Netherlands
organization for
applied scientific
research

' TNO-report

roportno.
FEL-91-B308

AD-A245 600

' Nothing from this issue may be reproduced
and’or published by print. photopnnt.
mucrofitm or any othar'means withaut

f previous writen consent from TNO.
: Submutting the report for inspection to
parties d-recﬂy interested is permitted

In case this report was drafted under

. .\ nstructon. the nghts and obligations

B - of contracting parhes are subject to either
the 'Standard Condttions tor Research
Instructions grven to TNO' of the relevant

agreement concluded setween the contracting

parties on account of the research object
Hvolved

TTND

T'DCK RAPPORTENCENTRALE
Frederikkazerne, Geb. 140
van den Burchlaan 21

Telefocn: 070-3166394/6395
';elegax 7 (31) 070-3166202
ostbus 90701 - =i
2509 LS Den Haag g@é"!

Reproduced From
Best Available Copy

title

Data Fusion: Temporal Reasoning and Truth

Maintenance

author(s):
Ir. A.P. Keene

" Drs. M. Perre

date:
November 1991

classification

abstract
report text

appendices A-C

no. of copies

'

no. of pages

. The Hague, The Netherlands

TNO Physncs and Electronics’
Laboratory

P.O Box 96864
2509 JG The Hague
O.de Waalsdorperweg 63

Fax +31 70 328 09 61
Phone +31 7032642 21

DTIC

ELECTE
FEB 041992

D .

: unclassified

: unclassified -

. unclassifies
. unclassified

: 35

3

'Segi»\g

: 99 (incl. append., excl. RDP & dist. list)

‘:3

Al information which is classified according to
Dutch regulations shall be teeted by the recipient in
the same way as classified information of
corresponding vakie in his own country. No part of

this information wit be disclosed to any party.

92 2 03 165

RRIETUANER NS

,z-aooo §3/ 000

s

EEEAPR-E

A

Skt e

TR LR i

TNOreport | ’ . ; I

Page
2
Reportno. : FEL-91-B308 » . Accecion For .
Tite : : Data Fusion; Temporal Reasoning and Truth Maintenance 1;.5"&9:\27*&
: _ LT TAR o
. U osancaced i
Author(s) . IAP.Keene,Drs.MPeme ' R, H
Institute : TNO Physics and Electronics Laboratory e e e
Date : November 1991
NORO no. : -
No. in pow 91 : 704.2 '
Research supervised by H Drs. M. Perre
Research cammad outby . Ir. A. P. Keene

Abstract (unclassified)
This report contains a survey of two techniques that can be used in the field of data fusion: temporal
reasoning and truth maintenance. The automatic fusion of intelligence reports necessitates taking into
account the factor time. Incoming messages can lead to new interpretations of the current battlefield
situation, c'hangi'ng previously made hypotheses. A data fusion system raust also be able to make a prediction
of what sightings are to be expected, e.g. in the case of columns of vehicles moving pa-t different sensors.
This report describes a temporal database system that can capture (some part) of the volatility of the
imclligcnpe processing domain. ‘While processing intelligence reports there is always an amount of
uncertainty and incompleteness that has to‘be dealt with. So there is a need for maintaining different lines of

' reasonirig or hypotheses pertaining to the battlefield situation concurrently, and incorporating new

‘information as it becomes available, In this report an assumption-based truth maintenance system provides a

framework in which this problem can be solved. A prototype has been developed to demonstrate the
applicability of the aforementioned techniques. This prototype, called Mefisto (Moduiar Environment for

Fusion and lnterpyetation of Sensor data in Tracking Opposing forccs), is a simple knowledge-based system

imegrated with a temporal truth maintenance facility.
'gra poral t ainten ceavly (-\

e

S e et s sy 1

AT e

R SR

TNO report

Rapport nr. : FEL-91-B308

Tiet : - Data Fusion: Temporal Reasoning and Truth Maintenance
Auteur(s) : Ir. AP. Keene, Drs. M. Perre

Instituut : Fysischen Elektronisch Laboratorium TNO

Dawm : November 1991)
HDO-opdrachtnummer : -

Nr.in IWP91 . 7042

Onderzoek uitgevoerd o.lv. : Drs. M. Perre '

Onderzoek uitgewoerd door © Ir. A.P. Keene

Samenvatting (ongerubriceerd)

Dit rappon bcvat een overzicht van twee technieken die kunnen worden gebruikt op het gebied van

datafusie: temporal reasoning” en “truth maintenance”. De automatische fusie van inlichtingenrapporten
brengt de noodzaak met zich mee om de factor tijd in de beschouwing te betrekken. Binnenkomende
berichten kunnen leiden tot nieuwe interpretaties van de actuele situatie op het gevechtsveld, waarbij eerder
opgesteldc hypothesen worden aangepast. Een datafusie-systeem moet ook in staat zijn om een voorspelling
te doen over te verwachten waamemingen van bnjvoorbeeld kolonnes voertuigen die zich langs verschillende
sensoren voonbewegen. In dit rapport is een "temporal database system” beschreven dat (een deel van) de

"vluchtigheid” van het inlichtingenverwerkingsproces kan vangen. Bij het verwexken van inlichtingen-
rapporten moet altijd rekening gehouden worden met een bepaalde mate van onzekerheid en onvolledigheid.
Hierdoor ontstaat de noodzaak om tegelijkertijd verschillende redeneringen of hypotheser. ten aanzien van de
situatie op het gevechtsveld te onderhouden en deze, zodra nieuwe informatic beschikbaar komt,
overeenkomstig 1 wijzigen. In dit rapport is een “assumption-based truth maintenance system"™ beschrevert,
dat een oplossing biedt voor deze problemen. Er is een prototype ontwikkeld om de bruikbaarheid van de
eerder genoemde ‘technieken te dem_oristreren’. Dit prototype, genzamd Mefisto (Modular Enviconment for
Fusion and Interpretation of Sensor data in tracking Opposing forces), is een eenvoudig kennissysteem
geintegreerd met faciliteiten voor "temporal truth maintenance”.

‘l!i RSB SV 7 e

N R el Kt e < S

RSN

IR R S

4 P A A caretnr e

TNO report
Page .
4 :
|
t
ABSTRACT 2
SAMENVATTING N ' 3
1 INTRODUCTION ' 6" ,
2 TEMPORAL REASONING AND TRUTH MAINTENANCE 8 '
2.1 Introduction 8
22 Temporal reasoning 9 '
221 Approaches to temporal reasoning 9
222 _ Temporal reasoning and data fusion n
223 ‘A temporal taxonomy i3
. 23 Truth maintenance 19
231 Non-monotoni~ reasoning 19
232 " The Assumption-based Truth Maintenance System 20 -
3 PROTOTYPING MEFISTO ‘ 25
31 " Introduction ' 25
3.2 The battlefield environment 26
321 The area of intelligence responsibility 26
322 The order of batde . 27
33 System overview 29 .
331 The structure of the process 29
332 “The structure of the data 3
333 The structure of the dialogue | 4
34 Technology overview 37 ;
341 Forward chaining production system 37 .
342 Truth maintenance and temporal reasoning in Mefisto - SR
34211 Keeping track of reason - 29 §
3422 Keeping up with time 40
343 Inference and temporal truth maintenance 41
344 a7 :

Data fusion in Mefisto

Vb A B R AT $7 A 0 L bt s

e et et

el s T re s e e

!

TNO report

By a1

e I L Rt e

P e RSP

CONCLUSIONS AND RECOMMENDATIONS .

ACRONYMS AND ABBREVIATIONS

REFERENCES

" APPENDIX A:
| THE TEMPORAL DATABASE SYSTEM

APPENDIX B:
INFERENCE AND INTERA{ . [ON TDB-ATMS

APPENDIX C: ‘ ' .
THE ASSUMPTION-BASED TRUTH MAINTENANCE SYSTEM

A b ka1 e+ A T S it

51

53

e Mg A N 1A e S

e et

- a— .

e —— o

.

N e L e e

Conges e

NI Sl R RS Sl A B by v

B e w4

$
H

TNO report

1 Introduction

This report is a sequel io {Keene & Perre, 1990}, which gave a general overview of various
approaches to data fusion in the military intelligence processing domain. In the following chapters
we will focus on two techniques which are of imponance to an automatic data fusion system:
temporal reasoning and truth. maintenance.

Ternporal reasoning is "reasoning about time". In itself this statement may not seem that
surprising. Of course automated real-time sysiems exist that interact with physical processes in
the real world: these systems have to keep track of time, in one way or another. However, an
important observation can be made in the command and control domain: not many systems are in
use that can reason about time. Especially the process of data fusion is tightly connected with
time. Sensor data amrives at different points in iime, without the assurance that it can be
interpreted and processed sequentially. It can be stated that in data fusion applications the non-

monotonic characteristics prevail.

Truth maintenance is a method to monitor the rrurh status of elements in a data base system. This
status may depend on assumptions which lay at the roots of these data elements. Should these
assumptions become invalid, then the truth status of conclusions which they support (i.c. other
data elements) also changes. A truth maintenance system provides a framework in which
dependencies between data elements can be represented explicitly. If there is some change in one
element, then the consequences for other elements which are dependent on it, will be deduced.

While processing intelligence reports temporal reasoning and truth maintenance are (o an extent
complementary. Suppose that at one point in time there is a (énain amount of information
available from which conclusions about the battlefield situation can be drawn. This infonna'tivon
and the ensuing conclusions could be called "time-stamped”. If at some later point in time
additional 'information becomes available, contradicting or augmenting information atready
received, it could be necessary to adapt earlier made conclusions conceming the battlefield.

The following topics are presented in the remainder of this report. Chapter 2 gives a more general
description of temporal reasoning and truth maintenance. The interest is focused on different
approaches to temporal reasoning and the relation between this technique and data fusion. A

v
'

TR kb

TNOC report

concise treatment of non-monotonic reasoning' forms the starting point of the discussion on truth
maintenance systems, culminating in a presentation of the assumption-based variety. These '
theorctical notions ure operationalized in chapter 3, which contains a description of the analysis
and design process of the Mefisto prototype (Modular Envirc 1ment for Fusion and Interpretation
of Sensor data in Tracking Opposing fomes). After defining the batilefield environment, iwo main
points are addressed. Firatly, the structure and functionality of Mefisto. Secondly, the extent to
which the theoretical notions of the previous chapter have been incorporated into this prototype
systemi Chapter 4 contains the conclusions and recommendations based on our experiences while
building Mefisto. After summing up the acronyms, abbreviations and references, this report
concludes with appendices containing excerpts from the Mefisto code for the temporal query
language, the assumption-based truth maintenance system and the interaction between these two.

85 i e i S 3 e i g . (R B T S PC RIS S

'
]
i

s b 2T

e e N P L

R L e L o

TNO report

2 '~ Temporal reasoning and truth maintenance

2.1 | Introduction

The main goal of data fusion is to combine the available data on a certain area of interest 1o
achieve as best an estimate as possible of the objects in the area, their groupings, movements and
colmbat activities. The data may come from different sensors, is govemed by uncertainty and
incompleteness, and are “snapshots” of a continuously changing domain. We note the distinction
between sensor fusion, which refers w0 the correlation of low-level sensor data (¢.g. radar, infra-
red), and data fusion, which is mainly concemed with combining data from the vehicle level up to

complex unit aggregations.’

Generally, informatioﬁ in the form of incoming reports will define some activity associated with a
unit of an opposing force, describing vehicle types, equipmeht and personnel sighted, movements
with an associated direction and speed, location and tume of the sighting. It must be decided what
type of unit the report describes and possibly the idextity of the unit. This classification associates
the report with a specific unit typ>. An attempt is made to confirm the sighting by checking units
established from earlier reports, to see if and how the information matches the current known
situation. It will often be the case that there is no unique solution for the correlation of the
reboned information, a repornt may refer 10 a unit associated with an earlier report, but it may be
another unit, notlcun'cmly known to exist on th: battlefield. Thus. it will be necessary to keep
track of units in both space and time. When separate units have been distinguished, the next step
will be the agzregation of units into larger unit formations. The propagation of assumptions when
e.g. 3 unit i+ iaken to be such and such or assumed to be part of a certain encompassing unit has to
be tracked as well. Consequently, it will be necessary to maintain multiple lines of reasoning
about the arca of interest. '

Temporal aspects predominate in data fusion. In the first place, the situation at time now based on
the current information is important. Typically, the currently available information taken at face
value will not be sufficient for determining a cohsrent picture of the actual situation. It is
necessary to be able to engage in some form of prediction. An example is the tracking of units in
the system to answer queries such as "Which units could be in the vicinity of location X within

i v v

e o

e s

' "‘"‘""’.‘,"m‘:ﬂﬂ‘n:::‘m.’»":"?ﬁ-\‘:‘.'ﬂ,

b ars At o o, e

[PV,

R]

TNQ report

Page

1
'

one hour from now?” An answer involves estimating the zone that is relevant, establishing the
units that are in that zone at fime now, associating information as 0 velocities and movement
capabilities, direction of movement, etc. This also serves to indicate that temporal reasoning is
very closely related to spatial reasoning. ‘

Apart frol:n prediction, a retroactive adaptation of the current situation will often be necessary.
This is.the case when for instance an incoming report provides information contradicting a
previous repon, but also applies to sensors such as a drone, an unmanned airbomne sensor that may
provide information only after iis flight. Both predictive and retroactive adaptations therefore
require a mechanism for recording assumptions that may at a later‘ stage become invalid.
Temporal r:asonihg thus requires a form of truth maintenance, and as outlined above so does the
very nature of data fusion. The aésumption-based truth maintenance system (ATMS) is
recognized as the most promising means for this purpose. This chapter addresses techniques for
both temporal reasoning and truth maintenance. :

2.2 'Temporal reasonmng

221 Approaches to temporal reasoning

Time is a significant factor in common-sense reasoning, yet it is not actually dealt with in
conventional database syStemé. The contents of the database are corisidered to be tinielessly true,
defied only by the explicit deletion from the database. The idea behind a temporal database is to
represent the notion that information about the world is generally incomplete and continuously
changing. An important aim is to take into account that there are many possible states of affairs
(worlds, contexts, situations), based on conditional predictions to fill gaps resulting from the
incompleteness of information. The known information is stored in a temporal database, and a
problem solver constructs a nuraber of possible 'completions of the knowledge, choosing the most
‘likely solution. This can not be represented by the "timelessly true” facts in.e.g. a relational
database, and without some method of completing this knowledge, because this would add up to

exactly one state of affairs.

Taking the relational database model as the current convention, we have a collection of relations,
each relation consisting of a set of tuples with an equivalent set of attributes, represented as tables.
The current contents of the tables form the state of the database, adapted by the operations insert,

St e w

RPN

i

e

TNO report

10

delete and update. Only the current state of the database is retained, past states are discarded. An
extension of this is the representation of the historical 'state per relation in a historical database.
Previous states of the database are not retained as such, but are represented in the history ot each
relation in the database. Modifications can be made to the relations when errors are detected or in
answer to update requests. This is accomplished by adding historical records each ﬁme an entry is
updated. Thus, historical databases support arbitrary modification and represent current
knowledge about the present, as do conventional daribases, but they also repn:seni current
knowledge about the past. An example of a (laboratory) Jatabase mahagemem system (DRMSi
that offers facilities for the implementation of a historical database is POSTGRES ([Stonebraker
et al., 1986 Stonebraker et al., 1990)). A further extension is outlined in {Snodgrass & Ahn,
19861, for a bitliography on temporal datzhases we refer to [Stam & Snodgrass, 1989].

A more formal view is the approach taken when applying temporal logics (modal logics) by
extending the predicate calculus with temporal operators, describing mﬁom such as "always from
now on", "some time in the past”, etc., formulated in the context of a possible worlds semantics.
For instance, the notion "P was valid at some time T" would be true if P is true in all possi.le
worlds "covering” T. The strict formalism ens;xres that logic pm'grams govemned by temporal logic
are consistent and complete, however this formalism is a major drawback as well, due to the

unnatural representation. There is a large number of theories on temporal logic, we refer 10

{Galion, 1987). : !

Taking in mind our domain, we sre interested foremost in the following sequence of activities: the
recording of incoming messages, which are transferred into battlefield entities, which in tumn are
grouped into formations corresponding to knowr data on order of battle. A data fusion system
needs the functionality of retroactive adaptation‘of database records. The history of the actual
situation at some time is extremely important. When new information points out that wnat was
thought to be a tank battalion was in fact a complete regiment it must be possible to update this in
the corresponding (historical) tuple in the database. This is further clarified by taking in mind
situation assessment and anticipation of future enemy movements. .

It is our view that temporal information in the context of data fusion can be sufficiently
represented by facilities supporting historical queries. We advocate an approach that lies
somewhers in between the above, such as used in the planning system Time Map Manager
(TMM) of Dean [Dean, 1985; Dean, 1986; Dean & McDemmott, 1987; Firby & McDemmott,

- Jr— R

Page

2247

ot o s

TNO report

Page
1

1987). It is a computational approach, centering around techniques for managing a d.élabase of
assertions corresponding to the cccurrence of everts and the persistence of their effects over time.
The approach takes into account that tempora! information js incomplete and defeasible.
Therefore, the approach suesscs the nccess:ty that a probiem solver has to be able to make

' predictions on the basxs of certain assumptions, that these assumptions may at some later time

become invalid and heace the predictions based on these. assumptions' as well. Moreover, it is
recognized that most common-$ense reasohing involves reasoning about temporal events and that
durations of events are often known within metric bounds. This is reflected in the choice of
"bringing time into the relations”, replacing classic assertions by data structures incorporating
interval representations of temporal validity. We will take this approach as a starting point, wiﬁ
the main objective of determining if and how it can be utilized for the representation of terﬂporal
dependencies in the domair: of data fusion. '

222 * Temporal reasor ing and data fusion
The strategy behind temporal reasoning is what [Dean & McDermon. 1987] refer 10 as shallow
temporal reasoning. Shallow temporal reasoning is characterized by breaking down the reasoning

process into the following steps:

Generate a set of candidate hypotheses;

Select one hypothesis from among the candidates;

Use the selected hypothesis as a basis for prediction;

Resbond to unforeseen consequences noticed in the course of prediction.

