Saying that a query language
is relationally complete means that it has the expressive power of first-order predicate
calculus. This is a common baseline measure of a query language’s power of expression.
For a query language to be relationally complete, the following five relational operations
must be implemented: selection, projection, union, difference, and cartesian product.
These operations are thus implemented as part of the basic set of DFQL operators.®
Provision is also made for simple aggregation by including groupcnt (group count) as a
basic operator. The groupcnt operator provides an easy solution to the universal
quantification problem discussed in Chapter II. The basic operators and a corresponding

translation into SQL are shown in Figure 8.

8Cartesian Product is not implemented explicitly; join is used for its implementation.
This is in agreement with (Codd, p. 66, 1990).

45

DFOL SQOL

relation condition

N SELECT DISTINCT *
m FROM relation
. WHERE condition;

relation attribute list

m SELECT DISTINCT attribute list
. FROM relation;

relation 2

relation 1

join codition SELECT DISTINCT *

FROM relation1 rl, relation2 r2
WHERE join condition;
relation 1 relation 2 SELECT DISTINCT *
- - FROM relationl
20 UNION
| union | SELECT DISTINCT *
. FROM relation2;
relation 1 relation 2 SELECT DISTINCT *
e o FROM relation]
Caite MINUS
. SELECT DISTINCT *
FROM reiation2;
grouping attributes
relation count attribute SELECT DISTINCT grouping attributes
COUNT(*) count attribute
FROM relation
groupcnt GROUP BY grouping attributes;
[=)

Figure 8. DFQL Basic Operators

46

A special notation is used to provide textual input to the DFQL operators. Text
entered by the user shows up on the DFQL screen as an object with the text attached to

an output node as shown in Figure 9. Text objects are the only DFQL syntactic item that

example text
&

Figure 9. Text Object

generates an output other than a relation at its root. The text object can be interpreted
in two different ways. If the text is the name of a relation, the output at the root can be
thought of as an instance of that specific relation. If the text represents a condition, a list
of attributes, or some other textual input to another DFQL operator, then the text is

passed on to that operator as a textual argument.

(1) Select. This operator implements the relational algebra operation of
database selection. The relational algebra notation for the select operation is as follows:
O cconditions(<relation>). The condition specifies which tuples should be retrieved from the
given relation. The result of the selection operator (and all other DFQL operators) is a
proper relation. By proper relation we mean a relation with no duplicate rows.
Whenever we mention relations in this thesis we always mean proper relations, unless
specifically stated otherwise. We make use of the explicit term when we wish to
emphasize the characteristic of having no duplicate rows in a given relation.

An example of the use of the DFQL select operator is shown in

Figure 10. This example retrieves all of the tuples in the STUDENT relation where the

47

GPA is greater than 3.5. As shown in the example, the condition input to select is an
expression which must return a true or false value for each tuple in the source relation.
The specification of this conditional statement uses the same syntax as in SQL. All of
the tuples meeting the selection criteria form a new relation that flows from the output

node when the operator is executed.

student 9pa >35S

SNO SNAIME ADDR PHONE GPA
S1 STU #1 ROOI 1 111-1111 3.85
S3 STU #3 ROOIf 3 333-3333 3.7%

Figure 10. Example DFQL Select

(2) Project. This operator implements the relational algebra operation
of database projection. The relational algebra notation for the project operation is as
follows: T qibue iso(<relation>). The attribute list specifies the attributes that should be
rerieved from the given relation. The syntax of the attribute list is simply the attribute
names desired (non-case-sensitive) separated by commas. The result of the projection
operator is required to be a proper rélation made up of only those attributes specified in
the atribute list. This requirement dictates the removal of what would otherwise be
duplicate rows resulting from the removal of key attributes from the input relation.

Figure 11 shows an example in which duplicate rows would result if they were not

48

eliminated by the operator. The Figure 11 example creates an output relation containing
only the TESTSCORE attribute from the ENROLL table. In our example database, more
than one tuple in the ENROLL. relation contains the same TESTSCORE. As shown, these
duplicate values are removed from the output relation by project, producing the required

proper relation.

TESTSCORE

Figure 11. Example DFQL Project

The project operator can also be used to change the names of the
attributes in the result relation. For example, in Figure 11 if we substituted
"QUIZGRADE = TESTSCORE" for "TESTSCORE" in the attribute list, the result
relation would have the same values, but the attribute would be named QUIZGRADE

instead of TESTSCORE.

(3) Join. This operator is used to implement the relational algebra theta-

join. We specify theta-join to stress that conditions other than equality of attributes may

be used as arguments to the DFQL join operator. The relational algebra notation for the

join operation is as follows: <relationl>w«_ ... <relation2>. The result of the
relational join is a relation consisting of all of the attributes from both <relation1> and
<relation2>. The tuples of the result relation are the subset of the tuples of the cartesian
product of <relationl> and <relation2> which satisfy the join condition. The join
condition is specified using basically the same syntax as the WHERE clause in SQL.
Range variables in the condition are limited specifically to r1 (for <relation1>) and r2
(for <relation2>). (These range variables need to be used only if the condition is
specified on attributes with the same name in both of the input relations.) Normally the
<condition> specifies some relationship between the attributes of <relationl> and
<relation2>, but this is not necessary. Any <condition> that is a tautology will result in
the cartesian product of <relation1> and <relation2> thus satisfying the requirement for
cartesian product in the relationally complete set of DFQL operators.

Perhaps the most common use of the join is a special case
commonly referred to as the equi-join. The equi-join specifies an equality condition
between certain attributes of <relation1> and <relation2>. An example of an equi-join
expressed in DFQL is given as Figure 12. In this example the COURSE and
INSTRUCTOR relations are joined based on INO. The output relation produced contains
all attributes from both the COURSE and INSTRUCTOR relations and conceptually is
produced by selecting tuples from the cartesian product of COURSE and INSTRUCTOR
where COURSE.INO = INSTRUCTOR.INO. The result of this join is a relation
containing tuples for all of the courses taught combined with the instructor information

for the instructor teaching that course.

50

instructor

course ri.ino = r2.ino

CNO TITLE INO 1INO1 INAME PAY
CS05 COURSE # 5 I1 I1 INST #1 100000
C510 COURSE #10 I2 I2 INST #2 50000
CS20 COURSE #20 I2 I2 INST #2 50000
C515 COURSE #15 I3 I3 INST #3 47380. 78
CS525 COURSE #25 I3 I3 INST #3 47380. 78
CS530 COURSE #30 I3 I3 INST #3 47380. 78

Figure 12. Example DFQL Join

The DFQL join retains all attributes of both of the input relations.
Because all attributes are retained, special handling must occur when an attribute with the
same name exists in both of the input relations. An alternative to re:aining all attributes
would be to discard one of the duplicated attributes as redundant. However, this approach
places too much semantic meaning on the attribute name alone. For example, it is
entirely possibly that we could have a NAME attribute in both the STUDENT relation
and the COURSE relation (in our Appendix A example we use TITLE as the attribute for
course name); a join to produce a relation of students and the courses they are taking
should retain the NAME attribute from both the STUDENT relation and the COURSE
relation. Although the two attributes have the same name, they represent two different
things. For this reason, we have chosen to retain all attributes from both relations. Since
the output relation may not have columns with identical attribute names, DFQL must

provide a method of handling joins between relations that have attributes with the same

51

name. Our solution to this problem is to change the name of the attribute from
<relation2> by appending a "1" to the attribute name. In the Figure 12 example, the
attribute INO appears both in the COURSE and INSTRUCTOR relations. Thus, the result
of the join has the two separate attributes INO and INO1. By taking this approach, no
information will be lost, no matter what type of theta-join is performed.

A special case of the equi-join is the natural join. In a natural join
one of the attributes that was used in the equality condition is automatically removed
from the result relation. Natural join is not implemented as a primitive in DFQL since
it does not provide any feature that cannot be produced from the provided primitives.
However, if desired, natural join could easily be implemented as an additional primitive

operator.

(4) Union. This operator implements database relational union. The
relational algebra notation for the union operation is as follows: <relation1>U<relation2>.
The relational union is similar to but not as general as mathematical set union; the
relational union requires that <relation1> and <relation2> be union compatible. Union
compatibility means that when taken in sequence, the data types of the attributes in
<relation1> and <relation2> must be compatible. This restriction is necessary because
union does not create any more columns for the output relation. Both input relations
must be of the same degree (have the same number of attributes) and the data types of
corresponding attributes must be compatible in order to fit together in the result relation.
Relational union produces a relation containing all of the tuples of both of the input

relations (without duplication of rows).

52

The example shown in Figure 13 uses union to produce a relation
containing the names of all the students and instructors from the example database of
Appendix A. In this example we first project the names of the instructors and students
and then take the union of the result. In the example database the attributes INAME and
SNAME are of union compatible types. The renaming feature of project is also used in
this example to change the result relation column name to "ALLNAMES." The default
column name would have com from the first input relation and thus would have been
INAME. The same query in SQL (without renaming) would be:

SELECT INAME
FROM INSTRUCTOR
UNION

SELECT SNAME
FROM STUDENT;

instructor allnames = iname student sname ALLNAMES

- INST #1
project INST #2

. INST #3
STU #1
STU #2
STU #3
STU #4
STU #5

Figure 13. Example DFQL Unicn

(5) Diff. This operator implements database relational difference. The
relational algebra notation for the difference operation is as follows: <relationl>-
<relation2>. As with relational union, and in fact all set theoretic operators used in the

relational model, diff requires that <relationl> and <relation2> be union compatible.

53

Relational difference returns as a result the relation that contains all the tuples that occur
in <relation1> but not in <relation2>. Another way of looking at relational difference is
that it "takes away" tuples from <relation1> that occur in <relation2>.

An example query using DFQL diff is given as Figure 14. This
query returns as a result tuples representing courses that have no one enrolled in them.
We first project CNO from both COURSE and ENROLL to produce two union
compatible relations, and then we use diff to return the CNO’s that were in the first

relation (projected from COURSE) but not in the second (projected from ENROLL).

course cho enroll cno
project project

Figure 14. Example DFQL Diff

(6) Groupcnt. Groupcent (short for group count) is defined as a basic
operator in order to provide the user with some simple aggregation capabilities. Counting
is especially important in allowing the user to easily formulate queries involving universal
quantification. Groupcnt counts the number of tuples in a particular grouping specified
by the user. For inputs, groupent requires a relation, a list of grouping attributes, and

a name for the attribute in the result relation that will store the result of the count. The

54

grouping attributes may be a single attribute or multiple attributes separated by commas.
The result relation will be made up of the attributes specified as grouping attributes along
with the attribute name provided for the count attribute. The count attribute will be of
an integer representing the number of tuples in the input relation that belong to each
grouping specified by the grouping attributes. As a special case we allow the use of the
keyword "ALL" as an argument for the grouping attribute list. If "ALL" is specified,
groupcount simply counts all of the tuples in the input relation and as output produces
a single attribute relation (using the attribute name specified for the count column) with
a single tuple containing a count of the number of tuples in the entire input relation. This
is consistent with the normal employment of groupcnt--since no grouping attributes were
specified the entire relation is considered at once and there are no grouping attributes
present in the output relation.

In Figure 15, groupent is used to produce a relation listing each
course and how many students are enrolled in it. The result is produced by grouping the

ENROLL relation by CNO and naming the counting attribute NUMSTUDENTS.

enroll cno numstudents

i groupcnt |
[=]

LR T b e ———

C520
C525

Figure 15. Example DFQL Groupcnt

55

b. Other Primitives

We have provided several other primitives to perform special operations
on relations. Most of these additional primitives perform operations that are at such a low
level that the user would not be able to specify them as a user-defined operator. Several
operators specified here as primitives could also be specified as user-defined operators.
However, specifying an operator as a primitive allows us to take advantage of built-in
functions of the underlying DBMS that we are running DFQL on top of. An example of
this is the intersect primitive. Relational intersection can be defined in terms of union
and diff (R,"R,=(R,UR,)-((R,-R)U(R,-R)))), however, many DBMS’s provide a specific
intersect operator. In order for DFQL to take advantage of this facility, we code
intersect into the language as a primitive and use the underlying DBMS operation for its
implementation. Also, specifying an operator as a primitive rather than as a user-defined
operator slightly reduces the overhead required by DFQL to interpret the query. User-
defined operators must be decomposed by DFQL into the primitive constituents prior to
execution. This is avoided if the operator is simply coded as a primitive. However, due
to the way that DFQL queries are executed, the difference in efficiency between
primitives and user-defined operators is not great. Figurs 16 shows the additional
primitives.

(1) Egjoin. The eqjoin operator is provided primarily to aid in the
construction of user-defined operators. [Eqjoin takes as arguments two relations

(<relation1> and <relation2> and a list of attributes (<attribute1>, <attribute2>, etc.). The

56

relation 2

relation 1 join attribute list relation 1 relation 2

~ o

[intersect]
[}

grouping attributes

relation [condition relation title
(groupALLsatisfy Dis. LAY
[=)
grouping attributes sort attribute list

relation

condition number

relation

SDISPLAY

groupNsatisfy
[+

grouping attributes grouping attributes

aggregate attribute

relation aggregate attribute

relation

groupmax groupmin
o o]

grouping attributes

relation aggregate attribute

groupauvg
[=)

Figure 16. Other DFQL Primitives

57

attributes must occur in both <relationl> and <relation2>. An equi-join is then
preformed by setting the join condition to rl.<attributel>=r2.<attributel> AND
rl.<attribute2>=r2.<attribute2> AND etc. Thus the DFQL join condition is specified
without explicitly including the equality statements. A later example (in the user-defined

operator section) will show the utility of this operator.

(2) GroupALLsarisfy. This operator provides a simple way of
introducing universal quantification into DFQL queries. The three inputs to
groupALLsatisfy are the name of the input relation, a list of grouping attributes, and a
condition statement that must be satisfied by all of the tuples in each group. The list of
grouping attributes consists of the attribute names separated by commas.
GroupALLsatisfy first groups the tuples according to the list of grouping attributes and
then checks that all of the tuples in each group meet the condition specified. For each
group that meets the condition, an output tuple is generated consisting of the grouping
attributes. The result of groupALLsatisfy is a relation containing only those groups, as
specified by their grouping attributes, where all the tuples in that group satisfy the given
condition.

GroupALLsatisfy is used in the examrle of Figure 17 to retrieve
the students who received "A’ grades in all of their classes. We specify this query on the
ENROLL relation by grouping the tuples by SNO and specifying the condition as
GRADE = 'A’. This means that all of the tuples in each SNO group must satisfy the
condition that GRADE = 'A’. The result is a relation containing the SNO’s of only those

students with all A’ grades.

58

enroll sno grade = ‘A’

T~ 1 7

| groupALLsatisfy |
[=]

SNO

S2

Figure 17. Example DFQL GroupALLsatisfy

(3) GroupNsatisfy. GroupNsatisfy is closely related to
groupALLsatisfy. The only difference is that groupNsatisfy takes an extra input which
allows the user to specify exactly how many of the tuples in the group need to satisfy the
given condition in order for that group to be included in the result relation. This fourth
argument to groupNsatisfy must consist of a relational operator (<, >, =, <=, >=, !=) and
a number.

The example query in Figure 18 is much like the one in Figure 17,
with the exception that we now use groupNsatisfy to retrieve those students who got
more than two ’A’ grades. This additional condition is specified by the ">2" entry as the

fourth input argument to groupNsatisfy.

grade = 'A’

enroll sno

groupNsatisfy
[~}

SNO

52
Figure 18. Example DFQL GroupNsatisfy

59

(4) Aggregate operators. Three aggregate operators are provided as
primitives. Unlike groupALLsatisfy and groupNsatisfy which can be specified as user-
defined operators, these aggregate operators cannot be formed from any combination of
other operators--aggregate operators must be primitives. Groupavg is used to calculate
the average of an attribute of a group of tuples in the input relation. Similarly,
groupmax produces the maximum value and groupmin produces the minimum value of
a specified attribute in each group. The three input arguments to all of the group
aggregate operators are an input relation, a list of grouping attributes, and the attribute
name to perform the aggregation on. The result relation consists of the grouping
attributes and an additional column containing the result of the aggregate operation. This
result atribute bears the same name as the aggregation attribute with the operation name
prepended to it. For example, in Figure 19, we execute a DFQL query to return the
maximum testscore for each course. The result relation is made up of a CNO attribute
and a MAXTESTSCORE attribute. One tuple occurs for each course existing in the
ENROLL relation. If the groupmin operator had been used the result relation would
have a MINTESTSCORE column. Likewise, groupavg would produce

AVGTESTSCORE as (¢ result attribute.

enroll cho testscore

grougman
CNO NMAXTESTSCORE
C510 95
C515 83
CS20 94
CS28 94
CS5 98

Figure 19. Example DFQL Groupmax

(5) Intersect. This operator implements database relational intersection.
The relational algebra notaton for the intersect operation is as follows:
<relationl>N<relation2>. The relational intersection requires that <relationl> and
<relation2> be union compatible. The result of relational intersection is a relation
containing only those tuples that occurred in both <relationl> and <relation2>. The
implementation of intersect is identical to that of union. Two relations are taken as input
arguments. The result relation is produced as discussed above. The data types of both
of the input relations must be union compatible.

¢. Display Operators

The display operators are not DFQL operators in the usual sense since
they produce no output relation. The display operators are provided to allow the user to
print the contents of relations on the computer screen. The most common use of the
display operators is to print out the final result of a query. However, multiple display

operators may be used in a single query to print out not only the final results but also

61

results at intermediate points in the query. This ability aids in debugging and formulating
complex queries.

Due to the unique nature of the display operators they have a different
shape than the rest of the DFQL operators. The display operators have square corners
(and no output node) as opposed to the rounded corners of the rest of the DFQL
operators. Their names are also displayed in all capital letters. These distinctions cause
the display operators to be easily recognized in a query. The two display operators are

DISPLAY and SDISPLAY.

(1) DISPLAY. The DISPLAY operator takes as inputs a relation and
a text string to be used as a title. When DISPLAY is executed it causes the input
relation to be printed out in tabular format. The text string that is input as the title is
printed as the header for the output table. The title allows easy differentiation between

printed results when more than one display operator was used in a query.

(2) SDISPLAY. SDISPLAY is used to produced a sorted printout of a
relation. SDISPLAY takes as input a relation, an atribute list consisting of attribute
names and, optionally, the order to sort them in, and a title.

The attribute list for SDISPLAY is differenc than the attribute lists for
the other DFQL operators. Each attribute in the list may be followed by "ASC” or
"DESC" to indicate whether the sort order for that attribute should be "ascending” or
"Jescending.” The order in which the attributes occur in the attribute list also is

important. The "major" order columns are listed first with "minor" order columns

62

following. Thus, if we wanted to produce a listing of the ENROLL relation sorted first
by CNO in descending order and then by GRADE in ascending order (within each course)
the attribute list would be: "CNO DESC, GRADE ASC". This example is shown in
Figure 20. The default ordering is ascending, so "ASC" actually never needs to be
specified but may be included if desired for clarity. The title input operates the same way

as in DISPLAY.

cno desc, grade asc

enroll SORTED DISPLAY EXAMPLE

SDISPLAY

SORTED DISPLAY EXAMPLE

SNO CNO GRADE TESTSCORE

S2 CS25 A 90
S¢4 CS25 A 94
51 CS20 A 93
S5 CS20 A 94
S¢4 CS15 B 83
S5 CS515 B 82
51 CSi15 C 72
51 CS10 A 92
S3 CS10 A 91
S2 CS10 A 95
52 CS505 A 98
S¢ CS05 A 93
S3 CS05 B 85
S6§ CS05 C 70

14 records selected.
Figure 20. Example DFQL SDISPLAY

63

d. User-Defined Operators

One of DFQL’s most important features is its extensibility through the
use of user-defined operators. With user-defined operators, the user can construct his
own operators that look and behave exactly like the primitive operators provided in
DFQL. The user can create operators for situations that are unique to his query needs.
This flexibility is gained without a loss of orthogonality since user-defined operators are
constructed by combining the provided primitives which have been coded to ensure
maintenance of orthogonality.” The ability for the user to extend the query language with
his own operations is an extremely powerful feature that is unique to DFQL.

