
AD-A245 051 Technical ReqOrt

"" ' ieCMU/SEI-91-TR-20
~IIi II DiiI lii IESD-91 -TR-20

- Carnegie-Mellon University--- Software Engineering Institute

O)TICfl \ E CT E Design Specifications for
JAN'\ 1992 Adaptive Real-Time Systems

fl Randall W. Lichota
U, Alice H. Muntz

- December 1991

\ \\/ 0

/

r ~ uD~~ ileasa and s t
is N

/ ",

\ \ _



The following statement of assurance s more than a statement required to comply with the federal law This is a sincere statement by the uiversity to assure that all
people are included in the diversity which mates Carneote M0lmrin L, ,iro:o.- - : , uw, national

". .4. at, ie..gK oi.. creeo, ance-. y. Luleet, age. veteran mtatus or sexual orientation

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admissions and employment on the basis Of race
color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, sae. or local laws or executive orders In addi tion. Carnegie Mellon does not discriminate in admissions and employment on
the basic of religion, creed, ancestry, belief, age. veteran status or sexual orientation in violation of any federal, state, or local laws or executive orders Inquires concern-
ing applicatioin of the policy should be directed to the Provost, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268T684 or the
Vice President for Enrollment. Carnegie Mellon Uruversity, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (4121 268-2056



Technical Report
CMU/SEI-91-TR-20

ESD-91-TR-20
December 1991

Design Specifications for
Adaptive Real-Time Systems

Randall W. Lichota
Hughes Aircraft Company, Ground Systems Group

Alice H. Muntz
Hughes Aircraft Company, Space and Communications Group

-,- TYcccsioi -or Distributed Systems Project

NTIS CPI

By

J s U t -' .... ... ..... .. . ..... .. .I .. -------

Di~t it '. F

Di ' . -,! J

Approved for public release.
jd iDistribution unlimited.

Software Engineering Institute
Carnegie Mellon University

92-02077 Ptsburgh, Pennsylvania 15213

IIIilI~if~ii~hIIf~lilIiill! 9 2 1 27 o0 2



This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

Clh-a~leJ.R nM Or, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Cop)Tig;.: © 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. 'DTIC provides access to and transfer ofscientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Tcchr.ical
Information Center, Attn: FDRA, Camcron Statin, Alsxandria, VA 22304-6145.
Coies of this document are also available through the National Technical Information Service. For information on
oering, please contact NTIS directly: National Technical Information Service. U.S. Department of Commerce,

Springfield, VA 22161.
Use of any trademarks in this document is not Intended in any way to infringe on the rights of the trademark holder.



Table of Contents

1 Introduction 1

2 Graphical Primitives for Specifying Design 3

3 Textual Specifications 7
3.1 Notes on Syntax 7
3.2 Keywords and Predefined Identifiers 8

4 Specification 9
4.1 Literal and Non-Literal Values 10
4.2 Expressions 11
4.3 Type Definitions 11
4.4 Activity Definition 12
4.5 Data Item Definition 14
4.6 Statements 15
4.7 Type References 16
4.8 Resource Definitions 17
4.9 Type Mappings 17

5 Implementation Strategies 19
5.1 Extensions to Ada 20
5.2 Emulating Race Controls Within Durra 22

5.2.1 Emulating Preference Control 22
5.2.2 Emulating Dynamic Priorities 24

Acknowledgment" 27

References 29

CMU/SEI-91-TR-20



ii CMU/SEI-91 -TR-20



List of Figures

Figure 1-1 Graphical Notations for Restricted Activity/Data Graphs 2
Figure 2-1 Graphical Notations for Task Graphs 4
Figure 5-1 Task Priority Determination 21
Figure 5-2 A Sample Task and its Restricted Activity Graph 23
Figure 5-3 Relation Between A Global Scheduler and the Application Tasks it

Controls 25

CMU/SEI-91-TR-20 W



iv CMUISEI-91 -TR-20



Design Specifications for Adaptive Real-Time Systems

Abstract: The design specification method described in this report treats a
software architecture as a set of runtime entities, including tasks and external
input/output elements, which interact either via messages or shared data
structures. Tasks have a single thread of execution and represent program
units that may be executed concurrently. External input elements produce input
requests that in turn trigger a set of low-level activities to be executed by tasks.
External output elements consume results that are produced by tasks. The
specification method discussed here facilitates the description of the dynamic
structure of runtime entities, the synchronization and communication between
these entities, and their resource consumption and production properties
(which include timing and sizing).

1 Introduction

The Specification Methodology for Adaptive Real-Time Systems (SMARTS) was developed
by analyzing the computational characteristics of advanced radar systems [3]. In SMARTS, a
software architecture is specified in three parts: the data model, the control flow model, and
the sequential program model. The data model is expressed with a restricted data graph. The
control flow model is expressed with a task graph in which each vertex represents a runtime
entity, i.e., a task or an input/output data element, and each arc represents the data produc-
tion/consumption relations between two communicating entities. The sequential program
model is expressed with a restricted activity graph which is a subgraph of an activity graph rep-
resenting the requirements specification [7]. Graphical notations are used for representing re-
lations between data items in a data model, relations between two communicating entities and
the temporal/spatial parallelism of inputs/outputs of each entity in a control flow model, and the
internal computational structure of a sequential program model (i.e., a task). Textual notations
are used for specifying timing constraints, pre-conditions, and post-conditions.

We are currently extending the Durra tool suite to support the specification and validation of
software architectures using these notations. Durra itself is a non-procedural, task-description
language specifically designed to support the development of large-grained distributed appli-
cations [2]. A task-level application description prescribes a way to manage system resources
and includes behavioral and structural descriptions of the tasks, their mapping to processors,
and their communication characteristics. Expressing a software architecture in Durra is rea-
sonably straightforward because the semantics defined by our models map reasonably well to
those defined by Durra. Moreover, the Durra runtime system supports the construction of dis-
tributed Ada programs, thus providing a mechanism for prototyping applications for a distrib-
uted environment.

