ON THE SUBJECT OF GEOMETRIC SPACING
OF METEOROLOGICAL SENSORS

November 1991

Henry Rachele
Arnold Tunick

Approved for public release; distribution is unlimited.

US ARMY
LABORATORY COMMAND
ATMOSPHERIC SCIENCES LABORATORY
White Sands Missile Range, NM 88002-5501
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Destruction Notice

When this document is no longer needed, destroy it by any method that will prevent disclosure of its contents or reconstruction of the document.
On the Subject of Geometric Spacing of Meteorological Sensors

Henry Rachael and Arnold Tunick

U.S. Army Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002-5501

In an earlier study the authors concluded that to estimate turbulence characteristics such as the friction velocity, the temperature scaling length, and the Obukhov length from discretely measured data, it is desirable and efficient, but not necessary, to have the sensors spaced geometrically with height. In that study the authors accepted the traditional geometric spacing equations and compared results from those equations with a set of more general formulations for a few examples.

For most turbulence studies in the boundary layer, however, one nominally desires single values of the turbulence characteristics through a layer of say 20, 30, or 100 m; that is, one normally assumes that the characteristic lengths are constant with height. In this study the authors present our mean value theorem mathematical development for the case of geometric spacing relative to the geometric mean for a single sublayer, and assume that the values for the total layer can be determined by averaging the sublayer values. Finally, the authors show in tabular form comparisons of U^*, T^*, L, and R_i for four sublayers (1/2 - 2 m), (1 - 4 m), (2 - 8 m), and (4 - 16 m) by using the proposed Rachael/Tunick (RT) formulations and the traditional formulations.
ACKNOWLEDGMENTS

The authors thank the late Louis D. Duncan and Frank V. Hansen of the U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico, who have shown special interest in this topic, have encouraged the study, and have taken the time to review and comment on the contents.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>6</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>2. MATHEMATICAL DEVELOPMENT</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Unstable Formulations</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Stable Formulations</td>
<td>13</td>
</tr>
<tr>
<td>3. TRADITIONAL FORMULATIONS AND APPROACH</td>
<td>16</td>
</tr>
<tr>
<td>4. COMPARISONS</td>
<td>17</td>
</tr>
<tr>
<td>5. SUMMARY AND CONCLUSIONS</td>
<td>19</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>21</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>23</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. $U^*, \theta^*, L, \text{ and } R_i$ for the Sublayer $(1/2 - 2 \text{ m})$ (unstable case) 17
2. $U^*, \theta^*, L, \text{ and } R_i$ for the Sublayer $(1 - 4 \text{ m})$ (unstable case) 17
3. $U^*, \theta^*, L, \text{ and } R_i$ for the Sublayer $(2 - 8 \text{ m})$ (unstable case) 18
4. $U^*, \theta^*, L, \text{ and } R_i$ for the Sublayer $(4 - 16 \text{ m})$ (unstable case) 18
5. $U^*, \theta^*, L, \text{ and } R_i$ for the Sublayer $(1/2 - 2 \text{ m})$ (stable case) 18
6. $U^*, \theta^*, L, \text{ and } R_i$ for the Sublayer $(1 - 4 \text{ m})$ (stable case) 18
7. $U^*, \theta^*, L, \text{ and } R_i$ for the Sublayer $(2 - 8 \text{ m})$ (stable case) 19
8. $U^*, \theta^*, L, \text{ and } R_i$ for the Sublayer $(4 - 16 \text{ m})$ (stable case) 19
1. INTRODUCTION

In an earlier study (Rachele et al., 1991), we concluded that to estimate turbulence characteristics such as the friction velocity, temperature scaling length, and the Obukhov (1946) length from discretely measured data, it is desirable and efficient, but not necessary, to have the sensors spaced geometrically with height. In that study we presented the mathematics necessary to show that geometric spacing is not necessary. The mathematical argument for geometric spacing was not developed or presented. Furthermore, we could not find a reference for it. Even so, we considered the traditional geometric spacing equations and compared results from them with our more general formulations based on the mean value theorem for a few examples and found that for practical applications the differences were not significant.

For most turbulence studies in the boundary layer, one desires single values of the turbulence characteristics through a layer of perhaps 20, 30, or 100 m; that is, one typically assumes that the characteristic lengths are constant with height. A procedure for determining the total layer values is to compute the values in the geometrically spaced sublayers and then average the sublayer values.

