
AD-A244 978

SOFTWARE DESIGN DOCUMENT
GT Real-Time Software Host CSCI (9B)

Volume 1 of 2 Sections 1.0- 2.12.19.2

DTICSELECI 17.
June, 1991 LEN 0

JAN 09 19D
Prepared by:

BBN Systems and Technologies,
A Division of Bolt Beranek and Newman Inc.
10 Moulton Street
Cambridge, MA 02138
(617) 873-3000 FAX: (617) 873-4315

Prepared for:

Defense Advanced Research Projects Agency (DARPA)
Information and Science Technology Office
1400 Wilson Blvd., Arlington, VA 22209-2308
(202) 694-8232, AUTOVON 224-8232

Program Manager for Training Devices (PM TRADE)
12350 Research Parkway
Orlando, FL 32826-3276
(407) 380-4518

92-00253

APPROVED FOR PUBLIC RELEASE 9 1 6 0 6 1
)S'R!, 1..:TICN UNLIMITED

~Ibb~_

REPORT DOCUMENTATION PAGE .Fo, .,v,",

00%kk ,r=:T b%~dm Osw ft obOe~f of Wft~m Is esntg lo &ma Isi ~ mW eW.. bl~of ft 0"w bt add bu~i.U~g~4g ~
aWW~9 g .diu" &ad e.;w9' 9.ColanIkwnMi~. Wet S"O" e -d IE~ ftisSa orj.mae sI of mdin 9i~. i.
IN WM* "s1 Wdui ft Waturgw IqWw Sv. fmesscr~ bt bWwmmnO.Si al .l121S Aoaq VA~y si 2.DIb'iW ZI 411li
". Or~amof I frtow"WaA go Aery "Mrs fin OWNMMaI~sNwi " SudgWt. Eah~s .DC 201411.

I. AGENCY USE ONLY (Lve SJ 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

J June 1991 Software Design Document
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Software Design Document GT Real-Time Software Host CSCI (9B)

___Contract Numbers:

.AUTHOR(S) MDA972-89-C-0060
MDA972-89-C-0061

Author not specified.

7. PERFORMI NG ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Bolt Beranek and Newman, Inc. (BBN) REPORT NUMBER

Systems and Technologies; Advanced Simulation Advanced Simulation #:
10 Moulton Street 9117
Cambridge, MA 02138

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING AGENCY
REPORT NUMBER

Defense Advanced Research Projects Agency (DARPA DARPA Report Number:
3701 North Fairfax Drive None.
Arlington, VA 22203-1714

11. SUPPLEMEINTARY NOTES

None

12m 0ISTRIBUTKOK'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Statement A: Approved for public release; distribution is unlimited.
Distribution Code:
A

13. TRACT (Uukwmm 200 wlscli)

A Simulation Network (SIMNET) project Software Design Document that describes the GT Real-Time Software
Host Computer Software Configuration Item (CSCI number 9B) of the SIMNET hardware and software training
system for vehicle crew training and operational training.

14. SUBJECT TERMS IS. NUMBER OF PAGES

SIMNET Software Design Document for the GT Real-Time Software Host CSCI (CSCI 9B). I. PRIE CODE

17. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION I1. SECURITY CLASSIFICATION 20. LIITrATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Same as report.
NSN 7540-01-20-$5OO tsedard Fn 2 am

Pmatb! by AW to

SOFTWARE DESIGN DOCUMENT
GT Real-Time Software Host CSCI (9B)

Volume 1 of 2 Sections 1.0 - 2.12.19.2

June, 1991

Prepared by:

BBN Systems and Technologies,
A Division of Bolt Beranek and Newman Inc.
10 Moulton Street
Cambridge, MA 02138
(617) 873-3000 FAX: (617) 873-4315

, f c , -,,

Prepared for: LI' 9;..l

Defense Advanced Research Projects Agency (DARPA) .. _
Information and Science Technology Office
1400 Wilson Blvd., Arlington, VA 22209-2308
(202) 694-8232, AUTOVON 224-8232

Program Manager for Training Devices (PM TRADE)

12350 Research Parkway
Orlando, FL 32826-3276(407) 380-4518

APPROVED FOR PIJSLC RELEASE
DIS6tB1UTION UNLIMITED

BBN Systems and Technologies GT100 RTSW CSCI

Table of Contents

1 INTRODUCTION: GT REAL-TIME SOFTWARE HOST CSCI 1

1.1 THE SIMULATOR ... 1

1.1.1 The Simulation Host ... 2
1.1.2 The CIG ... 2

1.2 CIG-SIM COMMUNICATION ... 2

1.3 RTSW SOFTWARE STRUCTURE .. 3

1.5 HOW THIS DOCUMENT IS ORGANIZED 5

2 CSC DESCRIPTIONS .. 7

2.1 TASK INITIALIZATION (/CIG/GTBINSRC) 9

2.1.1 bx147_main.c ... 9
2.1.1.1 main ... 9

2.1.1.2 poll shutdown ... 10

2.1.2 mkcal.c .. 11
2.1.2.1 makecal-overlay 11

2.1.2.2 makecalmatrices 12

12.1.2.3 make-caLpatterns.........................13

2.1.2.4 pix-mult ... 13

2.1.3 rtt.c ... 14
2.1.3.1 main 14

2.1.3.2 checkrestart .. 17

2.1.3.3 disablerestart .. 17

2.1.3.4 rttshutdown .. 18

2.1.3.5 poll-shutdown ... 19

2.2 2-D OVERLAY COMPILER (/CIG/LIBSRC/LIB2D) 20

2.2.1 bit_blt.c (setup bit-blt) .. 26
2.2.2 cig 2d-setup.c .. 26
2.2.3 cig-comp_2d.c (compile_2d) .. 27
2.2.4 cig-getm_2d.c (get-msg_2d) .. 28
2.2.5 ciglink_2d.c (linkup) ... 29
2.2.6 comp.c (setup-comp-start) .. 30
2.2.7 drawjline.c (setup..draw line) ... 31
2.2.8 get-thing.c .. 32
2.2.9 init_stuff.c ... 33
2.2.10 oval rect.c (setupoval-rectangle) 33
2.2.11 poly.c (setup-poly) ... 34

i

BBN Systems and Technologies GT100 RTSW CSCI

2.2.12 proc-cmd.c (process-command) 35
2.2.13 string.c (setup-definestring) .. 36
2.2.14 text.c (setuptext) .. 37
2.2.15 u-comp-2d.c (compile_2d) .. 38
2.2.16 u.getm.2d.c (getLmsg_2d) .. 38
2.2.17 u_link_2d.c (linkup) ... 39
2.2.18 umain2d.c (main) .. 39
2.2.19 window.c (setup-define-window) 40

2.3 BACKEND MANAGER (/CIG/LIBSRC/LIBBACKEND) 42

2.3.1 aainitc .. 43
2.3.1.1 active area init .. 43

2.3.1.2 clear .. 44

2.3.1.3 extended_ram_available 44
2.3.2 backendbranch.c (backend_setjbranch) 45
2.3.3 backend_color.c (backendseLcolor) 45
2.3.4 backendlaser.c ... 46

2.3.4.1 backendlaser~jequestrange 47

2.3.4.2 backend-response 48
2.3.5 backendman.c ... 49

2.3.5.1 backend-setup .. 49

2.3.5.2 backendreset .. 50
2.3.5.3 backendsim_init 51
2.3.5.4 backendsendreq 51

2.3.5.5 backend-get-object-addr 52

2.3.5.6 backendclearlaser requests 52
2.3.6 backendpaths.c .. 53

2.3.6.1 backend_setpaths 53

2.3.6.2 backend-update-view-paths 53
2.3.7 backend_thermal.c (backend_set_thermal) 54
2.3.8 backendvideo.c (backend_set_video) 55
2.3.9 dlman.c (dl-setup) .. 55
2.3.10 ppm-obj.c ... 56

2.3.10.1 ppm-setup .. 56

2.3.10.2 ppm-init 57

2.3.10.3 ppmget_data .. 58

2.3.10.4 ppm-load .. 58

2.3.10.5 gosppm.query .. 59

2.3.10.6 gosppmquery-.menu 60

ii

BBN Systems and Technologies GT100 RTSW CSCI

2.4 BALLISTICS PROCESSING (/CIGILIBSRC/LIBBALL)................ 62P2.4.1 Ballistics Mainline ... 68
2.4.1.1 bx-init.c ... 68
2.4.1.2 bx...probe.c 69
2.4.1.3 bx-reset.c 71
2.4.1.4 bx-task.c .. 72

2.4.1.4.1 bx task 72
2.4.1.4.2 bxtask-cleanup 73

2.4.2 Ballistics Interface Message Processing 74
2.4.2.1 bO~aarn-centroid.c............................... 75
2.4.2.2 bO-aam-sw-corner.c............................. 75
2.4.2.3 1,0_addstaic _vehicle.......................... 75
2.4.2.4 bO-add~trajjable.c 76
2.4.2.5 bO_bal_config.c 77
2.4.2.6 bO~bvol-entry.c 77
2.4.2.7 bO--cancel-round.c............................... 78
2.4.2.8 bOsig-frame-rate.c 79
2.4.2.9 bO-database-info.c.............................. 79
2.4.2.10 bO_delete -static_vehicle.c......................... 80
2.4.2.11 bO~delete...trajtable.c............................. 81
2.4.2.12 bO_error_detected.c...............................81
2.4.2.13 bojnapp-..mssage.c 81
2.4.2.14 bOIm_read.c..................................... 81
2.4.2.15 bO-model-directory.c 82
2.4.2.16 bOLmodelentry.c................................ 82
2.4.2. 17 bO-new-frame.c 83
2.4.2.18 bOprint.......................................83
2.4.2.19 bO...process-cbord.c 84
2.4.2.20 bO...process-round.c.............................. 85
2.4.2.21 bO~round_fired.c 86
2.4.2.22 bO-state_control.c................................ 87
2.4. 2. 23 bO_status,_reqpest.c 88
2.4.2.24 bO~tf-init-hdr.c 88
2.4.2.25 bO~tfinit-pt.c.................................... 89
2.4.2.26 bO-tfstate..................................... 89
2.4.2.27 bO-tf-vehicle-.pos.c 90

1ii

BBN Systems and Technologies GTIOO RTSW CSCI

2.4.2.28 b0_trajchord.c ... 91

2.4.2.29 bOtraj-entry.c .. 92

2.4.2.30 bOundefinedmessage.c 93
2.4.3 Ballistics Database Interaction ... 94

2.4.3.1 bxbvolintc .. 94

2.4.3.2 bxchord_intersectc 95
2.4.3.3 bx_computejound.c 96

2.4.3.3.1 bxretumn_miss 97

2.4.3.3.2 bx.guntip-within_db 97

2.4.3.3.3 bxfind_shot-report 98

2.4.3.3.4 bx_round_tracerposition 99
2.4.3.3.5 bx_find_roundhit 100

2.4.3.4 bxfindvehicle.c ... 100

2.4.3.5 bx_functions.c ... 101
2.4.3.5.1 bxnewround 102

2.4.3.5.2 bxdeleteround 102
2.4.3.5.3 bxget.db..pos 103

2.4.3.5.4 bx-get-chord-end 103
2.4.3.5.5 bxnewbvol 104

2.4.3.5.6 bx_freelmcache 104

2.4.3.5.7 bxnew-poly 105

2.4.3.5.8 bx.get_lb_fromim 105

2.4.3.5.9 bxnewstat-veh 105

2.4.3.5.10 bxdelete-stat veh 106

2.4.3.5.11 bxdistsq.pLline 106

2.4.3.6 bx-get-lm-data.c .. 107

2.4.3.7 bx-getImr grid.c .. 108

2.4.3.8 bxmodel_int.c .. 108

2.4.3.9 bx.poly-intc .. 109

2.4.3.10 bx.tf-pack.c ... 110

2.4.3.10.1 bx_tfjiniLpucache 111

2.4.3.10.2 bxtf..pts 111

2.4.3.10.3 bx_tf_next 111

2.4.3.10.4 bx-tfcopy-msg 112

2.4.3.10.5 bxtflpt data 112

2.4.3.10.6 bxtfnew_tfpts 113

iv

BBN Systems and Technologies GT100 RTSW CSCI

2.4.3.10.7 bxtf-freetfpts 113

2.4.3.11 bxtrajectory.c 114

2.4.3.12 shoLreport.c .. 114

2.4.4 Ballistics Message Queue Management 116
2.4.4.1 mxerror.c ... 116

2.4.4.2 mx.open.c ... 117

2.4.4.3 mx-peek.c .. 117

2.4.4.4 mx push.c ... 118

2.4.4.5 mxskip.c .. 120

2.4.4.6 mxwcopy.c ... 120

2.5 CIG CONFIGURATION (/CIG/LIBSRC/LIBCONFIG) 122

2.5.1 aamnmanager.c .. 122
2.5.1.1 aammalloc ... 123

2.5.1.2 returnaam ptr ... 123

2.5.1.3 system-aam_init ... 124

2.5.1.4 dynamic-aaminit ... 124

2.5.2 bbnctype.c ... 125
2.5.3 cig-config.c .. 125
2.5.4 flltree.c ... 128

2.5.4.1 fill-tree .. 128

2.5.4.2 power ... 129

2.5.5 getvehicleposition.c .. 129
2.5.6 getch.c ... 129
2.5.7 overlay-setup.c ... 130
2.5.8 process-vflags.c .. 131
2.5.9 process-vppos.c .. 131

2.6 ESIFA INTERFACE (/CIG/LIBSRC/LIBESIFA) 134

2.6.1 esifa_fade.c (esifa-set-fade) ... 135
2.6.2 esifalaser.c .. 136

2.6.2.1 esifalaser~jequest range 136
2.6.2.2 esifalaserreturn .. 137

2.6.3 esifa_load.c ... 138
2.6.4 esifaman.c .. 139

2.6.4.1 esifa_setup ... 139
2.6.4.2 esifasiminit .. 140
2.6.4.3 esifa_send-req ... 140
2.6.4.4 esifa-get object-addr 141
2.6.4.5 esifa_ConfigData .. 141

V

BBN Systems and Technologies GTIOO RTSW CSCI

2.6.4.6 esifa.queue data .. 142

2.6.4.7 esifaqueue_download 143 i

2.6.4.8 esifasend-queue .. 144

2.6.5 esifaquery.c .. 144
2.6.5.1 esifa_read-ports ... 144

2.6.5.2 esifawriteports .. 145

2.6.5.3 esifaread ... 146

2.6.5.4 esifawrite .. 147

2.6.5.5 esifadownload .. 148

2.6.6 esifaspecial.c (esifa set-special) 149
2.6.7 esifathermal.c (esifasetthermal) 149
2.6.8 esifa_video.c (esifa -set video) ... 150

2.7 STAND-ALONE HOST EMULATOR (/CIG/LIBSRC/LIBFLEA) 152

2.7.1 autopilot.c ... 154
2.7.2 cf_translator.c ... 155

2.7.2.1 config-translator ... 156

2.7.2.2 process,.cigctl .. 157

2.7.2.3 process._file-description 158

2.7.2.4 processsconfigtree-node 159

2.7.2.5 process,.viewport.state 159
2.7.2.6 processdef'me tx mode 160
2.7.2.7 process-overlay-setup 161
2.7.2.8 process.tf_init_hdr .. 162
2.7.2.9 process,_tfjnit_pt ... 163
2.7.2.10 processagl.setup ... 163
2.7.2.11 processsionit .. 164
2.7.2.12 process -add-traj_table 165
2.7.2.13 process traj entry 166
2.7.2.14 process,_2d_setup 166
2.7.2.15 process_It_state .. 167
2.7.2.16 process drll pktsize 168
2.7.2.17 process sio_close ... 169
2.7.2.18 processfi state .. 169
2.7.2.19 process,_ammo_defme 170
2.7.2.20 process,.ppmdisplay-mode 171
2.7.2.21 process-ppm-display-offset 172
2.7.2.22 process,.ppm-pixellocation 173

vi

BBN Systems and Technologies GT100 RTSW CSCI

2.7.2.23 process-ppm pixeLstate 173

2.7.2.24 read_akeyword ... 174

2.7.2.25 removewhitespace 175

2.7.2.26 removecommentlines 176
2.7.3 dynamicdemo.c ... 176
2.7.4 encode_routines.c ... 177

2.7.4.1 upd-matrix-values .. 178
2.7.4.2 upd-rotation-values 179
2.7.4.3 upd-dynamicmatrix 180

2.7.4.4 upd-view-flags .. 180

2.7.4.5 upd-roundfired ... 181

2.7.4.6 upx chordfired ... 182

2.7.4.7 upd-autojire .. 182

2.7.4.8 upd-rem static_veh 183
2.7.4.9 upd-add-staticveh 184

2.7.4.10 upd-send-dynamic .. 184

2.7.4.11 upd-count-hits-per-min 185

2.7.4.12 upd view_mode ... 185

2.7.4.13 upd-show-eff ... 185

2.7.4.14 upd-clouds ... 186

2.7.4.15 upd-reqagl .. 186
2.7.4.16 upd-req.point ... 187
2.7.4.17 upd-reqlrange .. 188

2.7.4.18 updview mag .. 188

2.7.4.19 upd-subsys-mode .. 189

2.7.4.20 upd-viewport-up .. 189

2.7.4.21 upd-send-stop ... 190

2.7.4.22 fleaerror print .. 191

2.7.4.23 put-in-hdr .. 191

2.7.4.24 updflea.vehicles ... 192

2.7.4.25 fireround .. 193
2.7.4.26 process_chord ... 193

2.7.4.27 processround ... 194

2.7.4.28 cancelround ... 195

2.7.4.29 upd-sio-write .. 195

2.7.4.30 updltstate .. 196

vii

BBN Systems and Technologies GT100 RTSW CSCI

2.7.4.31 send-.gun..overlay................................ 196

2.7.4.32 send-ammo-define.............................. 197
2.7.5 flea.c..197

2.7.5.1 flea...198

2.7.5.2 flea_io-task 200

2.7.5.3 flea-.getchar 200

2.7.5.4 flea-dummy..getchar..............................201

2.7.5.5 flea_10_miode.................................... 202

2.7.5.6 flea_10_on 202

2.7.5.7 flea_10_off...................................... 203

2.7.5.8 flea-initialized................................... 203

2.7.5.9 scratch-flea.......................................204

2.7.5.10 flea...printf.. 204

2.7.5.11 flea-cleanup......................................204

2.7.5.12 fleaio_task-leanup 205

2.7.6 flea...ag-terrain-follow.c 205
2.7.7 flea-agptjocations.c ... 206

2.7.7.1 flea..agpt_locations............................... 206

2.7.7.2 flea-agptocations-main-menu.................. 208

2.7.7.3 new-.pos-orient 209

2.7.7.4 update..synjlemo................................ 209

2.7.8 flea-agpt-switches.c.. 210
2.7.8.1 flea agpt_switches............................... 210

2.7.8.2 set-command_2d 213

2.7.8.3 update - ag 214

2.7.8.4 update...subsys..mode............................. 214

2.7.8.5 update..ypt 215

2.7.8.6 flea...agpt_switches-nmainmenu 215

2.7.8.7 derror.. 216

2.7.9 flea..atp.c..216
2.7.9.1 fleaatp ... 217

2.7.9.2 flea-.atp-ymain-menu 218

2.7.10 flea- bal-opts.c.. 218
2.7.10.1 flea-bal..opts 218

2.7. 10.2 flea-bal-opts-main-menu 222

2.7.11 flea-dbL-traverse.c ... 222
2.7.12 flea-decode-data.c .. 223

viii

BBN Systems and Technologies GT 100 RTSW CSCI

2.7.13 fleademo.c... 226
2.7.14 fleadraw_2d.c..226
2.7.15 flea,-encode-data.c .. 227
2.7.16 flea...graphics-test-... 228

2.7.16.1 flea...graphicsjest................................ 228

2.7.16.2 flea...graphics-test~main-menu.....................230

2.7.17 flea-init-cig-sw.c ... 230
2.7.18 fl...ppm-obj.c .. 233

2.7.18.1 upd-ppm .. 233
2.7.18.2 flea calibration iag..... 235

2.7.18.3 flea-ppm-display-mode 236

2.7.18.4 flea..ppmdisplay-.offset 237
2.7.18.5 flea-ppm-pixel-location......................... 237

2.7.18.6 flea-ppm-pixeL-state 238

2.7.19 flea..script.c..238
2.7.19.1 flea-abs-playback................................ 239
2.7.19.2 get..next-packet 240

2.7. 19.3 get-.next...message 240

2.7.20 flea-simulate-vehicles.c 241
2.7.20.1 flea_simulate-vehicles............................ 241

2.7.20.2 flndpitchand_roll...............................243

2.7.21 flea-switches.c .. 244
2.7.21.1 flea-switches.................................... 244

2.7.21.2 flea-switches-main_menu........................ 247

2.7.22 flea-update-pos.c... 248
2.7.23 flea_veb-control.c .. 249

2.7.23.1 flea~veb_control 249

2.7.23.2 flea-veh-control-main-menu 251

2.7.24 get-sio_data~c (getsio _write_data)............................ 252
2.7.25 model_demo.c .. 253
2.7.26 tick.c..254

2.7.26.1 tick-it.. 255
2.7.26.2 tick...255

2.7.26.3 flea..prompt 259

2.7.26.4 tick-mainjnenu 259

2.7.26.5 menu-header 260
2.7.26.6 update-.menu-header 261

2.7.27 tick-ppm.c..........:.. 261

ix

BBN Systems and Technologies GT100 RTSW CSCI

2.7.27.1 tickppm .. 262

2.7.27.2 tick-ppmmenu .. 264

2.7.27.3 tick.ppm_menu_header 265

2.7.27.4 tickppmL_updateinfo 265

2.7.28 tickscript.c .. 266
2.7.28.1 tick-script .. 266

2.7.28.2 tickscript..main-menu 267
2.7.29 update_2d.c 268
2.7.30 update-agpt_2d.c ... 268

2.8 DTP COMMAND GENERATOR (/CIG/LIBSRC/LIBGENDTP) 270

2.8.1 dtp...compiler.c .. 271
2.8.2 dtpjfuncs.c .. 272

2.8.2.1 push-node .. 272

2.8.2.2 pop-node ... 273
2.8.2.3 what node on stack 273
2.8.2.4 init-dtpstacks ... 274

2.8.2.5 dtp-malloc .. 274

2.8.2.6 dtp..mallocinit .. 274

2.8.3 dtp-travl.c .. 275
2.8.4 dtp-trav2.c .. 277
2.8.5 rcfuncs.c ... 278

2.8.5.1 rcl initstack ... 279

2.8.5.2 rcl-push .. 280

2.8.5.3 rcl-pop .. 280

2.8.5.4 rcLpatch-adrs ... 281

2.8.5.5 rcl-set_errptr ... 281

2.8.5.6 rclinitadrs .. 282

2.8.5.7 rcl rmadrs .. 282

2.8.5.8 rcl_setlabel .. 283

2.8.5.9 rcl-set cntlbl ... 283

2.8.5.10 rcl lbL'mnd .. 284

2.8.5.11 rclcommand ... 285

2.8.5.12 rclcomponent ... 287

2.8.5.13 rcldata ... 288

2.8.5.14 rclstuff_data .. 289

2.9 USER INTERFACE MODE (ICIG/LIBSRC/LIBGOSSIP) 291

2.9.1 agpt-statistics.c ... 292

x

BBN Systems and Technologies GT100 RTSW CSCI

2.9.2 buffer_errors.c .. 292
2.9.3 ded-objectc ... 292

2.9.3.1 dedsetup ... 293

2.9.3.2 dedinitmdl addr .. 294

2.9.3.3 deaaddmodel .. 294

2.9.3.4 dedaddeffect ... 295

2.9.3.5 dedmodelendaddr 295

2.9.3.6 ded-adjust_addr_tables 296

2.9.3.7 dedluninit .. 296

2.9.3.8 dedsub_end ... 297

2.9.3.9 dedcrossborder ... 297

2.9.3.10 dedrelocatemodel 298

2.9.3.11 dedtprocess directory 298

2.9.3.12 ded-dtp-nae .. 300

2.9.3.13 dedload.dtp scode .. 300

2.9.3.14 dedmodel_offset ... 301

2.9.3.15 ded-printtables ... 302

2.9.3.16 ded..objecLdebug 302

2.9.4 dtpemu.c .. 303
2.9.4.1 drp-emu .. 303

2.9.4.2 display .. 304

2.9.4.3 outdisplay .. 305

2.9.4.4 hxflt ... 305

2.9.4.5 hexdisplay .. 306

2.9.4.6 ftoh .. 306

2.9.4.7 htof .. 307

2.9.4.8 matmult .. 307

2.9.4.9 get-Im ... 308

2.9.5 gos_120tx.c ... 308
2.9.6 gosbal-query.c .. 310
2.9.7 gos.db-queryx ... 310

2.9.7.1 gos-db-query .. 310

2.9.7.2 gos-display-db-info 312

2.9.7.3 gos-db-query-menu 312

2.9.8 goslocate.c ... 313
2.9.9 gosmemory.c .. 313
2.9.10 gosmodel.c ... 314

xi

BBN Systems and Technologies GTI00 RTSW CSCI

2.9.10.1 gos-model .. 315
2.9.10.2 rcl_setmodloc ... 317

2.9.11 gos,.mpv.c .. 318
2.9.12 gos.mpvio.c .. 320
2.9.13 gos polys.c ... 322
2.9.14 gos. systemx ... 323
2.9.15 gossip.c 325

2.9.15.1 gossip ... 326
2.9.15.2 gossipjick ... 327
2.9.15.3 gos-timing-printout 329
2.9.15.4 s.step ... 330
2.9.15.5 gos-single-step .. 331
2.9.15.6 gos__prompt .. 331
2.9.15.7 gos._mainmenu ... 332

2.9.15.8 gosgetchar .. 332
2.9.15.9 gos-dummy__getchar 333

2.9.15.10 gos IO on ... 333

2.9.15.11 gosIO_off ... 333
2.9.15.12 gossip-cleanup .. 334

2.9.16 makebbnjlogo.c .. 334
2.9.17 mx3_hword.c .. 335

2.9.17.1 mx3_open .. 335
2.9.17.2 mx3_push .. 336

2.9.17.3 mx3_peek .. 337

2.9.17.4 mx3_skip ... 338

2.9.17.5 mx3_error .. 338
2.9.17.6 mx3_hwcopy .. 339

2.9.18 replacemod.c ... 339
2.9.18.1 replacemod .. 339

2.9.18.2 single-lite ... 340

2.9.18.3 doublelite .. 341
2.9.18.4 triple-lite .. 342
2.9.18.5 vasilite ... 342
2.9.18.6 outahere ... 343

2.9.19 testcommands.c ... 344

2.10 HOST INTERFACE MANAGER (/CIG/LIBSRC/LIBHOST) 346

2.10.1 host_drll_if.c ... 347

xii

BBN Systems and Technologies GTIO0 RTSW CSCI

2.10.1.1 open drl l_interface 347

2.10.1.2 exchangedrl l_data 348

2.10.1.3 exchangedr 1l_datasim 349

2.10.1.4 init_drl 1_interface .. 349

2.10.2 hostenetif.c .. 350
2.10.2.1 open_enet_interface 350

2.10.2.2 exchange_enetdata 351

2.10.2.3 exchange_enet_datasim 352

2.10.2.4 slave_cig_.enet-sync 353

2.10.2.5 initenet-interface ... 354

2.10.3 hostfleaif.c .. 355
2.10.3.1 open-fleainterface .. 355

2.10.3.2 exchangefleadata .. 356

2.10.3.3 fleahostif ... 357

2.10.3.4 initfleainterface .. 358
2.10.4 host_ifdebug.c ... 358

2.10.4.1 msg-shellsort ... 359
2.10.4.2 hostenable_all_debugmsgs 360

2.10.4.3 host_disable-all_debug.msgs 360

2.10.4.4 hostifdebug-init .. 361
2.10.4.5 clear_line ... 361

2.10.4.6 hosLif_display_enabled_msgs 362
2.10.4.7 host_list-msgs ... 362

2.10.4.8 hosLif_enabledebug-msgs 363

2.10.4.9 hostif_disable-debug-msgs 364

2.10.4.10 hostifdebugmainmenu 364

2.10.4.11 hostifdebugmenu 365

2.10.4.12 host_if_debugtick .. 366

2.10.4.13 hostifdebug .. 367

2.10.5 hostmpv_if.c ... 368
2.10.5.1 open-mpvjinterface 369

2.10.5.2 exchangempv-data 369

2.10.5.3 exchange.mpv-data_sim 370

2.10.5.4 init-mpvinterface ... 370
2.10.6 hostscsiif.c .. 371

2.10.6.1 openscsi interface 371

2.10.6.2 exchange_scsidata 372

xmi

BBN Systems and Technologies GTIOO RTSW CSCI

2.10.6.3 exchangescsidatasim 373

2.10.6.4 initscsi interface ... 373
2.10.7 host_socketif.c ... 374

2.10.7.1 opensocket_interface 374
2.10.7.2 exchangesockeLdata 375

2.10.7.3 exchangesocketdatasim 376

2.10.7.4 initLsocketinterface 376

2.11 MPV INTERFACE (/CIG/LIBSRQ/LIBMPVIDEO) 378

2.11.1 bootforce.c ... 380
2.11.1.1 bootforce ... 380
2.11.1.2 setLentry_pt .. 381

2.11.1.3 rtnsentry-pt .. 382

2.11.1.4 mpvmsgquery.buf addr 382
2.11.1.5 mpvmsg-reply-bufaddr 383
2.11.1.6 mpvmsgtobufaddr 383
2.11.1.7 mpvmsg.from_bufaddr 384

2.11.2 bootmpv.c .. 384
2.11.2.1 mpvideoboot .. 385

2.11.2.2 prtmsgerr ... 386
2.11.2.3 prtackerr .. 387
2.11.2.4 prtstaterr .. 387

2.11.3 loadmpv.c (mpvideo_load) .. 388
2.11.4 mpvideolaser.c (mpvideolaserrequest.range) 390
2.11.5 mpvideolut.c (mpvideosetlut) 391
2.11.6 mpvideoman.c ... 392

2.11.6.1 mpvideosetvideo .. 392
2.11.6.2 mpvideo-setup ... 393

2.11.6.3 mpvideostop .. 393

2.11.6.4 mpvideosiminit ... 394
2.11.6.5 mpvideosend-req .. 395
2.11.6.6 mpvideogetobjectaddr 395

2.11.7 mpvideomode.c .. 396
2.11.7.1 mpvideosetmode .. 396

2.11.7.2 mpvideodefinemode 397
2.11.8 mpvideo.passback.c ... 398
2.11.9 mpvideo-pass_on.c .. 399
2.11.10 mpvideo.printc ... 400

2.11.10.1 statusmpvideo.print 400

xiv

BBN Systems and Technologies GT 100 RTSW CSCI

2.11.10.2 toggle...mpvideo-print............................ 400
2. 11. 11 mpvideojjuery.c (mrpvideo numrLpaths)....................... 401
2.11.12 mpvideo-response.c .. 401

2.12 MESSAGE PROCESSING (/CIGILIBSRCILIBMSG).................. 404

2.12.1 loc-er..mg.c ... 405
2.12.2 msgsalibration-imfage.c......................................406
2.12.3 msgscigstl.c... 407
2.12.4 msg..drllI.c (msg...drl Ipktsize)............................. 408
2.12.5 msg...effect.c (msg-show_effect)............................. 409
2.12.6 msg...end.c.. 410

2.12.6.1 msg..end .. 410

2.12.6.2 _downcount-effects..............................412

2.12.6.3 -display-lights 413

2.12.6.4 _move-load~modulestto-quad-buffer 413

2.12.6.5 -update...second active_area~memory..............414

2.12.6.6 -pend-.on-ftrme-interrupt........................ 414

2.12.6.7 -process-agl 415

2.12.6.8 -.set...up-for-next-frame 416

2.12.6.9 -handle-request ocal-terrain 416

2.12.6.10 -database -disable................................ 417

2.12.6.11 _handle-.point-lights 418

2.12.6.12 _-reset~model-Wpinters 418

2.12.6.13 sopy-econfigurable yiewortssection 419

2.12.7 msg-laser.c (msg-aser...requestrange)....................... 420
2.12.8 msgjlaser -eturn.c.. 420
2.12.9 msg-t.state.c (It-state) 421
2.12.10 msg...pass-back.c... 422
2.12.11 msg..pass-.on.c..422
2.12.12 msg..ppm.c ... 423

2.12.12.1 msg-ppm-iisplay-jnode 423

2.12.12.2 msg-ppm-display..offset 424

2.12.12.3 msg-ppm...pixeljocation 425

2.12.12.4 msg...ppm-pixel-state 425

2.12.13 msg...process -round48.c 426
2.12.14 msg...subsys-mode.c .. 426
2.12.15 msg...syserr.c ... 427
2.12.16 msg...veh-.state.c.. 428

2.12.16.1 msgjtherveb-state 428

2.12.16.2 msg-staicveh-state 429

xv

BBN Systems and Technologies GT100 RTSW CSCI

2.12.16.3 msg_staticvehrem .. 429
2.12.17 msg.vflags.c (msg.view lags) 430
2.12.18 msgvport.c ... 431

2.12.18.1 msg.viewport(update 431
2.12.18.2 msg.view-magnification 432

2.12.18.3 msgjrot2x l_matrix 432
2.12.18.4 msg.rts4x3_matrix .. 433

2.12.18.5 msg-hprxyzs-matrix 433
2.12.18.6 msgtranslation .. 433

2.12.18.7 msgscale .. 434

2.12.18.8 msgjlrotation .. 434
2.12.18.9 msg_3rotations .. 435

2.12.19 print msg.c .. 435
2.12.19.1 print-msg_* .. 436

2.12.19.2 iniLprinLmsg-array 440
2.12.20 show_effect-msg.c .. 441

2.13 REAL-TIME PROCESSING (/CIG/LIBSRC/LIBRTr) 442

2.13.1 agpLinit.c ... 444
2.13.2 bal-ge-db-pos.c ... 444
2.13.3 bal-getlm..grid.c .. 445
2.13.4 balroutines.c .. 446

2.13.4.1 sinibalinit .. 446

2.13.4.2 sim bal start ... 446

2.13.4.3 sirnbaLfranmerate 447

2.13.4.4 sim balreqptinfo 447

2.13.4.5 sim bal agl wanted 448
2.13.4.6 sim_balprocessr_msg 449
2.13.4.7 simbal-process tracer 450
2.13.4.8 sin bal-trajchord .. 451

2.13.4.9 sim_bal_roundfired 452

2.13.4.10 simbalstatic_a1d .. 452
2.13.4.11 simbaLstaticrem .. 453

2.13.4.12 sire bal reset .. 453

2.13.4.13 sim baltf_vehupdate 454

2.13.5 ball_effecadd.c ... 455
2.13.6 cal.c .. 455
2.13.7 cigsimioobj.c ... 457

2.13.7.1 gosscigsimio ... 458

xvi

BBN Systems and Technologies GTIOO RTSW CSCI

2.13.7.2 cigsimio-msgin................................. 459

2.13.7.3 cigsiio-msg-out 459
2.13.7.4 cigsimio__write................................... 460

2.13.7.5 cigsimio-.get~data................................ 461
2.13.7.6 cigsimio-buffer-init............................. 462

2.13.7.7 cigsimio-frame-end 462

2.13.8 close_db.c.. 463
2.13.9 clouds.c...463

2.13.9.1 cloudimit... 463
2.13.9.2 cloudupdate 464

2.13.9.3 cloud-update model 465

2.13.9.4 cloud_mgmt......................................465
2.13.9.5 cloud-placement..................................466

2.13.9.6 cloud scud 467

2.13.9.7 set lut ... 467
2.13.9.8 nd ... 468

2.13.10 config-ballistics.c ... 468
2.13.10.1 config-ballistics 468
2.13.10.2 bal-buffer-setup 470

2.13.11 configscolo _table.c... 470
2.13.12 config-database.c ... 471

2.13.12.1 config-database..................................471

2.13.12.2 errors .. 473

2.13.12.3 func_msg... 473
2.13.12.4 print..pdbase..................................... 474

2.13.13 db-mcc-setup.c... 474
2.13.14 debug-initdr.c .. 478
2.13.15 ded-gm-.pool.c .. 479

2.13.15.1 pooLinit .. 479
2.13.15.2 pool-get-off_24 480

2.13.15.3 addrin-pool 480
2.13.16 ded_model-trace.c .. 481
2.13.17 dlman.c (dl_setup)..482
2.13.18 download-bvols.c.. 482
2.13.19 effect-downcount.c ... 483
2.13.20 file_control.c.. 484
2.13.21 fxbvtofl.c ... 48652.13.21.1 fxbvtofl-dart....................................486

xvii

BBN Systems and Technologies GT1OO RTSW CSCI

2.13.21.2 fxbvtofl ... 487

2.13.21.3 fxbvtofl_020 ... 487

2.13.22 generic_lm.c ... 488
2.13.22.1 init-genericlm .. 488

2.13.22.2 genericIr .. 488

2.13.23 get-txlutindex.c .. 489
2.13.24 globalinit.c .. 489

2.13.24.1 hosLif_buffer_nit .. 490

2.13.24.2 hostinit.packetsizes 490

2.13.25 gun overlays.c .. 490
2.13.25.1 ml-gun-overlay ... 491

2.13.25.2 m2_gun-overlay .. 491

2.13.25.3 make_ml_overlays .. 492

2.13.25.4 makem2_overlays .. 493

2.13.26 hwtest.c .. 494
2.13.27 initsim.c (init-simulation) .. 495
2.13.28 loaddbase.c .. 497
2.13.29 loadesifa.c ... 498
2.13.30 loadmodules.c .. 498

2.13.30.1 loadmodules .. 499

2.13.30.2 getlmdp ... 499

2.13.30.3 getside .. 500

2.13.30.4 whatdirptr .. 501
2.13.31 loc_ter.c .. 502

2.13.31.1 localterrain .. 502

2.13.31.2 localterrain_cleanup 503

2.13.32 makebbn.c .. 504
2.13.32.1 prt-mtx ... 504

2.13.32.2 rotate_x ... 505

2.13.32.3 rotate.y ... 505

2.13.32.4 rotate_z ... 506

2.13.32.5 multmatrix .. 506

2.13.32.6 idmatrix ... 507

2.13.33 mkmtx_nt.c .. 507
2.13.33.1 make-p_nt .. 508

2.13.33.2 rotate_x_nt ... 508

2.13.33.3 rotate._ynt ... 509

2.13.33.4 rotate_z nt ... 509

xviii

BBN Systems and Technologies GT100 RTSW CSCI

2.13.33.5 swap-axis .. 510

2.13.33.6 id_4x3mtx .. 510

2.13.33.7 scale_mtx ... 511

2.13.33.8 translate ... 512

2.13.33.9 mult_4x3mtx ... 512

2.13.33.10 getmatrix .. 513

2.13.33.11 matrix2 .. 513

2.13.33.12 mtxcpy .. 514

2.13.33.13 matcopy ... 514

2.13.33.14 mat-vecmul ... 515

2.13.33.15 maLadjugate ... 515

2.13.33.16 mattranspose .. 516

2.13.33.17 mat_scale ... 516

2.13.33.18 mat-determinant ... 517

2.13.33.19 mat-inverse .. 517

2.13.33.20 vecmaLmul ... 518

2.13.33.21 make4x3 .. 518

2.13.34 modelmtx.c .. 519
2.13.35 mx2_hword.c .. 519

2.13.35.1 mx2__open .. 520

2.13.35.2 mx2_push .. 520

2.13.35.3 mx2_peek .. 521

2.13.35.4 mx2__skip ... 522

2.13.35.5 mx2_error .. 522

2.13.35.6 mx2_hwcopy .. 523

2.13.36 opendbase.c .. 523
2.13.36.1 open-dbase ... 523

2.13.36.2 func.msg ... 525

2.13.37 opended.c .. 525
2.13.38 othervehstate.c .. 527
2.13.39 pretendveh.c ... 528
2.13.40 rowcolrd.c .. 529

2.13.40.1 rowcol rd_1 ... 530

2.13.40.2 rowcol rd_2 ... 531

2.13.40.3 rowcol rd_3 ... 531

2.13.40.4 rowcol_rd_4 ... 531

2.13.40.5 _rowcolrd ... 532

xix

BBN Systems and Technologies GT100 RTSW CSCI

2.13.40.6 rowcol_rd_1_cleanup 533

2.13.40.7 rowcolrd_2_cleanup 533
2.13.40.8 rowcolrd_3_cleanup 534

2.13.40.9 rowcol_rd_4_cleanup 534

2.13.40.10 _rowcol_rdcleanup 535

2.13.41 rt_mailbox.c ... 535
2.13.41.1 rtpend .. 535
2.13.41.2 rt-post .. 536
2.13.41.3 rt-accept .. 537

2.13.42 rttinit.c .. 537
2.13.42.1 initializedefaults .. 537

2.13.42.2 initialize ... 538
2.13.43 simulationx .. 540

2.13.43.1 simulation .. 540

2.13.43.2 process a msg .. 541

2.13.43.3 syserr ... 545
2.13.44 staticvehremove.c ... 546
2.13.45 staticveh_state.c .. 547
2.13.46 sys_control.c .. 548

2.13.46.1 sys-controlinit .. 548

2.13.46.2 sys-framerate ... 549

2.13.46.3 set_leds ... 550

2.13.46.4 sysslave-sync .. 550

2.13.46.5 sysmaster-sync .. 551

2.13.46.6 get-dtpbank ... 551

2.13.46.7 read_evccontrol .. 552

2.13.46.8 write_evc_control ... 552

2.13.46.9 write_evcframe ... 553

2.13.47 upstart.c .. 553
2.13.47.1 upstart ... 553

2.13.47.2 upstart_cleanup .. 555

2.14 SERIAL DEVICE INPUT/OUTPUT (/CIGILIBSRCILIBSIO) 556

2.14.1 siox ... 557
2.14.1.1 sioinit .. 557

2.14.1.2 siowrite .. 558

2.14.1.3 sioclose .. 559

2.14.1.4 sio_tick ... 560

xx

BBN Systems and Technologies GT100 RTSW CSCI

2.15 TOKEN PROCESSING (/CIG/LIBSRC/LIBTOKEN)....................562

2.15.1 lex.c .. 563
2.15.1.1 set~token-file 563
2.15.1.2 next char... 564

2.15.1.3 scan_number 564

2.15.1.4 next-token 565

2.15.1.5 next~line .. 565

2.15.1.6 swallow-token 566
2.15.1.7 get...next-token................................... 566
2.15.1.8 get-curent-token................................ 567

2.15.1.9 getjiumber_value................................ 567
2.15.1.10 get ..string-v.alue 567

2.15.2 subsys-cfg-parse.c ... 568
2.15.2.1 init-subsysparser 568
2.15.2.2 parse-subsysfe.....fl............................. 569

2.15.2.3 get...database-name............................... 570
2.15.2.4 get..ded-name.................................... 570
2.15.2.5 get-finallut--name............................... 570
2.15.2.6 get-.3djut-name................................. 571
2.15.2.7 get-.data_2d-name............................... 571
2.15.2.8 get-esifaname 572
2.15.2.9 geLcolorsconfig-name........................... 572
2.15.2.10 set-database-name............................... 572

2.15.2.11 set~dedname.................................... 573
2.15.2.12 set_final-lut_name 573
2.15.2.13 set_3d-lut-name 574

2.15.2.14 set-data_2d-name................................ 574

2.15.2.15 set-esifa-name 575
2.15.2.16 set_colorsonfig~name........................... 575

2.16 SYSTEM UTEIiTIES (/CIG/LIBSRC/LBUTL)........................ 577
2.16.1 blcopy.c.. 577
2.16.2 directory.c .. 578

2.16.2.1 OpenDir.. 578
2.16.2.2 ReadDir ... 579
2.16.2.3 CloseDir .. 579

2.16.2.4 GetFileNaie 579

xxi

BBN Systems and Technologies GT100 RTSW CSCI

2.16.3 findfield.c (FindField) .. 580
2.16.4 find gtfn.c (findjfn) ... 581
2.16.5 sload.c .. 582

2.16.5.1 sload .. 582

2.16.5.2 getLrecord .. 583
2.16.5.3 senddata ... 584

2.16.5.4 check_sum ... 584

2.16.5.5 getcbinary.data .. 585
2.16.5.6 get-char ... 585

2.16.5.7 ctoi .. 586

2.16.6 stdopen.c .. 586
2.16.7 vtlOO.c ... 587

2.16.7.1 cup .. 587

2.16.7.2 sgr ... 588
2.16.7.3 doubletop ... 588

2.16.7.4 doublebot ... 589

2.16.7.5 doubleoff .. 589

2.16.7.6 blank .. 590
2.16.7.7 save_cur .. 590

2.16.7.8 restorecur ... 591

2.16.7.9 scrollreg ... 591

2.17 VIEWPORT CONFIGURATION (/CIG/LIBSRC/LIBVPT) 593

2.17.1 bestubs.c .. 597
2.17.1.1 be-query-.num-paths 597

2.17.1.2 findbeid .. 598

2.17.1.3 be-query-bufferoffset 599

2.17.1.4 be-query-db0 .. 599

2.17.1.5 be-qulm .. 600

2.17.1.6 be-query-lm-per 1mbside 600

2.17.1.7 vptinit_mode._on ... 601

2.17.1.8 vptjinitmodeoff ... 601

2.17.1.9 aam_free .. 602
2.17.2 cnodechild.c .. 602

2.17.2.1 vptcnode_set_bchild 602

2.17.2.2 vpt-cnodesetstdchild 603

2.17.3 cnode__get.c (vpLcnode-get) ... 603
2.17.4 cnode-process.c (vpt-cnode-process) 604

xxii

BBN Systems and Technologies GTIOO RTSW CSCI

2.17.5 cnode-query.c... 606
2.17.5.1 vptscnode.query................................. 606

2.17.5.2 vpt-cnode-qroot 607

2.17.6 cnode-set.c ... 607
2.17.6.1 vptcnode-set-branch............................ 607

2.17.6.2 vpt-cnode- se t-matrix 608

2.17.7 flagoff.c.. 609
2.17.8 globs.c (vpti-*) ... 610
2.17.9 mnitfree.c... 614

2.17.9.1 vpt...root-imt..................................... 614

2. 17.9.2 vpt-tree-t..615

2.17.9.3 vpteere 616
2.17.10 linkvpt.c (vpt cnode -linkvpt)................................. 617
2.17.11 mtx-concat.c (concat-mtx) 618
2.17.12 mtx-dump.c...619

2.17.12.1 r4mat-dump...................................... 619
2.17.12.2 r8mat-dump...................................... 620

2.17.13 mtx-viewspace.c .. 620
2.17.13.1 mtx -non-perspective............................. 620

2.17.13.2 mtx..perspective 621

2.17.13.3 oldmixperspective 622

2.17.14 path.c... 622
2.17.14.1 vpt-path-process 623

2.17.14.2 vptpathupdate 624

2.17.15 path-init.c .. 625
2.17.15.1 vpt-path-get..................................... 625
2.17.15.2 vpt.path-init.....................................626

2.17.15.3 vpt...path-.setup................................... 626
2.17.16 path-query.c (vpt-path-query)................................ 627
2.17.17 tray -tree.c..628
2.17.18 tst-edebug.c.. 628
2.17.19 tst...equery.c... 630

2.17.19.1 tst-equery.. 630

2.17.19.2 vptq...grtrs 631

2.17.19.3 vptq...vpptrs 632

2.17.19.4 vptq-cnptrs 632
2.17.19.5 vptq...brvals 633

2.17.19.6 vptq..activept 633

xxiii

BBN Systems and Technologies GT100 RTSW CSCI

2.17.19.7 vptq vptbrout .. 634

2.17.19.8 vptqjdynmtx ... 634

2.17.19.9 vptqscnout ... 635

2.17.19.10 vptqvpout ... 635

2.17.19.11 vptq-grout .. 636

2.17.20 tstereadconfig.c .. 636
2.17.20.1 tst_ereadconfig ... 637

2.17.20.2 p-configtree-node ... 637

2.17.20.3 p.viewport_state .. 638

2.17.20.4 p-overlay-setup ... 639

2.17.20.5 setup_p_terrain_feedback 639

2.17.20.6 p-terrrainfeedback 640

2.17.21 tst -eupdate.c .. 640
2.17.22 tsttree.c .. 642

2.17.22.1 tst_tree .. 642

2.17.22.2 memcheck ... 643

2.17.23 tst-treetrace.c .. 644
2.17.23.1 tsttreetrace ... 644

2.17.23.2 pr.branch ... 645

2.17.23.3 pr._matrix ... 645

2.17.24 u-brmask.c (vpt-updatebrmask) 646
2.17.25 u-path.c (vptupdate-one path) 646
2.17.26 u rotations.c ... 647

2.17.26.1 vpt-update 2x1 heading 648

2.17.26.2 vpt-update 2xl pitch 648

2.17.26.3 vpt.update_2x I_roll 649

2.17.26.4 vpt-update-heading 650

2.17.26.5 vpt-updatepitch .. 650

2.17.26.6 vpt.updateroll .. 651

2.17.26.7 vpt-updatehpr .. 651

2.17.27 u.viewport.c ... 652
2.17.27.1 vptjupdate fov .. 652

2.17.27.2 vpt-update fov_lod 653

2.17.27.3 vpt-update-lodm .. 654

2.17.27.4 vpt_update near_plane 654

2.17.27.5 vpt-update-rez ... 655

2.17.27.6 vpt.updateview_range 655

xxiv

BBN Systems and Technologies GT100 RTSW CSCI

2.17.27.7 vpt-update_al ... 656

2.17.28 uxfrm.c ... 657
2.17.28.1 vpt-update_4x3_matrix 657

2.17.28.2 vpt-update_3x3_matrix 658

2.17.28.3 vpt-update-hprxyzs 658

2.17.28.4 vpt-updatescale .. 659

2.17.28.5 vpLupdatetranslation 660

2.17.29 update.mtx.c (vpt update_mtx) .. 660
2.17.30 updatejrotx (vpLupdate-ot) 661
2.17.31 vpt-get.c (vpt.vpt-get) .. 662
2.17.32 vpt-process.c (vpt vpt-process)663
2.17.33 vpt-query.c (vpt.vpt-query) ... 664
2.17.34 vpt-set.c (vpt.vpLset) ... 665
2.17.35 vpt-update.c .. 666

2.18 FORCE PROCESSING (/CIG/OTHERSRC/FORCE) 668

2.18.1 datajtype.c .. 674
2.18.2 exception.asm ... 675

2.18.2.1 excep-init ... 675

2.18.2.2 spur-int ... 675

2.18.3 f0_3dlut_download.c .. 676
2.18.4 fO_3dlutswitch.c .. 677
2.18.5 fOalllut switch.c .. 678
2.18.6 f0_debug-disable.c .. 679
2.18.7 f0_jebugenablec ... 679
2.18.8 fDfinaljlut download.c .. 680
2.18.9 fO_final_lut_switch.c .. 681
2.18.10 fOmode-select.c ... 682
2.18.11 f0_mpvjinit.c ... 683
2.18.12 f0_mpvluLtype-request.c ... 683
2.18.13 ffmpv peek.c ... 684
2.18.14 f0_mpvpoke.c ... 685
2.18.15 f0_mpv poke 16.c .. 686
2.18.16 f0_mpv__resetc ... 686
2.18.17 f0_mpvtask._control.c .. 687
2.18.18 f0_mpv-test.c ... 688
2.18.19 f0_mpv-write.c ... 688
2.18.20 f0_pass-on.c .. 689
2.18.21 f0_pixel-depth-request.c .. 690
2.18.22 fOquery.c ... 691

2.18.22.1 f0 query .. 691

2.18.22.2 strcpy ... 692

xxv

BBN Systems and Technologies GTIOO RTSW CSCI

2.18.22.3 strcat .. 692

2.18.22.4 strlen .. 693

2.18.23 fD-set-display.c .. 693
2.18.24 fO trigger.c .. 694
2.18.25 fOunknown.c .. 695
2.18.26 flforceinit.c .. 696

2.18.27 fl.init.jump-table.c ... 697

2.18.28 fl-pixel-address.c .. 697
2.18.28.1 fl-pa-init ... 698

2.18.28.2 fl_panew_.orientation 698

2.18.28.3 fl_panew.resolution 699

2.18.28.4 fl ..pa.fboffset .. 700

2.18.28.5 flpa_640x480_v ... 700

2.18.28.6 flpa_320x240_v ... 701

2.18.28.7 flpa_640x256_v ... 702

2.18.28.8 fl_pa64Ox240_v ... 702

2.18.28.9 flpa_640x480_h ... 703

2.18.28.10 flpa.320x240_h ... 704

2.18.28.11 flpa_640x256_h ... 704

2.19.28.12 flpa.64x240_h ... 705

2.18.29 fl process-messages.c .. 706
2.18.30 fl-setup-environment.c ... 707
2.18.31 force.asm ... 707

2.18.31.1 init-ports ... 708

2.18.31.2 gsp-write ... 708

2.18.31.3 gsp-read .. 709

2.18.31.4 gspjioctlread ... 710

2.18.31.5 gspioctlwrite .. 710

2.18.31.6 gspjyeset ... 711

2.18.32 forcetask.c ... 711
2.18.32.1 main ... 711

2.18.32.2 compare-buffers ... 713

2.18.32.3 restartclock .. 714

2.18.32.4 redclock ... 714

2.18.32.5 seclock .. 714

2.18.33 gsp -io.c ... 7 15
2.18.34 mx2_hword.c .. 716

2.18.34.1 mx2_open .. 716

xxvi

BBN Systems and Technologies GT100 RTSW CSCI

2.18.34.2 mx2_push 717

2.18.34.3 mx2_peek .. 718

2.18.34.4 mx2_skip ... 718

2.18.34.5 mx2_error .. 719

2.18.34.6 mx2_hwcopy .. 719

2.18.35 nmi_type.c .. 720
2.18.36 poll-ready.c ... 721

2.18.37 testgsp.c .. 722

3 RESOURCE UTILIZATION .. 723

3.1 DISK SPACE REQUIREMENTS ... 723

3.2 MEMORY REQUIREMENTS ... 723

APPENDIX A: SYSTEM INCLUDE FILES ... 724

A. 1 /CIG/INCLUDE/BACKEND.H .. 724
A.2 /CIG/INCLUDE/BALREALTIME.H ... 724
A.3 /CIG/INCLUDE/BAL_STRUCT.H ... 724
A.4 /CIG/INCLUDE/BALLISTICS.H ... 724
A.5 /CIG/INCLUDE/BBNCTYPE.H .. 725
A.6 /CIG/INCLUDE/BMFUNCTIONS.H ... 725
A.7 /CIG/INCLUDE/BPFUNCTIONS.H .. 725
A.8 /CIG/INCLUDE/BX_DEFINES.H .. 725
A.9 /CIG/INCLUDE/BXEXTERNS.H ... 726
A.10 /CIG/INCLUDE/BXGLOBALS.H ... 726
A.11 /CIG/INCLUDE/BXMACROS.H .. 726
A.12 /CIG/INCLUDE/BXMESSAGES.H ... 727
A.13 /CIG/INCLUDE/BXRTDBSTRUCTS.H 727
A.14 /CIG/INCLUDE/BX_STRUCTS.H ... 728
A.15 /CIG/INCLUDE/CIGSIMIO.H .. 728
A. 16 /CIG/INCLUDE/CLOUDS.H .. 728
A.17 /GT/INCLUDE/CLPARSE.H .. 729
A.18 /CIG/INCLUDE/DBSTRUCT.H ... 729
A.19 /CIG/INCLUDE/DEF_ALLOC.H ... 729
A.20 /CIG/INCLUDE/DEF_MTXTYPE.H .. 729
A.21 /CIG/INCLUDE/DEFINES_2D.H ... 730
A.22 /CIG/INCLUDE/DEFINITIONS.H ... 730
A.23 /CIG/INCLUDE/DEMOSTRUCT.H ... 731
A.24 /CIG/INCLUDE/DGISTDC.H .. 731
A.25 /CIG/INCLUDE/DGI_STDG.H ... 733
A.26 /CIG/INCLUDE/DIGDEFINES.H ... 734
A.27 /CIG/INCLUDE/DIGSTRUCT.H .. 734
A.28 /CIG/INCLUDE/ECOMPILER1H .. 734

xxvii

BBN Systems and Technologies GT100 RTSW CSCI

A.29 /CIG/INCLUDE/EMEMORYMAP.H .. 734
A.30 /CIG/INCLUDE/ESIFA.H .. 736
A.31 /CIG/OTHERSRC/FORCE/FIDEFINES.H 737
A.32 /CIG/OTHERSRC/FORCE/FIEXTERNS.H 737
A.33 /CIG/OTHERSRC/FORCE/F1 _GLOBALS.H 737
A.34 /CIG/OTHERSRC/FORCE/FORCEDEFINES.H 738
A.35 /CIG/OTHERSRC/FORCE/FORCE_ENV.H 738
A.36 /CIG/OTHERSRC/FORCE/FORCERTSWIF.H 738
A.37 /CIG/OTHERSRC/FORCE/FORCE.H.ASM 739
A.38 /CIG/INCLUDE/FUNCTIONS.H ... 739
A.39 /CIGAINCLUDE/GLOBAL_2D.H ... 740
A.40 /CIG/INCLUDE/GLOBFIR_2D.H .. 740
A.41 /CIG/INCLUDE/IFCIG2SIM.H .. 740
A.42 /CIG/INCLUDE/IFCTL_ERR.H ... 741
A.43 /CIG/INCLUDE/IF_HDRSTR.H .. 742
A.44 /CIG/INCLUDE/IFINIT.H .. 742
A.45 /CIG/INCLUDE/IF_MSG_IDS.H ... 743
A.46 /CIG/INCLUDE/IFRVA2NET.H .. 743
A.47 /CIG/INCLUDE/IFSIM2CIG.H .. 743
A.48 /CIG/INCLUDE/IFTSTCTL.H ... 745
A.49 /CIG/INCLUDEIF_VEH_EFFH ... 745
A.50 /GT/INCLUDE/IFXVISI.H .. 745
A.51 /CIG/INCLUDE/KEYWORDS.H ... 746
A.52 /CIG/INCLUDE/KLUDGE.H .. 746
A.53 /CIG/INCLUDE/LEX.H .. 746
A.54 /CIG/INCLUDE/M2_CONFIG.H ... 746
A.55 /GT/INCLUDE/MATH.H ... 747
A.56 /CIG/INCLUDE/MBX.H ... 748
A.57 /CIG/INCLUDE/MEMORYMAP.H ... 748
A.58 /CIG/INCLUDE/MEMORYMAPDEFINESH 749
A.59 /CIG/INCLUDEMODELSTRUCT.H ... 750
A.60 /CIG/OTHERSRC/FORCE/MPVMDEF.H 750
A.61 /CIG/OTHERSRC/FORCE/MPVMEMORYDEFINES.H 750
A.62 /CIG/INCLUDE/MPVSTRUCT.H ... 750
A.63 /CIG/INCLUDE/MPVIDEO.H ... 751
A.64 /CIG/INCLUDE/MPVIDEO_MSG.H ... 751
A.65 /CIG/INCLUDE/MX_DEFINES.H ... 751
A.66 /CIG/INCLUDE/MX2_DEFINES.H .. 752
A.67 /CIG/INCLUDE/OVERLAY3DSTRUCT.H 752
A.68 /CIG/INCLUDE/OVRLYDEFS.H ... 752
A.69 /CIG/INCLUDE/POLY_STRUCT.H ... 753
A.70 /CIG/INCLUDE/PPM.H .. 753
A.71 /CIG/INCLUDE/PRINTMSGEXTERNS.H 753

xxviii

BBN Systems and Technologies GT100 RTSW CSCI

A.72 /CIG/INCLUDE/RCINCLUDE.H......................................753
A.73 /CjG/INCLUDE/REAL_.TIME.H 754
A.74 /CIG/INCLUDE/REALTIMvEVPT.H...................................755
A.75 /CIG/INCLUDE/RT-DEFINITIONS.H................................. 756
A.76 /CIG/INCLUDE/RTJAMACROS.H 756
A.77 /CIG/INCLUDE/RTTYPES.H...756
A.78 /CIG/OTHERSRC/FORCE/RTCDEFINES.H........................... 756
A.79 /CIG/INCLUDE/RTDBSTRUCT.H................................... 756
A.80 /CIGIINCLUDEISIMCIGDEFINES.H............................... 757
A.81 /CIG/INCLUDE/SIMCIGIF.H....................................... 758
A.82 /CIG/INCLUDE/SLAVE 133_FUNCTIONS.H......................... 758
A.83 /CIG/INCLUDEISTANDARD.H.. 758
A.84 /GT/INCLUDE/STDIO.H.. 759
A.85 /GTIINCLUDEISTRINGS.H .. 760
A.86 /CIG/INCLUDE/STRUCT_2D.H 761
A.87 /CIG/INCLUDE/STRUCTURES.H 761
A.88 /C1G/INC1AJDE/SUBSYSCFGPARSE.H............................ 762
A.89 /GT/INCLUDE/SYSDEFS.H .. 762
A.90 /CIG/INCLUDE/SYSDEFS2.H .. 762
A.91 /CIG/INCLUDEiTFLAT.H... 763
A.92 /CIG/INCLUDE/TFLAT_7K.H...763
A.93 /CIGINCLUDE1TFLATFAST.H 763
A.94 /CIGINCLUDEfTFLAT_-SLOW.H 763
A.95 /CIG/INCLIIDEJTRAVERSE_.CMD_-DEFS.H...........................763
A.96 /CIG/INCLUDE/U I 5MMSABOT3OHZ.H............................ 763
A.97 /CIG/LNCLUDE/U25MMHIEAT.H 764
A.98 /CIG/LIBSRCILIBVPTNVPIAMSGS.H..................................764
A.99 /CIG/INCLUDE/VPL-QUERY.H 764
A. 100 /CIGIINCLUDEIVPISTRUCT.H 764
A.101 /CIG/INCLUDEIVPIVIEWPORT.H 765

APPENDIX B: SYSTEM MACROS... 767

B.1I AAMI1TO-AAM2..767
B.2 AAM2-ADDR..768
B.3 AAREAD..768
B.4 ABSVAL .. 768
B.5 BCOPY.. 768
B.6 CHECKFORCE .. 769
B.7 CHECKROT...769
B.8 CUBE... 770
B.9 DARTENQUEUE, .. 770
B.10 DEDBOUNDARY .. 770
B.11 DEGREETORADIAN .. 771

xxix

BBN Systems and Technologies GT100 RTSW CSCI

B. 12 DELET'EROUND..771
B. 13 DELETESTATVEH ... 771
B. 14 DOWNLOADDATA.. 772
B. 15 DTP.* (DTPMACROS).. 772
B. 16 DUMPDART_-BUFFER... 777
B. 17 ERRMSG..777
B. 18 EXCHANGEFLEADATA.. 777
B.19 FINDLM ... 778
B.20 FLTOFX .. 778
B.21 FREELMCACHE ..779
B.22 FXT0881 ... 779
B.23 FXTOFL .. 780
B.24 GETCHORDEND... 780
B.25 GET _DBPOS... 780
B.26 GET-LB-FROM-LM .. 780
B.27 GLOB... 781
B.28 INCRCOMPONENT ... 782
B.29 INITMTX.. 782
B.30 MAGSQ2D.. 783
B.31 MAGSQ3D.. 783
B.32 MALLOC ... 783
B.33 MAX.. 783
B.34 MIN...783
B.35 NEWROUND .. 784
B.36 NEWSTATVEH .. 784
B.37 OPENFLEADATA... 785
B.38 OUTPUTMESSAGE..785
B.39 PAGEFORMAT .. 786
B.40 POLY.* (POLY PROCESSOR MACROS) 787
B.41 POP_-STACK..789
B.42 PRINTD4..789
B.43 PRINTD8 ... 790
B.44 PRINTHEX4 .. 790
B.45 PRINTHEX8 .. 790
B.46 PUSHSTACK ..791
B .47 RADIAN _TODEGREE ..791
B.48 ROOM4LABEL ..791
B.49 ROOMCHECK .. 792
B.50 SENDTFINFO,.. 792
B.51 SETOUTBITS... 793
B.52 SETOUTM2BITS ..793
B.53 SETPPM_-DISPLAYOFFSET... 793
B.54 SETPPMPIXELLOCATION 793

xxx

BBN Systems and Technologies GT100 RTSW CSCI

B.55 SIGN ... 794
B.56 SQUARE..794
B.57 SYSERR, .. 794
B.58 TODEG.. 794
B.59 TORAD.. 795
B.60 TORADIANS,.. 796
B.61 TRIGGERFORCE.. 796
B.62 VMETO_VMX.. 796
B.63 WAITFORCE .. 797
B.64 WAIT MPVIO, .. 797
B.65 WAIT_.MPVREPLY .. 797
B.66 XCLOSE .. 798
B.67 XLSEEK .. 798
B.68 XOPEN..799
B.69 XREAD ... 799
B.70 XWR1IT.. 799

APPENDIX C: OPERATING SYSTEM ROUTINES 800

C. I SPECIAL 05 SERVICE LIBRARIES 800
C.2 TASK MANAGEMENT (SC_*) ROUTINES 801
C.3 IFX FILE MANAGEMENT (IFX...*) ROUTINES 802
CA4 GTOS ROUTINES... 803
C. 5 STANDARD C RUNISME LIBRARIES................................ 804

APPENDIX D: GLOSSARY OF TERMS AND ABBREVIATIONS 809

APPENDIX E: CROSS-REFERENCE TABLES...................................815

E.1 CSUS MAPPED TO CSCS ... 816
E.2 DATA TYPE NAMES MAPPED TO TYPEDEFS...................... 824
E.3 FUNCTION NAMES MAPPED TO SOURCE FILE LOCATIONS 835
E.4 MACRO NAMES MAPPED TO SOURCE FILE LOCATIONS...........852

INDEX BY SECTION NUMBER .. Index-i

xxxi

BBN Systems and Technologies GT100 RTSW CSCI

. 1 INTRODUCTION: GT REAL-TIME SOFTWARE HOST CSCI

This document describes the GT100 Computer Image Generation (CIG) Host CSCI, also
referred to as the CIG Real-Time Software. The CIG GT Host CSCI is the executable
code that resides within the CIG and provides the Simulation Host (SIM) with an interface
to the graphics hardware on the CIG.

1.1 The Simulator

A Vehicle Simulator Unit, or Simulator, consists of a CIG, a Simulation Host, one or more
display monitors, a user, and the user's control mechanisms. Each Simulator simulates the
actions of one combat vehicle, such as a tank, in real time. Multiple Simulators can be
connected via a Simulation Network. The entire simulation exercise is controlled and
coordinated by the Battle Manager using the Management, Command, and Control (MCC)
system computer.

After the MCC initializes a Simulator at the beginning of the exercise, the vehicle's crew
directs the simulation. Each Simulator reports the position, orientation, and appearance of
its simulated vehicle to the MCC and the other Simulators via the network.

Figure 1-1 illustrates the relationship between the CIG, the Simulation Host, and the MCC.

Simulation Network

SMHost Simulator Sm Host

CGI I I-- IG
I

CIG

Figure 1-1. The Vehicle Simulator Unit (Simulator)

1

BBN Systems and Technologies GT100 RTSW CSCI

1.1.1 The Simulation Host

The Simulation Host receives and processes data from the simulation vehicle's mechanical
controls, interfaces with the CIG, and communicates over the simulation network with
other Simulators.

1.1.2 The CIG

The CIG interfaces with the Simulation Host, controls the images in the simulation
viewports (display monitors), and houses the database that describes the simulation terrain.

The CIG can contain one or two 9U graphics processor subsystems, also called backends.
(In this document, the terms "backend" and "subsystem" are used interchangeably.) A
backend can be either of the following:

T backend
Generates up to eight low-resolution (320 by 200 pixels) views. These views are
used in M1 and M2 Simulators.

TX backend
Generates one high-resolution (640 by 480 pixels) view or two low-resolution (320
by 240 pixels) views. These views are used in Stealth Simulators.

Having two backends provides the ability to combine high- and low-resolution views, or to
increase the number of views for a simulator.

The composition of the backend(s) of a particular GT100 CIG is reflected in its model
number. All model numbers have the form GTlmn, where:

1 indicates release 1 of the GT series
m is the number of TX backends
n is the number of T backends

Therefore, the following model numbers are possible:

GT1O = 0 TX backends, 1 T backend
GT102 = 0 TX backends, 2 T backends
GT1 10 = 1 TX backend, 0 T backends
GTI 11 = 1 TX backend, 1 T backend
GT120 = 2 TX backends, 0 T backends

The GT1O1 is equivalent to the earlier 120T CIG. The GT1 10 is equivalent to the earlier
120TX CIG.

1.2 CIG-SIM Communication

The CIG and the Simulation Host communicate by exchanging message packets, each of
which is a grouping of data messages. The physical interface to the Simulation Host can be
any of the following:

2

BBN Systems and Technologies GT100 RTSW CSCI

* DR11-W
* Ethernet
• SCSI
" MPV
• Socket

For the DR 11, SCSI, MPV, and Socket interfaces, the packet buffer is a fixed size (default
4096 bytes). Any unused portion of the buffer is filled with zeroes. The packet size can be
changed on the command line or in a Simulation Host message.

The Ethernet communication link adheres to the IEEE 802.3 standard and operates on the
data link level. Therefore, an Ethernet packet contains the normal IEEE 802.3 24-byte
preamble followed by a variable-length packet buffer. Both point-to-point and broadcast
modes are supported.

Message packet exchanges occur every frame. The following frame rates are currently
supported:

Frame Rate Frame Time

10 Hz 100 ms

15 Hz 66.7 ms
30 Hz 33.3 ms
60 Hz 16.7 ms

The CIG is the clock master for all synchronous message passing. Exchanges are initiated
by the CIG after it detects a frame time event (an interrupt from the hardware). Both the
CIG and the Simulation Host have until the next frame to process information.

Message packets sent from the CIG describe the current state of the simulation vehicle.
The Simulation Host uses this information to compute and update each parameter that
affects the visual displays.

Message packets sent from the Simulation Host describe the new state of the simulation
vehicle and/or changes to the simulation environment. Other messages specify where to
display special effects such as bomb blasts and smoke. The CIG uses this information to
compute changes in the viewing displays.

The message structures used by the CIG and the Simulation Host to communicate are
documented in the "BBN GT100TM CIG to Simulation Host Interface Manual."

1.3 RTSW Software Structure

The CIG Host software is a multi-state, multi-tasking software system. It progresses
through its various states upon receiving appropriate commands from the Simulation Host
via the CIG-SIM message interface. The states of the CIG Host software are:

" Task Initialization
• System Configuration
• Real-Time Processing

3

BBN Systems and Technologies GT100 RTSW CSCI

* Stand-Alone (Flea) Mode

The simulation and other support software run as individual tasks. Using intertask mailbox
locations, the tasks exchange information through shared memory. The tasks share system
resources as needed, based on their relative priorities.

The 18 CSCs in the GT CIG Host CSCI are the following:

* Task Initialization
* 2-D Overlay Compiler
" Backend Manager
" Ballistics Processing
" CIG Configuration
* ESIFA Interface
• Stand-Alone Host Emulator (Flea)
" DTP Command Generator
* User Interface Mode (Gossip)
* Host Interface Manager
* MPV Interface
* Message Processing
" Real-Time Processing
• Serial Device Input/Output
" Token Processing
* System Utilities
* Viewport Configuration
* Force Processing

Figure 1-2 illustrates these CSCs.

4

BBN Systems and Technologies GT100 RTSW CSCI

I CI G0 0

HOST

Task Stand-Alone Peel-Time
initialization Most Emulator Processing

(binsrc) Vibhost) (librtt)

2-13 F Ovra DTP Comnd
CoffolerGenerator

(1I102d ' (libgendtp) F (libsio)

Backend User Interface Token
Wnager Mode Processing

(libbackend) (II gossip) (libtoken)

Ballistics Host Interface system
Processing Manager Utiliies

(libbeli) (libhost) (libutil)

CIG WV Viewport
Configuration Interface Configuration

(libconfig) ib idea

ESIFA Message Force
Interface Processing IProcessing

Figure 1-2. CIG GT100 Host Software CSCs

1.5 How This Document Is Organized

Section 1 (Introduction)
Provides a general overview of the CIG Real-Time Software, the Simulation Host,
and the Vehicle Simulator Unit.

Section 2 (CSC Descriptions)
Describes each CSC in the CIG Real-Time Software CSCI. Each subsection
begins with a general overview of the CSC, its major data structures, the primary
functions it performs, and how it relates to the other CSCs. This is followed by a
detailed description of each CSU in the CSC. The CSUs are presented in
alphabetical order.

For the purposes of this document, a CSU is defined as a source code (.c or .asm)
file. CSUs are documented as follows:

The section heading identifies the name of the source file.

5

BBN Systems and Technologies GT100 RTSW CSCI

* If a CSU contains multiple functions, each is described in a separate
subsection under the CSU section heading. The functions are described in
the order in which they appear in the source file.

* If a CSU contains only one function, it is described under the CSU section
heading. If the function name differs from the CSU name, the function
name is shown in parentheses following the CSU name. If the function
name matches the CSU name (minus the .c or .asm suffix), the function
name is not shown in the heading.

The description of a function includes its general purpose, its function call,
definitions of its parameters and return values, and a description of its processing.
The description also identifies all called and calling routines.

Section 3 (Resource Utilization)
Provides disk and memory usage statistics.

Appendix A (System Include Files)
Describes the contents of each header (.h) file used in the system, and identifies the
CSUs that include it. All include files are listed in alphabetical order.

Appendix B (System Macros)
Describes the macros used to perform specialized functions throughout the system,
and identifies where they are used. All macros are listed in alphabetical order.

Appendix C (Operating System Service Calls)
Describes the operating system service functions and standard C libraries used by
the CIG functions.

Appendix D (Glossary Of Terms And Abbreviations)
Defines some of the specialized terminology, abbreviations, and acronyms used in
this document.

Appendix E (Cross-Reference Tables)
Provides lists that may help the reader locate CSUs, data type definitions,
functions, and macros.

6

BBN Systems and Technologies GT100 RTSW CSCI

. 2 CSC DESCRIPTIONS

The CSCs that make up the CIG Host software system are the following:

Task Initialization (/cig/gtbinsrc)
Creates all system tasks.

2-D Overlay Compiler (/cig/libsrc/iib2d)
Generates viewport overlays for TX backends.

Backend Manager (/cig/libsrc/libbackend)
Serves as an interface between the real-time software and the backend hardware.

Ballistics Processing (/cig/libsrc/libball)
Processes fired rounds to determine if an object in the database was hit.

CIG Configuration (/cig/libsrc/libconfig)
Sets up the CIG to run a simulation.

ESIFA Interface (/cig/libsrc/libesifa)
Processes requests to and from the PPM and PPTs via the ESIFA board.

Stand-Alone Host Emulator (/cig/libsrc/libflea)
Emulates the functions of the Simulation Host to allow stand-alone testing,
debugging, and demonstrations.

DTP Command Generator (/cig/libsrc/libgendtp)
Generates the commands used to drive the hardware to change the viewport
displays.

User Interface Mode (/cig/libsrc/libgossip)
Provides a menu interface to system functions and memory for testing and
debugging.

Host Interface Manager (/cig/libsrc/libhost)
Handles the communication between the CIG and the Simulation Host.

MPV Interface (/cig/libsrc/libmpvideo)
Processes commands to and from the Micro Processor Video (MPV) board.

Message Processing (/cig/libsrc/libmsg)
Processes many of the messages received from or returned to the Simulation Host.

Real-Time Processing (/cig/libsrc/librtt)
Drives the simulation using messages sent from the Simulation Host.

Serial Device Input/Output (/cig/libsrc/libsio)
Handles writing to and reading from a serial I/O device.

Token Processing (/cig/libsrc/iibtoken)
Provides lexical functio.ns used to parse the subsystem configuration file.

System Utilities (/cig/libsrc/libutil)
Provides general-use utilities for other CSCs.

7

BBN Systems and Technologies GT100 RTSW CSCI

Viewport Configuration (/cig/libsrc/libvpt)
Creates the configuration tree that describes each viewport, based on messages
received from the Simulation Host.

Force Processing (/cig/othersrc/force)
Provides an interface to the MPV and the GSP via the Force board in a TX
backend.

This section describes the functions performed by each of these CSCs.

8

BBN Systems and Technologies GT1OO RTSW CSCI

2.1 Task Initialization (/cig/gtbinsrc)

The Task Initialization CSC is responsible for creating all CIG tasks. This CSC is invoked
when the system is booted. It starts the other system tasks (upstart, local terrain, flea,
ballistics, etc.), then suspends itself.

The Task Initialization CSC is also responsible for processing system shutdowns. If the
user asks (through Gossip) to shut down the system, the Task Initialization CSC stops all
tasks and initiates the cleanup routines that deallocate the tasks' resources.

At the current time, the mkcal.c CSU, used to make calibration overlays, is also part of this
CSC.

Figure 2-1 identifies the CSUs in the Task Initialization CSC.

Task Initialization

bx147_main.c
mkcal.c
rtt.c

Figure 2-1. Task Initialization CSUs

2.1.1 bx147_main.c

The functions in the bx147_main.c CSU are used to invoke and shut down Ballistics.
These functions are:

* bx147_main
* poll-shutdown

2.1.1.1 main

The main function in bx147_main.c is the MVME147 main Ballistics routine, main is
executed via the autoboot mechanism or when the user starts the system. It spawns off the
Ballistics task (bxtask) and the Ballistics diagnostic probe (bxprobe), then suspends. itself.

9

BBN Systems and Technologies GTOO RTSW CSCI

The command line used to invoke main may include arguments that control how Ballistics
is to be initialized and used.

main does the following:

* Calls clparse to parse the command line.
* Calls scjtinquiry to determine the base task id and priority.
. Sets the base task id and priority.
* Calls pcreate to create each task's entry in the task table.
* Suspends itself.

The function exits with a I if clparse reports an error.

main (using pcreate) initiates the application task table in the operating system by
establishing entries for the Ballistics tasks, as follows:

Entry in Priority Offset Task Start Flag
Task Table (added to priority of Name (TRUE=start task)

main task)

bx-task 1 "bxtask" TRUE

bxprobe 3 "bx.probe" TRUE

Called By: none

Routines Called: clparse
exit
pcreate
printf
scjtinquiry
scjtsuspend
serror

Parameters: int argc

char *argv[]

Returns: none

2.1.1.2 pollshutdown

The poll-shutdown function is a dummy routine that has no effect. (The poll-shutdown
routine in rtt.c is used to determine whether a system shutdown has been initiated.)

The function call is poll_shutdowno. The function always returns 1.

Called By: none

10

BBN Systems and Technologies GTIOO RTSW CSCI

Routines Called: none

Parameters: none

Returns: 1

2.1.2 mkcal.c

The mkcal.c CSU contains functions used to generate the calibration overlay. This overlay
is a hard-coded pattern of triangles, vertical and horizontal alignment bars, and colored
rectangles. The overlay is displayed on a viewport on top of the view of the terrain. The
pattern helps the Simulator user center the screen.

The functions in this CSU are:

* make_cal_overlay
* make cal matrices
" make-caLpatterns
" pix-mult

The Poly Processor uses perspective matrices in normalized viewspace (i.e., the field-of-
view is not used) when crunching on overlay polygons. The only perspective matrix
required for an overlay is a matrix to swap the axes (view space into screen space). The
vertices overlay can be described to the Poly Processor as follows:

(-y,Y,Y) (Y,YY)

(O,yO)

(-y,y,-Y) (y,y,-y)

where y is the distance from the eye to the overlay.

This means that if the vertices of an overlay (such as the monitor calibration overlay) are
given in pixel coordinates, they must be converted to the normalized view space coordinate
system. For example, if the screen resolution is 200 x 200, a vertex with pixel coordinates
(-50,100) is converted to (-1/2,1).

2.1.2.1 make caloverlay

The make_cal-overlay function allocates memory for the calibration overlay, and calls the
appropriate routines to create it. This function is called by cig-config (in the CIG
Configuration CSC) as part of its initialization process.

The function call is make cal overlayo. The function does the following:

11

BBN Systems and Technologies GT1OO RTSW CSCI

• Allocates memory for the calibration flag and overlay.
* Calls make cal matrices to generate the overlay's matrices.
* Calls make cal.patterns to generate the triangles, alignment bars, and other patterns

displayed on the overlay.

Called By: cig-config

Routines Called: aam_malloc
GLOB
make_calmatrices
makescal patterns

Parameters: none

Returns: none

2.1.2.2 make cal matrices

The makecalmatrices function generates matrices for the following overlays:

* The calibration overlay generated during cigsconfig initialization.
" All overlays (offset image, color image, and BBN logo) requested by the

Simulation Host via the MSG_CALIBRATION_IMAGE message.
" All overlays (offset image, color image, and BBN logo) requested by the Gossip

user via the Calibration menu.

The function call is make cal matrices (pcaldat), where pcaldat is a pointer to the
calibration overlay.

make cal matrices uses id_4x3mtx and swap-axis to generate the matrices.

Called By: cal
make cal overlay
msg__calibrationimage

Routines Called: id_4x3mtx

swap-axis

Parameters: CALOVRLY *pcaldat

Returns: none

12

BBN Systems and Technologies GT1OO RTSW CSCI

2.1.2.3 make cal patterns

The makecal-patterns function generates all patterns (such as triangles and rectangles)
displayed on the following overlays:

* The calibration overlay generated during cigsconfig initialization.
" The offset image requested by the Simulation Host via the

MSGCALIBRATION_IMAGE message.
* The offset image requested by the Gossip user via the Calibration menu.

The function call is make cal patterns(pcaldat), where pcal dat is a pointer to the
calibration overlay. makescal.pattems does the following:

" Outputs the calibration polygons.
* Creates the comer triangles.
• Creates the frame triangles.
* Creates the vertical and horizontal alignment bars.
• Creates the colored rectangles.
* Sets the vertices of all of the displayed patterns.

Called By: cal
makecaloverlay
msgscalibration-image

Routines Called: none

Parameters: CALOVRLY *pcaldat

Returns: none

2.1.2.4 pix-mult

The pix-mult function converts pixel coordinates into normalized viewspace coordinates.

The function call is pixmult(resolution, ydist), where:

resolution is the screen resolution
y_dist is the y pixel coordinate

The function divides ydist by (resolution * .5) and returns the result as mult.

This function is not currently used.

Called By: none

13

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: none

Parameters: INT_2 resolution
REAL_4 ydist

Returns: mult

2.1.3 rtt.c

The rtt.c CSU contains functions used to start up and shut down the real-time software
tasks. These functions are:

•main
• checkrestart
• disable-restart
• rtt_shutdown
• poll-shutdown

2.1.3.1 main

The main function is the initial task in the GT100 CIG system. main is executed from the
user's terminal or via the auto-boot mechanism. main initiates the execution of all other
tasks in the system, then suspends itself until a system shutdown is requested.

The command line used to start up the CIG may include arguments that control how the
system is to be initialized and used. For descriptions of these arguments, see the initialize
function in the Real-Time Processing CSC.

main does the following:

" Calls checkrestart to see if the CIG's previous execution terminated
unsuccessfully. If so, prompts the user to reset the CIG, then exits with a 0.

• Calls initialize to parse the command line and invoke the options specified by the
user.

* Calls sc.tinquiry to to determine the base task id and priority.
• Sets the base task id and priority.
• Calls scscreate to set up the initiateshutdown semaphore. (This semaphore is

used to indicate that the user has requested a system shutdown.)
• Calls scfcreate to set up the shutdown-status flag group. (This group is used to

indicate which tasks have successfully shut down. A shutdown mask is used to
assign a bit in the flag group to each task.)

* Calls configdatabase to look at the database configuration file and determine how
many rowcol-rd tasks are needed. (Each backend requires its own rowcol_rd task
to bring new rows/columns of load modules from the terrain database into active
area memory when needed.)

• Calls configjballistics to configure and start Ballistics Processing.
* If AGPT mode was requested on the command line, calls agptinit to start up the

simserver task. (AGPT mode is a non-standard version of the GTIOO system and
is not addressed in this document.)

14

BBN Systems and Technologies GTIOO RTSW CSCI

Determines how many tasks are in the task table; if more than 31, displays a
warning that the system may not be able to shut down properly, then calls
disable_restart to prevent the CIG from being restarted without a reset.