CMU/SEI-91-TR-20 1
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2 Graphical Primitives for Specifying Design

The graphical notations presented in this section are for specification of restricted data graphs,
restricted activity graphs, and task graphs. Figure 1-1 contains the graphical primitives for
specification of restricted data/activity graphs. The node and operator primitives have been
adopted from Alford's graph model [1] and the communication pr-nitives have been added to
represent interactions between activities. Node primitives include graphical representations
for both activities and data items. Operator primitives are used to express sequential relation-
ships among activities or data items. The sequence operator is used to express an order re-
lation with respect to time. A pair of iteration operators encompassing a set of activities (or data
items) can be used to represent either repetitive occurrences or to indicate periodic invocation
of activities (or consumption of data items). A pair of selection operators encompassing a set
of activities (or data items) specifies their mutual exclusive occurrence.

A data flow consists of a unidirectional arc and a label (indicated by 'X' in Figure 1-1). This arc
represents one-to-one communication, the activity connected to the tail of the arc being the
producer of X while the activity at the head being its consumer. The label attached to an arc
may denote either a composite or an atomic data item. When the latter is the case, it is not
necessary for the producer or consumer activities to be atomic. However, if both the consumer
and producer activities are atomic then the data item denoted by the label must also be atomic.

A merge connector is composed of n labeled fan-in arcs x1, .... xn, where n > 0 and a compos-
ite data item x has component data items: x1, x2 , ..., and xn. For each labeled arc xi, there must
be an activity at the opposite end of the data item x to write or access the component data item
xi. Write behavior is denoted by associating a unidirectional arc with xi, placing an activity at
the tail of the arc, and the data item x at the head. Access behavior of xi is denoted by asso-
ciating a bi-directional arc with x1. The spatial and temporal parallelism and sequencing of data
items x1, .... xn are represented by the data graph associated with x.

A split connector is composed of n labeled fan-out arcs x1, .... xn and a composite data item x
with components: x1 , x2, ..., and xn. For each labeled arc xi, there must be an activity to read
or access the component data item xi. Read behavior is denoted by associating a unidirection-
al arc with xi, placing an activity at the head of the arc, and the data item x at the tail. Access
behavior is denoted by associating a bi-directional arc with xi. The spatial and temporal paral-
lelism and sequencing of data items xI, .... xn are represented by the data graph associated
with x.

For both the split connector and the merge connector, the fan-in arc is unlabeled when n is
equal to 1 since x and its component item x1 are identical. The single arc merge (or split) con-
nector identifies x as an input to the activity if the latter is at the head of the unidirectional arc.
If the activity is at the head of the unidirectional arc, the single arc merge (or split) connector
defines x as an output to the activity. Finally, if the activity is connected with x via a bi-direc-
tional arc then x is considered to represent a buffer.

CMUISEI-91-TR-20 3
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A junction connector is composed ot n labeled tan-in arcs (x1, ... , xn), a composite data item x
(with component data items x1, x2, ..., and xn), and n labeled fan-out arcs (xl, ... , xn). For each
fan-in labeled arc xi, there must be an activity to write or access the component data item xY.
For each fan-out labeled arc xi, there must be an activity to read or access the component data
item xi. Similarly, the spatial and temporal parallelism and sequencing of data items x1, ... , xn
are represented by the data graph associated w;"- x.

A task graph is defined as a directed graph whose nodes represent tasks or data elements.
An arc between two nodes represents a data flow, and the direction of the data flow corre-
sponds to that of the arc. A channel is an interface program unit which implements the com-
munication primitive cor;iecting two or more vertices in a task graph representing a task or a
data element. A task is described by a task template which includes the following types of in-
formation: ports-its interfaces to other tasks, external devices, and to the runtime system; at-
tributes-importance level, state variables and their properties; behavior--its associated
restricted activity graphs, which include functional specifications (e.g., pre- and post- condition
formulas) and timing constraints (e.g., state-dependent execution time); and structure--its
component connections. We have chosen to represent individual task templates using the
Durra language [2]. During execution time, instances of tasks may run on separate processors
and may communicate with each other according to a specific set of data flows, which may be
implemented as messages. Task templates serve as components (along with maximum re-
stricted activity graphs, data graphs, and sequential program models) of a design specifica-
tion.

4 CMU/SEI-91-TR-20



In our method, a runtime entity is a set of activities comprising a single execution thread. This
set of activities is encapsulated by the task primitive in Figure 2-1, and the interacting behav-
iors of the encapsulated activities are defined using the communication primitives in Figure 2-
1. For each fan-in arc labeled xi of either the merge connector or the junction connector, there
must be a task at the opposite end of the data item x to write or access data item xi.For each
fan-out arc labeled xi of the split connector or the junction connector, there must be a task at
the opposite end of data item x to read or access the component data item xi.

The node primitives set in Figure 2-1 (b) contains five elements: task, input/output data ele-
ment, mandatory input port, alternative input port, and output port. A task represents a pro-
gram unit that has a single execution thread and consumes a bounded amount of resources,
such as processor cycles and memory capacities. Unlike data items which are passive enti-
ties, input/output data elements are active entities that do not consume processor resources.
An input data element only has a set of output ports. Each input data element represents a
source of instances of a specific set of input data items. An antenna receiver, for instance, can
be represented as an input data element. An output data element only has a set of input ports.
Each output data element represents the repository of instances of a specific set of output data
items. An example of an output data element is a display device such as a color monitor.

The input and output ports define the interface of a task. Data arriving at an input port serves
to enable the activities that define the task's behavior. A mandatory input port represents a log-
ical location to which data must be directed in order for the task to be executed. By contrast,
the failure of data to arrive at an alternative input port need not necessarily block the progress
of the task. Rather, this corresponds to one possible branch through the task's restricted ac-
tivity graph; the arrival of data is only required when it serves to enable an activity that has
arrived [7]. An output port represents a logical location through which outputs are to be deliv-
ered upon execution of a given activity.

