
AD-A246 086

NAVAL POSTGRADUATE SCHOOL
Monterey, California

&' GR ADW N

DTICS ELECTE
II FEB 2 0 1992U

D THESIS

DFQL:
A GRAPHICAL DATAFLOW

QUERY LANGUAGE

by

Gard J. Clark

September 1991

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

2 292-0432192 2 14 s.f|lHll

Unclassified
SECURITY CLASSIFICAION OF TIs PAGE

REPORT DOCUMENTATION PAGE
IL REPORTSEUR]TYCLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONI AVAILABILITY OF REPORT

2b._______________________________SCHEDULE_ Approved for public release; distribution is unlimited.2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a, NAME OF PRORING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONTIORING ORGANIZATION
Naval Postgraduate School (If Applicable) Naval Postgraduate School

37
6c. ADDRESS (city, state, and ZIP code) 7b. ADDRESS (cay, state, and ZIP code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a. NAME OF FUNDINGWSPONSORING 6b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMEN- IDENTIFICATIONNUMBER

ORGANIZATION (If Applicable)

8c. ADDRESS (ciy, ssate. and ZIP code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK U.NTr
EMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Incilud Security Classificaton)
DFQL: A GRAPHICAL DATAFLOW QUERY LANGUAGE

12. PERSONAL AUTHOR(S)
Gard J. Clark

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year., moahday) 1 5 . AGE COUNT
Master's Thesis FROM 1) 1991 September 16

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

17. COSA1 CODES 18. SUBJECT TERMS (coniuue on reverse tf necessary and ,demny by block number)

F GROUP SUBCJOUP database, query language, dataflow programming, object-oriented programming,
relational model, SQL, human factors

19. ABSTRACT (Coninue on reverse f neces ary and idenify by block numbr)
In nearly all large organizations, the Navy and Department of Defense being no exceptions, the use of database

management systems (DBMS's) has become widespread. The prevailing data model for modem DBMS's is the relational
model developed by Codd in the early 1970's. The relational model's superiority is due to its well thought out design and
founding in mathematical logic. The de facto standard query language for relational DBMS's is IBM's Structured Query
Language (SQL). Although SQL is the most widely used query language today, it has many problems, especially in the ease-
of-use area.

The purpose of this thesis is to design, implement, and test a new query language. DFQL, which will mitigate SQL's
ease-of-use problems. DFQL provides a graphical query interface based on the dataflow paradigm in order to allow a user to
easily and incrementally construct queries for a relational database. DFQL is relationally complete, maintains relational
operational closure, and is designed to be easily extensible by the end user. DFQL has been implemented on an Apple
Macintosh using an ORACLE relational DBMS. A simple human factors experiment was performed in which DFQL's ease
of query writing compared favorably to that of SQL.

20. DISRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

K uNCAsm ~u=N~xv= [] SAME As R]r. [] um iusEs Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Ama Code) I22c OFFICE SYMBOL

C. Thomas Wu (408) 646-3391 CS/Wq

DD FORM 1473, 84 MAR 83 APR edion may be used unul exhausted SECURITY CLASSIFICATION OFTHIS PAGE

All other editions ame obsolete Unclassified

Approved for public release; distribution is unlimited.

DFQL:
A Graphical Dataflow

Query Language

by

Gard J. Clark
Lieutenant, United States Navy

B.S., United States Naval Academy, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
'tember, 1991

Author: _

,f Gard J. Clark

Approved by:
C. Tho u, Thesis Advisor

B. B ond Reader

Robert B. McGhee, Chairman,

Department of Computer Science

ABSTRACT

In nearly all large organizations, the Navy and Department of Defense being no

exceptions, the use of database management systems (DBMS's) has become widesp:ead.

The prevailing data model for riodern DBMS's is the relational model developed by Codd

in the early 1970's. The relational model's superiority is due to its well thought out design

and founding in mathematical logic. The de facto standard query language for relaticnal

DBMS's is IBM's Structured Query Language (SQL). Although SQL is the most widely

used query language today, it has many problems, especially in the ease-of-use area.

The purpose of this thesis is to design, implement, and test a new query language,

DFQL, which will mitigate SQL's ease-of-use problems. DFQL provides a graphical query

interface based on the dataflow paradigm in order tc allow a user to easily and

incrementally construct queries for a relational database. DFQL is relationally complete,

maintains relational operational closure, and is designed to be easily extensible by the end

user. DFQL has been implemented on an Apple Macintosh using an ORACLE relational

DBMS. A simple human factors experiment was performed in which DFQL's ease of query

writing compared favorably to that of SQL AcCesion For

NTIS CRA&I

U. i. , . ,ed
J .. (: 3~~t on

L B :

A-I _

TABLE OF CONTENTS

INTRODUCTION .. 1

A. MOTIVATION 1

B. OBJECTIVES OF A VISUAL DATABASE INTERFACE 2

C. THESIS OVERVIEW 3

II. PREVIOUS W ORK .. 5

A. GENERAL DISCUSSION 5

B. PROBLEMS WITH SQL 6

1. Basis of SQL 6

2. Declarative Nature 7

3. Universal Quantification 8

4. Lack of Orthogonality 10

5. Nesting Construct 11

6. Lack of Functional Notation 12

7. Other Issues 13

C. EXISTING VISUAL QUERY LANGUAGES 13

1. Forms Based Interfaces 14

a. STBE--Summary Table By Example 16

iv

b. AQL--A Query Language......................... 18

C. RC/S--Relational Calculus/Sets z.....18

d. Objectives, Benefits, and Drawbacks 19

2. Entity-Relationship Model Interface 20

a. GQL/Andyne--Graphical Query Language 23

b. GDML--Graphical Data Manipulation Language 24

C. QBD*--Query By Diagram* 26

d. GUIDE--Graphical User Interface for Database Exploration . 27

e. GRAQULA--Graphical Query Language 28

f. Objectives, Benefits, and Drawbacks 32

3. Other Approaches 33

a. PICASSO--Picture Aided Sophisticated Sketch Of Database

Queries 33

b. EFO and SNAP--A Graphics-based Schema Manager 36

D. DATAFLOW PROGRAMMING LANGUAGES 38

1. Dataflow Diagram Description 38

2. Visual Dataflow Programming 39

III. DESCRIPTION OF DFQL.................................... 42

A. CONCEPT ... 42

1. DFQL Operators 43

a. Basic Operators................................45

V

(1) Select. 47

(2) Project 48

(3) Join 49

(4) Union 52

(5) D iff 53

(6) Groupcnt. 54

b. Other Primitives 56

(1) Eqjoin 56

(2) GroupALLsatisfy 58

(3) GroupNsatisfy 59

(4) Aggregate operators 60

(5) Intersect................................ 61

c. Display Operators 61

(1) DISPLAY 62

(2) SDISPLAY 62

d. User-Defined Operators 64

2. DFQL Query Construction 68

a. Incremental Queries 69

b. Universal Quantification 73

c. Nesting and Functional Notation 73

d. Graph Structure of DFQL Query 74

B. USER INTERFACE FOR DFQL 75

vi

1. Starting The Program 76

2. DB INTERFACE Window Items 76

a. Buttons 76

b. Drawing Area 80

3. Query Results Window 82

4. M enu Items 84

a. Apple 85

b. File .. 85

c. Edit .. 87

d. Primitives 89

e. UserO ps 89

f. O ptions 94

g. Info .. 95

h. Special 95

C. IMPLEMENTATION OF DFQL 97

1. Prograph -- Object-Oriented Dataflow Language 97

a. Prograph Code 98

b. Object-Oriented Features 104

2. DFQL Implementation Strategy 109

a. User Interface to Stored Query Graph 111

a. Query Graph to SQL 113

b. SQL to Query Display 119

vii

1. Goals of the DFQL Interpreter Class Structure 120

IV. ANALYSIS OF DFQL 122

A. HUMAN FACTORS ANALYSIS OF QUERY LANGUAGES 122

1. Testing for Ease-of-Use 122

2. Applicable Results of Previous Human Factors Studies 124

B. EXPERIMENTAL COMPARISON OF DFQL WITH SQL 126

1. Assessment of the Experiment 126

a. Subjects 126

b. Teaching Method 127

c. Kinds of Tasks 127

d. Test Questions 128

e. Test Environment 129

f. Evaluation Method 129

g. Experimenter Attitude 130

2. Experiment Results 130

3. Experiment Conclusions 133

C. ADVANTAGES OF DFQL 134

1. Power ... 134

2. Extensibility 134

3. Ease-Of-Use 135

a. Dataflow Representation 135

viii

b. Orthogonality 135

c. Incremental Query Formulation and Execution 136

4. Visual Interface 136

D. SHORTCOMINGS OF THE DFQL CONCEPT 137

1. Interface Problems 137

2. Language Problems 138

V. CONCLUSIONS ... 140

A. REVIEW OF THE RESEARCH 140

B. FUTURE RESEARCH 140

1. Implementation Enhancement 141

2. Theoretical Investigation 142

C. SUM MARY .. 144

LIST OF REFERENCES 145

APPENDIX A. EXAMPLE DATABASE 148

APPENDIX B. HUMAN FACTORS EXPERIMENT DATA 151

APPENDIX C. DFQL SOURCE CODE 158

BIBLIOGRAPHY .. 293

INITIAL DISTRIBUTION LIST 294

ix

LIST OF FIGURES

Figure 1. Example of QBE Query 14

Figure 2. Example of ER Diagram 21

Figure 3. Example Join in GRAQULA 30

Figure 4. Example PICASSO Hypergraph 35

Figure 5. Example Dataflow Diagram 39

Figure 6. Dataflow Program Fragment 40

Figure 7. Operator Construction 43

Figure 8. DFQL Basic Operators 46

Figure 9. Text Object .. 47

Figure 10. Example DFQL Select 48

Figure 11. Example DFQL Project 49

Figure 12. Example DFQL Join 51

Figure 13. Example DFQL Union 53

Figure 14. Example DFQL Diff 54

Figure 15. Example DFQL Groupcnt 55

Figure 16. Other DFQL Primitives 57

Figure 17. Example DFQL GroupALLsatisfy 59

Figure 18. Example DFQL GroupNsatisfy 59

Figure 19. Example DFQL Groupmax 61

x

Figure 20. Example DFQL SDISPLAY 63

Figure 21. DFQL Select - Project Query 64

Figure 22. Creating a User-Defined Operator 65

Figure 23. User-Defined Groupallsatisfy 67

Figure 24. Complete DFQL Query 69

Figure 25. Incremental Query Construction 71

Figure 26. Incremental Query Execution 72

Figure 27. Use of Multiple Display Operators 72

Figure 28. DFQL Main Window 77

Figure 29. Operator Creation 78

Figure 30. Text Object Creation 79

Figure 31. Example Select Operator Help 81

Figure 32. Query Results Window 83

Figure 31. DFQL Menu Bar 84

Figure 34. File M enu .. 85

Figure 35. Open... Dialog Box 86

Figure 36. Edit M enu .. 87

Figure 37. Primitives Menu 89

Figure 38. UserOps Menu 90

Figure 39. User Operator Definition Window 91

Figure 40. User-Defined Operator Selection 92

Figure 41. View User Operator Window 93

xi

Figure 42. Options... Menu 94

Figure 43. Info M enu .. 95

Figure 44. Table Information 96

Figure 45. Starting the SQL*Plus Interpreter 96

Figure 46. Specifying Order of Execution 100

Figure 47. Prograph Case Structure 102

Figure 48. Iteration Over a List 103

Figure 49. Simple Iteration 104

Figure 50. Prograph System Classes 105

Figure 51. Attribute Window 106

Figure 52. Method Window 107

Figure 53. Method Referencing 108

Figure 54. Block Structure of DFQL Interpreter 110

Figure 55. Interface to Object Representation 112

Figure 56. Graph to SQL 113

Figure 57. Doallops .. 114

Figure 58. Adbopr/exeobj 116

Figure 59. Dbops/project 118
Figure 60. SQL to Result 119

Figure 61. Experiment Results 132

xii

ACKNOWLEDGMENTS

I sincerely thank all of the people who assisted me in the conception and

implementation of this thesis.

I am especially indebted to the ADP Division at Los Alamos National Laboratory

for both their technical and logistical support. I particularly wish to thank Jim Hall, Pam

French, Frank Welch, Joe Zowin, Bruce Panowski, Leann Anderson, Ken Sinclair, Lee

Ankeny (C-9), and the ADP-1 M'cro Support staff for all of their help and guidance.

Special thanks go also to Doug Lier (A-6) whose support was invaluable.

I also would like to acknowledge Kevin Fontes for introducing me to both Prograph

and the "intricacies" of Macintosh user-friendliness. Thanks also are due the technical

support staff of TGSS for their assistance in implementation of this project. I greatly

appreciate all of the guidance in the conception and implementation of DFQL by my

advisor Dr. C. Thomas Wu.

Finally, I wish to thank my wife Beth for her patience and sacrifice in supporting

me in this endeavor. Without her constant love and support, none of this would have

been possible.

xiii

I. INTRODUCTION

A. MOTIVATION

The relational model for database management was introduced in 1969 by E. F.

Codd (Codd, 1990, p. v). Compared to other actually implemented models, namely the

hierarchical and network models, the relational model has the simplest and most uniform

data structures and is founded much more rigorously in mathematics (Elmasri, 1990, p.

135). These features of the relational model make it a superior tool for most database

implementations. In fact, the relational model has been labeled as "...one of the few

pinnacles of computer science" (Beech, 1989, p. 29)

The de facto standard query language associated with the relational model is

Structured Query Language (SQL) invented by IBM (Chamberlin, 1974). There are

serious problems with both the design and implementation of SQL as a query language

that inhibit it in allowing the user easy access to the information stored in his relational

database. Several of these problems are discussed by Codd in a two part article "Fatal

Flaws in SQL" (Codd, 1988) and again in (Codd, 1990, chpt. 23). Our research primarily

addresses what Codd terms as "The Psychological Mix-up" or human factors aspect of the

language (Codd, 1990, pp. 379-382). We extend from his concern about the defined type

of nesting in SQL to other psychological, or ease of use, issues. An example of another

one of these issues is the difficulty in expressing the idea of universal quantification in

mmmm • m mmm~mm mmlm nm m mlu m m m nu mmm m m m mmm mm 1

SQL (Negri, 1989). In general, we believe that a new database query language is

required to allow users to achieve the maximum utility from the relational model.

B. OBJECTIVES OF A VISUAL DATABASE INTERFACE

Because of the problems associated with the current text based query languages

(SQL in particular), we have proposed, designed, and implemented a graphical/visual

interface to the relational model based on a datafiow paradigm. This DataFlow Query

Language (DFQL) retains all of the power of current query languages and is equipped

with an easy to use facility for extending the language with advanced operators, thus

providing query facilities beyond the benchmark of first-order predicate logic. DFQL

meets the following goals for a visual database interface which have been presented

previously in other papers (IBM, 1991, pp. 1-2; Angelaccio, 1990, p. 1150):

* Employ a fully graphical environment as a user-friendly interface to the database

" Sufficient expressive power and functionality, including relational completeness

* Ease of use in learning, remembering, writing and reading the language's constructs

• Consistency, predictability, and naturalness (in both syntax and function)

" Simplicity and conciseness of features

* Clarity of definition, lack of ambiguity

* Ability to modify existing queries to form new queries incrementally

* High probability that users will write error-free queries

• Operator extensibility -- allow the user to create new operators in terms of existing
ones, analogous to defining a function in a programming language

2

Examples of the approaches taken in DFQL to implement the above goals are:

" Complete faithfulness to relational algebra, especially in the requirement for
operational closure

" Elimination of range variables from queries

" Elimination of nesting in query construction

There have been several research efforts directed towards the design of visual database

querying systems, for example: QBE (Zloof, 1977), STBE (Ozsoyoglu, December 1989),

AQL (Miyao, 1986), RC/S (Ozsoyoglu, September 1989), GQL/Andyne (Andyne, 1991),

GDML (Czejdo, 1990), QBD* (Angelaccio, 1990), GRAQULA (IBM, 1991), GUIDE

(Wong, 1982), PICASSO (Kim, 1988), and IFO (Abiteboul, 1987). However, none of

these efforts utilize a dataflow approach to query specification. The dataflow paradigm

provides several advantages, discussed later, that we believe form the basis of a query

language that is superior to the approaches listed above. Perhaps the most important

benefit of this approach is the ability of the user to treat relations as abstract entities

which are operated on by relational operators. This abstraction allows the user to

compose his queries strictly in the realm of relational algebra, rather than having to know

the details of how the operations are carried out, as is the case in SQL.

C. THESIS OVERVIEW

Chapter II presents background information for the thesis. We cover the previous

work done in the areas of graphical database interfaces and dataflow programming. We

also expand on the motivation for a new query language to solve problems with the

3

current de facto standard, SQL. None of the previous work cited has been done in the

area of dataflow querying. However, the different approaches of previous attempts to

produce a usable graphical query interface do bring out some of the reasons for, and

desired qualities of, a graphical query language.

Chapter II describes DFQL first from the conceptual point of view and then

discusses the current user interface and functional details. The implementation description

covers PrographTM, the object-oriented graphical dataflow programming language in which

DFQL was implemented. The method of intermediate code generation and linkage to an

existing backend database management system (DBMS) is discussed. The utility of

programming within an object-oriented model is addressed, especially as it pertains to the

extensibility and portability of our DFQL interpreter.

Chapter IV provides an analysis of the apparent advantages and disadvantages of

DFQL. The results of a simple usability experiment conducted to compare DFQL and

SQL are given. Also provided is background information on human factors analysis of

query languages.

Chapter V provides a summary discussion of the research, and provides suggestions

for future work in two general areas. The first area encompasses additions and

modifications that can be made to the implementation of the DFQL interpreter program

itself. The second area is theoretical investigation into extensions and optimizations of

the actual DFQL language to include in-depth experimental analysis of the human factors

issues of both the use and implementation of DFQL.

4

II. PREVIOUS WORK

A. GENERAL DISCUSSION

As stated in the introduction, we could find no previous work on a dataflow query

language. In our research we have brought together the two separate ideas of a graphical

query language and the dataflow programming model to create our implementation of

DFQL. The following sections of this chapter discuss previously developed graphical

query languages and provide a brief introduction to the dataflow programming model.

In the discussions on other graphical query languages we stress the ideas behind the

design and/or implementation; in most cases there is no direct comparison possible with

DFQL due to the different approach. The discussion on the dataflow programming model

is very brief; we assume the reader has some knowledge of the dataflow design

methodology from which this model is derived.

We introduce the previous work with a section on problems that have been noted

with the current de facto standard relational database retrieval language SQL. Many of

the problems reviewed will be common knowledge to SQL users. We cover this topic

here to expand on the motivation for the invention of our new query language; many of

the criticisms raised are also applicable to the motivation for the development of some

of the other graphical query languages discussed in the subsequent sections.

5

B. PROBLEMS WITH SQL

Our approach to exploring problems with SQL concentrates primarily on its human

factors aspects. In several instances, however, items such as ease of use are influenced

by more serious flaws in SQL other than simple interface design. We mitigate these

problems with DFQL.

1. Basis of SQL

Query languages for the relational database model can be divided into three

types: relational calculus based, relational algebra based, and a combination of the

previous two types. In relational calculus, the user provides a predicate calculus

expression which defines the characteristics of the tuples to be retrieved. Tuple variables

are used in order to make the logical connections between separate instances of relations

being combined (joined). In relational algebra the user specifies a sequence of relational

operations to be performed on the tables of his schema in order to produce the desired

result. Both the relational algebra and the relational calculus have equal expressive power

(Elmasri, 1990, p. 212); any query that can be expressed in one can be transformed into

a query in the other (Codd, 1972).

SQL is a mixture of both relational algebra and calculus with some other ideas

(such as nesting to provide a block structure) thrown in also. However, SQL tends more

toward a calculus based approach because it is primarily a declarative rather than a

procedural language. The user specifies what the result should be in one statement, rather

than in a sequence of statements. (Dadashzadeh, 1989, p. 431) This mixture of

approaches resulted from the way in which SQL was designed. Date comments:

6

When the language [SQL] was first designed, it was specifically intended to differ
from the relational calculus (and, I believe, from the relational algebra). ...As time
went by, however, it turned out that certain algebraic and calculus features were
necessary after all, and the language grew to accommodate them. (Date, 1987, p.
84)

The result of this design methodology is that SQL is a strict implementation of neither

relational algebra nor calculus.

2. Declarative Nature

SQL is primarily a declarative query language. That is to say that the user is

intended to construct his query basically from the relational calculus or first-order

predicate logic frame of reference. All of the conditions that the query result is desired

to meet are specified in a single statement. This approach is straightforward for simple

queries; for more complex queries however, the logical expression specifying the

conditions to be met can become quite complicated. This problem is exacerbated when

the complex query involves universal quantification (discussed separately below) because

of its negative logic implementation in SQL.

Another problem with the declarative approach is that it may not always

present the clearest representation of the query to the user. The question of clear

representation of the "essence" of the query is in part related to how humans actually

think. The logical, declarative method of expression may be more compact, however, if

humans think of complex problems in a more sequential fashion it may not be as easy to

formulate or to interpret after formulation. Indeed, in The Relational Model for Database

Management: Version 2, Codd uses the algebraic (procedural) approach to introduce the

operators for the relational model because "upon first encounter, that approach appears

7

easier to understand." He goes on to say that the relational calculus provides a better

implementation for an actual database language not because of any of its ease of use

characteristics for the humans but because it is easier for the computer to optimize a

query that is confined to a single condensed command. (Codd, 1990, p. 62) Most

embedded query languages, and even some commercial implementations of non-embedded

query languages, give the user the ability to use the query language in a procedural

manner if desired. This allows the user to take advantage of the features of the host

language to accomplish operations that are difficult or impossible to code in the query

language.

Ease of use issues for database query languages have been of concern for quite

some time as evidenced by Schneiderman's paper "Improving the Human Factors Aspect

of Database Interactions" published in 1978 (Schneiderman, 1978). Human factors studies

have been done concerning the issue of declarative versus procedural implementations of

query languages. The results of these studies show that, for complex queries, users

perform better when using a procedurally oriented rather than a declarative language such

as SQL. (Welty, 1981)

3. Universal Quantification

The idea of universal quantification is expressed in English by the phrase "for

all." This idea is often required to formulate database queries but is supported only

indirectly in SQL One of the problems of using universal (or existential -- "there exists")

quantification is that the logical meaning of these operations is not completely intuitive,

especially to persons who are not experienced in the use of predicate logic. The logical

8

ideas represented by these operators have been shown to be difficult to use correctly even

when the user has experience in the area in which they are being applied. (Negri, 1989,

p. 90) This difficulty is compounded because SQL's lack of a specific "for all" operator

forces one to use "negative logic" with the existential quantifier (NOT EXISTS) to

achieve the result of universal quantification.

The following example is provided to show how, even with a simple query,

expressing the idea of universal quantification is somewhat complicated. As the query

becomes more complex, the difficulty of composing or understanding it increases rapidly.

Consider a database with the following relations (key attributes are underlined):

COURSE(CNO, TITLE, INO)

ENROLL(CNO, SNO, GRADE, TESTSCORE)

INSTRUCTOR(INO. INAME, PAY)

The desired query is: "list the names of all the instructors who gave all A's in

at least one of the courses they taught." (This database schema is a subset of our

example database schema described in Appendix A.)

In SQL the above query could be expressed as:

(1) SELECT DISTINCT INAME
(2) FROM INSTRUCTOR, COURSE, ENROLL El
(3) WHERE INSTRUCTOR.INO = COURSE.INO
(4) AND COURSE.CNO = E1.CNO
(5) AND NOT EXISTS
(6) (SELECT *
(7) FROM ENROLL E2
(8) WHERE E2.CNO = E1.CNO
(9) AND E2.GRADE != 'A');

9

A direct english translation of the SQL query above is: "Retrieve the names

of instructors (line 1) who taught courses (line 3) which had students enrolled (line 4)

in which there was at least one of these courses in which there was not any student who

received a grade that was not an 'A' (lines 5-9)." This translation describes only the

basic semantics of the SQL statement. In order to derive the full meaning of the SQL

query and how it will function, a knowledge of the differences between relation names

and range variables and their scoping rules is required. This example query would not

be possible without the correct use of range variables; the linkage between the "inner" and

"outer" SELECT statements depends entirely on understanding and correctly employing

range variables to represent the ENROLL relation. The specification required to form this

simple query is thus not straightforward at all; even at this fairly low level of complexity,

the query formulation involves subtleties of logic that are extremely easy to mixup, even

for the experienced user. A final comment on this SQL example is on its readability:

How difficult is it to read the SQL query and know what is actually being specified? If

one has to intensely study a previously written query to determine exactly what it is going

to do, the implication is that there is a comprehension problem caused by the language.

Lack of easy comprehension of the language will affect not only query readability but

also the capability of the user to formulate correct queries.

4. Lack of Orthogonality

"Orthogonality in a programming language means that there is a relatively

small set of primitives that can be combined in a relatively small number of ways to build

the control and data structures of the language." (Sebesta, 1989, p. 6) SQL does not

10

present the user with a simple, clean, and consistent structure. In SQL there are

numerous examples of "arbitrary restrictions, exceptions, and special rules." (Date, 1987,

p. 84) An example of an unorthogonal construct in SQL is allowing only a single

DISTINCT keyword in a SELECT statement even if the SELECT statement contains

other nested SELECT's. Lack of orthogonality in a language increases the number of

special rules that must be memorized by the user, decreases the readability and writability

of the language, and in general decreases the usability of the language. Unorthogonal

features are not something that we have to live with to have a powerful query language,

this fact is evidenced by the orthogonality of DFQL.

S. Nesting Construct

SQL permits a nesting structure of the form--'

SELECT
FROM
WHERE attribute IN

SELECT ...

This format allows for a block structure type of construct. In fact, it is from

this construction that the "Structured" in "Structured Query Language" is derived from.

The original purpose of this nesting construct was to allow the specification of certain

types of queries without resorting to the use of relational algebra or relational calculus.

However, with the introduction of these same relational algebra and calculus operations

into SQL the need for the "IN subquery" construct was eliminated. (Date, 1987, p. 84)

'There are also other forms of nesting allowed.

