]

LS R I .U Y

+ SECURITY C: ASSiFICATION OF TR15 PAGE

iaz ol

ERENTFPEIIE Y 3o

REPORT DOCUN‘LNTA‘!‘&N RAGE

AR PA K T OW

Vb, REST IUCT!\IE MARKINGS

=
152

3. DISTHIBUTRON/ AVAILABILITY OF REPORT

Untimited

== AD-A245 519 =
xR ] l’/'l'l'lz'"'f’ﬂ’ 5
h'_2") DELL 2% riamee . _FLTH ‘92;;?% ra

! 4 TERSORVENG ORGANIZATION ©

i

fR 91-174%5%

5. MONITOUNG GFGANIZA IS ¢ REGAT NJMREN(S)

[

6a. NAMF CF PFRFORMING ORGANIZATICN r OFFICE SYMBOL

i 3 If applicable
Corneli ‘mivarsity ! (1f appi )
|

7a. NAME OF MONITORING " 2GANITATION
Office of Naval Recearch

6c ADDP: T {City, State, and ZIP Code)
g Napartment of Computer Science
I ‘Ipsor Hal’' . Cornell University

VAR T

7b. ADDRESS (City, State, and 2'F Code)
800 North Quincy Street

Arlington, VA 22217-5000

i Ithaca, /¥ 18453
8 NA’:‘ CE -0 'NG / SPONSOPING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUAMIER
S 3ANI -ﬂ'n)N (If 2pplicable) ' :
Cffice ny Faval Research

X ADCRESS (lty State, and ZIP Code)
RO0 North Quincy Street
Arlingtor, VA 22217-5000

10. SOURCE OF FUNDING NUMBERS ~

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO

11 TITLE (:;-:»::e Security Classification)

Tools and Techniques for Adding Fault Tolerance to Distributed and Parallel Programs

12. PERSONAL AL THOR(S)
Ozalp Rabaoglu

13a. TYPE OF REPORT
Iaterim

13b. TIME COVERED

BLOE

F REPORT (}fear Month, Day) 1iS. Pfgﬁ COUNT

Paralex

er: FROM 10
16. SUPPLEMENTARY NOTATION
17. . COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD |  GROUP SUB-GROUP -parallel processing, reliability, transactions, checkpointing,

! recovery, replication, reliable broadcast, ca.:sal ordering,

can no longer be|ignored.

developed for distributed operating systems

toleranze in the

19. ABSTRACT (Continue of reverse if necessary and identify by bicck number) :

The scale of par3llel computing systems is rapidly approaching dimensions where fault tolerance
No matter how reliable the individual components may be, the
complexity of these systems results in a significant probability of failure during lengthy

computations, In the case of distributed memory multiprocessors, fault tolerance techniques
and applications can be applied also to parallel
computations. In this paper we survey some of the principal paradigms for fault-tolerant
distributed compyting and discuss their relevance to parallel processing.
technique-~passive replication--is explored in detail as it forms the basis for fault
Paralex parallel programming environment,

One particular

20. OISTRIBUTION / AVAILABILITY OF ABSTRACT
EuncLassisieomunLMITED [ SaME as RPT.

Coric users

21, ABSTRACT SECURITY CLASSIFICATION

222 NAME OF RESPONSIBLE INDIVIOUAL
Fred B. Schneic? r o

. 22b. fELlEPHONE J%Otdt Area COdQ}

(607) 255973 llf.vOFHCE SYMBOL '

DD FQEM_1473.84MA11
Th's dy—‘-?‘*rsv ),1 T e e

83 APR edition may be used unti oxhau;tcd
M other editions are obiolete. .

SECURITY CLASSIFICATION OF THIS PAGE_ *



Tools and Techniques for Adding Fault To lerance to

sttmbuted and Parallel Programs

Accesion For
. . . NT'S vq‘ 1 """"\)
Ozalp Babaoj’lut ' CHe .
. . . 3"0""'-'f
Department of Computer Science ' _J_‘ f"‘j: b e
Cornell Unj versity 8 T
[thaca, New York 14853-7501 D»} R
December 7, 1991 S
Abstract ' R - ' 5 i

The scale of parallel computing syltezm is rapidly approaching dunennons where fiult tol-f . ) i

erance can no longer be ignored. No matter how relicble the individual components may be, T

the complexity of these systems resuits in a significant probability of failure during lengthy -
computiations. In the case cf disiributed memory multiprocessors, fault tolerance techniques
developed for distributed operating systems and applications can be applied also to parallel
computations. In this paper we survey some of the principal paradigms for fault-tolerant dis-
tributed computing and discuss their relevance to parallel nrocessing. One particular technique
~— passive replication —~ is explored in detail as it forms the basis for fault tolerance in the
Paralex parallel programming environmeant.

