
AD-A244 977
/I IIIII/II!IlI!IllhIIll//1IIhiii

SOFTWARE DESIGN DOCUMENT
CIG Host CSCI (9A)

June, 1991

Prepared by:

BBN Systems and Technologies,
A Division of Bolt Beranek and Newman Inc.
10 Moulton Street
Cambridge, MA 02138
(617) 873-3000 FAX: (617) 873-4315

Prepared for:

Defense Advanced Research Projects Agency (DARPA)
Information and Science Technology Office
1400 Wilson Blvd., Arlington, VA 22209-2308
(202) 694-8232, AUTOVON 224-8232

Program Manager for Training Devices (PM TRADE)
12350 Research Parkway
Orlando, FL 32826-3276
(407) 380-4518 92-00261

I 111 11IHll l i lll 111 l ~llll
92 1 ') 064

APPROVED FOR PUBLIC RELEASE
DISTRI 217m 'u IN;,, I. VrTED

SOFTWARE DESIGN DOCUMENT
CIG Host CSCI (9A)

June, 1991

Prepared by:

BBN Systems and Technologies,
A Division of Bolt Beranek and Newman Inc.
10 Moulton Street
Cambridge, MA 02138
(617) 873-3000 FAX: (617) 873-4315

Prepared for:

Defense Advanced Research Projects Agency (DARPA)
Information and Science Technology Office -Y
1400 Wilson Blvd., Arlington, VA 22209-2308
(202) 694-8232, AUTOVON 224-8232

Program Manager for Training Devices (PM TRADE)
12350 Research Parkway
Orlando, FL 32826-3276 L
(407) 380-4518 - . . -

APPROVID FOR PUIBUC RELEASE
DIPRIlrUN UNLIMITED

REPORT DOCUMENTATION PAGE J_________
PMIC eapme b~~u~ 1W 1'a OoDQk 4ma 0nh tmat t lb Ii " pw .. r to WM be ***Vi~ 1wIMlS UmnI ~r aft q t ad

WWIVW"~~~~OP I*. 0704-0188 9=r b~ IIWA6
P ti dli. VVd tw ,ew mc alg Sw miinm ol e~dwm m my m awg wa I te~~e bsadin e ~m IOIW. ,I ' od ln g te

1. AGENCY USE ONLY (Leave 8AMJu 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

June 1991 Software Design Document
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Software Design Document CIG Host CSCI (9A)

Contract Numbers:

S AUTHOR(S) MDA972-89-C-0060
MDA972-89-C-0061

Author not specified.

7. PERFORMING ORGANIZATION NAME(S)AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Bolt Beranek and Newman, Inc. (BBN) REPORT NUMBR

Systems and Technologies; Advanced Simulation Advanced Simulation #:
10 Moulton Street 9112
Cambridge, MA 02138

9. SPONSORINGNOMTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGAIONITORING AGENCY
REPORT NUMBER

Defense Advanced Research Projects Agency (DARPA DARPA Report Number:
3701 North Fairfax Drive None.
Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

None

I DISTRIBUTIOWAVAILABILTY STATEMENT 12b. DISTRIBUTION CODE
Distribution Statement A: Approved for public release; distribution is unlimited.

Distribution Code:
A

\1

13. ABSTRACT (Maimxum 200 wofds

A Simulation Network (SIMNET) project Software Design Document that describes the Computer Image
Generator (CIG) Host Computer Software Configuration Item (CSCI number 9A) of the SIMNET hardware and
software training system for vehicle crew training and operational training.

14 SUJECTTERMS 15 "JMGIER OF PAGES

SIMNET Softwarc Design Document for the CIG Host CSCI (CSCI 9A). 16. PRCE cOoE

17. SECURITY CLASSIFICATION 1S. SECURITY CIASSIF, ON 19. SECURITY CLASSIFICATION 20, LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE # OF ABSTRACT

Unclassified Unclassified Unclassified Same as report.

'' 754041-280S5 Slandard Form M.
-Pmate by PW So = 16

M241

BBN Systems and Technologies 12OTXfI' CIG Host CSCI

Table of Contents

1 INTRODUCTION: CIG HOST CSCI.. I

1.1 THE SIMULATOR.. I

1.1.1 The Simulation Host .. 2
1.1.2 The CIG .. 2

1.2 CIG-SIM COMMUNICATION .. 2

1.3 CIG SOFTWARE STRUCTURE .. 3

1.4 HOW THIS DOCUMENT IS ORGANIZED 4

2 CSC DESCRIPTIONS... 6

2.1 TASK INITIALIZATION (RTT) CSC .. 7

2.1.1 rtt.c.. 7
2.1.1.1 apiit .. 7
2.1.1.2 qlassign .. 8
2.1.1.3 tassign ... 9

2.2 CIG HOST MAINLINE (UPSTART) CSC...................................... 10

2.2.1 Viewport Configuration... 12
2.2.1.1 aarn -manager.. 16
2.2.1.1.1 aain-malloc .. 17

2.2.1.1.2 return...aaniptr 17
2.2.1.1.3 systemnaam-init........................ 18
2.2.1.1.4 dynamic-aam-init...................... 18

2.2.1.2 bbnctype.c.. 19
2.2.1.3 cig-config.c ... 19

2.2.1.3.1 cig-config 19
2.2.1.3.2 mnit -configtree 21
2.2.1.3.3 free-configtree 22

2.2.1.4 concat-mtx.c... 22
2.2.1.5 confignode-.setup.c 24
2.2.1.6 fill-tree.c .. 25

2.2.1.6.1 filltree................................... 25
2.2.1.6.2 power 25

2.2.1.7 getch.c.. 26
2.2.1.8 matjiump.c ... 26

2.2.1.8.1 r4mat..dump 27
2.2.1.8.2 r8mat-dump 27

2.2.1.9 overlay-setup.. 28
2.2.1.10 process..yflags.c ... 28p2.2.1.11 process..yppos.c .. 29

BBN Systems and Technologies 120TX/T CIG Host CSCI

2.2.1.12 readconfigfile.c .. 30
2.2.1.12.1 readconfigfile 31
2.2.1.12.2 WORD_fscanf 32
2.2.1.12.3 string-tojint 32
2.2.1.12.4 REALAfscanf 33
2.2.1.12.5 STRINGfscanf 33
2.2.1.12.6 parser ... 34

2.2.1.13 update_fov.c ... 34
2.2.1.13.1 updatefov 34
2.2.1.13.2 viewspace_mtx 35

2.2.1.14 update-rez.c ... 36
2.2.1.15 vecdump.c .. 36

2.2.1.15.1 r4vecdump 37
2.2.1.15.2 r8vec-dump 37

2.2.1.16 viewport-setup.c ... 38
2.2.1.16.1 viewport-setup 38
2.2.1.16.2 calc_paths .. 39
2.2.1.16.3 viewportinit 39

2.2.2 DTP Command Generator ... 41
2.2.2.1 dtpscompiler.c .. 42
2.2.2.2 dtp_funcs.c .. 43

2.2.2.2.1 pushnode .. 43
2.2.2.2.2 pop-node .. 44
2.2.2.2.3 whatnodeonstack 44
2.2.2.2.4 init_dtp-stacks 45
2.2.2.2.5 dtp-malloc 45
2.2.2.2.6 dtp_malloc init 45

2.2.2.3 dtp-travl.c .. 46
2.2.2.4 dtp_trav2c .. 47
2.2.2.5 rcfuncs.c ... 49

2.2.2.5.1 rclinit-stack 50
2.2.2.5.2 rcl-push .. 50
2.2.2.5.3 rclpop ... 51
2.2.2.5.4 rcl-patchadrs 52
2.2.2.5.5 rclset-errptr 52
2.2.2.5.6 rclinit_adrs 52
2.2.2.5.7 rcl rtn adrs 53
2.2.2.5.8 rclsetlabel 53
2.2.2.5.9 rclset-cntlbl 54
2.2.2.5.10 rcllblcmd 54
2.2.2.5.11 rcl__command 56
2.2.2.5.12 rclcomponent 58
2.2.2.5.13 rcldata .. 59

ii

BBN Systems and Technologies 120TX/T CIG Host CSCI

2.2.2.5.14 rclstuff_data 60
2.2.3 Real-Time Processing ... 61

2.2.3.1 aa-init.c (active-area init) 62
2.2.3.2 balroutines.c .. 63
2.2.3.3 bus_error.asm .. 63
2.2.3.4 cal.c ... 63
2.2.3.5 dbmccsetup.c .. 64
2.2.3.6 debug._initdr.c .. 66
2.2.3.7 ded_model_trace.c .. 66
2.2.3.8 download_bvols.c .. 67
2.2.3.9 dr.c .. 68

2.2.3.9.1 dr .. 68
2.2.3.9.2 dr is-okay 68

2.2.3.10 filecontrol.c .. 69
2.2.3.11 findfn.c .. 71
2.2.3.12 fxbvtofl.c ... 71

2.2.3.12.1 fxbvtofl .. 71
2.2.3.12.2 fxbvtofldart 72
2.2.3.12.3 fxbvtofl_020 72

2.2.3.13 gsp_load.c ... 73
2.2.3.14 gun..overlays.c .. 74

2.2.3.14.1 m l_gunoverlay 74
2.2.3.14.2 m2_gun-overlay 75
2.2.3.14.3 make_m l__overlays 75
2.2.3.14.4 makem2_overlays 76

2.2.3.15 hwtest.c .. 77
2.2.3.16 loaddbase.c ... 77
2.2.3.17 makebbn.c .. 78

2.2.3.17.1 prt-mtx .. 79
2.2.3.17.2 rotatex ... 79
2.2.3.17.3 rotatey .. 80
2.2.3.17.4 rotatez .. 80
2.2.3.17.5 multmatrix 81
2.2.3.17.6 idmatrix .. 81

2.2.3.18 mkcal.c ... 82
2.2.3.18.1 make cal overlay 82
2.2.3.18.2 pix-mult .. 83

2.2.3.19 mkmtxnt.c ... 83
2.2.3.19.1 make-pjit 83
2.2.3.19.2 rotate x nt 84
2.2.3.19.3 rotate__y nt 85
2.2.3.19.4 rotate_z_nt 85p 2.2.3.19.5 swapaxis .. 86

111

BBN Systems and Technologies 120TX/T CIG Host CSCI

2.2.3.19.6 id_4x3mtx 86
2.2.3.19.7 scale_mtx .. 87
2.2.3.19.8 translate .. 87
2.2.3.19.9 mult_4x3mtx 88
2.2.3.19.10 getmatrix ... 88
2.2.3.19.11 matrix2 .. 89
2.2.3.19.12 mtxcpy ... 89

2.2.3.20 modelmtx.c ... 90
2.2.3.21 open dbase.c ... 90
2.2.3.22 open-ded.c .. 91
2.2.3.23 simulation. ... 93
2.2.3.24 stdiox .. 96
2.2.3.25 support.c ... 96

2.2.3.25.1 startwatch 97
2.2.3.25.2 readwatch 97
2.2.3.25.3 stop-watch 97
2.2.3.25.4 bus_error ... 97
2.2.3.25.5 buserror_w 98
2.2.3.25.6 system ... 98
2.2.3.25.7 sload .. 99
2.2.3.25.8 get-record .. 100
2.2.3.25.9 send_data ... 100
2.2.3.25.10 verdata ... 101
2.2.3.25.11 checksum ... 101
2.2.3.25.12 getbinary-data 102
2.2.3.25.13 get_char ... 102
2.2.3.25.14 ctoi ... 103
2.2.3.25.15 unbf-getchar 103
2.2.3.25.16 sysrup-on .. 103
2.2.3.25.17 sysrup-off .. 103

2.2.3.26 upstart.c ... 104
2.2.3.26.1 main ... 104
2.2.3.26.2 templatesinit 104
2.2.3.26.3 upstart .. 105
2.2.3.26.4 bootup-slave 133 106

2.2.4 2-D Overlay Compiler [120TX systems only] 108
2.2.4.1 bit-blt.c (setupbit b1t) ... 113
2.2.4.2 cig_2d setup.c 114
2.2.4.3 cig-comp2d.c (com pile_2d) 115
2.2.4.4 cig-getm _2d.c (get msg_2d) 115
2.2.4.5 cig-link_2d.c (linkup) .. 116
2.2.4.6 comp.c (setup-comp-start) 117
2.2.4.7 draw_line.c (setupdrawline) 118

iv

BBN Systems and Technologies 120TX/T CIG Host CSCI

2.2.4.8 getthing.c... 119
2.2.4.9 init-stuff.c.. 120
2.2.4.10 ovaljrect.c (setup-oval rectangle)................... 120
2.2.4.11 poly.c (setup-.poly)..................................... 121
2.2.4.12 proc-cmd.c (process_command)..................... 122
2.2.4.13 string.c (sctup..define-.string) 123
2.2.4.14 text.c (setupjext) 124
2.2.4.15 window.c (setup..define_window)................... 124

2.3 DATABASE MANAGEMENT (ROWCOL-RD) CSC.................... 126
2.3.1 genericilm... 127

2.3.1.1 init-.genericIm .. 128
2.3.1.2 genericImn... 128

2.3.2 load-modules.c ... 129
2.3.2.1 getlmdp... 129
2.3.2.2 getside .. 129
2.3.2.3 whatdirptr.. 130
2.3.2.4 load_modules.. 131

2.3.3 rowcol-rd.c.. 132
2.3.3.1 main .. 132
2.3.3.2 rowcol-rd .. 132

2.4 DATABASE FEEDBACK (LOCAL_TERRAIN) CSC...................... 134

2.4.1 bal-.getdb-pos... 135
2.4.2 bal-getilm-gid.c ... 136
2.4.3 loc ter... 136

2.4.3.1 main .. 137
2.4.3.2 local..terrain.. 137

2.5 BALLISTICS PROCESSING (BALLISTICS) CSC 139
2.5.1 Ballistics Mainline.. 144

2.5.1.1 bxl47_main.c (main)................................... 144
2.5.1.2 bx-init.c ... 144
2.5.1.3 bx-task.c .. 144
2.5.1.4 slavelI33_functions.c.................................... 146

2.5.1.4.1 slavel33_malloc 146
2.5.1.4.2 freel33 146

2.5.2 Ballistics Interface Message Processing 147
2.5.2.1 bO-aam-centroidx.c 147
2.5.2.2 bOas~w-cornerx..c................................. 148
2.5.2.3 bO-add-static-vehiclex..c............................. 148
2.5.2.4 bO-add-traj-table.c..................................... 149
2.5.2.5 bO-bal -config.c... 149
2.5.2.6 bO-bvol-entry.c... 150

2.5.2.7 tb0_cancel-round.c 150

V

BBN Systems and Technologies 120TXfr GIG Host CSCI

2.5.2.8 bO-ig-frame-rate.c.................................... 150
2.5.2.9 bO-databaseinfo..................................... 151
2.5.2.10 bOjelete-static-vehicle............................. 151
2.5.2.11 bO-delete-trajj able.c 152
2.5.2.12 bO-dumnmy.c .. 152
2.5.2.13 bO-errrdetected.c..................................... 152
2.5.2.1A bO...napp...message..................................... 152
2.5."L.15 bO-imn-read.c.. 153
2.5.2.16 bO-model directory.c 153
2.5.2.17 bO~model-entry.c....................................... 153
2.5.2.18 bO-new-framne.c .. 154
2.5.2.19 bQ..print.. 154
2.5.2.20 bO..process-chord.c..................................... 155
2.5.2.21 bO..process-round.c..................................... 155
2.5.2.22 bO-round-fired.c.. 156
2.5.2.23 bO-state-control.c 157
2.5.2.24 bO-status-request.c..................................... 157
2.5.2.25 b0..traj-chord-.. 157
2.5.2.26 bO~raj-entry-..c.. 158
2.5.2.27 bO-undefined-message.c............................... 159

2.5.3 Ballistics Intersection Calculations 160
2.5.3.1 bx-bvol-int.c.. 160
2.5.3.2 bx_chord-intersect.c 161
2.5.3.3 bx-functions.c... 162

2.5.3.3.1 bx-new-round......................... 162
2.5.3.3.2 bx-delete-round 163
2.5.3.3.3 bx-get-dbpos........................ 163
2.5.3.3.4 bx...get-chord_end 164
2.5.3.3.5 bx-new-bvol 164
2.5.3.3.6 bx-free_im-cache 165
2.5.3.3.7 bx-new-poly 165
2.5.3.3.8 bx..get-lb-from-lm................... 166
2.5.3.3.9 bx-new-statveb 166
2.5.3.3.10 bx-delete -stat -veh.................... 167
2.5.3.3.11 bx-dist..sq-pt-line.................... 167

2.5.3.4 bx..getlIm-data.c....................................... 168
2.5.3.5 bx..get-lm....gd.c 168
2.5.3.6 bx-model-int.c.. 169
2.5.3.7 bx...poly-int.c.. 170
2.5.3.8 bx_reset.c .. 171
2.5.3.9 bx-trajectory.c .. 171

2.5.4 Ballistics Message Queue Processing 173
2.5.4.1 mx-error.c... 173

vi

BBN Systems and Technologies 12OTX/T CIG Host CSCI

2.5.4.2 mx...open.c... 173
2.5.4.3 mx..peek.c... 174

2.5.4.4 mx...push.c... 175
2.5.4.5 mx..skip.c.. 175
2.5.4.6 mx..wcopy.c... 176

2.6 USER INTERFACE (GOSSIP) CSC.. 177

2.6.1 dtp-emu.c ... 180
2.6.1.1 dtp-emu .. 180
2.6.1.2 display.. 181
2.6.1.3 outdisplay .. 182
2.6.1.4 hxflt .. 182
2.6.1.5 hexdisplay.. 182
2.6.1.6 ftoh ... 183
2.6.1.7 htof ... 183
2.6.1.8 mat_mult ... 184
2.6.1.9 get-m .. 184

2.6.2 gosjl2Otx.c... 185
2.6.3 gos, atp.c.. 187
2.6.4 gos...bal-query.c .. 188
2.6.5 gos-db.query.c... 189

2.6.5.1 gos-b-query.. 189
2.6.5.2 gos..displayjb.info.................................... 189I2.6.6 gos-drl I-query.c.. 190

2.6.7 gos,-flea-if... 190
2.6.8 gosjlea.options.c ... 191
2.6.9 gosjfly.c .. 192
2.6.10 gos-locate... 192
2.6.11 gos...memory.c.. 193
2.6.12 gos -model.c .. 194
2.6.13 gos, polys.c.................................... 195
2.6.14 gos..systemn.c ... 195
2.6.15 gossip.c.. 196

2.6.15.1 main .. 196
2.6.15.2 gossip... 197
2.6.15.3 display-packet... 199
2.6.15.4 s5 step... 199
2.6.15.5 dcode_drIIw .. 200
2.6.15.6 gos...single...step ... 200

2.6.16 vtlOO.c... 201
2.6.16.1 cup.. 201
2.6.16.2 sgr... 201
2.6.16.3 double-top ... 202
2.6.16.4 double_bot ... 202

vii

BBN Systems and Technologies 120TX/T CIG Host CSCI

2.6.16.5 double-off ... 202
2.6.16.6 blank.. 203
2.6.16.7 save-cur.. 203
2.6.16.8 restore-cur ... 204
2.6.16.9 scroll-reg... 204

2.7 STAND-ALONE HOST EMULATOR (FLEA) CSC........................ 205

2.7.1 flea.c .. 206
2.7.2 flea-decode-data.. 207
2.7.3 flea~encode _data.. 207
2.7.4 flea-initsig.sw. .. 208
2.7.5 flea-update-.pos..209

2.8 FORCE PROCESSOR (FORCE) CSC [120Th SYSTEMS ONLY]210

2.8.1 data..type.. 212
2.8.2 exception.asm... 213

2.8.2.1 excep-init.. 213
2.8.2.2 spurmint... 213

2.8.3 force.asm.. 213
2.8.3.1 gsp...write... 214
2.8.3.2 gsp-read ... 214
2.8.3.3 gspjioctL-wrte .. 215
2.8.3.4 gspjioctl-read... 215
2.8.3.5 init-.ports ... 216

2.8.4 forcetask.c .. 216
2.8.4.1 main .. 216
2.8.4.2 compare-.buffers... 218

2.8.5 gsp- io.c... 218
2.8.6 niitype.c.. 219
2.8.7 polljeady.c .. 219
2.8.8 read-stuffi... 220
2.8.9 test...gsp.c ... 220

3 RESOURCE UTILIZATION... 222

3.1 DISK SPACE REQUIREMENTS... 222

3.2 MEMORY REQUIREMENTS .. 222

APPENDIX A: SYSTEM INCLUDE FILES .. 223

A. 1 BALLISTICS.H ... 223
A.2 BBNCTYPE.H .. 223
A.3 BFLYDISK.H ... 223
A.4 BM_FUNCTIONS.H ... 223
A.5 BP_FUNCTIONS.H... 224
A.6 BXDEFINES.H .. 224

viii

BBN Systems and Technologies 120TX/T CIG Host CSCI

A.7 BXEXTERNS.H... 224
A.8 BXGCLOBALS.Hi.. 224
A.9 BXMACR . .. 225
A.10 BXMESSAGESd .. 225
A.11 BXRTDBSTRUCTS.H.. 225
A. 12 BXSTRUCTS.H ... 226
A.13 CIBFLY.H.. 226
A.14 CONFIGTREE_-DEF... 226
A.15 CONFIGTREESTR.H... 227
A.16 CTYPE.H.. 227
A.17 DEDIDTABLE.H .. 227
A. 18 DEFINES_2D.H... 227
A.19 DEFINITONS.H ... 228
A.20 DGI_STDC.H ... 228
A.21 DGISTDG.H... 229
A.22 ECOMPILER1... 229
A.23 EMEMORYMAP.H... 229
A.24 EXTERN.H.. 231
A.25 EXTERNAL.. 231
A.26 FORCE.H.ASM... 231
A.27 FORCEDEFINES.H... 231
A.28 FORCEDEFINESC.H ... 232IA.29 FORCE_-DEFINESD.H ... 232
A.30 FORCE_-DEFINESE.H... .. 232
A.31 FORCEDEFINEST'X.H 232
A.32 FUNCTIONS.H ... 232
A.33 GHCTYPE.H .. 233
A.34 GLOBAL_2D.H... 233
A.35 GLOBFIR_2D.H.. 233
A.36 M2_CONFIG.H ... 233
A.37 MlBX.H... 234
A.38 MEMORYMAP.H .. 234
A.39 MEMORYMAPDEFINES.H ... 234
A.40 MXDEFINES.H ... 235
A.41 OVRLYDEFS.H... 235
A.42 RCINCLUDE.H... 235
A.43 REALTIME.H ... 236
A.44 RTDEFINITONS.H .. 237
A.45 RTMACROS.H.. 237
A.46 RTTYPES.H ... 237
A.47 RTDBSTRUCT.H ... 237
A.48 SIMCIGARI.H ... 238
A.49 SIMCIGARIJEF.H ... 238

ix

BBN Systems and Technologies 120TX/T CIG Host CSCI

A.50 SIM_CIGIF.H ... 238
A.51 SIMCIG_1F512X512.H ... 239
A.52 SIMCIGWF7KXIK.H. ... 239
A.53 SLAVE 133_FUNCIONS.H .. 239
A.54 STRUCT_2DMH... 239
A.55 STRUCTURES.H... 239
A.56 SYSDEFS.H. ... 240
A.57 SYSDEFS2.H ... 240
A.58 TFLAT.H.. 240
A.59 TFLATSLOW.H .. 241
A.60 U1O5MMSABOT3OHZ.H.. 241
A.61 U25MMHEAT.H ... 241

APPENDIX B: SYSTEM MACROS.. 242

B. 1 AAREAD.. 242
B.2 ABS VAL... 242
B.3 BCOPY .. 243
BA4 CHECKCLOCK ... 243
B.5 CHECKFORCE ... 243
B.6 DARTENQUEUE ... 244
B.7 DELETEROUND.. 244
B.8 DELETESTATVEH ... 244
B.9 DOWNLOADDATA ... 245
B.10 DTP.* (DTP MACROS) ... 245
B.11 DUMPDARTBUFFER.. 249
B.12 ERRMSG.. 249
B.13 EXCHANGEDATA... 249
B.14 EXCHANGEDATASIM .. 250
B.15 EXCHANGEFLEADATA .. 251
B.16 FINDLM.. 251
B.17 ELTOEX ... 252
B.18 FREELMCACHE .. 252
B.19 FXT0881 .. 252
B.20 FXTOFL ... 253
B.21 GETCHORDEND.. 253
B.22 GETDBPOS .. 254
B.23 GET_-LB_ FROM_-LM .. 254
B.24 GLOB 255
B.25 INCRCOMPONENT ... 255
B.26 INITMTX .. 255
B.27 MALLOC.. 256
B.28 NEWROUND.. 256
B.29 NEWSTATVEH.. 257

x

BBN Systems and Technologies 120TX/T CIG Host CSCI

B.30 OPENEXCHA NGE .. 257
B.31 OPENFLEADATA 257
B.32 PAGEFORM A T .. 258
B.33 POLY.* (POLY PROCESSOR MACROS) .. 258
B.34 PRINTD4 .. 261
B.35 PRINTD 8 .. 261
B.36 PRINT IEX4 ... 261
B.37 PRINTHEX 8 ... 262
B.38 READCLOCK o .. 262
B.39 RESTART_CLOCK .. 262
B.40 ROO M 4LA BEL .. 262
B.41 ROO M CHECK ... 263
B.42 SETOUTBITS ... 263
B.43 SET_OUT_M 2EITS ... 263
B.44 SYSERR .. 263
B.45 TORA D .. 264
B.46 TORAD IA NS .. 265
B.47 TRIGGERFORCE ... 265
B.48 W AITFORCE .. 265
B.49 X CLOSE ... 266
B.50 XLSEEK .. 266
B.51 XOPEN .. 267
B.52 X READ ... 267
B.53 XW RITE ... 268

APPENDIX C: OPERATING SYSTEM SERVICE CALLS .. 269

C. A SPECIAL OS SERVICE LIBRA RIES ... 269
C.2 TASK MANAGEMENT (SC_*) ROUTINES ... 270
C.3 STANDARD C RUNTIM E LIBRA RIES ... 271

APPENDIX D: GLOSSARY OF TERMS AND ABBREVIATIONS 273

APPENDIX E: CROSS-REFERENCE TABLES .. 278

E.1 CSU S M A PPED TO CSCS .. 279
E.2 DATA TYPE NAMES MAPPED TO TYPEDEFS 282
E.3 FUNCTION NAMES TO SOURCE FILE LOCATION 287
E.4 MACRO NAMES TO SOURCE FILE LOCATION 292

IND EX BY SECTION NUM BER .. IND EX-1

xi

BBN Systems and Technologies 120TX/T CIG HOST CSCI

1 INTRODUCTION: CIG HOST CSCI

* This document describes the 120TX/T Computer Image Generation (CIG) Host CSCI, also
referred to as the CIG Real-Time Embedded code.

The CIG Host CSCI is the executable code that resides within the CIG and provides the
Simulation Host (SIM) with an interface to the graphics hardware on the CIG.

1.1 The Simulator

A Vehicle Simulator Unit, or Simulator, consists of a CIG, a Simulation Host, one or more
display monitors, a user, and the user's control mechanisms. Each Simulator simulates the
actions of one combat vehicle, such as a tank, in real time. Multiple Simulators can be
connected via a Simulation Network. The entire simulation exercise is controlled and
coordinated by the Battle Manager using the Management, Command, and Control (MCC)
system computer.

Once the MCC initializes a Simulator at the beginning of the exercise, the vehicle's crew
directs the simulation. Each Simulator reports the position, orientation, and appearance of
its simulated vehicle to the MCC and the other Simulators via the network.

Figure 1-1 illustrates the relationship between the CIG, the Simulation Host, and the MCC.

Simulation Network

sIM Host Simulator Sim Host

I Control

CIG Monitor

Figure 1-1. The Vehicle Simulator Unit (Simulator)

1

BBN Systems and Technologies 120TX/T CIG HOST CSCI

1.1.1 The Simulation Host

The Simulation Host receives and processes data from the simulation vehicle's mechanical
controls, interfaces with the CIG, and communicates over the simulation network with
other Simulators.

The Simulation Host is based on either a Masscomp or a Butterfly computer. The CIG's
interface to the two is functionally the same, although some code modifications were
required to interface to the Butterfly. These modifications do not affect the functionality of
the CIG real-time software or the communication between the CIG and the Simulation
Host. Code written specifically for the Butterfly platform is only cursorily addressed in
this document.

1.1.2 The CIG

The CIG interfaces with the Simulation Host, controls the images in the simulation
viewports (displays), and houses the database that describes the simulation terrain. The
CIG is available in two models:

" The 120T CIG can generate up to eight low-resolution (320 by 200 pixels) views.
These views are used in MI and M2 Simulators.

* The 120TX CIG can generate one high-resolution (640 by 480 pixels) view or two
low-resolution (320 by 240 pixels) views. These views are used in Stealth
Simulators.

1.2 CIG-SIM Communication

The CIG and the Simulation Host communicate by exchanging 4K (4096-byte) message
packets, each of which is a grouping of data messages. The physical interface to a
Masscomp Simulation Host is a DRI1-W communications device. The Butterfly platform
uses a BVME interface.

Message packet exchanges occur every frame (every 66.7 milliseconds when running at 15
Hz). The CIG is the clock master for all synchronous message passing. Exchanges are
initiated by the CIG after it detects a frame time event. Both the CIG and the Simulation
Host have until the next frame to process information.

Message packets sent from the CIG describe the current state of the simulation vehicle.
The Simulation Host uses this information to compute and update each parameter that
affects the visual displays.

Message packets sent from the Simulation Host describe the new state of the simulation
vehicle and/or changes to the simulation environment. Other messages specify where to
display special effects, such as bomb blasts and smoke. The CIG uses this information to
compute changes in the viewing displays.

The message structures used by the CIG and the Simulation Host to communicate are
documented in the "120T/TX CIG-SIM Interface Manual."

2

BBN Systems and Technologies 120TX/T CIG HOST CSCI

1.3 CIG Software Structure

The CIG Host software is a multi-state, multi-tasking software system. It progresses
through its various states upon receiving appropriate commands from the Simulation Host
via the CIG-SIM message interface. The states of the CIG Host software are:

* Task Initialization
" System Configuration
• Real-Time Processing
" Stand-Alone (Flea) Mode

The simulation and other support software run as individual tasks. Using intertask mailbox
locations, the tasks exchange information through shared memory. The tasks share system
resources as needed, based on their relative priorities.

The top-level CSCs in the CIG Host CSCI are the following:

* Task Initialization (RTr)

* CIG Host Mainline (UPSTART)
- Viewport Configuration
- Data Traversal Processor (DTP) Command Generator
- Real-Time Processing
- 2-D Overlay Compiler [120TX systems only]

P • Database Management (ROWCOLRD)

* Database Feedback (LOCALTERRAIN)

" Ballistics Processing (BALLISTICS)

" User's Interface (GOSSIP)

* Stand-Alone Message Interface (FLEA)

* Force Processor Task (FORCETASK) [120TX systems only]

Figure 1-2 illustrates these CSCs.

3
3

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Task Initialization SIM-CIG Interface

/ l

JForoetink Database
ii - Intefacii uptart maage.- Gi F

P roeig Feakmont

2D Overlay CelTn l~onf1u

Figure 1-2. CIG Embedded Software CSCs

1.4 How This Document Is Organized

Section 1 (Introduction)
Provides a general overview of the CIG Embedded Software, the Simulation Host,
and the Vehicle Simulator Unit.

Section 2 (CSC Descriptions)
Describes each CSC in-the CIG Embedded Software CSCI. Each subsection
begins with a general overview of the CSC, its major data structures, the primary
functions it performs, and how it relates to the other CSCs. This is followed by a
detailed description of each CSU in the CSC. The CSUs are presented in
alphabetical order.

For the purposes of this document, a CSU is defined as a source code (.c or .asm)
file. CSUs are documented as follows:

* The section heading identifies the name of the source file.

• If a CSU contains multiple functions, each is described in a separate
subsection under the CSU section heading. The functions are described in
the order in which they appear in the source file.

If a CSU contains only one function, it is described under the CSU section
heading. If the function name differs from the CSU name, the function
name is shown in parentheses following the CSU name. If the function
name matches the CSU name (minus the .c or .asm suffix), the function
name is not shown in the heading.

4

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The description of a function includes its general purpose, its function call,
definitions of its parameters and return values, and a description of its processing.
The description also identifies all called and calling routines.

Section 3 (Resource Utilization)
Provides disk and memory usage statistics.

Appendix A (System Include Files)
Describes the contents of each header (.h) file used in the system, and identifies the
CSUs that include it. All include files are listed in alphabetical order.

Appendix B (System Macros)
Describes the macros used to perform specialized functions throughout the system,
and identifies where they are used. All macros are listed in alphabetical order.

Appendix C (Operating System Service Calls)
Briefly describes the operating system service libraries and standard C libraries
used by the CIG functions.

Appendix D (Glossary Of Terms And Abbreviations)
Defines some of the specialized terminology, abbreviations, and acronyms used in
this document.

Appendix E (Cross-Reference Tables)
Provides lists that may help the reader locate CSUs, data type definitions,
functions, and macros. 5

5

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2 CSC DESCRIPTIONS

The CSCs that make up the CIG Host software system are the following:

Task Initialization (RTT)
Initiates the execution of the other CIG Host tasks.

CIG Host Mainline (UPSTART)
Configures the viewport displays, generates DTP commands, runs the real-time
simulation, and generates two-dimensional overlays.

Database Management (ROWCOL RD)
Reads new rows or columns of load modules from the terrain database into active
area memory as required.

Database Feedback (LOCAL TERRAIN)
Sends information describing te local terrain (the area around the simulated
vehicle) to the Simulation Host, based on the simulated vehicle's current position.

Ballistics Processing (BALLISTICS)
Determines which load modules and grids in the database are intersected by a given
chord.

User Interface (GOSSIP)
Provides a back-door user interface that allows certain debugging and query
features during runtime operation.

Stand-Alone Host Emulator (FLEA)
Emulates the Simulation Host for stand-alone CIG operation and testing.

Force Processor (FORCE)
On the 120TX CIG only, controls the interface between the CIG real-time task and
the two-dimensional overlay processor task.

This section describes the functions performed by each of these CSCs.

6

BBN Systems and Technologies 120TX/T CIG HOST CSCI

P2.1 Task Initialization (RTT) CSC

This section details the software that performs the task initialization phase of the CIG Host
system. The task initialization CSU, rtt, is the initial task in the CIG Real-Time Software.
It is executed from the user's terminal or via the auto-boot mechanism. rtt initiates the
execution of all other tasks in the CIG Host CSCI, then terminates itself.