1l

Codd refers to the nesting construct as part of the "psychological mixup" in

SQL. While all queries that are specified using the nesting construct should be directly

translatable into queries using an equi-join instead, Codd shows that if allowing for the

existence of duplicate rows in tables (as SQL does), one will come up with a different

result when performing the equi-join version of the query than when performing the

nested version (Codd, 1990, p. 380). There is also a problem in the optimization of

nested queries by the DBMS. Although work has been done to demonstrate the

translatability of nested queries into their non-nested counterparts (Kim, 1982), most

optimizers perform poorly, if at all, in optimizing through levels of neszing in SQL

queries. Thus, a performance related issue is thrust onto the user simply through ine

design of the query language. (Codd, 1990, pp. 379-382)

6. Lack of Functional Notation

The use of functions in programming languages allows the abstraction of

operational detail to whatever level is appropriate for the environment in which the

function will be executed. In the same fashion, complex queries that provide an

intermediate result that is used for a higher level query could effectively be hidden from

the user at the higher level through the use of functional notation. This concept is used

in all modern programming languages, even including newer versions of BASIC, but is

not implemented in SQL. The use of functions to produce intermediate results for further

processing also provides a good alternative to query nesting by allowing the hiding of

complex query structures from the user. User-defined functions are discussed by Codd

as a desired part of the relational model (Codd, 1990, p. 340-344).

12

7. Other Issues

There are other various problems with the SQL database language, however,

most of these are not germane (or at most peripheral) to our thesis on DFQL. Many of

these arguments are not necessarily with the "language" portion of SQL but in its actual

DBMS implementation of the relational model. Examples of these types of arguments

are: lack of adequate support for keying and referential integrity (Date, 1987, p. 84), lack

of support for three or four valued logic (Codd, 1990, pp. 383-386), and allowance of

duplicate rows in tables (Codd, 1990, pp. 372-379). Our research concentrates on the

interface to the underlying relational DBMS. We assume the underlying DBMS supports

the relational model as defined by Codd (Codd, 1990).

C. EXISTING VISUAL QUERY LANGUAGES

In our overview of previous research efforts into the area of visual database

interfaces, we have found that there have been two basic directions pursued. The first

direction is a forms based interface to the relational model as exemplified by QBE (Zloof,

1977). The second direction uses the entity-relationship model's representation of

database objects as the basis on which the user can construct his queries. We will group

our discussion irto these two areas, citing particular efforts in each, and list the

objectives, benefits, and drawbacks of each approach. An additional section is also

provided which discusses interfaces that do not fall into either of the two preceding

categories.

13

1. Forms Based Interfaces

The ancestor of all of the forms based interfaces is QBE (Query by Example),

developed at IBM circa 1976 (Zloof, 1977). The basic idea behind QBE is that the user

calls up a form which represents the attributes in a given table. This idea should be

familiar to anyone who has used a spreadsheet type program. The user types example

values into columns which represent attributes in a specified relational table, and the

DBMS then returns the tuples that match the example values that the user entered.

Figure 1 shows an example query in QBE based on the example database

specified in Appendix A. The english translation of this query is: "Retrieve the names

of the instructors who gave at least one 'F' in any of their classes."

J UR EI C 01 I TTL I'" INvral
I _c I I -I - - -

IENROLL I CNO I SNO I GRADE I TESTSCORE

IINSTRUCTOR I 'NO I INAM E PAY example
I- l.uNQII value

Figure 1. Example of QBE Query

QBE uses variables to specify queries, in the spirit of domain relational

calculus. In the example above, the variables "_C" and "_" are used to join the three

tables required to answer the query. They are free domain variables which can represent

any value in the domain of their specific column. By using the same variable name in

more than one table, the user specifies a join on that column. Conditions to be satisfied

14

by the query are also entered into the column they reference. Hence, in our example we

place an "F" in the GRADE column of the enroll table to specify that we only want to

retrieve rows where the GRADE attribute was equal to "F". Other relationships can also

be specified such as >, <, !=, etc; equality is the default relationship. For complex

relationships it would be unwieldy to specify the condition by writing it in the actual

column box. A separate box, called the condition box, is called up for this purpose. "P."

specifies columns to print out as the result of the query. "P.UNQ." means to print out

only unique values of the specified column, much like the "SELECT DISTINCT ..."

statement in SQL. Thus, in our example, we will produce as output a list of INAME's

meeting our desired condition with each name only appearing once.

Although QBE is very nice for allowing relatively inexperienced users to

specify simple queries, it becomes less and less useful as query complexity grows.

Expressing universal quantification in QBE is difficult. While there was provision for

expressing universal quantification in the proposal for QBE, it has not been implemented.

In fact IBM's QMF (Query Management Facility as implemented under DB2), which was

used as the basis for our example, provides no support for existential or universal

quantification and thus is not relationally complete; universal quantification cannot be

specified (Elmasri, 1990, pp. 241-249). This means that the example query we presented

in section A.3 could not be expressed using QBE.

QBE is one of the first query languages to support a two-dimensional syntax.

This places it among the earliest "visual" database interfaces, where here "visual" means

not purely textual. Use of a form template in which to express the query was viewed as

15

a natural interface for people in offices who were accustomed to dealing with fill in the

blank type forms (Shu, 1988, pp. 239-240). The design of the QBE interface was also

directly influenced by the type of hardware available at the time of development. In the

late 1970's, bit-mapped graphics terminals were not widely available, so the developed

interface had to run on standard character based terminals. This limits the format of

information displayed to tables, as shown in our example.

The success of QBE in providing a user-friendly interface for relatively simple

ad hoc queries has led to a number of other database query languages being developed

along the forms based design. We briefly discuss several of these languages in the

following sections.

a. STBE--Summary Table By Example

STBE (Ozsoyoglu, December 1990) has been developed to solve problems

unique to the area of statistical database applications. The primary motivation is the

repetitive production and comparison of summary tables in these applications. The basic

query facility provided is very similar to that of QBE. The extensions provided allow

STBE to deal with relations that have set-valued attributes, summary tables, and aggregate

functions using queries that by nature have a hierarchical subquery structure. STBE is

based heavily on set and aggregation operations because of the type of data manipulations

that are expected to be performed. While there is no explicit implementation of universal

quantification, STBE uses set comparison operators (which may be nested) to achieve the

same effect. STBE could be considered relationally complete since it can implement

Cartesian product, projection, selection, set union, and set difference; however, STBE

16

departs from the pure relational model by allowing summary tables and relations with set-

valued attributes.

The graphical interface for STBE is much like that of QBE in its format. It

uses skeleton tables that are filled in with variables and conditions to compose the query.

STBE introduces the idea of scoping by allowing nested queries. A nested query is

4L implemented by placement of the table skeletons for the query in nested windows. The

variables in each table skeleton in a given window are bound throughout that window.

In a nested query, each window contains a subquery and behaves somewhat like a

function returning an output. This output is specified by either an output relation skeleton

or an output summary table skeleton in the owning window. The outermost window is

always named ROOT; the ROOT window's output is returned as the response to the

query. This structure of nested windows leads directly to a digraph representation of the

query which can be formed by decomposition of the STBE query into a parse tree. The

condition box in STBE performs the same function as in QBE but also allows set

membership (e, E) and set comparison (c, 2, etc.) along with the normally supported

relational (K >, =, etc.) and boolean (AND, OR) operators.

The powerful aggregation features, handling of summary tables and

relations with relational attributes, and nesting structures make STBE "not very simple

as a language" as admitted by its designers. This language is intended for the specific

field of Statistical Database Management where it would be used by advanced users and

not novices. (Ozsoyoglu, 1989, p. 566)

17

b. AQL--A Query Language

AQL (Miyao, 1986) is implemented for the AIDE-H (An Intelligent

Database System for End Users) prototype database management system. AQL is another

two dimensional query language that is extremely similar to QBE. The major difference

between the two is that in AQL there is no need to express joins between tables. This

is due to the design of the AIDE-II data model in which a "user view" is specified that

is supposed to contain all of the possible relationships in the database. The expressive

power of AQL is contained in that of QBE. (Miyao, 1986, p. 27)

The lack of the ability to express joins and universal quantification are

serious drawbacks of AQL. The elimination of the join operation from the query simply

splits the query up into two dissimilar parts: first specifying the user view required for

the query, and then actually specifying the conditions for the query on that user view.

AQL's inability to support the relational model is a fatal drawback.

c. RCIS-Relational CalculuslSets

RC/S (Ozsoyoglu, September 1989) is a relational calculus which uses

set comparison and set manipulation operators to replace universal quantification in query

formulation. Two graphical implementations of RC/S have been designed, both of which

are heavily based on QBE. The first implementation uses nested windows to specify

complex queries, as discussed for STBE above (however RC/S is for a simple relational

database). The second implementation provides the same functionality as the first, but

uses hierarchical windows to express the nesting concept. RC/S was developed by the

18

same principal as STBE; the query constructs are nearly identical with the exception of

RC/S handling only simple relations.

d. Objectives, Benefits, and Drawbacks

The initial objective of forms based interfaces was to provide the user

with a way to construct queries based on objects that he was familiar with, namely forms

(Shu, 1988, p. 239). QBE was the first implementation of a two dimensional query

language and for simple queries seems to be "easy to use." However, QBE (as

implemented in QMF) is not even relationally complete and therefore cannot express

some types of queries that a user may desire (for example, queries involving universal

quantification). STBE and RC/S (graphical) attempt to mitigate this problem while

retaining the ease of use characteristics of QBE. We believe that they are only partially

successful. The implemented nesting and the use of set comparison do allow the

expression of the categories of queries that are not expressible in QBE; however, these

same added features detract greatly from the simplicity of the language. The correct use

of set operations to solve the universal quantification problem requires at least some

knowledge of set theory. This is an additional burden placed on the user on top of

learning the semantics of the query language itself. AQL eliminates the user specified

join from the actual query by requiring a "user view" schema to be set up prior to the

execution of the query. We believe that this unnecessarily separates the query building

process into schema manipulation (the creation of the user view) followed by actual query

specification and is not an aid to the user. Also the AIDE-H DBMS for which AQL is

19

designed falls outside of the definition of the relational model due to its requirement of

user views.

2. Entity-Relationship Model Interface

The entity-relationship (ER) model was introduced in (Chen, 1976). The ER

approach has been used extensively as a high-level conceptual data model. The idea

behind the model is to illustrate the concepts of entities and relationships between entities

in a graphical way in order to enhance understanding of the structure desired for a

database. In the past, the ER model was used as an aid in developing the structure of the

database that would then be implemented using a relational DBMS and its associated

query language, but recently several query languages have surfaced which are based

closely on the ER model.

The normal visual representation of the ER model is shown in Figure 2 (using

the example database described in Appendix A). The rectangles represent entities and the

diamonds represent relationships between entities. Both entities and relationships may

have attributes which are represented by the connected ovals. This representation is

intended to specify some of the semantics which are contained in the database.

One of the drawbacks to the ER approach is that just because certain

relationships are currently specified does not necessarily mean that there are no other

relationships that exist between entities. When this type of representation is used as the

basis for a query language, it tends to force the user to depend on the specified

relationships. Indeed, the idea for using the ER diagrams is that the user need not worry

about the specific "join" conditions between entities. These "relationships" are all

20

ER SYMBOLS

L INSTRUCTOR

_____________________teaches

Figure 2. Example of ER Diagram

displayed for him. (Although someone at some time has to define these relationships.)

This is similar to the idea in AQL where user views are specified so that all joins are

eliminated from the user's purview. Dependence on predefined relationships may provide

benefits to the novice user who doesn't really understand how the data in the database fits

together, but it seems somewhat dangerous to write queries which depend on relationships

that the user may not fully understand. The ability to easily use a relationship without

knowing how it is actually set up increases the chance of syntactically correct queries that

will produce the wrong results.

The ER query languages also present a severe restriction on the advanced user

if they do not allow relationships other than those previously specified in the ER schema.

This is the case in several of the ER query language products. Since most relationships

21

in the ER model are based on equi-joins on keys and foreign keys of the entities, the

restriction may not seem too onerous; indeed, it may appear that if the ER schema is set

up correctly, there could be no relationships that are left out. However, if the user desires

a theta-join based on some relationship other than equality, even if this theta-join uses the

same key attributes as one of the defined relationships, it would be impossible to perform

without adding it as a "new" relationship to the ER schema. In any case, the ER type

query languages require the formulation of the query to be divided into two distinct

phases. First, the appropriate relationship (or relationships) must be found in the schema

(or created). Second, the actual query conditions must be specified.2 Requiring the user

to perform two dissimilar steps in order to construct a query does not allow him to

maintain a smooth train of thought while formulating the query.

Most of the graphical query language implementations based on the ER model

are designed around providing the user ways in which to manipulate the displayed schema

in order to specify his query. The idea has some intuitive relation to QBE; instead of

placing conditions on forms representing the schema, one places the conditions on the ER

diagram. The actual method of graphical implementation of the ER diagrams seems to

depend primarily on the type of hardware that the implementation was designed on or

intended to run on. Thus, the interface types run the gamut from Macintosh point-and-

click to more simplistic line drawings. We briefly discuss some ER type query languages

in the following sections.

2This is the same as the problem caused by user views in AQL (p. 18).

22

a. GQLIAndyne--Graphical Query Language

GQL (Andyne, 1991) is a commercial product developed by Andyne

Computing Limited of Kingston, Ontario, Canada. It is designed to run as a front end to

a user's existing relational DBMS. GQL runs on Macintosh computers and thus the

Apple "look and feel" is very much a part of the GQL query interface. In this discussion,

unless otherwise stated, we are referring to the product called GQLA~ser which is the

Andyne's user query language interface.

On startup, GQL displays the appropriate ER diagram for the database

that the user desires to run his queries on. Also provided on the startup screen may be

several "executive buttons" which are used to run previously stored or "canned" queries

that may have been written by or for the user. To perform single table (or perhaps more

appropriately single entity) queries, the user double-clicks on the icon in the ER diagram

representing the desired entity. A window with a list of the entity's attributes is then

displayed. Attributes may then be selected for printing. A "filter" dialog' is provided

to aid the user in formulating requests to sort the data or actually "filter" it by only

including items meeting certain criteria: minimum, maximum, or value ranges may be

specified. Queries for specific items, such as "list the name and address of student with

sno = S123 or sno = S321", are formulated with the assistance of GQL's "qualify"

feature. To "qualify" an attribute, a dialog is displayed where the user enters the

condition to satisfy; if previous conditions exist, the user must also select whether to

3For consistency we use the Apple spelling of "dialog" throughout this thesis.

23

"and" or "or" the new condition with the previous ones. The user is stepped through all

of the qualification steps by GQL.

The information represented by the relationships in GQL is accessed by

selecting the desired relationship from the screen along with its two (all relationships are

binary) adjoining entities. Now, when a query is formed, all of the attributes from both

entities are available for qualification and display. The relationships that the user sees

must be entered by the database administrator (DBA). These relationships are neither

changeable or extensible by the user. Another problem, due to the representation of the

ER model, is that for a complex database with many relationships the diagram will be too

large to fit on the screen at any one time. This may be even more likely to happen with

GQL than other ER products because GQL is designed to be run on top of an existing

relational DBMS. Each of the tables in the existing database becomes an entity. The

DBA must then define a relationship for each of the possible join conditions in the

database. If the underlying database has many tables (which is especially true of large

database schemas that have been reduced to third normal form (3NF)) with many join

conditions the resulting ER diagram will necessarily be very large. The ER diagram will

not be easy to use if it does not all fit on the screen at the same time.

b. GDML-Graphical Data Manipulation Language

GDML (Czejdo, 1990) uses much of the same type of pictoral

representation as the general ER model and GQL/Andyne. This query language is based

on an extended version of the ER model that incorporates "...various forms of

generalization and specialization, including subset, union, and partition relationships."

24

(Czejdo, 1990, p. 26) Queries are formed in GDML by removing parts of the ER

diagram. An editor is provided to allow the user to erase parts of the ER diagram. All

of the items in the database represented by the diagram remaining on the screen are then

displayed as the result of the query. A method of restriction is provided by allowing the

user to place conditions on the attributes in the diagram. Although GDML is based on

the ER model for the user interface, as implemented it runs on top of a relational DBMS.

The GDML entities are simply relations from the underlying database and the GDML

relationships are represented by database relations containing the appropriate keys from

each of the connected entities. Again, as with GQL, these relationships must be

established manually.

As an example, we will use the schema from Figure 2 to solve the query:

"Retrieve the names of students who received one or more 'A' and also the name of the

course they received it in."' First, remove the INSTRUCTOR entity from the diagram.

Removing an entity will also remove all attributes and relationships tied to it. Thus, the

"teaches" relationship is also removed. Then remove all of the attributes from the

diagram with the exception of the ones to print, namely "title" and "sname". Next, use

the restrict operator to add the condition "grade = 'A"' to the relationship "enrolled in".

The construction of the query is now completed. The results are produced by selecting

the display operator. When display is selected all of the necessary joins are performed

and the tuples from the resulting relation are displayed for the user.

'We are intentionally using different queries for our examples in order to best display
the unique characteristics of the particular languages.

25

c. QBD*-Query By Diagram*

QBD* (Angelaccio, 1990) is intended to be a "user-friendly" query

language based on the ER model which allows the expression of queries with a recursive

nature. QBD* uses the ER diagram as a navigational tool for forming queries. The

actual conditions to be satisfied by the query are specified in separate query specification

windows.

To use QBD*, the user first selects items of interest from the displayed

ER diagram. When an item is selected, a window is opened to allow the user to place

conditions, including recursive conditions, on the attributes of that item. The conditions

are built up by the use of icons representing the standard comparison operations such as

>, <, =, for example. The query condition window displays the attributes of the selected

item in a column on one side of the screen. To compare a given attribute to a value, the

value is entered on the opposite side of the screen and a line is then drawn between the

attribute and the specific value. A comparison operator is then selected from the icon list

at the top of the screen and is attached to the line connecting the attribute and the value.

By placing two separate entities on either side of the screen, join conditions can be

specified between two separate relations. By duplicating the same entity on both sides

of the screen recursive queries may be specified. (Angelaccio, 1990, p. 1154)

The two types of windows that are used in QBD* are quite different from

each other. This is because they serve entirely different purposes, however the

dissimilarity makes the linkage between the ER diagram and the actual query specification

seem somewhat tenuous. The two types of windows are used to accommodate the

26

designers' choice to implement the query formulation process as a series of phases: First

the user browses the schema. Then he picks the required items (or concep13 as QBD*

calls them) from the ER diagram. Next, the selected sub-schema is transformed to "bring

it 'close to the query"' (Angelaccio, 1990, p. 1152). Finally, the "navigation phase" is

entered where the actual query is formed in the query condition windows. This series of

steps seems unnecessarily complex. The formulation of the query in the query condition

windows also allows the user many options which are not based on the relationships

specified in the given ER model. For example, QBD* allows the specification of joins

(relationships) which are not reflected in the ER schema being used. If a query system

is to be based on the ER model, then the implementation should stay within the bounds

of that model. If these joins are truly necessary, then they should be reflected as part of

the ER model, according to the philosophy of that model. This anomaly arises from an

attempt to provide flexibility that is missing from the underlying ER model.

d GUIDE--Graphical User Interface for Database Exploration

GUIDE (Wong, 1982) has been developed especially to allow the

browsing of metadata in large databases with many complex relationships. Its design and

display methodology is based on the ER model, but GUIDE allows the user to select a

level of detail with which to look at the database. To handle metadata, entities are

organized into a "hierarchical subject directory" and attributes are organized into a

"hierarchical attribute directory." The purpose of these directories is to guide the user to

the part of the ER schema that is relevant to him. Also, a facility is provided to "rank"

objects according to their expected relevancy to a certain group of users. This ranking

27

is based on the objects expected "importance" in the system. The ranking does not

necessarily correspond to the hierarchical organization discussed above, but should reflect

the interests of the group of users and the frequency of access to that object by them.

To formulate a query, GUIDE asks the user to first select the level of

detail to display for the schema. The ER diagram is then presented at the desired level

of detail. Indirect relationships between entities (the actual connections are not shown

because they involve objects at a lower level of detail) are represented by dotted lines

between entitics. Next, the attributes of the displayed entities and relationships can be

examined by selecting the desired object and then "examining" that selected node.

Examining a node will again present the user with a hierarchical description of the

attributes of that node; information is also provided on what that attribute represents and

what values or codes are allowable for the attribute's data. Restrictions can be placed on

selected attributes in order to specify the query. The user may select separate portions

of the schema to run partial queries, while still maintaining any previous queries. These

separate partial queries may then be combined to form a final query.

e. GRAQULA..Graphical Query Language

GRAQULA (IBM, 1991) is being developed by IBM as a graphical

language for querying and updating a database. GRAQULA has both an ER and a

relational implementation, but we have placed it in the ER category of query languages

because the basis of GRAQULA is more related to the ER model. The syntax of both

the ER and relational versions of GRAQULA is similar, the relational version depends

on the specification of referential integrity constraints and, optionally. expected joins to

28

provide the connections between relations that would be given by the relationships in the

ER model. We will discuss only the ER version here.

GRAQULA is based on the definition of a database schema that is

presented to the user in the form of an ER diagram. The relationships are dispiayed

simply as directed arcs between the entities with the appropriate relationship name

attached to the arc. The database schema is displayed in one window while the query is

built up in a separate query window (as shown in Figure 3). The query window is

initially empty. The user selects entities from the schema window; they are then

displayed in the query window for further manipulation. To formulate the query on the

items the user has placed in the query window, the items may be expanded to show their

attributes. The attributes are listed in a tabular fashion and restriction conditions can be

entered for them somewhat as in QBE. Joins between items which are unrelated in the

schema can be performed by specifying the join attribute from one entity in the other

entity's value column.

In Figure 3 some of similarities between GRAQULA and QBE are

apparent. The query represented by this figure is: "List the name and salary of each

employee whose salary exceeds 50,000 and whose year of hiring equals the Research

division's year of formation." (IBM, 1991, p. 13) This query requires a join between the

EMPLOYEE entity and the DIVISION entity on the YEARHIRED and

YEARFORMED attributes. The join is represented by including

DIVISION.YEARFORMED as 2 comparand for YEARHIRED in the EMPLOYEE

entity. If any relationship had been previously specified between the EMPLOYEE and

29

SCHEMA-

DIVISION]

1

CONTAINS

m-

DEPARTMENT

1 1

PAYS EMPLOYS

(IBM, 1991, p. 7)

QUERY

- ~EMPLOYEE ,:...: :....>.-. . ..

ATTRIBUTE OP VALUE (AND)

NANE
SALARY > 50000
YEAR HIRED DIVISION.YEAR FORMED

1IDIVISIONoM ,
ATTRIBUTE OP VALUE (AND)

NAME 'RESEARCH'
BUDGET
YEARFORMED

(IBM, 1991, p. 13)

Figure 3. Example Join in GRAQULA

30

DIVISION entities, there would be a line drawn by the system between the two entities

with the name of the relationship on it. In GRAQULA, conditions are specified by filling

in the VALUE column of the displayed entities. The relational operator (OP column) is

assumed to be equality ("=') if it is left blank. In this case, the conditions are all

conjunctive, as indicated by the "(AND)" in the right comer of the value column. As in

QBE, complex conditions can be formed in a condition box that is then attached to the

query.

Additional power is added to GRAQULA by nesting simple entities and

relationships inside various frames. A frame is indicated by a box drawn on the screen

which may contain one or more entities and their associated conditions and relationships.

These frames are used to specify logical operations such as simple conjunction and

disjunction (AND and OR), negation with conjunction and disjunction (NAND and NOR),

and implication and consequent. The logical operations are scoped over any of the

entities and relationships that are contained in their frame. Nesting of operations can thus

be performed by nesting frames, providing a clear way of showing the scope of each of

the operations. The inclusion of implication and consequent frames is intended to ease

the problem of specifying universal and existential quantification. As stated previously,

the predicate logic approach for these ideas is not simple. The implementation of the

implication and consequent ideas does not do much to simplify the process of

quantification specification because of the complex nature of the idea involved. Sockut

proposes a method for transforming quantification queries from English into GRAQULA

31

statements (IBM, 1991, p. 23). This procedure is non-trivial and the meaning of the

resulting GRAQULA query is not obvious.

f. Objectives, Benefits, and Drawbacks

The primary objective in the proposal of the ER model based query

languages is simplification of the query specification process for the end user. A

significant benefit of the ER query approach is that the database schema is displayed so

that the user does not have to memorize the specific relationships between database

objects. However, this is also a drawback. Using the actual schema to define queries

limits the user to the predefined relationships that have been coded into the schema. Even

in systems that allow the user to define his own relationships, the user is forced to break

up a single logical query into two disjoint and dissimilar steps. 5

Most ER systems assume relationships based on the equi-join of keys

between entities. This does not take into consideration relationships based on other

attributes or on other types of theta-joins. In systems that do allow the user to perform

joins without having them defined in the ER schema, GRAQULA for example,

convenience is added at the expense of violating the ER model. If the user is joining

entities based on certain attributes and conditions, then this relationship should be

indicated in the ER diagram. Without enforcing this rule, the semantics of the database

schema and its associated ER diagram are lost by a buildup of stored queries based on

5p. 22

32

specified joins. The actual relationships that are being used may never make their way

into the database ER diagram; semantic correctness of the model is lost.

Another problem with the ER model in general, is that the distinction

between entities and relationships in the schema is not necessarily straightforward: "...one

person's entity is another person's relationship." (Codd, 1990, p. 477) An example of this

ambiguity is presented in the representation of an airline flight. To an accountant it exists

as an entity--a concrete object. To a scheduler it exists as a relationship between a

specific aircraft, aircrew, routing, date, etc. (Codd, 1990, pp. 477-478) Neither of these

determinations are wrong, they are just based on the different points of view of the people

involved. However, this lack of concrete distinction could cause problems when queries

must be made from a single ER schema by multiple users, each with a different point of

view.

3. Other Approaches

Although most of the graphical query languages proposed fall into one of the

previous two categories (forms based or ER model based), we will briefly discuss two

approaches that differ somewhat from either of these two previously discussed categories.

a. PICASSO-Picture Aided Sophisticated Sketch Of Database Queries

PICASSO (Kim, 1988) is a graphical query language that is structured

heavily on the universal relation database model. The idea behind a universal relation

database is that all of the join dependencies are included in the universal relation itself.

33

This relieves the user from the necessity of knowing which relations database attributes

are attached to, since there is only one relation--the universal relation.

PICASSO uses hypergraphs to represent the semantics of the database.

Attributes of the universal relation become nodes in the hypergraph. Hyperedges are

formed by collecting the attributes that have fundamental relationships; thus, the

hyperedges form conceptual objects. A second hypergraph is then constructed with the

conceptual objects as nodes and the hyperedges representing maximal objects, or the

maximal sets of objects in which queries "make sense." (Kim, 1988, p. 172) Attributes

that are in common between two (or more) maximal objects are shown by having those

parts of the hypergraph overlap. Figure 4 depicts an example PICASSO hypergraph.

This PICASSO example contains information only on courses and instructors from the

schema of Appendix A.

To form a query based on this hypergraph, the user would use a pointing

device to place a question mark next to the attributes that he would like to be returned

from the query. Simple selection can be performed by attaching selection conditions to

attributes on the screen. PICASSO allows selection conditions using not only the normal

relational comparison operators (<, >, =, etc.) but also grouping and set operators. An

example query based on Figure 4 would be constructed by appending " = 'SMITH"' to

INAME. If the TITLE attribute had a question mark next to it, the query thus formed

would produce a listing of the course titles that 'SMITH' taught. This is a very simple

example of how a query is formed in PICASSO. There are many other rules for forming

more complex queries.