Keywords: Parallel procewng, reliability, transactlons, checkpomtmg, recovery, replication, reli-
a.ble broadcast, caunsal ordenng, Paralex.

*TLis work was supported in part by the Commission of European Communities uander ESPRIT Programme
Bnnc Research Action Number 3092 (Predictably Dependable Computing Systems), the United States Office of
Naval Ressarch under conmm N00014-91.J-1219, IBM Cotpotmol ud the Inhu Ministry of University, Research
«ad Technology.

'On lennﬁteunlu Dcputmto(Muhfnnia University otBolopn. «)lﬂBdopa. Itdy

1 S -
o 92-01776
92 122010 . mEimIEm




1 Introduction

Until recently, designers of parallel scientific programs have included Lttle or no support‘ for fault
- tolerance in their applications. This attitude has beep justified through the follows observations:
(i) the modest size of existing multiprocessor hardware platforms have made failures relatively
rare events, (ii) programming fault-tolerant applications has meaut mastering complex distributed
computing concepts, (iii) the overhead for fault tolerance has been judged to be too high with
respect to desired performance.

With the advent of massively-parallel machines with tens of thousands of processors and com-
plex interconnection networks (e.g., the Connection Machine [20], the J-Machine [18]), application- .
level fault tolerance support has to be reconsidered. In machines of this size, hardware-based fault
tolerance, such as those employed in the Tandem (7] and Stratus [35] systems, is clearly impractical.
Mo matter how reliable the individual components are, the sheer size of these systems can result
in a significant probability of failure during lengthy compntations. If parailel applications that use
large numbers of processors are to make progress, they have to anticipate the possibility of partial
failures and take appropriate steps to recover from them. Unless this is done, reliability will become
the limiting factor in the parallelism that can be achieved by applications [29].

. Shared-memory multiprocessors present severe architectural problems when scaled to very large
dimensions. It is widely accepted that constructing parallel 'machines that can scale to very large .
aumbers of processors will be possible only for distributed-memory architectures. Physical prop-
erties of these machines will prevent relying on a global clock as a time base and par.iul failures
will result in loss of communication or computation without bringing down the entire system. In
other words, the Joose coupling that is dictated by size will render these machines equivalent to
“distributed systems in a box.”

Extremely fast networking is yet another trend that supports this “distributed system™ view
of parallel multiprocessors. With the possibility of Gigabits-per-second communication over large
geographic distances [21], an eniire network of machines (parallel or scalar) can be thought of as
a parallel multiprocessor. Existing efforts in the United States linking distant supercomputing
centers across the country with high-speed communication lines support this observation. Even on
a more modest scale, there are many efforts to support parallel computing over networks (Ethernet
LANSs) of workstations (5, 8]. ' -
‘ The realization that parallel ‘multiprocessors are logically (or physically, as in the: case of
network-based computing) equivalent to distributed systems has two consequences. First, fault-
. tolerant parallel computing in distributed memory multiprocessors has to be solved in the presence
" of uncertainties that are inherent to distributed systems. Second, the wide body knowledge that has

been accumulated for fault-tolerant distribuied computing can be du'ectly apphed to fault-tolerant
parallel computing.
The remainder of this. paper is organized as follows. In the next section we present a brief
. survey of the major paradigms for fault-tolerant distributed computing. Tracsactions, checkpoint-
ing, active replication and passive replication are examined and evaluated as possible mechanisms
for fault-tolerant parallel computing. Section 3 is a brief introduction to the ISIS distributed pro-
gramming toolkit that includes the necessary primitives for implementing a wide range of faul
tolerance mechanisms. Section 4 is an overview of the Paralex programming environment that
permits parallel applications to bé developed and executed in distributed systems with automatic
_support for fault tolerance. Uso of passive replication to render rarallel programs fault tolerant in




" Paralex is discussed in Section 5. We conclude the paper by some obsemtxons derived from our
experience with Paralex.