In this study we consider the case where the sensors are geometrically spaced. We then present our mathematical development requiring geometric spacing for a single sublayer based on the mean value theorem and assume that the values for the total layer (summation of sublayers) can be determined by averaging the sublayer values.

2. MATHEMATICAL DEVELOPMENT

In the development that follows, we focus on the vertical gradient of windspeed written in similarity form for unstable and stable conditions. Results for temperature are similar. The neutral case results from the reduced form of the unstable or stable case.

2.1 Unstable Formulations

We write the wind gradient for unstable conditions as

\[
\frac{\partial V}{\partial z} = \frac{U^*}{kz} \left(1 - \frac{\beta z}{L} \right)^{-1/4} = \frac{U^*}{kz} \phi_{\beta} \left(\frac{z}{L} \right), \tag{1}
\]

where

\[
\begin{align*}
V & \quad \text{- windspeed} \\
U^* & \quad \text{- friction velocity} \\
k & \quad \text{- Karman's constant} \\
z & \quad \text{- height}
\end{align*}
\]
\(\beta \) - constant

\(L \) - Obukhov length

Integrating equation (1) results in

\[
V = \frac{U^*}{k} \left\{ \ln \frac{z}{z_o} - \psi_m \left(\frac{z}{L} \right) \right\},
\]

where

\(z_o \) - roughness length,

\(z/L \) - the Monin and Obukhov (1954) scaling ratio

and

\[
\psi_m \left(\frac{z}{L} \right) = 2 \ln \left(\frac{1 + X}{2} \right) + \ln \left(\frac{1 + X^2}{2} \right) - 2 \tan^{-1}X + \frac{\pi}{2}
\]

\[
X = \left(1 - \beta \frac{z^4}{L} \right)^{1/4}
\]

as shown by Paulson (1970).

Evaluating equation (2) for two geometric heights \(z_1 \) and \(z_2 \), where \(z_2 > z_1 \), we obtain

\[
V_2 - V_1 = \frac{U^*}{k} \left(\ln \frac{z_2}{z_1} - \psi_m \left(\frac{z_2}{L} \right) + \psi_m \left(\frac{z_1}{L} \right) \right).
\]

Dividing equation (5) by \(z_2 - z_1 \) gives

\[
\frac{V_2 - V_1}{z_2 - z_1} = \frac{U^*}{k(z_2 - z_1)} \left(\ln \frac{z_2}{z_1} - \psi_m \left(\frac{z_2}{L} \right) + \psi_m \left(\frac{z_1}{L} \right) \right).
\]

The mean value theorem of calculus states that there exists at least one point \(\xi \), where \(z_1 \leq \xi \leq z_2 \) such that
\[
\frac{V_2 - V_1}{z_2 - z_1} = \frac{\partial V}{\partial z} \bigg|_\xi ,
\]

where

\[
\frac{\partial V}{\partial z} \bigg|_\xi = \frac{U^*}{k\xi} \left(1 - \beta \frac{\xi}{L}\right)^{-1/4} .
\]

Using equations (6), (7), and (8) we find that

\[
\xi = \frac{(z_2 - z_1) \left(1 - \beta \frac{\xi}{L}\right)^{-1/4}}{\ln \frac{z_2}{z_1} - \psi_m \left(\frac{z_2}{L}\right) + \psi_m \left(\frac{z_1}{L}\right)} .
\]

Now suppose that a scaling constant \(\epsilon > 0 \) exists such that

\[
\epsilon \frac{\partial V}{\partial z} \bigg|_\xi = \frac{\partial V}{\partial z} \bigg|_{z_g} ,
\]

where \(z_g \) is the geometric mean of \(z_1 \) and \(z_2 \), that is, \(z_g = (z_1 z_2)^{1/2} \).