34

Figure 4. Example PICASSO Hypergraph

One of the major drawbacks of PICASSO is the limited amount of

information that can be displayed on the screen at any one time. The hypergraph drawing

for even our simple example is rather large, and most actual databases would have

schemas much more complicated than two maximal objects. Also, when several related

hypergraphs are displayed on the screen simultaneously, the picture rapidly becomes

confusing.

The expression of joins in PICASSO is made possible by allowing the

user to create copies of a selected hypergraph and the, relate the attributes from one copy

of the hypergraph to the other. Again, this representation does work, but the idea of the

universal relation database model is that this type of query is abnormal; performing a join

35

actually violates the universal relation paradigm. In fact, the designers of PICASSO

admit that their graphical representation is not well suited for some complex types of

queries. Their solution to this shortcoming is the use of a textual/windowing tool called

"ANSWERTOOL" in which partial queries can be processed (Kim, 1988, pp. 189, 191).

A single interface to the database is superior if it can be demonstrated that it is easy to

use for all types of queries.

b. IFO and SNAP--A Graphics-based Schema Manager

The IFO model (Abiteboul, 1987) is an actual incarnation of a semantic

database model. The ideas embodied in IFO have much in common with the precepts

involved in object-oriented approaches to data modeling. Various types of atomic and

composite objects are specified by the IFO model. Aggregation and ISA relationships are

directly represented. Relationships between objects are specified in a functional manner.

One end of the relationship serves explicitly as the domain and the other end as the range

of the function. This specification supports the hierarchical construction of fragments.

Fragments allow portions of the schema to be condensed (inside the fragment) in order

to provide a modular view of the schema. This feature is somewhat similar to GUIDE's

ability to provide views of the database schema at various levels of abstraction.'

However, the IFO model is much more complex than the ER model.

The SNAP system (Bryce, 1986) is the interactive, graphical interface to

the schemas of the IFO model. SNAP is primarily configured for the creation and

'pp. 27-28

36

maintenance of IFO schemas, however, a limited query facility is also provided. This

query facility permits the expression of only selection-type queries (Bryce, 1986, p. 156).

SNAP presents a screen display of the IFO schema containing the IFO objects and their

connections. To place a query, the condition to be satisfied is entered in the

corresponding object box. The version of SNAP discussed here only supports simple

conditions; logical conjunction, disjunction, and negation are not supported. The idea of

joins can be expressed in SNAP by using comparitor arcs to specify a comparison (<, >,

=, etc.) between objects. Set comparisons can also be specified with comparitor arcs.

The information to be printed upon execution of the query is indicated by highlighting

the desired objects with the pointing device. If the object highlighted is an abstract,

non-printable type, the appropriate printable key value for instances of the object meeting

the query criteria are printed. (In IFO it is required that each object have a unique

printable attribute to be used as a key.)

Due to its limited capabilities, SNAP is not complete as a query language.

The data model aside, SNAP's provided query facility is similar to several of those

proposed for use with the ER model and as such has many of the same types of strengths

and weaknesses as those languages. However, the IFO model is much more complicated

than the ER model, adding an additional level of difficulty in formulating IFO queries

which is not mitigated by the SNAP system.

37

D. DATAFLOW PROGRAMMING LANGUAGES

Dataflow diagrams have been used in computer science as an aid in systems

analysis and systems design for about 15 years. The same methodology has been used

by operations research scientists for nearly 70 years. The idea behind the dataflow

diagrams is to provide an easy to understand way of describing a network of functional

processes which are interacting with each other based on the flow of data from one

process to another. (Yourdon, 1989, pp. 139-140) Dataflow programming languages take

the ideas specified by the dataflow diagram and make them directly executable. In other

words, rather than using the dataflow diagram as a tool in designing a computer program,

the diagram becomes the program itself.

1. Dataflow Diagram Description

A traditional dataflow diagram makes use of several distinct graphical symbols

to convey its meaning. Dataflow diagrams have a strong tie to the depiction of directed

graphs. In a dataflow diagram, the processes, data stores, and terminators are the nodes

and the dataflows are the arcs of the directed graph. A circle is used to represent a

process that is performed on data.7 Arrows indicate data flowing from one node (most

often a process) to another. These arrows are labeled with the name of the data that they

represent. A square represents a terminator, an entity external to the system being

modeled. (Yourdon, 1989, pp. 141-149) Figure 5 is an example of a simple dataflow

diagram that depicts a query processor running on top of a backend DBMS.

7There are several "camps" of symbology; we are using the Yourdon notation for this

discussion.

38

IUSERI qury QUR
formafted retrieval
resume a command

fewFORMAT rsults DBMS

Figure 5. Example Dataflow Diagram

In this example, data (the user's query) flows from the USER to Process 1.

The parsed query is then passed to the DBMS, which is external to the query processor

in this example. The external DBMS then returns a result, which is formatted by Process

2. and then passed back to the user. The sequence in which the functions of the system

are carried out is specified in the model only through the availability of data for each

given process. All processes that have data available may theoretically execute

simultaneously. For example, in Figure 5 if the user has entered another query while the

first one is still being executed, both Process 1. and Process 2. could be running

simultaneously.

2. Visual Dataflow Programming

Shu defines a visual programming language as "a language which uses some

visual representations (in addition to or in place of words and numbers) to accomplish

what would otherwise have to be written in a traditional one-dimensional programming

language." (Shu, 1988, p. 138) Dataflow diagrams are inherently visually oriented. A

graphical dataflow programming language allows construction of dataflow diagrams that

39

are not simply models but are directly translatable (by the computer) into executable code.

Davis and Keller discuss the advantages of using a graphical representation for dataflow

programs and give the following four main reasons (Davis, 1982, pp. 26-27):

* A dataflow graph conveys the mental image which suggests conceptually the data

dependencies and flows between nodes.

• Dataflow programs are easily composable into larger programs.

* Dataflow programs avoid describing a specific execution order; they describe
dependencies instead.

• Graphs can be used to attribute a formal meaning to the given dataflow program.

The two dimensional representation and the use of the value oriented computation method

also help to increase the understandability of graphical dataflow programs (Washington

University, 1986, p. 1).

Figure 6 is an example of a program fragment written in the graphical dataflow

language Prograph. This fragment represents the equation y = mx + b. The values for

bThis
method

calculates
y =mx+b

Figure 6. Dataflow Program Fragment

40

m, x, and b are expected as inputs, and the value for y is generated as the output.

Prograph is a fully functional, object-oriented programming language based entirely on

the graphical dataflow representation. Prograph is one of the few graphical dataflow

languages that have been developed, and to the best of our knowledge, is the only

commercial dataflow programming language on the market today. Our DFQL interpreter

is written in the Prograph language. Prograph and how it was used to implement DFQL

is discussed in detail in the implementation section of Chapter III.

41

I. DESCRIPTION OF DFQL

A. CONCEPT

DFQL is a visual relational algebra to be used for the manipulation of relational

databases. It has been designed with sufficient expressive power and functionality to

allow the user to easily express database queries. As such, DFQL is relationally complete

and includes an implementation of aggregate functions. A facility is provided for the user

to easily create his own DFQL operators, thus allowing great extensibility. Orthogonality

has been stressed in the design of the language. The concentration on orthogonality

provides a clarity of definition and lack of ambiguity that is missing from most other

query languages (both visual and textual). Overall, the intent has been to provide the user

with a simple to use, yet powerful and extensible tool to implement database queries at

all levels of complexity.

DFQL has been developed as a token model graphical dataflow language. The use

of the token model (Davis, 1982, pp. 27-31) implies that each of the defined operators are

designed to operate on a stream of tokens over their lifetime. Our language does not

allow the specification of iteration or recursion; each operator will execute once over the

life of the given query. Iteration and recursion could be added to our language well

within the dataflow paradigm. However, we feel iterative and recursive dataflow

structures are not necessary for querying the database.

42

Queries are defined by the user connecting the desired DFQL operators graphically

on the computer screen. The arguments for the operators flow from the bottom or "output

node" of the operator to the top or "input node" of the next operator. Operator execution

is controlled simply by the presence of the requisite input data for that operator's

execution. When the data becomes available the particular operator may execute orfire.

If there were facilities available, all fireable operators could be executed simultaneously.

In our present implementation, only one operator is executed at a time since the system

is being run on a single processor. The structure of DFQL queries directly mimics that

of standard dataflow diagrams. The specifics of how this structure is implemented for

DFQL are discussed in the following sections.

1. DFQL Operators

All DFQL operators have the same basic appearance. This has been done in

order to enhance the orthogonality of the language. Each operator is made up of three

types of components: the input nodes, the body, and the output node. A sample operator

(with no name) is shown in Figure 7 below. The input nodes are where the data required

input
nodes

ct;2- body

Figure 7. Operator Construction

by the operator enters. They are represented by small circles that are then connected to

other operators by lines drawn by the user. The body of the operator is the large oblong

to which the input nodes and output node are connected. For identification, the name of

43

the operator is displayed centered on the body. The output node is where the result of

the operator exits. The output node may then be connected to other operators' terminals

to pass the intermediate result along in the query.

The functional paradigm is fully supported by the DFQL notation. The inputs

to each operator, or function, arrive at the input nodes of the operator and the result

leaves from the output node. All of the operators of DFQL implement operational

closure. This means that the inputs to the operators are relations and associated textual

instructions, and the output from each operator is always a relation. Maintaining this

concept is very important in the ability to understand large and complex queries. A lack

of operat:,nal closure on query operators leads to complications in the formulation of

complex queries. The complications are caused by the inability to orthogonally combine

query operators when some operators yield relations as outputs whereas others yield some

different type of data. Thus, the operators can only be combined in certain ways; if a

scalar is output, it cannot then serve as input to an operator requiring a relation for input.

It would necessarily be up to the user to construct his query in a manner consistent with

all of the different data types output by the operators when operational closure is not

enforced. This burden is especially great when the query being formulated is complex

in its own right. Because all DFQL operators maintain operational closure, any output

from a DFQL operator can be used an input to other operators.

There are two broad categories of DFQL operators that are based on their

method of implementation. A primitive operator is one that has been defined directly in

the native language of the DFQL interpreter. Primitives have a one-to-one

44

correspondence with an actual method in the implementation language of the interpreter.

A user-defined operator is one that has been constructed by the user from primitives and

possibly other previously created user-defined operators. The primitives can be further

broken down into the categories of basic operators, other primitives, and display

operators.

a. Basic Operators

In DFQL, the user is provided a set of basic query operators which he can

then combine to build more complex operators as necessary. DFQL provides six basic

operators derived from the requirements for relational completeness and also the

requirement to provide a form of grouping or aggregation. Saying that a query language

is relationally complete means that it has the expressive power of first-order predicate

calculus. This is a common baseline measure of a query language's power of expression.

For a query language to be relationally complete, the following five relational operations

must be implemented: selection, projection, union, difference, and cartesian product.

These operations are thus implemented as part of the basic set of DFQL operators!

Provision is also made for simple aggregation by including groupcnt (group count) as a

basic operator. The groupcnt operator provides an easy solution to the universal

quantification problem discussed in Chapter II. The basic operators and a corresponding

translation into SQL are shown in Figure 8.

'Cartesian Product is not implemented explicitly; join is used for its implementation.

This is in agreement with (Codd, p. 66, 1990).

45

DQL _
relation condition

SELECT DISTINCT *

FROM relation
set WHERE condition;

relation attribute list

SELECT DISTINCT attribute list
gproject FROM relation;

relation 2

relation 1 join condition SELECT DISTINCT *

FROM relationI rl, relation2 r2

oin WHERE join condition;

relation 1 relation 2 SELECT DISTINCT *
FROM relationl
UNION

Sunion SELECT DISTINCT *
FROM relation2;

relation 1 relation 2 SELECT DISTINCT *
FROM relationl

diff MINUS
SELECT DISTINCT *
FROM relation2;

grouping attributes

relation count attribute SELECT DISTINCT grouping attributes
COUNT(*) count attribute

FROM relation
roupcnt GROUP BY grouping attributes;

Figure 8. DFQL Basic Operators

46

A special notation is used to provide textual input to the DFQL operators. Text

entered by the user shows up on the DFQL screen as an object with the text attached to

an output node as shown in Figure 9. Text objects are the only DFQL syntactic item that

exampIe text

Figure 9. Text Object

generates an output other than a relation at its root. The text object can be interpreted

in two different ways. If the text is the name of a relation, the output at the root can be

thought of as an instance of that specific relation. If the text represents a condition, a list

of attributes, or some other textual input to another DFQL operator, then the text is

passed on to that operator as a textual argument.

(1) Select This operator implements the relational algebra operation of

database selection. The relational algebra notation for the select operation is as follows:

a citio(<relation>). The condition specifies which tuples should be retrieved from the

given relation. The result of the selection operator (and all other DFQL operators) is a

proper relation. By proper relation we mean a relation with no duplicate rows.

Whenever we mention relations in this thesis we always mean proper relations, unless

specifically stated otherwise. We make use of the explicit term when we wish to

emphasize the characteristic of having no duplicate rows in a given relation.

An example of the use of the DFQL select operator is shown in

Figure 10. This example retrieves all of the tuples in the STUDENT relation where the

47

GPA is greater than 3.5. As shown in the example, the condition input to select is an

expression which must return a true or false value for each tuple in the source relation.

The specification of this conditional statement uses the same syntax as in SQL. All of

the tuples meeting the selection criteria form a new relation that flows from the output

node when the operator is executed.

student gpa > 3.5

SNO SNAMI ADDR PHONE GPA

Si STU *I ROOII I 111-1111 3.85
S3 STU *3 ROOM 3 333-3333 3.75

Figure 10. Example DFQL Select

(2) Project. This operator implements the relational algebra operation

of database projection. The relational algebra notation for the project operation is as

follows: & t ,.(<relation>). The attribute list specifies the attributes that should be

retrieved from the given relation. The syntax of the attribute list is simply the attribute

names desired (non-case-sensitive) separated by commas. The result of the projection

operator is required to be a proper relation made up of only those attributes specified in

the attribute list. This requirement dictates the removal of what would otherwise be

duplicate rows resulting from the removal of key attributes from the input relation.

Figure 11 shows an example in which duplicate rows would result if they were not

48

eliminated by the operator. The Figure 11 example creates an output relation containing

only the TESTSCORE attribute from the ENROLL table. In our example database, more

than one tuple in the ENROLL relation contains the same TESTSCORE. As shown, these

duplicate values are removed from the output relation by project, producing the required

proper relation.

enroll 4estscore TESTSCORE

70
72
82
83
85
90
91
92
93
94
95
98

Figure 11. Example DFQL Project

The project operator can also be used to change the names of the

attributes in the result relation. For example, in Figure 11 if we substituted

"QULIZGRADE = TESTSCORE" for "TESTSCORE" in the attribute list, the result

relation would have the same values, but the attribute would be named QUIZGRADE

instead of TESTSCORE.

(3) Join. This operator is used to implement the relational algebra theta-

join. We specify theta-join to stress that conditions other than equality of attributes may

be used as arguments to the DFQL join operator. The relational algebra notation for the

49

join operation is as follows: <ition><relation2>. The result of the

relational join is a relation consisting of all of the attributes from both <relationl> and

<relation2>. The tuples of the result relation are the subset of the tuples of the cartesian

product of <relation1> and <relation2> which satisfy the join condition. The join

condition is specified using basically the same syntax as the WHERE clause in SQL.

Range variables in the condition are limited specifically to rl (for <relation1>) and r2

(for <relation2>). (These range variables need to be used only if the condition is

specified on attributes with the same name in both of the input relations.) Normally the

<condition> specifies some relationship between the attributes of <relation1> and

<relation2>, but this is not necessary. Any <condition> that is a tautology will result in

the cartesian product of <relation1> and <relation2> thus satisfying the requirement for

cartesian product in the relationally complete set of DFQL operators.

Perhaps the most common use of the join is a special case

commonly referred to as the equi-join. The equi-join specifies an equality condition

between certain attributes of <relation1> and <relation2>. An example of an equi-join

expressed in DFQL is given as Figure 12. In this example the COURSE and

INSTRUCTOR relations are joined based on INO. The output relation produced contains

all attributes from both the COURSE and INSTRUCTOR relations and conceptually is

produced by selecting tuples from the cartesian product of COURSE and INSTRUCTOR

where COURSE.INO = INSTRUCTOR.INO. The result of this join is a relation

containing tuples for all of the courses taught combined with the instructor information

for the instructor teaching that course.

50

instructor

course r 1 ino - r2.ino

W jin

CNO TITLE INO INOI INAZIE PAY

CS05 COURSE * 5 Ii I1 INST *i 100000
CS10 COURSE #10 12 12 INST #2 50000
CS20 COURSE #20 12 12 INST #2 50000
CS15 COURSE #15 13 13 INST #3 47380.78
CS25 COURSE #25 13 13 INST #3 47380.78
CS30 COURSE #30 13 13 INST #3 47380.78

Figure 12. Example DFQL Join

The DFQL join retains all attributes of both of the input relations.

Because all attributes are retained, special handling must occur when an attribute with the

same name exists in both of the input relations. An alternative to retaining all attributes

would be to discard one of the duplicated attributes as redundant. However, this approach

places too much semantic meaning on the attribute name alone. For example, it is

entirely possibly that we could have a NAME attribute in both the STUDENT relation

and the COURSE relation (in our Appendix A example we use TITLE as the attribute for

course name); a join to produce a relation of students and the courses they are taking

should retain the NAME attribute from both the STUDENT relation and the COURSE

relation. Although the two attributes have the same name, they represent two different

things. For this reason, we have chosen to retain all attributes from both relations. Since

the output relation may not have columns with identical attribute names, DFQL must

provide a method of handling joins between relations that have attributes with the same

51

name. Our solution to this problem is to change the name of the attribute from

<relation2> by appending a "1" to the attribute name. In the Figure 12 example, the

attribute INO appears both in the COURSE and INSTRUCTOR relations. Thus, the result

of the join has the two separate attributes INO and INOl. By taking this approach, no

information will be lost, no matter what type of theta-join is performed.

A special case of the equi-join is the natural join. In a natural join

one of the attributes that was used in the equality condition is automatically removed

from the result relation. Natural join is not implemented as a primitive in DFQL since

it does not provide any feature that cannot be produced from the provided primitives.

However, if desired, natural join could easily be implemented as an additional primitive

operator.

(4) Union. This operator implements database relational union. The

relational algebra notation for the union operation is as follows: <relation 1>u<.relation2>.

The relational union is similar to but not as general as mathematical set union; the

relational union requires that <relationl> and <relation2> be union compatible. Union

compatibility means that when taken in sequence, the data types of the attributes in

<relationl> and <relation2> must be compatible. This restriction is necessary because

union does not create any more columns for the output relation. Both input relations

must be of the same degree (have the same number of attributes) and the data types of

corresponding attributes must be compatible in order to fit together in the result relation.

Relational union produces a relation containing all of the tuples of both of the input

relations (without duplication of rows).

52

The example shown in Figure 13 uses union to produce a relation

containing the names of all the students and instructors from the example database of

Appendix A. In this example we first project the names of the instructors and students

and then take the union of the result. In the example database the attributes INAME and

SNAME are of union compatible types. The renaming feature of project is also used in

this example to change the result relation column name to "ALLNAMES." The default

column name would have corn from the first input relation and thus would have been

INAME. The same query in SQL (without renaming) would be:

SELECT INAME
FROM INSTRUCTOR
UNION
SELECT SNAME
FROM STUDENT;

instructor allnames = miname student sname ALLNA.M S

INST *1
project project INST #2

INST #3
STU #1
STU #2
STU #3

Sunion]STU #4
S1STU #5

Figure 13. Example DFQL Unien

(5) Diff. This operator implements database relational difference. The

relational algebra notation for the difference operation is as follows: <relationl>-

<relation2>. As with relational union, and in fact all set theoretic operators used in the

relational model, diff requires that <relationl> and <relation2> be union compatible.

53

Relational difference returns as a result the relation that contains all the tuples that occur

in <relationl> but not in <-elation2>. Another way of looking at relational difference is

that it "takes away" tuples from <relationi> that occur in <relation2>.

An example query using DFQL diff is given as Figure 14. This

query returns as a result tuples representing courses that have no one enrolled in them.

We first project CNO from both COURSE and ENROLL to produce two union

compatible relations, and then we use diff to return the CNO's that were in the first

relation (projected from COURSE) but not in the second (projected from ENROLL).

course cno enroll ¢1of

pro ect l pro'ect

Figure 14. Example DFQL Diff

(6) Groupcnt. Groupcnt (short for group count) is defined as a basic

operator in order to provide the user with some simple aggregation capabilities. Counting

is especially important in allowing the user to easily formulate queries involving universal

quantification. Groupcnt counts the number of tuples in a particular grouping specified

by the user. For inputs, groupcnt requires a relation, a list of grouping attributes, and

a name for the attribute in the result relation that will store the result of the count. The

54

grouping attributes may be a single attribute or multiple attributes separated by commas.

The result relation will be made up of the attributes specified as grouping attributes along

with the attribute name provided for the count attribute. The count attribute will be of

an integer representing the number of tuples in the input relation that belong to each

grouping specified by the grouping attributes. As a special case we allow the use of the

keyword "ALL" as an argument for the grouping attribute list. If "ALL" is specified,

groupcount simply counts all of the tuples in the input relation and as output produces

a single attribute relation (using the attribute name specified for the count column) with

a single tuple containing a count of the number of tuples in the entire input relation. This

is consistent with the normal employment of groupcnt--since no grouping attributes were

specified the entire relation is considered at once and there are no grouping attributes

present in the output relation.

In Figure 15, groupcnt is used to produce a relation listing each

course and how many students are enrolled in it. The result is produced by grouping the

ENROLL relation by CNO and naming the counting attribute NUMSTUDENTS.

enroll eno numstudents

[roupn

CNO NUISTUDENTS

CS05 4
CSIO 3
C515 3
CS20 2
CS25 2

Figure 15. Example DFQL Groupcnt

55

b. Other Primitives

We have provided several other primitives to perform special operations

on relations. Most of these additional primitives perform operations that are at such a low

level that the user would not be able to specify them as a user-defined operator. Several

operators specified here as primitives could also be specified as user-defined operators.

However, specifying an operator as a primitive allows us to take advantage of built-in

functions of the underlying DBMS that we are running DFQL on top of. An example of

this is the intersect primitive. Relational intersection can be defined in terms of union

and diff (R~nR2(RuR2)-((RI-R2)u(R2-R,))), however, many DBMS's provide a specific

intersect operator. In order for DFQL to take advantage of this facility, we code

intersect into the language as a primitive and use the underlying DBMS operation for its

implementation. Also, specifying an operator as a primitive rather than as a user-defined

operator slightly reduces the overhead required by DFQL to interpret the query. User-

defined operators must be decomposed by DFQL into the primitive constituents prior to

execution. This is avoided if the operator is simply coded as a primitive. However, due

to the way that DFQL queries are executed, the difference in efficiency between

primitives and user-defined operators is not great. Figure. 16 shows the additional

primitives.

(1) Eqjoin. The eqjoin operator is provided primarily to aid in the

construction of user-defined operators. Eqjoin takes as arguments two relations

(<relation 1 > and <relation2> and a list of attributes (<attribute 1 >, <attribute2>, etc.). The

56

relation 2

relation 1 join attribute list relation 1 relation 2

eq oin lintersect

grouping attributes

relation condition relation title

0 qroupfLsatisfy
U

grouping attributes sort attribute list

relation condition number relation title

roupNsatisfy SDISPL Y

grouping attributes grouping attributes

relation aggregate attribute relation aggregate attribute

groupmax F TO goupminj

grouping attributes

relation aggregate attribute

[roupavu

Figure 16. Other DFQL Primitives

57

attributes must occur in both <relationl> and <relation2>. An equi-join is then

preformed by setting the join condition to rl.<attributel>=r2.<attributel> AND

rl.<attribute2>=r2.<attribute2> AND etc. Thus the DFQL join condition is specified

without explicitly including the equality statements. A later example (in the user-defined

operator section) will show the utility of this operator.

(2) GroupALLsatisfy. This operator provides a simple way of

introducing universal quantification into DFQL queries. The three inputs to

groupALLsatisfy are the name of the input relation, a list of grouping attributes, and a

condition statement that must be satisfied by all of the tuples in each group. The list of

grouping attributes consists of the attribute names separated by commas.

GroupALLsatisfy first groups the tuples according to the list of grouping attributes and

then checks that all of the tuples in each group meet the condition specified. For each

group that meets the condition, an output tuple is generated consisting of the grouping

attributes. The result of groupALLsatisfy is a relation containing only those groups, as

specified by their grouping attributes, where all the tuples in that group satisfy the given

condition.

GroupALLsatisfy is used in the example of Figure 17 to retrieve

the students who received 'A' grades in all of their classes. We specify this query on the

ENROLL relation by grouping the tuples by SNO and specifying the condition as

GRADE = 'A'. This means that all of the tuples in each SNO group must satisfy the

condition that GRADE = 'A'. The result is a relation containing the SNO's of only those

students with all 'A' grades.

58

enroll sno grade = 'A'

roupALLsatisf

-I~i"
Figure 17. Example DFQL GroupALLsatisfy

(3) GroupNsafisfy. GroupNsatisfy is closely related to

groupALLsatisfy. The only difference is that groupNsatisfy takes an extra input which

allows the user to specify exactly how many of the tuples in the group need to satisfy the

given condition in order for that group to be included in the result relation. This fourth

argument to groupNsatisfy must consist of a relational operator (<, =, <=, >=, !=) and

a number.

The example query in Figure 18 is much like the one in Figure 17,

with the exception that we now use groupNsatisfy to retrieve those students who got

more than two 'A' grades. This additional condition is specified by the ">2" entry as the

fourth input argument to groupNsatisfy.

grade = 'A'

enroll sno I >

SgroupNsatisfy

Figure 18. Example DFQL GroupNsatisfy

59

(4) Aggregate operators. Three aggregate operators are provided as

primitives. Unlike groupALLsatisfy and groupNsatisfy which can be specified as user-

defined operators, these aggregate operators cannot be formed from any combination of

other operators--aggregate operators must be primitives. Groupavg is used to calculate

the average of an attribute of a group of tuples in the input relation. Similarly,

groupmax produces the maximum value and groupmin produces the minimum value of

a specified attribute in each group. The three input arguments to all of the group

aggregate operators are an input relation, a list of grouping attributes, and the attribute

name to perform the aggregation on. The result relation consists of the grouping

attributes and an additional column containing the result of the aggregate operation. This

result attribute bears the same name as the aggregation attribute with the operation name

prepended to it. For example, in Figure 19, we execute a DFQL query to return the

maximum testscore for each course. The result relation is made up of a CNO attribute

and a MAXTESTSCORE attribute. One tuple occurs for each course existing in the

ENROLL relation. If the groupmin operator had been used the result relation would

have a MINTESTSCORE column. Likewise, groupavg would produce

AVGTESTSCORE as ; result attribute.