2 Paradigms for Fault-Tolerant Distributed Computing

Failures in a system can result in the loss of data or computation. In this paper we will be addressing
only the possibility of tolerating failed computations. While maintaining data correct and available
is an equaily important concern, it is beyond the scope of this paper.

All other things being equal, a distributed application will be less reliable than its centralized
equivalent — there are simply more components that the distributed application depends upon and
each can fail independently. For distributed systerns to be useful, they have to be fault tolerant.

Tolerating failures in any system requires some form of redundancy. In time redundancy, the .
fa.xled computation is restarted on the same processor (once the cause of the failure has been elim-

inatzd) or on another processor and repeated until it completes successfully. In space redundancy,
the computation is carried out on several physically independent processors in parallel and a vote
is taken to extract a single output from the (potentially different) results. '

It is clear that space-redundant systems are more expensive in terms of computa.txona.l resources.
In return, they are able to mask out failures and continue producing correct outputs with no loss in
performance!. This makes space-redundant systems suitable for time-critical applications such as"
process control. Time-redundant systems, on the other hand, go through a recovery phase where
no useful computation is being carried out. They also require the ability to detect failures before
(incorrect) results are communicated externally. Parallel scientific applications typically do not
have critical timing constraints to justify the cost of space redundancy. If, however, the parallelism
available in the hardware exceeds that usable by the application, the extra processors may be put

" to good use by running replicas of the primary computation.

Achieving fault tolerance through redundancy in distributed systems reqmres that computa-
tions on different processors cooperate. The lack of shared memory and the lack of a global clock
makes reasoning about such systems a difficult task. Since message exchange is the only means
of communication and it incurs random delays, it is impossible for any one component to have an
instantaneous view of te global computation. state. The possibility of processor and communica-
tion failures further increases the level of uncertainty in these systems and adds to their conceptual
difficuity. - We can hope to master fault-tolerant distributed computing oniy through the use of
appropriate paradigms that abstract away many of these cmnplexmea {30, 16]). In the followmg
sections we present some of these paradigms.

2.1 Transactions

'I‘rmactxons were ongmal!y proposed as a softwa.re structuring mechanism for applications that
accessed shared data ox secondary storage (typncally a database) {19). In this model, computations
are divided into units of work called transactions. The system guarantees three properties for
transactions: atomicity, serializability and permanence. Atomicity is with respect to failures in the
sense that the execution of a transaction is “all or nothing™ — failures never leave intermediate
statesof a trannctxon vmble to other transactions. Serializability, on the other hand requires that .

1As we shall ove, thm is & slight degradation in performance due to the dissemination of inputs to the replicas

" and due to the voting at the ostput.




the effect of concurrent executior of several transactions be equivalent to some serial execution (one
after the other in some arbitrary order). Permanence guarantees that computations make progress
despite failures since their results will never be undone.

Programming with transactions presents to the user an idealized world where failures and other
concurrent transactiuns have been abstracted away. The system automatically restarts transactions
if a failure interrupts their executicn part way or if serializability c~nnot be guaranteed. Once a
transaction commits, it can be sure that the data values written are as if it executed in isolation
and without any failures. Thus, transactions transform the system from one consistent state to
another. By definition, transaction boundaries always define consistent system states from which
a computation can recover. The basic transaction model has been extended to distributed sys-
tems [26).

One of the drawbacks of the transactional model is that fault tolerance cannot be integrated
* transparently to applications. Programs must explic:tly use the transaction paradigm by announc-

ing the beginning and end of transactions within programs at opportune points. Furthermore, °

while the serializability requiremeunt may be appropriate for database applications, it can be overly
restrictive for parallel computations that do not access shared files. The overhead introduced by
the complex mechanisms that implement the transaction abstraction may be significant for most
parallel applications.

Modern systems tha¢ adopt the transaction model as the basis for fault tolerant distributed .

computing include Arjuna [32], Argus [27] and Camelot {33].

2.2 Checkpom*'ng

An arbitrary distributed computation could be made fault tolerant without havmg to structure it
as a 'collection of transactions. All that is required is a mechanism whereby computations can be
restarted from some past state in response to failures. To prevent having to restart computations
always from the very beginning, and thus gnarantee forward progress, the state of the failure-free
execution is periodically saved to stable storage?. The saved past states are called checkpoints.
Restoring the system to a set of checkpoints and repeating the lost computation's is called recovery.
The frequency with which checkpoints are taken is a system tuning parameter and estabhsha the
relative costs of the failure-free execution overhead and recovery delays.