Using equation (1), we can write equation (10) as

\[
\epsilon \frac{U^*}{k\xi} \left(1 - \beta \frac{\xi}{L}\right)^{-1/4} = \frac{U^*}{kz_g} \left(1 - \beta \frac{z_g}{L}\right)^{-1/4} .
\]

Solving equation (11) for \(\epsilon \) gives

\[
\epsilon = \frac{\xi}{z_g} \left(1 - \beta \frac{z_g}{L}\right)^{-1/4} \left(1 - \beta \frac{\xi}{L}\right)^{-1/4} .
\]

Substituting \(\xi \) from equation (9) into equation (12) yields
\[
\varepsilon = \frac{(z_2 - z_1) \left(1 - \beta \frac{z_g}{L}\right)^{-1/4}}{z_g \left(\ln \frac{z_2}{z_1} - \Psi_m \left(\frac{z_2}{L}\right) + \Psi_m \left(\frac{z_1}{L}\right)\right)}
\]

(13)

Combining equations (7), (10), and (13) results in

\[
\frac{\partial V}{\partial z} \bigg|_{z_g} = \frac{(V_2 - V_1) \left(1 - \beta \frac{z_g}{L}\right)^{-1/4}}{z_g \left(\ln \frac{z_2}{z_1} - \Psi_m \left(\frac{z_2}{L}\right) + \Psi_m \left(\frac{z_1}{L}\right)\right)}
\]

(14)

Since

\[
\frac{\partial V}{\partial z} \bigg|_{z_g} = \frac{U^*}{k z_g} \left(1 - \beta \frac{z_g}{L}\right)^{-1/4}
\]

(15)

then

\[
U^* = \frac{k z_g}{\left(1 - \beta \frac{z_g}{L}\right)^{-1/4}} \frac{\partial V}{\partial z} \bigg|_{z_g}
\]

(16)

or by substituting equation (14) into equation (16)

\[
U^* = \frac{k (V_2 - V_1)}{\left(\ln \frac{z_2}{z_1} - \Psi_m \left(\frac{z_2}{L}\right) + \Psi_m \left(\frac{z_1}{L}\right)\right)}
\]

(17)

To evaluate equation (17), we require an estimate of the Obukhov (1946) length L. We do this by using a basic definition of L, that is,
\[L = \frac{U^* \theta^*}{kg \theta^*}, \]

where \(\theta^* \) is the potential temperature at a reference height and where \(\theta^* \) is the temperature scaling length in the potential temperature gradient expression for unstable conditions, that is,

\[\frac{\partial \theta}{\partial z} = \frac{\theta^*}{kz} \left(1 - \gamma \frac{z}{L} \right)^{-1/2}. \]

Using the same mathematical development for \(\theta^* \) as was used for \(U^* \), we obtained

\[\theta^* = \frac{k (\theta_2 - \theta_1)}{(\ln \frac{z_2}{z_1} - \psi_H \left(\frac{z_2}{L} \right) + \psi_H \left(\frac{z_1}{L} \right))}, \]

where

\[\psi_H \left(\frac{z}{L} \right) = 2 \ln \left(\frac{1 + \gamma}{2} \right) \]

\[y = \left(1 - \gamma \frac{z}{L} \right)^{1/2}. \]

Equations (17), (19), and (20) are solved iteratively to obtain \(U^* \), \(\theta^* \), and \(L \).

For neutral conditions, that is, \(L = \infty \), we also use these three equations, but equations (17) and (20) reduce to

\[U^* = \frac{k_2 (V_2 - V_1)}{\ln \frac{z_2}{z_1}} \]

\[\theta^* = \frac{k_2 (\theta_2 - \theta_1)}{\ln \frac{z_2}{z_1}}. \]
We conclude this section with a brief discussion of the Richardson (1920) number that is one measure of stability. By definition the Richardson number can be written as

\[R_i = \frac{g}{\theta} \frac{\partial \theta / \partial z}{(\partial \psi / \partial z)^2} . \]

(25)

Substituting equations (1) and (19) into equation (25) gives

\[R_i = \frac{g}{\theta} \frac{\theta^*}{kz} \left(1 - \frac{\gamma z}{L}\right)^{-1/2} \frac{U^*}{\sqrt{U^*}} \left[1 - \frac{\beta z}{L}\right]^{-1/4} \]

(26)

If \(\gamma = \beta \), equation (26) reduces to

\[R_i = \frac{g}{\theta} \frac{k \theta^* z}{U^*} . \]

(27)

However, from equation (18)

\[\frac{g}{\theta} \frac{k \theta^*}{U^*} = \frac{1}{L} . \]

(28)

Therefore, equation (28) simplifies to

\[R_i = \frac{z}{L} . \]

(29)

On the other hand, if we substitute equations (17) and (20) into equation (27) we obtain

\[R_i = \frac{g z}{\theta} \left(\frac{\theta_2 - \theta_1}{1 - \frac{\psi_m (z_2/L)}{\ln z_2/z_1} + \psi_m (z_1/L)}\right) \]

\[\frac{k(V_2 - V_1)^2}{1 - \frac{\psi_H (z_2/L)}{ln z_2/z_1} + \psi_H (z_1/L)} \]