60

enroll cno testscore

ro

CNO MUXE STSCORE

CSI0 95
CS15 83
CS20 94
CS25 94
CS5 98

Figure 19. Example DFQL Groupmax

(5) Intersect. This operator implements database relational intersection.

The relational algebra notation for the intersect operation is as follows:

<relation 1>n<relation2>. The relational intersection requires that <relation1> and

<relation2> be union compatible. The result of relational intersection is a relation

containing only those tuples that occurred in both <relation1> and <relation2>. The

implementation of intersect is identical to that of union. Two relations are taken as input

arguments. The result relation is produced as discussed above. The data types of both

of the input relations must be union compatible.

c. Display Operators

The display operators are not DFQL operators in the usual sense since

they produce no output relation. The display operators are provided to allow the user to

print the contents of relations on the computer screen. The most common use of the

display operators is to print out the final result of a query. However, multiple display

operators may be used in a single query to print out not only the final results but also

61

results at intermediate points in the query. This ability aids in debugging and formulating

complex queries.

Due to the unique nature of the display operators they have a different

shape than the rest of the DFQL operators. The display operators have square corners

(and no output node) as opposed to the rounded comers of the rest of the DFQL

operators. Their names are also displayed in all capital letters. These distinctions cause

the display operators to be easily recognized in a query. The two display operators are

DISPLAY and SDISPLAY.

(1) DISPLAY. The DISPLAY operator takes as inputs a relation and

a text string to be used as a title. When DISPLAY is executed it causes the input

relation to be printed out in tabular format. The text string that is input as the title is

printed as the header for the output table. The title allows easy differentiation between

printed results when more than one display operator was used in a query.

(2) SDISPLAY. SDISPLAY is used to produced a sorted printout of a

relation. SDISPLAY takes as input a relation, an attribute list consisting of attribute

names and, optionally, the order to sort them in, and a title.

The attribute list for SDISPLAY is differenc than the attribute lists for

the other DFQL operators. Each attribute in the list may be followed by "ASC" or

"DESC" to indicate whether the sort order for that attribute should be "ascending" or

"descending." The order in which the attributes occur in the attribute list also is

important. The "major" order columns are listed first with "minor" order columns

62

following. Thus, if we wanted to produce a listing of the ENROLL relation sorted first

by CNO in descending order and then by GRADE in ascending order (within each course)

the attribute list would be: "CNO DESC, GRADE ASC". This example is shown in

Figure 20. The default ordering is ascending, so "ASC" actually never needs to be

specified but may be included if desired for clarity. The title input operates the same way

as in DISPLAY.

cno desc, grade asc

enroll SORTED DISPLAY EXAMPLE

------------------ ----- '

SORTED DISPLAY EXAXWLE

SNO CNO GRADE TESTSCORE

S2 CS25 A 90
S4 CS25 A 94
S1 CS20 A 93
S5 CS20 A 94
S4 CS15 B 83
55 CS15 B 82
SI CS15 C 72
Si CSio A 92
S3 CSI0 A 91
S2 CSIO A 95
S2 CS05 A 98
S4 CS05 A 93
S3 CS05 B 85
55 CS05 C 70

14 records selected.

Figure 20. Example DFQL SDISPLAY

63

d. User-Defined Operators

One of DFQL's most important features is its extensibility through the

use of user-defined operators. With user-defined operators, the user can construct his

own operators that look and behave exactly like the primitive operators provided in

DFQL. The user can create operators for situations that are unique to his query needs.

This flexibility is gained without a loss of orthogonality since user-defined operators are

constructed by combining the provided primitives which have been coded to ensure

maintenance of orthogonality." The ability for the user to extend the query language with

his own operations is an extremely powerful feature that is unique to DFQL.

A simple example of how a user-defined operator is constructed involves

the select and project operators. In DFQL select and project are implemented as

separate primitives. However, in use select and project often occur in pairs; first the

selection is made and then a projection is done to retrieve only the specific attributes that

are desired. An example of this would be to retrieve the SNO from the ENROLL relation

where that student got at least one A. This query would be coded in DFQL as show in

Figure 21. enroll grad. = 'A'

Iselect so

[.projeoct

Figure 21. DFQL Select - Project Query

'User-defined operators may also contain other previously created user-defined
operators.

64

Since combinations of select and project occur frequently it may be

useful to have a single operator which combines these two operations. Figure 22 shows

the specification of a new user-defined operator that does just this.

select

project

grade = 'A'

enroll'15no

[selpro'

Figure 22. Creating a User-Defined Operator

The top part of the Figure 22 shows how the new operator is defined.

The shaded gray rectangle at the top is called the "input bar." There are three "incoming

nodes" on the input bar, hence the new operator will have three input nodes. The

dataflow connections from the incoming nodes to the select and project operators are

defined by the user. The result relation for the new operator flows out of the unconnected

output node in the diagram. Once the specification of the internals of the operator is

completed, the user must provide a name for the new operator. For this example, the new

operator is called selproj. Once the user-defined operator is stored into DFQL, it may

65

be used just like any other operator. The bottom section of Figure 22 shows the same

query as in Figure 21, but uses the newly defined operator.

Two advantages are gained from the utilization of user-defined operators.

The most important advantage is that user-defined operators allow abstraction of

complicated queries into manageable pieces that are easier to understand and use

correctly. User-defined operators can thus greatly enhance the ability to write correct

queries by relieving the user of the responsibility of repeatedly coming up with complex

coding for commonly exercised queries. The complex code can be written once, tested,

and converted into a user-defined operator that can simply be invoked without knowledge

of its internal structure. Abstraction and encapsulation are modern techniques that are

accepted universally in the field of software engineering but have never been put into

practice in a query language until DFQL.

A second advantage of the user-defined operator is that it conserves space

on the screen when the user is defining his queries. The lack of screen "real estate"

rapidly becomes a severe problem for most graphically oriented applications. This

problem is somewhat alleviated by user-defined operators.

As another example of a user-defined operator we include Figure 23, the

definition of groupALLsatisfy, here coded as a user-defined operator (rather than as a

primitive). This demonstrates the capability to define arbitrarily complex subqueries as

user-defined operators. In fact user-defined operators may contain other previously

defined user-defined operators to any level of recursion. This is possible because of the

orthogonality enforced even when the user is allowed to create his own operators.

66

select

user-cn roupAusais

Fiue2.User-DefinepGroallaif

67

Figure 23 is also an example of the amount of space that can be taken up by a subquery

that is then condensed into a single operator.

2. DFQL Query Construction

Many of the general ideas behind DFQL query construction have been

presented implicitly through the examples in the previous section. Here, we comment

explicitly on some of the techniques used in DFQL query construction and on the benefits

derived from the DFQL approach.

All DFQL queries exist as a dataflow program in which text objects and

operators are connected by dataflow paths. The dataflow paths are represented as the

lines in the DFQL query that connect the input and output nodes of the DFQL objects.

Execution of the query can be visualized as flowing from the top of the diagram to the

bottom."0 When the input arguments to an operator are available, that operator may

execute or "fire" producing its output which will then flow on to the other connected

operators. Since text objects have no inputs, they may fire at any time. Execution of the

query continues until all input has been exhausted. Since DFQL does not allow recursion

or iteration within a query, each operator will fire exactly once during the life of the

query. The results of the query are displayed for the user by the DISPLAY and

SDISPLAY operators.

An example of a complete DFQL query is included as Figure 24. This query

uses the diff operator to return the SNO of students who did not receive any 'A' grades.

"MThere is no restriction on how operators are placed on the screen. Top-down

placement is recommended for readability.

68

In this query, the user-defined selproj operator from Figure 22 is used. There are several

other ways that the same query could be posed in DFQL by using some of the other

student sno girade - 'A'

STUD£NTS WiTHOUT A's

Figure 24. Complete DFQL Query

operators that we have discussed. One other method would be to use groupNsatisfy with

the condition "GRADE='A"' and the count condition "=0". Depending on how this query

is being used, as a part of a larger query or by itself, a user may prefer one method of

expressing it to another.

a. Incremental Queries

The ability to easily build complex queries in an incremental manner

greatly simplifies their formulation. DFQL provides two methods of support for

incremental querying. The key to being able to construct queries incrementally is based

on the operational closure property (Codd, 1990, p. 61). The output of any DFQL

operator can be used as input to any other DFQL operator. This property can be used to

great advantage in query construction.

To demonstrate the idea we will use a simple query for an example. The

incremental query feature becomes of more value as the complexity of the query

increases. In complex queries it becomes easier for the user to lose track of what he is

69

doing and what intermediate results that he has to work with. The example query is "List

the names of instructors who taught CS I0." To solve this query we can break it down

into constituent parts as shown in Figure 25. First select all of the 'CS 10' tuples from

the COURSE relation. This result can be displayed to ensure we have what appears to

be a correct partial answer. Next, join the partial result with the INSTRUCTOR relation

to add the INSTRUCTOR information to the partial result. The new partial result can

then be displayed. Finally, we can project INAME from the previous partial result to get

the solution for our posed query.

Although the previous example is extremely simple, the value of the idea

should be obvious. Perhaps an even more valuable advantage is gained through the use

of incremental query execution as an aid in the debugging of a complex queries. When

a large query is constructed, there are many possibilities for errors to creep in. Many of

these errors are semantic and not syntactic; the DBMS will provide a result, but it will

be erroneous. By going back through the query and looking at the intermediate results

as it executes, the user is aided in finding where the flaw in logic occurred. In DFQL

this practice is easily achieved. Given a complex query it is difficult to tell exactly where

an error may have been introduced. DFQL allows the user to set a flag on any of the

operators in a query to show the intermediate result at that point. For example, in Figure

26, the join operator is highlighted indicating that the user has selected this operator.

Execution will stop at that point in the query and the intermediate result of the selected

operator will be displayed. If that result was satisfactory, the user can search for the

problem further along in the query. If that partial result was incorrect, the user can go

70

core cous CS1=0CS10

course cno ='CS1 0'

Figuec 2.inscretlQeyCnruio

r71 n -r.n

course cno= 'CS10'

seet instructor

~r I .cno = r2.cno

, irame

pro,'-c CS1O INSTRUCTOR

DISPLAY

Figure 26. Incremental Query Execution

back and look at earlier partial results. Multiple display operators can also be used to

report intermediate results at different locations in the query as shown in Figure 27. TIhis

method of analyzing intermediate query results has proven to be extremely useful in

debugging complex DFQL queries. There is no easy way to even simulate this approach

with complex queries in SQL due to its declarative nature.

course cno = 'CS10'

[select]instructor

Pata .. 1. r 1 lcno -r2.cno

i oSPLRYl ,o,. inm

CS10 INSTRUCTOR
OISPLALR I

Figure 27. Use of Multiple Display Operators

72

b. Universal Quantification

The problem of expressing universal quantification in existing query

languages has been discussed in Chapter II. DFQL provides a unique solution to this

problem by starting with elementary counting operations that are easy to understand and

then building on them to satisfy the requirements of universal quantification. The basic

idea employed is that if all tuples in a relation or a group must satisfy some criteria, we

first count the number of tuples that meet the criteria and then compare this number with

the total number of tuples under consideration. If these two numbers are equal, then the

universal quantifier has been satisfied.

The actual implementation of this idea is included in DFQL by the

groupALLsatisfy primitive. A visual description of how groupALLsatisfy works is

provided in Figure 23 where a user-defined operator was defined with the same

functionality. The counting idea can be extended to supply other useful quantification

type operators such as groupNsatisfy. The concept required to understand the idea of

counting tuples is much simpler than that required to understand the logical idea of

universal and existential quantification.

c. Nesting and Functional Notation

DFQL implicitly provides a nesting capability in the formulation of

queries. Unlike SQL and block structured languages, however, there are no nesting

constructs required in DFQL. Thus, DFQL requires no range variables or scoping rules;

a good understanding of both range variables and scoping rules is necessary to code

complex queries in SQL. The lack of nesting structures improves the readability and

73

orthogonality of the language. The idea of nesting, as implemented in SQL, is provided

naturally in DFQL by having subqueries execute first and provide the arguments for later

query operators. This is conceptually the same as executing nested queries in SQL from

the "inside" to the "outside."

The use of functional notation for all of the DFQL operators greatly

enhances orthogonality. The idea of relational operational closure discussed previously

is naturally implemented through the functional paradigm. The use of operators that may

take more than one input but produce only one output allows for their easy combination

into user-defimed operators as discussed in the previous section.

d. Graph Structure of DFQL Query

When a DFQL query is formulated, the visual representation of the query

is a graph made up of operators (and text objects) as nodes and the dataflow paths as

arcs. As such, the graph structure represents the relational algebra structure for the

execution of the query. Having this structure provides two benefits: First, the internal

operations of relational DBMS's are based on relational algebra. Thus, relational algebra

can provide a common interface to a DBMS without the need of having a separate

interpreter/compiler. Second, there is a large body of techniques that have been

developed for the optimization of relational algebra expressions. Most SQL

interpreters/compilers, for example, are not capable of performing optimization across

levels of a nested query, but if the same query is expressed as a series of relational

algebra operations it can then be optimized. (Dadashzadeh, 1990, p. 308)

74

By using a graphical, relational algebra approach to query formulation,

we believe that the user is provided with a much more consistent and straightforward

interface to the database. The advantages cited in the previous paragraph serve only to

enhance the value of the graphical interface. Codd expressed a preference for relational

calculus over relational algebra for a query language because of problems related to the

DBMS's ability to optimize the queries (Codd, 1990, p. 62). The declarative approach

of relational calculus has been preferred in the implementation of query languages in part

in order to force the user to express his query in a single, large logical expression. For

complex queries this large logical expression becomes difficult to correctly formulate.

By using a graph structure of relational operators, the query can be more easily globally

optimized than can be combinations of partial queries in a textual block structured

language. In fact, the work of Dadashzadeh in converting SQL queries into relational

algebra graphs for optimization purposes, results in structures quite similar to DFQL

queries (Dadashzadeh, 1990).

B. USER INTERFACE FOR DFQL

DFQL and its graphical interface has been implemented on an Apple Macintosh.

The general characteristics of the user interface follow the guidelines that Apple has

established for Macintosh programs (Apple, 1985, chpt. 2). Basic operation of the

program depends heavily on use of the mouse (or other pointing device) and pull-down

menus. Every attempt has been made to make the user interface as friendly as possible.

75

Since ease-of-use is the most important goal of the DFQL language itself, ease-of-use of

the interface is considered very important also.

In this section we provide an in-depth discussion on how the user interacts with the

DFQL interpreter to formulate and execute his queries. We assume that the reader is

familiar with such terms as "clicking", "double-clicking", and dragging with the mouse

and "pressing a button" (on the screen).

1. Starting The Program

Upon startup, a tide screen is displayed while program parameters are

initialized. A dialog box is drawn to inform the user at the completion of the

initialization phase. At this point the user is presented with the screen shown below as

Figure 28. The DB INTERFACE window is the main window of the DFQL interpreter

application. This wind w may be moved and resized anywhere on the screen that the

user desires, but it may be closed only by quitting the DFQL application.

2. DB INTERFACE Window Items

a. Buttons

Several buttons are provided directly in the DB INTERFACE window

for commonly required functions. Operator construction buttons are provided for the five

required relational operators (join, select, project, union, diff), groupcnt, and DISPLAY.

When one of these buttons is pressed, its related operator appears in the upper left corner

of the drawing area in the window as shown in Figure 29. From this position the

operator can be repositioned as desired by the user. (This procedure is discussed in the

76

File Edit Primitives UserOps Options... Info Special
Io DB INTERFRCE 9

Figure 28. DFQL Main Window

77

File Edit Primitlues UserOps Options... Info Special
0 0 INTERFACE 2

Figure 29. Operator Creation

Drawing Area section below.) There is no harm if the operator is not moved from this

position and another one is created. Each of the operators will continue to exist. Even

if one covers another, the operators can be peeled off of each other with no problem.

Along with the operator construction buttons there is also a text object button. When this

button is pressed a dialog box (as shown in Figure 30) is opened for the user to enter the

character string for the text object. When the user clicks the OK button or presses the

return key on the keyboard, the text object is created and appears in the same position

on the screen as newly created operators. The length of text displayed can be limited in

order to not clutter the screen. Truncation of the displayed text is indicated by trailing

"..."--the change in the display format does not affect the actual value of the text string.

78

File Edit Primitiues UserOps Options... Info Special
OR INTERFACE

RUN

s Please enter your text.

prajecRESET

union

diff OK

Figure 30. Text Object Creation

The RUN button executes the query that is currently displayed in the

drawing area. RUN will first check that the query graph displayed is constructed

correctly; it ensures that all input nodes are connected, for example. Then the query will

be sent off to the backend DBMS for processing. Results returned from the database will

be displayed in a separate result window. The RESET button clears the current query

from the drawing area and from the computer's memory. RESET can be used to set up

another query when the user has no desire to save the query that is currently on the

screen.

79

b. Drawing Area

The drawing area is the portion of the window that is bounded by the

horizontal and vertical scroll bars. This area starts out blank and is used to graphically

construct the DFQL query from the various operators and text objects. As the query

becomes larger, the scroll bars may be used to position it in the drawing area so that the

portion of interest is displayed. In order to move an operator or text object within the

drawing area the user clicks on and then drags the object to the desired position. While

dragging the object, an outline is displayed that shows the position of the object as it is

being moved around the drawing area. When the mouse button is released the object (and

any connected dataflows) are redrawn in the new position.

Along with the dragging of objects there are several other operations that

can be performed on the DFQL query in the drawing area. Double-clicking on an

operator will bring up a help window describing that operator. The help information for

the DFQL primitives is coded into the system. Help information for user-defined

operators is entered by the creator when the operator is defined. Help information

appears in a dialog box as shown in Figure 31. Double-clicking on a text object opens

up an editor for that object's text string. This editor supports all of the Macintosh's

normal text editing functions such as cutting and pasting text from the Macintosh

clipboard. When the editing dialog box is closed, the text for the object is replaced with

the new string.

In order to construct a DFQL query, the query objects must be connected

with the desired data flows. These flows are represented in the interface as straight lines

80

File 1 lIdIl IPriili II.s IS0ei0II (lptiarl ,., I11I S pe(tltl

09 INTERFRCE

INPUTS: relation, selection condition

Cin OUTPUT: relation of tuples from the input relation that meet the cnterie of the
selection condition

DESCRIPTION: Performs relational selection. Attributes in the output relation are
the same as the attributes in the input relation.

grok

Figure 31. Example Select Operator Help

that connect the output node of any given object to the input node of another object (or

objects). To draw these lines, the user must click the mouse pointer on either an input

or output node. Once the mouse button has been released, a rubber-band line will be

drawn from that node to the current position of the mouse. Clicking on the input or

output node of another object will connect the dataflow line from the originating node to

the newly indicated node. DFQL does some checking to ensure that connections make

sense. For example, attempted connections from input to input or output to output are

detected and an error message is produced stating that the attempted connection "did not

make sense." This level of error checking is somewhat rudimentary, however. DFQL

will not flag cycles created in the query graph at construction time. An error message

81

will be produced when the query is executed. Clicking the mouse in an empty portion

of the drawing area will turn off the rubber-band line if we user has decided not to make

a connection after all. Since an input node may have only one input dataflow, if the user

connects a dataflow line to an input node that already had one, the previous dataflow line

is deleted automatically.

If the mouse is double-clicked on an output node, the columns of the

relation passing out of that node are displayed. In this way, the user can determine what

attributes may be used by operators subsequent to that point in the query graph. This

assistance is very important in the construction of large queries in which the attributes

become hard to keep track of. Also, when user-defined operators are used, it is important

to be able to easily determine what the names of the attributes are that the operator

produces.

3. Query Results Window

The Query Results window displays the result of the DFQL query. The results

are displayed in the format returned by the backend database system. An example of a

displayed query result is included as Figure 32. The contents of the results window may

be edited with any of the Macintosh's normal editing functions (cut, copy, paste, and

clear). The results may also be sent to the printer. Scroll bars are provided in the result

window in order to display queries that generate results that are larger than the viewable

area. The query results window may be moved, resized, and closed as the user desires.

For example, in Figure 32, the results window has been moved so that the query in the

DB INTERFACE window is visible. If DFQL is being run on a system with a large

82

File Edit Primitiues UserOps Options... Info Special
0B INTERFACE

0 iLYbloUl
tostscore)- 90

-W L u) with UUlc[select ENR OLL tupl,, with TE... FU

soie~~~t J ~DISPLRY L.......

C 0 QuerN Results e ; 2

ENROLL tuples vith TESTSCORE >- 90

SNO CNO GRADE TESTSCORE

51 CS10 A 92
SI CS20 A 93
S2 CS05 A 98S2 CS10 A 96
S2 C525 A 90
53 CS10 A 91
S4 CS05 A 93
S4 C525 A 94
S5 CS20 A 94

(9 records selected.

Figure 32. Query Results Window

monitor, the Query Results window could be moved and left open while queries are

formulated in the DB INTERFACE window. If there is room, the results window can be

resized in order to display more of the result at once. The Query Results window is

activated when the query is run from the DB INTERFACE window. If the Query Results

window is closed, it will not be reopened until the next query is run.

The Query Result window is also where error messages about the current query

will be returned to the user. All errors relating to the DFQL query, with the exception

of the graphical construction type errors mentioned previously, are trapped by the backend

DBMS. These errors are then passed back to the user through the Query Results window.

83

Since the error messages may reference temporary views created by the DFQL interpreter,

an option is provided for the display of the actual SQL query that was sent to the backend

DBMS. This feature allows for easier debugging of the DFQL query; its necessity is

discussed in the Implementation section.

4. Menu Items

The menu bar displayed at the top of the screen is an omnipresent feature of

all Macintosh programs. Its presence and design is one of the requirements dictated for

Macintosh user interfaces by Apple (Apple, 1985, p. 1-51). The DFQL interpreter menu

bar is displayed as Figure 33. In a Macintosh environment the menu bar is a separate

F File Edit Primitives UserOps Options... Info Special

Figure 33. DFQL Menu Bar

entity from the window currently being displayed. For that reason, the items listed in the

menu bar usually remain the same throughout execution of the given application no

matter what window is currently being displayed; any items that are not applicable at a

given time are made not selectable. Any item in the Macintosh user interface that

selectable is indicated to the user by being displayed at reduced intensity, commonly

known as being "grayed out." The DFQL user interface menu items are discussed

individually below.

84

a. Apple

This menu is a standard Macintosh menu that has no real relation to

DFQL as an application. It provides access to Macintosh utilities called "Desk

Accessories" and should be accessible at all times (Apple, 1985, p. 1-54). The only

DFQL specific item in the Apple menu is the "About..." item. When this item is selected

a title and information window for DFQL is displayed.

b. File

The file menu (Figure 34) also has a standard Macintosh design (Apple,

1985, p. 1-55), but is application specific in its functionality. Our file menu has six items

Edit Primitives UserOps Options... Info Special
11 New UN DB INTERFACE

Open... X0
Save mytest XS

-- Save As...

Page Setup...

Print... XP

Quit 80Q

Figure 34. File Menu

which follow the Macintosh user interface guidelines. The New item resets the system

for the user to enter an entirely new query. The Open... item allows the user to retrieve

a previously saved query from disk. When Open... is selected, a dialog box is presented

from which the user can select the stored query for retrieval (Figure 35). Only query files

are displayed for selection. Once a query file has been selected, it is immediately loaded,

85

File WORK V

o DQUERY#2
D DQUERY#3
o QUERY#2
D DUERY#2 Driue
o QUERY#3
D QUERY#4
D QUERY#5 Open
D QUERY#6

(Cancel

Figure 35. Open... Dialog Box

and the stored query appears in the drawing area in the window ready for execution or

editing.

The Save option (shown in Figure 34 as Save untitled) stores the current

query onto disk with the name that is currently displayed. For example, Save untitled

would create a query file actually named "untitled". When a query is retrieved using the

Open.. command, its name is retrieved also and will appear in the Save menu item. If

the current query was a "new query" and thus had no name Save untitled will be

displayed as the Save option. The user can use the Save As.. menu item to name the

file. This option displays a file naming dialog box. If the user enters a name that is

already in use he is asked whether or not he actually wants to replace the previously

86

stored query. If not, a new name can be chosen. When an appropriate name has been

chosen the query will be saved to disk.

The Page Setup... option is a standard Macintosh File menu item. Page

Setup... runs a Macintosh routine which allows the user to change printer parameters such

as the size of paper, print quality, and orientation. Print... is used to print out

information from the front window of the application. For example, if the DB

INTERFACE window is foremost then the DFQL query currently displayed in the

drawing area will be printed. If the Query Result window is foremost then the text of the

query result will be printed. The Quit menu item terminates the DFQL interpreter

execution.

c. Edit

The Edit menu (Figure 36) is another of the Macintosh standard menus.

It provides the text editing functions of Cut, Copy, Paste, and Clear. These edit

File Primitiues Userdps Options... Info Special
i-0 Undo 0111 "Z DB INTERFCE

,o° ooo °°° ° o....

selecs! IXIt~

,..................... °.............

llprjec Select
Delete

Figure 36. Edit Menu

87

functions are available whenever the user is editing a text item, such as when the Query

Results window is displayed. An Undo (all) menu item is also provided. Undo (all)

reverses the deletion of objects in the DFQL drawing area. It is only active immediately

following the deletion of the objects. When Undo (all) is not available it is "grayed out".

The two remaining choices in the Edit menu are used to edit the DFQL

drawing area. Select is a "checkable" item. By this we mean that it has two conditions--

on and off. When Select is turned on, a check mark appears to the left of the Select

menu item. While Select is on, clicking the mouse on a DFQL object in the drawing area

will cause it to be "selected". This selection will be indicated on the screen by the

object's color being inverted as shown previously in Figure 26. Selection of objects in

the drawing area is a "toggle" type process. If the mouse is clicked on a previously

selected object, the selection will be toggled off and the operator will return to its normal

appearance. Selecting a DFQL object has two effects. First, it enables the Delete

operation which is also an item in the Edit menu. Delete will delete all selected objects

from the DFQL drawing area. Secondly, selecting a DFQL operator allows the user to

retrieve intermediate results from the query. When an operator is selected and the RUN

button is pressed in the DB INTERFACE window, the query will be executed up to and

including the selected operator. The result of this operator will then be displayed in the

Query Results window. When the Select menu item is turned off (by choosing it while

it is check marked) all of the currently selected DFQL objects are returned to their non-

selected state.