It should be noted that activity and data graphs are qualified by the term restricted partly to
distinguish them from the graphs used to define software requirements. In SMARTS, the tran-
sition from requirements to design consists of partitioning an activity graph into a set of restrict-
ed activity graphs [5]. When one's design objective is to minimize overhead due to task context
switch, one or more of these restricted activity graphs should be mapped to a task graph to
minimize the number of tasks. In this case, the notion of a "maximal restricted activity graph"
is useful for defining the criteria for deriving a task graph from a given activity graph. The al-
gorithm for deriving a set of maximal restricted activity graphs from a given activity graph is
described in [8].

CMU/SEI-91-TR-20 5
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3 Textual Specifications

The graphical representations presented in the preceding section are intended to aid a soft-
ware engineer in visualizing the structural, behavioral, and functional aspects of a software de-
sign. In addition to supporting design specification, however, these representations are
intended to serve as input to an Ada source code generator. To facilitate the construction of
such a tool, we have defined textual grammar for the restricted activity and data graph models.
Textual representations of these models are combined to form a complete behavioral descrip-
tion. A restricted activity graph may be referenced in the behavior part of a Durra task descrip-
tion. The name of the specification is "ACTIVITY' and is followed by the value of the
specification proper. To avoid obscuring the readability of Durra task descriptions, the specifi-
cation value is constrained to be a string literal representing a file name. However, textual rep-
resentations of resource definitions, restricted data graphs, and type definitions are required
to be placed in files that are not directly tied to a Durra task description. By convention, type
definitions are placed in a file named ".TYPES", data graph descriptions are placed in a file
named ".DATAITEMS", and resource definitions are placed in a file named ".RESOURCES".

Syntax
Restricted Activity Graph Specification::=

ACTIVITY =" StringUteral
Type Definitions ::= 'TypeDefList
Resource Definitions 'ResourceDefList
Restricted Data Graph Specification::=

'DataltemUst

Example
behavior activity = "/usr/rwl/sensor.g";

Meaning
The value of a restricted activity graph specification is a file name written as a string literal (i.e.,
a sequence of characters enclosed in double quotation marks . ).

3.1 Notes on Syntax
The syntax of our language is described using standard Backus-Naur-Form (BNF), with the
following conventions:

" Terminal symbols are enclosed in quotation marks ("and"), but the quotation
marks do not belong to the terminal.

" No distinction is made between upper and lower case letters in terminals and
non-terminals.

CMU/SEI-91-TR-20 7



" Vertical bars ("I") separate alternative productions. Braces ('{" and '')
indicate optional components of a production.

" Comments start with a double hyphen ("-"). Any text between the double
hyphen and the end of the line is ignored.

" Identifiers are sequences of letters, digits, and underscores (""). An identifier
must begin with a letter and end with a letter or a digit. Consecutive
underscores in the middle of an identifier are not allowed.

" Strings are sequences of ASCII printable characters, enclosed in double
quotation marks (") . A double quotation mark inside a string must be written
as two consecutive double quotation marks:
"A string with a double quotation mark, '', inside."

" Integer and real numbers are always decimal, i.e., base 10. A real number
can terminate with a period (".") without a fractional part.

3.2 Keywords and Predefined Identifiers
Keywords are highlighted in normal text by writing them in bold face. Predefined identifiers are
highlighted in normal text by writing them inside quotation "marks."

The following words are keywords in the language: active, activity, and, behavior, concurrent, con-
straint, data, else, end, ensure, exclusive, first, float, for, Is, Item, last, level, local, loop, matrix, not, of, or,
port, positive, preemption, range, repeat, require, requirements, resource, select, schedule, shared, state,
stream, then, times, timing, uses, variables, vector, while.

The identifiers "Boolean," "Digits," "False," "Float," "Integer," "Natural," and 'True" are pre-
defined in the language.

8 CMU/SEI-91-TR-20



4 Specification

A restricted activity graph specification consists of five separate parts: a type definition portion,

a resource definition portion, a list of data item definitions, a list of activity definitions, and a

port mapping list. The type and resource definition parts are optional; each of the other parts

must be specified.

Syntax
Activity : ActivityList TypeMappingList

Example
Note that this example is intended to illustrate what a specification might look like and doesn't
represent an actual system.

Type Definitions
Mode Is (Planning, Tracking);
BoundaryValue Is Digits 7;
Angle Is Digits 5;
Distance Is Digits 6 Range 0.0..5000.0;

Resource Definitions
VAXCPU Is Shared(l..1000);

Data Item Msg Is
Select

When B1 Active
Data Item Search In

Concurrent
Data Item Azimuth Is

Angle
End Data Item;
Data Item Elevation

Distance
End Data Item;

End Concurrent;
End Data Item;

When B2 Active
Data Item Front Is

Concurrent
Data Item Number In

Natural
End Data Item;
Data Item ResourceBound Is

BoundaryValue
End Data Item;
Data Item ImportanceLevel Is

Natural
End Data Item;

End Concurrent;

CMU/SEI-91-TR-20



End Data Item;
End Select;

End Data Item;
Activity Planner Is

Select
Activity Front_-End_-Planning(Front) Is

State Variables
Planning_ Directive :Directive;
SystemMode :Mode is Shared;

Require System_-Mode - Planning;
Ensure True; Preemption True;
Importance Level 7;
Timing Constraint e < Front.Number * 0.02;
Resource Requirmnts VAXCPU = 18;
Behavior

PlanningDirective :- GeneratePlano;
End Activity;
Activity Search_-FramePlanning(Search) Is

State Variables
FrameSize Natural;
SystemMode Mode Is Shared;

Require System_-Mode = Planning;
Ensure True; Preemption True;
Importance Level 5;
Timing Constraint e < Frame_-Size * 0.01;
Resource Requirements VAXCPU - 10;
Behavior

Frame-Size :- DeriveSize(Search.Azimuth,
Search.Elevation);

SA -act :=GenerateSARequest(Frame Size);
End Activity;

End Select;
End Activity;

4.1 Literal and Non-Literal Values
Syntax

Boolean~iteral 'True" I "False"
IntegerUteral {"+" I "-") sequence -.of -digits

Reall-iteral f"+" I 'I sequence.o..digits
("." { sequence-of-digits} I

BooleanValue Boolean~iteral I
FunctionCall I
VariableRefI
DataltemnRef

10 CMU/SEI-91 -TR-20



IntegerValue IntegerUteral I
FunctionCall I
VariableRef I
DataltemRef

RealValue RealLiteral I
FunctionCall I
VariableRef I
DataltemRef

Value BooleanValue I
IntegerValue I
RealValue I
"(" ArithExpr U)"

Meaning
Uterals denote constants of the appropriate type. An IntegerUteral is a non-empty sequence
of digits. A RealLiteral is also a non-empty sequence of digits with an embedded decimal point.
Each of the non-terminals BooleanValue, IntegerValue, and RealValue stands for literals (con-
stants) of the appropriate kind, calls to functions returning values of the appropriate kind, or
references to variables or data items of the appropriate kind.