A simple example of how a user-defined operator is constructed involves
the select and project operators. In DFQL select and project are implemented as
separate primitives. However, in use select and project often occur in pairs; first the
selection is made and then a projection is done to retrieve only the specific attributes that
are desired. An example of this would be to retrieve the SNO from the ENROLL relation
where that student got at least one A. This query would be coded in DFQL as show in

Figure 21.

enroll grade = 'A’

poaiect

Figure 21. DFQL Select - Project Query

%User-defined operators may also contain other previously created user-defined
operators.

Since combinations of select and project occur frequently it may be
useful to have a single operator which combines these two operations. Figure 22 shows

the specification of a new user-defined operator that does just this.

enroll

Figure 22. Creating a User-Defined Operator

The top part of the Figure 22 shows how the new operator is defined.
The shaded gray rectangle at the top is called the "input bar." There are three "incoming
nodes" on the input bar, hence the new operator will have three input nodes. The
dataflow connections from the incoming nodes to the select and project operators are
defined by the user. The result relation for the new operator flows out of the unconnected
output node in the diagram. Once the specification of the internals of the operator is
completed, the user must provide a name for the new operator. For this example, the new

operator is called selproj. Once the user-defined operator is stored into DFQL, it may

65

be used just like any other operator. The bottom section of Figure 22 shows the same
query as in Figure 21, but uses the newly defined operator.

Two advantages are gained from the utilization of user-defined operators.
The most important advantage is that user-defined operators allow abstraction of
complicated queries into manageable pieces that are easier to understand and use
correctly. User-defined operators can thus greatly enhance the ability to write correct
queries by relieving the user of the responsibility of repeatedly coming up with complex
coding for commonly exercised queries. The complex code can be written once, tested,
and converted into a user-defined operator that can simply be invoked without knowledge
of its internal structure. Abstraction and encapsulation are modern techniques that are
accepted universally in the field of software engineering but have never been put into
practice in a query language until DFQL.

A second advantage of the user-defined operator is that it conserves space
on the screen when the user is defining his queries. The lack of screen "real estate”
rapidly becomes a severe problem for most graphically oriented applications. This
problem is somewhat alleviated by user-defined operators.

As another example of a user-defined operator we include Figure 23, the
definition of groupALLsatisfy, here coded as a user-defined operator (rather than as a
primitive). This demonstrates the capability to define arbitrarily complex subqueries as
user-defined operators. In fact user-defined operators may contain other previously
defined user-defined operators to any level of recursion. This is possible because of the

orthogonality enforced even when the user is allowed to create his own operators.

66

£) %)
)

xCNT yCNT

groupcnt groupcnt

Q Q o]

| user-groupAfLLsatisf
[=)

Figure 23. User-Defined Groupallsatisfy

67

Figure 23 is also an example of the amount of space that can be taken up by a subquery

that is then condensed into a single operator.

2. DFQL Query Construction

Many of the general ideas behind DFQL query construction have been
presented implicitly through the examples in the previous section. Here, we comment
explicitly on some of the techniques used in DFQL query construction and on the benefits
derived from the DFQL approach.

All DFQL queries exist as a dataflow program in which text objects and
operators are connected by dataflow paths. The dataflow paths are represented as the
lines in the DFQL query that connect the input and output nodes of the DFQL objects.
Execution of the query can be visualized as flowing from the top of the diagram to the
bottom.'” When the input arguments to an operator are available, that operator may
execute or "fire" producing its output which will then flow on to the other connected
operators. Since text objects have no inputs, they may fire at any time. Execution of the
query continues until all input has been exhausted. Since DFQL does not allow recursion
or iteration within a query, each operator will fire exactly once during the life of the
query. The results of the query are displayed for the user by the DISPLAY and
SDISPLAY operators.

An example of a complete DFQL query is included as Figure 24. This query

uses the diff operator to return the SNO of students who did not receive any A’ grades.

There is no restriction on how operators are placed on the screen. Top-down
placement is recommended for readability.

68

In this query, the user-defined selproj operator from Figure 22 is used. There are several

other ways that the same query could be posed in DFQL by using some of the other

STUDENTS WITHOUT A's

Figure 24. Complete DFQL Query

operators that we have discussed. One other method would be to use groupNsatisfy with
the condition "GRADE="A’" and the count condition "=0". Depending on how this query
is being used, as a part of a larger query or by itself, a user may prefer one method of

expressing it to another.

a. Incremental Queries
The ability to easily build complex queries in an incremental manner
greatly simplifies their formulation. DFQL provides two methods of support for
incremental querying. The key to being able to construct queries incrementally is based
on the operational closure property (Codd, 1990, p. 61). The output of any DFQL
operator can be used as input to any other DFQL operator. This property can be used to
great advantage in query construction.
To demonstrate the idea we will use a simple query for an example. The
incremental query feature becomes of more value as the complexity of the query

increases. In complex querics it becomes easier for the user to lose track of what he is

69

doing and what intermediate results that he has to work with. ‘fhe example query is "List
the names of instructors who taught CS10." To solve this query we can break it down
into constituent parts as shown in Figure 25. First select all of the ’CS10’ tuples from
the COURSE relation. This result can be displayed to ensure we have what appears to
be a correct partial answer. Next, join the partial result with the INSTRUCTOR relation
to add the INSTRUCTOR information to the partial result. The new partial result can
then be displayed. Finally, we can project INAME from the previous partial result to get
the solution for our posed query.

Although the previous example is extremely simple, the value of the idea
should be obvious. Perhaps an even more valuable advantage is gained through the use
of incremental query execution as an aid in the debugging of a complex queries. When
a large query is constructed, there are many possibilities for errors to creep in. Many of
these errors are semantic and not syntactic; the DBMS will provide a result, but it will
be erroneous. By going back through the query and looking at the intermediate results
as it executes, the user is aided in finding where the flaw in logic occurred. In DFQL
this practice is easily achieved. Given a complex query it is difficult to tell exactly where
an error may have been introduced. DFQL allows the user to set a flag on any of the
operators in a query to show the intermediate result at that point. For example, in Figure
26, the join operator is highlighted indicating that the user has selected this operator.
Execution will stop at that point in the query and the intermediate result of the selected
operator will be displayed. If that result was satisfactory, the user can search for the

problem further along in the query. If that partial result was incorrect, the user can go

70

course cno = 'CS10°

course cno = 'CS10°

; select ; instructor

o

ri.cno=r2.cno

course cno = 'CS10°

i select ; instructor

¢

ri.cno=r2cno

CS10 INSTRUCTOR

Bf,.—-"

DISPLAY

Figure 25. Incremental Query Construction

71

course cno = 'CS10°

i select ; instructor

o

ri.cno=r2.cno

CS10 INSTRUCTOR

=

BISPLARY
Figure 26. Incremental Query Execution

back and look at earlier partial results. Multiple display operators can also be used to
report intermediate results at different locations in the query as shown in Figure 27. This
method of analyzing intermediate query results has proven to be extremely useful in
debugging complex DFQL queries. There is no easy way to even simulate this approach

with complex queries in SQL due to its declarative nature.

course cno = 'CS10°'

i select ; instryctor

Partial #1

ri.cno=r2.cno

DISPLAY ame
Partial %2 o
oS proJect) cs10 mstructor
DISPLAY K —
DISPLAY

Figure 27. Use of Multiple Display Operators

72

b. Universal Quantification

The problem of expressing universal quantification in existing query
languages has been discussed in Chapter II. DFQL provides a unique solution to this
problem by starting with elementary counting operations that are easy to understand and
then building on them to satisfy the requirements of universal quantification. The basic
idea employed is that if all tuples in a relation or a group must satisfy some criteria, we
first count the number of tuples that meet the criteria and then compare this number with
the total number of tuples under consideration. If these two numbers are equal, then the
universal quantifier has been satisfied.

The actual implementation of this idea is included in DFQL by the
groupALLsatisfy primitive. A visual description of how groupALLsatisfy works is
provided in Figure 23 where a user-defined operator was defined with the same
functionality. The counting idea can be extended to supply other useful quantification
type operators such as groupNsatisfy. The concept required to understand the idea of
counting tuples is much simpler than that required to understand the logical idea of

universal and existential quantification.

¢. Nesting and Functional Notation
DFQL implicitly provides a nesting capability in the formulation of
queries. Unlike SQL and block structured languages, however, there are no nesting
constructs required in DFQL. Thus, DFQL requires no range variables or scoping rules;
a good understanding of both range variables and scoping rules is necessary to code

complex queries in SQL. The lack of nesting structures improves the readability and

73

orthogonality of the language. The idea of nesting, as implemented in SQL, is provided
naturally in DFQL by having subqueries execute first and provide the arguments for later
query operators. This is conceptually the same as executing nested queries in SQL from
the "inside" to the "outside."”

The use of functional notation for all of the DFQL operators greatly
enhances orthogonality. The idea of relational operational closure discussed previously
is naturally implemented through the functional paradigm. The use of operators that may
take more than one input but produce only one output allows for their easy combination

into user-defined operators as discussed in the previous section.

d. Graph Structure of DFQL Query

When a DFQL query is formulated, the visual representation of the query
is a graph made up of operators (and text objects) as nodes and the dataflow paths as
arcs. As such, the graph structure represents the relational algebra structure for the
execution of the query. Having this structure provides two benefits: First, the internal
operations of relational DBMS’s are based on relational algebra. Thus, relational algebra
can provide a common interface to a DBMS without the need of having a separate
interpreter/compiler. Second, there is a large body of techniques that have been
developed for the optimization of relational algebra expressions. Most SQL
interpreters/compilers, for example, are not capable of performing optimization across
levels of a nested query, but if the same query is expressed as a series of relational

algebra operations it can then be optimized. (Dadashzadeh, 1990, p. 308)

74

By using a graphical, relational algebra approach to query formulation,
we believe that the user is provided with a much more consistent and straightforward
interface to the database. The advantages cited in the previous paragraph serve only to
enhance the value of the graphical interface. Codd expressed a preference for relational
calculus over relational algebra for a query language because of problems related to the
DBMS’s ability to optimize the queries (Codd, 1990, p. 62). The declarative approach
of relational calculus has been preferred in the implementation of query languages in part
in order to force the user to express his query in a single, large logical expression. For
complex queries this large logical expression becomes difficult to correctly formulate.
By using a graph structure of relational operators, the query can be more easily globally
optimized than can be combinations of partial queries in a textual block structured
language. In fact, the work of Dadashzadeh in converting SQL queries into relational
algebra graphs for optimization purposes, results in structures quite similar to DFQL

queries (Dadashzadeh, 1990).

B. USER INTERFACE FOR DFQL

DFQL and its graphical interface has been implemented on an Apple Macintosh.
The general characteristics of the user interface follow the guidelines that Apple has
established for Macintosh programs (Apple, 1985, chpt. 2). Basic operation of the
program depends heavily on use of the mouse (or other pointing device) and pull-down

menus. Every attempt has been made to make the user interface as friendly as possible.

75

Since ease-of-use is the most important goal of the DFQL language itself, ease-of-use of
the interface is considered very important also.

In this section we provide an in-depth discussion on how the user interacts with the
DFQL interpreter to formulate and execute his queries. We assume that the reader is
familiar with such terms as “clicking”, "double-clicking", and dragging with the mouse

and "pressing a button" (on the screen).

1. Starting The Program
Upon startup, a title screen is displayed while program parameters are
initialized. A dialog box is drawn to inform the user at the completion of the
initialization phase. At this point the user is presented with the screen shown below as
Figure 28. The DB INTERFACE window is the main window of the DFQL interpreter
application. This winc. » may be moved and resized anywhere on the screen that the

user desires, but it may be closed only by quitting the DFQL application.
2. DB INTERFACE Window Items

a. Buttons
Several buttons are provided directly in the DB INTERFACE window
for commonly required functions. Operator construction buttons are provided for the five
required relational operators (join, select, project, union, diff), groupcnt, and DISPLAY.
When one of these buttons is pressed, its related operator appears in the upper left comer
of the drawing area in the window as shown in Figure 29. From this position the

operator can be repositioned as desired by the user. (This procedure is discussed in the

76

w File Edit Primitives UserOps Options...

==)B INTERFACE Pee———

=l

Figure 28. DFQL Main Window

77

File Edit Primitives UserOps Options... Info Special
DS D6 INTERFACE It |

jom) [2regect)

4H

project

diff

groupcnt

HOUgEw

/E N
\ -

Figure 29. Operator Creation

Drawing Area section below.) There is no harm if the operator is not moved from this
position and another one is created. Each of the operators will continue to exist. Even
if one covers another, the operators can be peeled off of each other with no problem.
Along with the operator construction buttons there is also a text object button. When this
button is pressed a dialog box (as shown in Figure 30) is opened for the user to enter the
character string for the text object. When the user clicks the OK button or presses the
return key on the keyboard, the text object is created and appears in the same position
on the screen as newly created operators. The length of text displayed can be limited in
order to not clutter the screen. Truncation of the displayed text is indicated by trailing

"..."--the change in the display format does not affect the actual value of the text string.

78

;‘. File Edit Primitives User0Ops Options... Info Special

08 INTERFACE

Please enter your text.

Figure 30. Text Object Creation

The RUN button executes the query that is currently displayed in the
drawing area. RUN will first check that the query graph displayed is constructed
correctly; it ensures that all input nodes are connected, for example. Then the query will
be sent off to the backend DBMS for processing. Results returned from the database will
be displayed in a separate result window. The RESET button clears the current query
from the drawing area and from the computer’s memory. RESET can be used to set up
another query when the user has no desire to save the query that is currently on the

screen.

79

b. Drawing Area

The drawing area is the portion of the window that is bounded by the
horizontal and vertical scroll bars. This area starts out blank and is used to graphically
construct the DFQL query from the various operators and text objects. As the query
becomes larger, the scroll bars may be used to position it in the drawing area so that the
portion of interest is displayed. In order to move an operator or text object within the
drawing area the user clicks on and then drags the object to the desired position. While
dragging the object, an outline is displayed that shows the position of the object as it is
being moved around the drawing area. When the mouse button is released the object (and
any connected dataflows) are redrawn in the new position.

Along with the dragging of objects there are several other operations that
can be performed on the DFQL query in the drawing area. Double-clicking on an
operator will bring up a help window describing that operator. The help information for
the DFQL primitives is coded into the system. Help information for user-defined
operators is entered by the creator when the operator is defined. Help information
appears in a dialog box as shown in Figure 31. Double-clicking on a text object opens
up an editor for that object’s text string. This editor supports all of the Macintosh’s
normal text editing functions such as cutting and pasting text from the Macintosh
clipboard. When the editing dialog box is closed, the text for the object is replaced with
the new string.

In order to construct a DFQL query, the query objects must be connected

with the desired data flows. These flows are represented in the interface as straight lines

80

= flle Edt Primitives UserGps Optians.. Info Specin

DB INTERFRCE

join ‘] o o

selact

o
= =
[

K

:

1Q
§ INPUTS: relation, selection condition

unil OUTPUT: relation of tuples from the input relation that meet the criterie of the
selection condition

DESCRIPTION Performs relational selection. Attributes in the output relation are
the same as the attributes in the input relation.
gray

te

[nm T lov——@l—

Figure 31. Example Select Operator Help

that connect the output node of any given object to the input node of another object (or
objects). To draw these lines, the user must click the mouse pointer on either an input
or output node. Once the mouse button has been released, a rubber-band line will be
drawn from that node to the current position of the mouse. Clicking on the input or
output node of another object will connect the dataflow line from the originating node to
the newly indicated node. DFQL does some checking to ensure that connections make
sense. For example, attempted connections from input to input or output to output are
detected and an error message is produced stating that the attempted connection "did not
make sense.” This level of error checking is somewhat rudimentary, however. DFQL

will not flag cycles created in the query graph at construction time. An error message

81

will be produced when the query is executed. Clicking the mouse in an empty portion
of the drawing area will turn off the rubber-band line if iae user has decided not to make
a connection after all. Since an input node may have only one input dataflow, if the user
connects a dataflow line to an input node that already had one, the previous dataflow line
is deleted automatically.

If the mouse is double-clicked on an output node, the columns of the
relation passing out of that node are displayed. In this way, the user can determine what
auributes may be used by operators subsequent to that point in the query graph. This
assistance is very important in the construction of large queries in which the attributes
become hard to keep track of. Also, when user-defined operators are used, it is important
to be able to easily determine what the names of the attributes are that the operator

produces.

3. Query Results Window

The Query Results window displays the result of the DFQL query. The results
are displayed in the format returned by the backend database system. An example of a
displayed query result is included as Figure 32. The contents of the results window may
be edited with any of the Macintosh’s normal editing functions (cut, copy, paste, and
clear). The results may also be sent to the printer. Scroll bars are provided in the result
window in order to display queries that generate results that are larger than the viewable
area. The query results window may be moved, resized, and closed as the user desires.
For example, in Figure 32, the results window has been moved so that the query in the

DB INTERFACE window is visible. If DFQL is being run on a system with a large

82

b

< TFile Edit Primitives UserOps Options... Info Special
DB INTERFACE
P
join]

—————

hY
sttJ

enroll testscore >= 90

'4 ENROLL tuples with TE...

e 3o B B e e e B B

—
Jora |

9 records selected.

Figure 32. Query Results Window

monitor, the Query Results window could be moved and left open while queries are
formulated in the DB INTERFACE window. If there is room, the results window can be
resized in order to display more of the result at once. The Query Results window is
activated when the query is run from the DB INTERFACE window. If the Query Results
window is closed, it will not be reopened until the next query is run.

The Query Result window is also where error messages about the current query
will be returned to the user. All errors relating to the DFQL query, with the exception
of the graphical construction type errors mentioned previously, are trapped by the backend

DBMS. These errors are then passed back to the user through the Query Results window.