88

d. Primitives

The Primitives menu (Figure 37) allows the user to select primitives that

are not provided by a button in the DB INTERFACE window. These primitives include:

. File Edit lu UserOps Options... Info Special
=I eqjoin OB INTERFACE

join groupaug

groupmOH
select groupmin

groupNsatisfy
intersectSp roje ct] L...........

DISPLAY

r . SOISPLRY

Figure 37. Primitives Menu

eqjoin, groupALLsatisfy, groupavg, groupmax, groupmin, groupNsatisfy, intersect,

DISPLAY, and SDISPLAY. When one of these menu items is selected the effect is the

same as pushing one of the primitive buttons on the DB INTERFACE window. The

desired operator appears in the upper, left comer of the drawing area and is ready to be

incorporated into a DFQL query.

e. UserOps

The UserOps menu (Figure 38) is provided to enable the user to define

and manipulate user-defined DFQL operators. The New menu item places the DB

INTERFACE window into user operator definition mode. This mode disables the

window's normal menu and button items and adds several operator definition items to the

89

SFile Edit Primitives I Options... Info Special
ED - New INTERFACE

Delete
join ISelect

Uiew

Figure 38. UserOps Menu

screen. This operator definition mode is shown in Figure 39. The desired internal

structure for the new user-defined operator must exist in the drawing area before choosing

the New menu item. Connections in the drawing area may be changed while in operator

definition mode, but no operators may be added or deleted since all of the required menu

and button items are disabled. The most obvious added item in this operator definition

mode is the "input bar" at the top of the screen. This bar is used to define where the

input data to the user-defined operator will be sent internally. Clicking the mouse on the

input bar will create additional input nodes for the user-defined operator. If too many

nodes are created by mistake, input nodes can be removed by checking the Delete Input

check box on the right side of the window. Whenever this box is checked, clicking on

the input bar will delete the input nodes (and all internal connections to them) from the

drawing area. Once the desired number of input nodes are created, they must then be

connected to the desired operators in the drawing area. These dataflow connections are

made in the same manner as on the normal DFQL editing screen. All input nodes of the

operators inside the user-defined operator must be connected. Also, there may be only

one unconnected output node in the user-defined operator. This single node becomes the

90

f ile Edl Primitiues UserJapi Oplian... Info Spetia

U_ INTERFACE 1

(-)-i r

(L)(j aI t see t RESET)

(_d) i [Delete
Input

Figure 39. User Operator Definition Window

output node for the entire user-defined operator. Figure 39 shows select and project in

the drawing area ready to be connected to three nodes that have been created on the input

bar.

There are two active buttons provided in user-operator definition mode:

Store and Cancel. Cancel restores the screen to the normal DB INTERFACE window

by eliminating all of the user-operator definition items and reactivating the normal DB

INTERFACE buttons and menus. The items that were in the drawing area in the operator

definition mode will still be present with the exception of the input bar. Store first

checks the user-defined operator query graph to ensure that all necessary connections have

been made and then asks the user for a name for the new operator and a description that

91

will be used as help for the operator. The operator's name is checked for uniqueness

among all previously defined user operators; the new name must be unique. When

entering the help for the operator, the user should list what type of argument is expected

for each input node, what relation is produced from the output node, and also provide a

brief description of what the operator does. In order to make the help information more

easily readable, the user may insert carriage return characters by using the Option-

Return key combination on the Macintosh. Once all of the requisite user input is

received, the new user-defined operator is added to the list of currently stored user-

defined operators.

The Delete menu item allows the user to delete stored user-defined

operators from the system. The user is presented with a scrolling list of user-defined

operators, as shown in Figure 40. When the desired operator is selected, by either

USER DEFINED OPERATORS

selproj
user-groupALLsati sfy

Figure 40. User-Defined Operator Selection

double-clicking on its entry or selecting it and then pressing OK, it will be deleted from

the list of operators. The Select menu item presents the user with the same type of

92

scrolling list. Select is used to add a user-defined operator to a DFQL query. When the

desired operator is chosen from the selection list, it appears in the upper left corner of the

drawing area just the same as a DFQL primitive. There is no difference in the use and

manipulation of the user-defined operator as compared to a primitive DFQL operator.

The final menu option in the UserOps menu is View. View allows the internal structure

of a stored user-defined operator to be displayed. An example of this display is Figure

41. The desired operator is selected through the use of a selection dialog as shown

View User Cperator -- selproj -

[proj ect]

Ol OK

Figure 41. View User Operator Window

93

previously in Figure 40. The View feature is provided so that a user may "look inside"

the operator to see how it was constructed. This is especially useful if the user-defined

operator was provided by someone else. The user is not permitted to modify the operator,

only look at it. In this way the integrity of the operator is preserved while still allowing

some access to the internals for the user's purposes.

f. Options...

The Options... menu (Figure 42) provides the user with control over the

operation of the DFQL interpreter. All of the choices provided in the Options... Menu

w File Rdit Primitives UserOps i. ll Info Special
__-_____ _"_ DB Display Last

Show SQL USjoin 1 /Sound

Figure 42. Options... Menu

are toggle items. When the item is active, or "turned on", a check mark is present next

to the item. For example, in Figure 42 the Sound option is "on" whereas the Display

Last and Show SQL options are "off". When Display Last is turned on, the output of

the last DFQL operator executed will be displayed in the Results Window when the query

is run. This is useful wten incrementally constructing queries because it causes the

display of the results without having to use a display operator. Show SQL causes the

intermediate SQL code that is generated from the DFQL query graph to be displayed in

the Query Results window along with the results of the query. This display can be used

to troubleshoot any execution errors that are not directly apparent from the DFQL query

94

graph. Also, this option allows the DFQL interpreter to be used as a translator in which

a DFQL query is input and a SQL query is output which could then be run on any SQL

database system. The Sound option is included primarily for esoteric reasons. When

selected, Sound causes certain easily recognizable sounds to be played at different key

points during processing of the query.

g. Info

The Info menu currently has only one option, Tables. This option allows

the user to retrieve information about what attributes exist for tables in any given relation

vv- File Edit Primitfues UserOps Options... Special
ED -DB INTERFACE[Tables

Figure 43. Info Menu

in the database. When Tables is selected a selection dialog is displayed from which the

user can pick which table he is interested in. This action will bring up a dialog box

displaying the attributes of the selected table as shown in Figure 44.

h. Special...

The Special... menu also has only one menu item, ORACLE*Shell.

ORACLE*Shell starts up a separate application to provide the user direct access to the

backend DBMS (in this case ORACLE). When ORACLE*Shell is selected the user is

presented with a new window and menu bar that are specific to the ORACLE*Shell

95

TABLE: ENROLL

COLUMN NAMES:
SNO, CNO, GRADE, TESTSCORE

m
Figure 44. Table Information

application. From this window the user may select SQL*Plus to start up the ORACLE

SQL interpreter, as shown in Figure 45.

Once the SQL*Plus interpreter is running, the user may manipulate the

database directly using any SQL command desired. This facility allows the user to add,

delete, and update tuples in the database relations. Since the current version of DFQL

is strictly a query language, these database functions are not provided in DFQL. By

allowing the user direct access to the backend DBMS while still running under the DFQL

environment this deficiency is somewhat mitigated. In order to return to the DFQL

_ File Edit IOR i

--l I Worksheet-"'

Figure 45. Starting the SQL*Plus Interpreter

96

interpreter, the user must first exit from SQL*Plus (by typing "EXIT" at the "SQL>"

prompt) and then stop ORACLE*Shell by selecting Quit from the File menu. When the

user exits from ORACLE*Shell, control is automatically returned to the DFQL interpreter.

C. IMPLEMENTATION OF DFQL

DFQL has been implemented on a Macintosh II/ci running version 6.0.7 of the

Macintosh Operating System. The actual programming was done in the Prograph

language (discussed further below). The backend DBMS used on the Macintosh is

ORACLE for the Macintosh version 2.0. DFQL has also been operated on a remote

ORACLE DBMS (version 6.0) running on a Digital Equipment Corp. Micro-VAX via a

DECNET Ethernet connection. XLINK protocol is used to communicate database startup

and shutdown commands to the ORACLE kernel running on the Macintosh. All features

of DFQL which have been discussed in this thesis have actually been implemented.

1. Prograph -- Object-Oriented Dataflow Language

Prograph is a "very high-level, pictorial object-oriented programming
environment" that integrates four key trends in computer science: a visual
programming language, object orientation, dataflow, and an application-building
toolkit. (Wu, 1991, p. 71)

Prograph is a commercial product developed by The Gunak.xa Sun Systems (TGSS) of

Halifax, Nova Scotia, Canada. The ideas behind Prograph are discussed in (TGSS,

Tutorial, 1990, chpt. 4) and have been reviewed in the Journal of Object-Oriented

Programming (Wu, 1991). Both of these references provide detailed information on the

Prograph language and its strengths and weaknesses. Here, we discuss only the basics

97

of Prograph program construction in order to provide the reader with some idea of how

our system has been implemented.

Prograph was chosen as our implementation language for several reasons. First

of all, its visual dataflow structure is very similar to the approach taken for DFQL. This

similarity helped to stimulate our development of DFQL. Also, the ability provided by

Prograph to take advantage of the Macintosh visual interface, greatly aided in the

development of the DFQL user interface. The fact that Prograph is object-oriented

allowed the use of many powerful features of the object-oriented paradigm which also

greatly improved the modularity and ability to upgrade and maintain the program code.

The subsequent discussion assumes some knowledge of the ideas of

object-oriented programming. The following descriptions should provide enough

information to follow the examples in the text and in Appendix C. For further

information on the Prograph language the tutorial and reference manuals for the Prograph

language (TGSS, 1990) should be consulted.

a. Prograph Code

A simple example of actual Prograph visual dataflow code was given

earlier as Figure 6. Dataflow program fragments, such as the one shown in that example,

form the methods of the object-oriented paradigm. These methods are grouped into

classes, ultimately making up a complete Prograph program. All DFQL classes, their

attributes, and their high level methods (along with a brief explanation of Prograph

symbology) are included in this thesis as Appendix C.

98

Prograph provides many primitive operations that are used to construct

methods. An example of one of these primitive operations is "show" which prints its

input on the screen. Further examples of primitives are the arithmetic operations such as

"+" or "-' or trigonometric functions such as "sin" or "cos". Primitive operations are

provided by Prograph in the following basic categories: Application, Bit, Data, File,

Graphics, Instances, Interpreter Control, I/O, Lists, Logical/Relational, Math, Memory,

Strings, System, Text, and Type. These primitives are not methods as defined by the

object-oriented model since they do not belong to any class. They are just the Prograph

basic operations similar to the operations such as "+" and "-" provided in other object-

oriented programming languages such as C++.

Prograph's only built-in complex data structure is the list. The

programmer can construct any complex data structure he desires by establishing a class

for that purpose, however the level of support inherently provided by the language is at

the list level. Therefore, in our DFQL interpreter there are many occurrences of list

operations and list data structures. The Prograph primitives for manipulating lists are very

powerful and comprehensive. Many of the primitives are reminiscent of LISP list

operations. Items can be added, deleted, and inserted at any point in the list. The list can

be indexed into by any attribute of the list. A list may contain any Prograph object from

a simple data type such as a string, to a more complex type such as another list, to the

most complex data object that the user has defined in his application. Also, the objects

in a given list do not need to even be of the same type. This supports the idea of using

lists to easily implement complex data structures. All list manipulation in Prograph is

99

done without the use of pointers. This is made possible by providing primitives to index

into a given list based on the lists attributes. Primitives are also provided to construct

(pack) and disassemble (unpack) lists, again all without the use of pointers.

Another unique aspect of Prograph code is the control structures provided.

We have discussed the token model of dataflow programming previously. While

Prograph operates on the token model principle, it provides the user with the ability to

alter the sequence of program execution. This is especially important when executing

operations that have side effects. An example is changing the color of the pen before

drawing a figure on the display. The programmer wants to ensure that the color is

changed before drawing onto the screen. In Prograph this type of operation is specified

through the use of "synchros" which impose a sequential order of execution on operations

that otherwise would not be deterministically scheduled. The previous example is shown

as Figure 46. The synchro connection between the ForeColor method to the drawitem

- Synchro EHample 1:1 CW[3' Ell'

redCelor

The synchro ensures that ForeColor is
executed before Draw on Screen.

Figure 46. Specifying Order of Execution

100

method ensures that the color is changed before drawitem is executed. If this synchro

was not provided either operation could be performed first since neither depends on the

other for any input data.

Another type of control structure is required to implement decision

making within a Prograph program. This type of capability is provided in most common

programming languages as the "if-then-else" and "case" statements. In Prograph, a

decision can be made based on any method or primitive that returns a boolean response.

Figure 47 shows a method with three cases that will print a message stating whether the

input value is less than, equal to, or greater than three. The first case (indicated by the

1:3 in the title bar) of this method tests whether the input value is less than three. The

X in the box connected to the comparison primitive ("<") means to go to the next case

if the condition is false. Conversely a ,r in the box means to go to the next case if the

condition is true. Thus, in the second case, we check for the number being greater than

three, if so we go to the next case. Obviously, the order in which the cases are defined

is extremely important. There is no practical limit to the number of cases that can be

defined for a method. Defining multiple cases in Prograph allows the coding of the case

statement type used in other languages.

Another form of control structure is provided to allow iteration. Iteration

may be performed over primitives or methods. There are two basic kinds of iteration

implemented--iteration over the elements of a list and simple iteration. To perform the

same action on each individual element of a list, a "(...)" notation is used to replace the

normal input symbol on the method or primitive. The example in Figure 48 shows

101

Case Eiiample 1:3

input number 3

< X

SCase E~iample 2:3

input number

is - 3. Go to the next case if
input number is > 3

how

0 Case EHample 3:3

input numTber

Case 2 sent control

is3.' here if input nunsber
was >3

Figure 47. Prograph Case Structure

102

iteration over a list where 10 will be added to each item in the list. (Since there is no

typing enforced in lists it is up to the user to ensure that adding 10 to each of the items

makes sense.) Having "(...)" on the output of the "+" operation means that the result will

be formed into a list also. List iteration stops when each of the elements in the incoming

list has been processed.

Simple iteration is indicated by an arrow linking the output and input of

a method as shown in the left side of Figure 49. The internals of the method being

iterated are shown on the right side of Figure 49. On simple iteration a condition must

be provided in order to stop the iteration. In this example, the condition is specified by

using a %/ with a bar below it attached to a comparison with the number 10. This means

to stop the iteration when the condition is true, but to also to allow the current cycle of

the iteration to complete. The value of 10 will be propagated as the output of the iterated

method. If the bar was above the V, then the iteration is stopped immediately and the

-1 0 List Iteration 1:1 1 IWI I-

incoming list 10

~~IAdd 10 to eacoh item
in the incoming list.

output list

Figure 48. Iteration Over a List

103

Simple Iteration 1:1

Executes the count to ten
local method. Provides 1

1 as the initial value for the
moethod.

ountt e

MM count to ten 1:1

Increment the input value
byj I. If the result - 10
then stop the iteration.

10 Vn.

Figure 49. Simple Iteration

value propagated from the output of the iterated method will be the output value of the

last completed iteration, in this case nine.

b. Object-Oriented Features

Prograph can be classified as a truly object-oriented language by meeting

the definition of object-oriented as implementing objects, classes, and inheritance

(Wegner, 1987). All of the object-oriented features are supported entirely visually.

104

B0 Classes

table ustem

Application Menu Menu Item Vindow Vindow Item

* *:.:.......

Figure 50. Prograph System Classes

Figure 50 shows the system classes that are provided by Prograph along with the table

class which is one of the user-defined classes in the DFQL interpreter. Each class is

represented by a hexagonal symbol. The class symbols with the double outline indicate

that these classes have descendent (or child) classes that are hidden in this display. Child

classes can be hidden and revealed through a menu selection in the Prograph editor. The

lines between classes represent inheritance links. The methods and attributes from all

ancestor classes are inherited by the child classes. There is no "selective" inheritance in

which some of the parent's attributes and methods can be inherited while excluding

others. Multiple inheritance is also not supported, so the class hierarchy is represented

by a true tree structure. System classes are differentiated from user-defined classes in the

class diagram by the double line at the bottom of their hexagon. User-defined classes

have only a single bottom line. The triangle symbol on the left side of the class symbol

represents the class's attributes and the rectangular symbol on the right side of the class

105

symbol represents the class's methods. By double-clicking on either the left or right side

of the class symbol the programmer can open up separate windows displaying the class's

attributes or methods respectively.

The class attributes are listed in a vertical column. Figure 51 shows the

attributes of the table class. Those attributes represented by the hexagonal shape are class

10E V table =El
("<tablei...0

tablelist
(<<table>> ...0

savetablelist

dupo

17

V
tablename

()
V

cellist

Figure 51. Attribute Window

variables whereas the attributes with the triangular shape are instance variables. If this

object had inherited any variables from an ancestor, the inherited variables would be

indicated by an arrow imposed on top of the appropriate variable symbol. (For examples

of inherited attributes see Appendix C.) Class variables in Prograph are directly

106

accessible by any instance of the class. Class variables can also be indirectly addressed

from anywhere in the application by specifying the class that they belong to and

requesting their information. Instance variables are accessible only by the particular

instance that "owns" them.

Methods are handled slightly differently than attributes. This is primarily due to not

needing an entirely different copy of the class's methods for each instance of the class.

Figure 52 is the method window for the table class. In the method window, inherited

If0 -a table

Ieadtable joimoGlS add addsam. resetlist

colinfe

Figure 52. Method Window

methods are not shown. Each of the methods listed in this window may be double-

clicked to open an editing window displaying the method's Prograph code. While

inherited methods are not show in the class's method window, the instances of that class

still have direct access to them. Also, if a method is given the same name as a method

in an ancestor class, that method is effectively "overloaded" for the child class. In this

case when an instance of the child class calls for the overloaded method it will receive

the method in its own class, not the ancestor class, unless specifically requested.

107

There are three ways of referencing class methods. These are pictured

in Figure 53. First, there is regular referencing. Regular referencing is indicated by

/method naBm@ Vi/method naMe

Regular Reference Self Reference

l0ass name/Imethod nameM

Earl y- bound Reference

Figure 53. Method Referencing

placing a single slash (/) in front of the method name. This means that the method occurs

in the class hierarchy of the object flowing into the method. The second type of

referencing is called self referencing. This type of referencing is indicated by preceding

the method name with two slashes (//). Self referencing mcans that the method to execute

occurs in the same class hierarchy as the current method. The third form of referencing

is early-bound referencing. This is indicated by prepending the method name with the

class name where the method is to be found and a single slash (classname/). There is one

additional for of method reference that does not fall into the same category as any of the

three above. This is the global or universal form of reference." In Prograph, universal

methods can be created that can be accessed by any object simply by specifying the

"Terminology is taken from (Wu, 1991). In place of regular, self, early-bound, and
global, the Prograph manuals use the terms data-determined, context-determined, explicit,
and universal, respectively.

108

method name only. This falis somewhat outside of the object-oriented paradigm and is

included for the convenience of the programmer.

2. DFQL Implementation Strategy

The block structure of the implementation of DFQL is shown in Figure 54.

The DFQL query is entered at the user interface level. The visual query is then stored

into a graph structure of database objects (adbobj class) which includes the text objects

and operator objects. The database objects are then convened into SQL as intermediate

code. The SQL code is executed on a backend DBMS (ORACLE in this case), and the

results returned from the backend DBMS are displayed for the user.

This implementation strategy was chosen for several reasons. First of all, it

separates the actual user interface from the graph processing portion of the DFQL eng.ne.

This is designed to allow for easy modification or replacement of the user interface

without restructuring the rest of the program. There is an obvious need for a class

(adbobj) in which to store the graph (ie. nodes and arcs) representation of the query for

processing. The generation of SQL as an intermediate code to be run on a separate

backend DBMS was chosen as a matter of both portability and expediency. The first

factor that influenced this decision was the requirement to run DFQL on top of an

existing relational DBMS. This requirement was natural since DFQL has been developed

as an interface to the relational database. The idea of DFQL is in the interface provided,

not in the backend support of the DBMS; there was no need to reinvent a backend to

109

USER
INTERFACE

adbobj

SQL

DBMS

DISPLAY

Figure 54. Block Structure of DFQL Interpreter

110

implement the new query language. The second factor in the decision to use SQL as

intermediate code was that in the early development of DFQL it was not known what

backend database would be used for implementation; since most relational databases

provide an SQL interface, we chose SQL as a common denominator for backend DBMS

support. The query is executed as one transaction on the backend DBMS for

implementation reasons. The API's required to communicate directly with the backend

database for each separate database operator proved to be to onerous to implement for this

version of DFQL. Executing the query in "batch mode" on the backend DBMS was

orders of magnitude easier to implement and still achieves the goal of linking DFQL to

an existing DBMS.

In this implementation of DFQL, the display of results was viewed as less

important than the generation of the query. Because of this, the display support consists

primarily of the ability to produce results from the query that are editable by the user with

the normal Macintosh editing facilities. We will now discuss each portion of the

implementation structure in more detail.

a. User Interface to Stored Query Graph

The transformation that occurs between the user interface and the stored

query graph is shown in Figure 55. The DFQL objects shown on the screen are

represented by the gdbobj (for graphical database object) class. This class and its

children have attributes for information that is used exclusively for the display of the

DFQL objects. Such information as screen position, is not necessary for the execution

111

INTERFACEd

gdbtext
gdbor

adbobj adbtext dbopr

usropr gdbdsp

Figure 55. Interface to Object Representation

of the query. Also, the class usropr instances of user-defined operators since they are

drawn as single objects in the DFQL drawing area. All of the gdbobj information about

the status of the query currently in the drawing area of the DB INTERFACE window is

maintained in a gdbobj class variable, gdbobjlist. Gdbobjlist contains a list of all the

DFQL objects in the current query and the connections between them.

The first step in the execution of the query is to ensure that all of the

required connections have been made in the query graph. The method dbopslcheckgraph

checks to ensure that all input and output nodes are connected. ' 2 If this basic criteria

is not satisfied, query execution is halted and an error message is displayed. Otherwise,

query processing continues by converting the gdbobj objects in the gdbobjlist into

adbobj (a database object) and placing them in the adbobjlist. This involves stripping

out all of the display specific information and also coding all usropr objects into their

'2A single output node may remain unconnected for use with the "Display Last"
feature (p. 94).

112

constituent text and primitive operator objects. When this process is completed,

adbobjlist contains the complete query graph for the user's DFQL query in its simplest

form of only text and primitive operator objects. The query, as stored in adbobjlist, can

now be converted into SQL. By keeping the visual objects separate from the adbobjlist,

graph we gain flexibility in the implementation of the user interface. All that is required

from the user interface is that it provide the information required to build the adbobjlist.

a. Query Graph to SQL

The conversion of the adbobjlist into SQL is performed in accordance

with the token model of dataflow programming discussed earlier. This conversion is

represented in our block diagram as shown in Figure 56. The program follows dataflows

adbobj I
do I adbobjlist

E Ssqllist! SQL

Figure 56. Graph to SQL

from operator to operator, and the operators are "fired" when their shortage counts equal

zero. The actual implementation of this algorithm is made in the dbops/doallops method

included as Figure 57. This method uses the find-instance Prograph primitive to scan

adbobjlist for objects with shortage counts (dependnum) of zero. When such an object

113

dbops/doallops 1:1 ______W on

depednumincoming gdbobjlist

updatd gdbbjlid
selectbean

Figure 57. Doailops

is found it is executed by its particular /exeobj method. The text objects (adbtext class)

and the operator objects (adbopr class) each have their own different exeobj method.

When an object is executed it produces a result and updates the shortage counts of the

other objects that depend on it. Adbtext/exeobj executes the text objects of the query by

simply passing on the text value to the connected operators and adjusting shortage counts

as necessary. Based on which DFQL operator it receives, adbopr/exeobj executes

another method to generate the appropriate SQL for the operator. The dbops/doallops

method is iterated until there are no remaining objects to execute, or until it reaches an

114

operator that was selected by the user as a stopping point for return of a partial query

result. These two stopping conditions for dbops/doallops are implemented by the two

"value matching" primitives (with the ,) on the far left and right of the method. The

match on the left stops iteration immediately when there are no more operators to execute;

/exeobj will not be executed. The match on the right stops iteration following the

completion of the current iteration; the operator that was selected will be executed.

The actual SQL code is generated by the execution of each of the

individual DFQL operators. The methods that generate the SQL reside in the dbops

class. They are executed by adbopr/exeobj by making use of Prograph's "injection"

method. Adbopr/exeobj and its local method exeopr are shown in Figure 58. A "local

method" can be thought of as a subroutine that is visible only to the method it is defined

in. Local methods are used to encapsulate portions of their parent methods. The

injection construct is shown in exeopr as the last object in the dataflow before the output

bar. Injection allows the name of the method to be executed to be passed into the method

as an argument. That is what the connector into the method with no name indicates in

Figure 58. The actual method that is executed in the dbops class is one of a group of "I"

methods. These methods such as Iselect, Iproject, etc. take as input a list of arguments

for the actual DFQL operator and break the list down into individual elements. These

elements are then passed on to the actual method such as dbops/select or dbops/project.

The "I" methods are used in order to keep the actual dbops methods for query execution

isomorphic in structure to their DFQL counterparts. By unpacking the argument lists

outside of the execution method the correct number of input nodes is maintained on the

115

I~a dbopr/ekeobj 1: 1 MEIMEEE21-i
instance list posit list

40~ ~~~ 3eeOpr :1nai8

reetist

insanc tlist

Figure 58. Adbopr/exeobj

116

actual dbops method used for execution. For example the DFQL join operator requires

three input arguments; by unpacking the argument list using dbops/iselect, the

dbops/select method also has three inputs. The appropriate dbops method for each

DFQL operator then generates the required SQL query and stores it in a dbops class

variable called sqilist. As an example, dbops/project is shown as Figure 59.

Dbops/project expects two inputs, an incoming relation and an attribute list. The input

arguments are inserted into appropriate positions to form a syntactically correct SQL

statement which is added to the sqllist class variable. All of the other DFQL operators

are converted in a similar fashion, although some are significantly more complicated to

implement than project.

The output of each DFQL operator is required to be a relation. In our

SQL system this requirement is met by creating a view as the result of each DFQL

operation. Hence the first line added to sqlist by dbops/project in Figure 59 is "Create

view tempname as" which is then followed by the constructed SQL statement. The reason

for using views to accomplish our goal is twofold. First of all, defining a view does not

require that the backend DBMS build a table to represent that view; it may just maintain

the rules that define the view. Secondly, in an ideal situation, the backend DBMS should

be able to optimize a query that is based on several view definitions by combining their

conditions into a single large condition and then doing one optimized data retrieval. At

any rate, a view creation (or table creation) is theoretically required for each operator in

the query to allow the return of partial results to the user. At the end of the query all of

117

________0 dbops/project 1:1 _______IIJ3128I

ettqupnls? attribs

Fbp iuen." op/rjc

118c dst.

the temporary views are dropped from the database so as not to clutter it with

unnecessary items.

b. SQL to Query Display

Once the query has been translated into SQL it is almost ready to be sent

to the backend database as shown in Figure 60. First, the sqllist is written out to a file

SQL
sqllist

r\query.sql
DBMS result files

edit text

DISPLAY

Figure 60. SQL to Result

("query.sql") in ASCII format so it can be read by our backend DBMS SQL interpreter.