4.2 Expressions

Syntax

Expression { NOT } Term { OR Expression)
Term BooleanValue I

Relation { AND Term)
Relation ArithExpr { RelOp ArithExpr I
RelOp ::= = I "/=" I ">" I >= I eI "<="
ArithExpr { "+" I "-" ) Factor [ "+" I "-" Factor)
Factor Value I""1 "/" Value }
IntegerRange : "+" I "-"} IntegerUteral ".. { "+"I " IntegerLiteral

Meaning
Expressions are used to specify conditions and values used within Activity and Data Item def-
initions.

4.3 Type Definitions

Syntax
TypeDef IntegerTypeDef I

RealTypeDef I
EnumerationTypeDef

CMU/SEI-91-TR-20 11



IntegerTypeDef IntegerTypeName
IS "INTEGER"

{RANGE IntegerRange)
IntegerTypeName Identifier
RealTypeDef RealTypeName

IS "DIGITS" PositiveValue
(RANGE IntegerRange)

RealTypeName .. Identifier
EnumerationTypeDef EnumerationTypeName

IS "(" IdentifierUst "

EnumerationType Name::= Identifier

Meaning
Each atomic data Item must be associated with some abstract data type. Type definitions pro-
vide a means for defining application-specific data types based on a subset of those which are
defined by the Ada language.

4.4 Activity Definition

Syntax
ActivityDef ACTIVITY ActivityName

(""InputDatalte ml-st ")'I
IS ActivityBody

END ACTIVITY "T"

InputDataltem~ist DataltemName {""InputDataltemList)

ActivityBody ActivityList I
ActivitylterationI
ActivitySelectionI
AtomnicActivityDef I
ActivitySchedule

Activitylteration REPEAT ArithExpr
TIMES ActivityUst

END REPEAT";"
ActivitySchedule FOR Relation

SCHEDULE ActivityL-ist
END FOR 'T"

ActivitySelection SELECT ActivityList END SELEC~T'
ActivityName Identifier
ActivityL-ist ActivityDef {ActivityUst)
AtomicActivityDef [STATE VARIABLES StateVadableUst)

{LOCAL VARIABLES Local Variables)
REQUIRE Expression ';"
ENSURE Expression "1;"

12 cMU/SEI-91 -TR-20



PREEMPTION Expression ";"
IMPORTANCE LEVEL ArithExpr ..,
TIMING CONSTRAINT Expression ..,
RESOURCE REQUIREMENTS
Expression ";"
BEHAVIOR StatementUst

StateVariableUst StateVariableName ":"
VariableType {IS SHARED) ';

{StateVariableList}

StateVariableName Identifier
IntegerUst : IntegerValue f"," IntegerUst)
LocalVariables :: LocalVariableName ":"

VarableType 'T'
(LocalVariables)

LocalVariableName Identifier

Meaning
This part of the BNF provides a textual analogue to the restricted activity graph (RAG). Pro-
ductions are provided for each of the nodes in a RAG: iteration, selection, sequence (the latter
is expressed as ActivityList), activity (allows recursive definitions), and atomic activity. Note
that for the Iteration node two forms of Iteration are supported (Activitylteration and Activity-
Schedule), allowing one to specify either a sequence of invocations or an invocation rate. Also
note that an activity's parameters denote data items referenced as input to the activity. In lieu
of "out parameters," data items are directly assigned values in an (atomic) activity's behavior
section. The reason for this asymmetry is that the input parameters are needed to identify the
data items that form part of an atomic activity's enabling condition.

State variables provide a means for defining mode-dependent operation and for specifying
adaptive behavior. The scope of variables names is considered, with one exception, to be re-
stricted to the atomic activity in which it is declared and any encompassing activity. The ex-
ception occurs when a state variable is qualified as shared. Shared state variables with the
same name are considered to denote a single variable for tasks within the same clusters [2].
State variables that have the same name but are not denoted as shared or that are defined in
atomic activities associated with tasks in different clusters are considered to be separate, dis-
tinct variables.

In addition to state variables, it is possible to define a set of variables that are local to a specific
code body. These are intended only to serve as a means for denoting the intermediate results
of an atomic activity's computations and not as a mea,,s for holding state information.

CMU/SEI-91-TR-20 13



4.5 Data Item Definition

Syntax
DataltemDef DATA ITEM DataltemName

IS DataltemBody
END DATA ITEM ..

DataltemName ..- Identifier
DataltemBody DataltemUst I

DataltemIlteration I
DataltemSelection I
DataltemConcurrency I
AtomicDataltemDef I
DataltemSchedule

DataltemSchedule FOR Relation
SCHEDULE DataltemList

END FOR ";"

Dataltem Iteration REPEAT ArithExpr
TIMES DataltemUst

END REPEAT ...

DataltemUst DataltemDef {Dataltemlist}
DataltemName Identifier
DataltemConcurrency::= CONCURRENT DataltemList

END CONCURRENT d;"

DataltemSelection SELECT DataltemSelectionClause
END SELECT";"

DataltemSelectionClause::= WHEN ActivityName
ACTIVE DataltemDef

{DataltemSelectionClause}
AtomicDataltemDef ScalarType I

StreamType

Meaning
This part of the BNF defines the restricted data graph (RDG) which is supplied along with a
RAG. The two graphs resemble each other in having many of the same types of nodes (e.g.,
iteration, sequence, selection). The RDG is somewhat less "restrictive" than the RAG in that it
includes a concurrency operator (to support specification of parallel data streams). This may
be considered a refinement in that it was not originally defined as part of the RDG operators
in earlier versions of SMARTS. Generally speaking, an RAG and RDG serve to complement
one another, with the parameters specified for an activity corresponding to some set of data
items.