(30)

Equation (30) allows one to compute \(R_i \) for any \(z_1 \leq z \leq z_2 \) given measured or estimated values of \(\theta \) and \(V \).
Finally, using equations (29) and (30) we have an implicit expression for \(L \), that is,

\[
\frac{1}{L} = \frac{q}{\theta z_g} \left\{ \frac{(\theta_2 - \theta_1)}{k(V_2 - V_1)^2} \left(\ln \frac{Z_2}{Z_1} - \psi_m \left(\frac{Z_2}{L} \right) + \psi_m \left(\frac{Z_1}{L} \right) \right) \right\} . \tag{31}
\]

\[2.2 \text{ Stable Formulations}\]

The stable case tracks the development of the unstable case, except that some equations take a different form. As an example, equation (1) takes the form (Dyer, 1974; Hicks, 1976; and Hansen, 1980)

\[
\frac{\partial V}{\partial z} = \frac{U^*}{kz} \left(1 + 5 \frac{Z}{L} \right) = U^* \phi_m \left(\frac{Z}{L} \right) . \tag{32}
\]

Equation (2) retains the form

\[
V = \frac{U^*}{k} \left(\ln \frac{Z}{Z_0} - \psi_m \left(\frac{Z}{L} \right) \right) , \tag{33}
\]

where

\[
\psi_m \left(\frac{Z}{L} \right) = -5 \frac{Z}{L} . \tag{34}
\]

As with the unstable case, when we integrate equation (33) for two geometric heights \(z_1 \) and \(z_2 \), where \(z_2 > z_1 \), we obtain

\[
V_2 - V_1 = \frac{U^*}{k} \left(\ln \frac{Z_2}{Z_1} - \psi_m \left(\frac{Z_2}{L} \right) + \psi_m \left(\frac{Z_1}{L} \right) \right) . \tag{35}
\]

Dividing equation (35) by \(z_2 - z_1 \), gives an equation of the same form as equation (6), that is,

\[
\frac{V_2 - V_1}{z_2 - z_1} = \frac{U^*}{k(z_2 - z_1)} \left(\ln \frac{Z_2}{Z_1} - \psi_m \left(\frac{Z_2}{L} \right) + \psi_m \left(\frac{Z_1}{L} \right) \right) . \tag{36}
\]
Again, as for the unstable case, we employ the mean value theorem to obtain

$$\frac{V_2 - V_1}{z_2 - z_1} = \frac{\partial V}{\partial z}\bigg|_{\xi} ,$$

(37)

but, where,

$$\frac{\partial V}{\partial z}\bigg|_{\xi} = \frac{U^*}{k\xi} \left(1 + 5 \frac{z}{L} \right) .$$

(38)

From equations (36), (37), and (38) we obtain

$$\xi = \frac{(z_2 - z_1) \left(1 + 5 \frac{\xi}{L} \right)}{\ln \frac{z_2}{z_1} - \Psi_m \left(\frac{z_2}{L} \right) + \Psi_m \left(\frac{z_1}{L} \right)} .$$

(39)

Assuming that an ϵ exists such that

$$\epsilon = \frac{\partial V}{\partial z}\bigg|_{z_1} ,$$

(40)

we obtain, by use of equation (32),

$$\epsilon = \frac{U^*}{k\xi} \left(1 + 5 \frac{\xi}{L} \right) = \frac{U^*}{kz_g} \left(1 + 5 \frac{z_g}{L} \right) .$$

(41)

Solving equation (41) for ϵ gives

$$\epsilon = \frac{\xi}{z_g} \left(\frac{1 + 5 \frac{z_g}{L}}{1 + 5 \frac{\xi}{L}} \right) .$$

(42)
Substituting ξ from equation (39) into equation (42) results in

$$e = \frac{(z_2 - z_1) \left(1 + 5 \frac{z_2}{L} \right)}{z_g \left(\ln \frac{z_2}{z_1} - \psi_m \left(\frac{z_2}{L} \right) + \psi_m \left(\frac{z_1}{L} \right) \right)} \quad (43)$$