" Calls pcreate to create each task's entry in the task table.
" If Flea mode was requested on the command line, calls fleahost_if to initialize the

Flea interface.
" Prompts the user to enter any character to continue.
" Calls sc-spend to wait to be signaled to initiate a shutdown.
• If a shutdown request is posted:

- Displays a shutdown message.
- Calls rttshutdown to signal all tasks to shut down.
- Calls sc_tinquiry to find any tasks that are suspended.
- Calls sctresume to wake up the suspended tasks.
- Calls scfpend to wait for all tasks to shut down (by waiting for all bits in

the shutdownstatus flag to be set).
- If any tasks do not terminate within the required timeout, outputs an error

and calls disable_restart to prevent the CIG from being restarted without a
reset.

- Calls sysrup-off to disable system interrupts.
- Calls scsdelete to delete the initiate_shutdown semaphore.
- Calls sc fdelete to delete the shutdown_status flag group.

main (using pcreate) initiates the application task table in the operating system by
establishing entries for the GT100 tasks, as shown below. Note the following:

Priority offset
This value is added to the priority of the main task.

Start flag
This flag is TRUE if the task is to be started when loaded.

Cleanup routine
This routine is the function responsible for deallocating that task's resources when
the system is shut down. The poll-shutdown function uses the *taskcleanup
function pointer to invoke the correct function.

15

BBN Systems and Technologies GT100 RTSW CSCI

Entry in Priority Task Start Cleanup
Task Table Offset Name Flag Routine

bxtask 3 "ballistics" FALSE bx task cleanup
flea 4 "flea" TRUE fleacleanup

flea io task 6 "flea iotask" TRUE fleaiotaskcleanup

gossip 7 "gossip" TRUE gossip-cleanup
local terrain 2 "local terrain" TRUE localterraincleanup

rowcoLrdl 5 "rowcoLrd #1" FALSE rowcol rd 1 cleanup
rowcol rd 2 5 "rowcol rd #2 FALSE rowcol rd 2 cleanup

rowcol rd 3 5 "rowcol-rd #3 FALSE rowcol_rd_3_cleanup
owcolrd 4 5 "rowcol rd #4 FALSE rowcol rd 4 cleanup
simserver 1 "sinnet server" FALSE sim server-cleanup

upstart I "upstart" TRUE upstart cleanup

Called By: none (initiated by the operating system on start-up)

Routines Called: agptinit
checkrestart
config-ballistics
config-database
disable_restart
exit
fleahostif
initialize
pcreate
printf
rttshutdown
scfcreate
scfdelete
sc-finquiry
scfpend
scscreate
scsdelete
sc-spend
sc.tinquiry
sc_tresume
serror
sysrup-off

Parameters: int argc
char *argv[]

Returns: none

16

BBN Systems and Technologies GT100 RTSW CSCI

2.1.3.2 check restart

The checkrestart function checks to see if the system terminated abnormally from the last

session. If so, the user is told to reset the CIG before restarting.

The function call is check_restartO.

The function calls mpvjnfind to get the status of the "cigran" program. The disablerestart
function sets the status of cigran to 0 if restart is to be prevented due to abnormal
termination of the previous session. If checkrestart sees that the status of cigran is 0, it
returns a 1 to main, indicating that a restart is not allowed.

The result returned by the function is 0 if a restart is allowed, or 1 if restarts are disabled.
Any other value returned is an error from mpv_nfind.

Called By: main (in rtt.c)

Routines Called: mpvnfind

Parameters: none

Returns: result

2.1.3.3 disable-restart

The disablerestart function sets a flag that indicates that the CIG must be rebooted before it
can be restarted. This function is called if the main task determines that the previous
session did not shut down properly within the allotted timeout, or that there are too many
system tasks to enable an orderly shutdown. The flag set by disablerestart is read by
checkrestart.

The function call is disable restarto.

The function calls mpv ncatalog and sets the status of "cigran" to 0. This value triggers
checkrestart to return a 1 to main, indicating that no more restarts are allowed before the
system is rebooted.

disable_restart returns the result returned by mpvncatalog. This is RETOK if successful;
any other value indicates an error.

Called By: main (in rtt.c)

Routines Called: mpv.ncatalog

17

BBN Systems and Technologies GT1OO RTSW CSCI

Parameters: none

Returns: result

2.1.3.4 rtt shutdown

The rtt_shutdown function initiates the shutdown procedure by posting a message to the
initiate_shutdown semaphore. This message tells the main function that a shutdown has
been requested. m_shutdown is called if the Gossip user requests a shutdown by selecting
the Q ("Quit to GTOS") option on the Gossip main menu. This function is also called by
main after it wakes up, causing the message to be reposted.

An overview of the shutdown procedure is as follows:

1. rttshutdown posts to the initiateshutdown semaphore.
2. main, which had been pending on the initiateshutdown semaphore, wakes up and

immediately calls rttshutdown again, causing it to repost to the initiateshutdown
semaphore.

3. main activates any suspended tasks, then pends on the shutdownstatus flag group
with a finite timeout. (This flag group contains one bit for each task.)

4. Each task periodically calls poll-shutdown to check the initiateshutdown
semaphore. If polLshutdown determines that the semaphore is set, it executes the
calling task's cleanup function, sets the task's bit in the shutdownstatus flag
group, then terminates the task.

5. If all expected bits get set in the shutdownstatus flag group, main outputs a
message, cleans up its own resources, then exits. If an expected bit is not set, the
pend on the flag group times out, main outputs a warning identifying the offending
task(s), calls disablerestart to prevent a restart without a reset, cleans up its
resources, then exits.

The function call is rttshutdown0.

Called By: gossip..i~ck
main (in rtt.c)

Routines Called: printf
sc-spost
serror

Parameters: none

Returns: none

18

BBN Systems and Technologies GT1OO RTSW CSCI

2.1.3.5 poll-shutdown

The poll-shutdown function checks to see if a system shutdown has been initiated. This
function is called periodically by each real-time task. If a shutdown has been initiated,
poll_shutdown calls the task's cleanup function and terminates the task.

The function call is poll_shutdownO. The function does the following:

* Calls scsinquiry to see if a shutdown has been initiated.
" If a shutdown has been initiated:

- Calls sc-tinquiry to get the calling task's id.
- Calls the task's cleanup routine using the *taskcleanup function pointer.

(The cleanup function for each task is specified in the task table.)
- Calls scjfpost to set the task's bit in the shutdownstatus semaphore. (This

indicates that the task has shut down. If all expected bits are set within the
allotted time, main determines that the system shut down properly.)

- Calls ifxtdelete to delete the calling task.

The function always returns 1.

Called By: _rowcol_rd
bxtask
dbmccsetup
filecontrol
flea
fleaiotask
gossip
hwtest
local_terrain
simulation
upstart

Routines Called: *taskcleanup
ifxtdelete
printf
scjfpost
sc-siquiry
sc-tinquiry
serror

Parameters: none

Returns:

19

BBN Systems and Technologies GT100 RTSW CSCI

2.2 2-D Overlay Compiler (/cig/libsrc/lib2d)

This section describes the functions that make up the 2-D (Two-Dimensional) Overlay
Compiler CSC. These functions build 2-D overlays from ASCII commands, then generate
executable commands for the 2-D processor.

Note: These functions apply to TX backends only. The only overlays
available on T backends are the hard-coded gun, gunner, and
calibration overlays generated in the Real-Time Processing CSC.

Two-dimensional overlays are displayed on a viewport on top of the three-dimensional
terrain display. For example, overlays can be used to display calibration patterns and
numerical readouts such as current altitude and speed. Each 2-D component is classified as
either dynamic (able to move or change) or static (not capable of movement or change).

The 2-D overlay database describes all components that can be displayed in the overlays.
This database is an ASCII file sent from the Simulation Host via messages. The overall
process for creating the 2-D overlay database is as follows:

1. The Simulation Host invokes the 2-D compiler using the CIG Control - Start 2D
Setup message.

2. The Simulation Host sends the ASCII file via 2-D SETUP messages, one per
packet buffer.

3. After the entire file has been sent, the Simulation Host sends a CIG Control - Stop
message.

4. The 2-D compiler function compiles the data. If a monitor is available, error and
status information is displayed.

5. The data is downloaded via the Force board into 2-D dynamic memory on the GSP
(Graphics System Processor) chip on the MPV board.

Once the 2-D database is loaded into memory, the overlays can be changed using
PASSON messages sent from the Simulation Host. These messages contain commands
that are used to move or change dynamic components, and to draw or remove static
components. The 2-D task (which runs on the GSP) decodes the runtime commands and
updates the component information in the 2-D database accordingly. The 2-D task then
processes the changes to each component in the order in which they are def'med in the
database.

The functions in the 2-D Overlay Compiler CSC do not process runtime changes. Update
commands are passed directly from the real-time software to the GSP via an MPV Interface
routine, and the GSP processes the changes to the structures in its memory.

For the complete syntax of each command used to create or change a 2-D image, refer to
the "2-D Commands and Parameters" document. That document also provides a sample
ASCII input file and the 2-D overlay it creates.

The 2-D overlays can also be created and compiled offline (off the CIG). Special versions
of the 2-D compiler functions are used to read the overlay file and generate a binary file.

20

BBN Systems and Technologies GT0O RTSW CSCI

This file can then be copied to the CIG and downloaded to 2-D memory at a later time. The
source files that contain the functions used to process a file offline ar' prefixed by u_. A
separate "make" file is used at system build time to select these source files instead of their
online equivalents.

The primary data structures built by the 2-D compiler are the following:

Component descriptor table
Contains each component's number (0-63), color, channel (0 for high resolution, 1
or 2 for low resolution), plane (foreground or background), window number (0 for
screen space, 1-15 for user-defined windows), clipping values, pre-translate (pre-
rotation) values, and post-translate (post-rotation) values.

Window descriptor table
Contains each window's absolute address, width (horizontal pixels), height
(vertical pixels), pitch, and a conversion factor for GSP.

Component pointer table
Contains a pointer to each component in the 2-D database.

After compilation, these structures are downloaded into GSP memory via the Force board.
(If the 2-D compiler is being run offline, the data is written to a binary file which can be
downloaded to the GSP later.) Figure 2-2 illustrates these structures, their contents, and
their interrelationships, as they exist in GSP memory.

The primitive types handled by the 2-D compiler, and the functions used to process them,
are the following:

Primitive 2-D Setup Function

bit bit setupbit_blt

draw-line setup-draw-line

drawoval setup-oval-rectangle
draw rect setup-ovaLrcctangle
fill-oval setup-ovaLrctangle

fill poly setuppoly
fill rect setup-ovarectangle

polyline setup__poly

string setupjdefine-string
text setupjtext

The specified function is responsible for retrieving the parameters associated with the
primitive, validating the data, then adding the data to the component descriptor table.

The structure of each of these primitives is illustrated in Figure 2-3.

21

BBN Systems and Technologies GT100 RTSW CSCI

32 bits
(address 0x(Y7804000)

ptr to canponnt pointer table Component Pointer Table
___ to

32 bits
pr to window descriptor table (likely address 0x7804100)

Pr to component descr r table --ptr to ocmponent 0
totaldnumber of omponcs ptrto cmponent I 3
size of window description pr to component 2

not used

not used

not used

ptr to component 62

ptr to camponent63-

Window Descriptor Table Component Descriptors
32 bits 16-bit values

(likely address 0x7805100)
ptr to window 0

process flag
dK color

pitch converion chonne/ane

uused unused window id
ptr to window 1 viewport height

dK dy viewpor width

pitch conversion viewport x
uused uued vicwport y

• -- ic/dynatic

d. wAra

rotate

pre-anslation x
ptr to window 15 pre-vansiaton y

4 post-translation x

pitch conversion post-tnslaon y
unused unused primitive type

primitive data

primitive type
Notes: primitive das

34010 does half-word swapping
3 4 0 10 a d d re sse s are B IT ad d re sses p rocess _fl ag

process flag

Figure 2-2. 2-D Memory (from the 2-D Compiler)

22

BBN Systems and Technologies GT100 RTSW CSCI

1 TEXT $ DRAW OVAL
2STRING 3 BIT ILT 4 DRAW LINE 6 FILL OVA

7 DRAW RECT
Primitive (1.2) Primitive (3) Pimiive (4) 8 FILL REC'

0: 0:desinaionx 0 X0Primitive (5. 6.'7. 8)
0y 0:deinatIion y 0: YO 0: width
1: x 1: destinationx 0:X1

1: v1: tnatin y : yj0: height

2: x : destina~tionyx1:X 0:

2:xv 2: destination y 1: YO 0

fotsource window I: X1,1 it

x stnre x 1: 1I 1:bheight

y sorce y 2: xO1x

char cha 0 detimun x 2 yOI:ywdt
char 1 char 0 destination y 2: x1 2: wi t

width 2: height
height 2:!02:

O POLYLINE peuyo
10 FILL-POLYwit

xl
Primitive (0, 10) 0:x

prtoO0 buffer point yO

ptrto Ibuffer______

prtolIbuffer point xm

ptrto 2buffer point __yin Notes:

pt to 2 buffer All boxes indicate 16-bit values
numbe of ines n IText characts am byte-swapped
numbr ofline: n : O.COMOP Oxx00FF

number of pints: m point X0

line X0 point yo

line 0O..

pointlXM

fine xn pity

fine y

point yo2:

point 10

point m -potyu

point xm

point ym

Figure 2-3. 2-D Compiler Primitives

23

BBN Systems and Technologies GT100 RTSW CSCI

Figure 2-4 identifies the CSUs in the 2-D Overlay Compiler CSC. These CSUs are
described in this section.

2-D Overla opi

bit -blt.c polyxc
cig_2d!setup.c proc -cmd.c
cigcomp__d.c string.c
ciggetm_2d.c text.c
cigjink_2d.c u-comp_2d.c
comp.c ugetm 2d.c
draw linexc u link_2d.c
get -ihing.c u-mai-n2d.c
init stuffic window.c
oval-rectxc

Figure 2-4. 2-D Overlay Compiler CSUs

Figure 2-5 illustrates how the CSUs in the 2-D Overlay Compiler CSC interact. This
diagram illustrates the flow of events when 2-D overlays are created on the CIG from
messages received from the Simulation Host. It does not reflect the process used to
compile a binary file offfine.

24

BBN Systems and Technologies GT100 RTSW CSCI

cg2Cituj

ojpie2d

mnit_ stff
initializes global data

gstmsg
------ 411.gets next message from

dASCII file g~hn

1process -command setup-bit-bh
prrcessesc cmmands set up-comp..st art
Ifrom ASCII file set updraw-line

setup..oval-rectangle
setup-poly
set updefi ne.st ring

No setupjext
setupdefine-window

End of file?

Yes
I linkup

allocates memory for windows;
downloads data to GSP J

Figure 2-5. 2-D Overlay Compiler Flow Diagram

25

BBN Systems and Technologies GT100 RTSW CSCI

2.2.1 bit-bit.c (setupbitbit)

The setupbit_bit function is responsible for setting up block-transferring pixel information
in the component descriptor table. This function is called by processcommand if the 2-D
command to be processed is BITBLT.

The function call is setup bit blt(cmd), where cmd is the command (N_BITBLT) to
be processed.

setup-bitblt does the following:

• Verifies that component start data has already been processed.
* Calls getthing to retrieve the data in the message.
* Determines if the component descriptor table has room available.
• Places the source window pixel x and y into the component descriptor table.
* Places the destination window pixel x and y into the component descriptor table.
• Places the width, height, and operator into the component descriptor table.

If successful, the function returns a rtn val of 0 (SUCCESS). If an error occurs, the
rtn-val is one of the following:

88 (COMPONENTDESCRIPTORTBL_FULL)
The table does not have enough room for the new data.

99 (SYNTAXERROR)
The data in the message is invalid.

Called By: processcommand

Routines Called: get-thing
printf

Parameters: int cmd

Returns: rtnval

2.2.2 cig_2d_setup.c

The cig-2dsetup function is the 2-D overlay setup handler. This function is called by
dbmcc-setup if the message from the Simulation Host is MSG_CIG_CTL -
C_START_2DSETUP.

The function call is cig 2d setup(backend), where backend is the subsystem id
specified by the Simulat'on RIost.

cig-2d-setup does the following:

* Calls mpvideo-get-objectaddr to get the MPV I/O board mailbox address.

26

BBN Systems and Technologies GTI00 RTSW CSCI

• Calls calloc to allocate memory for the setup.
* Calls compile_2d to start the 2-D compiler.
* Calls free to deallocate the memory when the compiler is finished.

The function returns 0 if successful. It returns EOF if the MPV address returned to it is
NULL, indicating that the specified backend does not contain an MPV board.

Called By: db_mcc_setup

Routines Called: calloc
compile_2d
free
mpvideo-geLobjecLaddr
printf

Parameters: UNS_4 backend

Returns: 0
EOF

2.2.3 cigcomp_2d.c (compile_2d)

The compile_2d function is the main driver for the 2-D database compiler. It is responsible
for processing the 2-D setup messages (MSG_2D_SETUP) sent from the Simulation Host.
Each message represents one line in the ASCII 2-D database file.

The function call is compile.2d(pmpv), where pmpv is a pointer to the MPV object.
compile_2d does the following:

* Sets the MPV's override_2d flag to FALSE.
" Calls initstuff to initialize various compiler variables.
* Calls get-msg_2d to get the first line of the input file.
* Calls process-command to process each command from the input file.

(process_command calls get-thing which in turn calls geLmsg_2d to get each
message from the file.)

• Checks for errors from process_command.
• Calls linkup to set up the window pointers and write the data to the GSP in the

specified backend.
• Reports the number of errors detected during the compile.
• If the compilation was successful, sets the MPV's override_2d flag to TRUE. This

tells mpvideoload (in the MPV Interface CSC) to not load a 2-D data file specified
by the Simulation Host or the subsys.cfg file.

Called By: cig-2d-setup

Routines Called: get-msg_2d
initstuff

27

BBN Systems and Technologies GT100 RTSW CSCI

linkup
printf
processcommand

Parameters: MPVIDEO_OBJ *pmpv

Returns: none

2.2.4 ciggetm_2d.c (getmsg_2d)

The get__msg_2d function gets the next 2-D overlay message from the input file and sets a
pointer to it for the 2-D compiler.

The function call is getmsg_2d0. get-msg_2d does the following:

* Makes sure the message header size plus the message size does not exceed the
packet size; calls SYSERR to generate an error message if it does.

* Calls cigsimio-msg-in to write the message to a buffer (if debug display or
message recording is enabled).

" Processes each message.

The following table summarizes the steps performed by get-msg_2d to process each valid
message it finds. The first column lists the messages in alphabetical order. The second
column identifies the purpose of the message in italics, then lists the major steps performed
by get-msg_2d.

2-D Overlay Message Processing by get_msg_2d

MSG_2D_SETUP Provides one line of data from the ASCII input file.
Gets a pointer to the message for compile_2d; sets
msgscode to CONTINUE 2D SETUP.

MSG_CIGCTL Signals a state transition.
C_STOP Sets msgcode to STOP 2D SETUP.
C_NULL No action.
other Sets msgcode to INVALID 2D SETUP.

MSG_END Signals the end of the message packet.
Calls cigsimiomsgout to write the message to a
buffer (if debug display or message recording is enabled);
calls start-watch; calls the appropriate exchange-data
routine (using *exchange-data) to send output and
receive input buffers.

The msgcode returned by the function is one of the following:

0 (CONTINUE_2DSETUP) A valid 2-D setup message was found.
96 (INVALID_2DSETUP) An unknown message was detected.
97 (STOP_2DSETUP) A CIG Control-Stop message was detected.

28

BBN Systems and Technologies GT100 RTSW CSCI

Called By: compile2d
geLthing

Routines Called: *exchange-data
cigsimiormsg-in
cigsimio msg-outprintf

startwatch
SYSERR

Parameters: none

Returns: msgscode

2.2.5 ciglink_2d.c (linkup)

The linkup function is responsible for setting up window pointers and allocating available
MPV (Micro Processor Video) memory for windows. It also downloads the 2-D overlay
data to GSP memory via the MPV intertask mailbox.

The function call is linkup(pmbx), where pmbx is a pointer to the MPV mailbox. linkup
does the following:

0 • Verifies that the number of component start entries equals the number of component
end entries.

* Calculates base addresses and table sizes for all information.
* Outputs the following data to stdout (see Figure 2-6 for a sample of the output):

- Component pointers table base address and size.
- Window descriptor table base address and size.
- Component descriptor table base address and size.
- Allocatable window base address and maximum size.
- Base program address.

* Sets up the screen window area (this should not vary).
• Changes the component pointers to absolute addresses.
* Allocates space for the dynamic polygon buffer areas.
* Sets the allocatable window area to the space following the component descriptor

table.
* Allocates space for all windows and sets the window pointers.
* Uses the DOWNLOADDATA macro (described in Appendix B) to download the

structure information and all tables to GSP memory via the MPV mailbox and the
Force control register.

Figure 2-6 is a sample of the output generated by linkup.

0
29

BBN Systems and Technologies GT100 RTSW CSCI

file data2ditl.0400 - Compiler output from:
compile_2d data2dita.0400 data_2d itb.0400 > data2ditl.0400

BBN Systems and Technologies Graphics Technology Division
2D Database Compiler Date Thu Nov 17 15:23:31 PST 1988 Version: 0400
Link step starting ...
BASE COMPONENT POINTERS ADDRESS: 0x07804100

size of component pointer table: 0x00000800
BASE WINDOW DESCRIPTOR TABLE ADDRESS: 0x07804900

size of window descriptor table: 0x00000800
BASE COMPONENT DESCRIP TABLE ADDRESS: 0x07805100

size of component descriptor table: 0x000074d0
BASE ALLOCATABLE WINDOW ADDRESS: 0x0780c5e0
maximum size of allocatable area: 0x00373a20

BASE PROGRAM ADDRESS: 0x07b80000
Allocating Dynamic Poly 0x3 at 0x780c5e0
Next Available Address: 0x780ec20
Space used: 0x2640 Space available: 0x3713e0
Allocating Dynamic Poly 0x4 at 0x780ec20
Next Available Address: 0x780ed40
Space used: 0x2760 Space available: 0x3712c0
Window Oxl Allocated at GSP address: 0x780ed50
Next Available Address: 0x78b6d50
Space used: Oxaa760 Space available: 0x2c92b0

Compile finished -- Number of Errors = 0

Figure 2-6. Sample 2-D Compiler Output

Called By: compile_2d

Routines Called: DOWNLOAD_DATA
printf

Parameters: MPVIO_INTERFACE *pmbx

Returns: none

2.2.6 comp.c (setupcompstart)

The setupcomp-start function places component start data into the component descriptor
table. Component start data includes the component number, color, channel number, plane
(foreground, background, or none), window number, static/dynamic parameter, and
rotation/translation values. This function is called by process-Command if the 2-D
command to be processed is COMPSTART.

The function call is setupcompstart(cmd), where cmd is the command
(NCOMPSTART) to be processed.

setup__comp-start does the following:

30

BBN Systems and Technologies GT100 RTSW CSCI

• Calls get-thing to retrieve the data in the message.
* Determines if the component descriptor table has room available.
* Validates the parameters received.
* Places a pointer to the component in the component pointer table.
* Places all of the component data in the component descriptor table.

setup-comp-start provides some defaults if invalid parameters are encountered. The
default color is white, the default plane is background, and the default static/dynamic
parameter is static.

If successful, the function returns rtn val set to 0 (SUCCESS). If an error is detected, the
rtn_val is one of the following:

5 (INVALIDPARAMETERS)
One of the component parameters provided is out of range.

88 (COMPONENTDESCRIPTOR_TBL_FULL)
The table does not have enough room for the new data.

Called By: process_command

Routines Called: geLthing
printf
strcmp

Parameters: int cmd

Returns: rtnval

2.2.7 draw line.c (setupdraw_line)

The setup_draw_line function puts line data into the component descriptor table. This
function is called by process_command if the 2-D command to be processed is
DRAWLINE.

The function call is setup .drawline(cmd), where cmd is the command
(NDRAWLINE) to be processed.

setup-drawline does the following:

" Calls get-thing to retrieve the data in the message.
* Determines if the component descriptor table has room available.
• Places the line's starting point x (column) and y (row), and the ending point x and

y, into the component descriptor table.

If successful, the function returns rtn val set to 0 (SUCCESS). If an error is detected, the
rtn val is one of the following:

31

BBN Systems and Technologies GT100 RTSW CSCI

88 (COMPONENTDES CRIPTORTBLFULL)
The table does not have enough room for the new data.

99 (SYNTAXERROR)
The data in the message is invalid.

Called By: processcommand

Routines Called: geLthing
printf

Parameters: int crmd

Returns: rtnval

2.2.8 get_thing.c

The get-thing function scans input lines for a specified number of data items of a specified
type (data, command, or text). This function is used to retrieve the data in the 2-D setup
messages.

The function call is getthing(type, number), where:

type is the type of item (DATA-TYPE, COMMANDTYPE, or TEXT-TYPE)
number is the number of items to be read

get-thing does the following:

" Discards blank spaces and tab characters.
* Sets a pointer to the data if any of the following is true:

- A digit is found and type is DATATYPE.
- An alpha character is found and type is COMMANDTYPE.
- A quote character is found and type is TEXTTYPE.

" Calls get-msg_2d to read the next line if the end of line or comment is found.

This process continues until an error occurs or the specified number of items is read. The
rtn val returned by the function is 0 (SUCCESS) if the items were read successfully, or 99
(S'YNTAXERROR) if unexpected data was found.

Called By: processcommand
setup-biLblt
setup-comp-start
setup-define-string
setupdefinewindow
setupdraw_line
setup-oval-rectangle
setup-poly
setup-text 2

32

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: getmsg2d
isalpha
isdigit
printf

Parameters: int type

int number

Returns: rtnval

2.2.9 init stuff.c

The initstuff function is called at the beginning of the 2-D compilation process to initialize
the following global data:

" Window descriptor table.
" Allocation list.
" Component pointer table.
" Component descriptor table.

The function call is initstuffO.

Called By: compile_2d

Routines Called: none

Parameters: none

Returns: none

2.2.10 oval rect.c (setupovalrectangle)

The setup__oval-rectangle function places oval and rectangle data into the component
descriptor table. This function is called by processscommand if the 2-D command to be
processed is DRAW_OVAL, FILL_OVAL, DRAWRECT, or FILL_RECT?.

The function call is setupovalrectangle(cmd), where cmd is the command
(NDRAWOVAL, NFILLOVAL, NDRAWRECT, or N._FILI.,_RECT) to be
processed.

setup-ovaljrectangle does the following:

- Calls get__thing to retrieve the data in the message.
* Determines if the component descriptor table has room available.
* Places the object's width and height into the component descriptor table.

33

BBN Systems and Technologies GT100 RTSW CSCI

Places the object's x (column of the upper left comer) and y (row of the upper left
corner) coordinates into the component descriptor table.

If successful, the function returns rtn val set to 0 (SUCCESS). If an error is detected, the
rtn val is one of the following:

88 (COMPONENTDESCRIPTORTB L_FULL)
The table does not have enough room for the new data.

99 (SYNTAXERROR)
The data could not be processed.

Called By: processcommand

Routines Called: getcthing
printf

Parameters: int cmd

Returns: rtn_val

2.2.11 poly.c (setup_poly)

The setup-poly function is responsible for updating polygon data in the component
descriptor table. This function is called by process-command if the 2-D command to be
processed is POLYLINE or FILLPOLY.

The function call is setuppoly(cmd), where cmd is the command (N_POLYLINE or
N_FILLPOLY) to be processed.

setup-poly does the following:

" Calls get-thing to retrieve the data in the message.
* Validates the parameters.
* Determines if the component descriptor table has room available.
" Places the polygon's line and point data into the component descriptor table.

If successful, the function returns rtn val set to 0 (SUCCESS). If an error is detected, the
rtn_val is one of the following:

88 (COMPONENTDES CRIPTORTBL_FULL)
The table does not have enough room for the new data.

99 (SYNTAXERROR)
The data in the message could not be processed.

Called By: process_command

Routines Called: get-thing

34

BBN Systems and Technologies GT100 RTSW CSCI

printf

Parameters: int cmd

Returns: rm_val

2.2.12 proccmd.c (processcommand)

The processcommand function retrieves a command string using getthing, then calls the

appropriate setup-* routine to process it.

The function call is process-commando. process-command does the following:

" Calls get thing to retrieve a command string.
" Compares the string with each possible command to determine which it is.
" When a match is found, calls the applicable setup routine.
* Repeats the loop until all commands in the input file have been retrieved.

The commands processed by process-command, and the setup function it calls for each,
are listed below.

Command Function Called(cmd)

ABITBLT or BBIT BLT setupbit blt(NBITBLT)

ACOMPSTART or B COMP START setup-comp-start(N COMP START)

A_DEFINESTRING or BDEFINESTRING setup defmestring(N,_DEFINESTRING)

ADEFINEWINDOW or BDEFINEWINDOW setup-defme window(NDEFINE WINDOW)

ADRAW LINE or BDRAW LINE setup_drawline(NDRAW_LINE)

ADRAWOVAL or B DRAW OVAL setupoval rectangle(NDRAWOVAL)

ADRAW RECT or B DRAW RECT setupoval_rectangle(NDRAW RECT)

AENDCOMP or BENDCOMP none

AFILLOVAL or BFILLOVAL setupoval_rectangle(N_FLL._OVAL)

AFILLPOLY or BFILLPOLY setuppoly(NFILLPOLY)

AFILLRECT or BFILL RECT seup-oval-rectangle(NILLRECT)

APOLYLINE or B POLYLINE setup_.poly(NPOLYLINE)

A_TEXT or B TEXT setup text(NTEXT)

The rtn val returned by process-command is the value returned from the last setup-*
function called. If no errors are detected, therefore, the rtn val is 0 (SUCCESS).

If an error is detected by any called procedure, processcommand increments an error
counter. If the error count exceeds MAXCOMPILEERRORS (defined in defines_2d.h),
processcommand returns a rtn val of 96 (TOOMANYERRORS). This causes
compile_2d to terminate the cormpile.

35

BBN Systems and Technologies GT100 RTSW CSCI

Called By: compile_2d

Routines Called: geLthing
printf
setup__bit -blt
setupscompstart
setupjdefine-string
setupdefinewindow
setupdraw_line
setupoval_rectangle
setup-poly
setup text
strcmp

Parameters: none

Returns: rtnval

2.2.13 string.c (setup_define_string)

The setup-define string function places initial string data into the component descriptor
table. This function is called by processscommand if the 2-D command to be processed is
DEFINESTRING.

The function call is setupdefine string(cmd), where cmd is the command
(NDEFINESTRING) to be processed.

setupdef'mestring does the following:

" Verifies that component start data has been entered into the component descriptor
table.

* Calls get-thing to retrieve the data in the message.
" Determines whether the component descriptor table has room available.
" Places the string's font, x coordinate, and y coordinate into the component

descriptor table.
" If the string's length is odd, adds 1 to make it even.
" Makes sure the string is shorter than the allowed maximum.
" Puts the string into the component descriptor table.

If successful, the function returns rtn val set to 0 (SUCCESS). If an error is detected, the
rtn val is one of the following:

88 (COMPONENTDESCRIFORTBLFULL)
The table does not have enough room for the new data.

99 (SYNTAXERROR)
The string exceeds the maximum length allowed, the string contains a non-
ASCII character, or the data in the message cannot be processed.

36

BBN Systems and Technologies GT100 RTSW CSCI

Called By: processcommand

Routines Called: get-thing
printf
strlen

Parameters: int cmd

Returns: rtnval

2.2.14 text.c (setuptext)

The setupjtext function is responsible for placing fixed-length text data into the component
descriptor table. This function is called by process-command if the 2-D command to be
processed is TEXT.

The function call is setuptext(cmd), where cmd is the command (N_TEXT) to be
processed.

setup-jext does the following:

* Calls getthing to retrieve the data in the message.
• Verifies that the component descriptor table has room available.
* Places the text's font, x coordinate (lower left column), and y coordinate (lower left

row) into the component descriptor table.
• If the text string's length is odd, adds 1 to make it even.
• Places the text string into the component descriptor table.

If successful, the function returns rtn val set to 0 (SUCCESS). If an error is detected, the
rtnval is one of the following:

88 (COMPONENTDESCRIPTORTBLFULL)
The table does not have enough room for the new data.

99 (SYNTAXERROR)
The text string contains a non-ASCII character, or the data in the message
cannot be processed.

Called By: processcommand

Routines Called: get-thing
printf
strlen

Parameters: int cmd

Returns: rtnval

37

BBN Systems and Technologies GT100 RTSW CSCI

2.2.15 u comp_2d.c (compile_2d)

The compile_2d function in the u..comp_2d.c CSU is the offline equivalent of the
compile_2d function in the cig-comp_2d.c CSU. This version of compile_2d can be run
offline to compile an ASCII 2-D database file that was created manually.

The function call is compile_2d(. compile_2d does the following:

* Calls initstuff to initialize various compiler variables.
* Calls getjmsg_2d to get the first line of the input file.
" Calls process-command to process each command from the input file.

(processcommand calls gething which in turn calls getjmsg.2d to get each
message from the file.)

* Checks for errors from processcommand.
* Calls linkup to set up the window pointers and create the downloadable binary file.
* Closes the input and output files.
• Reports the number of errors detected during the compile.

Called By: main

Routines Called: close
fclose
getmsg_2d (offline version)
mitstuff
linkup (offline version)
printf
processcommand

Parameters: none

Returns: none

2.2.16 ugetm_2d.c (getmsg_2d)

The get-msg_2d function in the u.getm_2d.c CSU is the offline equivalent of the
geLmsg_2d function in the ciggetm_2d.c CSU. This function gets the next 2-D message
from the ASCII input file created offline, and sets a pointer to it for the 2-D compiler.

The function call is getmsg_2d0. The msg code returned is 97 (ENDOFFILE) if the
input file contains no more lines, or 0 (SUCCESS) if a line is read successfully.

Called By: compile_2d (offline version)
get-thing

Routines Called: fgets,

38

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: msgcode

2.2.17 u link_2d.c (linkup)

The linkup function in the ulink_2d.c CSU is the offline equivalent of the linkup function
in the ciglink_2d.c CSU. This function sets up window pointers and allocates available
MPV memory for windows. It also saves all of the 2-D data to a binary file that can be
copied to the CIG and downloaded to the MPV board at a later time.

The function call is linkupo. linkup does the following:

" Verifies that the number of component start entries equals the number of component
end entries.

" Calculates base addresses and table sizes for all information.
" Outputs the following data to stdout (see Figure 2-6 for a sample output):

- Component pointers table base address and size.
- Window descriptor table base address and size.
- Component descriptor table base address and size.
- Allocatable window base address and maximum size.
- Base program address.

• Sets up the screen window area (this should not vary).
• Changes the component pointers to absolute addresses.
• Allocates space for the dynamic polygon buffer areas.
• Sets the allocatable window area to the space following the component descriptor

table.
• Allocates space for all windows and sets the window pointers.
" Writes all data to the 2-D binary database file: headers, window structures,

component pointer table, window descriptor table, and component descriptor table.

Called By: compile_2d (offline version)

Routines Called: printf
write

Parameters: none

Returns: none

2.2.18 u main2d.c (main)

The main function is the driver for the 2-D compiler when it is run offline to create overlays
*from a manually built ASCII file.

39

BBN Systems and Technologies GTI00 RTSW CSCI

main is invoked by the user. The user may specify the name of the ASCII database file
(input) and the name of the binary database file (output) as arguments on the command line.
main does the following:

• Prompts for the input and output file names if not entered on the command line.
• Opens the specified input file.
" Creates the specified output file.
" Calls compile__2d.

Called By: none (invoked by user)

Routines Called: compile_2d (offline version)
creat
fopen
printf
scanf
strcpy

Parameters: int argc

char *argv[]

Returns: none

2.2.19 window.c (setupdefinewindow)

The setupdefinewindow function places window data into the window descriptor table.
This function is called by process_command if the 2-D command to be processed is
DEFINE_WINDOW.

The function call is setupdefinewindow(cmd), where cmd is the command
(NDEFINEWINDOW) to be processed.

setup_definewindow does the following:

" Calls getthing to retrieve the data in the message.
" Verifies that the parameters are valid.
* Computes the window's pitch and conversion factor.
* Places all window parameters (number of horizontal pixels, number of vertical

pixels, pitch, and GSP conversion factor) into the window array structure.
" Places the window number into the allocation list so linkup can allocate memory for

the window.

Pitch and conversion factors are computed as shown below. "dx" is the number of
horizontal pixels.

40

BBN Systems and Technologies GT100 RTSW CSCI

dx range pitch count conversion factor
(hex) (hex) (dec) (dec)

4001-8000 8000 15 16

2001-4000 4000 14 17

1001-2000 2000 13 18

801-1000 1000 12 19

401-800 800 11 20

201-400 400 10 21

101-200 200 9 22

80-100 100 8 23

41-80 80 7 24

21-40 40 6 25

11-20 20 5 26

8-10 10 4 27

4-8 8 3 28

2-4 4 2 29
1-2 2 1 30

1-1 1 0 31

If successful, the function returns a rtn_val of 0 (SUCCESS). If an error occurs, the
rtnval is one of the following:

1 (INVALID_WINDOWNUMBER) The window number is out of range.
2 (INVALIDWINDOW_DX) The window's width is out of range.
3 (INVALID_WINDOWDY) The window's height is out of range.
4 (WINDOW_PITCH_TOO_LARGE) The window's pitch is out of range.
99 (SYNTAXERROR) The data in the message cannot be processed.

Called By: processcommand

Routines Called: get-thing
printf

Parameters: int cmd

Returns: rtn_val

41

BBN Systems and Technologies GT100 RTSW CSCI

2.3 Backend Manager (/cig/libsrc/libbackend)

The Backend Manager CSC is responsible for configuring and managing the backend of a
GT100 CIG. It gives the real-time software a hardware-independent interface to the boards
in the backend.

The major components of the backend include:

• AAM (Active Area Memory)
• ESIFA (Enhanced Subsystem Interface Adapter)
* EVC (Ethernet VME Controller)
• MPV (Micro Processor Video)
• PPM (Pixel Processor Memory)

Commands from the real-time software to the subsystem boards are sent to the backend
manager. Many of these commands are the result of messages received from the
Simulation Host. The backend manager then calls the appropriate functions to interface
with each board.

The processes managed by the backend manager include the following:

* Initializing active area memory.
• Loading new branch values into active area memory.
• Loading new system view flags into active area memory.
* Changing viewport modifiers (thermal white hot, thermal black hot, etc.)
• Loading new color lookup tables.
* Processing laser range requests.
* Turning video channels off and on.
* Downloading files to the PPM.

During a simulation, requests for the MPV and the ESIFA are retained in queues. At the
end of each frame, the backend manager triggers the subsystem boards to process the
messages in their respective queues.

Each backend in the CIG has its own backend manager. The backend objects are defined
in the be_table array. Each element in be_table[] specifies the following:

* The backend id.
* A flag indicating whether the backend is a T or a TX.

The starting address of the backend's active area memory.
• An array of laser-request flags, one for each channel. These flags indicate whether

laser depth processing has been requested for the channel.

At the current time, one CIG can contain up to two backends.

Figure 2-7 identifies the CSUs in the Backend Manager CSC. The functions performed by
these CSUs are described in this section.

42

BBN Systems and Technologies GT100 RTSW CSCI

Backend Manager

aainit.c backendpaths.c
backendbranch.c backendthermal.c
backendcolor.c backendvideo.c
backendlaser.c dlman.c
backendman.c ppm obj.c

Figure 2-7. Backend Manager CSUs

2.3.1 aa init.c

The functions in the aainiLc CSU are used to initialize and clear active area memory.
These functions are:

• activeareainit
* clear
* extendedramavailable

2.3.1.1 active area init

The activeareainit function initializes active area memory. Each backend has its own
AAM. This function is called at start-up and when a simulation is ended.

The function call is active area init(aam-addr), where aam addr is the starting
address of active area memory.

activeareainit does the following:

* Calls buserror to verify that the specified active area memory address exists.
* Calls clear to zero out the system area of memory.
* If this is AAM1 (backend 0), calls dLsetup to initialize the dynamic state tables and

the multiple-effects list.
* If this is not AAM 1, calls blcopy to block copy AAM 1 to the specified AAM.
* Calls clear to zero out the extended load module region.

The function returns 0 if successful. It returns EOF if the specified address does not exist.

43

BBN Systems and Technologies GT100 RTSW CSCI

Called By: backendreset
backendsetup

Routines Called: blcopy
bus_error
clear
dl-setup

Parameters: AAM *aamaddr

Returns: 0
EOF

2.3.1.2 clear

The clear function clears (zeroes out) a specified area and amount of memory. This
function is used to clear the system portion of active area memory and the extended load
module region at initialization time.

The function call is clear(ptr, size), where:

ptr is a pointer to the beginning of the area to be cleared
size is the amount of memory (in bytes) to be cleared

Called By: activeareainit

Routines Called: none

Parameters: UNS_4 *ptr
UNS_4 size

Returns: none

2.3.1.3 extended ram available

The extendedramavailable function determines how many megabytes of additional RAM
exist, starting at a specified location. This function is used to determine whether the terrain
database will fit into available memory.

The function call is extendedramavailable(start-addr), where startaddr is the
starting memory address.

extended_ram_available adds 1 megabyte to the starting address and calls buserror to see
if that address exists. It repeats this process until it has checked 6 megabytes or an address

44

BBN Systems and Technologies GTOO RTSW CSCI

has been found to be non-existent. It then returns the amount of additional memory found
(the last valid address checked minus the starting address).

Called By: open-dbase

Routines Called: bus__error

Parameters: UNS_1 *startaddr

Returns: i - start_addr

2.3.2 backend-branch.c (backend_set branch)

The backend setbranch function loads new branch values into active area memory. This
function is called when the Simulation Host sends a MSGVIEW_FLAGS message to
change the branch values used to select conditional traversal paths in the configuration tree.

The function call is backendset branch(branchp, size, db), where:

branchp is a pointer to the new view flags/branch values array
size is the size of the view flags/branch values array
db is the current double-buffer base pointer

backendsetbranch sets a pointer in active area memory, then copies the new view
flags/branch values into active area memory.

Called By: msg._view-flags

Routines Called: bcopy

Parameters: UNS_4 *branchp
UNS_2 size
UNS_4 db

Returns: . none

2.3.3 backend-color.c (backend set color)

The backend set color function is responsible for controlling the color mapping on a
specified backend. The color map is defined via the downloaded color configuration file.
This function is called when the Simulation Host sends a MSG_SUBSYSMODE message
to change lookup tables.

45

BBN Systems and Technologies GT100 RTSW CSCI

The function call is backend set color (backend, channel, lut3d, lut2d,
skyand, skyor, laser anic, liser or, dtpthword), where:

backend is the subsystem to be affected
channel is the channel to be affected
lut3d is the new three-dimensional color lookup table (for TX backends only)
lut2d is the new two-dimensional color lookup table (for TX backends only)
sky and is the and sky fade value (for T backends only)
skyor is the or_sky fade value (for T backends only)
laser and is the andlaser fade value (for T backends only)
laser-or is or_laser fade value (for T backends only)
dtprh-word is the DTP thermal switching word

backendsetcolor does the following:

* Calls backendgetLobjectLaddr to get a pointer to the specified backend.
* For a TX backend, calls rnpvideo-set_lut to set the lut3d (3-D lookup table) and

lut2d (2-D lookup table).
* Calls esifa_setspecial to set the bits for the ESIFA layouts (skyand, sky-or,

laser.and, laser-or).
* Sets the DTP thermal switching word for the entire subsystem based on the value in

COLOR.CFG.

The function returns 0 if successful. It returns EOF if the address returned for the specified
backend is NULL.

Called By: msg-subsysmode

Routines Called: backend-get-object-addr
esifaset-special
mpvideo set lut
printf

Parameters: UNS_4 backend
UNS_2 channel
UNS_2 lut3d
UNS_2 lut2d
UNS_2 sky_and
UNS_2 sky-or
UNS_2 laserand
UNS_2 laseror
UNS_4 dtp th-word

Returns: 0
EOF

2.3.4 backend laser.c

The functions in backendlaser.c handle laser range requests. These functions are:

46

BBN Systems and Technologies GT100 RTSW CSCI

- backendlaser..request_range
0 backendresponse

For TX backends,the Simulation Host can specify a pixel location. Laser range requests
are sent to the MPV via the MPV Interface routines and the Force board.

For T backends, a hard-wired pixel location is used. Laser range requests are sent to and
processed by the ESIFA.

2.3.4.1 backend laser requestrange

The backendlaser request-range function is used to enable laser range calculations (pixel
depth data for a specific screen position). If laser range processing is enabled, each frame
the CIG returns the distance from the viewpoint to the object within the requested pixel.
For T backends, which cannot select pixel positions, a hard-wired pixel is used to
determine range. This function is called when the Simulation Host sends a
MSGLASERREQUESTRANGE message.

The function call is backendlaser requestrange(backend, channel, i, j, id),
where:

backend is the subsystem id
channel is the channel number within the specified subsystem
i is the horizontal position of the pixel for which the range is to be returned
j is the vertical position of the pixel for which the range is to be returned
id is an identifier to be attached to the laser return message

backendlaser-requestjange does the following:

* Calls backend-get-objectaddr to get a pointer to the specified backend.
* For a TX backend:

- Calls mpvideoJaserrequest_range to set the pixel position and id.
- Sets the laser_-request flag for the specified channel to TRUE.

For a T backend:
- Sets the laserrequest flag for every channel in the backend to FALSE.
- Calls esifa_laser_requestjange to set up the ESIFA for laser range

processing.
- Sets the laser._request flag for the specified channel to TRUE.

The function returns 0 if successful. It returns EOF if the address returned for the specified
backend is NULL, or if the channel cannot be found.

Called By: msgjlaserrequest-range

Routines Called: backend-get objectaddr

esifalaser__requestrange
mpvideo_laser.request_range
printf

47

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: UNS_4 backend
UNS_4 channel
INT_2 i
INT_2 j
INT_2 id

Returns: 0
EOF

2.3.4.2 backendresponse

The backend_response function returns a previously requested laser range from a specified
backend channel. This function is called at the end of every frame.

The function call is backendresponse(backend, Im bik), where:

backend is the backend for which laser range information was requested
lm blk is the number of load modules per side of a load module block; this value is

used to scale the range if load module blocking is enabled

backendresponse does the following:

* Calls backend.geLobjectaddr to get a pointer to the specified backend.
• For a TX backend:

- Calls mpvideojresponse to get the laser range data; mpvideojresponse then
calls msgjlaser-retum to generate the return message for the Simulation
Host.

• For each channel on a T backend:
- If the laserjrequest flag is enabled for the channel, calls esifalaserreturn

to get the laser range value.
- Calls msgjlaserjreturn to generate the message to be returned to the

Simulation Host.

The function returns 0 if successful. It returns EOF if the address returned for the specified
backend is NULL.

Called By: msg-end

Routines Called: backend-get~object addr
esifalaser_return
mpvideo_response
msgjlaser-return

Parameters: UNS_4 backend
INT_4 lm_blk

Returns: 0

EOF

48

BBN Systems and Technologies GT100 RTSW CSCI

2.3.5 backend man.c

The functions in the backendman.c CSU form the backend manager library. These
functions are the following:

* backendsetup
* backend-reset
• backendsiminit
• backendsend-req
* backendget-object-addr
• backendclearlaser-requests

2.3.5.1 backendsetup

The backend setup function allocates memory for an instance of the backend object, then
calls various functions to configure the backend.

The function call is backend setup(backend, aamaddr, mpvio boot,
mpviombx, esifa), where:

backend is the id of the backend to be initialized
aam addr is the starting VMEbus address of the backend's active area memory
mpvio boot is the base VMEbus address of the MPV 1/0 board (TX backends only)
mpvio mbx is the VMEbus address of the MPV I/O interface mailbox (TX backends

only)
esifa is the ESIFA device name

backendsetup does the following:

• Calls activeareaint to initialize active area memory.
• Allocates memory for the new backend object and sets a pointer to it.
• Calls backendclearlaser__requests to clear any laser requests for the backend.
• Calls esifasetup to establish a communications path with the ESIFA board.
• Calls ppm.setp to initialize the PPM object for each PPM in the backend.
• Calls mpvideo setup to initialize the MPV object; if an error is returned, sets the

backend type to T.
• Calls loadesifa to download the textures.lst file to the ESIFA board.

The function returns the status returned from esifasetup OR'd with the status returned
from mpvideo-setup. It returns EOF if the aam-addr does not exist.

Called By: initialize

Routines Called: active_areainit
backendclearlaserrequests
esifa-setup
free
loadesifa
malloc

49

BBN Systems and Technologies GT1OO RTSW CSCI

mpvideo-setup
ppm-setup
printf

Parameters: UNS_4 backend
AAM *aam_addr
UNS_4 mpvioboot
UNS_4 mpviombx
UNSI *esifa

Returns: EOF
(esifa_error I mpverror)

2.3.5.2 backend reset

The backendreset function resets the backend(s) to their initial states. This function is
called when the Simulation Host sends a CIG Control-Stop message.

The function call is backendresetO. For each backend in the CIG, backendreset does
the following:

* For a TX backend:
- Calls mpvideo stop to halt the MPV's 2-D processor task.
- Calls mpvideoset_video to turn the video off.

" For a T backend:
- Calls esifa set video to turn each channel's video off.
- Calls esifasendreq to perform any requested I/O with the ESIFA board.

* Calls backendclearlaserjrequests to clear any pending laser range requests for the
backend.

* Calls activearea_init to clear the backend's active area memory.

Called By: msgcigctl

Routines Called: activeareainit
backendclearlaserrequests
esifasend_req
esifa-set video
mpvideo set video
mpvideo-stop

Parameters: none

Returns: none

50

BBN Systems and Technologies GT1OO RTSW CSCI

2.3.5.3 backend sim init

The backend_siminit funcion prepares the backend to run a simulation. This function is
called before beginning a simulation. It notifies other subsystem objects that the system is
about to enter the simulation state.

The function call is backend sim_initO. backendsiminit does the following:

* Calls mpvideo-siminit to prepare the MPV for a simulation.
• Calls esifasiminit to prepare the ESIFA for a simulation.

Called By: initsimulation

Routines Called: esifasiminit

mpvideo-siminit

Parameters: none

Returns: none

O 2.3.5.4 backendsend_req

The backend_send_req function sends queued messages to the backend. This function is
called at the end of each frame. It initiates the processing of all messages that accumulated
during the previous frame.

The function call is backend send_reqo. backend-send-req does the following:

* Calls backendupdate-view-paths to update the system view flags in active area
memory.

" Calls mpvideo.send-req to trigger processing of all queued MPV requests.
* Calls esifasendreq to trigger processing of all queued ESIFA requests.

Called By: msgend

Routines Called: backend update view-paths
esifasendreq
mpvideo-send-req

Parameters: none

Returns: none

51

BBN Systems and Technologies GT1OO RTSW CSCI

2.3.5.5 backend_getobjectaddr

The backend.get-object_addr function returns a pointer to a specified backend object. The
function returns NULL if the backend is not in the betable array.

The function call is backend_get object addr(backend), where backend is the
backend id.

Called By: backendlaserjrequest-range
backendresponse
backendset_color
backendsetthermal
backend set video
backendupdateview-paths
be-query-numpaths
cal

Routines Called: none

Parameters: UNS_4 backend

Returns: be-table[n]
NULL

2.3.5.6 backendclear_laser_requests

The backendclearlaserrequests function clears any pending laser range requests for a
backend by setting the laserjequest flag for every channel to FALSE. This function is
called whenever the backend is initialized or reset.

The function call is backend clearlaser requests(pbe), where pbe is a pointer to the
backend object.

Called By: backendreset

backendsetup

Routines Called: none

Parameters: BACKENDOBJ *pbe

Returns: none

52

BBN Systems and Technologies GT100 RTSW CSCI

2.3.6 backendpaths.c

The functions in backend-paths.c are used to load changes to the system view flags into
active area memory. These functions are:

* backend-seLpaths
* backend-update-view-paths

2.3.6.1 backend_set_paths

The backend-set-paths function copies new system view flags to a temporary location.
This function is called when the Simulation Host sends a MSGVIEWFLAGS message to
update the system view flags (on/off, EO, FLIR, DTV, etc.). At the end of the frame,
backend-update-view-paths uses the data set by backend_set_paths to update the system
view flags in active area memory.

The function call is backendsetpaths(flags), where flags is the new system view
flags array.

Called By: msg.view-flags

Routines Called: none

Parameters: UNS_4 flags

Returns: none

2.3.6.2 backend_updateviewpaths

The backend-updateview-paths function copies the new system view flags from the
temporary location used by backend-set-paths into active area memory. This function is
called at the end of each frame.

The function call is backend updateview_pathso.

Called By: backendsend-req

Routines Called: AAM2_ADDR
backend-get-objectaddr

Parameters: none

53

BBN Systems and Technologies GT1OO RTSW CSCI

Returns: none

2.3.7 backend thermal.c (backend setthermal)

The backend set thermal function handles backend thermal changes. This function is
called when the Simulation Host sends a MSGVIEWPORT_UPDATE message to change
viewport modifier information (thermal white hot, thermal black hot, etc.).

The function call is backendsetthermal(backend, channel, thermal_flag,
whitehotflag, dtp), where:

backend is the id of the backend of the viewport to be changed
channel is the id of the channel to be changed
thermalflag is 0 (alternate mode is disabled) or 1 (alternate mode is enabled)
white hot~flag is 0 (modifier to alternate is off) or 1 (modifier to alternate is on)
dtp is the DTP mode (alternate, modifier, or normal)

backend set thermal does the following:

* Calls backend-get-objectaddr to get a pointer to the specified backend.
* For a TX backend:

- Calls mpvideo-num-paths to determine the number of graphics paths.
• For a T backend:

- Sets the number of graphics paths to 1.
• For each path:

- Calls esifa set thermal to put the changes into effect.
- Sets the DTP channel thermal value.

The function returns 0 if successful. It returns EOF if the backend object cannot be found.

Called By: msgviewport-update

Routines Called: AAM2_ADDR
backend_get._object-addr
esifa set thermal
mpvideo.num-paths
printf

Parameters: UNS_4 backend
UNS_4 channel
UNS_4 thermaLflag
UNS_4 white_hotflag
UNS_4 dtp

Returns: EOF

54

BBN Systems and Technologies GTIOO RTSW CSCI

2.3.8 backend-video.c (backendset_video)

The backend_set_video function turns a specified channel on or off. This function is called
when the Simulation Host sends a MSG_VIEWPORT_UPDATE message to change
viewport modifier information (thermal white hot, thermal black hot, etc.).

The function call is backendset video(backend, channel, flag), where:

backend is the backend/subsystem id (0 or 1)
channel is the channel id (for subsystem 1, this is the viewport id; for subsystem 0, this

is the viewport id minus 8)
flag is 0 (off) or 1 (on)

backendset_video does the following:

• Calls backend-geLobjectaddr to get a pointer to the specified backend.
* For a TX backend:

- Calls mpvideo-setvideo to turn the specified channel on or off.
- Calls esifa set video to turn the specified channel on or off.

" For a T backend:
- Calls esifa set video to turn the specified channel on or off.

The function returns 0 if successful. It returns EOF if the backend cannot be found.

Called By: msgviewport-update

Routines Called: backend-getobjectaddr

esifa set video
mpvideo-setvideo
printf

Parameters: UNS_4 backend
UNS_4 channel
UNS_4 flag

Returns: 0
EOF

2.3.9 dlman.c (dl_setup)

The dlsetup function is responsible for initializing the static and dynamic state tables and

the multiple-frame effects linked list. This function is called during CIG configuration.

The function call is dll_setupo. dl_setup does the following:

* Initializes tanks and other vehicles in the dynamic state table.
• Initializes tanks and other vehicles in the static state table.

55

BBN Systems and Technologies GTIOO RTSW CSCI

Initializes the multiple-frame effects linked list. (This structure is used when
showing effects over multiple frames.)

Called By: activeareainit

Routines Called: IN1TMTX

Parameters: none

Returns: none

2.3.10 ppmobj.c

The functions in ppm-obj.c are used to download files to the PPM (Pixel Processor
Memory) board. These functions are:

• ppm-setup
* ppm-init
• ppm-getLdata
• ppmload
* gosppmquery

gosppm-query.menu

The data for each PPM object is maintained in the ppm-data[] array. This array is indexed
by backend id and PPM index. Each element in the array specifies the PPM's
configuration file name, display modes (A and B), display offsets (A and B), pixel location
(i, j), board address, screen position, calibration pixel address, and screen size.

2.3.10.1 ppmsetup

The ppm-setup function initializes the ppmdata array and creates a PPM object for each
PPM in each backend. This function is called when the backend is initialized. It is also
called by the other ppm-obj functions if they detect that a PPM object has not yet been
initialized.

The function call is ppm setupo. For each PPM in each backend, the function does the
following:

* Initializes the file name to "UNKNOWN".
* Initializes the A and B display modes to 0.
* Initializes the A and B display offsets (i, j) to 16,48.
* Initializes the pixel location (i,j) to 100,100.
* Initializes the board address based on the PPM index.
* Initializes the screen position.
* Initializes the calibration pixel address.
* Initializes the screen size.
* Sets ppm-objjinitialized to TRUE.

56

BBN Systems and Technologies GT1OO RTSW CSCI

Called By: backendsetup
gosppm-query
ppm-get-data
ppmiit
ppmload

Routines Called: none

Parameters: none

Returns: none

2.3.10.2 ppminit

The ppmjinit function updates the PPM object's structure with the information it receives
from esifaload. This function is called when the ESIFA configuration file is downloaded
to the ESIFA.

The function call is ppm init(backend, ppm_bit_mask, ppm fn,
boardaddress, data_P', where:

backend is the backend id
ppm bit mask is BRDO (PPM index 0), BRDI (PPM index 1), BRD2 (PPM index

2), or BRD3 (PPM index 3)
ppm_fn is the name of the PPM configuration file
board-address is the address of the PPM
data P is a pointer to additional data to be loaded into the PPM object; this data is either

display mode, screen position, screen size, pixel address, or pixel state, based on
the PPM mode

The function does the following:

* If the PPM object has not yet been initialized, calls ppmsetup.
" Determines the PPM's index based on the specified ppm-bit mask.
" Sets the PPM object's file name to the name specified.
" Sets the PPM object's board address to the address specified.
* Determines the PPM mode based on the board address and the

PPMMODEMASK (defined in ppm.h).
* Uses the data passed in *dataP to set the appropriate variable(s) in the PPM object,

based on the PPM mode.

Called By: esifaload

Routines Called: ppm-setup
printf

57

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: UNS_4 backend
INT_4 ppm_bit mask
char *ppm_fn
UNS_4 boardaddress
UNS_2 *dataP

Returns: none

2.3.10.3 ppmgetdata

The ppm.getdata function returns a pointer to a specified PPM object. This function is
called by the Message Processing functions that handle PPM messages from the Simulation
Host. It is also called if the Gossip user selects the i ("PPM info") option from the PPM
Query menu.

The function call is ppmgetdata(backend, ppmindex), where:

backend is the backend id
ppmindex is the PPM index (within the specified backend)

ppmget-data calls pprnsetup if it detects that the PPM object has not been initialized. It
then returns a pointer to the PPM object's structure.

Called By: gosppmquery
msg.ppm-pixelstate
msg-ppmdisplay-mode
msg.ppm-display-offset
msgpprnpixellocation

Routines Called: ppm-setup

Parameters: UNS_4 backend
UNS_4 ppmindex

Returns: &ppmdata[backend] [ppm index]

2.3.10.4 ppm load

The ppmjload function is used to download data to the PPM via the ESIFA board. This
function is called if the Gossip user selects the p ("ppm load") option from the PPM Query
menu.

The function call is ppmload(backend, ppmaddress, ppmdata), where:

backend is the backend id
ppmaddress is the PPM board's address
ppm data is the data to be loaded into the PPM

58

BBN Systems and Technologies GTI00 RTSW CSCI

* ppmload does the following:

" If the PPM object has not been initialized, calls ppmsetup.
* Gets a pointer to the ESIFA object for the specified backend.
" Calls esifa_.ConfigData to get a pointer to the ESIFA's configuration data.
* Calls esifa_write to load the specified data into ESIFA RAM.
* Calls esifadownload to download the data from ESIFA RAM to the PPM board.

The function returns EOF if the ESIFA object cannot be found or is not initialized.

Called By: gos,.ppm-query

Routines Called: esifaConfigData
esifadownload
esifa-get-object_.addr
esifawrite
ppm-setup
printf

Parameters: UNS_4 backend
UNS_4 ppmaddress
UNS_2 ppmdata

Returns: EOF

2.3.10.5 gosppmquery

The gos-ppm query function provides a user interface to display and modify PPM data.
This function is called if the Gossip user selects the P ("PPM query") option from the
Gossip main menu.

The function call is gosppmqueryO. gos-ppm-query does the following:

* If the PPM object is not initialized, calls ppm-setup.
• Calls gos-ppm.queryjnenu to display the PPM Query menu.
• Uses unbf.getchar to get the keystroke entered by the user.
* Processes the user's request (see table below).
• Displays the "ppm-query>" prompt.

The following table lists the options supported by gos.ppm-query, and shows the steps it
performs in response to each user selection.

59

BBN Systems and Technologies GT1OO RTSW CSCI

PPM Query Menu Option Processing by gosppmquery

? print this menu Calls gos-ppm-query-menu.

B blank display Clears screen.

b change backend Prompts user for new backend id; sets internal variable.

c change ppm Prompts user for new ppm index; sets internal variable.

d Download parameters Prompts user for ESIFA RAM address, byte count, and
ppm address; calls esifa download.

e esifa info Calls esifa ConfigData; displays data returned.

i PPM info Calls ppm_.geLdata; displays data returned.

p ppm load Prompts user for ppm address and ppm data; calls
ppm load.

r read ESIFA ram Prompts user for ESIFA address and number of bytes;
calls esifa~jead; displays data returned.

w write ESIFA ram Prompts user for ESIFA address and number of bytes;
calls esifa write.

x exit/quit Exits.

Called By: gossip ick

Routines Called: blank
cupesifaConfigData

esifadownload
esifa read
esifawrite
gosppm-querymenu
ppm__getLdata
ppm load
ppmsetup
printf
scanf
unbf.getchar

Parameters: none

Returns: none

2.3.10.6 gosppmquerymenu

The gos-ppmquery-menu function displays the PPM Query menu. This function is
called by gos ppm-query when it is first invoked or if the user later enters ? (help) on the
command line.

The function call is gosppmquery menuo. The function does the following:

60

BBN Systems and Technologies GTIOO RTSW CSCI

* Clears the screen.
* Displays the PPM Query menu options.
* Displays the "ppmquery>" prompt.

For a list of the options displayed on the menu, see gos-ppmquery.

Called By: gos ppm-query

Routines Called: blank
cup
printf

Parameters: none

Returns: none

0

61

BBN Systems and Technologies GT100 RTSW CSCI

2.4 Ballistics Processing (/cig/libsrc/libball)

The Ballistics Processing CSC is the part of the GT Host Software that is responsible for
the following:

" Detecting intersections with the terrain database and the currently viewable models
(static and dynamic vehicles).

• Processing round data and returning hit or miss information to the real-time
software.

• Processing trajectory chord data and returning hit or miss information to the real-
time software.

" Providing terrain feedback data for points on specified vehicles in active area
memory. The data returned identifies the database polygon or model located at the
vehicle's current position.

In order to compute intersections with the terrain and simulation models, the Ballistics
Processing CSC acquires and maintains polygon and bounding volume information from
the terrain database, as well as static vehicle information from the real-time software.

Ballistics Processing may be run on a master board or a slave board in the CIG, as follows:

Master
If the CIG has only one MVME147 board, it is the master that is used to run all of
the real-time software, including Ballistics.

Slave
If the CIG has two MVME147 boards, one board is the master that runs the real-
time software. The other board is the slave that runs Ballistics. This configuration
is used for high rate-of-fire weapons.

The Ballistics software that runs on a Master board is very similar to the software that runs
on a Slave board. The differences are identified in the source code by compiler flags. The
real-time software determines what type of Ballistics board is in the CIG, then loads the
appropriate version of the Ballistics task.

The nLijor data structures used in Ballistics Processing are the following:

Trajectory table directory
Contains one entry for each trajectory table. A trajectory table, which describes the
trajectory for a specific type of round, consists of the trajectory type, frame rate,
effect type, table size, and a pointer to the table's entries. Each trajectory table entry
contains the trajectory's boresight x and y coordinates (with respect to the gun
barrel).

Trajectory tables are predefined for certain round types. The Simulation Host may
define trajectory tables for other round types.

62

BBN Systems and Technologies GTIOO RTSW CSCI

Terrain model directory
Describes the models that are placed on the terrain (houses, telephone poles, water
towers, etc.). Each entry defines the model type, bvol flag, component count, bvol
count, model directory type, model radius, and the primary, secondary, and tertiary
bvol indices.

Note: The terrain model directory is not currently used. It is defined to
accommodate future enhancements to the database.

Terrain bvol directory
Describes the bounding volume for each terrain model. Each entry defines the
model directory type, type id, the bvol's height above the poly-defining perimeter,
and the perimeter defining the bvol polygon (its vertices).

Note: The terrain bvol directory is not currently used. It is defined to
accommodate future enhancements to the database.

DED model directory
Describes the models in the dynamic elements database. Each entry defines the
model type, bvol flag, component count, bvol count, model directory type, model
radius, and the primary, secondary, and tertiary bvol indices.

DED bvol directory
Describes the bounding volume for each DED model. Each entry defines the bvol
index, the model directory type, type id, the bvol's height above the poly-defining
perimeter, and the perimeter defining the bvol polygon (its vertices).

* Load module directory
Contains one entry for each load module in active area memory. Each load module
entry contains the load module's cache flag, frame stamp, polygon count,
maximum polygon height above the poly-defining perimeter, bvol count, and
maximum bvol height above the poly-defining perimeter. Each load module entry
also contains pointers to the polygon and bvol lists attached to that load module.

Static vehicle directory
Contains one entry for every load module in active area memory. Each entry points
to a list of the static vehicles in that load module. Each entry in the static vehicle list
contains the static vehicle's vehicle id, active area memory partition index,
component count, unique type, load module number, application-specific data
(ASID), transformation matrix, rotation angles for the second component, and back
and forward pointers.

Static vehicle entries that are not currently assigned to a load module are contained
in the static vehicle free list. When the Simulation Host adds a static vehicle,
Ballistics removes one from the free list and adds it to the proper load module list.
When the Simulation Host deletes a static vehicle, Ballistics removes it from the
load module and returns it to the free list. The free list is a mechanism for ensuring
that the maximum number of static vehicles is not exceeded.

Polygon lists
Contain one entry for each polygon in a given load module in active area memory.
Each entry contains the polygon's soil type, vertex count, priority, shade, minimum
and maximum values, Ballistics flag, local terrain flag, grid location, and vertex
list. Each load module in active area memory has its own polygon list.

63

BBN Systems and Technologies GT1OO RTSW CSCI

Polygon entries that are not currently assigned to a load module are contained in the
free polygon list. When a new load module is added to active area memory,
Ballistics removes the required number of polygons from the free list and adds them
to the new load module's polygon list. If the free list does not contain enough
polygons for a new load module, Ballistics swaps out the least-recently-used load
module. When a load module is removed from active area memory, Ballistics
returns its polygons to the free list.

Bvol lists
Contain one entry for each bounding volume in a given load module in active area
memory. Each entry contains the bvol's type id, distance above the poly-defining
perimeter, vertex list, and grid location. Each load module in active area memory
has its own bvol list.

bvol entries that are not currently assigned to a load module are contained in the free
bvol list. When a new load module is added to active area memory, Ballistics
removes the required number of bvols from the free list and adds them to the new
load module's bvol list. If the free list does not contain enough bvols for a new
load module, Ballistics swaps out the least-recently-used load module. When a
load module is removed from active area memory, Ballistics returns its bvols to the
free list.

Round list
Contains one entry for each active round. Each entry contains the round's active
frame count, frame count, frame interval, trajectory entry index, trajectory table
size, offset, trajectory pointer, points, and back and forward pointers.

Round entries that are not currently active are contained in the free round list.
When the Simulation Host requests a new round, Ballistics removes one from the
free list and adds it to the active list. After processing the round, Ballistics removes
it from the active list and returns it to the free list. The free list is a mechanism for
ensuring that the maximum number of rounds is not exceeded.

Terrain feedback point lists
Contain one entry for each point in a vehicle for which terrain feedback data is to be
collected by Ballistics. Each entry contains the point number, current position,
polygon data, and model data. Each vehicle for which the Simulation Host has
requested terrain feedback processing has its own terrain feedback point list.

Feedback points that are not currently assigned to a vehicle are contained in the
terrain feedback points free list. When the Simulation Host requests feedback
processing for a vehicle, Ballistics removes the specified number of points from the
free list and adds them to the vehicle's points list. When the Simulation Host
disables feedback processing for a specified vehicle, Ballistics returns the vehicle's
points to the free list. The free list is a mechanism for ensuring that the maximum
number of feedback points is not exceeded.

The Ballistics task is created and started by the Task Initialization CSC. The Ballistics
configuration file is processed by the config-ballistics function in the Real-Time Processing
CSC, and Ballistics is put into the run state (when a simulation is started) by the
simbal start function.

64

BBN Systems and Technologies GT100 RTSW CSCI

* The real-time software and Ballistics communicate by passing messages via the Ballistics
message processing queues. This communication consists primarily of the following:

Messages sent from the Simulation Host
A typical message may tell Ballistics that a round has been fired or that a static
vehicle has been added to the local terrain. Each Ballistics message is received by
process.a_.msg or db-mcc.setup, which pushes the message onto the incoming
Ballistics message queue. For some messages, processamsg calls a specialized
routine that performs some processing on the message, then pushes it onto the
message queue. The routines that handle the messages going to Ballistics are
contained in the bal_routines.c CSU; all are prefixed with the name sim-bal.

Ballistics processes the message (which typically involves computing whether any
model or terrain in the database was hit), then returns a hit or miss message if
applicable. Messages returned from Ballistics are removed from the outgoing
message queue by the real-time software, which sends them to the Simulation Host.

New frame messages
Once per frame, the real-time software notifies Ballistics that a frame interrupt has
taken place, and informs it (via a MSGB0_NEW_FRAME message) of the current
frame count and the new status of all dynamic vehicles.

Active area memory messages
At startup and whenever active area memory is moved, the real-time software
notifies Ballistics (via a MSG_BO_AAMSW_CORNER message) of the location
of active area memory. Additionally, whenever the real-time software loads a new
load module from disk into active area memory, it informs Ballistics using a
MSG_B0_LMREAD message.

For the syntax and description of each Ballistics message passed between the Simulation
Host and the real-time software, refer to the "GT100 CIG to Simulation Host Interface
Manual."

The following table identifies all messages, in alphabetical order, that may be passed from
the real-time software to Ballistics. The table also identifies the function(s) in the real-time
software that push the message onto the Ballistics message queue, and the function in the
Ballistics Message Processing component that processes that message.

The Ballistics functions referenced here are described later in this section. The real-time
software functions are described in other sections of this document.

65

BBN Systems and Technologies GT100 RTSW CSCI

RTSW -- > Ballistics Sent By Processed By
Message (RTSW Function) (Ballistics Function)

MSG BO AAM-SWCORNER sim-balstart, rowcol rd bQ aam ~sw corner
MSG BO ADD _STATIC VEHICLE sim bal .static add hO add static _vehicle

MSG_BO_ADDTRA)_TABLE db_mnccspetup, bO-add.-traj-table
_______________________process..Ajnsg ________

MSGBO BAL CONFIG cpendbase bQbaLconfig
MSG BO BVOL ENTRY download bvols bO bvol entry

MSG BO CANCEL ROU0LND Procss"anIsg bO~cancel-round

MSG BQ CIG FRAME _RATE sim-hal frame, rate h0-pigixnme rate
MSG BO DATABASELINFO open-dbase bO~database-info
MSG BO _DELETE STATICYEfIICLE sim bal static remnove bO-delete-static-vehicle

MSG_B0L_DELETE _TRAJ_TABLE db_mcc...stup, hO~eletejrajjtable
_____________________________processa.msg_____________

MSG BO LMREAD getsde hO mIrnread
MSG_BO_MODEL_DIRECTORY downloadjwvols bO model-irectory

MSG BO MODEL ,.ENTRY download-bvols bO modeLentry

-MSG, BO NEWFRAME sim-bal-agl-wanted hO new framne

_MSG.BO PROCESS-CHORD process...Amng b0-process chiord
MSG BO PROCESSROUND process-amg h0jprocess round
MSG_BO_ROUNDFIRED simnbalroundfred, h0joundfired

_______________________ rocessa..msg_ _ _ _ _ _ _ _

MSG BO STATE _CONTROL sim ~balstar, sim bal reset 1,0 state control
MSGBOTFINlT-HDR db-mcc-setup, h0_tfinithdr

_____________________________ jocessa.msg ____________

MSG_BO_7T_IIT _PT db_mnccsetup, hO._t(_init.pt
process..amsg ____________

MSG_BOTFSTATE db~mccsetup, hOLti'state
_____________________________ roceA-msg_____________

MSG_BO_TF_VEHICLE_P05 sim-hal_ fveh_update, hO_tJ~vehiclejm.ps
processamsg ____________

MSGBOTRAJCHORD sim hal trajsphord, hOjajchord
simn_bal reqjn info,

_______________________mmbal-agl-wanted________

MSG_BO_TRAYENTRY db_mcc setup, b0_jrajentry
___ __ __ __ __ __ __ __ rocess..a..msg I _ __ _ __I_ _

The following table identifies all messages, in alphabetical order, that may be passed from
Ballistics to the real-time software. The table also identifies the Ballistics function(s) that
push the message onto the Ballistics message queue, and the function in the Teal-time
software that processes it.

The Ballistics functions referenced here are described later in this section. The real-time
software functions are described in other sections of this document.

66

BBN Systems and Technologies GT100 RTSW CSCI

Ballistics --> RTSW Sent By Processed By
Message (Ballistics Function) (RTSW Function)

MSG _B _LOBAL ADDR bxtask none

MSG_B I_HIT_RETURN b0_newframe, simbaLprocess_msg
bO..pcess_chord,
bOprocessjound,
bOtaLchord,
b_round fired_

MSGBiMISS bOnewjframe, simba_processjmsg
b0.processschord,b0_ixocess round,

pO~rocess jound,
bOtajchord,
bo round fired

MSGB1_ROUNDPOSITION bOnewJrame, simbalprocessmsg
b0 processchord,
b0_.processround,
b0_round_fired

MSGB ISTATUSRETURN bxtask config.ballistics

MSG B ITF HDR bO f vehiclepos simbalprocessmsg
MSG B "TF PT bOff vehicle_.os simbprocessmsg

Ballistics Processing can be divided into the following functional areas:

* Ballistics Mainline
" Initializes all Ballistics structures at startup.
• Drives all Ballistics processing.

Ballistics Interface Message Processing
• Processes the Ballistics messages received from the real-time software

(usually in response to messages received from the Simulation Host).
* Returns hit, miss, and terrain feedback messages to the real-time software.

Ballistics Database Interaction
* Acquires polygon and bounding volume information from the terrain

database and maintains it in a cache using a least-recently used (LRU)
swapping algorithm.

* Calculates chord intersections to determine if anything in the simulated
environment was hit by a round or trajectory.

• Maintains static vehicles using a set of free lists.

Ballistics Message Queue Management
* Maintains the message queues used as the interface between Ballistics and

the real-time software.

Figure 2-8 identifies the CSUs in each functional area of the Ballistics Processing CSC.
The CSUs in each area are described in this section, in the order listed above.

67

BBN Systems and Technologies GTlOO RTSW CSCI

Ballistics Processing
CSC

Mea=licntaas Ineato wesage Queue Alga
bx -init.c bO-aam-centroid.c bx bvol int.c mx-error.c
bx-probexc bO aam sw comerxc bx horditrsc- mxopen.c
bx -reset.c bo-add-static-vehiclexc bxCcompte-round.c mxpeek.c
bx-task.c bO add traLtablexc bx find vehiclexc mx..push.c

bO~balcqonfig.c bx-tunctions.c mx-skip.c
bO-bvol-entry.c bx...getlIm dataxc mxWCOPY.C
bO-cancel-rounid.c bx...geti-m-rid.c
bO-cig frame ratexc bx -model -int.c
bo database infoxc bx..poly_int.c
bb-delete static vehicle-c bxtlj-ack.c
bO-deletejtraLtablexc bx trajectory.c
bO-error-detectedxc shot-reportxc
bO-inapp..message.c
bOIm-read.c
bO-model-directory c
bO-model entry~c
bO-new-framexc
bQ~print.c
bo~process-chord.c
bOprocess-round.c
bO-round-fired.c
bO-state-control.c
bO-status-requestc
bO-tf-init-hdrxc
bO-tf-init..pt.c
bO_tf-statexc
bO-tf-vehiclepos.c
bO-traLchord.c
bO-traLentryxc
bo-undefined_messagexc

Figure 2-8. Ballistics Processing CSUs

2.4. 1 Ballistics Mainline

This section describes the Ballistics Mainline component of Ballistics Processing. The
CSUs in this component provide the functions that initialize and drive Ballistics Processing
on the CIG.

2.4.1.1 bx init.c

The hx jinit function initializes Ballistics variables and structures at startup.

68

BBN Systems and Technologies GT100 RTSW CSCI

. The function call is bx inito. bxinit does the following:

• Initializes and defines the message arrays (Gjinitmessage[] and
G_runmessage[]) used by bxjtask to process incoming messages.

" Initializes the following:
- Active area memory partition parameters.
- Dynamic elements database (DED) model directory.
- DED bounding volume directory.
- Static vehicle list.
- Bounding volume cache list.
- Polygon cache list.
- Round list.
- Trajectory table directory.

• Loads the default trajectory tables.
* Initializes various temporary variables.
* Sets the Ballistics state to BXINIT.
• Calls bx tf initpt_cache to initialize the terrain feedback point cache (free list).
• Initializes the terrain feedback vehicle list.

Called By: bxtask

Routines Called: bx.tffiniLpLcache

Parameters: none

Returns: none

2.4.1.2 bxprobe.c

The bx-probe function displays data from the Ballistics database. This function is invoked
when the user selects the b ("ballistics query menu") option from the Gossip main menu.

The function call is bx probeo. The following table lists the options supported by
bx-probe, and shows the major steps it performs for each one.

The PAGEFORMAT macro, used by bx.probe to handle displays over one page long, is
described in Appendix B.

69

BBN Systems and Technologies GTIOO RTSW CSCI

Ballistics Query Menu Option Processing by bx probe

? print this menu Displays options.

A list AAM part info (not currently implemented)
B list free bvols dir Displays number of free bvols and location of first.

b list LM bvols Prompts user for xy position; uses FINDLM to
get load module number;, displays for each bvol:
bvol number, type, and next bvol pointer;
minimum and maximum x, y, and z; and vertices.

C list bal config (not currently implemented)

c list terrain corners (not currently implemented)

F list frame count (not currently implemented)
i set ballistics addresses (not currently implemented)
L list LM cache info Prompts user for xy position; uses FINDLM to

get load module number, displays cachejflag, frame
stamp, poly and bvol counts, max poly z, poly
head and tail, max bvol z, bvol head and tail.

I list lm cache (not currently implemented)
P list free poly dir Displays number of free polygons and location of

first.
p list Im polys Prompts user for xy position; uses FINDLM to

get load module number; displays for each polygon:
polygon number, next polygon pointer, vertex
count, soil type, priority, local terrain flag, shade,
grid location, and vertices.

q quit Exits.
R list active rounds Displays for each active round: round id, db, type,

and mode; tracer type, frame rate, and shot report or
proximity; gun position and velocity; azimuth and
elevation; frames active, counter, and interval;
trajectory entry index, address, size, and offset; start
and end.

r list free rounds dir (not currently implemented)
S list free Stat Veh Displays number of free static vehicles and location

of first.

s list stat vehs Prompts user for x,y position; uses FINDLM to
get load module number; displays load module
number, number of static vehicles, location of first
one; displays for each vehicle in load module's list:
vehicle id, component count, type, ASID, matrix,
next and back pointers.

T list traj directory Prompts user for table index; displays index, frame
rate, effect type, entry count, trajectory address.

t list traj table Prompts user for trajectory type; displays bx and bz
boresight values for each entry.

v find vehicle Prompts user for vehicle id; calls bxjfindvehicle;
outputs coordinates of vehicle's centroid.

x exit Exits.

70

BBN Systems and Technologies GT100 RTSW CSCI

Called By: gossip-tick

Routines Called: bxfindvehicle
FINDLM
PAGEFORMAT
printf
scanf
strien
unbf getchar

Parameters: none

Returns: none

2.4.1.3 bx reset.c

The bxreset function resets Ballistics to an initialized state. This function is called by
bOstatecontrol when the message from the real-time software specifies a new state of
BXRESET.

The function call is bx reseto. bxreset does the following:

*Sets Gballisticsscomplete to FALSE.
• Frees the memory allocated for the load module lists and trajectory tables.
* Initializes the following:

- Active area memory partition parameters.
- Dynamic elements database (DED) model directory.
- DED bounding volume directory.
- Static vehicle list.
- Bounding volume cache list.
- Polygon cache list.
- Round list.
- Trajectory table directory.
- Various temporary variables.

• Sets the Ballistics state to BX_INIT.
• Calls bxtf_init_ptLcache to initialize the terrain feedback point cache (free list).
* Initializes the terrain feedback vehicle list.

Called By: b0_statecontrol

Routines Called: bx.tf init_pt._cache
free
freel33 (if running on a Slave board)

Parameters: none

71

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.4.1.4 bx task.c

The bxtask.c CSU contains the main Ballistics task and the function used to deallocate
resources when the system is shut down. These functions are:

" bx-task
" bxtaskcleanup

2.4.1.4.1 bx task

The bxtask function is the main Ballistics task. It is loaded into the task table by the Task
Initialization CSC, and is put into the run state by simbalstart in the Real-Time
Processing CSC.

bxtask does the following:

" Allocates memory for the Ballistics message queues (buffers) used to communicate
with the real-time software.

" Calls mpv-addrltg to convert the local addresses for the message queues to global
VME addresses.

" Fills the message queues.
* Calls mpv._ncatalog to put the incoming queue's name and address into the MPV

catalog.
* Calls bxnit to initialize structures used by Ballistics.
* If running on a Master board:

- Waits for a message to be posted to the BALLISTICSMB mailbox.
- Posts a message to the SIMULATIONMB mailbox.

* Sets pointers to the three message queues.
* Opens the three message queues.
" Notifies the real-time software that Ballistics has started (via a

MSGB1_STATUSRETURN message).
" If running on a Slave board, gives the real-time software the addresses of Ballistics

global variables (via a MSGB 1_GLOBALADDR message).
* Calls poll-shutdown to see if a system shutdown has been requested.
* Calls mx-peek to preview the top message in the incoming message queue.
* If the status returned by mx.peek is MXDEVICE_EMPTY, calls sc_delay to

pause.
* If the status returned by mx-peek is MX_MESSAGEPREVIEWED:

- Uses the message code to index into the G initmessage[] or
G_runmessage[] array, based on the current state of Ballistics. This
invokes the appropriate Ballistics Interface Message Processing (bO_*)
function to process that message.

- Calls mx skip to remove the message from the queue.
- Previews the next message.

Called By: none (task created and started at initialization time)

0

72

BBN Systems and Technologies GT1OO RTSW CSCI

Routines Called: *Ginitmessage[]
*G_runmessage[]
bxinit
GLOB
malloc
mpv.addrltg
mpv ncatalog
mx_error
mx-open
mx _peek
mx_push
mx skip
outhexl (if running on a Slave board)
pollshutdown
pnntf
puts (if running on a Slave board)
rt-pend
rtpost
sc-delay

Parameters: none

Returns: none

2.4.1.4.2 bxtask-cleanup

The bxtaskcleanup function deallocates the resources owned by bx_task. This function
is called if a system shutdown is requested by the Gossip user. It is called via the
*taskcleanup function pointer, which points to the cleanup routine's name in the task
table.

The function call is bxtaskcleanupo.

The function returns I if successful, or 0 if an error occurred.

Note: This function is not yet implemented. At the current time, it simply
returns a 1 if called.

Called By: pollshutdown (through *task_cleanup)

Routines Called: none

Parameters: none

Returns: 0

73

BBN Systems and Technologies GT100 RTSW CSCI

2.4.2 Ballistics Interface Message Processing

This section describes the Ballistics Interface Message Processing component of Ballistics
Processing. This component contains the functions that process the Ballistics messages
received by bxtask from the real-time software.

The Ballistics Interface Message Processing functions are defined as elements of arrays in
bxinit. Two arrays are used:

G init-message[]
These messages are used to initialize Ballistics (e.g., define model entries or
trajectory tables).