S oW N -

The hypoth*ses correspond to the possible states of affaus. which are the result of the known
mfomlanon on events, their effects, their time of cccurrence and duration. For instance, a
hypothesis based on the sightings of cenain units in each other’s vicinity could be the indication of
the'p'.tscnce of a larger encompassing unit.

The: selected hypothesis is then the basis for makiné predictions depending upon the hypothesis.

Predictive inferences can take the form of what Dean calls controlled forward inferences or

automatic projections [Dean, 1986]. Controlied forward inferences are achieved by the

application of forward chaining rules, directly adding deductions to the database (for example, the
deduction that 2 new report refers to a tank company because the conditions as to vehicle types

RS R, TR

Page

and quantities are satisfied). Automatic projection is a mechanism that responds to trigger-events.
If "antecedent conditions are satisfied and a trigger event occurs then after some delay a
consequent effect is added to the database.

Finally, the fourth step is described as responding to unforeseen consequences noticed 'in the
course of prediction. It entails foremost the need for truth maintenance, for keeping track of the
assumptions underlying a certain hypothesis, and when assumptions become invalid, invalidating

the hypothesis and replacing it by another.

The above cyclic description of shallow temporz! reasoning is in effect a cdm:jse' formulation of

the essential process underlying data fusion. As reports containing sensor data are transferred into

associated units by a classification process, hypotheses are generated conceming the type of unit
invol.ed. A unit is assumed to have some unit type at say time Ty, at a later time T, the unit is.

aggregated into a larger unit, which will be further used for concluding aspects about the
battlefield situation at time T,. When information at time Ty allows the conclusion that the
classificatior of the unit was incorrect after all, all inferences made since then using the unit
classification as a condition must be defied. This work is done by a truth maintenance system,
which must reply with a list of the conclusions added to the database that are thus defied.
Effectively, the database situation must ther be tumed back to time T in the sense that the
conclusions are removed from the database (in fact, they will not be deleted but “cli;}ped" with Ty
as endtime, we refer to the next paragraph) and an optional re-run of the inference mechanism
with the new unit type at Ty will then result in new conclusions, effective fiom some time T,.

f
[l

A temporal reasoning app'licau"on will typically require a temporal datebase, a (témporal) query
language, an inference mechanism and some form of truth maintenance system [Dean &
McDermon. 19871. A problem solver will incorporate a témporal query language and an inference
mechanism. Temporal assertions are stored in a database, which can be queried by the problem
solver. The temporal assertions and derivations based on these assertions are passed to a truth
maintenance system (FMS), which performs the bookkeeping of assumptions and justifications,
and has access to the database as well. The TMS notifies the problem solver of changes in the

_ validity of nodes. The main notions concerning the iemporal database, a temporal query language

and infereace will be addressed in the next paragraph. Truth maintenance is addressed in section
2.3, '

TNO teport

2.23 A temporal taxonomy ,

The basic temporal notion is the interval. An interval is a pair of points, consisting of a begin- and
an endpoint, such that the beginpoint pi.cedes or coincides with the enripoint. In the latter case it
is a single timepoint, which js thus represented in two dimensions as an interval (point,point). '

An occasion (Dean also refers 1o "time token") is a fact or instantiated proposition. It has

associated with it a temporal distance statement that we will call fimedist, which is the central data

structure contained in the temporal database. The timedist structure represents the duration of an
occasion, stating the begin- and endpoints, constrained within a lower bound and an upper bound.
The following representation of the timedist structure is the notation in Prolog: '

timedist (begin(Qccasion),end(Czcasion),Low,High).

The timedist structure records ‘relalive time, and ab...ute time is calculated using only relative
temporal distances [Dean & McDermott, 1987]. The reason is that Dean's Tirhe Map Manager
concems the domain of planning, which deals mosu.y with relative time, e.g. the duration of task1
is known 1o have a lower bound of 20 minutes, and an upper bound of 35 minutes, whereas the
precise begin- and endtimes of task1 are not known beforehand, bat the end of task1 must precede
the beginning of taiskz. etc. Thus the minimum and maximun durations of an occasion are
recorded, related to the begin- and endpoints, which are expressed as "begin(Qccasion)” and
“end(Occasion)”. The domain of data fusion also incorporates relative temporal information, e.g.

it may be known that the displacement of a unit from location A to location B has a cortain -

duration, or that given the sighting of some unit this implies that a certain other unit is expected to

. . pass within an hour.

The timedist structure explicitly contains relative temporal information. However, it implicily
.represents absoluie temporal information, which will be explained further on. This allows the
. representation of default information, because given a timepoint and an occasion such that its
bégin-to-end interval does not contain that timepoint, this implies that the occasion was not valid
at that time. This is a powerful way of recording historical information. It is comparable in its
intention 1 a two-dimensional _indexing method for geograph'ic database applications using

“minimal bounding rectangles” for the storage of geographic information, as opposed to the

conventional one-dimensional indexing methods.

e Ry

Page
14

'

To calculate 'absolule' time from relative time it is necessary to adopt some refersnce point. The
registration of i(emporal information for an occasion of which the begintime is known is then
accomplished by asserting two timedist entries in the temporal database, the first containing the)

cnl;'ies corresponding to the reference point and the beginpoint of the occasion, the second
containing the entries for the begin- and endpoint of the occasion. For example, an occasion valid

from timepoint \; until timepoint t, is entered in the temporal database as follaws: : i

timedist (ref,begin(Occasion),t;,t;).

timedist (begin (Ocqasion) send(Cccasion),ty,ty). '
The first entry has t; as lower and upper bound, stating that the occasion is known to exist since
timepoint ;. The second timedist entry contains the information related to the 'endpoint of the
' occasion. The above representation suffices for the calculation of all temporal distanccs, acquiring
a powerful mechanism for the calculation of tempora! distances between occasions with relative
tin'iepoinls. while obtaining absolute time from these relative temporal dependencies by the
calcalation of the shortest possible path from A to B.
There is a visual representation of the ternporal notions (tetporal imag'ery). the construction of .
time maps. In figure 2.1 a time map is shown. A time map is a graph with vertices referring to
" points in time, and distance constraints between the points #f the graph along the directed edges.
The notation [A,B] in fig. 2.1 corresponds to the minimal and maximal distance between two
poims. These may be negative distances, indicating “travelling” in the past. Thus, we can
calculate the distance bounds in going from say Pty to pty. In the example there are three possible |
paths leading from pt, to pt,, two of which traverse pt; on route.

There is an imponant distinction between three typc§ of (temporal) distances: a simple distance
function connecting two separate poims (as captured by the timedist data structure), the dis:ance

function corresponding to the distarce of a path, and the distance that represents the greatest

lower taund (GLB) and least upper bound (LUB) of the distances of these paths, thus the shortest

path. In the case of figure 2.1, the timedists are the four separate distances. The three available

paths from pt; to pt, have respective distances [5.9], [6,8) and [-l.ill. On aggregation of the
minimum and maximum bounds of these paths the distance representing the GLB and LUB is :
[6.8]. !

i
:
:
!
;
i
¥
3

Page
15

¢
53]
Ay A2

12)
Ay RTY -

Figure 2.1: Time map illustrating distance corstraints [Déan & McDermott, 1987}

We will further illustrate the temporal notions with an example. We refer to Appendix A for a
listing of the Prolog source code of the predicates used below. We have two occasions, occl and
occ2. We add the following entries to the teraporal database:

timecdist (ref,begin(occl),100,100).

timedist (begin(occl),end(occl), 0,4inf) .

timedist (ref,begin({occ2),150,150).

timedist (begin (occ2) ,end(occ2),10,30).
This implies that occl is valid from timepoint 106 on, and occ2 is valid from timepoint 150 with a,
duration betwe=n 10 and 30 time units. We have impiemented a temyoral distance function with a
shorntest path calculation as explaincd above. When we query the distance from begin(occl) to
end(occ2) the result is the following:

| ?- temporal_distance(begin(occl),end(occ2),Min,Max).
Min = 60,

Max = 80.

This illustrates that absolute time is derived from relative temporal instances, via the reference

point “ref". The temporal dependency between occl and occ2 is not explicitly entered into the

temporal database, but calculated via the reference point.

Tt vt 3 B e Y 1 v s, i, , B B B ©T e R R r e A o

e e

TNO report

16

Querying the lower and upper bounds of an occasion results in the following, stating that occ2
starts at time point 150, and ends between time points 160 and 180. ‘
| ?- temporal_bounds(occ2).
[ref,begin(occ2),150,150])
'[ref,end(0cc2),160,180)

f

A temporal query language is necessary to further use the temporal database for determining e.g.

- whether a certain point comes before another point, whethery an occasion is true throughout a
specific interval, whether two occasions are overlapping. Effectively these requirements above are
met by predicates that represent notions such as “timepoint less than” and “occasion true
throughout an interval” that can be used in temporal queries. These predicates concem the
temporal relations between occasions and time points, among cccasions, and between occasions
and intervals. They are implemented as backward chaining rules. In this way a powerful
mechanism is developed for querying the implicit temporal dependencies among the various
occasions. Beside the timedist iﬁstances entries of predicates of the temporal query language such
as "during” and "true_throughout” can be asserted directly to the temporal database as well.

The following is an example of a predicate of the temporal query language, which when called
upon calculates those occasions that satisfy the condition that the period in which Occl is valid
lies completely inside the period that Occ2 is valid. We refer to Appendix A for a complete list.

during(Occl,0cc2) :~ '
tempofal_distance(beqin(Occl),end(Occl),Minl,Maxl),
temporal_distance (begin (Occ2),end (Occ2),Min2,Max2),
not (Occl = Oce2),
! leés_equal(MinZ,Minl),
; less_equal (Maxl,Max2) .

For the example above, this query results in the following answer, meaning that occ2 is found to
- occurduring occl. '

| 7= during(X,Y).

“X = occ2, Y = occl.

R

TNQ report

Page .

17

There is a distinction between two types of occasions. Firstly, an event refers to an occasion with
a duration that can be reasonzbly pradicted, such as the take-off of an airplane, or the movement
of a tank company from location X to location Y. In the example above, occ2 is an event.
Secondly, a persistence is an occasion applicable to change over time, Persistences reflect what is
believed 10 have occurred, and by default the upper bound of a persistence is set to infinite (the
oc;:asion is assumed to be persistent). In the example above occl is a persistence, with its upper
bound set to infinite. '

A mechanism referred to as clipping chahges persistences into clipped persistences when called
for, indicating that the occasion is no longer valid as from 'tpe inserted cliptiﬁ\e. This clipping is
esscntially the mplaceméng of an endtime ‘(generally. with an earlier’ endtime), and an
accompanying replacement of the upper bound. Often, the clipped occasion will be a persistence
with an upper bound “infinite” between begin- and endpoint. The upper bound is replaced by the
time corresponding to the beginpoint of some later occasion }eplacing it. To further illustrate the
clipping, we list the temporal bounds of occ1 from the example above and clip the océasion:

| ?- temporal_bounds (occl).
{ref,begin(ocecl) ,100,100)
[ref,end(0occl),100,inf]

b 2= clip_node(occ1}190).

Due to the relative notions involved, the result of the clipping is ihat the second timedist entry is
updated. Initially, the lower and higher bound were 0 and inf, these are replaced by the difference

between the cliptime and the begintime. In the case of occl, the timedist entries become as -

follows:

' timedist (ref,begin(occl),100,100).
timedist (begin (orcl) .end (occl) +90,90) .

Figure 2.2 below illustrates the clipping mechanism for the example that was given here.

h o P At s

S e e i

M, T R TR e

TNG report

occl

before >
100 ‘190
. . . occl
_after |
not(occl)
s
Figure 2.2: Time map itlustrating the clipping of an occasion

e

" Now, when the temporal bounds are calculated, the result is the following:

I 2- temporal_ bounds (occl).
(ref,begin (ocel),100,100]
[ref,end (occl),190,190)

The inference mechanism in a temporal database application uses three types of rules: backward
chaining rules, forward chaining rules and clipping rules. The backward chaining rules are used,
as stated above, for the implementation of the temporal queries. The forward chaining rules
contain the domain knowledge an& will be used to perform tasks corresponding to classiﬁgation
and prediction. Clipping rules respond to the océumnce of apparently contradictory occasions -
for instance, "unit X non-active” and "unit X active” - by clipping the earlier occasion, thus
-forcing its endtime to precede the beginning of the later occasion. '

The basic temporal taxonomy described provides a quite natural common-sense representation of
time. The history of database entries is implicitly contained in the representation of begin- 'snd
endpoints in an‘ accompanying temporal relation. A problem is posed by the question of control:
how should the various rules be applied. The application of temporal reasoning will be further
addressed in the next chapter, in combination with the application of truth maintenance, which is
the subject of the next paragraph. o '

R YL A

B ar g e s an

e

B e U

TNO report

- maintenance system. The latter has since gained a widespread recognition and is in our view the o

Page

23 Truth maintenance ,

23.1 Non-monotonic reasoning

The ability to reason about and adapt to a changin'g environment is an important aspéct of
intelligent behaviour. Given a system that performs reasoning (if <condition> then <conclusion>),
adaptation requires the ability to alter conclusions when conditions are contradicted or no longer
met. This implies that monotonic behaviour, i.e. the strict growth of derived facts in a reasoning
system, is not satistlactory‘ The conclusions in a context of incomplete knowledge are tentative,
meaning that they can ‘e withdzawn when new information makes this necessary. The reasoning
sysiem has to keep record of all ientative conclusions reached and whether they are believed or
disbelieved. ' '

There are quite a few mechanisms that perform non-monotonic reasoning, among them defauit
logics such as established by [Reiter, 1980], non-monotonic logics of e.g. [McDermott & Doyle,
1680}, methods such as circumscription [McCarthy, 1980], and, most notably, truth maintenance
systems. Of these, the original TMS {Doyle, 1979) has been extended with assumptions by
[DeKleer.‘ 1986a] © whét is generally known as the ATMS, the assumption-based truth

best instrument for non-monotonic reasoniug, due to the appealing representation of assumptions
and the implicit ability of representing multiple contexts, entailing the representation of complex

hypot .eses. For an overview ¢f non-monotonic reasoning we refer to [Ginsberg, 1987}, a review)
of the literature on truth maintenance is contained in [Stakenborg, 1989}, extensions of the ATMS .

are given by DeKieer in [DeKleer, 1986b; DeKleer, 1986c).

An éssumption-based truth maintenance system (ATMS) is meant to cooperate with a problem

" solver. The problem solver gives the ATMS “inferences”. The ATMS in tum gives the problem
" solver "beliefs". The ATMS is a cache for all the inferences, made by the problem solver. It also

allows for non-monotonic reasoning, and it ensures that the database is free of contradictions.
Figure 2.3 illustrates the basic architecture. We note that the terms "reason maintenance” or
"belief revision" are also used; we adhere 1o truth maintenance. o

R R o rramee s B
AN

e TR

v e s

- — - e rr——

TNO report

Justifications
Problem N T) 1
solver L N ATMS
Valid occasions
Figure 2.3: Basic problem-solving architecture '
232 ~ The Assumption-based Truth Maintenance System

The idea behind an ATMS is the maintenance of a tree-structure of which the nodes are the
statements that a problem solving program uses. These statements may be premises. assumptions,
i.e. statements assumed 'to be true by default in order to engage in predictive reasoning, or derived
nodes. The results of the problem solver are passed as “justifications” to the ATMS, which
records these along with the assumptions they rely on. When new information boims out that an
assumption is no longer valid, this is passed to the ATMS as well, which then proceeds to track all
justifications that used the assumption as an antecedent, and records these as being no longer
valid. Implicitl‘y, the ATMS contains all possible hypotheses derivable from combinations of all

the valid assumptions.

[

The ATMS constructs a dependency network consisting of nodes and jusn'ﬁca:it;ns. The problem
solver associates a datum (a fact, complex proposition, etc.; but more importantly an instantiation)
with the node, the ATMS maintains the belief status of the node. An assumption results in an
assumed node, a special type of node that normally remains unjustified (justifies itself), a premise
is a node corresponding to a basic fact. Other node types are based on justifications representing

the derivations made by the problem solver, describing how derived nodes depend on other nodes. '

The dependcnéy network is maintained by the construction of environments, being sets of
assumptions. Environments are internal representations created by the ATMS, and nodes receive a

'

PR
&

TNO report

Page
21

labe! as a'pointer to the environments the node is valid in, i.e. the assumptions the node is

'dependem on,

Justifications are expressed in the fom: A,,....A;> C, with C the consequent and A jto A he

antecedents, which can be assumptions or non-assumption nodes. We further define a node as
valid in an environment E if and only if it can be derived from the current set of justifications
using only the assumptions in E. An environment is called inconsistent if a contradiction is
derivable from it. In the ATMS this is called a nogood environment. :

We will illustrate the working of the ATMS with an example. We have used an implementation of ~

the ATMS in Proiog listed in [Guoxing, 1989), which was developed at the University of Twente,

 the Netherlands. The essential source code penaining to the ATMS algorithm is listed in

Appendix B, as well as adaptations we have made 1o the code to eliminate errors and to enable the
interaction with the tempdra] database. The example below does not incorporate the interaction
with the temporal database, this will be addressed i in the next chapter. The same example will be

used, however, therefore the treatment here is kept concise.

We have several (abstract) nodes, corresponding with the four occasions occl to occ4. We add the

following to the ATMS, meaning that occl is a premise, occ2 an assumpﬁon. occ3 derived from

occl and occ2, and occd is in turn derived from occ3:

I ?- add _premise(occl),
add_assumption (occ2), I .
add_justification(occ3, [occl,occ2)),
add_}ustification(occ4,[occ3]).