14 CMU/SEI-91-TR-20



4.6 Statements

Syntax
StatementUst Statement ";" {StatementUst)

Statement Assignment I
Conditional I
Iteration I
While

Assignment : DataltemRef I
VariableRef ":=" ArithExpr

DataltemRef : DataltemName {"." DataltemRe}

VariableRef : StateVariableRef I
LocalVariableRef

StateVariableRef StateVariableName ("[" IdentIfier '"" I
"[" Identifier "," Identifier 'l"

LocalVariableRef LocalVariableName ("I" Identifier "]"j
"' Identifier "," Identifier '1"

Iteration : FORALL IdentifierList":"
StatementUst

END FORALL
While :WHILE Relation

LOOP StatementList
END LOOP

Conditional IF Relation
THEN Statement

{ ELSE Statement)
END IF

FunctionCall : Identifier "(" {ExpressionList} ")"

ExpressionList : Expression I
Expression "," {ExpressionList)

Meaning
This section of the BNF is intended to be used for expressing the behavior of an atomic activity.
Generally speaking, this may be considered as a form of Program Description Language
(PDL) that includes a simplified version of many of the basic Ada language statements. The
most notable deviation from the normal Ada practice is in the use of matrix/vector subscripts.
When employed within the context of an iteration statement (FORALL), each element of the
matrix or vector will be referenced. For example, consider a matrix A and two vectors B and
C. The statement "forall ±, j: A[ ij] :- B[±i + C[j] end f ozal1;"meansthat
the element at the ith row and ith column of A is equal to the sum of the ith element of B and
the jth element of C.

CMU/SEI-91-TR-20 15



The remaining kinds of statements follow the Ada conventions. A WHILE statement specifies
a sequence of statements to be repeated while a user specified condition specified by a rela-

tional expression is true. The conditional statement lists a sequence of statements to be exe-
cuted if a specified relational expression is true. An optional ELSE clause specifies an
alternative sequence of statements to be executed if the expression is false.

A means for specifying calls to external procedures has been provided primarily to facilitate
interfacing with reuse libraries.

4.7 Type References

Syntax
VariableType ScalarType I

VectorType I
MatrixType

ScalarType IntegerType I
RealType I
EnumerationType

IntegerType IntegerTypeName I
"NATURAL"

RealType RealTypeName I
"FLOAT"

EnumerationType "BOOLEAN" I
EnumerationTypeName

StreamType STREAM "(" IntegerRange ")"
OF ScalarType

MatrixType MATRIX
"(" IntegerRange "," IntegerRange ")"

OF ScalarType
VectorType VECTOR "(" IntegerRange ")"

OF ScalarType
TypeDef List TypeDef ";" {TypeDefList)

Meaning
Data items may be defined as either scalar types (e.g., integer or float) or as streams. For ex-
ample, a sequence of data items denotes the arrival of the constituent items in the specified
order (e.g., from a sensor). Similarly, if a set of data items were specified in parallel it would
mean that they all would be assessable at the same time (this is a case where some form of
automated consistency checking could be used to ensure this property would actually hold for
a given specification).

By defining a data item as a stream or scalar, data requirements may be defined on the basis
of characteristics of the target environment. State variables of an atomic activity must be de-
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clared using one of two alternative data types (matrix and vector) in lieu of the stream. This is
more in spirit with the expected usage of state variables (i.e., to form part of timing, resource
requirement, and functional equations). Many of the kinds of activities which will likely be im-
plemented will probably make extensive use of matrix and vector computations (e.g., Kalman
Filtering).

4.8 Resource Definitions

Syntax
ResourceDefList ResourceDef ";" (ResourceDefUst)
ResourceDef ::- ResourceName IS ResourceUsage
ResourceName . .- Identifier

ResourceUsage : EXCLUSIVE I
SHARED "(" IntegerRange ")"

Meaning
Resource definitions provide a means for identifying the kinds of resources that exist within a
system and quantifying how they can be utilized. Each resource name is associated with an
integer range that defines the units in which it may be utilized. In addition, a resource may be
defined to be exclusive (meaning it may be utilized by only one atomic activity during a spec-
ified period of time) or shared. While resource definitions can obviously be associated with pro-
cessors and memory buffers, these definitions represent abstractions and are not dependent
on a given system architecture for their meaning (i.e., there are no "predefined" resources).

4.9 Type Mappings

Syntax
TypeMapping : DataltemName USES TypeName
TypeMappingList TypeMapping ";" {TypeMappingUst)

Meaning
A software architecture is expressed as a task graph in which tasks are interconnected via
channels. Since the latest version of the Durra language has incorporated elements of the task
graph formalism, it has been used to represent much of the task graph notation originally de-
fined by SMARTS. The additional notation which is defined here is intended to provide a
means for mapping data items to messages that are transferred between Durra ports. In Dur-
ra, each port is associated with a named type which defines the size of messages that may be
transferred through the port. Message size may be specified as a fixed number of bits, a range,
an indefinite length, or a set of alternative lengths. Types that are declared as a sequence of
bits of fixed or variable length are known as scalar types. In addition, Durra permits types to
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be declared as a union of previously declared types. In this latter case, messages passed
through a port of this type could be one of any of its member types.

In the case of scalar types, a one-to-one mapping must be established between the type and
a specific data item. Union types inherit the mappings established for their member type. Thus
while a union type need not be given an explicit mapping, a mapping must be defined for each
of its member types. With regards to scalar types, the data storage sizes implied by the data
item's type must match the explicit size defined in the type declaration. The implied storage
size is not defined here as it is implementation dependent.

Note that the non-terminal "TypeName" is defined by the Durra language. It thus serves as a
unifying element which is shared between Durra and the restricted activity/data graph lan-
guages. Finally, it should be noted that the term "type" as used within the context of Durra has
a different meaning from the usage typical in programming language circles. The Durra refer-
ence manual contains information on how types may be declared.