Combining equations (37), (40), and (43) results in

$$\frac{\partial V}{\partial z} \bigg|_{z_g} = \frac{(V_2 - V_1) \left(1 + 5 \frac{z_2}{L} \right)}{z_g \left(\ln \frac{z_2}{z_1} - \psi_m \left(\frac{z_2}{L} \right) + \psi_m \left(\frac{z_1}{L} \right) \right)} \quad (44)$$

Since

$$\frac{\partial V}{\partial z} \bigg|_{z_g} = \frac{U^*}{kz_g} \left(1 + 5 \frac{z_2}{L} \right) \quad (45)$$

then

$$U^* = \frac{kz_g}{\left(1 + 5 \frac{z_2}{L} \right)} \frac{\partial V}{\partial z} \bigg|_{z_g} \quad (46)$$

or by substituting equation (44) into equation (46), we obtain

$$U^* = \frac{k(V_2 - V_1)}{\left(\ln \frac{z_2}{z_1} - \psi_m \left(\frac{z_2}{L} \right) + \psi_m \left(\frac{z_1}{L} \right) \right)} \quad (47)$$

which is of the same form as the unstable case. However, $\psi_m \left(\frac{z}{L} \right)$ stable differs from $\psi_m \left(\frac{z}{L} \right)$ unstable.
To obtain the Obukhov length L for stable conditions, we again use the basic form of L as

$$ L = \frac{U^* \theta^*}{k \theta^*}, \quad (48) $$

where

$$ \theta^* = \frac{k (\theta_2 - \theta_1)}{\left(\ln \frac{Z_2}{Z_1} - \psi_{\theta} \left(\frac{Z_2}{L} \right) + \psi_{\theta} \left(\frac{Z_1}{L} \right) \right)} \quad , \quad (49) $$

and

$$ \psi_{\theta} \left(\frac{Z}{L} \right) = - \frac{5Z}{L} . \quad (50) $$

3. TRADITIONAL FORMULATIONS AND APPROACH

The traditional approach (see Hansen, 1980) starts with the basic form of the Richardson number, that is,

$$ R_i = \frac{g}{\theta} \frac{\partial \theta}{\partial z} \left(\frac{\partial V}{\partial z} \right)^2 \quad , \quad (51) $$

which, as shown in section 2, reduces to

$$ R_i = \frac{g}{\theta} \frac{k \theta^*}{U^*^2} z \quad . \quad (52) $$

Using the following approximations for θ^* and U^*

$$ \theta^* = \frac{k (\theta_2 - \theta_1) \left(1 - \beta \frac{Z_2}{L} \right)^{1/2}}{\ln \frac{Z_2}{Z_1}} \quad (53) $$

and

$$ U^* = \frac{k (V_2 - V_1) \left(1 - \beta \frac{Z_2}{L} \right)^{1/4}}{\ln \frac{Z_2}{Z_1}} \quad (54) $$
equation (52) becomes

\[R_i = \frac{g z (\theta_2 - \theta_1)}{\theta (V_2 - V_1)^2} \ln \frac{z_2}{z_1}. \] (55)

For \(z = z_g \) equation (55) becomes

\[R_{ig} = \frac{g (\theta_2 - \theta_1)}{\theta z_g (V_2 - V_1)^2} z_g \ln \frac{z_2}{z_1}. \] (56)

4. COMPARISONS

In this section we present comparisons of \(U^*, \theta^*, L, \) and \(R_i \) for four sublayers, (1/2 - 2 m), (1 - 4 m), (2 - 8 m), and (4 - 16 m), using the proposed Rachele/Tunick (RT) formulations and the traditional formulations.

The values of \(V \) and \(\theta \) required to evaluate the equations were obtained from profiles we constructed assuming that \(U^* = 0.4 \text{ m/s}, \theta^* = -0.5 \text{ °C}, L = -24.747 \text{ m}, \) and \(z_o = 0.01 \text{ m} \) for the unstable case, and \(U^* = 0.4 \text{ m/s}, \theta^* = +0.5 \text{ °C}, L = -24.747 \text{ m}, \) and \(z_o = 0.01 \text{ m} \) for the stable case.

Results are presented in tables 1 through 8.