G_run message[I
These messages are used to respond to runtime messages (e.g., process rounds or
manage static vehicles).

The index into either array is the message code (G m code).

The complete processing mechanism is as follows:

1. The Simulation Host sends a Ballistics message.

2. The real-time software (usually process a msg or a simbal_* routine) calls
mx_push to push the message onto the Ballistics message queue. The calling
function sets the messagecode to MB0_<message>.

3. bxtask previews the message from the message queue.

4. bxtask indexes into Ginitmessage[] or Gjrun message[] with the message code
(G mcode). (The array used depends on the current Ballistics state.) bxjtask
also passes a pointer to the message (messageP).

5. The function corresponding to the specified element in the specified array is called
with the messageP parameter.

This method of invoking the Ballistics Interface Message Processing functions provides for
faster processing than direct function calls.

Note that some of the messages sent from the real-time software to Ballistics do not
originate from the Simulation Host. For example, the real-time software generates
messages to start and stop Ballistics, and to tell Ballistics where active area memory is.
The processing mechanism for such messages is the same as for those received from the
Simulation Host.

Some Ballistics messages cause a return message. For example, a ROUNDFIRED
message results in a HITRETURN or MISS message. The Ballistics Interface Message
Processing function generates the response message and calls mx-push to push it onto the
outgoing message queue with the messagecode set to MB 1_<message>. The real-time
software retrieves the message from the queue and processes it accordingly.

74

BBN Systems and Technologies GT1OO RTSW CSCI

For more information on the Ballistics message queues and the mx_* functions used to
manage them, refer to Section 2.4.4.

2.4.2.1 b0aam centroid.c

The bOaamcentroid function is a stub for future expansion; it is not currently used.

The function call is bOaamcentroido. The function always returns 0.

2.4.2.2 bO aam sw corner.c

The bO_aam_sw_corner function processes the MSG_BO_AAMSW_CORNER message.
This message is sent by simbal_start when Ballistics is first put into the run state. During
a simulation, the message is sent by _rowcolrd whenever active area memory is relocated.
The message gives Ballistics the coordinates of the new southwest comer of active area
memory, and the function calculates the coordinates of the northeast comer.

The function call is bO aam sw corner(message P), where messageP is a pointer

to the MSG_BOAAMSW_CORNER message.

bO_aamswcomer does the following:

* Sets the global variables Gterraincomers.SW_x and Gterraincomers.SW-y to
the values provided in the message.

• Sets G_terraincomers.NEx by adding twice the viewing range to the SW_x
value.

• Sets Gterraincomers.NE_.y by adding twice the viewing range to the SW_y
value.

The function always returns 0.

Called By: bxtask (through *G run_message[])

Routines Called: none

Parameters: MSG_BOAAMSWCORNER *messageP

Returns: 0

2.4.2.3 bO add static vehicle.c

The bOaddstaticvehicle function processes the MSGBOADDSTATICVEHICLE
message. This message is sent by simbal-staticadd when processing a request by the
Simulation Host to add a new static vehicle to the local terrain. Ballistics adds the new
vehicle to the tables it uses when determining intersections.

75

BBN Systems and Technologies CT1OO RTSW CSCI

The function call is bO add static vehicle(message P), where message P is a
pointer to the MSGBO -ADDSTAIC_VEHICLE message.

bO_addstaticvehicle does the following:

* Verifies that the vehicle's load module is within active area memory.
• Verifies that the vehicle's component count is either 1 or 3.
* Uses the NEWSTATVEH macro to add the vehicle to the correct load module's

vehicle table.
* Copies the vehicle's data from the message to the static vehicle table.
* Sets the cosine and sine of the rotation of the vehicle's second component, if

applicable.

The function returns a 0 if successful. It returns 1 if the vehicle's load module is out of
range, the maximum vehicle limit has been reached, or the number of components (values
used to determine the vehicle's orientation and position) is not 1 or 3.

Called By: bx-task (through *Grunmessage[])

Routines Called: BCOPY
NEWSTATVEH

Parameters: MSGBOADDSTATICVEHICLE *message_P

Returns: 0
1

2.4.2.4 bO-add_trajtable.c

The b0_addtrajjtable function processes the MSG_BOADDTRAJTABLE message.
This message is sent by process-a-msg or dbmccsetup when processing a
MSGTRAJTABLEXFER message (used to download trajectory tables) from the
Simulation Host.

The function call is bOadd trajtable(messageP), where messageP is a pointer to

the MSGBOADD_TRAJ T ABLE message.

b0Ladd-traj_table does the following:

* Verifies that the trajectory type (index) is less than 240.
* Updates the trajectory table pointer with the data from the message.
* For a Master board, frees the trajectory table's entry pointer if it is not NULL.
* Allocates memory for the number of trajectories entries specified in the message.

The function returns 0 if successful, or -1 if the trajectory type is invalid.

Called By: bx-task (through *G_runmessage[] and
*Ginitmessage[I)

76

BBN Systems and Technologies GT1OO RTSW CSCI

Routines Called: free (if running on a Master board)
MALLOC

Parameters: MSGBOADDTRAJTABLE *messageP

Returns: 0
-1

2.4.2.5 bO-balconfig.c

The bO_bal_config function processes the MSG_BOBAL CONFIG message. This
message is sent by opendbase to give Ballistics its initialized configuration parameters.

The function call is bObalconfig(messageP), where messageP is a pointer to the

MSGBOBAL_CONFIG message.

bObal_.config does the following:

• Copies the data from the message to the G bal config global variable.
" Sets the global variable Ginv_frame -rate (inverse frame rate) to 1 divided by the

frame rate provided in the message.

The function always returns 0.

Called By: bx task (through *G_initmessage[])

Routines Called: BCOPY

Parameters: MSG_BOBALCONFIG *messageP

Returns: 0

2.4.2.6 bObvolentry.c

The bO bvoLentry function processes the MSG_BO_BVOLENTRY message. This
message is sent by downloadbvols to to add bounding volumes to the DED model
directory.

The function call is bO bvol entry(messageP), where messageP is a pointer to the
MSGBOBVOLENTRY message.

bObvolentry does the following:

• Determines the model directory (terrain or DED).

77

BBN Systems and Technologies GT1OO RTSW CSCI

* For the DED model directory, copies the data from the message to the specified
bvol index in the DED bNol directory (G-dedbvol_dir).

* For the terrain model directory, outputs an error if debug mode is enabled. (The
terrain model directory is not currently implemented.)

The function always returns 0.

Called By: bxjtask (through *Ginitmessage[])

Routines Called: BCOPY
printf (if running on a Master board in debug mode)
puts (if running on a Slave board in debug mode)

Parameters: MSGBOBVOL_ENTRY *message_P

Returns: 0

2.4.2.7 bO cancel-round.c

The bO_cancel_round function processes the MSG_ B0CANCELROUND message. This
message is sent by process a_msg when the Simulation Host requests that an active round
be deleted.

The function call is bO cancelround(messageP), where messageP is a pointer to
the MSG_BOCANCEL_ROUND message.

bOcancelround does the following:

• Searches the active round list for the specified round identifier and type.
• If the round is found, uses the DELETEROUND macro to delete the round from

the active list and return it to the free list.

The function returns 0 if successful. It returns -1 if the specified round was not found on
the active list.

Called By: bxjtask (through *Grun_message[])

Routines Called: DELETE_ROUND

Parameters: MSGBOCANCELROUND *message_P

Returns: 0
-1

78

BBN Systems and Technologies GT1OO RTSW CSCI

2.4.2.8 bOcig_framerate.c

The b0_cigframe-rate function processes the MSG_B0_CIGFRAMERATE message.
This message is sent by simbalframerate to tell Ballistics the current frame rate (10, 15,
30, or 60 Hz).

The function call is bO cig frame rate(messageP), where messageP is a pointer to
the MSG_BO_CIGFRAMERATE message.

b0cig-frame_rate does the following:

• Sets the global variable Gbalconfig.cigjframerate to the specified frame rate.
* Sets the global variable G_inv_framerate (inverse frame rate) to 1 divided by the

specified frame rate.

The function always returns 0.

Called By: bx-task (through *G_runmessage[] and
*Ginit message[])

Routines Called: none

Parameters: MSGBOCIGFRAMERATE *messageP

Returns: 0

2.4.2.9 bO database info.c

The bOdatabaseinfo function processes the MSGBODATABASEINFO message.
This message is sent by opendbase after it initializes active area memory partition
information. The message specifies the database id (which identifies the backend) and
provides information on that backend's active area memory (upper and lower limits, base
address, load module size, number of load modules per side, viewing range, etc.).

The function call is bO database info (messageP), where messageP is a pointer to

the MSG_BODATABKSE_INFO-message.

bOdatabaseinfo does the following:

" Allocates space for the load module tables.
* Outputs the location of the load module cache to stdout.
• Loads the load module cache data.
• Allocates memory for and sets up the table of load module addresses (Gilm_addr).
* Sets the viewing range (in G db viewrange) for trajectory calculations.

The function always returns 0.

79

BBN Systems and Technologies GT100 RTSW CSCI

Called By: bxjtask (through *Ginitmessage[])

Routines Called: MALLOC
printf

Parameters: MSG_ BODATABASEINFO *messageP

Returns: 0

2.4.2.10 bOdelete static vehicle.c

The b0 deletestatic vehicle function processes the MSG_BODELETESTATIC_-
VEHICLE message. This message is sent by simbal staticrem when processing a
request from the Simulation Host to delete a static vehicle from active area memory.

The function call is bO delete static vehicle(message_P), where messageP is a
pointer to the MSGB0--DELETESTA-TIC_VEHICLE message.

b0_deletestaticvehicle does the following:

" Verifies that the vehicle's load module is in active area memory, and that the AAM
partition number is valid.

* Searches the specified load module's static vehicle list for the specified vehicle.
" If the vehicle is found, uses the DELETESTATVEH macro (described in

Appendix B) to remove the vehicle from the load module's list and return it to the
free list.

If running on a Slave board and code tracing is enabled, the function outputs data from the
message and the static vehicle list to stdout.

The function returns 0 if the static vehicle is successfully deleted. It returns 1 if the
vehicle's load module is not in active area memory, or if the AAM partition number is
invalid.

Called By: bx-task (through *Grunmessage[])

Routines Called: DELETESTATVEH
outhexl (if running on a Slave board with code-trace)
puts (if running on a Slave board with code-trace)

Parameters: MSGBODELETESTATICVEHICLE *messageP

Returns: 0

80

BBN Systems and Technologies GT100 RTSW CSCI

2.4.2.11 bOdelete-trajtable.c

The bOdelete_trajtable function is a stub routine for future expansion; it is not currently
used.

The function call is bOdeletetrajtableo. The function always returns 0.

2.4.2.12 b0error detected.c

The bO_error_detected function is a stub routine for future expansion; it is not currently
used.

The function call is bOerrordetectedo. The function always returns 0.

2.4.2.13 bOinapp message.c

The b0Linappmessage function outputs the "*** Inappropriate Message ***" error for
Slave boards, and the "*** Inappropriate ballistics message ***" error for Master boards.

The function call is bOinapp_messageo. The function always returns 0.

Called By: bxjtask (through *G initmessage[])

Routines Called: printf (if running on a Master board)
puts (if running on a Slave board)

Parameters: none

Returns: 0

2.4.2.14 bOIm read.c

The b0_lm_read function processes the MSG_B0_LMREAD message. This message is
sent by getside (in load-modules) to tell Ballistics that it has added a new load module to
the local terrain.

The function call is bO Im read(message_P), where messageP is a pointer to the
MSG_B0_LM_READ message.

bOlm read does the following:

" Sets a pointer to the new load module.
• Uses the FREELMCACHE macro (described in Appendix B) to free the new

* load module's cache.

81

BBN Systems and Technologies GTIOO RTSW CSCI

The function always returns 0.

Called By: bx_task (through *Grunmessage[] and
*Ginitmessage[])

Routines Called: FREELMCACHE

Parameters: MSGB0_LMREAD *messageP

Returns: 0

2.4.2.15 bOmodelIdirectory.c

The b0_modeldirectory function is a stub for future expansion; it is not currently used.

The function call is bOmodel-directoryo. The function always returns 0.

2.4.2.16 bO-model-entry.c

The bO_model-entry function processes the MSG_BOMODELENTRY message. This
message is sent by download_bvols to add entries to the terrain or DED model directory.

The function call is bO model entry(messageP), where messageP is a pointer to the

MSG_BOMODELENTRY message.

b0_modelentry does the following:

* Determines the model directory (terrain or DED).
* For the DED model directory, copies the data for the entry from the message to the

model directory (G_ded-modeldir).
• For the terrain model directory, performs no processing. (The terrain model

directory is not currently implemented.)

The function always returns 0.

Called By: bxtask (through *G_init_message[])

Routines Called: BCOPY

Parameters: MSGBOMODELENTRY *messageP

Returns: 0

82

BBN Systems and Technologies GT100 RTSW CSCI

2.4.2.17 bO new frame.c

The b0_newframe function processes the MSG_BONEWFRAME message. This
message is passed by simbal-aglwanted (in the Real-Time Processing CSC) at the end of
each frame to give Ballistics the frame count and the new state of all dynamic models.
b0_new_frame then processes each active round.

The function call is bOnew_frame(messageP), where messageP is a pointer to the
MSGB0_NEW_FRAME message.

For each active round, b0_newframe does the following:

* Calls bxrajectory to see where the round's trajectory ends.
* If the trajectory extends beyond the viewing space:

- Calls bx returnmiss to return a MISS message. (The MISS message is
not sent if the round was only to be traced.)

- Uses the DELETEROUND macro to delete the round.
* If the trajectory ends within the viewing space:

- If an intersection with the database is to be computed, calls
bxfindroundhit, then uses DELETEROUND to delete the round.

- If shot reporting was requested, calls bxfindshot.report.
- If the round is to be traced, calls bxroundtracer position.

The function always returns 0.

Called By: bx_task (through *G run_message[l)

Routines Called: bx_find_roundhit
bx_find_shot-report
bxreturnmiss
bxroundtracer_position
bx..trajectory
DELETEROUND

Parameters: MSGB0_NEW_FRAME *messageP

Returns: 0

2.4.2.18 bprint.c

The b0_print function is a generalized message printing routine. The message is printed to
stdout.

The function call is bO.print(messageP), where messageP is a pointer to the message
to be printed. The function always returns 0.

83

BBN Systems and Technologies GTIOO RTSW CSCI

Called By: bx_task (through *Grun_message[] and
*Ginitmessage[])

Routines Called: printf (if running on a Master board)
puts (if running on a Slave board)

Parameters: char *messageP

Returns: 0

2.4.2.19 bOprocesschord.c

The bO_processchord function processes the MSG_BOPROCESSCHORD message.
This message is sent by processa -msg when the Simulation Host sends a
MSGPROCESSCHORD message. This message is used to process long chords (e.g.,
for a laser weapon or intervisibility). Usually, the chord type references a flat trajectory
table. The chord is fired using the starting point and the direction angles.

The process chord message from the Simulation Host specifies how the chord is to be
processed, as follows:

* The chord's hit or miss is to be computed.
" The chord is to be traced, but not computed for hits or misses.
* The chord has a finite length (the default is infinite).
* The chord is to be processed in one frame or over multiple frames. (Multiple-frame

processing is not currently implemented.)
* The chord's intersection is to be calculated but no hit message is to be returned.

The function call is bO processchord(message P), where messageP is a pointer to
the MSG_B0_PROCESS_CHORD message.

b0_processchord does the following:

" Gets a pointer to the appropriate trajectory table entry.
" Verifies that the first chord's start point is within active area memory; if not, returns

a MISS message.
" Initializes the load module parameters, default effect type, trajectory table pointer,

index (count) to trajectory table, start point parameters, and accumulated chord
length and test length.

" Computes the square of the trajectory length (specified in the message).
" For each chord in the trajectory, does the following:

- Checks to see if the trajectory flies beyond the viewing range; if yes, returns
a MISS message.

- Checks to see if the end of the trajectory table has been reached; if yes,
returns a MISS message.

- Rotates through the elevation and azimuth angles.
- If a finite-length trajectory was specified, checks to see if the chord's length

exceeds the length specified in the message; if yes, returns a MISS
message.

84

BBN Systems and Technologies GT100 RTSW CSCI

- Checks to see if the trajectory flies beyond the boundary of active area
memory; if yes, returns a MISS message.

- Uses GET_DB_POS to find the load module in which the chord's end point
is located.

- Calls bxchord_intersect to see if the chord hit anything; if yes, returns a
HIT_RETURN message.

* If no hit or miss has yet been encountered, sets the next chord's start point equal to
the previous chord's end point, and starts over.

* For rounds that are to be traced, calculates the position and returns a
ROUND_POSITION message.

The function returns 0 if successful. It returns -1 if there is no trajectory table entry for the
specified chord type, the first chord's start point is not within active area memory, or
multiple-frame processing was specified.

Called By: bx.task (through *G-run_message[])

Routines Called: bxchordintersect
GETDBPOS
GETLBFROM_LM
mx_push
printf (if running on a Master board in debug mode)
puts (if running on a Slave board in debug mode)

Parameters: MSGBOPROCESSCHORD *messageP

Returns: 0
-1

2.4.2.20 bOprocess_round.c

The bOprocessround function processes the MSGBOPROCESS_ROUND message.
This message is sent by process a msg when the Simulation Host sends a
MSGPROCESSROUND message.

The function call is bO process round(message P), where message P is a pointer to

the MSGB0_PROCESS_ROUN D message.

b0_processjround does the following:

* Validates the round type.
* Uses the NEWROUND macro (described in Appendix B) to get a round from the

free list and put in on the active list.
* Calls bx-guntipwithindb to verify that the gun barrel is within active area

memory; if not, uses the DELETEROUND macro to delete the round.
• If the message specifies shot reporting, sets shotjreport to TRUE and

shotreport-done to FALSE.
• Calls bx-trajectory to see if the round's trajectory exceeds active area memory; if

yes, returns a MISS message and deletes the round.

85

BBN Systems and Technologies GT100 RTSW CSCI

If the trajectory ends within active area memory:
If the hit is to be computed, calls bxfindround_hit; then deletes the round.
If shot reporting was requested, calls bxfind_shotreport.
If the round is to be traced, calls bxround_tracerposition.

The function returns 0 if successful. It returns -1 if the round is not of a known type, the
free list is empty (i.e., the maximum number of active rounds has been reached), or the gun
barrel is not in active area memory.

Called By: bxtask (through *G_run_message[])

Routines Called: bxfind_round- hit
bx_find_shoLrcport
bx.guntip-withindb
bxroundtracer-position
bx trajectory
DELETE_ROUND
mxpush
NEWROUND

Parameters: MSG_BOPROCESSROUND *message P

Returns: 0

2.4.2.21 bOround fired.c

The b0_round_fired function processes the MSG_BO_ROUNDFIRED message. This
message is sent by simbal-roundfired when it receives a MSGROUNDFIRED
message from the Simulation Host.

Note: The MSG ROUND FIRED message has been superseded by
MSG PROCESS _OUND. MSGROUNDFIRED is retained for
backward compatibility.

The function call is bO round fired(round fired P), where round firedP is a
pointer to the MSG_B0ROUN_FIRED message.-

b0_roundfired does the following:

" Validates the round type.
* Calls NEW_ROUND to get a round from the free list and put it on the active list.
• Verifies that the gun barrel is within active area memory; deletes the round if it is

not.
* Calls bxtrajectory to see if the round's trajectory exceeds active area memory;

returns a MISS message and deletes the round if it does.
* Calls bxchordintersect to see what the round hit; returns a HIT_RETURN

message and deletes the round.

86

BBN Systems and Technologies GT100 RTSW CSCI

For rounds that are to be traced, calculates the position and returns a
ROUNDPOSITION message.

The function returns 0 if successful. It returns -1 if the round fired is not of a known type,
the free list is empty, or the gun barrel is outside active area memory.

Called By: bxtask (through *Grun_message[])

Routines Called: bxchordintersect
bx_trajectory
DELETEROUND
GETLBFROMLM
mx_push
NEWROUND

Parameters: MSG_B0_ROUNDFIRED *roundfired_P

Returns: 0
-1

2.4.2.22 bOstate control.c

The bOstatecontrol function processes the MSGBOSTATECONTROL message.
This message is sent by simbalstart to put Ballistics into the run state, and by
simbal-reset to reinitialize Ballistics.

The function call is bO state control(message P), where messageP is a pointer to
the MSG_B0_STATECONTROL message.

bOstatecontrol does the following:

* Sets the Ballistics global variable G bal state to the new state provided.
* If the new state is BXEXIT, sets the Ballistics global variable

G_ballisticscomplete to TRUE.
" If the new state is BXRESET, calls bxreset.
* If running on a Slave board, outputs the new state to stdout.

The function always returns 0.

Called By: bx_task (through *G_run_message[] and
*Ginitmessage[])

Routines Called: bx_reset
outhexl (if running on a Slave board)
puts (if running on a Slave board)

87

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: MSG_BO_STATE_CONTROL *messageP

Returns: 0

2.4.2.23 bO_status request.c

The bOstatusrequest function is a stub routine for future expansion; it is not currently
used.

The function call is bOstatusrequesto. The function always returns 0.

2.4.2.24 bOtfinithdr.c

The bOtfinithdr function processes the MSG_BOTFINITHDR message. This
message is sent by the real-time software when the Simulation Host sends a
MSG_TF INITHDR message to initiate terrain feedback reporting for a vehicle. The
message specifies the vehicle id, the number of points f r which terrain feedback
information is to be provided, and the frequency at which feedback data is to be reported (if
the message concerns the simulated vehicle). The message is followed by one
MSGTFINIT_PT message for each point specified in the header message.

The function call is bO tf init hdr(messageP), where messageP is a pointer to the

MSGBOTFINIT_HDR message.

bOtf init hdr does the following:

* Verifies that the maximum number of terrain feedback vehicles has not been
exceeded. (This limit is set in the bx_defines.h file.)

* Verifies that the requested point count is not 0.
" Verifies that the requested point count is not greater than the number of points on

the free list (returned by bx_tfjpts).
* Finds a free entry in the vehicle terrain feedback array.
* Adds the vehicle's header entry to the vehicle terrain feedback array.
• Calls bx tf new-tf-pts to get the terrain feedback point structures.

The function returns 0 if successful. It returns -I if the maximum number of vehicles or
points has been reached, or if the point count specified in the message is 0.

Called By: bx_task (through *Grun_message[] and
*Ginitmessage[l)

Routines Called: bx tf new_tf pts
bxtLpts
printf (in debug mode only)

Parameters: MSG_BOTFINIT_HDR *messageP

88

BBN Systems and Technologies GT1OO RTSW CSCI

Returns: 0
-1

2.4.2.25 bOtfinitpt.c

The bO tf init.pt function processes the MSG_B_0TFINIT_PT message. This message
is sent by the real-time software when the Simulation Host sends a MSGTFNIT_PT
message to specify the vehicle coordinates for which terrain feedback information is to be
acquired. One MSGTFlNITPT message is sent for each point specified in the
corresponding MSGTF_INIT_HDR message.

The function call is bO tf initpt(message_P), where messageP is a pointer to the
MSGB0_TFINIT_PT message.

b0_tfinitpt does the following:

* Finds the entry for the specified vehicle in the vehicle terrain feedback array.
* Verifies that the vehicle is in use and has a non-zero point count.
" Puts the data for the point in the vehicle's point list.

The function returns 0 if successful. It returns -1 if the specified vehicle is not in the
vehicle terrain feedback list, the in _use flag in the vehicle's header is FALSE, or the
vehicle's header specifies 0 points.

Called By: bx-task (through *G run_message[] and*G_init_message[])

Routines Called: bx tf copy-msg
bxtf next
printf (in debug mode only)

Parameters: MSGBOTFINIT_PT *messageP

Returns: 0
-1

2.4.2.26 bO tf state.c

The bOtf_state function processes the MSGBOTFSTATE message. This message is
sent by the real-time software when the Simulation Host sends a MSGTFSTATE
message to change terrain feedback processing parameters for a specified vehicle.

The function call is bOtfstate(messageP), where message P is a pointer to the
MSG_BO_TFSTATE message.

bOtf state does the following:

• Finds the vehicle's entry in the vehicle terrain feedback list.

89

BBN Systems and Technologies GT100 RTSW CSCI

* If the message specifies BX_TF_CODEOFF (disable processing) or
BXTF_CODE,_ON (enable processing), toggles the processing state in the
vehicle's terrain feedback header.

* If the message specifies BXTFCODERM (delete this vehicle from the terrain
feedback processing lists):

- Calls bx_tf_free_tfpts to return the vehicle's terrain feedback points to the
free list.

- Sets the vehicle's inuse flag to false.
- Sets the vehicle's point count to 0.

* If the message specifies BXTFCODE_FREQ (change the frequency at which
terrain feedback messages are sent), sets the vehicle's frame period to the CIG
frame rate divided by the frequency specified in the message.

The function returns 0 if successful. It returns -1 if the vehicle's entry cannot be found, its
inuse flag is false, or its point count is zero. It also returns -1 if an invalid message code
is passed.

Called By: bx.task (through *Grunmessage[] and
*Ginitmessage[])

Routines Called: bx_tf_freetfipts

Parameters: MSGB0_TFSTATE *messageP

Returns: 0
-1

2.4.2.27 bOtf vehicle pos.c

The bOtf vehicle-pos function processes the MSG B0 TF VEHICLEPOS message.
This message is sent by the real-time software when the Simulation Host sends a
MSGTFVEHICLEPOS message. This message gives Ballistics the new position and
rotation of a vehicle (other than the simulation vehicle) for which terrain feedback data is
being collected.

The function call is bO tf vehicle pos(messageP), where messageP is a pointer to
the MSG_BOTFVE-ffCCE_POS message.

b0_tf_vehiclepos does &he following:

" Finds the vehicle's entry in the vehicle terrain feedback list.
• Builds and returns a MSGB 1_TFHDR message to the real-time software. This

message contains the vehicle's id and point count, and a time stamp.
* For each terrain feedback point assigned to this vehicle:

- Builds a chord starting at a 20,000-meter elevation.
- Calls bxtftpt-data to get the coordinates of the point.
- Uses GET_DB_POS to find the load module in which the point resides.
- Calls bx_chordintersect to find the chord's intersection with the database.

90

BBN Systems and Technologies GT1OO RTSW CSCI

- If a hit is detected, builds a MSG B 1 TF PT message with the intersection
information and returns it to the real-time software.

- If no hit is detected, resets the chord's starting and ending positions and
tries again, for a maximum of five attempts.

- Calls bx_tf_next to get the next point.

The function returns 0 if successful. It returns -1 if the vehicle's entry cannot be found, its
inuse flag is false, or its point count is zero.

Called By: bxjtask (through *G-run_message[] and
*Ginitmessage[])

Routines Called: bx_chordintersect
bx tf next
bx.tfLptdata
GET_DB_POS
mx_push
printf (in debug mode only)

Parameters: MSGBOTFVEHICLEPOS *message_P

Returns: 0

2.4.2.28 bOtrajchord.c

The bOtrajchord function processes the MSG_BO_TRAJ_CHORD message. This
message is sent by sim baLtraj-chord when processing a MSG_TRAJ_CHORD message,
and by sim-bal-req-ptinfo when processing a MSGREQUESTPOINT_INFO
message.

The function call is bOtrajchord(messageP), where messageP is a pointer to the
MSG_BO_TRAJ_CHORD message.

b0_trajschord does the following:

" Uses the GET_DB_POS macro (described in Appendix B) to locate the chord's
start and end points.

" Calls bxchordintersect to determine whether the chord hits anything in the local
terrain.

* Pushes a HIT_RETURN or a MISS message (as appropriate) onto the Ballistics
outgoing message queue.

The MSG_B0_TRAJ_CHORD message is also sent by the real-time software when
processing the simulated vehicle's AGL (altitude above ground level). b0_trajschord calls
bxchordintersect to determine what the chord hits, then returns a HIT_RETURN
message. If the chord does not intersect, the function outputs information on the AGL
chord to stdout.

91

BBN Systems and Technologies GT100 RTSW CSCI

The function always returns 0.

Called By: bxtask (through *Grunmessage[I)

Routines Called: bxchordintersect
GETDB_POS
mx_push
outhexl (if running on a Slave board)
printf
puts (if running on a Slave board)

Parameters: MSG_BOTRAJ_CHORD *messageP

Returns: 0

2.4.2.29 bO_trajentry.c

The b0_trajentry function processes the MSG_BO_TRAJ_ENTRY message. This
message is used to add entries to a trajectory table. The message is sent by the real-time
software when processing a MSGTRAJ_TABLEXFER message from the Simulation
Host.

The function call is bO trajentry(message_P), where messageP is a pointer to the

MSGBOTRAJENTRY message.

b0_traj entry does the following:

" Verifies the trajectory type.
* Finds the specified entry in the trajectory table.
* Puts the boresight x and z values into the table entry.

The function returns 0 if successful, -1 if the trajectory type is invalid, and 1 if the
trajectory table is already full.

Called By: bx_task (through *G runmessage[] and
*Ginit_message[])

Routines Called: outhexl (if running on a Slave board in debug mode)
puts (if running on a Slave board in debug mode)

Parameters: MSG_BOTRAJENTRY *message_P

Returns: 0
1

92

BBN Systems and Technologies GT1OO RTSW CSCI

2.4.2.30 bO_undefinedmessage.c

The bOundefined message function outputs the "*** Undefined Message ***" error to
stdout for Slave boards.

The function call is bOundefined-messageo. The function always returns 0.

Called By: bxjtask (through *Girunmessage[] and
*Ginitmessage[])

Routines Called: puts (if running on a Slave board)

Parameters: none

Returns: 0

93

BBN Systems and Technologies GT1OO RTSW CSCI

2.4.3 Ballistics Database Interaction

The Ballistics Database Interaction component of Ballistics Processing is responsible for

the following:

" Calculating chord intersections (hits) for various purposes.

" Acquiring polygon and bounding volume information from the terrain database.

" Maintaining polygon and bounding volume information in a cache using an LRU
(least-recently-used) swapping algorithm.

* Maintaining static vehicles using a set of free lists.

The driving function in this component is bxchordintersect. This function is called by
the functions in the Ballistics Interface Message Processing component that deal with
processing rounds or tracing trajectories. bxchordintersect calls other Ballistics Database
Interaction functions to check for intersections with various objects (static vehicles,
dynamic vehicles, terrain bounding volumes, and terrain polygons).

The following points apply to intersection calculations:

" When determining whether a given trajectory intersects with a model or the terrain,
Ballistics treats the trajectory as a series of consecutive chords. Each chord is a
maximum of 115 meters long. All computations are performed on the chords.

* Intersections with models are calculated using the bounding volume surrounding
the model or its articulated part, not with the model itself. A bounding volume, or
bvol, is the volume of the bounding box that is used to enclose a model in the
simulation environment. The use of bvols reduces the number of surfaces that
Ballistics must deal with. An intersection with any surface of any bvol belonging to
a model is considered an intersection with that model.

* Intersections with the terrain are calculated with polygons that have the local terrain
flag and/or the Ballistics flag set to TRUE.

2.4.3.1 bx bvol int.c

The bxbvolint function intersects a chord with a bounding volume. This function is
called by bxchordintersect to check for intersections with terrain bounding volumes, and
by bxmodelint to check for intersections with model (vehicle) bounding volumes.

The function call is bx bvol int(start, end, pbvl, ratio to intersect,
vehicleflag), where:

start is the chord's starting point
end is a pointer to the return location for the chord's ending point (the intersection

point); the value is returned by bx-bvolint
pbvl is a pointer to the bvol entry

0

94

BBN Systems and Technologies GT100 RTSW CSCI

ratio to intersect is a pointer to the return location for the distance from the chord's
start point to the intersection point, divided by the total length of the chord; this
value is returned by bx.bvolint and is useful when transforming chord points into
the vehicle coordinate system

vehiclejflag is TRUE if the model is a vehicle, FALSE if not

bxbvolint does the following:

* Checks the bvol's vertices against the chord's start and end points to see if they
intersect.

* Clips backfaces (the sides of a polygon that faces away from the viewpoint).
* Checks for start and end points on the same side of the bounding volume.
" Checks for hits on the top or bottom of the bounding volume.
* Clips around the quadrilateral projection of the bounding volume.
" Sets the chord's ending position.

If an intersection is found, the function returns TRUE and places the intersection point and
the ratiotointersect into the locations specified in the call. It returns FALSE if no
intersection is detected.

Called By: bxchordintersect
bx_model_int

Routines Called: none

Parameters: R4P3D *start
R4P3D *end
BVOL_ENTRY *pbvl
REAL_4 *ratio to intersect
BOOLEAN vehiclejflag

Returns: 1 (TRUE)
0 (FALSE)

2.4.3.2 bx chord intersect.c

The bxchord_intersect function determines whether a given chord intersects with anything
in active area memory. It calls other functions in the Ballistics Database Interaction
component to check for intersections with models or the terrain, then creates the hit or miss
message.

The function call is bx chord intersect(chordP, bufferP, aamindex,
dv-ex flag, dvveh-'d), where:

chord P is a pointer to the chord's data
buffer-P is a pointer to the hit return data
aan index is the active area memory partition index
dvix_flag is TRUE if a particular vehicle is to be excluded from intersection

processing, or FALSE if all vehicles are to be included

95

BBN Systems and Technologies GTIOO RTSW CSCI

dvvehid is the id of the vehicle to be excluded, if dvex_flag is TRUE

bx_chord_intersect does the following:

* Checks for hits on pre- and post-processed dynamic models.
" Calls bxgetjm_.grid to find the load modules to be searched, based on the chord's

location.
" Calls bxmodelint to check for intersections with static models.
" Calls bxmodeLint to check for intersections with dynamic models.
" Calls bx__getLln.data to get data for the load module (if not in cache).
* Calls bx_bvolint to check for intersections with terrain bounding volumes.SCalls bx__polyint to check for intersections with terrain polygons.
• Builds the hit return message (to be returned to the Simulation Host by the calling

routine).

The function returns TRUE if an intersection is detected. It returns FALSE if no
intersection was detected, or if the load module could not be found.

Called By: b0_process-chord
b0_roundfired
b0_tf_vehiclepos
bOtrajschord
bx_find_roundhit

Routines Called: BCOPY
bx_bvol int
bx-geLlmLdata
bx-geLlm.grid
bxmodelint
bx~polyint
GETLBFROMLM

Parameters: CHORD *chord_P
BYTE *buffer_P
HWORD aam_index
BOOLEAN dv_ex-flag
HWORD dv._vehid

Returns: 1 (TRUE)
0 (FALSE)

2.4.3.3 bx-computeround.c

The functions in the bxscompute_round CSU are used to process rounds and generate hit
or miss messages. These functions are:

" bx_returnmiss
" bx._guntip-withindb
" bxfindshot-report

96

BBN Systems and Technologies GTOO RTSW CSCI

* bxround_tracerposition
• bx_fmdround_hit

2.4.3.3.1 bx return miss

The bxreturn_miss function builds a MSGB 1_MISS message for return to the
Simulation Host. This function is called when Ballistics determines that a fired round did
not intersect with any object in active area memory.

The function call is bxireturn miss(messageP, framesactive), where:

messageP is a pointer to the MSG_BOPROCESSROUND message
framesactive is the number of frames since the round was fired

bxreturn_miss builds the MSGBIMISS message, then pushes it onto the outgoing
message buffer. The message is generated only if the round was to be computed for
intersection (i.e., no miss message is returned for traced rounds).

Called By: bOnewframe
bxguntip-withindb

Routines Called: mx-push

0 Parameters: MSG_BOPROCESSROUND *message_P
HWORD framesactive

Returns: none

2.4.3.3.2 bxguntipwithindb

The bx-guntip-within-db function verifies that the gun barrel is within active area
memory. This function is called before the fired round is processed.

The function call is bx guntip within db(messageP), where message P is a
pointer to the MSGBO-ROCESS_ROlUND message.

bx.guntip-withindb does the following:

* Uses the global variable G_terraincorners to determine the four corners of active
area memory.

* Compares the gun position's x and y coordinates (from the
MSG_BOPROCESSROUND message) to the current terrain comers.

* If the gun tip is found to be outside active area memory, calls bxreturnmiss to
generate a MSG_B IMISS message.

The function returns TRUE if the gun tip is within active area memory, or FALSE if it is
* not.

97

BBN Systems and Technologies GTI00 RTSW CSCI

Called By: b0 process__ound

Routines Called: bx_returnmiss

Parameters: MSG_BOPROCESSROUND *messageP

Returns: 1 (TRUE)
0 (FALSE)

2.4.3.3.3 bx_find shot report

The bxfind_shot_report function invokes the function that provides feedback on rounds
designated for a specific target. This additional information describes how far off the shot
was from the intended target's centroid, and in what direction. This function is called for a
round if the MSGPROCESSROUND message from the Simulation Host specifies shot
reporting. The message also specifies the target vehicle's id.

The function call is bxfind_shotreport(messageP, chordP, hitregistered,
frames-active), where:

message P is a pointer to the MSGBOPROCESSROUND message
chord P is a pointer to the chord data
hitjregistered is TRUE if the round hit an object in the database, or FALSE if it

missed
frames active is the number of frames since the round was fired

bxfind_shot_report does the following:

* Calls bx_find-vehicle to get the coordinates of the target vehicle's centroid.
• Calls shot-report to determine where the shot intersected the database in relation to

the target vehicle's centroid.
* If shot-report reports an intersection with the target plane, or a hit is registered,

builds a MSGB I_SHOTREPORT message and pushes it onto the outgoing
message buffer.

The functions returns the return code returned by shot-report if an intersection is detected.
It returns TRUE if no intersection was reported or if bxfind_vehicle could not find the
vehicle in active area memory.

Called By: b0_newframe
b0_process-round

Routines Called: bxfindvehicle
mx-push
printf (in debug mode only)
shotreport

98

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: MSGBOPROCESSROUND *messageP
CHORD *chord_P
BOOLEAN hitregistered
HWORD framesactive

Returns: 1 (TRUE)
returncode

2.4.3.3.4 bx-round-tracerposition

The bx_round_tracer_position function determines the position of a fired round. This
function is called if the Simulation Host requests that a round be traced and not intersected
with the database. The reply message specifies the starting and ending load modules of the
trajectory traced by the fired round.

The function call is bx roundtracer_position(messageP, chord_P, round_P),
where:

messageP is a pointer to the MSGBOPROCESSROUND message
chord P is a pointer to the chord data
round-_P is a pointer to the - -u A data

bxroundtracer-positior, d, :-s the following:

* Checks to see if load module blocking is enabled.
* Sets the round's starting and ending position based on the chord data; uses the

GETLBFROMLM macro if load module blocking is enabled.
* Pushes a MSGB 1_ROUNDPOSITION message onto the tracer message buffer.

The function always returns 0.

Called By: b0_new_frame
b0_processround

Routines Called: GETLBFROMLM
mx-push

Parameters: MSG BO PROCESSROUND *message_P
CHORD *chord_P
ROUNDDATA *roundP

Returns: 0

99

BBN Systems and Technologies GT100 RTSW CSCI

2.4.3.3.5 bx find round hit

The bx_findroundhit function is called to see if a round intersects with anything in the
database, and to generate a response message for return to the Simulation Host. This
function is called at the end of each frame for each active round. It is also called in
response to a MSGBOPROCESSROUND message from the Simulation Host.

The function call is bx_findround_hit(messageP, chordP, roundP,
frames-active), where:

message P is a pointer to the MSG_BOPROCESSROUND message
chord P is a pointer to the chord data
roundP is a pointer to the round data
frames _acf've is the number of frames since the round was fired

bxfind_roundhit does the following:

* Calls bxchordintersect to see if anything in the local terrain is intersected by the
fired round.

" If bxchordintersect reports a hit:
- Builds a MSG_B 1_HIT_RETURN message and pushes it onto the

outgoing message buffer.
- If the request is for a shot report and the shot report has not been done, calls

bxfind_shot_report.

The function returns the returncode returned by bxschordintersect.

Called By: bOnewframe
bOprocessjound

Routines Called: bxchord_intersect
bx_find_shot-report
mx-push
printf (in debug mode only)

Parameters: MSG_BOPROCESSROUND *messageP
CHORD *chord_P
ROUNDDATA *round_P
HWORD framesactive

Returns: returncode

2.4.3.4 bx find vehicle.c

The bx_find_vehicle function finds the coordinates of the centroid of a specified vehicle in
active area memory. The centroid is used for shot reporting (determining how close a fired

100

BBN Systems and Technologies GT100 RTSW CSCI

round came to a target vehicle). This function is also called if the user selects the v ("find
vehicle") option from the Ballistics Query menu.

The function call is bx_findvehicle(vehicle id, vehicle centroidP), where:

vehicle id is the vehicle's identifier
vehicle-centroidP is a pointer to the location to store the vehicle's centroid

bxfindvehicle does the following:

• Looks for the specified vehicle id in the table of dynamic vehicles; if found, places
the vehicle's centroid coordinates in the location specified in the call.

* Looks for the specified vehicle id in the table of static vehicles; if found, places the
vehicle's centroid coordinates in the location specified in the call.

The function returns B ISRDYNAMIC_VEICLE if it finds the vehicle in the dynamic
list, and BISRSTATICVEHICLE if it finds the vehicle in the static list. It returns
B ISRNONEXISTENTVEHICLE if it does not find the vehicle id in either list.

Called By: bxprobe
bx_shotjreport

Routines Called: none

Parameters: HWORD vehicleid
R4P3D *vehiclecentroid_P

Returns: 0 (BlSRNONEXISTENTVEHICLE)
2 (BISRDYNAMIC_VEHICLE)
3 (BISRSTATICVEHICLE)

2.4.3.5 bx functions.c

The bxfunctions.c CSU contains utility functions used for Ballistics. These functions are
the following:

" bxnewround
* bxdeleteround
• bx.get-db-pos
* bxgetchordend
* bxnewbvol
* bx_freeIm-cache
* bxnew-poly
* bx.get_lb_fromIm
" bx_newstat_veh
" bxdelete_stat_veh
• bx_distsqptJine

101

BBN Systems and Technologies GT100 RTSW CSCI

Note: Most of these functions are not currently used. Macros (see
Appendix B) are used instead, to increase performance.

2.4.3.5.1 bx new round

The bxnew_round function gets a new round from the free list, and increments the
number of active rounds. The function returns a pointer (new roundP) to the new round.
The pointer is set to NULL if no free rounds are available.

The function call is bxnewroundO.

This function is not currently used. The NEWROUND macro is used instead.

Called By: none

Routines Called: none

Parameters: none

Returns: newround_P

2.4.3.5.2 bxdeleteround

The bxdeleteround function removes a round from the active list and puts it on the free
list. It then decrements the number of active rounds and increments the number of free
rounds.

The function call is bx delete round(dead round_P), where dead-roundP is a
pointer to the round to be deleted.

This function is not currently used. The DELETEROUND macro is used instead.

Called By: none

Routines Called: none

Parameters: ROUNDDATA *deadround_P

Returns: none

102

BBN Systems and Technologies GT100 RTSW CSCI

2.4.3.5.3 bxgetdbpos

The bx.geLdb-pos function finds the load module that corresponds to a given point in the
database.

The function call is bx getdbpos(point P, Imwidth, invIm width,
Imperside), where:

pointP is a pointer to the location in the database
Im width is the width of a load module
i nv"lmwidth is the inverse of the width of a load module
lm_perside is the number of load modules in a row or column of active area memory

(usually 16)

This function is not currently used. The GETDB_POS macro is used instead.

Called By: none

Routines Called: FIND_LM

Parameters: POINT_DATA *point_P
HWORD lm_width
REAL_-4 invImwidth
HWORD lm-perside

Returns: none

2.4.3.5.4 bxget_chordend

The bx-getschordend function finds the end of the current chord (and, therefore, the
beginning of the next chord in the trajectory), given an active round and a trajectory table
entry.

The function call is bx get chord_end(chord_P, roundmessageP,
trajentryP, offset), where:

chordP is a pointer to the chord
roundmessageP is a pointer to the active round
tra] entryP is is a point to the trajectory table entry
offset is the gun barrel velocity offset

This function is not currently used.

Called By: none

0
103

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: none

Parameters: CHORD *chord_P
MSGBOPROCESSROUND *round_messageP
TRAJENTRY *trajjentryP
REAL_4 offset

Returns: none

2.4.3.5.5 bx new bvol

The bx_new_bvol function gets a new bounding volume from the free list and adds it to a
load module list. If there are no free bvols, bx-newjbvol swaps out the least-recently-used
load module. The function returns a pointer (bvolP) to the new bounding volume.

The function call is bxnewbvol(lm dir), where im dir is a load module in the cache.

Called By: bxgetjlmjdata

Routines Called: FREELMCACHE

Parameters: LM. CACHEENTrRY *lm dir

Returns: bvol_P

2.4.3.5.6 bx freeIm cache

The bxfreeIm_cache function, when given a load module in the Ballistics database cache,
puts the bounding volumes in that module on the free bvol list, and puts the polygons in
that module on the free polygon list.

The function call is bx freeIm_cache(Imdir), where Im_dir is a load module in the
cache.

This function is not currently used. The FREE_LMCACHE macro is used instead.

Called By: none

Routines Called: none

Parameters: LMCACHEENTRY *lmdir

104

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.4.3.5.7 bxnewpoly

The bxnewpoly function gets a new polygon from the free list and puts it on a specified
load module list. If there are no free polygons, bx.new-poly swaps out the least-recently-
used load module. The function returns a pointer (polyP) to the new polygon.

The function call is bx new poly(lm dir), where lm dir is a load module in the cache.

Called By: bx-get-lrndata

Routines Called: FREELMCACHE

Parameters: LMCACHE_ENTRY *lmdir

Returns: polyP

2.4.3.5.8 bxgetlb from_Ir

The bx-getlb_fromIm function takes a load module number (0 to 1023) and returns the
number (0 to 255) of the load block that module is in.

The function call is bxget.lb fromlm (im), where im is the load module number.

This function is not currently used. The GETLBFROMLM macro is used instead.

Called By: none

Routines Called: none

Parameters: INT_4 lm

Returns: row* 16 + column

2.4.3.5.9 bx new stat veh

The bxnewstatveh function gets a static vehicle from the free list and adds it to the list
of the specified load module. The function returns a pointer (new svP) to the new static
vehicle. It returns NULL if no pointers are available (i.e., the maximum number of static
vehicles has been reached).

105

BBN Systems and Technologies GT100 RTSW CSCI

The function call is bx newstat veh(veh table P) where veh table P is a pointer to
the vehicle table.

This function is not currently used. The NEWSTATVEH macro is used instead.

Called By: none

Routines Called: none

Parameters: STRUCT_P_SV *vehtable_P

Returns: NULL
new svP

2.4.3.5.10 bx delete stat veh

The bx_deletestat-veh function removes a static vehicle from a specified load module list
and puts it in the free list.

The function call is bx delete statveh(dead_svP, tableP), where:

dead sv P is a pointer to the static vehicle to be deleted
tableP is a pointer to the vehicle table

This function is not currently used. The DELETESTATVEH macro is used instead.

Called By: none

Routines Called: none

Parameters: STATVEH *dead-sv_P
STRUCTPSV *table_P

Returns: none

2.4.3.5.11 bxdistsqpt-line

The bx_dist_sq_pt_line function finds the distance squared between a point and a line

segment.

The function call is bx dist sq_pt_line(ptP, startP, end_P), where:

ptP is a pointer to the point
startP is a pointer to the start of the line segment

106

BBN Systems and Technologies GTI00 RTSW CSCI

endP is a pointer to the end of the line segment

The function returns the result of the calculation as result. It returns 1000000.00 if the
result is less than 0.

Called By: bxmodelint

Routines Called: none

Parameters: R4P3D *ptP
R4P3D *start_P
R4P3D *endP

Returns: 1000000.00
result

2.4.3.6 bxget lm data.c

The bxgetlm_data function finds and caches all bounding volumes and polygons in a
given load module that have their local terrain or Ballistics bit set to true. The function can
also be used to cache all bvols and polygons in the load module, regardless of their local
terrain and Ballistics bits. This function is called by bxchordintersect to get load module
data from active area memory if it is not already cached.

The function call is bxget Imdata(Im_addr, lm_dir, polymask), where:

lm addr is the address of the load module
lm-dir is the load module directory
polymask is TRUE if all polygons in the load module are to be cached, or FALSE if

only polygons with the local terrain or Ballistics bit set are to be cached

bxgetlmdata does the following:

" Searches the four surrounding grids for polygons.
* Calls bxnewpoly to add the polygons found to the load module directory.
* Finds out if there are more polygons/stamps to process.
" Searches the load module for bounding volumes.
" Calls bxnew_bvol to add the bvols found to the load module directory.

The function always returns 0.

Called By: bxchordintersect

Routines Called: bxnew bvol
bx.new-poly
FXTO881

107

BBN Systems and Technologies GTI00 RTSW CSCI

Parameters: WORD lm-addr
LM_CACHEENTRY *lm_dir
WORD poly_mask

Returns: 0

2.4.3.7 bxgetlmgrid.c

The bx-getlm-grid function finds the load modules and grids in the database that are
intersected by a given chord. This function is called by bxschordintersect when it is
looking for the load modules to search.

The function call is bx get Im grid(pcrd, Im per side, balsearch,
dvi search, Imwidth, fig.addrtable), where:-

pcrd is a pointer to the chord
lm_perside is the number of load modules in a row or column of active area memory
bal search is used to store load module offsets and grid words
dvi-search is used to store dynamic module path information
1m width is the width of a load module
lm-addr-table is an array of load module addresses

The function returns TRUE if successful. It returns FALSE if the chord crosses four load
modules, but one of the grids is not a comer grid of a load module; this is an error
condition.

Called By: bx-chordintersect

Routines Called: none

Parameters: CHORD *pcrd
HWORD Im_per side
LMSEARCH_LIST balsearch [
HWORD dvlsearch[]
HWORD Im_width
WORD Im_addrtable[]

Returns: 1 (TRUE)
0 (FALSE)

2.4.3.8 bx model int.c

The bxmodel_int function intersects a chord with a model. This function is called by
bxchord_intersect to check for intersections with static and dynamic vehicles.

The function call is bxmodel int(chordP, modelinstP, hit_data_P), where:

108

BBN Systems and Technologies GTIOO RTSW CSCI

chordP is a pointer to the chord
model-inst P is a pointer to the model
hitdata_P is a pointer to the data for the hit return message

bxmodel_int does the following:

* Based on the model's radius, checks to see if the chord falls completely outside of
the model. Returns FALSE if it does.

. Checks the model's first component for a hit.
- Converts the chord to vehicle coordinates.
- Translates and rotates the chord.
- Calls bx_bvol_int to check for a bounding volume intersection.
- If an intersection is found:

* Sets hit~flag to TRUE.
* Uses the ratio tointersect to determine the coordinates of the

intersection point. For the x and y coordinates, subtracts a fixed
percentage (INTERSECT_OFFSET) from the ratio-to intersect
value. This moves the intersection point slightly away from the
middle of the object enclosed by the intersected bvol, causing any
special effects for the hit to appear largely outside of the object.

* Places the hit information in hit data P.
* If no hit was found, checks the model's second component, if it has one.

- Rotates the chord into turret coordinates.
- Calls bx_bvol_nt to check for a bounding volume intersection. If an

intersection is found, sets hit~flag to TRUE, applies the ratioto_intersect
value as explained above, and places the hit information in hit dataP.

The function returns TRUE if a hit is detected, or FALSE if no intersection is detected.

Called By: bx_chordintersect

Routinee Called: bxbvolint

Parameters: CHORD *chord_P
STATVEH *model_inst_P
MSG_BI_HITRETURN *hit_dataP

Returns: FALSE
hitflag

2.4.3.9 bxpolyint.c

The bx.poly-int function intersects a chord and a polygon. This function is called by

bx_chordintersect to check for intersections with terrain polygons.

The function call is bxpolyint(start, end, vtx count, poly_P), where:

start is the starting point of the chord

109

BBN Systems and Technologies GT1OO RTSW CSCI

end is a pointer to the return location for the ending point of the chord (the point of
intersection)

vtr count is the number of vertices in the polygon
polyP is a pointer to the polygon's cache entry

bx-poly_int does the following:

" Clips around the polygon using the minimum and maximum values and a fixed
offset.

" Makes the polygon normals.
* Calculates the cross product.
" Clips out backface intersections.
* Checks to see if the intersection is in the interior of the polygon.
" Finds the normal-to-polygon side by taking the cross product of the polygon

normal and the polygon side.

The function returns TRUE if the chord intersects the polygon, or FALSE if it does not. If
an intersection is detected, the intersection point is placed in the end location specified in the
call.

Called By: bxchord-intersect

Routines Called: none

Parameters: WORD vtxcount
R4P3D *start
R4P3D *end
POLYCACHEENTRY *polyP

Returns: 1 (TRUE)
0 (FALSE)

2.4.3.10 bxtfpack.c

The bxf.pack.c CSU contains utility functions used to process terrain feedback points.
These functions are:

" bxtffiniLptscache
* bx_tf pts
* bx tf next
• bx tffcopy-rnsg
* bxtLpt.data
* bx ff_new_tf_pts
* bx-tfffree-tf-pts

110

BBN Systems and Technologies GT1OO RTSW CSCI

.2.4.3.10.1 bxtf-initptcache

The bxtf_init.ptscache function initializes the terrain feedback points cache (free list).
The size of the list is MAXTFPT, which is defined in bxdefmes.h. This function is
called when Ballistics is initialized or reset.

The function call is bx tfinit pt cacheO.

Called By: bxinit
bxreset

Routines Called: none

Parameters: none

Returns: none

2.4.3.10.2 bxtf-pts

The bxjtf pts function returns the count of terrain feedback points in the free list. (These
are feedback points that are not currently assigned to a vehicle.) This function is used by
b0_tf_inithdr to make sure there are enough free points for a new terrain feedback vehicle.

The function call is bx_tf.ptso.

Called By: bOtf init hdr

Routines Called: none

Parameters: none

Returns: freetf..ptP.count

2.4.3.10.3 bx tf next

The bx_tf_next function, given a terrain feedback point, returns a pointer to the next
feedback point for the same vehicle.

The function call is bx tfnext(tf ptP), where "pt_P is a pointer to the terrain
feedback point.

Il

BBN Systems and Technologies GT100 RTSW CSCI

Called By: b0 ff init_pt
b0_tf_vehiclepos

Routines Called: none

Parameters: TFPT *tfptP

Returns: tf_ptLP->next_P

2.4.3.10.4 bxtfcopymsg

The bx_tf_copy_msg function places a pointer to a terrain feedback message
(MSG_BOTFINIT_PT) into a point's entry in the terrain feedback list.

The function call is bx_tf.copymsg(messageP, tfUptP), where:

messageP is a pointer to the MSGBO_TFNIT_PT message
#f.ptP is a pointer to the terrain feedback point

Called By: b.jfinit-pt

Routines Called: none

Parameters: MSGBOTFINITPT *messageP
TFPT *tf pt_P

Returns: none

2.4.3.10.5 bxtfpt data

The bx~tftpt_data function returns the data (message) associated with a specified terrain
feedback point.

The function call is bxt ptdata(tf ptP), where _pt_fP is a pointer to a terrain
feedback point.

Called By: bOtf_vehicle-pos

Routines Called: none

Parameters: TFPT *tf pt_P

112

BBN Systems and Technologies GT1OO RTSW CSCI

Returns: &tfpt_P->pt

2.4.3.10.6 bxtfnew_tf_pts

The bx_tf_newf..pts function allocates new terrain feedback points from the free list to a
vehicle. This function is used by b0 tfinit hdr to get the feedback point structures for a
new terrain feedback vehicle.

The function call is bxtf.newtf pts(pointtotal, tailPP), where:

point total is the number of feedback points to be allocated
tailPP is a pointer to the last entry point allocated

bxtf_new_tf-pts verifies that the free list has enough points available to satisfy the
request, then deletes the points from the free list.

The function returns a pointer to the first feedback point allocated to the vehicle if
successful. It returns NULL if the free list does not contain enough points.

Called By: bOtf inithdr

Routines Called: none

Parameters: INT_2 pointtotal
TFPT **tail_PP

Returns: tfptP

2.4.3.10.7 bxtf.free_tf_pts

The bxtf_freefpts function returns terrain feedback points to the free list. This function
is called by b0_f_state when the Simulation Host sends a message requesting that feedback
points be removed from a specified vehicle.

The function call is bx_tffree.tf.pts(headP, tailP, pointtotal), where:

head P is a pointer to the first point to be freed
tail P is a pointer to the last point to be freed
point-total is the number of feedback points to be freed

bx_tf_free_tf pts sets the next pointer (nextP) for the last entry in the free list to the first
point (head P) specified in the message. It also increments the free point count by the
point total specified in the message.

Called By: bOtf state

113

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: none

Parameters: TFPT *head_P
TFPT *tail_P
INT_2 pointtotal

Returns: none

2.4.3.11 bxtrajectory.c

The bxjtrajectory function returns the position of a projectile using the provided trajectory
tables.

The function call is bx trajectory(round_P), where roundP is a point to the round
data. bxtrajectory does the following:

* If this is the first call for a new round, finds the trajectory table for the round type.
* Rotates through the elevation angle.
* Rotates through the azimuth angle.
• Adds in the gun position and velocity.

The function returns TRUE if it finds the position in the database. It returns FALSE if the
round travels beyond the viewing space, or if the end of the trajectory table was reached.

Called By: bOnew_frame
bOprocessjround
bOround_fired

Routines Called: GETDBPOS

Parameters: ROUNDDATA *round_P

Returns: 1 (TRUE)
0 (FALSE)

2.4.3.12 shotreport.c

The shot_report function provides feedback to the Simulation Host on shots that are
designated for a specific target. The target's vehicle id is specified in the
MSGPROCESSROUND message. shotjreport determines the distance between the
shot's intersection and the target vehicle's centroid, and the direction in which the shot was
off center.

To determine where a shot intersected in relation to the target vehicle, the function intersects
the chord defined by the shot with a target plane. The target plane is defined as a vertical

114

BBN Systems and Technologies GT100 RTSW CSCI

plane with its origin at the target's centroid and with a normal defined by the x,y projection
of the Ballistics chord. The target plane x,z coordinates form a right-hand system with a
positive y-axis having the same direction as the projected chord.

The function call is shotreport(chord start, chord_end, target centroid,
x offset, z_offset), where:

chord start is the starting point of the Ballistics chord
chord-end is the ending point of the Ballistics chord
target centroid is the origin of the target plane (the target vehicle's centroid)
xoffset is a pointer to the x coordinate of the intersection offset; this value is calculated

by shot-report
z~offset is a pointer to the z coordinate of the intersection offset; this value is calculated

by shot-report

shot-report does the following:

• Gets the normal and vector from the centroid to the chord end.
* Checks to see if the chord intersects the plane.
* If the chord meets the plane, finds the intersection of the normal with the plane.
* Gets the target plane coordinates of the intersection point, and places them in the

locations specified in the call.
- The xoffset is the distance (signed) from the centroid to the intersection

point in the world x,y plane.
- The zoffset is the world z offset of the intersection point from the

centroid's z coordinate.

The function returns TRUE if the chord intersects the plane, or FALSE if no intersection is
detected. (A FALSE value usually indicates that the shot intersected an object before
reaching the target vehicle.)

Called By: bx_fmd_shotjreport

Routines Called: sqrt

Parameters: R4P3D *chordstart
R4P3D *chordend
R4P3D *targetcentroid
REAL_4 *xoffset
REAL_4 *z_offset

Returns: 1 (TRUE)
0 (FALSE)

115

BBN Systems and Technologies GT100 RTSW CSCI

2.4.4 Ballistics Message Queue Management

This section details the CSUs in the Ballistics Message Queue Management component of
Ballistics Processing. These functions are responsible for manipulating and maintaining
the queues that make up the interface between Ballistics and real-time software.

Three message queues are used:

G indev P (incoming)
Used ior incoming messages (passed to Ballistics). Various functions in the real-
time software push messages onto this queue. bxjtask previews each message and
calls the appropriate bO_* function to process it.

G outdev P (outgoing)
Used for outgoing messages (passed from Ballistics). Various Ballistics functions
push messages onto these queues and the real-time software (usually the
sim bal process msg function in the Real-Time Processing CSC) retrieves them.

G tracerdev P (tracer)
Used to report the round position for traced trajectories. Various Ballistics
functions push the tracer messages onto this queue and the real-time software
(simbal processtracer in the Real-Time Processing CSC) retrieves them.

The structure of each queue is the same. The typedef is provided in the mx_defines.h file.

2.4.4.1 mx error.c

The mx_error function returns a text message for output to the operator. Messages are
provided for the various errors generated when processing messages
(MXDEVICETABLEJFULL, MXDEVICEBUSY, etc.) as well as for normal
processing states (MXMESSAGEPUSHED, MXMESSAGEPOPPED, etc.).

This function is called by bxjtask to display a message if an error occurs when it tries to
preview the top message in the message queue. It is called by some of the real-time
software functions if an error occurs when the function attempts to push a message onto the
Ballistics message queue.

The function call is mx error(status), where status is the current MX state.

Called By: bx task
downloadbvols
simbalstatic_add
sim_bal_staticrem

Routines Called: none

Parameters: WORD status

116

BBN Systems and Technologies GT100 RTSW CSCI

Returns: "DEVICE CLOSED"
"DEVICE TABLE FULL"
"DEVICE OPENED"
"DEVICE BUSY"
"DEVICE EMPTY"
"DEVICE FULL"
"MESSAGE PUSHED"
"MESSAGE POPPED"
"MESSAGE PREVIEWED"
"MESSAGE SKIPPED"
"UNDEFINED ERROR"
"UNDEFINED RETURN"

2.4.4.2 mxopen.c

The mxopen function opens an MX queue device. This function is called by bx-jask to
open the three message queues at startup.

The function call is mxopen(devP, device_size), where:

dev P is a pointer to the MX device (message queue)
device-size is the size of the message queue

The function always returns MX_DEVICE_OPENED.

Called By: bxtask

Routines Called: sclock
scunlock

Parameters: MXDEVICE *dev_P
INT_4 devicesize

Returns: MXDEVICEOPENED

2.4.4.3 mxpeek.c

The mx-peek function previews the message at the head of a specified queue. This
function used by bxjtask to determine what type of message is in the incoming queue, so it
can call the appropriate Interface Message Processing (bO*) function to process it. It is
also used by various functions in the real-time software to read the messages returned from
Ballistics in the outgoing and tracer queues.

The function call is mx peek(dev_P, message code, message size,
messageaddr), where:

40devP is a pointer to the message queue

117

BBN Systems and Technologies GT100 RTSW CSCI

messagecode is the message type
messagesize is the size of the message in bytes
message_addr is a pointer to the message's address

mx-peek does the following:

* Locks the queue.
* Checks to see if the specified queue is empty.
* Sets a pointer to the first message in the queue.
* Places the message's type and size in message_code and messagesize.
" If the message code is MXSKIP, starts over with the next message in the queue.
" Places a pointer to the message in message.addr.
" Unlocks the queue.

The function returns MXMESSAGEPREVIEWED if successful. It returns
MXDEVICEEMPTY if the specified queue contains no messages.

Called By: bx-task
config.ballistics
simbal process msg
sim-bal-processtracer

Routines Called: sclock
scunlock

Parameters: MXDEVICE *devP
HWORD *message code
HWORD *messagesize
BYTE **messageaddr

Returns: MXDEVICEEMPTY
MXMESSAGEPREVIEWED

2.4.4.4 mxpush.c

The mx-push function pushes a message onto a Ballistics message queue. This function is
used by various Ballistics functions to add messages to the outgoing and tracer queues, and
by various real-time software functions to add messages to the incoming queue.

The function call is mx_push(dev_P, sourceaddress, message-code,
messagesize), where:

devP is a pointer to the message queue
sourceaddress is the address of the message
messagecode is the type of message
messagesize is the number of bytes in the message

mx-push does the following:

118

BBN Systems and Technologies 07100 RTSW CSCI

" Locks the queue.
" Verifies that there is room in the queue for the message.
* Copies the message to the end of the queue
* Unlocks the queue.

The function returns MXMESSAGEPUSHED if successful. It returns
MXDEVICE_-FULL if the specified message queue is already full.

Called By: rowcol-rd
bO-new-friame
bO-processshord
bO-processjround
bO-round-fired
bOLtfvehicle_pos
bO traj chord
bx~find~round-hit
bx -find-shot-.report
bx rturn~ms
bx -round-tracer-position
bx task
db-mcc-setup
download~bvols
getside
openjdbase
process, a-msg
simnbal-agL-wanted
simx-baL~frame-rate
sim..bal-reqpt-info
sim-baLreset
sim-bal-round-fired
sim bal-start
simbaLstatic -add
sim-baLstatic-rmM
sini bal-tf veh-update
sim..ba-rajschord

Routines Called: BCOPY
sc-lock
sc_unlock

Parameters: MXDEVICE *dev_-P
WORD sourcieaddress
HWORD messagesode
HWORD message-size

Returns: MXDEVICEFULL
MXMESSAGEPUSHED

119

BBN Systems and Technologies GTI00 RTSW CSCI

2.4.4.5 mxskip.c

The nex_skip function skips over a message in the queue. The message at the head of the
queue is flushed, and the next message moves to the top of the queue. This function is
used to remove messages from a queue after they have been previewed and processed.

The function call is mx.skip(devP), where devP is a pointer to the queue.

The function returns MXMESSAGE_SKIPPED if successful. It returns
MXDEVICEEMPTY if the specified message queue contains no messages.

Called By: bx_task
config-ballistics
sim-bal-processjmsg
simbaLprocesstracer

Routines Called: sc-lock
sc_unlock

Parameters: MXDEVICE *dev_P

Returns: MX_DEVICEEMPTY
MXMESSAGESKIPPED

2.4.4.6 mx-wcopy.c

The mx_wcopy function performs a block copy. This function is used to copy messages.

The function call is mx wcopy (source_P, destinationP, byte-count), where:

source P is a pointer to the source data
destination P is a pointer to the destination location
byte countis the number of bytes to be copied

This function is not currently used.

Called By: none

Routines Called: none

Parameters: WORD * source_P
WORD *destination_P
INT_2 bytecount

120

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

121

BBN Systems and Technologies GTOO RTSW CSCI

2.5 CIG Configuration (/cig/iibsrc/libconfig)

The functions in the CIG Configuration CSC are involved primarily with preparing the
CIG to run a simulation. These functions do the following:

* Initialize and allocate active area memory.

• Initialize the viewport configuration tree.

* Set up calibration, gunner, and gun barrel overlays for T backends. (These are
hard-coded overlays that can be displayed on a viewport on top of the terrain
display.)

" Maintain the structure that contains the simulated vehicle's current position.

Figure 2-9 identifies the CSUs in the CIG Configuration CSC. These CSUs are described
in this section.

ClG Configuration

I . I
aam_manager.c getch.c
bbnctype.c overlay-setup.c
cigconfig.c process vflags.c
filltree.c processvppos.c
getvehicle.position.c

Figure 2-9. CIG Configuration CSUs

2.5.1 aammanager.c

The functions in aammanager.c are used to allocate and manage the system (static) and
dynamic areas of active area memory. Dynamic memory is located in the double-buffer
area; static memory is not double-buffered.

The functions in aam manager.c are:

* aam malloc

122

BBN Systems and Technologies GTIOO RTSW CSCI

• returnaam.ptr
* system-aam_init
• dynamicaam_init

2.5.1.1 aam malloc

The aammalloc function allocates system and dynamic active area memory for viewport

configuration nodes, cloud models, and gun overlays.

The function call is aam malloc(static flag, num of bytes), where:

static flag identifies the area of memory (SYSTEM or DYNAMIC)
numof bytes is the number of bytes of memory requested

aam_malloc does the following:

" Determines which area of memory is being requested.
* Verifies that sufficient memory is available.
• Allocates the memory and returns a pointer (temp_ptr) to it.

If there is insufficient memory to process the request, aammalloc returns NULL and
displays the amount of memory available.

Called By: cig-config
cloudinit
make_ml_overlays
make_m2_overlays
vpLcnode-set matrix
vpLpath-init
vptroot_init
vpt-vpt-set

Routines Called: printf

Parameters: BYTE staticflag
WORD num_of bytes

Returns: temp-ptr
NULL

2.5.1.2 return aam-ptr

The return_aamptr function returns the address of the next available location in the static
or dynamic area of active area memory.

The function call is return aam ptr(static flag), where static flag identifies the area
of memory (SYSTEM or DYNAMIC).

123

BBN Systems and Technologies GT100 RTSW CSCI

return_aamptr returns system aam limit (the next available address in static memory) or
dynamic_aam (the next available address in dynamic memory).

Called By: _opy-reconfigurableviewportssection
_update-second-active area_memory

cigsconfig

Routines Called: none

Parameters: BYTE static-flag

Returns: system aam limit
dynarnic-aam

2.5.1.3 system_aam_init

The systemaam_init function initializes the system (static) section of active area memory.

The function call is system.aaminit(system-aamaddr, limit), where:

system aam addr is the starting address of the memory to be initialized
limit is-the ending address of the memory to be initialized

The function returns the starting address of the initialized memory (the address specified by
system_aamaddr) as system aam.

Called By: cigseonfig

Routines Called: printf (in debug mode only)

Parameters: WORD system_aam_addr
WORD limit

Returns: system_aam

2.5.1.4 dynamic aam init

The dynamicaaminit function initializes the dynamic section of active area memory. The
function call is dynamic aam-init(dynamicaamaddr, limit), where:

dynamic aam addr is the starting address of the memory to be initialized
limit is the ending address of the memory to be initialized

124

BBN Systems and Technologies GT1OO RTSW CSCI

.The function returns the starting address of the initialized memory (the address specified by
dynamic-aam_addr) as dynamic aam.

Called By: cig.config

Routines Called: printf (in debug mode only)

Parameters: WORD dynamicaamaddr
WORD limit

Returns: dynamicaam

2.5.2 bbnctype.c

bbnctype is a runtime library that defines control characters, punctuation, digits, and
alphas.

This file is not currently used.

Called By: none

Routines Called: none

Parameters: none

Returns: none

2.5.3 cigconfig.c

The cigconfig function is the message handler for the Viewport Configuration process. It
is responsible for processing messages from the Simulation Host to build the configuration
tree before runtime. cigsconfig is called by db_mcc_setup (in the Real-Time Processing
CSC) when the CIG Control message from the Simulation Host specifies
C_CIGCONFIG.

The function call is cigconfig(state), where state is the current state of the CIG system
(CCIGCONFIG).

cig-config does the following:

* Calls vpt_init-modeon to set the viewport initialization mode variable to TRUE.
This indicates that viewport configuration is in progress.

* Calls dynamic-aaminit to initialize and set up a pointer to the dynamic area of
active area memory.

125

BBN Systems and Technologies GT1OO RTSW CSCI

* Calls systern.aam-init to initialize and set up a pointer to the system (static) area of
active area memory.

* Calls aaxnmalloc to allocate memory for the view mode words.
• Calls aam_malloc to allocate memory for the daylight TV thermal word

(dtv_thermword).
* Loads the reconfigurable data that goes into double-buffered active area memory

into DBO.
* Calls make-cal overlay to create the calibration overlay.
* Calls cloudinit to initialize the top and bottom cloud models.
* Initializes various configuration variables (agLwanted, thermalmodewanted,

terrain_feedback_wanted, and cloudswantedG) to FALSE.
* For each configuration message received from the Simulation Host:

- Increments the packet size; calls syserr to generate an error message if the
packet length specified in the packet header has been exceeded.

- Calls cigsimio._msgin to write the message to a buffer (if debug message
printing or recording has been enabled).

- Processes the message (see table below).

The following table summarizes the processing performed by cigsconfig in response to
each valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by cig-config to process the
message.

If an unknown message type is received, cig-config calls syserr to generate an "illegal
message type" error message.

126

BBN Systems and Technologies GT100 RTSW CSCI

Message from SIM Host Processing by cigconfig

MSGAGL_SETUP Toggles AGL processing on/off.
Sets agl wanted variable to new state requested.

MSGAMMODEFINE Define ammunition maps.
Sets values in ammo-map array.

MSG_CIG_CTL Causes a transition to another performance state.
C_NULL No action.
C_STOP Calls filLtree; calls trav tree; calls retum_aam..ptr,

calls dtp-compiler; calls vpt-init_mode off; copies
reconfigurable viewport data from DBO to DB 1; outputs
a message if local terrain or terrain feedback processing
is enabled; calls flagoff to turn off all viewport
configuration debug flags; returns to db mcc-setup.

MSGCREATECONFIGNODE Creates a configuration tree node entry.
Calls vpt-cnode.process; outputs error if return status is
not SUCCEED.

MSGDEFINETXMODE Sets up resolution modes for TX backends.
Calls mpvideo defme mode.

MSGDRi1 _PKTSIZE Specifies exchange packet parameters.
Sets incoming and outgoing exchange packet size, local
terrain chunk size, local terrain message interval, and
CIG hardware type.

MSGEND Signals end of packet buffer.
Calls cigsimiomsg._out to write message to buffer (if
message display or recording is enabled); calls
start_watch; calls the appropriate data exchange routine
(using *exchangedata) to send output and receive input
buffers.

MSG_LT_STATE Changes the local terrain message interval or chunk
size.
Calls It state.

MSGOVERLAYSETUP Places overlays on specified viewports.
Calls overlay-setup.

MSG_VIEWFLAGS Sets system view flags (onloff, daylight/TV, etc.).
Outputs error (this message type is no longer handled by
cig_config).

MSGVIEWPORTSTATE Defines all viewport parameters.
Calls vpt-vpt-process; outputs error if returned status is
not SUCCEED.

Called By: db_mcc_setup

Routines Called: *exchangedata
aarn malloc
bcopy
cigsirniorsgin
cigsimio msg-out
cloudinit
dtpcompiler
dynamic_aam_init

127

BBN Systems and Technologies GT100 RTSW CSCI

fill tree
flagoff
GLOB
ILstate
makecaloverlay
mpvideodefme_mode
overlay-setup
printf
return_aam_ptr
startwatch
syserr
systemaam_init
tray_tree
vptLcnode-process
vpt init_mode_off
vptinit_modeon
vpLvpLprocess
vpti-statedtproc (in debug mode only)
vpti state_edtpc (in debug mode only)
vptistateef'ilt (in debug mode only)

Parameters: INT_2 state

Returns: none

2.5.4 fill tree.c

The functions in the filltree.c CSU are responsible for setting the graphics path flags in the
configuration tree. These functions are:

• filltree
• power

2.5.4.1 fill-tree

The filltree function sets the graphics path flags in configuration tree nodes. This function
is called after all configuration node messages have been processed.

The function call is filltreeo. filltree does the following:

* Calls vpti-get-ptr.path to get a pointer to the first graphics path parameters.
• Uses the graphics path entry path id to set a bit in the configuration node path flag.

For example, a path flag of 0x0021 means the node contains information valid for
graphics paths 0 and 5.

" Calls vpti-get.-ptrpath to get the next pointer. Traverses up the configuration tree,
setting the path flags in the configuration nodes.

Called By: cig..config

128

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: power
printf
vpti-get-ptrpath
vpti-statedtproc (in debug mode only)

Parameters: none

Returns: none

2.5.4.2 power

The power function raises a base to a power. This function is called by fill_tree when it
traverses the configuration tree.

The function call is power(base, n), where:

base is the base to be raised
n is the power

The calculated value is returned as result.

Called By: fill_tree

Routines Called: none

Parameters: INT_4 base
INT_4 n

Returns: result

2.5.5 getvehicle position.c

The geLvehicle-position function is not used by the standard GT100 system.

2.5.6 getch.c

The getch function gets a character from a file, and returns the character as ch. The
function call is getch(fdi), wherefdi is a unique identifier associated with the file.

This function is not currently used.

Called By: none

129

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: cmd

Parameters: int fdi

Returns: ch

2.5.7 overlaysetup.c

The overlay-setup function sets up calibration, M1 and M2 gunner overlays, and M1 and
M2 gun barrel overlays. It also generates DTP code for the overlays. This function is
called when the message from the Simulation Host is MSG_OVERLAYSETUP.

The function call is overlay.setup(pmsg), where pmsg is a pointer to the
MSGOVERLAYSETUP message.

overlay-setup does the following:

• Calls make_ml-overlays or make m2 overlays (based on the type specified in the
message) to create the gunner and gun barrel overlays.

* Inserts the gun barrel data into the viewport parameter nodes.

Overlays are hard-coded displays of three-dimensional polygons that are displayed on a
viewport, super-imposed over the view of the terrain. The overlay shows non-terrain
objects that would normally be seen when looking outside the vehicle's window. For
example, gun overlays show those parts of the simulated vehicle that would be visible from
the window, obscuring the view of the terrain. Gunner overlays show cross-hairs and
numerical readouts of simulation parameters.

The branch mask of the configuration node to which viewport parameters are attached
determines whether the corresponding viewport displays an overlay. Any node that has
viewport parameters and has bit 0 of the node's branch mask set has the gunner's overlay
placed on the viewport. Similarly, any node that has viewport parameters and has bit 1 of
the node's branch mask set has the gun barrel added to its processing.

Gunner, gun barrel, and calibration overlays are used by T backends only. Overlays on
TX backends are generated through the 2-D overlay compiler.

Called By: cig-config

Routines Called: makemloverlays
make_m2_overlays
printf

Parameters: MSGOVERLAYSETUP *pmsg

Returns: none

130

BBN Systems and Technologies GT1OO RTSW CSCI

2.5.8 processvflags.c

The process-vflags function processes system view flags (values used to turn CRT
monitors on and off, and to control viewing modes such as thermal/daylight TV).
process.yflags also processes the branch values indexed by the branchindex for all
conditional nodes in the configuration tree; these are stored in the system view flags array.
The function puts the initial view flags and branch values in the configuration tree, and
updates them each frame.

Note: The process vflags function is no longer used. The
MSG VIEW FLAGS riessage is processed by msgview~flags
and various Backend Processing functions.

The function call is process_vflags(vflag, brvalues), where:

vflag is the view flags
brvalues is the branch value array

process-vflags the following:

* Gets a pointer to the root configuration node.
* Sets up the view modes for DTP.
* Loads the branch values into the view flags array.
• If the view flags have changed since the previous message/frame:

- Loads the new view flags into the view flags array.
- If a Force board is present, puts the video control commands in Force

memory.- If a second backend is present, copies the new channel status to the second

AAM.

Called By: none

Routines Called: AAM2_ADDR
bequery-bufferoffset
vpt-cnode-qroot

Parameters: UNS_4 vflag

UNS_4 brvalues[]

Returns: none

2.5.9 processvppos.c

The process vppos function sets up the position (the x, y, and z coordinates of the
centroid) of the simulated vehicle in the world. This position is used to determine whether
new load modules need to be read into active area memory. It is also used when preparing
local terrain messages for the Simulation Host. processvppos is called when a world/hull

131

BBN Systems and Technologies GT100 RTSW CSCI

matrix node (a child of the root node) is created or updated (e.g., in response to a matrix
message).

The function call is process vppos(confignode, timestamp, pmtx), where:

config node is a pointer to the configuration node (always the world/hull node)
time stamp is the time stamped on the message from the Simulation Host
pmtx is the node's new matrix

The simulated vehicle's position is stored in an array. This structure allows for multiple
vehicles. Currently, only one simulation vehicle is supported; therefore, there is only one
element in the array. The viewport positions array is pointed to by the root node's sibling
pointer.

process-vppos takes the matrix provided by the Simulation Host and converts it into world
coordinates. The algorithm used to do this depends on the matrix type, as follows:

RTS4x3 TYPE
Given-a world-to-view matrix of:

I rOO rOl r02 0 1
I rlO rll r12 0 I
I r20 r21 r22 0 I
I tx ty tz 1 I

The location of the vehicle in the world is:
vppos.x = -(tx,ty,tz)*(rOO,rO1,rO2)
vppos.y = -(tx,ty,tz)*(rl0,r1,rl 2)
vppos.z = -(tx,ty,tz)*(r2Or21,r22)

RTS3x3 TYPE
The l6E'ation of the vehicle in the world is:

vppos.x = -pmtx->rts3x3.translation.x
vppos.y = -pmtx->rts3x3.translation.y
vppos.z = -pmtx->rts3x3.translation.z

ROT2x1 TYPE

No conversion is required.

process.vppos does the following:

" Gets a pointer to the configuration tree's root node.
* Converts the node's matrix based on its matrix type, as described above.
* Sets the global variables for the vehicle's coordinates (myintx, myint__y, and

myjntLz).
" Calls simbal_tfveh-update to give Ballistics the new position of the simulated

vehicle, for the purposes of terrain feedback reporting.

Called By: vpt-cnode-process
vptupdate -mtx
vpt-updaterot

Routines Called: be-query-bufferoffset

132

BBN Systems and Technologies GTLOO RTSW CSCI

sim bal tf veh -update
vptsCnode-qroot

Parameters: CONFIGURATIONNODE *config-node
INT_-2 time-stamp
MTXUNION *pMtK

Returns: none

133

BBN Systems and Technologies GT1OO RTSW CSCI

2.6 ESIFA Interface (/cig/libsrc/libesifa)

The functions in the ESIFA Interface CSC establish and maintain a communications path
between the real-time software and the ESIFA (Enhanced Subsystem Interface Adapter)
board. The ESIFA, in turn, communicates with the other boards in the 9U, including the
Pixel Processor Memory (PPM) and the Pixel Processor Tiler (PPT).

Each backend contains one ESIFA board. The ESIFA is a high-speed, 32-bit data path
interface between the 6U Timing & Control board and the 9U backplane. The ESIFA
converts the differential signals received from and sent to the 6U into the TrL-level signals
used on the 9U backplane.

The ESIFA is responsible for the following:

Returning laser range depth values to the real-time software on a T backend when
laser range processing is requested. A hard-wired pixel location is used. (On TX
backends, the MPV Interface functions process laser range requests from
Simulation Host-specified pixel locations.)

* Downloading texture maps to the PPTs.

* Processing MSG_PPM_* messages sent by the Simulation Host to change PPM
display modes, display offsets, pixel location, or pixel state.

• Processing MSG_SUBSYS_MODE messages from the Simulation Host to change
sky color (fade values).

" Processing MSGVIEWPORT_UPDATE messages from the Simulation Host to
turn video channels off or on.

The structure used to maintain information on each ESIFA object is the esifatable array.
Each element in the array specifies that ESIFA's fade values, laser range values, port
values, and a flag indicating whether or not laser range data is required this frame.

All data to be downloaded to the PPM and PPTs is first moved to ESIFA random access
memory (RAM). A queue of RAM addresses waiting to be downloaded is maintained. At
the end of each frame, the data is downloaded from ESIFA RAM to the subsystem boards.

Most requests that are processed through the ESIFA originate with a message from the
Simulation Host. For example, the MSG_PPM_* messages are used to pass information
to the PPM board. In general, data that is to be downloaded to another subsystem board is
processed as follows:

1. The Message Processing function calls esifa-queuedata to copy the data from the
Simulation Host's message into a queue (the "RAM queue").

2. The Message Processing function also calls esifaqueueldownload to put the RAM
address into another queue (the "download queue").

3. At the end of each frame, backendsend jeq calls esifasendreq.

4. esifasend-req calls esifasend-queue.

134

BBN Systems and Technologies GT100 RTSW CSCI

5. esifa~sendqueue calls esifawrite to move all data in the RAM queue to the
specified addresses in ESIFA RAM.

6. esifasendqueue calls esifadownload to download the data in RAM to the
appropriate 9U boards. esifadownload uses the addresses in the download queue
to find the data in the ESIFA RAM.

The ESIFA Interface functions use Ready Systems' IFX routines to send commands to the
ESIFA. (IFX provides a mechanism by which applications can interface to devices as if
they were files.)

The ESIFA board has five ports that are used to store values related to viewport displays.
The ports are:

0 video
1 sky
2 thermal
3 laser_set
4 laser_lsb or lasermsb

Figure 2-10 identifies the CSUs in the ESIFA Interface CSC. The functions performed by
these CSUs are described in this section.

[ESIFAlnterface

esifafade.c esifa._query.c
esifalaser.c esifaspecial.c
esifaload.c esifathermal.c
esifaman.c esifavideo.c

Figure 2-10. ESIFA Interface CSUs

2.6. 1 esifa-fade.c (esifa_setfade)

The esifa set fade function handles backend fade table requests. This function is called
when the Simulation Host sends a MSGSUBSYSMODE message to change parameters
specific to a subsystem (backend). One of the parameters specified in this message is the
fade value to be displayed by all viewports in the subsystem.