This results in the creation of the premise, assumption, and the two justifications in the ATMS.

" The ATMS constructs environments as well, and attributes labels to the nodes. The nodes,

justificctions and environments can be listed. We will illustrate the propagation of a nogood
assumption through the ATMS with the following simple example. We pass the node occ2 as a
nogood assumptidn to the ATMS. This results in the passing back of a list of the nodes set to out
by the ATMS, a feature which we have added to the implementation of [Guoxing, 1989]'.

I S

o e e ot et

TNO report

The result is the following: '
I ?- pass nogood{occ2,List).

Setting nogood: occ2’
Nodes set to out by ATMS: '

List = [occ2,0cc3,0ccd].

This shows that the nodes occ3 and occd are set to out as well as a resuit of passing 0cc2 as a

* nogood assumption. The result for the environment consisting of the assumption occ2 is that the
environment is set to be contradictory by the addition of the node "Contradiction”.

- Each environment induces a context, being sets of nodes (assumptions and non~assumptibns)
valid in the environment. Thus a context consists of the assumptions valid in a consistent
environment, and all nodes derivable from those assumptions. A characterizing environment for a
context is the set of assumptions from which every node of the context can be derived. Now, the
main task of the ATMS is to determine whether or not a node is valid in a given context. This is
managed by the maintenance of labels.

Labelling is a crucial mechanism in an ATMS. A label‘ is a set of environments {E;,....Ey)
associated with each node N. A label has to fulfil four requirements: it must be consistent, sound,
comﬁlete and minimal. Consistency means that no E;'is a2 nogood environment, implying that all
environments containing a nogood environment as a subset must be removed. Soundness means
that node N is valid in each E; Completeness implies that every eavironment E in which N is
valid is a superset of some E; Finally, minimality is the pmpéﬁy that no E; is a subset of any
other, which implies that all environments that are subsumed by (are supersets of) other
environments must be removed. ‘
Figure 2.4 is an example of an environment lattice, the result of only five assumptions. An
 envirnment lattice contains all the environments in the ATMS, with the empty node as root node,
the as'sumptions in the ATMS. as the next layer, and all possible combinations -of these
assumptions in the intermediate layers, up .to the top node which consists of all assumptions.
Given n assumptions, there are 2? environments.

i . g L e+

RREATRL, e

T e NEIEYL A

.TNO report

Page
23

Figure 2.4: Environment lattice [DeKleer, 1986a]

However, not all of these environments wili be used for derivations, and the passing of nogood
assumptions causes all supersets of these environments to be removed from the lattice. This
implies a lesser complexity when using an ATMS than might be expected when considering the
complexity of the environment lattices.

The crossed out ex}vironmems in the lattice of figure 2.4 correspond with the result of passing the

environment {A,B,E} as a nogood environment. The environments that have beén crossed out are
all supersets of environment {A,B,E}. They necessarily become nogood as well because they
cbmpletely subsume the latter environment. As statcd above, each cnvimnmeﬁt induces a context,
the nodes that are contained in or can be derived from the assumptions contained in that
environment. The oval nodes in figure 2.4 represent the context environments of an ATMS node

‘with label {{A,B}.{B,C,D}]. This means that a node that is valid in the enviromment with that

label will also be valid in all environments that are supersets of the two environments contained in
the label. In the same way, the square nodes represent the context environments of a node with
{{A.C},{DE}} as label.

-

TNC report

" The basic ATMS-cycle is the creation of a new node that initially gets the cnipty label {}. A

problem solver datum is associated with the node, and the status is set to out. The next step is o
either create a premise, create an assumption. or to add a justification, A premise node keeps label
1}, but the status is set to in. An assumaption A is given label {[A]} and status in, and is in fact a
justification with itself as antecedent ard consequent. As stated before, the antecedents of a
justification must be eiiher premises, assumptions, or other préviously justified nodes.

Thus, the ATMS's primary objective is finding a consistent and well-founded' assignment of the
states (in or our) of the nodes which are nejther premises nor assumptions. The addition or
removal ofa justification triggers a recomputation of the environment labels of some subset of the
set of nodes. It is not our intention to go into the further technicalities of the reason maintenance
mechanisin here, the algorithm is described in [DeKleer, 1986a].

R

i, VR R ot o S e

et

ey ot

TNO report

Page
.25

3 Prototyping Mefisto

3.1 Introduction

This chapter deals with a demonstration program we have developed that uses a combination of
assumption-based truth mainienance, 2 temporal reasoning mechanism and a forward-chaining

‘mle-ﬁﬁ.ig strategy to fuse information contained in sample reports pertaining to a battlefield

situation. T.ae name "Mefisto” is an acronym for "Modular Environment for. Fusion and
Ihlerpmtaxion of Sensor data in Tracking Opposing forces”. The con.gination of the above
techniques is demonstrated 0 be a powerful tool in addressing some major problems in da‘a

_ fusion: the inéorpomio‘n of temporal reasoning facilities, a retroactive adaptatior of the

(temporal) database and the maintenance of concument hypotheses conceming the curment
battlefield situation. ' : '

We stress that the intention was to investigate the application of the above techniques to,lhe_
domain of data fusion. This implies that assumptions have been made beforehand that restrict the
notion of "data fusion™ in the conte:xt of the application described in this chapter. The domain is
hypothetical in the sense that it muy not be compared to the existing demain that an intelligence
officer has to deal with. The contents of the sample reports must therefore not be considered as
relevant, they were constructed solely as a means of illustrating the techniques involved:, We have
not incorporated geographical aspects. We have furthermore restricted the number of sensors to

" two, being human observers reporting groups of sighted vehicles and secondly electronic warfare

units reporting radio-transmittals perceived. The examples used will therefore be admittedly

" simple, but suffice to illustrate the strength of the combination of the above techniques.

We acknowledge the use of an implementation of the basic ATMS [DeKleer, 1986} developed at
the University of Twente, The Netherlangs, listed in [Guoxing, 1989}, which we have enhanced

" with temporal reasoning facilities. The data structure used as the foundation for the temporal

database stems from {Dean & McDermott, 1987]. We have implemented a oasic forward chaining
productior: system as described in {Merritt, 1989]. As stated, the domain is hypothetical, but as
guidelines we have used (VS 2-1351, 1988) for.a simple order - hattle, as well as (VS 30-5,
1989], describing com.bat intelligence. Stiuctured Analysis (Yourdon) was used for the

e e g e 3 i At s+ P,

| RISy st

< T s

i
:
H
H

TNO report

Page

.
'

representation of the process structure. Nijssen's Information Analysis M-~thod (NTAM) was used
for the representation of the data structures. The app‘licau‘oq was developed on a SUN Spgn:-2
workstation and written in Quintus Prolog.

We will first address the domain involved. Then we will provide an overview of the application,
dexcribing its structure and specifying the user inter{ace. Paragraph 3.4 will detail the “echniques
used: the forward chaining algorithm and the rule format, the ATMS and the temporai reasoning
facilities that have l~eenl constructed, the merger of the latter two, and the data fusior. strategy.

3.2 . The battlefield environment

321 The area of intelligence responsibility

The battlefield environment in our ‘application is, as indicated in the. previous section, kept
relatively simple. The area of intelligence responsibility is assumed to be a rectangular area. We
have divided th:s region into six sectors, each having the same dimensions located some distance
ahead of the FLOT (Front Line Own Troops). In each of these sectors we have a human observer
post at a /ixed location, the central peint of the sector. These observer posts (H1 to H6) report
vehicles sighted paésing in the vicinity of their locations. The répons froin the human observers
contain the position (being the location of the observer post), the time of sighting, the vehicle
types and quantities sighted and the direction of movement.

Apart from the human observer posts there are two comint posts at the vwn side of the FLOT.
These comint posts (part of an EWU) arc assumed to provide detailed information on the front
sectors, using ESM systems for the interception of transmissions and taking bearings to determine
the positions. They are able to provide order of battle information based 6n the patterns perceived
in the intercepted transmissions. This will lead to the inclusion of cither approximate vehicle
groups or a reference t0 a unit type in the comint reports. As a result the information reported by
the comint posts is less reliable -han the information reported by the human observers. Beside the
position the comint reports contain the time of interception. the vehicle types and quantities or a
reference to a unit type. - .

We have limited the spatial aspects in the application to a minimum. We have incorporated
several time-dependent context parameters to describe a simplified metecrological condition. This

TNO report

Page
27

entails a distinction between day and night, between clear or misty circum stances, and specifically
for the comint reports the circumstance that the inteceptions of transmissions may have been
subject to jamming, possibly causing errors in content and reliability of the comint reports.

t

322 The order of battle

The basis for the order of battle is taken from (VS 30-1, 1987}, however we have adapted this to ‘

simplify matters, therefore the order of battle used should not be matched with an existing one.
The top level unit is the regiment. The regiments can be either a tank regiment or a mechanized

infantry regiment.

Tkreg
3 Tkbat
3 Tkcmp
3 Tkplt
' 3 T80
1 Mechinfbat_BMP .
3 Mechinfcmp BMP ' :
! 3 Mechinfplt_aMP
4 BMP
1 AAAsect
4 ZSU
1 Minesweepcmp
3 Minesweepplt
10 KMT

Figure 3.1: A tank regiment

The unit types arc tank -(Tk), mechanized infantry (Mechinf BTR, ‘Mechinf_BMP). anti-tank

(AT), mine sweeping (MS), artillery (ARTY) and ‘anti air artillery (AAA). As vehicle types we -

have tank (T80), armoured cars (BMP, BTR), anti-tank (SA), anti air antillery vehicles (ZSU),
mine sweeping vehicles (KMT), trucks can"ying' equipment for target acquisition (POLEDISH)
and heavy antillery vehicles (253). - : B

The mecharnized infantry units can be "mechinf BMP" or "mechinf BTR", depending on the
vehicle type. The main force of the regiments consists of four battalions. A battalion consists of
several companies and platoons. We assume a pre-combat situation some distance ahead of the
FLOT, implying that companies will genera]ly" move in a column formation, with a short distance
between the vehicles. Generally, the oom>pani¢s of the battalions will be spread out across the

' s, e .

breath of the sectors, the companies move in columns of platoons, allowing a fast deployment if
necessary. '

A tank mgimeni has threc tank battalions and one "mechinf BMP" battalion. Also, a mine
sweeping platoon is added to the regiment. This is illustrated in figure 3.1, The numbers listed in
the figure are not totals, they should be read as follows: a tank regiment has three tank battalions.
Each tank battalion consists of three tank companies. Each company in turn consists of three
platoons. Finally, a tank platoon consists of three T80's. '

]
/

Mechinfreg BMP
3 Mechinfbat_BMP -
3 Mechinfcmp_BMP
3 Mechinfplt_BMP

. ' 4 BMP
1 Tkbat
3 Tkcmp
3 Tkplt ‘
3 T80
1 ‘AntiTkcmp
9 sSa

1 ARTYsect !
1 Targetacyplt
: 3 POLEDISH
1 Mechartcmp

'

9'2s3)
1 Minesweepplt
10- KMT
Figure 3.2: A mechanized infantry BMP regiment

There are two types of mechanized infantry. regiment, corresponding with the vehicle types BMP
and BTR. The mechinf_BMP régimem consists of three mechinf_BMP battalions and one tank
battalion. Beside these battalions the regiment consists of an anti-tank company, a mine sweeping
platoon and an anillery section with target acquisition ‘means and heayy antillery. The
mechinf__BTR regiment consists of three mechinf_BTR battalions and one tank battation. It also

* has an anti-tank company, an anti air artillery section and a mine sweeping platoon.

e A

TNQ report

Mechinfreg BTR
3 Mechinfbat_ BTR
" 3 Mechinfcmp_BTR
3 Mechinfplt BTR
4 BTR
. 1 Tkbat
"3 Tkemp
3 Tkplt
) 3 T80 '
"1 AntiTkemp o
9 Sa
1 AAAsect
4 2SU
1 Minesweepplt ,
10 KMT

Figure 3.3: A mechanized infantry BTR regiment

33 System overview

331 The structure of the process ,
The overall structure of the application is as follows: we have a domain representing a sirqple

battlefield as explained in the previous section, with sources sending in repon's on sighted vehicle ‘

groups and perceived radio-transmissions. The information in the reports is converted into unit
structures. By default each report is first assumed to refer to a separate unit on the battlefield. 'I‘hé
further structuring of the units is accomplished by classifying, correlating and aggregating units
by the application of rules containing knowledge of the properties of the domain objects and the
order of battle. The derivations and the underlying assumptions concerning these units and their
attributes are passed to the ATMS. The temporal information concerning the units is passed to a
temporal database. The rules use the combination »f information contained in the ATMS and the
“temporal database. The top-level process structure consists of the following functions:

Process report;

- Classify unit;
Correlate units;
Aggregate units;
Process ATMS-request;
Process TDB-request.

oW s wN =

N e e T 4 Nt 2 ety

TNOQ report

The functions are carried out in response, to events, being requests from the operator of the
application. The processing of a repoit is the convemon of a report into a unit (the assumption
that each report refers to a separate unit), for \Vthh an initial "unit frame" is constructed with '
attributes filled in as much' as possible from the reponed information. The report is stored as a
premise in the ATMS, a timedist entry for the repont is stored in the temporal database (TDB).
The unit that is created is stored in the ATMS as an assumption. Two timedist entries are stored in
the TDB (see paragraph 2.2.3), one from the reference point to the begintime (the sighting time
reported), and one from the begintime to the endume. whereby the upper bound of the duration is
initially set to infi mty

The three main phases are the classification, correlation and the aggregation of units. The

' ‘classification is aimed at determining the unit type. A classify request triggers the attempt to

classify a centain vehicle type group as refeming to a spéciﬁc unit type by the application of
classification rules. The result is stored as a justification in the ATMS and ‘accompanying timedist
entiies are stored in the TDB. Among the classification rules are default rules, which also derive a
uml type, but the latter is stored as an assumpuon in the ATMS. The assumed unit type will
possnbly be used later to correlate and/or aggregate. When new information indicates that the unit

. is not a tank company but a mechanized infantry company.‘t.hls will cause a recalculation of the

ATMS states corresponding to the validity of derived statements based on the previous-
assumption.

The correlation of iepons with units is more complicated. Given two observer posts at some
distance from each other, it is possible that the same vehicle groups pass both observer posts. In

. the case of intormation from electronic warfare units this may hold as well because the comint

posts may re;}ort the same group morre than once. The correlation is aimed at eliminating
duplicate counts of the same units, which would indicate 2 stronger force than would actuall)} be
present on the battlefield. This phas thus encompasses the correlation of data from like sensors as
well as from differemt sensors. Correlation rules aid in determining whether two reports in fact
refer to the same object. When this occurs the unit structrue corresponding to the earlier report is

- clipped, passed to the ATMS as a nogood assumpnon. triggering the recalculauon of the

oons:stency of the database.

Aggregation is the combination of two or more units into a higher-level unit. When an
aggregation takes place, the resulting unit is stored separatel'y. leaving the units used for the

A el e A s apan

e N o SRR

'TMmeﬁ

Page
31

dggregation intact because there may be several options for the aggregation of units, and units
might be correlated later with other units. Aggregation rules also perform a classification task
because they will derive values for the unit type of the resulting aggregation.

We stress that the control of the application is to a large extent in the hands of the operator. We
have chosen to allow the phases classification, correlation and aggregation to be initiated by the

. dpcrator and not by the application itself. This implies that the application is not highly
. "automated". The reason is the focus on techniques for truth maintenance and temporal reasoning;

the aim was not .to.'process incoming reports in real time. To furtier support the interaction with

.Lhe ATMS and the TDB a direct manipulation of the ATMS-database and the temporal database is

possible as well. The processing of requests to the ATMS and ihe TDB are contained in the two
remaining functions in the aforementioned list. In paragreph 3.3.1 this will be dealt with in more

detail.

332 The structure of the data
The main data structures in the application are "report';, "unit_type" and "unit". The ATMS

further uses "tms_node”, "assumption”, "justification” and “environmem" as data structures. The

temporal database is built with “timedist” as data structure. The data structures will be outlined
below.

The report contains a report number as the unique reference, and the source of the report. In the
case of a human observer post, the lccation of the sighted vehicles and the direction they were
moving in is reported. The vehicles are reported as "sighted_vehicle_type_group”, repiesg:nted in
the database as tuples of vehicle types and quantities. In the case of a comint ,'epbn. the location
and orbat information are reported. In both cases the time cf sighting is contained in the report.

Report_nr : 1
Source_type ¢ humint
Source_nr HC A

Direction from: east
Direction_to : west
Sighting_time : 101
Vehicle_group : t80 , 9

. Figure 3.4: Report structure

e S i . as

, Page
32

The "unit_type” is the representation of units contained in the standard order of batle. A

"unit_type" is represented as a unit class and unit size, e.g. respectively "tank™ and "company”, .

implying that the unit type is a tank company. This distinction is made because it may for
example be evident what class a unit belongs to, but not what the size of the unit is. The following
example clarifies the representation of a “unit_type":

unit_type (mechinf_btr,cmp).
unit_type (mechinf btr,plt).)

unit_type_group(mechinf btr,cmp,mechinf btr,plt,3).
orbat_vehicle_type_group(mechinf btr,plt,btr,4).