83

Since the error messages may reference temporary views created by the DFQL interpreter,
an option is provided for the display of the actual SQL query that was sent to the backend
DBMS. This feature allows for easier debugging of the DFQL query; its necessity is
discussed in the Implementation section.
4. Menu Items

The menu bar displayed at the top of the screen is an omnipresent feature of
all Macintosh programs. Its presence and design is one of the requirements dictated for
Macintosh user interfaces by Apple (Apple, 1985, p. I-51). The DFQL interpreter menu

bar is displayed as Figure 33. In a Macintosh environment the menu bar is a separate

= File Edit Primitives UserOps Options... Info Special

Figure 33. DFQL Menu Bar

entity from the window currently being displayed. For that reason, the items listed in the
menu bar usually remain the same throughout execution of the given application no
matter what window is currently being displayed; any items that are not applicable at a
given time are made not selectable. Any item in the Macintosh user interface that
selectable is indicated to the user by being displayed at reduced intensity, commonly
known as being "grayed out” The DFQL user interface menu items are discussed

individually below.

a. Apple
This menu is a standard Macintosh menu that has no real relation to
DFQL as an application. It provides access to Macintosh utilities called "Desk
Accessories” and should be accessible at all times (Apple, 1985, p. I-54). The only
DFQL specific item in the Apple menu is the "About..." item. When this item is selected
a title and information window for DFQL is displayed.
b. File

The file menu (Figure 34) also has a standard Macintosh design (Apple,

1985, p. I-55), but is application specific in its functionality. Our file menu has six items

;.‘Edit Primitives UserOps Options... Info Special

E00= New %N === DB INTERFACf VF—7=
Open... %0
C Save mytest 36S
Save As...
E Page Setup...
Print... ®pP
[Quit €q

Figure 34, File Menu

which follow the Macintosh user interface guidelines. The New item resets the system
for the user to enter an entirely new query. The Open... item allows the user to retrieve
a previously saved query from disk. When Open... is selected, a dialog box is presented
from which the user can select the stored query for retrieval (Figure 35). Only query files

are displayed for selection. Once a query file has been selected, it is immediately loaded,

85

File IESI WORK |Uiew .

42 e N1?0i
0 DQUERY#2
D DQUERY#3
D QUERY#1 [#jet)
D QUERY#2 .
D QUERY#3 (_Drive)
D QUERY#4
D QUERY#S p——
D QUERY#6 {_Open_J
(Cencel]
4

Figure 35. Open... Dialog Box

and the stored query appears in the drawing area in the window ready for execution or
editing.

The Save option (shown in Figure 34 as Save untitled) stores the current
query onto disk with the name that is currently displayed. For example, Save untitled
would create a query file actually named "untitled”. When a query is retrieved using the
Open... command, its name is retrieved also and will appear in the Save menu item. If
the current query was a "new query” and thus had no name Save untitled will be
displayed as the Save option. The user can use the Save As... menu item to name the
file. This option displays a file naming dialog box. If the user enters a name that is

already in use he is asked whether or not he actually wants to replace the previously

86

stored query. If not, a new name can be chosen. When an appropriate name has been
chosen the query will be saved to disk.

The Page Setup... option is a standard Macintosh File menu item. Page
Setup... runs a Macintosh routine which allows the user to change printer parameters such
as the size of paper, print quality, and orientation. Print... is used to print out
information from the front window of the application. For example, if the DB
INTERFACE window is foremost then the DFQL query currently displayed in the
drawing area will be printed. If the Query Result window is foremost then the text of the
query result will be printed. The Quit menu item terminates the DFQL interpreter

execution.

¢. Edit
The Edit menu (Figure 36) is another of the Macintosh standard menus.

It provides the text editing functions of Cut, Copy, Paste, and Clear. These edit

« File Primitives UserOps Options... Info Special
; Dé ndo (all} =2 B=—— DB INTERFACf DVe0—c=

7

join| fut KR
fopy KX

4 Paste =i
selecl ¢ionr
— |

| Delete

Figure 36. Edit Menu

87

functions are available whenever the user is editing a text item, such as when the Query
Results window is displayed. An Undo (all) menu item is also provided. Undo (all)
reverses the deletion of objects in the DFQL drawing area. It is only active immediately
following the deletion of the objects. When Undo (all) is not available it is "grayed out”.

The two remaining choices in the Edit menu are used to edit the DFQL
drawing area. Select is a "checkable” item. By this we mean that it has two conditions--
on and off. When Select is turned on, a check mark appears to the left of the Select
menu item. While Select is on, clicking the mouse on a DFQL object in the drawing area
will cause it to be "selected". This selection will be indicated on the screen by the
object’s color being inverted as shown previously in Figure 26. Selection of objects in
the drawing area is a "toggle" type process. If the mouse is clicked on a previously
selected object, the selection will be toggled off and the operator will return to its normal
appearance. Selecting a DFQL object has two effects. First, it enables the Delete
operation which is also an item in the Edit menu. Delete will delete all selected objects
from the DFQL drawing area. Secondly, selecting a DFQL operator allows the user to
retrieve intermediate results from the query. When an operator is selected and the RUN
button is pressed in the DB INTERFACE window, the query will be executed up to and
including the selected operator. The result of this operator will then be displayed in the
Query Results window. When the Select menu item is tumed off (by choosing it while
it is check marked) all of the currently selected DFQL objects are returned to their non-

selected state.

88

d. Primitives
The Primitives menu (Figure 37) allows the user to select primitives that

are not provided by a button in the DB INTERFACE window. These primitives include:

« File Edit UserOps Options... Info Special
eqjoin ~ DB INTERFACE EBic—=—
groupfALLsatisfy

Join l groupavg
groupmas
groupmin

select l groupNsatisfy
intersect

project I
DISPLAY

() SDISPLAY

Figure 37. Primitives Menu

eqjoin, groupALLsatisfy, groupavg, groupmax, groupmin, groupNsatisfy, intersect,
DISPLAY, and SDISPLAY. When one of these menu items is selected the effect is the
same as pushing one of the primitive buttons on the DB INTERFACE window. The
desired operator appears in the upper, left corner of the drawing area and is ready to be
incorporated into a DFQL query.
e. UserOps

The UserOps menu (Figure 38) is provided to enable the user to define
and manipulate user-defined DFQL operators. The New menu item places the DB
INTERFACE window into user operator definition mode. This mode disables the

window’s normal menu and button items and adds several operator definition items to the

89

- File Edit Primitives erOp Options... Info Special

0 New |INTERFACE BVFiccF———

Delete

Select
Uiew

Figure 38. UserOps Menu

screen. This operator definition mode is shown in Figure 39. The desired internal
structure for the new user-defined operator must exist in the drawing area before choosing
the New menu item. Connections in the drawing area may be changed while in operator
definition mode, but no operators may be added or deleted since all of the required menu
and button items are disabled. The most obvious added item in this operator definition
mode is the "input bar" at the top of the screen. This bar is used to define where the
input data to the user-defined operator will be sent internally. Clicking the mouse on the
input bar will create additional input nodes for the user-defined operator. If too many
nodes are created by mistake, input nodes can be removed by checking the Delete Input
check box on the right side of the window. Whenever this box is checked, clicking on
the input bar will delete the input nodes (and all internal connections to them) from the
drawing area. Once the desired number of input nodes are created, they must then be
connected to the desired operators in the drawing area. These dataflow connections are
made in the same manner as on the normal DFQL editing screen. All input nodes of the
operators inside the user-defined operator must be connected. Also, there may be only

one unconnected output node in the user-defined operator. This single node becomes the

90

;.‘ tile Edit

l’mmtwes Userdps dptians... m!‘o Spedial

DB INTERFACE =

(
=
[

[
[

[g| aupcat

join

select

mroject

L S

unian

ditt

b—/

~

[lll’sl’l.ﬂ?]

J

Opelete
Input

Figure 39. User Operator Definition Window

output node for the entire user-defined operator. Figure 39 shows select and project in

the drawing area ready to be connected to three nodes that have been created on the input

bar.

There are two active buttons provided in user-operator definition mode:

Store and Cancel. Cancel restores the screen to the normal DB INTERFACE window

by eliminating all of the user-operator definition items and reactivating the normal DB

INTERFACE buttons and menus. The items that were in the drawing area in the operator

definition mode will still be present with the exception of the input bar. Store first

checks the user-defined operator query graph to ensure that all necessary connections have

been made and then asks the user for a name for the new operator and a description that

91

will be used as help for the operator. The operator’s name is checked for uniqueness
among all previously defined user operators; the new name must be unique. When
entering the help for the operator, the user should list what type of argument is expected
for each input node, what relation is produced from the output node, and also provide a
brief description of what the operator does. In order to make the help information more
casily readable, the user may insert carriage return characters by using the Option-
Return key combination on the Macintosh. Once all of the requisite user input is
received, the new user-defined operator is added to the list of currently stored user-
defined operators.

The Delete menu item allows the user to delete stored user-defined
operators from the system. The user is presented with a scrolling list of user-defined

operators, as shown in Figure 40. When the desired operator is selected, by either

USER DEFINED OPERATORS

selproj >
user-groupALLsatisfy

o I

Figure 40. User-Defined Operator Selection

double-clicking on its entry or selecting it and then pressing OK, it will be deleted from

the list of operators. The Select menu item presents the user with the same type of

92

scrolling list. Select is used to add a user-defined operator to a DFQL query. When the
desired operator is chosen from the selection list, it appears in the upper left corner of the
drawing area just the same as a DFQL primitive. There is no difference in the use and
manipulation of the user-defined operator as compared to a primitive DFQL operator.
The final menu option in the UserOps menu is View. View allows the internal structure
of a stored user-defined operator to be displayed. An example of this display is Figure

41. The desired operator is selected through the use of a selection dialog as shown

IE========Uiew User Cperator -- selproj =—=——0=

il

Figure 41. View User Operator Window

93

previously in Figure 40. The View feature is provided so that a user may "look inside”
the operator to see how it was constructed. This is especially useful if the user-defined
operator was provided by someone else. The user is not permitted to modify the operator,
only look at it. In this way the integrity of the operator is preserved while still allowing

some access to the internals for the user’s purposes.

f. Options...
The Options... menu (Figure 42) provides the user with control over the

operation of the DFQL interpreter. All of the choices provided in the Options... Menu

« File Edit Primitives User0Ops T info Special
£0] DB| Display Last
Show SQL %S
v Sound

Figure 42. Options... Menu

are toggle items. When the item is active, or "wurned on", a check mark is present next
to the item. For example, in Figure 42 the Sound option is "on" whereas the Display
Last and Show SQL options are "off". When Display Last is turned on, the output of
the last DFQL operator executed will be displayed in the Restlts Window when the query
is run. This is useful when incrementally constructing queries because it causes the
display of the results without having to use a display operator. Show SQL causes the
intermediate SQL code that is generated from the DFQL query graph to be displayed in
the Query Results window along with the results of the query. This display can be used

to troubleshoot any execution errors that are not directly apparent from the DFQL query

94

graph. Also, this option allows the DFQL interpreter to be used as a translator in which
a DFQL query is input and a SQL query is output which could then be run on any SQL
database system. The Sound option is included primarily for esoteric reasons. When
selected, Sound causes certain easily recognizable souids to be played at different key
points during processing of the query.
g. Info
The Info menu currently has only one option, Tables. This option allows

the user to retrieve information about what attributes exist for tables in any given relation

| = File Edit Primitives UserOps Options...
S =———=———=———————— 0 INTERFRACE

Special

Figure 43. Info Menu

in the Jatabase. When Tables is selected a selection dialog is displayed from which the
user can pick which table he is interested in. This action will bring up a dialog box
displaying the attributes of the selected table as shown in Figure 44.
h. Special...
The Special... menu also has only one menu item, ORACLE*Shell.
ORACLE*Shell starts up a separate application to provide the user direct access to the
backend DBMS (in this case ORACLE). When ORACLE*Shell is selected the user is

presented with a new window and menu bar that are specific to the ORACLE*Shell

95

TABLE: ENROLL

COLUMN NAMES:
SNO, CNO, GRADE, TESTSCORE

Figure 44. Table Information

application. From this window the user may select SQL*Plus to start up the ORACLE
SQL interpreter, as shown in Figure 45.

Once the SQL*Plus interpreter is running, the user may manipulate the
database directly using any SQL command desired. This facility allows the user to add,
delete, and update tuples in the database relations. Since the current version of DFQL
is strictly a query language, these database functions are not provided in DFQL. By
allowing the user direct access to the backend DBMS while still running under the DFQL

environment this deficiency is somewhat mitigated. In order to return to the DFQL

= File Edit 10R JRUIKR T
Run SOL*Plus #6 L3 N3
= Worksheet =V——————

Figure 45. Starting the SQL*Plus Interpreter

96

interpreter, the user must first exit from SQL*Plus (by typing "EXIT" at the "SQL>"
prompt) and then stop ORACLE*Shell by selecting Quit from the File menu. When the

user exits from ORACLE*Shell, control is automatically returned to the DFQL interpreter.

C. IMPLEMENTATION OF DFQL

DFQL has been implemented on a Macintosh Il/ci running version 6.0.7 of the
Macintosh Operating System. The actual programming was done in the Prograph
language (discussed further below). The backend DBMS used on the Macintosh is
ORACLE for the Macintosh version 2.0. DFQL has also been operated on a remote
ORACLE DBMS (version 6.0) running on a Digital Equipment Corp. Micro-VAX via a
DECNET Ethernet connection. XLINK protocol is used to communicate database startup
and shutdown commands to the ORACLE kernel running on the Macintosh. All features

of DFQL which have been discussed in this thesis have actually been implemented.

1. Prograph -- Object-Oriented Dataflow Language
Prograph is a "very high-level, pictorial object-oriented programming
environment” that integrates four key trends in computer science: a visual
programming language, object orientation, dataflow, and an application-building
toolkit. (Wu, 1991, p. 71)
Prograph is a commercial product developed by The Gunakara Sun Systems (TGSS) of
Halifax, Nova Scotia, Canada. The ideas behind Prograph are discussed in (TGSS,
Tutorial, 1990, chpt. 4) and have been reviewed in the Journal of Object-Oriented

Programming (Wu, 1991). Both of these references provide detailed information on the

Prograph language and its strengths and weaknesses. Here, we discuss only the basics

97

of Prograph program construction in order to provide the reader with some idea of how
our system has been implemented.

Prograph was chosen as our implementation language for several reasons. First
of all, its visual dataflow structure is very similar to the approach taken for DFQL. This
similarity helped to stimulate our development of DFQL. Also, the ability provided by
Prograph to take advantage of the Macintosh visual interface, greatly aided in the
development of the DFQL user interface. The fact that Prograph is object-oriented
allowed the use of many powerful features of the object-oriented paradigm which also
greatly improved the modularity and ability to upgrade and maintain the program code.

The subsequent discussion assumes some knowledge of the ideas of
object-oriented programming. The following descriptions should provide enough
information to follow the examples in the text and in Appendix C. For further
information on the Prograph language the tutorial and reference manuals for the Prograph

language (TGSS, 1990) should be consulted.

a. Prograph Code
A simple example of actual Prograph visual dataflow code was given
earlier as Figure 6. Dataflow program fragments, such as the one shown in that example,
form the methods of the object-oriented paradigm. These methods are grouped into
classes, ultimately making up a complete Prograph program. All DFQL classes, their
atributes, and their high level methods (along with a brief explanation of Prograph

symbology) are included in this thesis as Appendix C.

98

Prograph provides many primitive operations that are used to construct
methods. An example of one of these primitive operations is "show" which prints its
input on the screen. Further examples of primitives are the arithmetic operations such as

no.on

+ or

"oy

or trigonometric functions such as "sin" or "cos". Primitive operations are
provided by Prograph in the following basic categories: Application, Bit, Data, File,
Graphics, Instances, Interpreter Control, I/O, Lists, Logical/Relational, Math, Memory,
Strings, System, Text, and Type. These primitives are not methods as defined by the
object-oriented model since they do not belong to any class. They are just the Prograph
basic operations similar to the operations such as "+" and "-" provided in other object-
oriented programming languages such as C++.

Prograph’s only built-in complex data structure is the list. The
programmer can construct any complex data structure he desires by establishing a class
for that purpose, however the level of support inherently provided by the language is at
the list level. Therefore, in our DFQL interpreter there are many occurrences of list
operations and list data structures. The Prograph primitives for manipulating lists are very
powerful and comprehensive. Many of the primitives are reminiscent of LISP list
operations. Items can be added, deleted, and inserted at any point in the list. The list can
be indexed into by any attribute of the list. A list may contain any Prograph object from
a simple data type such as a string, to a more complex type such as another list, to the
most complex data object that the user has defined in his application. Also, the objects
in a given list do not need to even be of the same type. This supports the idea of using

lists to easily implement complex data structures. All list manipulation in Prograph is

99

done without the use of pointers. This is made possible by providing primitives to index
into a given list based on the lists attributes. Primitives are also provided to construct
(pack) and disassemble (unpack) lists, again all without the use of pointers.

Another unique aspect of Prograph code is the control structures provided.
We have discussed the token model of dataflow programming previously. While
Prograph operates on the token model principle, it provides the user with the ability to
alter the sequence of program execution. This is especially important when executing
operations that have side effects. An example is changing the color of the pen before
drawing a figure on the display. The programmer wants to ensure that the color is
changed before drawing onto the screen. In Prograph this type of operation is specified
through the use of "synchros” which impose a sequential order of execution on operations
that otherwise would not be deterministically scheduled. The previous example is shown

as Figure 46. The synchro connection between the ForeColor method to the drawitem

[ECI=== &2 Synchro Example |:1 =—=RIGI5=ME]
2.

_ redColor

P y v/
ZF or eColorZ}>333323333>{Praw on Sereen]|

The synchro ensures that ForeColor is
executed before Draw on Screen.

[L L L A D

Figure 46. Specifying Order of Execution

100

method ensures that the color is changed before drawitem is executed. If this synchro
was not provided either operation could be performed first since neither depends on the
other for any input data.

Another type of control structure is required to implement decision
making within a Prograph program. This type of capability is provided in most common
programming languages as the "if-then-else" and “"case" statements. In Prograph, a
decision can be made based on any method or primitive that returns a boolean response.
Figure 47 shows a method with three cases that will print a message stating whether the
input value is less than, equal to, or greater than three. The first case (indicated by the
1:3 in the title bar) of this method tests whether the input value is less than three. The
X in the box connected to the comparison primitive ("<") means to go to the next case
if the condition is false. Conversely a v in the box means to go to the next case if the
condition is true. Thus, in the second case, we check for the number being greater than
three, if so we go to the next case. Obviously, the order in which the cases are defined
is extremely important. There is no practical limit to the number of cases that can be
defined for a method. Defining multiple cases in Prograph allows the coding of the case
statement type used in other languages.

Another form of control structure is provided to allow iteration. Iteration
may be performed over primitives or methods. There are two basic kinds of iteration
implemented--iteration over the elements of a list and simple iteration. To perform the
same action on each individual element of a list, a "(...)" notation is used to replace the

normal input symbol on the method or primitive. The example in Figure 48 shows

101

Case Example 1:3

LLSISS LSS SIS S SISLILS SIS SISSIS S
input number

®

Go to next case if
input number is NOT <3

®is ¢<3.°

SILLLLSSSSSISLILSSSSSST LSS LSS LSS .

<l

& =

Case Example 2:3
LI LI II I ISP II SIS SIS I IFS >
input number |
- = - Go to the next case if
is=3. . .
input number is > 3
-
LLLL IS SL 1S 1SS 1SS AL IS S II SIS SIS, 0

Case Example 3:3

Y SLSILSLILLL IS SSSLSSSLL IS LSS
L)
input number

&

Case 2 sent control
here if input nurber

- 2 -
is>3.° was>3

Figure 47. Prograph Case Structure

102

iteration over a list where 10 will be added to each item in the list. (Since there is no
typing enforced in lists it is up to the user to ensure that adding 10 to each of the items
makes sense.) Having "(...)" on the output of the "+" operation means that the result will
be formed into a list also. List iteration stops when each of the elements in the incoming
list has been processed.