135

BBN Systems and Technologies GT100 RTSW CSCI

The function call is esifasetfade(backend, fade-and, fadeor), where:

backend is the backend identifier
fade and is the andfade value from the fade table
fadeor is the orfade value from the fade table

esffaset_fade does the following:

• Calls esifa-getLobject-addr to get a pointer to the ESIFA object.
• Sets the new fade values.

Called By: msg.subsysmode

Routines Called: esifa-get-objecLaddr

Parameters: UNS_4 backend
UNS_2 fadeand
UNS_2 fadeor

Returns: none

2.6.2 esifa-laser.c

The functions in the esifalaser.c CSU process laser range requests from the Simulation
Host for T backends. These functions are:

* esifalaserjrequest-range
• esifalaser-return

2.6.2.1 esi fa_laserrequestrange

The esifalaserjrequest-range function sets up the ESIFA to calculate laser range depth for
a specified backend/channel, to be reported to the Simulation Host every frame. This
function is called if the Simulation Host sends a MSGLASERREQUESTRANGE
message for a channel on a T backend.

The function call is esifalaser requestrange(backend, channel), where:

backend is the backend id
channel is the channel number

esifalaserrequestjrange does the following:

* Calls esfa-get-object addr to get a pointer to the ESIFA object.
* Sets the ESIFA variables required to trigger laser range processing.

The function returns 0 if successful. It returns EOF if the ESIFA object cannot be found.

136

BBN Systems and Technologies GT1OO RTSW CSCI

Called By: backendlaserrequestjrange

Routines Called: esifa-get-object._addr

Parameters: UNS_4 backend
UNS_4 channel

Returns: 0
EOF

2.6.2.2 esifa laser return

The esifalaserreturn function returns a previously requested laser range value. This
function is called at the end of each frame for every channel on a T backend for which laser
request processing has been enabled.

The function call is esifa laser return(backend), where backend is the backend id for
which laser range data was requested.

esifa_laser_return does the following:

* Calls esifagetobject__addr to get a pointer to the ESIFA object.
• Uses the ifx_ioctl function to read the ESIFA ports.
* Determines the range value.
* Converts the laser depth value to floating point.

The function returns the laser depth value as rangef if successful. It returns -1.0 if the
ESIFA board cannot be found or the range is invalid.

Called By: backendresponse

Routines Called: esifa__get-object-addr
FXTO881
ifxiocdl
printf (in debug mode only)

Parameters: UNS_4 backend

Returns: -I
rangef

137

BBN Systems and Technologies GT100 RTSW CSCI

2.6.3 esifa load.c 0
The esifaload function downloads texture files to the Pixel Processor Tilers (PPTs). This
function is called if the d ("download textures maps to IPPTs") argument is entered on the
command line used to initialize the CIG.

The function call is esifa load(backend, file, mask), where:

backend is the backend id
file is the name of the textures file to be downloaded
mask is <<TBD>>

esifaload does the following:

* Calls esifa-get.objectaddr to get a pointer to the ESIFA object.
* Opens the specified file in read-only mode.
* Reads the ESIFA configuration data from the ESIFA configuration file.
• Reads the file header in the textures file to determine the file length and board type.
* If the board is a PPM, gets the PPM filename and sets ppm-downloadjflag to

TRUE.
* Calls esifawrite to load the entire file into ESIFA RAM.
* Calls esifadownload to download the data from ESIFA RAM to the specified

board.
* If the ppm download-flag is set, calls ppmjinit to initialize the PPM object with the

specified file.
* Closes the file.

If successful, or if an error is returned from one of the file I/O routines, esifaload returns
the status returned from the last routine as status. It returns EOF if the ESIFA cannot be
found. It returns -l if it could not find the file length or board type in the file header.

Called By: load_esifa

Routines Called: esifadownload
esifa._getobject-addr
esifawrite
ifxclose
ifx_ioctl
ifx._open
ifx read
ppm init
printf
search
strrchr
strtol

Parameters: UNS_4 backend
UNS_1 *file
INT_4 mask

138

BBN Systems and Technologies GT100 RTSW CSCI

Returns: status
EOF
-1

2.6.4 esifa man.c

The functions in the esifaman.c CSU are responsible for managing communication with
the ESIFAs. These functions are:

* esifa setup
* esifasitminit
* esifasend req
* esifa-get.objectaddr
* esifaConfigData
* esifa_queue-data
* esifaqueue download
* esifasendcqueue

2.6.4.1 esifa_setup

The esifasetup function establishes the ESIFA communications path associated with a
specified backend. This function is called when a backend is initialized.

The function call is esifa setup(backend, device), where:

backend is the backend id
device is the device name of the ESIFA board

esifa-setup does the following:

" Allocates memory for the ESIFA table.
• Opens the specified device in read-write mode.
* Initializes the ESIFA and ports values.
" Reads the configuration data from the ESIFA into the ConfigData[] array.

The function returns 0 if successful. If an error is returned from an I/O routine, the error is
returned as status. The function returns 1 if the device could not be opened.

Called By: backendsetup

Routines Called: free
ifx_ioctl
ifxopen
malloc
printf

Parameters: UNS_4 backend

139

BBN Systems and Technologies GT100 RTSW CSCI

UNSI *device

Returns: status
0
1

2.6.4.2 esifa siminit

The esifa_sim_init function prepares the ESIFA to run a simulation. This function is called
when the backend is being readied for a simulation.

The function call is esifa-sim-init0. For each ESIFA, the function does the following:

• Finds the ESIFA object's entry in the esifatable[] array.
* Initializes the ESIFA object's video, sky, and thermal values.
* Calls mpvideo-getobjectaddr to determine whether the backend contains an MPV

board.
- If the returned pointer is NULL (indicating a T backend), sets the ESIFA

object's laser value to Oxfff.
- If the returned pointer is not NULL (indicating a TX backend), sets the

ESIFA object's laser value to 0x2000.
* Initializes the object's iojreq flag to TRUE.

Called By: backendsiminit

Routines Called: mpvideo-getobject-addr

Parameters: none

Returns: none

2.6.4.3 esifasendreq

The esifasend-req function performs any requested I/O with the ESIFA boards. This
function is called at the end of every frame, or if the backend is reset. It is also called
during the configuration state if the Simulation Host sends a PPM message.

The function call is esifa-sendreqo. The function does the following:

* If the ESIFA object's ioreq flag is TRUE:
- Sets the ioreq flag to FALSE.
- Sets all ESIFA port values.

* Calls esifasendqueue to write the all queued data to ESIFA RAM and then
download it to the appropriate board.

Called By: backend_reset

140

BBN Systems and Technologies GT100 RTSW CSCI

backend-senc~req
db_mcc -setup

Routines Called: esifasendqueue
ifx-ioctl

Parameters: none

Returns: none

2.6.4.4 esifa get object addr

The esifa-geobject.addr function returns a pointer to the ESJIFA object. The ESIFA
objects are maintained in an array (esifa..tablefl) indexed by backend id.

The function call is esifa get -object addr(backend), where backend is the identifier
of the backend that contains the ESIFAT-

The function returns NULL if the ESIFA object cannot be found.

Called By: esifa-download
esifa-laser-request-range
esifa-laser-return
esifa load
esifaLread
esifajrea-ports
esifa~set-fade
esifa-set-special
esifa-set_thermal
esifa-set_video
esifa-write
esifa-write-ports
ppm_load

Routines Called: none

Parameters: UNS_4 backend

Returns: esifa -able[nI
NULL

2.6.4.5 esifaConfigData

The esifaConfigata function returns a pointer to an ESIFA's configuration data.
Configuration data is maintained in the ConfigData[] array, indexed by backend. This

141

BBN Systems and Technologies GT100 RTSW CSCI

function is called if the Gossip user selects the e ("esifa info") or p ("ppm load") option
from the PPM Query menu.

The function call is esifaConfigData(backend), where backend is the backend id.

The function returns NULL if the ESIFA has not yet been configured by esifasetup.

Called By: gos-ppmquery
ppmload

Routines Called: none

Parameters: UNS_4 backend

Returns: &ConfigData[backend]
NULL

2.6.4.6 esifa_queuedata

The esifaqueuedata function copies data to a queue, to wait to be downloaded to the
ESIFA RAM. This function is called by the Message Processing routines that process the
PPM messages sent by the Simulation Host.

The function call is esifaqueue_data(backend, sourceaddress, byte-count,
esifaramaddress), where:

backend is the backend id
source-address is the address of the data to be copied to ESIFA RAM
byte_count is the number of bytes to be copied to ESIFA RAM
esifaram_address is a pointer to the address in ESIFA RAM the data is put into; this

address is set by esifaqueue_data

esifa~queuedata does the following:

* Copies the data to the next available location in ESIFA RAM.
• Puts the data's RAM address into the location specified by esifaram_address.
* Increments its RAM pointer by the size of the data just added.

The function always returns 0.

Called By: msgppmdisplay-mode
msg-ppmLdisplay-offset
msgppm~pixel location
msg-ppm.pixel-state

Routines Called: bcopy
printf (in debug mode only)

142

BBN Systems and Technologies GTI00 RTSW CSCI

Parameters: UNS_2 backend
UNS_4 sourceaddress
INT_4 byte-count
UNS_4 *esifaramaddress

Returns: 0

2.6.4.7 esifa queuedownload

The esifaqueuedownload function creates an entry in a queue that identifies a RAM
address that contains data to be downloaded to the ESIFA. This function is called by the
Message Processing routines that handle PPM messages sent by the Simulation Host. The
routines first call esifaqueuedata to put the data into ESIFA RAM, then call
esifa-queue-download to put the data's RAM address (returned by esifa-queuedata) into
the download queue.

The function call is esifa queue download(backend, esifaram address,
byte-count, board_addr), where:

backend is the backend id
esifa ramaddress is the data's starting address in ESIFA RAM (set by

esifaqueue-data)
bytecount is the number of bytes of data to be downloaded
board addr is the address of the target PPM board

The function always returns 0.

Called By: msg-ppm-display-mode
msgppmdisplay-..offset
msgppm..pixellocation
msg__ppm-pixel_state

Routines Called: none

Parameters: INT_2 backend
UNS_4 esifaramaddress
UNS_4 bytescount
UNS_2 boardaddr

Returns: 0

143

BBN Systems and Technologies GT100 RTSW CSCI

2.6.4.8 esifa_sendqueue

The esifa_send-queue function calls the appropriate routines to write the data from the
RAM queue to ESIFA RAM, and then download the data from ESIFA RAM to the
appropriate 9U board. This function is called at the end of every frame.

The function call is esifa_send queueo. The function does the following:

• For each backend, calls esifawrite to write all data in the RAM queue to ESIFA
RAM.

* For each index in the download queue, calls esifadownload to download the data
from ESIFA RAM to the appropriate board.

The function returns the status returned from the last called routine as status.

Called By: esifasendreq

Routines Called: esifa_download
esifa_write

Parameters: none

Returns: status

2.6.5 esifaquery.c

The functions in the esifa-query.c CSU read data from and write data to the ESIFAs.
These functions are:

• esifaread-ports
* esifawnite-ports
• esifaread
* esifa_write
* esifadownload

2.6.5.1 esifareadports

The esifaread-ports function reads the current values set in the ESIFA ports into specified
locations. This function is called if the Gossip user selects the 1 ("read Esifa io ports")
option from the GT Hardware menu.

The function call is esifa readports(backend, portO, portl, port2, port3,
port4), where:

backend is the backend id
portO is a pointer to the location for the video port value

144

BBN Systems and Technologies GTOO RTSW CSCI

port] is a pointer to the location for the sky port value
port2 is a pointer to the location for the thermal port value
port3 is a pointer to the location for the laser-set port value
port4 is a pointer to the location for the laser lsb or lasermsb port value

esifa-readports does the following:

" Calls esifa-get.objectaddr to get a pointer to the ESIFA object.
• Calls ifx_ioctl to read the port values.
* Puts the port values into the locations specified in the call. gos system then

displays the values to the Gossip user.

The function returns the value returned from ifxioctl as status. It returns EOF if the
ESIFA cannot be found.

Called By: gos-system

Routines Called: esifa-get-objectaddr
ifx ioctl

Parameters: UNS_4 backend
UNS_2 *porto
UNS_2 *portl
UNS_2 *port2
UNS_2 *port3
UNS_2 *port4

Returns: status
EOF

2.6.5.2 esifawriteports

The esifawrite-ports function writes specified values to the ESIFA ports. This function
is called if the Gossip user selects the 2 ("write Esifa io ports") option from the GT
Hardware menu. The user is prompted for the new values.

The function call is esifa writeports(backend, portO, portl, port2, port3),
where:

backend is the backend id
portO is the new value for the video port
port) is the new value for the sky port
por,2 is the new value for the thermal port
port3 is the new value for the laserset port

esifa-write-ports does the following:

• Calls esifa-get__object addr to get a pointer to the ESIFA object.
1 Calls ifxioctl to write the specified values :o the ESIFA ports.

145

BBN Systems and Technologies GT100 RTSW CSCI

The function returns the value returned from ifxioctl as status. It returns EOF if the
ESIFA cannot be found.

Called By: gos-system

Routines Called: esifa-getobjectaddr
ifxioctl

Parameters: UNS_4 backend
UNS_2 porto
UNS_2 portl
UNS_2 port2
UNS_2 port3

Returns: status
EOF

2.6.5.3 esifa read

The esifaread function reads data from a specified address in ESIFA RAM into a specified
location. This function is called if the Gossip user selects the r ("read ESIFA ram") option
from the PPM Query menu.

The function call is esifaread(backend, esifaramaddress, byte_count,
destaddr), where:

backend is the backend id
esifaramaddress is the starting address to read
bytecount is the number of bytes to read
destaddr is the location to place the data read from the ESIFA

esifaread does the following:

" Calls esifa-get-objectaddr to get a pointer to the ESIFA object.
• Calls ifxioctl to read the specified number of bytes from the ESIFA RAM into the

location specified in the call.

The function returns the value returned from ifxioctl as status. It returns EOF if the
ESIFA cannot be found.

Called By: gos.ppm-query

Routines Called: esifa-getobject-addr
ifxiocti
printf

146

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: UNS_4 backend
UNS_4 esifaram-address
UNS_4 byte-count
UNSI *destaddr

Returns: status
EOF

2.6.5.4 esifa write

The esifawrite function writes data to ESIFA RAM. This function is called at the end of
each frame to write all data queued for the ESIFA during that frame from the RAM queue to
RAM. It is also called if the Gossip user selects the w ("write ESIFA ram") option from
the PPM Query menu.

The function call is esifawrite(backend, esifaramaddress, bytecount,
src addr), where:

backend is the backend id
esifa ram address is the destination address in ESIFA RAM
byte count is the number of bytes to be written
src-addr is the source location of the data to be written

esifa write does the following:

• Calls esifa-get.objectaddr to get a pointer to the ESIFA object.
* Calls ifxioctl to write the specified number of bytes to the specified location in

ESIFA RAM.

The function returns the value returned from ifxioctl as status. It returns EOF if the
ESIFA cannot be found.

Called By: esifaload
esifa-sendqueue
gosppmquery
ppmload

Routines Called: esifagetobjecLaddr
ifx ioctl
printf

Parameters: UNS_4 backend
UNS_4 esifaramaddress
UNS_4 byte-count
UNSI *srcaddr

Returns: EOF

147

BBN Systems and Technologies GT1OO RTSW CSCI

status

2.6.5.5 esifa download

The esifadownload function downloads data from ESIFA RAM to the various boards
(e.g., PPM and PPT) in the 9U. This function is called at the end of each frame, to
download all data that accumulated during that frame. (esifa-download is called after
esifawrite is called to move the data into ESIFA RAM.) This function is also called if the
Gossip user selects the d ("Download parameters") option from the PPM Query menu.

The function call is esifa download(backend, esifa ram-addr, bytecount,
backend board addr, ifags), where:

backend is the backend id
esifa ram addr is the starting location of the data in ESIFA RAM
byte count is the number of bytes of data to be downloaded
backend board addr is the address of the 9U board that is to receive the data
flags is -.<TBD>>

esifadownload does the following:

• Calls esifa-geLobject addr to get a pointer to the ESIFA object.
* Calls ifx_ioctl to download the specified number of bytes to the specified

subsystem board.

The function returns the value returned from ifxioctl as status. It returns EOF if the
ESIFA cannot be found.

Called By: esifaload
esifasendqueue
gos-ppm~query
ppmload

Routines Called: esifa-getLobjectaddr
ifxiocdl
printf

Parameters: UNS_4 backend
UNS_4 esifa-ramaddr
UNS_4 byte-count
UNS_4 backendboardaddr
UNS_4 flags

Returns: EOF
status

148

BBN Systems and Technologies GT100 RTSW CSCI

*2.6.6 esifaspecial.c (esifasetspecial)

The esifaset_special function handles special viewport changes. This function is called if
the Simulation Host sends a MSG_SUBSYSMODE.

The function call is esifa set special(backend, skyand, skyor, laserand,
laseror), where:

backend is the backend id
skyand is the new sky-and fade value
skyor is the new sky-or fade value
laser and is the new laserand fade value
laser-or is the new laser-or fade value

esifa-seLspecial does the following:

* Calls esifa-geLobjecLaddr to get a pointer to the ESIFA object.
* Sets the new values.
* Sets the ESIFA's io-req flag to TRUE.

Called By: backendsetcolor
msg-subsysmode

Routines Called: esifa-get-objectaddr

Parameters: UNS_4 backend
UNS_2 sky-and
UNS_2 sky-or
UNS_2 laserand
UNS_2 laseror

Returns: none

2.6.7 esifa thermal.c (esifasetthermal)

The esifaset_thermal function handles thermal changes. This function is called when the
Simulation Host sends a MSG_VIEWPORTUPDATE message to change viewport
modifier information (thermal white hot, thermal black hot, etc.).

The function call is esifa setthermal(backend, channel, thermal flag,
whitehotflag), where:

backend is the backend id
channel is the channel number
thermal_flag is 0 (alternate mode is disabled) or 1 (alternate mode is enabled)
whitehot~flag is 0 (modifier to alternate is off) or 1 (modifier to alternate is on)

149

BBN Systems and Technologies GT100 RTSW CSCI

esifaset-thermal does the following:

" Calls esifa-get~objectaddr to get a pointer to the ESIFA object.
* Turns the channel's thermal view ON or OFF, as indicated by the thermal_flag.
* Sets whitehot or blackhot mode.
* Sets the ESIFA's io_req flag to TRUE.

Called By: backendsetthermal

Routines Called: esifa.geLobjectaddr

Parameters: UNS_4 backend
UNS_4 channel
UNS_4 thermalflag
UNS_4 whitehotjflag

Returns: none

2.6.8 esifa-video.c (esifaset_video)

The esifasetvideo function turns the video monitors off and on. This function is called to
turn the videos off at the end of a simulation. It is also called if the Simulation Host sends
a MSGVIEWPORTUPDATE message to change viewport modifier information during a
simulation.

The function call is esifasetvideo(backend, channel, flag), where:

backend is the backend id
channel is the channel number
flag is 0 (turn video off) or 1 (turn video on)

esifasetvideo does the following:

" Calls esifa-get-object-addr to get a pointer to the ESIFA object.
" Sets the specified channel's video off or on as specified byflag.
* Sets the ESIFA's io req to TRUE.

Called By: backend_reset
backend_setvideo

Routines Called: esifa-getobjctaddr

Parameters: UNS_4 backend
UNS_4 channel
UNS_4 flag

150

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

151

BBN Systems and Technologies GT100 RTSW CSCI

2.7 Stand-Alone Host Emulator (/cig/libsrc/libflea)

Flea is an embedded, stand-alone, Simulation Host emulator that resides within the CIG
real-time software. Flea permits the CIG user to generate visual images, execute specific
features, and test limited functionality without interacting with a Simulation Host. Flea is
available only in stand-alone operation mode (i.e., when the system is not being driven
through a simulation).

The basic startup sequence for Flea is as follows:

1. On the startup command line, the user includes the "f' argument to specify Flea
mode.

2. The Task Initialization CSC creates and starts flea and fleaiotask (in addition to
gossip and the real-time processing tasks). It also calls a Host Interface function to
initialize the CIG-Flea interface.

3. The flea task initializes various parameters, then suspends itself. flea_iotask also
suspends itself.

4. Using a VT100-compatible terminal connected to the CIG, the user accesses the
Gossip main menu and selects the f ("enter Flea menu") option.

5. The gossip-tick function calls various Flea functions to invoke the Flea user
interface, wake up the suspended flea task, and display the "Flea>" user prompt.

Once Flea is running, it looks for a configuration file to build the viewport configuration
tree and. set up the simulation environment. The configuration file is an ASCII file that
contains commands in a predefined format. Various Flea routines are called to convert the
information in the file to Simulation Host-type messages which are sent to the real-time
software for processing.

After the configuration file has been processed, flea generates a CIG Control message to
transition the CIG into the simulation state.

Once in the simulation state, the Flea user enters commands through the keyboard to move
the simulated vehicle over the terrain. The user can also enter commands to change various
simulation parameters (modify viewports, add or delete static vehicles, fire rounds, request
terrain feedback data, etc.).

The commands entered by the Flea user during the exercise generate messages that are sent
to the real-time software and processed as if they were sent by the Simulation Host. For
details on the purpose and content of each message, refer to the "GT100 CIG to Simulation
Host Interface Manual." Flea exchanges message packets with the real-time software
(using the Host Interface routines) every frame.

The structures used to transfer message packets are the following:

fleaimsg
The packet sent from Flea to the real-time software (SIM-to-CIG messages).

152

BBN Systems and Technologies GTOO RTSW CSCI

flea-omsg
The packet sent from the real-time software to Flea (CIG-to-SIM messages).

The work buffers used to process messages are p flea in (for messages sent to Flea) and
p flea out (for messages to be sent by Flea). The p_tlfeaout structure contains flags
used to-indicate that a certain type of message is to be generated, based on input from the
user.

During a Flea exercise, the user selects the desired commands from a series of menus. A
separate function processes the commands entered on each menu. The function responsible
for a particular menu is called using the *fleamenu function pointer. The command
prompt at the bottom of the Flea console screen identifies the menu/process that is currently
active.

In addition to letting the user drive the simulated vehicle via the keyboard, Flea supports a
demonstration mode and a script playback mode.

Figure 2-11 identifies the CSUs in the Flea CSC. These CSUs are described in this
section.

Stand-Alone Host
Emulator

CSC

I I
autopilot.c flea db traverse.c fleaswitches.c
cftranslator.c fleadecodedata.c flea update-pos.c
dynamic demo.c fleademo.c fleavehcontrol.c
encoderoutines.c fleadraw_2d.c get siodata.c
flea.c fleaencodedata.c modeldemo.c
flea -agLterrainfollow.c fleagraphicsjtest.c tick.c
flea agpt_locations.c fleainitcigsw.c tick-ppm.c
flea agptswitches.s fleappmobj.c tickscript.c
flea-atp.c fleascript.c update_2d.c
fleabalopts.c fleasimulatevehicle.c update-agpt_2d.c

Figure 2-11. Flea CSUs

153

BBN Systems and Technologies GTIOO RTSW CSCI

2.7.1 autopilot.c

The autopilot function demonstrates a simulated vehicle taking off, flying, maneuvering,
and eventually landing. This function is called at the end of every frame if a demonstration
has been initiated (demonstration = 1).

The autopilot demonstration takes the simulated vehicle through a series of actions. Each
action is performed for a set of time called a segment. The full demo is divided into 25
segments of varying lengths. The length of each segment is based on the frame rate. For
example, segment 0 is four times the frame rate, or four frames. Segment 1 is the next 10
frames, segment 2 is the next 15, and so on. The duration of each segment is specified by
the autopilot function.

During each segment, the simulated vehicle is moved and/or rotated in a particular
direction. In segment 1, for example, the vehicle turns and moves down the runway. In
segment 2, the vehicle accelerates down the runway. In segment 3, the vehicle rotates up
to gain altitude. The demo continues through a series of actions, ending with the vehicle
landing and returning to the hangar.

The function call is autopilot(frame), where frame is the simulation frame number.
autopilot does the following:

" If the frame number is 0 (indicating the start of a new demo):
- Sets up initial conditions (frame rate, vehicle position, etc.).
- Allocates memory for the autopilot data.

" If the frame number is from I through 9998 (i.e., during the demo):
- If the frame rate has changed, sets the rate and initializes the autopilot

segment data; sets the deceleration rate and trim speed based on the frame
rate; sets the acceleration rate.

- Processes each segment.
* If the frame number is 9999 (indicating the end of the demo):

- Deallocates the memory allocated for the autopilot data.

The function returns the last frame number in segment 25 - this is the total number of
frames the demo will run. fleademo uses this value to determine when to stop the demo.
The function returns -1 if not enough memory was available for the autopilot information.

Called By: flea_demo

Routines Called: calloc
Cos
free
GLOB
printf
sin
TORAD

Parameters: INT_4 frame

154

BBN Systems and Technologies GT100 RTSW CSCI

Returns: pdemo->segment[25]
-1

2.7.2 cf translator.c

The functions in the cftranslator.c CSU are used to read and process an ASCII file that
contains CIG configuration messages. A Simulation Host-type message is generated for
each entry in the file. These messages are placed into a temporary message buffer, and are
then copied (by fleainit cig-sw) to the current outgoing message packet. The packet is
then sent to the real-time software and processed as if it were sent by the Simulation Host.
This process lets the Flea user build the viewport configuration tree, set up 2-D overlays,
and configure simulation parameters.

The configuration messages generated by the cf_translator functions have the same formats
as the messages sent from the Simulation Host. Refer to the "GT100 CIG to Simulation
Host Interface Manual" for details.

The functions in this CSU are:

• config-translator
• processcigctl
• process file_description
" processsconfigtreenode
" processyiewport_state
• processdefine tx mode
• process overlay-setup
• processtf_int_hdr
• process ff initpt
• processaglsetup
" process_sio_mit
• process addtrajjtable
• process, traj entry

• process_2dsetup
• process It state
• process-drl lpktsize
• processsio_close
" process if state
• process ammodefine
• processppmLdisplay-mode
" process ppm.displayoffset
" process__ppm.pixellocation
" process..ppm.pixel_state
" readakeyword
* removewhitespace
" removecommentlines

The OUTPUTMESSAGE macro, described in Appendix B, is also defined in this CSU.
The process-* functions use OUTPUT_MESSAGE to place their messages into the
message buffer used by flea_init_cigsw.

155

BBN Systems and Technologies GT100 RTSW CSCI

2.7.2.1 configtranslator

The config-translator function opens the Flea configuration file and calls the appropriate
process_* function to process each line in the file. The process-* functions generate the
Simulation Host-type messages used to configure the system. config-translator is called
whenever Flea is invoked by the user.

The function call is configtranslator (input fn, msg buffer,
msgbuffer size), where:

inputfin is the name of the configuration file
msgbuffer is a pointer to the buffer to be used for outgoing messages
msgbuffer-size is the size of the outgoing message buffer

configiranslator does the following:

• Opens the specified file.
• Zeroes out the command buffer.
• Calls read_a_keyword to read an entry from the file.
" Calls the appropriate process_* function to process the line.
* Verifies that the outgoing buffer has room to hold the new outgoing messages. If it

does not, exits with a 1.
" Repeats the procedure for each line in the file.
* When the END command is detected in the file, or if an error is reported by one of

the called procedures:
- Closes the file.
- Outputs "PASSED" or "FAILED" to stdout, depending on whether or not

an error occurred.
- Uses the OUTPUT_MESSAGE macro to put a MSGEND message into

the message buffer.

The function returns the status from the last called routine as error-flag. It returns EOF if
the specified file could not be opened or contained a syntax error.

Called By: fleainit-cigsw

Routines Called: bzero
exit
fclose
fopen
OUTPUT_MESSAGE
printf
process_2d setup
processaddtraj_table
process._agl-setup
processammodefine
processscigctl
process configtree-node
process_defime_tx_mode
processdri 1lpkt.size

156

BBN Systems and Technologies GT100 RTSW CSCI

process filedescription
processit_state
process-overlay-setup
processppmdisplay-mode
process.ppm.display-offset
process,ppmpixel-location
processppmpixeLstate
process_sio_close
process_siojimt
process_tf_nit_hdr
process tf_initpt
process tf state
processtrajentry

process,.viewportstate
read-a~keyword
strcmp
strcpy

Parameters: char *inputfn
UNSI *msgbuffer
INT_4 msgbuffer__size

Returns: EOF
error-flag

2.7.2.2 processcigctl

The process-cigctl function generates the MSG_CIGCTL message. This function is
called if the entry in the input configuration file is STARTCIGCTL.

The function call is process cig_ctl0. The function does the following:

" Initializes the output message.
" Zeroes out the command buffer.
• Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (control-code, subsys-id, or
subsys channel).

- Reads the data specified for the parameter.
- Sets the parameter's value in the output message.

" Stops reading when it detects an END_CIG_CTL message or an invalid parameter.
* Uses the OUTPUT_MESSAGE macro to put the MSGCIG_CTL message into the

message buffer.

The function returns error~flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

157

BBN Systems and Technologies GTI00 RTSW CSCI

Routines Called: bzero
fgets
fscanf
OUTPUTMESSAGE
printf
read-a.keyword
strcmp

Parameters: none

Returns: error_flag

2.7.2.3 processfiledescription

The process-file_description function generates the MSGFILEDESCR message. This
function is called if the entry in the input configuration file is STARTFILEDESCR.

The function call is processfile descriptiono. The function does the following:

* Initializes the output message.
" Zeroes out the command buffer.
* Calls read_a_keyword to read each parameter from the entry.
" For each parameter in the entry:

- Determines which parameter is being set (size, number, request, or
filename). p

- Reads the data specified for the parameter.
- Sets the parameter's value in the output message.

• Stops reading when it detects an ENDFILEDESCR message or an invalid
parameter.

" Uses the OUTPUTMESSAGE macro to put the MSGFILEDESCR message
into the message buffer.

The function returns error_flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called Ey: config-translator

Routines Called: bzero
fgets
fscanf
OUTPUTMESSAGE
printf
read a~keyword
strcmp

Parameters: none

158

BBN Systems and Technologies GT100 RTSW CSCI

Returns: errorjflag

2.7.2.4 processconfigtreenode

The processsconfigtree-node function generates the MSGCREATECONFIGNODE
message. This function is called if the entry in the input configuration file is
STARTCREATE_CONFIGNODE or STARTCONFIGTREENODE.

The function call is process configtree node(. The function does the following:

• Initializes the output message.
" Reads the nodeindex from the input file.
" Zeroes out the command buffer.
* Calls reada_keyword to read each parameter from the node's entry.
" For each parameter in the entry:

- Determines which parameter is being set (parent-index, node_type, matrix,
etc.).

- Reads the data specified for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDCREATECONFIGNODE message, an
ENDCONFIGTREENODE message, or an invalid parameter.

* Uses the OUTPUT_MESSAGE macro to put the MSG_CREATECONFIGNODE
message into the message buffer.

The function returns error flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: configjtranslator

Routines Called: bzero
fgetc
fgets
fscanf
OUTPUTMESSAGE
printf
read_a.keyword
strcmp

Parameters: none

Returns: errorjflag

2.7.2.5 processviewport state

The process-viewport-state function generates the MSGVIEWPORTSTATE message.
This function is called if the entry in the input configuration file is. START_VIEWPORTSTATE.

159

BBN Systems and Technologies GT100 RTSW CSCI

The function call is process viewport stateo. The function does the following:

• Initializes the output message.
" Reads the nodeindex from the input file.
" If the nodeindex is too large, outputs an error and sets errorjflag to TRUE.
" Zeroes out the command buffer.
* Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (viewport_id, resolution,
viewing-range, etc.).

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDVIEWPORT_STATE message or an invalid
parameter.

" Uses the OUTPUT_MESSAGE macro to put the MSG_VIEWPORTSTATE
message into the message buffer.

The function returns error flag set to FALSE if successful, TRUE if the nodeindex is
invalid, or EOF if a syntax error was detected.

Called By: config-translator

Routines Called: bzero
fgets
fscanf
OUTPUTMESSAGE
printf
read-a-keyword
strcmp

Parameters: none

Returns: error-flag

2.7.2.6 process define txmode

The process_define_tx_mode function generates the MSGDEFINE_TX_MODE message.
This function is called if the entry in the input configuration file is
STARTDEFINETXMODE.

The function call is process-definetx-modeo. The function does the following:

" Initializes the output message.
* Zeroes out the command buffer.
" Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (subsys-id, mode-id, mpv-mode,
etc.).

- Reads the data for the parameter.

160

BBN Systems and Technologies GT100 RTSW CSCI

- Sets the parameter's value in the output message.S * Stops reading when it detects an END_DEFINE_TX_MODE message or an invalid
parameter.

* Uses the OUTPUTMESSAGE macro to put the MSG_DEFINETX_MODE
message into the message buffer.

The function returns errorjflag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fgets
fscanf
OUTPUT_MESSAGE
printf
reada.keyword
strcmp

Parameters: none

Returns: errorjflag

2.7.2.7 processoverlaysetup

The process,.overlay-setup function generates the MSG_OVERLAYSETUP message.
This function is called if the entry in the input configuration file is
STARTOVERLAYSETUP.

The function call is process overlay-setupo. The function does the following:

* Initializes the output message.
" Zeroes out the command buffer.
* Calls read-akeyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (type, barreloffset, etc.).
- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDOVERLAYSETUP message or an invalid
parameter.

• Uses the OUTPUTMESSAGE macro to put the MSG_OVERLAY_SETUP
message into the message buffer.

The function returns errorfiag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config.translator

161

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: bzero
fgets
fscanf
OUTPUT_MESSAGE
printf
read a keyword
strcmp

Parameters: none

Returns: errorjflag

2.7.2.8 process tfinit hdr

The processtf_iniLhdr function generates the MSGTFINITHDR message. This
function is called if the entry in the input configuration file is STARTTFINITHDR.

The function call is processtf init hdro. The function does the following:

• Initializes the output message.
• Reads the vehicle id from the file.
* Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (own-vehicle flag, poinLcount,
etc.).

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

• Stops reading when it detects an END_TF_INIT_HDR message or an invalid
parameter.

* Uses the OUTPUTMESSAGE macro to put the MSGTFINIT_HDR message
into the message buffer.

The function returns errorflag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fgets
fscanf
OUTPUTMESSAGE
printf
read-a keyword
strcmp

Parameters: none

162

BBN Systems and Technologies GT100 RTSW CSCI

Returns: error_flag

2.7.2.9 processtf-init pt

The process-tf0jnit-pt function generates the MSG_TF_INIT_PT message. This function
is called if the entry in the input configuration file is START_TF_IN1T_PT.

The function call is process tf init-pto. The function does the following:

* Initializes the output message.
" Zeroes out the command buffer.
* Reads the vehicle id from the file.
" Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (point or position).
- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDTIFINITPT message or an invalid
parameter.

" Uses the OUTPUT_MESSAGE macro to put the MSGTFINITPT message into
the message buffer.

The function returns error~flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config.translator

Routines Called: bzero
fgets
fscanf
OUTPUTMESSAGE
printf
read a._keyword
strcmp

Parameters: none

Returns: error-flag

2.7.2.10 processagIsetup

The process,.agl-setup function generates the MSG.AGLSETUP message. This function
is called if the message in the input configuration file is STARTAGL_SETUP.

The function call is process agisetupo. The function does the following:

Initializes the output message.

163

BBN Systems and Technologies GTOO RTSW CSCI

" Zeroes out the command buffer.
* Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (for this message, the only valid
parameter is state).

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDAGL_SETUP message or an invalid
parameter.

* Uses the OUTPUTMESSAGE macro to put the MSGAGL_SETUP message
into the message buffer.

The function returns errorflag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fgets
fscanf
OUTPUTMESSAGEprintf

read a~keyword
strcmp

Parameters: none

Returns: error-flag

2.7.2.11 process sio init

The process.sio_init function generates the MSG_SIO_INIT message. This function is

called if the entry in the input configuration file is STARTSIO_INIT.

The function call is process sio init 0. The function does the following:

" Initializes the output message.
* Zeroes out the command buffer.
* Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (devicename, devicelid, etc.).
- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an END_SIO_INIT message or an invalid parameter.
* Uses the OUTPUT_MESSAGE macro to put the MSG_SIO_INIT message into the

message buffer.

The function returns errorflag set to FALSE if successful, or EOF if a syntax error was
detected.

164

BBN Systems and Technologies GT100 RTSW CSCI

Called By: config-translator

Routines Called: bzero
fscanf
OUTPUT_MESSAGE
printf
read_akeyword
strcmp

Parameters: none

Returns: error jlag

2.7.2.12 process_add_trajtable

The process,add_trajjtable function generates the MSGADD_TRAJ_TABLE message.
This function is called if the message in the input configuration file is
STARTADDTRAJTABLE.

The function call is process add traj.tableo. The function does the following:

* Initializes the output message.
• Zeroes out the command buffer.
* Calls read_a-keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (trajjtype, sample_rate, etc.).
- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDADD_TRAJ_TABLE message or an invalid
parameter.

* Uses the OUTPUT_MESSAGE macro to put the MSG_ADD_TRAJTABLE
message into the message buffer.

The function returns errorflag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config__translator

Routines Called: bzero
fscanf
OUTPUTMESSAGE
printf
read a.keyword
strcmp

165

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: errorjlag

2.7.2.13 processtraj entry

The processjtraj-entry function generates the MSG jRAJ_ENTRY message. This

function is called if the entry in the input configuration file is START_TRAJENTRY.

The function call is process traj entryo. The function does the following:

" Initializes the output message.
" Zeroes out the command buffer.
* Calls read_a_keyword to read each parameter from the entry.
• For each parameter in the entry:

- Determines which parameter is being set (trajjtype, entry-index, etc.).
- Reads the data for the parameter.
- Sets the parameter's value in the output message.

" Stops reading when it detects an ENDTRAJENTRY message or an invalid
parameter.

• Uses the OUTPUT_MESSAGE macro to put the MSGTRAJENTRY message
into the message buffer.

The function returns error_flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fscanf
OUTPUTMESSAGE
printf
read akeyword
srcmp

Parameters: none

Returns: errorjflag

2.7.2.14 process_2d setup

The process_-2dsetup function generates the MSG_2DSETUP message. This function is
called if the entry in the input configuration file is START_2DSETUP.

The function call is process_2d setupo. The function does the following:

* Initializes the output message.

166

BBN Systems and Technologies GTI00 RTSW CSCI

" Zeroes out the command buffer.
"Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (for this message, the only valid
parameter is string).

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading the entry when it detects the END_2DSETUP message.
* Stops reading when it detects an END_2DSETUP message or an invalid

parameter.
* Uses the OUTPUT_MESSAGE macro to put the MSG_2DSETUP message into

the message buffer.

The function returns errorflag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fgetc
OUTPUTMESSAGE
printf
read-akeyword
strcmp

Parameters: none

Returns: errorjflag

2.7.2.15 processItstate

The processjIt state function generates the MSGLTSTATE message. This function is

called if the entry in the input configuration file is STARTLTSTATE.

The function call is processIt stateo. The function does the following:

* Initializes the output message.
* Zeroes out the command buffer.
" Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (code, size, or interval).
- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDLTSTATE message or an invalid
parameter.

• Uses the OUTPUT_MESSAGE macro to put the MSGLT_STATE message into
the message buffer.

167

BBN Systems and Technologies GT100 RTSW CSCI

The function returns error flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fscanf
OUTPUTMESSAGE
printf
read_a keyword
strcmp

Parameters: none

Returns: error-flag

2.7.2.16 processdr llpkt size

The process-drl lpkLsize function generates the MSG_DR1 1_PKTSIZE message.
This function is called if the entry in the input configuration file is
STARTDRI I_PKT_SIZE.

The function call is process.drllpkt.sizeO. The function does the following:

* Initializes the output message.
* Zeroes out the command buffer.
" Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (simtocigpktsize,
cig-to-simpktsize, etc.).

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDDR1 1_PKTSIZE message or an invalid
parameter.

• Uses the OUTPUTMESSAGE macro to put the MSGDRI 1_PKTSIZE
message into the message buffer.

The function returns error~flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fscanf
OUTPUTMESSAGE
printf
read-a-keyword

168

BBN Systems and Technologies GT100 RTSW CSCI

strcmp

Parameters: none

Returns: error-flag

2.7.2.17 process sio close

The processsio_close function generates the MSGSIGCLOSE message. This function

is called if the entry in the input configuration file is STARTSIOCLOSE.

The function call is process sio closeo. The function does the following:

• Initializes the output message.
• Zeroes out the command buffer.
* Calls read_a_keyword to read each parameter from the entry.
• For each parameter in the entry:

- Determines which parameter is being set; for this message type, the only
valid parameter is device_name.

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

• Stops reading when it detects an ENDSIOCLOSE message or an invalid
parameter.

• Uses the OUTPUTMESSAGE macro to put the MSGSIOCLOSE message into
the message buffer.

The function returns error~flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fscanf
OUTPUTMESSAGE
printf
read_akeyword
strcmp

Parameters: none

Returns: error-flag

2.7.2.18 processtf.state

The process tf state function generates the MSG TF STATE message This function is
called if the entry in the input configuration file is STARTTFSTATE.

169

BBN Systems and Technologies GT100 RTSW CSCI

The function call is processtf stateo. The function does the following:

• Initializes the output message.
* Zeroes out the command buffer.
• Calls read a-keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (vehicle-id, code, or frequency).
- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an END_'TFSTATE message or an invalid
parameter.

* Uses the OUTPUT_MESSAGE macro to put the MSGTFSTATE message into
the message buffer.

The function returns error_flag set to FALSE if successful, or EOF if a syntax ...cor was
detected.

Called By: config-translator

Routines Called: bzero
fscanf
OUTPUTMESSAGE
printf
readakeyword
strcmp

Parameters: none

Returns: error-flag

2.7.2.19 processammo_define

The processammo__define function generates the MSGAMMODEFINE message. This
function is called if the message in the input configuration file is
STARTAMMO_DEFINE.

The function call is process ammo_defineO. The function does the following:

* Initializes the output message.
* Zeroes out the command buffer.
* Calls read_a_keyword to read each parameter from the entry.
• For each parameter in the entry:

- Determines which parameter is being set; for this message type, the only
valid parameter is ammojtype map.

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDAMMO_DEFINE message or an invalid
parameter.

170

BBN Systems and Technologies GT100 RTSW CSCI

Uses the OUTPUT_MESSAGE macro to put the MSGAMMODEFINE message
into the message buffer.

The function returns error_flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fscanf
OUTPUT_MESSAGE
printf
read-akeyword
strcmp

Parameters: none

Returns: errorjflag

2.7.2.20 processppmdisplaymode

The processppmdisplay-mode function generates the MSGPPMDISPLAYMODE
message. This function is called if the entry in the input configuration file is
STARTPPMDISPLAYMODE.

The function call is processppmdisplay_mode(). The function does the following:

• Initializes the output message.
" Zeroes out the command buffer.
* Calls read a keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (subsystem, channel, or
display-mode).

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

" Stops reading when it detects an ENDPPM_DISPLAYMODE message or an
invalid parameter.

• Uses the OUTPUT_MESSAGE macro to put the MSGPPMDISPLAYMODE
message into the message buffer.

The function returns error_flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fscanf

171

BBN Systems and Technologies GT100 RTSW CSCI

OUTPUT_MESSAGE
printf
read-a.keyword
strcmp

Parameters: none

Returns: errorjlag

2.7.2.21 process_ppm_displayoffset

The processppmdisplay-offset function generates the MSG_PPM_DISPLAYOFFSET
message. This function is called if the entry in the input configuration file is
STARTPPMDISPLAYOFFSET.

The function call is processppm displayoffseto. The function does the following:

" Initializes the output message.
" Zeroes out the command buffer.
" Calls read_a_keyword to read each parameter from the entry.
" For each parameter in the entry:

- Determines which parameter is being set (subsystem, channel, offseti, or
offset4j).

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

• Stops reading when it detects an ENDPPMDISPLAYOFFSET message or an
invalid parameter.

* Uses the OUTPUTMESSAGE macro to put the MSGPPMDISPLAYOFFSET
message into the message buffer.

The function returns error_flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: configtranslator

Routines Called: bzero
fscanf
OUTPUTMESSAGE
printf
read-a~keyword
strcmp

Parameters: none

Returns: error-flag

172

BBN Systems and Technologies GT100 RTSW CSCI

2.7.2.22 processppmpixel_location

The processppm-pixellocation function generates the MSGPPMPIXELLOCATION
message. This function is called if the entry in the input configuration file is
STARTPPM_PIXELLOCATION.

The function call is process ppmpixel locationo. The function does the following:

• Initializes the output message.
" Zeroes out the command buffer.
" Calls read_a_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (subsystem, channel, location_i, or
locationj).

- Reads the data for the parameter.
- Sets the parameter's value in the output message.

* Stops reading when it detects an ENDPPMPIXELLOCATION message or an
invalid parameter.

* Uses the OUTPUTMESSAGE macro to put the MSGPPM_PIXELLOCATION
message into the message buffer.

The function returns error flag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config-translator

Routines Called: bzero
fscanf
OUTPUTMESSAGE
printf
read a-keyword
strcmp

Parameters: none

Returns: errorjflag

2.7.2.23 processppmpixel state

The process-ppmpixelstate function generates the MSGPPM_PIXELSTATE
message. This function is called if the entry in the input configuration file is
STARTPPMPIXELSTATE.

The function call is processppmpixel stateo. The function does the following:

• Initializes the output message.
* Zeroes out the command buffer.

173

BBN Systems and Technologies GTOO RTSW CSCI

" Calls reada_keyword to read each parameter from the entry.
* For each parameter in the entry:

- Determines which parameter is being set (subsystem, channel, or state).
- Reads the data for the parameter.
- Sets the parameter's value in the output message.

• Stops reading when it detects an END_PPM_PIXELSTATE message or an invalid
parameter.

• Uses the OUTPUT_MESSAGE macro to put the MSG_PPM_PIXELSTATE
message into the message buffer.

The function returns errorjflag set to FALSE if successful, or EOF if a syntax error was
detected.

Called By: config.translator

Routines Called: bzero
fscanf
OUTPUT_MESSAGE
printf
read_a_keyword
strcmp

Parameters: none

Returns: error-flag

2.7.2.24 read_akeyword

The read_a__keyword function puts the next entry in the configuration file into the command
buffer. config-translator then parses the entry in the command buffer and calls the
appropriate process-* function to handle it.

The function call is read_akeywordO.

The function first calls removecommentlines and removewhite space to eliminate
extraneous data. It then reads each character into the command buffer until it encounters a
pound sign (#) or a space.

Called By: config-translator
process_2d setup
processadd_traj-table
process agl-setup
process ammo define
process__cigctl
process__configtree-node
process define tx mode
process drl lpkt.size
process-filedescription

174

BBN Systems and Technologies GT100 RTSW CSCI

process-it-state
process, overlay-setup
process...ppm.4isplay..mode
process,.ppmjiisplay-.offset
process...ppmrLpixelocation
process-.ppmn pixel-state
process,_sio-close
process,-sio~mit
process _iit_hdr
process,_if_iniL-pt
process,.if-state
process-rj..entry
process-viewport_state

Routines Called: fgetc
fscanf
isspace
remove-comment-lines
remove-white..space
ungetc

Parameters: none

Returns: none

2.7.2.25 remove-white-space

The remove-white space function checks for and skips over blank lines in the
configuration file.

The function call is remove white spaceo.

Called By: readakeyword

Routines Called: fgetc
isspace
ungetc

Parameters: none

Returns: none

175

BBN Systems and Technologies GT100 RTSW CSCI

2.7.2.26 removecomment lines

The remove commentlines function checks for and skips over comment lines (identified
by #) in the configuration file.

The function call is remove commentlinesO.

Called By: readtakeyword

Routines Called: fgetc
fgets
ungetc

Parameters: none

Returns: none

2.7.3 dynamicdemo.c

The dynamicdemo function provides a real-time demonstration of up to 32 dynamic
models. This demonstration is controlled as follows:

• The demo is started if the user selects the d ("moving model demo") option on the
Flea Switches menu. (The demo can also be invoked through the Flea AGPT
Locations and Flea AGPT Switches menus.)

• If a demo has been started, flea-encode_data calls dynamicdemo each frame to
continue the demo.

• The number of vehicles in the demo, and other demo parameters, can be set on the
Moving Models Demonstration menu, reached by selecting the d ("moving model
demo") option on the Flea Switches menu after a demo has been started.

• The demo can be stopped by selecting option 9 ("stop demonstration") on the
Moving Models Demonstration menu.

The function call is dynamic demo(frame), where frame is the simulation frame
number, dynamic_demo does-the following:

* If the frame number is 0 (indicating the start of a new demo):
- Allocates memory for the demo.
- Initializes parameters that can be changed by the operator.
- Sets the demonstration variable to 2.

• If the frame number is from 1 through 9998 (i.e., during a demo):
- Updates the position and orientation of each model.
- Builds a MSG_OTHERVEHSTATE for each model and puts it in the Flea-

to-CIG message buffer.
* If the frame number is greater than or equal to 9999 (indicating the end of the

demo):
- Frees the allocated memory.

176

BBN Systems and Technologies GT100 RTSW CSCI

The function returns 1 if frame is 0, and returns 9 for any other frame value.

Called By: flea.agptlocations
flea.agplLswitches
fleaencodedata
flea_switches
modeLdemo

Routines Called: calloc
cosfree
printf
sin
TORAD

Parameters: INT_4 frame

Returns: 1
9

2.7.4 encode routines.c

The functions in the encoderoutines.c CSU build the Simulation Host-type message
packets sent to the simulation software during a Flea exercise. The messages are then
processed by the real-time software as if they had been sent by the Simulation Host during
an actual simulation.

Most of the routines in this CSU are called every frame during a Flea exercise. The basic
processing cycle is as follows:

• During the Flea exercise, the user enters commands through various Flea menus to
move the simulation vehicle, add static vehicles, fire rounds, and otherwise interact
with the simulation environment.

* The flea functions that manage the user interface put the new data into the
p.fleaout data structure. In most cases, the functions also set a flag in pifleaout
that indicates that new data has been added. Each type of data has its own flag.

* At the end of each frame, fleaencodedata calls all of the encode (upd_*) routines.

* Each upd_* function checks to see if its flag is on, indicating that pflea_out
contains new data for it to process.

• If its flag is set, the upd_* function gets its new data from p.fleaout and puts it
into a Simulation Host-type message in the current frame's outgoing message
packet.

* The upd_* function resets its flag in pjflea-out, for use the next frame.

177

BBN Systems and Technologies GTIO0 RTSW CSCI

The runtime messages generated by the upd_* functions have the same formats as
messages sent from the Simulation Host. Refer to the "GT100 CIG to Simulation Host
Interface Manual" for details.

The functions in this CSU are:

* upd-matrixvalues
* updrotationvalues
• upd-dynamicjmatrix
* upviewjflags
" updroundfired
* upd-chord fired
* upd-autofire
* updrem_staticveh
• upd-addstatic_veh
• upd-send dynamic
" updscounthitsper.rnin
• upd.yiewmode
" upd-showeff
* upd!clouds
* updreq-agl
* upd-reqpoint
* updreqilrange
" upd-view-mag
* upd-subsys mode
* upd-viewport-up
* updsend-stop
* fleaerror-print
" put-inhdr
" upd flea vehicles
* fireround
* processchord
• process_round
* cancel_round
* upd-siowrite
* updjt_state
* send-gun-overlay
* sendammo_define

2.7.4.1 updmatrix values

The upd-matrixvalues function generates a MSGHPRXYZSMATRIX or
MSGRTS4x3_MATRIX message to update the simulated vehicle's main transformation
matrix. This is the first function called at the end of every frame during a Flea exercise.

The function call is upd-matrix-values0. The function does the following:

" Resets the packet count to 0.
" Increments the packet count (size).
* Builds the message header and puts it in the packet.
* Builds the MSGHPRXYZSMATRIX or MSGRTS4x3_MATRIX message

(depending on the defined matrix type) and puts it in the packet.

178

BBN Systems and Technologies GT100 RTSW CSCI

The function calls flea error _print if the message packet does not contain enough room for
the new message.

Matrix types are initialized to an invalid type until the operator enters the main Flea menu.

Called By: fleaencode_data

Routines Called: fleaerror_print

Parameters: none

Returns: none

2.7.4.2 updrotationvalues

The updrotationvalues function generates MSG_ROT2xl_MATRIX,
MSG_IROTATION, and MSG_3ROTATIONS messages to update the transformation
matrices in the viewport configuration tree (to simulate moving components). This
function is used if the user selects the e ("transform update") option on the Flea Switches
menu to initiate continual movement of a node. The user enters the node index, rotation
type, rotation axis, and the number of degrees to rotate each frame.

The function call is upd_rotation valueso. For each node selected by the user, the
function does the following:

" Validates the rotation value (number of degrees of rotation); changes it if it is
invalid.

" Determines the rotation type (ROT2xl, 1ROTATION, or 3ROTATIONS).
" Increments the packet count (size).
* Builds the message header and puts it in the packet.
• Builds the MSG_ROT2xlMATRIX, MSGIROTATION, or

MSG_3ROTATIONS message and puts it in the packet.

The function calls fleaerrorprint if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: cos
flea.error-print
sin

Parameters: none

179

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.7.4.3 upddynamicmatrix

The upd-dynamicmatrix function generates a MSG_-PRXYZSMATRIX message to

update the transformation matrices of the simulated vehicle.

The function call is upddynamicmatrixO. The function does the following:

• Validates the matrix type.
* Checks to see if the node's p_fleaout->xfrmupdate flag is set. This flag indicates

that the transformation matrix is to be changed. It is set by tickjinit after the
simulation vehicle's position and orientation are entered by the user at startup.

" Validates the rotation value (number of degrees of rotation); changes it if it is
invalid.

• Increments the packet count (size).
" Builds the message header and puts it in the packet.
• Builds the MSGHPRXYZSMATRIX message and puts it in the packet.

The function calls flea_errorprint if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: fleaerror_print

Parameters: none

Returns: none

2.7.4.4 updviewflags

The updview flags function generates a MSGVIEWFLAGS message to update the
system view flags and configuration tree branch values during the Flea exercise. This
message is sent every frame unless the exercise is being stopped. The user can update
view flags using the v ("change view flags") option on the Flea Switches menu.

The function call is updview flagso. The function does the following:

• Checks for the stop flag in p.flea.out, to see if a CIG Control-Stop message has
been generated.

" Increments the packet count (size).
* Builds the message header and puts it in the packet.
• Builds the MSGVIEWFLAGS message (using the data in p-fleaout->

viewflag) and puts it in the packet.

The function calls fleaerrorprint if the message packet does not contain enough room for
the new message.

180

BBN Systems and Technologies GT100 RTSW CSCI

Called By: fleaencode_data

Routines Called: flea-error-print

Parameters: none

Returns: none

2.7.4.5 upd round fired

The updround_fired function is used to generate MSGCANCELROUND,
MSGROUNDFIRED, and MSGPROCESSROUND messages to send to Ballistics.

The function call is updround firedo. The function does the following:

" Makes sure shootLflag in pjfleaout is non-zero. This flag is set to I if the user
selects the ! ("fire round," "shoot gun," or "fire a round") option on the Flea
Ballistics, Flea Switches, Vehicle Control, or Flea main menu. It is set to -1 if the
user selects the * ("cancel last round") option on the Flea Ballistics menu.

• If the round's shootflag is -1 (cancel round):
- Increments the packet count (size).
- Decrements the round count.
- Calls cancelround to generate a MSGCANCELROUND message.
- Puts the message in the outgoing message packet.

* If the round fired is a new round type:
- Increments the packet count (size).
- Calls processround to generate a MSG_PROCESS_ROUND message.
- Puts the message in the outgoing message packet.
- Increments the round count.

* If the round fired is not a new round type:
- Increments the packet count (size).
- Calls fireround to generate a MSG_ROUND_FIRED message.
- Puts the message in the outgoing message packet.
- Increments the round count.

The function calls flea_error_print if the message packet does not contain enough room for
the new message. It also sets the round's shoot-flag to FALSE.

Called By: fleaencodedata

Routines Called: cancelround
fie_round
flea.errorprint
process-round

181

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: none

2.7.4.6 upd chord fired

The upd-chordfired function is used to generate a MSGPROCESSCHORD message to

send to Ballistics.

The function call is upd_chordfiredo. The function does the following:

• Makes sure the proc-ehordflag in pfleaout is TRUE. This flag is set to TRUE
if the user selects the I ("fire laser weapon") or L ("toggle laser weapon") option on
the Flea Ballistics menu.

• Increments the packet count (size).
• Calls process-chord to generate the MSG_PROCESSCHORD message.
* Puts the message in the outgoing packet.
• Resets proc._chord_flag to FALSE.

The function calls fleaerror-print if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: flea-error-print
processchord

Parameters: none

Returns: none

2.7.4.7 updauto fire

The updauto-fire function is used to send continuous MSGROUNDFIRED and
MSGPROCESSROUND messages to Ballistics. Up to eight rounds can be processed
per frame.

The function call is upd.auto fireo. The function does the following:

• Makes sure autojire_flag in p_flea_out is TRUE. This flag is controlled using the
@ ("toggle auto fire") option on the Flea Ballistics menu.

" Computes the rounds per minute and the number of rounds left to do.
" If the round fired is a new round type:

- Increments the packet count (size).
- Calls processround to generate a MSGPROCESSROUND message.
- Puts the message in the packet.
- Increments the round count.

182

BBN Systems and Technologies GT1OO RTSW CSCI

If the round fired is not a new round type:
- Increments the packet count (size).
- Calls fire_round to generate a MSGROUNDFIRED message.
- Puts the message in the packet.
- Increments the round count.

Called By: fleaencodedata

Routines Called: fireround
processround

Parameters: none

Returns: none

2.7.4.8 upd-rem-static-veh

The updremstaticveh function generates a MSG STATICVEHREM message to delete

a static vehicle from the simulation environment.

The function tall is apdrem-staticveho. The function does the following:

* Makes sure rem_staticvehjflag in pfleaout is TRUE. This flag is set to TRUE if
the user selects the d ("remove static veh") option from the Flea Ballistics menu.

* Increments the packet count (size).
" Builds the message header and puts it in the packet.
• Copies the data from pjfleaout to the outgoing message packet.
• Resets remstaticveh-flag to FALSE.

The function calls fleaerror-print if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: bcopy
flea~error-print

Parameters: none

Returns: none

183

BBN Systems and Technologies GT1OO RTSW CSCI

2.7.4.9 upd-addstatic veh
The upd-addstaticveh function generates a MSGSTATICVEHSTATE message to add

a new static vehicle to the simulation environment.

The function call is upd_addstaticveho. The function does the following:

* Makes sure addstaticvehflag in p fleaout is TRUE. This flag is set to TRUE if
the user selects the s ("drop static veh") option from the Flea Ballistics menu.

" Increments the packet count (size).
• Builds the message header and puts it in the packet.
" Copies the data from p.fleaout to the outgoing message packet.
" Resets addstaticveh-flag to FALSE.

The function calls flea_error-print if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: bcopy
fleaerror-print

Parameters: none

Returns: none

2.7.4.10 updsenddynamic

The upd-send-dynamic function generates a MSGOTHERVEHSTATE message to
update the position of a dynamic vehicle in the simulation environment.

The function call is updsenddynamico. For each othervehstate entry in p-flea-out,
the function does the following:

* Increments the packet count (size).
* Builds the message header and puts it in the packet.
* Copies the data from p-fleaout to the outgoing message packet.

othervehstate entries in p-fleaout are generated when the user selects the + ("add
vehicles") or V ("add vehicleS") option from the Flea Ballistics menu.

The function calls fleaerror.print if the message packet does riot contain enough room for
the new message.

Called By: flea_encodedata

184

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: bcopy
fleaerror _print

Parameters: none

Returns: none

2.7.4.11 updcounthitsper_min

The upd-count-hits,per_min function keeps track of the number of hits (Ballistics

intersections) per minute. This value is used for auto-firing.

The function call is updcount_hits permino. The function does the following:

* Makes sure hitcount-flag in pjfleaout is TRUE. This flag is controlled using the
@ ("toggle auto fire") option on the Flea Ballistics menu.

" Increments the framecount in p-fleain.
" If the frame count is greater than or equal to 5 times the frame rate:

- Sets the hits-per-minute in pfleain to the hitcount times 12.
- Resets the hitcount in p.fleain to 0.
- Resets the framecount in pjfleain to 0.

Called By: fleaencodedata

Routines Called: none

Parameters: none

Returns: none

2.7.4.12 updview mode

The upd.viewmode function is not currently implemented.

2.7.4.13 updshow eff

The upd-showeff function generates a MSGSHOWEFFECT message to display
special effects at the point of a round's intersection with the simulation environment.

The function call is upd_showeffO. The function does the following:

* Makes sure the hit's showeffflag in p_flea-out is TRUE.
* Resets the hit's showeffflag to FALSE.
* Increments the packet count (size).

185

BBN Systems and Technologies GT1OO RTSW CSCI

• Builds the message header and puts it in the packet.
* Builds the MSG_SHOW_EFFECT message and puts it in the packet.

The function calls flea_errorprint if the message packet does not contain enough room for
the new message.

Called By: fleaencode-data

Routines Called: fleaerror_print

Parameters: none

Returns: none

2.7.4.14 upd clouds

The updclouds function generates a MSG_CLOUD_STATE message to change the
models used for the clouds around the simulated vehicle.

The function call is upd cloudso. The function does the following:

* Makes sure cloud flag in p.flea-out is TRUE. This flag is set to TRUE if the user
selects the C ("clouds message") option on the Flea Switches menu.

* Resets cloud_flag to FALSE.
* Increments the packet count (size).
• Builds the message header and puts it in the packet.
* Builds the MSG_CLOUD_STATE message and puts it in the packet.

The function calls flea.errorprint if the message packet does not contain enough room for
the new message.

Called By: fleaencode_data

Routines Called: fleaerrorprint

Parameters: none

Returns: none

2.7.4.15 updreqagl

The upd-req-agl function generates a MSG_AGL_SETUP message to enable or disable
AGL (above ground level) processing. If AGL processing is enabled, the real-time

186

BBN Systems and Technologies GTOO RTSW CSCI

software calculates the simulated vehicle's altitude each frame and returns it to the
Simulation Host (or, in this case, Flea).

The function call is updreqagl0. The function does the following:

• Makes sure the req-agl flag in pjfleaout is TRUE. This flag can be set TRUE
using the a ("request agi") or g ("toggle agl ground follow") option on the Flea
Ballistics menu, or the a ("request agl") option on the Flea Switches menu. It can
be set FALSE using the A ("disable agl") option on the Flea Ballistics menu.

" Resets the req.agl flag to FALSE.
* Increments the packet count (size).
" Builds the message header and puts it in the packet.
" Builds the MSGAGLSETUP message and puts it in the packet.

The function calls fleaerror-print if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: fleaerrorprint

Parameters: none

Returns: none

2.7.4.16 updreqpoint

The upd-req-point function generates a MSGREQUESTPOINTINFO message to
request terrain characteristics for a specified point in the viewing range.

The function call is updreq_pointo. The function does the following:

• Makes sure the req-point flag in p-fleaout is TRUE. This flag is set to TRUE if
the user selects the R ("request point info") option on the Flea Switches menu.

* Resets the reqpoint flag to FALSE.
* Increments the packet count (size).
* Builds the message header and puts it in the packet.
* Builds the MSGREQUESTPOINT_INFO message and puts it in the packet.

The function calls fleaerror-print if the message packet does not contain enough room for
the new message.

Called By: fleaencode-data

Routines Called: fleaserror__print

187

BBN Systems and Technologies GTI00 RTSW CSCI

Parameters: none

Returns: none

2.7.4.17 upd reqlrange

The updreqjlrange function generates a MSGREQUESTLASERRANGE message to
request laser range depth data for a specified position on the screen.

The function call is updreqlrangeO. The function does the following:

" Makes sure the reqlrange flag in pfleaout is TRUE. This flag is set to TRUE if
the user selects the I ("request laser range") option on the Flea Switches menu.

" Resets the reqilrange flag to FALSE.
* Increments the packet count (size).
* Builds the message header and puts it in the packet.
• Builds the MSGREQUEST_LASERRANGE message and puts it in the packet.

The function calls flea_error-print if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: fleaerrorprint

Parameters: none

Returns: none

2.7.4.18 updviewmag

The updviewjmag function generates a MSGVIEWMAGNIFICATION message to

change the field-of-view parameters for a specified viewport.

The function call is updviewmago. The function does the following:

* Makes sure view-magflag in pjfleaout is TRUE. This flag is set to TRUE if the
user selects the 5 ("magnification") option on the Flea Switches menu, or any of the
magnification options on the Flea AGPT Switches menu.

* Resets viewmag-flag to FALSE.
* Increments the packet count (size).
" Builds the message header and puts it in the packet.
* Copies the data to the MSGVIEW_MAGNIFICATION message and puts it in the

packet.

The function calls fleaerror-print if the message packet does not contain enough room for
the new message.

188

BBN Systems and Technologies GT100 RTSW CSCI

Called By: flea.encodedata

Routines Called: bcopy
fleaerrorprint

Parameters: none

Returns: none

2.7.4.19 updsubsysmode

The updsubsys_mode function generates a MSGSUBSYSMODE message to change

subsystem-specific parameters such as color table and fade value.

The function call is upd_subsys_modeO. The function does the following:

" Makes sure subsys.modeflag in pfleaout is TRUE. This flag is set to TRUE if
the user selects the 6 ("subsys mode") option from the Flea Switches menu. It can
also be set by selecting H ("Increase Visibility"), I ("Decrease Visibility"), V
("Single/Dual Vpt Toggle"), or any of the sky color options from the Flea AGPT
Switches menu.

• Resets subsys_modeflag to FALSE.
• Increments the packet count (size).
° Builds the message header and puts it in the packet.
" Copies the data to the MSGSUBSYSMODE message and puts it in the packet.

The function calls flea_efforprint if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: bcopy
flea~error _print

Parameters: none

Returns: none

2.7.4.20 updviewportup

The updviewport-up function generates a MSGVIEWPORT_UPDATE message to turn
a viewport on or off, or to change the viewport's alternate mode (e.g., thermal white hot).

189

BBN Systems and Technologies GT1OO RTSW CSCI

The function call is upd.viewport upo. The function does the following:

" Makes sure vpt-updateflag in p.fleaout is TRUE. This flag is set to TRUE if the
user selects the 7 ("viewport upd") option from the Flea Switches menu. It is also
set by selecting F ("Increase Brightness"), G ("Decrease Brightness") or any sky
color option from the Flea AGPT Switches menu.

* Resets vpt-update-flag to FALSE.
* Increments the packet count (size).
• Builds the message header and puts it in the packet.
• Copies the data to the MSGVIEWPORTUPDATE message and puts it in the

packet.

The function calls flea_error-print if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: bcopy
flea__error-print

Parameters: none

Returns: none

2.7.4.21 updsendstop

The upd-send stop function generates a MSG_CIGCTL message with the control code

set to CSTOP. This stops the Flea exercise.

The function call is upd_sendstopo. The function does the following:

* Makes sure the stop flag in pjflea-out is TRUE. This flag is set to TRUE if the
user selects the z ("stop Flea") option on the Flea main menu.

• Resets the stop flag to FALSE.
* Increments the packet count (size).
• Builds the message header and puts it in the packet.
" Builds the MSG_CIG_CTL message and puts it in the packet.
• Sets gojflyjflag to FALSE.
• Sets the startflea flag in pflea_out to FALSE.
" Resets the framecount to 0.

The function calls flea_error-print if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: fleaerror.print

190

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: none

2.7.4.22 fleaerror print

The fleaerror-print function outputs a "No room in packet" error message to stdout. This
function is called whenever one of the upd_* functions determines that the message it needs
to send cannot fit in the current frame's message packet.

The function call is flea error print(err str), where err str is additional text to be
output with the error message. This character string usually identifies the message
currently being processed.

Called By: updaddstaticveh
updchordfired
updclouds
upd.dynamic_matrix
upd_lt_state
updmatrixvalues
upd-ppm
upd-remstaticveh
upd-req-agl
upd-reqjlrange
upd-req-point
upd rotationvalues
updroundfired
upd-send-dynanic
upd-sendstop
updshoweff
upd-subsys__mode
upd-viewflags
upd-viewmag
upd-viewport-up

Routines Called: printf

Parameters: char errstr[]

Returns: none

2.7.4.23 putin hdr

The put-in-hdr function puts a message's type and size into a data message header, in the
format required for the Simulation Host message packet.

191

BBN Systems and Technologies GT100 RTSW CSCI

The function call is putin_hdr(ptr, type, code), where:

ptr is a pointer to the message
type is the message type
code is the message code

put-inhdr does the following:

* Sets the message type in the header to the type specified.
" Sets the message length in the message header to the size (in bytes) of the specified

code.
" Increments the pointer to point to the next message.

The function returns the ptr specified in the call.

The putin_hdr function is not currently used; each upd_* function generates its own data
message header.

Called By: none

Routines Called: none

Parameters: INT_4 *ptr
INT_2 type
INT_2 code

Returns: ptr

2.7.4.24 upd flea vehicles

The upd_flea_vehicles function generates MSGTFVEHICLEPOS and
MSGOTHERVEHSTATE messages for vehicles in the Flea exercise. This function also
generates MSGTFINITHDR and MSG_TF_INITPT messages for vehicles if their
terrain feedback processing has not been enabled.

The function call is updfleavehicleso. The function does the following for each Flea
vehicle:

" If the vehicle's inuse_flag and tf-initjreadyflag are TRUE (set using the i ("init
veh") option on the Vehicle Control menu), but its tf_initsentflag is FALSE:

- Builds a message header and puts it in the outgoing message packet.
- Builds a MSGTFIN1T_HDR message and puts it in the message packet.
- For each terrain feedback point on the vehicle, builds a MSGTFINITPT

message and puts it in the message packet.
- Sets the vehicle's tf_initsent-flag to TRUE.

* If the vehicle's inuseflag is TRUE and the vehicle index is 1:
- Builds a MSG_TF_VEHICLEPOS message and header and puts them in

the message packet.

192

BBN Systems and Technologies GT1OO RTSW CSCI

- Builds a MSG_OTHERVEHSTATE message and header and puts them in
ithe message packet.

The function always returns 0.

Called By: fleaencodedata

Routines Called: bcopy
printf (in debug mode only)

Parameters: none

Returns: 0

2.7.4.25 fire round

The fire_round function generates a MSG_ROUNDFIRED message to tell Ballistics that a
round has been fired in the Flea exercise.

The function call is fire round(p msg), where pmsg is a pointer to the
MSGROUND_FIRED message.

. fireround does the following:

* Builds the message header.
* Puts the round data (primarily taken from p_fleaout) into the

MSGROUNDFIRED message. The calling function puts the message into the
message packet.

The function returns the message pointer as pmsg.

Called By: updautofire

upd_round_fired

Routines Called: none

Parameters: MSGROUNDFIRED *pmsg

Returns: p-msg

2.7.4.26 process-chord

* The process-chord function generates a MSGPROCESSCHORD message to tell
Ballistics to process a chord's intersection with the database.

193

BBN Systems and Technologies GT100 RTSW CSCI

The function call is process chord(pmsg), where pmsg is a pointer to the
MSGPROCESSCHORD message.

processchord does the following:

" Builds the message header.
• Puts the chord data (primarily taken from p fleaout) into the

MSGPROCESSCHORD message. The calling function puts the message into
the message packet.

The function returns the message pointer as pmsg.

Called By: updchordfired

Routines Called: none

Parameters: MSGPROCESSCHORD *p-msg

Returns: pjmsg

2.7.4.27 processround

The processjround function generates a MSGPROCESSROUND message to tell
Ballistics that a round has been fired in the Flea exercise.

The function call is processround(p_msg), where pmsg is a pointer to the
MSGPROCESSROUND message.

processround does the following:

* Builds the message header.
* Puts the round data into the MSGPROCESSROUND message. The calling

function puts the message in the message packet.

The function returns the message pointer as pmsg.

Called By: updautofire

updroundfired

Routines Called: none

Parameters: MSG-PROCESS_ROUND *pmsg

Returns: p.msg

194

BBN Systems and Technologies GT1OO RTSW CSCI

2.7.4.28 cancel round

The cancel_round function generates a MSG_CANCEL_ROUND message to tell Ballistics
to delete a fired round.

The function call is cancel round(pmsg), where pmsg is a pointer to the
MSGCANCELROUND message.

cancelround does the following:

" Builds the message header.
" Puts the round data into the MSG_CANCELROUND message. The calling

function puts the message into the message packet.

The function returns the message pointer as p_msg.

Called By: updround_fired

Routines Called: none

Parameters: MSGCANCEI.,ROUND *p-msg

Returns: p.msg

2.7.4.29 upd-siowrite

The updsio-write function generates a MSGSIO_WRITE message to write to a serial
input/output device.

The function call is upd sio writeo. The function does the following:

* Makes sure sioflag is TRUE. This flag is set to TRUE by get siodata if the user
selects the Z ("Write to Video Mux") option from the Flea AGPT Switches menu.

• Sets sio._flag to FALSE.
" Puts the message header in the packet.
* Copies the data to the MSG_SIOWRITE message and puts it in the packet.

Called By: fleaencodedata

Routines Called: bcopy

Parameters: none

195

BBN Systems and Technologies GTIOO RTSW CSCI

Returns: none

2.7.4.30 updlt_state

The updjIt...state function generates a MSGLTSTATE message to change the parameters

used to generate local terrain messages.

The function call is updltstateo. The function does the following:

* Makes sure It_state.flag is TRUE. This flag is set to TRUE if the user selects
option 4 ("change It state") on the Flea Switches menu.

* Sets It_state_flag to FALSE.
* Increments the packet count (size).
• Puts the message header in the packet.
" Builds the MSGLTSTATE message and puts it in the packet.

The function calls fleaerror print if the message packet does not contain enough room for
the new message.

Called By: fleaencodedata

Routines Called: fleaerror-print

Parameters: none

Returns: none

2.7.4.31 sendgunoverlay

The send-gun-overlay function generates a MSG_GUN_OVERLAY message to change

the components of the M I or M2 gunner's overlay.

The function call is sendgun overlayo. The function does the following:

* Makes sure send.gun-stat is TRUE. This flag is set to TRUE if the user selects the
g option ("gun barrel update") on the Flea Switches menu.

* Puts the message header in the packet.
" Builds the MSG_GUN_OVERLAY message and puts it in the packet.

Called By: fleaencode_data

Routines Called: cos
sin
TORAD

S
196

BBN Systems and Technologies GTI00 RTSW CSCI

Parameters: none

Returns: none

2.7.4.32 send ammo define

The sendammo_define function generates a MSGAMMODEFINE message to define
ammunition maps.

The function call is sendammodefineO. The function does the following:

* Makes sure fleaammo_definejflag is TRUE. This flag is set to TRUE if the user
selects the 9 option ("ammo define msg") on the Flea Switches menu.

• Sets flea_ammo_defime_flag to FALSE.
" Increments the packet count (size).
• Puts the message header in the packet.
" Copies the data to the MSGAMMODEFINE message and puts it in the packet.

Called By: fleaencodedata

Routines Called: none

Parameters: none

Returns: none

2.7.5 flea.c

The functions in the flea.c CSU form the main driver for the Flea exercise. These
functions are:

* flea
" flea_io_task
• flea-getchar
" fleadumrnmygetchar
* flealO mode
• fleaIOon
• flea_IQoff
* flea_initialized
* scratchflea
* fleaprintf
* fleacleanup
" flea io taskcleanup

197

BBN Systems and Technologies GT100 RTSW CSCI

2.7.5.1 flea

The flea function is the main driver for the Flea emulation. The flea task is created and
started by Task Initialization CSC. flea then suspends itself until a message is posted to the
FLEAMB mailbox. This message is posted by scratchjflea, which is called by
gossip-.ick if the system user selects the f ("enter Flea menu") option from the Gossip
main menu.

The function call is fleao. flea does the following:

* Calls pollshutdown to see if a system shutdown has been initiated.
" Waits for a message to be posted to the FLEAMB mailbox.
" Allocates memory for the p-fleain and p-fleaout structures.
* Opens the Flea console port. (This is the station through which the user interacts

with the system. It can be specified through an option on the Gossip main menu.)
Prompts the user for the initial viewpoint position; uses the entered coordinates to
set flea.vppos.x, y, and z.

* Prompts the user for the initial viewpoint orientation; uses the entered values to set
heading, pitch, and roll.

• If the frame count is 0, initializes various variables and structures.
• If the startflea flag in p-fleaout is TRUE (indicating that the user has not

requested to stop Flea):
- Calls poll_shutdown to see if a system shutdown has been initiated.
- Initializes the pjfleaout flags used to indicate what changes have been

requested by the user.
- Initializes other variables in p_flea-out, including transformation, rotation,

branch, database traversal, and process chord values.
- Allocates memory for other vehicle state messages.
- Allocates memory for the Flea simulated vehicles data.
- If flea has just started, calls OPENFLEADATA to establish the CIG-Flea

communications path.
- If the flea mode is set to FLEAENET (use Ethernet):

* Opens the fleanet.cfg file.
* Gets the configuration file name.
* Gets the host's Ethernet address.
* Sets fleainitslavecig_G to TRUE.
* Calls EXCHANGEFLEADATA to synchronize with a Slave

CIG.
- If the flea mode is anything other than FLEAENET, calls fleainitcig-sw

to configure Flea.
- Initializes fleaesifaloadwantedG and fleacolorcfg-wantedG to

FALSE.
- Generates a MSGCIG_CTL message to put the CIG into the simulation

state.
- Calls EXCHANGEFLEADATA to exchange packets with the CIG.
- Sets the running flag to TRUE.
- Calls tick-init to get the user's command.
- Sets the *flea_menu function pointer to tick.
- Calls sctresume to wake up fleaiotask. (fleajio task uses the

*fleamenu function pointer to call the appropriate menu function during the
Flea exercise.)

198

BBN Systems and Technologies GT100 RTSW CSCI

Once the Flea simulation is running, flea performs the following loop:

• Calls polLshutdown to see if a system shutdown has been initiated.
* If running in absolute playback mode, calls flea-absplayback. This mode is set if

the user selects the b ("begin absolute playback") option from the Flea Script menu.
• If the user is driving the exercise:

- Calls fleaupdate-pos to update the position of the simulated vehicle.
- Calls fleadecodedata to process all CIG-to-Flea messages.
- Calls fleaencodedata to process all Flea-to-CIG messages.

* Uses the EXCHANGEFLEADATA macro to exchange message packets with
the CIG each frame.

When the user requests that the exercise be stopped, flea does the following:

* Frees all allocated memory.
" Closes the console port.
" Sets the running flag to FALSE.

flea returns -1 if it cannot allocate memory for p fleaTin or pjfleaout. It exits with a 1 if it
cannot open the Flea console port or the Ethernet configuration file.

Called By: none (task is created and started at initialization time)

Routines Called: calloc
close
EXCHANGEFLEADATA
exit
fgets
fleaabs.playback
flea_decodedata
flea_encodedata
flealinitcig-sw
fleaupdate-pos
fopen
fprintf
free.
malloc
open
OPENFLEADATA
poll_shutdown
printf
read-tty
rewind
rt-pend
sctresume
scanf
sscanf
strcmp
strcpy
tickinit

199

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: -1

2.7.5.2 flea io task

The flea io task function drives Flea input/output during a Flea exercise, by calling the
function responsible for the menu currently displayed. The menu function then gets and
processes the keystroke entered by the user. flea io task is created and started by the Task
Initialization CSC, then suspends itself until woken up by flea.

The function call is fleaiotasko. fleaiotask does the following:

• Suspends itself until woken up by flea after Flea mode has been selected and
configuration is complete.

" Calls polLshutdown to see if a system shutdown has been initiated.
* Uses the *fleamenu function pointer to call the active menu function to get the

user's entry. The function called by *fleamenu is the function that handles the
menu currently displayed. When Flea first starts, this is the tick function, which
processes the Flea main menu. The *fleamenu pointer is reset as the user
traverses the Flea menus.

* Pauses for ten milliseconds, then calls *fleamenu again. Repeats this loop until a
shutdown is detected.

Called By: none (task is created and started at initialization time)

Routines Called: *flea_menu
poll-shutdown
scdelay
sctinquiry
sctsuspend

Parameters: none

Returns: none

2.7.5.3 fleagetchar

The flea-getchar function returns the key pressed by the Flea operator. It returns 0 if no
key was pressed. All Flea functions that process user input use flea-getchar to determine
the key pressed by the user.

The function call is fleagetcharo.

This function is called indirectly through the *flea getc function pointer. The flea0 IOon
function sets *flea-getc to fleagetchar when Flea is invoked. When Flea mode is stopped,

200

BBN Systems and Technologies GT100 RTSW CSCI

flea0 IOoff sets *fleagetc to flea-dummy-getchar, this effectively disables the Flea user
interface and returns keyboard control to Gossip.

Called By: fleaagptlocations (through *flea-getc)
flea~agpLswitches (through *fleagetc)
flea-atp (through *fleagetc)
fleabal-opts (through *flea-getc)
fleagraphics_test (through *flea-getc)
flea 10on (through *flea-getc)
flea_switches (through *flea-getc)
fleavehcontrol (through *fleagetc)
tick (through *fleagetc)
tick-ppm (through *flea-getc)
tick-scnipt (through *fleagetc)

Routines Called: read-tty

Parameters: none

Returns: key
0

* 2.7.5.4 flea dummy getchar

The fleadummy.getchar function always returns 0. This function is used in place of
flea-getchar when the user exits Flea mode; this effectively disables the Flea user interface
and returns keyboard control to Gossip. (When a Flea user interface function receives a 0
return value, it assumes no key was pressed and therefore does not process it.)

The function call is flea dummygetcharo.

This function is called indirectly through the *flea-getc function pointer. The fleaI0_on
function sets *flea-getc to flea-getchar when Flea is invoked. When Flea mode is stopped,
fleaIO off sets *flea-getc to flea-dummygetchar.

Called By: flea.agptl-ocations (through *fleagetc)
flea~agptswitches (through *flea-getc)
flea.atp (through *fleagetc)
flea.baopts (through *fleagetc)
flea_.graphics-test (through *fleagetc)
flea 10off (through *fleagetc)
flea_switches (through *flea-getc)
fleavehcontrol (through *fleagetc)
tick (through *flea-getc)
tick-ppm (through *fleagetc)
tick-script (through *fleagetc)

201

BBN Systems and Technologies GTIOO RTSW CSCI

Routines Called: none

Parameters: none

Returns: 0

2.7.5.5 flea 10 mode

The flea__Imode function returns TRUE if Flea input/output mode is enabled, and
FALSE if it is not. This response is used by tick to determine whether it should call
updatemenuheader to update the simulated vehicle statistics at the top of the Flea console
screen.

Flea input/output mode is enabled (by flea_IO on) when the user selects the f ("enter Flea
menu") option from the Gossip main menu. It is disabled (by flea_10_off) when the user
exits from Flea. The boolean variable used to maintain the status is ioenabled.

The function call is fleaTO_modeO.

Called By: tick

Routines Called: none

Parameters: none

Returns: 1 (TRUE)
0 (FALSE)

2.7.5.6 fleaIOon

The flea 10on function enables Flea input/output mode. This function is called when the

user selects the f ("enter Flea menu") option from the Gossip main menu.

The function call is flea I0 ono. The function does the following:

* Sets the *flea-getc function pointer to flea-getchar. This allows the Flea user
interface functions to get the keystroke entered by the user.

• Sets the io__enabled variable to TRUE. This variable is used by fleaIO mode.

Called By: gossip-tick

Routines Called: printf (in debug mode only)

202

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: none

2.7.5.7 fleaIO off

The flea_10_off function disables Flea input/output mode. This function is called when the

user stops the Flea exercise (or returns to Gossip but leaves the Flea simulation running).

The function call is fleaIOoffO. The function does the following:

* Sets the *flea-getc function pointer to fleadummy_getchar. This effectively
disables the Flea user interface and returns keyboard control to Gossip.

* Sets the ioenabled variable to FALSE. This variable is used by fleaIOmode.

Called By: gossip

tick

Routines Called: printf (in debug mode only)

Parameters: none

Returns: none

2.7.5.8 flea initialized

The fleainitialized function returns TRUE if a Flea simulation is active, and FALSE if it is
not. It examines the running flag, which is set to TRUE by flea after the Flea configuration
file has been processed and the simulation state has been entered. gossiptick calls the
flea-initialized function to verify that the Flea simulation started successfully.

The function call is flea initializedO.