We should note that this language does not provide an equivalent of the GetPort and
SendPort operations used by the Durra runtime interface to implement port input and output
operations. The reason is that these are considered low-level operations, which is implied by
the enabling conditions of a restricted activity graph.

18 CMUISEI 91-TR-20



5 Implementation Strategies

Restricted activity and data graphs may be used to generate an Ada implementation of a Durra
task as a set of subprograms. By importing a package that implements various auxiliary types
and subprograms, including the Durra communication procedure and additional support pack-
ages, the procedure could then be compiled and linked by a suitable Ada development system
and stored in the Durra task implementation library. Similarly, a task graph may be expressed
as a Durra application description from which the Durra compiler can generate an Ada pack-
age body for each cluster1 defined in the application. The package body imports implementa-
tions of Durra tasks and channels, creates Ada tasks to serve as threads for the
implementations, and includes code to evaluate reconfiguration conditions (if any are speci-
fied) and modify the cluster configuration as required. The package body also defines a set of
tables, common to all clusters in the applicatio'i, that describe the complete application struc-
ture. A hardware configuration table, which defines the environment in which the distributed
application will run, may also be included. As part of the support environment, a set of runtime
support packages are provided for use by all clusters. These support packages, the cluster-
specific package body, and a driver subprogram are combined into a single Ada program that
implements the cluster.

The basic premise underlying the code generation process is that the control and structural
information provided by a set of task/activity graphs can guide the selection of implementation
decisions. By rigorously defining the behavior of each activity, we are able to generate a sig-
nificant portion of an implementation. This is because the task/activity graph topology can be
used to identify many of the control and data structures as well as providing a basis for defining
Ada packages. The actual Ada structures are derived from the topology of the data graph, the
data item type definitions, and the resource requirement attributes. Each operator in the data
graph represents a distinct time-ordered availability of the data items to which it is applied and
suggests a distinct mapping into a particular form of Ada data types and objects. These map-
pings along with their rationale are described in [5].

One of the principle difficulties faced in code generation is the selection of an appropriate pro-
gram element naming convention. Often times the software produced by a general-purpose
code generator can be difficult to maintain due to the lack of coherent type, variable, and sub-
program names. While our formal method of specification can significantly reduce this prob-
lem, it cannot eliminate it since the relevancy of a name can depend on context. Moreover, the
descriptive names found in task, activity, and data graphs represent a limited source of infor-
mation for denoting elements within an Ada program. For instance, when a for-loop statement
is derived from an activity graph, information might not be available for naming the identifier in
the loop parameter specification. In other instances, the length of the names derived from

1. The Durra language allows one to group tasks together to comprise a set of clusters. In the general case, sched-
uling would be conducted at tw. levels with a cluster scheduler operating in concert with a set of task schedulers,
each assigned to a separate cluster.This report considers the case where only one cluster is specified per pro-
cessor.
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graph annotations may cause the generated software to appear cumbersome and difficult to
read. To avoid these problems, we plan to provide standard default naming schemes which
can be interactively overridden during the generation process. For example, the default name
for an identifier in a loop parameter specification would be Index, with a number appended in
order to establish uniqueness.

The Ada language, as currently defined, provides a programmer with the choice of assigning
a task a fixed priority or leaving it be undefined. Selective use of fixed and undefined priorities
form the basis for strategies such as priority inheritance, which is intended to ensure predict-
ability [4]. By assigning a task a fixed priority, however, one is forced to permit preemption in
the general case. As a consequence, a programmer has only a limited set of language fea-
tures through which to control scheduling of activities based on its preemptability, importance
level, timing constraint, and resource requirements. Our experience has led us to conclude
that except for the simplest cases, it would be very difficult to construct a software implemen-
tation from a design specification using the existing language features.

One property of atomic activities which can be particularly difficult to implement in software is
the activity precondition. In a programming language such as Ada, this would most likely be
implemented using an availability control to prevent task synchronization from occurring until
the precondition is satisfied [4]. Unfortunately, the straightforward solution of using a selective
wait usually leads to a polling situation with unacceptable overhead. This problem, along with
those mentioned In the previous paragraph, have led to a set of proposed extensions to Ada
described in the following section.

5.1 Extensions to Ada
In considering how Ada might be extended to better support the implementation of a software
architecture, we will follow the classification scheme described in [4] for examining specific lan-
guage constructs. In this classification, scheduling and decision-making capabilities of a lan-
guage were defined as race controls and availability controls, respectively. Availability
controls are only relevant to one of the properties of an atomic activity: the precondition. We
believe that adding generalized guards to the Ada accept statement, as pointed out in [4],
would be sufficient to implement activity enablement. By contrast, race controls can be used
to implement three of the additional four properties (importance level, timing constraint, and
resource requirements) of an atomic activity. We find that the remaining property, preemptabil-
ity, is not addressed by either the availability or race controls. The remainder of this subsection
examines the relationship between the race controls defined in [4] and the importance level,
resource requirements, and timing constraints of an atomic activity.

The E&D comprehensive set of race controls is divided into forerunner control, preference
control, and dynamic priority control. Forerunner control represents a means by which
pending entry calls may be ordered according to a specified criteria. Within the context of
SMARTS, this would be most applicable to the implementation of data managers [5]. By han-
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Assumptions:

Activity A Activity B

deadline - 9 msec. deadline = 4 msec

importance level = 7 importance level = 3

Priority = (100/(deadline + 1)) + importance level

Current Clock Time = 0

Maximum Importance Level = 10

Resulting Priority of the Corresponding Ada Tasks:

Task B: 23
Task A: 17

Figure 5-1 Task Priority Determination

dling calls to a data manager via an accept ordered according to priority, one would be assured
that transactions could be carried out in order of importance during periods of heavy loading.