Simple iteration is indicated by an arrow linking the output and input of
a method as shown in the left side of Figure 49. The internals of the method being
iterated are shown on the right side of Figure 49. On simple iteration a condition must
be provided in order to stop the iteration. In this example, the condition is specified by
using a v/ with a bar below it attached to a comparison with the number 10. This means
to stop the iteration when the condition is true, but to also to allow the current cycle of
the iteration to complete. The value of 10 will be propagated as the output of the iterated

method. If the bar was above the /, then the iteration is stopped immediately and the

ED== @2 List Iteration 1:1 =REG=F|

incoming list 10

Add 10 to each item
in the incoming list.

se3)

output list !

Figure 48. Iteration Over a List

103

(Wegner, 1987).

simple Iteration 1:1

CSSSS TSI SSLLS S LSS S S LSS SSSLS LSS/

Executes the count to ten
local method. Provides 1
as the initial value for the
method.

SLLLLSLSSLSSS LSS S S S S L SIS SIS LS 7YY,

®

] I
count to ten 1:1
LY SLSSISSSSSSSL SIS LLSLSSSS LIS LSSV g
Increment the input value
by 1. If the result =10
then stop the iteration.
-
>
3] [T

Figure 49. Simple Iteration

last completed iteration, in this case nine.

b. Object-Oriented F eatures

Prograph can be classified as a truly object-oriented language by meeting

104

value propagated from the output of the iterated method will be the output value of the

the definition of object-oriented as implementing objects, classes, and inheritance

All of the object-oriented features are supported entirely visually.

ystem

Application Menu Menu Item Viv Yindow Iltem

Figure 50. Prograph System Classes

Figure 50 shows the system classes that are provided by Prograph along with the table
class which is one of the user-defined classes in the DFQL interpreter. Each class is
represented by a hexagonal symbol. The class symbols with the double outline indicate
that these classes have descendent (or child) classes that are hidden in this display. Child
classes can be hidden and revealed through a menu selection in the Prograph editor. The
lines between classes represent inheritance links. The methods and attributes from all
ancestor classes are inherited by the child classes. There is no "selective” inheritance in
which some of the parent’s attributes and methods can be inherited while excluding
others. Multiple inheritance is also not supported, so the class hierarchy is represented
by a true tree structure. System classes are differentiated from user-defined classes in the
class diagram by the double line at the bottom of their hexagon. User-defined classes
have only a single bottom line. The triangle symbol on the left side of the class symbol

represents the class’s attributes and the rectangular symbol on the right side of the class

105

symbol represents the class’s methods. By double-clicking on either the left or right side
of the class symbol the programmer can open up separate windows displaying the class’s
attributes or methods respectively.

The class attributes are listed in a vertical column. Figure 51 shows the

attributes of the table class. Those attributes represented by the hexagonal shape are class

S(J== V table ==r]
J

(<<table>> ...

tablelist
(<<table>> ...

savetablelist
1

O

Y

tablename

Q

collist

Figure 51. Attribute Window

variables whereas the attributes with the triangular shape are instance variables. If this
object had inherited any variables from an ancestor, the inherited variables would be
indicated by an arrow imposed on top of the appropriate variable symbol. (For examples

of inherited attributes see Appendix C.) Class variables in Prograph are directly

106

accessible by any instance of the class. Class variables can also be indirectly addressed
from anywhere in the application by specifying the class that they belong to and
requesting their information. Instance variables are accessible only by the particular
instance that "owns" them.

Methods are handled slightly differently than attributes. This is primarily due to not
needing an entirely different copy of the class’s methods for each instance of the class.

Figure 52 is the method window for the table class. In the method window, inherited

E0 table
loadtable js .. rest

Figure 52. Method Window

methods are not shown. Each of the methods listed in this window may be double-
clicked to open an editing window displaying the method’s Prograph code. While
inherited methods are not show in the class’s method window, the instances of that class
still have direct access to them. Also, if a method is given the same name as a method
in an ancestor class, that method is effectively "overloaded” for the child class. In this
case when an instance of the child class calls for the overloaded method it will receive

the method in its own class, not the ancestor class, unless specifically requested.

107

There are three ways of referencing class methods. These are pictured

in Figure 53. First, there is regular referencing. Regular referencing is indicated by

V./method name?Z} zl /method name”]
Regular Reference Self Reference

V class name /method name”/

Early-bound Reference

Figure 53. Method Referencing

placing a single slash (/) in front of the method name. This means that the method occurs
in the class hierarchy of the object flowing into the method. The second type of
referencing is called self referencing. This type of referencing is indicated by preceding
the method name with two slashes (//). Self referencing means that the method to execute
occurs in the same class hierarchy as the current method. The third form of referencing
is early-bound referencing. This is indicated by prepending the method name with the
class name where the method is to be found and a single slash (classname/). There is one
additional for of method reference that does not fall into the same category as any of the
three above. This is the global or universal form of reference.!' In Prograph, universal

methods can be created that can be accessed by any object simply by specifying the

""Terminology is taken from (Wu, 1991). In place of regular, self, early-bound, and
global, the Prograph manuals use the terms data-determined, context-determined, explicit,
and universal, respectively.

108

method name only. This falis somewhat outside of the object-oriented paradigm and is

included for the convenience of the programmer.

2. DFQL Implementation Strategy

The block structure of the implementation of DFQL is shown in Figure 54.
The DFQL query is entered at the user interface level. The visual query is then stored
into a graph structure of database objects (adbobj class) which includes the text objects
and operator objects. The database objects are then converted into SQL as intermediate
code. The SQL code is executed on a backend DBMS (ORACLE in this case), and the
results returned from the backend DBMS are displayed for the user.

This implementation strategy was chosen for several reasons. First of all, it
separates the actual user interface from the graph processing portion of the DFQL eng.ne.
This is designed to allow for easy modification or replacement of the user interface
without restructuring the rest of the program. There is an obvious need for a class
(adbobj) in which to store the graph (ie. nodes and arcs) representation of the query for
processing. The generation of SQL as an intermediate code to be run on a separate
backend DBMS was chosen as a matter of both portability and expediency. The first
factor that influenced this decision was the requirement to run DFQL on rop of an
existing relational DBMS. This requirement was natural since DFQL has been developed
as an interface to the relational database. The idea of DFQL is in the interface provided,

not in the backend support of the DBMS; there was no need to reinvent a backend to

109

USER
INTERFACE

adbobj

SQL

DBMS

DISPLAY

Figure 54. Block Structure of DFQL Interpreter

110

implement the new query language. The second factor in the decision to use SQL as
intermediate code was that in the early development of DFQL it was not known what
backend database would be used for implementation; since most relational databases
provide an SQL interface, we chose SQL as a common denominator for backend DBMS
support. The query is executed as one transaction on the backend DBMS for
implementation reasons. The API’s required to communicate directly with the backend
database for each separate database operator proved to be to onerous to implement for this
version of DFQL. Executing the query in "batch mode” on the backend DBMS was
orders of magnitude easier to implement and still achieves the goal of linking DFQL to
an existing DBMS.

In this implementation of DFQL, the display of results was viewed as less
important than the generation of the query. Because of this, the display support consists
primarily of the ability to produce results from the query that are editable by the user with
the normal Macintosh editing facilities. We will now discuss each portion of the

implementation structure in more detail.

a. User Interface to Stored Query Graph
The transformation that occurs between the user interface and the stored
query graph is shown in Figure 55. The DFQL objects shown on the screen are
represented by the gdbobj (for graphical database object) class. This class and its
children have attributes for information that is used exclusively for the display of the

DFQL objects. Such information as screen position, is not necessary for the execution

111

USER
INTERFACE

g 2
AR B

gdbtext gdbopr @
adbtext adbopr

adbobj

usropr gdbdsp

Figure 55. Interface to Object Representation

of the query. Also, the class usropr instances of user-defined operators since they are
drawn as single objects in the DFQL drawing area. All of the gdbobj information about
the status of the query currently in the drawing area of the DB INTERFACE window is
maintained in a gdbobj class variable, gdbobjlist. Gdbobjlist contains a list of all the
DFQL objects in the current query and the connections between them.

The first step in the execution of the query is to ensure that all of the
required connections have been made in the query graph. The method dbops/checkgraph
checks to ensure that all input and output nodes are connected.'* If this basic criteria
is not satisfied, query execution is halted and an error message is displayed. Otherwise,
query processing continues by converting the gdbobj objects in the gdbobjlist into
adbobj (a database object) and placing them in the adbobjlist. This involves stripping

out all of the display specific information and also coding all usropr objects into their

2A single output node may remain unconnected for use with the "Display Last"
feature (p. 94).

112

constituent text and primitive operator objects. When this process is completed,
adbobjlist contains the complete query graph for the user’s DFQL query in its simplest
form of only text and primitive operator objects. The query, as stored in adbobjlist, can
now be converted into SQL. By keeping the visual objects separate from the adbobjlist,
graph we gain flexibility in the implementation of the user interface. All that is required
from the user interface is that it provide the information required to build the adbobjlist.
a. Query Graph to SQL

The conversion of the adbobjlist into SQL is performed in accordance

with the token model of dataflow programming discussed earlier. This conversion is

represented in our block diagram as shown in Figure 56. The program follows dataflows

adbobj
adbobjlist
sqllist
SQL

Figure 56. Graph to SQL

from operator to operator, and the operators are "fired" when their shortage counts equal
zero. The actual implementation of this algorithm is made in the dbops/doallops method
included as Figure 57. This method uses the find-instance Prograph primitive to scan

adbobjlist for objects with shortage counts (dependnum) of zero. When such an object

113

EO==== @ dbops/doallops 1:1 e=RIEI=P]]|

ASSLSL S LSS LSLLSLILLLS S ILSSS SIS IS LSS ST
incoming gdbob jlist

TRUE [
updated gdbobjlist

3 N selection boolean
77772772 e 7 7777

Figure 57. Doallops

is found it is executed by its particular /exeobj method. The text objects (adbtext class)
and the operator objects (adbopr class) each have their own different exeobj method.
When an object is executed it produces a result and updates the shortage counts of the
other objects that depend on it. Adbtext/exeobj executes the text objects of the query by
simply passing on the text value to the connected operators and adjusting shortage counts
as necessary. Based on which DFQL operator it receives, adbopr/exeobj executes
another method to generate the appropriate SQL for the operator. The dbops/doallops

method is iterated until there are no remaining objects to execute, or until it reaches an

114

operator that was selected by the user as a stopping point for return of a partial query
result. These two stopping conditions for dbops/doallops are implemented by the two
"value matching” primitives (with the) on the far left and right of the method. The
match on the left stops iteration immediately when there are no more operators to execute;
/exeobj will not be executed. The match on the right stops iteration following the
completion of the current iteration; the operator that was selected will be executed.

The actual SQL code is generated by the execution of each of the
individual DFQL operators. The methods that generate the SQL reside in the dbops
class. They are executed by adbopr/exeobj by making use of Prograph’s "injection”
method. Adbopr/exeobj and its local method exeopr are shown in Figure 58. A "local
method" can be thought of as a subroutine that is visible only to the method it is defined
in. Local methods are used to encapsulate portions of their parent methods. The
injection construct is shown in exeopr as the last object in the dataflow before the output
bar. Injection allows the name of the method to be executed to be passed into the method
as an argument. That is what the connector into the method with no name indicates in
Figure 58. The actual method that is executed in the dbops class is one of a group of "I"
methods. These methods such as Iselect, Iproject, etc. take as input a list of arguments
for the actual DFQL operator and break the list down into individual elements. These
elements are then passed on to the actual method such as dbops/select or dbops/project.
The "I" methods are used in order to keep the actual dbops methods for query execution
isomorphic in structure to their DFQL counterparts. By unpacking the argument lists

outside of the execution method the correct number of input nodes is maintained on the

115

sE2 adbopr/eueobj 1:1 EREGEME

-
SIS LSS LSS LSS LSS S S LS ST ALY,

Figure 58. Adbopr/exeobj

116

actual dbops method used for execution. For example the DFQL join operator requires
three input arguments; by unpacking the argument list using dbops/iselect, the
dbops/select method also has three inputs. The appropriate dbops method for each
DFQL operator then generates the required SQL query and stores it in a dbops class
variable called sqllist. As an example, dbops/project is chown as Figure 59.
Dbops/project expects two inputs, an incoming relation and an attribute list. The input
arguments are inserted into appropriate positions to form a syntactically correct SQL
statement which is added to the sqllist class variable. All of the other DFQL operators
are converted in a similar fashion, although some are significantly more complicated to
implement than project.

The output of each DFQL operator is required to be a relation. In our
SQL system this requirement is met by creating a view as the result of each DFQL
operation. Hence the first line added to sqllist by dbops/project in Figure 59 is "Create
view tempname as" which is then followed by the constructed SQL statement. The reason
for using views to accomplish our goal is twofold. First of all, defining a view does not
require that the backend DBMS build a table to represent that view; it may just maintain
the rules that define the view. Secondly, in an ideal situation, the backend DBMS should
be able to optimize a query that is based on several view definitions by combining their
conditions into a single large condition and then doing one optimized data retrieval. At
any rate, a view creation (or table creation) is theoretically required for each operator in

the query to allow the return of partial results to the user. At the end of the query all of

117

dbops/project 1:1 =R

LIILLSLLLISLS SIS LSS S LSS LS SIS ISIL S

O

. relation " ject
l%ottempnameﬂ] IWI ':'t’to::bz
v -‘--;'—‘_F_-_‘—.J
Urakecois]]

% 2

“create view...

dhops W

Figure 59. Dbops/project

118

the temporary views are dropped from the database so as not to clutter it with
unnecessary items.
b. SQL to Query Display
Once the query has been translated into SQL it is almost ready to be sent

to the backend database as shown in Figure 60. First, the sqllist is written out to a file

sQL
sqllist
query.sql
DBMS

result files

v

edit text

|
DISPLAY

Figure 60. SQL to Result

("query.sql") in ASCII format so it can be read by our backend DBMS SQL interpreter.
This is done by the backend/runoracle method. Once "query.sql" is written, the
ORACLE SQL interpreter, ORACLE*SHELL, is run on the file. During this time, actual
control of the computer is transferred to ORACLE*SHELL. ORACLE*SHELL executes
the SQL statements in the file and places its output in the file "query.sql.LST". Each of

the display operators in the DFQL query will have its own output file generated also.

119

These output files will be named "spooln.LST" where n is a unique number associated
with a given display operator.

When ORACLE*SHELL releases control of the computer back to the
DFQL interpreter, all that remains to be done is the processing of the result file.
backend/loadwinsql opens the result files and formats them depending on whether or not
the user selected the Show SQL option or not. If Show SQL was not selected, only the
output generated by the display operators is retrieved. If Show SQL was selected, then
all of the information produced during the ORACLE*SHELL run is also retained for
display. The results of the query are sent to an editable text object in the Query Results
window. By using an editable text output, the user can manipulate the results as desired
using the Macintosh cut and paste editor. In this manner the results can also be passed

to other applications by cxporting them using the Macintosh clipboard.

1. Goals of the DFQL Interpreter Class Structure

Some of the goals of the class structure established for the DFQL interpreter
have already been touched on. For example, the separation of the gdbobj class from the
adbobj class was done to allow the user interface objects to be completely divorced from
the DFQL query graph processing engine. Another goal in the design was the ability to
run DFQL on top of various DBMS’s by changing only those methods that directly
interface with the backend. Although some DBMS’s support different "flavors"” of SQL,
the DFQL intermediate SQL is primarily based on the ANSI standard for SQL. This
should make the SQL generation phase mostly portable. The only methods that actually

need to be changed to port DFQL, as it currently exists, to another backend DBMS are

120

those that are based entirely on the specifics of the ORACLE product. These are grouped
together in the backend class. DFQL has also been interfaced to an ORACLE DBMS
running on a DEC MicroVAX using DECNET over an Ethernet network. This ability
shows that DFQL is not simply a Macintosh application but can be used as an interface
to other backend databases.

The purported benefits of the object-oriented programming approach were
definitely realized in this project. By correctly creating class structures the unrelated parts
of the application were kept separate. This separation greatly aided the ability to modify
the program. Extensibility has also been greatly enhanced by placing all related methods
in single classes. The use of inheritance was of paramount importance in setting up the
relationships between the various types of DFQL objects. Prograph’s implementation of
the object-oriented paradigm definitely influenced the way in which the project was both

structured and implemented.

121

IV. ANALYSIS OF DFQL

A. HUMAN FACTORS ANALYSIS OF QUERY LANGUAGES

Ease-of-use of query languages has been of interest for some time. As more and
more information is placed in computer databases that people rely on for making
important decisions, the accessibility of that data becomes of increasing importance. No
matter how good the data is that an czganization may have collected, it is of no value if
it cannot be disseminated. Although usability of the DBMS interface is clearly important,
it is difficult to quantitatively measure. There Lave been several approaches to the
problem of measuring usability, dating back to the 1970’s. While there has been no
simple way found to test for usatility, contributions have been made in this area that
provide some guidelines for evaluation of query languages. In this section we will
discuss some of these ideas with emphasis on portions of the previous work that are

significant to an analysis of the ease-of-use of DFQL.

1. Testing for Ease-of-Use
Measurement of ease-of-use of query languages is an extension of the field of
human factors analysis. Human factors analysis is an area which falls under the academic
discipline of experimental psychology. The general approach for measuring ease-of-use

is divided into three main steps:

 define precisely what is to be measured

122

» develop a task for users to perform to support the desired measurement

« record the relevant parameters of user performance

The great difficulty lies in applying these steps to activities that involve not only physical
and perceptual activities but also cognitive activities such as learning, understanding, and
remembering. (Reisner, 1981, pp. 15-16)

Not only is it difficult to construct experiments to measure the above criteria,
it is ~1so difficult to interpret the results. Many problems in the interpretation of results
lie in the ability to credit a certain factor for the result observed. Often several factors
may influence the same result in a given experiment. If this is the case, the experimenter
must attempt to determine which is the overriding factor or redesign the experiment to
achieve a finer level of granularity in separating the factors involved. In many cases
where cognitive issues are involved it is very difficult to isolate all the factors that could
affect the experimental results. For example, if learning of a given query language
appears to be less than satisfactory as measured by some given criteria, this could mean
that the language is "difficult to learn” or it might mean that the method of teaching is
not satisfactory.

There are problems both in analyzing a single language for some sense of
"absolute” ease-of-use and also in comparing two different languages for "relative” ease-
of-use. Although it may seem that it should be simpler to compare two languages than
to come up with an "absolute" ease-of-use metric, there are many cautions that are

required to avoid drawing incorrect or meaningless conclusions from the comparison

123

approach. Even with well defined measurement criteria there are often subjective values
involved in a comparison. For example, if query language one allows queries to be
written twice as fast, on average, as query language two, but query language two
produces, on average, 25 percent more correct queries, which language should be
classified as easier to use? This is purely a subjective evaluation. If a person can write
twice as many queries then he could more than account for the 25 percent error ratio by
the ability to rewrite each query. The preceding statement may or may not be true, but
it infers how difficult it is to try and pinpoint usability when left to subjective criteria.
There is also a substantial difference between determining that there is a
difficulty with a certain facet of a query language and determining exactly what causes

the difficulty or what must be done to fix the difficulty. In fact, studies to determine

what is causing a given problem in a language probably should be separated from those
trying to determine if a problem exists. This is because there is a different set of criteria
required to be measured for each of these tasks, and the experiments required to collect
these criteria may be mutually exclusive due to the amount of bias that the method of

testing may cause.