TABLE 1. \(U^*, \theta^*, L, \) and \(R_i \) FOR THE SUBLAYER (1/2 - 2 m) (unstable case)

<table>
<thead>
<tr>
<th></th>
<th>Rachele/Tunick (RT)</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U^*) (cm/s)</td>
<td>40.0000</td>
<td>39.84015</td>
</tr>
<tr>
<td>(\theta^*) (°C)</td>
<td>-0.49999</td>
<td>-.496729</td>
</tr>
<tr>
<td>(L) (m)</td>
<td>-24.74775</td>
<td>-24.76738</td>
</tr>
<tr>
<td>(R_i)</td>
<td>-4.04077 x 10^{-2}</td>
<td>-4.037568 x 10^{-2}</td>
</tr>
</tbody>
</table>

TABLE 2. \(U^*, \theta^*, L, \) and \(R_i \) FOR THE SUBLAYER (1 - 4 m) (unstable case)

<table>
<thead>
<tr>
<th></th>
<th>Rachele/Tunick (RT)</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U^*) (cm/s)</td>
<td>40.0000</td>
<td>39.879406</td>
</tr>
<tr>
<td>(\theta^*) (°C)</td>
<td>-0.49999</td>
<td>-.4984686</td>
</tr>
<tr>
<td>(L) (m)</td>
<td>-24.74775</td>
<td>-24.67877</td>
</tr>
<tr>
<td>(R_i)</td>
<td>-8.08154 x 10^{-2}</td>
<td>-8.104131 x 10^{-2}</td>
</tr>
</tbody>
</table>
TABLE 3. \(u^* \), \(\theta^* \), L, and \(R_i \) FOR THE SUBLAYER (2 – 8 m) (unstable case)

<table>
<thead>
<tr>
<th></th>
<th>Rachele/Tunick (RT)</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U^*) (cm/s)</td>
<td>40.0000</td>
<td>39.980267</td>
</tr>
<tr>
<td>(\theta^*) (°C)</td>
<td>-0.50000</td>
<td>-.5019645</td>
</tr>
<tr>
<td>L (m)</td>
<td>-24.74775</td>
<td>-24.588487</td>
</tr>
<tr>
<td>(R_i)</td>
<td>-0.1616308</td>
<td>-.1626777</td>
</tr>
</tbody>
</table>

TABLE 4. \(u^* \), \(\theta^* \), L, and \(R_i \) FOR THE SUBLAYER (4 – 16 m) (unstable case)

<table>
<thead>
<tr>
<th></th>
<th>Rachele/Tunick (RT)</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U^*) (cm/s)</td>
<td>39.99999</td>
<td>40.102282</td>
</tr>
<tr>
<td>(\theta^*) (°C)</td>
<td>-.50000</td>
<td>-.50595617</td>
</tr>
<tr>
<td>L (m)</td>
<td>-24.74775</td>
<td>-24.509748</td>
</tr>
<tr>
<td>(R_i)</td>
<td>-.3232616</td>
<td>-.3264007</td>
</tr>
</tbody>
</table>

TABLE 5. \(u^* \), \(\theta^* \), L, and \(R_i \) FOR THE SUBLAYER (1/2 – 2 m) (stable case)

<table>
<thead>
<tr>
<th></th>
<th>Rachele/Tunick (RT)</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U^*) (cm/s)</td>
<td>40.00000</td>
<td>40.634</td>
</tr>
<tr>
<td>(\theta^*) (°C)</td>
<td>0.50000</td>
<td>0.50793</td>
</tr>
<tr>
<td>L (m)</td>
<td>24.74775</td>
<td>25.05282</td>
</tr>
<tr>
<td>(R_i)</td>
<td>0.04041</td>
<td>0.03327</td>
</tr>
</tbody>
</table>

TABLE 6. \(u^* \), \(\theta^* \), L, and \(R_i \) FOR THE SUBLAYER (1 – 4 m) (stable case)

<table>
<thead>
<tr>
<th></th>
<th>Rachele/Tunick (RT)</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U^*) (cm/s)</td>
<td>40.00000</td>
<td>41.332</td>
</tr>
<tr>
<td>(\theta^*) (°C)</td>
<td>0.50000</td>
<td>0.51665</td>
</tr>
<tr>
<td>L (m)</td>
<td>24.74775</td>
<td>25.58276</td>
</tr>
<tr>
<td>(R_i)</td>
<td>0.08081</td>
<td>0.05621</td>
</tr>
</tbody>
</table>
TABLE 7. \(U^*, \theta^*, L, \) and \(R_i \) FOR THE SUBLAYER (2 - 8 m) (stable case)