Preference controls are used to specify the criteria for choosing between the alternatives with-
in a select statement. This would, not surprisingly, appear to be most applicable to cases
where a selection between multiple activities is specified. Although examples of activity selec-
tion in prior papers used preconditions that were both mutually exclusive and collectively com-
plete, this need not necessarily be the case [61. The syntax and semantics of activity graphs
does not preclude the case where more than one precondition may be satisfied. In this circum-
stance, one of these activities would be selected based on their relative importance level. The
preference control described in [4] would handle the case in which the relative importance of
the constituent activities does not change.

Dynamic priority controls probably bear the most complex relationship with respect to the ac-
tivity characteristics mentioned above. This is because SMARTS defines three separate char-
acteristics (importance level, resource requirements, and timing constraints) that can influence
the scheduling of an atomic activity. By contrast Ada provides a single mechanism, priority,
which can be used to influence task scheduling. Thus in the most general case, a hierarchical
resource management scheme is needed to determine task priority based on the characteris-
tics of individual activities [6]. It is possible, however, that special cases might exist in which a
resource management hierarchy might be unnecessary. For example, suppose that one was
to use an Earliest Deadline First (EDF) scheduling strategy and that resource contention does
not occur. In this case, a task's priority could be expressed as a function of its constituent ac-
tivity's scheduling deadline and importance level. Figure 5-1 illustrates one way in which this
function might be implemented. In this case, the scheduling deadline is the most significant
determinant of priority; the importance level will affect relative priority only when activity sched-
uling deadlines fall within a small, predefined window. Notice that the priority is inversely pro-
portional to the length of the scheduling deadline and the importance level affects the priority
less significantly than the scheduling deadline.
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5.2 Emulating Race Controls Within Durra
While the E &D comprehensive set of race controls offers promise for improving a program-
mer's control over Ada task scheduling, it will likely be several years before these language
extensions are incorporated as part of the Ada 9x revision process. We assert, however, that
a software architecture derived using SMARTS can be effectively implemented within the
framework of Durra. The latter implements a buffered message passing model of interpro-
cess communication. Durra channels may have a '"bound" attribute whose value determines
the size (in number of messages) of the buffer associated with each input port of the channel.
When a task attempts to send data to a channel, the task will block (i.e., be suspended) if the
buffer associated with the port is full. Conversely, a task attempting to read data from a chan-
nel will block if the buffer is empty. Setting the buffer bound to zero forces synchronous com-
munication, since either task will block until the other is ready to send or receive data. For
practical purposes, one can achieve asynchronous communication by setting the bound to a
very large number.

In the following sections, we explain how the effect of individual race controls may be emulated
using Durra in conjunction with a conventional Ada compiler. This requires us to recast the no-
tion of forerunner, preference and dynamic priority controls within the context of restricted ac-
tivity graphs, and the Durra tasks that serve to encapsulate them. As an example, consider
Figure 5-2. Task A is declared to have two ports, Al and A2, through which data items are
transferred to their constituent activities AA, AB, and AC. Port Al is defined to be of scalar type
(a fixed or variable sequence of bits) that must match the data storage requirements of the
data item (X) which passes through the port. In this case, Port Al is connected to a channel
which serves as a conduit for transferring instances of Data Item X to Task A. When multiple
sources of X exist, a class of channel known as a merge may be used to transfer each to its
destination (in this case Task A). We may apply the notion of a forerunner control within the
context of Durra (rather than Ada) by noting that it is possible to implement a merge channel
in a variety of ways. Possibly the simplest implementation would be for the channel to queue
data items using a FIFO ordering scheme. Altematively, a channel may determine queuing or-
der based on the priority of the sending task or on the value of the data item (or in the case of
a composite, one of its constituent data items).

5.2.1 Emulating Preference Control
An analogous form of preference control may be illustrated by the connection of Port A2 to the
activities AB and AC in Figure 5-2. Port A2 is defined to be of union type, indicating that the
data items which pass through it must correspond to one of its member types. In this example,
Port A2 has two member types corresponding to the data items Y and Z. Let us assume that
the execution of Task A had been blocked, waiting for the arrival of a message at Port A2. Now
suppose a message is sent to Port A2. Task A will resume execution in accordance with its
priority with respect to tasks within the same cluster. Once this has occurred, the message is
obtained from Port A2, and its associated data item is checked to determine whether it is in-
tended as input for activity AB or AC. This is then used to update the enabling condition of the
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Task A

Port Ali

Port A2 +

z Activity AB _& Activity AC

Figure 5-2 A Sample Task and Its Restricted Activity Graph

respective activity. It should be noted that whether AB or AC is actually enabled tor execution
depends on properties of the associated activities (e.g., their preconditions) as well as the
availability of input. In this context, preference control is much more restrictive becuase it is
unlikely that all activities involved in a select will have their availability and preconditions sat-
isfied at the same time.

The preference control specified above is a form of restricted availability control in which ac-
tivity AB or AC is selected based on the appearance of its input data item at the port. Now sup-
pose that Z is replaced by Y so both activities (activity AB and activity AC) the same data item
Y as input. In this case, the behavior of the system when there is a data item available at the
port depends on whether or not the precondition of activity AB or AC is true. If exactly one of
the activities is found to have a precondition which evaluates to true, then that activity would
be provided the data item. Otherwise, if more than one activity is found to have a precondition
that is true, the activity with the greatest importance level should receive it. In the case where
more than one of these activities have the same importance level, one is selected on the basis
of its physical position within the specification. In the textual representation, this would be the
top-most of the identified activities. In the graphical specification, it would be the left-most.

By combining precondition evaluation with the availability of input, we have introduced the use
of private control. In effect, we would be choosing an alternative based both on consensus
control (i.e., communication request through a port, in the form of a data item) and on the eval-
uation of a private control expression. In this case, the control expression would be evaluated
first. Only those activities whose expressions evaluate to true would be allowed to participate
in the selection. As stated previously, the highest priority activity whose input data items are
available would be selected.
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As shown in Figure 5-2, ports of union type (e.g., A2) are used to implement the activity selec-
tion operation so as to distinguish between inputs for the various activities. The use of a sep-
arate port to receive input for each activity within a selection (e.g., a separate port for X and
for Y) is proscribed for the following reason. In Durra, a task would have to perform a"test port"
operation for each to check on input availability, with a "get port" being invoked to obtain the
message for each activity whose precondition was true. A problem occurs, however, in the
case where none of the inputs are available. Because the order in which the inputs arrive is
not usually predictable, it cannot generally be determined at which port the task should block
waiting for input. On the other hand, a channel connected to a port of union type could order
messages as they arrive according to their type. By relating type with the importance level of
the activity that takes its associated data item as input, the presentation of input may be facil-
itated.