2. Applicable Results of Previous Human Factors Studies
The most interesting previously recorded results concerning the ease-of-use
issues of database query languages are those that deal with the procedural versus
declarative type of query specification. As noted previously, Codd uses the procedural
relational algebra approach for introducing the operations of the relational model in part

because "upon first encounter, that approach appears easier to understand;” (Codd, 1990,

124

p. 62). The performance of procedural and declarative query languages for various
different types of queries has been explored. The conclusion drawn by Welty and
Stemple from their study is that a more procedural language shows an advantage in the
formulation of more difficult queries (Welty, 1981, p. 640). The differences in use of the
procedural and non-procedural approaches most likely stem from psychological
foundations. In effect, how do humans think when composing a query? If the query
passes a certain level of logical complexity, does the human brain naturally break up the
query into easier to solve subqueries and then combine these to form the result? Another
question is "Could composition be easier with procedural languages but comprehension
be easier with specification languages?” (Schneiderman, 1978, p. 428). We concur with
Welty and Stemple’s conclusion that procedural languages are easier to use for more
complex queries. We also believe that any drawbacks to the more procedural approach
can be easily mitigated.

Another issue that has been previously explored involves the use of two-
dimensional syntax versus linear keyword languages. This issue was discussed somewhat
in the section on QBE. It appears that there is some difference in usability of the two
types of interfaces based on the actual cognitive abilities of the user. Users who
emphasize right brain visual, intuitive thinking have different preferences than users who
emphasize left brain verbal, deductive thinking (Schneiderman, 1978, p. 429). In DFQL,
the goal is to combine both the right and left brain type of thought processes to gain

maximum utility from the language for both types of users.

125

B. EXPERIMENTAL COMPARISON OF DFQL WITH SQL

In order to come up with some objective measurement of the ease-of-use of DFQL
as opposed to that of SQL, we conducted a simple human factors experiment comparing
the two languages. The data and additional details of this experiment are included in
Appendix B. In this section, we will provide a general assessment of the experiment
conducted, and a description of the results of statistical analysis of the recorded data.
This experiment is not, and was not intended to be, a rigorous comparison of DFQL and
SQL. Itis only intended to whet the appetite of the readers and researchers regarding the
utility of DFQL as a database query language, and as such provides only rough,

preliminary investigation results.

1. Assessment of the Experiment
In the experiment 26 subjects were given three queries in English based on the
relational schema of Appendix A. The subjects then coded each of the queries, first in
DFQL, and then in SQL. Each response was then graded as either "correct” or
"incorrect." The composite results were analyzed for statistical significance. We use
Reisner’s criteria for query language experiment assessment (Reisner, 1981, p. 27) to

present the details of our experiment.

a. Subjects
The experiment was conducted on 26 students taking the introductory
level database course at U. S. Naval Postgraduate School (NPS) in Monterey, California.

Students at NPS are primarily U. S. Military officers; foreign military officers and

126

Department of Defense civilian employees are also represented. Although the
composition of the student body tends to enhance homogeneity, the academic backgrounds
of students were quite varied. This is shown by the breakdown of bachelor degree areas
presented in Appendix B, Table 1. Based on bachelor degree area, subjects were
classified as having a "technical" or "non-technical" background. Subjects were also
characterized by programming experience. For analysis purposes, subjects with greater

than one year of programming experience were classified as "experienced”.

b. Teaching Method
The subjects were in the tenth week of a 12 week long introductory
database course. They had had over two weeks exposure to relational algebra, relational
calculus, and SQL from Instructor A. Instructor B made one 20 minute presentation of
DFQL accompanied by a handout describing the DFQL operators and providing some
examples of their use. Students also had written course material for the study of SQL.
The teaching time for DFQL was limited to one 20 minute session due to constraints of

the course. All 26 subjects were in a single section of the database class.

¢. Kinds of Tasks
The only kind of activity that was tested was the ability to write queries.
This limitation was due to both the constraints involved with the course and the limited

goals of the testing.

127

d. Test Questions

The three test questions were arranged in the perceived order of difficulty.
The first question (Q1) involved only selection, projection, and joining to achieve the
correct answer. The second question (Q2) required grouping and counting; although this
requires only a single operator (groupcent) in DFQL, comprehension is still somewhat
more complex than that required for Q1. The third question (Q3) required the use of the
universal quantifier and was subjectively viewed as an order of magnitude more difficult
than the first two questions. Due to time considerations, only a subset of the functions
of either language was tested. The DFQL operators nominally required for the test were:
select, project, join, groupcnt, and groupALLsatisfy. In SQL, the same queries require
use of the SELECT... FROM... WHERE clause, employing in Q2 the COUNT(*)
aggregate and in Q3 a WHERE NOT EXISTS structure. The questions were designed
to require the use of combinations of operators to solve the queries. The latter two
questions were asked in areas where the subjective belief was that DFQL is significantly
easier to use than SQL.

By providing three levels of difficulty in the questions, it was hoped that
there would be a substantive breakout in the results based on difficulty. The intention
was also to see if DFQL performed relatively better than SQL in the more difficult
queries, as one would expect from the previous work cited comparing procedural and

declarative approaches to complex querying.

128

e. Test Environment

The 30 minute test was conducted at the conclusion of the 20 minute
introductory lecture to DFQL. The testing was "open book" with subjects having their
class notes on SQL and the brief introductory notes on DFQL from the lecture. Emphasis
was placed on accuracy, but the length of the class also posed a time limit on completion.
The application that the test questions were taken from is the one that was used to present
the introductory DFQL. lecture.

Questions were based on the relational schema presented in the lecture
to ensure that all subjects had received similar exposure to the particular problem domain.
Also, this relieved the subjects from having to assimilate a new schema along with
writing the queries in the allotted 30 minute time frame. Since query writing ability and
not schema understandability was what was being measured, this seems reasonably
appropriate. It is realized that by using the same schema as the one in which DFQL

examples had been given in that the results may be slightly biased.

f. Evaluation Method
The criterion evaluated by this experiment was the number of correct
queries written by the subjects. The tests were collected and hand-graded" by the
researchers. Each question was graded as either essentially correct or incorrect.
Essentially correct answers include responses that were either completely correct or

contained a minor language or minor operand error. This taxonomy and the following

3Some particularly intriguing responses were tested on a DBMS.

129

definitions were given by Welty and Stemple (Welty, 1981, pp. 635-636). A minor
language error is a basically correct solution with a small error that would be found by
a reasonably good translator. A minor operand error is a solution with a minor error in
its data specification, such as a misspelled column name. However, a transposition of
column names (or simply use of the wrong column name) was classified as an incorrect
answer because there is no way for the grader, or computer, to determine the subject’s
intent. It is interesting that in this experiment, most of the responses were either very

close to being correct or were completely incorrect.

8. Experimenter Attitude
All attempts were made to eliminate any gross biases from the
experiment. Obviously, however, the intent was to show a difference in ease-of-use
between DFQL and SQL. Again, our experiment is not purported to be a formal
investigation of this issue but merely a preliminary gauge used to attempt to validate

some of the researchers’ subjective opinions.

2. Experiment Resuits
A detailed compilation of the experiment data and its breakdown is included
as Appendix B. In this section we provide a general discussion of the results derived
from the data taken.
The primary measurements were made based on the entire sample population.
Subjects were classified as to technical background and programming experience as

discussed above, however, these breakdowns did not show any large tendencies not

130

observed across the entire sample population. The primary metric used was the number
of questions answered correctly. This was calculated for each individual question and
also for each language as a whole. An atrained level of significance (p) for each
comparison was calculated as discussed in Section D of Appendix B. The attained level
of significance basically measures how statistically meaningful the percentage difference
in results between DFQL and SQL were for a given comparison. Confidence intervals
can also be calculated on each of the comparisons to provide a further feeling for the
significance of the reported data.

The "z-test” was used for the statistical analysis of the data. The z-test was
chosen due to both its power and its lack of assumption of a given distribution for the
data (Matloff, 1988, p. 260). By inspection of the data, and also by the nature of the
experiment, we have no outlying data points that would adversely affect the z-test. To
use the z-test we must look at the differences (d;) in number of correct answers between
one language and the other for each subject (i) rather than the individual values (X;) since
these values are not independent. Thus, when we establish confidence intervals, for
example, the interval we are talking about is the size of the difference in percent of
correct answers between DFQL and SQL. In analyzing the data we always subtract the
SQL percentage from the DFQL percentage; a difference of 20% means that DFQL
produced 20% more correct answers than SQL. The experimental results are shown in

Figure 61.

131

attained
level of

p = 0.254

p = 0.001

p = 0.015

OVERALL p = 0.001

60 80
PERCENT CORRECT

Figure 61. Experiment Results

Figure 61 shows that as the level of difficulty of the query increased a lower
percentage of correct answers were made. For the easiest query (Q1) the difference in
correct answers between DFQL and SQL was not statistically significant (p = 0.254).
However, for Q2, Q3, and the overall comparison, significant differences were recorded.
The 95% confidence interval (@ = 0.05) for the overall comparison shows DFQL
producing between 8% and 32% more comect queries than SQL. The data seem to
indicate, at least for our test criteria, that it is easier to write queries in DFQL than in

SQL.

132

3. Experiment Conclusions

The researchers’ perception that queries Q1, Q2, and Q3 were placed in order
of increasing difficulty is validated. On the easiest query, there was no significant
difference in the number of correct answers achieved by the subjects whether using DFQL
or SQL. DFQL produced a significantly higher percentage of correct answers on the
more difficult queries. An interesting sidelight to this fact is that of all attempted answers
for Q3 there was only one SQL answer that was even "close" to being considered correct;
there were five correct DFQL responses to Q3 and several more that were "close” to
correct. The subjects who formed "close” answers to Q3 in DFQL had a correct DFQL
structure for the query, but appeared to mistakenly use either a wrong table or attribute
name as an argument in their query.

Both Q2 and Q3 were designed to test areas that are intended to be strengths
of DFQL. For example, Q2 requires use of the GROUP BY clause in SQL, whereas it
can be coded with a single operator (groupcent) in DFQL. This can help to explain the
large difference in performance on Q2 (a = 0.05 confidence interval for Q2 shows the
difference between DFQL and SQL. is [18%, 5%]). Q3 involves universal quantification,
which has been previously noted as one of the most difficult concepts to code in SQL.
DFQL provides the grouping operators, especially groupALLsatisfy, in order to deal with
universal quantification. One could say that by testing queries in which DFQL has
specific operators provided does not allow a fair comparison of the two languages.
However, part of the idea of the experiment was to test areas where DFQL should be

casier to use because of its operator set. Q2 and Q3 help to validate this claim.

133

C. ADVANTAGES OF DFQL

DFQL’s advantages accrue from the combination of its visual representation, its
dataflow structure, and its operator set. The combination of these three characteristics
make DFQL unique as a query language and provide it with a unique ability to easily
express both simple and complex queries in an intuitive manner. Following is the list of

advantages that stem from the DFQL approach.

1. Power

DFQL is relationally complete, and extends the capabilities of first-order predicate
logic by the inclusion of grouping operators for both comparison functions and
aggregation. The functionality provideci directly through the use of the grouping operators
was demonstrated in the simple human factors experiment that was conducted and
described above. The provided set of primitive operators gives the user the capability of
coding practically any desired query.

2. Extensibility

The power of DFQL is enhanced by its ease of extensibility. The user may

extend the DFQL language by coding his own user-defined operators from the set of
provided primitive operators and also from his own previously created user-defined
operators. The user-defined operators are constructed in a manner that fully supports
relational operational closure and, once defined, are completely orthogonal with the
provided primitive operators. By employing user-defined operators, common operations

for any given user can be provided at whatever level of abstraction is desired.

134

3. Ease-Of-Use

a. Dataflow Representation

Dataflow diagrams were developed to aid in the design of computer
programs by providing an easy to use and understand approach to problems that can be
functionally defined. DFQL extends this idea to database query languages. A dataflow
diagram has the capability, especially when using levels of abstraction (as implemented
in DFQL through user-defined operators), to represent even complex problems in an
intuitive manner. In DFQL relations as visualized as objects flowing from one operator
to another. This ability to view relations as abstract entities directly contributes to the
ease-of-use of DFQL. Providing the computer with a dataflow style query graph also
enhances its ability to optimize the query for the best possible performance. The human
factors experiment conducted provides some data on the ease-of-use of DFQL in writing
queries and in subjects’ ability to easily pick up the concepts embodied in DFQL. We
believe that, at least compared to SQL, DFQL is also easy to read and that the concepts,

once learned, are easy to remember.

b. Orthogonality
DFQL provides consistency, predictability and naturalness through use
of complete orthogonality of operators. This orthogonality makes the language both
syntactically and semantically easier to use. Since relational functional closure is
en‘orced, the user can be assured that the result of any operator will be a relation that can

then be used as an argument to other operators if desired. Orthogonality is even enforced

135

in the construction of user-defined operators. The orthogonal features combined with the
idea of relations flowing between the operators improve the user’s ability to write error-

free queres.

¢. Incremental Query Formulation and Execution

The ability to form and modify queries incrementally is one of DFQL’s
most important ease-of-use features. Incremental querying is directly supported by the
dataflow structure of DFQL since each dataflow represents an actual relation that can be
displaved as a partial result for the user. Intermediate query results can be displayed by
use of multiple display statements. Intermediate results may also be obtained by selecting
a DFQL operator in the query and then running the query up to that point. Partial results
can be returned from any point in a given query and used to help verify or debug the
query. Queries can easily be constructed incrementally because of the operational closure
of all of the DFQL operators. Since the output of an operator must be a relaton, the
result of a DFQL operator may always be combined with another DFQL operator to form
a more complex query. Subqueries can be coded as user-defined operators if desired to
ghcapsulate the incremental development of complex queries. The combination of all of

these features definitely aids the user in the construction of correct queries.

4. Visual Interface
Although the visual interface could be classified along with the other ease-of-
use issues, it is so intrinsic to DFQL that it is mentioned separately. The idea of using

dataflow diagrams to represent queries has been discussed; the key to the impiementation

136

of DFQL is the ability for the user to easily and interactively build and modify the DFQL
dataflow style queries. Allowing the user to interactively manipulate the DFQL query on
the computer screen gives a spatial or two-dimensional representation of the query that
is lacking from any textual query language. By providing an easy to use interface, DFQL
encourages the user to incrementally construct queries, use intermediate results, and in
general take advantage of all of the benefits provided by the dataflow approach to query
construction. Without a convenient visual user interface none of these benefits would be

realized.

D. SHORTCOMINGS OF THE DFQL CONCEPT

We differentiate here between shortcomings in the concept of DFQL and
shortcomings in the current implementation. For example, the current implementation of
DFQL does not have its own data definition language (DDL) but relies on the underlying
relational DBMS for this capability. This is a shortcoming in the present implementation,
not a shortcoming in the concept. Problems with the current implementation are

discussed in detail in the Future Work section of the following chapter.

1. Interface Problems
One of the most important requirements for a successful implementation of
DFQL is the provision of an adequate user interface. The problems we see in this area
are typical of problems seen in most visually oriented applications today. The size of the
display limits the number of visual objects that can be on the screen at any one time.

There may be a corollary here to the "no more than one page of code per procedure” rule

137

commonly touted in programming language circles. However, by using reasonable sized
visual objects an average (say 14") screen becomes cluttered rapidly. In the current
implementation of DFQL an attempt is made at mitigating this problem by allowing the
drawing area to be scrolled both left and right and up and down. This allows more
DFQL code to be "on the system" at the same time but is cumbersome. The user loses
the advantage of being able to sit and look at the query as a whole when it must be
scrolled back and forth. Another visual problem occurs when there are very many
dataflows present in a single query. The dataflow lines invariably become multiply
crossed leading to a difficult to follow DFQL diagram. A solution to both of these
problems lies in utilizing user-defined operators to their fuilest. When the screen becomes
too cluttered, encapsulate some portion of it into a user-defined operator. This solution
is still only partial, however. Text items for example take up an inordinate amount of
space on the screen at any level of abstraction. However, it is difficult to come up with

a more compact and convenient way to represent things like complex logical conditions.

2. Language Problems
As a whole, we believe that the DFQL language concept is sound. Dataflow
programming is based on ideas that have been in use for snpme time and are generally
accepted as easy to understand and use. We have shown that a working model of DFQL
can be interfaced to an existing relational database and that the construction of DFQL
queries can be performed after a minimal exposure to the language.
A problem stemming from DFQL’s intense visual orientation is the ability to

use DFQL in conjunction with other textual computer languages. DFQL queries could

138

be compiled and inserted into textual programs as functions, however this provides no
good way of actually looking at the DFQL code in the context of the program. Such an
ability is a common attribute of most embedded query languages. A possible solution to
this problem would be a textual translation of DFQL which maintains the dataflow
paradigm but generates linear text as its interpretation. This would fit in more easily with
another textual language but there would still be some impedance mismatch in the idea
being represented. The text translation of DFQL would still be a daraflow oriented object
(with all of the implications of non-deterministic execution, etc.) whereas the program it
would be embedded into would in most cases be purely procedural/sequential.

There are several other items that could be considered "language problems.”
These problems though stem from the state of the current implementation and are thus

discussed in the Future Work section of the following chapter.

139

V. CONCLUSIONS

A. REVIEW OF THE RESEARCH

There currently exists a need for an improved query language for the relational
model of database management. This new query language is required to allow users to
better harness the inherent power of the relational model. In this research we have
designed, implemented, and tested a graphical dataflow query language, DFQL, to meet
this need.

DFQL was first conceived on paper. Actual implementation was then performed
using the Prograph visual dataflow programming language on a Macintosh Il/ci computer.
ORACLE was used for the backend database. DFQL has been run on a local database
established on the Macintosh and also on a remote database by access over an Ethernet
network. DFQL has proven to be a workable query language with many benefits over

the current de facto standard SQL.

B. FUTURE RESEARCH
The development and implementation of DFQL has brought to light several areas
where further research and development needs to be done. These areas relate primarily

either to implementation enhancement or theoretical investigation.

140

1. Implementation Enhancement

The current connection of DFQL to the backend database is through the use
of file passing and batch execution. A possible improvement in performance could be
gained through direct connection of DFQL to the backend DBMS. This could be done
by using an interface class to provide the connection between DFQL and the DBMS.
The interface class would utilize the necessary API’s to communicate with whatever
backend database was being used. Another approach to direct connection of DFQL to a
database would be for the backend database to be written in Prograph, specifically for
DFQL. It is possible that a Prograph backend database could further increase
performance, but this would place a needless restriction on the implementation. The
ability of the DFQL interpreter to run on top of any currently existing database (as long
as API’s can be provided) is viewed as a very important point. Investigation needs to be
done to determine exactly how much efficiency would be improved by use of a Prograph
backend database before this option is considered.

Further development can be put into the design of the user interface. Several
enhancements could be made to the DFQL drawing area. For example, allowing the user
to create new DFQL objects simply by clicking the mouse and allowing the entering of
text right on the screen would be improvements. The method of partial query execution
could be changed to allow the partial query to be executed simply by double clicking the
mouse on the output of an operator. Many good user interface ideas can be identified in
the design of the Prograph editor, some of these ideas (such as those above) could be

incorporated into the DFQL user interface.