As shown in Figure 2-1, this CSC contains only one CSU: rtt.c. The functions in rtt.c are
described in this section.

Task Initialization rtt.c

Foroeteak Daaaeatbs
Ba~ls I nterface Feedback UsaI Manage- GospFe

Figure 2-1. Task Initialization CSU

2.1.1 rtt.c

The rtt.c CSU contains the functions responsible for task and queue initialization. These
functions are:

* apinit
* qassign
• tassign

2.1.1.1 apinit

The apinit function is a high-priority task created by the system. apinit creates all

application queues and tasks, runs all tasks, and then deletes itself from the system.

The function call is apinito. apinit does the following:

" Calls buserror to determine which type of Ballistics board is in the CIG.
" Adds a 45-second system delay for the lamplighter if switch 5 is on ("go flying"

mode) and switch I is off (auto-boot mode).
* Initializes the application task id and queue id.
* Inserts the application task table into the system task table.
* Calls tassign to assign a task id to each task.
* Calls qassign to assign a queue id to each queue.
• Deletes its own task from the system.

7

BBN Systems and Technologies 120TX/T CIG HOST CSCI

apinit initiates the application task table in the operating system by establishing entries for
the other CSCs in the real-time software, as follows: 0

name tid priority type queue qsize entry
"upstart" yes 2 task no 0 upstart

"flea" yes 10 task yes 16 flea
"localterrain" yes 8 task no 0 localtain

"ballistics" yes 6 task no 0 bx task

"rowcol.rd" yes 4 task no 0 rowcolrd
"gossip" yes 12 task no 0 gossip

Called By: none

Routines Called: buserror
printf
qassign
rotate_x_nt
rotate_y_nt
rotate_z_nt
sc tdelete
strcpy
tassign
translate

Parameters: none

Returns: none

2.1.1.2 qassign

The qassign function assigns and creates all queues. The only task for which a queue is
created is flea, with a queue size of 16.

The function call is qassign(qsize), where qsize is the size of the queue to be created.
qassign does the following:

• Increments the queue identifier number by 1.
* Verifies that the queue size is valid.
* Calls sc qcreate to create the queue.
• Returns the queue id (apqid) to apinit.

The function returns -1 if the queue size is specified as 0 or "no."

8

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: apinit

Routines Called: scqcreate

Parameters: int qsize

Returns: -1
apqid

2.1.1.3 tassign

The tassign function assigns and creates the upstart, rowcol-rd, ballistics, localterrain,
flea, and gossip tasks.

The function call is tassign(tflag, tentry, tpri), where:

zflag is "yes" (identifying this as a task)
tentry is the task's entry point (name)
tpri is the task's priority

tassign does the following:

* Increments the task identifier number by 1.
* Verifies that tfiag is not "no."
* Calls sctcreate to create the task.
* Returns the task id (aptid) to apinit.

The function returns -1 if tf7ag is "no."

Called By: apinit

Routines Called: sc_tcreate

Parameters: int tflag
char *tentry
int tpri

Returns: -1
aptid

9
9

BBN Systems and Technologies 120TX/r CIG HOST CSCI

2.2 CIG Host Mainline (UPSTART) CSC

The CIG Host Mainline CSC, UPSTART, contains the functions responsible for
configuring the viewports (simulator displays) and running the simulation.

The Simulation Host controls all functions of the visual simulation and determines what
information is sent to the CIG. The CIG uses this information to control the images in the
viewports of the visual simulator.

Upon request from the Simulation Host, the simulation goes into database setup mode,
where memory is initialized and the appropriate database subsection is loaded into active
area memory (AAM). From setup mode, the Simulation Host can request a transition to
simulation mode. This causes a local terrain message request, enables system frame
interrupts, and initializes system variables.

Every frame, the simulation does the following:

* Waits for the system interrupt.

* Prepares a laser range message.

• Sends a message packet to the Simulation Host.

* Receives a message packet from the Simulation Host.

* Determines which buffer in double-buffer memory to use. (Double buffering
allows one buffer to be used by the hardware while the other is being updated by
the software. The simulation and the hardware switch buffers on every exchange,
so the hardware is always accessing the most recently updated information.)

" Restores the model return addresses.

* Processes one "My vehicle" message which:
- Expands the eight matrices (one per viewport) of the simulation vehicle.
- Loads 11 overlay characters into the gunner channel.
- Tells the T&C (Timing and Control) board which channels to display.

" Processes zero or more "other vehicle" messages, each of which:
- Expands one to three matrices for vehicles in the terrain.
- Adds a model to the proper load module.
- Displays smoke and fire if appropriate.

• Processes zero or more "show effect" messages, each of which:
- Stores effect data.
- Adds an effect to the proper load module.

• Processes zero or one trajectory chords.

* Reprocesses zero or more "show effect" messages from previous frames.

Every 32 frames, the simulation constructs and sends a message on the contents of the local
terrain. This message contains data regarding the terrain, roads, rivers, and buildings that

10

BBN Systems and Technologies 120TXIT CIG HOST CSCI

lie in the four grids surrounding the simulated vehicle. This information is used by the
Simulation Host to provide collision detection with objects in the simulated environment,
and to calculate the correct vehicle dynamics for driving on the terrain.

When complete, the Simulation Host may stop the simulation to enable going into another
mode, or may reconfigure the Simulator in another area.

The major functional components of UPSTART are as follows:

Viewport Configuration
Initializes and builds the viewport configuration tree before runtime. The
configuration tree describes the relationship between each physical component of
the simulated vehicle and the location of the viewports.

DTP Command Generator
Generates data traversal processor (DTP) hardware commands from the viewport
configuration tree.

Real-Time Processing
Runs the simulation using messages passed between the Simulation Host and
Ballistics.

2-D Overlay Compiler
Builds the 2-D (two-dimensional) overlays, and generates executable commands for
the 2-D processor on 120TX CIGs.

Figure 2-2 illustrates the components of the UPSTART CSC. The following subsections
describe the CSUs in each of these functional areas, in the order listed above.

Task Initialization

Ballistics nterface Dataaae

Prcen Upstar Manage- Gossip Flea
Procesaijng mn

Database
2 D O va eye ra e ssa
CompilernProationgConrgu- Proessor

rationComimandGenerator

Figure 2-2. UPSTART Functional Components

11

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1 Viewport Configuration

Viewport Configuration is the area of UPSTART that is responsible for initializing and
building the configuration tree before runtime. The configuration tree describes the
relationship between each physical component of the simulated vehicle and the location of
the viewports. The messages used to set up the configuration tree are received from the
Simulation Host.

The configuration tree consists of the following:

• One root node, which marks the start of the configuration tree. This node contains
no data and must be the first node created.

* One or more matrix nodes, each of which contains a transformation matrix that
specifies rotation angles (heading, pitch, and roll) and translation values. The
matrices in all nodes in a traversal path of the tree are concatenated to generate the
view of the world for the viewport represented by that path. Matrix nodes are
designated as either dynamic (ones that are updated during the simulation) or static
(ones that do not change during the simulation).

" Zero or more conditional (branch) nodes, each of which branch into one of two
traversal paths based on a runtime condition. The node branched to if the condition
is true is the conditional node's "true child" and the node branched to if the
condition is false is the "false child." The branch values are stored in the system
view flags array. The branch values in effect at any given time in the simulation are
set via messages sent from the Simulation Host.

* Viewport parameters for each viewport. These parameters are the screen
resolution, viewing range, near plane, field-of-view angles, level-of-detail
multiplier, and aspect ratio (currently not used). Viewport parameters are
associated with the final node in each traversal path in the configuration tree.

Note that the same viewport may be defined multiple times, each with different
parameters. A conditional node enables a change to new viewport parameters
during the simulation.

* One or more sets of graphics path parameters for each viewport. A graphics path is
a window on a viewport. On the 120T, there is one graphics path per viewport.
On the 120TX, there may be two or four, depending on the resolution. The
graphics path parameters are used to load the hardware.

The structure of the configuration tree cannot be changed during runtime - all nodes and
viewport definitions must be created at CIG initialization time. However, various
parameters within the configuration tree do change during the, ,:.iulation. Therefore, some
Viewport Configuration functions are called by simulation (in the Real-Time Processing
component) to update configuration tree structures during runtime.

Specifically, messages can be used to update the following structures after the
configuration tree has been created:

• Dynamic matrices. The Simulation Host can provide a new matrix or a change
(e.g., rotation) to the current matrix.

12

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Branch values for the conditional nodes. Changing the branch values during a
simulation causes selection of a different traversal path and, usually, different
viewport parameters.

Certain viewport parameters (the level-of-detail multiplier and the field-of-view
angles). Although a message is available to change these parameters directly, it is
recommended that all desirable viewport parameter combinations be built into the
configuration tree and selected using branch values.

The configuration tree can contain a maximum of 64 nodes. Every node is referenced by a
unique index, which is used in messages sent to update the node during the simulation.
The root node is always assigned node index 0. A node that has viewport parameters
attached to it must have a node index between I and 3 1.

Every matrix node in the configuration tree must be defined in one of two formats: RTS4x3
(4 x 3 rotation translation scale) or HPRXYZS (3 x 3 scale heading pitch roll translation).
A matrix node's format can be redefined during the simulation.

The format of each of these matrix structures is as follows:

RTS4x3 (4 x 3 rotation translation scale)
The matrix format is:

rotation[0,01 rotation[0,1] rotation[0,2]
rotation[1,0] rotation[1, 1] rotation[1,2]
rotation[2,O] rotation [2,11 rotation[2,2]
translation.x translation.y translation.z

where:
rotation is an angle in degrees
translation is a distance in meters

The typedef for this matrix structure is:

typedef struct I
REAL 4 rotation[3][2;
R4P3D translation;
I RTS4x3_MTX;

HPRXYZS (3 x 3 scale heading pitch roll translation)
The matrix format is:

heading pitch roll
translation.x translation.y translation.z
scale.x scale.y scale.z
scale order heading order pitch order
roll order translate order

where:
heading = -yaw = -z rotation in degrees
pitch = x rotation in degrees
roll = y rotation in degrees
translation is a distance in meters

13

BBN Systems and Technologies 120TXjT CIG HOST CSCI

scale is a scaling factor (used to enlarge or reduce matrices)
order values specify the order in which the matrices are to be concatenated

The typedef for this matrix structure is:

typedef struct I
REAL_4 heading;
REAL_4 pitch;
REAL 4 roll;
R4P3D translation;
R4P3D scale;
BYTE concatorder[5];
) RTS3x3_MTX;

A third matrix format, ROT2x1 (2 x 1 rotation), can be used to rotate a matrix along
one axis. Matrix nodes cannot be defined as this matrix format, although they can be
updated by it. The matrix format for ROT2xl is:

E cos(rotation 0) sin(rotation 0)
rotation axis I

where:
rotation is the angle of rotation in degrees
rotation axis is the axis along which rotation is to occur: 0 (x), 1 (y), or 2 (z)

The typedef for this matrix structure is:

typedef struct {
REAL_4 cosrotation;
REAL 4 sin rotation;
BYTE rotation-axis;
) ROT2xlMTX;

The functions in Viewport Configuration do the following:

" Create all configuration nodes, viewport parameter entries, and graphics path

entries, based on data received from the Simulation Host.

* Generate DTP-style matrices from the matrices provided by the Simulation Host.

• Set up calibration, gunner, and gun barrel overlays for 120T systems. (These are
hard-coded overlays that can be displayed on a viewport on top of the terrain
display.)

• Generate DTP code for the overlays.

• Process the system view flags/branch values and load them into the T&C (Timing
and Control) board.

Usually, the configuration tree is built according to messages received from the Simulation
Host. To initiate this process, db-mccsetup (in the Real-Time Processing component)
calls the cig-config function. cig.config in turn calls other Viewport Configuration
functions to allocate memory and configure the nodes, viewports, and view flags.

14

BBN Systems and Technologies 120TX/T CIG HOST CSCI

. A configuration tree can also be created from data in an ASCII file that is created off-line
and installed on the CIG. The read-configfile function is used to parse this file and call the
appropriate functions to create the tree. This method is provided for stand-alone use and
testing.

Figure 2-3 identifies the CSUs in Viewport Configuration. The functions performed by
these CSUs are described in this section.

Task Initialization

ForotaskBallistics nerFaCe aFedtack Upstart laMage Gossip Flea
Processingmn

Database
2D ~Real-ime ViwotTraversal
copierProcessing Coinig- Processor

ration Command
Generator

aammanager.c overlayAbtup.c
bbnctyPe.c pwcess.flags.c
agconfig.c pmcessYppos.c
concat_mtx.c read conflgfile.c
confignode setup.c updatefov.c
filltree.c update_rez.c
getch.c vecdump.c
mat-dump.c viewport.setup.c

Figure 2-3. Viewport Configuration CSUs

Figure 2-4 illustrates how the major functions of Viewport Configuration interact with each
other to create the configuration tree based on messages received from the Simulation Host.

15

BBN Systems and Technologies 120TX/T CIG HOST CSCI

E3E~cnfiEZ
earn malloc, tmamtr
.yslin.m m jnit,
dyroarlc...amm It
allocate and iiialize AM

ntiaizes a new configuration allocates memory for

creates and initializes rwl converts and loads matrices
entries processnyppoSH sets the vehicle position

gaeculates no.ne ofd grphuspan
barrelpoverlay

prupdates fsy-rlate fieldsag

Figrea2-4. Viewport Configratio uplowe Diaram eolto

dynaic rea ofactie aea emoy. Dnamc mmor islocuated n tfgh c oulebufe

are ; s ati memory ipis noth do b e- u f r e r

The functions in aam-manager.c are:

" aani-nalloc
" return-aarn.ptr
" system_aam_init
* dynamic_aam_mnit

16

BBN Systems and Technologies 120TX/T CIG HOST CSCI

.2.2.1.1.1 aam_malloc

The aammalloc function allocates system and dynamic memory.

The function call is aam malloc(static flag, num of bytes), where:

staticflag identifies the area of memory (SYSTEM or DYNAMIC)
num_ofbytes is the number of bytes of memory requested

When it receives a request to allocate active area memory, aammalloc does the following:

" Determines which area of memory is being requested.
* Verifies that sufficient memory is available.
* Allocates the memory and returns a pointer (temp_ptr) to it.

If there is insufficient memory to process the request, aammalloc returns NULL and
displays the amount of memory available.

Called By: cig-config
confignode-setup
init-configtree
viewporLtsetup

Routines Called: printf

Parameters: BYTE staticflag
WORD num_of.bytes

Returns: temp-ptr
NULL

2.2.1.1.2 return aam-ptr

The return_aam_ptr function returns the address of the next available location in the static
or dynamic area of active area memory.

The function call is return aamptr(static flag), where staticflag identifies the area
of memory (SYSTEM or DYNAMJC).

returnaam-ptr returns systemaam (the next available address in static memory) or
dynamicaam (the next available address in dynamic memory).

Called By: cigconfig

Routines Called: nore

17

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: BYTE staticflag

Returns: systemaam
dynamic-aam

2.2.1.1.3 system aam init

The systemaaminit function initializes the system (static) section of active area memory.

The function call is system aam init(system aam add, limit), where:

system aam add is the starting address of the memory to be initialized
limit is the ending address of the memory to be initialized

The function returns system_aam, the starting address of the initialized memory.

Called By: cig-config

Routines Called: none

Parameters: WORD systemaam_add
WORD limit

Returns: systemaan

2.2.1.1.4 dynamic aam init

The dynamicaam_init function initializes the dynamic section of active area memory.

The function call is dynamic aaminit(dynamic-aam-add, limit), where:

dynamic aam add is the starting address of the memory to be initialized
limit is the ending address of the memory to be initialized

The function returns dynamic-aam, the starting address of the initialized memory.

Called By: cig-config

Routines Called: none

Parameters: WORD dynamicaam add
WORD limit

18

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: dynamicaam

2.2.1.2 bbnctype.c

bbnctype is a runtime library that defines control characters, punctuation, digits, and
alphas. This file is not currently used.

Called By: none

Routines Called: none

Parameters: none

Returns: none

2.2.1.3 cigconfig.c

The functions in the cigsconfig.c CSU initialize and manage the configuration tree. These
functions are:

• cig-config
" initconfigtree
* free_configtree

2.2.1.3.1 cigconfig

The cig-config function is the CIG configuration message handler. It is responsible for
setfing up the configuration tree before runtime. cig-config is called by dbrmccsetup (in
the Real-Time Processing component of UPSTART) when the CIG Control message from
the Simulation Host specifies CCIG_CONFIG.

The function call is cigconfig(state), where state is the current state of the CIG system
(CCIGCONFIG). cigsconfig does the following:

" Calls systemaam_init to initialize and set up a pointer to the system section of
active area memory.

• Calls dynamic-aam_init to initialize and set up a pointer to the dynamic section of
active area memory.

• Calls initconfigtree to initialize a new configuration tree and get pointers to the tree
and its associated structures.

" Calls aam-malloc to allocate 16 view mode words and the daylight TV thermal
word (dtvthermword).

• Initializes the calibration modifier.
• Loads the reconfiguration data that goes into double-buffered active area memory

into DBO.

19

BBN Systems and Technologies 120TXiT CIG HOST CSCI

• Calls makecaloverlay to create the calibration overlay.
" Initializes agLwanted to false. This flag can be set true by the Simulation Host to

enable AGL (above ground level) processing. If AGL processing is enabled via the
MSGAGL_SETUP message, the simulated vehicle's altitude above ground level
is calculated and returned to the Simulation Host every frame.

* Processes each configuration message received from the Simulation Host in turn
(see table below).

" When a CIG Control-Stop message is received, returns a pointer to the top of the
newly created configuration tree to db_rmc_setup.

The following table summarizes the processing performed by cig-config in response to
each valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by cig-config to process the
message.

Message from SIM Host Processing by cig_config

MSGAGLSETUP Toggles AGL processing onloff.
Sets aglwanted in global memory.

MSG.AMMO_DEFINE Define ammunition maps.
Sets ammo.map in global memory.

MSGCIGCTL Causes a transition to another performance state.
C_NULL No action.
C_STOP Calls fil_tree; calls dtpscompiler, copies reconfigurable

viewport data from DBO to DB 1; returns a pointer to the top
of the configuration tree to db mccpsetup.

MSG_CREATECONFIGNODE Creates a configuration tree node entry.
Calls confignode._setup.

MSGDR 11_PKTSIZE Specifies exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSGEND Signals end of packet buffer.
Calls EXCHANGEDATA to send output and receive input
buffers.

MSG GENCONFIGTREE Not currently implemented.

MSGOVERLAYSETUP Places overlays on specified viewports.
Calls overlay-setup.

MSGVIEW_FLAGS Sets system view flags (on/off, daylight7V, etc.).
Calls process.vflags.

MSG-VIEWPORTSTATE Defines all viewport parameters.
Calls viewport setup.

Called By: dbmcc__setup

Routines Called: aamn_malloc
confignode-setup
dtp-compiler
dynamic_aam_init

20

BBN Systems and Technologies 120TX/T CIG HOST CSCI

EXCHANGEDATA
*fill tree

initconfigtree
makecaloverlay
overlay-setup
printf
process.yflags
read
return-aamikptr
sc_pend
sc_post
SYSERR
systemaam_init
viewport-setup
write

Parameters: INT_2 state

Returns: top-ofconfigtree

2.2.1.3.2 init-configtree

The initconfigtree function initializes memory and pointers for the configuration tree. This
function is called by cig-config before it begins processing messages from the Simulation
Host.

The function call is init.configtree(n nodes, n_views, npaths), where:

n nodes is the number of configuration nodes in the tree
n views is the number of viewport parameter entries in the tree
nJpaths is the number of graphics path entries in the tree

initsconfigtree does the following:

* Allocates memory for the configuration tree, for the number of nodes requested.
- Allocates memory for the viewport positions array and stores a pointer to it in

child_ptr[l] of the root configuration node. The viewport positions (vppos) array
stores the current location of the simulation vehicle.

* Sets up an array for the system view flags and branch values, and stores a pointer
to it in the branch value pointer of the root configuration node.

* Allocates memory for the viewport parameters, based on the number of entries
requested.

* Calls viewportjinit to initialize the viewport parameter variables.
* Allocates memory for the graphics path parameters, based on the number of entries

requested.

The function returns 1 if the configuration tree was initialized successfully. It returns 0 if
memory could not be allocated for the tree or for any of the structures.

Called By: cig-config

21

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: aammalloc
calloc
viewportinit

Parameters: WORD nnodes
WORD nviews
WORD n-paths

Returns: 1 (SUCCEED)
0 (FAIL)

2.2.1.3.3 freeconfigtree

The freeconfigtree function deallocates memory and pointers for the configuration tree,
including the viewport and graphics path structures. This function is called by
dbmccsetup (in the Real-Time Processing component) after a real-time simulation has
ended.

The function call is free configtreeo.

Called By: db_mccsetup

Routines Called: free

Parameters: none

Returns: none

2.2.1.4 concat mtx.c

The concat_mtx function generates DTP-style matrices from the matrices provided by the
Simulation Host, and loads the matrices into active area memory. This function is called by
confignode-setup to generate and load the initial matrix for each matrix node during
viewport configuration. It is called by simulation to update dynamic matrices during
runtime if any of the following messages is received from the Simulation Host:
MSGROT2xlMATRIX, MSG_RTS4x3_MATRIX, MSGHPRXYZSMATRIX,
MSGTRANSLATION, MSG_SCALE, MSGIROTATION, or MSG_3ROTATIONS.

The function call is concatmtx(config node, matrix, db), where:

config node is a pointer to the configuration node
matrix is the original matrix
db is the double-buffer memory current base pointer

22

BBN Systems and Technologies 120TX/T CIG HOST CSCI

concat_mtx does the following:

•" Determines the Simulation Host matrix type (RTS4x3, ROT2xl, or RTS3x3).
" Unpacks the Simulation Host matrix.
• For an RTS4x3 matrix:

- Calls mtxcpy to copy the new matrix.
• For an ROT2x1 matrix:

- Determines which axis the matrix is to be rotated along.
- Updates the matrix's rotation values.

" For an RTS3x3 (HPRXYZS) matrix:
- Calls id_4x3mtx to create an identity matrix.
- Determines the concatenation order specified in the message.
- Performs the concatenation in the specified order.

scale - Calls id_4x3mtx, calls scalemtx, calls getmatrix.
heading - Calls id_4x3mtx, calculates costheta and sintheta, calls

rotate_z_nt, calls getmatrix.
pitch - Calls id_4x3mtx, calculates costheta and sin_theta, calls

rotate_x-nt, calls getmatrix.
roll - Calls id_4x3mtx, calculates costheta and sintheta, calls

rotatey.nt, calls getmatrix.
translate - Calls id_4x3mtx, calls translate, calls getmatrix.

* Calls mtxcpy to load the new or modified matrix into active area memory.

If an error is detected, concat_mtx sets err-code to TRUE.

Called By: confignode-setup
simulation

Routines Called: getmatrix
id_4x3mtx
mtxcpy
mult_4x3mtx
r4mat_dump (in debug mode only)
rotate_x_nt
rotatey-nt
rotate_z_nt
scale_mtx
translate

Parameters: CONFIGURATIONNODE *config-node
MTXUNION matrix
INT_4 db

Returns: errcode

23

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1.5 confignodesetu p.c

The confignode-setup function creates and initializes node entries in the configuration tree.
confignode.setup is called by cigconfig if the message from the Simulation Host is
MSG_CREATE_CONFIGNODE.

The function call is confignode setup(imsg, topofconfigtree,
viewportparams, pathparams, db), where:

imsg is a pointer to the message (MSGCREATECONFIGNODE)
topof configtree is a pointer to the configuration tree's root node
viewport.parans is a pointer to the viewport parameters
path_params is a pointer to the graphics path parameters
db is the double-buffer memory current base pointer

confignode-setup does the following:

* Sets up all configuration tree-related pointers.
" If configuring the root node:

- Resets the vehicle id to 0.
" Initializes the parent index to an invalid value (-1).
* Loads the parent pointer into the configuration tree node.
" If configuring a child of a conditional node:

- For the false child, loads a pointer to it in the parent's false pointer slot.
- For the true child, loads a pointer to it in the parent's true pointer slot.

" If configuring a child of a matrix node:
- For an only child, load a pointer to it in the parent's first pointer slot.
- For a child with siblings, sets the youngest sibling's pointer to the new

node.
• If configuring a matrix node:

- Generates the matrix.
- Loads the matrix into active area memory.

* If configuring a conditional node:
- Sets the branch value pointer using the Simulation Host index into the

branch value array. (The address of this array is in the root node's branch
value pointer.)

• If configuring a word/hull matrix node (i.e., a child of the root node):
- Sets the vehicle id.
- Loads the corresponding viewport position into the view positions (vppos)

array.

Called By: cig-config
read_configfile

Routines Called: aam_malloc
concatmtx
mtxcpy
process-vppos
strcpy

24

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: WORD *imsg
CONFIGURATIONNODE *topof_configtree
VIEWPORTPARAMETERS *viewport-params
GRAPHICSPATHPARAMETERS *path-params
INT_4 db

Returns: none

2.2.1.6 fill tree.c

The fill_tree.c CSU contains two functions:

• filltree
* power

2.2.1.6.1 fill-tree

The filltree function sets the graphics path flags in configuration tree nodes, fill'tree is
called by cig__config when the message from the Simulation Host is CSTOP, indicating
that all configuration node messages have been sent.

The function call is fill.tree(graphics path), where grap/ics_path is a pointer to the

P graphics path parameters.

filltree does the following:

* Uses the graphics path entry path id to set a bit in the configuration node path flag.
For example, if the path id is 4, the path flag is set to 0001 0000.

0 Traverses up the configuration tree, setting the path flags in the configuration
nodes.

Called By: cig-config

readconfigfile

Routines Called: power

Parameters: GRAPHICSPATHPARAMETERS *graphics path

Returns: none

2.2.1.6.2 power

The power function raises a base to a power. This function is called by filltree when itp traverses the configuration tree.

25

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is power(tase, n), where:

base is the base to be raised
n is the power

The calculated value is returned as result.

Called By: filltree

Routines Called: none

Parameters: WORD base
WORD n

Returns: result

2.2.1.7 getch.c

The getch function gets a character from a configuration file and returns it as ch.

The function call is getch(fdi), wherefdi is a unique identifier associated with the file. 0
Called By: readconfigfile

REAL4_fscanf
STRINGfscanf
WORDfscanf

Routines Called: cmd

Parameters: INT fdi

Returns: ch

2.2.1.8 matdump.c

The functions in mat_dump.c are used to dump matrices to the standard output (stdout).
These functions are:

• r4matdump
* r8matdump

2
26

BBN Systems and Technologies 120TX/T CIG HOST CSCI

.2.2.1.8.1 r4matdump

The r4mat-dump function dumps a matrix to stdout. This function is called only if debug
mode is enabled.

The function call is r4mat dump(str, mat), where:

str is a string to display (on stdout) to describe the matrix
mat is a pointer to the area of active memory that contains the matrix

Called By: concatLmtx (in debug mode only)
viewspacemtx (in debug mode only)

Routines Called: printf

Parameters: char *str
REAL_4 mat[3][3]

Returns: none

2.2.1.8.2 r8mat dump

The r8mat_dump function dumps a matrix to stdout.

The function call is r8matdump(str, mat), where:

str is a string to display (on stdout) to describe the matrix
mat is a pointer to the area of active memory that contains the matrix

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: char *str
REAL_8 mat[3][3]

Returns: none

27

BBN Systems and Technologies 120TX/T CIOHOST CSCI

2.2.1.9 overlaysetup.c

The overlay-setup function is a message handler that sets up calibration, Ml and M2
gunner overlays, and M1 and M2 gun barrel overlays. It also generates DTP code for the
overlays. overlay-setup is called by cigconfig when the message from the Simulation
Host is MSG_OVERLAYSETUP.

The function call is overlay setup(pmsg, pview), where:

pmsg is a pointer to the MSG_OVERLAYSETUP message
pview is a pointer to the viewport parameters

overlay-setup does the following:

" Calls make_mloverlays or make_mn2_overlays to create the gunner and gun barrel
overlays.

* Inserts the gun barrel data into the viewport parameter nodes.

Overlays are hard-coded displays of three-dimensional polygons that are displayed on a
viewport, super-imposed over the view of the terrain. The overlay shows non-terrain
objects that would normally be seen when looking outside the vehicle's window. For
example, gun overlays show those parts of the simulated vehicle that would be visible from
the window, obscuring the view of the terrain. Gunner overlays show cross-hairs and
numerical readouts of simulation parameters.

Any node that has viewport parameters and has bit 0 of the node's branch mask set has the
gunner's overlay placed on the viewport. Similarly, any node that has viewport parameters
and has bit 1 of the node's branch mask set has the gun barrel added to its processing.

Gunner, gun barrel, and calibration overlays are used by the 120T CIG only. Overlays on
the 120TX are generated through the 2-D overlay compiler.

Called By: cigconfig

Routines Called: makemloverlays
make m2-overlays
printf

Parameters: MSGOVERLAYSETUP *pmsg
VIEWIPORTPARAMETERS *pview

Returns: none

2.2.1.10 process vflags.c

lhie processvflags function processes system view flags and branch values for conditional
nwies. This function is called when the message from the Simulation Host is S

28

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* MSGVIEWFLAGS. It is called by cig-config to put the initial view flags in the
configuration tree, and by simulation to update the view flags during runtime.

System view flags are used to turn CRT monitors on and off, and to control viewing
modes such as thermal/daylight TV. The branch values indexed by the branch index for all
conditional nodes in the configuration tree are also stored in the system view flags array.

The function call is process_vflags(imsg, top_of_configtree, db), where:

imsg is a pointer to the MSG_VIEWFLAGS message
top of configtree is a pointer to the root configuration node
db is the double-buffer memory current base pointer

processvflags the following:

* Sets up the view modes for DTP.
• If a Force board is present, puts the name of the new color lookup table in Force

memory. (The table is downloaded to GSP memory by the forcetask.)
" Processes the view flags and branch values.
* Loads the view flags into the T&C (Timing and Control) board.
* If a Force board is present, puts the video control commands in Force memory.

(These commands are downloaded to GSP memory by the forcetask.)

Called By: cig-config
read-configfile
simulation

Routines (,d: none

Parameters: CONFIGURATIONNODE *topofconfigtree
14P imsg
INT_4 db

Returns: none

2.2.1.11 processvppos.c

The process.yppos function sets up the simulated vehicle's position (the x, y, and z
coordinates of its centroid) in the world. This position is used by rowcolrd to determine
whether new load modules need to be read into active area memory. It is also used by
localterrain when preparing local terrain messages for the Simulation Host.

This function is called by confignode setup when creating a world/hull matrix node (a child
of the root node). It is also called by simulation whenever a word/hull matrix node is
updated (e.g., in response to a matrix message).

The function call is processvppos(confignode, matrix, db), where:

confignode is a pointer to the configuration node (always a world/hull node)

29

BBN Systems and Technologies 120TX/T CIG HOST CSCI

matrix is the node's new matrix
db is the double-buffer memory current base pointer

The simulated vehicle's position is stored in an array. This structure allows for multiple
vehicles. At the current time, only one simulation vehicle is supported; therefore, there is
only one element in the array. The viewport positions array is pointed to by the root node's
sibling pointer.

process.vppos takes the matrix provided by the Simulation Host and converts it into world
coordinates. The algorithm used to do this depends on the matrix type, as follows:

RTS4x3 TYPE
Given a world-to-view matrix of:

I rOO rOl r02 0 I
I riO rl r12 0 I
I r20 r21 r22 0 i
I tx ty tz 1 I

The location of the vehicle in the world is:
vppos.x = -(tx,ty,tz)*(rOO,rO1,rO2)
vppos.y = -(tx,ty,tz)*(r1Orl,rl2)
vppos.z = -(tx,ty,tz)*(r2Or2l,r22)

RTS3x3 TYPE
The l6cation of the vehicle in the world is:

vppos.x = viewpos->x = matrix.rts3x3.translation.x
vppos.y = viewpos->y = matrix.rts3x3.translation.y
vppos.z = viewpos->z = matrix.rts3x3.translation.z

ROT2x1 TYPE
No conversion is required.

Called By: confignode-setup
simulation

Routines Called: none

Parameters: CONFIGURATION_NODE *config-node
MTXUNION matrix
INT_4 db

Returns: none

2.2.1.12 read configfile.c

The functions in readconfigfile.c repackage configuration file data into SIM-to-CIG
messages. This allows a configuration tree to be built from commands in an ASCII file
instead of messages from a Simulation Host. The ASCII file is created off-line and loaded
onto the CIG.

30

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The functions in readconfigflle.c are:

" readconfigfile
* WORDfscanf
" REAL4_fscanf
• STRINGfscanf
" parser

readconfigfile is the driving function. The other functions are used by read-configfile to
interpret the data in the configuration file.

Note: The MSGGENCONFIGTREE message, which would cause
readconfigfile to be invoked, is not currently implemented.
Therefore, none of the functions in read configfile.c are currently
used.

An ASCII configuration file can be read by flea_init-cigsw (in the
Flea CSC)for stand-alone use.

2.2.1.12.1 readconfigfile

The readconfigfile function reads data from the configuration file and transforms it into
SIM-to-CIG messages.

The function call is read configfile(filename), wherefilename is the name of the
configuration file.

read configfile does the following:

" Opens the specified file.
• Builds the Simulation Host-type message packet.
" Processes each node message; calls confignode-setup to create each node entry.
* Processes each viewport parameter message; calls viewport-setup to create each

viewport entry.
" Processes the view flags message; calls processvflags to create the view flags and

the branch value array.
* Closes the file.
* Calls filltree to add the graphics path parameters to the tree.

The function returns 1 (SUCCEED) if the file is read and translated successfully. It returns
NULL if the specified file could not be opened.

Called By: none

Routines Called: close
confignode-setup
fill_tree
getch
parser
processvflags

31

BBN Systems and Technologies 120TX/T CIG HOST CSCI

REAAfscanf
STRING_fscanf
viewporLtsetup
WORD fscanf
XOPEN

Parameters: char filename

Returns: err_code

2.2.1.12.2 WORD fscanf

The WORD_fscanf routine searches a file character-by-character looking for a digit. When
it finds a digit, it returns the number (WORD type) to which the digit belongs.

The function call is WORD fscanf(hex flag, fp), where:

hexflag identifies the type of digit (DECIMAL or HEX)
fr is a unique identifier associated with the file to be read

Called By: readconfigfile

Routines Called: getch
isdigit
isspace
string to-int

Parameters: INT_4 fp

BOOLEAN hexflag

Returns: word

2.2.1.12.3 stringtoint

The string-to-int routine converts a character string to an integer, then returns the result.