In a system where computations interact by.exchanging messages, recovery of a failed compu-
tation from an arbitrary set of checkpoints may result in an inconsistent global system state [14].
Intuitively, recovery should never be attempted from a system state in which some computation

appears to have received messages that have not yet been sent. The manner in which global system

state consistency is guaranteed results in two distinct strategies.

2.2.1 Optimistic Recovery - , }
‘ The general strategy is to design algorithms with the guess that failures will not occur at inbppor-

tune times. As a recovery strategy, this leads to establishing checkpoints without any coordination
among tke components. However, the system must have collected sufficient information along the

way so that exactly those computations that have to recover do so in case failures occur. For .

25table storage is a memory device whose coatents survive dl failares shott of disastzrs. It is typically unplememed
unng mirrored disks. . .




example, in the scheme proposed by Strom and Yemini (34], checkpointing and message logging
occur concurrently with computation and coramunication. Causality information is maintained
such that recovery will occur from a consistert global system state. In a variant of the scheme,
messages are logged in the nonvolatile memory of the sender rather than the receiver, resulting in
even further concurrency of stable storage writes with respect to computations [22]. An unfortunate
consequence of optimistic strategies is that recovery time is difficult to bound since, in addition to
the failed computation, an arbitrary number of others may need to recover.

2.2.2 Conservative Recovery

A reasonable alternative to the above strategy is to structure the checkpointing mechanism in
a manner such that the set of latest checkpoints is always guaranteed to represent a consistent
system state. To prevent computations from having to recover arbitrarily past states, conservative
schemes synchronize checkpointing with.computation and communication. This has the desirable
consequence that recovery is both simple and more predictable in the delays it introduces to the
system. The cost, obviously, is shifted from recovery to checkprinting.

One way to guarantee coasistency of checkpoints is to force each com):utation to record its state
after every message send operation =nd befcre doing anything else. Recovery consists of the failed-
computation rolling back to its most recent checkpoint. This simple mechanism can be extended to,_
cope with missing messages. Unfortunately, this naive solution is impractical since checkpointing
to_a stable store after every send will introduce significant delays to the computation. We return
to this issue in Section 2.4 where we discuss passive replication.

Consistency of checkpoints can be guaranteed even when they are taken much less frequently.
Koo and Toueg present a distributed algorithm that guarantees the set of most recent checkpoints to
always represent a consistent state {23]. A unilateral checkpoint action forces the minimum number
of additional computations to checkpoint'along with it. Recovery also involves the minimum number
of computations that are affected by the failure. e

2.3 Actxve Replxcatxon

Gwen that a distributed system contuns multiple proceumg elements with independent failure
modes, a distributed service can be made more reliable by performing it in parallei on several
processors. This simple idea contum numerous subtleties that have to be addressed before it can
be made.effective.

Ifa collec%xon of replicas is. to be functionally ‘equivalent to a .mgh component it must accept
' the same input and produce the same output. Clients of the rephcated service continue to interact
with it as if it were implemented as a single component. On the client side, code fragments i intercept
the ciient request and distribute it to the replicas. On the service side, code fragments intercept
an incoming request and engage in communication with all of the replicas of the service to achieve
the input dissemination.  Finally, the ontputs must be coalesced in to a single value. All of this
code to wrap around clients and services can be generated automatically using technology similar
to Remote Procedure Call (RPC) stub generation (12].

We begin with the problem of coalescing the output. If only bemgn failures® are to be tolerated,

then the first output to be produced by some: rephca. can be taken as the component output To

3Beniga tnluu cause compoaents to simply stop aad pndnoo 20 output,




tolerate up to k such failures, it clearly suffices to have k+ 1 replicas. If failures can cause incorrec:
results to be produced by the replicas, then a majority vote wi'l determine the output. This clearly
requires 2k + 1 replicas to tolerate up to k failures. It also requires a (reliable) component to act
as the voter.