141

Currently, the Info menu is limited to providing the column names of the
tables in the current database. Enhancements in this area of the user interface would
include the ability to display the schema for the user and possibly even provide as
previously coded user-defined operators for the commonly executed joins that represent
relationships in the schema. Rather than having to type in the name of the relation
desired, the user could pick a mini-icon off the schema diagram that would represent a
given relation. This would somewhat alleviate the problem of crowding the DFQL
drawing area with text information.

The current implementation of DFQL provides only data retrieval capabilities,
thus requiring the user to directly access the backend DBMS for other functions. Another
enhancement to DFQL should provide data definition capabilities and also an enlarged
scope of query activities to include database updates and deletions. Inclusion of these

features will make DFQL a complete database language.

2. Theoretical Investigation

Much work can be done in the area of optimization of the query graph. Since
DFQL implements queries as a graph of relatively low level operations, many of these
operations should be able to be combined and reordered tc maximize efficiency. The
optimization idea harks back to Dadashzadeh’s work in translating SQL into a relational
algebra graph in order to help with optimization (Dadashzadeh, 1990, p. 308). In the case
of DFQL, a query graph is present at the outset, all that remains is to optimize it.

The DFQL primitive operator set can be expanded. Possible candidates for

inclusion into the operator set would be relational operations such as inner and outer join.

142

Also, additional grouping operators such as group containment could be implemented.
Further study is needed to determine if these and possibly other operators are of such
convenience (or necessity) that they should be provided for the users.

A possible extension to the language would be to allow it to handle relational
valued attributes or even objects in its relations. An extension of this type should
maintain the ideas of the relational model for which DFQL was designed. In order to
expand the language in this manner further consideration will need to be given to the type
of backend database that DFQL will be connected to. Handling relationally valued
attributes or other objects is not supported by current relational DBMS’s. To implement
this in DFQL would require DFQL to map these complex structures to a current DBMS
or use a new backend DBMS designed specifically to handle these types of constructs.
This type of extension would represent a major change in the scope of DFQL.

Lastly, further human factors analysis should be conducted on the DFQL
language. The goal of this analysis should be to quantify the ease-of-use of DFQL both
in an absolute sense and also in comparison to other currently used query languages. The
experiment conducted as part of this thesis was cursory in nature. More in-depth analysis
of DFQL’s performance to include a variety of environments, subjects, query types, and
comparison languages should be done to validate our feelings about DFQL’s superiority

as a database query language.

143

C. SUMMARY

DFQL was created in order to provide an improved interface to the relational model
of database management. DFQL presents an entirely new way of visualizing database
queries. DFQL’s dataflow structure and orthogonality greatly aid the user in the
composition of complex queries. DFQL allows users the ability to easily extend the
language by the creation of user-defined operators. These user-defined operators can then
be used to simplify queries by introducing levels of abstraction, effectively hiding detailed
query operations. We conducted a simple human factors experiment, in which DFQL
compared favorably to SQL for use in query writing.

While there have been other attempts at producing graphical type interfaces to
database systems, none embodies the powerful features that have been designed into
DFQL. The unique combination of a visual interface, the dataflow programming
paradigm, and the relational model make DFQL a superior choice for continued research

and implementation.

144

LIST OF REFERENCES

Abiteboul, S., and Hull, R, "I[FO: A Formal Semantic Database Model," ACM
Transactions on Database Systems, v. 12, pp. 525-565, December 1987.

Andyne Computing Limited, GOL: Graphical Query Language; GQL/User Demo Guide,
Kingston, Ontario, March 1991.

Angelaccio, M., Catarci, T., and Santucci, G., "QBD*: A Graphical Query Language with
Recursion," IEEE Transactions on Software Engineering, v. 16, pp. 1150-1163, October
1990.

Apple Computer, Inc.. Inside Macintosh, v. 1. Addison-Wesley, 1985.
Beech, D., "New Life for SQL," Datamation, v. 35, pp. 29-36, 1 February 1989.

Bryce, D., and Hull, R., "SNAP: A Graphics-based Schema Manager," Proceedings of the
Second IEEE International Conference on Data Engineering, pp. 151-164, February 1986.

Chamberlin, D. D., and Boyce, R. F., "SEQUEL: A Structured English Query Language,"
Proceedings of the ACM--SIGFIDET Workshop, Ann Arbor, Michigan, May 1974,

Chen, P. P, "The Entity-Relationship Model -- Toward a Unified View of Data," ACM
Transactions on Database Systems, v. 1, March 1976.

Codd, E. F., "Relational Completeness of Data Base Sublanguages" in Data Base Systems,
pp. 65-98, Prentice-Hall, 1972.

Codd, E. F., "Fatal Flaws in SQL: Part 1," Datamation, v. 34, pp. 45-48, 15 August 1988.

Codd, E. F., "Fatal Flaws in SQL: Part 1," Datamation, v. 34, pp. 71-74, 1 September
1988.

Codd, E. F., The Relational Model for Database Management: Version 2, Addison-
Wesley, 1990.

Czejdo, B., and others, "A Graphical Data Manipulation Language for an Extended
Entity-Relationship Model," IEEE Computer, v. 23, pp. 26-36, March 1990.

145

Dadashzadeh, M., "An Improved Division Operator for Relational Algebra,” /nformation
Systems, v. 14, pp. 431-437, 1989.

Dadashzadeh, M., and Stemple, D., "Converting SQL queries into relational algebra,”
Information & Management, v. 19, pp. 307-323, December 1990.

Date, C. J., "Where SQL Falls Short," Datamation, v. 33, pp. 83-86, 1 May 1987.

Davis, A. L., and Keller, R. M., "Data Flow Program Graphs," IEEE Computer, v. 15, pp.
26-41, February 1982.

Elmasri, R., and Navathe, S. B., Fundamentals of Database Systems,
Benjamin/Cummings, 1989.

IBM Research Report RC 16877 (#73833), GRAQULA: A Graphical Query Language for
Entity-Relationship or Relational Databases, by Sockut, G. H., and others, 14 March
1991.

Kim, H., Korth, H. F., and Silberschatz, A., "PICASSO: A Graphical Query Language,"
Software-Practice and Experience, v. 18(3), pp. 169-203, March 1988.

Kim, W., "On Optimizing an SQL-like Nested Query," ACM Transactions On Database
Systems, v. 7, 1982.

Matloff, N. S., Probability Modeling and Computer Simulation: Applied to Engineering
and Computer Science, PWS-KENT Publishing Co., 1988.

Miyao, J., and others, "Design of a High Level Query Language for End Users,” paper
presented at the 1986 IEEE Workshop on Languages for Automation, National University
of Singapore, Kent Ridge, Singapore, 27-29 August 1986.

Negri, M., Pelagatti, G., and Sbattela, L., “Short Notes: Semantics and Problems of
Universal Quantification in SQL,"” The Computer Journal, v. 32, pp. 90, 91, 1989.

Ozsoyoglu, G., and Wang, H., "A Relational Calculus with Set Operators, Its Safety, and
Equivalent Graphical Languages," IEEE Transactions on Software Engineering, v. 15, pp.
1038-1052, September 1989.

Ozsoyoglu, G., Matos, V., and Ozsoyogiu, Z. "Query Processing Techniques in the

Summary-Table-By-Example Database Query Language,” ACM Transactions on Database
Systems, v. 14, pp. 526-573, December 1989.

146

Reisner, P., "Human Factors Studies of Database Query Languages: A Survey and
Assessment," Computing Surveys, v. 13, pp. 13-31, March 1981.

Sebesta, R. W., Concepts of Programming Languages, Benjamin Cummings, 1989.

Schneiderman, B., "Improving the Human Factors Aspect of Database Interactions,” ACM
Transactions on Database Systems, v. 3, pp. 417-439, December 1978.

Shu, N. C,, Visual Programming, Van Nostrand Reinhold, 1988.

TGSS (The Gunakara Sun Systems Limited), PROGRAPH: Tutorial, second printing,
1990.

TGSS (The Gunakara Sun Systems Limited), PROGRAPH: Reference, second printing,
1990.

Washington University Department of Computer Science, WUCS-86-5, Determinancy of
Hierarchical Dataflow Model: A Computation Model for Visual Programming, Kimura,
T. D., March 1986.

Wegner, P., "Dimensions of Object-Based Language Design," OOPSLA ’'87 Proceedings,
October 1987, Orlando, Florida; special issue of SIGPLAN Notices, v. 22, December
1987, pp. 168-182.

Welty, C., and Stemple, D. W., "Human Factors Comparison of a Procedural and a
Nonprocedural Query Language,” ACM Transactions on Database Systems, v. 6, pp. 626-
649, December 1981.

Wong, H. K. T., and Kuo, I, "GUIDE: Graphical User Interface for Database
Exploration,” Proceedings of the Eighth International Conference on Very Large
Databases, pp. 22-32, September 1982.

Wu, C. T., "OOP + Visual Dataflow Diagram = Prograph,” Journal of Object Oriented
Programming, pp. 71-75, June 1991.

Yourdon, E., Modern Structured Analysis, Prentice-Hall, 1989.

Zloof, M. M,, "Query-by-Example: A Data Base Language,” IBM Systems Journal, v. 16,
pp. 324-343, 1977.

147

APPENDIX A. EXAMPLE DATABASE

The schema and data for the database referenced by the examples in the text is
included here. Most of the relationships between the data should be apparent. The
intention is to represent a simple university database in which students are enrolled in
courses taught by instructors. An Entity-Relationship Diagram of the database is shown

in Figure 2 of the thesis (p. 21).

The relational schema is listed below. In the schema representation, keys are
underlined.
COURSE(CNO, TITLE, INO)
ENROLL(CNO, SNO, GRADE, TESTSCORE)
INSTRUCTOR(INO, INAME, PAY)
STUDENT(SNO, SNAME, ADDR, PHONE, GPA)
Attribute definitions:

ADDR -- Address

CNO -- Course Number, unique to a single course
GPA -- Grade Point Average

GRADE -- Course Grade (CA’, 'B’, 'C’, etc.)

INAME -- Instructor Name

INO -- Instructor Number, unique to a single instructor
PAY -- Instructor’s Pay

PHONE -- Phone Number

SNAME -- Student Name

SNO -- Student Number, unique to a single student
TESTSCORE -- Numerical Grade for an exam in a course
TITLE -- Name of a Course

148

The example data in the database is listed below.

COURSE j CNO

COURSE # 5
COURSE #10
COURSE #15
COURSE #20
COURSE #25

ENROLL § SNO | CNO | GRADE | TESTSCORE

A
C
A
A
A
A
B
A
A
B
A
C
B
A

149

INSTRUCTOR § INO | INAME PAY

INST #1
INST #2
INST #3

50000.00
47380.78

STUDENT § SNO

111-1111
111-1111
333-3333
444-4444
555-5555

150

APPENDIX B. HUMAN FACTORS EXPERIMENT DATA

Three queries in english were posed to a group of 26 computer science students at
Naval Postgraduate School. The subjects were asked to write each query first in DFQL
and then in SQL. These queries were based on the relational schema of Appendix A.
While all subjects were computer science master’s degree students, there was some
variation in their background. Each individual was categorized by technical background
(based on their bachelor’s degree) and programming experience (whether greater than one
year).
A. Queries

Q1. List courses (cno) taught by those who earn more than 50K.

Q2. For each instructor, list the number of courses he taught.

Q3. List all instructors (ino) who gave only A’s in all the courses they
taught.

151

B. Definition of Technical Background

Bachelor degree areas were classified as technical or non-technical as shown in

Table L
Table I. SUBJECT BACKGROUND
TECHNICAL NON-TECHNICAL
Applied Science Accounting
Chemical Engineering Bible Studies
Chemistry _Business Administration
Computer Science Journalism
Control Systems Liberal Arts
Electrical Engineering Political Science
General Engineering Production System Mgmt
Mathematics Zoology
Mechanical
Natural Science
Petroleum Geology
Physical Science
C. Data

The data that was collected from the experiment is listed in Table II. Subjects are
listed numerically from 1 to 26. Individual performance on each query is listed for DFQL
and SQL. A "0" indicates an incorrect answer, and a "1" indicates a correct answer.
Summary percentages for each question and each language are included at the bottom of

the table.

152

Table II. Collected Data

53

1

Percent Correct

D. Analysis

The analysis of our data is predicated on the knowledge that our sample size is both
small and rather homogeneous. Practically all students at Naval Postgraduate school are
either military officers or civilian Department of Defense employees. Homogeneity is
increased by using only computer science students for our sample (although at Naval
Postgraduate School many computer science students come from dissimilar backgrounds
as shown in Table I). The test given was limited to six questions due to time
considerations. Within the restrictions implied by the preceding constraints, we have
produced statistically significant results.

Confidence intervals and levels of significance were established for the data using
the "z-test." Since the same subjects were used to test both DFQL and SQL on the same
queries the values are not independent. Because of this the z-test was used on the
difference (d)) between the number of correct answers for DFQL (X,) and SQL (X 55,)
for each subject (i). The same analysis is done also for each question individually.

The null hypothesis, H,, for the level of significance testing, is that there was no
difference in the average number of correct answers between DFQL and SQL. The
alternative hypothesis, H,, is that DFQL produced a higher average number of correct

results than SQL.

154

Equations Used in Analysis

(1) Difference

(2) Mean Difference

(3) Sample Variance

(4) Confidence Interval

(5) Hypotheses

(6) Observed Significance Level

155

d,=X, proL™ X, soL

F. Breakdown by Category

Since the percentage differences between DFQL and SQL for all categories were
nearly similar and the number of subjects in individual categories was small (due to small
overall sample size), as shown above in Table III, detailed statistical analysis was

performed only on the total sample data. In the technical/non-technical category there

Table IIl. PERCENT CORRECT BY CATEGORY

% CORRECT

CATEGORY

Technical
Non-Techmcal

Expcncncc >lyr

Expcncncc <lyr

T T R

was a difference of approximately 10% in both the DFQL and SQL percentages. In the
experience category there was a difference of approximately 10% in the DFQL scores and
only 4% in the SQL percentages. While the 4% is not in itself statistically significant,
a possible explanation for the discrepancy is that the technical background factor may
have been more important than the programming experience factor' in the ability to use

SQL. There were subjects with technical background in the experience < 1 yr category.

“None of the subjects could be classified as professional programmers.

156

This would imply that DFQL was easier to use for the non-technical background people

than SQL. There is not enough data to support this statement statistically.

157

APPENDIX C. DFQL SOURCE CODE
This appendix lists the meanings of some of the more common Prograph
programming notations. The DFQL interpreter class hierarchy is included along with the
attributes and methods for each class. The top level methods are shown for each class.

Methods provided by Prograph as part of the Prograph system classes are not listed.

158

2272222777777 77777773 rrethod input bar

7
/method’

Constant

MATCH l:l

Q
PERSISTENTZ)
Q

Q
@Instance Generator%
[=]

Q
YGet AttributeZ]
[=} [=]

Q [«]
&Set Attribute’4
[~}

I%ocal methodZJ

|8XY]

SSLSILSSLSLSSSLSL LSS LSS IS S S LSS TS Y

Takes inputs and produces outputs as defined.

Passes value of Constant 3s output.

Results in a trye or false condition depending on
whether input “matches” the MATCH value. This
condition determines the effect of the control -~
ie. next case, etc.

Pass in a value to set the Persistent.
Output produces current value of Persistent.

Create instance of type named.

input: object (for instance variables), class name
(for class variables)
Output: left -- passes through input, right value
of attribute named in the get

input: left -~ object or class name, right -- new value
Output: Object with new named attribute reset to
new value (or class name if a class variable
was set.

Used to encapsulate operations in a method (like a
sub method).

Evaluate method. Pass in variables (which are then named
a, b, ¢, etc.) and use them in the equation producing
an output.

output bar

...

v sound

sound

2geoa

play sucesnd

sound/play 1:1

sl il Ll ddiddddddlsds

if the Sound option

is checked plays the sound
that is indicated by the
input resource #.

e e il s dddd e d il il e dddddadd

sound/doclose 1:1

N i e il ddlild

ZFSOClose Z

Closes the Farralon Sound
Driver

[csrnisiiisiiissosiiridaniniss s]

sound/doopen 1:1

Nl i el i il add e L dd el s

TRUE FALSE

sound/succsnd 1:2

N i e L Ll dd il
-

" SQLSUCCESS is TRUE play
the success sound and then reset
SQLSUCCESS 1o FALSE.

SQLSUCCESS

SLLLL LSS AT SIS IS SIS SIS LIS A S s

sound/succsnd 2:2

s Ll Ll il dddd

v file

“untitted®

currtile
TRUE

changetiag

@& rite

new save open... save... openloop

& &

losdit savelt savewarning setssvemenu resdtext

file/setsavemenu 1:1

Nl Ll il ddldd il ddddddd

A Update the File menu Save menuitern
pp"ﬂlon with the name of the current file.

file

LALLS SIS IIISILS SIS IS SIS IS SIS IS s

file/new 1:1

” Calisd in response 1o the
lisavewarning AX) New menu item in the
- File menu. Resets DFQL
L/
m and sets current file to

“untitied®.
ol

tile ¥ yuntitied
-

e il e dddddddd

file/savewarning 1:1

L L LS

if the user has made changes
that have not been saved as
indicated by changeflag
being true. Warn him that
what ever he is going to do
will cause these changes to

be lost.
[Zr2prsrr000000 2000000007000 0007
file/saveit 1:2
filename vol#

N e e Ll e L s

First backup the file if possible, and then save
the data from areclist into filename on vol#.

G e L D

file/soveit 2:2

RS

filename vols

If the backup operation failed, then don't
save the new file because it could write
over our previous data without having that
data backed up.

The error messages for failed backup are
all contained in the mkbackup local method.

e L L a d d d ke i e 2D

file/loadit 1:1

filename volume
sl o dd L Ll LS

Load the data from the

specified file. Processioad
updates the gdbobijlist and window
or reports on any errors that
wers generated by the load.

{Eprocessioad 1]
P e L s d ke Ll

file/save... t:1

Save the data into
Hie the file entered by the user through

the put-file dialog.
"Save as: " currfliie

put-file

NULL |:’

//savelt

rsrcrrinirisiimniiisesisissinsssss]

file/open... 1:1

N Ll Ll didu st ledd

After verifying the user's intentions
(if there have been any changes 1o

the original query) on what to

do with the current query, puts up the
get-file dialog to allow the user to
pick or enter a file to load, then

if it was a valid file load gdbobijlist
from it.

SLTLI LSS A SIS SRS S SIS SIS IS s,

file/save 1:1

Q2222 27222220
Save the data from gdbobijlist into the
currfile.

file/openioop 1:1

L s £ ddd s Ll dlddaldds

To be called repetitively

10 open a file. Will ioop
until the file is opened.
DANGEROUS to use if the
file requestad may not
become available. This will
then loop foraver.

P a5 dddddd e ddld)

file/readtext 1:1

QL e L idiidds

Reads ONE line from a file.
Trims wailing blanks and
adds a carriage return.
Outputs a string.

P2t R0 hhdadd il s Llhddddddddddd

Y dtqiprint

NAL Machosh
V print recoed

dfqiprint

plekprint resultprint draw page prisetup

dfqlprint/prisetup 1:1

Change the setup for
the printer record
for DFQL printouts.