Called By: gossipick

Routines Called: none

Parameters: none

Returns: 1 (TRUE)
0 (FALSE)

203

BBN Systems and Technologies GT1OO RTSW CSCI

2.7.5.9 scratch flea

The scratchflea function posts a message to the FLEA_MB mailbox to wake up the flea
function. scratchflea is called when the user selects the f ("enter Flea menu") option from
the Gossip main menu. If a Flea simulation is already running (because the user exited to
Gossip during the exercise and is now returning), scratchflea does nothing.

The function call is scratchfleaO.

Called By: gossip-tick

Routines Called: rtpost

Parameters: none

Returns: none

2.7.5.10 fleaprintf

The fleaprintf function is not currently used.

2.7.5.11 fleacleanup

The fleacleanup function deallocates the resources owned by the flea task. This function
is called if a system shutdown is requested by the Gossip user. The function is called via
the *taskcleanup function pointer, which points to the cleanup routine's name in the task
table.

The function call is fleacleanupo.

The function returns I if successful, or 0 if an error occurred.

Note: This function is not yet implemented. At the current time, it simply
returns a 1 if called.

Called By: pollshutdown (through *taskcleanup)

Routines Called: none

Parameters: none

Returns: 0 i

204

BBN Systems and Technologies GT100 RTSW CSCI

*I

2.7.5.12 flea iotaskcleanup

The fleaiotaskcleanup function deallocates the resources owned by flea_io_task. This
function is called if a system shutdown is requested by the Gossip user. The function is
called via the *taskcleanup function pointer, which points to the cleanup routine's name in
the task table.

The function call is flea-io taskcleanupO.

The function returns 1 if successful, or 0 if an error occurred.

Note: This function is not yet implemented. At the current time, it simply
returns a I if called.

Called By: poll_shutdown (through *taskcleanup)

Routines Called: none

Parameters: none

Returns: 0
1

2.7.6 flea_. glterrainfollow.c

The fleaagl terrainfollow function adjusts the Flea vehicle's altitude (flea_vppos.z) each
frame using a desired altitude entered by the user. The AGL terrain follow option is set by
selecting the g ("toggle agl ground follow") option from the Flea Ballistics menu. The user
is prompted for the desired height above ground level.

The function call is flea agi terrain followo. The function does the following:

* Makes sure the agl_terrain_follow flag is set.
* If the AGL value returned by the real-time software (via the MSG_AGL message)

is less than 0, sets flea.yppos.z to its old value plus the desired AGL entered by the
user on the Flea Ballistics menu.

* If the returned AGL value is 0 or greater, sets flea-vppos.z to its old value plus the
average of the desired and returned values (desired AGL minus returned AGL,
divided by 2).

The function always returns 0.

Called By: flea-update-pos

205

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: none

Parameters: none

Returns: 0

2.7.7 flea_agptlocations.c

The functions in the fleaagptlocations.c CSU let the user run special acceptance tests and
invoke moving model demonstrations. These functions are:

• fleaagptjocations
* fleaagptJocations main-menu
" new_posorient
* update-dyn-demo

2.7.7.1 flea agptjlocations

The flea.agpt_locations function processes the user's sections from the Flea AGPT
Locations menu. This function is called (via the *flea_menu function pointer) when the
user selects the (("AGPT locations") option from the Flea main menu.

The function call is flea agptjlocationso. The function uses the *flea-getc function
pointer to get the keystroke input by the user, then processes it.

The following table identifies the options supported by flea-agpt locations, and shows the
steps it performs to process each one. For each acceptance test selected by the user,
flea.agpt-locations calls new-posorient with the vehicle coordinates used to access the
portion of the database that contains the selected test.

The Acceptance Test Scenes menu is displayed by flea-agptlocationsmain_menu.
Options flagged with an asterisk are supported by flea-agpt-locations but do not appear on
the menu.

206

BBN Systems and Technologies GT100 RTSW CSCI

Acceptance Test Scenes Menu Processing by flea agpt locations
Option -_-

?* Display this menu Calls fleaagpt-locations main-menu.

A Triangle Calls new-pos-orient.

B Chessboards Calls new-pos orient

C Colors Calls new-pos orient.

D House Calls newpos._orient
E Textures Calls new-posorient

F Texture color Calls new_posorient.

G Pyramids Calls newpos orient.
H Impact/Tank Calls new-pos orient

I Forest/Tank Calls new-pos-orient

J Tree/Tank Calls newposorienL

L 50 Cubes Calls new.pos-orient.

M 1 Polyhedron If demonstration = 0: calls new_.pos orient; sets skidx,
skidy, skidz, htrate, and speed to 0; calls dynamic-demo
with frame number set to 0 (to start demo); sets
dynmodels to TRUE.
Calls update-dyndemo; calls newposorient.

N 10 Polyhedrons If demonstration = 0: calls newposorient; sets skidx,
skidy, skidz, htrate, and speed to 0; calls dynamic-demo
with frame number set to 0 (to start demo); sets
dyn-models to TRUE.

Calls update dyndemo; calls new.posorient.
0 20 Polyhedrons If demonstration = 0: calls new_.pos_.orient; sets skidx,

skidy, skidz, htrate, and speed to 0; calls dynamic-demo
with frame number set to 0 (to start demo); sets
dyn-models to TRUE.
Calls update-dynjdemo; calls newpo_orient

P 30 Polyhedrons If demonstration = 0: calls new-pos-orient; sets skidx,
skidy, skidz, htrate, and speed to 0; calls dynamic-demo
with frame number set to 0 (to start demo); sets
dynmodels to TRUE
Calls update dyndemo; calls newpos_crient.

Q I pixel line Calls new _pos orient.

R 4 Tanks-Text. Area Calls new-pos-orient.
S 4 Tanks-Untext. Area Calls new-pos-orient

X Quit Polyheds If dyn_models is TRUE: sets demonstration to 0; calls
dynamic_demo with frame set to 9999 (to end demo);
sets dynjmodels to FALSE.

x* Exit Sets *fleamenu function pointer to tick; sets prompt to
"Flea>"; calls tick main menu.

Called By: fleaio task (through *fleamenu)

207

BBN Systems and Technologies GT1OO RTSW CSCI

Routines Called: *flea-getc
cup
dynamicdemo
flea.agptjocations _mainmenu
isprint
isspace
new-pos_.orient
printf
strcpy
tickmainmenu
update-dyn-demo

Parameters: none

Returns: none

2.7.7.2 flea agptlocationsmain menu

The flea-agpt_locationsmainmenu function displays the Acceptance Test Scenes menu,
which is processed by the fleaagptlocations function. This function is called if the user
selects the (("AGPT locations") option from the Flea main menu. It is also called if the
user enters ? at the "Flea AGPT Locations>" prompt.

The function call is flea agpt locationsmain_menuo. The function does the
following:

• Clears the screen.
* Calls menuheader to display the labels for the Flea simulation statistics.
* Displays the Acceptance Test Scenes menu.
* Calls update-menuheader to display the current Flea simulation statistics.
* Displays the "Flea AGPT Locations>" prompt.

For a list of the options displayed on the Acceptance Test Scenes menu, see
flea.agptj_ocations.

Called By: fleaagptlocations
tick

Routines Called: blank
cup
menuheader
printf
strcpy
updatemenuheader

Parameters: none

208

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.7.7.3 newposorient

The new-pos~orient function changes the simulated vehicle's coordinates (fleavppos.x,
y, and z) and rotation values (flea.vprot.x, y, and z). This function is called whenever the
user requests a test via the Acceptance Tests Scenes menu. It positions the vehicle at a
special database location that contains the acceptance test scene.

The function call is new posorient(x, y, z, rz, rx, ry), where:

x is the vehicle's x coordinate
y is vehicle's y coordinate
z is vehicle's z coordinate
rz is the vehicle's x rotation value
rx is the vehicle's y rotation value
ry is vehicle's z rotation value

Called By: fleaagptJocations

Routines Called: none

Parameters: REAL_4 x
REAL_4 y
REAL_4 z
REAL_4 rz
REAL4 rx
REAL4 ry

Returns: none

2.7.7.4 updatedyndemo

The update-dyndemo function sets up the system to run any of the moving model tests
listed on the Acceptance Test Scenes menu. This function is called if the user selects any of
the "Polyhedron" options.

The function call is update dyndemo(nummodels, modelid, numx, numy,
numz, spx, spy, spz), where:

num models is the number of models in the demo
model id is the model id to be used
numx i the number of models in the x direction
numy is the number of models in the x direction
numz is the number of models in the x direction
spx is the spacing between models in the x direction
spy is the spacing between models in the y direction

209

BBN Systems and Technologies GT100 RTSW CSCI

spz is the spacing between models in the z direction

update dyn-demo sets the given parameters in the demo-ptr structure in p_fleaout.
demoptr is used by dynamic demo, which actually runs the demonstration.

Called By: flea-agptjlocations

Routines Called: none

Parameters: INT_4 nummodels
INT_4 model_id
INT_4 numx
INT_4 numy
INT_4 numz
REAL_4 spx
REAL_4 spy
REAL_4 spz

Returns: none

2.7.8 flea agptswitches.c

The functions in the flea-agpt__switches.c CSU adjust sky color, light intensity, and
magnification. These functions are:

* flea_agpt_switches
* seLcommand_2d
* update-mag
• update-subsysmode
• update.vpt
* fleaagpLswitches mainmenu
* derror

2.7.8.1 flea agptswitches

The flea agpLswitches function processes the user's selections on the Flea AGPT
Switches menu. This menu is used to adjust sky color, light intensity, and magnification.
This function is called (via the *flea_menu function pointer) when the user selects the)
("AGPT switches") option from the Flea main menu.

The function call is flea agpt switcheso. The function uses the *flea-getc function
pointer to get the keystrole entered by the user, then processes it.

The following table lists the options supported by flea agptswitches, and shows the steps
it uses to process each one. This menu is displayed by flea-agpt-switchesmainmenu.
Options flagged with an asterisk are supported by flea-agpt.switches but do not appear on
the menu.

210

BBN Systems and Technologies GT100 RTSW CSCI

AGPT Switches Menu Option Processing by flea agpt switches

?*Display this menu Calls fleaagptswitches main menu.

(Thermal Toggle Changes sky-color-value from 3 (white hot) to 4 (black
_________________________hot) or vice versa; calls update .subsys mode.

A Blue Sky Sets sky-color.yalue (0), light -ntensity, pjlea-out->
branch-value[l, and vis~range; calls

_________________updatesubsysjnmode; calls updatevpt.

B Light Grey Sky Sets sky...color.yalue (1), light-intensity, p~fleaout->
branch.aluel, and visjrange; calls

______________________update-subsys mode; calls update-vpt.

C Dark Grey Sky Sets sky-color -value (2), light -intensity, pj lea-out->
branchvalue[0], and vis-range; calls

________________________update~..subsysmode; calls updatept.p

D White Hot Sky Sets sky-color -value (3), light -intensity, and
vis-range; calls update-subsys-mode; sets p~flea-out->
branch value[0]; calls update .vpL.

E Black Hot Sky Sets sky-color - alue (4), light - ntensity, and
vis-range; calls update-subsysjnode; sets pfea-out->

________________________branch value[0]; calls update _vpL

F Increase Brightness If maximum light-intensity already reached: calls denror.
Else: changes light intensity; sets viewport on; sets
alternate mode on if sky color is thermal;, sets
vpt-updatej-lag to TRUE; changes intensity in color

_______________________table; sets subsys-modejflag to TRUE.

G Decrease Brightness If minimum light -intensity already reached: calls derror.
Changes light intensity.
If minimum light intensity now reached and sky color is
blue or grey: sets viewport to off;, sets vptupdate..flag
to TRUE.
Else: sets viewport on; sets alternate mode on if sky
color is thermal; sets vpt-updatej-lag to TRUE;
changes intensity in color table; sets subsys-mode-flag
to TRUE.

H Increase Visibility If maximum visibility already reached, calls derror.
Else: changes visibility range; puts new fade value in

____________________pjfleaout; sets subsysjnodejflag to TRUE.

I Decrease Visibility If minimum visibility already reached, calls derror.
Else: changes visibility range; puts new fade value in

__________________pjflea..out; sets subsys..modejflag to TRUE.

J WBG 4x Reticle Calls set~command-2d (command=l); sets reticle_on to
______ _____TRUE.

K WBG 12x Reticle Calls set-coinmand_2d (command=2); sets reticle-on to
______ _____TRUE.

L EMIES 12x Reticle Calls set~command 2d (command=3); sets reticle-on to
______ _____TRUE.

M PERI 2x Reticle Calls set-command&2d (command--4); sets reticle-on to
TRUE.

211

BBN Systems and Technologies GT100 RTSW CSCI

N PERI 8x Reticle Calls set~command 2d (command=5); sets reticle-on to
TRUE.

0 2D Brighter If maximum 2-D intensity already reached: calls derror.
Else: increments brightL2d; sets new_2dtcolor; calls
set command 2d (comm~nd=12).

P 2D Dimmer If minimum 2-D intensity already reached: calls derror.
Else: decrements brighL-2d, sets new_2d color; calls
set~command_2d (comnmand= 12).

Q 2x Magnification Calls update..mag, sets magnification_ on to TRUE.

R 4x Magnification Calls updatejnag; sets magnification on to TRUE.

S 8x Magnification Calls update..mag; sets magnification on to TRUE.

T 12x Magnification Calls updatemag; sets magnification on to TRUE.

U Moving Model Menu If demonstration = 0 (new demo): initializes
flea~vprot~x, flea..yprot.y, flea..yprot.z, skidx, skidy,
skidz, hitrate, and speed to 0; calls dynamic-demo with
frame number set to 0; calls derror to tell user to select
U again to change options (via model-demo).
If demonstration = 2 (demo in progress): calls
modeldemno.

V Single/Dual Vpt Toggle If dual -mode -on is TRUE: sets dual-mode-on to
FALSE; sets pjlea out->subsys...mode.special-use to
0; sets pjfleasut->subsys-nodejflag to TRUE; sets
pjlea.out->branch.value[0] toO0.
If dual -mode-on is FALSE: sets dual-mode-on to
TRUE; sets plea out->subsys..mode.specialuse to
WOO0; sets pjlea_out->subsys..modejflag to TRUE;

sets p flea ~out->branch value[OI to 2.

W Remove 2d Reticle If reticleon is TRUE, sets reticle-on to FALSE; calls
set command 2d (command= 15).

X No Magnification If magnification..on is TRUE, sets magnification-on to
________________________FALSE; calls update-.mag to reset lod and fov.

x*' Exit Sets *flea -menu function pointer to tick; sets prompt to
________________________"Flea>" ; calls tick main-menu.

Y Aliasing Model (2D3) Calls set~comman4..2d (command=6); sets reticle-on to
______ _____ TRUE.

Z Write to Video Mux Calls get-siowrite-data.

Called By: fleaio _task (through *flea_menu)

Routines Called: *fleagetc
cup
denr~o
dynamic;-demo
flea-agpt..switches-main-menu
get-sio-writejdata
isprint
isspace

212

BBN Systems and Technologies GT100 RTSW CSCI

modeldemo
printf
setcommand_2d
strcpy
tick_main_menu
update-mag
update-subsysmode
updatevpt

Parameters: none

Returns: none

2.7.8.2 set command_2d

The set_command_2d function sets up data to be sent to the 2-D overlay task via a
MSGPASSON message. This function is called if the user selects "Aliasing Model
(2D)," "2D Dimmer," "2D Brighter," or any of the "Reticle" options from the Flea AGPT
Switches menu.

The function call is setcommand_2d(subsys, cmd), where:

subsys is the subsystem to which the message is to be sent (currently always 0 for the
2-D overlay processor)

cmd is the command to be sent

set command_2d does the following:

* Checks to make sure the subsystem has a Force board.
* Puts the command into the subsystem's element in the command_2d[] array, for

processing by update-agpt_2d.
* Sets pfleaout->sub_2dio[subsystem] to TRUE. When this flag is set,

fleaencodedata calls updateagpt 2d to generate the MSGPASSON message.
(fleaencode_data uses the type.update_2d variable to determine whether to call
update-agpt_2d or update_2d. fleaagpt-switches sets type-update_2d to 1, which
causes flea_encode_data to select the AGPT version.)

* Sets the subsystem's flag in the gspiojflag[] array to TRUE. This tells the
mpvideo sendreq function (in the MPV Interface CSC) that there is a command to
be sent to the GSP in this subsystem.

Called By: fleaagpt_switches

Routines Called: none

Parameters: INT__4 subsys
INT_4 cmd

213

BBN Systems and Technologies GT1OO RTSW CSCI

Returns: none

2.7.8.3 update mag

The update-mag function puts new viewport magnification values into the p_fleaout
buffer for processing by the encode routines. This function is called if the user selects any
of the magnification options on the Flea AGPT Switches menu.

The function call is update mag(node, lod, fovi, fovj), where:

node is the configuration node with the viewport parameters to be modified
lod is the new level of detail
fovi is is the new horizontal field-of-view angle
fovj is the new vertical field-of-view angle

update mag puts the new parameters into pfleaout and sets view-magjlag to TRUE.
The message to make the change is generated by upd view_mag.

Called By: flea_agpLswitches

Routines Called: none

Parameters: INT_4 node
REAL_4 lod
REAL_4 fovi
REAL_4 fovj

Returns: none

2.7.8.4 update_subsysmode

The update-subsysjmode function puts new color table and fade value data into the
pjfleaout buffer for processing by the encode routines. This function is called when the
user selects a new sky color via the Flea AGPT Switches menu.

The function call is update subsysmode(subsys, color, fade, special), where:

subsys is the subsystem (backend) id
color is the color table number
fade is the fade value
special is the new TX mode

update-subsys.mode puts the new parameters into pflea_out and sets subsys-modejflag
to TRUE. The message to make the change is generated by upd-subsys-mode.

Called By: flea-agptswitches

214

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: none

Parameters: HWORD subsys
BYTE color
BYTE fade
WORD special

Returns: none

2.7.8.5 updatevpt

The update-vpt function puts new viewport parameters into the plea.out buffer for
processing by the encode routines. This function is called if the user selects a new sky
color from the Flea AGPT Switches menu.

The function call is updatevpt(id, on, alt, mod), where:

id is the viewport id
on is 0 to turn the viewport on, or 1 to turn it off
alt is 0 to disable alternate mode, or 1 to enable it
mod is 0 to disable the alternate mode modifier, or 1 to enable it

update.vpt puts the new parameters into pjfleaout and sets vpt-updatejflag to TRUE.
The message to change the viewport is generated by upd-viewporLup.

Called By: fleaagptswitches

Routines Called: none

Parameters: INT_2 id
BYTE on
BYTE alt
BYTE mod

Returns: none

2.7.8.6 flea agptswitches main menu

The fleaagpt_switchesmainmenu function displays the Flea AGPT Switches menu.
This function is called if the user selects the) ("AGPT switches") option from the Flea
main menu. It is also called if the user enters ? at the "Flea AGPT Switches>" prompt.

The function call is fleaagpt switches mainmenuo. The function does the. following:

215

BBN Systems and Technologies GT1OO RTSW CSCI

* Clears the screen.
* Calls menuheader to display the labels for the Flea simulation statistics.
* Displays the current sky color and fade values.
* Displays the menu.
* Calls update-menuheader to display the current Flea simulation statistics.
* Displays the "Flea AGPT Switches>" prompt.

For a list of the options on the Flea AGPT Switches menu, see flea-agptswitches.

Called By: fleaagpt_switches
tick

Routines Called: blank
cup
menuheader
printf
strcpy
update-menuheader

Parameters: none

Returns: none

2.7.8.7 derror

The derror function displays error messages and prompts for flea-agpt-switches.

The function call is derror(s), where s is the text to be displayed. derror also sets
usererror to TRUE; this variable is not used elsewhere.

Called By: fleaagpt-switches

Routines Called: cup
printf

Parameters: char s[]

Returns: none

2.7.9 fleaatp.c

The functions in the flea-atp.c CSU are used to run calibration acceptance tests under Flea.
These functions are:

216

BBN Systems and Technologies GT100 RTSW CSCI

* fleaatp
flea_atpmain-menu

2.7.9.1 flea atp

The fleaatp function lets the Flea user run the acceptance tests that use the calibration
database. This function is called via the *fleamenu function pointer when the user selects
the $ ("DBCALIB locations" - database calibration locations) option from the Flea main
menu.

The function call is flea.atpo. flea.atp prompts the user for a selection and uses the
*flea-getc function pointer to get the entered keystroke.

For each test selected by the user, fleaatp sets the simulated vehicle's coordinates
(flea.vppos.x, y, and z) to the database location used for that test. The vehicle's rotation
values (flea vprot.x, y, and z), skidx, skidy, skidz, htrate, and speed are all set to 0.

The following table lists the options supported by flea-atp, and shows the steps it performs
to process each one. This menu is displayed by fleaatpmain-menu.

Acceptance Test Menu Option Processing by fleaatp

? help Calls flea.atpmain menu.

0 Populated.Area Sets the simulated vehicle's current position.

1 Depth Complexity Sets the simulated vehicle's current position.

2 Color Resolution Sets the simulated vehicle's current position.

3 Full Perspective Texture Sets the simulated vehicle's current position.

4 Level of Detail Sets the simulated vehicle's current position.

6 Occulting Levels Sets the simulated vehicle's current position.

7 Polygon Throughput Sets the simulated vehicle's current position.

8 Texture with Transparency Sets the simulated vehicle's current position.

9 Polygon Test Pattern Sets the simulated vehicle's current position.

x Exit Sets *flea menu function pointer to tick; calls strcpy to

I display "Flea>" prompt; calls tick main menu.

Called By: flea io_.task (through *fleamenu)

Routines Called: *flea-getc
cup
flea.atpjmainmenu
isprint
isspace
printf
strcpy
tickmainmenu

217

BBN Systems and Technologies GT1OO RTSW CSCI

Parameters: none

Returns: none

2.7.9.2 flea atp_rmainmenu

The flea atp-mainmenu function displays the Acceptance Test Menu supported by
flea~atp, and prompts the user for input. This function is called when the user selects the $
("DBCALIB locations") option from the Flea main menu. It is also called if the user enters
? at the "Flea ATP>" prompt.

The function call is fleaatp_main_menuO. The function does the following:

* Clears the screen.
• Displays the menu.
* Sets the current prompt to "Flea ATP>".
* Displays the "Flea ATP>" prompt.

For a list of the options displayed on the Acceptance Test Menu, see flea-atp.

Called By: flea.atp
tick

Routines Called: blank
cup
printf
strcpy

Parameters: none

Returns: none

2.7.10 flea balopts.c

The functions in the flea bal.opts.c CSU let the Flea user interact with Ballistics. These
functions are:

• fleabaLopts
• flea bal-optsjmainmenu

2.7.10.1 fleabalopts

The flea-bal_opts function processes Ballistics requests input by the Flea user. This
function is called via the *fleamenu function pointer when the user selects the #
("ballistics") option from the Flea main menu.

218

BBN Systems and Technologies GT100 RTSW CSCI

The function call is flea bal optso. fleaibalopts prompts the user for a selection, thenuses the *flea.getc function pointer to get the keystroke entered.

The following table lists the options supported by flea.bal-opts, and shows the steps it
performs to process each one. This menu is displayed by flea ba-opts.mainmenu.
Options flagged with an asterisk are supported by fleabal-opts but do not appear on the
menu.

Flea Ballistics Menu Option Processing by flea_bal opts

?* display menu Calls flea baloptsmainmenu.

fire round Sets p flea out->shoot_flag to TRUE.
* cancel last round Sets pfleaout->shooLflag to 0xff.

+ add vehicle Makes sure other vehicle limit (70) has not been
reached; prompts user for vehicle type, ASID, distance,
x offset, and z offset; generates transformation matrix;
places all data in p-otherveh-state; increments
otherveh-count.

- delete vehicle Decrements odiervehcount.

@ toggle auto fire If autojfireflag is FALSE: prompts user for rounds per
minute; initializes hits_perminute, hiLcount, and
framescount to 0; sets hit-countiflag and autofireflag
to TRUE.
If autofire_flag is TRUE: sets hitcount-flag and
autofirejflag to FALSE.

I* +z rot Increases htrate by.1.
2* 0z rot Sets htrate to 0.00.
3* -z rot Decreases htrate by .1.
4* +x rot Increases flea_x rot by ..
5* Ox rot Sets flea_x rot to 0.0.

6* -x rot Decreases flea x rot by .1.
7* +y rot Increases flea-y-rot by .1.
8* Oy rot Sets flea.yrot to 0.0.

9* -y rot Decreases flea x_rot by. 1.

A disable agl Sets p.fleaout->req.agl to FALSE.

a request agi Sets p flea out->req-agl to TRUE.

219

BBN Systems and Technologies GT100 RTSW CSCI

C chord control Displays current chord type and prompts for new value;
sets p flea_out->proc..chordjype; displays current tracer
type and prompts for new value; sets pjlea~out->
proc-shord-tracer -type; displays current chord mode and
prompts for new value; sets p flea-out->
procShod-mode.
If chord mode is CHORDMODE_FINITE: displays
current chord length and prompts for new value; sets
pjflea,_.out->proc~phord_1ength.
If chord mode is CHORD _MODEINTERV, displays
current chord end point and prompts for new values; sets
p...flea..out->proc_chord_enc~x, y, and z.
Displays current explosion type and prompts for new

____________________value; sets pjfleaout->explosionj-ype.

D toggle int comp Sets p flea out->round mode.

d remove static veh Prompts user for vehicle type and id; puts data in
p..flea..out; sets p flea~out->remn_staticveh..flag to

______ _____TRUE.

e burst effect Prompts user for explosion type; sets p-flea-out->
____________________________explosion-type.

F toggle shot report If pjlea-ut->round_mode indicates shot reporting is
on: changes p~flea_out->round~mode to disable shot
reporting.
If pjfleout->round_mode indicates shot reporting is
off: changes p..flea out->round-mode to enable shot
reporting; prompts user for target id, sets p..flea-out->

_________________________target id.

g toggle agl ground follow If p..flea..out->agl_terrain_follow is FALSE: sets
p..flea..out->req.agl to TRUE; prompts user for height
above ground; sets pjlea.out->desired_agi; sets
pjlea.out->agl terain~follow to TRUE.

If pjleaout->agl_errain_folow is TRUE: sets it to
______________________FALSE.

h* zero velocity Sets speed to 0.0.
J delete traj. table (not currently implemented)
j add new traj. table (not currently implemented)

L toggle laser weapon If pjfle...out->proc chord~flag is non-zero, sets to
_______________________FALSE; if 0, sets to 9; displays new status.

I fire laser weapon Sets p flea out->procshordjlag to TRUE.
n* decrease velocity Decreases speed by .2.

p buffer pointers Displays pointers to p-P.fea...in, p...flea...out, and
pbuferponter demoptr.

220

BBN Systems and Technologies GT100 RTSW CSCI

R round control Displays current round type, tracer flag, and round mode;
prompts for new values; sets pfleaout->
newroundjtype, tracerjflag, and roundmode.
If round mode is ROUNDMODE_SHOT_REPORT:
prompts user for target; sets p.flea out->target id.
Displays current tracer, round, and explosion types;
prompts for new values; sets p fleaout->tracerjtype,
round-type, and explosiontype.

r change round type Prompts user for round type; sets pjfleaout->
round type.

S toggle tracer display Sets p flea out->round mode.
s drop static veh Prompts user for vehicle type, id, and ASID; generates

transformation matrix; puts all data in pjflea-out; sets
pflea out->add staticveh-flag to TRUE.

T tracer type Prompts user for tracer type; sets p.flea..out->
bacer type.

t traj chord Prompts user for chord id type, tracer flag, starting and
ending points; sets values in pfleaout->pjiajschord;
sets pjfleakout->traj-chordflag to TRUE.

V add vehicleS Resets otherveh_count to 0; prompts user for type,
number of vehicles, maximum distance, and AS ID flag.
For each vehicle: sets x,yz offsets; generates
transformation matrix; puts data in p-otherveh.state;
increments otherveh count.

v delete vehicleS Sets otherveh count to 0.
x* exit Sets *fleamenu function pointer to tick; calls

tick-mainmenu.
y* increase velocity Increases speed by .2.

Called By: fleaio_task (through *fleamenu)

Routines Called: *flea-getc
bcopy
blank
cup
flea.bal-opts mainmenu
gets
GLOB
isprint
isspace
printf
sscanf
tickmain menu

Parameters: none

221

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.7.10.2 flea bat_opts_main menu

The fleabaloptsmainmenu function displays the Flea Ballistics menu, which lets the
user interface to Ballistics during a Flea exercise. This function is called if the user selects
the # ("ballistics") option from the Flea main menu. It is also called if the user enters ? at
the "Flea Ballistics>" prompt.

The function call is fleabaloptsmainmenuO. The function does the following:

* Clears the screen.
" Calls menuheader to display the labels for the Flea simulation statistics.
* Displays the menu.
• Calls update-menuheader to display the current Flea simulation statistics.
" If an AGL value has been returned, displays it.
* If the auto fire flag is enabled, displays the number of rounds per minute.
" If the procchord-flag is enabled, displays "Laser weapon is ON."
• If the shotreportjflag is enabled, displays the round and target ids, and the status

of the last shot ("NONEXISTENT TARGET," "FELL SHORT," "DYNAMIC
VEHICLE," or "STATIC VEHICLE.")

* Displays the "FLEABALOPTS>" prompt.

The options on this menu are processed by fleabalopts. For a list of the options, refer to
flea.bal-opts.

Called By: fleabaLopts
tick

Routines Called: blank
cup
menuheader
printf
update-menuheader

Parameters: none

Returns: none

2.7.11 fleadb traverse.c

The flea db traverse function lets the Flea user traverse the database in a set direction and
at a set speed. This feature is invoked by selecting the T ("starttestart db trv") option from
the Flea main menu. The user is prompted for the direction in which to travel, the vehicle
speed in meters per frame, the traversal interval in meters, and the boundaries in which to
travel (minimum and maximum x,y coordinates), fleadbtraverse is called every frame by
flea-update-pos, whether or not database traversal has been initiated.

222

BBN Systems and Technologies GT100 RTSW CSCI

The function call is flea db traverseo.

The function examines the value of pjfleaout->db trystate to determine whether database
traversal is off, in progress, or to be stopped. It then proceeds as follows:

• If db_try_state = 0 (traversal is off - initial condition):
- No processing.

* If db_trystate = 1 (traversal is on - set by flea_db_traverse after traversal is
initiated by user):

- Checks to see if the current position is beyond the set limits; if so, sets
db_trvstate to 5 (no traversal running) and initializes skidx, skidy, skidz,
htrate, fleaxrot, flea.y-rot and speed to 0.

- If the location is within limits and db tr-direction = 0 (y):
* Increases flea-vppos.y by dbtrv-speed.
* If the new flea~yppos.y is out of bounds, increases flea.vppos.x by

db_trvinterval; increases flea_vprot.z by 180.0; changes sign of
dbjrv.speed; if agLterrainfollow is enabled, increases
flea-vppos.z by 2000.0.

- If the location is within limits and dbtrydirection = I (x):
" Increases flea.vppos.x by dbtrv-speed.
" If the new flea.yppos.x is out of bounds, increases flea.vppos.y by

db_trv_interval; increases fleavprot.z by 180.0; changes sign of
dbjtrv-speed; if agl-terrainfollow is enabled, increases
flea.vppos.x by 2000.0.

* If db_trv_state = 2 (halt traversal - set by tick if user selects "stop db trv"):
- Stores vehicle's current position and orientation in db_tr-v_pos.x, y, and z

and db_trv_orient.x, y, and z.
- Initializes skidx, skidy, skidz, htrate, flea xjrot, and flea_yrot to 0.
- Sets db_trv_state to 0 (traversal off).

* If db_trv_state is 3 (turn traversal on - set by tick if user selects "start/restart db
try") or 4 (resume traversal - set by tick if user selects "resume db try"):

- Restores vehicle's position and orientation.
- Initializes skidx, skidy, skidz, htrate, flea_x_rot, fleayjrot, and speed to

0.
- Sets db try state to 1 (traversal on).

Called By: flea-update-pos

Routines Called: none

Parameters: none

Returns: none

2.7.12 flea decode data.c

The flea_decode_data function returns decodes the messages returned from the CIG real-
time software. These messages are the same as those that would be returned to the
Simulation Host during a simulation exercise. They include Ballistics responses, local

223

BBN Systems and Technologies GT1OO RTSW CSCI

terrain messages, and error messages. If a message requires processing, fleadecodedata
puts the message or other required data in pfleain.

The function call is fleadecode datao. The function does the following:

" Initializes the variables in pfleajin that indicate whether certain types of data have
been returned from the CIG (terrain returned, agl-returned, range-returned[i], and
hitreturned[i]).

" Processes each message in the fleaomsg packet (see table below).
" Keeps track of the packet size by incrementing a counter by the size of each

message as it is processed.
* Stops processing if a MSGEND or invalid message is detected, or if the calculated

packet size exceeds the length specified in the packet header.

The following table identifies the messages processed by flea-decodedata and shows the
major steps it performs to process each one. Note that several messages cause no
processing other than incrementing the packet size.

224

BBN Systems and Technologies GT100 RTSW CSCI

M Message Processing by fleadecode data

MSG_AOL Sets p flea_in->runagl to altitude specified in message;
sets p flea_in->agLreturned to TRUE; increments
packet size.

MSGEND Sets packetendflag to TRUE, which causes the
function to exit the loop.

MSG_H1T_RETURN If fleahit_count_flag is TRUE, increments
fleahiLcount; generates a MSGSHOW_EFFECT
message to display effect (pflea out->explosion.type)
at intersection point specified in MSG_HIT_RETURN
message; increments packet size.

MSGLASERRETURN Sets p fleain->rangejeturned[n] to TRUE; copies
message data to p_flea_in->laserreturn[n]: increments
packet size.

MSGLOCALTERRAIN Increments packet size.
MSGLTPIECE Puts each chunk of data into localter aray; truncates

data if too large; increments packet size.
MSGMISS Increments misscount; increments packet size.

MSG-PASS BACK Increments packet size.
MSGRETURNPOINT INFO Increments packet size.
MSGSHOT_REPORT Sets p fleain->shoLreportjflag to TRUE; copies data

from message to p-flea-in->shoLreport; increments
packet size.

MSG-SYS ERROR Increments packet size.
MSG_TF_HDR If vehicle id is valid, puts data from message into

pifleaveh[] array for specified vehicle id; increments
packet size.

MSGTFPT If vehicle id and point number are valid, puts data from
message into p flea.veh[u array for specified vehicle
id/feedback point; increments count of feedback points
received; increments packet size.

Called By: flea

Routines Called: asm
bcopy
printf

Parameters: none

Returns: none

225

BBN Systems and Technologies GT100 RTSW CSCI

2.7.13 flea demo.c

The fleademo function calls autopilot to run the autopilot demo. This function is called
every frame if a demonstration has been initiated (i.e., demonstration is not equal to 0)

The function call is fleademoO. The function does the following:

" If demonstration = 1:
- Calls autopilot to run the demo.
- Increments the frame number sent to autopilot.
- If the new frame number exceeds the total number of frames in the demo

(this value is returned by autopilot):
* Calls autopilot with frame number 9999 (stop demo).
* Sets demonstration = 0 (no demo in progress).
* Resets the frame number to 0.

" If demonstration = 99, 98, 96: not currently implemented.
* Stores the vehicle's vppos.z as lastz.

Called By: flea-update-pos

Routines Called: autopilot

Parameters: none

Returns: none

2.7.14 flea draw_2d.c

The fleadraw_2d function reads 2-D overlay data from a file specified by the user. It puts
the data into a structure that is used by update_2d to pass the new overlay data to the GSP.
This function is called if the Flea user selects the f ("draw 2d via file") option from the Flea
Switches menu.

The function call is fleadraw_2d0. The function does the following:

* Prompts the user for the subsystem (backend) id: 0, 1, or 3 for both.
* Prompts the user for the name of the passon message file that contains the 2-D

commands.
* Opens the specified file.
* Reads each line of the file into the draw_2d_buffer array.
* Closes the 2-D file.
* Sets draw_2d buffer[draw_index][0] to 8888. This signals the end of the data for

update_2d.
* Sets command_2d[] for the specified subsystem(s) to 10. This tells update_2d that

the command to be processed is DRAW_2D.

226

BBN Systems and Technologies GT100 RTSW CSCI

Called By: fleaswitches

Routines Called: cup
fclose
fgets
fopen
isdigit
isspace
printf
scanf
sscanf
strcmp

Parameters: none

Returns: none

2.7.15 flea encode data.c

The flea encode_data function is responsible for calling all of the upd_* functions that
generate the outgoing (Simulation Host-type) messages to be returned to the simulation
software. This function is called every frame during a Flea exercise.

The function call is fleaencodedataO. The function calls all of the functions listed
below under Routines Called, with the following exceptions:

" The function calls dynamic_demo only if demonstration is set to 2. This indicates
that the user has initiated a moving model demo from the Flea Switches, Flea
AGPT Locations, or Flea AGPT Switches menu.

* The function calls update.agpt_2d or update_2d only if a change affecting 2-D
overlays has been specified for a given subsystem.

- update-agpt2d is called if typejupdate_2d is 1. This value is set by
setcommand_2d if the option was selected from the Flea AGPT Switches
menu.

- update_2d is called if type-update_2d is not 1, indicating that the option
was selected from the regular Flea Switches menu.

Each upd_* function looks in p.fleaout to determine whether it has any data to process
this frame.

Called By: flea

Routines Called: dynamicdemo
send-ammo_define
send-gun..overlay
upd add static veh
upd-auto-fire
upd-chord fired

227

BBN Systems and Technologies GT100 RTSW CSCI

upd_clouds
updcount_hits-permin
upddynamicmatrix
upd flea_vehicles
updit_state
upd matrix_values
uplppm
upd_rem_static._veh
upd-reqagl
updjreqjlrange
updreq-point
upd rotationvalues
updroundfired
upd-senddynamic
upd-sendstop
upd-show-eff
upd-sio write
updsubsys-mode
upd-view_flags
upd-viewmag
upd-view_mode
updviewport-up
update_2d
update-agpt_2d

Parameters: none

Returns: none

2.7.16 flea graphicstest.c

The functions in the fleagraphicstest.c CSU are used to run acceptance tests. These
functions are:

" fleagraphicsjtest
* flea-graphicsjtest-main_menu

2.7.16.1 fleagraphicstest

The flea-graphicsjtest function processes the user's selection on the Flea Graphics Test
Menu. The options on this menu are used to run acceptance tests. This menu becomes
active (via the *flea_menu function pointer) if the user selects the & ("DBTEST locations")
option from the Flea main menu.

The function call is fleagraphics testo. The function uses the *flea-getc function
pointer to get the keystroke input by the user, then processes it.

The following table identifies the options supported by flea..graphicstest , and shows the
steps it performs to process each one. For each test, the function sets the simulated
vehicle's position to the location in that database that contains the selected test pattern.

228

BBN Systems and Technologies GT100 RTSW CSCI

The Graphics Test menu is displayed by flea...graphics -test -mainmenu. Options
supported but not shown on the menu are flagged below with an asterisk.

Graphics Test Menu Option Processing by flea graphics test

? help No action.
0 string of vehicles Sets ficayvppos and ficayvprot.
1 striped right triangle Sets fleav.ppos and fleaLVprot.
2 44x44 chessboard Sets flea..yppos and flea..prot.
3 32x32 chessboard Sets flea~yppos and flea yprot.
4 house Sets flea .yppos and flea...proL
5 4x4 chessboard (textures) Sets flea-yppos and flea-yproL
6 shaded textures Sets fleay-ppos and flea..yprot.
7 66 sided pyramid Sets fleajvppos and flea-vprot.
8 4 tanks (no textures) Sets fleay-ppos and flea..yprot
9 tank behind explosion Sets flea..yppos and flea~vproL
a tank behind treeline Sets fiea~yppos and fleak-vproL
b tank behind tree Sets flea..yppos and flea..yproL
c 2 pixel vertical line Sets flea~vppos and flea..yproL
d 50 cubes Sets flea-yppos and flea..yprot.
q* quit Sets *flea -menu function pointer to tick; sets prompt to

"Flea>" ; calls tick main-menu.
x* exit Sets *flea -menu function pointer to tick; sets prompt to

"Flea>"n; calls tick main menu.

After each selection is processed, flea..graplucs,_test initializes skidx, skidy, skidz, htrate,
and speed to 0.

Called By: fleaio_task (through *flea_menu)

Routines Called: *fleagetc
cup
GLOB
isprint
isspace
printf
tick-main-menu
strcpy

Parameters: none

229

BBN Systems and Technologies GTIOO RTSW CSCI

Returns: none

2.7.16.2 fleagraphics test main menu

The flea-graphicsjtestLmainmenu function displays the Flea Graphics Test menu. This
function is called if the user selects the & ("DBTEST locations") from the Flea main menu.

The function call is fleagraphics test main menu(o. The function does the
following:

* Clears the screen.
* Displays the menu.
• Displays the "Flea Graphics>" prompt.

The option selected by the user is processed by fleagraphics-jest. For a list of the options
displayed on the menu, refer to fleagraphicstest.

Called By: tick

Routines Called: blank
cup
printf
strcpy

Parameters: none

Returns: none

2.7.17 flea_init_cig_sw.c

The fleainitcig-sw function opens the Flea configuration file, calls configtranslator to
process its entries, then builds a message packet to return to the CIG. This function is
called when flea is initialized.

The Flea configuration file can be specified using the c ("change configfile name") option
on the Gossip main menu. If no file was specified, fleainitcigsw looks for a default
file.

The function call is fleainit cig_swO. The function does the following:

* Initializes various variables that pertain to the message packet.
* If a configuration file name was entered through Gossip, calls findfn to open the

specified file; tries first for an exact match, then for a partial match.
* If no file was specified through Gossip, calls find_fn to open the highest-numbered

cfg* file.
* Allocates memory for the structure used to build the CIG configuration messages.
* Calls config-translator to read the file and generate the CIG configuration

messages.

230

BBN Systems and Technologies GT100 RTSW CSCI

* Processes each message built by the config-translator functions (see table below).
* Stops processing messages when a MSGCIGCTLor MSGEND message is

detected, or if the packet count exceeds the maximum packet size.
" Uses the EXCHANGEFLEADATA macro (described in Appendix B) to

exchange message packets with the real-time software.
" Resets the packetLcount to 0 and the packeLcompleteflag to FALSE.
* Frees the memory allocated to process the messages.
* Uses the EXCHANGEFLEADATA macro 16 more times, to ensure that the CIG

has fully completed the configuration stage.

The following table lists the message types that may be generated by the config-translator
functions, and identifies the major steps fleajiniLcigsw uses to process them. In most
cases, fleainit-cig-sw simply uses the OUTPUT_MESSAGE macro (described in
Appendix B) to add the message to the outgoing message packet (flea.i.msg). The function
also keeps track of the size of the packet and, if FLEADEBUG is enabled, outputs the
contents of many of the messages to stdout.

231

BBN Systems and Technologies GTOO RTSW CSCI

Message Type Processing by flea_init_cigsw

MSG_2DSETUP Uses OUTPUT-MESSAGE to add message to packet.

MSQADD TRAJ TABLE Uses OUTPUTMESSAGE to add message to packet.

MSGAMMQDEFINE Uses OUTPUTMESSAGE to add message to packet.

MSG_CiG_CTL Copies message to packet; sets packetcomplete-flag to
TRUE (which causes flea iniLcig-sw to exit loop).

MSGCREATECONFIGNODE Copies message to packet; if nodeindex = 1 (initial
world-to-hull matrix), calls id_4x3mtx, rotate_x_nt,
rotate_y.nt, rotatezjnt, and translate to generate
transformation matrix, and adds matrix to message.

MSGDEFINE TX MODE Uses OUTPUTMESSAGE to add message to packet.
MSGDRI 1 PKT SIZE Uses OUTPUT MESSAGE to add message to packet.

MSGEND Sets completion-flag to TRUE; sets
packetcomplete,.flag to TRUE (which causes
flea iniLcig-sw to exit loop).

MSGFILEDESCR Copies message to packet.
If flea color cfg-wantedG is enabled: sets db-req to
DBCOLORCFG_0 and dbname to
colorcfgjntouse.
If fleaesifa_loadwantedG is enabled: sets dbjreq to
DBESIFALOAD_0 and db name to esifa fn to-use.

MSGLTSTATE Uses OUTPUTMESSAGE to add message to packet.

MSGOVERLAYSETUP Uses OUTPUTMESSAGE to add message to packet.

MSG PPM DISPLAY MODE Uses OUTPUT-MESSAGE to add message to packet.

MSGPPM DISPLAY OFFSET Uses OUTPUT-MESSAGE to add message to packet.

MSGPPMPIXELLOCATION Uses OUTPUTMESSAGE to add message to packet.

MSGPPMPIXELSTATE Uses OUTPUTMESSAGE to add message to packet.

MSGSIO CLOSE Uses OUTPUTMESSAGE to add message to packet.

MSGSIOINIT Uses OUTPUTMESSAGE to add message to packet.

MSG TF INITHDR Uses OUTPUT MESSAGE to add message to packet.

MSG TF INIT PT Uses OUTPUTMESSAGE to add message to packet.
MSG TF STATE Uses OUTPUTMESSAGE to add message to packet.

MSGTRAJENTRY Uses OUTPULMESSAGE to add message to packet.

MSGVIEWPORT STATE Uses OUTPUTMESSAGE to add message to packet.

If an invalid message type is detected, flea-init-cig-sw displays an error message and exits
with a 1.

The function returns 1 if successful. It returns EOF if it could not find the file specified
through Gossip, or if no cfg* file was found on disk. The function exits with a 1 if it
could not allocate enough memory to build messages, or if config_translator returns an
error.

Called By: flea

232

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: bcopy
config-translator
Cos
EXCHANGE_FLEADATA
exit
find fn
free
GLOB
id_4x3mtx
malloc
OUTPUT_MESSAGE
printf
rotate x nt
rotate-y-nt
rotate_z_nt
sin
strcpy
strlen
TORAD
translate

Parameters: none

Returns: EOF
1

2.7.18 flea ppmobj.c

The functions in the flea-ppm-obj.c CSU control PPM parameter downloads to the CIG.
These functions are:

* upd-ppm
* flea_calibrationimage

fleappmdisplay-mode
* flea_ppm.display-offset
* flea-ppm-pixel_location
* flea-ppmpixelstate

2.7.18.1 updppm

The upd-ppm function checks pjfleaout for any PPM requests. If it finds any, it calls the
appropriate routine to add the message to the outgoing message packet. This function is
called at the end of every frame during a Flea exercise.

upd-ppm determines whether it has any data to process by examining various flags in
pjfleaout. These flags are set if the user selects various options from the Flea PPM

* menu, which is reached by selecting P ("Calibrate PPMs") from the Flea main menu.
These flags and the options used to set them are as follows:

233

BBN Systems and Technologies GT100 RTSW CSCI

p_fleaout Flag Flea PPM Menu Option
calibrationimagejflag i ("cal image")
ppmdisplayjmodejflag m ("change mode")
ppm-display-offsetflag 1 ("display left"), 2 ("display down"), 3 ("display right"),

5 ("display up")

ppm..pixel-locationjflag h ("pixel left"), I ("pixel right"), j ("pixel down"),
k ("pixel up")

ppm..pixel state flag o ("pixel off"), 0 ("pixel on")
auto-ppm-flag a ("auto test")

The function call is updppmo. The function does the following:

• If calibrationimageflag in pjfleaout is set:
- Makes sure the packet has enough room for the new message.
- Increments the packet size.
- Calls fleacalibrationimage to build the MSGCALIBRATIONIMAGE

message and put it in the outgoing packet.
- Sets calibration imageflag to FALSE.

" If ppmdisplaymode_flag in pflea_out is set:
- Makes sure the packet has enough room for the new message.
- Increments the packet size.
- Calls fleappmdisplayjnode to build the MSG_PPM_DISPLAY_MODE

message and put it in the outgoing packet.
- Sets ppmdisplay-modeflag to FALSE.

• If pprmdisplayoffset_flag in pfleaout is set:
- Makes sure the packet has enough room for the new message.
- Increments the packet size.
- Calls flea.ppm-display-offset to build the MSG_PPM_DISPLAY_-

OFFSET message and put it in the outgoing packet.
- Sets ppm-display__offsetflag to FALSE.

* If ppmpixeljlocation-flag in p-fleaout is set:
- Makes sure the packet has enough room for the new message.
- Increments the packet size.
- Calls flea__ppmpixel-location to build the MSG_PPMPIXEL_-

LOCATION message and put it in the outgoing packet.
- Sets ppm..pixel-locationflag to FALSE.

" If ppm-pixel-state-flag in p.flea.out is set:
- Makes sure the packet has enough room for the new message.
- Increments the packet size.
- Calls fleappm..pixel-state to build the MSG_PPM_PIXEL_STATE

message and put it in the outgoing packet.
- Sets ppm-pixel-state-flag to FALSE.

" If auto-ppmjflag in p_flea.out is set:
- Increments pprnframecount.
- Determines which period (if any) is up this frame. (The user specifies the

periods for each PPM operation when choosing the "auto test" function.)
• If display_..modeperiod: sets display-modechan to 0 and

display_ mode_flag to TRUE.

234

BBN Systems and Technologies GTIOO RTSW CSCI

" If display-offsetperiod: sets display-offsetchan to 0 and
display-offset-flag to TRUE.

* If cal-pixeLperiod: sets caLpixel_chan to 0 and cal-pixel-flag to
TRUE.

* If pixel-loc-period: sets pixellocchan to 0 and pixel locflag to
TRUE.

Processes the change based on which flag is now set:
* If display-mode-flag: sets all data in msgppmjdisplay-mode;

makes sure packet has enough room; calls flea.ppmdisplay-mode
to put MSG_PPM_DISPLAYMODE message in packet;
increments displaymode chan; if channel is 8 or more, resets
display-mode, displayjmode-chan, and displaymodejflag.

* If display-offsetflag: sets all data in msg-ppmdisplay offset;
makes sure packet has enough room; calls flea ppm-display-offset
to put MSGPPM_DISPLAYOFFSET message in packet;
increments display_offset chan; if channel is 8 or more, resets
display-offset-i and j, display-offset-chan, and
display.offseLflag.

* If cal.pixel_flag: sets all data in msg-ppm-pixel-state; makes sure
packet has enough room; calls flea-ppmrpixel-state to put
MSG_PPMPIXEL_STATE message in packet; increments
caLpixeLchan; if channel is 4 or more, resets pixel on off,
cal.pixeLchan, and cal-pixel-flag.

* If pixeLloc-flag: sets all data in msgppmpixel-location; makes
sure packet has enough room; calls flea._ppmpixel_location to put
MSG_PPMPIXELSTATE message in packet; increments
pixel_lo_chan; if channel is 4 or more, resets pixel loc_i and j,
pixel_loc_chan, and pixel_locflag.

The function calls fleaerror-printf to output an error if the packet does not have enough
room for the new message.

Called By: fleaencodedata

Routines Called: fleacalibration-image
flea-error.print
flea~ppmisplaymode
flea ppmdisplaypffset
flea.ppm.pixellocation
flea_.ppm-pixel_state

Parameters: none

Returns: none

2.7.18.2 flea calibration image. The flea-ppm-pixel-state function puts the MSGCALIBRATION_IMAGE message into
the outgoing message packet. This function is called if the calibration image-flag in

235

BBN Systems and Technologies GT100 RTSW CSCI

p_jleaout is set to TRUE because the user selected the i ("cal image") option from the Flea
PPM menu.

The function call is fleacalibrationimage(pmsg, pnewmsg), where:

pmsg is a pointer to the outgoing message packet (fleaimsg)
p-newmsg is a pointer to the message in pjfleaout

After adding the message and its header, the function increments the pointer to the outgoing
packet and returns it as pmsg.

Called By: upd-ppm

Routines Called: none

Parameters: MSG_CALIBRATION_IMAGE *p-msg
MSG_CALIBRATIONIMAGE *pnew-msg

Returns: p-msg

2.7.18.3 fleappmdisplaymode

The fleappmdisplay_mode function puts the MSGPPMDISPLAYMODE message
into the outgoing message packet. This function is called if the ppmdisplay-modeiflag in
pjfleaout is set to TRUE because the user selected the m ("change mode") option from the
Flea PPM menu. It is also called if the a ("auto test") option was selected and the
display-modeperiod expires this frame.

The function call is fleappm display_mode(p_msg, pnew msg), where:

p_msg is a pointer to the outgoing message packet (flea-imsg)
p_newmsg is a pointer to the message in pjfleaout

After adding the message and its header, the function increments the pointer to the outgoing
packet and returns it as p msg.

Called By: upd-ppm

Routines Called: none

Parameters: MSG_PPM_DISPLAYMODE *p-msg
MSGPPMDISPLAYMODE *p-new-msg

Returns: p.msg

236

BBN Systems and Technologies GT100 RTSW CSCI

2.7.18.4 fleappmdisplayoffset

The fleappmLdisplay-offset function puts the MSGPPMDISPLAYOFFSET message
into the outgoing message packet. This function is called if the ppmjdisplay-offsetflag in
pjfleaout is set to TRUE because the user selected any of the "display <direction>"
options from the Flea PPM menu. It is also called if the a ("auto test") option was selected
and the display-offset-period expires this frame.

The function call is fleappmdisplayoffset(pmsg, pnewmsg), where:

p_msg is a pointer to the outgoing message packet (fleaimsg)
p_new~msg is a pointer to the message in pjflea-out

After adding the message and its header, the function increments the pointer to the outgoing
packet and returns it as pmsg.

Called By: updppm

Routines Called: none

Parameters: MSGPPM_DISPLAYOFFSET *p-msg
MSG_PPMDISPLAYOFFSET *p-new-msg

Returns: p-msg

2.7.18.5 flea ppm_pixel location

The flea-pprmpixellocation function puts the MSGPPMPIXELLOCATION message
into the outgoing message packet. This function is called if the ppmpixel locationflag in
pjleaout is set to TRUE because the user selected any of the "pixel <direction>" options
from the Flea PPM menu. It is also called if the a ("auto test") option was selected and the
pixel-loc_.period expires this frame.

The function call is fleappmpixellocation(pmsg, p-new-msg), where:

p_msg is a pointer to the outgoing message packet (fleajimsg)
p_newmsg is a pointer to the message in pfleaout

After adding the message and its header, the function increments the pointer to the outgoing
packet and returns it as pmsg.

Called By: upd-ppm

Routines Called: none

237

BBN Systems and Technologies GTIOO RTSW CSCI

Parameters: MSGPPMPIXELLOCATION *pmsg
MSGPPMPIXELLOCATION *p-new-msg

Returns: pmsg

2.7.18.6 fleappmpixel_state

The flea-ppmpixel-state function puts the MSG_PPM_PIXEL_STATE message into the
outgoing message packet. This function is called if the ppmpixel-stateflag in pAfleaout
is set to TRUE because the user selected o ("pixel off') or 0 ("pixel on") from the Flea
PPM menu. It is also called if the a ("auto test") option was selected and the
caLpixeLperiod expires this frame.

The function call is fleappmpixelstate(pmsg, pnew msg), where:

p_msg is a pointer to the outgoing message packet (fleajimsg)
p_newmsg is a pointer to the message in pjflea out

After adding the message and its header, the function increments the pointer to the outgoing
packet and returns it as pmsg.

Called By: upd-ppm

Routines Called: none

Parameters: MSG_PPMPIXELSTATE *p-msg
MSGPPMPIXELSTATE *p-new-msg

Returns: pLmsg

2.7.19 fleascript.c

The functions in the flea script.c CSU provide the ability to play back a recorded script
file. These functions are:

* flea abs.playback
* get-next-packet
" geLnext message

A script file can be built by selecting the r ("record i/f messages menu") option from the
Gossip main menu. If this feature is enabled, the cigsimio functions in the Real-Time
Processing CSC save all incoming and outgoing messages to a binary file. Recording
continues for a specified number of frames.

238

BBN Systems and Technologies GT100 RTSW CSCI

2.7.19.1 fleaabs.playback

The fleaabsplayback function plays back the script recorded in a file. This function is
called every frame by flea (instead of the functions called when a user is driving the
exercise) if the fleaGabs..playback variable is TRUE. This variable is enabled if the user
selects the b ("begin absolute playback") option from the Flea Script menu. The user must
also enter the name of the file that contains the script to be played back.

When the recorded file is played back, fleaabs. playback extracts all of the incoming
(SIM-to-CIG) messages from the file and places them in the fleajimsg packet. Packets are
then exchanged as usual by the flea fupction.

The function call is flea absplaybacko. The function does the following:

* If a playback file is not yet open, opens it in read-only mode.
- If the file cannot be opened, displays an error and sets fleaG-abs.playback

to FALSE.
- If the file is opened successfully, sets playback file.open to TRUE.

• If fleaG-stop-playback is TRUE (because the user selected the "stop playback"
option from the Flea Script menu):

Sets playbackjfile-open to FALSE.
- Closes the playback file.
- Sets fleaG abs.playback to FALSE.
- Sets fleaG-stop.playback to FALSE.
- Exits.

* Sets end_of_frame to FALSE.
* Calls getnextpacket to get the next message packet.

- If geLnextcpacket reports an end-of-file, outputs a message and rewinds
the file.

- If the packet is tagged TAG MSGFROM_CIG or
TAG_PKTFROMCIG: sets end-of frame to TRUE.

- If the packet is tagged TAG_PKT_TO_CIG: copies the packet to fleajimsg
and sets end_of_frame to TRUE.

- If the packet is tagged TAG_MSG_TOCIG: calls getjnext-message to get
the message, then copies the message to flea_irmsg.

* When the end of frame is reached, adds a MSG_END message to the flea_imsg
packet.

Called By: flea

Routines Called: bcopy
get nextmessage
get next-packet
ifx_close
ifxopen
ifx sposn
printf

Parameters: none

239

BBN Systems and Technologies GTI00 RTSW CSCI

Returns: none

2.7.19.2 getnextpacket

The get-nexLpacket function gets the next message packet from the script file.

The function call is get nextpacket(fd, pktcode, pkt addr, pkt size), where:

fd is the file descriptor of the record (script) file
pkt code is a pointer to the packet's tag (TAG-STRING, TAG PKTTO CIG,

TAGMSG_TOCIG, TAG PKTFROM_CIG, or TAGMSGFROM_CIG.)
pktaddr is a pointer to the packet found by geLnexLpacket
p&tsize is is a pointer to the size of the packet found by geLnexLpacket

The function does the following:

" Reads the packet tag.
* Sets *pktcode, *pkt addr, and *pkt_size.
" Reads the packet buffer.
" Verifies that the number of bytes read equals the block size specified in the packet

tag.

The function returns the status returned by ifx read if successful. It returns EOF if it
encounters an error reading the script file.

Called By: flea-abs.playback

Routines Called: ifxread
printf

Parameters: INT_4 fd
UNS_1 *pktcode
UNSI **pktaddr
UNS_2 *pktsize

Returns: EOF
status

2.7.19.3 get next message

The get-next-message function gets the next message from the script file. This function is
called if the entry in the script file is tagged TAGMSG_TO_CIG.

The function call is getnextmessage(msghdr_P, msgcodeP, data_size_P),
where:

240

BBN Systems and Technologies GT1OO RTSW CSCI

msg hdr P is a pointer to the message header
msg-code P is a pointer to the message code
datasize-P is a pointer to the message size

The function does the following:

" Sets *msg_codeP to the message type specified in the message header.
" Sets *datasizeP to the size of the message header plus the message length

specified in the header.
* Validates the message code.

The function returns 0 if successful. It returns EOF if the message code is invalid.

Called By: fleaabs-playback

Routines Called: printf

Parameters: MSGHDR *msg_hdr_P
INT_2 *msgscode_P
INT_2 *datasizeP

Returns: EOF*0
2.7.20 flea simulate vehicles.c

The functions in the fleasimulatevehicles.c CSU are used to update the position and
orientation values of each Flea vehicle based on terrain feedback. These functions are:

* fleasimulate_vehirles
• find_pitch androll

2.7.20.1 flea simulate vehicles

The fleasimulatevehicles function adjusts each Flea vehicle's position and orientation
based on the terrain feedback points received. This function is called every frame during a
Flea exercise.

The pfleaLveh[I array (data type SIMVEHSTRUCT) is used to maintain data for all
Flea vehicles. Each vehicle's entry specifies its type, vehicle id, ASID value,
transformation matrix, desired altitude, terrain feedback points, etc. The first vehicle in the
array (index 0) is the simulated vehicle. The maximum number of Flea vehicles is specified
by MAX_FLEA_VEHICLES, which is set in the demostruct.h file.

The function call is flea simulate vehiclesO. The function does the following:

* For the simulated vehicle:

241

BBN Systems and Technologies GT100 RTSW CSCI

- Sets a pointer to the vehicle's data in pflea_veh. The simulated vehicle is
the first element in the array.

- Makes sure the vehicle's in-use flag is TRUE and that all of its terrain
feedback points have been received.

- Resets the received point count to 0.
- Sets the vehicle's pos.x to flea.vppos.x.
- Sets the vehicle's pos.y to flea.vppos.y.
- Sets the vehicle's pos.z and fleajvppos.z to the sum of (1) the average

height of the vehicle's first three terrain feedback points, and (2) the
vehicle's desired altitude.

- Adds the z values of all of the vehicle's terrain feedback points.
- Sets flea.vppos.z to the vehicle's desired altitude plus the average height of

the feedback points.
- Sets speed to the vehicle's dpos.y.
- Increments the vehicle's rot.z by drot.z.
- Uses the CHECKROT macro to validate the value of rot.z.
- Sets fleajvprot.z to the vehicle's rot.z.
- Calls findpitch.androll to calculate the vehicle's rot.x (pitch) and rot.y

(roll) values.
- Sets flea-vprot.x to the vehicle's rot.x.
- Sets flea-vprot.y to the vehicle's rot.y.

For all other vehicles, to the maximum specified by MAXFLEAVEHICLES:
- Sets a pointer to the vehicle's data in pfleaveh.
- Makes sure the vehicle's in-use flag is TRUE and that all of its terrain

feedback points have been received.
- Resets the received point count to 0.
- Increments the vehicle's pos.x by dpos.y times mtx[l][0].
- Increments the vehicle's pos.y by dpos.y times mtxl[][ll.
- Increments the vehicle's desired-alt by dpos.z.
- Adds the position.z values for all of the vehicle's feedback points.
- Sets the vehicle's pos.z to the desired altitude plus the average height of the

terrain feedback points.
- Increments rot.z by drot.z.
- Uses the CHECKROT macro to validate the rot.z value.
- Calculates the cosine and sine of the vehicle's x, y, and z rotation values.
- Calls id_4x3mtx to create an identity matrix.
- Calls rotate_z_nt to rotate the identity matrix using the vehicle's z rotation

value.
- Calls findpitch_and roll to calculate the vehicle's rot.x (pitch) and rot.y

(roll) values.
- Calls make4x3 to generate the vehicle's new transformation matrix.
- Puts the new matrix and vectors into the vehicle's structure.
- If the vehicle's shoot-flag is TRUE:

* Sets the shoot-flag to FALSE.
* Generates a MSG_PROCESS_ROUND message and puts it into the

flealimsg packet.
- If the vehicle's round_limit flag is TRUE (auto-firing) and the

roundcounter exceeds the round-limit:
* Resets the roundcounter to 0.
* Generates a MSG_PROCESS_ROUND message and puts it into the

flealimsg packet.

Called By: flea-update-pos

242

BBN Systems and Technologies GT1OO RTSW CSCI

Routines Called: CHECKROT
cos
findpitch androll
id_4x3mtx
make4x3
rotate_z_nt
sin
TORAD

Parameters: none

Returns: none

2.7.20.2 find pitch androll

The find-pitchandroll function calculates a Flea vehicle's pitch (rot.x) and roll (rot.y),
based on the vehicle's three terrain feedback points. This function is called when
fleasimulate_vehicles is updating the orientation of each Flea vehicle.

The function call is find_pitchand_roll(veh P), where veh P is a pointer to the
vehicle's data in the p-fleaveh[] array. The function does the following:

• Computes the vector connecting the first and second terrain feedback points.
* Computes the vector connecting the second and third terrain feedback points.
• Computes the normal vector using the first two vectors.
* Calls vecmatmul to multiply the normal vector by the vehicle's matrix.
* Computes the magnitude of the normal vector (mag-nonnal) by taking the square

root of (vec.x2 +vec.y 2 +vec.z 2).
* Calculates the vehicle's pitch in radians as [n / 2 - acos((vec.y / mag-normal))].
* Calculates the vehicle's roll in radians as [acos((vec.x / mag-normal)) - n / 2].
* Sets the vehicle's rot.x value to the value of pitch converted to degrees (using the

TODEG macro).
• Sets the vehicle's rot.y value to the value of roll converted to degrees (using

TODEG).

Called By: fleasimulatevehicles

Routines Called: acos
sqrt
TODEG
vec mat mul

Parameters: SIMVEHSTRUCT *veh_P

243

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.7.21 flea switches.c

The functions in fleaswitches.c CSU let the user modify various simulation parameters.
These functions are:

• fleaswitches
" flea_switches-main-menu

2.7.21.1 flea switches

The flea-switches function process the user's selection on the Flea Switches menu. This
function is called (through the *fleamenu function pointer) if the user selects the *
("switches") option from the Flea main menu. The Flea Switches menu is used to:

* Modify simulation variables such as viewport parameters, system view flags,
branch values, cloud models, and gun overlays.

* Initiate requests for AGL, laser range, local terrain, and terrain feedback
processing.

* Start a moving model demo, or access the menu used to change demonstration
parameters.

The function call is flea switcheso. fleaswitches uses the *flea-getc function pointer
to get the keystroke entered by the user, then processes the selection. In most instances,
fleaswitches places the values entered by the user into p-flea-out and sets the applicable
flag in pfleaout to trigger processing by the upd_* functions in encoderoutines.c.

The following table lists the options supported by fleaswitches, and shows the steps it
takes to process each one. The menu is displayed by fleaswitches_mainmenu. Options
flagged with an asterisk are supported by fleaswitches but do not appear on the menu.

244

BBN Systems and Technologies GT100 RTSW CSCI

Flea Switches Menu Option Processing by flea-switches

?* display menu Calls flea._switchesmainmenu.
shoot gun Sets p_flea4out->shooLflag to TRUE.

1 1st text line Clears screen; prompts user for text string (maximum
31 characters); puts data in textl_2d].

2 2d mode Clears screen; displays valid commands; prompts user
for subsystem id and command to send; validates
subsystem id.

If specified subsystem contains a Force board: sets
subsystem's element in p_flea_out->sub_2d io[I to
TRUE; puts command in subsystem's element in
command_2d[]; sets subsystem's element in
gspio-flagf] to TRUE.

3 2nd text line Clears screen; prompts user for text string (maximum
31 characters); puts data in text2_2d[.

4 change It state Prompts user for new state (0 or 1), size, and frame
interval; sets It state code, Itstatesize,
It_stateinterval; sets It_state_flag to TRUE.

5 magnification Prompts user for node index, lod multiplier, fov (ij);
puts values in p_flea_out->view_magnification; sets
pfleaout->viewmag..flag to TRUE.

6 subsys mode Clears screen; displays color selection table; prompts
user for subsystem id, color table, fade value, and
special use mask; puts new values in pifleaout; sets

__p_fleaout->subsys_mode_flag to TRUE.

7 viewport upd Prompts user for viewport id, on/off, alternate on/off,
modifier on/off; puts values in p_fleaout->vptupdate;
sets pflea out->vpLupdate_flag to TRUE.

8 view local terrain Clears screen.
If single-step mode is off: prompts user to set it.
If local_terrain_wanted is TRUE: displays frame number
and all data from local terrain message (number of
polygons and bvols, all polygon entries, all bvol
entries).
If local-terrain wanted is FALSE: displays error.

9 ammo define msg Prompts user for ammo define map; puts values in
flea_ammodefine.ammotypemap; sets
fleaammodefme._flag to TRUE.

a request agl Sets p_fleaout->reqagl to TRUE.
b branch value Clears screen; displays current branch values; asks if

user wants to change; if yes, prompts for index and new
value; sets p flea out->branch-value[index.

C clouds message Clears screen; prompts user for cloud state, cloud top
altitude and model id, cloud bottom altitude and model
id; puts values in piflea.out; sets pjfleaout->
cloud-flag to TRUE; displays "Command>" prompt.

c change cal modifier Prompts user for new value; sets calmodifier in global
_memory.

245

BBN Systems and Technologies GTI00 RTSW CSCI

d moving model demo If demonstration is 0 (model demo not running):
initializes fleavprot.x, fleayvproLy, fleajvprot.z,
skidx, skidy, skidz, htrate, and speed to 0; calls
dynamicdemo with frame number set to 0; prompts
user to select 'd' option again to adjust options.
If demonstration is 2 (model demo already in progress):
calls modeLdemo.

e transform update Clears screen; prompts user for node index and type of
rotation (ROT2xl, IROTATION, or 3ROTATIONS);
sets rotationjtype[node-index]; prompts user for
rotation axis; sets rotationaxis[node-index]; prompts
user for rotation in degrees per frame; sets
rotationjincr[node-index].

f draw 2d via fde Calls flea-draw_2d.

g gun barrel update Clears screen; prompts user for vehicle type, ready,
malfunction indicator, multiple return indicator, ammo
type, rangedg4 digits, azimuth digits, range2 digits,
rotation of gun barrel; sets new gn_* values; sets
send-gun.stat to TRUE.

1 request laser range Clears screen; prompts user for subsystem id, request id,
channel number, pixel location (ij); puts values in
p~fleaout; sets p flea out->reqjlrange to TRUE.

R request point info Clears screen; prompts user for x and y coordinates of
point; sets pifleaout->request..poinLx, y; sets
p-flea-out->req-point to TRUE.

t transform values (not currently implemented)

v change view flags Prompts user for new view flags; sets pjfleaout->
view-flag; displays "Command>" prompt.

x* exit Sets *flea_menu function pointer to tick; sets current
prompt to "Flea>"; calls tickmain menu.

Called By: flea io task (through *fleamenu)

Routines Called: *flea-getc
blank
cup
dynamic_demo
fleadraw_2d
fleaswitches mainmenu
GLOB
isprint
isspace
modeldemo
printf
scanf
strcpy
tickmainmenu

Parameters: none

246

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.7.21.2 flea switches main menu

The flea_switches_mainmenu function displays the Flea Switches menu. It also displays
the latest data returned from the real-time software for AGL processing and laser range
requests. fleaswitchesmainmenu is called if the user selects the * ("switches") option
from the Flea main menu.

The function call is fleaswitchesmainmenuo. The function does the following:

* Clears the screen.
* Calls menuheader to display the field labels for the Flea simulation vehicle

statistics displayed at the top of the screen.
* Displays the color description and fade value for each backend.
* Displays the Flea Switches menu.
• Calls updatemenu_header to display current statistics on the Flea simulation

vehicle.
" If an AGL value has been returned from the CIG (i.e., pflea_in->agl_returned is

TRUE), displays the value.
" If a laser range value has been returned from the CIG for subsystem 0 (i.e,

p_fleain->rangereturned[O] is TRUE), displays the backend id, channel number,
and range value.

* If a laser range value has been returned from the CIG for subsystem 1 (i.e,
pjfleain->range-returned[l] is TRUE), displays the backend id, channel number,
and range value.

• Copies "Flea Switches>" to the current prompt.
* Displays the current prompt.

The menu option selected by the user is processed by fleaswitches. For a list of the
options displayed on this menu, see fleaswitches.

Called By: fleaswitches
tick

Routines Called: blank
cup
menuheader
printf
strcpy
update-menuiheader

Parameters: none

Returns: none

247

BBN Systems and Technologies GT1OO RTSW CSCI

2.7.22 fleaupdatepos.c

The fleaupdate-pos function is responsible for moving and rotating the simulated vehicle
each frame. The function first calls various functions to move the vehicle if any type of
automated movement has been requested (e.g., database traversal, AGL terrain follow, or a
moving demonstration). It then generates the vehicle's new transformation matrix based on
the position and rotation values calculated by the automatic movement functions or by the
user's entries on various menus.

The function call is flea updateposo. The function does the following:

* Calls flea_db_traverse to move the vehicle if the user has activated the database
traversal feature.

* Calls flea~aglerrainfollow to adjust the vehicle's altitude if the user has activated
the AGL terrain follow feature.

" Increments fleavppos.x, fleavppos.y, and flea.vppos.z by skidx, skidy, and
skidz, respectively.

* Calls fleasimulate_vehicles to update the position and orientation of each Flea
vehicle based on the terrain feedback points received.

" Increments flea.vppos.x, flea vppos.y, and flea.vppos.z by speed times the
applicable value in the fleahtw transform.mtx array.

* If demonstration is not 0 (indicating that a demo is in progress), calls fleademo to
run the next frame of the autopilot demo.

* Checks all rotation values (flea.vprot.x, y, and z). If any is less than 0, adds 360.
If any is greater than 360, subtracts 360.

" Uses the CHECKROT macro (described in Appendix B) to verify that all rotation
values are now valid.

" Calculates the sine and cosine of each rotation value and places the values in
p fleaout.

* Calls make4x3 to generate the simulated vehicle's new transformation matrix.
* Updates the values in the fleahtw transform.mtx and fleahtwtransform.vec

arrays.

Called By: flea

Routines Called: CHECKROT
cos
flea agl-terrainfollow
fleadb_traverse
fleademo
fleasimulatevehicles
make4x3
printf
sin
TORAD

Parameters: none

248

BBN Systems and Technologies GTI00 RTSW CSCI

Returns: none

2.7.23 flea veh control.c

The functions in fleavehcontrol.c let the user move the vehicles in the simulation. This
CSU contains the following functions:

• fleavehcontrol
* fleavehcontrolmainmenu

2.7.23.1 flea veh control

The fleavehcontrol function processes commands entered by the user to move vehicles
(the simulated vehicle or other dynamic vehicles in the exercise) through the terrain. This
function is called via the *fleamenu function pointer when the user selects the A ("vehicle
control") option from the Flea main menu.

fleavehcontrol maintains an array (p-flea~veh[] - data type SIMVEHSTRUCT) for
the vehicles being manipulated. Each vehicle's entry specifies its type, vehicle id, ASID
value, transformation matrix, desired altitude, terrain feedback points, etc. The first vehicle
in the array (index 0) is the simulated vehicle. The maximum number of vehicles that can
be controlled is specified by MAXFLEAVEHICLES, which is set in the demostruct.h
file.

The function call is flea veh control0. The function uses *flea-getc to get the
character entered by the user, then processes the command.

The following table lists the options supported by fleavehcontrol, and shows the major
steps it performs to process each one. These options are displayed by
flea_vehcontrolmainmenu. Options flagged with an asterisk are supported by
fleavehcontrol but do not appear on the menu.

249

BBN Systems and Technologies GT100 RTSW CSCI

Vehicle Control Menu Option Processing by fleaveh control

display menu Calls flea veh controlmainmenu.
fire a round If vehicle has no round type defined: prompts user for

round and tracer types; sets vehicle's round-type and
tracertype.
Sets vehicle's shoot flag to TRUE.

0 z skid Sets vehicle's dpos.z to 0.0.
+ z skid Increments vehicle's dpos.z by 0.1.

new orientation (not currently implemented)

@ toggle autofire If vehicle's round_limit is non-zero (autofire is on), sets
round-limit to 0.
If vehicle's roundlimit is 0 (autofire is off):

If vehicle has no round type specified, prompts user
for round and tracer types; sets vehicle's round-type
and bacertype.
Prompts user for rounds per minute; sets vehicle's
roundlimit = 60 * framerate / roundsperminute.

1 + z rot Increments vehicle's drot.z by 0.1.
2 0 z rot Sets vehicle's drot.z to 0.0.

3 - z rot Decrements vehicle's drot.z by 0.1.
A new veh asid Prompts user for new vehicle ASID value; sets current

vehicle's asid.
c change veh type Prompts user for new vehicle type (in decimal); sets

vehicle's vehicle-type.

d delete veh Sets vehicle's clear-flag to TRUE.
h stop Sets vehicle's dpos.y to 0.0.
i init veh Clears screen. If vehicle's inuseflag is TRUE,

displays error message and exits.
Prompts user for vehicle type, asid, x and y positions,
desired altitude; sets values in vehicle's entry in
p_flea_veh0.
If vehicle is the simulated vehicle: sets vehicle's z
position to fleavprot.z; sets vehicle's dpos.y to speed.
Prompts user for x,y locations of three terrain feedback
points; puts data in tffinit ptso; sets vehicle_id and
tffinit-hdr.vehicle_id to index number from
pjfleaveh[]; sets all terrain feedback parameters; sets
vehicle's inuseflag to TRUE.

M new veh type Prompts user for new vehicle type (in hex); sets
vehicle's vehicletype.

m - z skid Decrements vehicle's dpos.z by 0.1.
n go backward Decrements vehicle's dpos.y by 0.1.

p new position (not currently implemented)
q* quit Sets *flea_menu function pointer to tick; sets current

prompt to "Flea>"; calls tickmainmenu.

250

BBN Systems and Technologies GT100 RTSW CSCI

v change veh Prompts user for vehicle number; verifies that number
is less than MAX_FLEA_VEHICLES - if not, sets
index to 0; sets pointer to vehicle; displays vehicle's
address in p flea vehi] army.

x* exit Sets *flea.menu function pointer to tick; sets current
prompt to "Flea>"; calls tickmainmenu.

y go forward Increments vehicle's dpos.y by 0.1.

Called By: fleaiotask (through *fleamenu)

Routines Called: *flea-getc
blank
cup
fleaveh_controlmain_menu
GLOB
isprint
isspace
printf
scanf
strcpy
tickmainmenu

Parameters: none

Returns: none

2.7.23.2 flea veh control main menu

The fleavehcontrolmainmenu function displays the Flea Vehicles menu processed by
fleaveh_control. This function is called if the user selects the A ("vehicle control") option
from the Flea main menu, or enters ? on the Flea Vehicles menu.

The function call is fleavehcontrol mainmenuo. The function does the following:

* Clears the screen.
* Displays the following information on the simulated vehicle:

- Vehicle id.
- Vehicle type.
- Current speed.
- Current x, y, and z coordinates.
- Current x, y, and z rotation values.
- Terrain feedback "own vehicle" flag (TRUE or FALSE).
- Desired altitude above ground.
- Coordinates of the first three terrain feedback points.

• Displays the menu of available options.
* Copies "Flea Vehicles>" to the current prompt.
* Displays the current prompt.

251

BBN Systems and Technologies GT100 RTSW CSCI

For a list of the options displayed by flea-veh controlmain-menu, see fleavehcontrol.

Called By: fleavehcontrol
tick

Routines Called: blank
cup
printf
strcpy

Parameters: none

Returns: none

2.7.24 get sio data.c (getsio write data)

The get__sio -write_data function lets the Flea user send data to a serial input/output device
attached to the system. This function is called if the user selects the Z ("Write to Video
Mux") option from the Flea AGPT Switches menu. get siowrite-data prompts the user
for the required parameters, stores the data, then sets a flag for upd-sio write.
updsiowrite then generates the applicable MSG_SIOWRITE message.

The function call is get sio datao. The function does the following:

" Prompts the user for the serial device id.
" Prompts the user for the string to be written to the device.
• Prompts the user for the frame delay (the number of frames to wait before sending

the data).
* Puts the user's entries in siowritemessage.
* Sets sio-flag to TRUE.

Called By: flea-agpt-switches

Routines Called: getspritf
sscanf
strcat
strlen

Parameters: none

Returns: none

252

BBN Systems and Technologies GT100 RTSW CSCI

2.7.25 model demo.c

The modeldemo function provides options to the user to control the moving model
demonstration. The user can specify the model id to use, the number of models to display,
and how far apart the models should be. The user can also stop the demo.

This function is called if the user selects the d ("moving model demo") option from the Flea
Switches menu, or the U ("Moving Model Menu") option from the Flea AGPT Switches
menu. It is called only if a model demo has already been initiated. If no demo is yet in
progress, selecting these options starts a demo.

The function cell is modeldemoo. The function does the following:

" Clears the screen.
" Prompts the user to enter a command.
• Processes the user's request (see table below).

The model demonstration variables that can be configured by the user are maintained in
pjflea out->demo-ptr. demo_ptr is used by dynamic-demo, which actually runs the
demonstration. The maximum number of models that can appear in one demo is controlled
by MAXDEMO_MODELS, which is defined in the demo_struct.h file.

The options listed on the Moving Models Demonstration menu are listed below. The
second column shows the steps modeldemo performs to process each selection.

253

BBN Systems and Technologies GT100 RTSW CSCI

Moving Models Demonstration Processing by model demo
Menu Option _

? view options Displays menu.

1 number of models Prompts user for number of models to display; sets
numrnodels; if number exceeds
MAXDEMOMODELS, asks for another value
and sets again.

2 model type Prompts user for model type to display; sets
modelid.

3 models in x direction Prompts user for number of models to display in x
direction; sets num m_x.

4 models in y direction Prompts user for number of models to display in y
direction; sets num m.y.

5 models in z direction Prompts user for number of models to display in z
direction; sets num m z.

6 space between models in x direction Prompts user for space (in meters) between models
in x direction; sets spacing-x.

7 space between models in y direction Prompts user for space (in meters) between models
in y direction; sets spacing__y.

8 space between models in z direction Prompts user for space (in meters) between models
in z direction; sets spacingz.

9 stop demonstration Sets demonstration to 0; calls dynamicdemo with
frame number set to 9999.

q exit Exits.

x exit Exits.

Called By: flea-agpt-switches
fleaswitches

Routines Called: blank
cup
dynamic demo
printf
scanf

Parameters: none

Returns: none

2.7.26 tick.c

The functions in the tick.c CSU handle the Flea main menu and general operations related
to the Flea user interface. These functions are:

254

BBN Systems and Technologies GT1OO RTSW CSCI

tick-init
tick

* flea.prompt
* tickmainmenu
* menuheader
* updatemenuheader

2.7.26.1 tick init

The tickinit function initializes the matrix type and transformation matrix for the simulated
vehicle. This function is called when a Flea exercise is initiated, when Flea configuration is
complete.

The function call is tick inito. tick_init does the following:

* Calls flea-prompt to display the "Flea>" prompt.
" Initializes the information in the first dynamic node in pjfleaout using the

viewpoint position and orientation entered by the user.
* Sets the pjfleaout->xfrmupdate flag for index 0 to TRUE. This flag alerts

upd-dynamicmatrix that a MSGHPRXYZSMATRIX message is required.
" Sets the p_fleaout->mtxtype for index 0 to RTS4x3_TYPE.

Called By: flea

Routines Called: flea.prompt

Parameters: none

Returns: none

2.7.26.2 tick

The tick function processes the options listed on the Flea main menu. This menu lets the
user do the following:

* Access the other Flea menus.
* Move the simulated vehicle over the terrain.
• Invoke or stop database traversal.
* Control automatic updating of the data displayed at the top of the console screen.
* Return to Gossip.
* Stop the Flea exercise.

This function is called (via the *fleamenu function pointer) when the user starts Flea and
after the user exits out of a lower-level Flea menu.

The function call is tickO. tick does the following:

0•* Uses the *fleagetc function pointer to get the keystroke entered by the user.

255

BBN Systems and Technologies GT100 RTSW CSCI

" Sets the heading of the simulation vehicle.
" Processes the user's keystroke (see table below).
• Displays the "Flea>" prompt.
* If the system is set for constant menu updating, Flea I/O mode is enabled, and the

update_ticks interval has passed since the last update, calls updatemenu_header to
display updated statistics for the simulated vehicle. (Constant updating and the
update_ticks interval are set using the "toggle menu update" option on the Flea main
menu.)

The following table lists the options supported by tick, and identifies the major steps it
performs to process each one. The menu itself is displayed by tickmainmenu. Options
flagged with an asterisk are supported by tick but do not appear on the menu.

Flea Main Menu Option Processing by tick

?* display menu Calls tick-main-menu.
A vehicle control Sets *fleamenu function pointer to fleaveh_control;

calls fleaprompt to display "Flea Vehicles>" prompt;
calls fleaveh control_mainmenu.

tire a round Sets pflea.out->shootflag to TRUE.

ballistics Sets *flea menu function pointer to flea-bal-opts; calls
fleaprompt to display "Flea Ballistics>" prompt; calls
flea baopts-main-menu.

$ DBCALIB locations Sets *fleamenu function pointer to fleaatp; calls
flea4prompt to display "Flea ATP>" prompt; calls
flea_atp-mainmenu.

& DBTEST locations Sets *flea_menu function pointer to flea-graphics-test;
calls fleaprompt to display "Flea Graphics>" prompt;
calls flea.graphics test-main menu.