The function call is stringtoint(hexflag, string), where:

hexflag identifies the type of result desired (DECIMAL or HEX)
string is the string to be converted

Called By: WORDfscanf

Routines Called: isdigit

32

BBN Systems and Technologies 120TX/T CIG HOST CSCI

updatefov does the following:

" Calculates the field-of-view/graphics path and the level-of-detail multiplier.
* Determines which double buffer is being updated this frame.
* Loads the level-of-detail multiplier.
* Initializes values required for the viewspace matrices.
" Calculates each graphics path's sin i and cos i. (These values are required for

viewspace matrix calculations.)
* Calls viewspace_mtx to set up the perspective and non-perspective matrices.
* Loads the field-of-view vectors.

Called By: simulation
viewport-setup

Routines Called: cos
sin
tan
viewspace-mtx

Parameters: CONFIGURATION_NODE *config-node
REAL_4 SIM_lod
REAL_4 fov_i
REAL_4 fov_.
INT_4 db

Returns: none

2.2.1.13.2 viewspace_mtx

The viewspace_mtx function generates perspective view matrices for use by the Polygon
Processor, and non-perspective view matrices for use by DTP.

The function call is viewspace mtx(cos_i, sin_i, itan i, itanj, perspect_mtx,
nperspectmtx), where:

cos i is the cosine of the graphics path
sin i is the sine of the graphics path
itan i is the inverse of the tangent of the fov angle i (horizontal)
itanj is the inverse of the tangent of the fov angle j (vertical)
perspect mx is a pointer to the perspective view matrix
nperspect_mix is a pointer to the non-perspective view matrix

If load module blocking is enabled, viewspace_mtx scales perspective matrices for the
larger active area memory.

Called By: update_fov

35

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: getmatrix
id_4x3mtx
make.pjnt
r4maLdump (in debug mode only)
rotate_z_nt
swap-axis

Parameters: REAL_4 cos_i
REAL_4 sini
REAL_4 itan_i
REAL_4 itanj
MATUNIT *perspectmtx
MATIUNIT *nperspect-mtx

Returns: none

2.2.1.14 update rez.c

The update-fez function updates the screen resolution in the graphics path parameter
structures if a new value is provided by the Simulation Host during runtime.

The function call is update rez(config node, db), where:

confignode is a pointer to the configuration node
db is the double-buffer memory current base pointer

Called By: viewport-setup

Routines Called: none

Parameters: CONFIGURATION_NODE *config-node
INT_4 db

Returns: none

2.2.1.15 vec-dump.c

The functions in the vecjdump.c CSU can be used to dump vectors to the standard output
(stdout). These functions are:

• r4vecjdump
* r8vec-dump

36

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1.15.1 r4vec_dump

The r4vec_dump function dumps a vector to stdout.

The function call is r4vec dump(str, v), where:

sir is a string to output to identify the vector (currently undefined)
v is the vector

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: char *str
REAL_4 v[3]

Returns: none

. 2.2.1.15.2 r8vecdump

The r8vecdump function dumps a vector to stdout.

The function call is r8vec dump(str, v), where:

str is a string to output to identify the vector (currently undefined)
v is the vector

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: char *str
REAL_8 v[3]

Returns: none

37

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1.16 viewportsetup.c

The functions in the viewport_setup.c CSU are used to create viewport parameter entries in
the configuration tree. These functions are:

" viewportsetup
" calc-paths
* viewportinit

2.2.1.16.1 viewportsetup

The viewport_.setup function creates and initializes the viewport parameter entries for the
terminal nodes in the configuration tree. viewporLsetup is called by cig-onfig when the
message from the Simulation Host is MSG_VIEWPORT_STATE.

The function call is viewport setup(imsg, top of configtree,
top of view entries, top_of path_entries, db), where:

imsg is a pointer to the MSGVIEWPORTSTATE message
top ofconfigtree is a pointer to the configuration tree
top-of viewentries is a pointer to the viewport parameters
topoffpathentries is a pointer to the graphics path parameters
db is the double-buffer memory current base pointer

viewport-setup does the following:

" Sets a pointer to the owner configuration node.
" Unpacks the message packet from the Simulation Host.
• Sets up a pointer to the viewport positions array.
" Calls calcpaths to determine how many graphics paths are needed, based on the

viewport resolution.
• Sets up a local graphics path counter.
• Updates the path count if processing a new viewport.
• Makes sure enough graphics paths are available.
* Calculates the horizontal and vertical field-of-view angles for each graphics path.
* Calculates the screen resolution for each graphics path.
* Loads AAM addresses for the level-of-detail multiplier, viewing range (farthest

distance that can be seen), and near plane (closest distance that can be seen).
* Fills in the viewport entry pointer, sibling pointer, path id, and AAM address to

field-of-view vectors in the graphics path entries.
* Calls updatejfov to fill in the fields related to field of view.
• Updates the viewport and graphics path entry indices.

The function returns 1 if the viewport parameters are added to the configuration tree
successfully. It returns NULL if there are not enough graphics paths available.

Called By: cig-config
read configfile

38

BBN Systems and Technologies 120TX/T CIG HOST CSCI

40 isxdigit

Parameters: char string[]
BOOLEAN hexflag

Returns: result

2.2.1.12.4 REAL4 fscanf

The REAL_fscanf routine searches a file character-by-character looking for a digit. When
it finds a digit, it returns the number (REAL,_4 type) to which the digit belongs.

The function call is REAL4.fscanf(fp), wherefp is a unique identifier associated with
the file to be read.

Called By: readconfigfile

Routines Called: atof
getch
isdigit

Parameters: INT_4 fp

Returns: real4

2.2.1.12.5 STRING fscanf

The STRING_fscanf routine searches a file character-by-character looking for a lower- or
uppercase alphabetic character. When it finds a legal character, it returns the string to
which the character belongs.

The function call is STRINGfscanf(fp, string), where:

fk is a unique identifier associated with the file to be read
string is a pointer to the returned string

Called By: readconfigfile

Routines Called: getch
isalpha

Parameters: INT_4 fp

char string[]

33

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.2.1.12.6 parser

The parser function parses a configuration file for the configuration messages used by
readconfigfile to build the corresponding configuration tree. The function returns the next
message from the configuration file. Usually, it determines the message from reading just
the first character, it reads additional characters if necessary.

The function call is parser(fp), whereff is a unique identifier associated with the
configuration file.

Called By: readonfigfile

Routines Called: STRINGfscanf

Parameters: INT_4 fp

Returns: cmd_line

2.2.1.13 update fov.c

The functions in update_fov.c fill in the field-of-view (fov) fields in the graphics path
parameters and the viewport parameter entries. They also generate perspective and non-
perspective view matrices. These functions are:

• updateifov
" viewspace_mtx

2.2.1.13.1 update fov

The update fov function fills in the fov-related fields in the graphics path parameters and
the viewport parameter entries. This function is called by viewport-setup during viewport
configuration. It is also called by simulation to change field-of-view parameters during
runtime.

The function call is updatefov(confignode, fovi, fovj, SIM_lod, db),
where:

confignode is a pointer to the configuration node
fovi is the horizontal field-of-view angle
fov~j is the vertical field-of-view angle
SIM lod is the level-of-detail multiplier to be applied to all non-terrain objects
db is-the double-buffer memory current base pointer

34

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: aammalloc
cac_paths
mtxcpy
update_fov
updaterez

Parameters: WORD *imsg
CONFIGURATIONNODE *topofsconfigtree
VIEWPORTPARAMETERS *topof_viewentries
GRAPHICSPATHPARAMETERS *top-ofipathentries
INT_4 db

Returns: NULL
I (SUCCEED)

2.2.1.16.2 calcpaths

The calcpaths function calculates how many graphics paths are required. For the 120TX,
this is based on the desired viewport resolution.

The function call is calcpaths(resolution_i, resolutionj), where:

resolution i is the number of pixels to display per row (horizontal)
resolutionj is the number of pixels to display per column (vertical)

The function returns the number of graphics paths required.

Called By: viewportsetup

Routines Called: none

Parameters: REAL_4 resolutioni
REAL_4 resolutionj

Returns: graphicspaths

2.2.1.16.3 viewportinit

The viewport_init function resets all static variables used by the viewport-setup function.
These variables are the graphics path count, view entry index, path entry index, and
maximum graphics paths count. This function is called by init-configtree before
viewport-setup is called by cigsconfig.

The function call is viewportinito.

39

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: initconfigtree

Routines Called: none

Parameters: none

Returns: none

S

400

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.2 DTP Command Generator

The DTP (Data Traversal Processor) Command Generator translates the viewport
configuration tree generated by the real-time software into the commands required to drive
the graphics hardware. It generates DTP hardware commands (processor and channel
initialization code) from the viewport configuration tree, then downloads these commands
to the DTP CPU. The DTP then determines what data is to be sent to the 9U graphics
channel.

The DTP is a micro-coded processor board that does the following:

" Looks through active area memory for DTP commands.
" Computes viewpoint positions for vectors.
* Computes world-to-viewpoint matrices for each viewport.
• Performs field-of-view and level-of-detail tests on models and special effects.
• Sends data to the Polygon Processor.

The Polygon (Poly) Processor is a special-purpose floating point processor that does the
following:

" Transforms polygons from world coordinates to viewspace coordinates.
* Eliminates back-facing polygons.
* Clips polygons that fall partially outside of the viewing pyramid.
* Fills polygons with colored or textured pixels.
• Perspectively projects polygons onto the screen.

The DTP is controlled through the DTP commands it finds in active area memory. These
commands are placed in active area memory by the DTP Command Generator. The DTP
reads one buffer in double-buffer memory while the real-time software updates the other.
Each frame, the two processes switch buffers.

The DTP Command Generator uses the Runtime Command Library (RCL) to generate DTP
commands. The RCL is a set of software functions that support the configuration of lists
of runtime commands for both the DTP and the Poly Processor. The RCL is responsible
for working with the complex data structures in the DTP - the DTP Command Generator
simply specifies the command and provides the data required for the command. The RCL
also maintains addressing and data sizing information.

The interface between the DTP Command Generator functions and the RCL is implemented
via command-specific macros. Each DTP command is supported by one or more macros.
These macros are named in the form dtp xyz, where xyz identifies the DTP command or a
version of a command. Similarly, macros that support Poly Processor commands are
named in the form poly_xyz. The DTP Command Generator function calls the appropriate
macro and passes it the data required for the selected command. The macro in turn calls the
appropriate RCL routine and passes it the command parameters. The RCL routine then
generats the actual DTP command and places it in active area memory.

The DTP-RCL macros are defined in the rcinclude.h file. Refer to Appendix B for a list of
these macros.

Figure 2-5 identifies the CSUs in the DTP Command Generator component of the
UPSTART CSC. These CSUs are described in this section.

41

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Task Initialization

Forcoeak Dataas
Balli cs Ite s tat a IFlea

Proesn Feedback mn

Database
Ree-lmeViewport Trversal2D o Cofigu Processor

Generator

dip omrpiler.c
dtpjuncs.c
dlpjravl.c
dtpjrmv2.c
rcluncs.c

Figure 2-5. DTP Command Generator CSUs

2.2.2.1 dtpcompiler.c

The dtp....ompiler function is the driving function for generating DTP hardware commands
from the viewport configuration tree.

The function call is dtp compiler(root, offset), where:

root is a pointer to the configuration node

offset is the number of bytes of DTP code

dtp-dompiler does the following:

* Initializes the runtime command library (RCL).
* Allocates data pointers for model processing.
* Initializes the DTP stack.
" Calls dtp-travd to traverse the configuration tree for processor initialization.

F Runs the RCL patch utility to patch any missing addresses and word counts.
T Reinitializes the RCL and DTP stacks.
r Calls dtptrav2 to traverse the configuration tree for channel initialization.
• Runs the RCL patch utility again.

42

BBN Systems and Technologies 120TX/T CIG HOST CSCI

• Prints DTP memory use data.

The function returns 1 if the commands are generated successfully, or 0 if either dtptravl
or dtp trav2 fails.

Called By: cig.config

Routines Called: dtpjtrav I
dtpjrav2
iniLdtp-stacks
printf
rclinit_adrs
rcl_nit_stack
rcl-patch-adrs
rcl rtnadrs
rcl-set-errptr

Parameters: CFGNODE *root
WORD offset

Returns: 0 (FAIL)
1 (SUCCEED)

2.2.2.2 dtp-funcs.c

The functions in the dtpjuncs.c CSU are called by dtp.travl to (1) manage the node stack
it uses to traverse the configuration tree, and (2) allocate DTP user memory. These
functions are:

* pushnode
* pop-node
* whatnodeonstack
* initdtp-stacks
" dtp-malloc
* dtpmallocinit

2.2.2.2.1 push-node

The push node function takes a configuration node pointer as input and places it on the
stack. It also checks for and reports node stack overflows.

The function call is push node(node ptr), where nodeptr is a pointer to the
configuration node to be pushed on the top of the stack.

Called By: dtptrav 1

43

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: printf

Parameters: CONFIGURATIONNODE *node-ptr

Returns: none

2.2.2.2.2 popnode

The popnode function returns the configuration node pointer from the top of the stack. If
the node stack is empty, pop-node returns 0; this tells dtp_travl that the stack has been
processed completely.

The function call is popnodeo.

Called By: dtp_trav 1

Routines Called: none

Parameters: none

Returns: node stack pointer
0

2.2.2.2.3 what node on stack

The whatnode_onstack function returns the node index of the node on top of the stack.

The function call is whatnodeon stack(empty), where empty is the value to be
returned if the stack is empty.

Called By: dtptrav 1

Routines Called: none

Parameters: WORD empty

Returns: nodeindex
empty

44

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.2.2.4 init-dtp_stacks

The init.dtpstacks function initializes the DTP stack pointers to the top of the stack.

The function call is initdtpstakso.

Called By: dtpspompiler

Routines Called: none

Parameters: none

Returns: none

2.2.2.2.5 dtpmalloc

The dtp-malloc function allocates DTP memory. This function is called by dtp-trav 1 to
allocate memory for configuration node matrices.

The function call is dtpmalloc(count), where count is the amount of memory to be
allocated.

The function returns 0 if successful. It returns the current DTP user pointer (as giveaway)
if insufficient memory is available.

Called By: dtptravl

Routines Called: none

Parameters: INT_2 count

Returns: 0
give-away

2.2.2.2.6 dtp malloc init

The dtp-maocinit function initializes the portion of DTP allocated as user space. It sets
the DTP user pointer to the first available memory location, which is defined in
ecompilerl.h. dtp-travl calls this function before it starts traversing the configuration tree.. The function call is dtpmalloc inito.

45

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: dtpjravl

Routines Called: none

Parameters: none

Returns: none

2.2.2.3 dtptravl.c

The dtp.tavl function function traverses the configuration tree to generate processor
initialization codes. It traverses each node in the configuration tree by placing the root node
on the stack and then processing the stack until it is empty. When a node is popped from
the stack, any matrix concatenation commands or bit tests are performed for that node,
based on the node's type. The node's children and siblings are then placed on the stack
such that the order of processing is the node, the node's children, and the node's siblings.

dtptravl uses the routines in dtpjfuncs.c to access and manage the node stack. It uses the
dtp_* macros (defined in Appendix B) to communicate with the RCL to generate the actual
commands for the hardware.

The function call is dtptravl(node), where node is a pointer to the root configuration
node. dtp-travl does the following:

" Calls dtp.mallocinit to initialize the DTP user space.
• Uses various dtp_* macros to load the followitg:

- Channel status and channel pointers at DTP location 0.
- List of final processing.
- Flush and dynamic pointer tables.
- Calibration branch mask.
- Cloud bottom and top branch masks (if enabled).
- Daylight TV thermal word.
- View mode word for each channel.
- System view flags and branch values.
- Current time set in simulation.

* Processes each node in the tree to generate the matrix concatenations and bit tests
for each path, as follows:

- Calls pushnode to push the root child 0 on the stack.
- Calls popnode to pop each node from the stack in turn.
- Calls rclsetlabel to set a label for the node.
- Validates the node's parent pointer.
- For a matrix node:

* Allocates DTP memory for the node's matrix.
* Concatenates the matrix with the parent's matrix.

- For a branch/matrix node:
* Test the node's branch value.
* Allocate DTP memory for the node's matrix.
* If the branch value is true, load the node's matrix or concatenate it

with the parent's matrix.

46

BBN Systems and Technologies 120TX/T CIG HOST CSCI

If the branch value is false, load the parent's matrix.
- For a branch (conditional) node:

* Test the node's branch value.
* Load the parent's matrix.

- Push the node's siblings and children onto the stack.
, Performs initial data traversal.
, Prepares system post-processing pointers and displays the post-processing

addresses for static vehicles, dynamic vehicles, and effects.
, Allocates space for the current time to support time-base commands.
* Calls rcLdata to generate a command to indicate a separation of initialization and

channel processing.

The function returns 1 if successful. It returns 0 if it detects an illegal parent pointer or an
invalid node type.

Called By: dtp-ompiler

Routines Called: dtp_bnz
dtp-bru
dtp_brus
dtpend
dtplwd
dtp_lwds
dtp_malloc
dtpmallocinit
dtp.mmpstdtp mwd
poly-flu
pop-node
printf
pushnode
rcl-data
rcl-rtnadrs
rcLset-errptr
rcLset-label
whatnode-on stack

Parameters: CONFIGURATION_NODE *node

Returns: 0
1

2.2.2.4 dtptrav2.c

The dtp_trav2 function traverses the configuration tree to generate channel initialization
codes.

The function call is dtp trav2(node), where node is a pointer to the root configuration
node. dtp_trav2 does the following:

47

BBN Systems and Technologies 120TX/T CIG HOST CSCI

" Saves the beginning path location.
" For a branch (conditional) node:

- Tests the condition.
- Traverses the true path.

" For a matrix node that is the terminal node in a traversal path (i.e., a node that has
viewport parameters):

- Calculates the channel base address.
- Loads the channel parameters, field-of-view vectors, viewpoint position,

level-of-detail multiplier, and far plane.
- Multiplies the hull-to-view matrix for DTP use.
- Calculates bounding plane normals.
- Calculates the base load module.
- Outputs the channel toggle command if the channel is secondary.
- Outputs the perspective matrix.
- Outputs the screen constants.
- Tests for calibration output for all screens.
- Outputs the gun overlay if bit 0 of the node's branch mask is set.

* For the root node:
- Saves the matrix and forms the stamp word.
- Calls the cloud top and bottom models, if enabled.

" Pre-processes models:
- Creates output direct for the node's matrix.
- Outputs the gun barrel overlay if bit 1 of the node's branch mask is set.
- For a branch node, sets the branch mask.

" Prepares the system pre-processing pointers and displays the pre-processing
addresses for dynamic vehicles, static vehicles, and effects.

" Saves common poly command data.

The functic! always returns 1.

Called By: dtpscompiler

Routines Called: dtp_bhn
dtpbnz
dtp_bpc
dtp_bru
dtpbrus
dtp-brz
dtpend
dtp_lwds
dtpjmmpst
dtposd
dtpowd
dtpowds
dtpsubs
polyfsw
poly1ml
poly-sml
poly-tog
printf
rcl rtnadrs

48

BBN Systems and Technologies 120TX/T CIG HOST CSCI

rcl seLerrptr
rcl_set-label
rcl stuffdata

Parameters: CONFIGURATIONNODE *node

Returns: 1

2.2.2.5 rcfuncs.c

The functions in the rcfuncs.c CSU are used to work with the Runtime Command Library
(RCL). These functions are:

* rcl mitstack
" rcl push
• rcl-pop
• rcl-patchadrs
" rcLseLerrptr
* rclinitLadrs
" rcl-rtnadrs
• rcl_set-label
* rcl_set-cntlbl
* rcl_Iblcmd
* rclcommand
* rclcomponent
" rcl_data
" rcl_stuff_data

This CSU also defines the following macros used by the RCL functions. These macros are
described in Appendix B.

• ERRMSG
* ROOM4LABEL
* ROOMCHECK
" INCRCOMPONENT

The RCL labeling utility removes the need for the programmer to maintain addressing and
data size information as a command sequence is constructed. The programmer can write
runtime code and label only data that is unknown. All labels (defined as single-integer
values) must uniquely identify one location in the code. As the library generates the
runtime commands, it places any unknown information onto a patch stack. When the
library encounters a label, it stores the location of the label for use in patching the stack.
The rcl-patchadrs function scans the list of unknown data and patches the missing
addresses and word counts.

Use of the patching utility requires a stack area for maintaining the unresolved addresses,
counts, and labels. The rclinitstack function is used to initialize the stack.

Most labels are used to identify a location in active area memory. Some labels are branch
labels where DTP branch commands change the direction in which the DTP is processing
messages. DTP output commands reference a location where the data begins. For these

49

BBN Systems and Technologies 120TX/T CIG HOST CSCI

commands, the calling function specifies a unique label to identify the branch of output
data, and uses the rcl_set-label function to identify the location. These locations are
patched with the supplied addresses when the rcl-patchadrs function is executed.

Set count labels are labels that are used to identify the size of a data segment rather than the
location of command data.

The DTP has several output commands that require a word count value in order for the
DTP to pass the correct amount of data to the Poly Processor. Usually, there are two ways
to accomplish this:

" If the exact amount of data that can be sent is known, the DTP output command
using the function that has data start label and word count parameters can be used.

" If the data size is not known, the command can be implemented using the set count
function. Rather than specifying a word count for the command, a set count label is
defined. When generating the data, rclset-label is executed to identify the
beginning of the data. After generating the data, rcl.setcndbl is executed to
specify the start and end labels, and the set count label is loaded with the word
count of the data segment. When rcLpatch.adrs is executed, the output count is
patched with the data segment size.

The DTP supports two addressing modes: absolute and relative. In absolute mode, the
address is the actual AAM address for the branch or data. In relative mode, the address is
an offset that is added to the current location to locate the branch or data.

2.2.2.5.1 rciinitstack

The rclinit-stack function initializes the unresolved address, count, and label stack.

The function call is rclinitstack(minstack, maxstack), where:

min stack is the minimum stack address
max-stack is the maximum stack address

Called By: dtpcompiler

Routines Called: none

Parameters: WORD *minstack
WORD *maxstack

Returns: none

2.2.2.5.2 rcl[push

The rcl-push function adds a patch location to the patch stack.

50

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is rcl_push(adr, Ibiadr, name), where:

adr is the physical memory address the patch is to be made in
Ibladr is the physical memory address the label for the patch is in
name is the name of the calling routine

The function returns 0 if successful, or 1 if the stack is full.

Called By: rcl_lblcmd

Routines Called: ERRMSG

Parameters: WORD *adr
WORD *Ibladr
char *name

Returns: 0
1

2.2.2.5.3 rclpop

The rcl-pop function removes a patch location from the patch stack.

The function call is rcl_pop(adr, Ibladr, name), where:

adr is the physical memory address the patch is to be made in
Ibladr is the physical memory address the label for the patch is in
name is the name of the calling routine

The function returns 0 if successful, or 1 if the stack is empty.

Called By: rcl_patchadrs

Routines Called: ERRMSG
printf

Parameters: WORD *adr
WORD *lbladr
char *name

Returns: 0
1

51

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.2.5.4 rclpatchadrs

The rcLpatch-adrs function removes remaining entries from the patch stack one at a time.
It patches the stored location with the associated label location and processes the stack until
it is empty. This function patches both absolute and relative addresses.

The function call is rcl_patch-adrso.

Called By: dtpscompiler

Routines Called: ERRMSG
printf
rcLpop

Parameters: none

Returns: none

2.2.2.5.5 rciset errptr

The rcl set-errptr function can be used to specify a character string to be output with every
RCL error message. This string can help localize the source of the error.

The function call is rci.set errptr(adr), where adr is the error string.

Called By: dtpscompiler
dtp-trav 1
dtp-trav2

Routines Called: none

Parameters: char *adr

Returns: none

2.2.2.5.6 rcl init adrs

The rcl initadrs function initializes values for shared addressing variables.

The function call is rcl init adrs(bld_adr, aamadr, byte-count), where.

bld_adr is the memory location to store the RCL commands

52

BBN Systems and Technologies 120TXIT CIG HOST CSCI

aam adr is the AAM location corresponding to the bid adr
byte-count is the number of bytes available for RCL commands, starting at bld adr

Called By: dtp-compiler

Routines Cald: none

Parameters: WORD *bld adr
WORD aam adr
WORD bytecount

Returns: none

2.2.2.5.7 rcl rtn adrs

The rcl rtn adrs function returns the current values of RCL addressi.ig values, as defined
in init addressing.

The function call is rclrtn.adrs(bld_adr, aamadr, bytecount), where:

bld adr is the address to return the memory location to store the RCL commands
aanmadr is the address to return the AAM location corresponding to the bid adr
byte-count is the address to return the number of bytes available for RCL commands

Called By: dtpsompiler
dtp-trav 1
dtp-trav2

Routines Called: none

Parameters: WORD **bldadr
WORD *aamn_adr
WORD *byte.-ount

Returns: none

2.2.2.5.8 rcl set label

The rcl-set-label function specified that a given label refers to the current location in active
area memory (the location in rclaam_adr).

The function call is rcl set label(label), where label is the label to set with the AAM
location.

53

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: dtp-trav I
dtpjtrav2

Routines Called: ERRMSG
printf
ROOM4LABEL

Parameters: WORD label

Returns: none

2.2.2.5.9 rcl set cntlbl

The rcl_setcntlbl function identifies a section of data for output. The function stores in
cnt label the number of words from the address stored in label to the current AAM address.
Output commands that refer to the set count label cnt_label are patched with this data.

The function call is rclsetcntlbl(label, cnt label), where:

label is a previously set label that identifies the beginning of the data
cnt label is the label associated with an output count

Called By: none

Routines Called: ERRMSG
printf
ROOM4LABEL

Parameters: WORD label
WORD cntlabel

Returns: none

2.2.2.5.10 rclIblcmd

The rcllblcmd function generates a DTP label command.

The function call is rcl lblcmd(name, wd_cnt, id, rel, Ibl), where:

name is a pointer to the name of the calling routine
wd cnt is the total number of words the function will generate for the command
id is the command id value
rel is the relative addressing flag
Ib is the label the command branch value is associated with

54

BBN Systems and Technologies 120TX/T CIG HOST CSCI

. rcllblcmd does the following:

" Calls ROOMCHECK to make sure there is room for the command.
" Calls ROOM4LABEL to make sure there is room for the label.
• Pushes the address and label address on the stack to patch.
• Saves the correct addressing.
" Copies the additional data.
• Updates memory data.

When rcllblcmd places the command location on the stack, rel is stored as the branch data.
rel is set to 90 for absolute addressing, and is set to rcl aam adr for relative addressing.
When patching occurs, this value is subtracted from the patch label to generate the relative
or absolute value.

If wd cnt is greater than 1, the data following Ib on the function stack is appended to the
command.

Called By: dtp-bcn
dtp-bcnr
dtp-bcz
dtp-bczr
dtpjbdgr
dtpjbdlr
dtpbgn
dtp-bgz
dtp-bnz
dtp-bnzr
dtphru
dtporur
dtp-brz
dtp-brzr
dtp-fov
dtp-fovr
dtpgdc
dtp-gdci
dtp.gdcir
dtpgdcn
dtp-gdcnr
dtpgdcr
dtpjmi
dtp-lmir
dtplod
dtp-lodr
dtp-lwd
dtp-lwdr
dtp-osd
dtp-owd
dtp-owdsc
dtp-owr
dtp-owrsc
dtp-sub
dtp-subr

55

BBN Systems and Technologies 120TX/T CIG HOST CSCI

dtp_tbdr
dtptbrr
poly-efs
poly-efsr

Routines Called: rcLpush
ROOM4LATIEL
ROOMCHECK

Parameters: char *name
WORD wd_cnt
BYTE id
WORD rel
WORD lbl

Returns: none

2.2.2.5.11 rcl command

The rclcommand function generates a DTP command with no label.

The function call is rclcommand(name, wd_cnt, id, data), where:

name is a pointer to the routine name
wd cnt is the total number of command WORDs
id irs the command id value
data is the data for the command

rclcommand does the following:

* Calls ROOMCHECK to make sure there is room for the command.
* Copies the data.
• Puts the command id in memory.
* Updates memory data.

Called By: dtp_bcnrs
dtp_bcns
dtp_bczrs
dtp_bczs
dtpjbdgrs
dtp-bdlrs
dtp-bgns
dtp-bgzs
dtp_blm
dtp_bnzrs
dtp_bnzs
dtp-bpc
dtp-bpcx
dtp_brurs

56

BBN Systems and Technologies 120TX/T CIG HOST CSCI

dip-brus
dip-brzrs
dip-brzs
dipjdot
dtp jelm
dip_jend
dip fovrs
dtifovs
dtp-gdcirs
dtp-gdcis
dtp-gdcnrs
dtp...gdcns
dtpgdcrs
dtp...gdcs
dtp-gr
dip jmiirs
dip-lins
dip-lodms
dtiods
dip lwdrs
dipjlwds
dtp-mml
dtp-mmpre
dtp...nipst
dip-mwd
dtpjngc
dip_oio
dip-oos
dip-osds
dip-owds
dip- owo
dip- owrs

dip- subrs
dip- subs
dip-tbc
dip-tbdrs
dip--tbrrs
poly-flu
polyjfsw
poly-lxTnf
polyjsc
poly-nmnf
polyjml,
polyjrm2
poly-nm3
polyjm4
polysm 1
poly-sm2
poly-sm3
poly-sm4
poly-tog

57

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: ROOMCHECK

Parameters: char *name
WORD wdcnt
BYTE id
WORD data

Returns: none

2.2.2.5.12 rcl component

The rcl_component function generates a Poly Processor component command.

The function call is rcl component(name, wdcnt, incr, id, bal, It, data), where:

name is a pointer to the name of the calling routine
wd cnt is the total number of words the function will generate for the command
incris the count increment used to initialize component data
id is the command id value
bal is the Ballistics bit
It is the local terrain bit
data is the first piece of additional data

rcl-component does the following:

• Calls ROOMCHECK to make sure there is room for the command.
• Saves the component pointers for count updates.
• Sets the component id.
* Sets the Ballistics bit if any polygons in the component need to be checked for

Ballistics intersections.
" Sets the local terrain bit if any polygons in the component need to be included in the

local terrain message sent to the Simulation Host.
" If wd cnt is greater than 1, zeroes the second word of the component.
" Copies the additional data.
* Calls INCRCOMPONENT to update the component's word count, polygon

count, and vertex count ir the Poly component.
* Updates memory data.

Called By: poly-bvc
poly-gc
poly-pc
poly-sc
polysci
poly-sec

Routines Called: INCRCOMPONENT
ROOMCHECK

58

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: char *name
WORD wdcnt
WORD incr
BYTE id
BYTE bal
BYTE It
WORD data

Returns: none

2.2.2.5.13 rcl data

The rcldata function provides additional data for a poly component command.

The function call is rcldata(name, wd cnt, incr, data), where:

name is the name of the calling routine
wd cnt is the total number of words the function will generate for the command
incr is the count increment used to initialize component data
data is the first piece of additional data

rcldata does the following:

* Calls ROOMCHECK to make sure there is room for the command.
* Copies the data.
* Updates memory data.
" Calls INCRCOMPONENT to update the component's word count, polygon

count, and vertex count in the Poly component.

Called By: poly-ab
poly-inf
poly-poly
poly.sci
polyrtamp
polyytxe
poly.Ytxl

Routines Called: INCRCOMPONENT
ROOMCHECK

Parameters: char *name
WORD wdcnt
WORD incr
WORD data

Returns: none

59

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.2.5.14 rclstuff data

The rcl_stuffdata function places a specified number of data words found in a specified
location of user memory into successive memory locations. This function is used to add
data to the processing path when no function is available to produce the desired effect.

The function call is rcl stuff data(cpf, wd cnt), where:

cpf is a pointer to the data
wdcnt is the amount of data to copy

rcl_stuff_data does the following:

* Calls ROOMCHECK to make sure there is room for the data.
* Copies the data.
* Updates memory data.

Called By: dtptrav2
polyjmf
poly-mmf

Routines Called: ROOMCHECK

Parameters: WORD *cpf
WORD wdcnt

Returns: none

60

BBN Systems and Technologies 120TX/T CIG HOST CSCI

@ 2.2.3 Real-Time Processing

Real-Time Processing, a major functional component of the UPSTART CSC, is
responsible for setting up and running the simulation using messages sent from the
Simulation Host.

Upon start-up, the upstart function initializes active area memory, initializes system tasks,
verifies that the DR 1 communications interface is functional, and loads and starts
Ballistics. It then processes messages sent by the Simulation Host to place the CIG in a
specified state. The CIG states that can be set are:

Database setup
This state prepares the CIG to run a simulation. If this state is requested, upstart
passes control to dbmccsetup.

File control
This state is used to transfer files to/from the CIG). If this state is requested,
upstart passes control to filecontrol.

Test mode
This state is used to run hardware tests. If this state is requested, upstart passes
control to hwtest.

MCC setup
This state prepares the CIG to act as an MCC station. This mode is not currently
used.

If database setup is specified, db_mcc_setup processes messages from the Simulation Host
to configure the viewports and the 2-D overlays (by initiating Viewport Configuration and
the 2-D Overlay Compiler, respectively). db_mcc_setup also loads the terrain database and
the dynamic elements database (DED) into active area memory, and processes requests to
download trajectory table data. Upon another state change request from the Simulation
Host, db mcc setup calls simulation to start the simulation.

simulation processes all runtime messages during the simulation. Upon request from the
Simulation Host, simulation moves or rotates dynamic vehicles, changes the gun overlays,
passes process round and round fired messages to Ballistics, shows effects, adds and
removes static vehicles, changes a viewport's field of view or level of detail, changes the
view mode, and updates the system view flags. simulation also processes the hit and miss
messages returned by Ballistics.

When the Simulation Host sends a message ending the simulation, simulation cleans up
and passes control back to dbmcc.setup. db_mcc_setup then initializes the configuration
tree and returns control to upstart.

The CSUs in the Real-Time Processing component are identified in Figure 2-6 and are
described in this section.

61

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Task Initialization

[I] Forf=a Daatase Uatae

ViewporlDatabase
2D Overlay la- Traversal
compiler Proceain Poessor

Generator

aa-init.c tile -controt.c mkcal.c
bus error.asm find -fn.c mkmtx._nt.c
cal.c txbvtol.c model -mtx.c
db~fmccsetup.c gsp-joad.c open - basO.C
debiginldr.c gun -ovedays.c open ded.c
ded-model -trace.c hwiest.c simulation.c
download-bvols.c load-dbasexc stdioxc

dr.c make-bbnic spport.c

Figure 2-6. Real-Time Processing CSUs

2.2.3.1 aa-init.c (active_area_init)

The aaimt~c CSU contains one function, active_area_init. This function initializes the
active area of memory state tables and their related variables. This function is called by
upstart on start-up, and by simulk.Ion when it receives a CIG Control-Stop message from
the Simulation Host.