The "unit_type_group” above means that a mechanized BTR infantry company (the notation
above is in lower case letters due to a convention in Prolog) consists of 3 mcchinf platoons, these

in tumn consisting of 4 BTR vehicles. The unit type data is used in the rules. In effect, a match is '

carried out between the "sighled_vehicle_type _groups” contained in the reports and the "orbat--
_vehicle_type_groups” of the known order of battle to classify the unit type. '

The unit is the central data structure, it contains the information on the units that (are assumed to)
exist on the batlefield. Apan from information on the source(s) that reported the unit, the (last
known) position and direction of movement, a unit tonsists of vehicle type groups and has a unit
class and a unit size. The vehicle type gm\ips may be the result of several sighted vehicle type
groups and are therefore distinct from the latter. A rating is attributed to the unit structure, based
on several context parameters conceming the time of day, the weather and jamming, as described
in paragraph 3.2.1. ' ‘ '

Unit_nr : 1

. Source_type : humint
Source_nr : 3 '
Last_position : [250,250)
Sector : 3

Direction_from : east
Direction_to : west
Vehicle_groups : [t80,9) . : . !

Unit_class 1tk
Unit_size : cmp) .
Rating ta '

Figure 3.5: Unit structure

MAOGRAGR T

.___

T

R R LT SN Y

The ATMS uses four main data structures. The following are based on the ATMS-implementation
in Prolog by [Guoxing, 1989} that we have used, which will he addressed in paragraph 3.4.2:
tma_node(&ndex,Occaaion,SCatus,Label,Justifications,CQnsequents,
Rules,Nodetype) . ' I
vsssumption(Index,Occasion;Environments).
justification(Index, Type,Consequent,Antecedents).

environment (Index,N_assumptions,Assumptions,Nodes,Contradictory).

The mms_node data structure contains ﬁrst of all an index and the occasion it corresponds with.
' Funhermore, the status of the node (in or out), a label representing the indices of environments
(sets of assumptions) in which the node can be proven using all justiﬁcé!ions known to the
ATMS, an index of the justification(s) descriBing how this node is derivabie from other nodes, an
‘index for the justifications using this node as an antecedent, a Rules field reserved for the problem
solver and finally the type of node (assumed node, premise, or derived node).
The as:umpﬁon' data structure 'has the occasion as second argument, and provides a list of ‘the
environments wherein the assumption holds. ‘

The justification data structure lists lhe type of justification (supplied by the pmblem solver), the
index of the consequent node and the indices of the antecedent nodes.

The data structure environment includes the number of assumptions in this environment, the
(indices of the) assumptions themselves, the nodes in whose label the envircnment appears, and
the field contradictory indicates whether this environment is inconsiztent.

We have used a temporal data structure that we call fimedist that ongmates from [Dean &
McDermott, 1987] as the data structure for the temporal database. The data structure contains the
names of the begin- and the endpoint and the lower and upper bounds of the duration between the
begin- ‘and endpoint:

timedist (Beginpoint,Endpoint, Low, High) .

R A by o e ey

e e e

B

TNO report

)

The temporal representation implies that nothing is deleted from the database. All data stored in
the ATMS and in the internal (Prolog) database receives a temporal entry. In the case that an
occasion is no longer valid, the temporal entry is clipped, but the occasion as well as the clipped

' temporal entry are retained. -

333 The structure of the dialogue 4

In its current form, the application consists of a main prograin containing the forward-chaining
engine, predicates governing temporal reasoning, the interaction with the ATMS and the TDB,
and the definition of the interface. Furthermore, there are separate files containing the ATMS, a
compiled report database, a compiled domain database and a compiled rules knowledge base. The
Prolog database is used as the working storage means. Due to the ¢oncentration on techniques
involving truth maintenance and temporal reasoning, we have noi incorporated .any graphical
facilities whatsoever. o

The control of the application istoa large extent in the hands of the operator. The main menu
therefore corresponds with the functions described in paragraph 3.3.1 and has the following form:

Report geﬁgratoz
Classify report . ' .
Corrzlate ﬁnits ‘
Aggrégate units
ATMS request’
TDB request

~ U bW N

Exit

The report generator can be called: it fetches and prints reports one by one:
Generate report? [y/n]l: y.

Repert_nr -
Source_type : humint
Source_nr : 3

Direction_from: east
Direction_to : west
Sighting time : 105

Vehicle group : btr , 3

S

o MEEEL G A

TNO report

'
'

For eath mpbrg. a new unit is asserted with as yet no unit class or unit size, but with vehicle ty; .
groups filled in if these were reported. Transparent {o the user, corresponding occasions and

" temporal entries are passed to the ATMS and the TDB.,

Classiﬁcation. correlation and aggregation are all initiated by the operator. A request results in the
application of ruies. The application of the rules is sequential, stepping through the rules.in the

- order in which they are contained in the knowledge base. It is possible to fire applicable rules one

at a time or all at once. The inference mechanism and the rule format will be addressed in
paragraph 3.4.1. When a rule fires this is communicated to the user, stating the rule that was fired
and the interactions with the ATMS and/or the TDB that resulted from it.

Apart from the above a.direct interaction with the ATMS and the TDB is possible. The ATMS

database can be queried for tms_nodes, assumptions, justifications and environments. It is
possible to additionally pass instantiations of these structures to the ATMS, providing direct
control over the ATMS. The temporal database can be queried and timedist instmﬁaﬁms may be
asserted. However, the interaction with the ATMS and the TDB will generally be triggered by the
application of the rules. The details of the interaction will be further dealt with in paragraphs
3.4.2.and 34.3. '

We will indicatevthe flow of control between the niain functions. The functions initiated by the
main menu can be called independently, however, they do depend on each other. The report
generator will generate reports one at a time. A unit frame is constructed for the report and filled
in with the report information. The report generator will ask whether more répons are required. In

general, when a number of reports have been generated, the functions classification, correlation

and aggregation are called sequentially. This is illustrated in figure 3.8 below. From each of these
phases the report generator can be called again, after which the above pmk:ess is repeated.

During the four phases above the ATMS and the TDB are inspected and adapted continuously by

. the system, triggered by the rules that are fired. However, this inspection and adaptation may take

place manually as well,

o s e e R P e | gt . . . R R N i et
A . R . - D R YN R,

Y

TNO report

: Page
36

' Process Classify Correlate Aggregate

report report units units.
»
ATMS ATMS '
exit o8 exit exit TDB exit
Figure 3.6: Control flow

et b L

L T

W LR

e

e o ot oy e

Page
37

34 Technology overview

341 Forward chaining production system

We have used a simple forward chaining production system for the implementation of the rule-
application. The algorithm is taken from [Merritt, 1989). It is a basic failure-driven loop carrying
out a "march-and-process” cycle, firing all rule-instantiations, one rule at a time.

We have chosen to use a forward-chammg rule-firing strategy for the fusion of information from
the reports. Rule-based rcasoning is a widespread technique and it provides a qune natural
representation for star.ng e.g. some simple heuristics pertaining to order of battle. The forward-
chammg strategy was aiso chosen because reports are entered one by one and continuously and
the information that feeds the rules becomes available in bits and pieces. This as opposed to for
instance the domain of diagnosis, where a set of symptoms is entered at once, and a backward
chaining strategy is used that finds the rule(s) containing the diagnosis that best matches the
symptoms. Also, the ATMS cannot store variables.and thus all ATMS nodes must be
instantiations of, in our case, Prolog clauses. This implies that a backward-chaining rule-firing
strategy, whereby instantiations are only "virtual” in the sense tﬁat they are not explicitly stored,
does not suffice. '

The rule format that we have used is as follows:

rule (Rule_type,Rule_nr,Description)::
[Conditionl,
Condition2, etc}
-
. {Actioni,
Action2, etc}.

- A simple example of a rule is the following, stating that a unit is classified as being a tank

company when the unit consists of between § and 13 tanks. The "derive_and_assume” statement
is a call 10 the ATMS, triggering the’ passmg of a Jusnfcauon for the unit class and unit size
classification to the ATMS.

~ e e

TNO report

Page

rule(classifkanit_nz),S,tkcmpf::
[tms(unit_vehible_type_groﬁp(Unit_nr,tBO,Qty)),
Qty > 8, B
Qty < 13
]
x>
[temporal_distance(ref,end(unit (Unit_nr)),Low,_High),
derive_and assume{unit_class(Unit_nr,tk),_,Low), v
detive_and_assume(unif 1izé(Unit_nr,cmp),_,Low)

i

[

The rule types are divided into classification, correlation and aggregation rules. The above rule is
an example of a classification rule.

The derived unit class and unit size are set to be an assumption in the ATMS after being passed as
a derivation. This implies that if at a Jater time the unit class or unit size of this unit are derived 10
be something other than “tk" and "cmp”, the passing of the assumption as a "nogood” to the
ATMS will result in tracking the conclusions that have since made, based in part on the
assumption that the unit was a tank company. '

The conditions and actions of the rules are contained in lists, enabling efficient processing in
Prolog. We distinguish between three types of "calls” in the corditions and actions of the rules.
These can'be calls to #rolog. calls 10 the ATMS and calls to the temporal database. These three
types of calls are the building blocks of the rules. They are carried out by "match” and "process”
clauses, which use predicates corresponding to the calls. The Prolog calls may be calls to
functions in the main program, ducﬁes, ‘assertions and cetractions of clauses in the Prolog
database, as well as built-in Prolog predicates. The interaction with the ATMS and the use of the
temporal database will be the sui)ject of the next section.

AV Al e e o i

I e R T 90 0 Ao

B

" TNO report

39

342 Truth maintenance and temporal‘reasoning in Mefisto_ :

34.2. Keeping track of reason)
We have used an implementation of the ATMS that is listed in [Guoxing, 1989], written in

- Prolog. De Kleer's original ATMS does not incorporate negations, nor disjunctions, nor does it

allow to explicitly contain default justifications. The implementation of the ATMS of {Guoxing, i
1989] concems the basic ATMS and therefore does not include these either. Instead of a time-
consuming adaptation of Guoxing's implementation, we have chosen to ‘ bring negations,
disjunctions and defaults into the interaction with the ATMS triggered by the application of the
tules, letting the problem solver deal with them. An adaptation of Guuxing's implementation was
necessary, however, to remove several errors mainly concerning the subsumption of environments
and the éllocatién of contradictory environments as a result of passing nogood aséump’tions.
Further adaptations concerned the interaction with the main program and the temporal dziabase.
Details can be found in the appendices. - .

The consultation and manipulation of the ATMS is triggered by the application of the rules; the
ATMS-calls as explained in the previous paragraph. The ATMS is queried in the conditions of ‘the
rules. For instance, in the case of the following condition, used in the example of the previous
paragraph: ‘ '

[

tms (unit_vehicle_type_group(Unit_nr,t80,Qty)).

The possible ATMS-calls are the following: '

asktms (X, Status).
add_premise (X) .
" add_assumption(X).
add_justification (Consecuent,AntecedentList) .

pass_nogood (X) .

An occasion can be asserted as 2 premise. A row womprion cae be crewed rewhing in g
assertion of an assumed node in the AT™%. wéwi gten wrigge= e cremien of a wew
environment. Justifications pass derived nodes ars e miranadents vk, AT, Wher passines
an assumption or set of assumptions as a nogood enviremery 1. e £TMS. the snvirommen i

e

TNOQ report

' \ set 1o "contradictory”, triggering a recomputation of the labels. The ATMS checks which nodes
have labels containing environments that are subsumed by this nogood environment. It changes
these environments 10 “cohtradictory" as wzll and adiu., the labels, so that these nogoods are
removed from the respective labels. If as a result the label becomes empty, the status of that node
is set to owt, the node is no longer valid. This process results in an "outlist”, i.e. a list of the nodes)
that the ATMS has set to out. i

.
)

3422 Keeping up with time
Each occasion has a timedis: :ntry representing the duration of the occasion. We repeat the basic
temporal data structure here:

timedist (begin(Occasion),end(Occasion),Low,High).

' This represents that the duration of QOccasion is known to have a lower bound Low and an upper
bound High. This is a relative duration, not related to an absolute reference point. In the case that
the begintime cf the occasion is known as well, another timedist entry is asserted into the

.o temporal database to allow the calculation of absolute iime. We have chosen this absolute
reference point {ref) to He the timepoint 0. This second timedist entry represents the begintime of
the occasion and will have both lo: er and upper.bound equal to the begintime of the occasion.
For a persistence, the endtime in the aboVe timedist entry is set to infinity, indicating that the
occasion is believed to be valid indefinitely, to be defied only by information stating the contrary.

The interaction in the rules allows tovquery the temporal database, calling functions that calculate
temporal distances, asserting, updating and clipping timedist entries. The following calls to the
temporal database are possible: .

timedist (X, Y, Low,High) .-
add_timedist (X, Y, Low,High).
update_tamedist (X, Y, Low, High) .
clip_node (i, T).

clip_nodelic«(List,T).

e atrmt

TNO reoort

The cllpp;'ng mechanism changes persistences into clipped persistences (clips) ‘vhen called for.
This clipping is css.enlially'thc replacement of the upper bound of the occasion to be clipped. Due
to the relative notions involved in the timedist entries ihe new upper bound will be the difference
between the cliptime and the begintime of the occasion. Let's take the following example:

timedist (ref,begin (unit (1)),120,120) . o

timedist(beqin(unib(l)),end(unit(l)).o,inf).

.

When the occasior{ unit(1) is clipped at time 200, the result of the cli})ping will be that the first

- timedist entry is kept intact and that the second timedist entry is updated to the following:

[
'

timedist (begin(unit (1)) ,end{unit(1)),80,80).

When querying the temporal distance from the reference point ref to end(unit(1)) the result will
now be 200, '

We have furthermore implemented an elaborate collection of temporal queries. The queries erable
to delgnnine whether a certain timepoint comes before.another timepoint, whether an occasion is
truc throughout a specific interval, whether two occasions are overlapping, etc. We refer to the
appendices for a more complete list.

343 Inference and temporal truth maintenanc:

Given techniques for assumption-baszd truth maintenance and temporal reasoning, the question
now arises how to combine them. Both the temporal data structure and the representation of an
occasion in an ATMS contain infoymation concerning the validity of an occasion. The ATMS is
used to keep track of assumptions and conclusions based on these assumptions. The temporal
database must be updated when the ATMS has defied earlier derived conclusions. The ATMS
infout truth status represents the current status of an occasion in the sensc that it happens to be the
result of the latest adaptation to the ATMS, but it is in fact time-independent. The temporal
database represents the complete period during which the occasion is valid. The combination is
comparable t0 a four-dimensional space-tirhc reprecentation, in the sense that it allows to
represent the state of the battlefield (which is described by the occasions) at each mémenl in time.

L e s e e

TNO report

Page

Moreover, it does not represent just one state, but implicitly contains a multitude of states due to

the representation based on assumptions. :

' The efféctuation of the combination of truth maimc;'nance and a temporal database is triggered by
the apnlication of the rules. Adaptations to the implementation of the ATMS of [Guoxing, 1989)
were made to effect the passing of information to and from the ATMS, necessary to be able to
adapt the timedist entries when an environment is passed as "nogood” to the ATMS. When an
occasion is passed to the ATMS, at least one timedist entry is asserted to the temporal database, as
outlined in previous paragraphs. When an assumption or set of assumptions is passed as a nogood
environment to the ATMS the timedist entrics for the assumption(s) are adapted simultanebﬁsly.
clipped by some cliptime. The ATMS retums a list of the nodes ihvalidated as a result of the
ensuing label recomputation. These nodes can then be clipped accordingly.
To accomplish the above we have implemented a set of predicates that combine the functions
listed in L1e previous two paragraphs. These are used in ihe actions of the rules and are the
following, the relevant source code for the predicates listed below is contained in Appendix A:
asktms (X, Status).
add_premise (X, T) .
assume (X, T) .
derive(X,List,T).
derive_and_assume (X, List,T).
replace_node (X, Y) .
. set_node (X, Status) .
add_timedist (X,Y, Low,High) .,)
update_timedist (X, Y, Low,High) . '
clip_node (X, T) . , '
' . ¢lip nodelist(List,T).
pass_nogbod(X,OutList).
set_nogood(X,T).
Thesé perform selections, additions, updates and "déletions", the latter in effect the replacement
of (truth) status in by status out. A derived occasion results in passing a justification to the ATMS .
with the nodes, that were used as conditions in the rule, as the antecedents of this justification. It

TNO report

Pagé
43

' ' is also possible that a derived occasion is set to be an assumption as well, a feature intended to
allow the tracking of how defaults were derived (e.g. when assuming unit types) which is not
incorporated in the basic ATMS. A node can be replaced, or set to another truth status. The set
nogood predicate is a combination of “pass nogood®, “clip node" and "clip nodelist". The clipping
of a nogood assumption results in the passing back of a list of the nodes set to out, the “clip
nodelist” predicate carries out the clipping of this list.

We will illustrate the above for the example that was already contained in chapter 2 for the four
occasions occl to occd. We instantiate occl as a premise from timepoint 0 on, and occ2 as an

assumption from timepoint 100 on:

| ?- add_premise(occl,0).

| ?- add_assumption{occ2,100). |

The ATMS now contains two nodes, a justification for the assumption occ2, as well as an

environment consisting of the assumption. Now, we will apply two rules, resulting .in the .

derivation of occasions occ3 and occ4. The occasion occ3 is for example the result of firing the
» ' first rule below. The rule states that occ3 is derived if occl and occ2 are valid iﬁ the ATMS. The
i derive statement adds occ3 as a derived node to the ATMS, and simultaneously adds occ3 to the
temporal database, with a begintime comresponding to the later of the begintimes of occl.and occ2
(application of the rule will find this 0 be the timepoint 100). '

- rule(example,l,0cc3)::
[tms (oeccl),
" tms(occ2)]
-
[later (occl,occz,fime) .

derive (occ3,_, Time)]

The second rule results in the derivation of occ4. It is instantiated in the ATMS as a derived node,
dzrived from the validity of the earlier derived 0cc3. As the begintime for occd the begintime of
.0cc3 is taken, the latter being calculated by the temporal distance ¢lause contained in the rile.

4
5

AR e P

ot e

A S e av.

-

TNO report

xule(example,z,occ4f::
[tms (occ3))

-

{temporal_distance(ref,end(occ3),Time,),

derive (occd, _,Time)}

The following is the result of firing the rules:
=> fire(zxample,).