Distributing the mput to the replicas is even more subtle. For the above votmg scheme to .

work, all correct replicas must produce the same ovtput. This requires that they all see the same
irput and that the computations they perform be deterministic. The input must be disseminated
such that either all or none of the replicas see it. Protocols that achieve this in the presence of
failures are called reliable broadcast protocols [15, 3]. If the service interacts with multiple clients,

the replicas must not only see the same input, but aiso see them in the same order. Achieving

this in the presence of failures requires the use of an atomic broadcast protocol [17]. Depending
on the failure assumptions and the system model, achieving atomic broadcast may require 3k + 1
replicas to tolerate up to k failures [25]. Thus, this may be the cominant factor in determining the
replication level rather than simple majority.

The above ideas have been expounded in a general methodology called the state machine
appreach for automatically adding fault tolerance to distributed services [31]. It is important
to note that while active replication can result in higher reliability of services in the short run,
these systemus become less reliable than their non-replicated counterparts in the long run (2, 36].

To mai=tain reliability levels sufficiently high over long intervals, it must be possitle to vary the .

number of replicas dynamically — failed ones must be removed off line and new or repaired ones
brought on line. The difficulty in achieving this is maintaining a consistent view of the replica set
among tke processors. This in turn requires a solution to the group membership problem (28].

2.4 Passive Replication

While active replication is able to mask failnré without any reéovery delays, it is costly — all of the
replicas compute actively consuming resources. Unless the system has an abundance of processors,
the approach may not be practxca.l Passive replication offers a more economical alternative. The

service is replicated just as before, however, only one of the replicas computes while the others "

remain dormant. If the initial computation reaches completion, no further action is necessary. If
a failure prevents the first replica from compleiing, one of the dormant copies is activated and
resumes computmg from where it last left off. Thus, in the fulure-free scenario, no computatxon is
wasted®.

Several observations are in mder First, the technique is effective only agaxnst bemgn fulures
— it is not possible to detect incorrect results. Secoad, there must be a failure detector so that a
passive replica may be startad if the initial computation fails. Third, input to the replicas must be
disseminated atomically just as'in active replication. Finally, the techmque incurs a delay while the
newly-activated replica “catches up” with the failed computation by processing its input queue.

By far the most cominon, realization of passive replication involves twe copies, one known as-

the primary and the other as the secondary backup [7, 13]. In this scheme, each communication
step requires atomically delivering the message to three destinations: the secondary of the sender

and the two copies of the destination. When a secondary takes over upon the failure of the primary, |

" it recovers by processing the messages in its input queue. Having seen the messages sent by the

*These types of failures are sometimes called malicious or Bysantine.
$There is a small overhead in keepuu the replicas coordinated as discussed luet

. v.—"""’




primary before it failed serves to prevent the secondary from resending them during recovery. Only
when the secondarv has reached the state of the pn’ma.ry before it failed, does it engage in active
message sending.

While at first sight the primary-secondary reph"atlon scheme may seem verv different from
checkpointing, the two are actnally logically equivaleat. Consider the checkpointing scheme with
conservative recovery where the computation is checkpointed after every send operation. If these
synchronous operations are to occur to stable storage, the delays would be intolerable. Rather than
representing a checkpoint as a process memory image on disk, we could choose to represent it as a
process state on another processor (the secondary) along with a count of sent messages. Replaying
the enqueued input messages At the seccndary and discarding a number of output messages equal
to the primary count effectively restores the secondary state to that of the primary at the point
of the last send before the failure. The techrique trades off delays in checkpointing (an atomic
three-way multicast rather than a write to stable stors) with taose of recovery (computation rather
than restoring the state from stable store). Given that failures a relatively rare in most systems,
the approach is very reasonable. :

3 The ISIS ‘Distril')uted Programmirg Toolkit

From the above discussion, a relatively smal! number of abstractions have emerged as being nec-
essary for implementing a wide range of fault tolerance paradigms. Furthermore, we have seen
that replication plays a fandamental role in achieving fauit tolerance. ‘The ISIS toolkit has been
designed (o facilitate easy comtmctxon of efficient distributed programs and to make them fault
tolerant (9, 11). . °

As we discussed in Section 2, the principal difficulty in reasoning about distributed syste-ns is
the uncertainty due to communication and failures. Without the appropriate tcols, 2 programmer
has to consider an extremely large number of possible executions whea developing applications. For
example, a message broadcast to a group of processes by simple send operations may be received
by some and not reczived by others. Two concurrent broadcasts to the same set of processes may
- be received in a different order by some of the members. Events correspondiag to processes joining
_or leaving (either vcluntarily or due to a failure) a computation may be perceived by the members
in different order with respect to ongoing communication. The ISIS toolkit tries to put order to
this complex world. By using the appropriate communication primitives and reiying on lower-level
support, many of the events in a distributed system can be made to appear as if the -~ occurred
at the same instant in all: components of a computation. The resulting system, called virtually
synchronous, offers tremendous intellectual economy to application developers [10].