The function call is active area inito. active_areaimit does the following:

* Clears the system area of active area memory.
* Initializes tanks and other vehicles in the dynamic state table.
" Initializes static tanks and other static vehicles in the static state table.
" Initializes the multiple-frame effects linked list. (This structure is used when

showing effects over multiple frames.)

Called By: simulation
upstart

62

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: IN1TMTX

Parameters: none

Returns: none

2.2.3.2 bal routines.c

The functions in the balroutines.c CSU are not used in the 120TX/T implementation.
Information provided on these functions in earlier versions of this document should be
disregarded.

2.2.3.3 bus error.asm

The bus_error function touches a memory location to see if it exists. It is usually used to
determine which type of Ballistics board is in the CIG, or to find out whether the CIG
contains a Force board.

The function call is bus error(address, accesstype), where:

address is the test address
accesstype is b (byte access), w (word access), or I (long word access)

The function returns 0 if the memory location exists, or 1 if it does not.

Called By: apinit
loaddbase
upstart

Routines Called: none

Parameters: INT address
char accesstype

Returns: 0
1

2.2.3.4 cai.c

The cal (calibration menu) function exercises the video monitors by placing a known
pattern on all channels. cal presents a menu that lets the Gossip user turn the calibration
image or gunner pixel on or off. The user is then able to verify te accuracy of the image
and take appropriate measures.

. The function call is cal().

63

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: gossip

Routines Called: printf

unbf getchar

Farameters: none

Returns: none

2.2.3.5 dbmccsetup.c

The dbmccsetup function processes messages from the Simulation Host to prepare the
CIG system to run a simulation. It can also prepare the CIG to act as an MCC station,
although this mode is not currently used. dbmccsetup is called by upstart when the CIG
Control message from the Simulation Host specifies CDBSETUP or CMCCSETUP.

The function call is db mcc setup(state), where state is the state the system is to be set

up in: CDB SETUP (simulation mode) or CMCCSETUP (MCC station mode).

dbmcc setup does the following:

* Initializes trajectory table static variables.
* Processes each message received from the Simulation Host (see table below).
* Returns to upstart when it returns from cig-config or a simulation, or when it

detects a CIG-Control Stop message.

The following table summarizes the processing performed by dbmccsetup in response to
each valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by dbmcc-setup to process the
message.

64

BBN Systems and Technologies 120TX/T CIG HOST CSC1

Message from SIM Host Processing by dbmcrsetup

MSG_CIG_CTL Causes a transition to another performance state.
C_CIGCONFIG Calls gspIoad if there is a Force board and GSP is not

initialized; calls cig_config; calls load_dbase.
C_MCCSIMUL Calls simulation with state set to CMCC_SIMUL.
CNULL No action.
C_SIMULATION Calls simulation with state set to CSIMULATION.
C_START_2DSETUP Calls gspload if there is a Farce board and GSP is not

initialized; calls cig_2dsetup if there is a Force board.
C STOP Returns to upstart.

MSGDR 11_PKT_SIZE SpecOkes exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSGEND Signals end of packet buffer.
Posts a BALLISTICSMB message if the CIG contains a
master Ballistics board; calls EXCHANGE_DATA to send
output and receive input buffers.

MSG_FILEDESCR Specifies database to use for simulation.
DBSETUP Calls gspload if there is a Force board and GSP is not

initialized; calls opendbase.
DB DED SETUP Sets ded-dbname in global memory.

MSGTRAJENTRYXFER Downloads an entry in a Ballistics trajectory table.
Sets trajectory table entry data; calls mx-push to push
MSGBOADDTRAJENTRY message onto Ballistics
message queue.

MSGTRAJTABLEXFER Sets up a Ballistics trajectory table to be downloaded.
Sets data for trajectory table; calls mx-push to push
MSG B0 TRAJ_TABLE message onto Ballistics message
queue.

Called By: upstart

Routines Called: cig_2d-setup
cig-config
EXCHANGEDATA
free-configtree
gspload
loaddbase
mxpush
opendbase
printf
scpost
simulation
SYSERR

Parameters: INT_2 state

Returns: none

65

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.6 debuginitdr.c

The debug-initdr function calls the display-packet function (in Gossip) to display the
contents of each message in a DR 11 exchange packet.

The function call is debug initdro.

Called By: EXCHANGE_DATA

Routines Called: display-packet

Parameters: none

Returns: none

2.2.3.7 ded model trace.c

The dedmodel_trace function traces the Data Traversal Processor (DTP) commands for
each dynamic model and adjusts addresses based on the commands.

The function call is ded modeltrace(ded size, ded start-address,
model start-address, gm-end address), where: -

ded size is the amount of memory available for all dynamic models
ded-start address is the starting location for loading dynamic models
model start address is the starting location for a specific model
gmendaddress is the highest address in generic memory

The function returns 0 if successful. It returns -1 if it the model's address is beyond the
end of generic memory or before its start address.

Called By: opended

Routines Called: printf

Parameters: INT_4 dedsize
INT_4 ded_start-address
INT_4 model_start_address
INT_4 gm-end-address

Returns: 0

66

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.8 download bvols.c

The download_bvols function downloads models and bounding volumes to Ballistics.

The function call is downloadbvols(header P, fd, devP, model_type), where.

header P is a pointer to the database header data
fd is anidentifier for the file containing the information to be downloaded
dev P is a pointer to the Ballistics message queue
modLeype is BXDEDMODEL_DIRECTORY

download_bvols does the following:

• Allocates memory to work in.
" Reads the model directory information from the specified database header.
" Builds a structure with the model directory data and passes it to Ballistics by calling

mxpush to push a MSGBOMODELDIRECTORY message onto the Ballistics
message queue.

• Reads each model entry in the specified file.
* For each model entry:

- Builds a structure with the model's data.
- Passes the structure to Ballistics by calling mx.push to push a

MSG_B0_MODEL_ENTRY message onto the Ballistics message queue.
* Reads and validates the bounding volume count from the database header.
* Reads each bounding volume entry from the specified file.
For each bvol entry:

- Builds a structure with the bvol's data.
- Passes the structure to Ballistics by calling mxpush to push a

MSG B0_BVOL_ENTRY message onto the Ballistics message queue.
• Frees the memory it allocated.

The function returns 0 if successful. It returns -1 if the number of bounding volumes is
less than 0.

Called By: opended

Routines Called: BCOPY
free
fxbvtofl_020
malloc
mx-push
printf
XLSEEK
XREAD

Parameters: DBHDRDBASE_DATA *header_P
INT fd
MXDEVICE *dev_P
BYTE model-type

67

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: 0
-1

2.2.3.9 dr.c

The functions in the dr.c CSU are used to test the DRI I interface between the CIG and the
Simulation Host. These functions are:

" dr
* drisokay

2.2.3.9.1 dr

The dr function is a test routine that calls the drisokay function, then loads a file over the
DR 1I interface when it appears as if the interface is ready to begin communication.

The function call is dro.

Called By: none

Routines Called: printf
system

Parameters: none

Returns: none

2.2.3.9.2 drisokay

The drisokay function looks at absolute memory addresses to attempt to determine
whether the DR 11 interface is in a safe and stable condition.

The function call is dris-okayo. dr_is_okay does the following:

• Waits until the DR1 1 registers show that both the attention bit and the status B bit
are not set. This indicates that the cables are plugged in and the Simulation Host is
powered up.

• Waits until both the status A and status C bits are set. This indicates that the
Simulation Host is waiting to read data.

• Makes sure that at most Gne event is posted to the drmbox queue. Removes any
excess messages from the queue.

The function returns I if it determines that the DRl I is ready to begin communication.

68

55

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: dr
OPENEXCHANGE

Routines Called: printf
sc_lock
sc-qinquiry
sc-qpend
scunlock

Parameters: none

Returns: I (TRUE)

2.2.3.10 file control.c

The filecontrol function processes messages from the Simulation Host to handle file
transfers to and from the Simulation Host, delete files, and produce a CIG disk directory
list for the Simulation Host. filescontrol is called by upstart whenever the state requested
by the Simulation Host is C_FILEXFER.

The function call is file-control(state), where state is the current state of the CIG

system (CFILEXFER).

The following table summarizes the processing performed by file control in response to
each valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italicized letters), then lists the major steps performed by file-control to
process the message.

69

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Message from SIM Host Processing by file control

MSGCIGCTL Causes a transition to another performance state.
C_NULL No action.
CSTOP Returns to upstart.

MSGDRI _PKT_SIZE Specifies exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSG-END Signals end of packet buffer.
Calls EXCHANGEDATA to send output and receive input
buffers.

MSGFILEDESCR Transfers and manages files.
DB_CIG2SIM Uploads file from CIG to SIM; generates

MSGFILESTATUS return message.
DBSIM2CIG Downloads file from SIM to CIG; generates

MSGFILESTATUS return message.
DBDELETION Deletes file from CIG disk; generates MSG_FILE_STATUS

return message.
DBDIRECTORY Passes CIG directory data to SIM; generates

MSGFILESTATUS return message.
DBRENFROM Finds file with this name; generates MSG_FILESTATUS

return message.
DB_REN_TO Renames file to this name; generates MSGFILESTATUS

return message.
MSGFILESTATUS Provides response for file transfer.

Resends block or aborts if message indicates.
MSGFILEXFER Contains the name of the file to upload or download.

Reads or writes data; generates MSGFILESTATUS return
message.

Called By: upstart

Routines Called: close
createsz
EXCHANGEDATA
lseek
open
printf
read
rsec
strcpy
strlen
SYSERR
system
write

Parameters: INT_2 state

Returns: none

70

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.11 find fn.c

The find_fn function finds the file that has the highest extension and whose name matches a
given character string. This ensures that the calling procedure loads the latest version of a
file.

The function call is findfn(compare, n, exact, file_name), where:

compare is the name to be matched
n is the number of characters in the compare string
exact specifies whether or not the file name must match the compare string exactly
file-name is a pointer to the file name found by findfn

The returned parameter (success) is set to 1 if a match is found, or -I if no match is found.

Called By: bootup-slave 133
gsp load

Routines Called: strcmp
system

Parameters: char *compare
char *file-name
INT_2 n
BOOLEAN exact

Returns: success

2.2.3.12 fxbvtofl.c

The fxbvtofl CSU contains functions used to convert a fixed point bounding volume to
floating point. These functions are:

* fxbvtofl
• fxbvtofldart
" fxbvtofl_020

2.2.3.12.1 fxbvtofl

The fxbvtofl function converts a fixed point bounding volume to floating point.

The function call is fxbvtofl(tobv, frombv), where:

tobv is the floating point bvol entry
frombv is the fixed point bvol entry

71

BBN Systems and Technologies 120TX/T CIG HOST CSCI

This function is not currently used.

Called By: none

Routines Called: FXTO881

Parameters: BVOLENTRY *tobv
FIXBVOLENTRY *frombv

Returns: none

2.2.3.12.2 fxbvtofl dart

The fxbvtofldart function converts a fixed point bounding volume to floating point.

The function call is fxbvtofldart(tobv, frombv), where:

tobv is the floating point bvol entry
frombv is the fixed point bvol entry

This function is not currently used.

Called By: none

Routines Called: FXTO881

Parameters: BVOLENTRY *tobv
FIXBVOLENTRY *frombv

Returns: none

2.2.3.12.3 fxbvtofl_020

The fxbvtofl_020 function converts a fixed point bounding volume to floating point

The function call is fxbvtofl_020(tobv, frombv), where:

tobv is the floating point bvol entry
frombv is the fixed point bvol entry

Called By: downloadbvols

72

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: FXTO881

Parameters: BVOLENTRY *tobv
FIXBVOLENTRY *frombv

Returns: none

2.2.3.13 gsp-load.c

The gspload function loads the Force and GSP (Graphics System Processor) boards with
data and code for execution. gspload is called by dbmccsetup if the system has a Force
board and GSP has not yet been initialized.

The function call is gspIoad(forcestart), where forcestart is TRUE if a Force board
is present. gspioad does the following:

• Initializes Force variables.
• Loads the latest version of the forcetask from disk.
* Starts the forcetask.
• Halts the GSP task.
• Runs a test on GSP memory.
* Loads the latest versions of the following GSP files from disk: bitmap, lookut (the

color lookup table), data2d (the 2-D overlay database), and task2d (the GSP task).
• Starts the GSP task.

The Force and GSP boards are used to generate and display two-dimensional overlays on
120TX systems.

Called By: dbmccsetup

Routines Called: findfn
printf
system
TRIGGERFORCE
WAITFORCE
XCLOSE
XOPEN
XREAD

Parameters: BOOLEAN forcestart

Returns: none

73

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.14 gunoverlays.c

The functions in gun-overlays.c are used to build M1 and M2 overlays. These overlays
are hard-coded displays of three-dimensional polygons that are disph yed on the viewport,
over the terrain display. The overlay shows objects that would normally obscure the view
of the terrain, to better emulate the real-world view out the vehicle's window. Overlays are
vehicle-specific.

gun-overlays contains the following functions:

* mlgunoverlay
* m2_gun-overlay
* makemloverlays
* makem2_overlays

These functions apply to the 120T CIG only. Overlays on the 120TX are generated by the
2-D overlay compiler using Simulation Host messages.

2.2.3.14.1 ml gun_overlay

The ml-gun overlay function creates gun and gunner overlays for Ml vehicles. This
function is called by simulation when the message from the Simulation Host is
MSGGUNOVERLAY and the message type is M IOVERLAYS.

The function call is mlgun overlay(pmsg, db), where:

pmsg is a pointer to the MSG_GUNOVERLAY message
db is the double-buffer memory current base pointer

Gun overlays show the components of the gun (on the simulation vehicle) that would be
visible when looking out from the vehicle's window. Gunner overlays show cross-hairs
and digits. The MSG_GUN_OVERLAY message specifies the digits to be displayed.

Called By: simulation

Routines Called: none

Parameters: MSGGUNOVERLAY *pmsg
INT_4 db

Returns: none

74

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.14.2 m2_gunoverlay

The m2.gun-overlay function creates gun overlays for M2 vehicles. This function is
called by simulation when the message from the Simulation Host is
MSGGUNOVERLAY and the message type is M2_OVERLAYS.

The function call is m2_gun overlay(pmsg, db), where:

pmsg is a pointer to the MSGGUNOVERLAY message
db is the double-buffer memory current base pointer

Gun overlays show the components of the gun (on the simulation vehicle) that would be
visible when looking out from the vehicle's window. Gunner overlays show cross-hairs
and digits. The MSGGUNOVERLAY message specifies the digits to be displayed.

Called By: simulation

Routines Called: none

Parameters: MSG_GUN_OVERLAY *pmsg
INT_4 db

Returns: none

2.2.3.14.3 make ml overlays

The make_mloverlays function sets up Ml overlay data at viewport configuration time.
This function is called by overlay-setup in the Viewport Configuration component if the
Simulation Host sends a MSGOVERLAYSETUP message with the type set to I
(MIOVERLAYS).

Note: The MSGOVERLAYSETUP message can specify
gunnersviewport (the viewport that is to have the gunner's overlay)
and barrel viewports (the viewports the gun barrel is to be viewable
in). These values are not currently used. The gunner's overlay is
placed on any viewport belonging to a configuration node that has
bit 0 of its branch mask set. The gun barrel overlay is placed on any
viewport belonging to a configuration node that has bit 1 of its
branch mask set.

The function call is makemloverlays (po, ppg), where:

po is a pointer to the overlay parameters
ppg is a pointer to the MlGUNOVERLAY message

Called By: overlay-setup

75

BBN Systems and Technologies 120TXIT CIG HOST CSCI

Routines Called: aammalloc
id_4x3mtx
makep.nt
swap_,axis

Parameters: OVERLAYPARAMS *po

MlGUNOVERLAY **ppg

Returns: none

2.2.3.14.4 make m2_overlays

The make_m2_overlays routine sets up M2 overlay data at viewport configuration time.
This function is called by overlay-setup in the Viewport Configuration component if the
Simulation Host sends a MSGOVERLAYSETUP message with the message type set to
2 (M2_OVERLAYS).

Note: The MSG OVERLAYSETUP message can specify
gunners viewport (the viewport that is to have the gunner's overlay)
and barrel viewports (the viewports the gun barrel is to be viewable
in). These values are not currently used. The gunner's overlay is
placed on any viewport belonging to a configuration node that has
bit 0 of its branch mask set. The gun barrel overlay is placed on any
viewport belonging to a configuration node that has bit 1 of its
branch mask set.

The function call is makem2_overlays (po, ppg), where:

po is a pointer to the overlay parameters
ppg is a pointer to the M2_GUNOVERLAY message

Called By: overlay-setup

Routines Called: aam_malloc
id 4x3mtx
make-p-nt
swap-axis

Parameters: OVERLAYPARAMS *po
MIGUNOVERLAY **ppg

Returns: none

76

B3N Systems and Technologies 120TX/T CIG HOST CSCI

@ 2.2.3.15 hw test.c

The hwtest function processes messages from the SIM to handle hardware tests. hwtest
is called by upstart whenever the state requested by the Simulation Host is
C_TESTMODE.

The function call is hwtest(state), where state is the current state of the CIG system
(C_TESTMODE).

The following table summarizes the processing performed by hwtest in response to each
valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by hw-test to process the
message.

Message from SIM Host Processing by hw test
MSGCIGCTL Causes a transition to another performance state.

C_NULL No action.
CSTOP Returns to upstart.

MSGDR 11_PKTSIZE Specifies exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSGEND Signals end of packet buffer.
Calls EXCHANGEDATA to send output and receive inputbuffers.

MSGTESTNAME Specifies test to be run.
ECHOPKT Echoes packet back to SIM. (This test is not currently

I implemented.)

Called By: upstart

Routines Called: EXCHANGEDATA
printf
SYSERR

Parameters: INT_2 state

Returns: none

2.2.3.16 load dbase.c

The loaddbase function loads the terrain database into active area memory, and sets up
various tables with the necessary data from the database. It also calls opended to load the

77

BBN Systems and Technologies 120TX/T CIG HOST CSCI

contents of the dynamic elements database (DED). loaddbase is called by db-mcc-setup
after the viewport configuration tree has been created.

The function call is load dbase(db name, state), where:

db name is the name of the database
state is the current state of the CIG system (CDBSETUP or C_MCCSETUP)

load _dbase does the following:

" Determines how much generic memory is available.
• If not enough memory is available, truncates the number of bytes to what is

available.
• Reads in the data from the specified database.
• Processes the model directory entries.
• Reads in the ove'flow terrain data, if there is sufficient room.
* Calls open-ded open the dynamic elements database, read the models in, and

process them.
" Calls loadmodules to load the initial load modules.
* Initializes the Load Module Branch Table, subroutine call table, and field-of-view

test table for a 3500-meter or 7000-meter viewing range.
" Sets the database is open flag to TRUE.

Called By: dbmcc_setup

Routines Called: bus_error
free
loadmodules
malloc
open_ded
printf
XLSEEK
XREAD

Parameters: char dbname[]
INT_2 state

Returns: none

2.2.3.17 make bbn.c

The functions in makebbn.c are used by gossip to make and modify hull-to-world
matrices for debugging purposes. These functions are:

• prt mtx
" rotate_x
* rotate.y
" rotate_z
" multmatrix

78

BBN Systems and Technologies 120TX/T CIG HOST CSCI

idmatrix

0 These routines are used only by modelmtx, which is called by gos-model. They are
invoked only if debug mode has been enabled.

The routines used to make and update matrices for the simulation are contained in the
mkmtxnt.c CSU.

2.2.3.17.1 prtmtx

The prt mtx function copies a matrix in memory.

The function call is prtmtx(matrix, pntr), where:

matrix is the matrix
pntr is a pointer to the destination memory location

Called By: modelmtx

Routines Called: none

Parameters: REAL_4 matrix[4][3]
REAL_4 *pntr

Returns: none

2.2.3.17.2 rotate x

The rotatex function rotates a matrix about the X axis.

The function call is rotate_x(theta, matrix), where:

theta is the angle of rotation
matrix is the matrix to be rotated

Called By: model_mtx

Routines Called: cos
id matrix
multmatrix
sin
toradians

Parameters: REAL_4 theta
REAL_4 matrix[4][3]

79

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.2.3.17.3 rotate_y

The rotate.y function rotates a matrix about the Y axis.

The function call is rotate y(theta, matrix), where:

theta is the angle of rotation
matrix is the matrix to be rotated

Called By: model_mtx

Routines Called: cos
idmatrix
multmatrix
sin
toradians

Parameters: REAL_4 theta

REAL_4 matrix[4][3]

Returns: none

2.2.3.17.4 rotate z

The rotatez function rotates a matrix about the Z axis.

The function call is rotatez(theta, matrix), where:

theta is the angle of rotation
matrix is the matrix to be rotated

Called By: model_mtx

Routines Called: cos
id matrix
multmatrix
sin
toradians

Parameters: REAL_4 theta
REAL_4 matrix[4l[31

80

BBN Systems and Technologies 120TX/T CIG HOST CSCI

0 Returns: none

2.2.3.17.5 multmatrix

The multmatrix function multiplies two matrices together. This function is used to multiply
a matrix by a rotation matrix.

The function call is multmatrix(matrix, matrix-tmp), where:

matrix is the rotation matrix
matrix_rmp is the matrix to be rotated

Called By: rotate_x
rotatey
rotate_z

Routines Called: none

Parameters: REAL_4 matrix[4][3]
REAL_4 matrix-tmp[4] [3]

Returns: none

2.2.3.17.6 id matrix

The idmatrix function creates an identity matrix (positioned at the origin) for use in
rotating matrices.

The function call is id_matrix(matrix), where matrix is the identity matrix to be created.

Called By: modelmtx
rotate_x
rotate-y
rotate_z

Routines Called: none

Parameters: REAL_4 matrix[4][3]

Returns: none

0
81

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.18 mkcal.c

The functions in mkcal.c generate monitor calibration images. These functions are:

* makecaloverlay
" pixjmult

The Poly Processor uses perspective matrices in normalized viewspace (i.e., the field-of-
view is not used) when crunching on overlay polygons. The only perspective matrix
required for an overlay is a matrix to swap the axes (view space into screen space). The
vertices overlay can be described to the Poly Processor as follows:

(-Y,Y,Y) (YYY)
(O,y,O)

(-y,y,-y) (y,y,-y)

where y is the distance from the eye to the overlay.

This means that if the vertices of an overlay (such as the monitor calibration overlay) are
given in pixel coordinates, they must be converted to the normalized view space coordinate
system. For example, if the screen resolution is 200 x 200, a vertex with pixel coordinates
(-50,100) is converted to (-1/2,1).

2.2.3.18.1 make caloverlay

The make cal overlay function allocates and makes a calibration overlay. This function is
called by cig-config (in Viewport Configuration) as part of its initialization process.

The calibration overlay is a hard-coded pattern of triangles, vertical and horizontal
alignment bars, and colored rectangles. The overlay is displayed on a viewport on top of
the view of the terrain. The pattern helps the Simulator user center the screen.

The function call is makecaloverlayO.

Called By: cig-config

Routines Called: aanmalloc
id_4x3mtx
swap-axis

Parameters: none

Returns: none

82

BBN Systems and Technologies 120TX/T CIG HOST CSCI

P2.2.3.18.2 pix-mult

The pix-mult function converts pixel coordinates into normalized viewspace coordinates.

The function call is pix_mult(resolution, yjdist), where:

resolution is the screen resolution
y_dist is the y pixel coordinate

The function divides ydst by (resolution * .5) and returns the result as mult.

Called By: none

Routines Called: none

Parameters: INT_2 resolution
REAL_4 yjdist

Returns: mult

2.2.3.19 mkmtxnt.c

The functions in mkmtx_nt.c are used to rotate and translate matrices. These functions are:

" makep_nt
" rotate x nt
* rotatey_nt
• rotate_z_nt
* swap-axis
* id_4x3mtx
* scale_mtx
* translate
• mult_4x3mtx
• getmatrix
* matrix2
* mtxcpy

2.2.3.19.1 make_p nt

The make_p_nt function converts a matrix to a perspective 4x3 matrix.

The function call is make_p_nt(itan_fov_i, itanfovj, hoffsetx, hoffset_y,
matrix), where:

itanjfovi is inverse of the tangent of the horizontal field-of-view angle
itan_fovj is inverse of the tangent of the vertical field-of-view angle

83

BBN Systems and Technologies 120TX/T CIG HOST CSCI

hoffset x is the horizontal offset of the x coordinate
hoffsetj is the horizontal offset of the y coordinate
matrix is the matrix to be converted

Called By: make_mloverlays
makem2_overlays
viewspacemtx

Routines Called: id_4x3mtx
multL4x3mtx

Parameters: REAL_4 itanfov_i
REAL_4 itanfov_j
REAL_4 hoffset_x
REAL_4 hoffset_y
REAL_4 matrix[4][3]

Returns: none

2.2.3.19.2 rotate x nt

The rotatex_nt function rotates a 4x3 matrix about the X axis. This function is called by
concatmtx to change the pitch of an RTS3x3 (HPRXYZS) matrix.

The function call is rotate_x_nt(costheta, sin-theta, matrix), where:

cos theta is the cosine of the angle of rotation
sin-theta is the sine of the angle of rotation
matrix is the matrix to be rotated

Called By: concat-mtx
gosmodel

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL_4 costheta
REAL_4 sintheta
REAL_4 matrix[4][3]

Returns: none

84

BBN Systems and Technologies 120TX/T CIG HOST CSCI

P2.2.3.19.3 rotate_y_nt

The rotatey..ynt function rotates a 4x3 matrix about the Y axis. This function is called by
concatmtx to change the roll of an RTS3x3 (HPRXYZS) matrix.

The function call is rotate_y_nt(costheta, sin-theta, matrix), where:

cos theta is the cosine of the angle of rotation
sin theta is the sine of the angle of rotation
matrix is the matrix to be rotated

Called By: concatmtx
gosmodel

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL_4 costheta
REAL_4 sintheta
REAL_4 matrix[4][3]

Returns: none

2.2.3.19.4 rotate z nt

The rotate-z_nt function rotates a 4x3 matrix about the Z axis. This function is called by
concatmtx to change the heading of an RTS3x3 (HPRXYZS) matrix.

The function call is rotate z.nt(cos theta, sintheta, matrix), where:

cos theta is the cosine of the angle of rotation
sin-theta is the sine of the angle of rotation
matrix is the matrix to be rotated

Called By: concatmtx
gos,_model
viewspacemtx

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL_4 cosjtheta
REAL_4 sintheta
REAL_4 matrix[41[31

85

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.2.3.19.5 swapaxis

The swap-axis function converts a matrix's axes so that the matrix conforms to the CIG's
coordinate system, as follows:

xview = xworld
yview = -zworld
z,,iew = yworld

The function call is swap axis(matrix), where matrix is the matrix to be convened.
swapaxis first calls id_4x~mtx to create a 4x3 identity matrix. It then sets this matrix to
the following:

11 0 0 1
1 0 0 11
I 0 -1 0 I
1 0 0 0 1

swap_axis then multiplies this matrix by the original matrix.

Called By: make_ml_overlays
make_m2_overlays
viewspace_mtx

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL_4 matrix[4][3]

Returns: none

2.2.3.19.6 id_4x3mtx

The id_4x3mtx function creates a 4x3 identity matrix (positioned at the origin) for use in
rotating matrices.

The function call is id.4x3mtx(matrix), where matrix is the new identity matrix.

Called By: concat_mtx
makemloverlays
makem2_overlays
viewspace.mtx

86

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none

Parameters: REAL_4 matrix[4][3]

Returns: none

2.2.3.19.7 scale mtx

The scalemtx function scales (enlarges, reduces, or skews) a 4x3 matrix. This function is
used to adjust matrices if load module blocking is enabled. It is called by concatmtx to
change the scale of an RTS3x3 (HPRXYZS) matrix.

The function call is scale mtx(scale, matrix), where:

scale is the scaling factor
matrix is the matrix to be scaled

Called By: concatmtx
viewspace-mtx

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL_4 matrix[4] [3]
REAL_4 scale[3]

Returns: none

2.2.3.19.8 translate

The translate function moves a matrix to a new position by adding a translation value to
each of its coordinates. This function is called by concat_mtx to change the translation of
an RTS3x3 (HPRXYZS) matrix.

The function call is translate(xval, yval, zval, matrix), where:

xval is the amount to be added to the x coordinate
yval is the amount to be added to the y coordinate
zval is the amount to be added to the z coordinate
matrix is the matrix to be translated

Translation amounts are specified in meters.

Called By: concat_mtx

87

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: id_4x3mtx 0
mult_4x3mtx

Parameters: REAL_4 xval
REAL_4 yval
REAL_4 zval
REAL_4 matrix[4][3]

Returns: none

2.2.3.19.9 mult4x3mtx

The mult_4x3mtx function multiplies two 4x3 matrices together. This function is used to

multiply a matrix by a rotation matrix.

The function call is mult_4x3mtx(matrix, matrix_tmp), where:

matrix is the rotation matrix
matrix_tmp is the matrix to be rotated

Called By: concatmtx
make-pnt
rotate_x_nt
rotate-y-nt
rotate_z__nt
scale_mtx
swapaxis
translate

Routines Called: none

Parameters: REAL_4 matrix[4][3]
REAL_4 matrixtmp[4] [3]

Returns: none

2.2.3.19.10 getmatrix

The getmatrix function concatenates a matrix with matrix-trp.

The function call is getmatrix(matrix, matrix_tmp), where:

matrix is the original matrix and the result matrix
matrix trp is matrix to concatenate with the original matrix

88

BBN Systems and Technologies 120TX/T CIG HOST CSCI

P Called By: concat mtx
viewspace-mtx

Routines Called: none

Parameters: REAL_4 matrix[4][3]
REAL_4 matrix tmp[4][3]

Returns: none

2.2.3.19.11 matrix2

The matrix2 function concatenates (multiplies) two matrices to create a third matrix.

The function call is matrix2(matrixa, matrixb, matrixc), where:

matrixa and matrixb are the matrices to be concatenated
matrixc is the result

This function is not currently used.P
Called By: none

Routines Called: none

Parameters: REAL_4 matrixa [4][3]
REAL_4 matrixb [4][3]
REAL_4 matrixc [4][3]

Returns: none

2.2.3.19.12 mtxcpy

The mtxcpy function copies a matrix from one memory location to another.

The function call is mtxcpy(tomatrix, frommatrix, matrix-type), where:

to-matrix is the destination location
frommatrix is the source location
matrix type is the type of matrix (RTS3x3_TYPE, RTS4x3_TYPE, or

ROT2xlTYPE)

89

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: concatmtx
confignode-setup
simulation
viewport-setup

Routines Called: none

Parameters: 14P tomatrix
4P from_matrix

BYTE matrixtype

Returns: none

2.2.3.20 model mtx.c

The modelmtx function builds hull-to-world, turret-to-hull, and gun-to-turret matrices.
This function is called by gosmodel for options that are available to the Gossip user only
in debug mode.

The function call is model-mtx(modnum), where modnum is the model number.

Called By: gosmodel

Routines Called: idmatrix
prt-mtx
rotate__x
rotatey
rotate_z
translate

Parameters: INT_2 modnum

Returns: none

2.2.3.21 opendbase.c

The open dbase function opens the terrain database and initializes configuration and active
area memory parameters for Ballistics. opendbase is called by dbmcc_setup when it
receives a MSGFILEDESCR - DBSETUP message.

The function call is open_dbase(db name, state), where:

dbname is the name of the database to be opened
.tate is the current state of the CIG system (CDBSETUP or CMCCSETIJP)

90

BBN Systems and Technologies 120TX/T CIG HOST CSCI

opendbase does the following:

• Opens the database file specified in the Simulation Host message or entered through
the keyboard. Calls find_fn to find the latest version of the specified file.

0 Reads the file header.
Verifies that the database is compatible with the software.

* Initializes database variables: number of load module blocks per side, grid space,
number of load modules on a side, number of load modules per side of a load
module block, load module width, load module block width, active area width, total
number of load modules and load module blocks, etc.

• Clears extra memory if load module blocking is enabled.
* Initializes Ballistics configuration parameters: processor type, frame rate, number of

AAM partitions, maximum chord length, maximum model radii s, maximum
number of models, maximum number of active rounds, polygons, and bvols, etc.

• Sends the configuration data to Ballistics by pushing a MSG_BO_BALCONFIG
message onto the Ballistics message queue.

* Initializes AAM partition information for Ballistics: number of load modules per
side, total number of load modules in AAM, viewing distance, grid width, AAM
base address, etc.

• Sends the AAM partition parameters to Ballistics by pushing a
MSGBODATABASEINFO message onto the Ballistics message queue.

The terrain database is loaded into active area memory by load-dbase, which is called by
dbmccsetup after the viewport configuration tree is created.

Called By: dbmcc-setup

Routines Called: find_fn
free
malloc
mx-push
printf
strlen
SYSERR
XCLOSE
XLSEEK
XOPEN
XREAD

Parameters: char dbname[]

INT_2 state

Returns: none

2.2.3.22 open ded.c

The open-ded function opens the dynamic elements database (DED) and processes the
dynamic model list, changing the relative AAM addresses to absolute AAM addresses.
opended is called by load-dbase after it loads the terrain database into active area memory.

91

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is open_ded(ded_db_name, ded start address, avail_gm),
where:

ded db name is the name of the dynamic elements database
ded start address is the location at which to start loading dynamic models
avail_gn is the amount of space in generic memory for model information

open_ded does the following:

• Finds the DED file. The file name is specified by the Simulation Host in the
MSGFILEDESCR - DBDEDSETUP message. db-mcc-setup sets the name
(ded db name) in global memory, and load_dbase passes it to opended. The file
name can also be specified through the keyboard. opended calls find_fn to find
the latest version of the specified file.

* Opens the file.
* Reads the database header and verifies it is valid.
* Allocates memory for the model address, model catalog, special effects address,

and special effects catalog tables.
" Verifies there is enough generic memory for the DED models.
• Loads the models into the generic model AAM.
• Calls download_bvols to download the models and bounding volumes to Ballistics.
* Processes the model directory entries.
* Processes the special effect directory entries.
* Closes the DED database file.

The function returns 0 if the DED is fully or partially loaded. It returns -1 if no DED
databases are found.

Called By: loaddbase

Routines Called: dedmodel_trace
downloadbvols
findfn
free
malloc
printf
strlen
XCLOSE
XLSEEK
XOPEN
XREAD

Parameters: char ded-db name[]
INT_4 dedstartaddress
INT_4 avail__grm

Returns. 0
-1

92

BBN Systems and Technol,;n"s 120TX/T CIG HOST CSCI

. 2.2.3.23 simulation.c

The sinulation function is the message handler for the real-time simulation control of the
CIG hardware and communications with the Simulation Host. simulation is called by
dbmcc-setup when it receives a MSGCIGCTL message with the state set to
C_MCCSIMUL or CSIMULATION.