This is done by the backend/runoracle method. Once "query.sql" is written, the

ORACLE SQL interpreter, ORACLE*SHELL, is run on the file. During this time, actual

control of the computer is transferred to ORACLE*SHELL. ORACLE*SHELL executes

the SQL statements in the file and places its output in the file "query.sql.LST". Each of

the display operators in the DFQL query will have its own output file generated also.

119

These output files will be named "spooln.LST" where n is a unique number associated

with a given display operator.

When ORACLE*SHELL releases control of the computer back to the

DFQL interpreter, all that remains to be done is the processing of the result file.

backend/Ioadwinsql opens the result files and formats them depending on whether or not

the user selected the Show SQL option or not. If Show SQL was not selected, only the

output generated by the display operators is retrieved. If Show SQL was selected, then

all of the information produced during the ORACLE*SHELL run is also retained for

display. The results of the query are sent to an editable text object in the Query Results

window. By using an editable text output, the user can manipulate the results as desired

using the Macintosh cut and paste editor. In this manner the results can also be passed

to other applications by %xporting them using the Macintosh clipboard.

1. Goals of the DFQL Interpreter Class Structure

Some of the goals of the class structure established for the DFQL interpreter

have already been touched on. For example, the separation of the gdbobj class from the

adbobj class was done to allow the user interface objects to be completely divorced from

the DFQL query graph processing engine. Another goal in the design was the ability to

run DFQL on top of various DBMS's by changing only those methods that directly

interface with the backend. Although some DBMS's support different "flavors" of SQL,

the DFQL intermediate SQL is primarily based on the ANSI standard for SQL. This

should make the SQL generation phase mostly portable. The only methods that actually

need to be changed to port DFQL, as it currently exists, to another backend DBMS are

120

those that are based entirely on the specifics of the ORACLE product. These are grouped

together in the backend class. DFQL has also been interfaced to an ORACLE DBMS

running on a DEC MicroVAX using DECNET over an Ethernet network. This ability

shows that DFQL is not simply a Macintosh application but can be used as an interface

to other backend databases.

The purported benefits of the object-oriented programming approach were

definitely realized in this project. By correctly creating class structures the unrelated parts

of the application were kept separate. This separation greatly aided the ability to modify

the program. Extensibility has also been greatly enhanced by placing all related methods

in single classes. The use of inheritance was of paramount importance in setting up the

relationships between the various types of DFQL objects. Prograph's implementation of

the object-oriented paradigm definitely influenced the way in which the project was both

structured and implemented.

121

IV. ANALYSIS OF DFQL

A. HUMAN FACTORS ANALYSIS OF QUERY LANGUAGES

Ease-of-use of query languages has been of interest for some time. As more and

more information is placed in computer databases that people rely on for making

important decisions, the accessibility of that data becomes of increasing importance. No

matter how good the data is that an c-ganization may have collected, it is of no value if

it cannot be disseminated. Although usability of the DBMS interface is clearly important,

it is difficult to quantitatively measure. There have been several approaches to the

problem of measuring usability, dating back to the 1970's. While there has been no

simple way found to test for usability, contributions have been made in this area that

provide some guidelines for evaluation of query languages. In this section we will

discuss some of these ideas with emphasis on portions of the previous work that are

significant to an analysis of the ease-of-use of DFQL.

1. Testing for Ease-of-Use

Measurement of ease-of-use of query languages is an extension of the field of

human factors analysis. Human factors analysis is an area which falls under the academic

discipline of experimental psychology. The general approach for measuring ease-of-use

is divided into three main steps:

• define precisely what is to be measured

122

* develop a task for users to perform to support the desired measurement

" record the relevant parameters of user performance

The great difficulty lies in applying these steps to activities that involve not only physical

and perceptual activities but also cognitive activities such as learning, understanding, and

remembering. (Reisner, 1981, pp. 15-16)

Not only is it difficult to construct experiments to measure the above criteria,

it is "1so difficult to interpret the results. Many problems in the interpretation of results

lie in the ability to credit a certain factor for the result observed. Often several factors

may influence the same result in a given experiment. If this is the case, the experimenter

must attempt to determine which is the overriding factor or redesign the experiment to

achieve a finer level of granularity in separating the factors involved. In many cases

where cognitive issues are involved it is very difficult to isolate all the factors that could

affect the experimental results. For example, if learning of a given query language

appears to be less than satisfactory as measured by some given criteria, this could mean

that the language is "difficult to learn" or it might mean that the method of teaching is

not satisfactory.

There are problems both in analyzing a single language for some sense of

"absolute" ease-of-use and also in comparing two different languages for "relative" ease-

of-use. Although it may seem that it should be simpler to compare two languages than

to come up with an "absolute" ease-of-use metric, there are many cautions that are

required to avoid drawing incorrect or meaningless conclusions from the comparison

123

approach. Even with well defined measurement criteria there are often subjective values

involved in a comparison. For example, if query language one allows queries to be

written twice as fast, on average, as query language two, but query language two

produces, on average, 25 percent more correct queries, which language should be

classified as easier to use? This is purely a subjective evaluation. If a person can write

twice as many queries then he could more than account for the 25 percent error ratio by

the ability to rewrite each query. The preceding statement may or may not be true, but

it infers how difficult it is to try and pinpoint usability when left to subjective criteria.

There is also a substantial difference between determining that there is a

difficulty with a certain facet of a query language and determining exactly what causes

the difficulty or what must be done to fix the difficulty. In fact, studies to determine

what is causing a given problem in a language probably should be separated from those

trying to determine if a problem exists. This is because there is a different set of criteria

required to be measured for each of these tasks, and the experiments required to collect

these criteria may be mutually exclusive due to the amount of bias that the method of

testing may cause.

2. Applicable Results of Previous Human Factors Studies

The most interesting previously recorded results concerning the ease-of-use

issues of database query languages are those that deal with the procedural versus

declarative type of query specification. As noted previously, Codd uses the procedural

relational algebra approach for introducing the operations of the relational model in part

because "upon first encounter, that approach appears easier to understand;" (Codd, 1990,

124

p. 62). The performance of procedural and declarative query languages for various

different types of queries has been explored. The conclusion drawn by Welty and

Stemple from their study is that a more procedural language shows an advantage in the

formulation of more difficult queries (Welty, 1981, p. 640). The differences in use of the

procedural and non-procedural approaches most likely stem from psychological

foundations. In effect, how do humans think when composing a query? If the query

passes a certain level of logical complexity, does the human brain naturally break up the

query into easier to solve subqueries and then combine these to form the result? Another

question is "Could composition be easier with procedural languages but comprehension

be easier with specification languages?" (Schneiderman, 1978, p. 428). We concur with

Welty and Stemple's conclusion that procedural languages are easier to use for more

complex queries. We also believe that any drawbacks to the more procedural approach

can be easily mitigated.

Another issue that has been previously explored involves the use of two-

dimensional syntax versus linear keyword languages. This issue was discussed somewhat

in the section on QBE. It appears that there is some difference in usability of the two

types of interfaces based on the actual cognitive abilities of the user. Users who

emphasize right brain visual, intuitive thinking have different preferences than users who

emphasize left brain verbal, deductive thinking (Schneiderman, 1978, p. 429). In DFQL,

the goal is to combine both the right and left brain type of thought processes to gain

maximum utility from the language for both types of users.

125

B. EXPERIMENTAL COMPARISON OF DFQL WITH SQL

In order to come up with some objective measurement of the ease-of-use of DFQL

as opposed to that of SQL, we conducted a simple human factors experiment comparing

the two languages. The data and additional details of this experiment are included in

Appendix B. In this section, we will provide a general assessment of the experiment

conducted, and a description of the results of statistical analysis of the recorded data.

This experiment is not, and was not intended to be, a rigorous comparison of DFQL and

SQL. It is only intended to whet the appetite of the readers and researchers regarding the

utility of DFQL as a database query language, and as such provides only rough,

preliminary investigation results.

1. Assessment of the Experiment

In the experiment 26 subjects were given three queries in English based on the

relational schema of Appendix A. The subjects then coded each of the queries, first in

DFQL, and then in SQL. Each response was then graded as either "correct" or

"incorrect." The composite results were analyzed for statistical significance. We use

Reisner's criteria for query language experiment assessment (Reisner, 1981, p. 27) to

present the details of our experiment.

a. Subjects

The experiment was conducted on 26 students taking the introductory

level database course at U. S. Naval Postgraduate School (NPS) in Monterey, California.

Students at NPS are primarily U. S. Military officers; foreign military officers and

126

Department of Defense civilian employees are also represented. Although the

composition of the student body tends to enhance homogeneity, the academic backgrounds

of students were quite varied. This is shown by the breakdown of bachelor degree areas

presented in Appendix B, Table I. Based on bachelor degree area, subjects were

classified as having a "technical" or "non-technical" background. Subjects were also

characterized by programming experience. For analysis purposes, subjects with greater

than one year of programming experience were classified as "experienced".

b. Teaching Method

The subjects were in the tenth week of a 12 week long introductory

database course. They had had over two weeks exposure to relational algebra, relational

calculus, and SQL from Instructor A. Instructor B made one 20 minute presentation of

DFQL accompanied by a handout describing the DFQL operators and providing some

examples of their use. Students also had written course material for the study of SQL.

The teaching time for DFQL was limited to one 20 minute session due to constraints of

the course. All 26 subjects were in a single section of the database class.

c. Kinds of Tasks

The only kind of activity that was tested was the ability to write queries.

This limitation was due to both the constraints involved with the course and the limited

goals of the testing.

127

d. Test Questions

The three test questions were arranged in the perceived order of difficulty.

The first question (Qi) involved only selection, projection, and joining to achieve the

correct answer. The second question (Q2) required grouping and counting; although this

requires only a single operator (groupcnt) in DFQL, comprehension is still somewhat

more complex than that required for Q1. The third question (Q3) required the use of the

universal quantifier and was subjectively viewed as an order of magnitude more difficult

than the first two questions. Due to time considerations, only a subset of the functions

of either language was tested. The DFQL operators nominally required for the test were:

select, project, join, groupcnt, and groupALLsatisfy. In SQL, the same queries require

use of the SELECT... FROM... WHERE clause, employing in Q2 the COUNT(*)

aggregate and in Q3 a WHERE NOT EXISTS structure. The questions were designed

to require the use of combinations of operators to solve the queries. The latter two

questions were asked in areas where the subjective belief was that DFQL is significantly

easier to use than SQL.

By providing three levels of difficulty in the questions, it was hoped that

there would be a substantive breakout in the results based on difficulty. The intention

was also to see if DFQL performed relatively better than SQL in the more difficult

queries, as one would expect from the previous work cited comparing procedural and

declarative approaches to complex querying.

128

e. Test Environment

The 30 minute test was conducted at the conclusion of the 20 minute

introductory lecture to DFQL. The testing was "open book" with subjects having their

class notes on SQL and the brief introductory notes on DFQL from the lecture. Emphasis

was placed on accuracy, but the length of the class also posed a time limit on completion.

The application that the test questions were taken from is the one that was used to present

the introductory DFQL lecture.

Questions were based on the relational schema presented in the lecture

to ensure that all subjects had received similar exposure to the particular problem domain.

Also, this relieved the subjects from having to assimilate a new schema along with

writing the queries in the allotted 30 minute time frame. Since query writing ability and

not schema understandability was what was being measured, this seems reasonably

appropriate. It is realized that by using the same schema as the one in which DFQL

examples had been given in that the results may be slightly biased.

f. Evaluation Method

The criterion evaluated by this experiment was the number of correct

queries written by the subjects. The tests were collected and hand-graded" by the

researchers. Each question was graded as either essentially correct or incorrect.

Essentially correct answers include responses that were either completely correct or

contained a minor language or minor operand error. This taxonomy and the following

"'Some particularly intriguing responses were tested on a DBMS.

129

definitions were given by Welty and Stemple (Welty, 1981, pp. 635-636). A minor

language error is a basically correct solution with a small error that would be found by

a reasonably good translator. A minor operand error is a solution with a minor error in

its data specification, such as a misspelled column name. However, a transposition of

column names (or simply use of the wrong column name) was classified as an incorrect

answer because there is no way for the grader, or computer, to determine the subject's

intent. It is interesting that in this experiment, most of the responses were either very

close to being correct or were completely incorrect.

g. Experimenter Atibse

All attempts were made to eliminate any gross biases from the

experiment. Obviously, however, the intent was to show a difference in ease-of-use

between DFQL and SQL. Again, our experiment is not purported to be a formal

investigation of this issue but merely a preliminary gauge used to attempt to validate

some of the researchers' subjective opinions.

2. Experiment Results

A detailed compilation of the experiment data and its breakdown is included

as Appendix B. In this section we provide a general discussion of the results derived

from the data taken.

The primary measurements were made based on the entire sample population.

Subjects were classified as to technical background and programming experience as

discussed above, however, these breakdowns did not show any large tendencies not

130

observed across the entire sample population. The primary metric used was the number

of questions answered correctly. This was calculated for each individual question and

also for each language as a whole. An attained level of significance (p) for each

comparison was calculated as discussed in Section D of Appendix B. The attained level

of significance basically measures how statistically meaningful the percentage difference

in results between DFQL and SQL were for a given comparison. Confidence intervals

can also be calculated on each of the comparisons to provide a further feeling for the

significance of the reported data.

The "z-test" was used for the statistical analysis of the data. The z-test was

chosen due to both its power and its lack of assumption of a given distribution for the

data (Matloff, 1988, p. 260). By inspection of the data, and also by the nature of the

experiment, we have no outlying data points that would adversely affect the z-test. To

use the z-test we must look at the differences (d) in number of correct answers between

one language and the other for each subject (i) rather than the individual values (X,) since

these values are not independent. Thus, when we establish confidence intervals, for

example, the interval we are talking about is the size of the difference in percent of

correct answers between DFQL and SQL. In analyzing the data we always subtract the

SQL percentage from the DFQL percentage; a difference of 20% means that DFQL

produced 20% more correct answers than SQL. The experimental results are shown in

Figure 61.

131

attained
level of

65
F* sWa7 N M. I 'M p = o. 254

2 P 0.001

SOL 0 = 0.015

OVERALL 27 p = 0.001

i I i I i I I
0 20 40 60 80

PERCENT CORRECT

Figure 61. Experiment Results

Figure 61 shows that as the level of difficulty of the query increased a lower

percentage of correct answers were made. For the easiest query (QI) the difference in

correct answers between DFQL and SQL was not statistically significant (p = 0.254).

However, for Q2, Q3, and the overall comparison, significant differences were recorded.

The 95% confidence interval (cz = 0.05) for the overall comparison shows DFQL

producing between 8% and 32% more correct queries than SQL. The data seem to

indicate, at least for our test criteria, that it is easier to write queries in DFQL than in

SQL.

132

3. Experiment Conclusions

The researchers' perception that queries Qi, Q2, and Q3 were placed in order

of increasing difficulty is validated. On the easiest query, there was no significant

difference in the number of correct answers achieved by the subjects whether using DFQL

or SQL. DFQL produced a significantly higher percentage of correct answers on the

more difficult queries. An interesting sidelight to this fact is that of all attempted answers

for Q3 there was only one SQL answer that was even "close" to being considered correct;

there were five correct DFQL responses to Q3 and several more that were "close" to

correct. The subjects who formed "close" answers to Q3 in DFQL had a correct DFQL

structure for the query, but appeared to mistakenly use either a wrong table or attribute

name as an argument in their query.

Both Q2 and Q3 were designed to test areas that are intended to be strengths

of DFQL. For example, Q2 requires use of the GROUP BY clause in SQL, whereas it

can be coded with a single operator (groupcnt) in DFQL. This can help to explain the

large difference in performance on Q2 (a = 0.05 confidence interval for Q2 shows the

difference between DFQL and SQL is [18%, 5%]). Q3 involves universal quantification,

which has been previously noted as one of the most difficult concepts to code in SQL.

DFQL provides the grouping operators, especially groupALLsatisfy, in order to deal with

universal quantification. One could say that by testing queries in which DFQL has

specific operators provided does not allow a fair comparison of the two languages.

However, part of the idea of the experiment was to test areas where DFQL should be

easier to use because of its operator set. Q2 and Q3 help to validate this claim.

133

C. ADVANTAGES OF DFQL

DFQL's advantages accrue from the combination of its visual representation, its

dataflow structure, and its operator set. The combination of these three characteristics

make DFQL unique as a query language and provide it with a unique ability to easily

express both simple and complex queries in an intuitive manner. Following is the list of

advantages that stem from the DFQL approach.

1. Power

DFQL is relationally complete, and extends the capabilities of first-order predicate

logic by the inclusion of grouping operators for both comparison functions and

aggregation. The functionality provided directly through the use of the grouping operators

was demonstrated in the simple human factors experiment that was conducted and

described above. The provided set of primitive operators gives the user the capability of

coding practically any desired query.

2. Extensibility

The power of DFQL is enhanced by its ease of extensibility. The user may

extend the DFQL language by coding his own user-defined operators from the set of

provided primitive operators and also from his own previously created user-defined

operators. The user-defined operators are constructed in a manner that fully supports

relational operational closure and, once defined, are completely orthogonal with the

provided primitive operators. By employing user-defined operators, common operations

for any given user can be provided at whatever level of abstraction is desired.

134

3. Ease-Of-Use

a. Dataflow Representation

Dataflow diagrams were developed to aid in the design of computer

programs by providing an easy to use and understand approach to problems that can be

functionally defined. DFQL extends this idea to database query languages. A dataflow

diagram has the capability, especially when using levels of abstraction (as implemented

in DFQL through user-defined operators), to represent even complex problems in an

intuitive manner. In DFQL relations as visualized as objects flowing from one operator

to another. This ability to view relations as abstract entities directly contributes to the

ease-of-use of DFQL. Providing the computer with a dataflow style query graph also

enhances its ability to optimize the query for the best possible performance. The human

factors experiment conducted provides some data on the ease-of-use of DFQL in writing

queries and in subjects' ability to easily pick up the concepts embodied in DFQL. We

believe that, at least compared to SQL, DFQL is also easy to read and that the concepts,

once learned, are easy to remember.

b. Orthogonality

DFQL provides consistency, predictability and naturalness through use

of complete orthogonality of operators. This orthogonality makes the language both

syntactically and semantically easier to use. Since relational functional closure is

en 'orced, the user can be assured that the result of any operator will be a relation that can

then be used as an argument to other operators if desired. Orthogonality is even enforced

135

in the construction of user-defined operators. The orthogonal features combined with the

idea of relations flowing between the operators improve the user's ability to write error-

free queries.

c. Incremental Query Formulation and Execution

The ability to form and modify queries incrementally is one of DFQL's

most important ease-of-use features. Incremental querying is directly supported by the

dataflow structure of DFQL since each dataflow represents an actual relation that can be

displayed as a partial result for the user. Intermediate query results can be displayed by

use of multiple display statements. Intermediate results may also be obtained by selecting

a DFQL operator in the query and then running the query up to that point. Partial results

can be returned from any point in a given query and used to help verify or debug the

query. Queries can easily be constructed incrementally because of the operational closure

of all of the DFQL operators. Since the output of an operator must be a relation, the

result of a DFQL operator may always be combined with another DFQL operator to form

a more complex query. Subqueries can be coded as user-defined operators if desired to

Wicapsulate the incremental development of complex queries. The combination of all of

these features definitely aids the user in the construction of correct queries.

4. Visual Interface

Although the visual interface could be classified along with the other ease-of-

use issues, it is so intrinsic to DFQL that it is mentioned separately. The idea of using

dataflow diagrams to represent queries has been discussed; the key to the implementation

136

of DFQL is the ability for the user to easily and interactively build and modify the DFQL

dataflow style queries. Allowing the user to interactively manipulate the DFQL query on

the computer screen gives a spatial or two-dimensional representation of the query that

is lacking from any textual query language. By providing an easy to use interface, DFQL

encourages the user to incrementally construct queries, use intermediate results, and in

general take advantage of all of the benefits provided by the dataflow approach to query

construction. Without a convenient visual user interface none of these benefits would be

realized.

D. SHORTCOMINGS OF THE DFQL CONCEPT

We differentiate here between shortcomings in the concept of DFQL and

shortcomings in the current implementation. For example, the current implementation of

DFQL does not have its own data definition language (DDL) but relies on the underlying

relational DBMS for this capability. This is a shortcoming in the present implementation,

not a shortcoming in the concept. Problems with the current implementation are

discussed in detail in the Future Work section of the following chapter.

1. Interface Problems

One of the most important reqoirements for a successful implementation of

DFQL is the provision of an adequate user interface. The problems we see in this area

are typical of problems seen in most visually oriented applications today. The size of the

display limits the number of visual objects that can be on the screen at any one time.

There may be a corollary here to the "no more than one page of code per procedure" rule

137

commonly touted in programming language circles. However, by using reasonable sized

visual objects an average (say 14") screen becomes cluttered rapidly. In the current

implementation of DFQL an attempt is made at mitigating this problem by allowing the

drawing area to be scrolled both left and right and up and down. This allows more

DFQL code to be "on the system" at the same time but is cumbersome. The user loses

the advantage of being able to sit and look at the query as a whole when it must be

scrolled back and forth. Another visual problem occurs when there are very many

dataflows present in a single query. The dataflow lines invariably become multiply

crossed leading to a difficult to follow DFQL diagram. A solution to both of these

problems lies in utilizing user-defined operators to their fullest. When the screen becomes

too cluttered, encapsulate some portion of it into a user-defined operator. This solution

is still only partial, however. Text items for example take up an inordinate amount of

space on the screen at any level of abstraction. However, it is difficult to come up with

a more compact and convenient way to represent things like complex logical conditions.

2. Language Problems

As a whole, we believe that the DFQL language concept is sound. Dataflow

programming is based on ideas that have been in use for some time and are generally

accepted as easy to understand and use. We have shown that a working model of DFQL

can be interfaced to an existing relational database and that the construction of DFQL

queries can be performed after a minimal exposure to the language.

A problem stemming from DFQL's intense visual orientation is the ability to

use DFQL in conjunction with other textual computer languages. DFQL queries could

138

be compiled and inserted into textual programs as functions, however this provides no

good way of actually looking at the DFQL code in the context of the program. Such an

ability is a common attribute of most embedded query languages. A possible solution to

this problem would be a textual translation of DFQL which maintains the dataflow

paradigm but generates linear text as its interpretation. This would fit in more easily with

another textual language but there would still be some impedance mismatch in the idea

being represented. The text translation of DFQL would still be a dataflow oriented object

(with all of the implications of non-deterministic execution, etc.) whereas the program it

would be embedded into would in most cases be purely procedural/sequential.

There are several other items that could be considered "language problems."

These problems though stem from the state of the current implementation and are thus

discussed in the Future Work section of the following chapter.

139

V. CONCLUSIONS

A. REVIEW OF THE RESEARCH

There currently exists a need for an improved query language for the relational

model of database management. This new query language is required to allow users to

better harness the inherent power of the relational model. In this research we have

designed, implemented, and tested a graphical dataflow query language, DFQL, to meet

this need.

DFQL was first conceived on paper. Actual implementation was then performed

using the Prograph visual dataflow programming language on a Macintosh II/ci computer.

ORACLE was used for the backend database. DFQL has been run on a local database

established on the Macintosh and also on a remote database by access over an Ethernet

network. DFQL has proven to be a workable query language with many benefits over

the current de facto standard SQL.

B. FUTURE RESEARCH

The development and implementation of DFQL has brought to light several areas

where further research and development needs to be done. These areas relate primarily

either to implementation enhancement or theoretical investigation.

140

1. Implementation Enhancement

The current connection of DFQL to the backend database is through the use

of file passing and batch execution. A possible improvement in performance could be

gained through direct connection of DFQL to the backend DBMS. This could be done

by using an interface class to provide the connection between DFQL and the DBMS.

The interface class would utilize the necessary API's to communicate with whatever

backend database was being used. Another approach to direct connection of DFQL to a

database would be for the backend database to be written in Prograph, specifically for

DFQL. It is possible that a Prograph backend database could further increase

performance, but this would place a needless restriction on the implementation. The

ability of the DFQL interpreter to run on top of any currently existing database (as long

as API's can be provided) is viewed as a very important point. Investigation needs to be

done to determine exactly how much efficiency would be improved by use of a Prograph

backend database before this option is considered.

Further development can be put into the design of the user interface. Several

enhancements could be made to the DFQL drawing area. For example, allowing the user

to create new DFQL objects simply by clicking the mouse and allowing the entering of

text right on the screen would be improvements. The method of partial query execution

could be changed to allow the partial query to be executed simply by double clicking the

mouse on the output of an operator. Many good user interface ideas can be identified in

the design of the Prograph editor, some of these ideas (such as those above) could be

incorporated into the DFQL user interface.

141

Currently, the Info menu is limited to providing the column names of the

tables in the current database. Enhancements in this area of the user interface would

include the ability to display the schema for the user and possibly even provide as

previously coded user-defined operators for the commonly executed joins that represent

relationships in the schema. Rather than having to type in the name of the relation

desired, the user could pick a mini-icon off the schema diagram that would represent a

given relation. This would somewhat alleviate the problem of crowding the DFQL

drawing area with text information.

The current implementation of DFQL provides only data retrieval capabilities,

thus requiring the user to directly access the backend DBMS for other functions. Another

enhancement to DFQL should provide data definition capabilities and also an enlarged

scope of query activities to include database updates and deletions. Inclusion of these

features will make DFQL a complete database language.

2. Theoretical Investigation

Much work can be done in the area of optimization of the query graph. Since

DFQL implements queries as a graph of relatively low level operations, many of these

operations should be able to be combined and reordered tc maximize efficiency. The

optimization idea harks back to Dadashzadeh's work in translating SQL into a relational

algebra graph in order to help with optimization (Dadashzadeh, 1990, p. 308). In the case

of DFQL, a query graph is present at the outset, all that remains is to optimize it.

The DFQL primitive operator set can be expanded. Possible candidates for

inclusion into the operator set would be relational operations such as inner and outer join.

142

Also, additional grouping operators such as group containment could be implemented.

Further study is needed to determine if these and possibly other operators are of such

convenience (or necessity) that they should be provided for the users.