Adding justification for: occ3
Staéting at time: 100
Rule, fired: example, 1, occ3

Fire rule? y.

Adding justification for: occd

Starting at time: 100

Rule fired: example, 2, occd

The ATMS can be consulted for lists of the nodes, justifications and environments contained in
the ATMS. When we inspect the justifications the ATMS has constructed due to the firing of the

two rules above, the result is the following!

Justification: 2 ~> Type: example

Consequent : 3
Antecedents : {1,2]

Justification: 3 -> Type: example

Consequent : 4
Antecedents : [3]

f

The first justification listed means that a justification has been sdded with "Type" indicating the
rule type that caused the justification. The consequent of the justification is node 3, the

TNO report

Page

S A s O e

* antecedents are nodes 1 and 2. For this example, the numbers of the nodes correspond with the
numbers of the occasions, as the list below will show. This also illustrates the "6ookkeeping"‘

nature of the ATMS; the derivations are registered without any reference to the meaning of the .
nodes involved. The second justification above corresponds to the derivation resulting from the

second rule.

Now, when we inspect the ATMS for the nodes with truth status in, the following list is '
generated: ' '

{ ?- tell_node(_,in).

Node 1: occl, premise node
Node 2 occ2, assumed node
Node 3: occ3, derived node
Node 4 occd, derived node

The internal representation of these nodes in the ATMS further contains the label, being the set of
environnrents that the node is valid in. For example, we will list the representation for node 3

here:

Node : 3 -5 Datum: occ3

Status: in’

Label : [1] ~
. Just @ [2)
Cons .[3]

Type : [dexived}l

This implies that occ3 is contained in the ATMS with envimnment 1 as label. In our example,

~ there is only one environment, containing the assumption occ2. The field “Just" contains
justification 2 as the justification that instantialéd occ3, and the field "Cons" states that
justification 3 contains node 3 as an antecedent.

BRppe

The clipping of nodes is also instigated by the application of rules. We will use the following
clipping rule which does not contain any conditions, as these are not relevant here. The condition -
would be some state that would lead to the clipping of the assumption occ2 at timepoint 190.

R A

e

 hregs

o ke

.-
'

TNO report) ' 7 i

58

o~ 0 A

') The rule is as follows:
rule(clipping,1,0cc2) :: '
' 0
=
[set_nogood(occ2,190}).

f

| ?- fire(clipping,1).
Setting nogood: occ2

Nodes set to out by ATMS are:
occ2, clipped at time 190
. occ3, clipped at time 190‘
, occ4, clipped at time 190 . } .
: . Rule fired: clipping, 1, occ2 ' .

The nodes corresponding with occ2, oc3 and occd are set to out in the ATMS, environment 1
' . above is set to “contradictory”, and a justification is added for the nogood assumption added to the
ATMS. When we gquery the absolute temporal bounds for the occasions the result is the following:

I 2- time ().
[orcl,0,inf)
[occ2,100,190]
[cce3,100,190)
i (occd,100,190]

When we ask which nodes have truth status in, the ATMS resporids as follows:

: v | ?- tell_node(_,in}.

Node 1: occl, premise node

SV N

An issue is what to pass to the ATMS. If all data that is usually stored in databases is now stored
in an ATMS, not considering their meaning, the overhead might not be worthwhile. Moreover. the

' ‘ §
. . : }cr .
‘ !

TREL

N N AT

T

TNO report

Page

nature of an ATMS is that it performs bookkeeping, it keeps track of kow the nodes were derived
and thus why something is valid or not. The problem solver keeps track of what it means and -
when it is valid. The representation of semantical content in an ATMS is therefore a waste of
resources. For this reason the timedist entries are kept cutside the ATMS. Secondl)". the timedist
entries implicitly represent the validity of occasions and storing them in the ATMS database
would entail redundancy, leading to integrity nroblems. The ATMS needs only explicitly contain '
the occasions as nodes. In this way, the ATMS keeps track of the occasions, but the history of the
occasion is not represented in the ATMS. '

344 Data fusion in Mefisto

In paragraph 3.3 the main functions, data structures and flow of control in Mefisto were outlined.
Here we will indicate step by step what actions can be taken in the application to perform the
fusion of reporied information.

The strategy for performing data fusion is govemned by the four main phasés that we will repeat
here: - ' ‘

Generation of reports;
Classify unit types from report information;
Correlate (seemingly) identical units;

W -

,Aggregate units into higher level unit structures..

The first phase is the generanon of mpons When the repon generator is called to generate a
report the f rst action taken is the construction of a unit structure as described in paragraph 3.3.2.
This unit structure is filled in as much as possible and a reference to the report is made o enable
tracing the reported information. We stress that this is an intermediate structure, resulting from the
underlying assumption that each report refes to a separate unit on the battleﬁéld. These unit
structures may be aliered or eliminated in the later correlation phase.

e —— 7o

B L S

AN

TNO report

Page
48

The unit structure conmin§ the following separatc elements:
unit (Unit_nr) .
origin(Unit_nr, Source_type, Source_nr,Report_nr).
last__'knéwn_movémen: (Unit_nr,Position, Sector,Direction).
unit_vehicle type_group(Unit_nr, Vehicle_tipe,Quantity) .
- unit_class(Unit_nr,Unit_class),.
unit_size(Unit_nr, Unit_size) .

rating(Unit_nc,Rating) .

The "unit_vehicle_type_group” may be repeated if the unit consists of more than one vehicle type -

group. An occasion for the report is passed 10 the ATMS as a premise, a timedist entry for the
report (sighting time) is asserted to the temporal database. An occasion for unit(Unit_nr) is passed
to the ATMS as an assumption. The unit class and unit size (together: the unit type) will not be
filled in yet. The unit vehicle type group(s) is (are) adopted from the report. The unit vehicle type
groups are passed to the ATMS as assumptions as well. The reason is that the reported sightings
are not at first hand assumed to be completely reliable. The occasions are passed to the lemporal
database as persistences. This implies that two timedist entries are asserted 10 the «emporal
database. The first registers the begintime of the occasion, the second registers the duration of the
occasion with the upper bound set 10 infinity, as explained in paragraph 3.4.2.

The second phase is the classiﬁcation' of unit types. The unit structures resulting from the reports
must now be attributed with a unit class and a unit size. This is accomplished by the application of
classification rules. These classification rules contain knowledge on the order of battle, starting at
the vehicle level. For instance, a report from a human cbserver of a column of ‘ten tanks will be
classified as referring to a tank company. Classification will often take place on the basis that a
specific vehicle type or group of vehicle types is characteristic for a certain unit type. Also, the
absence of a certain vehicle type may indicate values for unit class and possibly size. The
occasions for the unit class and size are passed as "derived assumptions” to the ATMS, allowing
that they may be set to nagood at a later time. The timedist entries for unit class and size will be

. adopted from the timedist entries of the unit structures.

The third phase is correlation. The aim is to distinguish references to the same battlefield unit by
various reports and to unite the reported information into one unmit structure. Here, the

e i e ant w s de T o e

o b

P
T
H

B s s S u——

B

E

-

e T T S

¥
b
+

N
G vt e i e

TNO report

49

intermediate unit structures resulting from the report generation are inspected and duplicate
references to the same battlefield objects are eiiminated, if possible. Correlation therefore requires
criteria to eliminate duplicate counts. The criteria are applieq by correlfation rules.

Important is that criteria are used to ixrform the correlation of like-sensor data as weli zs for ihe
correlation of data from different sensor types. In our application, this means both data reported
by human observers.(humint) and data from electronic warfare units (comint). The strategy we
have chosen for correlation is that we correlate like-sensor data first, data from different sensor-
types after that. Secondly, we restrict the correlation to be applied pairwise. We will illustrate this
for the case that four reports refer to the same batilefield unit. Let's assume that the unit structures
resulting from these reports are called u, to ug. The ﬁrst' three are humint reports, the last cne is a
comimlmpon.' Applicatibn of the correlation rules will result in a sequence of three correlations:
u; with u; (result uy,), u;; with uj (result uy43), and finally u;43 with u4, resulting in uy934. The
strategy of pairwise correlation restricts the complexity in the correlation rules. More importantly,
it will also restrict the computational complexil); as the number of occasions grows. We sltress
here again that we use the term correlation for attributing reported information to battlefield
objects already sighted, not as the correlation of low level sensor tracks.

The correlation of two unit structures will result in the clipping of the earlier unit struét‘pre. The
later unjt structure (the result of a later report) is kept. Attributes of the later unit structure may be
filled in, for example when correlating a humint sighting with an earlier comint report the
frequency will bé added to the unit structure that resulted from the humint sighting. Also, the
vehicle type groups may be adapted to incorporate the information from both reports. Generally,
correlation will imply an accumulation of information concerning battlefield objects. In this way,
the units "move ahead” on the battlefield, so to speék. The earlier unit structure is passed as a
nogood assumption to the ATMS. This may lead to the situation that conclusions based on the
existerice of this earlier unit are set to out by the ATMS. The unit is clipped in the temporal
database. ' :

The last'phase is the aggregation of units. The units rerﬁaining after the correlation phase are input
to the aggregation phase. The aggregation is aimed at grouping units into higher level units.
Platoons are combiised into companies, companies will in tum be aggregated into battalions,
battalions into regiments. Aggregaicd units are represented separately in the ATMS. The reason
we keep them apart is that units may be part of more than one aggregation, therefore the single

TN, s S e

St o —— A e

TNO report

Page

units remain in the database and are not clipped. The aggregation is a kind of overlay on the units
on the battlefield. Aggregations are hypothesized by the application of aggregation rules, and
justified in the ATMS with the units (and their specific attributes) grouped together as the
underlying assumptions.

Aggregations represent the situation hypotheses. When a new report entails an addition of a unit,
this may result in another aggnegaiion. This aggregation may contradict an earlier one, giving rise
to a second hypothesis of the perceived situation. Another case is when a newly generated reﬁon
results in the correlation with some unit structure used in an aggregation. The result may be a
change in the classified unit type, and it may well be that what was thought to be the unit type is
now passed as a nogood assumption to the ATMS. This may in tum lead to the removal of an
aggregation and thus lilc elimination of a situation hypothesis.

B

[

A A A

TNO report

4 Conclusions and recommendations

The applicaiion described in this chapter is in an experimental stage. It does howeven: demonstrate
the usefulness of the combination of a forward chaining rule firing mechanism, an assumption-
based truth maintenance system and a temporal database © support a strategy for data fusion. The
facilities for predictive reasoning and a retroactive adaptauon of the database created with this
combination allow to maintain multiple hypotheses concemning a battlefield environment with the
maintenance of assumptions as the key point. The temporal database furtherthore supports a "non-
deletion poli'cy". allrwing data to be kept at relative low cost because one timedist entry for each

occasion suffi~2s 1o waintain its history.

An impert it rspect of using an ATMS is computational efﬁciencj'. Especially the mechanism for
updating -ist cia making sure that the list of environments connected to some fact is indeed

_ withow corn.;1iict.ons) and the process of handling nogoods can become very tricky from an

implem... iatioral st2napaint {Morgue & Chehire, 1991]. Again we stress the fact that we used an
implemcn:~icn 7 the ATMS by (Guoxing, 1989}, we, refer to Appendix C. However this did
have a ¢ jvrcack, because the implementation needed code adaptations in order to perform
adequatel. Most notably, the subsumption of a nogood environment by existing environ.merﬁs in
the ATM:: was ot calculated properly, entailing that the effect of passing a nogood did not
propagatc “far erough” causing occasions to remain valid when they were not supposed to. Apan
from rem~+.' work, the adaptation to allow for the interaction with the main program and the

temporal da;abasc was time-consuming as well.

The application and the techniqucs used could be extended in several ways, we also refer 1o
[Keene & Pcn'e 1990] As stated earlier, geographical complexity was not incorporated. Nor have
we used any pmbabrhsnc techniques to represent uncertainty. This could be done by using for

instance the Dempster-Shafer theory of evidence as is described in (Brogi et al, 1984). ‘

Incorporation of fuzzy logic techniques could be even more promising [Sombé, 1990]. The
forward chaining engine oouldlbc enhanced with certainty factors as well, which would be a
relatively simple ek;cnsion. The rule-firing strategy could be extended, for instance by using the
RETE match aléorilhm to perform conflict resolution among applicable rules [Merritt, 198Y].

'
‘

TNO report

Vet e s pitta e

) Vl P
Ir. AP. Keene
_ (author)
.

-

Drs. M. Perre
(project leader)

Page
52

PO

AN I B i s v o

TNO report
Acronyms and abbreviations
ASIC All Sources Information Center
ATMS Assﬁmpu'on—based Truth Maintenance System
COMINT Communications Intelligence '
DBMS Database Management Svstem ‘ ,
DFD Data Fusion Demonstrator
DFD Data Flow Diagram
DTG Date Time Group
EWU Electronic Warfare Unit
ELINT ' Elecironic Intelligence
FEBA Forward Edge of the Battle Area
FLOT Front Line Own Troops
GLB Greatest Lower Bound
HUMINT | Human Intelligence
ISD Information Structure Diagram '
LUB - Least Upper Bound
MEFISTO Modular Environment for Fusion and Interpretation of Sensor data in Trackiﬁg
Opposing forces '

NIAM Nijssens Information Analysis Method
ORBAT Order of Battie
POSTGRES Post Ingres
'PROLOG Programming in Logic
RDBMS Relational Database Management System

RMS Reason Maintenance System
RPV “Remotely Piloted Vehicle
TDB Temporal Database

' ™M Time Map Manager
™S Truth Maintenance System

Page
53

AR e

g

References

{Bonasso, 1985)

Page

Bonasso R.P., "Capturing domain pnmmvcs for knowledge—cngmeenng Proceedings IEEE

Conference on Circuits, Systems and Computers, 1985.
[Bonasso et al., 1984]

Bonasso,R.P., Antonisse H.J., Laskowski,§.J., ANALYST LT, Reports MTP-83W00002, MTP-

84W00220, Mitre Corporation, 1984,
[Brogi et al., 1988]
Brogi.A., Filippi,R., Gaspa:i,M., Turini,F., "An expert system for data fusion basedon a -
, blackboard architecture”, in: [Engelmore & Morgan, 1988].
[Bratko, 1986} , .
Bratko,l., Prolog programming for artificial mlelllgence Addlson-Wesley, 1986.
[Byrne et al., 1989]

v

Byme,C.D., MilesJ.A.H., Lakin,W L., "Towards knowledge-based nava! command systems”, in:

Proceedings Third International C3IMIS Conference, IEE, Boumeinouth, 1989.'
{Dean & McDerinott, 1987)

Dean T.L. & McDermou,D., "Temporal database management”, Artificial Intelligence 32 (1987),

pp. 1-55.
[Dean, 1985}

Dcan,T.L., Temporal Imagery : .*n approach io reusoning about time for planning and problemn

planning, Yale University, RR #433, October 1985.
[Dean, 1986}

Dean,T L “Handling shared resources in a temporal database managcmﬂm system”, Decision

Support Svstems 2 (1986), pp. 135-43,
[DeKleer, 1986a)

De KleerJ., "An Assumptlon Based Truth Maintenance Syslem Artificial Int-lligeace 28 (1986)

pp. 127-62.
[DeKleer, 1986b}

De KleerJ., "Extending the ATMS", Artificial Inteiligence 28 (1986), pn. 163-96.
{DeKleer, 1986¢)

De Kleer,J., "Problem Solving with the ATMS", Artificial Intelligence 28 1986), pp. 197-224. i

D A g Wt e
]

]
]
i
5

[Denhoim, 1988} .
Denholm,P., "An Enemy Contact Report Expert System (ECRES)”, in: /ntelligence generation and
its integration into military command & contrcl systems, AI-‘CEA Europe Seminar, Rome, 1988.
{Doyle, 1979] '
DoyleJ., "A truth maintenance system”, Arsificial Intelligence 12 (1979).
{Engelmore & Morgan, 1988] '
Engelmore R.S. & Morgan,AJ., Blackboard Systems, Addison-Wesley, 1988.
[Essens, 19§9]
A Esscns.P.‘J.M.D., Orientation command and control research First Army Corps (Dutch), TNO
Institute for Perception, Report IZF 1989-28, 1989.

 [Firby & McDermott, 1987]

Firby,R.J. & McDermott,D.V., "Representing and solving temporal planning problems”, in:
Cercone N. & McCalla,G. (eds.), The knowledge frontier: essays in the representation of
knowledge, Springer, 1987, pp. 353413, '
[Gaiton, 1987]
Galton,A. (ed.), Temporal logics and their applications, Academic Press, 1987.
[Ginsberg, 1987] ' '
Ginsberg M. (ed.), Readings in non-monotonic reasoning, Morgan Kaufmann, 1987.
[Guoxing, 1989) S
Guoxing,H., Truth maintenar.ce systems and their implementation in PROLOG, University of
Twente, Report UT-KBS-89-01, February 1989. ’
{Hanks & McDermott, 1985])
. Hanks,S. and McDermott,D., Temporal reasoning and default logics, Yale University, RR #430,
October 1985.
[Harris, 1988]
Harris,C.J. (ed.), Application of artificial intelligence to command & control systems, Peter
Peregrinus Lid., 1988.
{Keene & Perre, 1990]
Kelene,A.P. & Perte, M., Data fusion: A preliminary study, TNO Physics and Electronics
Laboratory, Report FEL 90-B356, December 1990.
{Lakin & Miles, 1987] '
Lakin W.L. & Miles J.A H., "An Al approach to data fusion and simadon'asscssmcm”. in:

'

.Harris,C.J. & White 1. (eds.), Advances iq Command, Control and Communications Systems, Peter
Peregrinus Lid., 1987,

N

TNQ report

Page
56.