The function call is simulation(state, topof configtree), where:

state is the current state of the CIG system (C-SIMULATION or C_MCC_SIMUL)
topof configtree is a pointer to the root configuration node

simulation does the following:

* Initializes various static variables (round fired estimated impact time and range,
southwest corner of AAM, static vehicle counter, etc.).

" Displays the coordinates of the northwest corner of the terrain database.
* Posts a message to the MONITORMB mailbox.
* Puts Ballistics into the run state:

- Sets the Ballistics state to BXRUN.
- Pushes a MSGBOSTATECONTROL message onto the Ballistics

message queue.
* Sets the coordinates of the southwest corner of active area memory, based on the

simulated vehicle's starting position.
" Tells Ballistics where AAM is by pushing a MSG_BOAAMSWCORNER

message onto the Ballistics message queue.
* Initializes the multiple-frame effects pointers to the field-of-view test table (for a

7000 meter viewing range) or the terrain (for a 3500-meter viewing range).
* Posts a message to the DATABASEMB mailbox and waits for rowcolrd to

finish. rowcolrd loads the initial load modules into active area memory.
* Posts a message to the LOCALTERRAINMB mailbox and waits for localterrain

to finish, localterrain generates a message describing the terrain around the
simulated vehicle for the Simulation Host.

" Initializes the local terrain message counter. This counter is used in conjunction
with the local terrain interval to determine when to generate local terrain messages
(currently set at every 32 frames).

" Determines the frame rate (15 or 30 Hz) and sets it in global memory.
" Tells Ballistics the frame rate by pushing a MSG_BOCIGFRAMERATE

message onto the Ballistics message queue.
" Determines which double buffer is being used by the hardware.
" Processes each runtime message received from the Simulation Host in turn (see

table below).
* Reads and processes all hit, miss, and round position messages returned by

Ballistics (from the Ballistics message queue).
* Processes laser return messages returned from Ballistics.
* Returns all messages passed back from the 2-D overlay processor.
* Performs AGL (above ground level) processing if enabled.
* Calls EXCHANGE DATA to exchange message packets.
* Resets the state tables and waits for the next interrupt.

The following table summarizes the processing performed by simulation in response to
each valid message type it receives from the Simulation Host. The first column lists the

93

BBN Systems and Technologies 120TX/T CIG HOST CSCI

messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by simulation to process the
message.

Message from SIM Host Processing by simulation

MSG_I ROTATION Updates a single rotation of an hprxyzs matrix.
Changes heading, pitch, or roll as indicated; calls
concatmtx.

MSG_3ROTATIONS Updates the rotation portion (hp,r) of an hprxyzs matrix.
Changes heading, pitch, and roll; calls concat mtx.

MSGAGLSETUP Toggles AGL processing on and off.
Sets agl-wanted in global memory.

MSGAMMODEFINE Define ammunition maps.
Sets ammomap in global memory.

MSGCIG_CTL Causes a transition to another performance state.
C_NULL No action.
C_STOP Resets Ballistics; turns off monitors; initializes AAM;

closes database; frees model and effect tables; returns to
db mcc setup.

MSG_DRI 1_PKT_SIZE Specifes exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSGEND Signals end of packet buffer.
Signals T&C board; processes changes to static vehicles;
processes special effects; adds dynamic vehicles; tells Force
board to transfer data to 2-D; counts down multiple frame
effects; processes agl-wanted; sends new frame information
to Ballistics; moves load module STP to quad buffer; waits
for next interrupt.

MSGGUNOVERLAY Changes gun/gunner overlays.
Calls m I..gun-overlay or m2.gun-overlay, as appropriate.

MSGHPRXYZSMATRIX Updates a configuration node's matrix.
Calls mtxcpy; calls concat._mtx; calls process-vppos if a
world/hull matrix.

MSGOTHERVEHSTATE Describes the state of all dynamic vehicles in the terrain.
Puts vehicle's matrix data in model table; adds model to
proper load module.

MSGPASSON Tells simulation to pass the message on to a specific
subsystem (2-D overlay processor).
Writes message data to Force memory.

MSGPROCESSROUND Tells Ballistics to process a round.
Pushes MSG_BO_PROCESSROUND message onto
Ballistics message queue.

MSGREQUESTLASER_- Asks for pixel depth for i, j position on screen.
RANGE Gets data from Force.
MSG_ROT2x IMATRIX Updates a configuration node's matrix.

Calls concat mtx.

94

BBN Systems and Technologies 120TX/T CIG HOST CSCI

MSG_ROUND_FIRED Tells Ballistics that a round has been fired.
Pushes MSG_BO_ROUND_FIRED message onto Ballistics
message queue.

MSG_RTN_LT Requests a local terrain message; used only by the MCC
station (state=CMCCSIMUL).
Posts message to invoke rowcol_rd; posts message to
invoke localterrain.

MSG_RTS4x3_MATRIX Updates a configuration node's matrix.
Calls concat.mtx; calls process vppos if world/hull matrix
node.

MSGSCALE Updates the scale portion (xy,z) of an hprxyzs matrix.
Unpacks coordinates from SIM Host; calls concatmtx.

MSG_SHOW_EFFECT Used to show the effect of an impact on terrain or a vehicle.
Sets frame count for effect and adds to multi-frame effects
list; adds effect to special effects table; finds load module the
model is in.

MSG_STATICVEHREM Removes a static vehicle from the local terrain.
Finds vehicle's load module; deletes vehicle from model
table; pushes MSG_B0_DELETESTATICVEHICLE
message onto Ballistics message queue; generates error if
vehicle out of viewing range.

MSGSTATICVEHSTATE Adds a static vehicle to the local terrain.
Increments count of static vehicles; updates model table; adds
model to proper load module, pushes MSG_B0_ADD_-
STATICVEHICLE message onto Ballistics message queue.

MSG_TRAJCHORD Used for chords that represent trajectories.
Pushes MSGBOTRAICHORD message onto Ballistics
message queue; for tracer messages, stores effect data in
memory.

MSG_TRANSLATION Updates the translation portion (xy,z) of an hprxyzs matrix.
Unpacks coordinates from SIM Host; calls concatmtx; calls
process.vppos if world/hull matrix.

MSGVIEWFLAGS Updates system view flags (e.g., on/off, FLIR, DTV) or
branch values.
Calls process.vflags.

MSGVIEWMAGNIFICATION Changes viewport's field of-view and/or level of detail.
Calls update-fov.

MSGVIEWMODE Updates view mode (off, night, day, BW, WIlT, BHT).
Sets calibration modifier; sets timingcontrol word; loads
AAM with view mode codes for DTP.

Called By: dbmcc._setup

Routines Called: activearea-init
concatmtx
EXCHANGEDATA_SIM
FINDLM
free
FXTOFL
mlgun-overlay

95

BBN Systems and Technologies 120TX/T CIG HOST CSCI

m2.gun_overlay
mtxcpy
mx_peek
mx push
mx skip
printf
process-yflags
process.vppos
readwatch
retumaam-ptr
scaccept
sc-pend
scpost
start watch
stop_watch
SYSERR
sysrup-off
sysrup on
update-fov
XCLOSE

Parameters: INT_2 state
CONFIGURATIONNODE *top-of-configtree

Returns: none

2.2.3.24 stdio.c

The stdio function is required for the OASYS compiler only. It defines stdin, stdout, and
stderr.

This function is not currently used.

Called By: none

Routines Called: none

Parameters: none

Returns: none

2.2.3.25 support.c

The functions in support.c are Butterfly-compatible versions of some of the operating
system service calls used by the real-time software. These functions are as follows:

96

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* startwatch
• readwatch
• stop-watch
• buserror
• buserror_w
* system
* sload
* get_record
• senddata
• verdata
" check-sum
" getbinary-data
• get-char
" ctoi
• unbf._getchar
• sysrupon
• sysrupoff

2.2.3.25.1 start watch

The startwatch function is a null stub for Butterfly compatibility. It is not currently used.

2.2.3.25.2 read watch

pThe readwatch function is a null stub for Butterfly compatibility. It is not currently used.

2.2.3.25.3 stopwatch

The stopwatch function is a null stub for Butterfly compatibility. It is not currently used.

2.2.3.25.4 bus-error

The buserror function is a Butterfly routine used to test whether a specified memory

location exists.

The function call is buserror(address, accesstype), where:

address is the test address
accesstype is b (byte access), w (word access), or I (long word access)

buserror returns ret set to 0 if the location exists, or 1 if it does not.

Called By: main (in upstart)

Routines Called: restoreker

Parameters: INT address

97

BBN Systems and Technologies 120TX/T CIG HOST CSCI

char accesstype

Returns: ret

2.2.3.25.5 bus error w

The bus_error_w function is a Butterfly routine used to test whether a specified memory
location exists, and to write to that address.

The function call is bus error-w(address, accesstype, data), where:

address is the test address
accesstype is b (byte access), w (word access), or I (long word access)
data is the data to be written to the test address

bus_errorw returns ret set to 0 if the location exists, or 1 if it does not.

Called By: main (in upstart)

Routines Called: restoreker

Parameters: INT address
char accesstype
INT data

Returns: ret

2.2.3.25.6 system

The system function is a Butterfly routine used to execute a shell command.

The function call is system(request, datl, dat2, dat3), where:

request is the command to be executed: 20 (get root) or 24 (run file)
datl is the name of the file
dat2 is not used
dat3 is the offset for sload

The value returned (ret) is the size of the root directory or the value returned from sload.

Called By: none

Routines Called: bcopy
Find_Value
MapObj

98

BBN Systems and Technologies 120TX/T CIG HOST CSCI

printf
sload
UnmapObj

Parameters: INT request
char *datl
char *dat2
char *dat3

Returns: ret

2.2.3.25.7 sload

The sload function converts a Motorola S-format file into executable code. It reads data
from the disk in sector-sized chunks, breaks the ASCII down into record-sized lines, then
stores the binary data.

The function call is sload(filename, offset, wsize), where:

filename is the file to be converted
offset is the amount to add to the binary data address
wsize is the size of the destination granularity

The function returns 1 if successful, or -1 if it encounters an error (file could not be
opened, bad checksum on a record, or early end-of-file detected).

Called By: system

Routines Called: checksum
getvbinaryjata
getrecord
printf
senddata
ver_data
XCLOSE
XOPEN

Parameters: char *f'lename
INT_4 offset
char wsize

Returns: 1
-1

99

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.25.8 getrecord

The get-record function fills a string buffer with exactly one Motorola S-format record.

The function call is get record(record), where record is the record to be read.

The function returns the S-format byte count if successful. It returns 0 if there are no
records in the file.

Called By: sload

Routines Called: geLchar

Parameters: BYTE record[]

Returns: 0
bytecount

2.2.3.25.9 send-data

The senddata function writes data to memory in ascending bytes from a given start
address.

The function call is send_data(address, cptr, count, wsize), where:

address is the initial load address (absolute S-format)
cptr is a pointer to the ASCII record characters
count is the number of characters to transmit
wsize is the size of the destination granularity

Called By: sload

Routines Called: geLbinary-data
printf
putchar

Parameters: WORD address
char *cptr
INT_4 count
char wsize

Returns: none

100

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.25.10 ver data

The ver_data function compares ASCII characters with memory in ascending bytes from a

given start address.

The function call is ver data(address, cptr, count), where:

address is the initial load address (absolute S-format)
cptr is a pointer to the ASCII record characters
count is the number of characters to compare

Called By: sload

Routines Called: get-binary-data
printf

Parameters: WORD address
char *cptr
INT_4 count

Returns: none

2.2.3.25.11 check-sum

The checksum function verifies the checksum byte of an S-format record.

The function call is check-sum(pointer, count), where:

pointer points to the record to be checksummed
count is the byte count

The answer returned by the function is 0 if the checksum byte is correct. A non-zero value
indicates a bad checksum.

Called By: sload

Routines Called: get-binary-data

Parameters: char *pointer
INT_4 count

Returns: answer

101

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.25.12 getbinarydata

The get-binarydata function returns the binary equivalent of specified characters.

The function call is getbinarydata(cptr, count), where:

cptr is a pointer to the character string
count is the number of characters to be converted

The result is returned as binarydata.

Called By: checksum
get record
senddata
sload
verdata

Routines Called: ctoi

Parameters: char *cptr
INT_4 count

Returns: binary-jdata

2.2.3.25.13 getchar

The get-char function returns the next available ASCII character from a sector-sized buffer.
If a character is found, get_char returns the integer. If the buffer is empty, get-char reads
the next sector from disk. If there is no next sector, getchar returns EOF.

The function call is get_charO.

Called By: geLrecord
unbf getchar

Routines Called: fflush
printf
XREAD

Parameters: none

Returns:*bptr++
EOF

102

BBN Systems and Technologies 120TXfT CIG HOST CSCI

2.2.3.25.14 ctoi

The ctoi function converts a character to an integer.

The function call is ctoi(c), where c is the character to be converted.

Called By: get_binay_.data

Routines Called: none

Parameters: char c

Returns: c - '0'
c -'A' + 10

2.2.3.25.15 unbf-getchar

The unbf-getchar function is a Butterfly routine that gets a single character input from the
standard input non-blocking 1/0.

The function call is unbfgetcharo. The character is returned as c.

Called By: none

Routines Called: fflush
get-char
printf

Parameters: none

Returns: c

2.2.3.25.16 sysrupon

The sysrup-on function is a null stub for Butterfly compatibility. It is not currently used.

2.2.3.25.17 sysrupoff

The sysrup__off function is a null stub for Butterfly compatibility. It is not currently used.

103

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.26 upstart.c

The upstart.c CSU contains the functions that form the driver for the real-time applications
software. These functions are the following:

* main (for Butterfly compatibility only)
* templates__init (for Butterfly compatibility only)
* upstart
" bootupslavel33

2.2.3.26.1 main

The main function is used to start upstart. This function is provided for Butterfly
compatibility only. It remaps the required addresses to VME addresses, then calls upstart.

main requires three arguments to start upstart: host id, my_id, and bvme id.

Called By: none

Routines Called: atoi
bus_error
bzero
FindValue
MakeEvent
MakeObj
map_vine
Name_Bind
printf
remap-yme
upstart

Parameters: int argc
char *argv[]

Returns: none

2.2.3.26.2 templatesinit

The templatesimt function initializes the data used to build the AAM data structures locally
before copying them into the AAM.. This function is required for Butterfly compatibility
only.

The function call is templates_initO.

Called By: upstart

104

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: bcopy
labs.dgi-buffersinit

Parameters: none

Returns: none

2.2.3.26.3 upstart

The upstart function is the driver for the real-time applications software. It establishes
communication with the Simulation Host, reads a message, then calls the appropriate
function depending on the system state requested in the message.

upstart is initiated by rtt during the task initialization state. It does the following:

" Locates the T&C (Timing and Control) board.
* Loads Ballistics from disk.
• Posts a BALLISTICSMB mailbox message to start Ballistics.
" Calls bootup-slave133 if a slave board is detected.
* Waits for Ballistics to return a status message and a global address message.
* Initializes the DR 1I buffer sizes.
* Initializes the local terrain chunk size and the interval between local terrain

messages.
* Initializes the system tasks.
• Calls OPENEXCHANGE to open the necessary pipes to the Simulation Host.
" Initializes active area memory.
* Processes messages from the Simulation Host, calling other functions as required.

The following table summarizes the processing performed by upstart in response to each
valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps upstart performs to process the message.

105

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Message from SIM Host Processing by upstart

MSGCIGCTL Causes a transition to another performance state.
C_DBSETUP Calls db_mccsetup with state set to CDBSETUP.
C_FILEXFER Calls file_control with state set to CFILE_XFER.
C_MCCSETUP Calls dbmccsetup with state set to CMCCSETUP.
C_NULL No action.
C_STOP No action.
C_TESTMODE Calls hw test with state set to CTESTMODE.

MSGDR1 1_PKT_SIZE Specifies exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSGEND Signals end of packet buffer.
Calls EXCHANGEDATA (with state set to CSTOP) to
send output and receive input buffers.

Called By: none

Routines Called: activearea_init
bootup-slavel 33
bus_error
db_mcc-setup
EXCHANGEDATA
file_control
hw_test
labsdgi-buffersinit
malloc
mx_error
mx_open
mx_peek
mx_skip
OPENEXCHANGE
printf
sc-post
sin
SYSERR
templatesinit (Butterfly only)
TORAD

Parameters: none

Returns: none

2.2.3.26.4 bootupslave133

The bootup-slave133 function boots up the slave 133 board. The function first checks to
see if the Ballistics file has already been loaded. If not, it loads the latest version of the
Ballistics file from disk. If no Ballistics task is found on disk, the function resets the
Ballistics board type to master.

106

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* The function call is bootupsavel33().

Called By: upstart

Routines Called: find fn
printf
strcpy
system

Parameters: none

Returns: none

107

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.4 2-D Overlay Compiler [120TX systems only]

This section describes the functions that make up the 2-D (Two-Dimensional) Overlay
Compiler, which is a major functional component of the CIG Host Mainline (UPSTART)
CSC. These functions build the 2-D overlays from ASCII commands, then generate
executable commands for the 2-D processor.

Note: These functions apply to 120TX systems only. The only overlays
available on 120T systems are the hard-coded gun, gunner, and
calibration overlays generated in the Real-Time Processing
component.

2-D overlays are displayed on a viewport on top of the three-dimensional terrain display.
For example, overlays can be used to display calibration patterns and numerical readouts
such as current altitude and speed. Each 2-D component is classified as either dynamic
(able to move or change) or static (not capable of movement or change).

The 2-D overlay database describes all components that can be displayed in the overlays.
This database is an ASCII file sent from the Simulation Host via messages. The overall
process for creating the 2-D overlay database is as follows:

1. The Simulation Host invokes the 2-D compiler using the CIG Control - Start 2D
Setup message.

2. The Simulation Host sends the ASCII file via 2-D SETUP messages, one per
packet buffer.

3. After the entire file has been sent, the Simulation Host sends a CIG Control - Stop
message.

4. The 2-D compiler function compiles the data. If a monitor is available, error and
status information is displayed.

5. The data is downloaded via the Force board into 2-D dynamic memory on the GSP
(Graphics System Processor) chip on the MPV board.

Once the 2-D database is loaded into memory, the overlays can be changed using
PASSON messages sent from the Simulation Host. These messages contain commands
that are used to move or change dynamic components, and to draw or remove static
components. The 2-D task (w .;h runs on the GSP) decodes the runtime commands and
updates the component information in the 2-D database accordingly. The 2-D task then
processes the changes to each component in the order in which they are defined in the
database.

The functions in the 2-D Overlay Compiler CSU are not involved with runtime changes.
The commands are passed directly from the real-time software to Force to the GSP, and the
GSP processes the changes to the structures in its memory.

For the complete syntax of each command used to set up or change a 2-D image, refer to
the "2-D Commands and Parameters" document. That document also provides a sample 2-
D overlay and its ASCII input file.

108

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Overlays can also be created and compiled offline. A special version of the 2-D compiler
function is used to read the overlay file and generate a binary file. This file can then be
copied to the CIG and downloaded to 2-D memory (via the Force board) at a later time. All
of the source files that contain the functions used to process an overlay file offline are
prefixed by u-; these functions are not described in this document A separate "make" file is
used at system build time to select these source files instead of their online equivalents.

The primary data structures built by the 2-D compiler are the following:

Component descriptor table
Contains each component's number (0-63), color, channel (0 for high resolution, 1
or 2 for low-resolution), plane (foreground or background), window number (0 for
screen space, 1-15 for user-defined windows), clipping values, pre-translate (pre-
rotation) values, and post-translate (post-rotation) values.

Window descriptor table
Contains each window's absolute address, width (horizontal pixels), height
(vertical pixels), pitch, and a conversion factor for GSP.

Component pointer table
Contains a pointer to each component in the 2-D database.

After compilation, these structures are downloaded into GSP memory. If the 2-D compiler
is being run off-line, the data is compiled into a binary file which can later be downloaded
to the GSP. Figure 2-7 illustrates these structures, their contents, and their inter-
relationships, as they exist in GSP memory.

The primitive types handled by the 2-D compiler, and the functions used to process them,
are the following:

Primitive 2.D Setup Function

bit bit setup-bit bit

draw-line setup-lrawjine

draw _oval setup- oval rectangle

draw-rect setup-ovalrectangle

fill oval setup oval-rectangle

fill-poly setuppoly

fillrect setup-oval rectangle

polyline setupItply

string setup.define._string

text setupjtext

The specified function is responsible for retrieving the parameters associated with the
primitive, validating the data, then adding the data to the component descriptor table.

The structure of each of these primitives is illustrated in Figure 2-8.

109

BBN Systems and Technologies 120TX/T CIG HOST CSCI

32 bits
(aress 0x07804000)

ptr to component pointer table Component Pointer Tabh1
32 bits

ptr to window descriptor table (likely address 0x7804100)

per to component descriptor table p-- to campnent 0

total number of components ptr to comonent 1

size of window description per to component 2

not used

not used

not used

ptr to component 62

pr to component 63

Component Descriptors
Window Descriptor Tabho 16-bit values

32 bits (ikely address 0x7805100)

pr to window 0 _ process flag

_ _ _ dy color
pitch conversion cunnel/plane

unused unsed window id
ptr to window 1 viewport height

& I * viewport width

pitch _orverion viewpon x

unused urUsed viewpony

• .. satic/rdym

drawAraw

pre-translation x
ptr to window 15 pre-translation y

(post-translation x
pitch conversion ps-rnltopost-tranlation y,
unused unused rimitive type

primitive data

primitive type

Notes: primitive data
34010 does half-word swapping ...
34010 addresses are BIT addresses

pencess flag

Figure 2-7. 2-D Memory (From The 2-D Compiler)

110

BBN Systems and Technologies 120TX/T CIG HOST CSCI

I TEXT 5 DRAW OVAL

2 SFRING 3 f-L 4 DRAW LINE 6 FILL OVAL
7 DRAW .RECT

Prmtv 1)Primitive (3) Primitive (4) 3 FILRECT

o dei~b~it O~OPriiive (5, 6,7. 8)

0:0detntoy0:y 0: width
1:1 1: destnationx 0:x X1eiit

1:y1 destitony 0: yl 0:1
2: x 2: destlintnx 1:O 0:A

2:y2: destinationy 1: YO1: width

x orex1: YI 1: height

1: 1 1: x

v o rey2: O lzy

chrICu0destnation x 2: yO2: width

char 3 char 2 detnto y 2: xi
width 2: vi 2: height

height zo0
0 POLYLINE oear O2:

10 ILPOLY X it

0: ylheight

Primitive (0 10) Is________

poit yo
ptrto 0buffer poznty

pttolIbuffer__ _ _ _ _ _

tr tolIbuffer poit m

pt to 2 buffer __________ Notes:
pit to 2 buffer All boxes indicate 16-bit values

numbr o fins: 1:Text Chacters are byte-swapped
numbe oflns:n1 DCOMOP OxxGOFF

rnumber of pints: o point XO

fine X0 point YO

line Y

point xm

line xn point yi

line yn

pint xO
point 02:

point 10

po xin poit

point xm,

point ym

Figure 2-8. 2-D Compiler Primitives

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Figure 2-9 identifies the CSUs in the 2-D Overlay Compiler component of the UPSTART
CSC. These CSUs are described in this section.

Task Initialization

InoEd ta Database
Inrtease Database
Processing Feedback upstart Manage osi Flea

ment

Database

2DOeIyRa-ieVepr
Traversal

COMPler Proesingessor-

Generator

4bit
blt.c

init-stuff.cComn

cig2d&aetup.c oval~rectxc
ig-comp_2d.c PDlY.C
ig-gern_-2d.c proc -cmd.c

cig link_ 2d.c string.c
comp.c text.c
draw linexc window.c
geLtthing.c

Figure 2-9. 2-D Overlay Compiler CSUs

112

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Figure 2-10 illustrates how the CSUs in the 2-D Overlay Compiler interact.

clg_2dsetup

complle-2d

initializes global data

~gets next message from
ASCII file

geLthing
process-scommand setupbitbpt

,processes comad setup_ comp-start
from ASCII file setup-drawline

setupoval_rectangle
setup-poly

setupdefinestring
No setup text

setup-define-window

End of file?

YesYI .. linkup

allocates memory for windows;
downloads data to GSP

Figure 2-10. 2-D Overlay Compiler Flow Diagram

2.2.4.1 bit bit.c (setup bitbit)

The bit_blt.c CSU contains one function, setup_bit_ blt. This function is responsible for
setting up block-transferring pixel information in the component descriptor table.

The function call is setup bit bit(cmd), where cmd is the command (N-BITBLT)

passed by processcommand.

setup-bitblt does the following:

1* Verifies that component start data has already been processed.

113

BBN Systems and Technologies 120TX/T CIG HOST CSCI

• Calls get-thing to retrieve the parameters associated with this primitive.
* Determines if the component descriptor table has room available.
* Places the source window pixel x and y into the component descriptor table.
• Places the destination window pixel x and y into the component descriptor table.
" Places the width, height, and operator into the component descriptor table.

The rtn_val returned by the function is one of the following:

• SUCCESS if the data is added to the table successfully.
" COMPONENTDESCRIPTORTBLFULL if the table does not have enough

room for the new data.
* SYNTAXERROR if the data in the message is invalid.

Called By: process_command

Routines Called: geLthingprintf

Parameters: INT crnd

Returns: rtn_val

2.2.4.2 cig_2d setup.c

The cig2dtsetup function is the 2-D overlay setup handler. This function is called by
dbmccsetup if the message from the Simulation Host is MSGCIGCTL -
C_START_2DSETUP, and a Force board is present.

The function call is cig_2d.setupo. cig_2dsetup does the following:

" Allocates memory for the setup.
• Starts the 2-D compiler by calling compile_2d.
" Deallocates the memory when the compiler is finished.

Called By: db_mcc_setup

Routines Called: calloc
compile_2d
free
printf

Parameters: none

Returns: none

114

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.4.3 cigcomp_2d.c (compile_2d)

The cig-comp_2d.c CSU contains one function, compile_2d. This function is the main
driver for the 2-D database compiler, compile_2d is responsible for processing the 2-D
setup messages (MSG_2D_SETUP) sent from the Simulation Host. Each message
represents one line in the ASCII 2-D database file.

The function call is compile_2d0. compile_2d does the following:

" Calls initstuff to initialize various compiler variables.
" Calls get-msg_2d to get each line of the input file.
* Calls processcommand to process each command from the input file.
" Checks for errors from process_command.
• Calls linkup to set up the window pointers and write the data to the GSP.
• Reports the number of errors detected during the compile.
" Cleans up and quits.

Called By: cig-2dsetup

Routines Called: get-msg_2d
initstuff
linkup
printf
processcommand

Parameters: none

Returns: none

2.2.4.4 ciggetm_2d.c (getmsg_2d)

The cig-getm 2d.c CSU contains one function, get-msg_2d. This function gets the next
2-D message from the input file and sets a pointer to it for compile_2d.

Each MSG_2D_SETUP message received from the Simulation Host represents one line of
data in the ASCII input file. Each setup message is followed by a MSGEND message,
making the MSG_2DSETUP message the only message in the packet. get.msg_2d calls
EXCHANGEDATA to exchange packets each time a MSG_END message is detected.
The full sequence is terminated by a MSGCIGCTL - C_STOP message.

The function call is getmsg_2do.

The msg code returned by the function is one of the following:

* CONTINUE_2DSETUP if a valid 2-D setup message is found.
* STOP_2DSETUP if a CIG Control-Stop message is detected.
* INVALID_2DSETUP if an unknown message is detected.

115

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: compile_2d
get-thing

Routines Called: EXCHANGEDATA
SYSERR

Parameters: none

Returns: msg.code

2.2.4.5 ciglink_2d.c (linkup)

The cig_link_2d.c CSU contains one function, linkup. This function is responsible for
setting up window pointers and allocating available MPV (Micro Processor Video) memory
for windows. It also downloads the data to GSP memory.

The function call is linkupo. linkup does the following:

* Calculates base addresses and table sizes for all information.
* Outputs the following information to stdout: component pointers table base address

and size, window descriptor table base address and size, component descriptor
table base address and size, allocatable window base address and maximum size, 0
and base program address. See Figure 2-11 for a sample output.

* Sets up the screen window area (this should not vary).
* Changes the component pointers to absolute addresses.
* Allocates space for the dynamic polygon buffer areas.
* Sets the allocatable window area to the space following the component descriptor

table.
* Allocates space for all windows and sets the window pointers.
* Downloads all data to GSP memory via the Force control register.

If the offline version of linkup is run, it writes all 2-D overlay data (header, component
pointer table, window descriptor table, and component descriptor table) to the 2-D binary
database file. The binary file can then be copied to the CIG and downloaded to GSP
memory at a later time.

Figure 2-11 is a sample of the output generated by linkup.

116

BBN Systems and Technologies 120TX/T CIG HOST CSCI

file data2d itl.0400 - Compiler output from:
compile_2d -data2dita.0400 data_2d itb.0400 > data2ditl.0400

BBN Systems and Technologies Graphics Technology Division
2D Database Compiler Date Thu Nov 17 15:23:31 PST 1988 Version: 0400
Link step starting ...
BASE COMPONENT POINTERS ADDRESS: 0x07804100

size of component pointer table: OxOO000800
BASE WINDOW DESCRIPTOR TABLE ADDRESS: 0x07804900

size of window descriptor table: Ox00000800
BASE COMPONENT DESCRIP TABLE ADDRESS: 0x07805100

size of component descriptortable: 0x000074d0
BASE ALLOCATABLE WINDOW ADDRESS: 0x0780c5e0
maximum size of allocatable area: 0x00373a20

BASE PROGRAM ADDRESS: 0x07b80000
Allocating Dynamic Poly 0x3 at 0x780c5e0
Next Available Address: Ox780ec2O
Space used: 0x2640 Space available: 0x3713e0
Allocating Dynamic Poly 0x4 at 0x780ec20
Next Available Address: Ox780ed4O
Space used: 0x2760 Space available: 0x3712c0
Window Oxl Allocated at GSP address: 0x780ed50
Next Available Address: 0x78b6d50
Space used: Oxaa760 Space available: 0x2c92b0

Compile finished -- Number of Errors - 0

Figure 2-11. Sample 2-D Compiler Output

Called By: compile2d

Routines Called: DOWNLOADDATA
printf
TRIGGERFORCE
WAITFORCE

Parameters: none

Returns: none

2.2.4.6 comp.c (setupcomp_start)

The comp.c CSU contains one function, setupcompstart. This function is responsible
for placing component start data into the component descriptor table.

The function call is setupcompstart(cmd), where cmd is the command
(NCOMPSTART) passed by processcommand.

setupcomp-start does the following:

117

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Calls geLthing to retrieve the component number, color, channel number, plane
(foreground or background), window number, static/dynamic parameter, and
rotation/translation values.

" Determines if the component descriptor table has room available.
• Places a pointer to this component in the component pointer table.
* Places all of the component data in the component descriptor table.

setupcomp-start provides some defaults if invalid parameters are encountered. The
default color is white, the default plane is background, and the default static/dynamic
parameter is static.

The rtnval returned by the function is one of the following:

* SUCCESS if the data is added to the table successfully.
* COMPONENT_DESCRIPTORTBLFULL if the table does not have enough

room for the new data.
* INVALIDPARAMETERS if any of the component parameters provided is out of

range.

Called By: process_command

Routines Called: get-thing
printf
strcmp

Parameters: INT cmd

Returns: rtnval

2.2.4.7 drawline.c (setupdrawline)

The drawline.c CSU contains one function, setup_draw._lne. This function is
responsible for updating line data in the component descriptor table.

The function call is setup draw line(cmd), where cmd is the command
(NDRAWLINE) passed by processcommand.

setup-drawjline does the following:

" Calls get.thing to retrieve the parameters associated with this primitive.
• Determines if the component descriptor table has room available.
* Places the line's starting point x (column) and y (row), and the ending point x and

y, into the component descriptor table.

The rtn_val returned by the function is one of the following:

* SUCCESS if the data is added to the table successfully.
* COMPONENTDESCRIPTORTBL_FULL if the table does not have eiiough

room for the new data.

118

BBN Systems and Technologies 120TX/T CIG HOST CSCI

• SYNTAXERROR if the data in the message is invalid.

Called By: process_command

Routines Called: geLthing
printf

Parameters: INT cmd

Returns: rtnval

2.2.4.8 getthing.c

The getjhing function scans input lines for a specified number of data items of a specified

type.

The function call is get thing(type, number), where:

type is the type of item (DATATYPE, COMMAND_TYPE, or TEXTTYPE)
number is the number of items to be read

get.thing processes data as follows:

• Blank spaces and tab characters are discarded.
* If a digit is found and type is DATATYPE, geLthing sets a pointer to the data.
* If an alpha character is found and type is COMMANDTYPE, geLthing sets a

pointer to the command.
• If a quote character is found and type is TEXTTYPE, get._thing sets a pointer to

the text.
* If the end of line or comment is found, getthing reads the next line.

This process continues until an error occurs or the specified number of items are read. The
rtn._val returned by the function is one of the following:

" SUCCESS if the items were read successfully.
* SYNTAX_ERROR if unexpected data was found.

Called By: processcommand
setup-bit.blt
setup-comp-start
setup-definestring
setup-definewindow
setup jdraw-line
setup-ova-rectangle
setup-poly
setup-text

119

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: geLmsg_2d
isalpha
isdigit
printf

Parameters: INT type
INT number

Returns: rtn val

2.2.4.9 init stuff.c

The initstuff function initializes the following global data for the 2-D compilation process:

• Window descriptor table
" Allocation list
* Component pointer table
" Component descriptor table

The function call is init stuffo.

Called By: compile_2d

Routines Called: none

Parameters: none

Returns: none

2.2.4.10 ovalrect.c (setup ovalrectangle)

The ovalrect.c CSU contains one function, setup.ovaLrectangle. This function is
responsible for updating oval and rectangle data in the component descriptor table.

The function call is setup oval rectangle (cmd), where cmd is the command
(NDRAWOVAL, NILL_OVAL, NDRAW_RECT, or NFILLRECT) passed by
processcommand.

setup-ovalrectangle does the following:

* Calls get-thing to retrieve the data in the message.
* Determines if the component descriptor table has room available.
• Places the object's width and height into the component descriptor table.
* Places the object's x (column of the upper left comer) and y (row of the upper left

comer) coordinates into the component descriptor table.

120

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The rtn val returned by the function is one of the following:

* SUCCESS if the data is added to the table successfully.
. COMPONENTDESCRIPTORTBLFULL if the table does not have enough

room for the new data.
0 SYNTAXERROR if the data could not be processed.