ISIS runs on a large numbers of systems ud extends the basic operating system primitives
with the .olbving abetractions: . :

Process Groupo These are the princ:pa) structuring constracts for ISIS a.pphcztnonn A process
group is a named collection of processes. Process groups may overlap in arbitrary ways
to reflect the natural structure of the application. Group membership is dynamic in that
processes may join or leave at will. A built-iu failure detectos turns failures into group
departures of the appropriate processes. The group name may be used to address all current
members thhont having to know theu' individual 1dentmu Therc ‘are no restrictions on the




computaticre being carried out by the members/f a group — they need rot be replicas of the
saine computation. /

Group Communication Applications in ISIS/ar/e structured as ccmmunicating process groups.
All data exchanged between groups are /acoded as ISIS messages, pioviding a uniform repre-
sentation across heterogeneous archit/tures. ISIS protocols ensure that if a messags broad-
cast to a group is received by one o¥its members, it is received by all of its members, despite
benign processor and communica*on failures. With respect to ordering, ISIS provides three
alternatives: ’

FIFO Broadcast Only broadcasts originating from the same source are received in the same
order by the proceys group members.

Causal Broadcast Jnly broadcasts that are causally related are received in the same order

Two broadcaz(s are said to be causally reiated if there exists a chain 3f communication

events such/that one can affect the contents of the other [24]. Unrelated broadcasts may
be order' arbxtra.nly ISIS maintains the causality relation even across process group
boung

Atomiz roadcast Al Broadcuts to the group are received in the same order by all of its

embers. This is true even for broadcasts that are causally unrelated. While the cost -

. of FIFO and Cansal broadcasts are comparable, Atomic broadcast incurs a quantitative

3 increase in time delays. ' '

State Transfer To facilitate coordination among group members, ISIS provides a mechanism
whereby the state of one member is copied to another. What constitutes the process state'is
application dependent and is specified by the programmer. S{ate transfers are typically used
to initialize tke state of a new process joining a group. As with the join event itself, the state
transfer is ordered cousistently by all group members with respect tc communication events.

Given the above abstractions, it is possible to implement almost all of the paradigms of Sec-
tion 2. Tae lack of relevant concepts such as serializability and atormc commitment make transac-
tions difficult to implement ia ISIS.

Realizing active replication through process groups is unmedxate. Each computation to be |

" made fault tolerant is replicated to form a process group. All point-to-point communication is
replaced wita atomic broadcasts to the relevant groups to achieve input dissemination. Since
clients may be replicated in addition to servers, each input request may be received multiple times
by the members of the server group. Some deterministic function (e.g., majority, mean, median)
will have to be applied to the copies of the input to select the value to use. This correspouds to the
output voting step of the active replication scheme. Even when the replication level is dynamic,

the input extraction function can be implemented by the replicas interrogating the current group -

membership. »
Process groups also form the basis for passive rephcatxon Just before they start computing, all
members of a process group invoke the coordinator-cohort tool of ISIS which effactively selects

one member (the coordinator) to continue computing while the others (cohorts) remain inactive. If

ISIS detects the failure of the coordinator before its role comes to completion, it will nominate one
of the cohorts to the role of coordinator and resume its execution. While requests are disseminated




to group members using atumic broadcast as in active replication, there is n need for a voting

(input exzraction) function since oaly one output will be produced (that of the coordinator).
Finally, the state transfer mechanism of ISIS provides a way to implement fault tolerance

through checkpoin®ing. State transfers can be requested :ithes to another process or to a disk file.

‘To the extent that a disk approximates stable storage, a failed computation can be resumed from

the most recent state fourd in the file.