5.2.2 Emulating Dynamic Priorities
The Durra runtime environment establishes communications between clusters, starts and ter-
minates Durra processes and links, transports data between Durra processes and links, eval-
uates reconfiguration conditions, and performs reconfigurations. The Durra runtime, however,
has no responsibility for scheduling Durra processes and links other than starting and termi-
nating them. Since they are implemented by Ada tasks, they are scheduled by the Ada runt-
ime. Consequently, we must add an additional level of control in order to support dynamic task
priorities. To ensure that task scheduling is carried out in accordance with the changes in im-
portance level inherited via the encapsulated activities, we employ an additional task that de-
termines the order in which application tasks are executed and thus serves as an application-
level scheduler. While this task does not appear within a Durra application description, the lat-
ter task, along with its encapsulated restricted activity graphs, contains most of the necessary
information needed to synthesize an application-level scheduler. For consistency with earlier
papers, we refer to this task as a global scheduler.

In order to properly schedule the execution of application tasks, a

should be notified of the following conditions:

" A specific activity has arrived.
" All of the input data items are available for a given activity.
" The precondition associated with an activity has just become true.

A global scheduler would be notified of the first two types of conditions via reference to a spe-
cial set of program variables which are shared with the activities it controls. The third condition
would be determined by the global scheduler itself.As shown in Figure 5-3, a global scheduler
is connected to each of its controlled tasks via a deal channel. By assigning the global sched-
uler the lowest possible priority, it can be guaranteed to execute only when all application tasks
in its cluster have blocked. The global scheduler operates in a cyclic fashion. During each cy-
cle the following actions occur:
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., Global Scheduler

Deal

Task A Task B [Task C

Figure 5-3 Relation Between A Global Scheduler and the Application
Tasks It Controls

" First, the global scheduler checks for the presence of newly-arrived activities
by scanning through its list of shared variables. Those whose value are found
to have been reset are placed on an arrival list.

" Next, the global scheduler checks whether each activity on the arrival list has
a true precondition. Each activity that passes is further considered in order of
its importance level. Then, starting with the "most important" activity, the
global scheduler checks in descending order of importance if all of an
activity's input data items were available from its associated input port. The
highest priority activity for which its inputs are available is selected. Once
selected, the activity is considered enabled.

" Those activities which become enabled are transferred from the arrival list to
the ready list.

" Finally, the global scheduler examines the timing constraint properties of the
activities on the ready list and selects a candidate for execution (and
removes it from the ready list).

To assure proper operation, each of the application tasks must follow the same protocol in in-
teracting with the global scheduler. Upon completion of an activity, the task sets a shared vari-
able to indicate that the activity's execution is finished. In addition, the task determines which
of its activities would subsequently have arrived and sets its shared variables accordingly. The
task then initiates a series of GetPort operations (Durra communication primitives) to re-
trieve the inputs required by its newly-arrived activity (or activities). Once all of the inputs for
one activity have been obtained, the task sets a shared variable to notify the global scheduler
that this has occurred. Finally, the task performs a Get Port operation on the port connected
to the global scheduler's deal channel. This will cause the task to block until the global sched-
uler has identified one of the task's enabled activities for execution.
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The protocol described in the preceding paragraphs, along with the properties of the individual
atomic activities, provides the information necessary to synthesize a template corresponding
to a global scheduler for each cluster within a system. A complete implementation of a global
scheduler may be obtained by adding the code which implement one's desired scheduling pol-
icy.

Durra actually has no notion of a shared variable. Instead, tasks communicate by passing
messages through interconnecting channels. We added shared variables to SMARTS, how-
ever, because this provides a quicker and more efficient way of transferring operational status
between tasks within a task cluster. Moreover, global states or modes of operation can be very
useful in describing system functionality. In a requirements specification, it is preferable not to
specify the details of how each activity is informed about mode changes. Rather, one is con-
cerned when mode changes occur and which activities need to know about it. Thus in the ac-
tivity graphs, a mode is represented by a state variable shared between two or more activities.

In SMARTS, the progression from requirements to design involves partitioning the activity
graph into a set of interconnected restricted activity graphs. Each of the latter is allocated to a
Durra task. The interconnections between restricted activity graphs serve to define the inter-
face for each Durra task (i.e., its ports). The state variables shared between activities must
conform with the Durra semantics. In the case where a state variable is shared between ac-
tivities within a single Durra task or within a cluster of Durra tasks, the update of the variable's
value is straightforward. The state variables shared within a single cluster would be declared
in a separate Ada package, which is "withed" each of the Ada packages that implement the
activities and global scheduler for that cluster. The value of each variable would be updated
by its respective activity. The global scheduler could evaluate the precondition of any activity
that has arrived (inputs not yet available and/or precondition last evaluated to false) or is en-
abled (the inputs are available and the precondition last evaluated to true). The precondition
evaluation itself could be done either in real or delayed time. We have not prescribed (nor pro-
scribed) either alternative.Rather, we permit either as an application-specific design decision.

When a state variable is shared between activities allocated to tasks in different clusters (pos-
sibly on different machines), the update process can be much more complicated. In this case,
one must explicitly describe a means for transferring the value between clusters. Clearly, this
could aiso be accomplished using a real-time or delayed time semantics. In the case of the
latter, updates to shared state variables would be recorded by the activities which implement
the updates. Whenever the global scheduler would execute (e.g., the application tasks are
blocked or waiting) It would check If any shared variables have been updated. If some have,
their identity and new values would be sent to the other Global Schedulers as well. The latter
would determine whether the state variables identified in the message are actually shared by
its cluster. If this is the case, the value of each variable will be updated accordingly.
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