Called By: processcommand

Routines Called: geLthing
printf

Parameters: INT cmd

Returns: rtnval

2.2.4.11 poly.c (setuppoly)

The poly.c CSU contains one function, setup-poly. This function is responsible for
updating polygon data in the component descriptor table.

*The function call is setuppoly(cmd), where cmd is the command (NPOLYLINE or
N_FILLPOLY) passed by process command.

setup-poly does the following:

" Calls get-thing to retrieve the data in the message.
o Determines if the component descriptor table has room available.
* Places the polygon's line and point data into the componenw descriptor table.

The rtn_val returned by the function is one of the following:

• SUCCESS if the data is added to the table successfully.
• COMPONENT_DESCRIPTORTBLFULL if the table does not have enough

room for the new data.
• SYNTAXERROR if the data in the message could not be processed.

Called By: processcommand

Routines Called: geLthing
printf

Parameters: INT cmd

Returns: rtnval

121

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.4.12 proccmd.c (processcommand)

The procscmd.c CSU contains one function, processscommand. This function is
responsible for retrieving a command string from get.thing, then calling the appropriate
setup routine.

The function call is processcommando. process_command does the following:

" Calls get__thing to retrieve a command string.
" Compares the string with each possible command to determine which it is.
* When a match is found, calls the applicable setup routine.

The loop is repeated until all commands in the input file have been retrieved. The
commands processed by processscommand, and the setup function it calls for each, are
listed below.

Command Function Called(cmd)
ABITBLT or BBIT BLT setup.bit_blt(N_BIT_BLT)

ACOMPSTART or BCOMP START setup__compstart(NCOMPSTART)
A-DEFINE STRING or B DEFINE-STRING setup-define string(NDEFINESTRING)
ADEFINEWINDOW or BDEFINEWINDOW setupdefme_window(N_DEFINVINDOW)
ADRAWLINE or B DRAW LINE setup_drawine(NDRAWLINE)
A DRAW OVAL or B DRAW-OVAL setupoval rectangle(NDRAWOVAL)
A-DRAW RECT or B _DRAWRECT setup oval rectangle(NDRAWRECT)
AENDCOMP or BENDCOMP none
AFILLOVAL or BFILLOVAL setup-oval-rectangle(NFILLOVAL)

AFILLPOLY or BFILLPOLY setup-poly(NFILLPOLY)
AFILLRECT or BFILLRECT setup-oval rectangle(NFILLRECT)
APOLYLINE or BPOLYLINE setup_po1y(NPOLYLINE)

A-TEXT or BTEXT setupjext(N_TEXT)

processcommand keeps track of the number of errors returned by the setup functions. If
the number of errors exceeds MAXCOMPILEERRORS (defined in defines_2d.h),
processcommand returns a r:n val of TOOMANYERRORS. This causes compile_2d
to terminate the compile.

Called By: compile_2d

Routines Called: get-thing
printf
setup-bit-blt
setup_compstart
setup__define-string

122

BBN Systems and Technologies 120TX/T CIG HOST CSCI

setup defme-window
setup- draw-line
setup-oval-rectangle
setup-poly
setup jext
strcmp

Parameters: none

Returns: rtnval

2.2.4.13 string.c (setupdefine string)

The string.c CSU contains one function, setup-define-string. This function is responsible
for placing initial string data into the component descriptor table.

The function call is setupdefine string(cmd), where cmd is the command
(NDEFINE_STRING) passed by process-command.

setupdefinestring does the following:

* Calls get-thing to retrieve the data from the message.
* Verifies that component start data has been entered into the component descriptor

table.
" Determines whether the component descriptor table has room available.
* Places the string's font, x and y coordinates, and character data into the component

descriptor table.

The rtnval returned by the function is one of the following:

" SUCCESS if the data is added to the table successfully.
" COMPONENTDESCRIPTORTBLFULL if the table does not have enough

room for the new data.
" SYNTAXERROR if if the string exceeds the maximum length allowed, the string

contains a non-ASCII character, or the data in the message cannot be processed.

Called By: process_command

Routines Called: get-thing
printf
strlen

Parameters: INT crnd

Returns: rtnval

123

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.4.14 text.c (setuptext)

The text.c CSU contains one function, setup-text. This function is responsible for placing
fixed-length text data into the component descriptor table.

The function call is setuptext(cmd), where cmd is the command (N_TEXT) passed by
processcommand. setup jext does the following:

" Calls getjthing to retrieve the data from the message.
• Verifies that the component descriptor table has room available.
" Places the text's font, x coordinate (lower left column), y coordinate (lower left

row), and character string into the component descriptor table.

The rtnval returned by the function is one of the following:

* SUCCESS if the data is added to the table successfully.
* COMPONENT_DESCRIPTORTBLFULL if the table does not have enough

room for the new data.
* SYNTAXERROR if a non-ASCII character is detected in the text string, or if the

data in the message cannot be processed.

Called By: process_command

Routines Called: get-thing
printf
strlen

Parameters: INT cmd

Returns: rtnval

2.2.4.15 window.c (setupdefinewindow)

The window.c CSU contains one function, setup_define_window. This function is
responsible for placing window data into the window descriptor table.

The function call is setupdeine window(cmd), where cmd is the command
(NDEFINEWINDOW) passed by process_command.

setup_defime_window does the following:

• Calls get thing to retrieve the data from the message.
* Verifies that the parameters are valid.
* Computes the window's pitch and conversion factor. (See table below.)
• Places all window parameters (number of horizontal pixels, number of vertical

pixels, pitch, and GSP conversion factor) into the window array structure.

124

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Places the window number into the allocation list so linkup can allocate memory for
the window.

Pitch and conversion factors are computed as shown below.

horizontal pixels pitch count conversion factor

(hex) (hex) (dec) (dee)

4001-8000 8000 15 16

2001-4000 4000 14 17

1001-2000 2000 13 18

801-1000 1000 12 19

401-800 800 11 20
201-400 400 10 21

101-200 200 9 22

80-100 100 8 23

41-80 80 7 24

21-40 40 6 25

11-20 20 5 26

8-10 10 4 27

4-8 8 3 28

2-4 4 2 29

1-2 2 1 30
1-1 1 0 31

The rtnval returned by the function is one of the following:

" SUCCESS if the data is added to the table successfully.
* INVALID_WINDOWNUMBER if the window number is out of range.
" INVALID_WINDOWDX if the window's width is out of range.
• INVALIDWINDOWDY if the window's height is out of range.
" WINDOWPITCHTOOLARGE if the window's pitch is out of range.
• SYNTAXERROR if the data in the message cannot be processed.

Called By: processcommand

Routines Called: geLthing
printf

Parameters: INT cmd

Returns: rtnval

125

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.3 Database Management (ROWCOLRD) CSC

The Database Management CSC is responsible for determining whether new rows and/or
columns need to be read from the terrain database into active area memory for hardware,
local terrain, and Ballistics use.

The terrain database, which is stored in the CIG, describes the entire terrain that can be
displayed in the simulation. It also contains the graphic information used to display
vehicles, houses, trees, hills, and other objects in the terrain.

The items stored in the terrain database are represented by connected polygons that are
three-dimensional images. The polygons are grouped into compacted data structures such
as terrain grids, polygon models, and stamp arrays. They are further grouped into unique
static objects (rivers, roads, and other features that appear only once in the database) and
generic models (houses, trees, vehicles, and other features that commonly recur in the
database).

The terrain database is divided into units called load modules. One load module contains
the instructions and data required to process a one-half kilometer square area of static
objects. Each load module contains all the roads, rivers, terrains, buildings, and other
features within a 500 by 500 meter area. The load modules in the terrain database are
organized in rows and columns. The total size of the database is variable.

Each load module is divided into four areas called grids. Each grid is a 125M by 125M
square.

Active area memory (AAM) contains the subset of the local terrain that can be viewed and
interacted with at a given point in time by the simulation. The AAM stores an 8K by 8K
area centered around the simulation vehicle. This provides a viewing range of 3500 meters
in each direction, with a 500-meter buffer along each edge. The AAM contains 256 load
modules (16 rows by 16 columns).

16 load modules

I MLVM 3b.Y M
(myjnlx. MY-".Y)

*500 M buffer

126

BBN Systems and Technologies 120TX/T CIG HOST CSCI

As the simulated vehicle moves toward an edge of active area memory, the Database
Management CSC brings in new load modules from the terrain database, overwriting those
areas that the vehicle is moving away from. The objective of this process is to keep the
simulated vehicle in the center of active area memory.

Active area memory can be thought of as a window that moves over the terrain database.
As the vehicle travels east, for example, the window must be moved east to keep the
vehicle in the center. To do this, Database Management determines what column in the
database lies east of the current east boundary of AAM. It then reads part of that column
(the 16 load modules in the column that lie between AAM's north and south boundaries)
into AAM. Finally, it shifts the west boundary of AAM over one column.

With very large terrain databases, load module blocking can be enabled. One load module
block contains four load modules (two rows by two colu!rns). Therefore, one load
module block is 1000 meters by 1000 meters, or a one-kilometer square area. Load
module blocking increases the amount of terrain that can be loaded into active area memory
to 16K by 16K. It also doubles the viewing range of the simulated vehicle (from 3500
meters to 7000 meters).

Figure 2-12 identifies the CSU: in the Database Management CSC. The functions
performed by these CSUs are described in this section.

I Task Initialization

Forcetask
tabase

Ballistics InterfaCe Databa U tart Gsp
Processing Feedback mt

genericJm
load modules.c
rowol._rd.c

Figure 2-12. Database Management CSUs

2.3.1 generic Im.c

The genericjIm.c CSU is used to initialize and generate a generic load module containing
one ocean polygon. This allows a system to go beyond the defined database boundaries
but still retain some orientation reference.

This CSU contains two functions:

127

BBN Systems and Technologies 120TX/T CIG HOST CSCI

• initgenericlm
* generic_Im

2.3.1.1 initgenericIm

The init-genericim function initializes a generic load module.

The function call is init generic Im(view-range), where view-range is the viewing
distance (3500 or 7000).

init-generic-im does the following:

" Generates the load module header.
" Generates the required DTP commands.
" Generates the grid components.

Called By: loadmodules

Routines Called: none

Parameters: INT_4 viewrange

Returns: none

2.3.1.2 genericIm

The generic-im function generates the generic load module. It copies the load module to
memory, then updates the load module header, DTP, and grid components.

The function call is genericIm(swx, swy, centoff, memptr), where:

swx is the x coordinate of the load module's southwest comer
swy is the y coordinate of the load module's southwest comer
centoff is the offset to the center of the load module
mempir is a pointer to the AAM location for the new load module

Called By: getside

Routines Called: none

Parameters: INT_4 swx
INT_4 swy
REAL_4 centoff
GENLM *memptr

128

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.3.2 load modules.c

The functions in load-modules.c are used to load new active area rows and columns from
the terrain database when required. These functions are:

* getlmdp
* getside
• whatdirptr
* load_modules

2.3.2.1 getlmdp

The getlmdp function gets a load module's disk pointer from the database.

The function call is getlmdp(xmod, ymod, rowcol_dbfd), where:

xmod is the load module array number x
ymod is the load module array number y
rowcol_dbfd is the file descriptor for the terrain database

The function ret-rns the disk pointer if successful, or 0 if the load module is not in the
database. If 0 is ret red, getside calls genericIm to get a generic load module.

Called By: getside

Routines Called: XLSEEK
XREAD

Parameters: INT_4 xmod
INT_4 ymod
int rowcoldbfd

Returns: dbde.lm_loc

2.3.2.2 getside

The getside function loads part of a row or column from the terrain database into active area
memory. The number of load modules in the row or column that are actually loaded into
AAM is 16 (the normal height/width of AAM) or 32 (the height/width of AAM if load
module blocking is enabled).

The function call is getside(lmdloc, xmod, ymod, xinc, yinc, diroff, zeroit,
rowcol dbfd), where:

129

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Imdloc is a pointer to the first load module on disk
xmod is the first load module's array number x (west column)
ymod is the first load module's array number y (south row)
xinc is the load module's array number increment xyinc is the load module's arm'y number increment y

diroff is a byte offset to the directory pointer in the load module header
zeroit is a flag used to determine when the running average load module centroid should

be zeroed
rowcol_dbfd is the file descriptor for the terrain database

getside does the following for each new load module it loads into AAM:

• Sets the load module number and gets its AAM address.
" Checks that the load module is in the database and gets its disk pointer.
• If the load module is not in the database, calls genericim to get a generic load

module.
" Informs Ballistics of the new load module (by pushing a MSGBOLMREAD

message onto the Ballistics message queue).
" Updates the field-of-view tables for the new load module.

Called By: load-modules
rowcol rd

Routines Called: getlmdp
generic_lm
mx-push
XLSEEK
XREAD

Parameters: WORD lmdloc
INT_4 xmod
INT_4 ymod
INT_4 xinc
INT_4 yinc
WORD diroff
WORD zeroit
int rowcol_dbfd

Returns: none

2.3.2.3 whatdirptr

The whatdirptr function finds the direction pointer for the load module at a specified

location in a specified direction.

The function call is whatdirptr(xmod, ymod, diroff), where:

xmod is the load module's array number x (west column)
ymod is the load module's array number y (south row)

130

BBN Systems and Technologies 120TX/T CIG HOST CSCI

diroff is the byte offset to the direction pointer in the load module header

Called By: loadmodules
rowcolrd

Routines Called: none

Parameters: INT_4 xmod
INT_4 ymod
WORD diroff

Returns: <direction pointer>

2.3.2.4 load modules

The loadmodules function loads a portion of the terrain database into AAM.
loadmodules is called when AAM needs to be completed loaded. It is called by loaddbase
to load the initial load modules into active area memory. During a simulation,
loadmodules is called by rowcol-rd if the simulated vehicle is detected to be out of
viewing range of active area memory. Specifically, the vehicle must be more than one-half
the width of AAM outside its boundaries. In this instance, none of the terrain that is
currently visible to the vehicle is in AAM - usually, this is due to "warping" across the
terrain. rowcol_rd then calls loadmodules to rebuild all of AAM based on the vehicle's
current location.

The function call is load modules(filedescriptor), where filedescriptor identifies

the database file to be read.

loadmodules does the following:

* Initializes direction offsets.
" Calls initgeneric_lm to initialize a generic load module for the applicable viewing

range.
* Calculates the southwest comer of AAM based on the current coordinates of the

simulated vehicle.
* Calculates the four borders of AAM.
" Reads each AAM row (south to north) from west to east, calling getside to load the

appropriate load modules from the database.
• Calls whatdirptr to find the direction pointer after the first row of load modules is

loaded.
" After reaching the northernmost row, resets the address of the south border.

Called By: loaddbase
rowcol_rd

Routines Called: getside

init-generic-Im

131

BBN Systems and Technologies 120TX/T CIG HOST CSCI

whatdirptr

Parameters: INT filedescriptor

Returns: none

2.3.3 rowcol rd.c

The rowcol_rd.c CSU contains two functions:

" main (for Butterfly compatibility only)
" rowcolrd

2.3.3.1 main

The main function invokes the rowcolrd function. It requires one argument: bvme id,
which identifies the Butterfly-VME interface. This function is required for Butterfly
compatibility only.

Called By: none

Routines Called: atoi
FindValue
MakeEvent
map_vme
NameBind
printf
remap.yme

Parameters: int argc

char *argv[]

Returns: none

2.3.3.2 rowcol rd

The rowcol_rd function determines whether a new row or column of the database needs to
be read into active area memory. This task is started automatically by rtt during the task
initialization state.

rowcolrd waits until simulation posts a message to its mailbox, indicating that database
management is required. It then does the following:

* Initializes direction offsets.

132

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Tells Ballistics where the southwest comer of active area memory is, by pushing
the MSGBOAAMSWCORNER message onto the Ballistics message queue.

• Checks to see if the simulated vehicle is out of viewing range of AAM (i.e., is
beyond an AAM boundary by a distance of more than one-half AAM width). If so,
calls load_modules to reload all of AAM from the terrain database.

• Checks to see if the simulated vehicle is inside AAM, or outside but within viewing
range of it. If so, compares the coordinates of the vehicle's centroid to the center of
AAM.

" If the vehicle is detected to be off-center, calls whatdirptr and getside to load a new
row or column in the needed direction. For example, if the vehicle is detected to be
too far away from the west boundary (i.e., is east of AAM center), a column is
added to the east side and deleted from the west. This has the effect of shifting all
of AAM east by one column.

" Updates the necessary database data variables to reflect the change to AAM
boundaries.

" Checks to make sure all static vehicles are within the active area.

Called By: none

Routines Called: getside
loadmodules
mxpush
scpend
scpost
whatdirptr
XCLOSE

Parameters: none

Returns: none

133

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.4 Database Feedback (LOCAL-TERRAIN) CSC

The Database Feedback CSC builds new local terrain messages. These messages are used
by the Simulation Host to provide collision detection with objects in the simulated
environment, and to calculate the dynamics of the vehicle in operation.

A local terrain message contains data describing the terrain, roads, rivers, and buildings
that lie within the four grids surrounding the simulated vehicle. (One grid is usually 125
meters per side. One load module is defined as four grids - two rows by two columns.)

A new local terrain message is sent to the Simulation Host every 32 frames. Each message
contains the following:

* A header that specifies the number of polygon definitions and the number of
bounding volumes (bvols) contained in the message.

* Polygons that describe the local terrain and the objects in it. These polygons are
planar, convex, and three- or four-sided. Each polygon entry in the message
specifies the soil type, priority code, minimum and maximum coordinates, and all
polygon vertices in counter-clockwise order.

" Bounding volumes. A bvol definition contains one or more four-sided bounding
boxes each of which has a planar, convex, polygonal base and a height (expressed
in units on the z axis) for the volume given. Each bvol entry in the message
specifies the bvol's height above the polygonal base, the bvol type identifier, the
minimum and maximum coordinates, and the vertex list.

Local terrain messages can also be sent on demand from the Simulation Host, in response
to a MSGRTNJLT (return local terrain) message. This message is to be used by the
MCC station only.

The CSUs in the Database Feedback CSC are identified in Figure 2-13. The functions
performed by these CSUs are described in this section.

134

BBN Systems and Technologies 120TXT CIG HOST CSCI

Task Initialization

F l Frels Databaso
I~~I~cI 1 1Wftwe Foedbedwptf ang- Gsi Flea

bal geLdbpo.c
baWjetjmgrd.C
Ioc terC

Figure 2-13. Database Feedback CSU

2.4.1 bal_getdbpos.c

The balgetLdb-pos function finds the load module number and grid number of a given
chord point. This function is called by local-terrain to determine the load module and grid
of the simulated vehicle's current position.

* The function call is balget.db-pos(pcrd, Im width, Im per_side), where:

pcrd is a pointer to the chord data
1m width is the width of a load module
lmjper side is the number of load modules in a row or column of AAM

bal-getdb-pos calls FINDLM to determine the load module for the x and y coordinates
provided by localterrain (in the chord data). It then calculates which grid the vehicle
occupies within the load module. The load module and grid number are placed in the chord
data structure.

Called By: local_terrain

Routines Called: FIND_LM

Parameters: CHORD_DATA *pcrd
INT_4 lmwidth
INT_4 lmperside

Returns: none

135

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.4.2 balgetlmgrid.c

The bal_getlm-grid function finds the load modules and grids in the database that are
intersected by a chord. This function is called by local-jerrain to determine what four grids
lie around the simulated vehicle. (One grid is 125 meters wide.)

The function call is balgetlmgrid(pcrd, Im_per side, Imsize,
Im_baseaddr, balsearch, dvlsearch, Im_width), where:

pcrd is a pointer to the chord data
lm_perside is the number of load modules in a row or column of AAM
1m size is the size in bytes of a load module
Im base addr is the load module's base address
bal search is the array in which to store load module offsets and grid words
dvl- search is the array in which to store dynamic module path data
Im-width is the width of a load module

The function returns 1 if it is successful, or 0 if an illegal chord (one longer than 125
meters) is detected.

Called By: localterrain

Routines Called: none

Parameters: CHORDDATA pcrd[]
INT_4 lm_per_side
INT_4 Im size
INT_4 Im-baseaddr
SEARCHLIST balsearch[]
INT_4 dvl_search[]
INT_4 Imwidth

Returns: 1 (TRUE)
0 (FALSE)

2.4.3 lobcter.c

The locter.c CSU contains two functions:

" main (for Butterfly compatibility only)
* localterrain

136

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.4.3.1 main

The main function invokes the local_terrain function. It requires one argument: bvne_id,
which identifies the Butterfly-VME interface. This function is required for Butterfly
compatibility.

Called By: none

Routines Called: a:oi
Find_Value
local_terrain
MakeEvent
map_vme
Name_Bind
printf
remap-yme

Parameters: int argc

char *argv[]

Returns: -1

2.4.3.2 local terrain

The localterrain function builds a local terrain message, based on the simulated vehicle's
current position, for transmission to the Simulation Host. The localterrain task is loaded
by rtt during the task initialization state. It is suspended until simulation posts a message to
its mailbox (LOCALTERRAINMB).

The first frame at which a local terrain message is created, and the interval at which new
messages are generated, are defined in the memory-map-defines.h include file. Currently,
the first frame is set to 16 and the interval is set to 32.

The simulation vehicle's current position (myint x, my inty) is stored in the viewport
positions array, which is maintained by process-Yppos. local_terrain assumes that the
vehicle's coordinates have just been updated.

When woken up by simulation, local_terrain does the following:

* Initializes the local terrain output buffer header (version and level).
• Calls readwatch to get the timer tick count.
* Calls bal-get db-pos to find the simulated vehicle's current load module number

and grid number.
• Calls bal-getjlm-grid to find the four grids that surround the simulated vehicle.
* Determines whether a new local terrain message needs to be built (i.e., if the

simulated vehicle's position has changed since the last local terrain message).
* If the vehicle has moved, reinitializes the local terrain output buffer.

137

BBN Systems and Technoiogies 120TX/T CIG HOST CSCI

• Searches the four grids that lie around the simulated vehicle for polygons, and
builds the polygon portion of the message.

" Searches the four grids that lie around the simulated vehicle for polygon
components, and builds the polygon component portion of the message.

• Searches the four grids that lie around the simulated vehicle for bounding volumes,
and builds the bvol portion of the message.

• Sets a pointer to the new local terrain message data.
• Creates the message header: message size, message type

(MSGLOCAL_TERRAIN, and the total number of polygons and bvols in the
message.

* Posts a message to the RTNTERRAIN_MB mailbox.

Called By: none

Routines Called: bal-get-db-pos
bal.geLlm__grid
FXTO881
FXTOFL
readwatch
scpend
scpost

Parameters: none

Returns: none 0

0
138

BBN Systems and Technologies 120TX/T CIG HOST CSCI

@ 2.5 Ballistics Processing (BALLISTICS) CSC

The Ballistics Processing CSC is responsible for the following:

* Detecting intersections with the terrain database and the currently viewable models
(static and dynamic vehicles).

. Processing round data and returning hit or miss information to the real-time
software.

* Processing trajectory chord data and returning hit or miss information to the real-
time software.

The following points apply to intersection calculations:

* When determining whether a given trajectory intersects with a model or the terrain,
Ballistics treats the trajectory as a series of consecutive chords. Each chord is a
maximum of 115 meters. All computations are performed on the chords.

" Intersections with models are calculated with the bounding volume surrounding the
model or its articulated part, not with the model itself. A bounding volume, or
bvol, is the volume of the bounding box that is used to enclose a model in the
simulation environment. The use of bvols reduces the number of surfaces that
Ballistics must deal with. An intersection with any surface of any bvol belonging to
a model is considered an intersection with that model.

0 Intersections with the terrain are calculated with polygons that have the local terrain
flag and/or the Ballistics flag set true.

Ballistics is loaded and started by upstart, then put into the run state by simulation. The
communication between the real-time software and Ballistics consists of the following:

" Messages sent from the Simulation Host. For example, a message may tell
Ballistics that a round has been fired, or that a static vehicle has been added to the
local terrain. Each Ballistics message is received by simulation, which pushes it
onto the Ballistics message queue. Ballistics processes the message (which
typically involves computing whether any model or terrain in the database was hit),
then returns a hit or miss message if applicable. Messages returned from Ballistics
are removed from the message queue by simulation, which sends them to the
Simulation Host.

" Once per frame, simulation notifies Ballistics that a frame interrupt has taken place,
and informs it (via a MSGBONEW_FRAME message) of the current frame count
and the new status of all dynamic vehicles.

* When the getside task (called by load_modules) loads a new load module from disk
into active area memory, it informs Ballistics using a MSGBO_LMREAD
message.

Ballistics Processing may be run on a master board or a slave board in the CIG, as follows:

139

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Master
If the CIG has only one MVME133 board, it is the master that is used to run all of
the real-time software, including Ballistics.

Slave
If the CIG has two MVME133 boards, the left board is the master that runs the real-
time software. The right board is the slave that runs Ballistics. This configuration
is used for high rate-of-fire weapons.

A CIG that interfaces to a Butterfly Simulation Host has only one MVME133 board, which
is used to run Ballistics. The real-time software runs on the Butterfly itself.

Note: The Dart Ballistics Processing board is no longer supported.
References in the code to the Dart implementation can be
disregarded.

The Ballistics software that runs on a master board is very similar to the software that runs
on a slave board. Most of the variations are identified in the code by the SLAVE133
compiler flag. The real-time software determines what type of Ballistics board is in the
CIG, then loads the appropriate version of the Ballistics task.

The major data structures used in Ballistics Processing are the following:

Trajectory table directory
Contains one entry for each trajectory table. A trajectory table, which describes the
trajectory for a specific type of round, consists of the trajectory type, frame rate,
effect type, table size, and a pointer to the table's entries. Each trajectory table entry
contains the trajectory's boresight x and y coordinates (with respect to the gun
barrel).

Trajectory tables are predefined for certain round types. The Simulation Host may
define trajectory tables for other round types.

Terrain model directory
Describes the models that are placed on the terrain (houses, telephone poles, water
towers, etc.). Each entry defines the model type, bvol flag, component count, bvol
count, model directory type, model radius, and the primary, secondary, and tertiary
bvol indices.

Note: The terrain model directory is not currently used. It is set up to
accommodate future enhancements to the database.

Terrain bvol directory
Describes the bounding volume for each terrain model. Each entry defines the
model directory type, type id, the bvol's height above the poly-defining perimeter,
and the perimeter defining the bvol polygon (its vertices).

Note: The terrain bvol directory is not currently used. It is set up to
accommodate future enhancements to the database.

DED model directory
Describes the models in the dynamic elements database. Each entry defines the
model type, bvol flag, component count, bvol count, model directory type, model
radius, and the primary, secondary, and tertiary bvol indices.

140

BBN Systems and Technologies 120TX/T CIG HOST CSCI

DED bvol directory
Describes the bounding volume for each DED model. Each entry defines the bvol
index, the model directory type, type id, the bvol's height above the poly-defining
perimeter, and the perimeter defining the bvol polygon (its vertices).

Load module directory
Contains one entry for each load module in active area memory. Each load module
entry contains the load module's cache flag, frame stamp, polygon count,
maximum polygon height above the poly-defining perimeter, bvol count, and
maximum bvol height above the poly-defining perimeter. Each load module entry
also contains pointers to the polygon and bvol lists attached to that load module.

Static vehicle directory
Contains one entry for every load module in active area memory. Each entry points
to a list of the static vehicles in that load module. Each entry in the static vehicle list
contains the static vehicle's vehicle id, AAM partition index, component count,
unique type, load module number, application-specific data (ASID), transformation
matrix, rotation angles for the second component, and back and forward pointers.

Static vehicle entries that are not currently assigned to a load module are contained
in the static vehicle free list. When the Simulation Host requests the addition of a
static vehicle, Ballistics removes one from the free list and adds it to the proper load
module list. When the Simulation Host specifies deletion of a static vehicle,
Ballistics removes it from the load module and returns it to the free list. The free
list is a mechanism for ensuring that the maximum number of static vehicles is not
exceeded.

* Polygon lists
Contain one entry for each polygon in a given load module in active area memory.
Each entry contains the polygon's soil type, vertex count, priority, shade, minimum
and maximum values, Ballistics flag, local terrain flag, grid location, and vertex
list. Each load module in active area memory has its own polygon list.

Polygon entries that are not currently assigned to a load module are contained in the
free polygon list. When a new load module is added to active area memory,
Ballistics removes the required number of polygons from the free list and adds them
to the new load module's polygon list. If the free list does not contain enough
polygons for a new load module, Ballistics swaps out the least-recently-used load
module. When a load module is removed from active area memory, Ballistics
returns its polygons to the free list.

Bvol lists
Contain one entry for each bounding volume in a given load module in active area
memory. Each entry contains the bvol's type id, distance above the poly-defining
perimeter, vertex list, and grid location. Each load module in active area memory
has its own bvol list.

141

BBN Systems and Technologies 120TX/T CIG HOST CSCI

bvol entries that are not currently assigned to a load module are contained in the free
bvol list. When a new load module is added to active area memory, Ballistics
removes the required number of bvols from the free list and adds them to the new
load module's bvol list. If the free list does not contain enough bvols for a new
load module, Ballistics swaps out the least-recently-used load module. When a
load module is removed from active area memory, Ballistics returns its bvols to the
free list.

Round list
Contains one entry for each active round. Each entry contains th:- round's active
frame count, frame count, frame interval, trajectory entry index, trajectory table
size, offset, trajectory pointer, points, and back and forward pointers.

Round entries that are not currently active are contained in the free round list.
When the Simulation Host requests a new round, Ballistics removes one from the
free list and adds it to the active list. After processing the round, Ballistics removes
it from the active list and returns it to the free list. The free list is a mechanism for
ensuring that the maximum number of rounds is not exceeded.

Ballistics Processing is divided into the following functional areas:

Ballistics Mainline
Initializes all Ballistics structures at start-up, and drives all Ballistics processing.

Ballistics Interface Message Processing
Processes the Ballistics messages received from the Simulation Host.

Ballistics Intersection Calculations
Calculates chord intersections to determine if anything in the simulated environment
was hit by a round or trajectory. Acquires polygon and bounding volume
information from the terrain database, and maintains the data in a cache using an
LRU swapping algorithm. Also maintains static vehicles using a set of free lists.

Ballistics Message Queue Processing
Maintains the message queues used as the interface between Ballistics and the real-
time software.

Figure 2-14 identifies the CSUs in the Ballistics CSC. The CSUs in each functional area
are described in the following subsections, in the order listed above.

142

BBN Systems and Technologies 120TX/T CIG HOST CSCI

0 Task Iniiahiation

ForovstaDaibas
Balisatics Interface Database Dtb

Feedback Manage-

bx jnf.c

Mainlie save133_tuncflons.c

bO am centroid.c bodeeteLstaic_vehcls- bC..pvmoshrd.c
bO-aam aw,-ccmer.c bO_delto._raLtable.c bOprocess_round.c
bO-add_stalkc_vehicle.c bOCerror detected.c bOrud_ ie~

Ba isInefae bO~add trasaLe"-c bCLinapp meeaag.c bO -state -corlrol.c
*Bislc~t~lc 1 bO bat cant ig-c bOIm -read.c b6 statusjrequestxc1Message Processing1 bOol-ety o-mdllrcoy btaphd

bO cancel round.c bOjmodeLentryxc bO~frajentry.c
bO]igjframekae.c bO new trame.c bO-undetlnied..message.c
bO-database-info c bO]pulnt-c

bx bvol it.c bx model int.c
Balistics Intesfection bxChdi-ntersecd.c bx..polylntcH CaIlcltos bx functions bx reset.c

bxget_knr_dsla.c bx -rajedloryx
bxgetjlmjrid.c

1 mx error.c mxJpue.c
Saisic Mesae m _open.c mx_Skip.C

Queue Procssig I mxjpeek.c mfx..ycopy.c

Figure 2-14. Ballistics Processing CSUs

143

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.1 Ballistics Mainline

This section describes the Ballistics Mainline component of the Ballistics Processing CSC.
The CSUs in this component provide the functions that initialize and drive Ballistics
Processing on the CIG.

2.5.1.1 bxl47 main.c (main)

The main function in bx147_main.c is not used on the 120TX/T CIG. Information
provided on this function in earlier releases of this document should be disregarded.

2.5.1.2 bx init.c

The bxinit function is called by bxtask to initialize Ballistics. bxinit defines the message
arrays (G_initmessage[] and Grunmessagef]) used by bxjtask to process Ballistics
messages. It also initializes the following structures:

* Terrain and dynamic elements database (DED) model directories.
* Terrain and DED bounding volume directories.
* Static vehicle list.
* Bounding volume cache list.
* Polygon cache list.
• Round list.
* Trajectory table directory and tables.
• Various pointers, lists, and temporary variables.

The function call is bx-inito.

Called By: bx_task

Routines Called: none

Parameters: none

Returns: none

2.5.1.3 bx task.c

The bxtask function is the main Ballistics task. It is loaded into the task table by rtt during
task initialization, and put into the run state by simulation.

bxtask does the following:

* Calls bxinit to initialize structures used by Ballistics.

144

BBN Systems and Technologies 120TX/T CIG HOST CSCI

° Locates the message queues used to communicate with the real-time software, and
40 installs and opens them.

" Notifies the real-time software that Ballistics has started (via a
MSG_B1_STATUSRETURN message).

* Gives the real-time software the addresses of Ballistics global variables (via a
MSG_Bi_GLOBALADDR message).

* Reads each Ballistics message in turn from the message queue.

Messages are pushed onto the Ballistics message queue by simulation. bxtask manages
the message queue using the Ballistics Message Queue Processing functions (see section
2.5.4). When it pops a message from the stack, it calls the appropriate Ballistics Interface
Message Processing routine (see section 2.5.2) to process it.

Called By: none

Routines Called: b0 aam_swcorner
bO_addstaticvehicle
bO_addtrajtable
bObalconfig
bOLbvoLentry
bO_cancel_round
bOcig_frame_rate
bOdatabaseinfo
bO_deletestatic_vehicle
bO_d;lete_trajtable
bO_error detected

ibOnapp _message
bOlmread
bO model_directory
bO_modelentry
bOnew_frame
bOprint
bO_processsehord
bO_processround
bOroundfired
bO_state-control
bO_statusrequest
bOtrajsehord
bO_traj.entry
bO_undefined-message
bxinit
mxerror
mxopen
mx-peek
mx-push
mxskip
printf
puts

Parameters: none

145

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.5.1.4 slave133 functions.c

The slave 133_functions.c CSU contains functions that are required to run Ballistics on a
slave board. The functions contained in this CSU are the following:

" slave133_malloc
* free133

2.5.1.4.1 slave133_malloc

The slave 133_malloc function allocates memory on the slave board. The MALLOC macro
invokes slave133_malloc (instead of malloc) if Ballistics is running on a slave board.