<table>
<thead>
<tr>
<th></th>
<th>Rachele/Tunick (RT)</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U^*) (cm/s)</td>
<td>40.00000</td>
<td>42.823</td>
</tr>
<tr>
<td>(\theta^*) (°C)</td>
<td>0.50000</td>
<td>0.53529</td>
</tr>
<tr>
<td>(L) (m)</td>
<td>24.74776</td>
<td>26.63664</td>
</tr>
<tr>
<td>(R_i)</td>
<td>0.16163</td>
<td>0.08576</td>
</tr>
</tbody>
</table>

TABLE 8. \(U^*, \theta^*, L, \) and \(R_i \) FOR THE SUBLAYER (4 - 16 m) (stable case)

<table>
<thead>
<tr>
<th></th>
<th>Rachele/Tunick (RT)</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U^*) (cm/s)</td>
<td>40.00000</td>
<td>46.093</td>
</tr>
<tr>
<td>(\theta^*) (°C)</td>
<td>0.50000</td>
<td>0.57616</td>
</tr>
<tr>
<td>(L) (m)</td>
<td>24.74777</td>
<td>28.87072</td>
</tr>
<tr>
<td>(R_i)</td>
<td>0.32326</td>
<td>0.11616</td>
</tr>
</tbody>
</table>

5. SUMMARY AND CONCLUSIONS

This study was performed to develop formulations that can be used to compute estimates of the height derivatives at the geometric mean height of a sublayer (layer between any two successive heights) and the similarity scaling constants for the sublayers using the mean value theorem of calculus. As such, we require that discrete vertical wind and temperature data be obtained from sensors that are geometrically spaced with height.

A prior study (Rachele et al., 1991) showed that the height derivative at the geometric mean height for similarity functional forms was not generally equal to the difference derivative of the discrete data.

Values of the scaling constants, Obukhov length, and vertical profiles of wind and temperature obtained from the formulations developed in this report were compared with values obtained from traditional equations showing minor differences for the unstable case but somewhat larger differences for the stable case, especially when considering \(R_i \).
LITERATURE CITED