(AGPT locations Sets *fleamenu function pointer to
fleaagptlocations; calls flea.prompt to display "Flea
AGPT Locations>" prompt; calls
flea agpt.locationsmain menu.

) AGPT switches Sets *flea_menu function pointer to flea_agpt_switches;
calls fleaprompt to display "Flea AGPT Switches>"
prompt; calls flea~agpLswitches main menu.

* switches Sets *flea menu function pointer to flea~switches; calls
fleaprompt to display "Flea Switches>" prompt; calls
fleaswitchesjmain menu.

Oz skid Sets skidz to 0.
+z skid Increases skidz by .03.
new orientation Initializes htrate and speed to 0; prompts user for new

viewpoint orientation; sets flea.vprotx, y, and z.
Validates rotation values: if any value is less than 0,
adds 360; if any value is greater than 360, subtracts 360.
Puts data in pjfleaout->oien[0]; sets vehicle's speed,
skid, and rotation values in p flea out to 0.

1 +z rot Increases htrate by 0.1.

2 Oz rot Sets htrate to 0.00.

256

BBN Systems and Technologies GTI00 RTSW CSCI

3 -z rot Decreases htrate by 0.1.
4 +x rot Increases flea x rot by 0.1.
5 Ox rot Sets flea_x_rot to 0.0.
6 -x rot Decreases flea x rot by 0.1.
7 +y rot Increases flea_yrot by 0.1.
8 Oy rot Sets flea-yjrot to 0.0.

9 -y rot Decreases flea-yjot by 0.1.
H stop db try Sets p flea out->db try state to 2 (halt traversal).

h stop Sets speed to 0.

i Ox skid Sets skidx to 0.
j -y skid Decreases skidy by .03.
k Oy skid Sets skidy to 0.
I +y skid Increases skidy by .03.
m -z skid Decreases skidz by .03.
n reverse Decreases speed by 0.2.

o +x skid Increases skidx by .03.
P Calibrate PPMs Sets *fleamenu function pointer to tick-ppm; callsflea..prompt to display "Flea PPM>" prompt; calls

tickppm menu.

p new position Initializes htrate and speed to 0; prompts user for new
viewpoint position; sets flea-vppos.x, y, and z;
prompts user for new viewpoint orientation; sets
fleavprot.x, y, and z; puts data in pflea~out->xlate[0]
and p flea_out->orien[0j; sets vehicle's speed, skid, and
rotation values in p-flea.out to 0.

q quit (w/o stopping) Calls flea 10_off to disable Flea I/O; calls gosIQOon
to enable Gossip 1/O; calls gosjprompt to display
"Gossip>" prompt; calls flea.-prompt to display
"Gossip>" prompt.

R resume db try Sets p-flea out->db trystate to 4 (resume traversal).

r set round type Prompts user for type; sets pflea out->round type.

S* display db try parameters Clears screen; displays current database traversal state,
direction, speed, interval, minimum x,y, and maximum
x,y.

257

BBN Systems and Technologies GT100 RTSW CSCI

T start/restart db try Clears screen; sets pjea...out->dbjrvW.ps.x, y, and z
to vehicle's current position; sets pjleaout->
db -trvorient.X, y, and z to vehicle's current orientation.
Prompts user for traverse direction; sets pjlea-out->
db ry v.direction.
Prompts user for traversal speed in meters per frame;
sets pjle&.out-xdbrv..speed.
Prompts user for traversal interval in meters; sets
pjlea~out->db-trvjntervaL
Prompts user for traversal minimum and maximum x
and y coordinates; sets plea out->db_trvmin-x,
db-trv-ma..x, dbj-rvjnin-..y and dbjtrv-max.y.
Sets p..flea..out->db _try _state to 3 (turn traversal on).

t toggle menu update If constantjipdate is FALSE (updating is disabled):
prompts user for number of ticks between updates; sets
update-icks; sets constant~update to TRUE.
If constanLupdate is TRUE (updating is enabled): sets

___________________constantupdate to FALSE.

u -x skid Decreases skidx by .03.
x exit (stopping) Sets skidx, skidy, skidz, htrate, and speed to 0; sets

flea-x-rot and flea-y-rot to 0.0; sets all indices in
___________________p...flea out->xfrm-updatel] to FALSE.

y forward Increases speed by 0.2.
Z scripting Sets *fieA_menu function pointer to tick..script; calls

flea...prompt to display "Flea Script>" prompt; calls
tick-scripk-main- menu.

z stop Flea (C...STOP) Sets constant-update to FALSE; sets pjleA out->stop
to TRUE; calls flea_10_off to display Flea 1/0; calls
goslO0-on to enable Gossip I/0; calls gos..prompt to
display "Gossip>" prompt; calls flea-prompt to display

_______________________"Gossip>" prompt.

Called By: flea~io -task (through *fleamenu)

Routines Called: *fleagetc
blank
cup
fleaagptocations,-main-menu
flea-agpt-switches -main-menu
flea.atp...main-menu
flea...bal-opts-main-menu
flea..graphics~test-main-menu
flea_10_mode
flea_10_off
flea..prompt
flea -switches -main-menu
flea-veh-controlmain-menu
GLOB
gos-1l-on

258

BBN Systems and Technologies GT1OO RTSW CSCI

gosprompt
isprint
isspace
printf
scanf
tickmain_menu
tick.ppnmenu
tick..script-mainmenu
update-menu_header

Parameters: none

Returns: none

2.7.26.3 flea prompt

The fleaprompt function displays the Flea command prompt at the bottom of the user's
screen. The prompt contains a text string that identifies the Flea menu that is currently
active (e.g., "Flea>" for the main menu and "Flea Ballistics>" for the flea.bal opts menu).
The user enters the desired command next to the prompt.

The function call is fleaprompt (newprompt), where newprompt is the character
string to be displayed.

Called By: gossip.ick
tick
tickinit
tickmainmenu

Routines Called: cup
printf

Parameters: char *newprompt

Returns: none

2.7.26.4 tick main menu

The tickmain_menu function displays the Flea main menu. The options on this menu are
used to move the simulated vehicle over the terrain, and to access the lower-level Flea
menus. This function is called when the user first starts Flea, enters ? at the "Flea>"
prompt, or exits out of a lower-level Flea menu.

The function call is tick main menuo. The function does the following:

* Clears the screen.

259

BBN Systems and Technologies GT100 RTSW CSCI

• Calls menu-header to display the labels for the Flea simulation statistics shown at
the top of the screen.

* Displays the main menu.
• Calls flea.prompt to display the "Flea>" prompt.
* Calls update-menuheader to update the statistics at the top of the screen.

The option selected by the user is processed by the tick function. Refer to tick for a list of
the options displayed by tickjmainmenu.

Called By: flea.agptlocations
flea~agptswitches
flea,.atp
fleaibal-opts
fleagraphics_test
flea-switches
fleavehcontrol
tick
tick-ppm
tick-script

Routines Called: blank
cup
fleaprompt
menuheader
printf
update.menuheader

Parameters: none

Returns: none

2.7.26.5 menu header

The menuheader function displays the labels for the current position, speed, and
orientation of the simulation vehicle. The value for each parameter is displayed by the
update-menuheader function. Lines 1 and 2 of the Flea console screen are used for this
purpose.

The function call is menu headero.

Called By: flea agptlocationsmain-menu
flea.agptswitchesmain menu
fleahbal-optsmainmenu
fleaswitches_main_menu
tick-main menu
tick-scriptmainmenu

260

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: cup
* printf

Parameters: none

Returns: none

2.7.26.6 update menuheader

The updatemenuheader function displays the current position, speed, and orientation
(heading, pitch, and roll) of the simulation vehicle. The values are displayed on lines 1 and
2 of the Flea console, next to the labels displayed by menuheader, update_menuheader
is called to update the values during the Flea exercise if constant updating is enabled.
(Constant updating and the interval between updates are set using the "toggle menu update"
option on the Flea main menu.)

The function call is update menu headero. The function does the following:

" Converts the simulation vehicle's current speed to knots.
" Displays the current values of fleavppos.x, flea.vppos.y, flea.vppos.z next to the

"Position" label.
" Displays the current speed next to the "Knots" label.
" Adjusts the vehicle's orientation values if outside the valid range (0-360).
* Displays the current/adjusted values of flea.vprot.z, fleavprot.x, and flea-vprot.y

next to the "Heading,"Pitch," and "Roll" labels.

Called By: flea.agptlocationsmainmenu
flea.agpLswitchesmain_menu
flea.bal-opts mainmenu
flea-switches_mainmenu
tick
tick main menu

Routines Called: cup
printf

Parameters: none

Returns: none

2.7.27 tickppm.c

The functions in the tick-ppm.c CSU are used to calibrate the PPM (Pixel Processor
Memory) boards in the CIG. These functions are:

* tickppm

261

BBN Systems and Technologies GT100 RTSW CSCI

" tickppmmenu
• tickppm.menuheader
• tickppnm.update_info

This CSU also defines and uses the SETPPM DISPLAYOFFSET and
SETPPM_PIXELLOCATION macros, described in Appendix B.

2.7.27.1 tick ppm

The tick ppm function processes the commands entered by the user on the Flea PPM
menu. This function is called via the *fleamenu function pointer if the user selects the P
("Calibrate PPMs") option from Flea main menu. tick.ppm obtains the user's entries, puts
the data in pjfleaout, and sets various flags. The messages required to make the changes
are generated at the end of the frame by functions in the fleappmobj.c CSU.

The function call is tickppmo. The function does the following:

* Uses the *flea.getc function pointer to get the keystroke entered by the user.
* Processes the user's request (see table below).
" Displays the "Flea PPM>" prompt.
• Every 150 frames, calls tick-ppm-menu to display the Flea PPM menu.
* Every 15 frames (unless also a multiple of 150), calls tick-ppmupdate-info to

refresh the display of PPM parameter data.

The following table lists the commands supported by tick-ppm, and identifies the steps it
uses to process each one. The menu that lists these commands is displayed by
tick.ppmmainmenu. Options flagged with an asterisk (*) are supported by tick-ppm but
do not appear on the menu.

Flea PPM Menu Option Processing by tickppm

?* display this menu Calls tick-ppm-menu.

1 display left Decrements i value in display-offsets array for current
backend/channel; calls SETPPMDISPLAYOFFSET
macro to put data in pfleaout.

2 display down Increments j value in displayoffsets array for current
backend/channel; calls SET_PPMDISPLAYOFFSET
macro to put data in pjfleaout.

3 display right Increments i value in display_offsets array for current
backend/channel; calls SETPPMDISPLAYOFFSET
macro to put data in pjflea out.

5 display up Decrements j value in display-offsets array for current
backend/channel; calls SET_PPMDISPLAYOFFSET
macro to put data in pjfleaout.

A* stop auto test Sets pflea-out->auto-ppmjflag to FALSE.

262

BBN Systems and Technologies GT100 RTSW CSCI

a auto test Clears screen; sets p-flea~out->auto-ppmbackend to
current backend id; prompts user for display mode,
display offset, calibration pixel, and calibration pixel
location periods; sets pflea~out->display_modeperiod,
display.offset-period, cal-pixel-period, and
pixel-joc _period; sets pjflea~out->auto..ppmftag to
TRUE; calls tick-ppm menu.

b change backend Prompts user for backend id; sets backend, calls
tick-ppmmenu.

c change channel Prompts user for channel number; sets channel; calls
tick-ppm menu.

h pixel left Outputs error if channel >= 4; decrements i value in
pixeLlocation array for current backend/channel; calls
SETPPMPIXELLOCATION macro to put data in
p_ lea out.

cal image Sets p fleaout->calibrationimage.subsystem; prompts
user for image number, sets p flea_out->
calibrationjimage.image; sets pfleaout->
calibration imageflag to TRUE; calls tickppm-menu.

j pixel down Outputs error if channel >= 4; increments j value in
pixel-location array for current backend/channel; calls
SETPPMPIXEL_LOCATION macro to put data in
pleaout.

k pixel up Outputs error if channel >= 4; decrements j value in
pixel-location array for current backend/channel; calls
SET_PPM PIXEL_LOCATION macro to put data in
p_fleaout.

I pixel right Outputs error if channel >= 4; increments i value in
pixeJocation array for current backend/channel; calls
SET PPM_PIXELLOCATION macro to put data in
pjflea out.

m change mode Prompts user for new mode; sets pjflea~out->
ppm-display-mode.subsystem, channel, and
display-mode; displays values; sets pjfleaout->
ppm-display node-flag to TRUE; calls
tick._ppmmenu.

O pixel on Outputs error if channel >= 4; sets p.flea-out->
ppm-pixel-state.subsystem and channel; sets
pleaout->ppm..pixel-state.state to TRUE; sets
p_flea.out->ppm-pixel-stateiflag to TRUE.

o pixel off Outputs error if channel >= 4; sets p.fleaout->
ppm-pixel state.subsystem and channel; sets
pjfleaout->ppm-pixeLstate.state to FALSE; sets
p_flea-out->ppm-pixel_statejfag to TRUE.

q* quit Sets *flea_menu function pointer to tick; calls
tickmainmenu.

x* exit Sets *fleamenu function pointer to tick, calls
tick_mainmenu.

Called By: flea_iotask (through *fleamenu)

263

BBN Systems and Technologies GTI00 RTSW CSCI

Routines Called: *fleagetc
blank
cup
isprint
isspace
printf
scanf
SETPPMDISPLAYOFFSET
SETPPMPIXELLOCATION
tickmain_menu
tick-ppm-menu
tick-ppm-update-info

Parameters: none

Returns: none

2.7.27.2 tick ppmmenu

The tickppm_menu function displays the Flea PPM menu. This function is called by tick
if the user selects the P ("Calibrate PPMs") option from the Flea main menu. It is called by
tick-ppm after certain options are processed, if the user enters ? at the "Flea PPM>"
prompt, and every 150 frames.

The function call is tickppm menuO. The function does the following:

" Clears the Flea console screen.
* Calls tick.ppmmenuheader to display the labels for the PPM parameters.
* Calls tickppmupdatejinfo to display the current value of each PPM parameter.
* Displays the Flea PPM menu.
* Displays the "Flea PPM>" prompt.

The options listed on this menu are processed by the tick.ppm function. For a list and
description of the options, see tickppm.

Called By: tick
tick-ppm

Routines Called: blank
cuppr.tf

tick.ppm-menu-header
tick-ppmupdateinfo

Parameters: none

264

BBN Systems and Technologies GT1OO RTSW CSCI

Returns: none

2.7.27.3 tick ppmmenu header

The tick-ppm menu_header function displays the labels for the current PPM calibration
settings shown at the top of the Flea console screen when the Flea PPM menu is active.
The current value for each parameter (backend id, channel number, PPM mode, display
offset, and pixel location) is displayed by tick._ppm update info.

tick-ppmmenu_header also displays the menu title ("FLEA PPM MENU").

The function call is tick_ppm_menu headerO.

Called By: tickppm-menu

Routines Called: cup
printf

Parameters: none

Returns: none

2.7.27.4 tickppmupdateinfo

The tickppmupdate-info function displays the current value of each PPM calibration
parameter (backend id, channel number, PPM mode, x and y display offsets, and x and y
pixel locations) at the top of the Flea console screen when the Flea PPM menu is active.
This function is called when the menu is first displayed. It is also called to update the data
every 15 frames, as long as the menu is still active.

The label for each PPM calibration parameter is displayed by tickppmmenuheader.

The function call is tick_ppm_updateinfoO.

Called By: tick.ppm
tick-pprnmmenu

Routines Called: cup
printf

Parameters: none

* Returns: none

265

BBN Systems and Technologies GT100 RTSW CSCI

2.7.28 tickscript.c

The functions in the tick.script.c CSU provide options that let the Flea user run pre-built
scripts to drive the simulation. These scripts, called playback scripts, are created using the
r ("record i/f messages menu") option on the Gossip main menu. If a script is selected for
playback, it is processed by fleaabs&.playback.

The functions in this CSU are:

" tickscript
* tickscript.menu

2.7.28.1 tickscript

The tickscript function processes the options displayed on the Flea Script menu. These
options let the Flea user run playback scripts (recorded by the cigsimio functions in the
Real-Time Processing CSC). tick-script is called via the *flea_menu function pointer if the
user selects the Z ("scripting") option from the Flea main menu.

The function call is tick-script(). The function does the following:

* Uses the *flea-getc function pointer to get the keystroke entered by the user.
* Processes the user's request (see table below).
* Displays the current prompt ("Flea Script>").

The following table lists the options supported by tick-script, and shows the steps it uses
to process each one. The menu that lists these options is displayed by
tick script_main_menu. Options flagged with an asterisk (*) are supported by tick-script
but do not appear on the menu.

Flea Script Menu Option Processing by tickscript

? menu Calls tick.scriptmain-menu.

B blank screen Calls blank to clear screen.
b begin absolute playback If playback file has been set (i.e, playbackfileset is

TRUE), sets fleaGabs._playback to TRUE.
If playback file has not been set, outputs error.

e stop playback Sets fleaGstop-playback to TRUE.

f specify playback file Prompts user for name of playback file; sets
fleaGplayback_.fn; opens the file; sets
playback-fldeset to TRUE.

q* quit Sets *flea-menu function pointer to tick; sets current
prompt to "Flea>"; calls tick main menu.

x exit Sets *fleamenu function pointer to tick; sets current
prompt to "Flea>"; calls tick mainmenu.

Called By: flea iotask (through *fleamenu)

266

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: *flea-getc
blank
cup
fix_close
ifx.open
isprint
isspace
printf
scanf
strcpy
tickmain_menu
tick__scriptjain_menu

Parameters: none

Returns: none

2.7.28.2 tick scriptmain menu

The tickscriptmainmenu function displays the menu supported by tickIscript. This
function is called by tick if the user selects the Z ("scripting") option from the Flea main
menu. It is called by tickscript if the user enters ? at the "Flea Script>" prompt.

The function call is tick scriptmainmenuo. The function does the following:

" Clears the Flea console screen.
* Calls menuheader to display the standard Flea status fields.
* Displays the Flea Script options.
* Sets the current prompt to "Flea Script>".
* Displays the "Flea Script>" prompt.

Refer to tickscript for a list and descriptions of the options displayed on the Flea Script
menu.

Called By: tick
tick-script

Routines Called: blank
cup
menuheader
printf
strcpy

Parameters: none

267

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.7.29 update 2d.c

The update_-2d function generates a MSGPASSON message to send a request to the 2-D
processor task in a specified subsystem. This function is called every frame by
fleaencodedata if the (1) subsystem's element in the sub_2dioU array is set to TRUE,
and (2) type_update_2d is not 1.

The subsystem's flag in sub_2d_io[is set by flea-switches if the user selects the 2 ("2d
mode") option from the Flea Switches menu. fleaswitches also places the command
selected by the user into the subsystem's element in the command_2d array, and sets the
subsystem's flag in the gspio-flag[l array to TRUE. The entry in gspjo.flag[] tells the
mpvideosendreq function (in the MPV Interface CSC) that there is a command to be sent
to the GSP in this subsystem.

The type-update_2d flag is set to 1 only if the user selects a 2-D option from the Flea
AGPT Switches menu. If the variable is not 1, fleasencode_data assumes the option was
selected from the regular Flea Switches menu, and calls update_2d.

The function call is update_2d(subsystem), where subsystem is the backend id. The
function does the following:

* Determines the command in command_2d[subsystem].
* Builds a message header for the MSGPASSON message, with the message

length determined by the command.
" Builds the MSGPASSON message, based on the command.

Called By: fleaencode_data

Routines Called: GLOB

Parameters: INT_4 subsystem

Returns: none

2.7.30 updateagpt_2d.c

The update-agpt_2d function generates a MSGPASSON message to send a request to
the 2-D processor task in a specified subsystem. This function is called every frame by
fleaencodedata if (1) the subsystem's element in the sub_2dio[] array is set to TRUE,
and (2) the type-.update_2d flag is 1.

The subsystem's flag in sub_2dio[] is set by set-command_2d if the user selects
"Aliasing Model (2D)," "2D Dimmer," "2D Brighter," or any of the "Reticle" options from
the Flea AGPT Switches menu. setcommand_2d also places the command to be executed
into the subsystem's element in the command_2d[] array, and sets type-update2_2d to 1.

268

BBN Systems and Technologies GT100 RTSW CSCI

The function call is update agpt 2d(subsystem), where subsystem is the backend id.
The function does the following:

" Determines the command in the command_2d[] array.
* Builds a message header for the MSGPASSON message, with the message

length determined by the command.
" Builds the MSGPASSON message, based on the command.

Called By: fleaencodedata

Routines Called: none

Parameters: INT_4 subsystem

Returns: none

269

BBN Systems and Technologies GT100 RTSW CSCI

2.8 DTP Command Generator (/cig/libsrc/libgendtp)

The DTP (Data Traversal Processor) Command Generator translates the viewport
configuration tree generated by the Viewport Configuration CSC into the commands
required to drive the graphics hardware. It generates DTP hardware commands (processor
and channel initialization code) from the viewport configuration tree, then downloads these
commands to the DTP CPU. The DTP then determines what data is to be sent to the 9U
graphics channel.

The DTP is a micro-coded processor board that does the following:

• Looks through active area memory for DTP commands.
• Computes viewpoint positions for vectors.
* Computes world-to-viewpoint matrices for each viewport.
• Performs field-of-view and level-of-detail tests on models and special effects.
* Sends data to the Polygon Processor.

The Polygon (Poly) Processor is a special-purpose floating point processor that does the
following:

• Transforms polygons from world coordinates to viewspace coordinates.
• Eliminates back-facing polygons.
• Clips polygons that fall partially outside of the viewing pyramid.
* Fills polygons with colored or textured pixels.
* Perspectively projects polygons onto the screen.

The DTP is controlled through the DTP commands it finds in active area memory. These
commands are placed in active area memory by the DTP Command Generator. The DTP
reads one buffer in double-buffer memory while the real-time software updates the other.
Each frame, the two processes switch buffers.

The DTP Command Generator uses the Runtime Command Library (RCL) to generate DTP
commands. The RCL is a set of software functions that support the configuration of lists
of runtime commands for both the DTP and the Poly Processor. The RCL is responsible
for working with the complex data structures in the DTP - the DTP Command Generator
simply specifies the command and provides the data required for the command. The RCL
also maintains addressing and data sizing information.

The interface between the DTP Command Generator functions and the RCL is implemented
via command-specific macros. Each DTP command is supported by one or more macros.
These macros are named in the form dtp_xyz, where xyz identifies the DTP command or a
version of a command. Similarly, macros that support Poly Processor commands are
named in the form polyxyz. The DTP Command Generator function calls the appropriate
macro and passes it the data required for the selected command. The macro in turn calls the
appropriate RCL routine and passes it the command parameters. The RCL routine then
generates the actual DTP command and places it in active area memory.

The DTP-RCL macros are defined in the rcinclude.h file. Refer to Appendix B for a list of
these macros.

Figure 2-12 identifies the CSUs in the DTP Command Generator CSC. These CSUs are
described in this section.

270

BBN Systems and Technologies GT1OO RTSW CSCI

DTP Command
Generator"1 CSCI m

dtp.compiler.c
dtpjuncs.c
dtpjravl .c
dtpjtrav2.c
rcfuncs.c

Figure 2-12. DTP Command Generator CSUs

2.8.1 dtpcompiler.c

The dtp-ompiler function is the driving function for generating DTP hardware commands
from the viewport configuration tree.

The function call is dtpcompiler(offset), where offset is the number of bytes of DTP
code. dtpscompiler does the following:

• Initializes the runtime command library (RCL), as follows:
- Calls malloc to allocate memory for the RCL stack.
- Calls rcl set errptr to set the error pointer to "dtpscompiler."
- Calls rclinitadrs to initialize shared addressing variables.
- Calls rcl_init_stack to initialize the RCL stack.

• Allocates data pointers for model processing.
• Starts the processor initialization phase, as follows:

- Calls rcl-seterrptr to set the error pointer to "dtpjtravl."
- Calls iniLdtp-stacks to initialize the DTP stack.
- Calls vpt cnode_qroot to get a pointer to the configuration tree's root node

for dtptrav 1.
- Calls dtptravl to traverse the configuration tree for processor initialization.
- Calls rclpatch-adrs to run the RCL patch utility to patch any missing

addresses and word counts.
- Calls rclinit_stack to reinitialize the RCL stack.

• Starts the channel initialization phase, as follows:
- Calls rcl-set.errptr to set the error pointer to "dtprav2."
- Calls init.dtp-stacks to intialize the DTP stack.
- Calls dtp-trav2 to traverse the configuration tree for channel initialization.
- Calls rcl-patch-adrs to run the RCL patch utility again.

• Calls rcl rtn adrs to get the current RCL addressing values.
• Prints DTP memory use data.

271

BBN Systems and Technologies GTIOO RTSW CSCI

0 Frees the RCL stack.

The function returns SUCCEED if the commands are generated successfully. It returns
FAIL if stack memory could not be allocated, the root node could not be found, or either
dtp-trav 1 or dtp'trav2 failed.

Called By: cigsonfig

Routines Called: dtp-trav 1
dtpjtrav2
free
init-dtp-stacks
malloc
printf
rclinitadrs
rclinit_stack
rcl-patch-adrs
rcl rtn adrs
rcl set errptr
vpt cnodeqroot

Parameters: WORD offset

Returns: 1 (SUCCEED)
0 (FAIL)

2.8.2 dtpfuncs.c

The functions in the dtpfuncs.c CSU are used to manage the node stack used when
traversing the configuration tree, and to allocate DTP user memory. These functions are:

* pushnode
* popnode
* whatnode on stack
Sinit_dtp-stacks
* dtp-malloc
* dtp-mallocinit

2.8.2.1 push-node

The push-node function takes a configuration node pointer as input and places it on the
node stack. It also checks for and reports stack overflows.

The function call is push node(node ptr), where node_ptr is a pointer to the
configuration node to be pushed on the top of the stack.

Called By: dtp-trav I

272

BBN Systems and Technologies GT1OO RTSW CSCI

Routines Called: printf

Parameters: CFGNODE *node-ptr

Returns: none

2.8.2.2 pop-node

The pop-node function returns the configuration node pointer from the top of the node
stack. If the stack is empty, pop-node returns 0; this tells dtp_travl that the stack has been
processed completely.

The function call is popnodeo.

Called By: dtptrav I

Routines Called: none

Parameters: none

Returns: node stack[--top node stack]
0

2.8.2.3 what node on stack

The whatnode-onstack function returns the index of the node on top of the node stack.
If the stack is empty, the function returns a value specified by the calling procedure.

The function call is what node on stack(empty), where empty is the value to be
returned if the stack is empty.

Called By: dtptrav I

Routines Called: none

Parameters: UNS_4 empty

Returns: node-stack[topnode-stack - l]->nodeindex
empty

273

BBN Systems and Technologies GTIOO RTSW CSCI

2.8.2.4 initdtp_stacks

The init_dtp_stacks function initializes the node stack by setting the top stack pointer to 0.
This function is called by dtpscompiler before it calls dtp-travl to traverse the
configuration tree.

The function call is initdtpstackso.

Called By: dtpscompiler

Routines Called: none

Parameters: none

Returns: none

2.8.2.5 dtp_malloc

The dtp-malloc function allocates a specified amount of DTP memory. This function is
called by dtptravI to allocate memory for configuration node matrices.

The function call is dtpmalloc(count), where count is the amount of memory to be
allocated.

The function returns 0 if successful. It returns the current DTP user pointer (as give-away)
if insufficient memory is available.

Called By: dtptravI

Routines Called: none

Parameters: INT_2 count

Returns: 0
give-away

2.8.2.6 dtpmalloc init

The dtp-mallocinit function initializes the portion of DTP allocated as user space. It sets
the DTP user pointer to the first available memory location, which is defined in
ecompilerl.h. dtptravl calls this function before it starts traversing the configuration tree.

274

BBN Systems and Technologies GT100 RTSW CSCI

The function call is dtpmalloc-inito.

Called By: dtptrav I

Routines Called: none

Parameters: none

Returns: none

2.8.3 dtptravl.c

The dtptravl function function traverses the configuration tree to generate processor
initialization codes. dtptravI traverses each node in the configuration tree by placing the
root node on the stack and then processing the stack until it is empty. When a node is
popped from the stack, any matrix concatenation commands or bit tests are performed for
that node, based on the node's type. The node's children and siblings are then placed on
the stack such that the order of processing is the node, the node's children, and the node's
siblings.

dtptravI uses the routines in dtp_funcs.c to access and manage the node stack. It uses the
dtp_* macros (defined in Appendix B) to communicate with the RCL to generate the actual
commands for the hardware.
The function call is dtptravl(node), where node is a pointer to the configuration tree's
root node.

dtp travl does the following:

* Calls dtp-mallocinit to initialize the DTP user space.
* Uses various dtp_* macros to load the following:

- Channel status and channel pointers at DTP location 0.
- List of final processing.
- Flush and dynamic pointer tables.
- Calibration branch mask.
- Cloud bottom and top branch masks (if enabled).
- Daylight TV thermal word.
- View mode word for each channel.
- System view flags and branch values.
- Current time set in simulation.

• Processes each node in the tree to generate the matrix concatenations and bit tests
for each path, as follows:

- Calls push-node to push the root child 0 on the stack.
- Calls pop-node to pop each node from the stack in turn.
- Calls rcl-set label to set a label for the node.
- Validates the node's parent pointer.
- For a matrix node:

* Allocates DTP memory for the node's matrix.
* Concatenates the matrix with the parent's matrix.

275

BBN Systems and Technologies GT1OO RTSW CSCI

- For a branch/matrix node:
* Test the node's branch value.
* Allocate DTP memory for the node's matrix.
* If the branch value is true, load the node's matrix or concatenate it

with the parent's matrix.
* If the branch value is false, load the parent's matrix.

- For a branch (conditional) node:
* Test the node's branch value.
* Load the parent's matrix.

- Push the node's siblings and children onto the stack.
* Performs initial data traversal.
* Prepares system post-processing pointers and displays the post-processing

addresses for static vehicles, dynamic vehicles, and effects.
* Allocates space for the current time to support time-base commands.
" Calls rcl_data to generate a command to indicate a separation of initialization and

channel processing.

The function returns 1 if successful. It returns 0 if it detects an illegal parent pointer or an
invalid node type.

Called By: dtpcompiler

Routines Called: be-querydbO
dtpbnz
dtp-bru
dtp_brus
dtp_end
dtp_lwd
dtp_lwds
dtpmalloc
dtpmallocinit
dtpjmmpst
dtpmwd
poly-flu
pop-node
printf
pushnode
rcldata
rcl_rtn_adrs
rcl set-errptr
rclset_label
what_node_on_stack

Parameters: CFG_NODE *node

Returns: 0
1

276

BBN Systems and Technologies GT100 RTSW CSCI

.2.8.4 dtp_trav2.c

The dtpjtrav2 function traverses the configuration tree to generate channel initialization
codes.

The function call is dtp_trav2(node), where node is a pointer to the root configuration
node.

dtptrav2 does the following:

* Saves the beginning path location.
* For a branch (conditional) node:

- Tests the condition.
- Traverses the true path.

• For a matrix node that is the terminal node in a traversal path (i.e., a node that has
viewport parameters):

- Calculates the channel base address.
- Loads the channel parameters, field-of-view vectors, viewpoint position,

level-of-detail multiplier, and far plane.
- Multiplies the hull-to-view matrix for DTP use.
- Calculates bounding plane normals.
- Calculates the base load module.
- Outputs the channel toggle command if the channel is secondary.
- Outputs the perspective matrix.
- Outputs the screen constants.
- Tests for calibration output for all screens.
- Outputs the gun overlay if bit 0 of the node's branch mask is set.

* For the root node:
- Saves the matrix and forms the stamp word.
- Calls the cloud top and bottom models, if enabled.

• Pre-processes models:
- Creates output-direct for the node's matrix.
- Outputs the gun barrel overlay if bit 1 of the node's branch mask is set.
- For a branch node, sets the branch mask.

* Prepares the system pre-processing pointers and displays the pre-processing
addresses for dynamic vehicles, static vehicles, and effects.

• Saves common poly command data.

The function always returns 1.

Called By: dtp-compiler

Routines Called: bequim
dtp_blm
dtpbnz
dtp-bpc
dtp-bru
dtpbrus
dtpbrz
dtp_end

277

BBN Systems and Technologies GT1OO RTSW CSCI

dtpjlwds
dtpjmmpst
dtp-osd
dtp-owd
dtp-owds
dtp-subs
polyjfsw
poly-rml
polysml
poly-tog
printf
rclrm-adrs
rcLset-errptr
rcl set label
rcl_stuffdata

Parameters: CFGNODE *node

Returns: 1

2.8.5 rcfuncs.c

The functions in the rcfuncs.c CSU are used to work with the Runtime Command Library
(RCL). These functions are:

" rclinitstack
• rcl-push
* rcl-pop
* rcl-patchadrs
* rclset-errptr
* rcl_initadrs
* rclrm_adrs
* rclsetlabel
* rcl set cntlbl
* rcllblcmd
• rclcommand
• rclcomponent
• rcldata
• rclstuff_data

This CSU also defines the following macros used by the RCL functions. These macros are
described in Appendix B.

* ERRMSG
• ROOM4LABEL
* ROOMCHECK
• INCRCOMPONENT

The RCL labeling utility removes the need for the programmer to maintain addressing and
data size information as a command sequence is constructed. The programmer can write
runtime code and label only data that is unknown. All labels (defined as single-integer

278

BBN Systems and Technologies GT100 RTSW CSCI

values) must uniquely identify one location in the code. As the library generates the
runtime commands, it places any unknown information onto a patch stack. When the
library encounters a label, it stores the location of the label for use in patching the stack.
The rcLpatch_adrs function scans the list of unknown data and patches the missing
addresses and word counts.

Use of the patching utility requires a stack area for maintaining the unresolved addresses,
counts, and labels. The rclinit_stack function is used to initialize this stack.

Most labels are used to identify a location in active area memory. Some labels are branch
labels where DTP branch commands change the direction in which the DTP is processing
messages. DTP output commands reference a location where the data begins. For these
commands, the calling function specifies a unique label to identify the branch of output
data, and uses the rclsetlabel function to identify the location. These locations are
patched with the supplied addresses when the rcl-patchadrs function is executed.

Set count labels are labels that are used to identify the size of a data segment rather than the
location of command data.

The DTP has several output commands that require a word count value in order for the
DTP to pass the correct amount of data to the Poly Processor. Usually, there are two ways
to accomplish this:

• If the exact amount of data that can be sent is known, the DTP output command
using the function that has data start label and word count parameters can be used.

* If the data size is not known, the command can be implemented using the set count
function. Rather than specifying a word count for the command, a set count label is
defined. When generating the data, rclSetlabel is executed to identify the
beginning of the data. After generating the data, rcl-setscntlbl is executed to
specify the start and end labels, and the set count label is loaded with the word
count of the data segment. When rcl-patch-adrs is executed, the output count is
patched with the data segment size.

The DTP supports two addressing modes: absolute and relative. In absolute mode, the
address is the actual AAM address for the branch or data. In relative mode, the address is
an offset that is added to the current location to locate the branch or data.

2.8.5.1 rcl init stack

The rclinit-stack function initializes the unresolved address, count, and label stack.

The function call is rcl init.stack(min.stack, max_stack), where:

min stack is the minimum stack address (top of stack)
max-stack is the maximum stack address (bottom of stack)

Called By: dtp-compiler
gosmodel

Routines Called: none

279

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: UNS_4 *min-stack
UNS_4 *maxstack

Returns: none

2.8.5.2 rclpush

The rcl-push function adds a patch location to the patch stack, after verifying that the stack
has space available.

The function call is rcl_push(adr, Ibladr, name), where:

adr is the physical memory address the patch is to be made in
lbladr is the physical memory address the label for the patch is in
name is the name of the calling routine

The function returns 0 if successful, or 1 if the stack is full.

Called By: rcllblcmd

Routines Called: ERRMSG

Parameters: UNS_4 *adr
UNS_4 *lbladr
char *name

Returns: 0
1

2.8.5.3 rclpop
The rcl-pop function removes the top patch location from the patch stack, after verifying

that the stack is not empty.

The function call is rcl_pop(adr, Ibladr, name), where:

adr is a pointer to the physical memory address the patch is to be made in
Ibladr is a pointer to the physical memory address the label for the patch is in
name is the name of the calling routine

The function returns 0 if successful, or 1 if the stack is empty.

Called By: rcl-patch-adrs

280

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: ERRMSG

Parameters: UNS_4 *adr
UNS_4 *lbladr
char *name

Returns: 0
1

2.8.5.4 rclpatch adrs

The rcl-patch_adrs function removes all entries from the patch stack, one at a time. It
patches the stored location with the associated label location and processes the stack until it
is empty. This function patches both absolute and relative addresses.

The function call is rclpatch_adrso.

Called By: dtpscompiler
gosmodel
replacemod
testcommands

Routines Called: ERRMSG
printf
rclpop

Parameters: none

Returns: none

2.8.5.5 rclset_errptr

The rclset_errptr function can be used to specify a character string to be output with every
RCL error message. This string can help localize the source of the error.

The function call is rcl set errptr(adr), where adr is the error string.

Called By: dtpscompiler
dtptravI
dtptrav2
replacemod

* Routines Called: none

281

BBN Systems and Technologies GT1OO RTSW CSCI

Parameters: char *adr

Returns: none

2.8.5.6 rcl init adrs

The rcl_initadrs function initializes values for shared addressing variables.

The function call is rclinitadrs(pl, p2, p3), where:

pl is the memory location to store the RCL commands
p2 is the AAM location corresponding to the p1 address
p3 is the number of bytes available for RCL commands, starting at the p1 address

Called By: dtpscompiler
gosmodel

Routines Called: none

Parameters: UNS_4 *p1
UNS_4 p2
UNS_4 p3

Returns: none

2.8.5.7 rclrtnadrs

The rcl rtn adrs function returns the current values of RCL addressing values, as defined

in initaddressing.

The function call is rclrtnadrs(pl, p2, p3), where:

p1 is the address to return the memory location to store the RCL commands
p2 is the address to return the AAM location corresponding to the p] address
p3 is the address to return the number of bytes available for RCL commands

Called By: dtp-compiler
dtp-travl
dtp-trav2

Routines Called: none

282

BBN Systems and Technologies GTOO RTSW CSCI

Parameters: UNS_4 **p1
UNS_4 *p2
UNS_4 *p3

Returns: none

2.8.5.8 rcl set label

The rcl set label function is used to specify that a given label refers to the current location
in active area memory (the location in rcLaam..adr).

The function call is rcl_setlabel(m), where m is the label to set with the AAM location.

Called By: doublelite
dtptrav 1
dtptrav2
replace-mod
single_lite
test-commands
triplejlite
vasilite

Routines Called: ERRMSG
printf
ROOM4LABEL

Parameters: UNS_4 m

Returns: none

2.8.5.9 rcl set cntlbl

The rclset_cntlbl function identifies a section of data for output.

The function call is rclsetcntlbl(m, em), where:

m is a previously set label that identifies the beginning of the data
em is the label associated with an output count

rcl set cntlbl stores in em the number of words from the address stored in m to the current
AAM address. Output commands that refer to the set count label em are later patched with
this data.

Called By: double_lite
singlejite
testcommands

283

BBN Systems and Technologies GT100 RTSW CSCI

triplelite
vasilite

Routines Called: ERRMSG
printf
ROOM4LABEL

Parameters: UNS_4 m

UNS_4 em

Returns: none

2.8.5.10 rcl lblcmd

The rcl_lblcmd function generates a DTP label command.

The function call is rcllblcmd(name, wdcnt, id, rel, bi), where:

name is a pointer to the name of the calling routine
wd cnt is the total number of words the function will generate for the command
id is the command id value
rel is the relative addressing flag
bl is the label the command branch value is associated with

rcllblcmd does the following:

* Uses the ROOMCHECK macro to make sure there is room for the command.
" Uses the ROOM4LABEL macro to make sure there is room for the label.
• Pushes the address and label address on the stack to patch.
* Saves the correct addressing.
" Copies the additional data.
• Updates memory data.

When rcllblcmd places the command location on the stack, rel is stored as the branch data.
rel is set to 90 for absolute addressing, and is set to rclaamadr for relative addressing.
When patching occurs, this value is subtracted from the patch label to generate the relative
or absolute value.

If wd cnt is greater than 1, the data following Ib on the function stack is appended to the
command.

Called By: dtp_bcn
dtp-bcnr
dtp-bcz
dtp-bczr
dtpjbdgr
dtpbdlr
dtp-bgn
dtp-bgz

284

BBN Systems and Technologies GT100 RTSW CSCI

dtp_ bnz
dtp-bnzr
dtp bru
dtp-brur
dtp brz
dtp:brzr
dtp fov
dip-fovr
dtp-gdc
dtp...gdci
dtp...gdcir
dtp-gdcn
dtp-gdcnr
dtp-gdc
dtp-lmi
dtpjlmir
dtplod
dip- lodr
dtp- lwd
dtpjlwdr
dtp-osd
dtp- owd
dtp- owdsc
dtp-owr
dtp- owrsc
dip- sub
dip- subr

dip-tbrr
poly-efs
poly-efsr

Routines Called: rcl-push
ROOM4LABEL
ROOMCHECK

Parameters: char *name
UNS_4 wd-cnt
UNS-I id
UNS-4 rel
UNS_4 IbN

Returns: none

2.8.5.11 rcl-command

The rcl_command function generates a DTP command with no label.

The function call is rcl-command (name, wd-cnt, id, data), where:

285

BBN Systems and Technologies GT100 RTSW CSCI

name is a pointer to the routine name
wd cnt is the total number of command WORDs
id is the command id value
data is the data for the command

rel -command does the following:

* Uses the ROOMCHECK macro to make sure there is room for the command.
* Copies the data.
* Puts the command id in memory.
* Updates memory data.

Called By: dtp-bcnrs
dtp-bcns
dtp--bczrs
dtp-bczs
dtpjdgrs
dtp-bdlrs
dtp....bgns
dtpbgzs
dtp- blm
dtp-bnzrs
dtp-bnzs
dtpjbpc
dtp-bpcx
dtp- brurs
dtp-brus
dtp-brzrs
dtp-brzs
dtp-dot
dtp -elm
dtp- end
dtp- fovrS
dtp- fovs
dtp-gdcirs
dtp-gdcis
dtp-gdcnrs
dtp..gdcns
dtp..gdcrs
dtp-gdcs
dtp-gr
dtplnurs
dtp-imis
dtp-lodrs
dtp-lods
dtp- lwdrs
dtp lwds
dtp-mml
dtp-mmpre
dtp-mmpst
dip- mwd
dtp ngc
dtp-oio

286

BBN Systems and Technologies GT100 RTSW CSCI

dtpoos
dtposds
dtpowds
dtp_owo
dtpowrs
dtp-rc
dtpsubrs
dtpsubs
dtptbc
dtp_tbdrs
dtp_tbrrs
poly-flu
polyjfsw
polyjmf
polyIsc
poly-mmf
poly-rml
polyjrm2
poly_rm3
polyjrm4
poly-sml
poly-sm2
poly-sm3
poly-sm4
polyjtog

Routines Called: ROOMCHECK

Parameters: char *name
UNS_4 wdcnt
UNSI id
UNS_4 data

Returns: none

2.8.5.12 rcl component

The rclcomponent function generates a Poly Processor component command.

The function call is rcl component(name, wd_cnt, incr, id, bal, It, data), where:

name is a pointer to the name of the calling routine
wd cnt is the total number of words the function will generate for the command
incr is the count increment used to initialize component data
id is the command id value
bal is the Ballistics bit
It is the local terrain bit
data is the first piece of additional data

rcl-component does the following:

287

BBN Systems and Technologies GTI00 RTSW CSCI

" Uses the ROOMCHECK macro to make sure there is room for the command.
" Saves the component pointers for count updates.
* Sets the component id.
• Sets the Ballistics bit if any polygons in the component need to be checked for

Ballistics intersections.
• Sets the local terrain bit if any polygons in the component need to be included in the

local terrain message sent to the Simulation Host.
" If wd cnt is greater than 1, zeroes the second word of the component.
" Copies the additional data.
" Uses the INCRCOMPONENT macro to update the component's word count,

polygon count, and vertex count in the Poly component.
• Updates memory data.

Called By: poly bvc
poly-gc
poly-pc
poly-sc
polysci
poly-sec

Routines Called: INCRCOMPONENT
ROOMCHECK

Parameters: char *nane
UNS_4 wdcnt
UNS_4 incr
UNSI id
UNSI bal
UNSI It
UNS_4 data

Returns: none

2.8.5.13 rcl data

The rcLdata function provides additional data for a poly component command.

The function call is rcldata(name, wd cnt, incr, data), where:

name is the name of the calling routine
wd cnt is the total number of words the function will generate for the command
incris the count increment used to initialize component data
data is the first piece of additional data

rcldata does the following:

* Uses the ROOMCHECK macro to make sure there is room for the command.
• Copies the data.

288

BBN Systems and Technologies GTIOO RTSW CSCI

* Updates memory data.
* Uses the INCRCOMPONENT macro to update the component's word count,

polygon count, and vertex count in the Poly component.

Called By: dtptrav I
poly-ab
poly-inf
poly-poly
polysci
poly-stamp
poly.vtxe
poly.vtxl

Routines Called: INCRCOMPONENT
ROOMCHECK

Parameters: char *name
UNS_4 wdcnt
UNS_4 incr
UNS_4 data

Returns: none

2.8.5.14 rcl stuff data

The rcl_stuff_data function places a specified number of data words found in a specified
location of user memory into successive memory locations. This function is used to add
data to the processing path when no function is available to produce the desired effect.

The function call is rclstuffdata(cpf, wd cnt), where:

cpf is a pointer to the data to be added
wdcnt is the amount of data to copy

rcl_stuff_data does the following:

• Uses the ROOMCHECK macro to make sure there is room for the data.
* Copies the data.
" Updates memory data.

Called By: dtptrav2
polyjlmf
poly.mmf

Routines Called: ROOMCHECK

289

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: UNS_4 *cpf
UNS_4 wdcnt

Returns: none

290

BBN Systems and Technologies GT100 RTSW CSCI

2.9 User Interface Mode (/cig/Iibsrc/iibgossip)

This section describes the functions that make up the User Interface Mode (Gossip) CSC.
This CSC provides a user interface that allows various debugging and query features
during runtime operation. Gossip provides the ability to interrogate system performance,
view and modify system memory, and debug real-time problems.

The functions available to the Gossip user include the following:

" Display data from the Ballistics database.
" Display data from the terrain and DED databases.
" Initiate Flea (the Simulation Host emulator).
• Display or modify simulation memory.
" Display static and dynamic models.
* Invoke a DTP emulator.
" Interface to the 2-D overlay processor (TX backends only).
" Display and change various system variables.
• Display the contents of message packets.
• Enable debug mode.
" Display and modify the viewport configuration tree.
* Enable and disable frame interrupts.
• Place a calibration pattern on W' channels.
• Change the default database or configuration file.
* Reset timers.

The Gossip task runs at the lowest priority, to prevent interference with the simulation.

Most Gossip actions are selected from menus. Not all Gossip menus are displayed by
functions in the User Interface Mode CSC. Selection of an option from a Gossip menu
may invoke a menu function in another CSC. Such menus are described in this document
in the CSC to which they belong.

The CSUs contained in this CSC are identified in Figure 2-13 and described in this section.

291

BBN Systems and Technologies GT100 RTSW CSCI

Use Inerface

agptstatistics.c gos-mpv.c
buffer-errors.c gos -mpviO.c
ded...object.c gosjpolys.c
dtp_..emu.c gos-system.c
gas-1l2Otx.c gossip.c
gos...balquery.c make-bbnjlogoxc
gos..db...query.c mx3_hword.c
gasIocatexc replace -mod.c
gas -memory.c test-commands.c
gas-madel.c

Figure 2-13. Gossip CSUs

2.9. 1 agpt statistics.c

The agptstatistics function is not used by the standard GTlOO system.

2.9.2 buffer errors.c

The functions in the buffer -errorsxc CSU are not used by the standard GTlOO system.

2.9.3 dedobject.c

The functions in the ded-object.c CSU are used to work with the DED model list. These
functions are:

* ded-setup
* ded-init-mdl-addr
" dedtadd-model
* ded_add-effect

*ded-model -end-addr
*ded-adjust..addr-tables
*ded-uninit
*ded-sub-end
*ded_cross_border
*ded_relocate-model

292

BBN Systems and Technologies GT100 RTSW CSCI

" dedtprocess directory
* deddtp-trace
" dedloaddtp-code
• dedmodeloffset
" dedprinLtables
* ded_objecLdebug

Note: These functions are not currently used.

2.9.3.1 ded setup

The ded_setup function sets up the data required to work with the DED (dynamic elements
database) model list.

The function call is ded setup(ded startaddr, ded size, avail gm,
mod ad tableP, modl cat tableP, spef ad table P, spef.cat table P,
total_models, totaleffe'cts,-gm end addr, max_ent'ries, vme_orfset), where:

ded start address is the starting location for loading dynamic models
ded-size is the amount of memory available for all dynamic models
avat__gm is the amount of space in generic memory for model information
mod ad table P is a pointer to the model address table
mod cat table-P is a pointer to the model catalog table
spefad table -P is a pointer to the special effects address table
spef cat tableP is a pointer to the special effects catalog table
totaT models is the total number of models
tota/effects is the total number of special effects
gmend addr is the highest address in generic memory
max entries is the maximum number of DED entries
vne-offset is the VME offset to active area memory

ded-setup does the following:

" Allocates space for the model and special effects address and catalog tables.
• Clears the model and special effects address tables.
" Allocates space for the scratch memory address table used for models and effects.
• Calls ded_initmdladdr to initialize the model address array.

The function returns TRUE if successful. It returns FALSE if memory could not be
allocated for one or more tables.

Called By: none

Routines Called: ded_initmdl_addr
malloc
printf

Parameters: WORD ded_start addr
WORD ded size
WORD availgn

293

BBN Systems and Technologies GT100 RTSW CSCI

MODELTABLESTRUCT **modadtable_P
CATALOGTABLESTRUCT **mod cat-table_P
MODELTABLESTRUCT **spefadtable_P
CATALO LTABLESTRUCT **spefcattable_P
HWORD totalmodels
HWORD totaleffects
WORD gmendaddr
HWORD maxentries
INT_4 vme_offset

Returns: 1 (TRUE)
0 (FALSE)

2.9.3.2 ded init mdl addr

The ded_init_mdladdr function initializes the model address array (Vmdladdr[]). This
function is called when the DED object is set up. This array is used as a working area to
build the model and effect tables. The array contains one element for each model and each
effect.

The function call is dedinit_mdl.addro. The function always returns TRUE.

Called By: ded setup

Routines Called: none

Parameters: none

Returns: 1 (TRUE)

2.9.3.3 dedadd model

The ded_addmodel function adds a model to the model address array, and increments the

model and entry counts. The element's model-flag is set to TRUE.

The function call is dedaddmodel(model_index, modeladdr), where:

model index is the catalog index
mode-addr is the model's starting address

The function always returns TRUE.

Called By: none

Routines Called: none

294

BBN Systems and Technologies GTIOO RTSW CSCI

Parameters: HWORD modelindex
WORD modeladdr

Returns: 1 (TRUE)

2.9.3.4 ded add effect

The ded_addeffect function adds a special effect to the model address array, and
increments the effect and entry counters. The element's modelflag is set to FALSE.

The function call is ded_addeffect(effect index, effect_addr), where:

effect index is the catalog index
effect addr is the effect's starting address

The function always returns TRUE.

Called By: none

Routines Called: none

Parameters: HWORD effectindex
WORD effectaddr

Returns: 1 (TRUE)

2.9.3.5 ded model end addr

The ded_modelendaddr function finds the ending address of each model and effect in the
model address array. It then sets the zeroend-addr (ending address) variable in each
element in the array.

The function call is dedmodelend_addro. The function always returns TRUE.

Called By: dedtprocessjdirectory

Routines Called: printf (in debug mode only)

Parameters: none

Returns: 1 (TRUE)

295

BBN Systems and Technologies GT100 RTSW CSCI

2.9.3.6 dedadjustaddr tables

The dedadjust.addrjtables function determines the AAM starting and ending address of
each model and effect by offsetting them from the DED's AAM starting address. It then
sets each element's aamstartaddr, aam-end-addr, and offset in the model address array.
It also sets the hwaddress for each entry in the model table and the effect table.

The function call is dedadjust addr tables(aam_offset, mdl_table_P,
speftable_P), where:

aam offset is the DED's AAM start address
mdl table P is a pointer to the model address table
spef table_P is a pointer to the special effects address table

The function always returns TRUE.

Called By: dedtprocess-directory

Routines Called: printf (in debug mode only)

Parameters: WORD aamoffset
MODELTABLESTRUCT *mdltable_P
MODELTABLESTRUCT *spef_table_P

Returns: 1 (TRUE)

2.9.3.7 ded uninit

The ded_uninit function frees the memory allocated for the model address array. This
function is called when dedprocess directory finishes processing all models and effects.

The function call is ded uninito.

Called By: ded-process-directory

Routines Called: free

Parameters: none

Returns: none

296

BBN Systems and Technologies GT100 RTSW CSCI

. 2.9.3.8 ded sub end

The ded_sub_end function returns the ending address of the DTP subroutines as subend.

The function call is ded.sub endO.

Called By: ded_processdirectory

Routines Called: none

Parameters: none

Returns: subend

2.9.3.9 ded cross border

The dedcrossborder function determines whether two given addresses cross a quarter-

megabyte boundary.

The function call is dedcrossborder(startaddr, endaddr), where:

start addr is the first address to check
end addr is the second address to check

The function returns TRUE if the two addresses cross a quarter-meg boundary. It returns
FALSE if the end address is before the start address, or if the two addresses do not cross a
boundary.

Called By: ded-processdirectory

dedrelocatemodel

Routines Called: none

Parameters: WORD startaddr
WORD endaddr

Returns: 1 (TRUE)
0 (FALSE)

297

BBN Systems and Technologies GT100 RTSW CSCI

2.9.3.10 ded relocate model

The ded_relocate_model function moves a model from a boundary crossing area to the end
of available generic memory.

The function call is ded relocate-model(modelindex, descriptor), where:

model index is the index of the model to be moved
descriptor is a description to identify the model (displayed in the output message)

ded-relocatemodel does the following:

* Makes sure there is enough generic memory available for the model.
• Makes sure the new address range does not cross a quarter-meg boundary. If it

does, calls itself to try again.
• Subtracts the model size from the amount of available generic memory.
• Outputs the model's new location to stdout.

The function returns the model's new start address if successful. It returns 0 if the model
size exceeds the amount of available generic memory,

Called By: detprocess.directory
ded_relocatemodel (recursive)

Routines Called: dedcrossborder
dedrelocatemodel
printf

Parameters: INT_2 modelindex
char descriptor[]

Returns: 0
deststart

2.9.3.11 ded processdirectory

The ded-process-directory function processes the entries in the model address array to
build the model and effect tables.

The function call is dedprocessdirectory(mdltableP, speftableP, ded fd,
f_addr), where:

mdl table P is a pointer to the model address table
spef table-P is a pointer to the special effects address table
dedjd is the DED file's file descriptor
f addr is the starting address of the model list in the DED file

298

BBN Systems and Technologies GT1OO RTSW CSCI

ded-process-directory does the following:

" Initializes the subroutine data start address and offset to 0.
* Calls dedsubend to get the subroutine data end address.
" Calculates and sets the subroutine size, AAM start and end address, and offset.
* If subroutine data.was detected, calls ded_cross_border to see if the data crosses a

quarter-meg boundary. If so, relocates the subroutine data.
• Calls dedmodelendaddr to determine each model's end address.
" Calls ded-adjust-addrtables to determine each model's start and end AAM

addresses.
* Calls ded_load_dtp_code to load the model list into AAM.
* Adjusts the first free gm address and the amount of available gm by the number of

bytes loaded by dedload-dtpscode.
" Processes each entry in the model address array:

- If the entry is a model, adds it to the model table and sets its description to
MDL.

- If the entry is an effect, adds it to the effect table and sets its description to
SPEF.

- Calls ded crossborder to see if the model/effect crosses a quarter-meg
boundary in AAM; if yes, calls ded_relocatemodel to move the model.

- Calls dedjdtpjtrace to traces the DTP commands for the model.
- Verifies that the model is within the area of memory allocated to the DED.

" Adjusts all the model and effect table address to VME addresses. If the model or
effect is not present, fills in with default.

" If dedjdebug mode is enabled, calls ded-print-tables to display the entries in the
model and effect tables.

• Calls ded__uninit to free the memory allocated to the model address array.

The function returns the DED end address (Vfreegm_addr + Vvmeoffset).

Called By: none

Routines Called: ded-adjusLaddr tables
dedcrossborder
ded-dtp-trace
ded-load-dtpcode
dedmodel_endaddr
ded-print-tables
ded_relocate_model
dedsubend
deduninit
printf

Parameters: MODELTABLE_STRUCT *mdl_table_P
MODELTABLE_STRUCT *spef_table_P
int dedfd
INT_4 faddr

Returns: Vfree-gm-addr + Vvmeoffset

299

BBN Systems and Technologies GT100 RTSW CSCI

2.9.3.12 ded dtp_trace

The deddtptrace function traces the DTP commands for a particular model and adjusts the
referenced addresses from generic to specific AAM addresses.

The function call is deddtptrace(modelindex, descriptor, cat_index,
relocate_flag), where:

model index is the model's index in the model address array
descriptor is a description of the model, for display purposes
cat index is the model's index in the catalog table
rel-cateflag is TRUE if the model had to be relocated because it crossed a quarter-

meg boundary, or FALSE if it did not

ded-dtpjtrace does the following:

* Verifies that the model is in AAM.
• Traces the DTP command required to process the model.
* Makes sure the final command address is valid.

The function returns 0 if successful. It returns 1 (TRUE) if the model is detected to be
outside the bounds of active area memory. It returns -I if the final command address is out
of range.

Called By: dedprocessjdirectory

Routines Called: ded_modeloffset
printf

Parameters: INT_2 modelindex
char descriptor[]
HWORD catindex
BOOLEAN relocate-flag

Returns: 0
1 (TRUE)
-1

2.9.3.13 dedloaddtpcode

The ded_load-dtp_code function loads the model list into generic AAM, and returns the
number of bytes loaded.

The function call is ded load dtpcode(file_desc, fileaddr, aamaddr,
blocksize, freeaamsize),-where:

file desc is the file descriptor of the DED file

300

BBN Systems and Technologies GT100 RTSW CSCI

fileaddr is address in the file from which to start loading data
aan addr is the address in AAM at which to start loading data
block size is the number of bytes of data to be loaded
free_&am_size is the amount of generic memory available for the models

ded-load-dtpcode does the following:

• Adjusts the starting AAM address by the VME offset.
• Finds the beginning of the specified file.
* If block size is greater thanfreeaam_size (indicating there is not enough generic

memory-for all DED models):
- Outputs a message showing the needed and available sizes.
- Reads in as many models as will fit.

" If there is enough memory, reads in the specified blocksize.

The function returns the number of bytes loaded. This is free aam size if not enough
memory was available, or blocksize if there was enough memory for all models.

Called By: ded-process-directory

Routines Called: printf
XLSEEK
XREAD

Parameters: int filedesc
INT_4 file_addr
WORD aamaddr
WORD blocksize
WORD free_aamsize

Retums: free_aam_size
block_size

2.9.3.14 ded model offset

The dednodeloffset function finds the AAM offset of a model given a zero-based
address.

The function call is ded model offset(zero.addr), where zero addr is the address to
find. dedmodel_offset Toes thel'ollowing:

" Checks to see if the specified address is in the initial subroutine area. If so, returns
the offset to the subroutine area.

" Compares the specified address to the starting and ending addresses of each model
in the model address array.

• If the address is found to be between a model's starting and ending addresses,
returns the offset to that model.

301

BBN Systems and Technologies GT1OO RTSW CSCI

The function returns the offset to the subroutine data if it finds the specified address in the
initial subroutine area. It returns the model's offset if it finds the specified address in the
model area. It returns -1 if the specified address is not in either area.

Called By: dedtdtp_trace

Routines Called: none

Parameters: INT_4 zeroaddr

Returns: Vsubdata.offset
mdlP->offset
-1

2.9.3.15 ded printtables

The ded-printtables function displays all data for all model and effect entries in the model
address array. It also displays the entry's hardware address from the model or special
effect table. This function is called after the model list is processed, but only if the
ded-debug-flag has been enabled through Gossip.

The function call is dedprint_tables(mdl tableP, speftableP), where:

mdl table P is a pointer to the model table
spef tableP is a pointer to the special effect table

Called By: ded_process_directory

Routines Called: printf

Parameters: MODELTABLE_STRUCT *mdltable P
MODEL_TABLE_STRUCT *speftable_P

Returns: none

2.9.3.16 dedobjectdebug

The ded-object.debug function toggles the ded-object debug flag. If this flag is enabled,
descriptive information is output to stdout while the model list is processed. This function
is called to enable the flag if the Gossip user selects the L ("debug DED load") option from
the Database Query menu. It is called to disable the flag if the user selects the I ("don't
debug DED load") option from the same menu.

302

BBN Systems and Technologies GTIOO RTSW CSCI

The function call is ded object debug(flag), whereflag is TRUE to turn debug mode
on, or FALSE to turn it off. The function sets the flag and returns its new state.

Called By: gosdb-query

Routines Called: none

Parameters: BOOLEAN flag

Returns: Vded-debug.flag

2.9.4 dtpemu.c

The functions in the dtpemu.c CSU are used to emulate the Data Traversal Processor
(DTP) for testing and debugging. These functions are:

* dtp-emu
• display
" outdisplay
* hxflt
* hexdisplay
* ftoh
* htof
" mat_mult• get-lm

2.9.4.1 dtpemu

The dtp-emu function is a DTP emulator used in debugging. This function is invoked
when the user selects the 6 ("dtp emulator") option from the Gossip main menu.

The DTP is a micro-coded processor board that sends data to the Polygon Graphics
Processor, based on commands placed in active area memory by the DTP Command
Generator. dtp-emu emulates the functions performed by the DTP.

The function call is dtpemuo. Once dtp_emu is invoked, the Gossip user can request
the following:

* Set poly data display mode on or off.
" Set the display mode to float or hex.
• Set tracing on or off.
• Set system interrupts on or off.
" Display the current emulator modes (display, poly data, system interrupt, and trace)

and the DTP stack pointer.
* Display the DTP stack
* Start the DTP emulator.
* Step through the various DTP commands.
" Restart the emulator.

303

BBN Systems and Technologies GT100 RTSW CSCI

* Set the memory address for the emulator program counter.
* Set the address of the AAM peek (view) register.
• Set the address of the emulator peek (view) register.
* Write the contents of AAM.
• Set break points (currently not implemented).

Called By: gossip.ick

Routines Called: display
ftoh
get__lm
hexdisplay
htof
hxflt
mat-mult
printf
scanf
sqrt
sysrup-off
sysrup-on
unbf getchar

Parameters: none

Returns: none

2.9.4.2 display

The display function is used to convert hexadecimal digits or floating point numbers for
display purposes.

The function call is display(ptr, num, poly), where:

ptr is a pointer to the data in AAM
num is the number of characters to convert
poly is LOAD if a load module is being processed, or POLY if a polygon is being

processed

The function always returns 1.

Called By: dtp-emu

Routines Called: hxflt
printf

Parameters: INT_4 **ptr

304

BBN Systems and Technologies GT100 RTSW CSCI

INT2 num
INT_2 poly

Returns: 1

2.9.4.3 outdisplay

The outdisplay function is used to display formatted data depicting polygon commands in

the DTP processing path.

The function call is outdisplay(ptr, wd count), where:

ptr is the AAM pointer to the start of the Poly Processor command
wd-count is the number of bytes in the command

The function returns 0 if successful, or 1 if the command could not be displayed.

This function is not currently used.

Called By: none

Routines Called: hxflt
printf

Parameters: INT_4 **ptr
WORD wdcount

Returns: 0
1

2.9.4.4 hxflt

The hxflt function is used to convert hexadecimal characters for output to the display.

The function call is hxflt(h), where h is the character to be converted.

Called By: display
dtp-emu
outdisplay

Routines Called: htof
printf

0 Parameters: WORD h

305

BBN Systems and Technologies GTI00 RTSW CSCI

Returns: none

2.9.4.5 hexdisplay

The hexdisplay function is used to display hexadecimal numbers.

The function call is hexdisplay(pntr, args), where:

pntr is the AAM address of the data to be displayed
args is the number of digits to display

Called By: dtpemu

Routines Called: printf

Parameters: INT_4 **pntr
INT_2 args

Returns: none

2.9.4.6 ftoh

The ftoh function is used to convert an IEEE floating point value to internal hexadecimal
representation for display. It returns a pointer to the hex value.

The function call is ftoh(f, h), where:

f is the floating point value
h is the hexadecimal equivalent

Called By: dtpemu
matmult

Routines Called: none

Parameters: REAL_4 *f
WORD *h

Returns: *h

306

BBN Systems and Technologies GT100 RTSW CSCI

2.9.4.7 htof

The htof function is used to convert a hexadecimal number to IEEE floating point for

display. It returns a pointer to the floating point value.

The function call is htof(h, f), where:

h is the hexadecimal value
f is the floating point equivalent

Called By: dtpemu
getm
hxflt
matmult

Routines Called: none

Parameters: WORD *h
REAL _4 *f

Returns: *f

2.9.4.8 mat mult

The matmult function is used to multiply (concatenate) two matrices to generate a third
matrix.

The function call is mat-mult(a, b, c), where:

a is the address of the first matrix
b is the address of the second matrix
c is the address of the result matrix

Called By: dtp_emu

Routines Called: ftoh
htof
printf

Parameters: WORD *a
WORD *b
WORD *c

307

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.9.4.9 get-Im

The getIm function is used to simulate the DTP function of getting the next load module
pointer for processing.

The function call is get Im(flag), whereflag is 0 (open -> hdglut -> lmlut). 1 ,qnilut), 2
(close), or 3 (hdglut -> lmlut).

The function returns 1 if successful, or 0 if an error occurred.

Called By: dtpemu

Routines Called: htof
printf
XCLOSE
XLSEEK
XOPEN
XREAD

Parameters: INT_2 flag

Returns: 01

2.9.5 gos_120tx.c

The gos_120tx function provides options to the Gossip user that apply to TX backends
only. These options all deal with 2-D overlays, the MPV, the GSP, and the Force board.
This function is invoked when the user selects the 4 ("120tx menu") option from the
Gossip main menu.

The function call is gos_120txo. The function does the following:

• Sets a pointer to the Force board intertask mailbox.
* Calls bus__error to verify that backend 0 contains a Force board; if no board is

found, outputs a message telling the user to select another Force board.
* Processes the keystroke entered by the user.

The following table identifies the major steps performed by gos_120tx for each option on
its menu. Options flagged with an asterisk (*) are supported by gos_120tx but do not
appear on the menu.

308

BBN Systems and Technologies GT100 RTSW CSCI

120TX Menu Option Processing by gos_120tx

? Display this menu Displays valid options.

!* Enable debug mode Set debug-enable to TRUE.

1 Start/Stop 2D updates Toggles gspiojflag.

2 Enable/Disable Force Timers (not currently implemented)

d Display DRI 1 packet buffers Calls host ifdebug.

f Select Force Board Prompts user for Force board id (0 or 1); sets pointer to
board's mailbox; calls bus error to find board.

g Talk to 2D process/mem Calls gos mpv.

H MPV/Force message interface Calls gos-mpvio.

m* Memory examine/modify Calls gosjmemory.
q* Quit Exits.

R Reload MPV files & task Calls mpvideostop to halt MPV; calls find_fn to get
names of lut, data2d, and task2d files; calls
mpvideoJoad to load files; calls mpvideosiminit to
restart MPV.

s* single-step mode Calls s-step.

x exit Exits.

If the user presses RETURN without making an entry, gos_120tx displays the following
Force status variables from the Force mailbox:

• Front end control register.
* Force control register.
* Force status register.
" Force errors register.
• Force LUT wanted.
* Force LUT loaded.
" Pixel i requested.
" Pixel j requested.
* Pixel i returned.
* Pixel j returned.
• Pixel depth.
* Force timer flag.

Called By: gossip-tick

Routines Called: buserror
findfn
GLOB
gos-memory
gos mpv
gos-mpvio
host-if debug
mpvideoload
mpvideo_siminit

309

BBN Systems and Technologies GT100 RTSW CSCI

mpvideo-stop
printf
s-step
scanf
unbfgetchar

Parameters: none

Returns: none

2.9.6 gos_bal_query.c

The gosjbaLquery function is no longer used. Previously, this function was used to
display data from the Ballistics database. This process is now handled by the bx-probe
function, which is part of the Ballistics Processing CSC.

2.9.7 gos_db_query.c

The functions in the gos-db-query.c CSU are used to examine database information.
These functions are:

* gosdb-query
* gosdisplay-db_info
* gos-db-querymenu

2.9.7.1 gosdbquery

The gos-db-query function lets the Gossip user examine terrain and DED database
information. This function is invoked when the user selects the 5 ("db query)" option from
the Gossip main menu.

The function call is gosdbqueryo. The function does the following:

* Sets pointers to the terrain and DED tables in subsystem 0.
* Calls gos-db-query-menu to display a menu of available options and prompt the

user for a selection.
* Processes the user's entries.

The following table lists the options presented on the Database Query menu and shows the
major steps performed by gosdb-query to process each user selection.

310

BBN Systems and Technologies GTOO RTSW CSCI

Database Query Menu Option Processing by gosdbquery

? print this menu Calls gosdb-query-menu.
D DED data Outputs DED file's name, version number, and size;

calls gosjdisplay db info.
E modify Effect Prompts user for effect index; displays current catalog

number, component count, process code, and hardware
address; prompts for and sets new values.

e list effects Displays for each effect: catalog number, component
count, process code, and hardware address.

i Change DB id Prompts user for database id (0 or 1); resets primary
database control block pointer (pdbase) and all DED
table pointers.

L debug DED load Calls ded-object-debug with debug parameter set to
TRUE. This causes the dod_object functions to display
status messages.

1 don't debug DED load Calls ded._objecLdebug with debug parameter set to
FALSE. This suppresses the de4.object functions from
displaying status messages.

M modify model Prompts user for model index; displays current catalog
number, component count, process code, and hardware
address; prompts for and sets new values.

m list models Displays for each model: catalog number, component
count, process code, and hardware address.

q quit Exits.
T Terrain DB data Outputs database name, version number, and size; calls

gosjdisplaydbinfo.

x exit Exits.

Called By: gossip-tick

Routines Called: blank
cup
ded-objecLdebug
gosidb.query-menu
gos-display dbbinfo
printf
scanf
unbf getchar

Parameters: none

Returns: none

311

BBN Systems and Technologies GTOO RTSW CSCI

2.9.7.2 gosdisplaydb-info

The gosjdisplaydbjinfo function is used by gos-db-query to display terrain and Dynamic
Elements Database (DED) information to the Gossip user.

The function call is gos displaydb.info(data_P), where dataP is a pointer to the
database header to be displayed.

Called By: gos.db-query

Routines Called: printf

Parameters: DBHDRDBASE_DATA *data_P

Returns: none

2.9.7.3 gosdbquerymenu

The gos-dbquery-menu function displays the Database Query menu processed by
gosdb-query. This function is called whenever gos db-query is invoked, and is called
again if the user enters ? at the "Gossip DB Query>" prompt.

The function call is gos_db_querymenuO. The function does the following:

C Glears the screen.
* Displays the Database Query menu.
* Sets the current prompt to "Gossip DB Query>."
* Displays the "Gossip DB Query>" prompt.

The user's keystroke is processed by gos.db-query. For a description of the options listed
on the menu, see gos.db-query.

Called By: gos.dbquery

Routines Called: blank
cup
printf
strcpy

Parameters: none

Returns: none

312

BBN Systems and Technologies GTI00 RTSW CSCI

2.9.8 goslocate.c

The goslocate function builds a hull-to-world matrix from the configuration tree's world-
to-hull matrix. This function is called by gosmodel if the user chooses to add a new
model to the simulation environment.

The function call is gos.Iocate(mtx_h_w), where mtx h w is a pointer to the hull-to-

world matrix to be returned by gos_locate.

goslocate does the following:

• Calls vpti~get~ptrscnode to get a pointer to the configuration tree's root node.
* Makes sure the tree has a simulated vehicle defined.
* If more than one simulated vehicle is detected, displays a list of the vehicles and

prompts the user to select one. (The ability to have multiple simulated vehicles is
not currently in use.)

* Generates the hull-to-world matrix based on the vehicle's word-to-hull matrix.

The function returns the hull-to-world matrix if successful. It returns NULL if the
configuration tree is not initialized or is empty.

Called By: gosmodel

Routines Called: printf
scanf
vpti-geLtptrcnode

Parameters: REAL_4 *mtx_h_w

Returns: mtx_h_w
NULL

2.9.9 gos memory.c

The gos..memory function displays relatively current data about simulation memory. This
function is invoked when the user selects the m ("memory examine/modify") option from
various Gossip menus.

The function call is gos memoryo. The following tables lists the options that appear on
the Memory menu and sliows the major steps performed by gos,.memory to process each
one. Options flagged with an asterisk are supported but do not appear on the menu.

313

BBN Systems and Technologies GT1OO RTSW CSCI

Memory Menu Option Processing by gos memory

?* display this menu Displays options.
b modify block of memory Prompts user for address, word count and pattern; calls

buserror to determine if main or Force memory;
modifies data.

c copy block of memory Prompts user for starting source address, ending source
address, and starting destination address; copies data.

d display block of memory Prompts user for address; calls buserror to determine if
main or Force memory; displays data.

m modify memory Prompts user for starting address; calls buserror to
determine if main or Force memory; prompts user for
each new value until user quits.

(r quit Exits.
x exit Exits.

The macros (PRINTD4, PRINTD8, PRINTHEX4, PRINTHEX8) used by gosnmemory
to display data are described in Appendix B. If the display requires multiple screens,
gos-memory supports paging forward and backward.

Called By: gos_120tx
gos_model
gos.mpv
gos-mpvio
gossystem
gossip ick

Routines Called: buserror
PRINTD4
PRINTD8
printf
PRINTHEX4
PRINTHEX8
scanf
unbf getchar

Parameters: none

Returns: none

2.9.10 gos-model.c

The functions in the gosmodel.c CSU are used to display and manipulate static and
dynamic models. These functions are:

* gos-model

314

BBN Systems and Technologies GT1OO RTSW CSCI

* rclsetmodloc

2.9.10.1 gosmodel

The gos model function displays dynamic and static models. This function is invoked if
the user selects the 2 ("model menu") option from the Gossip main menu.

The function call is gos model(). The following table lists the options supported by
gos.model, and shows tEe major steps it performs to process each one. Options flagged
with an asterisk are supported but do not appear on the menu.

The table shows the options displayed and supported when debug mode is enabled (i.e.,
debugenable is TRUE). The only options listed on the Model Selection menu if debug
mode is not enabled are:

o plant model in tracks
x exit

Additional options that are supported if debug mode is not enabled, but do not appear on
the menu, are:

i read file to 500000
k kludge light models
m examine memory
? display menu
! enable debug mode

When the user adds or deletes a vehicle using this menu, gos..model generates a Simulation
Host-type message and stores it in an area of global memory used for "pretend" vehicles.
For example, a request to add a static vehicle generates a MSGSTATICVEHSTATE
message that is stored in the pretendsv location. At the end of each frame, the
pretendveh function (in the Real-Time Processing CSC) takes all messages from the
"pretend" locations and puts them into the next incoming message buffer for processing.

315

BBN Systems and Technologies GT100 RTSW CSCI

Model Selection Menu Option Processing by gos model

?* display this menu Displays valid options, based on current state of
debug-enable.

!* enable debug mode Sets debug-enable to TRUE.

a add static vehicle Prompts user for model type; displays vehicle id; calls
gosJocate to make hull-to-world matrix; puts
MSGSTATICVEH STATE message in pretend sv.

b add static model @ xyz Prompts user for model type; displays vehicle id; calls
gosJocate to make hull-to-world matrix; prompts user
for xyz location; puts MSGSTATICVEHSTATE
message in pretend sv.

c add dynamic model @ xyz Prompts user for model type and xyz location; calls
goslocate to make hull-to-world matrix; puts
MSG OTHERVEH STATE message in pretenoddv.

d delete static vehicle Prompts user for vehicle id, model type, position; puts
MSG STATICVEH REM message in pretend rsv.

e display effect timing Gives user options to add effects, display effects, change
effect type, display effect timing, change effect position;
puts MSG SHOW EFFECT message in pretend ef.

i read file to 500000 Prompts user for file name; opens, reads, closes file.
j write file from 500000 Prompts user for file name; opens, writes to, closes file.

k kiudge light models Calls rcl_init_adrs; calls rcl init stack; calls
replace-mod; calls rcl.patch.adrs; calls rclinit stack;
calls test_commands.

I level of detail control Prompts user for number of models; prompts for and
sets each model's type, distance, elevation, distance
between models if more than one model; calls
gosjocate to make hull-to-word matrix; puts
MSG_OTHERVEHSTATE message in pretend_dv;
gets addresses of lod transition ranges for model; gives
user option to move or rotate models, or change lod
transition ranges.

m examine memory Calls gos-memory.
n change db id Prompts user for database id; sets database control block

pointer.

o plant model in tracks Prompts user for model type; calls gosjocate to make
hull-to-world matrix; puts MSGOTHERVEHSTATE
message in pretendLdv.

q quit Exits.
r static veh view/remove Displays each static vehicle's id, model number, load

module, and xy position; shows total count.

V display view mode Displays current dtv therm word.
v FREDS view mode switch Prompts user for new view mode; sets dtv therm word.

x exit Exits.

Called By: gossip-tick

316

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: close
Cos
GLOB
gos-locate
gos-memory
Iseek
open
printf
rcl -iit-adrs
rcl -miit-stack
rcl-patch-adrs
read
replace -mod
rotate-)x-nt
rotate.y.nt
rotatejz-nt
scanf
sin
sqrt
sysrnp-off
sysrup..on
test_commands
unbf .. getchar
write

Parameters: none

Returns: none

2.9.10.2 rcl-set-modloc

The rcl -set -modloc function sets a model's AAM location (hardware address) in the DED
model address table.

The function call is rcl-set-modloc(mntype), where mtype is the id of the model.

Called By: replace-mod

Routines Called: printf

Parameters: HWORD mtype

Returns: none

317

BBN Systems and Technologies GT100 RTSW CSCI

2.9.11 gosmpv.c

The gos.mpv function provides features that may be used to test and debug the MPV
board. This function is called if the user selects the g ("Talk to 2D process/mem") option
from the 120TX menu. It applies to TX backends only.

The function call is gosmpvo. The function does the following:

* Sets a pointer to the Force board's mailbox.
• Calls buserror to locate the Force board for the currently selected backend. If the

board cannot be found, prompts the user to change the Force id. (The option to
select a different backend is on the 120TX menu.)

* Processes the keystroke entered by the user.

The following table identifies the action taken by gos-mpv for each option it supports.
Options marked with an asterisk are supported but do not appear on the menu displayed by
gos-mpv.

The CHECKFORCE macro used by gos-mpv checks to see if the Force task is running.
If so, the user is asked to retry later. (This prevents the Gossip operation from interfering
with processing required for the simulation.) fe_control is the front-end control register in
the Force mailbox structure; the value placed in the register tells the Force task what
command to perform.

FORCE-2D Communications Processing by

Menu Option gosmpv

?* Display this menu Displays valid options.

0 Restart 2d processor Calls CHECKFORCE; sets fecontrol to
SUBSYSNMISTART.

I Reset MPV board (not currently implemented)

4 Read Host Control Calls CHECK_FORCE; sets fecontrol to
SUBSYS READ HCTRL.

5 Write Host Control Calls CHECKFORCE; sets fe_control to
SUBSYS WRITEHCTRL.

6 Read Data Calls CHECK_FORCE; sets fecontrol to
SUBSYSREADHDATA.

7 Write Data Calls CHECK_FORCE; sets fecontrol to
SUBSYSWRITEHDATA.

9 Halt 2D Processor Calls CHECKFORCE; sets fe-control to
SUBSYS STOP.

a Set GSP addr to read/write Prompts user for the GSP address; sets gsp temp-addr
in Force mailbox.

b Set fill mem repetitions Prompts user for number of times to fill memory; sets
fillmemcount.

e Send mail to 2D processor Calls CHECKFORCE; sets fe control to
SUBSYSMAIL SEND.

318

BBN Systems and Technologies GT100 RTSW CSCI

f Display forceO2D registers Displays current values of Front End Control Register,
Force Control Register, Force Status Register, Force
Errors Register, GSP Address, HWORDS count, Repeat
Block Fill Count.

g Read MPV memory Calls CHECKFORCE; sets fecontrol to
SUBSYSREAD START.

i Start memory fill Calls CHECKFORCE; sets fe_control to
SUBSYSWRITESTART; uses gsp-temp-addr,
data count, and fill mer count set by user.

I Load out buf with pattern Tells user to use MEMORY FILL option and provides
address of output buffer.

m* Memory examine/modify Calls gos-memory.
n* Restart 2d processor Calls CHECKFORCE; sets fe control to

SUBSYSNMI_START.

o Load output buffer (16 bits) (not currently implemented)

p Write to MPV memory Calls CHECKFORCE; sets fecontrol to
SUBSYSWRITE START.

q* quit Exits.
r View input data buffer Tells user to use MEMORY READ option and provides

address of input buffer.

t One time comm test Calls CHECKFORCE; sets fe_control to
SUBSYS TESTMEM.

w Set word count to read/write Prompts user for word count; sets data-count.

x exit Exits.

y Endless comm test Calls CHECK_FORCE; sets fe_control to
SUBSYS TEST MEM2.

If the user presses RETURN without typing a character, gosmpv displays the current
values of the Front End Control Register, Force Control Register, Force Status Register,
Force Errors Register, GSP Address, HWORDS count, and Repeat Block Fill Count.

Called By: gos_120tx

Routines Called: buserror
CHECKFORCE
gos-memory
printf
scanf
unbf getchar

Parameters: none

Returns: none

319

BBN Systems and Technologies GT100 RTSW CSCI

2.9.12 gosmpvio.c

The gosjmpvio function provides options for testing the Force-RTSW interface messages,
querying Force status, and querying MPV memory. This function is called if the Gossip
user selects the H ("MPV/Force message interface") option from the Gossip 120TX menu.

The function call is gosmpvioo. gos mpvio does the following:

" Calls mpvmsg-query-bufladdr to get the address of the MPV query buffer (used
for messages passed from gos-mpvio to Force).

" Calls mpvmsgreplyjbufaddr to get the address of the MPV reply buffer (used for
messages passed from Force to gos mpvio).

" Calls mpvmsgfrombufaddr to get the address of the MPV from buffer (used for
messages passed from Force to the MPV Interface routines).

" Displays the addresses of the query and reply buffers.
" Prompts the user to enter an option and processes the user's selection.

The following table lists the options supported by gos-mpvio, and shows the major steps it
performs to process each one. Options flagged with an asterisk are supported but do not
appear on the menu.

Message Interface - RTSW to Processing by gosmpvio
Force Messages Menu Option

?* display this menu Displays valid options.
!* set debug mode Sets debug-enable to TRUE.
0 change backend number Prompts user for new backend id; calls

mpvmsg.queryjbuf addr, mpvmsg replybuf addr, and
mpvmsg..frombufaddr to get new buffer addresses;
displays query and reply buffer addresses.

1 3D_LUT_DOWNLOAD Asks if user wants to specify file to download.

If yes: prompts for filename; calls mpvideoload.
If no: prompts for table id, channel, hex pattern; pushes
MSG_F0_3DLUTDOWNLOAD message on query
buffer.

2 3DLUT_SWITCH Prompts user for table id, channel; pushes
MSGF0 3DLUTSWITCH message on query buffer.

3 ALL_LUT-SWITCH Prompts user for table id and channel for 3d lut and 2d
lut; pushes MSG_F0_ALLLUTSWITCH message on
query buffer.

4 FINALLUTDWNLD Asks if user wants to specify file to download.

If yes: prompts for filename; calls mpvideoload.
If no: prompts for table id, channel, entry total, entry
number, hex pattern; pushes MSGFOFINAL_-
LUTDOWNLOAD message on query buffer.

5 FINALLUTSWITCH Prompts user for table id, channel; pushes MSG_FO_-
FINAL LUT SWITCH message on query buffer.

320

BBN Systems and Technologies GT100 RTSW CSCI

6 MODESELECT Prompts user for mode, orientation, i and j resolution, i
and j offset; pushes MSG_F0_MODESELECT
message on query buffer.