[Llinas, 1988] . . .
Llinas,J., "Toward the utilisaticn of ceriain elements of Al technology for multi-sensor fusion”, in:
' Harris,C.J. (ed.), Application of artificial imellx“gence 1o command & control systems, Peter
Peregrinus Ltd., 1988. '
[Mason & Johnson, 1988]
Mason,C.L. & Johnson,R.R., DATMS: A framework for distributed assumption-based reasoning,

t

University of California, Department of Applied Science, 1988,
{McCarthy, 1980} i)
‘ McCarthy J., "Circumscription - A form of non-monotonic reasoning”, Artificial Intelligence 13
(1980). pp. 27-39. '
[McDermott & Doyle, 1980]
MtDermott.D. & Doyle.J., "Non-monotonic logic I", Artificial Intelligence 13 (1980), pp. 41-72.
[Merritt, 1989] ‘ .
Meritt,D., Building expert systems in Prolog. Springer Verlag, 1989.
[Morgue & Chehire, 1991] '
Morgue, G. & Chehisce,T,, "Efficiently interfacing an ATMS and an Expert System Shell”,
Proceedings Avignon ‘91: Tenth International Workshop on Expert Systems & their Applications,
EC2, 1991, 15 pp.
{Naylor et al., 1988]
Naylpr.R.T., Roth,A., Bromley,P.A., Wau,S.N.K,, "Batileficld data (usion", in: Harris,CJ. (ed.),
Application of artificial intelligence to command & control systems, Peter Peregrinus Lid., 1988,
[Rauch et al., 1983] ‘ ‘ ‘ o
Rauch HE., Firséhein.o.. Perkins,W.A_, Pecora,V.J., "An expert system for tac'tical data fusion”,
, Procecdings IEEE Conference on Circuits, Systems and Computers, 1983.
[Reiter, 1980}) .
' Réilerﬁ.. "A logic for default reasoning”, Artificial Intelligence 13 (1980), pp. 81-132.
[Snodgrass & Ahn, 1986])
'Snodgrass,R. & Ahn,l., “Temporal databases”, /IEEE IC'ompuler. Sepiember 1986.
(Sombé, 1990] . I
Sombé L., Reasoning under inépmplele information in artificial intelligence, John Wiley, 1990.
[Stakenborg, 1989] ‘ -
Stakenborg L., Guide to RMS-literature, Delft University, Report 89-52, 1989.

JETT

o —

TNO report

Page | o :
57 T !
[Stam & Snodgrass, 1989] ' ' '
Sta‘m,R.B. & Snodgrass,R., "A bibliography on temporal databases”, University of North Carolina,
, 1989, : '
[Stonebraker et al., 1986] '

Stonebraker, M. & Rowc,L..A., “The design of POSTGRES", Proceedings 1986 ACM-SIGMOD

Conference, Washington, 1986, . . I
[Stonebraker et al., 1990]

Stonebraker,M., Rowe,L.A., Hirohama, M., "The implementation of POSTGRES", /JEEE

Transactions on Knowledge and Data Engineering 2(1), 1990.

[VI-MBB-1, 1984]

Military command and control (Dutch), Royal Netherlands Army, 1984,
[VS 2-1350, 1988] ‘ :
Handbook for the soldier (Dutch), Royal Netherlands Army, 1988,

- |VS 2.1351, 1988]

Handbook for }he officer (Dutch), Royal Netherlands Army, 1988.
{VS 30-1, 1987}
Organization and operational mode of Soviet armed forces (Dutch), Royal Netherlands Army,
1987. '
[VS 30-5, 1989]
Combat intelligence (Dutch), Royal Netherlands Army, 1989. o

+

(P P
+ - .

PRy -

TNOr-port

Appendix A

Appendix A:

1
2
3
31

32
33
34

The structure of the code in this appendix is as follows:

Basic queries

Temporal distance calculation .
Temporal queries |
Relations between timepoints

Relations between timepoints and occasions
Relations between nccasions

Relations between occasions and intervals

' The temporal database system.

A2
AS
AT
A7
A8
A8
A.10

Page
Al

VSN

Ce e e e

TNO report

Appendix A . : Page i
A2 {

Tequela: Temporal query language -

This appendix contains the Prolog source code for the temporal database system.

The clauses goveming the consultation and manipulation of the temporal database are listed.

" These can be divided into three sections. The first contains predicates for the explicit

manipulation of the temporal datablase. being the direct addition, updating and clipping of timedist

entries. The second is the code for the function performing the calculation of the shortest path

/ temporal distances. Finally, a collection of temporal queries is listed that allow to query the
relations among timepoints, among occasions, and between occasions and timepoints. '

1 " Basic queries

timedist (ref, ref,0,0).
timedist (ref, inf, inf, inf).,
timedist (inf, inf, 0, inf) .

add_timedist (X, Time):-"
add_timedist (begin(X),end(X),Time).

add_timedist (X, Y, Time) : -
X = begin{a), '
Y = end(d),
assert (timedist (ref, X, Time, Time)),
assert (timedist (X,Y,0,inf)).

add‘timedist(X,f,Low,High):—
assert (timedist (X, Y, Low, High) .

update_timedist (X, Y, Low,High) : =
retract {timedist(X,Y¥, _,_)),
assert (timedist (X, Y, Low,High)).

clip_node(X,ClipTime) :- % in case of a known begintime .
' timedist (ref,begin(X),Begin,Begin), %
retract (timedist (begin(X),end(X),_Low,_High)),
Timediff is ClipTime - Begin, s
. myabs (Timediff,Duration),) :
assert (timedist (begin(X),end(X),Duration,Duration)),
nl, .
write('Node '),

TNO report

Appendix A : Page
. A3

write(X),

write(' clipped at time '),
write(ClipTime),

nl. /* Begin + Duration = ClipTime */

clip_nodelist ({],_):-
1

clip_nodelist ((H!T),ClipTime) : =~
clip_node(H,ClipTime),
clip_nodelist(T,ClipTime).

myabs (A, A) : -
A > 0.
myabs (A,B) : -
L A< 0, ,
B is -A,

temporal_boundaries(ReportList,Min,Max):~-
timelist (ReportList,TimelList),
sort (TimelList, SortedTimelList),
nthl(l,SortedTimeList,Min),
last (Max,SortedTimeList) .

cemporai_bounds(X,LI,HI,LZ,HZ):-
calc_temp_distance (ref,begin(X),Ll,H1),
calc_temp_distance(ref,end(X),L2,H2),
1

calc_temp distance(A,B,K,L):- ' :
findall([A,B,K,L],temporal;distance(A,B,K,L),List),
write_list (List), '
'

time (X) ;-
findall ({X,Low,Highl, absolutime (X, Low, High), List),

write list(List),
+

absolutime (X, Low,High)': =
temporal_dis:ance(ref,begin(X),Low,_),
temporal_distance(:ef,end(X),_,High).

LR P PR

TNO report

Appendix A

< timelist (({),()):~-
'

' T.

timelist ([HIT], {Time|TimeList])):~
asktms(report(H, ,_,_,_,_.Time),_),
timelist (T,TimeList) .

tell timedist(X,Y):-
timedist(x,YqLow,High),
nl,
write_timedist (X,Y,Low,RHigh),
fail.) '
tell timedist(_,_):-
' nl,
t

write_timedist (X, Y, Low,High):~
nl,
write(X),
ni,
write(Y),
ni, '
write('Low : '),
write(Low),
nl,
write('High: "),
write(High),

nl,
',

Page’
A4

e e

TNO report)

Appendix A ' } ' ' Page

AS

2 Temporal distance calculation

temporal_distance(B,E,Minimum,Maximum) : -
aggregate ((max (Min) ,min(Max) },distance (B,E,Min,Max), (Minl,Maxl1])},
(Minl > Maxl
-> *
{nl,
write('Temporal error.'),
nl
)
true
Yo
limitnum(Minl, Mxnlmum),
limitnum(Maxl,Maximum) .

distance (Tb, Te,Min,Max):

' distance(Tb, Te,(Tb] 0,0, MlnExp,MaxExp),
call(Min is MinExp), '
call(Max is MaxExp) .

distance (Te, Te, Path,Min,Max,Min,Max) .
distance (T1,Te,Path,Minl,Max1l,Min,Max) : -
timedist (T1,T2,Min12,Max12),
not (member (T2,Path)),
add_dist (Minl,Minl2,Min2),
add_dist (Max1l,Max12,Max2),
distance(T2,Te, [TZ|Path],Min2,Max2, Min, Max)
distance(T1, Te,Path,Minl, Maxl,Min,Max) :
timedist (T2,T1,Min21,Max21),
not (member (T2, Path)),
subtr_dist (Minl Max21,Min2),
subtr_dist (Maxl,Min21,Max2),
distance (T2, Te, [T2|Path],Min2,Max2,Min, Max) .

add_dist (ref, ref,0).
add_dist (ref, inf, 1000000) .
add_dist (inf, ref,1000000) .
add_dist (inf, inf,2000000) .
add_dist (ref,A,A). '
add_dist (A, ref,A).
add_dist (inf,A,R) :~
integer (a),
‘R is 1000000 + A.
add_dist (A, inf,R) : -
integer (A},
. R is A + 1000000.

e oo

'

TNO report ‘ ,

Appendix A

add_dist (A,B,R) :~
integer(A),
integer(B),
R is A + B.

subtr_dist (ref, ref,0) .

- subtr_dist (ref, nf,-10000C0; .
subtr_dist (inf, ref,1000000) .
subtr_dist (inf, inf,500000) .
Subcq_dist(ref,A,-A).
subtr_dist (A, ref,A). -
subtr_dist (inf,A,R):~

integer{A),

R is 1000000 ~- A.
subtr_dist(A,inf,R):-

integer(A),

R is A - 1000000.
subtr_dist (A,B,R) :~

integer(A),:

integex(B),

R is A& - B.

limitnum(Num, inf) : ~ % posinf
Num >= 999000,
1]

limitnum(Num, -inf) : - % neginf
Num =< =999000,
]

limitnum (Num, Num) .

b g

B AT b O AN b 5

.

TNO report

‘Appendix A
3 " Temporal queries
3.1 ' Relations between timepoints

equal(T,T).

' less (T, inf) :-
not (T = inf).
less(ref,T):-
not (T = ref).
less(T1,T2):-
integer(T1),
integer (T2),
| T1 < T2.

less_equal(_,inf).

less_equal(ref,).

less _2qual(T1,T2):~
integer (T1),
integer (T2),
Tl =< T2.

time:requal\T1,T2):-
temporal_distance(T1,T2,0,0).

time_less(T1,T2):~ '
temporal distance(T1,T2,Low,_High),
less (0, Low) .
time_less(T1,T2):-
temporal_distance(T1,T2,Low,High), .
. 'less (Low,0),
less (0,High).

time_less_equal(T1,T2):~
temporal_distance(T1,T2,Low,_ High),
less_equal (0, Low).
time_less_equal(T1,T2):~
temporal_distance (T1,T2, Low, High),
less_equal (Low,0),
less_equal (0,High) .

' time_in_interval(T,T1,T2):-
time_less_equal(Tl, T),
time_less equal(T,T2).

Msmanramr

K . s R M

TNO report ' .

Appendix A

32 _Relations between timepoints and occasions .

time_during_occasion(Time,Occasion) :-
absolutime (Occasion, Low,High),
less_equal (Low, Time),
time_less_equal(Time,High).

time_before_occasion(Time,Occasion):-
absolutime (Occasion,Low,_),
less (Time, Low) .

time_after occasion(Time,Occasion):-
absolutime (Occasion, ,High),
less (High, Time) .

'
¢

time_is begin_of_ occasion(Time,Occasion):-
absolutime (Occasion), Low,_),
equal (Time, Low) .

time_is_end of_occasion(Time,Occasion) :-
absolutime (Occasion),_,High),
equal (Time,High) .

33 Relations between occasions L '

earlier(Occasionl,Occasion2,0Occasionl,Beginl,Begin2) :-
! starts_earlier(Occasionl,Occasion2,Beginl, Begin2).

. earlier(Occasionl,Occasicn2,0ccasion2,Beginl,Begin2} :-
‘starts_earlier (Occasion2,0ccasionl,Begin2,Beginl) .

later(Occasionl,Occasion2, Time) : -
starts_ea:lier(Occasionl,OccasionZ,“}Time).

later(Occasionl,Occasion2, Time) :
starts_earlier(Occasion2,0Occasionl, ,Time).

later(Occasionl,Occasion2,0Occasion2,Beginl,Begin2) :~
starts_earlier(Occasionl,Occasion2,Beginl,Begin2).

later(Occasionl,Occasion2,0ccasionl,Beginl,Begin2) :~
starts_earlier(Occasion2,0ccasionl,Begin2,Beginl) .

diacriminate(0ccasioﬁl,0ccasion2,0ccasion1,bécaaion2,Beqinl,BeginZ):-
starts_earlier(Occasionl,Occasion2,Beginl,Begin2).

Page
A8

TNO report

§ Appendix A

Page .
A9

discriminate (Occasionl,Occasion2,0ccasion2,0ccasionl,Beginl, Begin2): =
starts_earlier(Occasion2,0ccasionl,Begin2,Beginl) .

starts_earlier(0ccasion1,0ccasion2,Lowl,Low2):—

absolutime (Occasionl, Lowl,),
- absolutime (Occasion2, Low2,),
not (Occasionl = Occasion2),
lass(Lowl, Low2) .

before (Occasiunl,Occasion2):-

\ absolntime (Occasionl, ,Highl),
absolutime (Occasion2,Low2,),
not (Occasionl = Occasion2),
less (Highl, Low2) .

after(Occasionl,OcccsionZ) i~
absolutime (Occasionl, Lowl,),
absolutime (Qccasion2, ,High2),
not (Occasionl = Occasion2),
less (High2, Lowl) .

during(Occasionl,Occasion2) : ~
absolutime (Occasionl, Lowl,Highl),
absolutime (Occasion2, Low2,High2),
not (Occasionl = Occasion2),
less_equal (Low2, Lowl),
less_equal (Highl,High2).

begins_during(Occasionl,Occasion2):-
absolutime (Occasionl, Lowl,_), ‘
absolutime (Occasion2, Low2,High2),
not (Occasionl = Occasion?),
less_ equal (Low2, Lowl),
less (Lowl,Highl) .

ends_during(Occasionl,Occasion2) :-
absolutime (Occasionl, ,Highl),
absoclutime (Occasion2, Low2,High2),
not {Occasionl = Occasion2),
less (Low2,Highl),
less_equal (Highl, High2) .

overlaps (Occasionl,Occasion2) :~

begins_during(Occasionl,Occasion2)

’

ends_during(Occasionl,Occasion2).

[e

v o ram————

B N

TNO report

Appendix A

coincides (Occasionl,Occasion?) :~
absolutime (Occasionl, Lowl,High),
absolutime (Occasion2, Low,High),
not (Occasionl = Occasion2).

disjoint_occasions(Occasionl,Occasion2) :~
. not (overlaps (Occasionl,Occasion2)).

34 Relations between occasions and intervals

comes_before (Occasion, BeginTime,) :-
absolutime (Occasion,_,High),
less_equal (High,BeginTime) .

comes_after(Occasion,_,EndTime) :-
absolutime (Occasion, Low,_),
less_equal (EndTime, Low) .

true_throughout (Occasion,BeginTime, EndTime) : -
absolutime {Occasion, Low,High),
less_equal (Low,BeqinTime),
less_equal (EndTime, High) .

lies_in(Occasion,BeginTime,EndTime) : -
absolutime (Occasion, Low, High),
less_equal (BeginTime, Low),
less_equal (High, EndTime) .

past_overlaps(Occasion,BeginTime,EndTime) : -
absolutime (Occasion, Low, High),
not (Low = BeginTime, High = EndTime),
less_equal{Low, BeginTime),
less_equal (High,EndTime) .

future_overlaps(Occasion,BeginTime,EndTime) : -
absolutime (Occasion, Low,High),
not {(Low = BeginTime, High = EndTime)),
less_equal (BeginTime, Low),
less_equal (EndTime, High) .

Page
A0

R R———

A st Lpores

T

TNO report . .

Appendix B Page '

Appendix 3: Inference and interaction TDB-ATMS

\

The structure of the code in this appendix is as follows:

1 Inference engine ‘ B.2
2 Match and process clauses B4 !
2.1 Match and meet B.4
22 Process and take . BS

3 Interaction with TDB and ATMS B9

Appendix B ' : Page

B.2

TDB-ATMS: Inference and interaction

This appendix contains the Pm'log source code for the rule fiing mechanism and the predicates
that handle the interaction between the ATMS and the temporal database.

The interaction with the ATMS and the temporal database is triggered by the application of the
rules. Simultaneous calls to the ATMS and the temporal database wi!! be contained in the rules as
actions. The forward chaining rule application is a "maich And process” algorithm that
sequentially steps through the rules.

_ The code in this appendix is divided into three scctions. The rule firing mechanism is listed first.

Secondly, the match and process clauses are listed, showing how - among others - the "assume”,
"derive”, and "derive_and_assume” calls to the ATMS and the temporal database have been
implemented. This is subdivided into a "match-and-mect” and a "ptoccss-and-take” section,
respectively dealing with the conditions and the actions in the rules. The "take(Action)” clauses of

"the rule application use the predicates that deal with the interaction between the problem solver

and the ATMS, the temporal database, as well as the interaction amongst the latter two. These
predicates that are used in the match and process clauses are contained in the third section.

1 . Inference engine

fire(Type):-
fire_alliType, ,_, ._)
'

fire(Type,Nr):- .