<table>
<thead>
<tr>
<th>Role and Company</th>
<th>Address and Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commandant</td>
<td>U.S. Army Chemical School</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATZN-CM-GG (S. Barnes)</td>
</tr>
<tr>
<td></td>
<td>Fort McClellan, AL 36205-5020</td>
</tr>
<tr>
<td>Commander</td>
<td>U.S. Army Aviation Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATZQ-D-MA</td>
</tr>
<tr>
<td></td>
<td>Mr. Oliver N. Heath</td>
</tr>
<tr>
<td></td>
<td>Fort Rucker, AL 36362</td>
</tr>
<tr>
<td>Commander</td>
<td>U.S. Army Aviation Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATZQ-D-MS (Mr. Donald Wagner)</td>
</tr>
<tr>
<td></td>
<td>Fort Rucker, AL 36362</td>
</tr>
<tr>
<td>NASA/ Marshall Space Flight Center</td>
<td>Deputy Director</td>
</tr>
<tr>
<td></td>
<td>Space Science Laboratory</td>
</tr>
<tr>
<td></td>
<td>Atmospheric Sciences Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: E501 (Dr. George H. Fichtl)</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35802</td>
</tr>
<tr>
<td>NASA/ Marshall Space Flight Center</td>
<td>Atmospheric Sciences Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code ED-41</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35812</td>
</tr>
<tr>
<td>Deputy Commander</td>
<td>U.S. Army Strategic Defense Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: CSSD-SL-L</td>
</tr>
<tr>
<td></td>
<td>Dr. Julius Q. Lilly</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1500</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35807-3801</td>
</tr>
<tr>
<td>Commander</td>
<td>U.S. Army Missile Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSM1-RD-AC-AD</td>
</tr>
<tr>
<td></td>
<td>Donald R. Peterson</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898-5242</td>
</tr>
<tr>
<td>Commander</td>
<td>U.S. Army Missile Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSM1-RD-AS-SS</td>
</tr>
<tr>
<td></td>
<td>B. Williams</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898-5253</td>
</tr>
<tr>
<td>Commander</td>
<td>U.S. Army Aviation Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATZQ-D-MS (Mr. Donald Wagner)</td>
</tr>
<tr>
<td></td>
<td>Fort Rucker, AL 36362</td>
</tr>
<tr>
<td>NASA/ Marshall Space Flight Center</td>
<td>Atmospheric Sciences Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code ED-41</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35812</td>
</tr>
<tr>
<td>Deputy Commander</td>
<td>U.S. Army Strategic Defense Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: CSSD-SL-L</td>
</tr>
<tr>
<td></td>
<td>Dr. Julius Q. Lilly</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1500</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35807-3801</td>
</tr>
<tr>
<td>Commander</td>
<td>U.S. Army Missile Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSM1-RD-AC-AD</td>
</tr>
<tr>
<td></td>
<td>Donald R. Peterson</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898-5242</td>
</tr>
<tr>
<td>Commander</td>
<td>U.S. Army Missile Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSM1-RD-AS-SS</td>
</tr>
<tr>
<td></td>
<td>Huey F. Anderson</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898-5253</td>
</tr>
<tr>
<td>Commander</td>
<td>U.S. Army Intelligence Center</td>
</tr>
<tr>
<td></td>
<td>and Fort Huachuca</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATSI-CDC-C (Mr. Colanto)</td>
</tr>
<tr>
<td></td>
<td>Fort Huachuca, AZ 85613-7000</td>
</tr>
<tr>
<td>Northrup Corporation</td>
<td>Electronics Systems Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. Richard D. Tooley</td>
</tr>
<tr>
<td></td>
<td>2301 West 120th Street, Box 5032</td>
</tr>
<tr>
<td></td>
<td>Hawthorne, CA 90251-5032</td>
</tr>
<tr>
<td>Commander - Code 3331</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. Alexis Shilanta</td>
</tr>
<tr>
<td></td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td>Commander</td>
<td>Pacific Missile Test Center</td>
</tr>
<tr>
<td></td>
<td>Geophysics Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 3250-3 (R. de Violini)</td>
</tr>
<tr>
<td></td>
<td>Point Mugu, CA 93042-5000</td>
</tr>
<tr>
<td>Commander</td>
<td>Pacific Missile Test Center</td>
</tr>
<tr>
<td></td>
<td>Geophysics Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 3250 (Terry E. Battalino)</td>
</tr>
<tr>
<td></td>
<td>Point Mugu, CA 93042-5000</td>
</tr>
</tbody>
</table>
AF Wright Aeronautical Laboratories
Avionics Laboratory
ATTN: AFWAL/AARI (Dr. V. Chimelis)
Wright-Patterson AFB, OH 45433

Commander
U.S. Army Field Artillery School
ATTN: ATSF-F-FD (Mr. Gullion)
Fort Sill, OK 73503-5600

Commandant
U.S. Army Field Artillery School
ATTN: ATSF-TSM-TA
Mr. Charles Taylor
Fort Sill, OK 73503-5600

Commander
Naval Air Development Center
ATTN: Al Sallik (Code 5012)
Warminster, PA 18974

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT-DA-M
Mr. Paul Carlson
Dugway, UT 84022

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT-DA-L
Dugway, UT 84022

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT-M (Mr. Bowers)
Dugway, UT 84022-5000

Defense Technical Information Center
ATTN: DTIC-FDAC
Cameron Station
Alexandria, VA 22314

Commanding Officer
U.S. Army Foreign Science & Technology Center
ATTN: CM
220 7th Street, NE
Charlottesville, VA 22901-5396

Naval Surface Weapons Center
Code G63
Dahlgren, VA 22448-5000

Commander
U.S. Army OEC
ATTN: CSTE-EFS
Park Center IV
4501 Ford Ave
Alexandria, VA 22302-1458

Commander and Director
U.S. Army Corps of Engineers
Engineer Topographies Laboratory
ATTN: ETL-GS-LB
Fort Belvoir, VA 22060

Commander and Director
U.S. Army Corps of Engineers
Engineer Topographies Laboratory
ATTN: CEETL-ZD
Fort Belvoir, VA 22060-5546

Commander
Logistics Center
ATTN: ATCL-CE
Fort Lee, VA 23801-6000

Commander
USATRADOC
ATTN: ATCD-FA
Fort Monroe, VA 23651-5170

Commander
U.S. Army Nuclear & Cml Agency
ATTN: MONA-ZB Bldg 2073
Springfield, VA 22150-3198

Department of the Air Force
HQ 5 Weather Wing (MAC)
ATTN: 5 WW/DN
Langley AFB, VA 23665-5000

Science and Technology
101 Research Drive
Hampton, VA 23666-1340