7 MPVIN1T Pushes MSG F0 MPV INIT message on query buffer.

8 MPV_LUT_TYPEREQ Pushes MSG_F0_MPV_LUT_TYPE_REQUEST
message on query buffer.

9 MPVPEEK Prompts user for MPV start address, byte count; pushes
MSGFOMPVPEEK message on query buffer.

A MPV_POKE Prompts user for MPV address and value to poke;
pushes MSG_F0_MPV_POKE message on query
buffer.

B MPVRESET Pushes MSG_F0_MPV_RESET message on query
buffer.

C MPVTASKCTL Prompts user for task control code and MPV address;
pushes MSGF0_MPVTASKCONTROL message
on query buffer.

D MPV_TEST Pushes MSG_F0_MPVTEST message on query
buffer.

d* display packet buffers Calls host if debug.

E MPVWRITE Prompts user for MPV start address, byte count, and hex
pattern to write; pushes MSGF0_MPVWRITE
message on query buffer.

F PASSON (not currently implemented)

G PIXELDEPTHREQ Prompts user for channel, i and j pixel positions, and
request id; pushes MSG_FOPIXELDEPTH_-
REQUEST message on query buffer.

H SETDISPLAY Prompts user for channel and display code; pushes
MSG_FOSETDISPLAY message on query buffer.

I QUERY Prompts user for Force query code and text; pushes
MSG_FO._QUERY message on query buffer.

J TRIGGER Pushes MSG F0 TRIGGER message on query buffer.

K DEBUG ENABLE Pushes MSGF0_DEBUGENABLE message on query
buffer.

L DEBUG DISABLE Pushes MSG_F0_DEBUGDISABLE message on query
buffer.

M MPV POKE16 Prompts user for MPV address and value to poke;
pushes MSG_F0_MPV_POKE 16 message on query
buffer.

m* Memory examine/modify Calls gos._memory.

N FROM BUFFER DISPLAY Peeks at and displays contents of top message in from
buffer.

R RESPONSE FRM FORCE Peeks at and displays contents of top message in reply
buffer.

s* single-step mode Calls s..step.

x exit Exits.

Called By: gos_ 120tx

321

BBN Systems and Technologies GTI00 RTSW CSCI

Routines Called: gets
GLOB
gos memory
hostifdebug
mpvideoiload
mpvmsgfrombufaddr
mpvmsg-query buf-addr
mpvmsgjreplybuf__addr
mx3_hwcopy
mx3_peek
mx3_push
mx3_skip
printf
s_step
scanf
unbf-getchar

Parameters: none

Returns: none

2.9.13 gos-polys.c

The gos-polys function generates monitor calibration overlays, which consist of calibration
polygons, comer triangles, frame triangles, vertical and horizontal alignment bars, and
colored rectangles. This function is called when the Simulation Host sends a
MSGCALIBRATIONIMAGE message with the image parameter set to 2 (color image).
It is also called if the Gossip user selects the 2 ("color calibration pixels on") option from
the Calibration menu.

The function call is gospolys(pcaldat), where pcaldat is a pointer to the calibration
overlay data.

The Polygon Processor uses perspective matrices in normalized viewspace (i.e., the field-
of-view is not used) when crunching on overlay polygons. The only perspective matrix
required for an overlay is a matrix to swap the axes (view space into screen space). The
vertices overlay can be described to the Polygon Processor as follows:

(-y,y,y) (y,Y,Y)

(o,y,O)

(-y,y,-y) (y,Y,-Y)

where y is the distance from the eye to the overlay.

322

BBN Systems and Technologies GT100 RTSW CSCI

Therefore, if the vertices of the monitor calibration overlay are given in pixel coordinates,
they must be converted to the normalized viewspace coordinate system. For example, if
the screen resolution is 200 x 200, a vertex with pixel coordinates (-50,100) is converted to
(-1/2,1).

Called By: cal
msgscalibration~image

Routines Called: none

Parameters: CAL_OVRLY *pcal-dat

Returns: none

2.9.14 gossystem.c

The gos system function is used to display and change system variables. This function is
called if the user selects the 3 ("system status menu") option from the Gossip main menu.

The function call is gos-system0x. The following table lists the options supported by
gos-system and shows the major steps it performs to process each user selection. Options
flagged with an asterisk are supported but do not appear on the menu. Note the following:

* If debug mode is not enabled (i.e., debugenable is FALSE), the a ("dtp
disassembler"), E ("GT Hardware Menu"), and v ("display message block")
options are not listed on the menu. The E option is supported, however.

* The c (set calibration modifier) option is not displayed on the menu if debug is
enabled - it appears only if debug-enable is FALSE. This option is not currently
implemented.

323

BBN Systems and Technologies GT100 RTSW CSCI

System Menu Option Processing by gossystem

?* display this menu Displays valid options.

!* enable debug mode Sets debug-enable to TRUE.
2 display loc ter Displays contents of local terrain message (header,

polygon data, bounding volume data).

3 display active area data Displays west x, east x, south y, north y, north row,
east column, south row, west column, north and east
pointers, south and west pointers, "cango" values.

4 display active area map Displays center (x,y) position of each load module in
AAM.

5 display load module header Prompts user for xy position of load module; displays
load module's memory location, center, radius, direction
pointers, terrain pointer, bvol pointer.

a dtp disassembler Calls sysrup-off; prompts user for AAM PC; validates
address; disassembles each DTP command.

c set calibration modifier (not currently implemented)

d display DR 1W message(s) Calls host if debug.

E GT Hardware Menu See next table.
I set display lights flags Prompts user for hex flag mask for lights; sets display

lights flags (model count, frame count, local terrain
count, and overload).

m memory Calls gos..memory.
q* quit Exits.

s start/stop frame interrupt Calls sstep.

v display message block Displays message to use to use "d" option instead.

x* exit Exits.

The following options are available if the user selects the E ("GT Hardware Menu") option
from the System menu.

324

BBN Systems and Technologies GT100 RTSW CSCI

GT Hardware Menu Option Processing by gos system

?* display this menu Displays valid options.

I read Esifa io ports Calls esifaread_ports for ESIFA 0; displays video, sky,
thermal, laserset, and laserrange port values; repeats
for ESIFA 1.

2 write Esifa io ports Prompts user for ESIFA id; prompts for new port
values; calls esifawrite-ports.

c write into EVC frame rate control Prompts user for new frame rate control word; calls
waid write_evc_control.

d display EVC register Calls read_evc_control; displays control word.

i initialize EVC Calls sysscontrol init.
1 write into leds Prompts user for LED value; calls set leds.
q* quit Exits.

r write into EVC single shot word Prompts user for single-shot frame reset word; calls
writeevc_frame.

x exit Exits.

Called By: gossip-tick

Routines Called: esifaread-ports
esifa-write-ports
GLOB
gos-memory
host-if debug
printf
readevccontrol
s_step
scanf
setleds
syscontrolinit
sysrup-off
sysrupon
unbf getchar
writeevccontrol
write_evc_frame

Parameters: none

Returns: none

2.9.15 gossip.c

The functions in the gossip.c CSU form the main driver for the Gossip task. These
functions are:

325

BBN Systems and Technologies GT100 RTSW CSCI

" gossip
* gossip-tick
* gos.timng.printout
Ssstep
* gos,.singlestep
* gos.prompt
* gos,.main_menu
* gos-getchar
* gos.dummy-getchar
* gos_Ion
• gosIOoff
* gossip--cleanup

2.9.15.1 gossip
The gossip function is the main driver for the Gossip user interface task. The gossip task

is created and started at initialization time. Its priority is set lower than all other CIG tasks.

The function call is gossipo. When started, gossip does the following:

* Opens the console port.
" Calls gosIOon to enable Gossip control of the keyboard.
* Calls flea_I0off to disable Flea control of the keyboard.
* Calls host-if debuginit to initialize the array used to print messages every frame

(if debug display is enabled).
" Calls host_enable all debugmsgs to enable all message types for debug display.
" Calls gos-prompt to display the "Gossip>" prompt.
• Calls poll-shutdown to see if a system shutdown has been initiated.
• Calls gossip-tick to get the user's selection.

The function exits with a 1 if it cannot open the console port.

Called By: none (task created and started at initialization time)

Routines Called: exit
flea_10_off
gos_10_on
gos,.prompt
gossip tick
host_enable all debugmsgs
host_if_debug-init
open
pollshutdown
printf
strlen
unbf getchar

Parameters: none

326

BBN Systems and Technologies GT1OO RTSW CSCI

Returns: none

2.9.15.2 gossip_tick

The gossip tick function is responsible for calling the appropriate routine to process each
selection made by the user on the Gossip main menu. This function is called by gossip
when the Gossip task is started.

The function call is gossip ticko. gossip_tick uses the *gos-getc function pointer to get
the keystroke entered by the user, then processes it.

The following table lists the options displayed on the Gossip main menu, and shows the
major steps performed by gossipick to process each user selection. The menu itself is
displayed by gosmainmenu. Options flagged with an asterisk are supported by
gossip-tick but do not appear on the menu.

All options are supported whether or not debug mode is enabled.

Gossip Main Menu Option Processing by gossip tick

?* display this menu Calls gos-main-menu
!* enable debug Sets debug-enable to TRUE.

I calibration menu Calls cal.

2 model menu Calls gos model.

3 system status menu Calls gos-systcm.

4 120tx menu Calls gosJ20tx.

5 db query Calls gos db query.

6 dp emulator Calls dtp-emu.

7 configtree menu Calls tst tree.

8 configtree mit Calls vpt treciniLt.

a change color config filename Prompts user for name of color configuration file; sets
color_cfg_fno_touse; sets flea_color_cfgwantedG to
TRUE.

b ballistics query menu Calls bx4probe.

c change configfile name Prompts user for name of config file; sets config_fn.

d display interface msgs Calls hosUif debug.

E display EX ethernet statistics No effect under normal mode; calls print ex-stats if
running in a non-standard mode.

e change ESIFA download file Prompts user for name of texture list file; sets
esifaJnjto_use; sets flea esifa load wantedG to
TRUE.

F change flea I/O port Prompts user for port name for Flea console; sets
flea console-port.

f enter Flea menu If flea mode is not enabled: displays error.
If flea mode is enabled: calls flea IO on; calls
gosI..off; calls scratchflea; calls fleainitialized;
calls flea.prompt; calls gos-prompt.

327

BBN Systems and Technologies GT100 RTSW CSCI

g* <<TBD>> Toggles transport-delayjflag.

h select host i/f msgs menu Calls host if debug-menu.

i display config. messages Toggles drI lw init out.

k reset timers Sets all mL* timers to 0; sets forcebusy_* counters to
0; sets max out frame counters to 0.

I list default config files Displays names of subsystem O's database and DED
files, subsystem's I database and DED files,
configuration file, color configuration file, and ESIFA
file.

m* memory examine/modify Calls gosmemory.
n display AGPT statistics Calls agpt_statistics.

P PPM query Calls gos_.ppm-query.

Q Quit to GTOS Prompts user to verify request to quit; calls
rttshutdown.

r record i/f messages menu Calls gos_cigsimio.

s start/stop frame interrupt Calls s.step.

t start/stop timers Toggles rtsw timing-flag.
u change database name Prompts user for subsystem id and name of database;

sets db to_use.
v change default ded name Prompts user for subsystem id and name of DED file;

sets deddbto use.
w* (obsolete option for flea mode) Treated as f ("enter Flea menu"), described above; w is

supported to be backward compatible.

z (obsolete option for flying mode) (no longer implemented)

If the user presses RETURN without making an entry gossip jick does the following:

• Clears the screen.
* Displays the system's version number and date, current position of the simulated

vehicle, frame count, local terrain count, message count, local terrain time,
rowcolrd frame count, number of dynamic vehicles, and number of static vehicles.

* If the rtswimingjflag is TRUE, calls gosjtiming_printout.
* Displays the configuration file name, if loaded.
* Displays the database name and the terrain address of each database partition.
• Displays the DED file name for each subsystem, if loaded.
* Displays the Ballistics file name, if loaded.
• Displays the ESIFA textures file name, if loaded.

Called By: gossip

Routines Called: *gos-getc
agpt-statistics
blank
bxprobe

cup

328

BBN Systems and Technologies GT100 RTSW CSCI

dtpemu
fleainitialized
fleaIOon
flea~prompt
gos_120tx
gos.baLquery
goss.igsimio
gosjdbquery
gos_1Ooff
gos mainmenu
gos-memory
gosmodel
gosppmquery
gosprompt
gossystem
gostiming-printout
host-if debug
host if debug-menu
isprint
isspace
printf
rttshutdown
s_step
scanf
scratchflea
strcmp
tsttree
vpttree_init

Parameters: none

Returns- none

2.9.15.3 gostimingprintout

The gos-timinrprintout function displays the latest and worst (longest) processing times
for a variety of messages and frame-related times. This function is called if (1) the Gossip
user presses RETURN without making an entry on the Gossip main menu, and (2) the
rtswtimingjflag has been enabled using the t ("start/stop timers") option on the Gossip
main menu.

The function call is gostimingprintouto. The display includes the following:

• Last and worst frame times.
" Last and worst packet start and end times.
• Last and worst frame interrupt times.
• Last and worst processing times for the following messages: MSGEND,

MSGOTHERVEHSTATE, MSGSHOWEFFECT, MSGTRAJCHORD,
MSG-ROUND FIRED, MSGSTATICVEHSTATE,
MSGSTATICVEHREM, MSGRTN LT, MSG_PASSON,
MSGREQUESTLASERRANGE, MSGCIGCTL.

329

BBN Systems and Technologies GT100 RTSW CSCI

The timers can be reset to 0 using the k ("reset timers") option on the Gossip main menu.

Called By: gossiptick

Routines Called: printf

Parameters: none

Returns: none

2.9.15.4 s step

The sstep function is used to (1) enable and disable frame interrupts, and (2) enable and
disable single-step mode. This function is called if the user selects the s ("start/stop frame
interrupt") option from various Gossip menus.

The function call is sstepo. sstep prompts the user to set/or cancel single-step mode,
then does the following:

• If the user requests "interrupts on," s step calls sysrup-on, then sets single-step to
FALSE.

" If the user requests "interrupts off," s._step calls sysrup-off, then sets single-step
to FALSE.

* If the user requests "single-step mode," (used with the "display drl 1 variables"
option), sstep sets single-step and dr1 1_msg to TRUE.

Called By: gos120tx
gos mpvio
gos.system
gossip .ick

Routines Called: printf
sysrup-off
sysrup-on
unbf-getchar

Parameters: none

Returns: none

330

BBN Systems and Technologies GT100 RTSW CSCI

2.9.15.5 gos single step

The gossinglestep function forces the system to single-step a real-time frame by posting
a message to the SIMULATION_MB mailbox. If gos-single-step detects that single-step
is TRUE, it calls sysrup-on.

The function call is gossingle stepo.

Called By: gos.bal-query

Routines Called: sysrup-on

Parameters: none

Returns: none

2.9.15.6 gosprompt

The gosprompt function displays a greater than sign (>) followed by a text prompt. The
text prompt may vary based on the current menu. The Gossip user enters the desired
command next to this prompt.

The function call is gos prompt (newprompt), where newprompt is the text prompt to
be displayed. The function also puts this value in the variable prompt, which is used by
other Gossip functions.

Called By: gosmainmenu
gossip
gossip-tick
tick

Routines Called: cup
printf
strcpy

Parameters: char *newprompt

Returns: none

331

BBN Systems and Technologies GT100 RTSW CSCI

2.9.15.7 gosmainmenu

The gosjmainmenu function displays the Gossip main menu. This menu lists the major
functions available to the Gossip user. In most cases, selection of an option leads to a
secondary menu. This function is called if the Gossip user enters ? at the Gossip prompt.

The function call is gosmain menuo. This function clears the screen and displays the
menu; it does not process the user's entry.

For a description of each item on the Gossip main menu, see gossip-tick.

Called By: gossip~fick

Routines Called: blank
cup
gosprompt
printf

Parameters: none

Returns: none

2.9.15.8 gosgetchar

The gos-getchar function returns the key pressed by the user, or 0 if no key was pressed.
This function is used (via the *gos-getc function pointer) by gossip-tick to determine the
keystroke entered by the user on the Gossip main menu. The *gosgetc function pointer
points to gos-getchar if Gossip is in control of the keyboard, and to gos-dummygetchar if
Flea is in control of the keyboard. gos_IO on sets *gos-getc to gos-getchar when gossip
starts up.

The function call is gosgetcharo.

Called By: gossip.tick (through *gos-getc)

Routines Called: read-tty

Parameters: none

Returns: 0
key

332

BBN Systems and Technologies GT100 RTSW CSCI

2.9.15.9 gosdummygetchar

The gos-dummy-getchar function always returns 0. This function (instead of
gos-getchar) is called via the *gos-getc function pointer while the user is in Flea mode,
because Flea is responsible for handling all keystrokes. When it receives a return value of
0, gossip-ick assumes no key was pressed and therefore does not process the keystroke.
gosIOoff sets *gos-getc to gosdummy-getchar if the user selects Flea mode.

The function call is gos dummygetcharo.

Called By: gossip-tick (through *gos-getc)

Routines Called: none

Parameters: none

Returns: 0

2.9.15.10 gos1O_on

The gosIO_on function sets the *gos-getc function pointer to gos-getchar. This gives
gossip-.tick the ability to respond to the user's keystrokes on the Gossip main menu. This
function is called when gossip starts up.

The function call is gos_1OonO.

Called By: gossip
tick

Routines Called: printf (in debug mode only)

Parameters: none

Returns: none

2.9.15.11 goslO_off

The gosIO_off function sets the *gos-getc function pointer to gos dummy-getchar. This
function is called if the Gossip user selects Flea mode. It has the effect of masking the
user's keystrokes from gossipjick, so they can be handled by Flea.

The function call is gos_lO_offO.

333

BBN Systems and Technologies GT1OO RTSW CSCI

Called By: gossip-tick

Routines Called: printf (in debug mode only)

Parameters: none

Returns: none

2.9.15.12 gossip cleanup

The gossip-cleanup function deallocates the resources owned by the gossip task. This
function is called if the Gossip user requests a system shutdown by selecting the Q ("Quit
to GTOS") option on the Gossip main menu. This function is called via the *task-cleanup
function pointer, which points to the cleanup routine's name in the task table.

The function call is gossipjcleanupo.

The function returns 1 if successful, or 0 if an error occurred.

Note: This function is not yet implemented. At the current time, it simply
returns a 1 if called.

Called By: pollshutdown (through *task_cleanup)

Routines Called: none

Parameters: none

Returns: 0
1

2.9.16 make_bbnlogo.c

The makebbnlogo function generates a BBN logo image using polygons, frame
triangles, comer triangles, and colored rectangles.

This function is called if the Simulation Host sends a MSG_CALIBRATION_IMAGE
message with the image parameter set to 3 (BBN logo). It is also called if the Gossip user
selects the 3 ("bbn logo on") option from the Calibration menu.

The function call is makebbnIogo(pcal_dat), where pcal-dat is a pointer to the image
data.

334

BBN Systems and Technologies GT100 RTSW CSCI

Called By: cal
msgscalibrationjimage

Routines Called: none

Parameters: CAL_OVRLY *pcal-dat

Returns: none

2.9.17 mx3_hword.c

The functions in the mx3_hword.c CSU are used by gosjmpvio to communicate with the
MPV via the Force board. The interface uses half-word message exchanges. These
functions are:

" mx3_open
* mx3_push
* mx3_peek
• mx3_skip
• mx3_error
* mx3_hwcopy

Messages sent from gosmpvio to Force are prefixed with MSG_F0. Messages returned
from Force are prefixed with MSG_F1. The message buffers used by gos_mpvio to
communicate with the Force task are the following:

mpvioquery_buf (outgoing)
Used for messages sent from gosmpvio to Force. These messages result from
changes requested by the Gossip user.

mpvioreplybuf (incoming)
Used for response messages returned by Force to gosmpvio.

During a simulation, the real-time software communicates with the MPV using the MPV
Interface routines. The message buffers and routines used by the MPV Interface functions
to communicate with the Force board are different from those used by gosmpvio.

2.9.17.1 mx3_open

The mx3_open function initializes a message buffer given its start address and size.

The function call is mx3_open(devP, devicesize), where:

dev P is a pointer to the MX device (message buffer)
device size is the size of the message buffer. The function always returns MXDEVICEOPENED.

335

BBN Systems and Technologies GT100 RTSW CSCI

This function is not currently used - the message buffers are opened by Force Processing
functions.

Called By: none

Routines Called: sclock
sc_unlock

Parameters: MX2_DEVICE *dev_P
INT_4 devicesize

Returns: MXDEVICEOPENED

2.9.17.2 mx3_push

The mx3_push function pushes a message onto the message buffer. This function is used
by gosmpvio to pass messages to the Force board.

The function call is mx3_push(dev_P, sourceaddress, message_code,
messagesize), where:

dev P is a pointer to the message buffer
source address is the address of the message @1
message_code is the type of message
message size is the number of bytes in the message

mx3_push does the following:

• Locks the buffer.
• Verifies that there is room in the buffer for the message.
* Copies the message to the end of the buffer.
• Unlocks the buffer.

The function returns MX_MESSAGEPUSHED if successful. It returns
MXDEVICEFULL if the specified message buffer is already full.

Called By: gos mpvio

Routines Called: mx3_hwcopy
sc lock
scunlock

Parameters: MX2_DEVICE *dev_P
WORD sourceaddress
HWORD message_code
HWORD message-size

336

BBN Systems and Technologies GT100 RTSW CSCI

Returns: MXMESSAGEPUSHED
MX_DEVICEFULL

2.9.17.3 mx3_peek

The mx3_peek function previews the message at the head of a specified buffer. This
function used to determine what type of message is in the incoming buffer.

The function call is mx3_peek(dev_P, message-code, message-size,
messageaddr), where:

devP is a pointer to the message buffer
messagecode is the message type
messagesize is the size of the message in bytes
messageaddr is a pointer to the message's address

mx3_peek does the following:

" Locks the buffer.
• Checks to see if the specified buffer is empty.
• Sets a pointer to the first message in the buffer.
• Places the message's type and size in message_code and messagesize.
• If the message code is MXSKIP, starts over with the next message in the buffer.
• Places a pointer to the message in messageaddr.
• Unlocks the buffer.

The function returns MXMESSAGEPREVIEWED if successful. It returns
MXDEVICEEMPTY if the specified buffer contains no messages.

Called By: gos-mpvio

Routines Called: sc lock
scunlock

Parameters: MX2_DEVICE *dev_P
HWORD *message code
HWORD *message-size
BYTE **message-addr

Returns: MXMESSAGEPREVIEWED
MXDEVICEEMPTY

3

337

BBN Systems and Technologies GT100 RTSW CSCI

2.9.17.4 mx3_skip

The mx3_skip function skips over a message in the buffer. The message at the head of the
buffer is flushed, and the next message moves to the top of the buffer. This function is
used to remove messages from a buffer after they have been previewed and processed.

The function call is mx3_skip(dev_P), where devP is a pointer to the buffer.

The function returns MXMESSAGESKIPPED if successful. It returns
MXDEVICEEMPTY if the specified message buffer contains no messages.

Called By: gos.mpvio

Routines Called: sclock
scunlock

Parameters: MX2_DEVICE *dev_P

Returns: MXMESSAGESKIPPED
MXDEVICEEMPTY

2.9.17.5 mx3 error

The mx3_error function returns a text message for output to the operator. Messages are

provided for errors as well as for normal processing states.

The function call is mx3_error(status), where status is the current MX state.

This function is not currently used.

Called By: none

Routines Called: none

Parameters: WORD status

Returns: "DEVICE CLOSED"
"DEVICE TABLE FULL"
"DEVICE OPENED"
"DEVICE BUSY"
"DEVICE EMPTY"
"DEVICE FULL"
"MESSAGE PUSHED"

338

BBN Systems and Technologies GT1OO RTSW CSCI

"MESSAGE POPPED"
"MESSAGE PREVIEWED"
"MESSAGE SKIPPED"
"UNDEFINED ERROR"
"UNDEFINED RETURN"

2.9.17.6 mx3_hwcopy

The mx3_hwcopy function performs a half-word block copy.

The function call is mx3_hwcopy(sourceP, destination_P, byte-count), where:

source P is a pointer to the source data
destination P is a pointer to the destination location
byte count is the number of bytes to be copied

Called By: gos mpvio
mx3_push

Routines Called: none

Parameters: INT_2 *source_P
INT_2 *destination_P
INT_2 byte-count

Returns: none

2.9.18 replace mod.c

The functions in the replace-mod.c CSU are used to replace light models. These functions
are:

* replacemod
* singlelite
, double_lite
* triplelite
* vasilite
* outahere

2.9.18.1 replace-mod

The replacemod function puts light light models in place of others. This function is called
if the Gossip user selects the k ("kludge light models") option from the Model Selection
menu. This option appears on the menu only if debug is enabled.

The function call is replace modo. The function calls various DTP macros to generate
the following light models:

339

BBN Systems and Technologies GT1OO RTSW CSCI

* VASIBar land2
* Hazard beacon
* Military beacon
• Commercial beacon
* White approach
* Blue taxiway
* Hazard light
* Green red runway
* White amber runway
• Runway strobes

Called By: gosmodel

Routines Called: doublelite
dtplxtlr
dtp-bru
dtpbrz
dtp-dot
dtpfov
dtp-gr
dtplod
dtp-owd
dtp-owo
dtp-rc
dtp-sub
dtpJqbc
dtp-jbdr
dtptbrr
outahere
polymmf
polyrml
printf
rcl-patch-adrs
rcl set-errptr
rcl-set-label
rcl set modloc
singlejlite
triplelite
vasilite

Parameters: none

Returns: none

2.9.18.2 singlejite

The singlelite function is used to generate some of the light models.

340

BBN Systems and Technologies GTOO RTSW CSCI

The function call is single lite(Istart, hwdth, hght, piwl, piw2), where:

Istart is the label to set with the AAM location
hwdth is the width of the light
hght is the height of the light
piwl is poly info word 1
piw2 is poly info word 2

Called By: replacemod

Routines Called: poly-inf
poly-pc
poly.ytxe
polyYtxl
rcl-set-cntlbl
rcl set-label

Parameters: WORD Istart
REAL_4 hwdth
REAL_4 hght
WORD piw1
WORD piw2

Returns: none

2.9.18.3 double-lite

The doublelite function is used to generate some of the light models.

The function call is doublelite(Istart, hwdth, hght, piwl, piw2), where:

Istart is the label to set with the AAM location
hwdth is the width of the light
hght is the height of the light
piwi is poly info word 1
piw2 is poly info word 2

Called By: replace-mod

Routines Called: polyinf
poly-pc
poly.ytxe
poly.Ytxl
rcl-set_cnflbl
rcl set-label

341

BBN Systems and Technologies GT1OO RTSW CSCI

Parameters: WORD Istart
REAL_4 hwdth
REAL_4 hght
WORD piw 1
WORD piw2

Returns: none

2.9.18.4 triple-lite

The triplejite function is used to generate some of the light models.

The function call is triple lite(istart, hwdth, hght, piwl, piw2, piw3), where:

istart is the label to set with the AAM location
hwdth is the width of the light
hght is the height of the light
piwl is poly info word 1
piw2 is poly info word 2
piw3 is poly info word 3

Called By: replace-mod

Routines Called: poly-inf
poly-pc
poly.ytxe
poly.ytxl
rcl set cntlbl
rcl set label

Parameters: WORD lstart
REAL_4 hwdth
REAL_4 hght
WORD piw 1
WORD piw2
WORD piw3

Returns: none

2.9.18.5 vasi lite

The vasilite function is used to generate some of the light models.

The function call is vasi_lite(Istart, hwdth, phght, hght, piwl, piw2), where:

start is the label to set with the AAM location
hwdth is the width of the VASI

342

BBN Systems and Technologies GT100 RTSW CSCI

phght is <<TBD>> of the height of the VASI
hght is the height of the VASI
piwl is poly info word 1
piw2 is poly info word 2

Called By: replacemod

Routines Called: polyjnf
poly-pc
polyytxe
poly.ytxl
rcl set cntlbl
rcl setlabel

Parameters: WORD lstart;
REAL_4 hwdth
REAL_4 phght
REAL_4 hght
WORD piw 1
WORD piw2

Returns: none

2.9.18.6 outahere

The outahere function is used to output high- or low-intensity data.

The function call is outahere(Istart), where istart is the label to set with the AAM
location.

Called By: replacemod

Routines Called: dtp..gr
dtpowd
dtpowdsc

Parameters: WORD Istart

Returns: none

0

343

BBN Systems and Technologies GT100 RTSW CSCI

2.9.19 test commands.c

The test-commands function tests each DTP command. This function is called if the
Gossip user selects the k ("kludge light models") option from the Model Selection menu.
This option appears on the menu only if debug is enabled.

The function call is test-commandsO.

Called By: gos_model

Routines Called: dtp-bcn
dtp-bcnr
dtpjbcz
dtp..bczr
dtp-bdgr
dtpjxllr
dtp-bgn
dtp-bgz
dtpbnz
dtpbnzr
dtp-bru
dtp-brur
dtp-jrz
dtp-brzr
dtpjlOot
dtpe-lm
dtp__nd
dtpjfov
dtpjfovr
dtp-gdci
dtp-gdcr
dtp-gr
dtp-jmi
dtpjmir
dtpjod
dtpjodr
dtplwd
dtpjwdr
dtp-ngc
dtp.._oio
dtpjoos
dtpowd
dtp-owdsc
dtp owo
dtp...owr
dtpjc
dtp-sub
dtp-subr
dtp.jtbc
dtpjbdr

344

BBN Systems and Technologies GTIOO RTSW CSCI

dtp_ tbrr
poly-flu
poyjnf

poly-mpc
poly-PC
poly..ytx
poly..ytxl

pntf
rcLpatch-adrs
rcl_set_cntlbl
rcl-set_lIabel

Parameters: none

Returns: none

345

BBN Systems and Technologies GT100 RTSW CSCI

2.10 Host Interface Manager (/cig/libsrc/iibhost)

The Host Interface Manager CSC is responsible for exchanging data packets between the
CIG and the Simulation Host via all supported physical interfaces. The interfaces currently
supported are the following:

* Digital Equipment Corporation DR 11-W
* Ethernet IEEE 4.02
* Ready Systems MPV
* SCSI
* Socket

For each physical interface type, the following functions are provided:

init <interface> interface
Establishes the I terface by setting the *exchange-data and *exchangedata_sim
function pointers to the appropriate routines. These function pointers are used by
the real-time software to call the routines; the real-time functions do not know
which physical interface is implemented.

open <interface> interface
Opens the interface, usually by opening the communications device as a file
(host-fd). The exchange routines can then use IFX calls to read from and write to
the device as if it were a file.

exchange_<interface>_data
Exchanges incoming and outgoing message packets with the Simulation Host (by
reading from and writing to the hostfd file) during any CIG state other than
simulation.

exchange_<interface> data sim
Exchanges incoming aind outgoing message packets with the Simulation Host (by
reading from and writing to the hostfd file) during a simulation.

The physical interface in use at a specific site is specified on the command line at startup.
The initialize function (in the Real-Time Processing CSC) parses the command line and
calls the appropriate initinterface function to establish the correct interface.

The Host Interface Manager also handles the exchange of message packets between the
real-time software and Flea, the Simulation Host emulator used for stand-alone operation
and testing. While running under Flea control, the CIG and Flea can exchange packets
without using the physical interface routines. (By posting a message to an intertask
mailbox, each process alerts the other that it has placed a packet in the INBUF or OUTBUF
buffer.) Alternatively, the the system can be configured to use the DRI l-W, Ethernet, or
SCSI interface while running a Flea exercise.

Other functions in the Host Interface Manager CSC are used to display the contents of
messages for debugging purposes. Any or all message types can be enabled for display.
Through Gossip, the user can access the Host Interface Debug menu to review or change
the message types that are currently enabled. Each frame, enabled messages are printed to
stdout (using the print.msg_* functions in the Message Processing CSC) if the
drl 1 w init_out debug flag has been enabled through Gossip.

346

BBN Systems and Technologies GTIOO RTSW CSCI

* Figure 2-14 identifies the CSUs in the Host Interface Manager CSC. The functions
performed by these CSUs are described in this section.

Host Interface Mana

CSC

I . I
hostdri 1_if.c host if debug.c
hostenetif.c hosLmpv_if.c
hostfleaif.c hostscsiif.c

hostsocketif.c

Figure 2-14. Host Interface Manager CSUs

* 2.10.1 host drll_if.c

The functions in the hostdril _if.c CSU are used to exchange data packets over a DR11-
W physical interface. These functions are:

" opendrl Iinterface
" exchange_drl 1_data
" exchange.drl l_datasim
" init-drl l_interface

2.10.1.1 open drll interface

The opendrl 1_interface function opens the dr: device as the hostfd file. This function
is called if DR 1I mode has been established. It is also called if the system is running under
Flea and either DR 1I or MPV mode was selected.

The function call is opendrll interfaceo.

If the drO: device cannot be opened, opendrl 1_interface outputs an error and exits with a
1.

Called By: initdrl 1_interface
open fleainterface

Routines Called: exit

347

BBN Systems and Technologies GT100 RTSW CSCI

open

Parameters: none

Returns: none

2.10.1.2 exchangedrll_data

The exchangedrl 1_data function exchanges output and input buffers with the Simulation
Host during any CIG state other than simulation. This function is called via the
*exchange-data function pointer if DR11 mode has been established. It is also called via
the *exchange function pointer if the system is running under Flea and either DR 1I or
MPV mode has been selected.

The function call is exchange drl data(state), where state is the current state of the
CIG. exchange_drl l_data does the following:

* If the drl lpktjdebug switch is enabled, outputs the packet sizes to stdout.
* Generates a MSGSYSERROR message to report errors in the previous frame.
* Adds a MSGEND message to the outgoing packet.
* Sets the outgoing packet size.
• Calls ifx_write to write the packet to the hostfd file.
* Calls ifxread to read the new incoming packet from the hostfd file.
" Resets the INBUF and OUTBUF pointers.
" If the drl 1 w_initout debug switch is enabled, calls host if debug to display

messages contents (if the debug display feature is enabled).

Called By: cig-config (through *exchange-data)
db_mccsetup (through *exchange-data)
fde_control (through *exchange-data)
fleahostif (through *exchange)
get-msg._2d (through *exchange-data)
hw_test (through *exchange-data)
upstart (through *exchangedata)

Routines Called: hostif_debug
ifxread
ifxwrite
printf

Parameters: INT_4 state

Returns: none

348

BBN Systems and Technologies GT100 RTSW CSCI

2.10.1.3 exchange drl datasim

The exchangedrl ldata_sim function exchanges output and input buffers with the
Simulation Host during a simulation. This function is called (via the *exchange data_sim
function pointer) at the end of every frame if DR 1I mode has been established.

The function call is exchange drll data sim(state), where state is the current state of
the CIG. exchange-drl 1_data_sim does the following:

* If the drI lpktdebug switch is enabled, outputs the packet sizes to stdout.
* Calls loc_ter_msg to generate a local terrain message if one is required this frame.
• Generates a MSGSYSERROR message to report errors in the previous frame.
* Adds a MSG_END message to the outgoing packet.
* Sets the outgoing packet size.
• Calls ifx_write to write the packet to the hostfd file.
• Calls ifx_read to read the new incoming packet from the hostfd file.
* Resets the INBUF and OUTBUF pointers.

Called By: _setupjornextframe (through *exchange data sim)

Routines Called: ifx_read
ifxwrite
locjter msg
printf

Parameters: INT_4 state

Returns: none

2.10.1.4 init drll interface

The initdrl linterface function establishes the DR 11 as the current interface. This
function is called if no physical interface was specified at startup. (DR 11 is the default
interface.)

The function call is initdrll_interfaceO. The function does the following:

• Calls open drl linterface to open the DRI1 device.
* Sets the *exchangedata function pointer to exchange-drl 1_data.
* Sets the *exchangedata_sim function pointer to exchangejdrl ldatasim.

Called By: initialize

Routines Called: open-drl linterface
printf

349

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: none

2.10.2 host enet if.c

The functions in the hostenetif.c CSU are used to exchange data packets over an Ethernet
physical interface. These functions are:

* openenetinterface
* exchange-enetdata
* exchangeenetdata sim
* slave cig-eneLsync
Sinit_enetinterface

Ethernet mode is selected by specifying the "e" argument on the startup command line. The
operator also specifies:

* The CIG's Ethernet mode: 1 (Master CIG) or 2 (Slave CIG).
" The Simulation Host's Ethernet address.

All packet buffers include a standard Ethernet preamble which specifies the source Ethernet
address, destination Ethernet address, and the protocol

2.10.2.1 open enetinterface

The open enet_interface function opens the enet: device as the hostfd file. This function
is called if Ethernet mode has been established. It is also called if the system is running
under Flea and Ethernet mode was selected.

The function call is openenetinterfaceO. The function does the following:

• Opens the Ethernet device as host_fd in read-write mode.
" Inse"ts the destination (Simulation Host's) address into the preamble in the

incoming Ethernet buffer. (The is required because FLEA uses INBUF as the
output buffer.)

* Inserts the destination (Simulation Host's) address into the preamble in the
outgoing Ethernet buffer.

* Sets the protocol in the preamble to PROTOCOLSIM.
* Uses ifx ioctl to set up the function pointers used by the other Ethernet interface

routines to read and write to the hostjfd quickly (bypassing IFX overhead). These
function pointers are *eccb, *eread, and *ewrite.

* Sets slaveinit__mode to FALSE.
* Sets startup to TRUE.

If the enet: device cannot be opened, opensenetinterface outputs an error and exits with a
1.

350

BBN Systems and Technologies GTIOO RTSW CSCI

Called By: initenetinterface
open flea interface

Routines Called: bcopy
exit
ifx ioctl
ifxopen
printf

Parameters: none

Returns: none

2.10.2.2 exchangeenetdata

The exchangeenet_data function exchanges output and input buffers with the Simulation
Host during any CIG state other than simulation. This function is called via the
*exchange-data function pointer if Ethernet mode has been established. It is also called via
the *exchange function pointer if the system is running under Flea and Ethernet mode was
selected.

The function call is exchange.enetdata(state), where state is the current state of the
CIG. exchangeenetdata does the following:

" If running in Flea mode:
- Puts the Host's Ethernet address in the outgoing Ethernet packet.
- If fleainitslave_cigG is TRUE:

* Sets the variable to FALSE.
* Copies INBUF to the outgoing (Flea->CIG) Ethernet buffer.
* Uses the *ewrite function pointer to write the outgoing packet to the

Ethernet device.
- Uses the *eread function pointer to find the packet from the CIG.
- Copies the incoming (CIG->Flea) packet to OUTBUF.
- Copies INBUF to the outgoing (Flea->CIG) Ethernet packet.
- Uses the *ewrite function pointer to write the outgoing packet to the

Ethernet device.
" If not running in Flea mode:

- If the CIG is either a Master CIG or a Slave CIG that has started its
initialization sequence:

* Calls syserr to generate a MSG_SYSERROR message.
* Adds a MSGEND message to the outgoing packet.
* Sets the outgoing packet size.
* Copies the message packet to the outgoing Ethernet buffer.
* Uses the *ewrite function pointer to write the outgoing buffer to the

Ethernet device.
- Uses the *eread function pointer to read the new incoming packet from the

Ethernet device.
- If startup is TRUE (indicating that this is the first write/read attempt):

* If the incoming buffer is empty, delays and tries again.

351

BBN Systems and Technologies GT100 RTSW CSCI

* If a packet is returned, sets startup to FALSE. If the CIG is running
in Slave mode, sets slaveinitmode to TRUE.

- Copies the incoming packet to INBUF.
* Resets the INBUF and OUTBUF pointers.
" If the drl lw_initout debug switch is enabled, calls hostifdebug to display

messages contents (if the debug display feature is enabled).

The function exits with a 1 if it encounters an error writing to the Ethernet device.

Called By: cig-config (through *exchangedata)
dbmccsetup (through *exchangedata)
file_control (through *exchangedata)
fleahostif (through *exchange)
getcmsg_2d (through *exchange-data)
hwtest (through *exchangedata)
upstart (through *exchange-data)

Routines Called: *eread
*ewrite
bcopy
exit
host_if_debug
max
printf
putchar (in debug mode only)
sc-delay
syserr

Parameters: INT_4 state

Returns: none

2.10.2.3 exchangeenet data sim

The exchange_enetdatasir function exchanges output and input buffers with the
Simulation Host during a simulation. This function is called at the end of every frame if
Ethernet mode has been established.

The function call is exchangeenet data sim(state), where state is the current state of
the CIG. exchangeenetdata-sim does the'following:

If the CIG is running in Master mode:
- Calls locjerjmsg to generate a local terrain message if required this frame.
- Calls syserr to generate a MSGSYSERROR error message.
- Adds a MSGEND message to the outgoing packet.
- Sets the outgoing packet and buffer size.
- Copies the packet from OUTBUF to the Ethernet buffer.
- Uses the *ewrite function pointer to write the outgoing buffer to the

Ethernet device.

352

BBN Systems and Technologies GT1OO RTSW CSCI

* Starts a timer.
• Uses the *eread function pointer to read the incoming message packet.
* If buffer cannot be read (i.e., remains empty) before the READ_TIMEOUT occurs,

outputs an error to stdout.
" If a packet is found, copies it to INBUF.
* Resets the INBUF and OUTBUF pointers.

Called By: _set-upjornext_frame (through *exchange-datasim)

Routines Called: *eread
*ewrite
bcopy
locter msg
max
printf
readwatch
start-watch
syserr

Parameters: INT_4 state

Returns: none

2.10.2.4 slavecigenetsync

The slave cig-enet-sync function is responsible for synchronizing with another CIG.

The function call is slave cig enet sync(cig type), where cig type is 1
(ENETMASTERCIG) or 2 (ENET_SLAVECIG). slavescig_e-et-sync does the
following:

* Creates an outgoing packet that contains only a MSG_END message.
* Copies the packet from OUTBUF to the outgoing Ethernet buffer.
" Puts the Simulation Host's address in the outgoing Ethernet buffer.
* If the CIG is running in Slave mode, uses the *ewrite function pointer to write the

outgoing buffer to the Ethernet device.
• Using the *eread function pointer, tries to get the incoming buffer from the Ethernet

device; tries again if the device is empty.
* Uses the *ewrite function pointer to write the outgoing buffer to the Ethernet

device.
• Resets the INBUF and OUTBUF pointers.

The function exits with a 1 if it encounters an error writing to or reading from the Ethernet
device.

This function is not currently used.

Called By: none

353

BBN Systems and Technologies GT OO RTSW CSCI

Routines Called: *eread
*ewrite
bcopy
exit
max
printf
putchar
sc-delay

Parameters: WORD cigtype

Returns: none

2.10.2.5 init enet interface

The initenet-interface function establishes Ethernet as the current interface. This function

is called if Ethernet mode was specified at startup.

The function call is init enet interface(master or slave, address), where:

master or slave is 1 (ENETMASTERCIG) or 2 (ENETSLAVE CIG)
address is the Simulation Host's Ethernet address

Both the Master/Slave variable and the Simulation Host's address are specified on the
startup command line.

initenet-interface does the following:

" Sets enetLmodeG to the value specified in master or slave; this variable is used
by the other Ethernet interface routines.

" Outputs the Simulation Host's Ethernet address to stdout.
* Calls openenet_interface to open the Ethernet device and put the Host's address in

the Ethernet buffers.
* Sets the *exchange-data function pointer to exchange.enetdata.
* Sets the *exchangedatasim function pointer to exchange_enetdatasim.

Called By: initialize

Routines Called: open enet interface
printf
sscanf

Parameters: INT_4 master or slave
char *address

354

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.10.3 host flea if.c

The functions in the host_fleaif.c CSU exchange data packets between the CIG and the
Flea task. Flea emulates a Simulation Host, creating message packets based on input from
the Gossip user "driving" the simulation vehicle via the keyboard. Flea allows a CIG to
operate in stand-alone mode, without connection to a Simulation Host.

The functions in this CSU are:

" openfleainterface
" exchangeflea data
" flea_hostif
" init-flea-interface

Flea mode is specified by entering the "fT switch on the startup command line. The
operator must also specify the desired Flea mode, which controls the interface routines
used to communicate between the real-time software and Flea. Available modes are:

1 Normal
2 DRO: (DRll)
3 ENET: (Ethernet)
4MPV
5 SCSI

In Normal mode, no physical interface routines are used - packets are not written to or
read from a communications device. When Flea (acting as the Simulation Host) puts a new
packet in the INBUF buffer, it posts a message to an intertask mailbox to alert the real-time
software. When the real-time software puts a new packet in the OUTBUF buffer, it posts a
mailbox message to alert Flea. Each task then gets its new packet directly from the buffer.

If DR11 or MPV mode is selected, the DR1 1 routines are used. Separate routines are
provided for Ethernet and SCSI modes.

2.10.3.1 open flea interface

The open-flea_interface function calls the applicable open-interface function to set up the
Flea communications path. The interface is selected based on the Flea mode entered on the
startup command line.

The function call is openflea interfaceo. The function does the following:

Calls the appropriate openinterface routine based on the flea_mode_G variable (set
by initfleainterface):

FLEA DRI Calls opendrl l_interface
FLEA-MPV Calls open_drl l_interface
FLEA ENET Calls openenetinterface
FLEA-SCSI Calls openscsiinterface
FLEA -NORMAL No action

* Creates an outgoing message packet containing a MSG-END message.
* Sets the message packet size.

355

BBN Systems and Technologies GT100 RTSW CSCI

Resets the INBUF and OUTBUF pointers.

Called By: initflea_interface

Routines Called: open_dr 1_interface
open enetinterface
open-scsi-interface

Parameters: none

Returns: none

2.10.3.2 exchangefleadata

The exchangeflea_data function exchanges output and input buffers with the Flea task.
This function is called via the *exchange-data or *exchange-datasim function pointer if
Flea mode has been established.

The function call is exchange flea data(state), where state is the current state of the
CIG. exchange-fleadata doei'the following:

* If the drl lpkLdebug switch is enabled, outputs the packet sizes to stdout.
" Calls loc_termsg to generate a local terrain message if required this frame.
• Calls SYSERR to generate a MSGSYSERROR message to report errors in the

previous frame.
* Adds a MSGEND message to the outgoing packet.
• Sets the outgoing packet size.
" Posts a message to the FLEA_OUTPUTMB mailbox.
* Waits for a message to be posted to the FLEA_INPUTMB mailbox.
* Sets the omsg and imsg pointers to the buffers just processed.
• Verifies that the INBUF packet version and software level are compatible.
" If the dr1 1w_nit_out debug switch is enabled, calls host if debug to display

messages contents (if the debug display feature is enabled).

If Flea is running in FLEANORMAL mode, this is the only routine called to exchange
packets. If a physical interface was specified, flea_hostif calls the appropriate
exchangedata routine also.

Called By: _set-upjfor-nextframe (through *exchange-data sire)
cig-config (through *exchange-data)
dbmccsetup (through *exchange data)
filecontrol (through *exchange-data)
get-msg_2d (through *exchange-data)
hw._test (through *exchange-data)
upstart (through *exchange-data)

Routines Called: host if debug

356

BBN Systems and Technologies GT1OO RTSW CSCI

loc_termsg
printf
rt-pend
so-post
SYSERR

Parameters: INT_4 state

Returns: none

2.10.3.3 flea host if

The fleahost-if function establishes the communications interface for use while the system
is running under Flea control, and calls the appropriate exchangedata routine to exchange
packets each frame during the Flea exercise. This function is called at startup if the
operator specified Flea mode on the command line, and the Flea mode is anything except
FLEANORMAL.

The function call is fleahostifO. The function does the following:

" Sets the *exchange function pointer to the appropriate exchange-data routine, based
on the fleamodeG variable (set by init fleainterface). This function pointer is
used only by fleahost if.

FLEA DRll exchange-drl ldata
FLEA-MPV exchange drl ldata
FLEA-ENET exchange-eneLdata
FLEAS CS I exchangescsi-data

* Prompts the user to initialize Flea via Gossip.
* Waits until the gojflyflag variable is set (indicating that Flea is initialized).
• Posts a message to the FLEA_OUTPUT_MB mailbox.
• Waits for a message to be posted to the FLEA_INPUT_MB mailbox.
" During the Flea exercise:

- Uses the *exchange function pointer to call the appropriate exchange-data
routine each frame; the state is set to CSIMULATION.

- Uses the FLEA_OUTPUT_MB and FLEAINPUTMB mailboxes to post
and receive messages.

If an invalid Flea mode is detected, the function outputs an error and exits with a 1.

Called By: main (in rtt.c)

Routines Called: *exchange
exit
printf
rt-pend
scdelay
scpost

357

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: none

2.10.3.4 init flea interface

The initfleainterface function sets the Flea interface as the current Host interface by
setting both the *exchange-data and *exchange-datasim function pointers to
exchange.fleadata. This function is called if Flea mode was specified at startup.

The function call is init flea interface(mode), where mode is one of the following:

1 (FLEANORMAL) - no interface
2 (FLEADRO) - DRi 1 -W interface
3 (FLEAENET) - Ethernet interface
4 (FLEAMPV) - MPV interface; DR 11-W interface is actually used
5 (FLEA-SCSI) - SCSI interface

The mode is specified by the operator on the startup command line.

initfleainterface does the following:

• Sets flea_mode_G to the specified mode.
* Calls open.fleainterface to open the specified interface (Ethernet, DR 11, etc.).
• Sets the *exchangedata and *exchange-datasim function pointers to

exchangejfleadata.

Called By: initialize

Routines Called: openflea-interface
printf

Parameters: INT_4 mode

Returns: none

2.10.4 hostif debug.c

The functions in the host_if_debug.c CSU are used to display SIM-to-CIG and CIG-to-
SIM messages each frame. Debug message display is controlled as follows:

Message display must be enabled through Gossip using the "display config.
messages" or "display DRI lW messages" option. Either option sets the
drl 1w_initout debug switch to TRUE. This switch is initialized to FALSE and is
also set to FALSE when a simulation is started.

358

BBN Systems and Technologies GT1OO RTSW CSCI

By default, all message types are enabled for display. (Gossip sets this on startup.)
This can be changed through Gossip using the "select host i/f msgs menu" option.
The user can enable all or selected message types, disable all or selected message
types, or review the message types currently enabled for debug display.

If debug message display is enabled, the cigsimio-obj functions (in the Real-Time
Processing CSC) copy all messages to a temporary buffer each frame. The host_if_debug
functions get the messages to be displayed from this buffer. (If desired, the messages in
this buffer can also be written to a disk file. This feature, called recording, is set up using
the "record i/f messages menu" option on the Gossip main menu. It is implemented by the
cigsimio-obj functions. The recorded file can be played back through Flea.)

If debug display is enabled, the contents of all selected message types are sent to stdout
every frame. The actual print process is handled by the printjmsg_* functions in the
Message Processing CSC. These functions are tailored to each message type to provide a
formatted, readable display.

The functions in this CSU are:

" msg-shellsort
* hostenable all debug-msgs
" hostdisableall-debug-msgs
* host_ifjdebuginit
• clear_line
* host_if~display-enabled msgs
* hostlist-msgs

host if_enabledebug-msgs
• host if disable_debugmsgs
* host ifdebug-mainmenu
* host_ifdebugmenu
* host if debug-tick
* host if.debug

2.10.4.1 msgshell sort

The msg-shell sort function sorts the array of message types alphabetically by name
instead of numerically by message code. The alphabetized array is sorted msg_ids[]. This
array is used to display the message types in alphabetical order for the user to review or
change which messages are enabled for debug display.

This function is called when debug display is initialized. Alphabetical order is therefore set
as the default for the user's display. The user can select an option on the Host Interface
Debug menu to use numerical order instead.

The function call is msgshell sorto.

Called By: host_if_debug-init

Routines Called: strcmp

359

BBN Systems and Technologies GT1OO RTSW CSCI

Parameters: none

Returns: none

2.10.4.2 host enable all debugmsgs

The hostenableall_debugjmsgs function sets the messageenabled flag to TRUE for
every message type. This causes all messages to be displayed each frame if debug message
display is enabled. This function is called by gossip at startup, which has the effect of
defaulting to all messages being enabled for display. This function is also called if the user
selects the a ("all messages enabled") option from the Host Interface Debug menu.

The function call is hostenable-all-debugmsgso.

Called By: gossip

host_if_debugmenu

Routines Called: none

Parameters: none

Returns: none

2.10.4.3 hostdisablealldebugmsgs

The hostdisable_all_debugmsgs function function sets the message-enabled flag to
FALSE for every message type. This stops all messages from being displayed. This
function is called if the user selects the z ("zero messages enabled") option from the Host
Interface Debug menu.

The function call is host disablealldebugmsgso.

Called By: host_if_debugmenu

Routines Called: none

Parameters: none

Returns: none

360

BBN Systems and Technologies GT100 RTSW CSCI

. 2.10.4.4 hostif.debug_init

The host_if_debuginit function initializes the array used to display the contents of all or
selected message types every frame. This function is called when gossip starts up.

The function call is host-if debug inito. The function does the following:

• If msg.debugjinitflag is FALSE (indicating that message display has not been
initialized):

- Calls iniLprinLmsgafray to initialize the print-msg array.
- Sets a pointer (message-enabled) to the array returned by

init-prinLmsg.array. (This array holds each message type's enabled flags
and the name of the printjmsg function used to print it. It is used by
host_if_debug-tick to determine whether a given message should be
displayed, and to call the correct printjmsg function to do so.)

- Allocates memory for a sorted list of the message ids.
- Sets msgjdebug-init-flag to TRUE.

* Calls msg-shell-sort to sort the messages alphabetically by type instead of
numerically by code, for use when the list is displayed to the Gossip user. (The
sort order can be toggled using an option on the Host Interface Debug menu.)

* Sets alphaorder to TRUE (messags are sorted alphabetically).

Called By: gossip

Routines Called: initprinLmsg-array
malloc
msg-shellsort

Parameters: none

Returns: none

2.10.4.5 clear line

The clearline function outputs a blank line. This function is called to clear the prompt line
at the bottom of the screen before displaying a prompt to the user.

The function call is clear lineO.

Called By: hostifdebug-menu
hostLidisplayenabledmsgs
host if disable.debug.msgs
host-if enable_debugmsgs

Routines Called: printf

361

BBN Systems and Technologies GT1OO RTSW CSCI

Parameters: none

Returns: none

2.10.4.6 host if displayenabled msgs

The host ifdisplay-enabledmsgs function displays a list of all message types currently
enabled for debug display. This function is called if the user selects the d ("display which
messages have been enabled") option from the Host Interface Debug menu.

The function call is host if-displayenabled_msgsO. The function does the
following:

* Clears the screen.
• Displays the name and code of each message type currently enabled for debug

display (i.e., every message type that has its message-enabled flag set to TRUE).
• Displays a message that the listed messages have been enabled for debug printing.
" Gets and discards the keystroke entered by the user (indicating that the user is ready

to proceed).
• If the drl lw_init_out debug switch is enabled, calls host if debug to display

messages contents (if the debug display feature is enabled).

Called By: hostifdebugmenu

Routines Called: blank
clearline
cup
hostifdebug-main menu
printf
unbf getchar

Parameters: none

Returns: none

2.10.4.7 host_listmsgs

The hostlist-msgs function displays a list of all message types and their index numbers.
The user refers to this list to select the message types to be enabled for debug display. This
function is called if the user enters ? (help) when specifying the message types to be
enabled.

The function call is host_list msgsO. The function does the following:

* Clears the screen.

362

BBN Systems and Technologies GT1OO RTSW CSCI

• Displays the name and index number of each message type.

Called By: host_ifdisable-debug-msgs
host-if enabledebug-msgs

Routines Called: blank
cupprintf

Parameters: none

Returns: none

2.10.4.8 host if enable debugmsgs

The host if enable debug.msgs function lets the user select the message types to be
enabled for debug display. This function is called if the user selects the e ("enable
messages to be displayed") option from the Host Interface Debug menu.

The function call is host if enabledebugmsgso. The function does the following:

• Calls hostlistmsgs to display all message types and their index numbers.
* Prompts the user for the index number of the message type to be enabled.
* If the user enters a valid number:

- Sets he message-enabled flag for the specified message type to TRUE.
- Displays a confirmation message.

* If the user enters an invalid number:
- Displays an error message.

• If the user enters ?:
- Calls hostlistmsgs to redisplay the list.

* If the user enters x (exit):
- Calls host_if_debug-mainjmenu to redisplay the Host Interface Debug

menu.

Called By: host_if_debug-menu

Routines Called: atoi
clear_line
cup
host-if debugmainjmenu
host list_msgs
printf

scanf
strcpy

Parameters: none

363

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.10.4.9 hostif disable-debugmsgs

The host_if_disabledebug-msgs function lets the user disable debug display for selected
message types. This function is called if the user selects the u ("disable display of
message") option from the Host Interface Debug menu.

The function call is host-if disable debugmsgso. The function does the following:

* Calls host_listLmsgs to display all message types and their index numbers.
* Prompts the user for the index number of the message type to be disabled.
" If the user enters a valid number:

- If the specified message type is currently enabled, sets its message-enabled
flag to FALSE and displays a confirmation message.

- If the specified message type is already disabled, displays an error message.
* If the user enters an invalid number:

- Displays an error message.
" If the user enters ?:

- Calls host list msgs to redisplay the list.
* If the user enters x (exit):

- Calls hosLif_debug-main-menu to redisplay the Host Interface Debug
menu.

Called By: host-ifdebugmenu

Routines Called: atoi
clearline
cup
host_if_debugmain-menu
host list_msgs
printf
scanf
strcpy

Parameters: none

Returns: none

2.10.4.10 hostif.debugmain menu

The hostifdebugmainmenu function displays the Host Interface Debug menu. This
function is called if the user enters ? at the "Host Debug>" prompt. It is also called when
the user finishes using an option selected from the Host Interface Debug menu (e.g.,
finishes selecting messages to be displayed).

364

BBN Systems and Technologies GT100 RTSW CSCI

The function call is host if debugmain menuo. The function clears the screen and
then displays the menu.

The option selected by the user is processed by the host_if_debugjmenu function. Refer to
hostifLdebug_menu for a list of the options displayed on the menu.

Called By: host_if_debugmenu
hostLifdisplay-enabled-msgs
host if disable.debug-msgs
hostjifenable_debugmsgs

Routines Called: blank
cup
printf

Parameters: none

Returns: none

2.10.4.11 host if debug menu

The host ifdebug-menu function processes the user's selection on the Host Interface
Debug menu. This function is called if the user selects the h ("select host i/f msgs menu")
option from the Gossip main menu.

The function call is hostifdebugmenuo. The function displays the "Host Debug>"
prompt, gets the user's keystroke, and processes the user's selection (usually by calling
another function).

The following table lists (in alphabetical order) the options supported by
host if debugjmenu, and shows the steps it performs to process each one. The menu
itself is displayed by host-if debug.mainmenu. Options flagged with an asterisk are
supported but do no appear on the menu.

365

BBN Systems and Technologies GT100 RTSW CSCI

Host Interface Debug Menu Processing by host_ifdebugmenu
Option_____________________

?* Display this menu Calls host ifdebug-mainmenu.

a all messages enabled Calls host-enable all debugmsgs.

D Display which msgs have been (not currently implemented)
enabled for reatime

d display which messages have been Calls hosLitdisplay enabledjnsgs.
enabled

E Enable msgs to display in realtime (not currently implemented)

e enable messages to be displayed Calls host if enable_debug msgs.

o order in which to display; Toggles alphaorder variable; displays new state
alphabetic/numeric toggle (alphabetical order or numerical order).

s edit which states to display (not current implemented)

u disable display of message Calls hostif disable debug.msgs.
x exit this submenu Exits.
Z Zero realtime msgs enabled (not currently implemented)
z zero messages enabled Calls hostjlisableall debug msgs.

Called By: gossip_ ick

Routines Called: clearline
cup
hostdisable all debugjmsgs
host_enable_alldebugmsgs
host-if debug-main-menu
hostif_disabledebugmsgs
host if display__enabledmsgs
hostif_enable-debug-msgs
printf
unbfgetchar

Parameters: none

Returns: none

2.10.4.12 hostifdebugtick

The host-ifdebug-tick function is responsible for displaying the contents of each enabled
message each frame. All messages from the previous frame are stored in a temporary
buffer by cigsimiowrite (in the Real-Time Processing CSC). hostif_debugtick first
checks to see if the message type is enabled for debug display, then calls the appropriate
printjmsg function (in the Message Processing CSC) to output the message to stdout. The
printmsg function is called by indexing into the messageenabled[] array.

366

BBN Systems and Technologies GT100 RTSW CSCI

. The function call is host if.debug-tick(pktP, pkt len), where:

paP is a pointer to the cigsimio buffer
p/alen is the length in bytes of the cigsimio buffer

host_if.debug__ick does the following:

* Examines the tag record attached to the buffer.
- If the tag is valid, outputs the tag (SIM=>CIG or CIG=>SIM), frame

number, time, and size in bytes.
- If the tag is invalid, outputs the tag data and exits.

* Processes each message in the packet in turn.
- If the message type is MLTPIECE and MSGLTPIECE messages are

enabled for debug display, calls prinLmsgjlt-piece to output the message to
stdout.

- If the message type is any other valid message and that type is enabled for
debug display, indexes into the message-enabledfl array to call the
appropriate printjmsg function to output the message to stdout.

- If the message type is invalid, outputs an error.

The message-enabledf] array is indexed by message type. Each array element includes the
name of the printmsg function that prints that message type. For more information on this
structure, see print-msg.c in the Message Processing CSC.

Called By: debug-initdr
hosLif_debug

Routines Called: *(message-enabled[msg-typel.prinLmsg)
fflush
GLOB
printmsglt-piece
printf

Parameters: INT_4 *pktP

INT_4 pktlen

Returns: none

2.10.4.13 host if debug

The host_if_debug function gets a pointer to the current frame's temporary message buffer
created by cigsimiowrite, then calls host_if_debug-tick to display the contents of all
enabled messages. This function is called every frame by the exchange_data routines if the
drl lw init_out debug switch is on. (The exchange-data routines are used to exchange
message packets during every CIG state except simulation.) The drl lw_initout debug
switch can be toggled by selecting the i ("display config. messages") option from the
Gossip main menu.

367

BBN Systems and Technologies GT1OO RTSW CSCI

host-if-debug is also called if the user selects the d ("display DR 1W messages") option
from any of several Gossip menus.

The function call is host if debugo. The function does the following:

" Clears any stray messages from the cigsimio_complete.mbx mailbox.
" Calls cigsimio-buffernit to initialize the message buffer and set the

cigsimiolog.request variable to TRUE. (This triggers the cigsimioobj functions
to write the messages to the temporary buffer each frame.)

* If single,-step mode is set, calls sysrup_.on to turn interrupts on by posting a
message to the SIMULATIONMB mailbox.

* Waits for a message to be posted to the cigsimioscompletembx mailbox. This
message is posted at the end of each frame by cigsimioframeend. It indicates that
all messages from the current frame have been written to the buffer.

* Calls cigsimio-getdata to get a pointer to the buffer.
• Calls host-if debugtick to process the messages in the buffer.

Called By: exchangejdrl 1_data
exchangesnetdata
exchangeflea-data
exchange mpv_data
exchange_scsidata
exchange.socket_data
gos_120tx
gos .. mpvio
gos,.system
gossipick

Routines Called: cigsimiobufferinit
cigsimio-getLdata
host~if_debug-tick
rtpend
sc accept
sysrup-on

Parameters: none

Returns: none

2.10.5 host mpvif.c

The functions in the host-mpvjif.c CSU exchange data packets over an MPV interface.
These functions are:

* open-mpvjinterface
" exchange-mpv-data
* exchange-mpv-datasim
* initmpvjinterface

368

BBN Systems and Technologies GT100 RTSW CSCI

MPV mode is specified by including the "m" argument on the startup command line. The
operator also specifies the CIG and Simulation Host identifiers.

2.10.5.1 openmpvinterface

The open-mpvinterface function establishes the MPV communication channel with the
Simulation Host.

The function call is openmpv interfaceo. The function does the following:

" Calls cifinit to initialize the CIG host id.
" Calls cifconnect to establish the connection with the Simulation Host host id.
" Puts a dummy message into INBUF.

Called By: initmpvjinterface

Routines Called: cifconnect
cifinit

Parameters: none

Returns: none

2.10.5.2 exchangempvdata

The exchangempv_data function exchanges output and input buffers with the Simulation
Host during any CIG state other than simulation. This function is called via the
*exchange-data function pointer if MPV mode has been established.

The function call is exchangempvdata(state), where state is the current state of the
CIG. exchange-mpvjdata does the following:

" If the drI lpktdebug switch is enabled, outputs the packet sizes to stdout.
• Generates a MSGSYSERROR message to report errors in the previous frame.
• Adds a MSG_END message to the outgoing packet.
* Sets the outgoing packet size.
" Calls cifsend to write the packet from OUTBUF to the SIM host id.
• Calls ciftreceive to read the new incoming packet from the SIM host id to INBUF.
• Resets the INBUF and OUTBUF pointers.
" If the drI 1 w_init_out debug switch is enabled, calls host_if_debug to display

messages contents (if the debug display feature is enabled).

Called By: cig-config (through *exchange-data)
dbmccsetup (through *exchangedata)
file_control (through *exchange-data)
get.msg_2d (through *exchange-data)
hwtest (through *exchangedata)

369

BBN Systems and Technologies GT1OO RTSW CSCI

upstart (through *exchange-data)

Routines Called: ciLreceive
cif_send
host_if_debug
printf

Parameters: INT_4 state

Returns: none

2.10.5.3 exchangempv data sim

The exchange-mpvdatasim function exchanges output and input buffers with the
Simulation Host during a simulation. This function is called (via the *exchange datasim
function pointer) at the end of every frame if MPV mode has been established.

The function call is exchangempv data sim(state), where state is the current state of
the CIG. exchangempv data.sim does the'following:

• If the drl lpkt.debug switch is enabled, outputs the packet sizes to stdout.
• Calls loc_termsg to generate a local terrain message if one is required this frame.
" Adds a MSGEND message to the outgoing packet.
* Sets the outgoing packet size.
" Calls cifsend to write the packet from OUTBUF to the SIM host id.
* Calls cif_receive to read the new incoming packet from the SIM host id to INBUF.
• Resets the INBUF and OUTBUF pointers.

Called By: _set.upfornextframe (through *exchange-data sim)

Routines Called: cif_receive
cifsend
loc_termsg
printf

Parameters: INT_4 state

Returns: none

2.10.5.4 init mpvinterface

The init__mpvinterface function establishes MPV as the current interface to the Simulation
Host. This function is called if MPV mode was specified at startup.

The function call is init_mpvinterface(mine, his), where:

370

BBN Systems and Technologies GT100 RTSW CSCI

mine is the CIG's host id specified at startup
his is the Simulation Host's host id specified at startup

init.mpvinterface does the following:

• Sets the host ids: cighostif id (CIG) and sim_host_ijid (Simulation Host).
* Calls open-mpv_interface to open the communications path.
" Calls host_if_buffernit to initialize the output buffer header (without reinitializing

the buffers).
" Sets the *exchangedata function pointer to exchange-mpvdata.
" Sets the *exchangedatasim function pointer to exchangejmpv datasim.

Called By: initialize

Routines Called: host_if_buffer_init
open-mpvjinterface
printf

Parameters: TNT_4 mine

INT_4 his

Returns: none

2.1-0.6 host scsi if.c

The functions in the host_scsi_if.c CSU exchange data packets over a SCSI physical
interface. These functions are:

* open-scsiinterface
* exchangescsi_data
* exchangescsidatasim
* initscsiinterface

SCSI interface mode is set by including the "z" argument on the startup command line.

2.10.6.1 open scsi interface

The open-scsi-interface function opens the initiator channel for writing data out to the
Simulation Host, and the target channel for receiving data from the Simulation Host.

The function call is open scsi interfaceo. The function does the following:

" Opens the SCSI device as the init_fd (initiator channel) in write-only mode.
* Opens the CIG as the targ-fd (target channel) in read-only mode.

If either device cannot be opened, the function outputs an error and exits with a 1.

371

BBN Systems and Technologies GTI00 RTSW CSCI

Called By: initscsiinterface
openfleainterface

Routines Called: exit
open
printf
sprintf

Parameters: none

Returns: none

2.10.6.2 exchangescsidata

The exchange-scsi_data function exchanges output and input buffers with the Simulation
Host during any CIG state other than simulation. This function is called via the
*exchange-data function pointer if SCSI mode has been established. It is also called via
the *exchange function pointer if the system is running under Flea and SCSI mode was
selected.

The function call is exchange scsi data(state), where state is the current state of the
CIG. exchange-scsi-data doesthe following:

* If the scsi-pkt-debug switch is enabled, outputs the packet sizes to stdout.
" Calls SYSERR to generate a MSGSYSERROR message to report errors in the

previous frame.
" Adds a MSG_END message to the outgoing packet.
• Sets the outgoing packet size.
* Writes the outgoing packet from OUTBUF to initfd.
* Reads the new incoming packet from targ-fd into INBUF.
* Resets the INBUF and OUTBUF pointers.
* If the dr1 lw_init_out debug switch is enabled, calls host-if debug to display

messages contents (if the debug display feature is enabled).

Called By: cig-config (through *exchange-data)
dbmccsetup (through *exchange data)
file_control (through *exchange-data)
fleahostif (through *exchange)
get-msg_2d (through *exchange-data)
hw_test (through *exchange data)
upstart (through *exchangedata)

Routines Called: host_ifdebug
printf
read
SYSERR
write

372

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: INT_4 state

Returns: none

2.10.6.3 exchangescsidata sim

The exchange-scsidatasim function exchanges output and input buffers with the
Simulation Host during a simulation. This function is called (via the *exchangedatasir
function pointer) at the end of every frame if SCSI mode has been established.

The function call is exchange scsi data sim(state), where state is the current state of
the CIG. exchangescsi_data_sim does the'following:

* If the scsi-pkt debug switch is enabled, outputs the packet sizes to stdout.
* Calls loc ter msg to generate a local terrain message if one is required this frame.
* Calls SYSERR to generate a MSGSYSERROR message to report errors in the

previous frame.
* Adds a MSQEND message to the outgoing packet.
* Sets the outgoing packet size.
" Writes the outgoing packet from OUTBUF to init_fd.
* Reads the new incoming packet from targjfd into INBUF.
* Resets the INBUF and OUTBUF pointers.

Called By: _setup_for_next_frame (through *exchange-datasim)

Routines Called: loc ter msg
printf
read
SYSERR
write

Parameters: INT_4 state

Returns: none

2.10.6.4 init scsi interface

The initscsiinterface function establishes SCSI as the current interface. This function is
called at startup if SCSI mode was specified on the command line.

The function call is init-scsiinterfaceo. The function does the following:

" Calls open-scsi-interface to open the SCSI device channels.
Sets the *exchange-data function pointer to exchangescsidata.

* Sets the *exchange data sim function pointer to exchangescsidatasim.

373

BBN Systems and Technologies GT100 RTSW CSCI

Called By: initialize

Routines Called: open scsiinterface
printf

Parameters: none

Returns: none

2.10.7 host socket if.c

The functions in the hostsockeLif.c CSU exchange data packets over a Socket physical
interface. These functions are:

" open socketLinterface
• exchange-socket-data
* exchangesocketdatasim
" init_socketinterface

Socket mode is specified with the "x" argument on the startup command line. The user
also enters the socket interface name.

2.10.7.1 open socket interface

The open-socketinterface function opens the socket interface as hostsd.

The function call is opensocketinterfaceO. The function does the following:

• Calls ssocket to open the localdb socket as hostsd.
" Calls sibuffer to set the input and output buffer sizes.
* Calls sbind to bind the socket name to the hostsd file.
* Calls slisten and saccept to get an acknowledgement from the host_sd file.
" Initializes the OUTBUF header.
* Resets the OUTBUF pointer.

If the socket cannot be opened, the function outputs an error and exits with a -1.

Called By: initsocketinterface

Routines Called: exit
perror
saccept
sbind
sgbuffer
sibuffer @

374

BBN Systems and Technologies GT100 RTSW CSCI

slisten
ssocket

Parameters: none

Returns: none

2.10.7.2 exchangesocket data

The exchangesocket-data function exchanges output and input buffers with the Simulation
Host during any CIG state other than simulation. This function is called via the
*exchange data function pointer if socket mode has been established.

The function call is exchange socketdata(state), where state is the current state of the
CIG. exchange-socketdata does the following:

* If the drl lpkt debug switch is enabled, outputs the packet sizes to stdout.
" Generates a MSGSYSERROR message to report errors in the previous frame.
" Adds a MSG_END message to the outgoing packet.
• Sets the outgoing packet size.
" Sends OUTBUF to host_sd.
" Calls sgbuffer to get the buffer from the hostsd.
" Initializes the. OUTBUF packet header.
* Calls spbuffer to put the buffer in the host_sd.0 Calls srecv to receive the new incoming buffer from host-sd.
* Puts the buffer in INBUF.
o Resets the INBUF and OUTBUF pointers.
* If the drl lw_initout debug switch is enabled, calls host if debug (to display

messages contents if the debug display feature is enabled).

Called By: cig-config (through *exchange data)
dbmccsetup (through *exchangedata)
filecontrol (through *exchangedata)
geLmsg_2d (through *exchange data)
hw_test (through *exchange data)
upstart (through *exchange-data)

Routines Called: host-if debug
printf
sgbuffer
spbuffer
srecv
ssend

Parameters: INT_4 state

* Returns: none

375

BBN Systems and Technologies GT100 RTSW CSCI

2.10.7.3 exchange socketdatasim

The exchange_socketdatasim function exchanges output and input buffers with the
Simulation Host during a simulation. This function is called (via the *exchange datasim
function pointer) at the end of every frame if Socket mode has been established.

The function call is exchange socket data sim(state), where state is the current state
of the CIG. exchange-socketdatasim-does The following:

• If the drl 1 pktdebug switch is enabled, outputs the packet sizes to stdout.
" Calls loctermsg to generate a local terrain message if one is required this frame.
* Generates a MSG_SYS_ERROR message to report errors in the previous frame.
* Adds a MSGEND message to the outgoing packet.
* Sets the outgoing packet size.
* Sends OUTBUF to host-sd.
* Calls sgbuffer to get the buffer from the hostsd.
* Initializes the OUTBUF packet header.
• Calls spbuffer to put the buffer in the host-sd.
• Calls srecv to receive the new incoming buffer from hostsd.
* Puts the buffer in INBUF.
• Resets the INBUF and OUTBUF pointers.

Called By: _setupjfor_nextframe (through *exchange-data sim)

Routines Called: locjter-msg
printf
sgbuffer
spbuffer
srecv
ssend

Parameters: INT_4 state

Returns: none

2.10.7.4 init socket interface

The initsocket_interface function establishes socket mode as the current interface. This
function is called if a socket interface name was specified at startup. It is also called if
AGPT mode was selected. (AGPT mode is a non-standard mode that is not addressed in
this document.)

The function call is init-socketinterfaceo. The function does the following:

* Calls opensocket_interface to open the socket.
* Sets the *exchange data function pointer to exchange-socketdata.
• Sets the *exchange-data sim function pointer to exchange-socket data._sim.

376

BBN Systems and Technologies GT100 RTSW CSCI

Called By: agptinit
initialize

Routines Called: open_socketinterface
printf

Parameters: none

Returns: none

0

0
377

BBN Systems and Technologies GT100 RTSW CSCI

2.11 MPV Interface (/cig/libsrc/iibmpvideo)

The MPV Interface CSC is responsible for initializing and communicating with the Micro
Processor Video (MPV) board. This board is present in TX backends only; therefore, the
functions in this CSC pertain to TX backends only.

The MPV is the final board in the TX graphics pipeline. It contains the GSP (Graphics
System Processor) chip, which handles 2-D overlays. The MPV board is responsible for
the following:

• Calculating pixel depth for laser range requests.
* Loading color lookup tables as required.
• Setting video control registers.
" Reading from and writing to GSP memory.
* Starting and stopping the GSP.

The following files are downloaded to the GSP:

task2d The 2-D processor task for 2-D overlays.
data2d The 2-D overlay database.
lookut Color lookup table.
bitmap <<TBD>>

The MPV Interface routines do not communicate directly with either the MPV board or the
GSP. All communication is handled by the Force Processing task running on the Force
board. The MPV Interface functions send messages and commands to the Force task, and
the Force task downloads the requests to the MPV board or GSP memory. Responses
from the MPV and the GSP are also routed back through the Force board. (The Force
Processing CSC is described in section 2.18.)

The MPV Interface routines and the Force board communicate using two different interface
methods: message buffers and the Force-MPV mailbox.

Message Buffers
Some messages are passed using half-word message buffers. Messages sent from
the real-time software (via the MPV Interface routines) to Force are prefixed with
MSG_FO. Messages returned from Force are prefixed with MSG_Fl.

Both the MPV Interface functions and the Force functions use the routines in the
mx2_hword.c CSU to manage and use the message buffers. These routines are
part of both the Real-Time Processing CSC and the Force Processing CSC.

The message buffers used by the MPV Interface routines to communicate with the
Force task are the following:

mpvioto buf (outgoing)
Used fori messages sent from the MPV Interface routines to Force. These
messages result from changes requested by the Simulation Host to modify
simulation parameters.

378

BBN Systems and Technologies GT100 RTSW CSCI

mpvio from buf (incoming)
Used for response messages returned by Force to the MPV Interface
routines.

Force-MPV Mailbox
For some functions, the MPV Interface routines place commands directly into the
Force board's front-end control register (FECONTROL). This interface uses an
intertask mailbox. The commands are queued in the Force-MPV mailbox until the
end of the frame, at which time a message is sent to Force to trigger processing of
the queued commands.

The structure of the Force-MPV mailbox (MPVIO_INTERFACE) is defined in the
mpvideo.h file. The mailbox includes locations for the Force front-end control
register, the force control register, laser range pixel locations and returned depth
values, GSP addresses (for read and write requests), lookup table specifications
(wanted table, loaded table, and table addresses), various timing parameters, and
the buffers used to exchange PASS_ON and PAS_BACK data.

Messages passed between the real-time software and the 2-D processor task (on the GSP)
are handled as follows:

" The Simulation Host sends "pass on" messages to update 2-D overlays during the
simulation. The message is received by process.a.msg, which calls an MPV
Interface routine. The MPV Interface function places the message in the
databufout buffer in the Force-MPV mailbox.

" After processing a "pass on" message, the GSP sends a "pass back" message in
reply. The message is placed in the databufin buffer in the Force-MPV mailbox.
The MPV Interface routine sets a pointer to the message for return to the Simulation
Host.

* The above process applies only to changes to the 2-D overlays. The original
overlays created before the simulation starts (using the 2-D Overlay Compiler) are
not passed through the MPV Interface routines. The 2-D Overlay Compiler's
linkup function places the GSP download commands directly into the Force-MPV
mailbox.

The Gossip user can interact with the MPV and the GSP through the gosmpvio function.
gosmpvio uses different message buffers to communicate with the Force task. The MPV
Interface routines are not involved in the Gossip process.

Figure 2-15 identifies the CSUs in the MPV Interface CSC. The functions performed by
these CSUs are described in this section.

0

379

BBN Systems and Technologies GT100 RTSW CSCI

MP Inefc

bootforce.c mpvideomode.c
bootmpv.c mpvideopassback.c
Ioadmpv.c mpvideopasson.c
mpvideolaser.c mpvideoprint.c
mpvideolut.c mpvideoquery.c
mpvideoman.c mpvideo-response.c

Figure 2-15. MPV Interface CSUs

2.11.1 bootforce.c

The functions in the bootforce.c CSU are used to start the Force task on the Force board,
and to find the message buffers used by the MPV Interface routines to communicate with
the Force task. These functions are:

" bootforce
• setentry-pt
• rtn_entry-pt
• mpvmsg._queryjbuf_addr
• mpvmsgreplyjbufaddr
* mpvmsgjto.bufaddr
" mpvmsg-from bufaddr

2.11.1.1 bootforce

The bootforce function loads the Force task onto the Force board in a specified backend,
which causes the Force task to start up. It also sets up the addresses of the buffers used by
the MPV Interface routines to communicate with the Force board. This function is called
when the MPV is initialized.

The function call is bootforce(backend, file-name), where:

backend is the backend id
filenamne is the name of the executable S-record file to be loaded onto the Force board

bootforce does the following:

380

BBN Systems and Technologies GT100 RTSW CSCI

• Calls mpvideo.get.object-addr to get a pointer to the MPV object in the specified
backend.

* Checks to make sure Force has not already been started.
* Clears the Force memory.
* Calls sload to load the specified file.
* Sets the startforce variable to TRUE.
• Waits for the Force task to start up.
* Sets the addresses of the message buffers used to communicate with the Force

board (the incoming and outgoing buffers used by the MPV Interface routines, as
well as the query and reply buffers used by gos mpvio).

The function returns TRUE if successful. It returns FALSE if it cannot get a pointer to the
MPV object, or if the Force file cannot be loaded.

Called By: mpvideoboot

Routines Called: mpvideo-geLobject-addr
printf
scdelay
sload
status,..mpvideo-print

Parameters: UNS_4 backend
UNSI *file_name

Returns: 1 (TRUE)
0 (FALSE)

2.11.1.2 set entrypt

The seLentry-pt function sets an entry point for <<TBD>>

The function call is set entrypt(backend, entrypt), where:

backend is the backend id
entry..pt is <<TBD>>>

set-entry-pt does the following:

* Calls mpvideogetLobject-addr to get a pointer to the MPV object in the specified
backend.

* Sets the high and low entry points.

The function returns TRUE if successful. It returns FALSE if it could not get a pointer to
the MPV object.

Called By: mpvideoload

381

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: mpvideo-get-object-addr

Parameters: UNS_4 backend
UNS_4 entry-pt

Returns: 1 (TRUE)
0 (FALSE)

2.11.1.3 rtn-entrypt

The rtn entry-pt function returns the entry point that was set with setentry-pt.

The function call is rtnentrypt(backend, entry_pt_h, entrypt_l), where:

backend is the backend id
entrypth is the location for the returned high entry point
entryptl is the location for the returned low entry point

rtnentry-pt does the following:

* Calls mpvideo-get object-addr to get a pointer to the MPV object in the specified
backend.

* Places the high and low entry points into the locations specified in the call.

The function returns TRUE if successful. It returns FALSE if it could not get a pointer to
the MPV object.

Called By: mpvideo_siminit

Routines Called: mpvideogetobject addr

Parameters: UNS_4 backend
UNS_2 *entry-pt_h
UNS_2 *entrypt l

Returns: 1 (TRUE)
0 (FALSE)

2.11.1.4 mpvmsgquerybufaddr

The mpvmsg.query-bufaddr function returns the address of the Force query buffer for a
specified backend. The query buffer is used by gos-mpvio (part of Gossip) to send
messages to the Force task.

382

BBN Systems and Technologies GT100 RTSW CSCI

The function call is mpvmsgquerybuf-addr(backend), where backend is the
backend id.

The function returns FALSE if it cannot get a pointer to the MPV object.

Called By: gos...mpvio

Routines Called: mpvideo-geLobjecLaddr

Parameters: UNS_4 backend

Returns: pmpv->force-queryaddr
0 (FALSE)

2.11.1.5 mpvmsg_replybufaddr

The mpvmsgjreply-buf_addr function returns the address of the Force reply buffer for a
specified backend. The reply buffer is used for messages returned to gos_mpvio from
Force.

The function call is mpvmsg replybuf addr(backend), where backend is the.backend id.

The function returns FALSE if it could not get a pointer to the MPV object.

Called By: gos mpvio

Routines Called: mpvideo-geLobjecLaddr

Parameters: UNS_4 backend

Returns: pmpv->force reply-addr
0 (FALSE)

2.11.1.6 mpvmsgtobufaddr

The mpvmsgto bufaddr function returns the address of the outgoing (to Force) buffer
for a specified backend. Most of the MPV Interface routines use this buffer to send
messages to the Force board.

The function call is mpvmsgto buf addr(backend), where backend is the backend
id.

The function returns FALSE if it could not get a pointer to the MPV object.

383

BBN Systems and Technologies GT100 RTSW CSCI

Called By: none

Routines Called: mpvideo-get objecaddr

Parameters: UNS_4 backend

Returns: pmpv->toforceaddr
0 (FALSE)

2.11.1.7 mpvmsgfrom bufaddr

The mpvmsgjfrombuf_addr function returns the address of the incoming (from Force)
buffer for a specified backend. The Force board uses this buffer to send replies back to the
MPV Interface routines.