‘fire_all(Type,Nr,_, ,_)

;
'

fire_all(Type,Nr,Description, LHS,RHS) :~
rule (Type,Nr,Description) : : LHS==>RHS,
fire_rule(Type,Nr,Descripticn, LHS,RHS), '

1 B

TNO report

Appendix B

fire_zule(Type,pr,Descgiption,LHS,RHS):-
match (LHS), !
process (RHS, LHS, Type), '
writerule (Type,Nr,Description),
fail.
nl,:)
write('Fire rule? '),
read (Answer), '
carry_out (Answer),
1

carry_out(y):-

'
r

fail.
carry out(n):=~
'

carry_out(_):i=-) \

. nl,

write('Not a valid command, enter (y/n): '),
read (Answer),
carry_ out {(Answer).

writerule (Type,Nr,Description) :-
nl,
write('Rule fired: '),
write (Type),
write(', '),
write(Nr),

write(', '),
write (Descriptiobn),
ni,nl,
',
write list((]):-

]
write list ([H|T}):-

write(H),

nl,

write_list(T).

Puge

B3

TNO regort
Appendix B - Page
) B4
2 ' Match and process clauses
21 Match and meet

match([}):-
.]

match([Conditioleest]):-

'
.

eet (Condition),
match (Rest) .

meet (tms (neg(Prem))) :~

Y

% meet tms condition

meet (tms (not (Prem))) :~

¥
e

not (node_exists(Prem, in)) .

meet (tms (out (Prem))) : ~

] .
e

tms_node(_,Prem,out, , , , ,).

meet (tms (Prem)):-

'
.

‘tms_ncde (_,Prem,in, , , , ,).

meet {neg(Prem)) :=- % meet prolog condition

1
o

neg (Prem) .

meet (not (Prem)) : ~

1
.

hot(?rem).

meet (Prem) : =

'
“r

Prem.

SR b MRS . a5y s it P 5

TNO report

Appendix B

. 2.2 Process and take
process ({1, _,_):-
.] .'

process ([Action|Rest]), LHS, Type) : -
take (Action, LHS, Type),
v, - .

process (Rest, LHS, Type) .

take(asktms(X,StaCus5'_,_):-
asktms (X, Status) .
' take(replace_node(X,Y),_,_):-
tma_replace(X,Y).
take (add_premise (X, Time), ,_):~
arid_premise (X, Time) . o

take {2ssume (X, Time), ,_):- .
(check_node_exjists(X,_)
build_tms_node (X))
Ve . '
assume_node (X),
nl,)
write{'Adding assumption: '),
write(X),
add_timedist (X, Time),
nl, ’
write('Starting at time : '),
. write(Time),
nl.

take (derive (neg- ;,_,Time),LHshType):-
X = neg(Y),
. take (derive(Y,_),LHS, Type).
take tderive (neg (X),NogoodNodelist, Time), LHS, Type) : ~
(check_node_exist's (neg(X),_)

build tms_node (neg (X))
).
((check _assumption(X),
. pass_nogood (X, NogoodNodeList)
) .
NogoodNodeList = []
),
make_antecedent_list (LKS,Ante_List),
new_justification(Type,neg(X),Ante_List),
nl, o
write('Adding justification for: 'j,

L Sherie e e -

TNO report

Appendix B

write(neg(X)),
add_timedist (X, Time),

nl,) .
wzice('Staiting at time: '),
write(Time),nl.

take (derive (X,NogoodNodeList,Time), LHS, Type) : =

(check_node_exists(X,_)

;

build tms_node (X)

),

({check_assumption(neg (X)),
pass_nogood {neg (X) ,NogoodNodeList)
) '

NogoodNodeList = [} —
),
make_antecedent_list {LHS,Ante_List),
new_justification(Type,X,Ante_List),
nl,
write ('Adding justification for: '),
write(X), ’
add_timedist (X, Time),
nl,
write('Starting at time: '),
write(Time), o
ni. :

take(derive_and_assume (neg(X),_,Time}, LHS, Type) :~

X = neg(Y),
take (derive_and_assume(Y,_, Time),LHS,Type) .

take (derive_and assume(neg(X),NogoodNodeLlst Time), LHS Type) :

.'nl,
write ("' Addxng justification and se:tan assumptzon:
. write(neg(x)).

{ check_node_exists(neg(X),)
build_tms_node(neg(X))
),
((check assumptxon(xi,
pass_nogood (X, HogoodNodeLxst)
)

NogoodNodetlist = [}
),
make_ antecedent list (LHS,Ante_List),
new Justxfxcatlon(Type neg(X),Ante_List),
assume node(neg(()),

add_timedist (X,Time),

nl, '
write('Starting at txme "I

write (Time),

nl.

')'

Page
B.6

TNQG report

Appendix B

* ' take (derive_and_assume (X,NogoodNodeList, Time) , LHS, Type) : -
(check_node_exists(X,_)

H .

build_tms_node (X) ‘ ‘ '
I
{ (check_assumption(neg(X)},
' © pass_nogood (neg (X) ,NogoodNodeList)
)

f L

NogoodNodeList = (]

' '),
: make_antecedent list (LHS,Ante_List), - . '
new_justification(Type,X,Ante_List),
' ' assume_node (X),
' ’ nl,
write ('Adding justification and setting assumption: '},
write(X), :
[add_timedist (X, Time), .
nl, ¢
write('Starting at time: '),
‘write(Time), '
nl.

take(set_node(X,out),_,_):-
check_node_exists (X, out).

take (set_node(X,out), ,_):-
check_node_exists(X,in),
set_node (X,cut) .

take {set_node(X,out),_,_):-
build tms_node(X) .

take (pass_nogood(X,List), ,):-

) pass_nogood (X, List).

take (set_nogood(X,Time), ,_):-
set_nogood (X, Time) .

take (timedist (X, Y, Low,High), ,):-
timedist (X,Y,Low,High).
take (temporal_distance(X,Y,Min,Max), ,_):~-
temporal_distance(X,Y,Min,Max) .
take (add_timedist (X,Y,Low,High), ,):~
' add_timedist (X, Y, Low, High) .
take (assert(X), _,_):- :
assert (X) .
take (retract (X),_,_):~
retract (X).
take(call(X), ,_):-
call (xy.
take ((X;Y), ,):~-
take (X, _,_)

take(Y,_,_).)

Page
B.7

TNO report

Appendix B . . o Page
B.8

take((X = Y), ,):-
X =y, : i . : t
take((X $ ¥),_,):- '
X is Y.
take(write(X), _,_):-
write(X).) !
take(write list(X),,):-
write_list(x).
take(nl, ,):-)
nl.
take (read(x), ,_):-
read(Xx) .
| take (prompt (X,Y),_,):-
) nl,
write (%),
read(Y). . \
take (X, ,):- . % if all else fails: a prolog call
call(X)) '

fail.

' make :ntecedent _list ([],[]) = : . ,
+
make_antecedent_list ((HIT], [X|List]) -
‘H = tms (X), .
make_antecedent_list(T,List).
make_antecedent list ({HIT],List):-
\+ H = tms (),
make_antecedent_list(T,List),
1

TNO report

Appendix B

3 Interaction with TDB and ATMS

asktms (X, Status) : -

fetchtms (X) : -
asktms (X, in) .

fetchtms(_):-
!

check_node_exists(X,Status): -

tell node(X,Status):-
tms_node(_,x,Status,_,_,_,_,“),
ni,
write(X),
fail.

telli node(_,_):=-

nl,
',

check _assumption(X):-
tms_node(,X,in, ,_,_,_, ('Assumption')).

tell_assumption(A):-
assumption(_,A,),
nl, :
write(A),
fail.

tell assumption(_):-
nl,

t

‘tms_replace(X,Y):= ,
retract (tms_node (N, X,S,L,J,C,R,P)},
assert (tms_node(N,Y,S,L,J,C,R,P)).

set_node (X,out) : -

set_node(X,in):~ T T T 77
retract(tms_node(_,x,_,m,_,_,_,~)),

assert(tms_node(_,X,in, , , , ,)).

Page
B9

e e e

<,

TNO report

Appendix B

add_premise(X,T) :~
build tms_node (X),
set_premise_hode (X),
add_timedist (X,T).

add_assumption(X,T):~
build_tms_node(X),
assume_node (X),
add_timedist (X,T).

add_justification(X,A,T):-
build tms_node(X),
new_justification(just,X,A),
add_timedist (X,T).

' pass_nogood (X, NogoodNodeList) : -
set_nogood_nodes { [X],NogoodNodeList),

nl,.
write('Setting nogood: '),
write(X), ' '
nl,nl,
write('Nodes set to out by ATMS are: '),
nl, .
write“list(NogcodedeList);
. nl,

t

pass_nogood_list({},_,_). :
pass_nogood_list ({Xi{Rest],Time, TotalList):~
pass_nogood (X, NogoodList),
append (NogoodList, List,TotalList),
pass_nogood_list (Rest,Time,List).

set_nogood (X, T) :~
pass_nogood(X,List),
‘clip_node (X, T}, N
clip_nodelist (List,T).

Page
B.10

TNO report

Appendix C " Page
' C.1 .

Appendix C:

The Assumption-based Truth Maintenance System

The structu}e of the code in this appendix.is as follows:

I Build nodes, assumptions, environments ' C3
2 Build justification : CS5
3 Update node : C.6
4 Update label ’ ' -Cc7
4.1 Compute justification environment ’ CS§
4.1.1 Make environment from assumption - c8
4.1.2 Generate environment cross product Cc9 .
42 Remove subsumed environments I C.12
4.2.1 Environment subsumed C.16
‘42.2 Check contradictory environments ‘ C.17
5 Update nogood C.19
51 Process nogood tables : C.20
5.2 - Process environment tables c21

P RTN

R

i

b e

TNQ report

Appendix C Page

C2

ATMS | Assumptién-based Truth Maintenance System

The impiementation of the ATMS is based on the implementation in Prolog, listed in [Guoxing,
1989]. We have adapted the code to acquire an interface with our application, to facilitate

.interaction with the temporal database and to remove some -errors from the original code.
However, we stress that the basic algorithms governing the ATMS are unaltered and attributed to

[Guoxing, 1989]. The size of the ATMS implementation is over 26 KB, we will not list the
complete code here. Below, we list selections from the ATMS source code, indicating the
adaptations that we have made that do not only concern the interface.

The ATMS implementation has four main functions that govemn the construction and maintenance
of the four main data structures of the ATMS, discussed in paragraph 3.3.2. The functions are the

following:

build_node.
build assumption.
build environment.

build justification.

The three functions corresponding to the building of nodes, assumptions and justifications are
initiated from outside the ATMS, as clarified in this report. The "build envirbnmem" function is
initiated by the ATMS itself, by the "build_justification” function, which forms the heart of the
ATMS. It is this latter function that initiates the truth maintenance. When a new justification is
passed to the ATMS, three main functions are triggered to recalculate the consistency of the
database. These functions are the updating of nodes, the updaung of labels and the updatmg of

nogoods.

The updating of nogoods uses environment tables and nogood tables as main data structures. The

environment tables contain the environments in the ATMS, they are ordered by the number of
assumptions the. environments consists of. Thus, there is an environment table containing the
environments with one assumption, with two assumptions, etcetera. Nogood tables are used to
keep track of the inconsistent environments in the ATMS, and thus the inconsistent assumptions.

Appendix C ' Page

" The main adaptation -ecessary in the ATMS itself to allow a combination of truth maintenance
and temporal reasoning techniques is to incorporate the returning of a list of the nodes that were
set 10 out as a result of a recoinputation of the labels, see paragraph 3.4.2 and 3.4.3. The
‘NogoodNodeList" records the nodcs set to out in the course of the label update mechanism. It
was added to the code in several places, because it "snakes" through the program. It is explicitly
constructed by the ATMS in the "do_delete_env" function, see page C.18.

There were several errors in the code that needed repair. The main error was that on passing
nogoods to the ATMS the calculation of the subsumption did not travel "far enough" through the
ATMS. Beside this, all environments were set to "contradictory” due to this incorrect calculation
of thé subsumption. The result was that nodes remained valid incorrectly because their labels were

not correctly adjusted. The errors and adaptations made are stated in the code below.

1 * Build nodes, assumptions, environments

3% build_tms_node

build_ tms_node (Datum) : - '
(tms_node(_,Datum, , _,_+_os_,_)
->
(write('Node already existed’),
ni
}

(node_ count (C), '
assertz(tms_node (C,Datum,out,0,(,,(}.{], (1))
)

)I

system_initl.

%% -build_assumption

build assumption{Datum):-~
tms_node(fndex,Datum,Status,Label;Ju;tS,Consq,Rules,Plist),
add_element ('Assumption’,Plist,Pl),

retract (tms_node (Index,Datum, Status,La: = ,.Justi,Consq,Rules,Plist)

assumption_count (C),
assertz(assumption(C,Datum, [])},
assertz(tms_node (Index,Datum, Status, Label, Justi,Consqg, Rules,P1)).

TNO report

Appendix C

3% build_environment

build_environment (Assum) :-
environment_count(C), .
length (Assum, Len),
assertz(environment (C,Len,Assum, [],{])),
f£ill assum _env(Assum,C),
insert_env_in_table(Len,C).

fill_assum env({],_):- .
1

£ill _assum_env({[HIT],Env) :-
retract (assumption (H,Assum,Qenv}),
ord_add_element (Oenv,Env,Nenv),
assertz(assumption(H, A3sum,Nenv)),
£ill _assum_env(T,Env).

insert_env_in_table(Len,Znv_index):-
retract (env table(Len,Eset)),
ord_add_element (Eset,Env_index,E1),
assertz(env_table(Len,El)).

Page
C4

)

sxL

TNO report

, Appendix C

Cs

2 Build justification

'

.
'

build_justification(Type,Conseq,’ntes,NogoodNodeList) :~
% NogoodNodelList added, snakes through rest of the ATMS
justification_count(C), '
push_j_tms_node_just (Conseq,C',
push_j_tms_node_cons(Antes,C),
assettz(justification(C,Type,:onseq,hntes)),
update_sumething(Conseq, C;NogoodNodelList) .

push_j_tmé_node_just(Conseq,Just_i lex) :-
retract (tms_node (Conseq,D,S,L.J,Cons,R,Plist)),
ord_add_element (J, Just_index,Njust),

assertz(tms_node (Conseq,D, S, L,Njust,Cons,R,Plist)).

push_j_tms_node_cons(([],_):-

' ‘ . B

push_j_cms_nbde_cops((HlT],Jusc_index):-
process_one_by one(H,Just_index},
push_j_tms_node_cons (T, Just_index).

.process_one_by one(Ante,Just_index):-

retract (tms_node (Ante,D,S,L,J,Cons,R,Plist)),

(Plist=={'Assumption'] :

-> ! : .
asservtz(tms_poce(Ante,D,S,L,J,Cons,R,Plist))
(ord_add_element (Cons, Just_index,Ncons;,
assertz (tms_node (Ante,D, S, L, J,Ncons,R,Plist))
)

).

f

update_something(Conseq, Just_index,NogoodNodelist) : ~
tms_node (Conseq,Datum,_, _,_,_+_»s_),s
(batum==contra_node
-> ' i v -
update_nogood (Just_index, NogoodNodeList)
. (retract (node_queue (X)),
ord add_element (X,Conseq,X1), -,
assertz (node_queue (X1)),
update_node (X1)
) ' ' .
).

" TNO report

Appendix C . . Pf_l!;

3 Update node

update_node {{]):~- '
v .

update _node ([H!_T]):~- '
update_label (H),
modi_node_queue (H),
do_loop_test (H),
node_queue (Qt),

. (QU=={] '
- - .

!
update_node (Qt)
).

modi_node_queue (Nd) -~
retract (node_queue (Ng)), i ' .
del element (Nd,Ng,Nqgl),
assertz(ncde_queue (Ngl)). .

! do_loop_test (H):~
new_env (New_env),
(New envas={]
~> . v
'
(tms_node (H, latum, , , ,Node consedq, ,), ')
de_list_conseg(Node_conseq) ' '
) :
I

do_list_conseq([]):- ' h)
. .
do_list_conseq({HIT]):~ '
justification(H,_Type,Justi_conseq,_),
do_justi_conseq(H,Justi_conseq),
do_list_conseq({(T). ‘

do_justi_conseq(H,Conseq) :~
Conseg==contra_node
->
update_rogood(H,)

; '

add_ncde_queue (Conseq) .

add_node§Queue(Node):— '
retract (node_gueue (Queue)),
ord_add_element (Node, Queue,Ql),
assertz(node_gueue (Qi}).

TNO report

Appendix C*

4 Update label

update_label (Node) : -
tms_node (Node, Datum,_,Label,Justi, , ,_),
(Label=={)

->

<{retract (env_product (_)), '
assertz{env_product ([]))

)

: . I

do_updat - ‘abecl(Justi,Node)
). ' .

do_update_label ([}, ':-
t

do_update_label ((k T}, N.de):~
compute;juStificition_env(H)L
env_product (Penv),
process_penv(Penv,Node),
do_update_label (T,Node) .

$% compute justification environment

compute justification_env(H):~
Justification(d, Type,_,Antes),
process_antes (Antes),
comm_process_for_process_antes.

process_antes({]):-
N '

process_antes((H{T}):=-
! tms_node (H,Datum, , Label, , , ,Plist),
l (Plisc==['As§umptian')
->
(assumption(Ind,Datum,),
push_input_assumption {Ind)
) '
push_input_envs (Lakel)
i .
process_antes(T).

pusa_input_assumption(H) :- ,
retract (input_assumption(Iassum)),
ord_add_element (Iassum,H, 1),
assertz(input_assumption(Il)).

push_input_envs(Label):-
retract (input_envs(Env)?,
ord_union(Label,Env,El),

" Page

Cc7?

e

ﬂwdnaﬁ

Appendix C' Page
(o2}

list_to_ord_set (El,E2),
assertz(input_envs(E2)).
comm_process_for_process_antes:-
- input_assumption(Assums),
make_env_from_assumption(Assums),
base_env{Base_env),
L . input_envs tEnv_choices),
" ({Assums=={]
; . Base_env\=={} '
) :
->

generate_env_cross_product (Base_env,Env_choices)

generate_env_crass‘product((],Env;choices)v
).