Qe e il daddhadddd e dddiddd

—p“

dfqlprint/drew page 1:2

g

This case draws the DB INTERFACE canvas
contents on the printer.

V:gdbobl/drawit 4

DB INTERFACE |x]

YL el dd L LD

dfglprint/drew page 2:2

This is the view operator cass.
Draws the View operaior canvas
contents on the printer.

DISPLAYOPR

(Esrawipbar ||

] .

V.gdbobj/drawrtconnects

3

7

P il aed A L

dfqlprint/pickprint 1:1

Nl i dddddd el dd

Based on what is currently
the front window, call the

appropriate print method.

dfqiprint/resultprint 1:1

LSS LIS ESLLES PSS OIS TSI/

Uses the Prograph print-text
primitive to print the contents
of the result window.,

Applicstion

L L el d i adddd 4ddd

dfqlprint/resuiltprint 1:1

§1. Query Results
§2. Query Results

V Printer

NAL Msonwosh
v pant recoed
pree

Printer

initialize printer instance

CALL THIS METHOD FROM INITIAL

PROGRAM AND DEFINITELY BEFORE
<<»» ANY PRINTING

check and report —j]
print errors rj | .
page size

count pages

bagin the print pro.~ss
CALL THIS METHOD WHEN YOU
WANT TO PRINT, THAT IS IN

MENU [TEM

dispose of print sti...ures
CALL THIS METHOD BEFORE

=z ALLOWING A PRINTER INSTANCE
dispose TO BE GARBAGED

returns page size

a rectangle

draw page

0 bring up the page setup dialog
EI] CALL THIS METHOD IN
ray) RESPONSE TO THE Page Setwp...

RESPONSE TO THE Print... pasge setup MENUITEM

Printer class PROVIDED by TGSS.

Printer/page size 1:2

oot imresipnennirs s

<<Printer>>

e L e L e L L AR

Printer/page size 2:2

0 0 0 g) Oefauit page
sI1ze
Printer/dispose 1:1
L]
<<Printer>>

get print
record

Printer/count pages 1:1

22 2 720 227D

<<Printer>> page size
rectangle

OVERSHADOW THIS METHOD
TO DETERMINE PAGE COUNT
BASED ON PAGE SIZE

1

S S—

gdbobj

o

drawlt mydraw myclick doerase dodraw centerrect drawrtconnects

dodrawall drawsllob] delete deselect drawinputbar ersssinputbar

drawirects

Iinvert

gdbob j/drawirects 1:1

Nl d i didds

Draws nodes on the input bar.
Used from user-defined operators.

P Ll L Ll

gdbobj/eraseinputbar 1:1

Ll Ll lidd

Erases the input bar from the canvas. Usad at
the termination of user defined ops screens.

[l el Lkl

gdbobj/deselect 1:}

e Ll e L LD

Deselects ail selected objects in
gebobilist.

gdbobj/delete 1:1

Ll Ll d L Llls

Executed in response to the
Deiete menu item. Goes through
gdbobilist and deietes all selected
objects. After deletions redraws
the canvas and then turng off the
select option.

L il i d

gdbobj/centerrect 1:1

L s Ll il dddls

Calcuiates the center point (horiz)
of input rectangle.

gdbobj/mydrew 1:1

Sets up to draw an individual gbdtext or gbdopr

gdbobj by setting the canvas
10 draw on.

gdbob j/drawit 1:1

Draws all cbjects in the
DB INTERFACE canvas.

-

/drawrtconnects

&
&
&
&

Fiocorawnputbar 4]

2272 72222 22222222

gdbob j/myclick 1:5

Nl il ddd Ll dddd
5 . - .

333,’.’ LY

@Itlallu poumont:a

ob' number

Handies clicks on the BODY of
gdbobj objects.

B L il dd i d s dd

gdbob j/myclick 2:5

L e Ll e Ll Ls
window A event rec

Click on a wrminal
(input node)

[l Ll d el ldddn Ll dd il adddddadd

gdbob j/myclick 3:5

R Ll dddds
window . svent rec

sOQ¥ insts

T)

Handles click if on a
root (output node).

Pl il il i dd il

gdbob j/myclick 4:5

N i s i ik LUl
window Ry event rec

utbarclick 31

Handla click on the
input bar. (From add user
operator state.)

Ukl ad il a el s d el

(Faoin

gdbob j/myclick 5:5

s

window canvas point event rec

Zlnltlnllu ponlston@

H click anywhere in

blank space reset the

line drawing persistents.
This will turn off lines
that the user doesn't want
to connect anymore.

e i L d d da da Lkl

gdqbob j/doerase 1:1

SYISISIIIILLS I SIS IS SIS IS 1SS I AS S

obj number

Erases the object based on the
object number (the POSITION of
the object in the list) NOT based
on the instance number.

Pl e il ddad il

gdbob j/dodraw 1:1

Nl L Ll Ll dd
Draws an object based on

numerical position in the
gdbobijlist.

Ll e kD

gdbobj/drawrtconnects 1:1

N e sl L P

Draws all connecting lines from the
root of an input object.

e s Lkl

gdbob j/dodrewall 1:1

getcanvas 4 Dtaws all objects in the DB INTERFACE canvas.
Z

Qi h il L Ll ddddd

gdbob j/drawallobj 1:1

Ll Ll Ll dd il dddddidddidd

Draws all objects only.
NOT lines.

Qi Ll d il dd il ddd

gdbobj/drawinputbar 1:1

Ll il dd il il dddds

Draws the input bar for the user-defined
OpSeTalors screens.

[l b il ddldd addddd dd i dadddd

gdbobj/invert 1:2

Nl lidh dd il dddd bl Llls

Inverts the color of an object if
the object is selected.

Uses an inset first so that the
comers of the object remain to
enhance the appsarance.

L3 ‘

7
InvertRoundRect Z
Bl A Ll L L A L Lkl 2

gdbobj/invert 2:2

L cierrid i

Pl L L LR

V gdbtext

®

adbebjiiet
]

®

v

inetnum
[]

v

dopondnum
{Wo2e0..

reetrest
feg200)

) o0thet 18 ™e ket
v of connechons 1 he

ro0t
rootilel erum terminus
v

restvatus
v

selested?

textetring

\

dispetring

)

gdbtext

create setterms caicrects drawobj edittextobj drawtconnects makeadbobj

gdbtext/makeadbobj 1:1

LLLLISLISIS IS IS SIS IS SIS L IS S 117

Converts gdbtext to adbtext object for
query graph.

This creation is all done with explicit

gets and sets (rather than inst-to-list and
list-to-inst) in order to ensure that it is not
dependent on position of the atributes

in the lists.

@boby-udbob{%

P kL Ll

gdbtexrt/drawtconnects 1:1

R gD

pass in jext obj
do nothing since
it has no terminais

e Ll s L L e L s L

gdbtext/dreawobj 1:1

N a3

Draws the text object including its
root. Uses appiFont for the text of
the object.

gdbtext/setterms 1:1

L e el Ll ik dddd
. 5 0

Included to correspond o
method of same name in gdbopr
10 allow data deermined
reference.

Pl ddddldddddd

gdbtext/create 1:1

W Creates a gdbtext object. Iritiallizes instnum to the next sequential

window button event instnum as indicated by lastinst. Truncates text for display based
§1 on the vaive of TXTDISPLGTH. When done with initialization
- draws the new text object.

| S A A AN AP SN 7.4

gdbtext/create 1:1

§1. Please enter your text.

gdbtext/calcrects 1:1

., -

Cakuiates the body and root rectangle
for gdbtext objects.

L A L L

gdbtext/edittextobj 1:1

N i L ildld

object number Allows editing of text cbject. Erases

°db°b old object, gets new text from the ask
Q W statement caiculates the new values
for the ractangies (since the size of
T~) the text string may have changed) and
m then redraws the object with the new

text.
, obj number

<’}
%4
§

2

adbobjiist 2
SIISSS IS SIS IS TSI I SRS SIS SIS SIS /.

§1. You may edit the string below.
§2. (0 0 3200 3200}

V gddepr

&

sdbebjiiet

|l.|°®|l.'

of connectiors © he
((nowm wrwnan))

roodist is the Het
o0t

\A

FALSE

v
selested?

6
oprame

wrmingl connections 10 opr
((vt from oby wamum) ...)

%

@D gdbopr

create drawobj mkirmist setterms calcrects drawtconnects maekeadbobj

gdbopr/drawtconnects 1:1

N L L Ll P D

Draws ail conecting lines from
each terminal of an input object

gdbopr/create 1:1

window button event
277 Creates gdbopr. Caiculates rectangies for
. h : body root and terminais. Arity of operator
determined by getarity local. Draws new op

in default position (upper left comer of canvas).

adbobjiist 4

Printer/draw page 1:1

D

<<Printer>> Page size page number
rectangie

OVERSHADOW THIS METHOD
TO DRAW THE CONTENTS
OF YOUR PRINT PAGE

Ll L da il il dd

Printer/page setup 1:1

222 277222020

<<Printer>>

Zpropan) SPor, P
driver

Gilrepori[X) heck to
’u errors

% . check for

-

A
o
driver

QL L ddd LD

Printer/print 1:1

R . T2

<<Printer>>

l

L L Ak R

Printer/report 1:1

§1. Printer Error M\

@ Printer/<o 1:1

<<Printer>>
bl
= driver

~
~
! 1eport AX
bl
~
-

check for
print error

aver o
driver

i e P Ll il i dddddadd

V gdbod)

(copitoprs>_..

&

%

v

dapondnum
{20020 ..

restrest
foo200}

solested?

-

=% 10
A\ R
,a Z Fumoﬂoundﬂoet Z

deermines

the operaiors body rectangie
where
rminaly {input nodes).

gdbopr/setterms 1:1

L L d il hddd il edlldd

= |/

K

Used 10 move terminals
along with the main (bady)
rect when the opr is
dragged.

a2 L kL a2 D

gdbopr/caicrects 1:1

N L Lk L S

Based on the length of the

operator name determines
the coords of the main rect
and root rect (output node).

ints-to-rect Z

e o L e ek e Lk el D

gdbopr/makeadbobj 1:1

ULl L UL L8

Transforms a gdbopr into an adbopr for the
DFQL query graph.

This creation is all done with explicit

gels and sets (rather than inst-to-list and
list-to-inst) in order to ensure that it is not
dependent on position of the attributes

in the lists.

@bob]l.dldbeb]%

SLLAILIL S AASSSSS LSS S LA LIS A1 S S .

V usropr

&

godadlist
[

®

tastinst

reotrest
{00200}

() rootist is the le!
of connecthons 1 the

root
r.o-!:lol { "

v

restvaive
FALSE

v
selesied?

”;V.

(Wrinal connections 1 Opr
{ (mrmwvecy from oby memum) _..)

termingiiist

dummy Nt NUMS and CONNECION(s) 10 Mamal nets
% Heums ((ins8 jerme)(insts wrma))) (dums((ns W))))

tfermeeniist
[} emal Myt AUM that is Connected © e root

restsen
Qdbobjlist from screen
% © sllow Giapley
oprebjiist
0 a8t matance nuMber USeY in ue User ODr

epriastinst

b helpwrt it enwred by he user whan the yser
operator u dehned

usropr

delop selop newusrop storeop

makeadbobj g.n‘l

viewop viewclose

usropr/viewclose 1:1

§1.

Ll L Ll kPR 078

Closes the View User OP --
window when done looking at it.
Executed by the OK button.

%wmdewlbﬁtone;ﬁ

[oanvrssiasssisrsimmiisissiiiissy]

View User Operator

usropr/makeadbobj 1:1

TISASISI SIS ASSIP AL SIS P A SIS S

Vety complicated method which takes a user defined
operatar (possibly containing other user defined ops)

and turns it into its constituent text abjects and primitive
adbobi’s. First updates the instnums of the embedded
structure of the user op (the user op’s intemal gdbobijlist).
Then connects the terminais from the user op to the objects
that they should go to internally. Aiso connect the intemal
root to the appropriate external objects. Then go back
into the external list and fix redirect all of the external
cbjects connections to the instnums of the internal

usrobj object instances. Finally delete the dummy place
holder vanables (that provide the actual nodes on the
input bar -- really each node is a dummy text object --
done for expediency) and join all of the newly created
objects into the oid incoming list and output it.

This method depends on al! of the
requisite gdbtext and gdboprs at the
same level be done first.

L e L LD

usropr/viewop 1:1

Uses select dialog to display
available user operators.

Takes the one that was seiected
and displays it in the View
User Operator -- window.
Concatenates the name of the
user operator being displayed
10 the window name $0 it gets
displayed in the title bar.

Z USROPRLIST

%Monuhnnblogrt%
€

€
Ccfe

§1. CHOOSE OPERATOR
§2. View User Operator

usropr/oprdrew 1:1

i il Ll Ll idds

Basically the same as gdbopr draw except it must
account for the input bar and any connections 10 it.

P e il i L ddddd

usropr/cancel 1:1

orviersioiniinrmiiniiii
Eresetitems 7
%dbohiloulolnputbﬂ

Reset the screen foliowing
completion of doing things

P deidums {| with on the UsrOps menu.
Resets all normal menu choices
and buttons.

FALSE

& USROPRON 2
FLSLILI LIS IS SIS SIS SIS SIS S

usropr/deiop 1:1

Deletes operator selected from the
USROPLIST (persistent list of all the
defined user defined ops).

[l e dddadddideddddd i lddcdd

usropr/delop 1:1

§1. DELETE OPERATOR

usropr/selop 1:1

A

pdbobijlist Z

Called in response to the select a usropr menu item. Gives the user a list of
currently defined usr ops. Take the one that he picked (comes out of copyuserop)
and create it visually (caiculate its rects) and add it to the gdbobijlist.

Pl e ddddddd i ddddidd

usropr/newusrop 1:1

W
TALE Sets up DB INTERFACE screen
) to accept definition of a new
m user defined operator.
USRORON Setupitems turns off all
Y buttons and menu seiections
|@W| NOT associated with user op
- definition.

-

-
-

@gavebjarawinputber] (GIBARLISTD

Lirrrmirssispseniooressecsarsaissa]

usropr/storeop 1:2

R R D
@opuehoekgnph@
L3

Z\BARLIST The copy is required
y because of how prograph

Gusropr? p 2 stores lisis eic. The

terminallist in the persistent

v .]) will actually get messed up
&dependnum 7 (Fgetcons 3} when we do /icancel otherwise.
P gdbob
Y TITITIIY [Zgetrooiing 4] A

First checks the user ap for comect
connections. Then gets the name

for the operator {getopname) and the
help message for it (getheiptext) from
the user. Then adds it in correct
alphabetical order (determined by
getopname -- when it aiso checks for
attempted use of already used names)
1o the persistent list of ail user defined
operators.

' P Aeis
G USROPRLIST ””“m

[l el dd ik d ddll Ll

usropr/storeop 2:2

Alert shouid say that terminais
and roots are not connected
correctly. User should check
his query graph.

V gdbdse

&

gébebjlist
]

®

A

v

depondnum
{wo280..

reetreet
(00200}

() roosist is he ket
of apnneceons ® the
root

f...l.ﬂll((sum ")

e

creats drawobj

gdbdsp/create 1:1

window button event
Ll A Ll LS

Only difference between this creation and reguiar
operator creation is the elimination of the root.

adbobjlist 2

Creates a display operator (DISPLAY or SDISPLAY).

gdbdsp/drewobj 1:1

T —————————————————
N Ll Ll Ll lddd ddddddidddd

gdbopr input

ey Cremeown B
Z /A

'3
ZMoveTe 253332332332330) BdrawString 3
cegees
” A 4 “(“““‘““‘““cutcuccc
4 Draws the Display operator. Basically the same as drawing
a regular opsrator 2xcept accounts for the lack of

a root.
U L e R il 2

V linsob)

startpt
{00}

ondpt
[]

v

trominet
FALSE

fromreot?

lineob |

3

drawiine graseline rubberb bedrawline

lineob j/rubberd 1:1

L (Ll Ll il il ldds

Rubberband method. Doss the rubberband

of line drawing when the user is trying

to connect objects with lines. Uses continuous
draw and erase routines. Until a mouse click.

[l il il e ddddddld

lineob j/eraseline 1:1

N el il ddd il lLd
. -

Erases a line from point! to point2
by changing the pen mode. Changes
pen back 10 patCopy when done.

P Ll nddd i lddadd

lineob j/drawline 1:1

start ond

Draws a line from start point
to end point.

P L e s dliddd

lineob j/bedrawline 1:1

i s L Ll Ll ilild

Same as drawiine but includes
the begin and end drawing

primitives.

Pl el dddd il diddd il

¥ tebie

(ectablors ...

O

tabileliet
{ cctablows ...

savetabdlelist
1

O

dupne

S

tabioname

v

table

1] ol Al
loadtable joincols add addamo uutll.l
1]
L=
colinfo
v
table/resetlist 1:1
N TLLSISSS SIS SIS S SIS 7SS S
table 1

Resets tablelist to only the initial
relations found in savetablelist.
These are the "REAL" relations

in the database.
PIIAS SIS SIS SIS SIS ISP SIS
table/loadtable 1:1
Performs initial load of coiumn names for

all defined tables by going out to ORACLE
and querying the columns relation for all the
tables and columns that the user has access
to.

Store initial tables and columns in the
savetablelist where they will not be
- messed with for the duration of the program.

[l bl e ddddd il dddd e

table/ joincols 1:2

Nl el Ll A 2Ll lld
relation 1 relation 2

Determins what columns will appear in the
relation resulting from a join of relation 1
and relation 2. Takes into account the
possibility of the two input relaitons having
columns with the same column names -

in the result you will get samenarne and
samenamei (with “1° appended) columns.
No columns are discarded in a join.

Yl il ldd il dddd il

table/ joincols 2:2

Could make this an alert.

relation 1 relation 2

§2 “or " §1

This error message shows up when

a tablename is requested that doesn't
oxist. Execution will continue -- This
won't stop the query from going 10
ORACLE -- if wanted you could stop this
by using some fail notations from here up.

() LR

- S——

§1. ° is an invalid table or view.*
§2. "ERROR! Either *

table/add 1:1

SIS IILLSIIIIL IS SIS SIS SIS SIS

Adds new tables (the temp
views creawed as intermediate
steps in the query) and their
columnnames to tablelist NOTE
the temp tabies go in tbalelist
NOT savetablelist which must
stay uncorrupted.

Pl A bl s Ll d il

table/addsame 1:2

LIS SIS SIS SIS IS SIS IS
oldreiation

FALSE

Shorthand routine to add ALL of the columns from
oidrelation to another incoming relation.

|2/ AL A A]

toble/addsame 2:2

Gl R kS
- .

Could not find oid relation name.
SAILIIIIII SIS LTSS IIILAIIELS IS SIS 7.

§1. * is invaiid.®
§2. "ERROR! Table or view °

table/colinfo 1:1

Executed in response 10 the TABLE
item of the info menu. Lists the

columns that belong 1o the selected
table.