The function call is slave133_malloc(byte count), where bytecount is the amount of
memory to be allocated. The function returns a pointer to the beginning of the free area of
memory as headP.

Called By: MALLOC

Routines Called: none

Parameters: WORD bytecount

Returns: head_P

2.5.1.4.2 free133

The free133 function returns all memory allocated with slave 133_malloc to the slave
board's memory pool. This function is called by bxreset to reclaim dynamic memory.

The function call is freel330.

Called By: bxreset

Routines Called: none

Parameters: none

Returns: none 0
146

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2 Ballistics Interface Message Processing

This section describes Ballistics Interface Message Processing, a major functional
component of the Ballistics Processing CSC. It contains the functions that process the
Ballistics messages that are received by the bxtask from the real-time software.

The Ballistics Interface Message Processing functions are defined as elements of arrays in
bxinit. Two arrays are used: G init message!] and Grunmessage[]. The messages in
G initmessage are used to initiaize Ballistics (e.g., define model entries or the trajectory
table). The messages in G runmessage are used to respond to runtime messages (e.g.,
process rounds or manage static vehicles). The index into either array is the message code
(G_m_code).

The complete processing mechanism is as follows:

1. The Simulation Host sends a .Allistics message.

2. simulation calls mx-push to push the message onto the Ballistics message queue.
simulation sets the message_code to MBO_<message>.

3. bxtask pops the message from the message queue.

4. bxtask indexes into G iit_message[] or G runmessage[] with the message code
(G_m_code). It also passes a pointer to the message (messageP).

5. The function corresponding to the specified element in the specified array is called
with the messageP parameter.

This method of invoking the Ballistics Interface Message Processing functions provides for
faster processing than direct function calls.

Note that some of the messages sent from simulation to Ballistics do not originate from the
Simulation Host. For example, simulation generates messages to start or stop Ballistics,
and to tell Ballistics where active area memory is. The processing mechanism for such
messages is the same as for those received from the Simulation Host.

Some Ballistics messages cause a return message. For example, a ROUNDFIRED
message results in a HIT_RETURN or MISS message. The Ballistics Interface Message
Processing function generates the response message and calls mx.push to push it onto the
message queue with the message code set to MB 1_<message>. simulation retrieves the
message from the queue and processes it accordingly.

2.5.2.1 bOaam centroid.c

The b0_aam_centroid function is a stub for future expansion; it is not currently used.

The function call is bOaam centroido. The function always returns 0.

147

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2.2 bOaam sw corner.c

The b0_aam sw comer function processes the message MSGBO_AAMSWCORNER.
This message is sent by simulation when Ballistics is first put into the run state. It is also
sent by rowcolrd whenever active area memory is relocated. The message gives Ballistics
the coordinates of the southwest comer of active area memory. The bO_aam_swcorner
function calculates the coordinates of the northeast corner by adding twice the viewing
range in each direction.

The function call is bO aam sw corner(messageP), where messageP is a pointer
to the MSGBOAAM_"W_COER message.

The function always returns 0.

Called By: bxtask

Routines Called: none

Parameters: MSG_BOAAMSWCORNER *messageP

Returns: 0

2.5.2.3 bOadd static vehicle.c

The bO_add_static_vehicle function processes the MSG_BOADD_STATICVEHICLE
message. This message is sent by simulation when the Simulation Host sends a message
to add a new static vehicle to the local terrain. The message specifies the vehicle id, type,
orientation, and position.

The function call is bO add static vehicle(messageP), where messageP is a
pointer to the MSGB0 -ADD_STATIC_VEHICLE message.

The function returns a 0 if successful. It returns 1 if the vehicle's load module is out of
range, the maximum vehicle limit has been reached, or the number of components (values
used to determine the vehicle's orientation and position) is not 1 or 3.

Called By: bxtask

Routines Called: BCOPY
NEWSTATVEH

Parameters: MSG_BOADDSTATIC_VEHICLE *messageP

148

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: 1O 0
2.5.2.4 bOadd_trajtable.c

The bOaddtrajstable function processes the message MSG_B0_ADDTRAJTABLE.
This message is sent by dbmccsetup when processing a MSGTRAJTABLEXFER
message from the Simulation Host. This message is used to add trajectory tables. The
message specifies the table's trajectory type, frame rate, effect type, and number of entries.
Entries are added using the bOtraj..entry function.

The function call is bO add traj table(message P), where message P is a pointer to
the MSG_B0_ADD_TTAJ~fABLE message.

The function returns 0 if successful, or -1 if the trajectory type is invalid.

Called By: bx task

Routines Called: free
MALLOC

Parameters: MSGBOADDTRAJTABLE *messageP

Returns: -I
0

2.5.2.5 b0balconfig.c

The bObal-config function processes the message MSGBOBALCONFIG. This
message is sent by open dbase to give Ballistics its initialized configuration parameters.

The function call is bO bal config(messageD), where messageP is a pointer to the
MSGBOBALCONFIG rmessage.

The function always returns 0.

Called By: bxtask

Routines Cailed: BCOPY

Parameters: MSGBOBALCONFIG *messageP

Returns: 0

149

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2.6 bObvolentry.c

The b0_bvol_entry function processes the message MSG_BO_BVOLENTRY. This
message is sent by downloadbvols to to add bounding volumes to the terrain or DED
model directory.

The function call is bO bvol entry(messageP), where messageP is a pointer to the
MSGB0_BVOLENI Y message.

The function always returns 0.

Called By: bxtask

Routines Called: BCOPY

Parameters: MSGBOBVOL_ENTRY *messageP

Returns: 0

2.5.2.7 bOcancel round.c

The b0_cancelround function is a stub for future expansion; it is not currently
implemented.

The function call is bOcancelroundO. The function always returns 0.

2.5.2.8 bOcig_frame_rate.c

The b0_cig-frame_rate function processes the message MSGBOCIG_FRAMERATE.
simulation sends this message to tell Ballistics the frame rate (15 or 30 Hz).

The function call is bO cig frame rate(messageP), where messageP is a pointer to
the MSG_BOCIGFRAMERATE message.

The function always returns 0.

Called By: bxtask

Routines Called: none

Parameters: MSGBOCIGFRAMERATE *messageP

150

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: 0

2.5.2.9 bOdatabase info.c

The bOdatabaseinfo function processes the message MSG_BODATABASEINFO.
open dbase sends this message after it initializes AAM partition information.

The function call is bO database info (messageP), where messageP is a pointer to
the MSGBODATABKSEINFO-message.

bOdatabaseinfo does the following:

" Allocates space for the load module tables.
* Loads the load module cache data.
" Sets up the table of load module addresses.

The function always returns 0.

Called By: bx_task

Routines Called: MALLOC

Parameters: MSGBODATABASEINFO *messageP

Returns: 0

2.5.2.10 bO delete static vehicle.c

The bOdeletestatic_vehicle function processes the message MSG_BODELETE_-
STATICVEHICLE. simulation sends this message when it receives a
MSGSTATICVEHREM message from the Simulation Host. The message contains the
vehicle id, type, and current position (x, y, and z coordinates) of the vehicle to be deleted
from active area memory.

The function call is bO delete static vehicle(message P), where messageP is a
pointer to the MSG_ 0)ELEI _STA-TIC_VEHICLE message.

The function returns 0 if the static vehicle is successfully deleted. It returns 1 if the
specified vehicle not found in active area memory.

Called By: bxtask

Routines Called: DELETESTAT_VEH
outhexl (if running on a slave board)
puts (if running on a slave board)

151

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: MSG_BODELETE_STATICVEHICLE *message_P

Returns: 1
0

2.5.2.11 bOdeletetrajtable.c

The b0_delete_traj_table function a stub for future enhancement; it is not currently
implemented.

The function call is bOdelete trajtableo. The function always returns 0.

2.5.2.12 bOdummy.c

The bOdummy function is a template for adding other bO_* functions; it is not called by
any other function.

The function call is bOdummyo. The function always returns 0.

2.5.2.13 bO error detected.c

The bOerror_detected function is a stub for future enhancement; it is not currently
implemented.

The function call is bOerrordetectedo. The function always returns 0.

2.5.2.14 b0inappmessage.c

The b0_inapp-message function outputs the "*** Inappropriate Message ***" error for
slave boards.

The function call is bOinappmessageo. The function always returns 0.

Called By: bxtask

Routines Called: puts

Parameters: none

Returns: 0

152

BBN Systems and Technologies 120TX/T CIG HOST CSCI

@2.5.2.15 b0lm read.c

The bOlm_read function processes the message MSG_B0_LM_READ for Ballistics. This
message is sent by getside (in loadmodules) to inform Ballistics of a new load module
added to the local terrain.

The function call is bO lm read(message P), where message P is a pointer to the
MSGB0_LMREAD message. The function always returns 0.

Called By: bxtask

Routines Called: FREELMCACHE

Parameters: MSG_BOLMREAD *message P

Returns: 0

2.5.2.16 bOmodeldirectory.c

The b0_model_directory function a stub for future enhancement; it is not currently
implemented.

The function call is bOmodel-directoryo. The function always returns 0.

2.5.2.17 bOmodel entry.c

The b0_model_entry function processes the message MSG_BOMODELENTRY for
Ballistics. This message is sent by downloadbvols to add entries to the terrain or DED
model directory.

The function call is bO model entry(message P), where message P is a pointer to the
MSG_BOMODEL_ENTRY message. The function always returns 0.

Called By: bxtask

Routines Called: BCOPY

Parameters: MSG_BOMODELENTRY *messageP

Returns: 0

153

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2.18 bOnew-frame.c

The b0_new_frame function processes the message MSG_BONEWFRAME for
Ballistics. simulation passes this message to give Ballistics new frame information (frame
count and the new state of all dynamic models). bO newframe then processes each active
round.

The function call is bO new frame(message P), where message P is a pointer to the
MSG_BONEWFRAME message. The function always returns 0.

When it is called, b0_new_frame processes each active round as follows:

* Calls bx'trajectory to see where the round's trajectory ends.
- If the trajectory extends beyond the viewing space, b0_new_frame sends a

MISS message, then deletes the round.
- If the trajectory ends within the viewing space, bOnew_frame calls

bx_chordintersect to determine what was hit, returns a HIT_RETURN
message, then deletes the round.

" For rounds that are to be traced, b0_newframe calculates the position and returns a
ROUND_POSITION message.

Called By: bxtask

Routines Called: bxchordintersect
bxtrajectory
DELETEROUND
GET_LB_FROMLM
mxpush

Parameters: MSG_BONEW_FRAME *messageP

Returns: 0

2.5.2.19 bOprint.c

The b0_print function is a generalized message printing routine. The message is printed to
stdout.

The function call is bO print(message P), where message P is a pointer to the
message. The function always returns 0.

Called By: bxtask

Routines Called: printf (if running on a master board)
puts (if running on a slave board)

154

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: char *messageP

Returns: 0

2.5.2.20 b0_process-chord.c

The b0_processchord function is a stub for future enhancement; it is not currently
implemented.

The function call is b0process-chordO. The function always returns 0.

Called By: none

Routines Called: none

Parameters: none

Returns: 0

2.5.2.21 b0_process-round.c

The b(Lprocessround function processes the message MSG_BO_PROCESSROUND.
This message is sent by simulation upon request from the Simulation Host. The message
specifies the round id, database id, round type, tracer type, frame rate, mode, proximity
range, gun's position and velocity, and gun's elevation and azimuth.

The function call is bO process round(messageP), where messageP is a pointer to
the MSG_BOPROCESS_ROUND message.

b0_processround does the following:

* Validates the round type.
" Calls NEW_ROUND to get a round from the free list and put in on the active list.
* Verifies that the gun barrel is within active area memory; deletes the round if it is

not.
* Calls bx-trajectory to see if the round's trajectory exceeds active area memory;

returns a MISS message and deletes the round if it does.
" Calls bxchordintersect to see what the round hit; returns a HIT_RETURN

message and deletes the round.
* For rounds that are to be traced, calculates the position and returns a

ROUNDPOSITION message.

The function returns 0 if successful. It returns -I if the round fired is not of a known type,
the free list is empty (i.e., the maximum number of active rounds has been reached), or the
gun barrel is not within the AAM database.

155

BBN Systems and Technologies 120TXT CIG HOST CSCI

Called By: bx_task

Routines Called: bxchordintersect
bxtrajectory
DELETE_ROUND
GET_LB_FROMLM
mx-push
NEWROUND

Parameters: MSG_BOPROCESSROUND *messageP

Returns: 0
-i

2.5.2.22 b0 roundfired.c

The b0_round-fired function processes the message MSG_BC_ROUND_FIRED for
Ballistics. This message is sent by simulation upon request from the Simulation Host. The
message specifies the round type, whether or not tracer effects are to be displayed, the
round identifier, the gun tip position and velocity, the gun's elevation and azimuth, the
estimated time to impact, and the estimated range of impact.

The function call is bO round fired(round fired P), where round fIredP is a
pointer to MSG_BO_ROUNDFIRED the message.

bOround_fired does the following:

" Validates the round type.
* Calls NEW_ROUND to get a round from the free list and put it on the active list.
* Verifies that the gun barrel is within active area memory; deletes the round if it is

not.
• Calls bx,trajectory to see if the round's trajectory exceeds active area memory;

returns a MISS message and deletes the round if it does.
* Calls bx_chord_intersect to see what the round hit; returns a HIT_RETURN

message and deletes the round.
" For rounds that are to be traced, calculates the position and returns a

ROUND_POSITION message.

The function returns 0 if successful. It returns -1 if the round fired is not of a known type,
the free list is empty, or the gun barrel is outside active area memory.

The MSG_ROUND_FIRED message has been replaced by the MSGPROCESSROUND
message. MSG_ROUNDFIRED is retained for backwards compatibility.

Called By: bx_task

156

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: bx_chordintersect
bxtrajectory
DELETIE_ROUND
GETLB_FROMLM
mx.push
NEWROUND

Parameters: MSG_BO_ROUND_FIRED *roundfired_P

Returns: 0-1

2.5.2.23 bOstate control.c

The bOstate_control function processes the message MSGBOSTATECONTROL for
Ballistics. simulation uses this message to reset Ballistics or put it into the run state.

The function call is bO state control(messageP), where messageP is a pointer to
the MSG_B0_STATE_)ONTROL message.

bOstatecontrol sets the Ballistics global variable G bal state to the new state provided. If
the new state is BXRESET, b0_state_control calls bxreset.

* The function always returns 0.

Called By: bx-task

Routines Called: bx.reset

Parameters: MSG_BOSTATECONTROL *message P

Returns: 0

2.5.2.24 bOstatusrequest.c

The bOstatus.request function is a stub for future enhancement; it is not currently
implemented.

The function call is bOstatus-requesto. The function always returns 0.

2.5.2.25 b0 traj chord.c

The b0graj chord function processes the message MSGBOTRAJ_CHORD for
Ballistics. This message is sent by simulation upon request from the Simulation Host. The
message message specifies the tracer effect type, whether or not tracer effects are to be

157

BBN Systems and Technologies 120TX/T CIG HOST CSCI

displayed, the chord identifier, and the chord's starting and ending positions (x, y, and z
coordinates). This message is also sent by simulation when processing the simulated
vehicle's AGL (altitude above ground level).

The function call is bOtrajchord(messageP), where messageP is a pointer to the
MSGBOTRAJCHORD message.

bOtrajschord does the following:

* Locates the chord in the terrain.
* Calls bxchordintersect to determine whether the chord hits anything in the local

terrain.
• Pushes either a hit or a miss message (as appropriate) onto the Ballistics message

queue.

The function always returns 0.

Called By: bx_task

Routines Called: bxchordintersect
GETDB_POS
rex-push

Parameters: MSG_BOTRAJCHORD *messageP

Returns: 0

2.5.2.26 bOtrajentry.c

The b0_trajentry function processes the message MSG_BOTRAJ_ENTRY for Ballistics.
This riessage is used to add entries to a trajectory table. The message is sent by
dbmnccsetup when processing a MSG_TRAJTABLE_XFER message from the
Simulation Host.

The function call is bOtrajentry(messageP), where messageP is a pointer to the
MSGBOTRAJENTRY message.

The function returns 0 if successful. It returns -1 if the trajectory type is invalid. It returns
1 if the trajectory table is full.

Called By: bx_task

Routines Called: outhexl (if running on a slave board)
puts (if running on a slave board)

Parameters: MSG_BOTRAJENTRY *messageP

158

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: 1
0
-1

2.5.2.27 bOundefined-message.c

The bOundefined_message function outputs the "*** Undefined Message " error for
slave Ballistics boards.

The function call is b0_undefined-messageo. The function always returns 0.

Called By: bx_task

Routines Called: puts (if running on a slave board)

Parameters: none

Returns: 0

159

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.3 Ballistics Intersection Calculations

This section details the CSUs in Ballistics Intersection Calculations component of the
Ballistics Processing CSC. It contains the functions that are responsible for calculating
chord intersections (hits) for various purposes.

The driving function is bx_chordintersect. This function is called by the functions in the
Ballistics Interface Message Processing component that deal with processing rounds or
tracing trajectories. bxchord_intersect calls other Ballistics Intersection Calculations
functions to check for intersections with various objects (static vehicles, dynamic vehicles,
terrain bvols, and terrain polygons).

2.5.3.1 bx bvol int.c

The bx_bvol_nt function intersects a chord with a bounding volume. This function is
called by bxchordintersect to check for intersections with terrain bounding volumes, and
is called by bx_modelint to check for intersections with model (vehicle) bounding
volumes.

The function call is bxbvolint(start, end, pbvl, ratio to intersect,
vehicle-flag), where:

start is the chord's starting point
end is a pointer to the return location for the chord's ending point (the intersection

point); returned by bx.bvolint
pbvl is a pointer to the bvol entry
ratio to intersect is a pointer to the return location for the distance from the chord's

start point to the intersection point, divided by the total length of the chord; this
value is returned by bxbvolint and is useful when transforming chord points into
the vehicle coordinate system

vehicle flag is TRUE if the model is a vehicle, FALSE if not

bxbvol int does the following:

" Checks the bvol's vertices against the chord's start and end points to see if they
intersect. Returns FALSE if they do not.

" Clips backfaces (the sides of a polygon that face away from the viewpoint).
* Checks for start- and endpoints on the same side of the bounding volume.
" Checks for hits on the top or bottom of the bounding volume.
* Clips around the quadrilateral projection of the bounding volume.
" Sets the chord's ending position.

The function returns 1 if successful or 0 if no intersection is detected. The function also
returns the intersection point and the ratiotointersect by placing the data in the locations
specified in the call.

Called By: bxchordintersect
bxmodelint

160

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none

Parameters: R4P3D *start
R4P3D *end
BVOLENTRY *pbvl
REAL_4 *ratio_to_intersect
BOOLEAN vehicle-flag

Returns: 1 (TRUE)
0 (FALSE)

2.5.3.2 bx chord intersect.c

The bxchordintersect function determines whether a given chord intersects with anything
in active area memory. It calls other functions in the Ballistics Intersection Calculations
component to check for intersections with models or the terrain, then creates the hit or miss
message.

The function call is bx chord intersect(chord_P, bufferP, aarn_index,
dv ex flag, dvvehT'd), where:

chord P is a pointer to the chord's data
buffer P is a pointer to the hit return data
aam index is the AAM partition index
dvx_flag is TRUE if a particular vehicle is to be excluded from intersection

processing, or FALSE if all vehicles are to be included
dv-vehid is the id of the vehicle to be excluded, if dvexfag is TRUE

bxchordintersect does the following:

• Checks for hits on pre- and post-processed dynamic models.
" Calls bxgetlm_grid to find the load modules to be searched, based on the chord's

location.
* Calls bx_modelint to check for intersections with static models.
• Calls bx_model_int to check for intersections with dynamic models.
• Calls bxgetlmdata to get data for the load module (if not in cache).
• Calls bxbvolint to check for intersections with terrain bounding volumes.
• Calls bx-poly.int to check for intersections with terrain polygons.
• Builds the hit return message (to be returned to simulation by the calling routine).

The function returns 1 if an intersection is detected. It returns 0 if no intersection was
detected, or if the load module could not be found.

Called By: b0_newframe
bOprocess-round
bOroundfired
b0_trajschord

Routines Called: BCOPY

161

BBN Systems and Technologies 120TX/T CIG HOST CSCI

bxbvol_int
bx-getlnm-data
bx-getjmngrid
bx_modelint
bx-poly-int
GETLBFROMLM

Parameters: CHORD *chord_P
BYTE *buffer_P
HWORD aarnindex
BOOLEAN dvex-flag
HWORD dv vehid

Returns: 1 (TRUE)
0 (FALSE)

2.5.3.3 bx functions.c

The bxfunctions.c CSU contains utility functions used for Ballistics. These functions are
the following:

• bxnew-round
* bxdeleteround
" bx.get dbpos
* bx-getchordend
• bxnewbvol
• bx_f-ree lmcache
" bx new-poly
* bx-getlbfrom_lm
* bxnewstat_veh
* bxdeletestatveh
* bxdist-sq-ptiline

Note: Most of thesefunctions are no longer used. Macros (see Appendix
B) are used instead, to increase performance.

2.5.3.3.1 bx new round

The bxnewround function gets a new round from the free list, and increments the
number of active rounds. The function returns a pointer (new roundP) to the new round.
The pointer is set to NULL if no free rounds are available.

The function call is bx new roundo.

This function is not currently used. The NEWROUND macro is used to get rounds from
the free list.

Called By: none

162

BBN Systems and Technologies 120TXtT CIG HOST CSCI

Routines Called: none

Parameters: none

Returns: new_round_P

2.5.3.3.2 bx delete round

The bx_delete_round function removes a round from the active list and puts it on the free
list. It then decrements the number of active rounds and increments the number of free
rounds.

The function call is bx delete round(deadroundP), where dead roundP is a
pointer to the round to be deleted.

This function is not currently used. The DELETE_ROUND macro is used to delete active
rounds.

Called By: none

Routines Called: none

Parameters: ROUNDDATA *deadround_P

Returns: none

2.5.3.3.3 bxget_db_pos

The bxget.dbpos function finds the load module that corresponds to a given point in the
database.

The function call is bxgetdbpos(pointP, lm_width, inv_Im_width,
Imper_side), where:

point P is a pointer to the location in the database
Im width is the width of a load module
miv Im width is the inverse of the width of a load module
Im.jerside is the number of load modules in a row or column of AAM (usually 16)

This function is not currently used. The GET_)B_POS macro is used to find database
positions.

Called By: none

163

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: FINDLM

Parameters: POINT_DATA *point_P
HWORD Imwidth
REAL_4 invIm width
HWORD Ira-perside

Returns: none

2.5.3.3.4 bxget_chordend

The bxget chordend function finds the end of the current chord (and, therefore, the
beginning of the next chord in the trajectory), given an active round and a trajectory table
entry.

The function call is bx get chordend(chordP, roundmessage_P,
trajentryP, offset), where:

chordP is a pointer to the chord
round-message P is a pointer to the active round
trajetry_P is i' a point to the trajectory table entry
offset is the gun barrel velocity offset

This function is not currently used.

Cald By: none

Routines Called: none

Parameters: CHORD *chord_P
MSG BO PROCESSROUND *round messageP
TRAJENTRY *traj entry P
REAL_4 offset

Returns: none

2.5.3.3.5 bx new bvol

The bxnewbvol function gets a new bounding volume from the free list and adds it to a
load module list. If there are no free bvols, bx new_bvol swaps out the least-recently-used
load module.

The function call is bxnewbvol(Imdir), where Im_dir is a load module in the cache.

Thc F'unction returns a pointer (bvolP) to the new bounding volume.

164

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: bx__get-Imdata

Routines Called: FREELMCACHE

Parameters: LMCACHEENTRY *lmdir

Returns: bvol_P

2.5.3.3.6 bx freeIm cache

The bx_free_im_cache function, when given a load module in the Ballistics database cache,
puts the bounding volumes in that module on the free bvol list, and puts the polygons in
that module on the free polygon list.

The function call is bxfreeIm_cache(Im_dir), where Im_dir is a load module in the
cache.

This function is not currently used. The FREELMCACHE macro is used to free load
module bvols and polygons.

Called By: none

Routines Called: none

Parameters: LMCACHEENTRY *lmdir

Returns: none

2.5.3.3.7 bxnewpoly

The bxnewpoly function gets a new polygon from the free list and puts it on a specified
load module list. If there are no free polygons, bx-new-poly swaps out the least-recently-
used load module.

The function call is bxnew poly(Im_dir), where Im dir is a load module in the cache.

The function returns a pointer to the new polygon.

Called By: bx__get-lmdata

Routines Called: FREELMCACHE

165

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: LM_CACHE_ENTRY *n _dfir

Returns: polyP

2.5.3.3.8 bxget_lb_fromilm

The bxget_lb_from_ln function takes a load module number and returns the number (0 to
255) of the load block that module is in.

The function call is bxget lb fromlIm (irn), where Im is the load module number (0
to 1023).

This function is not currently used. The GETLBFROMLM macro is used to determine
load block numbers.

Called By: none

Routines Called: none

Parameters: INT_4 Im

Returns: row* 16 + column

2.5.3.3.9 bx new statveh

The bxnewstat_veh function gets a static vehicle from the free list and adds it to the list
of the specified load module.

The function call is bxnewstatveh(vehtableP) where vehtableP is a pointer to
the vehicle table.

The function returns a pointer to the new static vehicle. It returns NULL if no pointers are
available (i.e., the maximum number of static vehicles has been reached).

This function is not currently used. The NEWSTAT_VEH macro is used to put a static
vehicle into a load module's list.

Called By: none

Routines Called: none

Parameters: STRUCT_P_SV *vehtable_P

166

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: NULL
new-svP

2.5.3.3.10 bx delete stat veh

The bxdelete_stat_veh function removes a static vehicle from a specified load module list
and returns it to the free list.

The function call is bx delete stat veh(dead svP, tableP), where:

dead sv P is a pointer to the static vehicle to be deleted
table_P is a pointer to the vehicle table

This function is not currently used. The DELETESTATVEH macro is used to delete
static vehicles.

Called By: none

Routines Called: none

Parameters: STATVEH *dead svP
STRUCT_PSV *table_P

Returns: none

2.5.3.3.11 bx-distsqpt-line

The bxdist_sq_ptline function finds the distance squared between a point and a line

segment.

The function call is bxdistsqptline(pt_P, start_P, end_P), where:

ptP is a pointer to the point
start P is a pointer to the start of the line segment
endP is a pointer to the end of the line segment

The function returns the result of the calculation as result. It returns 1000000.00 if the
result is less than 0.

Called By: bxmodelint

Routines Called: none

167

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: R4P3D *ptP
R4P3D *start_P
R4P3D *end P

Returns: 1000000.00
result

2.5.3.4 bxget-lm-data.c

The bxgetjlm_data function finds and caches all bounding volumes and polygons in a
given load module that have their local terrain or Ballistics bit set to true. The function can
also be used to cache all bvols and polygons in the load module, regardless of their local
terrain and Ballistics bits. This function is called by bxchordintersect to get load module
data from the AAM if it is not already cached.

The function call is bxget Im data(lm_addr, lm_dir, polymask), where:

Im addr is the address of the load module
lm-dir is the load module directory
polmask is TRUE if all polygons are to be cached, regardless of the state of their

local terrain and Ballistics bits

The function always returns 0.

Called By: bxchordintersect

Routines Called: bx_new_bvol
bxnewpoly
FXTO881

Parameters: WORD lm-addr
LMCACHEENTRY *lm_dir
WORD poly-mask

Returns: 0

2.5.3.5 bxgetlmgrid.c

The bx.get lm-grid function finds the load modules and grids in the database that are
intersected by a given chord. It is called by bxchordintersect when it is looking for the
load modules to search.

The function call is bx get Im grid(pcrd, Imper side, bal search,
dv_search, Irwidth, Im_addr_table), where:

pcrd is a pointer to the chord
lm_per side is the number of load modules in a row or column of AAM

168

BBN Systems and Technologies 120TX/T CIG HOST CSCI

bal search is used to store load module offsets and grid words
dvl-search is used to store dynamic module path info
Im width is the width of a load module
lm-addrtable is an array of load module addresses

The function returns 1 if successful. It returns 0 if the chord crosses four load modules,
yet one of the grids is not a comer grid of a load module; this is an error condition.

Called By: bxchord_intersect

Routines Called: none

Parameters: CHORD *pcrd
HWORD lm-perside
LMSEARCHLIST balsearch[]
HWORD dvlsearch[]
HWORD lm width
WORD lmaddrjtable[]

Returns: 1 (TRUE)
0 (FALSE)

2.5.3.6 bxnmodel int.c

The bxmodelint function intersects a chord with a model. This function is called by
bxchordintersect to check for intersections with static and dynamic vehicles.

The function call is bx model int(chordP, modelinstP, hit dataP), where:

chord P is a pointer to the chord
model-inst P is a pointer to the model
hit dataP is a pointer to the data for the hit return message

bx modelint does the following:

* Based on the model's radius, checks to see if the chord falls completely outside of
the model. Returns FALSE if it does.

* Checks the model's first component for a hit.
- Converts the chord to vehicle coordinates.
- Translates and rotates the chord.
- Calls bx_bvol_int to check for a bounding volume intersection. If an

intersection is found, sets hit_flag to TRUE. Subtracts a fixed offset
(INTERSECT OFFSET, currently defined as 1.5%) from the actual
ratio to intersect value. This moves the intersection point slightly away
from-the-middle of the object enclosed by the intersected bvol, causing any
special effects for the hit to appear largely outside of the object. Places the
hit information in hit data P.

* If no hit was found, checks the model's second component, if it has one.
Rotates the chord into turret coordinates.

169

BBN Systems and Technologies 120TX/T CIG HOST CSCI

- Calls bxbvolint to check for a bounding volume intersection. If an
intersection is found, sets hit~flag to TRUE; subtracts
INTERSECTOFFSET frcm the ratioto_intersect value; places the hit 0
information in hit dataP.

The function returns hit~flag set to TRUE if a hit is detected, or FALSE if no intersection is
detected.

Called By: bxchordintersect

Routines Called: bxbvolint

Parameters: CHORD *chord_P
STATVEH *modelinst_P
MSG BlHITRETURN *hitdata_P

Returns: hit-flag

2.5.3.7 bxpolyint.c

The bx-poly_int function intersects a chord and a polygon. This function is called by

bxchordintersect to check for intersections with terrain polygons.

The function call is bxpoly-int(start, end, vtx count, pvtx), where:

start is the starting point of the chord
end is a pointer to the return location for the ending point of the chord (the point of

intersection)
vix count is the number of vertices in the polygon
pvtx is a pointer to the polygon vertfx data

bxpoly-int does the following:

" Clips around the polygon using the minimum and maximum values and a fixed
offset (currently set at 10 meters).

* Makes the polygon normals.
" Calculates the cross product.
* Clips out backface intersections.
* Checks to see if the intersection is in the interior of the polygon.
* Finds the normal-to-polygon side by taking the cross product of the polygon

normal and the polygon side.

The function returns 1 if the chord intersects the polygon, or 0 if it does not. I he
intersection point is placed in the end location specified in the call.

Called By: bxchord intersect

170

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none

Parameters: WORD vtxcount
R4P3D *start
R4P3D *end
R4P3D *pvtx[]

Returns: 1 (TRUE)
0 (FALSE)

2.5.3.8 bx reset.c

The bxreset function resets Ballistics. bxreset is called by b0_statecontrol when the
message from simulation specifies a new state of BXRESET.

The function call is bxresetO. bxreset reclaims dynamic memory, then initializes the
following structures:

" Terrain and dynamic elements database (DED) model directories.
" Terrain and DED bounding volume directories.
" Static vehicle list.
" Bounding volume cache list.
" Polygon cache list.
• Round list.
* Trajectory table directory.
* Various pointers, lists, and temporary variables.

Called By: b0_statecontrol

Routines Called: free
free133

Parameters: none

Returns: none

2.5.3.9 bx-trajectory.c

The bx-trajectory function r..tums the position of a projectile using the provided trajectory
tables.

The function call is bx trajectory(round P), where roundP is a point to the round
data. bxtrajectory does the following:

* If this is the first call for a new round, finds the trajectory table for the round type.
* Rotates through the elevation angle.

171

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Rotates through the azimuth angle.
" Adds in the gun position and velocity.

The function returns 1 if it finds the position in the database. It returns 0 if the round
travels beyond the viewing space, or if the end of the trajectory table was reached.

Called By: bOnew_frame
b0 processjround
bOroundfired
GETDBPOS

Routines Called: none

Parameters: ROUNDDATA *round_P

Returns: 1 (TRUE)
0 (FALSE)

172

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.4 Ballistics Message Queue Processing

This section details the CSUs in Ballistics Message Queue Processing, a major functional
component of the Ballistics Processing CSC. These functions are responsible for
manipulating and maintaining the queues that make up the interface between Ballistics and
real-time software.

2.5.4.1 mx error.c

The mx_error function returns a Ballisics error message. The function is called by bx task
to provide a text message for output to theoperator.

The function call is mx error(status), where status is the error message.

Called By: bxtask
downloadbvols
simulation
upstart

Routines Called: none

Parameters: WORD status

Returns: "DEVICE CLOSED"
"DEVICE TABLE FULL"
"DEVICE OPENED"
"DEVICE BUSY"
"DEVICE EMPTY"
"DEVICE FULL"
"MESSAGE PUSHED"
"MESSAGE POPPED"
"MESSAGE PREVIEWED"
"MESSAGE SKIPPED"
"UNDEFINED ERROR"
"UNDEFINED RETURN"

2.5.4.2 mx-open.c

The mx...open function opens an MX device over a queue message.

The function call is mx open(devP, device-size), where:

dev P is a pointer to the MX device (message queue)
device size is the size of the message queue

. The function always returns MXDEVICEOPENED.

173

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: bx_task
upstart

Routines Called: sclock
scunlock

Parameters: MXDEVICE *dev_P

INT_4 device_size

Returns: MXDEVICEOPENED

2.5.4.3 mxpeek.c

The mx-peek function previews a queue message.

The function call is mx-peek(devP, message-code, message-size,
messageaddr), where:

dev P is a pointer to the message queue
message_code is the message type
messagesize is the size of the message
messageaddr is a pointer to the return location for a pointer to the message's address

If successful, the function returns MXMESSAGEPREVIEWED and places a pointer to
the message at the head of the queue in the message addr location specified in the call. The
function returns MX_DEVICEEMPTY if the specified queue contains no messages.

Called By: bxtask
simulation
upstart

Routines Called: sclock
sc_unlock

Parameters: MXDEVICE *dev_P
HWORD *message-code
HWORD *messagesize
BYTE **message-addr

Returns: MXDEVICEEMPTY
MXMESSAGEPREVIEWED

174

BBN Systems and Technologies 120TX/T CIG HOST CSCI

@ 2.5.4.4 mxpush.c

The mx.push function pushes a message onto the Ballistics message queue.