4 Parallel Computing in Distributed Systems with Paralex

Paralex is a programming environment for developing parallel applications and executing them on

a distributed system, typically a network of workstations. Frograms are specified in a graphical
notation and Paralex automatically handles distribution, communication, data representation, ar
chitectural hetercgeneity and fault tolerance. It consists of four logical componerts:' A graphics
editor for program specification, a compiler, an executor and a runtime support environment. These
components are integrated within a uaiform graphical programming environment. Here we give a
brief overview of Paralex. Details can be found in [5}.
The programming paradigm supported by Paralex is a restricted form of data flow r1]

Paralex program is composed of nodes and links. Nodes correspond to computations and the lmks

indicate the flow of (typed) data. Thus, Paralex programs can te thought of as directed graphs (and - ‘

indeed are visualized as such on tke screen) representing the data flow relations plus a collectior of
ordinary code fragments to indicate the computations. The current rototype limits the structure
of the data flow graph to be acyclic.

The semantice associated with this graphical syntax oveys the so-called “strict enabling rule”
of -data-driven computations in the sense that when all of the links incideat at a node contain
valuez, the computation associated with the node starts execution transforming the input data to
an output. The computation to be performed by the node must satisfy the “functional” paradigm
— multiple inputs, only one output with no side effects. The actual specification of the computa-
tion may be domne using whatever appropriate notation is available including standard sequential
programming languages, parallel programming notations (if the distributed system includes ncdes
that are themsalves multiprocessors), executabdle binary code or library fuactions for the relevant

architectures.

Unlike classical dzta flow, the nodes of a Paralex program carry out significaat computations.
This so-called large-grain data low model (6] is & conzequence of the properties of the underlying
distributed system where we seek to keep the communication overhead via a hxgh-latency, low-

. bandwidth network to reasonable levels. ,
There are many situatiops where the single output value produetd by a node needn to be.

communicated to multiple destinations as input so as to create parallel computation structures.
In Paralex, this is accomplished simply by drawing multiple output links originating from & node
towards the various destinations. To economize on network bandwidth, Paralex introduces the

not'sn of filter nodes that allow data valu.s to be extracced on a pec-destiuation basis before they

are tranemitted to the next node. Conceptually, filters are defined and manipulated just as regular
nodes aad their “computations” are specified through programs. In practice, howaver, all of the
data filtering computaticns are executed in the coniext of the single process that produ..ed the data
rather than as separate processes to minimize the sysiem overhead.

Once the user has fully specified the Paralex program by drawing thn data flow’ graph and '

9




sunplying the computations to be carried out by .Le nodes, the program can be compiled. The first
pass of the Paralex compiler is actually a precompiler to generate ali of the nezessary stubs to wrap
around the node computaticns to achieve data represartation independence, remote communication
and replica management for those nodes with fauit toierance needs. T, Dpe checving wcross links is
also performed in this phase. Currently, Paralex generates all of the stub code as ordinary C. As
the next step, the C compiler is invokeq to turn each ncde into an executable modale.

. The Paralex compiler reust also address the rwo aspects of heterogeneity: data representation
and insucuction sets. Paralex uses the ISIS tcolkit as the infrastructure o realize a universal
data representation. All data thal is passed from one node to anciher durirg the computation
are encapsulated as ISIS messages. Heterogencity with respect to instruction sets is handled by
invzking remote compilations on the machines of interest and storing multiple exzcutables for the
rodes.

The Paralex executor launches the para.llel computation on the dxs’nbufed syitem respecting
all drchitectural constraints. Datails of how Paralex computation gra.phs are mapped onto the
hosts of a distributed system and hovw the execution is monitored anu controlled dynamically are
described in [4].

5 Replication in Paralex

Oue of the primary characteristics that distinguiskes a distributed svstem from a special-purpose .
super computer is the possivility of partial failures during compuiaiions. These failures mnay be

due to real hardware faults or, more probabiy, as a consequence of user-actions such as rebooting
or turning off workstations. To render distributed systems suitable for iong-running parallel com-
putations, automatic support for favit tolerance must be provided. The Paralex rupr-time system
contains the primitives pecessary to sapport fault tolerance and dynamic load balancing.
As part of the programn dzfinition, Faralex permits the user to specify a fault tolerance level
- for the computation graph. Paralex will generate all nf the necessary code such that when a graph
with fault tolerance k is executed, each of its nodes wili be executed on k + 1 distinct hosts to
guarantee success for the computation despite up to k failures. Failures that are tolerated are
of the benign type for processors (i.2., all processes running on the processor. simply halt) and
communication components (i.e., mzssages may be lost). There is no attempt to guard against
more malicious processor fuluru nor agumt failures of non-replicated components such as the
, network interconnect.