A possible extension to the language would be to allow it to handle relational

valued attributes or even objects in its relations. An extension of this type should

maintain the ideas of the relational model for which DFQL was designed. In order to

expand the language in this manner further consideration will need to be given to the type

of backend database that DFQL will be connected to. Handling relationally valued

attributes or other objects is not supported by current relational DBMS's. To implement

this in DFQL would require DFQL to map these complex structures to a current DBMS

or use a new backend DBMS designed specifically to handle these types of constructs.

This type of extension would represent a major change in the scope of DFQL.

Lastly, further human factors analysis should be conducted on the DFQL

language. The goal of this analysis should be to quantify the ease-of-use of DFQL both

in an absolute sense and also in comparison to other currently used query languages. The

experiment conducted as part of this thesis was cursory in nature. More in-depth analysis

of DFQL's performance to include a variety of environments, subjects, query types, and

comparison languages should be done to validate our feelings about DFQL's superiority

as a database query language.

143

C. SUMMARY

DFQL was created in order to provide an improved interface to the relational model

of database management. DFQL presents an entirely new way of visualizing database

queries. DFQL's dataflow structure and orthogonality greatly aid the user in the

composition of complex queries. DFQL allows users the ability to easily extend the

language by the creation of user-defined operators. These user-defined operators can then

be used to simplify queries by introducing levels of abstraction, effectively hiding detailed

query operations. We conducted a simple human factors experiment, in which DFQL

compared favorably to SQL for use in query writing.

While there have been other attempts at producing graphical type interfaces to

database systems, none embodies the powerful features that have been designed into

DFQL. The unique combination of a visual interface, the dataflow programming

paradigm, and the relational model make DFQL a superior choice for continued research

and implementation.

144

LIST OF REFERENCES

Abiteboul, S., and Hull, R., "IFO: A Formal Semantic Database Model," ACM
Transactions on Database Systems, v. 12, pp. 525-565, December 1987.

Andyne Computing Limited, GQL: Graphical Query Language; GQL/User Demo Guide,Kingston, Ontario, March 1991.

Angelaccio, M., Catarci, T., and Santucci, G., "QBD*: A Graphical Query Language with
Recursion," IEEE Transactions on Software Engineering, v. 16, pp. 1150-1163, October
1990.

Apple Computer, Inc.. Inside Macintosh, v. 1. Addison-Wesley, 1985.

Beech, D., "New Life for SQL," Datamation, v. 35, pp. 29-36, 1 February 1989.

Bryce, D., and Hull, R., "SNAP: A Graphics-based Schema Manager," Proceedings of the
Second IEEE International Conference on Data Engineering, pp. 151-164, February 1986.

Chamberlin, D. D., and Boyce, R. F., "SEQUEL: A Structured English Query Language,"
Proceedings of the ACM--SIGFIDET Workshop, Ann Arbor, Michigan, May 1974.

Chen, P. P., "The Entity-Relationship Model -- Toward a Unified View of Data," ACM
Transactions on Database Systems, v. 1, March 1976.

Codd, E. F., "Relational Completeness of Data Base Sublanguages" in Data Base Systems,

pp. 65-98, Prentice-Hall, 1972.

Codd, E. F., "Fatal Flaws in SQL: Part I," Datamation, v. 34, pp. 45-48, 15 August 1988.

Codd, E. F., "Fatal Flaws in SQL: Part II," Datamation, v. 34, pp. 71-74, 1 September
1988.

Codd, E. F., The Relational Model for Database Management: Version 2, Addison-
Wesley, 1990.

Czejdo, B., and others, "A Graphical Data Manipulation Language for an Extended
Entity-Relationship Model," IEEE Computer, v. 23, pp. 26-36, March 1990.

145

Dadashzadeh, M., "An Improved Division Operator for Relational Algebra," Information
Systems, v. 14, pp. 431-437, 1989.

Dadashzadeh, M., and Stemple, D., "Converting SQL queries into relational algebra,"
Information & Management, v. 19, pp. 307-323, December 1990.

Date, C. J., "Where SQL Falls Short," Datamation, v. 33, pp. 83-86, 1 May 1987.

Davis, A. L., and Keller, R. M., "Data Flow Program Graphs," IEEE Computer, v. 15, pp.
26-41, February 1982.

Elmasri, R., and Navathe, S. B., Fundamentals of Database Systems,
Benjamin/Cummings, 1989.

IBM Research Report RC 16877 (#73833), GRAQULA: A Graphical Query Language for
Entity-Relationship or Relational Databases, by Sockut, G. H., and others, 14 March
1991.

Kim, H., Korth, H. F., and Silberschatz, A., "PICASSO: A Graphical Query Language,"
Software-Practice and Experience, v. 18(3), pp. 169-203, March 1988.

Kim, W., "On Optimizing an SQL-like Nested Query," ACM Transactions On Database
Systems, v. 7, 1982.

Matloff, N. S., Probability Modeling and Computer Simulation: Applied to Engineering
and Computer Science, PWS-KENT Publishing Co., 1988.

Miyao, J., and others, "Design of a High Level Query Language for End Users," paper
presented at the 1986 IEEE Workshop on Languages for Automation, National University
of Singapore, Kent Ridge, Singapore, 27-29 August 1986.

Negri, M., Pelagatti, G., and Sbattela, L., "Short Notes: Semantics and Problems of
Universal Quantification in SQL," The Computer Journal, v. 32, pp. 90, 91, 1989.

Ozsoyoglu, G., and Wang, H., "A Relational Calculus with Set Operators, Its Safety, and
Equivalent Graphical Languages," IEEE Transactions on Software Engineering, v. 15, pp.
1038-1052, September 1989.

Ozsoyoglu, G., Matos, V., and Ozsoyoglu, Z. "Query Processing Techniques in the
Summary-Table-By-Example Database Query Language," ACM Transactions on Database
Systems, v. 14, pp. 526-573, December 1989.

146

Reisner, P., "Human Factors Studies of Database Query Languages: A Survey and
Assessment," Computing Surveys, v. 13, pp. 13-31, March 1981.

Sebesta, R. W., Concepts of Programming Languages, Benjamin Cummings, 1989.

Schneiderman, B., "Improving the Human Factors Aspect of Database Interactions," ACM
Transactions on Database Systems, v. 3, pp. 417-439, December 1978.

Shu, N. C., Visual Programming, Van Nostrand Reinhold, 1988.

TGSS (The Gunakara Sun Systems Limited), PROGRAPH: Tutorial, second printing,
1990.

TGSS (The Gunakara Sun Systems Limited), PROGRAPH: Reference, second printing,
1990.

Washington University Department of Computer Science, WUCS-86-5, Determinancy of
Hierarchical Dataflow Model: A Computation Model for Visual Programming, Kimura,
T. D., March 1986.

Wegner, P., "Dimensions of Object-Based Language Design," OOPSLA '87 Proceedings,
October 1987, Orlando, Florida; special issue of SIGPLAN Notices, v. 22, December
1987, pp. 168-182.

Welty, C., and Stemple, D. W., "Human Factors Comparison of a Procedural and a
Nonprocedural Query Language," ACM Transactions on Database Systems, v. 6, pp. 626-
649, December 1981.

Wong, H. K. T., and Kuo, I., "GUIDE: Graphical User Interface for Database
Exploration," Proceedings of the Eighth International Conference on Very Large
Databases, pp. 22-32, September 1982.

Wu, C. T., "OOP + Visual Dataflow Diagram = Prograph," Journal of Object Oriented
Programming, pp. 71-75, June 1991.

Yourdon, E., Modern Structured Analysis, Prentice-Hall, 1989.

Zloof, M. M., "Query-by-Example: A Data Base Language," IBM Systems Journal, v. 16,
pp. 324-343, 1977.

147

APPENDIX A. EXAMPLE DATABASE

The schema and data for the database referenced by the examples in the text is

included here. Most of the relationships between the data should be apparent. The

intention is to represent a simple university database in which students are enrolled in

courses taught by instructors. An Entity-Relationship Diagram of the database is shown

in Figure 2 of the thesis (p. 21).

The relational schema is listed below. In the schema representation, keys are

underlined.

COURSE(CNO, TITLE, INO)

ENROLL(CNO, SNO, GRADE, TESTSCORE)

INSTRUCTOR(INO, INAME, PAY)

STUDENT(SNO, SNAME, ADDR, PHONE, GPA)

Attribute definitions:

ADDR -- Address
CNO -- Course Number, unique to a single course
GPA -- Grade Point Average
GRADE -- Course Grade ('A', 'B', 'C', etc.)
INAME -- Instructor Name
INO -- Instructor Number, unique to a single instructor
PAY -- Instructor's Pay
PHONE -- Phone Number
SNAME -- Student Name
SNO -- Student Number, unique to a single student
TESTSCORE -- Numerical Grade for an exam in a course
TITLE -- Name of a Course

148

The example data in the database is listed below.

COURSE CNO TITLE INO

CS05 COURSE # 5 Ii

CS10 COURSE #10 12

CS15 COURSE #15 13

CS20 COURSE #20 12

CS25 COURSE #25 13

ENROLL SNO CNO GRADE TESTSCORE

S1 CS10 A 92

S1 CS15 C 72

S1 CS20 A 93

S2 CS05 A 98

S2 CS10 A 95

S2 CS25 A 90

S3 CS05 B 85

S3 CSI0 A 91

S4 CS05 A 93

S4 CS15 B 83

54 CS25 A 94

__ CS05 C 70

S5 CS15 B 82

$5 CS20 A 94
-L-

149

Ii INST #1 100000.00

12 INST #2 50000.00

13 INST #3 47380.78

SNO SNAME ADDR PHONE GPA

S STU #1 ROOM 1 111-1111 3.85

S2 STU #2 ROOM 1 111-1111 3.40

S3 STU #3 ROOM 3 333-3333 3.75

S4 STU #4 ROOM 3 444-4444 2.85

S5 STU #5 ROOM 5 555-5555 3.30
m mT

150

APPENDIX B. HUMAN FACTORS EXPERIMENT DATA

Three queries in english were posed to a group of 26 computer science students at

Naval Postgraduate School, The subjects were asked to write each query first in DFQL

and then in SQL. These queries were based on the relational schema of Appendix A.

While all subjects were computer science master's degree students, there was some

variation in their background. Each individual was categorized by technical background

(based on their bachelor's degree) and programming experience (whether greater than one

year).

A. Queries

QI. List courses (cno) taught by those who earn more than 50K.

Q2. For each instructor, list the number of courses he taught.

Q3. List all instructors (ino) who gave only A's in all the courses they
taught.

151

B. Definition of Technical Background

Bachelor degree areas were classified as technical or non-technical as shown in

Table I.

Table I. SUBJECT BACKGROUND

TECHNICAL NON-TECHNICAL

Applied Science Accounting
Chemical Engineering Bible Studies
Chemistry Business Administration
Computer Science Journalism
Control Systems Liberal Arts
Electrical Engineering Political Science
General Engineering Production System Mgmt
Mathematics Zoology
Mechanical
Natural Science
Petroleum Geology
Physical Science

C. Data

The data that was collected from the experiment is listed in Table II. Subjects are

listed numerically from I to 26. Individual performance on each query is listed for DFQL

and SQL. A "0" indicates an incorrect answer, and a "1" indicates a correct answer.

Summary percentages for each question and each language are included at the bottom of

the table.

152

Table II. Collected Data

Program DFQL SQL

Subject Tech > lyr Q1 Q2 Q3 Q1 Q2 Q3

1 Y N 1 1 0 1 0 0

2 Y N 0 0 0 0 0 0

3 N Y I 1 0 1 0 0

4 Y N 1 0 0 1 0 0

5 N Y 0 0 0 0 0 0

6 Y Y 1 1 1 1 1 0

7 N Y 1 0 0 1 0 0

8 Y N 1 1 0 1 1 0

9 Y N 0 0 0 1 0 0

10 Y Y 1 1 1 0 0 0

11 Y Y 1 1 0 1 1 0

12 Y Y 1 1 0 1 1 0

13 Y Y 0 0 0 1 0 0

14 Y N 1 1 0 1 0 0

15 N Y 1 1 1 1 0 0

16 N N 1 0 0 1 0 0

17 Y N 0 1 1 0 0 0

18 Y Y 1 1 0 1 1 0
19 Y N 1 1 0 1 0 0

20 Y Y 0 0 1 0 0 0

21 Y Y 0 0 0 0 0 0

22 N N 0 0 0 0 0 0

23 Y Y 1 1 0 0 0 0

24 Y Y 1 0 0 0 0 0

25 N N 1 1 0 0 1 0

26 N N 0 1 0 0 0 0

Percent Correct 65 58 19 57 23 0

47 27

153

D. Analysis

The analysis of our data is predicated on the knowledge that our sample size is both

small and rather homogeneous. Practically all students at Naval Postgraduate school are

either military officers or civilian Department of Defense employees. Homogeneity is

increased by using only computer science students for our sample (although at Naval

Postgraduate School many computer science students come from dissimilar backgrounds

as shown in Table I). The test given was limited to six questions due to time

considerations. Within the restrictions implied by the preceding constraints, we have

produced statistically significant results.

Confidence intervals and levels of significance were established for the data using

the "z-test." Since the same subjects were used to test both DFQL and SQL on the same

queries the values are not independent. Because of this the z-test was used on the

difference (d) between the number of correct answers for DFQL (X,,DFQL) and SQL (XsQL)

for each subject (i). The same analysis is done also for each question individually.

The null hypothesis, Ho , for the level of significance testing, is that there was no

difference in the average number of correct answers between DFQL and SQL. The

alternative hypothesis, H A , is that DFQL produced a higher average number of correct

results than SQL.

154

E. Equations Used in Analysis

(1) Difference d = XiDFQL- Xi.sQL

(2) Mean Difference d 1 dg
n i-i

(3) Sample Variance ;= E (
n-1 ,

(4) Confidence Interval [t (d-- d 1

(5) H0:3d=0
(5) Hypotheses H d=0

HA:d>O

(6) Observed Significance Level p= 2z-1 (d)

155

F. Breakdown by Category

Since the percentage differences between DFQL and SQL for all categories were

nearly similar and the number of subjects in individual categories was small (due to small

overall sample size), as shown above in Table 1I, detailed statistical analysis was

performed only on the total sample data. In the technical/non-technical category there

Table IH. PERCENT CORRECT BY CATEGORY

% CORRECT
CATEGORY NUMBER DFQL SQL

-
Technical 18 50 30

Non-Technical 8 42 21
- -

Experience > 1 yr 14 52 29

Experience 1 yr 12 41 25

T otal Sam ple 26 472

was a difference of approximately 10% in both the DFQL and SQL percentages. In the

experience category there was a difference of approximately 10% in the DFQL scores and

only 4% in the SQL percentages. While the 4% is not in itself statistically significant,

a possible explanation for the discrepancy is that the technical background factor may

have been more important than the programming experience factor" in the ability to use

SQL. There were subjects with technical background in the experience 5 1 yr category.

1"None of the subjects could be classified as professional programmers.

156

This would imply that DFQL was easier to use for the non-technical background people

than SQL. There is not enough data to support this statement statistically.

157

APPENDIX C. DFQL SOURCE CODE

This appendix lists the meanings of some of the more common Prograph

programming notations. The DFQL interpreter class hierarchy is included along with the

attributes and methods for each class. The top level methods are shown for each class.

Methods provided by Prograph as part of the Prograph system classes are not listed.

158

method input bar

ted- Takes inputs and produces outputs as defined.

Constant Passes value of Constant as output.

Results in a true or false condition depending on
MATCH , whether input "matches" the MATCH value. This

condition determines the effect of the control --
ie. next case, etc.

Pass in a value to set the Persistent.
0,_PERSiSI£NT-T Output produces current value of Persistent.

p

QInstance. Generator5 Create instance of type named.

Input: object (for instance variables), class name
) Pot AtribuU (for class variables)

Output: left -- passes through input, right value
of Attribute named in the get

Input: left -- object or class name, right -- new value
Output: Object with new named attribute reset to

new value (or class name if a class variable
was set.

oca-methodl Used to encapsulate operations in a method (like a
........ sub method).

Evaluate method. Pass in variables (which are then named
ba, b, c, etc.) and use them in the equation producing

an output.

output bar

*classes

e SYSTEM CLASSES

44~y;%tem

Application Menu Menu Item Window Window Item

...... ..

USFID

@ @ @ @CLASSES
dbebj lineobi table dbope beckend

sound Printer

gdbtext gdbor

@ 4adbobf help

fie dfqIprlnt 44

ustopr gdbdmp adbtext adbopr

V sound

* sound

dloopen declose play oaond

0 sound/ploy 1:1

I twantoundl II1f the Sound oto
is cecd plays ft sound
that is indicated by the

FALSE input resource S.

r///dooen

'end

GetResource

gFSDPleySound FSDSeundlnfo,

Delmy

932ZTM

*sound/doclose 1:1

Clons t Farralon Sound
Driver

*sound/doopeni1:

TRUE FALSE

Opens toe Farmon
Sounrver

sound/succsnd 1:2

N SOLSUCCESS TRUE play

x SQSUCCESS 10 FALSE.

TRUEX

14240

FALSE

Ssound/succsnd 2:2

Vfile

0
aurif lie

IFIL

0nefe

a file

U,,,,
new save open... save... openloop

loadit savelt e avewarning sevemenu readtext

B file/setsavemenu 1:1

Application Update the File menu Save menuilemn
with the name of the current fie.

current File file

find-menu 3 "Save -),currfileA

file/new 1:1

Called in response to the

f/,,aveWarnn New Mm item in the
z File menu. Reet DFOL

and sets current file to
untitled'.

file W untitled

a.

Hetsvemenu

file/sauewuarning 1:1

file

~ If the user has made changes
FALSE .9that have not been saved as

indicated by changeflag
being true. Warn him that

166what ever he is goingtodo
1626 0 will cause these changes to

7 Zle~ be Iost

Sfile/sauelt 1:2

First backup the file if possible, and then save
the data from areclist into filenames on volt.

flle/ssuveit 2:2

flename Vol#

11 the backup operation failed, then dont
save the new file because it could write
over our Previous data without having that
data backe up.

The error messages for failed backup are
ail contained in the mlibadiup local method.

Sfile/loadit 1:1
filename volume

Load the data from the
load specified file. Processload

updates thes Odbobifist and window
or reports on auny errors that
were generated by the load.

processload

*file/saue... 1:1

Save the data into
file te file entered by the user through

"Sav me: currilethe put-file dialog.

*file/open... 1:1

After verifying the users intentions
Fli/svewerin X (if there have been any changes to

.0 the oniginal query) on what to
do with the current query, puts up the

CDIN) get-file dialog to allow the user to
pick or enter a file to load, then

et-file if it was a valid file load gdbobilist

from it

I~lesdl

*file/saue 1:1

Save the data from gdbobilist into the
currfils.

file

-X

*file/openloop 1:1

To be called repetitively
to open a file. Will loop
until the file is opened. ~ openl
DANGEROUS to usme if the
file requested may not 0
become available. This will
then loop forever.

file/resdteuit 1:1

read-line
Reads ONE line from a file.

O __ Trm trailing blanks and
adds a carriage return.

"Ion th" Outpt a string.

lastchar'

ref lx

V dfqlPrint

mu. MWm3I1I

Tprint ma

pros

plckprlnt resuutprlnt draw page prtsotup

Sdfqlprint/prt setup 1:1

Change the setup for
the printer record
for OFOL printouts.

-c-Printer>3-

9/i7* t u

dtqlprint/draw page 1:2

Application Thiscow draws t 06 INTERFACE canvas

I ~contents on the printer.

D9 INTERFACEX

*dfqtprint/draw page 2:2

CDISpLAyOp!3 This is the view operator mae.
Draws the View operator canvas
contents on the printer.

a rob lest

,dbob idrewflcen nocts

d Uf qprint/ pick print 1:1

A liletlon

front aa B ase n what is currently
front the front window, call ithe

appropriate print method.

name

do rint

*dfqlprint/resultprlnt 1:1

A Ilestlen Us"s the Prograph print-text
primitive to print the contents
of the result window.

;:
rrent

find-windowg

query text

find-item

*dfqlprint/resultprint 1:1

§1. Query Results
§2. Qury Results

VPrinter

17 pw mecav
pros

*Printer

initialize printer instance dispose of print st..;-ures
CALL. THIS METHOD FRO0M INiTWA CALL THS METHOD BEFOREG PROGRAM AND DEFINMlJY BEFORE ALLOWING A PRINTER INSTANCE

4 ~~ANY PRINTING dispose 70oBE GSG

checki and few retrn Pogo sizeU print errors a" a rectangle

report pae a"zU count number of pages draw contents of page
OVERSHtADOW TMI METHODOTO OVESHADW THIS METHOD TO

In DETERMINE NUMBER OF PAGES DRAW YtOUR PRINT PAGE
count page" draw pegsUn begin the print pro..-4 bring up the page setup dialog

CALL THIS M.ETHOD WHEN YOU CALL THIS METINOO IN
WANT TO PRINT. THAT IS IN RESPONSE TO THE Page Setho...

print RESPONSE TO THE Pint... page setup MENU ITEM

Printer clasn PROVIDED by TGSS.

IM Printer/page size 1:2

-c-Printr-3

get print

:
;crecord

UL

prn o gt print
info

Printer/page size 2:2

o 0 0 01 detauftpaMe

*Printer/dispose 1:1

.cPritem3.

got print
rc record

roe
gu an i

NULL

rec

*Printer/count pages 1:1

<<Prnntem2 page odze
rectangle

OVERSHADOW THIS k4ETHOD
TO DETEIR4NE PAGE CVLI4T
BASED ON PAGE SIZE

(Mgdbobj

drawit mydrow myclick dooe.. dedrow conterrect drawrtcenneco drowirecta

dodrewall drowellebJ delete d -Ilet drawinputber ornsoinputbor Invert

*gdbobj/drowlrscts 1:1

Draws nodes on the WWu bar. paect
Used from user-defined operators.

PIrweIM

gidbobj/eraselnputbar 1:1

be In-drawing 3333 3 EreseRect 3))2))3%nd-drewina

Erases the input bar from thes canvas. Used at
fte termination of user defined ops screens.

M gdbobj/deselect 1:1

dbob Deselects all selected objects in
gdbobjlist.

dbob flat

~dodeseiect

dbob list

IM gdbobj/delete 1:1

dbob

Executed in response to u
dbob list 0 Delete menu itemn. Cloe thouh

gdoblst and delete alt selected
objecs. Alter deletion. redraw*

deote 0 cava and fthn turns off ft
select option.

dbob list

11 urnfee

gibtUeterc :

*mntr gdob/cntrr t1:

gdbobj/mgdrow 1:1

Sets up to draw ani individual gbdtext or gbdopr
gdbotN bY setting tcenvas
to draw on.

Mgdlbobj/drawit 1:1

Draws all objects in fte

dbab list DDS ~~II.TEFFAC avs

95 wnutbarl

U gdbobj/mycllck 1:5

window Canvas Point event r' c

mainlrck xnet

ob, number

r/.omainclickA

Handle clicks on the BODY of
gdbobj objects.

I gdbobj/mycllck 2:5

window event
canvas oifn, vntm

termclick? X

opbj# term#)

1 dotermclickI

Click on a lenninal
(input node)

g 9dbobj/mycllck 3:5

window 9 _ gevent rec
wanvas point

rootclick? X

seq#i nsti

dorootcJick
Handles click if on a

root (ouput node).

* gdbobj/mycllck 4:5

window canvas oint event rec

/Npoint

/,/
in utbaclickiri

Idroin putbanclick 1

Handle click on the
input bar. (From add user

operalor state.)

gilbobj/myclick 5:5

window canvas point event rec

__plzeereltents

If click anywher, in
blank spae reset ths
line drawing persiatents.
This will turn off line.
that the use doesn't want
to connect anymore.

Ugabobj/doerase 1:1

aWdbeb obj nume

dbob let Erasee t abpec based on theE~enodel 3_gdobilstjobject number (fth POSITION of
~ arcijothe abject in the lNet) NOT based

rasestuff

_at oe

areOr

gdlbobj/dodraw 1:1

dbob Draws an object based on
numferical position in the
gdbblist.

dbob lost

e-nth

gbdiext or gbdopr
Frn d raw,

Sgdlbabj/drawrtconnects 1:1

Draws all connecting lines from fth

Sgdbobj/dodrswall 1:1

eteenvee Draws ait objects in fte DB INTERFACE canvas.

lbegin-drawing)32)end-dr win

0 gilbobj/drawallobj 1:1

Draws all objects only.
NOT firves. Otes"Vas

dbob

1; 24
33 .2,2

.32 113

ff-b*gIn-drawin dbob list end-drowin

_, .32
333 - --- -. 3, 3

0,1drawob]

gilbobj/drawinputbar 1:1

elcenves

ff-b*qln-dg r ewfn end-drawin
JJ.3

A

IIIIIIIECT

liars

ffFl I I Rou nd Ree-to 3 3 3 3 3 3 3 3 3 3 33 33 3)ffFr*T'*Meund7RAG

Dram the wqxn bar for the uw4WWwd
opwratom screem.

gdbobj/inuert 1:2

knrt On color of an~ obpoc if

2 USMan N" B 80 tat ft
TRUE K comners of "h object mmain to

InvortNoundReet

Sgdbobj/inuert 2:2

V gdbteut

142000.

T

malateet
poe"s to hot

reel valus

0 gdbtext

U,,,, U U
create setterms eulorects drewbi edltteztobJ drawtcannecti mekeadbobj

gdbtext/makeadbobj 1:1

Converts gdbtext to adbtext object for
roatlat o onnumquery graph.

This creation is all done with explicit

rootvaugets and siett (rather than inst-to-list and
list-to-inmt) in order to ensure that it is not
dependent on position of the attributes

cedin the lists.

gdbtemt/drawtcannects 1:1

pass in teut ob)
do nothing since
it has no tennmtials

Sgdbtext/drewobj 1:1

MM292 OZ200 Draws t-, text object inicluding it,
mtoo uses aWpFont for the text of

gret23 2 ct-t-ts'z 0 m*va

*gdbtent/setterms 1:1

Intue toa reordtmethtod of samne name in gbp
to allow data delermined
reference.

*gdbtemt/create 1:1

Create$ a gdbtoxt object. Initiallizes, instmum to the next sequential
window button event metnum s indicated by lastinst. Truncates text for display based

it on the value of TXTDISPLGT4. When done with initialization

U gdtet/creat. 1:1

§1. Plaj. enter your text.

* gdbteut/catcrects 1:1

C alu late tbdyadrorctge

Inoor-ec gdtetibeca

M dbtext/edltte~tj 1:1

gdbobobet number Allows editing of text objeCL. Erases
old object gets new text from the ask
statement calculates the new values

bob listfor the rectangles (since the size of
the text string may have changed) and

et-nththen redraws the object with the new

§1. Yo may eit thestringbelow

die (0ri 0 3200 32001

q dbepr

gbblot

'70

snoalufeem D
(I Wstme mlst oyrm

U gdbopr

create drawobj m ktrmlet settering calcrects drowteonnecmmi ubb

*gdbopr/drawtoconnects 1:1

tsmnmIIlst Draw all conectmng lines fronm0~'KJe sach termunal of an inpujt oblect.

drlne

0gdlbopir/create 1:1

window button event
Create* gdbopr. Calculates rectangle for
body root and terminals. Arity of operator

dbe r name determined by getaritV local. Draws new OP
in default position (upper left corrner of canvas).