TABLE:
b - il

Vs how 7722

§1. COLUMN NAMES:

V dbops

(“cesme w...

sqitiet
1

O

& dbops

These are the main ENGINE type methods for the operation of the
DFQL interpreter. makequery is the controliing method for execution of

queries.

makequery checkgraph reset doanopo finalize

The methods with names the same as DFQL primitives convert thoss primitives into
SQL code. The inputs 10 thess methods are the SAME in the same order as that to
the DFQL primitives. All of these methods (except the group satisty methods which
are documentsd more inside the method) simply concatenate the inputs 1o produce
valid SQL statements.

select project joln groupent groupAlLsatisfy groupagg egjein

2 @ &

unQn dm..uc. gdifterence Intonut SDISPI.AY DISPLAY groupNsastisty

The “I* methods simply take input that consists of a DFQL operator name and a list of

input arguments and cails the appropriate method after converting the input list into the
inputs required for that method. This is done so that the actual primitive methods above

are orthogonal to the DFQL operators that represent them. (The list unpacking COULD be
done in the above methods ~ but is not recommended because the above methods can

also be used by the PROGRAPH programmer 1o make new primitives {see groupAlLsatisly and
groupNsatisty lbovo] it is much better to take meaningful inputs than just a list.)

288

lselect lprojou ljoln funion ldl" 'roupenl igroupALLsatisty loq]oln

‘KX

lintersect Igroupmax Igroupmin Igroupavg |so|spLAy |°|sp‘_‘v

igroupNsatisty

dbops/IgroupRLLsatisfy 1:1

Nl AR Lk dd

dbops/Igroupcnt t:1

Ul e i o Ll A R LD

dbops/1join 1:1

i il e Ll ddadddlldld

i L L L L Ll

dbops/Idiff 1:1

Nl i Ll il h Ll dlids

1), felation 2

relation

L il bl d il Ll L LA

dbops/lunion 1:1

N il il 73

i e Ll

dbops/lproject 1:1

N Ll il i i el il

project
relation attribs

il Ll i ddd sl Ll LD

dbops/iselect 1:1

N Ll e 27D

) select
relation £ condition

O L2727

dbops/makequery 1:2

Ensure gdbobjs are cormectly connected
and then reset for execution,

copy

Make the query graph, consisting of only primitives

!
%dbeb[le.llllt and text objects.

Shouldn't really need a copy here

since we remake the list every execution;

however this keeps adbobijlist from EVER
being corrupted (otherwise it wouid be
corrupt after one execution and before the

next).

doallops axecutes the query graph, Firing is based on
shortage counts maintained by dependnum in the
adbobijs.
finalize adds SQL code to drop ail of the temporary views
that were created and to dispiay the final result
if Last Result option enabled or if a partial execution
stopped by a selected operator.

v
&
&

%b.ekond/runouelo a Run the generated SQL on the backend ORACLE DBMS.

~
~

"

%-ekondlloldwlmqlz lLIm the results of the ORACLE execution into the
v esults Window.

-
w

anuowlonuolor;a Activate the Query Results window (puts it in front).

e i Ll s A2

dbops/makequery 2:2

R Ll il il ddllld il ilddddddd

Alert should say that terminais
and roots are not connected
correctly. User should check
his query graph.

P77 il dd i ddddiddd

dbops/gdifference 1:1

I ettempname ‘u L e d il il il
X e relation 1

§3

4 _relation 2
o/

Govien] Gisir2 [Fanceoe]

§.° where®
§2. ° from *
§3. " (select °*

§4. ° not exists®
§5. ‘create view °

dbops/union 1:1

relation ji frolltion 2

§1. “creats view °

dbops/groupfAllsatisfy 1:1

) group
relation attrib satisfy condition

This method makes use of the other previously
defined primitive methods to perform groupalisatisfy.
This is an example of why we use the °I° methods

to maintain the natural inputs to the DFQL primitive
methods.

xCNT = yCNT

Pl Ll L el i ld

dbops/groupcnt 1:1

Nl il L ik iP

"v result fisld

group
attribs

relation \
Fremsc]
table/add 7

Frimrprane]

§2
dbops

-

sqilist 7

SLIASASLIAS ISP ILI SIS IS IS .

§1. "select distinct *
§2. “create view °

dbops/ join 1:1

[qettempname 3|

§1. select distinct °
§2. “creats view °

table/joincols 7

TLILS IS SIS SIISIS S SIS SIS IS ST
retation 17\ _—~Nreiation 2 \join
condition

dbops/project 1:1

Nl dddd il ld i lilidd

m project

attribs

§1. “select distinct *
§2. “create view °

dbops/finalize 1:1

Adds SQL code to drop temporary views created by DFQL and
display results if the Dispiay Last option was selected OR if
we stopped execution because of a selected operator.

dbops/select 1:1

Fasomprame]

§1. sailect distinct *
§2. “create view °

N il akddddad Lldileldd
. o

relation select
condition

V/table/sddsame Z

§2

A 91

dbops/reset 1:1

N Ll Ll Ll il d
’,
0 Z Z

%aekondlroutoutput‘a

Resets the temp tablelist,
output list, SQL list, and
results window from last

)
2,

%Wlndo;;oﬂroo:iz

22 P 2220

dbops/difference t:1

relation 1i relation 2

§1. “create view °

dbops/intersect 1:1

relation ji i relation 2

intersect

§1. “create view °

dbops/lintersect 1:1

N Ll Ll Lk i d kD

relation 1)\ relation 2

G i L

dbops/groupagg 1:1

. group
relation attribs resuit field opn
Nl s ki il ad il dhdddddi i

Famemprame] D7

. .
W
%
- -
a8

7,
sqliistg & join"Z

l. ‘ - :

........

fllldd ek i dddaddd i dddddddddd

§1. “select distinct *
§2. “create view °

dbops/Igroupmax 1:1

Ll Ll Ll Ll Lk ls

P Ll e L ddd D

dbops/Igroupavg 1:1

N L el Ll i dadd

B e L L Ll

dbops/Igroupmin 1:1

Ll hddddidddiddliiids

QL il il il dddld il lddddd

dbops/doallops 1:1

N L ddldddadlddleld
.

dependnum incoming gadbobjlist
\ ° Repeatedly find instances that have dependnum
- {shortage count) = 0 and execute them. When
AN there aren't any more OR if we reach an

W operator that is selected STOP the iteration.

selection booiean

Jl el e dd i ddddidd

dbops/SDISPLAY 1:1

dbops relation ™~ order outputname
cols

-

§1. “select distinct * from °©
§2. Cant embed SORT in query!

dbops/ISDISPLAY 1:1

N i Ll

relation, order cols,
), OUtput name
/ISDISPLAY

L il L Al ik ddd

dbops/groupNsatisfy 1:1

satisfy
relation attrib condition num
LYIIISIIIIIA SIS SIS SIS I IS IS A II PSS

This method makes use of the other previously
defined primitive methods to perform groupalisatisfy.
Thig is an example of why we use the I° methods

to maintain the natural inputs to the DFQL primitive
maethods.

Pl el il lddd

dbops/igroupNsatisfy 1:1

Ul R LS

L i a dda L la LAl

dbops/eqjoin 1:1

tion 1 relation 2 attribs
N Ll L Ll L2l s

Pl A L LD

dbops/leqjoin 1:1

Nl il il ddld s

B e d e i e

dbops/DISPLAY 1:1

W
dbops /rolation outputname

%boekondlutoutput a

-

§1. “select distinct ° from °
§2. Cant embed SORT in query!

dbops/IDISPLAY 1:1

Nl b Ll a il i L i ddlddd

//DISPLAY

0
[l llllad il il dddddddlddddddd

dbops/checkgraph 1:1

IISIISIS LSS SIS IS S SSS SIS SIS SIS S
gdbab Checks to see if all terminails

4 are connacted and if all (except for
Jgdbobjlist 7

possibly one) roots are connected.
if not causes FAIL.

L i d R LA 2D

V beckend

iantepes!
(("RESULTS...

eutputliet

backend

]

setoutput

runoracie loadwinsg!

backend/resetoutput 1:1

Nl L didddd

Resets the list of current

spool files to empty and
backend L) ihe spool file number to 0.

s il i i il dddldddleld

beckend/ORRCLE*Shell 1:1

Q2R 222220 .
Sublaunches ORACLE Sheil to permit
4 the user direct interaction with the

backend database using ORACLES's
SQL Pius Interpreter. This is &
auonulblankmonu % SUBLAUNCH -- the DFQL application
- is suspended during ORACLE’Sheil
v operation.

P L L Ll ddd il dddalidd

backend/setoutput 1:1

Adds the title (outputname) for
the output (given by the user
in the display primitives) to
the program determined
spooifile name of the form
spooin where n is the nth spool
file. This information is
maintained in the backend
class variable outputlist.

backend

outputname

backend/runorscie 1:1

"I SIS AL SIS SIS IS SIS IS LSS S SIS ST SIS S S
Writes the SQL query from sqlist

§1 into the file query.sal . ORACLE Shell

: is then sublaunched in its baich mode

10 process query.sql . While ORACLE

is running the DFQL program is
suspended. ORACLE"Shell produces the
query.sql.LST fie and any spooied files
that were requested by the users display
statements.

m| Always set 10 true if control successfully
returns. (Actually an artifact from an earlier

implementation. Should be kept though.)

§1. N170i:PROGRAPH:query.sql

backend/loadwinsql 1:1

§1. Query Results

Nl d s

e L Ll Ll L LD

Loads resuits from all of the
spool fies requested by the
usar and also loads the entire
contents of query.sql.LST
(ORACLE"Sheil's compiete
output) if the show SQL option
was checked -- loads all of this
into the Query Resuits window.

V help

(«'ﬁ» <.

v

heoiprame

v

help

dispisy

heip/displey 1:2

L I R s

Gets help message from stored
help list (primitives) or from the
usropr (user-defined ops) and then
name opens the heip window and displays
it,

B e Ll Ll L L Rl

help/display 2:2

i i L L u L el oD

§1. Help will be availabie for this operator in the future!

V adbob}

{ <caddiexts...

sdbebjiist
4

O

Ini
\Y
dopondnum

rootist 8 the ket
of connecsons 1 e
root

reetlist Cinemum semea))

v

reotvealue
FALSE

v

selested?

adbobj

5

domake addadbobj exemake

adbob j/makealist 1:1

Convert ail objects in the
graphical representation
(gdbobijlist) into adbobis
for execution.

adbobjlist 4

)33’

G e L e L e Ll la L

adbob j/firdependnums 1:1

it Ll i d Ll i ddilldds
root list item obijlist

instaum

Adjusts the shortage counts
(dependnum) of all operators
that are in the rootlist passed
in (which consists of instnum
and a terminal number of that
instance -- we just take the
left item {the instnum) to
update)

list out 4
SISLISLLIS SIS IS SIII LSS SIS IS S SIS ST

adbobj/addadbobj 1:1

L L lddids

Add a adbobj instancs to
the right end of the
adbobjlist.

(il Ll il d i dddd

adbob j/domake 1:1

N L i dlds

dependnum Find a gdbobj that is ready to

convert to an adbobj (by dependnum
= 0) and call exemake to convert it.

adbob j/exemake 1:1

Nl Ll il dd sl dds
. . -

Use data dependent reference to

call the conversion method from
gdbobj into adbobj. This handies the
gdbtext, gdbopr, and usropr objects.
When the object has been converted
update the shortage counts of the
objects in gdbobilist that depended
on it

V addtext

adbebjiist
]

Qo

v

\4
“epenenum

) roolist is the lat
of connecoons 1 he

reot
reetiist Y)

reetvaive
FALSE

selected?

\Y

textstring

adbtext

adbtext/exeobj 1:1

instance list posit ligt
N e Ll a2l L L e i P
H . .

*Executes® the text
objects by simply
passing their text
vaiue on 10 the ops
connected to it.

list out

V adbopr

&

adbebjlist

0
®

) rootist s the ket
of connechons © he

((neum termingid) ..)

selected?

\Y
% m.: om) ...}
terminailiet

adbopr

adbopr/exeobj 1:1

instance list posit list
N e L L Ll dd s

Use exeopr to call the dbope

‘1" method corresponding to the
operator being executed.

Exeopr uses the injection method
in order to call the necessary
method based on the DFQL oper
name. After the op is executed
dependnums are updated.

adbopr/exeobj 1:1 exeopr 1:1

Nl el LS
instance { list

dbops/l

Use injection to call the appropriate method
based on the operator name. Take the ops
termianal list and make it into a list of inputs

for the actual dbops version of the DFQL operator.

Pl s e dd L dd i ad el

sdbopr/eneob] 1:1 eneopr 1:1 makeinputlist 1:1

N Ll L Ll e

0
[l L ldldddlllll i

V Applicetion

«<ADDICADD...
e

O

front

I IFLT mv mvm mvm mvm i

}
ol p
i

m“vm”vﬂ uvm

Application

K

o

Application/about... 1:1

e Ll L dd Ll

v Menu

Untitied

. ¥
Diip{ipii> i

onsbled?

()
v

Menu

T &

bisnkmenu restmenu disenable ensbie

Menu/quit 1:1

N ddda el dd sl ds ikl dd i

%ﬂlolslvovnmlnl z:’

od
s On quitting the application check
first 10 ensure that the user has saved

[Estopkernel | nis changes. Then stop the ORACLE
kernei and deactivate the application.

e el il Ll e dddd

Menu/resetprt 1:1

Nl il adddd el il

Application

Resaets all of the items in the Fiie menu
that were turned off in certain modes so
that Print and Page setup would be
available but nothing eise.

P e s Ll L il ddd)

Menu/enableprt 1:1

UL L dd Ll il idd

Application Enables the File menu and ONLY the
Print and Page Setup options. All other
options are turned off.

P i i il il il idd

§1. ("Print...° “Page Setup...")

Menu/restmenu 1:1

Nl il lllds

J s i Ll s e

Menu/blankmenu 1:1

N e i e Ll il il
.

Deactivates the entire menu
passad in,

Pl L i ddd s Ll

Menu/toggle 1:1

L kP
. 3 .

Menu/itemcheck? 1:1

N L S

Application

Given a menu and item
returns whether the
item is checked or not

. .
P s d el ldd e T lD

Menu/doloadwinsql 1:1

g

%-ekondlloadwlnoi@

Calied from the Edit menu

in response to the Undo item.
Located here in arder to comectly
handie the inputs.

Menu/seltoggle 1:2

Ll i dldlddiddiddd

First toggles checkmark on
the salect menu item.

Then this case deselects any
previously selected items.

%‘d boblld‘ouloet %

J il il it a il s Lididatidd

Menu/seltoggle 2:2

o imniinics s

L Ll Ll

Menu/enable 1:1

e e s el ddddd s R bie al us.

Application

L LA L L L L L D

§.(1234567)

Menu/disenable 1:1

il ddddddidddddild

Applicstion

P il dd i dd i dd

§1. (1234567

Manually disenables all menus to
simulate a trus modal dialog for the
help windows. Prograph's modal
windows are not modal enough to tum
off menu items.

V Meny item

y

v
chech?
v,

v

NUAL
A
TAE
ncE!L?
use
methed

Menu Item

~ .

i highlight

Menu Item/dim 1:1

Nl L Lk dddddd

Takes as input a LIST
of menuitems to dim
and the associated menu.

Appilcation

il i ddddd

Menu Item/highlight 1:1

L L Ll lidlddld
. -

Takes as input a LIST
of menuitems 10 highlight
and the associated menu.

SIS SESLSILIIIS SIS SS SISO SIS 7Y,

S|

vV Window Item

Window Item

N

r

visott vison gctiveoft

t

Make a window item invisible.

Rl Ll el dd kil ddd

Window Item/vison 1:1

N Ll s ki i LD

Make 2 window item visible.

Lk ik e ldd s dd e dddd

Window Item/activeoff 1:1

Nl Lkl s Ll s

Dectivate a window item
(gray it out).

P Ll L L LD

Window Item/activeon 1:1

LS ILLS AL LILISLIS LIS LS LIS

Activate a window item.
R d AL A L L2

V system

v
NULL

\Y

oswner
FALSE

v

astive?

V Window

“Untitled*

4

<f

»
®
-
-
<
]
-

<i i<} la- ‘QE

siose?

<

solestied iem
{4040}

lecation
{ 200 300 }

astivate methed

Universal

el

tnitial Initialize persistents geicanves

reset 1:1

§1.

Nl e d il

@muun persistents a

) Clear drawing canvas in DB

. INTERFACE window, resat
drawing persistents gdbobijlist.

gdbob

adbobjlist

§1

I
eb_om-duwlng_a&i&uoaoeta

Pl L e Ll el lddd

{0 0 32000 32000}

initial 1:1

Cannot be put
in initialize
persistents.

~
T ;
frasernnd
5 GoutRviiE)
v
Brecurin]
-
-
{ “‘“g 'DFOLPRTREC
m Draw siartup dialog, initialize windows, start ORACLE kernel

read in table information (from ORACLE) set current file name
to untitied. Setup initial printer record.

Pl ddd il iidddlddddd

§1. *N170i:PROGRAPH:query.sql”

getcanvaes 1:1

LIS LI IASS S SIS SIS SIS I AL SIS SIS S 1SS
Application Returns the canvas from

CeurrentZ] OB INTERFACE

find-window 7 dbcanvas

L L dd il a A L d lhdddddd

initislize persistents 1:1

LSS SIS SIS SIS SIS SIS IS I IS

© Persistents

Success from last query. Name of query file.

SQLSUCCESS QUERYFILE

Line drawing persistents 10 keep
track of points for rubberband line.
DRAWLINEON LINEPER

Print record for printing DFQL
canvases.
DFQLPRTREC

These six persistents are used to maintain
user defined operator information, inciuding the
USROPRLIST USROPRON &ctual list of usroprs.

List of INSTANCE

nums of dummy text
IBRECT IBARLIST used for inbar roots.

DISPLAYOPR TXTDISPLGTH

BIBLIOGRAPHY
Aho, A. V,, and Ullman, J. D., "Universality of Data Retrieval Languages," Proceedings
of the Sixth ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages, pp. 110-120, 1979.
Beech, D., "The Future of SQL," Datamation, pp. 45-48, 15 February 1989.

Chandra, A. K., and Harel, D., "Computable Queries for Relational Databases," Journal
of Computer and System Sciences, v. 21, pp. 156-178, 1980.

Dadashzadeh, M., "Improving Usability of The Relational Algebra Interface," Journal of
Systems Management, pp. 9-12, September 1989.

Davis, J. S., "Usability of SQL and menus for database query," International Journal of
Man-Machine Studies, v. 30, pp. 447-455, 1989.

Goodwin, N. C., "Functionality and Usability,” Communications of the ACM, v. 30,
pp. 229-233, March 1987.

293

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library

Code 052

Naval Postgraduate School
Monterey, California 93943-5002

Chairman, Computer Science Department
Computer Science Department, Code CS
Naval Postgraduate School

Monterey, California 93943-5002

Chief of Naval Research
800 North Quincy Street
Arlington, Virginia 22217-5000

Curriculum Officer

Computer Technology Program, Code 37
Naval Postgraduate School

Monterey, California 93943-5000

Naval Ocean Systems Center
271 Catalina Boulevard
San Diego, California 92152

Division Head

MDS Division

Data Systems Department

Naval Weapons Station
Concord, California 94520-5000

294

10.

11.

Phillip B. Stiles

Naval Sea Systems Command
Technical Data Division of the

Chief Engineer for Logistics Directorate
Washington, D. C. 20362-5101

James W. Hall

Division Leader ADP Division
ADP-DO, MS-P222

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

C. Thomas Wu

Computer Science Department, Code CSWq
Naval Postgraduate School

Monterey, California 93943-5000

LT Gard J. Clark

484 Chestnut Road
Severna Park, Maryland 21146

295