Pardlex uses passive replicatica as the basic fault tolerance technique. Given the application
domain (parallei scisatific computing) and hardware platform (networks of workstations), Paralex
favors efficient use of computational vesources over short recovery times in its choice of a fault
tolerance mechanism. Passive repiication not only satisfies this objective, it provides a uniform
mechanism for dynamic load ba‘aacing through late binding of computations to hosts.

"Paralex uses the ISIS coordinator-cohort toolkit te implement passive replication. Each node
of the computation that requires fauit tolerance is instantiated as & process group consisting of
replicas for the node. One of the group members is called the coordinater in that it will actively
compute. The remaining mem . vrs are cohorts and remain inactive other than receiving broadcasts
addressed to the group. Wher "3IS detects the failure of the coordmator, it autom;tlcauy promotes
one of the cchorts to the tole of cocrdinavor,

Data ﬂow from one nodv of a Paralex prograxn tn another resuits in & broadcut from the
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coordinator at the source group to the destination process group. Only the coordiaator of the

destination node will compute with the data value while the cohorts simply buffer it in an input
queue associated with the link. When the coordinator completes computing, it broadcasts the

results to the process groups at next level and signals the cohorts (through another intra-group

broadcast) so that they can discard the buffered data item corresponding to the input for the
current invocation. Given that Paralex nodes implement pure functious and thus have no internal
state, recovery from a failure is trivial — the cohort that is nominated the new coordinator simply
starts computing with the data at the head of its input queuecs.

A C 8
g 900 )

Figure 1: Replication and Group Communication for Fault Tolerance.

" Figure 1 illustrates some of these issues by consideriag a 3-node computation graph shown at
the top as an example. The lower part of the figure shows the process group representation of
the nodes based on a fault tolerance specification of 2. Arrows indicate message arrivals with time
running down vertically. The gray process in each group denotes the current coordinator. Note

" that in the case of node A, the initial coordinator fails during its computation (indicated by the

X). The process group is reformed and the right replica takes over as coordinator. At the end uf its
execution, the coordinator performs two broadcasts. The first serves to communicate the results

of the computation to the process group implementing node C and the second is an internal group

broadcast. The cohorts use the message of this internal broadcast to conciude that the current
buifered input will not be needed since the cocrdinator successfully computed with it. Note that
there is a small chance the coordinator will fail after broadcasting the results to the next node but
before haviug informed the cohorts. The result of this scenario would be multiple executions of

1 -




a node with the same (logxcal) input. This is easily prevented by tagging cach message with an
iteration number and ignoring a.ny input messages with duplicate iteration numbers.

The execution depicted in Figare 1 may appear deceptively simple and orderly. In a distributed
system, other executionas with jaopportune node failures, message losses and event orderings may be
-equally possible. What simplifies the Paralex run-time system immensely is structuring it on top of
ISIS that guarantees “virtual synchrony” with respect to message delivery and other asynchronous
events such as failures and group membership changes. Paralex cooperates with ISIS toward this
goal by using a reliable broadcast communication primitive that respects causality [24].

6 Conclusions

We have argued that current large-scale parallel multipiocessors have properties not unlike dis-
tributed systems. With expected increases in the scale of parallel machines and increases in net-
work bandwidth of distributed systems, the distinction between them is rapidly fading. This leads
us to conclude that future parallel anplications will have to confront fault tolerance just 2z current
distributed systems have to. Furthermore, the same tools and techniques to render distributed
systems fault tolerant can be effectively used to render parallel applications fault tolerant.

Of the various paradigms developed for fault-tolerant distributed computing, passive replication
and checkpointing are probably the most appropriate for parallel computing. In fact, we have seen

" that passive replication can be viewed as a special case of checkpointing. Modern distributed

programming toolkits include the necessary technologies for implementing a wide spectrum of fault
tolerance techniques. : :
While technologies such as ISIS are sufficient for fault-tolerant parallel computing, they still
require extensive distributed  computing expertise to program with. Higher-level interfaces are
required if fault tolerance is to be used widely in parallel applications. Paralex represents one
such intetface. By carefully selecting the programming constructs, fault tolerance can be added
automatically to parallel applications. Paralex is proof that this can be accomplished without
unreasonable penalties in performance. : : :
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