Printer/draw page 1:1

<4Pinntr> page Size page mber
rectangle

O wERSKAD TIS M O
TO DRAW THE CONTENTS
OF YOUR PIPlIT PAGE

U Printer/page setup 1:1

<,cPnnter3,

P'rUpon open print
driver

check for
- errors

re

NULL r i bng up page
a setup dialog

check for
errors

%-

Pclose print
driver

Printer/print 1:1

recordo

bein gining CCC * ~eCCC ntob dia

;o~d fiti

MULchek

o

*Printer/report 1:1

*1. Punte Error 9

<<Printem3.
__________openfite print

Pr n driver

~rt chck forprint error

creste, nnt rcr

~-~'---~close the print~ee driver

V gdbebJ

0a
vielie

6olrs
laulomal

leeMe

E) P o n sr az e d b o p r i t f r m .

1od rroret trnigils

WflWfl0 a'pu nod s&

Va

gdbapr/setterms 1:1

obi Clh dv

terminallist

movotorrn

- usect to ft"" lamlinaft
qt9rMinall-1-8-1-9 a"wilhftwnmun (body)

row when the opr is

129"d-

922

gdbopr/calcrects 1:1

x Based an Ow length of to
MStrlngWldth3 operator narne determines

the coords of Ow main tea

**20 and root rect (output node).

I

0 25 Idiv

6.3 **2

25 30

'1Q

Mints-to-rect

gdbopr/meksedbobj 1:1

Transform a gdbopr into an adbopr for the

rootalue rootlatDFOL queey graph.

This creation is all done with explicit
gets and sets (rather than inst-to-list andselected? rootwalue, list-to-inst) in order to ensure that it is not
dependent on position of the attributes

asusapr

toetwelv

lemalo

If" me lwtmgI

alff mai m oR

.pmmn

omfmtmllnst

ho u Nfi un m "llih 3r um

mtotoem

usropr

delep selop newusrop atorsep oprdraw

makodbobj canoel v iewop Vlowlooo

* usropr/uiewclose 1:1

name Cloe the View User OP -
window when done kIoing at it.
Executed by the OK button.

PWlndow/buttonclos-a

§1. View User Operator

usiropr/maksmdbobj 1:1

Very complicated method which takes a user defined
operator (possibly containing other user defined apI)

--- and turns it into its constituent text objects and primitive
u ateinhtnums adbobfg. First updates the instflums of the embedded

structure of the user op ("h user o~a internal gdbobjlist).
Then connects the terminals from this use op to the objects

cannectterminalis that they should go to internally. Also connect the internal
root to the apprupuates external objects. Then go back

7itnto the, external list and fix redirect all of the external
fixura roo fioblsttrmsobjects connection, to the inatniums of the internal
fixuro root ifixibiiattrmsusrobj object instances. Finally delete the dummy place

holder variables (that provide the actual nodes on the
input bar -- really each node is a dummy text object -

I releedus Idone for expediency) and jon all of the newl created
objects into the oid incoming list and Output it.

0 rob list This method depends oin all of the
requisite gdbtxt and gdboprs at the
same levl be done first.

*usiropir/iuiewop 1:1

RUSTUses selec dialog to diplaygUSROPLS available user operators.
Takes the one that was seeWed

05am 1 wnd displays it in the View
User Operator -- window.
Concatenates fth name of the

selctuser operator beang dislayed
to the window name so it gets

NULL le displayed in the title bar.

current §2

find-window RATOR

§2. Vew Uer Onrato

M usiropir/opirdrsw 1:1

BasicallY -t S Vl~ s bp dw.c0 tm

accl-d o ntfrteiu radaycnctastit

*usropr/cencel 1:1

FMenu/enable

PdbobI/erase7n utbar

Reset the scee following
completion of doing things

ddus with anl the UsIOps momI.
Resets all normal menu choices
and buttons.

FALSE

QURRON

*usropr/delop 1:1

eewoptrselectefonth

UDelets petorent l'Is fta the

USROPRLIST3 defined use defined ape).

Uusiropr/delop 1:1

51. DELETE OPERATOR

*usiropir/selop 1:1

Cald uesoser toCesletauuobmn te.Gvs h ar ito

curenty dfind er pe.Tak th oe tat e pcke (os ot o cpyseo
an/rae i isal calueisrect a) aond aditt hegbbmlt

* usropr/newusrop 1:1

TRUE Sets up 09 INTERFACE sasen

to accept definition of a new

QUSROPRON user defined operator.
. .. Setulms turns off all
buttons and menu selections

NOT associated with user op
.. ..r definition.

r d bo, b wld Zin uI t ba r qBtS

usiropir/storeop 1:2

WeIbohak;r ahX

because Of how prograph
usro (io th)stores lists etc. The

terminallist in the persistent
will actually get messed up

de endnum Ion when we do Ilcancel otherwise.

connectons. Thn gets he nam

help ~ ~ ~ ~ ~ ~ do mesgefritiestpet)fo

alphabeticalp ordr deermne b

getopnameoristns whniAlocek o

Firttete use of e al re s e t ameme
tor the peritaito of aluer dx tefe
oepea. t gthlte fo

the uer. Tan ads 0 i corrctPRL tex

Uusropr/storeop 2:2

z31354

0

SeAlert

* Alert should say that terminals
and roots are not connected
correctly. User should checki
his query graph.

0 dbs

'-0 an .-

footrest

of alIlamllaf

U Io WM IN O

footelv
FALSE -

IN 0 oo
(I ak waluW

toal"1111

*gdbdsp

createi r eij

*gdbdsp/creste 1:1
window button event

,qP=-F=Creates a diap~a operator (DISPLAY or SDISP.AY).
dbde name Only difference betwieen this creation and regular

operator creation is the elimination of the root.

CM gdbdsp/drewobj 1:1

a root.va

(001
v

FALSE

SIneobj

drawling ermsellne rubberb bodrawline

IM lneobj/rubberb 1:1

oetcanvaad aho.Do hen rbn

Ct"rLNEPERb of line drawing when #wheser is trying
Vbegin-drowing to Connect object with lines. Uses continuous

PanMode start It draw and erase routines. Until a Mouse Click.

end~drndln

SIlneobJ/ermsellne 1-1

-patCepy

Erae a line from pointi to poinI2
by changing the pen mode. Changes
pen back to patCopy when dane.

Sineobj/drowline 1:1

7start

point-t@.lnts Uoint-to. lntsm

Mov 113 31" 3 ne

Draws a line from start point
* to encl point.

linesobj/be draw line 1:1

ae ta rawiet inc d

theinde bein n n rwn

M p Imite1tais.it-eine

0

cellst

* table

U EmEE
loadtoble Jolneols add addeig re etllet

U
collnto

U table/resetlist 1:1

table I

Resets tablelist to only the initial
relations found in savetablelist.
These ae fthe REAL relations
in tf database.

I table/loadtable 1:1

Performs initial load of column names for
OUERFIL aft defined tables by going out to ORACLE

waiter.. and querying the columns relation for all t
, 'tables and columns that ft user has access

inkq to.

gIbisuioAL II

Store initial tables and columns in the
savelabiels where they will not be
messed with for the duration of the program.

*table/joincols 1:2

relation 1eutn frole aeato 2ono elto

saenmeb(ih apedd)coums

out~co e DterineNoa columns wire dicaeea in th

*table/Joincols 2:2
Could make this an alert.

retation 1rl o

This error rmesage shows up when
a tablenarne is requested that doesn't
exist. Execution will continue -- This
won't stop the query from going to
ORACLE -- if wanted you could stop this
by using somne fail notations from here up.

§1. is an invaid table or view.*
§2. -ERROR! Either

0table/add 1:1

FALSE

table UprStrlng

toblename

attac h-r views created as intannediale
mmep on the queay) and thsor

the lamp tables go in ibahais
tablellatNOT savetabial which must

stay nco~pled

0 tmble/mudsume 1:2

ol relation

table an ounetadALoFAcLuSfo

ldel a tio toaUhrIcmn retin.

cellistio

12

- gn"

1

show

Could not fin old relation name.

§1. is invalid.*
§2. TRRORi Table or view

Utable/collnfo 1:1

Exemled in resppans to Ow TABLE
item of the Info mnu. Uste ftheloa
coluimn that be"on to fth eelectedTALNME

taalona.

TABLE:

1.COLUMNI NAMES:

V dbops
(@mvi.

dbops

These are the main ENGINE type methods for the operation of the
DFOL interpreter. makequery is the controlling method for execution of
queries.

makequsry ohsokgreph rost deollops finelige

The methods with names the same as DFQL primitivs convert those primitives into

SQL cods. The inputs to these methods are the SAME in the same order as that to
the DFOL primitives. All of these methods (except the group satisfy methods which
aIn docunnted more inside the mothod) m*y concatera the inlputs to produce
valid SOL statements.

select project join groupont greupALLsetlsfy groupagg eqjoin

union difference gdlfforence interseot SDISPLAY DISPLAY groupHoetinfy

The "r methods simply take input that consists of a DFOL operator name and a list of
input arguments and calls the appropriate method after converting the input list into the
inputs reqUimrd for that method. Theis a dons so that the actual pimitive methods above
ae orthogonal to the OFOL operators that rpree the. (The list unpacking COULD be
done in the above methods - but i not recomnoded because the above methods can
also be used by the PROGRAPI programmer to make new primitives (e groupALLsatisfy and
groupkeatisfy above . it is much belr to take meaningful inputs than just a list.)

Iselect Iprojeet Joln lunlon Idlff Igroupont 1groupALLnatlefY leqjoln

linteresot IgroupmFx Igreupuin Igroupevg ISDISPLAY IDISPLAY Igroup entlafy

Udbops/IgroupRL~satily 1:1

Udbops/Igroupicnt 1:1

fun ackg

D//grou antA

Udbops/Ijoln 1:1

wation Icondition
,, gin

UB dbops/IdIff 1:1

un ok

relation 41 relation 2
I/dlIerenco

*dbops/Iunlon 1:1

un
ak

4,rolation t Mlan 2
/un ion

Udbops/Iproject 1:1

Unpak

project
relation! altribs

Ire act

*dbops/Isslect 1:1

unpack
select

relation condition

*dboPS/Makequery 1:2

dbob

dbob list cccccccccccCCCCc CCCC T.CcccccffI/clek v h
Ensure gdbobis are correctly connected

COPY and then reset for execution.

g.dboblimais la Make the query graph, consisting of only primitives
and text objects.

adbob Shouldn't really need a copy here
since we remake the list every execution;

adboblist however this keeps adbobilist fromt EVER
adboblist being corrupted (otherwise it would be

corrupt after one execution and before the
copy next).

doallops exescutes the query graph. Firing is based on
I/dooel a1 shortage counts maintained by dpndnium in the

adbobis.
It' finalize adds SOL code to drop all of the temporary views

that were created and to disl~ay the final result
I/f~nl~ze if Last Result option enabled or if a partial execution

stopped by a selected operator.

5ajkjnd/runoj Run the generated SOL. on toe bacliend ORACLE DBMS.

Fljajndloadwl~ Load the results of the ORACLE execution into the
Results Window.

r/.ldw8 Activate the Query Results window (puts it in front).

C dbops/makequerg 2:2

0
$oAlert

Alen should say that terminals
and roots am not connected
correctly. User should check
his query graph.

M dbops/gdifference 1:1

I ettempm s Ia I
-,C relation I

CeCe relation 2

gs //union

§I. where

§3. (selec
J2

§4 not existr

§5. create vie

*dbops/uliork 1:1

I hatemnarfm rlatin 1relation~ 2

§1.~~ crsln"e

IM dbops/grouplL~satily 1:1
group

relation attrib satisfy condition

This method makes use of the other previously
maksonddefined primitive methods to perform gro4Jpallsatisfy.

This is an example of why we use the *r methods
to maintain the natural inputs to the DFOL primitive

dbops/groupent 1:1

gonaeff w anww relation group result fieldattribs

makwAls

ableladd

12

dbope
fall

a Illat oln"

rzattech-rg count(*)

"from
oln

oln"

attach-r

orall

Eattsch-r

attech-r

attech-r
dbo 9

8 Illst

flWOMMMOMMIMMM

§1. 'a~ distinct
12. *create view

dbops/join 1:1

rotation I relation 2 ljoin

geumonams, condition

oincels

12

dbe 9 as" "from r1l, W

4--h 1-1 - /

a III* oln' "Join"

attech-r
where

oln"
otlach.r

attech-r

attech-r

dbo a attech-r

§1. select distinct
§2. 'create view

dbops/proJect 1:1

ratlation project
loattemprame I Uals? attribs

makecols

Wadd

§2
all.

dbe a oln"

Illat

sttsch-r oln"

.from
attach-?

attech-r

db attech-r

a Illet

9MzMz

61. *select distinct
*create view

Udbops/flnallze 1:1

dislayreult p toe D isp ast otion wsslce Ri
We stedecto beastf= eetdprtr

*dbaps/select 1:1

relation slect
condition

§1 select distinct

§2.~ cme" ie

M dbops/reset 1:1

0 Ftable/resetllst

Wbackendlremsteut ut

make-ist bo a Resels the temp tabilbst,
makeHat b@ * oult list. SOL list, and

results window fromt last

exctin

0 IORs nueset

w Gr97

db ops /difference 1:1

relalgion I relation 2

tablel

dbe s

a

attesh-f minus

solectst t

a t ch-r

be s attach-r

s Illat

V zz.

$I. 'crsais view

10dbops/Intersect 1:1

gtemfifameI relationl 1 r~ain2

§1. create vame

dbe as as

lao 1811 ~ fi

/aIftar Inerec

*dbops/groupegg 1:1

reain group
Wain attribc result fiold Oli

§1 selecl distinc

§2 crete v §e

dbops/igroupmax 1:1

unpack
mIn

Iroupag

Sdbops/igroupaug 1:1

unpack
oy

I, roupagg

dbops/Igroupmln 1:1

un ak
mmn

Sdbops/dnsIlops 1:1

0 Roeatedty find instances that have dependnum
(short count) - 0 and execute them. When
there aren't any more OR if we reach an

Mflnd-Insance operator that is selected STOP the iteration.

*dbops/SDISPLRY 1:1

dbo a __________________relation -order outputname

a Illat "pool - kjnd/setoutut

o ln"

§2. ~ ~ ~ ~ ~ re by~ebe OTinqey

Estnpac pol ff
relation, rder cots

115/IDSPR 1:1LA

dbops/groupNsetlsfg 1:1
WrOW satisfy

reltionl alirib condition niaI

This mehd makes use of t otther previously
defined primitive methods to perform groupallsatisfy.
This is an example of why we us. fth "r metods

//**ootto maintain the natural inputs to fth DFOL pnmitv

*dbops/IgroUpNsstIStq 1:1

un ack

rIIqreu Nsstlsfy~

0 dbops/eqjoin 1:1

relationi 1 relation 2 attribs

makecond

Udbops/Ieqjoln 1:1

Munpcl

i/s emiff

Udbops/DISPLAY 1:1

dbe a --------- rotation__________

a *Vbackndlootoutut

- gin"

§1.- *sele distinct * frm
§2. Can't embed SORT in quety!

Udbops/IOISPLRY 1:1

unek
relation,

/DSLAY

Udbops/check graph 1:1

dbeb Checks to a"e if all terminals
ca connected and if all (ecept for

db~blist possibly one) roots are connected.

dbo lst "Nnotcase FIL

V beksmd

autepeel

((~EWS
0

.utpu~IAat

U backend

ORACLE'Shell resetoutput astoutput

0 0
runorale Ioedwnaql

* backend/resetoutput 1:1

Resets the list of current

bookend (spool files to eMty and
the spool file number to 0.

out uttis 0

*backtend/OR1 ICLE 0Shelf 1:1

owplwp SsuIunches ORtACE*" to permi
4 *he uer direc interectn with th

beclian dalabes usin ORACLES'TQ Plu p nte k rete. This is a
WMenu/bigkmn suaLAtcH - the OFOL application

is suspended during ORACLE*Sh@N
w operation.

ORACLE*SholI 0 0 TRUE

F, to r
WhX

0beckend/setoutput 1.1

Adds the title (outpUtutame) for ukam

the output (given by the user bee kend
in the display primitivee) to
the program determined
spoolfile name of the form lost@ @01
spootn where ni is the nth spool
file. This information is
maintained in fte bck*d
class variable outputlist.

i tt @0 tfier In9

*beckend/runorecle 1:1

Write th SML query fom aqfllet
51 into the file querysqi. ORACLE'ShI

is the sublaunched in t be"jati e
to procs queey.al. VWhil ORALE
as running t DFOL prgm is
suspend ORACLESheN produce the
query.aqLLST file and any qxold files

m us . I Uw m - squested bytes.dasplay
statements.

TRUE

Edelete 9C"C" E!! returns. (Actually an artifact from an earlier

§1. N1701:PROGRAPH:query.sql

back end/loadw insql 1:1

Loads results from all of the
spool file* requested by the
user and also loads the entire

OUERYFILE '.LST" contents of query.sql.LST
A leat Ion (ORACLE~shers complete

'Join"output) if the show SQL option
was checked -- loads all of this

current Ed&7*ta7 ,L.into the Query Results window.

find-window

us text

find-item

§1. Query Results

V seW
(44*I~4 4 -

helpilat

V
-me

V
belpteul

I

help

display

*help/display 1:2

gqtx I Gts help message from stored
help list (primitives) or from the

nametext usri (user-defined ops) and then
text opens the help window and displays

opeh.pwn it.

*help/diplay 2:2

§1. Help will be available for this operator in the future!

o dbobJ

0
adeebiIIM6MW

aelvemni

FAS

odbobj

ftlxdependums makeallat

domake idubb eak

a dbobj/makealist 1:1

bCovbf =all objects in the

lgraphica representationadbobi i~ic (gdbobjliSt) into adbobjs
for execution.

latdomake

list,________________________________

s adbobJ/flxdependnums 1:1

root list item objlistdetch-, 1 I

Adjusts the shortage counts find-instnce
(dependnum) of all operators
that are in the roolhat passed | I _ .,

in (which consists of inetnum Ydependnum
and a terminal number' of that
instance - w just take the 1
left itern [the mastnum] to
update)

set-nth

list out

e odbobj/addodbobj 1:1

adbeb
Add a adbobj instance to
the right end of the

udhboblistg adbobjlist.

attech-rede i s

0 dbobj/domace 1:1

depednumFind a gdbobj that is ready to
convert to an adbobj (by dependnum

=0) and call exemake to convert it.

a dbobj/ememske 1:1

rootilatUse data dependent reference to
set-nth call the conversion mthod from

gdbobi into aob.This handles the
gdbtext. gdbopr. and usropr objects.

I//flude endnums When the object has been converted
update the shortage counts of thet
objects in gdbobilist that depended

oni

V edbteut

IM

re lst u.

eelistroo
FALSE f u~mag

a dbteHt/e~eobj 1:1

instance list posit list

),hexttring Executes* the text

rootvalue Ipassing their text
value on to the cps

do *ndnum connlected to At.

Vadbepr

4 "

reti e 00

reelvalgie
FALK

'7
ogglogggjcm I a

(ufMaMVM

a dbopr/e~eabj 1:1
instance list osit list

Use oxeopr to call the dbops
.exeo r Y method corresponding to the

operator being executed.
rootvaluepr ruses the injection methodrootalu in rde to allthenecessary

method based on the DFOL oper
do *ndnum name. After the op is executed

dependniums are updated.

e dbopr/exeabj 1:1 MM e~eopr 1:1

instance lit

dbopoll 11opnimm)t5rmlnallletA

-oln" ImakeinN Mal IF

Use injection to call the appropriate method
based on the operator name. Take the ops
termianal list and Make it into a list Of inputs
for the actual dbope version of the OFOL operator.

a dbopr/emeobj 1:1 Uemeopr 1:1 MM makelnputlist 1:1

detacha

Vappacetion

440ul.

0

egiren

FOLK

0
Mie

'7&
ma.

mimm ber
ML

allow mombed

me o

*6 Application

about...

U ppllcatlon/about.. 1:1

11954 0

Vmenu

nameII~

M'7
RB.

FALSE

T
agtjvel

9 keys

Iem list

* Menu

quit

cut copy past* clear

toggle Itemoheck? dolodwlnsql soltoggle resetprt

biankvnonu rostmonu dienable enIbe enabloprt

Menu/quit 1:1

t~fle/savewarnln x

On quiting the application check
first to ensure that the uaer has saved

stpea in changes Then stop the ORACLE
'!; kernel and deactivate the aipplcation.

owner FALSE

*altive?

/t

*Menu/iresetpirt 1:1

find. nu FRests all of the items in the File menu
that we turned off in certain modes so
that Print and Page setup would be

kavailable but nothing else.

* enu/enableprt 1:1

A lcatlon Enables the File menu and ONLY the
Print and Page Setup options. All other

§1. ("Print ... 'Page Setup...)

M~enu/restmenu 1:1

A lication
Activates Ow menu passed
in.

current

find-menu TRUE

active?

IMlenu/blankmenu 1:1

Appication Deactivate. the entire menu
passed in.

current

find-menu
FALSE

ativo?

*Menu/toggle 1:1

Toggles checkmnark on
check? Menu ms.

not

check?

*Menu/ltemcheck? 1:1

fina-menu return hte h
item is checked or not

SidIo

UM Mgnu/doloodwinsql 1:1

ffbackendlle dwlns Il

Called from the Edit menu
in respons to the Undo Olwm.
Located hum in order to coirecilY
handl the inpule.

*Menu/seltoggle 1:2

check?

not

First toggle checkmark on
check? the select Menu itemn.

Then Oni came deeelecte any
previously sete item.

FALSE X

w

Ogdboblect

UMenu/seltoggle 2:2

Menu/enable 1:1

PRmnable aN me~nus.

A iaton

curront §

fidmnenu
TRUE

OonmlodW rZMenutrsetiE It

§1. (1 2 34 5 67)

* Menu/dlsenable 1:1

Manually diselablee all Rmau to

Ap Ilcation simulatl a true modal dialog for the
help windows. Pragraph's modal
windows are not modal enough to turn

current off menu iterns.

find-menurASo (..4 FALSE

§1. (1 234S6 7)

i"

a

VMen" Item

stle

* Menu Item

dim highlight

I Menu Item/dim 1:1

Application Takes as input a UST
of maflultms to dim
and the associated menu,

current

find-men

find-Item

ative?

menu Item/highlight 1:1

A licationTakes as input a LIST
of menulmms to highlight

VWisdom Item

Y

FAL

v
guM.

V -
FASE

FAS
vilb.

grw
too),

PIL

ite

Window Item

vlaott vlson activeoff aotiveon

W Window Item/visoff 1:1

* FALSE

visbe?

Make a window item invisible.

Window Item/vison 1:1

vie?

Make a window item visible.

I Window Item/actiueoff 1:1

Deciwat a windaw ntm
(gray it out).

U Window Item/ectlueon 1:1

Activate a window iism.

VSgstem

i

KIL

V Window

maw

v

v 1~0
FAL

v
V

v

120'30,

moalo

o"OO Oak

ifed

0

lkm No

1440'7
I.tI

ma.i
'7

0630 II

Unluersal

Initial Initialize persiatents go nvas

I reset 1:1

Iln~tiallzo eralatontal

Clear drawing canvas in 08
dbob INTERFACE window, met

'drawing persistents gdbobjlist.
gdbob i

rbegIn-drawin 3! iirasect
.end-drewing

§1. (0 0 32000 32000)

a Initial 1:1

FALSE Cannot be put
in initialize

dsetwundows would not be
dneeded k a compiled versi

QQUERYIE

EF i lodtele

I I i- I

CCC 0 "" -tQDFOLPRTrREC
2DisposDial.o " Draw startup dialog, initialize windows, start ORACLE kernel

rad in table information (from ORACLE) se current file name
to untitled. Setup initial printer record.

f1. "N170i:PROGRAPH:query.sqr

* getcanuas 1:1

Appilcation Returns ft canvas from

>I©urrent-J Dil IWTERFACE

find-window A dbaeenvas

| |C-

initialize perslstents 1:1

FALSEF

LINEPERR

Succees from U las uer. 49 Nam at quer il.

Un. d~rawing persieat to keep
track of points for nibbeftandl lne.

DNA WLINEO NEE

Print record for prnng DFOL
canvas".

DFQLPRTREC

These six persistmnts are ueed to maintain
user defined operator information, including the

USROPRU~ USRPRN actual list Of usophs

List of INSTANCE
nums of dlummy tmxt

IBRECI IURIT used for inbar rots

DISPLAVOPR TXTDISPLOTH

IL

BIBLIOGRAPHY

Aho, A. V., and Ullman, J. D., "Universality of Data Retrieval Languages," Proceedings
of the Sixth ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages, pp. 110-120, 1979.

Beech, D., "The Future of SQL," Datamation, pp. 45-48, 15 February 1989.

Chandra, A. K., and Harel, D., "Computable Queries for Relational Databases," Journal
of Computer and System Sciences, v. 21, pp. 156-178, 1980.

Dadashzadeh, M., "Improving Usability of The Relational Algebra Interface," Journal of
Systems Management, pp. 9-12, September 1989.

Davis, J. S., "Usability of SQL and menus for database query," International Journal of
Man-Machine Studies, v. 30, pp. 447-455, 1989.

Goodwin, N. C., "Functionality and Usability," Communications of the ACM, v. 30,
pp. 229-233, March 1987.

293

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Computer Science Department 1
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California 93943-5002

4. Chief of Naval Research 1
800 North Quincy Street
Arlington, Virginia 22217-5000

5. Curriculum Officer 1
Computer Technology Program, Code 37
Naval Postgraduate School
Monterey, California 93943-5000

6. Naval Ocean Systems Center 1
271 Catalina Boulevard
San Diego, California 92152

7. Division Head 1
MDS Division
Data Systems Department
Naval Weapons Station
Concord, California 94520-5000

294

8. Phillip B. Stiles
Naval Sea Systems Command
Technical Data Division of the
Chief Engineer for Logistics Directorate
Washington, D. C. 20362-5101

9. James W. Hall
Division Leader ADP Division
ADP-DO, MS-P222
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

10. C. Thomas Wu 2
Computer Science Department, Code CSWq
Naval Postgraduate School
Monterey, California 93943-5000

11. LT Gard J. Clark 2
484 Chestnut Road
Severna Park, Maryland 21146

295