The function call is mpvmsgfrombufaddr(backend), where backend is the
backend id.

The function returns FALSE if it could not get a pointer to the MPV object.

Called By: gosmpvio

Routines Called: mpvideo-geLobject-addr

Parameters: UNS_4 backend

Returns: pmpv->fromforceaddr
0 (FALSE)

2.11.2 bootmpv.c

The functions in the bootmpv.c CSU are responsible for initializing the MPV board. These
functions are:

* mpvideoboot
" prtmsgerr
* prtackerr
* prtstaterr

This CSU also defines the WAITMPVREPLY macro, described in Appendix B.

384

BBN Systems and Technologies GT100 RTSW CSCI

2.11.2.1 mpvideoboot

The mpvideo_boot function sets up the MPV I/O board and determines MPV board status.
This function is called when the system is initialized if a forceO file is found on disk.

The function call is mpvideo boot (backend, bootio), where:

backend is the backend id
boot io is the name of the S-record executable file to be loaded onto the MPV I/O board

mpvideoboot does the following:

" Calls mpvideo.geLobjecLaddr to get a pointer to the MPV object in the specified
backend.

* Calls bus_error to verify that the board's base address exists.
* Calls bootforce to load the MPV I/O board with the specified file.
* Sets a pointer to the MPV's mailbox.
* Locates the message buffers used to communicate with the Force task.
* Makes sure the message interface buffers appear to be valid.
* Calls mx2_peek to preview the top message in the incoming buffer, then deletes it

with mx2_skip.
• Pushes a MSG_FO_MPV_LUT_TYPE._REQUEST message onto the outgoing

message buffer, this message asks for the MPV board revision level arld whether or
not the 2-D (final) lookup tables are downloadable.

* Uses the WAlT_MPVREPLY macro to wait for a MSGFlMPVLUTTYPE
response message from Force.

" When the reply is received, sets the MPV type and lut download flag.
* If the MPV board is a Value-Added MPV:

- Pushes a MSG_F0_MPV_RESET message onto the outgoing buffer; this
message resets the MPV board.

- Waits for an acknowledgement from Force.
" Halts the GSP task (even if it is not running) by writing a SUBSYSSTOP

command into the Force task's front-end control register.
* Waits for a response from Force.
* Runs a test on GSP memory by writing a SUBSYSTESTMEM command into

the Force task's front-end control register.
" Waits for a response from Force.
" Sets the control register in the MPV by writing a SUBSYSWRITESTART

command into the Force task's front-end control register.
* Waits for a response from Force.
* If the MPV board is a Value-Added MPV:

- Calls mpvideo define_mode to define the default resolution modes.
- Calls mpvideoset-mode to put one of the default resolution modes into

effect.
- Waits for an acknowledgement from Force.
- Sets the display configuration to 0.

• If the MPV board is an older version:
- Uses the SUBSYSREADSTART command to read GSP memory (via the

Force control register) to determine if the backend is displaying high
resolution or low resolution.

- Waits for a response from Force.
Sets the display configuration appropriately.

385

BBN Systems and Technologies GTlOO RTSW CSCI

The function returns 0 if successful. It returns EOF if it could not get a pointer to the
MPV, the board's base address was not found, the boot file could not be loaded, the GSP
memory test failed, or the MPV 1/O control write failed.

Called By: initialize

Routines Called: bootforce
bus,_error
mpvideo -define-.mode
mpvideo-.get-object-addr
mnpvideo.-set-mode
mx2,..peek
mx2-push
mx2 -skip
printf
prtackerr
prtmnsgerr
sc--delay
status-mpvideo-pint
WAlTMPVIO
WAITMPVREPLY

Parameters: UNS_4 backend
UNSI1 *bt-io

Returns: EOF
0

2.11.2.2 prtmsgerr

The prtmsgerr function outputs an "UNKNOWN MESSAGE" error for mpvideojboot.
This function is called if mpvideo -boot receives an unexpected message code from the
Force task.

The function call is prtmsgerr(msg code), where msg code is the unknown message
code.

The error message output by prtmnsgerr includes the message code.

Called By: mpvideo _boot

Routines Called: pnintf

Parameters: UNS_2 msg-code

386

BBN Systems and Technologies GT100 RTSW CSCI

Returns: none

2.11.2.3 prtackerr

The prtacken" function outputs an "ACKNOWLEDGE ERROR" for mpvideoboot. This
function is called if mpvideoboot receives a MSGFIACKNOWLEDGE message from
Force, but (1) the message does not appear to be in response to the message sent by the
MPV, or (2) the message's acknowledgement code indicates a problem.

The function call is prtackerr(msgcode, msgP), where:

msg code is the message code (MSG FIACKNOWLEDGE)
msgP is a pointer to the message

The error message output by prtackenr includes the message code and the acknowledgement
code from the message.

Called By: mpvideoboot

Routines Called: printf

Parameters: UNS_2 msgcode
UNS4 *msgP

Returns: none

2.11.2.4 prtstaterr

The prtstaterr function outputs a "STATUS ERROR" message for mpvideoboot. This
function is called if an error is detected in a MSGFlSTATUS message returned from
Force. (This message is not currently sent by any Force function.)

The function call is prtstaterr(msg code, msgP), where:

msg-code is the message code
msgP is a pointer to the message

The error message output by prtstaterr includes the message code and the status code from
the message.

This function is not currently used.

Called By: none

Routines Called: printf

387

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: UNS_2 msg code
UNS_4 *msgP

Returns: none

2.11.3 loadmpv.c (mpvideoload)

The mpvideo_load function downloads a specified file directly to the MPV in a specified
backend. This function is called to download the 3-D and final (2-D) color lookup tables,
the 2-D task file, and the 2-D data file. It is called at initialization time (to load default files
or the files specified in the subsys.cfg file), during the database setup state (in response to
MSGFILEDESCR messages received from the Simulation Host), and by various
options available through Gossip.

The function call is mpvideo load(backend, mpvfile), where:

backend is the backend id
mpv.file is the name of the file to be downloaded

mpvideoJoad does the following:

• Calls mpvideo-getobjectaddr to get a pointer to the MPV object in the specified
backend.

* Calls bus-error to verify that the MPV board's base address exists.
* Opens the specified mpv.file.
* Reads the file header to validate its size and determine the file type.
* If the file type is "final":

- Finds the file size in the file header.
- Sets up initial data that will not change.
- Reads the file a block (512 bytes) at a time and swaps the bytes.
- Calls mx2_peek and mx2_skip to flush all messages from the incoming

buffer.
- Sends the file to the MPV via the Force board by pushing a

MSG FO FINALLUTDOWNLOAD message onto the outgoing buffer.
- Waits for an acknowledgement from Force.
- Verifies the block count returned.
- Closes the file.

* If the file type is "bitmap":
- Finds the GSP load address in the file header.
- Resets the data area pointer.
- Reads the file length from the file header.
- Reads the file a block (512 bytes) at a time and swaps the bytes.
- Downloads the data to GSP memory.
- Closes the file.

" If the file type is "lut":
- Finds the GSP load address in the file header.
- Resets the data area pointer.
- Reads the file length from the file header.
- Reads the file a block (512 bytes) at a time.
- Moves the data into MPV I/O board memory space for later download.

388

BBN Systems and Technologies GT100 RTSW CSCI

- Closes the file.
If the file type is "2d-task":

- Finds the GSP load address in the file header.
- Resets the data area pointer.
- Reads the file length from the file header.
- Reads the file a block (512 bytes) at a time and swaps the bytes.
- Downloads the data to GSP memory.
- Closes the file.
- Finds the entry point in the file header and calls seLentry-pt to set it.

If the file type is "2d-data":
- Finds the GSP load address in the file header.
- Resets the data area pointer.
- Checks the override_2d flag to see if the 2-D database has already been

generated; does not load this file if the flag is set. (compile_2d in the 2-D
Overlay Compiler CSC sets override_2d to TRUE after the 2-D database
has been compiled.)

- Reads the file length from the file header.
- Reads the file a block (512 bytes) at a time.
- Downloads the data to GSP memory.
- Closes the file.

The function returns TRUE if successful. It returns EOF if it cannot get a pointer to the
MPV, the board's base address cannot be found, or the specified file cannot be opened. It
returns FALSE if the file header is missing a required data item or contains invalid data.

Called By: dbmccsetup
gos_120tx
gos.mpvio
initialize

Routines Called: buserror
close
exit
FindField
mpvideo__geLobjectaddr
mx2_- hwcopy
mx2_peek
mx2_push
mx2_- skip
open
printf
read
sc_delay
setL.entry-pt
sscanf
statusmpvideo-print
stmcmp
strtol
WAIT_MPVIO

Parameters: UNS_4 backend

389

BBN Systems and Technologies GT100 RTSW CSCI

UNSI *mpvfile

Returns: EOF
1 (TRUE)
0 (FALSE)

2.11.4 mpvideo-laser.c (mpvideolaser requestrange)

The mpvideojaserjrequest range function informs the MPV that the laser range value at a
specified pixel on a specified channel is to be reported every frame. This function is called
when the Simulation Host sends a MSGLASERREQUESTRANGE message for a TX
backend.

The function call is mpvideo laserrequest range(backend, channel, i, j, id),
where:

backend is the backend id
channel is the number of the channel
i is the horizontal coordinate of the pixel for which range values are requested
j is the vertical coordinate of the pixel for which range values are requested
id is an identifier to be attached to the laser return message

mpvideolaser-request-range does the following:

Calls mpvideo-get-object_addr to get a pointer to the MPV object in the specified
backend.

• Finds the outgoing (to Force) message buffer.
* Passes the request to Force by pushing a MSG_FOPIXELDEPTHREQUEST

message onto the outgoing message buffer.
* Sets the MPV's io-req flag to TRUE if it is not already set.

The function returns 0 if successful. It returns EOF if it cannot get a pointer to the MPV
object.

Called By: backendlaser-requestjrange

Routines Called: mpvideoget-objec taddr
mx2_push

Parameters: UNS_4 backend
UNS_4 channel
INT_2 i
INT_2 j
INT_2 id

Returns: 0
EOF

390

BBN Systems and Technologies GT100 RTSW CSCI

2.11.5 mpvideo_lut.c (mpvideosetlut)

The mpvideoset lut function is used to change the 3-D lookup table (lut3d) and final
lookup table (lut2d) indices. This function is called when the Simulation Host sends a
MSGSUBSYSMODE message to change lookup tables.

The function call is mpvideo set lut(backend, channel, lut3d, lut2d), where:

backend is the backend id
channel is the channel number (0 = all channels)
lut3d is the new 3-D lookup table index
lut2d is the new final lookup table index

mpvideo_setlut does the following:

" Calls mpvideo-get-object-addr to get a pointer to the MPV object in the specified
backend.

" Validates the channel number.
* Finds the outgoing (to Force) buffer.
* Determines whether one or both lookup table values are different from their

previous values.
- If both tables are to be changed, pushes a MSG_FO_ALLLUTSWITCH

message onto the outgoing message buffer, for one or both channels.
- If only the 2-D table is to be changed, pushes a

MSG_FOFINALLUT_SWITCH message onto the outgoing message
buffer, for one or both channels.

- If only the 3-D table is to be changed, pushes a
MSG_ F03DLUT SWITCH message onto the outgoing message buffer,
for one or both channels.

The function returns EOF if the channel number is invalid or the outgoing buffer cannot be
found.

Called By: backend set-color

Routines Called: mpvideo-getobject-addr
mx2_push
printf

Parameters: UNS_4 backend
UNS_2 channel
UNS_2 lut3d
UNS_2 lut2d

Returns: EOF

391

BBN Systems and Technologies GT100 RTSW CSCI

2.11.6 mpvideo man.c

The functions in the mpvideo man.c CSU are used to load and communicate with the MPV
objects in the CIG backend. These functions are:

" mpvideosetvideo
" mpvideosetup
" mpvideo-stop
• mpvideo_siminit
" mpvideo-send_req
" mpvideo-geLobject-addr

2.11.6.1 mpvideosetvideo

The mpvideo set video function turns the video channels driven by the MPV board on or
off. This function is called at the beginning of a simulation (to turn all channels on) and at
the end of a simulation (to turn all channels off). It is also called during a simulation if the
Simulation Host sends a MSG_VIE WPORTUPDATE message.

The function call is mpvideo set_video(backend, flag), where:

backend is the backend id
flag is 0 (off) or 1 (on)

mpvideo set video does the following:

• Calls mpvideogetobject-add to get a pointer to the MPV object in the specified
backend.

* Pushes a MSGFOSETDISPLAY message onto the outgoing message buffer.

Called By: backendreset
backend set video
mpvideo_siminit

Routines Called: mpvideogeLobject-addr
mx2 push

Parameters: UNS_4 backend
UNS_4 flag

Returns: none

392

BBN Systems and Technologies GT100 RTSW CSCI

2.11.6.2 mpvideosetup

The mpvideosetup function sets up internal control structures for the MPV board on a
specified backend. This function is called as part of the backend initialization process,
prior to any other MPV Interface routines.

The function call is mpvideo setup(backend, pboot, pmbx), where:

backend is the backend id
pboot is the base VMEbus address of the MPV I/O board
pmbx is the VMEbus address of the MPV I/O runtime mailbox

mpvideo.setup does the following:

• Calls buserror to verify that the board's base address exists.
• Allocates memory for the MPV object.
* Initializes the MPV object.
* Tries to turn the video off (in case the MPV I/O board is running).

The function returns 0 if successful. It returns 1 if the MPV board could not be found.

Called By: backendsetup

Routines Called: buserror
malloc
printf

Parameters: UNS_4 backend
UNS_2 *pboot
MPVIO_INTERFACE *pmbx

Rctums: 0
1

2.11.6.3 mpvideostop

The mpvideo.stop function sends a stop command to the MPV board in a specified
backend. This command halts execution of the MPV's 2-D processor task. This function
is called when the backend is reset at the end of a simulation. It is also called if the Gossip
user selects the R ("Reload MPV files & task") option from the 120TX menu.

The function call is mpvideo.stop(backend), where backend is the backend id.

mpvideostop does the following:

• Calls mpvideo._get objectaddr to get a pointer to the MPV object in the specified
backend.

393

BBN Systems and Technologies GTIOO RTSW CSCI

" Puts a SUBSYSSTOP command in the Force front-end control register (via the
MPV-Force interface mailbox).

* Sets the MPV's io_req flag to FALSE.
• Sets the MPV's passon-sent flag to FALSE.

Called By: backendreset

gos_120tx

Routines Called: mpvideo__geLobjecLaddr

Parameters: UNS_4 backend

Returns: none

2.11.6.4 mpvideosiminit

The mpvideo_siminit function sets up internal MPV status variables, triggers the start of
the 2-D processor task on the MPV board, and initializes video control registers and lookup
tables. This function is called at the beginning of a simulation. It is also called if the
Gossip user selects the R ("Reload MPV files & task") option from the 120TX menu.

The function call is mpvideo.siminito. For each MPV, mpvideosiminit does the
following:

" Sets the MPV's io-req flag to FALSE.
* Sets the MPV's pass on-sent flag to FALSE.
SCalls mpvideo._geLobjecLaddr to get a pointer to the MPV object in the specified

backend.
" Calls rtn..entry-pt to get the <<TBD>> entry point.
• Puts a SUBSYS_NMI_START command into the Force front-end control register

(via the MPV-Force mailbox).
* Waits for the GSP task to start.
" Initializes the passon message length and sets the end of the message.
• Sets the video controls for each channel.
* Sets the mpvioto_buf variable to the location of the outgoing (to Force) message

buffer.
* Pushes a MSG_FO_3DLUT_DOWNLOAD message onto the outgoing buffer (to

download the 3-D color lookup table).
• Calls mpvideo set_video to turn the video channels on.

Called By: backendsiminit
gosl20tx

Routines Called: mpvideo-ge-objec-addr
mpvideo set video
mx2_push
rtnentry-pt

394

BBN Systems and Technologies GTIOO RTSW CSCI

sc_delay
WAITMPVIO

Parameters: none

Returns: none

2.11.6.5 mpvideo send req

The mpvideo.sendreq function triggers the MPV I/O to send all queued messages to the
Force board. This function is called after all of a frame's messages have been processed.

The function call is mpvideo send reqo. For each MPV, the function does the
following:

" Calls mpvideo-geLobjecLaddr to get a pointer to the MPV object in the specified
backend.

* If the MPV has messages to be processed:
- Makes sure that the Force front end is ready for a message.
- Puts a SUBSYSMAIL_SEND command in the MPV-Force mailbox.
- Pushes a MSGFOTRIGGER message onto the outgoing message buffer.

Called By: backendsend-req

Routines Called: mpvideogeLobjecLaddr
mx2 push

Parameters: none

Returns: none

2.11.6.6 mpvideo getobject addr

The mpvideo-geLobjectaddr function returns a pointer to the MPV object in a specified
backend. This pointer must be used for all operations affecting the MPV.

The function call is mpvideoget.object addr(backend), where backend is the
backend id.

The pointers for all MPV objects in the CIG are maintained in the mpvjtablefl array, which
is built by mpvideo setup. The array is indexed by backend. If the specified backend is
not in the array, mpvideoget object_addr returns NULL.

Called By: cig_2dsetup

esifa sim init

395

BBN Systems and Technologies GT100 RTSW CSCI

mpvideo_boot
mpvideo laserjrequest-range
mpvideo_load
mpvideo-numpaths
mpvideo-passback
mpvideo-passon
mpvideosend req
mpvideo set_lut
mpvideo_setmode
mpvideo_setvideo
mpvideo_sim_init
mpvideo.stop

Routines Called: none

Parameters: UNS_4 backend

Returns: mpv._table[n]
NULL

2.11.7 mpvideomode.c

The functions in the mpvideo_mode.c CSU are used to define MPV modes (panel
orientations) and to put them into effect. These functions are:

" mpvideoset_mode
* mpvideodefine, mode

2.11.7.1 mpvideoset mode

The mpvideosetmode function is used to put the desired resolution mode (panel
orientation) into effect. This function is called to load a default mode when the MPV is
initialized. During runtime, it is called if the Simulation Host sends a
MSGSUBSYSMODE message to change the resolution mode.

The function call is mpvideo setmode(backend, channel, mode), where:

backend is the backend id
channel is the channel number
mode is the identifier assigned by the Simulation Host to the desired mode; default

modes are identified by 0 through 4

Resolution modes are defined using the MSGDEFINE_TXMODE message; some
default modes are provided. Each mode's definition specifies the applicable MPV mode,
graphics path orientation, vertical and horizontal screen resolution, and vertical and
horizontal offset of the displayed image. The modes are loaded into the f0_mode select[i
array by the mpvideowdefine-mode function at initialization time.

mpvideo_setmode does the following:

396

BBN Systems and Technologies GT100 RTSW CSCI

• Checks to see if the new mode is different from the current mode set.
* Calls mpvideo-geLobjecLaddr to get a pointer to the MPV object in the specified

backend.
* Locates the outgoing (to Force) message buffer.
* Passes the request to the Force board by pushing a MSG FOMODESELECT

message onto the outgoing buffer.

Called By: mpvideo boot
msgsubsys.mode

Routines Called: mpvideo-geLobjecLaddr
mx2_push
printf

Parameters: UNS_4 backend
UNS2 channel
UNS_2 mode

Returns: none

* 2.11.7.2 mpvideodefine mode

The mpvideojcefine_mode function is used at initialization time to define all desired
resolution modes of the MPV board. This information is stored for later use during
runtime. The modes come from two sources: (1) default modes loaded by mpvideo-boot,
and (2) modes def:-. -4 by the Simulation Host using MSGDEFINE_TXMODE
messages. Each back' nd can have different mode information.

The function call is mpvideodefinemode(backend, mode, mpvmode, orient,
i, j, ofi, ofj), where:

backend is the backend id
mode is an identifier assigned by the Simulation Host for the mode being defined; this

label is used during runtime to put this mode into effect; the default modes are
labeled 0 through 4

mpv mode is 0 (single 640x480 channel), 1 (dual 320x240 channels replicated to
640x480), 2 (dual 640x256 channels), or 3 (single 640x480 channel replicated to
640x480)

orient is 0 (vertical orientation of the graphics path) or 1 (horizontal orientation of the
graphics path); horizontal orientation is not currently supported

i is horizontal screen resolution (number of pixels to display per line)
j is the vertical screen resolution (number of pixels to display per column)
oft is the desired horizontal offset of the displayed image (normal = 0)
ofj is the desired vertical offset of the displayed image (normal = 0)

For each MPV mode, mpvideo-defme_mode does the following:

397

BBN Systems and Technologies GT100 RTSW CSCI

* If the mpvideoprint variable (checked by status mpvideo.print) is TRUE, outputs
all of the mode information to stdout.

" Adds the mode and its related data to the f)_modeselect[array. This table is used
to change modes during runtime.

Called By: cigsconfig
dbmcc-setup
mpvideoboot

Routines Called: printf
status,.mpvideo-print

Parameters: UNS_4 backend
INT_2 mode
UNS1 mpvjmode
UNS_1 orient
INT_2 i
INT_2 j
INT_2 Of,
INT_2 of

Returns: none

2.11.8 mpvideopassback.c

The mpvideo-pass back function gets the data for the MSGPASSBACK message for
return to the Simulation Host. This message is used to return status information from an
embedded subsystem (currently, only the 2-D overlay processor).

The function call is mpvideo pass_back(backend, pmsg ptr), where:

backend is the backend id
pmsg_ptr is a pointer to the data for the MSGPASSBACK message

mpvideo-passback does the following:

* Calls mpvideo.geLobject-addr to get a pointer to the MPV object in the specified
backend.

* Verifies that the MPV's passonsent flag is TRUE and the databufin buffer
(used to store passon data from the GSP) is not empty.

• Sets the pmsgptr to the databuf_in buffer. The msg-passback function (in the
Message Processing CSC) uses this pointer to build the MSGPASSBACK
message.

The function returns 0 if successful. It returns EOF if it cannot get a pointer to the MPV
object.

Called By: msg-pass-back

398

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: mpvideo-get-object~addr

Parameters: UNS_4 backend
INT_2 **pmsg-ptr

Returns: 0
EOF

2.11.9 mpvideopasson.c

The mpvideopasson function is used to send a message to the GSP on a specified
backend. This function is called whenever the Simulation Host sends a MSGPASSON
message to pass runtime changes to the 2-D overlay processor (task2d).

The function call is mpvideo pass-on(backend, channel, msg, size), where:

backend is the backend id
channel is the channel number, this determines which subsystem process receives the

message; currently, the only implemented value is 1 (2-D overlay processor)
msg is a pointer to the MSGPASSON message
size is the size of the message in bytes

0 mpvideo-passon does the following:

" Calls mpvideo-get.objecLaddr to get a pointer to the MPV object in the specified
backend.

• If the channel is 1 (2-D overlay processor):
- Moves the message data to the MPV's databufout buffer.
- Sets the MPV's io-req flag to TRUE.
- Sets the MPV's pass on sent flag to TRUE.

The function returns 0 if successful. It returns EOF if it cannot get a pointer to the MPV
object.

Called By: msg-pass-on

Routines Called: min
mpvideo-getobject-addr

Parameters: UNS_4 backend
UNS_4 channel
INT_2 *msg
INT_4 size

0 Returns: 0

399

BBN Systems and Technologies GT100 RTSW CSCI

EOF

2.11.10 mpvideoprint.c

The functions in the mpvideo_print.c CSU control whether or not optional status
information is printed by various MPV Interface routines. These functions are:

* status_mpvideo.print
* togglempvideoprint

2.11.10.1 status mpvideoprint

The status_mpvideo_print function returns the current value of the boolean variable
mpvideo-print. If this variable is TRUE, the calling routine outputs optional status
information to stdout. If FALSE, the information is not displayed. The default is FALSE;
the variable can be set to TRUE using toggle-mpvideo-print.

The function call is statusmpvideo printo.

Called By: bootforce
mpvideoboot
mpvideodefine_mode
mpvideoload

Routines Called: none

Parameters: none

Returns: mpvideoprint

2.11.10.2 togglempvideoprint

The togglejmpvideoprint function toggles the value of the boolean variable
mpvideo__print. This variable controls whether or not various MPV Interface routines print
optional status information.

The function call is togglempvideo printO.

This function is not currently used.

Called By: none

Routines Called: none

400

BBN Systems and Technologies GT100 RTSW CSCI

Parameters: none

Returns: none

2.11.11 mpvideo query.c (mpvideo_numpaths)

The mpvideo-numpaths function is used to find out how many graphics paths a backend
uses or is going to use.

The function call is mpvideo num paths(backend), where backend is the backend id.
The function does the following:

* Calls mpvideo-geLobjecLaddr to get a pointer to the MPV object in the specified
backend.

" Calculates the number of graphics paths based on the display configuration and the
MPV mode.

If successful, the function returns the number of paths (2 or 4). It returns EOF if it cannot
get a pointer to the MPV.

Called By: backendset_thermal

Routines Called: mpvideo-get-object-addr

Parameters: UNS_4 backend

Returns: 2
4
EOF

2.11.12 mpvideoresponse.c

The mpvideo.response function checks for and processes responses passed back from the
MPV I/O board (via the Force task). This function is used primarily to get the laser range
(pixel depth) value if laser range processing has been requested by the Simulation Host.

The function call is mpvideo response(Im_blk, backend), where:

Im blk is the number of load modules per side of a load module block; this value is
used to scale the range if load module blocking (extended viewing range) is enabled

backend is the backend id

mpvideojresponse does the following:

* Calls mpvideo.getobjectaddr to get a pointer to the MPV object in the specified
backend.

401

BBN Systems and Technologies GT100 RTSW CSCI

" Calls mx2_peek to preview the top message in the incoming (from Force) message
buffer. '

* Processes the message according to its type.
" Calls mx2_sldp to remove the processed message.
" Repeats the process with the next message in the incoming buffer.

The following table lists the message types handled by mpvideojresponse. The second
column shows the purpose of the message (in italics), then summarizes the major steps
performed by mpvideojresponse.

Message from MPV Processing by mpvideoresponse

MSG_FI_ACKNOWLEDGE Acknowledgment from Force task.
If debug mode is enabled, copies message and outputs
data to stdout.

MSG_FI_MPVIOCT Illegal Opcode Trap Message from MPV.
Copies message; outputs error information to stdout;
calls syserr to generate error message.

MSG_Fl_MPV_LUT_TYPE Reports MPV type and lookup table type.
If debug mode is enabled, copies message and outputs
data to stdout.

MSG_Fl_MPV_MEMORY Returns data from MPV memory.
If debug mode is enabled, copies message and outputs
confirmation message to stdout.

MSGF1_PIXELADDR Returns pixel data.
If debug mode is enabled, copies message and outputs
data to stdout.

MSG_FlPIXELDEPTHRETURN Returns pixel depth value for laser range request.
Copies message; uses FXTO881 to convert depth value
to floating point (or sets depth to -1.0 if invalid); calls
msgjlaser.retun to generate laser return message for
Simulation Host.

MSG_FlSTATUS Reports MPV status.
If debug mode is enabled, copies message and outputs
data to stdout.

MSGFlTEXT Returns text read from Force.
If debug mode is enabled, copies message and outputs
data to stdout.

The function returns 1 if it processes the message successfully. It returns EOF if it cannot
get a pointer to the MPV object.

Called By: backend-response

Routines Called: FXTO881
mpvideo-get-object-addr
msgjlaser_return
mx2_hwcopy
mx2_peek

402

BBNSystems and Technologies GT100 RTSW CSCJ

mx2-skip
printf
syserr

Parameters: INT_-4 un-blc
UNS-4 backend

Returns: EOF

403

BBN Systems and Technologies GT100 RTSW CSCI

2.12 Message Processing (/cig/libsrc/libmsg)

The functions in the Message Processing CSC are responsible for processing many of the
messages passed between the CIG and the Simulation Host. These functions handle both
incoming and outgoing messages, during system configuration as well as during the
simulation. Each Message Processing function handles a specific message type.

Most incoming messages are received by process-a_msg (in simulation.c in the Real-Time
Processing CSC), which determines the message type and then calls the appropriate
Message Processing function. The Message Processing function may then call a function
in another CSC (e.g., Viewport Configuration or Backend Processing) to process the
request.

The Message Processing functions do not process all incoming messages. In many cases,
process a_msg calls the appropriate update function directly or, for messages to be sent to
Ballistics, pushes the message onto the Ballistics message queue. Similarly, messages to
be returned to the Simulation Host may be generated by functions in other CSCs.

This CSC also contains the functions used by the Host Interface Manager CSC to print
messages if debug message printing is enabled. This feature, which can be enabled
through Gossip, lets the user print or display the contents of all or selected message types
for testing or debugging purposes.

Figure 2-16 identifies the CSUs in the Message Processing CSC. These CSUs are
described in this section.

404

BBN Systems and Technologies GT100 RTSW CSCI

*y I Message Processing

I I
loc ter msg.c msgpasson.c
msgscalibration image.c msg__ppm.c
msg_.cig_ctl.c msgprocess_round48.c
msg-drl 1 .c msgsubsysmode.c
msgeffect.c msgsyserr.c
msgend.c msg_vehstate.c
msgjaser.c msgyflags.c
msgjaserreturn.c msgyport.c
msglt-state.c print msg.c
msgpass_back.c show effect msg.c

Figure 2-16. Message Processing CSUs

2.12.1 Ioctermsg.c

The loc_ter_msg function processes the MSG_LT_PIECE message. This is a CIG-to-SIM
message that provides a detailed description of the polygons and bounding volumes
contained in the terrain around the simulated vehicle. Due to its size, the data is divided
into several pieces and delivered as separate messages. Collectively, all of the
MSGLTPIECE messages give the Simulation Host the data it uses to determine the
position and orientation of the simulated vehicle, and to calculate vehicle dynamics.

By default, a local terrain message is sent to the Simulation Host every 32 frames. This
interval can be changed using the MSG_DR 1_PKT_SIZE or MSGLTSTATE message.
The loc_ter_msg function is called every frame, and it determines whether or not it is time
to send a local terrain message.

The data for the MSG_LT_PIECE messages is generated by the localterrain function in
the Real-Time Processing CSC. localterrain creates a MSGLOCALTERRAIN message
based on the four grids surrounding the simulated vehicle. loc ter msg then divides the
data in the MSGLOCALTERRAIN message into a series of smaller MSG_LT_PIECE
messages, and returns the message to the Simulation Host.

The function call is Ioc-ter-msgo. loc_ter-msg does the following:

• Checks to see if the frame count since the last local terrain message was sent equals
or exceeds the local terrain interval. This indicates that it is time to send another
local terrain message.

405

BBN Systems and Technologies GT1OO RTSW CSCI

• Calculates the number of pieces (the total size of the MSGLOCALTERRAIN
message divided by the local terrain chunk size, plus 1).

• Builds the MSGLTPIECE message for each piece and puts it in the outgoing
message buffer.

Called By: exchange jrl 1_datasim
exchangeenet_datasim
exchange-flea_data
exchange mpv~data~sim
exchangescsidatasim
exchange-socket-datasim

Routines Called: printf

Parameters: none

Returns: none

2.12.2 msg calibrationimage.c

The msgcalibration image function processes the MSG_CALIBRATION_IMAGE
message. This message is sent by the Simulation Host to control the display of monitor
calibration images.

The function call is msgcalibrationimage(msg P), where msgP is a pointer to the

MSGCALIBRATION_IMAGE message.

msgscalibrationjimage does the following:

" Verifies that the backend and image identifiers specified in the message are valid.
• Determines which backend is being updated.
" Sets a pointer to the calibration overlay area in the backend's AAM.
° Based on the image number specified in the message, proceeds as follows:

Image = 0 (turn images off)
Sets pcaljflag in global memory to FALSE.

Image = 1 (display offset image)
Allocates memory to create a temporary overlay.

- Calls make_cal_matrices to generate the overlay's matrices.
- Calls make__caLpatterns to generate the polygons, triangles, and

other patterns displayed.
Copies the temporary overlay to active area memory.
Frees the memory used for the temporary overlay.
Sets pcal-flag to TRUE.

Image = 2 (display color image)
Allocates memory to create a temporary overlay.
Calls make_calmatrices to generate the overlay's matrices.
Calls gos-polys to create the overlay's polygons.
Copies the temporary overlay to active area memory.
Frees the memory used for the temporary overlay.

406

BBN Systems and Technologies GT1OO RTSW CSCI

- Sets pcal-flag to TRUE.
Image = 3 (display BBN logo)

- Allocates memory to create a temporary overlay.
- Calls make.calmatrices to generate the overlay's matrices.
- Calls makebbnlogo to generate the patterns that form the logo

display.
- Copies the temporary overlay to active area memory.
- Frees the memory used for the temporary overlay.
- Sets pcal-flag to TRUE.

The function outputs an error to stdout if there is insufficient memory for the overlay.

Called By: process a msg

Routines Called: bcopy
free
GLOB
gos-polys
make-bbnlogo
make.cal matrices
make-cal-patterns
malloc
printf
VME_TO_VMX

Parameters: MSG_CALIBRATIONIMAGE *msgP

Returns: none

2.12.3 msgcig_ctl.c

The msg-cigctl function processes the MSGCIGCTL message if it is received during a
simulation. This message is sent by the Simulation Host to stop the simulation. (The only
valid state changes during a simulation are CSTOP and C_NULL.) msgscigctl initializes
the configuration tree, resets Ballistics, resets the backend processors, closes the database,
and initializes the frame count.

The function call is msgcigctl(msgp, state), where:

msgp is a pointer to the MSG_CIGCTL message
state is the current state of the CIG

msgscigctl does the following:

• Reads the new state requested by the Simulation Host.
" If the new state is C_STOP:

- Calls vpt-treefree to free the viewport configuration tree.
- Calls simbalreset to reset Ballistics.
- Calls backendreset to reset the backend processors.

407

BBN Systems and Technologies GT100 RTSW CSCI

- If the old (current) state is C_SIMULATION:
* Calls sysrupoff to disable interrupts.
* If running in AGPT mode (a non-standard CIG mode), calls

sim_stateinit and sets agpLmode to 1.
- Calls closedb to close the terrain database.
- Calls vpt_treenit to initialize the viewport configuration tree.
- Sets the frame count to 0.
- Sets the new state to the state specified in the message (C_STOP).

" If the new state is C_NULL:
Sets the new state to CSIMULATION (i.e., no state change).

* If any other state is specified:
- Calls syserr to generate an illegal state transition message.
- Sets the new state to C_SIMULATION (i.e., no state change).

" If real-time software timing has been enabled through Gossip (i.e., if
rtswtimingjflag is TRUE), computes the processing time for the message and
updates the worst time if applicable.

The function returns the new state of the CIG as new-state.

Called By: process a_msg

Routines Called: backendreset
close_db
GLOB
printf (in debug mode only)
readwatch
sire bal-reset
sim-state-init

syserr
sysrup.off
vpttreefree
vpttreenit

Parameters: MSG_CIG_CTL *msgp
INT_2 state

Returns: newstate

2.12.4 msgdrl 1.c (msgdrllpktsize)

The msgjdrl lpktsize function processes the MSG_DR 1_PKT_SIZE message. This
message is sent by the Simulation Host to set the following:

• Simulation Host exchange packet size.
" CIG exchange packet size.
* Local terrain piece (chunk) size.
" Local terrain frame interval.
* CIG hardware type (always 0 for GTs).

408

BBN Systems and Technologies GT100 RTSW CSCI

*The function call is msg drllpkt-size(msgp), where msgp is a pointer to the
MSGDRi 1_PKTSIZE message.

The function does the following:

" Outputs the message contents to stdout.
* Sets the applicable global variables with the new packet sizes.
* Verifies that the local terrain chunk size and interval are above the minimum values

allowed, then sets the applicable global variables with the new values.
* Sets the global variable for the CIG hardware type to the new value.

Called By: process a_msg

Routines Called: GLOB
printf

Parameters: MSGDR1 1_PKTSIZE *msgp

Returns: none

2.12.5 msgeffect.c (msgshoweffect)

*The msgshoweffect function process the MSG_SHOWEFFECT message. This
message is sent from the Simulation Host to tell the CIG to display a special effect at a
specified location.

The function call is msgshow effect(msgp, pdbase), where:

msgp is a pointer to the MSGSHOWEFFECT message
pdbase is the primary database control block

msg-showseffect does the following:

• Increments the active effects counter.
• Verifies that there is room for another active effect.
* If the maximum number of active effects has already been reached:

- Decrements the active effects counter.
- Outputs an error to stdout.
- Calls msg-syserr to generate a MSGSYS_ERROR message for return to

the Simulation Host.
" If there is room for another active effect:

- Calls showeffect_msg to add the effect to the active effects table.
- If a second AAM exists, calls show_effect.msg to add the effect to its active

effects table.

Called By: process a_msg

409

BBN Systems and Technologies GT1OO RTSW CSCI

Routines Called: msg.syserr
printf
showeffect_msg
VMETOVMX

Parameters: MSGSHOWEFFECT *msgp
DB_INFO *pdbase

Returns: none

2.12.6 msg end.c

The functions in the msg-end.c CSU handle all of the processing that must occur at the end
of a frame (when the Simulation Host sends a MSGEND message). These functions are:

• msg._end
* _downcounLeffects
• _displaylights
Smove_loadmodule stp_toquadbuffer

* _updatesecondactiveareamemory
* _pend onframe-interrupt
* _processagl
• _seLupjfor-nextframe
* _handle-request-localterrain
• _databasedisable
" _handle-point lights
* _reset-model-pointers
* _opy reconfigurable viewports.section

msg-end is the driving function. The other routines are called by msgend to perform a
specific task.

2.12.6.1 msg end

The msg-end function processes the MSGEND message. This message is sent from the
Simulation Host to signal the end of the contents of a packet buffer.

The function call is msg end(state, curr simbuf, pdbase, ppdynl, pptanks,
ppmodels, ppeffects), where:

state is the current state of the CIG
curr_simbufis the buffer currently being used by the simulation
pdbase is as a pointer to the primary database control block
ppdynl is a pointer to the structure containing the current state of all dynamic models
pptanks is a pointer to the tank table
ppmodels is a pointer to the model table
ppeffects is a pointer to the dynamic effects table

msgend does the following:

410

BBN Systems and Technologies GT1OO RTSW CSCI

* Calls backend_send_req to initiate backend processing of messages queued up
during the previous frame.

• If the system is running in AGPT mode (a non-standard mode), calls scaccept,
rtlpend, and sim_receive to check for any stacked up messages that still need to be
processed this frame.

• Calls _downcounteffects to decrement the count for multiple-frame special effects.
• Calls _display-jights to display the correct LEDs.
* Calls _move_load_module-stpto.quadbuffer to move the load module state table

pointers to the quad buffer.
" Calls _update.secondactiveareamemory to copy the new data to AAM2.
* If cloud processing is enabled, calls cloud_mgmt.
• Calls sio_tick to write all serial 1/0 data queued for the current frame to the specified

devices.
* Calls cigsimio.frameend to trigger the display or printing of messages from the

previous frame (if debug message display or message recording is enabled).
• Calls _.pend-oniframeinterrupt to wait for the next frame interrupt.
• Calls sim.bal-processmsg to process all messages returned from Ballistics.
* Calls msg.pass-back to generate any required MSG_PASS_BACK messages.
" Calls backend_response to obtain laser depth return data for each AAM.
* Calls _process-agl to generate the MSG_AGL message, if requested.
* Calls _set.upjor_next_frame to reset the state table to prepare for the next frame.
* Calls _handle-request_local_terrain to initiate the local terrain message.
* Calls _databasedisable to initiate database management (rowcolrd).
• Increments the framecount.
" Calls _handle_.pointjights to provide a time parameter for point lights.
* Calls _resetmodeLpointers to reset all model table pointers.
• Calls _copyreconfigurable.viewportssection to copy the current reconfigurable

viewpon parameters to the next frame's double buffer.
• Calls simbal-processtracer to process all tracer (round position) messages

returned by Ballistics.
* Calls simbalagl_wanted to send a MSGBOTRAJ_CHORD message to report

the simulated vehicle's current altitude.
• If real-time software timing has been enabled through Gossip (i.e., if

rtswtiming-flag is TRUE), computes the processing time for the message and
updates the worst time if applicable.

Called By: process a_msg

Routines Called: copy-reconfigurableviewportssection
_database_disable
_displaylghts
downcount effects
handle-poinLlights
handlerequest_localterrain
_move_load_module-stptoquad_buffer
_pend-onframeinterrupt

_process_agl
_resetmodel-pointers
_set upjor_nextframe
_updatesecond active_areamemory
backend response
backendsend-req

411

BBN Systems and Technologies GTIOO RTSW CSCI

cigsimio -frame-end
cloud-mgmt
msg-pass,ack
printf (in debug mode only)
read_watch
rt.pend
sc-accept
sim-balagL-wanted
sim-balprocessjnsg
simbalprocess,-tracer
sini-receive
sio -tick

Parameters: TNT _2 state
TNT _2 *curr -sim buf
DBINFO *pdbase
TNT_4 **ppdynl
TANK **pptapjcs
OMODEL **ppmodels
SHOW_-EFF **ppeffects

Returns: none

2.12.6.2 -downcount effects

The _downcount-effects function counts down multiple-fr-ame special effects. This
function is called at the end of each fr-ame.

The function call is downcount effects(pdbase), where pdbase is a pointer to the
primary database conitrol block.

_downcount~effects calls effect -downcount to decrement the frame count for each effect.
If two AAMs are defined, the function calls effect-downcount for each.

Called By: msg-end

Routines Called: effect-downcount
printf (in debug mode only)

Parameters: DBINFO *pdbase

Returns: none

412

BBN Systems and Technologies GTOO RTSW CSCI

2.12.6.3 display lights

The _display-lights function is used to display LED lights on the EVC. This function is
called at the end of every frame.

The function call is -display lightso. The function determines which lights/values to
display: model count, frame count, local terrain count, or overload. It then calls set_leds to
set the LED display.

displayjights determines which lights to display by examing the displaylights[] array.
This array contains a flag that enables/disables each counter. The flags in displayjights[]
can be changed using the I ("set display lights flags") option on the Gossip System menu.

Called By: msg._end

Routines Called: set-leds

Parameters: none

Returns: none

2.12.6.4 _move-loa dmodule_stp_to_quad_buffer

The _move_load_module.stpjto-quad-buffer function moves the load module state table
pointers (STP) to the quad buffer. This function is called at the end of every frame.

The function call is _move-load module_stp_to_quad_buffer(pdbase, pdynl),
where:

pdbase is a pointer to the primary database control block
pdynl is a pointer to the structure containing the current state of all dynamic models

The function does the following:

* If the current double buffer (dbG) is DB 1:
- Copies the load module state table in DB I (size = LMCOUNT * 4) to

pdynl.
" If real-time software timing has been enabled through Gossip (i.e., if

rtsw_timingjflag is TRUE), computes the processing time and updates the worst
time if applicable.

Called By: msg-end

Routines Called: blcopy
printf (in debug mode only)

413

BBN Systems and Technologies GT100 RTSW CSCI

readwatch

Parameters: DBINFO *pdbase
INT._4 *pdynl

Returns: none

2.12.6.5 _update secondactiveareamemory

The _.update secondactive_area.memory function is responsible for copying new data to
the second AAM, if one is defined. This function is called at the end of every frame.

The function call is _updatesecondactive area memory(pdbase, ptanks,
pmodels, peffects), where:

pdbase is a pointer to the primary database control block
ptanks is a pointer to the tank table
pmodels is a pointer to the model table
peffects is a pointer to the dynamic effects table

Called By: msg-end

Routines Called: AAMITOAAM2
blcopy
printf (in debug mode only)
return_aam_ptr

Parameters: DB_INFO *pdbase
TANK *ptanks
OMODEL *pmodels
SHOWEFF *peffects

Returns: none

2.12.6.6 _pen d on frame interrupt

The _pendon-frame_interrupt function waits for the next frame interrupt. This function is
called when a new simulation is initialized and at the end of every frame.

The function call is pend on frame interrupt(state), where state is the current state
of the CIG. _pendon frane_interrupt-does the following:

* If the state is C_SIMULATION, and the SIMULATIONMB mailbox contains a
message (indicating that an interrupt has occurred), calls syserr to generate a system
overload error message.

" Waits for a message to be posted to the SIMULATIONMB mailbox.

414

BBN Systems and Technologies GT1OO RTSW CSCI

O If single-step mode is enabled, calls sysrup-off to disable system interrupts.
• Resets the incoming message count.
• Calls start_watch to start the system timer.
* If real-time software timing has been enabled through Gossip (i.e., if

rtswiming-flag is TRUE), computes the reset time and updates the worst time if
applicable.

Called By: initsimulation
msgend

Routines Called: printf (in debug mode only)
rt-pend
start_watch
stop-watch
syserr
sysrup-off

Parameters: INT_2 state

Returns: none

* 2.12.6.7 _processagi

The _process-agl function generates the outgoing MSGAGL message if the Simulation
Host has requested AGL (above ground level) processing for the simulated vehicle. This
function is called at the end of every frame.

The function call is _processagl0. The function does the following:

* Checks to see if AGL processing is enabled.
* If it is, generates an outgoing message containing the simulated vehicle's current

altitude (in meters), and adds it to the outgoing message buffer.

Called By: msg-end

Routines Called: none

Parameters: none

Returns: none

415

BBN Systems and Technologies GT100 RTSW CSCI

2.12.6.8 _setupfornext frame

The _setupfornext_frame function resets the state table and manipulates various
pointers and variables necessary to prepare for the next frame. This function is called at the
end of every frame.

The function call is setup for.nextframe(state), where state is the current state of

the CIG.

The function does the following:

* If real-time software timing has been enabled through Gossip (i.e., if
rtswtimingjflag is TRUE), computes the processing time and updates the worst
time if applicable.

" Calls cigsimiomsgout to write the messages in the outgoing packet to a buffer (if
debug message display or message recording is enabled).

* Calls the appropriate host interface function (using the *exchangedatasim
function pointer) to exchange packet buffers.

" If real-time software timing has been enabled through Gossip (i.e., if
rtsw~timingjflag is TRUE), computes the processing time and updates the worst
time if applicable.

• If single-step mode is enabled, sets drl l_msg to TRUE.

Called By: msgend

Routines Called: *exchange-datasim
cigsimio-msg-out
readwatch

Parameters: INT_2 state

Returns: none

2.12.6.9 _handlerequestlocalterrain

The _handle~request_localterrain function initiates the local terrain message process if it is
time to return a MSGLOCAL_TERRAIN message to the Simulation Host. This function
is called at the end of every frame.

The function call is handle request local terrain(pdbase), where pdbase is a
pointer to the primary-database'control block.

The function does the following:

* Checks to see if local terrain processing is enabled.
• Checks to see if the required number of frames have passed since the last message.

416

BBN Systems and Technologies GT100 RTSW CSCI

If both conditions are true, posts a message to the LOCALTERRAINMB
mailbox to initiate preparation of a local terrain message.

Called By: msg__end

Routines Called: scpost

Parameters: DBINFO *pdbase

Returns: none

2.12.6.10 database disable

The _databasedisable function initiates database management by posting a mailbox
message to invoke rowcol-rd. This function is called at the end of every frame. It invokes
rowcolrd only if the specified frame interval has passed since database management was
last performed.

The function call is database disableO. The function does the following:

" Makes sure the databasedisablewanted variable is FALSE. If TRUE, no
database management is performed after the initial database is loaded. This
variable, initialized to FALSE, can be set TRUE by specifying the "c" (constrain)
argument on the start-up command line.

• Checks to see if the current frame count is greater than the database's initjfreq
(initial frequency), indicating that the rowcolrd task is beyond its initial starting
point. The iit_freq, set up by config-database in the Real-Time Processing CSC,
is set at 16 frames for even-numbered backends and 32 frames for odd-numbered
backends.

* Checks to see if the specified number of frames (32 by default) have passed since
the last call to rowcolrd.

" If all of the above criteria are met, posts a message to the database's mailbox to start
the rowcolrd task.

* Repeats this process for each instance of the rowcolrd task (one per backend).

Called By: msg-end

Routines Called: scpost

Parameters: none

Returns: none

417

BBN Systems and Technologies GT100 RTSW CSCI

2.12.6.11 _handlepointlights

The _handle-pointjlights function provides a time parameter for handling point lights
standardized on a 30-Hertz frame rate.. This function is called at the end of every frame.

Point lights are light sources that can be defined from a specific location in xyz world
space. This is different from directional lighting, which is defined from a certain direction
and originates at infinity.

Point lights are specified in the MSG_VIEWFLAGS message. For each point light,
O=off, 1=low intensity, and 2=high intensity. The 12 light groups are:

A = spare G = spare
B = spare H = VASI
C = obstruction lights I = approach strobes
D = hazard beacon J = approach lights
E = military airport beacon K = taxiway lights
F = commercial airport beacon L = runway lights

The function call is _handle point lightso. The function sets the current time in both
AAMs based on the current frame rate/count.

Called By: msg-end

Routines Called: AAMI_TO_AAM2

Parameters: none

Returns: none

2.12.6.12 _resetmodel-pointers

The _resetmodel-pointers function resets all model table pointers. This function is called
at the end of every frame.

The function call is reset model pointers(currsim_buf, pdbase, ppdynl,
pptanks, ppmodels, ppeffects), where:

curr sim buf is the buffer currently being used by the simulation
pdbase is as a pointer to the primary database control block
ppdynl is a pointer to the structure containing the current state of all dynamic models
pptanks is a pointer to the tank table
ppnodels is a pointer to the model table
ppeffects is a pointer to the dynamic effects table

_resetmodel_pointers does the following:

418

BBN Systems and Technologies GT100 RTSW CSCI

* Resets the model counter to 0.
• Calls get_dtpbank to determine which double buffer to update.
* Sets the model table pointers based on which buffer section the simulation is using.
* Sets the next tank, next model, and next effect pointers.
• Resets the dynamic model return addresses to the static model table.
* Resets the dynamic pre- and post-processed model pointers.
* If a second AAM is present, resets its model pointers also.

Called By: msgend

Routines Called: geLdtpjbank

Parameters: INT_2 *curr_simbuf
DBINFO *pdbase
INT_4 **ppdynl
TANK **pptanks
OMODEL **ppmodels
SHOWEFF **ppeffects

Returns: none

*m 2.12.6.13 _copy_reconfigurable_viewportssection

The _copy-reconfigurable viewports_section function copies the previous frame's
reconfigurable viewports portion of the double buffer into the new frame's double buffer.
This function is called at the end of every frame.

The function call is _copy_reconfigurableviewports_section0. The function does
the following:

• Resets the dynamic pre- and post-processed model pointers.
" Copies the reconfigurable data from the working double buffer to the other buffer.

Called By: msgend

Routines Called: blcopy
returnaamptr

Parameters: none

Returns: none

419

BBN Systems and Technologies GT1OO RTSW CSCI

2.12.7 msglaser.c (msglaserrequestrange)

The msg_laser__requestrange function processes the MSG_REQUESTLASER_RANGE
message. This message is sent by the Simulation Host to request laser range information
for a viewport. The message specifies the screen position (row and column pixels) from
which to return the range value each frame. Each frame, the CIG returns the distance from
the viewpoint to the object within the requested pixel. For T backends (which do not have
a Force board), a hard-wired pixel is used to determine range.

The function call is msglaser.request range(msgp, state), where:

msgp is a pointer to the MSGREQUEST_LASERRANGE message
state is the current state of the CIG

msgjlaser__requestrange does the following:

• Calls backendlaser._request_range to enable laser request processing.
• If the request cannot be processed, calls syserr to generate an error message for

return to the Simulation Host.
• If real-time software timing has been enabled through Gossip (i.e., if

nsw - timing-flag is TRUE), computes processing time for message and updates
worst time if applicable.

Called By: process a msg

Routines Called: backendlaser requestange
readwatch
syserr

Parameters: MSG_REQUEST_LASER_RANGE *msgp
INT_2 state

Returns: none

2.12.8 msglaser_return.c

The msg_laser_return function builds the MSG_LASERRETURN message. This
message is sent by the CIG to the Simulation Host to provide laser return information for a
specified pixel within the screen. The message is sent every frame if the Simulation Host
has requested laser return data with the MSGREQUESTLASERRANGE message.

The function call is msglaser return(lm_blk, subsys, channel, id, range),
where:

Im blk is the number of load modules per side of a load module block; this value is
used to scale the range if an extended viewing range is enabled

subsys is the id of the subsystem (backend) returning the data

420

BBN Systems and Technologies GT100 RTSW CSCI

channel is channel to which the range value applies
id is the identifier assigned to this request in the corresponding

MSG_REQUESTLASERRANGE message
range is the range of the object (in meters) in the selected pixel

msgjlaserjreturn uses the information provided by backendresponse (for a T backend) or
mpvideo response (for a TX backend) to build the MSG_LASERRETURN message.

Called By: backendresponse
mpvideo response

Routines Called: panic

Parameters: INT_4 Im_blk
UNS_4 subsys
INT_2 channel
INT_2 id
REAL_4 range

Returns: none

* 2.12.9 msgltstate.c (Itstate)

The It_state function processes the MSGLTSTATE message. This message can be sent
by the Simulation Host to enable or disable local terrain processing, and to change the local
terrain interval and/or chunk size. The message may be sent during system configuration
or runtime.

If local terrain processing is enabled, the CIG sends MSGLOCALTERRAIN messages
to the Simulation Host at the specified interval (frame count). Due to its large size, the
message is divided into multiple MSGLTPIECE messages, each the specified "chunk"
size.

The function call is It.state(msgp), where msgp is a pointer to the MSGLTSTATE

message.

Itstate does the following:

* Sets the local_terrain_wanted variable to the value specified in the message.
* If local terrain processing is enabled, sets the new interval specified in the message.
* Verifies that the new chunk size is at least 50 bytes less than the current outgoing

packet size.
- If it is, sets the new chunk size.
- If it is not, generates an error message.

Called By: cig-config
process a msg

421

BBN Systems and Technologies GT100 RTSW CSCI

Routines Called: printf
syserr

Parameters: MSGLTSTATE *msgp

Returns: none

2.12.10 msgpass back.c

The msg.passback function processes the MSGPASS_BACK message. This message
is sent from the CIG to the Simulation Host to return information from an embedded
processor. This function is called at the end of every frame.

The MSGPASSBACK message applies to TX backends only. At the current time, all
passback messages are generated from the 2-D task running on the MPV board.

The function call is msgpass backo. The function obtains the data from
mpvideopass_.back, then builds the message and puts it in the outgoing message buffer.

Called By: msg-end

Routines Called: mpvideopass back

Parameters: none

Returns: none

2.12.11 msgpasson.c

The msg.passon function processes the MSG_PASSON message. This message is sent
by the Simulation Host to tell the CIG to pass the message on to an embedded subsystem in
the CIG. Currently, the only subsystem that receives pass-on messages is the 2-D task on
the MPV board.

The function call is msg_pass on(msgp, state), where:

msgp is a pointer to the MSGPASSON message
state is the current state of the CIG

msg-pass on does the following:

* Calls mpvideo-pass-on to put the message into the MPV's message buffer.
• If the MPV board cannot be found, calls syserr to generate an error message for

return to the Simulation Host.

422

BBN Systems and Technologies GT100 RTSW CSCI

If real-time software timing has been enabled through Gossip (i.e., if
rtswtimingjlag is TRUE), computes processing time for message and updates
worst time if applicable.

Called By: process a_msg

Routines Called: mpvideowpasson
read_watch
syserr

Parameters: MSGPASS_ON *msgp
INT_2 state

Returns: none

2.12.12 msgppm.c

The functions in the msg.ppm.c CSU are used to process messages that affect the Pixel
Processor Memory (PPM) board. These functions are:

" msg-ppm.display-mode
* msgppmrrdisplayoffset
* msg-ppm.-pixel-location
• msg..ppmpixel-state

The PPM stores pixel color, weight, and depth values according to screen coordinates and
pixel depth. The PPM eliminates hidden surfaces, color-averages pixels to display
transparent pixels, and uses depth priority to display one type of pixel over another. To
display one screen of pixel data while constructing another, the PPM double buffers the
pixels' color and weight data.

Messages from the Simulation Host can specify which channels are displayed and which
bank of the final color lookup table is used for sky color.

These functions apply to T backends only. Changes for the PPM are downloaded via the
ESIFA board using the ESIFA Interface routines.

2.12.12.1 msgppm displaymode

The msg.ppnmkdisplay-mode function processes the MSG_PPMDISPLAYMODE
message. This message can be sent by the Simulation Host to set the display size (320 x
200, 320 x 128, 200 x 200, or 200 x 128).

The function call is msgppmdisplaymode(msgP), where msgP is a pointer to
the MSG_PPM_DISPLAYMODE message.

The function does the following:

423

BBN Systems and Technologies GT100 RTSW CSCI

* Calls ppm.geLdata to get a pointer to the PPM object.
• Sets the new display mode and screen size.
" Calls esifaqueuedata to queue the data in ESIFA RAM.
" Calls esifaqueuedownload to queue the data for download to the ESIFA.

Called By: dbmcc_setup
process a_msg
upstart

Routines Called: ppm-get-data
esifa queue-data
esifaqueuedownload

Parameters: MSGPPM_DISPLAYMODE *msgP

Returns: none

2.12.12.2 msgppmdisplayoffset

The msg._ppmjdisplayoffset function processes the MSGPPMDISPLAYOFFSET
message. This message can be sent by the Simulation Host to set new horizontal and
vertical display offset values.
The function call is msgppm display offset (msgP), where msgP is a pointer to
the MSGPPMDISPLAY_OFFSET message.

The function does the following:

• Calls ppm-get-data to get a pointer to the PPM object.
* Sets the new horizontal and vertical display offsets.
• Calls esifa-queuedata to queue the data in ESIFA RAM.
* Calls esifaqueuedownload to queue the data for download to the ESIFA.

Called By: dbmccsetup
process a_msg
upstart

Routines Called: ppm-get-data
esifa.queuedata
esifaqueuedownload

Parameters: MSGPPMDISPLAYOFFSET *msgP

Returns: none

424

BBN Systems and Technologies GT100 RTSW CSCI

2.12.12.3 msgppmpixellocation

The msg-ppm-pixellocation function processes the MSGPPMPIXELLOCATION
message. This message can be sent by the Simulation Host to specify a new starting pixel
location (horizontal and vertical coordinates) on the display screen.

The function call is msgppmpixellocation (msgP), where msgP is a pointer to
the MSGPPM_PIXEL_LOCATION message.

The function does the following:

* Calls ppm-get-data to get a pointer to the PPM object.
" Sets the new pixel location.
" Calls esifaqueuedata to queue the data in ESIFA RAM.
* Calls esifa-queuedownload to queue the data for download to the ESIFA.

Called By: dbmccsetup
process a msg
upstart

Routines Called: ppmgeLdata
esifaqueue-data
esifaqueue-download

Parameters: MSGPPMPIXELLOCATION *msg_P

Returns: none

2.12.12.4 msgppmpixel_state

The msg-ppm-pixeLstate function processes the MSGPPMPIXELSTATE message.
This message can be sent by the Simulation Host to toggle the PPM pixel state on or off.

The function call is msgppmpixel state (msgP), where msgP is a pointer to the

MSGPPM_PIXELSTATE message.

The function does the following:

• Calls ppm.get-data to get a pointer to the PPM object.
" Sets the board address based on the new state.
* Calls esifa.queuedata to queue the data in ESIFA RAM.
" Calls esifa-queuedownload to queue the data for download to the ESIFA.

Called By: cal
db_mcc.setup
process a msg

425

BBN Systems and Technologies GTIOO RTSW CSCI

upstart

Routines Called: ppm-geLdata
esifa__queue-data
esifa.queue-download

Parameters: MSGPPM_PIXELSTATE *msg_P

Returns: none

2.12.13 msgprocessround48.c

The msg-process__round48 function is not used by the standard GT1OO system.

2.12.14 msgsubsysmode.c

The msg-subsys mode function processes the MSGSUBSYSMODE message. This
message is sent by the Simulation Host to change parameters specific to a subsystem
(backend). Specifically, the message can be used to do the following:

• Change the color lookup table displayed by all viewports in the subsystem.
• Change the fade value displayed by all viewports in the subsystem.
" Enable or disable calibration mode (T subsystems only).
* Set or change the TX subsystem mode. (Modes are defined using the

MSG_DEFINE_TXMODE message.)

The function call is msgsubsysmode(msgp, state), where:

msgp is a pointer to the MSGSUBSYS_MODE message
state is the current state of the CIG

msg-subsysmode does the following:

" Validates the subsystem and channel identifiers in the message; calls syserr to
generate an error message if either parameter is invalid.

* Calls esifaset_special to set any special-use parameters specified in the message.
* Calls mpvideoset_mode to set the new video control registers.
• Calls backendsetcolor to set the new color table.
• Validates the new fade value against the range allowed by the color table; calls

syserr to generate an error message if the value is invalid.
• Calls esifasetfade to set the new fade value.

Called By: process a_msg

Routines Called: backend set color
esifa-set.fade
esifa~set-special

426

BBN Systems and Technologies GTIOO RTSW CSCI

mpvideo_setmode
syserr

Parameters: MSG_SUBSYS_MODE *msgp
INT_2 state

Returns: none

2.12.15 msgsyserr.c

The msgsyserr function builds a MSG_SYSERROR message for return to the
Simulation Host. This message is sent every frame, whether or not an error has occurred.
msg-syserr is called only if an error is to be reported by a Message Processing function,
usually because the CIG could not process a message. (Note that several Message
Processing functions call syserr to generate the error message.)

The function call is msg_.syserr(error, data, flush-flag, console_msg), where:

error is a code identifying the error type
data is a short text description of the error
flush flag is TRUE if the input message buffer is to be flushed (i.e., any remaining

messages are not to be processed)
console_nsg is any additional text to be displayed to the console operator

0 msg-syserr does the following:

" Builds the outgoing message and header, and adds them to the outgoing message
packet.

* Ifflush flag is TRUE, sets the input message pointer to the end of the buffer, and
outputs the error, data, and console_msg to stdout.

Called By: msg-othervehstate
msg-showseffect
msg-staticvehrem
msgstaticvehstate

Routines Called: printf

Parameters: INT_2 error
INT_2 data
INT_4 flushflag
char *console_msg

Returns: none

427

BBN Systems and Technologies GT100 RTSW CSCI

2.12.16 msg-vehstate.c

The msg.vehstate.c CSU contains functions that process the SIM-to-CIG messages
related to static and dynamic vehicles in the simulation environment. These functions are:

• msgothervehstate
" msg.staticvehstate
" msg.staticvehrem

2.12.16.1 msg otherveh state

The msg.othervehstate function processes the MSGOTHERVEHSTATE message.
This message is sent by the Simulation Host to report the position of a dynamic vehicle.
One MSGOTHERVEH_STATE message must be sent every frame for every dynamic
vehicle within viewing range, whether or not the vehicle has moved since the previous
frame. (The state tables for dynamic vehicles are completely rebuilt each frame with the
new vehicle positions.)

The function call is msgotherveh.state(msgp, pdbase), where:

msgp is a pointer to the MSGOTHERVEHSTATE message
pdbase is a pointer to the primary database control block

msg-othervehstate does the following:

• If the model counter is 0, sets an internal error flag to FALSE.
" Increments the model counter.
" Calls otherveh_state to add the vehicle to the appropriate tables.
" If the dynamic vehicle limit has already been reached:

- If the error flag is FALSE, calls msg-syserr to generate an outgoing error
message, then sets the error flag to TRUE. (This prevents another error
message from being generated for every additional model over the limit.)

- Decrements the model counter.
* If a second AAM is present, calls othervehstate to add the vehicle to its tables.

Called By: process a_msg

Routines Called: msg-syserr
othervehstate
VME_TO_VMX

Parameters: MSGOTHERVEHSTATE *msgp
DBINFO *pdbase

Returns: none

428

BBN Systems and Technologies GT100 RTSW CSCI

2.12.16.2 msgstaticveh_state

The msg-staticvehstate function processes the MSGSTATICVEHSTATE message.
This message is sent by the Simulation Host to place a static (non-moving) vehicle or
obstacle at a specified location within the viewing range of the simulated vehicle.

The function call is msgstaticveh_state(msgp, pdbase), where:

msgp is a pointer to the MSG_STATICVEHSTATE message
pdbase is a pointer to the primary database control block

msg__staticvehstate does the following:

* Increments the static vehicle counter.
* Calls staticvehstate to add the vehicle to the appropriate tables.
* If the static vehicle limit has already been reached:

- Calls msg-syserr to generate an outgoing error message.
- Decrements the static vehicle counter.

* If a second AAM is present, calls staticvehstate to add the vehicle to its tables.

Called By: process a_msg

Routines Called: msg-syserr
staticveh_stateVMETOVMX

Parameters: MSGSTATICVEHSTATE *msgp
DBINFO *pdbase

Returns: none

2.12.16.3 msgstaticveh_rem

The msg__staticvehrem function processes the MSGSTATICVEH_REM message. This
message is sent by the Simulation Host to remove a static (non-moving) vehicle or obstacle
from the display. A MSGSTATICVEH_REM message is also generated by the
_rowcolrd (database management) function, if it detects that a static vehicle is no longer
within viewing range of the simulated vehicle.

The function call is msgstaticvehrem(msgp, pdbase), where:

msgp is a pointer to the MSG_STATICVEH_REM message
pdbase is a pointer to the primary database control block

msg-staticvehrem does the following:

* Decrements the static vehicle counter.

429

BBN Systems and Technologies GT100 RTSW CSCI

" If the vehicle type is 0, calls msgsyserr to generate an outgoing error message.
(This is a vehicle that _rowcol_rd has detected beyond the viewing range.)

* Calls staticveh_remove to delete the vehicle from the appropriate tables.
* If a second AAM is present, calls staticvehremove to delete the vehicle from its

tables.

Called By: process a msg

Routines Called: msg-syserr
staticveh_remove
VME_TO_VMX

Parameters: MSGSTATICVEHREM *msgp
DB_INFO *pdbase

Returns: none

2.12.17 msgvflags.c (msgview flags)

The msg-view flags function processes the MSGVIEWFLAGS message. This
message is sent by the Simulation Host to update the system view flags and the branch
value array. System view flags are used to turn individual processing paths on and off.
The branch value array determines which branch is taken in each conditional node in the
viewport configuration tree.

The function call is msgview flags (msgp), where msgp is a pointer to the
MSGVIEWFLAGS message.

The function does the following:

* If the view flags have changed since the previous settings:
- Makes a copy of the new view flags (for comparison next time).
- Calls backendsetpaths to set the new flags.

" Calls backendset_branch to set the new branch values.

Called By: process a_msg

Routines Called: backend_set_branch
backend_setpaths

Parameters: MSG_VIEWFLAGS *msgp

Returns: none

430

BBN Systems and Technologies GT1OO RTSW CSCI

2.12.18 msgvport.c

The msg.vport.c CSU contains functions that process runtime changes to viewport
parameters. These functions are:

• msgviewport-update
* msg-yiew-magnification
" msgjrot2xlmatrix
• msgjrts4x3_matrix
* msgjhprxyzs,.matrix
* msgtranslation
* msgscale
* msg__lrotation
" msg_3rotations

Most of these functions call an update function in the Viewport Configuration CSC to put
the new parameter into effect.

2.12.18.1 msgviewportupdate

The msg-viewporLupdate function processes the MSGVIEWPORTUPDATE message.
This message is sent by the Simulation Host to turn a viewport on or off, or to change the
viewport's mode (e.g., thermal white hot or thermal black hot).

The function call is msgviewportupdate(msgp), where msgp is a pointer to the

MSG_VIEWPORTUPDATE message.

The function does the following:

* Determines the channel id based on the viewport id in the message.
" Calls backendset_video to turn the viewport channel on or off.
• If the specified backend cannot be found, calls syserr to generate an outgoing error

message.
* Calls backendsetthermal to set the new viewport mode.

Called By: process__a_msg

Routines Called: backendsetthermal
backendsetvideo
syserr

Parameters: MSG_VIEWPORT_UPDATE *msgp

Returns: none

431

BBN Systems and Technologies GT100 RTSW CSCI

2.12.18.2 msgview_magnification

The msgyview-magnification function processes the MSGVIEWMAGNIFICATION
message. This message is sent by the Simulation Host to change a viewport's field-of-
view values and/or level-of-detail multiplier.

The function call is msg view magnification(msgp), where msgp is a pointer to the
MSGVIEWMAGNIFICATION message. The function calls vpt~update-fovlod to
perform the change.

Called By: processa_msg

Routines Called: vpt-updatefov_lod

Parameters: MSGVIEWMAGNIFICATION *msgp

Returns: none

2.12.18.3 msgrot2xl_matrix

The msgot2xlmatrix fuiction processes the MSG_ROT2xlMATRIX message. This
message is sent by the Simulation Host to update the RTS4x3 matrix in a configuration
node when the only change is rotation around a single axis.

The function call is msgrot2xl matrix (msgp), where msgp is a pointer to the
MSG_ROT2xl_MATRIX message.

The function does the following:

• Determines the rotation axis from the message.
* If the rotation axis is 0, calls vptupdate_2x lheading.
* If the rotation axis is 1, calls vpt-update_2xl-pitch.
• If the rotation axis is 2, calls vpt-update_2xl_roll.

Called By: process a_msg

Routines Called: vpt-update_2x Iheading
vpt-update_2x lpitch
vpt-update_2x I _roll

Parameters: MSG_ROT2xl_MATRIX *msgp

Returns: none

432

BBN Systems and Technologies GT100 RTSW CSCI

2.12.18.4 msgrts4x3_matrix

The msgjrts4x3_matrix function processes the MSGRTS4x3_MATRIX message. This
message is sent by the Simulation Host to completely replace the transformation matrix in a
configuration node defined with a matrix type of RTS4x3.

The function call is msgrts4x3 matrix(msgp), where msgp is a pointer to the
MSGRTS4x3_MATRIX message. The function calls vpt-update_4x3_matrix to process
the change.

Called By: process a msg

Routines Called: vpt-update4x3_matrix

Parameters: MSGRTS4x3_MATRIX *msgp

Returns: none

2.12.18.5 msghprxyzsmatrix

* The msg-hprxyzs matrix function processes the MSGHPRXYZSMATRIX message.
This message is sent by the Simulation Host to completely replace the transformation
matrix in a configuration node defined with a matrix type of HPRXYZS.

The function call is msghprxyzs matrix(msgp), where msgp is a pointer to the
MSGHPRXYZSMATRIX message. The function calls vpt-update-hprxyzs to process
the change.

Called By: process a_msg

Routines Called: vpt-update-hprxyzs

Parameters: MSGRTS4x3_MATRIX *msgp

Returns: none

2.12.18.6 msg translation

The msgjtranslation function processes the MSGTRANSLATION message. This
message is sent by the Simulation Host to update the translation portion of the matrix of a
configuration node defined with a matrix type of HPRXYZS.

433

BBN Systems and Technologies GT100 RTSW CSCI

The function call is msg translation(msgp), where msgp is a pointer to the
MSGTRANSLATION message. The function calls vpt-updatetranslation to process the
change.

Called By: process a-msg

Routines Called: vpt-update-translation

Parameters: MSGTRANSLATION *msgp

Returns: none

2.12.18.7 msg scale

The msg-scale function processes the MSGSCALE message. This message is sent by the
Simulation Host to update the scale portion of the matrix of a configuration node defined
with a matrix type of HPRXYZS.

The function call is msgscale(msgp), where msgp is a pointer to the MSG-SCALE
message. The function calls vpLupdate-scale to process the change.

Note: The MSGSCALE message is reserved for future expansion. 0

Called By: process a_msg

Routines Called: vptjupdate-scale

Parameters: MSGSCALE *msgp

Returns: none

2.12.18.8 msglrotation

The msglrotation function processes the MSGIROTATION message. This message is
sent by the Simulation Host to update the matrix of a configuration node defined with a
matrix type of HPRXYZS, when the only change is rotation around a single axis.

The function call is msglrotation(msgp), where msgp is a pointer to the
MSGIROTATION message. The function does the following:

* Determines the rotation axis from the message.
* If the rotation axis is 0, calls vpt-update-heading.
° If the rotation axis is 1, calls vpLupdate-pitch.
• If the rotation axis is 2, calls vpt-update-roll.

434

BBN Systems and Technologies GT100 RTSW CSCI

Called By: processa_msg

Routines Called: vptLupdatejheading
vptjupdate.pitch
vpt.updateroll

Parameters: MSGIROTATION *msgp

Returns: none

2.12.18.9 msg_3rotations

The msg_3rotations function processes the MSG_3ROTATIONS message. This message
is sent by the Simulation Host to update the heading, pitch, and roll in the matrix of a
configuration node defined with a matrix type of HPRXYZS.

The function call is msg_3rotations(msgp), where msgp is a pointer to the
MSG_3ROTATIONS message. The function calls vpLupdate-hpr to process the change.

Called By: process a msg

Routines Called: vpt-update-hpr

Parameters: MSG_3ROTATIONS *msgp

Returns: none

2.12.19 printmsg.c

The prinLmsg.c CSU contains functions that can be used to print the contents of all
messages passed between the CIG and the Simulation Host. These functions are provided
primarily for testing and debugging. At the current time, these functions are used only to
display messages to stdout; this feature is called debug message display.

The printmsg.c CSU contains the following functions:

" printmsg_* (one function for each message type)
" iniLprint-msg-array

The debug message display feature is enabled by setting the drI lw_initout debug flag to
TRUE. This flag, initialized to FALSE, can be toggled using an option on the Gossip main
menu.

435

BBN Systems and Technologies GT100 RTSW CSCI

Each message type can be individually enabled for display. When gossip starts up, it
enables all message types. Using an option on the Gossip main menu, the user can access
a sub-menu which provides the ability to disable all or selected message types.

The initprintLmsg-array function initializes an array of all message types, indexed by
message code. Each element contains the following:

* A boolean flag indicating whether or not the message type is enabled for debug
display/printing during all states other than simulation.

" A boolean flag indicating whether or not the message type is enabled for debug

display/printing during a runtime simulation.

" The message type.

* The name of the prinLmsg_* function used to print that message type.

The hostLif_debug-init function (in the Host Interface Manager CSC) calls
initLprintmsgarray to initialize the array when gossip starts up. host_iLdebug-init uses
*message-enabled to point to the array returned by init-printmsg-array.

If debug message display is enabled, each frame's messages are written to a buffer in
memory by cigsimio-write (in the Real-Time Processing CSC). At the end of each frame,
the host if debug tick function examines each message in the cigsimio buffer, and indexes
into *messageenabled to see if that message type is enabled for debug display. If it is,
host-if debug tick calls the prinLmsg_* function specified in that element of the
printmsg array. The contents of the message are then printed to stdout.

The messagcs buffered by cigsimio_write can also be written to a disk file. This process,
called message recording, is enabled through Gossip and handled by the cigsimio
functions. Refer to the Real-Time Processing CSC for more information. The recorded
messages can be played back to repeat a simulation exercise; see the Stand-Alone Host
Emulator (Flea) CSC for details.

For more information on host_if_debug-init and host-if debug-tick, see the Host Interface
Manager CSC.

2.12.19.1 printmsg_*

Each printmsg_* function prints the contents of a specific message type to a specified file.
For example, the print-msg2dsetup function prints MSG_2D_SETUP messages. The
print-msg-array set up by init.prinLmsgarray is used to determine which prinLmsg_*
function to call for each message type encountered.

At the current time, the print_msg_* functions are used only by hostifdebug-tick, to
output all or selected messages to stdout each frame. Because they are tailored to specified
message types, the display can be formatted to identify each parameter in the message. For
more information on debug message display, refer to the Host Interface Manager CSC.

The function call for each function is print msg_<messagetype>(listing fp,
msgP, msgtype, msglen), where:

436

BBN Systems and Technologies GT100 RTSW CSCI

listing jp is a pointer to the file to which the message contents are to be written; for
host_if~debug__ick, this is always set to stdout

msgP is a pointer to the message
msg type is the message type
msglen is the message length

Most of the routines are called indirectly by host_if_debug_tick, which indexes into the
printmsg-array using the *message-enabled pointer. A few are called directly.

All of the routines call fprintf to write the contents of the message to the file specified by
listing jp. The routines index into the print-msg-array to get the text for the message type,
then output the other information from the message with appropriate headings. Most of the
functions return the message length as msg-len.

The following table lists the printmsg_* functions and identifies the SIM-to-CIG or CIG-
to-SIM message each is used to print. The table also shows the function(s) that call and are
called by each routine.

437

BBN Systems and Technologies GTI100 RTSW CSCI

print msg Function Message Type Printed Calls Called By

prin-msgj rotation MSG-iROTATION fprinf *messge-enabled

prnn-msg-2d setup MSG 2D-SETUP fprintf *messge-enabled

prinL-msgL3rotations MSG 3ROTATIONS fprintf *messge-enabled

prinLmsgadd-traj-able MSG ADD-TRALTABLE fprintf *messge,_enabled

printmsg-agl MSGAGL fprintf *messge enabled

print-msg-agLsetup MSG-AGL -SETUP fprintf *message enabled

prinL-msg..ammo define MSG AMMO DEFINE fprintf *messge_enabled

print-nsgsalibration image MSG CALIBRATION IMAGE fprintf *messge enabled

prinLmsgscancel round MSG CANCEL ROUND fprintf *message enabled

prinLmsgscigsdt MSG CIG CTL fprintf *messge_enabled

print msg-cloudLstate MSG CLOUD STATE fprintf *messge enabled

print-msgsreate-onfignode MSGCREATE, CONFIGNODE fpintff *messge-enabled

prinLmsg-default (any unknown message type) forintf *messge enabled

prinL-msg-define lx mode MSG DEFINE TX MODE fprintf *messge enabled

printLmsgjleletejraj-able MSGDELETETRAJ TABLE fprintf *message enabled

prnt msgjlrl 1.*L-size MSG DRI 1 PKT SIZE fprintf *message _enabled

prinLmsg-end MSG-END fprintf *mesge.-enabled

print..mSgjfile-descr MSG FILE DES CR fprintf *messge-enabled
print..msgjile-status MSG FILE STATUS fprintf *message enabled

print msg-flle xfer MSG FIILE XFER fprintf *message-enabled
print-msg-gun-overlay MSG-GUN-OVERLAY fprintf *messge enabled

print-msg-hit return MSGfHT RETURN fprintf *mesge enabled

prmt-msgiliLreturn48 MSG HITRETURN48 fprintf *messge enabled

print-msg-prxyzs..matrix MSG HPRXYZS MATRIX fprintf 4'message enabled

print..msgjaser return MSG_LASERRETURN fprintf *messge enabled

pn-msgjocal-terrain MSG_LOCALTERRAIN fprintf prin-MsgIt-
____ ___ ___ ____ ___ ___ ___ ___ ___ piece

prnt-Msg-Itpiece MSGLTPIECE fprintf, host~ffdebug_-
print-msg-- tick

_________ local terrain _ _ _

print-msgjlLstate MSG LT STATE fpfintf *message enabled

print-msg-miss MSG MISS fprintf *messge-enabled

print-Msg..obscure MSG-OBSCURE fprintf *mes~e enabled

print msg-otherveh-state MSG OTHERVEHSTATE fprintf *message enabled

prinLmsgLovelaysetup MSG OVERLAY SETUP fprintf *message eambled

print-msg.pass-back MSG PASS-BACK fprintf *message enabled

print-msg..pass_ on MSG-PASS ON fprintf *messgc enabled
prnt-msg-ppm-isplay-mode MSG PPMDISPLAYMODE fprintf *message enabled

prntL msg-ppm display offset MSGPPM DISPLAYOFFSET fprintf *mesagenbd

438

BBN Systems and Technologies GTlOO RTSW CSCI

.print msg...pm...pixeUocation MSG PPM PIXEL LOCATION fprintf *message-eniabled

printmsg4,ppielx-.state MSG PPM-PIXEL STATE fprintf *mssge_e1ed

prnLmsgprfocess-chord MSG PROCESSCHORD fpriricf *messageeniabled

prinLmsg)IDCCss rund MSG-PROCESS ROUND fprintf *message...alabled

prnt~msgjrocess round48 MSG-PROCESS-ROLTND48 fprintf *mssgeeIbed

print...msgjrequest-laser ange MSG-REQUEST-LASER RANGE fprintf *messagesnabled

prntmsgjequst.pifLinfo MSGREQUJEST POINT INFO fprintf *mssge-e1bed

prinLmsgjretunmnmifo MSG RETURN POINT INFO fprintf *messageeniabled

print msgjrot2xl matrix MSGROT2xl_MATRIX fpirintf *mesgeenab1ed

print-msg-rowmd fired MSG ROUND FIRED fprintf *mssge-eIed

prinLmsgjts4x3_matrix MSGRTS4x3_MATRIX fprintf *mesageiabed

print-Msg-scale MSGSCALE fprintf *messge-enabIed

prinLmsg~sho(-report MSGSHOTREPORT fprintf, *mnessageeniabled
______ ______ _____ _ ____ _____ ______ _____ printf _ _ _ _ _ _

prinLmsg..shotjeport48 MSG SHOT-REPORT48 fprintf *messge-enbed

prntmsg..show-effect MSG -SHOW EFFECT fprintf *messg enbed

print-msg..sios-cose MSG SIO CLOSE fprintf *messgerabled

prinLmsg.sio init MSG STO INIT fprintf *mesge-enbled

prinLmsgLsiowrite MSGSIOWRITE fprintf, *message..enabled
_____ _____ _____ _ ___ _____ _____ _____ putchar _ _ _ _ _

pzintmsgstaicveh rem MSGSTATICVEHREM fprintf *mssge-enbed

prinLmsg-staticveh state MSG-STATICVEH.STATE fprintf *mssgeeIbed'

print-msg-subsys-mode MSG SUJBSYS MODE fprintf *messge-enabIe

print-msg-sys-eror MSG-SYS ERROR fprintf *messge-nbed

prinLmsgjtest-name MSG -TEST-NAME fprintf *mnssge-enbed

print-msgjfjihdr MSG TF HDR fprintf *messages-nabled

prnn-msgjfjnit bdr MSG TF NI1T HDR fprintf *messge-enable
prin-msgjtfjnit-pt MSG-TF-INIT-PT fprintf *mersgeebled

print...Msgf-t MSG TF PT fprintf *m ep-inbled

print-msg-tf~pt48 MSG-TF-PT48 fprintf *message-enabled

print msgjtf state MSG TF STATE fprintf *message-.amabld

print msgjf ~vehicle-W~s MSG iF VEHICLE POS fprintf *mssgenbed

prinLmsgjraj-chord MSG TRAI CHORD fprintf *mnssge-eIbed

print-msgtraj-entry MSG TRAJ ENTRY fprintf *message enabled

prinunsgtjm-entry-xfer MSG TRAJ-ENTRY XFER fprintf *messgewled

print msgjtrajjable xfer MSG TRAY TABLE XFER fprintf *message.ehlabled

print msgjranlation MSG-TRANSLATION fprintf *message.aabled

prinLmsg-view-Jlags MSG-VIEW FLAGS fprintf *message..anabled

prinLmsg-vew magnification MSG VIEWMAGNIFICATION fprintf *message-pieabled

piLmsgjviewport state MSG VIIEWPORT..STATE fPrintf *mnssge-enbed

prinL-msg-vewpor..update MSG-VIEWPORT -UPDATE fprintf *mssgeenled

439

3BN Systems and Technologies GT100 RTSW CSCI

Called By: see table above
(most functions are called by hostifdebug_tick via
*message-enabled[msgjtype].prinLmsg)

Routines Called: see table above
(most functions call only fprintf)

Parameters: FILE *listingfp
<message-type> *msg.P
INT_2 msg_type
INT_2 msgjlen

Returns: prinLmsgjlocalterrain returns
(msgjlen + poly-byte-count + bvolbyte_count)

all other functions return msgjlen

2.12.19.2 initprintmsgarray

The init~print.msg-array function initializes and returns the print-msg-array that contains
the enabled flags and specifies the print-msg_* function for each valid message type. The
host_iLidebugtick function indexes into the returned array to call the appropriate
print.msg_* function for each message to be printed. The print msg_* functions index
into this array to get the message name.

The function call is init printmsgarray(last msg), where lastmsg is a pointer to
the highest (largest) defined message code.

init-printcmsg-array initializes the array elements as follows:

* The enabled flag for all states other than runtime is set to TRUE.
* The enabled flag for runtime is set to FALSE.
* The message name is set to "UNUSED_."
* The function pointer is set to print-msg-default.

It then sets the name and function pointer appropriately for each defined message code.

Called By: hostifi.debuginit

Routines Called: none

Parameters: INT_2 *last_msg

Returns: print-msgarray

440