41 Compute justification environment

' . . 4.1.1 Make environment from assumption

make_env_from_assumption(([]):-
1
make_env_from assumption([H{T]):-
base_env{Base_env),
cons_env(H,Base_env),
base_env(Nenv),
(Nenve=={])
- !
‘(:etract(base_env(;)),
' assertz(base_env([]})}
R
mak. env_from_assumption(T)
). : '

cons_env (Assum,Env) := ° '
ord_add_element (Env, Assum,Nenv),
(environment (E_ind, .,Nenv,_,)
N)
cons_env_xratu-n2 (Ne-v)
cons_env_returnl (Ne: v)
).

TNO report

_Appendix C

cons_env_returnl(Env):-
build_environment (Env),
environment (E_ind,_,Env, ,_),
{check_contradictory(E_ind)
->
(retract (base_env(Benv)),
assertz(base_env((]))
)
{retract (base_env(Benv)),
assertz(base_env(Env))
L
).

cons_env_return2 (Env) :~

environment (_E_ind,_ ,Env,_,Contr},

(Contr\==[]
->
(retract (base_env(Benv)),
assertz(base_env({]))
)
(retract (base_env(Benv)),
assertz(base_env(Env))
)
).

. 4.1.2 Generate environment cross product

generate_env_cross product (Base_env,
env_product (Env_p),

environment (Ind, ,Base_env, ,),

(Env_p==0
->
push_in_env_product (Base_env)

Page
c9 j

TNQ report

AppendixC - ' p

.
;

((new_env_subsumed (Ind,Env_p)
check_contradictory(Ind)
)
- ,
+ push_in_env_product (Base_env)
{(do_check_subsumed(Ind,Env_p),
-push_in_env_product (Base_env)
) .
)
). '

generate_env_cross_product (Base_env, [HIT]) :~-

retract (base_env(_)),

' assertz(base_env(Base_env)),
append_envs (H,Base_env),
base_env(Nenv),

(Nenv=w={]

->

!
gene:ate;env_cross_proﬁuct(Nenv,T)
). '

pusﬁ_in_env_product(Base_env):-
retract (env_product (Env_product)),
environment (Ind, ,Base_env, ,),
(Env_product==0 :
- .
ord_add_element ([),Ind, Ep) °
ord;add_element(Env_product,Ind,Ep)
)I N

Page
C.10

TMOnmﬁ .

Appendix C

list_to_ord_set (Ep,Epl),
assertz{env_product (Epl)) .

append_envs (One_of_input_envs, []) : -
xetract(base_ﬁnv(_)),
environment (One_of_input_envs, ,Assums, ,),
assertz(base_env(Assums)).
append_envs (One_of _input_envs,Base_env) :-
environment {One_of_input_envs,N1,Assuml, ,),
environment (_Ind,N2,Base_env, ,),
(N1 > N2
-> . o
(retract (base_env(_)),
assertz(base_env(Assunml)),
make_env_from_assumption (Base_env)
)
make_env_from assumption(Assuml)
Y N .

do_check_subsumed(_, [1):~

1
. do_check_subsumed (Base_env, [HIT]) : -
env_subsumed (H, Base_env)
->
(retract (env_product (Env_p)),
ord_del element (Env_p,H,E3),
assertz{env_product (E3)),
do_check_subsumed (Base_env, T)
)

do_check_subsumed (Base_env,T) .

Page
c.

. s

TNOQ report

Appendix C

42 Remove subsumed environments
process_penv(Penv,Node) : -
new_env(New_env), :
, case_one(Penv,New_env),
' case_two(Node) . '

case_one ([},):~
case_one ([HIT],New_env) :~
(New_envwes=[]
->
order push penv (H)
sub_case_one (H, New_env)
) .
new_env{Nnenv),
case_one{i.Nnenv). “ ' ,'

sub_case_one (Penv, New_env) :~ .
new_env_subsumed (Penv, New_env)
->
!

;

(check_contradictory (Penv)
->

!

do_modify_new_env (Penv,New_env)
). i .

new_env_subsumed(_Penv, []):~

1 .
..

fail.

Page
C.12

;

Wb 2 B AR T Yo

TNO raport

Appendix C

new_env_subsumed (Penwv, [HIT]) :~
. env_subsumed (Penv, R)
->
t
; .
' new_env_subsumed (Penv, T} .

do_modify_new_env(_, (]):-
t
do_modify new_env(Penv, [HIT]):~
(env_subsumed (H, Penv)
- .
{retract (new_env (New_env)),
del_element (4, New_env,N1',
assertz(new_envi{Nl)),
order_push _penv(Penv)
)
order _push _penv(Penv)
, .
dc_modify_newaenQ(Penv,T).

order push_penv(Penv):-
retract (new_env(Env)),
ord_add_element (Eav,Penv,New_env),
assertz(new_env(New_env)).
case_two (Node) r-
tms_node (Node, ,_,Label, , , ,_),
new_env (New_env),
(seteq(labe:, New_env)
->
{ratracr (new_env(_)),
assertz(new env({}]})

Page
.13

S s ko 5 R,

Y g

TNO report

Appendix C . ,

)

;

(del_env_nodes(Label,Node,New_env),
aad _env_nodes (New_env, Node, Label),
modify node_label (New_env,Node), .
modify_node_othé:_fielda(New_env,Node)
)
).

del_env_nodes(0,_,_):-
1
del_env_nodes({},_,_}:-
1
del_env_nodes({HIT],Node,New_env) :~
(subset (H,New_env)

- ‘

1
(fetract(environment(H,N,A,Enode,Contr)),
del_element (Node, Enode,El),
assertz({environment (H,N,A,El,Contr))
)

’ r
del_env_nocdes(T,Node,New_env).

add_env_nodes({],_,_):-
! . !

add_env_nodes ([H|T],Node, Label) : =
{subset (H, Label)
->
!
(retract(envircnment(H,N,A,Enode,éontr)),
ord_add_element (Enode,Node,El),

Page
C.14

g

TNO report !

Appendix C

assertz(environment (H,N,A,El,Contr))

e
add_env_nodes !T,Node, Label) .

modify_node_label(Néw_env,Node):-,
retract (tms_node (Node,D,S, _L,J,C,R,P)),
assertz(tms_node (Node,D,S,New_env,J,C,R,P)).

$code added for the case New_env={] and Ll={]
nodify node_other fields(New_env,Node) :-
. retract (tms_node (Node,D1,_S1,L1,J1,C1,R1,P1l)),
(New_env=={) '
- '
(Ll=={]
- .
assertz (tms_node (Node,D1,in,L1,J1,C1,R1,P1))

H

agsertz (tms_nbdde (Node,D1,0ut,L1,J1,C1,R1,P1))

)

H

assertz (tms_node (Node, D1, in,11,J1,C1,R1,P1))
).

Page
C.15

IO e b

TNO ropeet

Apta”

4.2.1 Environment subsumed

ent_subsumed([], [}):~
. .

env_subsumed(_, []):-
'

ehv_subsumed([],_):-

ty

fail.
env;subsumed(gl,EZ):—
El==E2, '
'
env_subsumed (E1,E2) :~
environment (E1,N1,Assumsl, ,_),
environment (EZ,N2,Assums2, ,_),
(N1 < N2 !
->
fail

check_assumption_from_env(Assumsl, Assums2)
). ’ '

check_assumption_from env([],{]):~
r

check_assumption_from env(_, [}):~-
!

check_assumption_from env([]l,):-
'y . '
fail.
check_assumption_from_env((H1{T1}, [K21T2]):-
(Hl==H2
->
check_assumption_from env(T1,T2)

Page .
C.16 ; ;

TNO report

Appendix C Page
C.17
(H1 < H2
->
' check_assump*ion_from_env(T1, (H2[T2])
fail ‘
y
). '
422

Check contradictory environments

check_contradictory(Env_ind) :-
environment (Env_ind,N, _Assums, ,Contrj,
(Contr\==[)
->
!

lookup_nogood_table (i, Env_ind)
).

f

lookup_ncgeed_table(N,Env_ind) : -
countk (I},
nogood_table(I,Cenv),
I =<nN
->

(subsumed_nogood (Cenv,Env_ind, I}
->

end_lookup_nogood_takle
lookup_nogood_table (N,Env_ind)

'

)
(end_lookup_nogood_table,
fail

).

. x g

s e e

TNO report

Appendix C

end_lookup_nogood_table:-
retract (countk_aux(_)),

assertz(countk_aux(0)),
t

:subsumed_nogood((],_:_):-

t
’

fail.. -

subsumed_nogood({H|T},Env_ind, I):-

env_subsumed(Env_ind, H)

-> .

{retract (environment (Env_ind, Num, Assums,Nodes, _Contr}),
assertz(environment(Env_ind,Num,Assums,§odcs,H))

} ' .

subsumed_nogood(T,Env_ind,I).

A A

TNO report

Appendix C . Page
C.19

5 Update nogood I .
update_nogood (Just,NogoodNodeList) :~
compute_justification_env{Just),
env_product (Env_product),
clear_nogood(Env_product, Just,NogoodNodeList) .

% code adapted, before: when Env_product = 0 "clear_nogocd" failed
clear_nogood((], ,_):- : ‘

t .
. clear_nogood([HIT),Just,NogoodNodeList) : -

retract {environment (H,N, Assum,Nodes,_Contr)),

- assertz(environment (H, N, Assum, Nodes, Just)),
remove_env_from_labels (H, NogoodNodeList),
' insert_nogood_in_table(N,H),

process_nogood_table (N,H),

process_env_table(N,H),

clear_nogood(T,Just, NogoodNcdeList) .

remove_env_from_labels(Env,NogoodNodeList) :-
envi:onment(Env,_N,_Assum,Nodes,‘ContrJ,
dc_delete_env(Nodes,Sny,NogoodNodeList).

%* code adapted, NogoodNodeList is constructed here
do_delete_env([], ,[]):-
1
do_delece_env([HIT],EnO,(NoqoodNodelList]):—
retract (tms_node(H,D,S,L,J,C,R,P)),
del_element (Env,L,L1), ‘
(Ll=={)
->
(assertz (tms_node (H,D,out,0,J,C,R,P}),
NogocdNode = D
)

PRSI

e

TNO report

Appendix C ‘ ‘ - ' ‘ Page
. C.20

(assertz({tms_node(H,D,S,L1,J,C,R,P)),

NogoodNode = (]

)
o . : C |' - '
retract (node_gqueue (Node_q}),
ord_add_element (Node_q, H,Nodel),
assertz(node_queue (Nodel)),,
do_delete_env({T,Env,List).

insert_nogood_in_table(N_assums,Env):-
' N_assums==0

- . .

! .) \ .
(retract (nogood_table (N_assums,Nogood) i,
. ord_add_element (Nogood, Env, Nnogood),

assertz(nogood_table (N_assums,Nnogood})
). .)

5.1 . . Process nogood tables’

process_nogood_table (129,) =
) .

process_nogood_table (N,Cenv) :~
nogcod_tablé (N, Nogood) ;

" do_tésc_nogood_subsumed(Noqood,Cenv,N),
Y is N+i,)
process_nogood_table(Y,Cenv).

Ww.»«mw’m .

"process_nogood table (0,) :- '
t

T

: TNO report

Appendix C , Page
Cc21

' 'do_test nogood_subsumed([j, ,_)i= .
v B
do_test*nogooqﬁsubsumed(1H|T),Cenv,N):—
{H==Cenv,
Te={1
}
- o ! . .
!

+

(env_subsume« (H, Cenv)

- C

(dele _h_from rngood_table(N,H),

do_test_nognuod_subsumed(T,Cenv,N)

) .

. do_test_nogood_subSuméd(T,Cenv,N)
).

dele_h_from_nogood_table (N, H) : -
retract (nogood_table (N,Nogood)), !
del_element (H,Nogood, Nnogood) ,
assert (nogood_table (N, Knogood)) .

52 Process environment tables - '

process_env_table(0,):-
' !

process_env_table (129,) :-
1

process_env_table(N,Cenv) : -

: env_table(N,E_table), .
do_test_env_subsumed(E_table,N,Cenv), '
Y is N+1, . L
process_env_table(Y,Cenv) .

f

e S

ot

TNO report

Appendix C

Page
' C22

% error, code added, before: every node contradictory!
do_test_env_subsumed([],_,):-

t

do_test_env_suksumed([H|T},N,Cenv):~-

environment (H,Na,Ass,No,Contr), ((Contr == [],
env_subsumed (H, Cenv) $ H subsumed by Cenv (H>=Cenv)
) :
->

(retract (environment (N, Na,Ass,No,Contr)),
assertz(environment (H,Na,Ass,No,Cenv)),
remove_env_from_labels(H,),
do_test_env_subsumed(T,N,Cenv)

)
({Contx == (] .
-l B
do_test_env_subsumed(T,N,Cenv)
(retract (environment (H,Na,Ass,No,Contr)), .
assertz {environment (H,Na,Ass,No,Cenv)),
do_test_env_subsumed(T,N,Cenv)

) ' :

UNCLASSIFIED
REPORT DOCUMENTATION PAGE (MOD-NL)
1. DEFENSE REPORT NUMBER (MOD-NL) 2. RECIPIENT'S ACCESSION NUMBER 3. PERFORMING ORGANIZATION REPORT
C ‘ NUMBER
TD91-3885 - FEL-91-B308
4. PROUECT/TASKWORK UNIT NO 5. CONTRACT NUMBER . 6. REPORT DATE
2244} . NOVEMBER 1991
7 NUMBER OF PAGES 8. NUMBER OF REFERENCES 9. TYPE OF REPORT AND DATES COVERED
100 (NCL. APPEND. & RDP. EXCL. DIST. LiSD) 43) FINAL REPORT

10. TITLE AND SUBTITLE
DATA FUSION: TEMPORAL REASONING AND TRUTH MAINTENANCE

-

11. AUTHOR(S)

A.P. KEENE, M. PERRE

12 PERFORMING.ORG: Nien TON NAME(S) AND ADDRESS(ES)

TNO PHYSICS AND ELECTRONICS LABORATORY, P.O. BOX 94864, 2509 JG THE HAGUE
OUDE WAALSDORPERWI G 63, THE HAGUE, THE NETHERLANDS

13 SPONSORING/MONITORING AGENCY NAME(S)
NETHERLANDS MINISTRY OF DEFENCE

14. SUPPLEMENTARY NOTES
THE PHYSICS AND ELECTRONICS LABORATORY IS PART OF THE NETHERLANDS ORGANIZATION FOR APPUED
SCIENTIFIC RESEARCH

15 ABSTRACT (MAXIMUM 200 WCROS, 1044 POSITIONS)

THIS REPORT CONTAINS A SURVEY OF TWO TECHNIQUES THAT CAN BE USED IN THE FIELD OF DATA FUS!ON
TEMPORAL REASONING AND TRUTH MAINTENANCE. THE AUTOMATIC FUSION OF INTELLIGENCE REPORTS
NECESSITATES TAKING INTO ACCOUNT THE FACTOR TIME. INCOMING MESSAGES CAN LEAD TO NEW
INTERPRETATIONS OF THE CURRENT BATTLEFIELD SITUATION, CHANGING PREVIOUSLY MADE HYPOTHESES. A
DATA FUSION SYSTEM MUST ALSO B8F ABLE TO MAKE A PREDICTION OF WHAT SIGHTINGS ARE TO BE
EXPECTED, E.G. IN THe CASE OF COL'JMNS OF VEHICLES MOVING PAST DIFFERENT SENSORS. THIS REPORT
DESCRIBES A TEMPORAL DATABASE SYSTEM THAT CAN CAPTURE (SOME PART) OF THE VOLATIUTY OF THE
INTELLIGENCE PROCESSING DOMAIN, WHILE PROCESSING INTELLIGENCE REPORTS THERE IS ALWAYS AN

AMOUNT OF UNCERTAINTY AND INCOMPLETENESS THAT HAS TO BE DEALT WITH. SO THERE IS A NEED FOR '

MAINTAINING DIFFERENT LINES OF R:ASONING OR HYPOTHESES PERTAINING TO THE BATTLEFIELD SITUATION
CONCURRENTLY, AND INCORPORATING NEW INFORMATION AS IT BECOMES AVAILABLE. IN THIS REPORT
AN ASSUMPTION-BASED TRUTH MAINTENANCE SYSTEM PROVIDES A FRAMEWORK IN WHICH THIS PROBLEM
CAN PE SOLVED. A FPROTOTYPE HAS BEEN DEVELOPED TO DEMONSTRATE THE APPUCABILTY OF THE
AFOREMENTIONED TEZZHNIQUES. THIS PROTOTYPE, CALLED MEFISTO (MODULAR ENVIRONMENT FOR FUSION
AND INTERPRETATIOF OF SENSOR DATA IN TRACKING OPPOSING FORCES). IS A SIMPLE KNOWLEDGE-
BASED SYSTEM INTEGRATED WITH A TEMPORAL TRUTH MAINTENANCE FACILITY.

16. DESCRIPTORS ' : IDENTIFIEAS
ARTIFICIAL INTELUGENCE ' ’ MULTI-SENSOR DATA FUSION
EXPERT SYSTEMS . KNOWLEDGE BASED SYSTEMS

COMMAND, CONTROL. COMMUNICATIONS&INTELUGENCE

17a. SECURITY CLASSIFICATION 17b. SECURITY CLASSIFICATION - 17c. SECURITY CLASSIFICATION

(OF REPORT) (OF PAGE) » (OF ABSTRACT)

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

18 DISTRIBUTIOW/AVAILABILITY STATEMENT . 17d. SECURITY CLASSIFICATION
' (OF TITLES)

UNLIMITED AVAILABILITY UNCLASSIFIED

N IFl

At e e e

oo e

3

EENR

!
i
i

S

[ENRGETRR