The function call is mxpush(devP, source-address, message-code,
messagesize), where:

dev_P is a pointer to the message queue
source address is the address of the message
message_code is the type of message
messagesize is the number of bytes in the message

The function returns MX_MESSAGEPUSHED if successful. It returns
MXDEVICE_FULL if the specified message queue is already full.

Called By: bOnew_frame
bOprocessround
bOround_fired
bO traj-chord
bx_task
dbmccsetup
downloadbvols
getside
open-dbase
rowcolrd
simulation

Routines Called: BCOPY
sclock
scunlock

Parameters: MX_DEVICE *devP
WORD sourceaddress
HWORD message_code
HWORD messagesize

Returns: MXDEVICEFULL
MX_MESSAGEPUSHED

2.5.4.5 mx skip.c

The -. x_skip function skips over a message in the queue. The message at the head of the
queue is flushed, and the next message moves to the head of the queue.

The function call is mx skip(devP), where dev_P is a pointer to the queue.

175

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function returns MXMESSAGE_SKIPPED if successful. It returns
MXDEVICE_EMPTY if the specified message queue contains no messages.

Called By: bx_task
simulation
upstart

Routines Called: sclock
scunlock

Parameters: MXDEVICE *devP

Returns: MXDEVICEEMWFY
MXMESSAGESKIPPED

2.5.4.6 mx_wcopy.c

The mxwcopy function performs a block copy.

The function call is mx wcopy (source_P, destinationP, byte count), where:

source P is a pointer to the source data
destination P is a pointer to the destination location
byte-count is the number of bytes to be copied

This function is not currently used.

Called By: none

Routines Called: none

Parameters: WORD *source_P
WORD *destination_P
INT_2 byte_count

Returns: none

176

BBN Systems and Technologies 120TX/T CIG HOST CSCI

. 2.6 User Interface (GOSSIP) CSC

This section describes the functions that make up the Gossip CSC. This CSC provides a
backdoor user interface which allows various debugging and query features during runtime
operation. Gossip provides the ability to interrogate system performance, view and modify
system memory, and debug real-time problems.

The Gossip user can do the following:

" Display data from the Ballistics database.
* Display data from the terrain and DED databases.
" Display DR 11 variables.
* Initiate and run demos.
* Initiate and use flying mode.
" Initiate and interface with Flea (the Simulation Host emulator).
" Display current information about simulation memory.
* Modify simulation memory.
* Display static and dynamic models.
* Invoke a DTP emulator.
* Interface to the 2-D overlay processor (120TX systems only).
• Perform calibration acceptance tests (120TX systems only).
* Load color polygons.* Display and change various system variables.
* Display DR 1I message packets.
" Enable and disable frame interrupts.
* Enable and disable single-step mode.
0 Place a calibration pattern on all channels.
* Change the default database or configuration file.
* Start, stop, or reset timers,

The gossip task runs at the lowest priority, to prevent interference with the simulation.

The CSUs contained in the Gossip CSC are identified in Figure 2-15 and described in this
section.

177

BBN Systems and Technologies 12OTX/T CIG HOST CSCI

Task Initialization

Intosfaw Gossip Fleea

gosslp.c gos-fleaoptlons
dtp emu.c gas-fty.c
gas_-1201xxc gosjocatexc
gaSap.c DOSjflmory.C
gas~bal_quory.c gas m fodel c
gos db-query.c gospalys.c
gosdrl 1_qury.c gos-sysIem.c
gas flea-1f.c vtlO00.C

Figure 2-15. Gossip CSUs

Figure 2-16 illustrates the interaction between the major CSUs in Gossip.

178

BBN Systems and Technologies l2OTXiT CIG HOST CSCI

*tso

moel Stvfwn mdan dm

W - ally o~d -Pasy.. Jo

Figrbordthe2-16 Grossip Flow iagra

floo-b~c179r

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.6.1 dtp-emu.c

The dtp_emu.c CSU contains the functions used to emulate the Data Traversal Processor
(DTP) for debugging. These functions are the following:

" dtp emu
" display
" outdisplay
* hxflt
* hexdisplay
* ftoh
* htof
* mat-mult
• geLlIm

2.6.1.1 dtpemu

The dtp-emu function is a DTP emulator used in debugging. The function is invoked from
gossip when the user selects the "dtp emulator" option from the Gossip main menu. The
DTP is a micro-coded processor board that sends data to the Polygon Graphics Processor,
based on commands placed in active area memory by the DTP Command Generator.
dtpemu emulates the functions performed by the DTP.

The function call is dtp emuo. Once dtpemu is invoked, the Gossip user can request
the following:

* Set poly data display mode on or off.
" Set the display mode to float or hex.
* Set tracing on or off.
" Set system interrupts on or off.
• Display the current modes (display, poly data, system interrupt, and trace) and the

DTP stack pointer.
* Display the DTP stack
* Start the DTP emulator.
* Step through the various DTP commands.
• Restart the emulator.
• Set the memory address for the emulator program counter.
* Set the address of the AAM peek (view) register.
" Set the address of the emulator peek (view) register.
• Write the contents of AAM.
" Set break points (currently not implemented).

Called By: gossip

Routines Called: display
ftoh
getIm
hexdisplay
htof

180

BBN Systems and Technologies 120TX/T CIG HOST CSCI

hxflt
mat-mult
outdisplay
printf
scanf
sqrt
sysrup-off
sysrupon
unbf getchar
XCLOSE
XLSEEK
XOPEN
XREAD

Parameters: none

Returns: none

2.6.1.2 display

The display function is used to convert hexadecimal digits or floating point numbers for

display purposes.

The function call is display(ptr, num, poly), where:

ptr is a pointer to the data in AAM
num is the number of characters to convert
poly is LOAD if a load module is being processed, or POLY if a polygon is being

processed

The function always returns 1.

Called By: dtpsemu

Routines Called: hxflt
printf

Parameters: INT_4 **ptr
INT_2 num
INT_2 poly

Returns:

181

BBN Systems and Technologies 120TXIT CIG HOST CSCI

2.6.1.3 outdisplay

The outdisplay function is used to display formatted data depicting polygon commands in

the DTP processing path.

The function call is outdisplay(ptr, wdcount), where:

ptr is the AAM pointer to the start of the Poly Processor command
wdcount is the number of bytes in the command

The function returns 0 if successful or I if the command could not be displayed.

Called By: dtp..emu

Routines Called: hxflt
printf

Parameters: INT_4 **ptr
WORD wdcount

Returns: 0

2.6.1.4 hxflt

The hxflt function is used to convert hexadecimal characters for output to the display.

The function call is hxflt(h), where h is the character to be converted.

Called By: dtp-emu
outdisplay

Routines Called: htof

printf

Parameters: WORD h

Returns: none

2.6.1.5 hexdisplay

The hexdisplay function is used to display hexadecimal numbers.

182

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is hexdisplay(pntr, args), where:

pntr is the AAM address of the data to be displayed
args is the number of digits to display

Called By: dtp.emu

Routines Called: printf

Parameters: INT_4 **pntr
INT_4 args

Returns: none

2.6.1.6 ftoh

The ftoh function is used to convert an IEEE floating point value to internal hex
representation for display.

The function call is ftoh(f, h), where:

f is the floating point value
h is the hexadecimal equivalent

Called By: dtp.emu
mat_mult

Routines Called: none

Parameters: REAL_4 *f
WORD *h

Returns: *h

2.6.1.7 htof

The htof function is used to convert a hexadecimal number to IEEE floating point for

display.

The function call is htof(h, f), whete:

h is the hexadecimal value
f is the floating point equivalent

183

BBN Systems and Technologies 120TXIT CIG HOST CSCI

Called By: dtp-emu
hxflt
matmult

Routines Called: none

Parameters: WORD *h
RA,_4 *f

Returns: *f

2.6.1.8 mat mult

The mat-mult function is used to multiply (concatenate) two matrices to generate a third
matrix.

The function call is mat mult(a, b, c), where:

a is the address of the first matrix
b is the address of the second matrix
c is the address of the result matrix

Called By: dtp_.emu

Routines Called: ftoh
htof
printf

Parameters: WORD *a
WORD *b
WORD *c

Returns: none

2.6.1.9 get_Im

The get-im function is used to simulate the DTP function of getting the next load module
pointer for processing.

The function call is get Im(flag), whereflag is 0 (open -> hdglut -> lmlut), 1 (Imlut), 2
(close), or 3 (hdglut -> lmlut).

The function returns 1 if successful, or 0 if an error occurred.

184

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: dtp.emu

Routines Called: printf
XCLOSE
XLSEEK
XOPEN
XREAD

Parameters: INT_2 flag

Returns: 0
1

2.6.2 gosl120tx.c

The gos_120tx function provides options to the Gossip user that are available only on a
120TX CIG. These options all deal with 2-D overlays and the Force board. This function
is invoked by gossip when the user selects the "120tx/t menu" option from the Gossip main
menu.

The function call is gos 120txo. The following table identifies the function called or the
action taken by gos_120tx for each option on its main menu.

gos_12Otx Menu Option Processing by gos_12Otx

1 Start/Stop 2D updates Sets gspio_lag.

2 Enable/Disable Force timers Sets force.-timing-flag.

3 Change look up tables Prompts user for table code (out the window,
daylight TV, white hot, or black hot); sets
dtv therm word accordingly.

a Perform acceptance tests Calls gos..atp.
d (Does not appear on menu) Calls dcodedr1lw.

g Talk to 2D process/mem See table below.

m (Does not appear on menu) Calls gos,.memory.
p Sets pixel depth request ij Asks user for pixel i and j positions; shows Force

locations.
r (Does not appear on menu) Returns pixel depth for pixel i and j.

s (Does not appear on menu) Calls s-step.

Selecting the "Talk to 2D process/mem" option (g) displays the FORCE-2D
Communications Menu. The following table identifies the function called or the action
taken by gos_120tx for each option on this menu.

185

BBN Systems and Technologies 120TX/T CIG HOST CSCI

FORCE-2D Communications Processing by gos_120tx
Menu Option

0 Restart 2d processor Calls CHECKFORCE; sets FECONTROL to
SUBSYSNMISTART.

4 Read Host Control Calls CHECKFORCE; sets FECONTROL to
SUBSYSREAD HCTRL.

5 Write Host Control Calls CHECKFORCE; sets FECONTROL to
SUBSYSWRITE HCTRL.

6 Read Data Calls CHECKFORCE; sets FECONTROL to
SUBSYSREADHDATA.

7 Write Data Calls CHECKFORCE; sets FE_CONTROL to
SUBSYS WRITE HDATA.

9 Halt 2D Processor Calls CHECK.FORCE; sets FECONTROL to
SUBSYS STOP.

a Set GSP address to read/write Asks user for the GSP address; sets gspjtempaddr.

b Set number of times to fill mem Asks user for number of times to fill memory; sets
fillmemcount.

e Send mail to 2D processor Calls CHECKFORCE; sets FECONTROL to
SUBSYSMAIL SEND.

f Display force/2D registers Displays Front End Control Register, Force
Control Register, Force Status Register, Force
Errors Register, GSP Address, HWORDS count,
Repeat Block Fill Count.

g Read data from 2D processor memory Calls CHECKFORCE; sets FE_CONTROL to
SUBSYS READ START.

i Start memory fill Calls CHECKFORCE; sets FE_CONTROL to
SUBSYSWRITESTART.

1 Load output buffer with pattern o Asks user for 16-bit pattern; sets
SUBSYSDATA BUFF OUT.

m (Does not appear on menu) Calls gos memory.

n (Does not appear on menu) Calls CHECKFORCE; sets FE_CONTROL to
SUBSYS_NMISTART.

o Load output buffer (16 bits) Prompts user for data; sets
SUBSYS DATA BUFF OUT.

p Write data to 2D processor memory Calls CHECKFORCE; sets FE_CONTROL to
SUBSYS_WRITE_START.

r View input data buffer Displays contents of buffer.

t One time communications test Calls CHECKFORCE; sets FECONTROL to
SUBSYSTESTMEM.

w Set word count to read/write Asks user for the word count; sets
SUBSYSDATA COUNT.

y Endless communications test Calls CHECKFORCE; sets FECONTROL to
I SUBSYSTEST_MEM2.

The CHECKFORCE macro referenced in the above table checks to see if the forcetask is
running. If it is, the user is asked to retry later. (This prevents the Gossip operation from

186

BBN Systems nd Technologies 120TX/T CIG HOST CSCI

interfering with processing required for the simulation.) FECONTROL is the front-end
control register, the value placed in the register tells the forcetask what command to
perform.

Called By: gossip

Routines Called: dcodedr I lw
gos._atp
gosjmemory
printf
s,.step
scanf
unbf getchar

Parameters: none

Returns: none

2.6.3 gosatp.c

The gosatp function is used to run acceptance tests that use the calibration database. This
function is called by gos_120tx when the user selects the "perform acceptance tests" option
from its main menu.

The function call is gosatpO. The following calibration tests are available:

• Populated Area
• Depth Complexity
" Color Resolution
* Full Perspective Texture
" Level of Detail
• Moving Models (plant, display)
* Occulting Levels
* Polygon Throughput
" Texture with Transparency
• Polygon Test Pattern

Called By: gos_120tx

Routines Called: gos-memory
printf
sc-post
unbf getchar

Parameters: none

187

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.6.4 gosbalquery.c
The gos-balquery function displays data from the Ballistics database. This function is

invoked from gossip when the user selects the "query ballistics" option from the Gossip
main menu.

The function call is gosbatqueryO. The function can be used to:

• Set ballistics addresses to user-specified values. (This is required before any other
function can be accessed; the addresses can also be changed later on.)

* List any of the following information:
- ballistics configuration (frame rate and AAM partitions)
- a user-specified trajectory directory
- free bvols directory
- active rounds
- frame count
- load module cache information for a user-specified load module
- load module bounding volumes for a user-specified load module
- load module cache
- AAM partition info
- trajectory table for a user-specified trajectory type
- free poly directory
- free rounds directory
- terrain comers
- load module polygons for a user-specified load module

* Set single-step mode (by calling gos.single-step).
" Print MSGPROCESSROUND messages.
* Print MSG_TRAJCHORD messages.

Called By: gossip

Routines Called: FINDLM
gos single_:,tep
PAGE_FORMAT
printf
scanf
unbfgetchar

Parameters: none

Returns: none

188

BBN Systems and Technologies 120TX/T CIG HOST rSCI

2.6.5 gosdbquery.c

The gosjdbquery.c CSU is used to examine database information. It contains two
functions:

• gosdb-query
* gos.display-db info

2.6.5.1 gosdbquery

The gosdb-query function examines terrain and DED database information. This function
is invoked from gossip when the user selects the "query database" option from the Gossip
main menu.

The function call is gosdbqueryo. The function can be used to do the following:

* Display terrain database information (calls gosdisAay jbinfo).
• Display dynamic elements database information (calls gos.display-dbinfo).
• List all models.
• List all effects.
* Modify a specified model's component count, process code, or hardware address.
* Modify a specified effect's component count, process code, or hardware address.
• Block copy from a specified source location to a specified destination.

Called By: gos,_model
gossip

Routines Called: gos.displaydbjnfo
printf
scanf
unbf getchar

Parameters: none

Returns: none

2.6.5.2 gosdisplaydbinfo

The gos-displayjdb info function is used by gosdbL.query to display terrain and dynamic
elements database information to the Gossip user.

The fukction call is gos display db info(dataP), where dataP is a pointer to the
database header to be displayed.

Called By: gosjdbquery

189

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: printf

Parameters: DBHDRDBASE_DATA * dataP

Returns: none

2.6.6 gosdrllquery.c

The gosdrl lquery function examines DR11 variables. This function is invoked from
gossip when the user selects the "display drl 1 variables" option from the Gossip main
menu.

The function call is gos drllqueryO. The function displays the CIG and SIM
exchange packet sizes, local terrain chunk size, and local terrain message interval. It then
displays the current status of the real-time software: entering data exchange, writing to the
Simulation Host, reading from the Simulation Host, or processing messages.

Called By: gossip

Routines Called: printf

Parameters: none

Returns: none

2.6.7 gos fleaif.c

The gosfleaif function is used in flying mode and when running demos. gosfleaif is
called by gosjfly if the user requests to enter Flea mode.

The function call is gosflea_ifo. The function prompts the user for the viewpoint
position and orientation, then posts a FLEAMB mailbox message to wake up flea. It then
waits for a MONITORMB mailbox message.

After flea is running, gosfleaif processes commands to do the following:

" Go forward, go back, stop, change rotation on any axis, change skid on any axis,
change velocity, shoot.

• Start, stop, or resume script; display script values.
" Call gosflea-options if requested by the user.

Catled By: gos-fly

190

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: blank
cup
gos-flea-options
printf
sc-pend
sc-post
scanf
unbfgetchar

Parameters: none

Returns: none

2.6.8 gos_fleaoptions.c

The gosjflea-options function displays the Flea options menu, and processes the functions
requested by the Gossip user. This function is invoked from gos fleaif if the user enters
("flea options") at the Command prompt.

The function call is gosflea optionso. The following actions are supported by
gos-flea-options:

* Increase, zero, or decrease velocity.
" Increase, zero, or decrease x, y, or z rotation (to center the steering bar).
• Toggle auto fire.
* Change the round type.
• Add or delete a vehicle.
" Display current location, rotation, AGL, and speed.
* Display hits and misses per minute.
" Plant a static vehicle.
* Remove a static vehicle.
* Fire or process a round.
" Show an effect.
* Show the model list.
" Specify a new process code for a DED model.
* Specify gun overlay data.
* Specify the ammunition define map.

Called By: gosfleaif

Routines Called: blank
cos
cup
printf
scanf
sin
unbf__getchar

191

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: none

Returns: none

2.6.9 gosfly.c

The gosjfly function is used to enter flying mode and to run demos. This function is
invoked from gossip when the user selects the "vehicle demo and fly options" option from
the Gossip main menu.

The function call is gosflyo. The function lets the Gossip user do the following:

* Start and stop other vehicle demonstrations.
• Start and stop flying in auto-pilot demonstration mode, optionally in endless loop

mode. gosjfly posts a SIMULATION_MB message to wake up the simulation
function if this option is selected.

* Enter flying mode. gos fly prompts for the viewpoint position and orientation,
then posts a FLEAMB message to wake up flea. It also provides options to the
user to manipulate the vehicle.

• Enter Flea mode. gosfly calls gos,.fleaif.

Called By: gossip

Routines Called: gos-flea_if
printf
sc-post
scanf
unbf__getchar

Parameterg: none

Returns: none

2.6.10 goslocate.c

The gos_locate function traverses the top level of the configuration tree and builds a hull-to-
world matrix from the world-to-hull matrix. If the CIG is detected to be supporting
simulations of multiple vehicles, gosilocate prompts the Gossip user to identify a reference
vehicle.

The function call is goslocate(mtx_h_w), where mtx h w is a hull-to-world matrix.

The function returns the hull-to-world matrix if successful. It returns NULL if the
configuration tree is not initialized or is empty.

192

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: gos-model

Routines Called: printf
scanf

Parameters: REAL_4 *mtx_h_w

Returns: NULL
mtx_h w

2.6.11 gos_memory.c

The gos-memory function displays relatively current data about simulation memory. This
function is invoked from gossip when the user selects the "memory examine/modify"
option from the Gossip main menu.

The function call is gos memoryo. The function can be used to:

* Display a specified block of memory.
* Modify a specified block of memory.
* Modify a specified memory address.
• Send a snapshot of memory to a specified file.
* Load a snapshot from a specified file into memory.

Called By: gos_120tx
gos-atp
gosm odel
gos-system
gossip

Routines Called: close
createsz
open
printf
read
scanf
unbf getchar
write

Parameters: none

Returns: none

193

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.6.12 gosmodel.c

The gosmodel function displays dynamic and static models. This function is invoked

from gossip when the user selects the "model menu" option from the Gossip main menu.

The function call is gosmodel0.

If debug is not enabled, gosmodel can be used to do the following:

" Plant a model in tracks.
* Examine memory.

If debug is enabled, the following additional options are supported:

" Add or delete a static vehicle.
" Plant a model.
* Control the DED level of detail (includes moving vehicles and rotating models).
" Select a database for level-of-detail control.
" Database/DED query menu.
" Display effect timing.
• Set the view mode.
* Display view mode.

Called By: gossip

Routines Called: cos
gosdb-query
gosjlocate
gosjmemory
modelmtx
printf
rotate_x_nt
rotate-y-nt
rotate z nt
scanf
sin
sqrt
sysrup-off
sysrup-on
unbf getchar

Parameters: none

Returns: none

194

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.6.13 gospolys.c

The gospolys function allocates and generates monitor calibration images. This function
is invoked from gossip when the user selects the "load color polygons" option from the
Gossip main menu.

The Polygon Processor uses perspective matrices in normalized viewspace (i.e., the field-
of-view is not used) when crunching on overlay polygons. The only perspective matrix
required for an overlay is a matrix to swap the axes (view space into screen space). The
vertices overlay can be described to the Polygon Processor as follows:

(-Y,Y,Y) (Y,Y,Y)

(o,y,o)

(-y,y,-y) (Y,Y,-y)

where y is the distance from the eye to the overlay.

This means that if the vertices of an overlay (such as the monitor calibration overlay) are
given in pixel coordinates, they must be converted to the normalized view space coordinate
system. For example, if the screen resolution is 200 x 200, a vertex with pixel coordinates
(-50,100) is converted to (-1/2,1).

The function call is gospolyso.

Called By: gossip

Routines Called: id_4x3mtx
swap-axis

Parameters: none

Returns: none

2.6.14 gossystem.c

The gossystem function is used to display and change system variables. This function is
invoked from gossip when the user selects the "system status menu" option from the
Gossip main menu.

The function call is gos-systemo. The function can be used to do the following:

* Display local terrain data.

195

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Display active area data.
* Display the active area map.
* Display a load module header.
* Examine/modify memory - calls gos-memory.
* Set the calibration modifier.
* Print round messages.
• Print chord messages.
* Select hardware display channels.
* Start/stop frame - calls s__step.
" Set the display lights flag.
* Display DR 11 message packets - calls dcode_drl 1 w.
• Change the default database name.

Called By: gossip

Routines Called: cal
dcode_drllw
display-packet
gos-memory
printf
s_step
scanf
sysrup-off
sysrup-on
unbf getchar

Parameters: none

Returns: none

2.6.15 gossip.c

The gossip.c CSU contains the functions used to display relatively current data about the
simulation. These functions are the following:

• main (for Butterfly compatibility only)
• gossip
* display-packet
• s-step
" dcodedrllw
" gos-single-step

2.6.15.1 main

The main function is provided for Butterfly compatibility only. It requires one argument:
bvme -id, which identifies the Butterfly-VME interface, main remaps the addresses used
by the Ballistics boards to VME addresses, then calls gossip.

196

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: none

Routines Called: FindValue
gossip
map.3vme
printf
remap.yme

Parameters: none

Returns: none

2.6.15.2 gossip

The gossip function is invoked when Gossip is executed by the user. gossip displays the
Gossip main menu, which allows the user to select the type of data to be queried.
Depending on the selection made, gossip may prompt for additional information, such as
the name of the database or configuration file to use. It then calls the applicable Gossip
function.

The following table identifies the function called or the action taken by gossip for eachp option on the Gossip main menu.

1
197

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Gossip Main Menu Option Processing by gossip

1 calibration menu Calls cal.

2 model menu Calls gosjmodel.

3 system status menu Calls gos-system.

4 120tx/t menu Calls gosj20tx.

6 dtp emulator Calls dtp..emu.

b query ballistics Calls gosj-baLquery.

c change default configfile name Prompts user for new file name; sets global
variable.

D display drl I variables Calls gos.drl I-query.

d display DRllW messages Calls dcodedrllw.

e query database Calls gosjb-query.

i start/stop drl 1w init prints Toggles drl 1w initout.
k reset times Sets all timers to 0.
m memory examine/modify Calls gos-memory.

p load color polygons Calls gos-polys; calls cal.

s start/stop frame interrupt Calls sstep.

t start/stop timers Toggles rtswjtimingjflag.

u change default db name Prompts user for new database name; sets
global variable.

w set DED AAM start address Prompts user for address; sets global variable.
z vehicle demo and fly options Calls gos-fly.

Called By: none

Routines Called: cal
dcodedrllw
dtp.emu
gos_120tx
gos-bal-query
gos-db-query
gosdr I lquery
gosjfly
gosmemory
gos-model
gos-polys
gossystem
printf
s~step
sc-pend
scanf
strlen
unbf-getchar

198

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: INT argc
char *argv

Returns: none

2.6.15.3 displaypacket

The display-packet function displays the contents of each message in a DR 11 exchange
packet. This function is called by dcodedrl lw when the user selects the "display DR11W
messages" option from the Gossip main menu.

The function call is displaypacket(pntr), where pntr is a pointer to the message packet.

Called By: debug imtdr
dcode_drllw
gossystem

Routines Called: printf

Parameters: INT_4 pntr

Returns: none

2.6.15.4 sstep

The sstep function is used to (1) enable and disable frame interrupts, and (2) enable and
disable single-step mode. This function is called by gossip if the user selects "start/stop
frame interrupt" from the Gossip main menu.

The function call is s stepo. sstep prompts the user to set/or cancel single-step mode,
then does the following:

* If the user requests "interrupts on," sstep calls sysrup.on, then sets single-step to
FALSE.

* If the user requests "interrupts off," s._step calls sysrup-off, then sets single step
to FALSE.

* If the user requests "single-step mode," (used with the "display drl 1 variables"
option), s-step sets singlestep to TRUE and drl lmsg to TRUE.

Called By: gos_120tx
gos-system
gossip

Routines Called: printf
sysrup-on

199

BBN Systems and Technologies 120TX/T CIG HOST CSCI

sysrup.off
unbf getchar

Parameters: none

Returns: none

2.6.15.5 dcode drllw

The dcodedrl lw function decodes and displays DR11 packets. This function is called by
gossip if the user selects the "display DR 1W messages" option from the Gossip main
menu.

The function call is dcode.drllwo. dcode_drI lw calls display-packet to display the
input and output packets.

Called By: gos_120tx
gossystem
gossip

Routines Called: display-packetprintf
sysrup-on

Parameters: none

Returns: none

2.6.15.6 gossinglestep

The gossingle-step function forces the system to single-step a real-time frame by posting
a message to the simulation mailbox. If gos-single-step detects that singlestep is TRUE,
it calls sysrup.on.

The function call is gos single step0.

Called By: gos-bal-query

Routines Called: sysrup-on

Parameters: none

200

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.6.16 vtlOO.c

The vtlOO.c CSU contains functions that provide VT100 graphics control. These are:

• cup
* sgr
* doubletop
" double_bot
* double_off
" blank
* savecur
• restorecur
* scroll_reg

2.6.16.1 cup

The cup function positions the cursor at a specified row and column.

The function call is cup(r, c), where r is the row number and c is the column number.

Called By: gosflea_if

gosjflea.options

Routines Called: printf

Parameters: INT_4 r
INT_4 c

Returns: none

2.6.16.2 sgr

The sgr function is used for special graphics renditions.

The function call is sgr(r), where r is the row number.

This function is not currently used.

Called By: none

Routines Called: printf

201

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: INT_4 r

Returns: none

2.6.16.3 doubletop

The double-top function represents double-wide, double-high for the top half of the

monitor screen.

The function call is double top(s), where s is the starting line.

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: BYTE s

Returns: none

2.6.16.4 double bot

The double_bot function represents double-wide, double-high for the bottom half of the

monitor screen.

The function call is double bot(s), where s is the starting line.

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: BYTE S

Returns: none

2.6.16.5 double-off

The doubleoff function returns to single-high and single-width. This reverses the effect
of double-top and/or doublebot.

202

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is doubleoffO.

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: none

Returns: none

2.6.16.6 blank

The blank function clears the screen, starting at a specified location.

The function call is blank(m), where m is the starting character position from which the
screen is to be blanked.

Called By: gosjfleaif
gosjflea-options

Routines Called: printf

Parameters: INT_4 n

Returns: none

2.6.16.7 save-cur

The savecur function saves the current cursor position.

The function call is save-cur0. This function is not currently used.

Called By: none

Routines Called: printf

Parameters: none

203

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.6.16.8 restore-cur

The restorecur function restores the cursor position to the location saved by savecur.

The function call is restorecurO. This function is not currently used.

Called By: none

Routines Called: printf

Parameters: none

Returns: none

2.6.16.9 scrollreg

The scroll-reg function sets the top and bottom boundaries of the scrolling region.

The function call is scrollreg(t, b), where:

t is the top of the scroll region
b is the bottom of the scroll region

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: INT_4 t
INT_4 b

Returns: none

204

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.7 Stand-Alone Host Emulator (FLEA) CSC

Flea is an embedded, stand-alone, Simulation Host emulator that resides within the CIG
real-time software. Flea permits a system to execute specific features and test limited
functionality.

Flea is available only in stand-alone opuration mode (i.e., when the system is not being
driven through simulation). This mode allows the CIG to generate visual images without
interacting with a Simulation Host computer.

Flea is accessed through Gossip, as follows:

1. The user selects the "vehicle demo and fly options" from the Gossip menu.
2. gossip calls gos -fly.
3. The user selects "enter FLEA mode" from the Flying and Demo Selection menu.
4. gos-fly calls gos-flea if.
5. gosfleaif asks the user for the vehicle's current location and orientation, then

posts a mailbox message to "wake up" flea.

All user commands are entered through Gossip menus. (Refer to sections 2.6.8 and 2.6.9
for details on the Flea user interface.) Flea mode, which requires a VT1OO-compatible
terminal, allows movement around the database via keyboard control.

Flea is not available for Butterfly-based systems.

S Figure 2-17 identifies the CSUs in the Flea CSC. These CSUs are described in this
section.

Task Initialization

EForcetask DaeDtbs

saiIlsti Interface Fe a upa M OSIFlea
PFrocessing mr.

flea.c
fleadecodedata.c
flea_en odedata.c
fleainitcig.w.c
fleeUPlatepos.c

Figure 2-17. Flea CSUs

Figure 2-18 illustrates how the CSUs in the Flea CSC interact.

205

BBN Systems and Technologies 120TX/T CIG HOST CSCI

flea

flea_lnlLclg_sw
Finds and reads the configuration
file. Creates all configuration
nodes.

flea_updatepos
Updates the position of the
simulated vehicle.

flea decode data
Decodes messages from the CIG.

flea encode data
Encodes messages to the CIG.

Figure 2-18. Flea Flow Diagram

2.7.1 flea.c

The flea function is a task that runs on the back of the real-time software. It emulates the
Simulation Host for stand-alone CIG operation.

The function call is fleao. The flea task is created by rtt during the task initialization
stage. flea initializes various flags and variables, then suspends itself until gosflea if or
gos-fly (in the Gossip CSC) posts a FLEAMB message.

When a FLEAMB message is posted, flea does the following:

* Calls OPENFLEADATA to establish the CIG-Flea communications path.
* Calls flea-init__cigsw to find and read the viewport configuration file.
* Calls EXCHANGEFLEA_DATA to exchange a message packet with the CIG.
* Calls flea-update-pos to update the position of the simulated vehicle.
* Calls fleadecodedata to decode CIG-to-Flea messages.

C Galls fleaencodedata to encode Flea-to-CIG messages.
C Galls EXCHANGEFLEADATA to exchange a message packet with the CIG.

flea continues to process messages until the system is reset.

Called By: none

206

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: EXCHANGEFLEADATAfleadecodedata

flea_encodedata
fleainitcig-sw
flea update-pos
OPENFLEADATA
sc-pend

Parameters: none

Returns: none

2.7.2 flea decode data.c

The fleadecodedata function decodes runtime messages returned from the CIG real-time
software. These messages emulate those that would normally be sent to the Simulation
Host.

The function call is flea decodedataO. fleadecodedata decodes messages that do the
following:

* Report the simulated vehicle's altitude above ground level (MSGAGL).
* Report a hit (MSGIIT, MSG_HIT_RETURN, MSGSHOWEFFECT).
• Report a miss (MSG_MISS).
* Report on a laser (MSGLASERRETURN)." Describe the local terrain (MSGLOCAL_TERRAIN, MSG_LT_PIECE).

Called By: flea

Routines Called: none

Parameters: none

Returns: none

2.7.3 flea encode data.c

The fleaencode-data function encodes messages to send to the CIG real-time software.
These messages emulate runtime messages that would normally be sent by the Simulation
Host.

The function call is flea encode data(). fleaencode_data encodes messages to do the
following:

* Update the matrix for the simulated vehicle (MSGRTS4x3_MATRIX).

207

BBN Systems and Technologies 120TX/T CIG HOST CSCI

" Update the system view flags (MSQVIEWFLAGS).
" Process a round (MSG_PROCESS_ROUND).
" Fire a round (MSGROUNDFIRED).
" Update the system view mode (MSGVIEWMODE).
* Turn on AGL processing (MSGAGL_SETUP).
* Handle auto-fiing (MSG_PROCESSROUND).
" Update dynamic vehicle matrices (MSGOTHERVEHSTATE).
* Add static vehicles (MSGSTATICVEH_STATE).
" Remove static vehicles (MSG_STATICVEH_REM).
* Show effects (MSGSHOWEFFECT).
• Display gun overlays (MSGGUNOVERLAY).
* Define the ammunition map (MSGAMMO_DEFINE).

This function also counts hits and misses per minutes.

Called By: flea

Routines Called: BCOPY
cos
sin

Parameters: none

Returns: none

2.7.4 flea_initcigsw.c

The fleainitcig-sw function encodes viewport configuration messages.

The function call is flea initcig.swo. The function does the following:

• Opens the viewport configuration file.
• Rewinds the file.
" Reads the file size.
• Encodes the configuration messages in the file (MSGCREATECONFIGNODE,

MSG_VIEWPORTSTATE, MSGOVERLAYSETUP, and
MSGAMMODEFINE).

The function returns 1 if successful, or -I if no configuration file was found.

Called By: flea

Routines Called: close
Cos
EXCHANGEFLEADATA
findfn
id_4x3mtx

208

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Iseek
open
printf
read
rotate_x nt
rotateynt
rotate_z_nt
sc-pend
sc-post
sin
strlen
translate

Parameters: none

Returns: -1
1

2.7.5 fleaupdatepos.c

The flea update-pos function updates the 4x3 matrix information that is sent each frame to
update the position of the simulated vehicle. flea.update.pos also stores the simulated
vehicle's current position and orientation if a script is stopped, and restores the simulated
vehicle's position and orientation if a script is restarted.

The function call is fleaupdateposO.

Called By: flea

Routines Called: cos
id_4x3mtx
rotate_x_nt
rotate__y-nt
rotate_z_nt
sin
translate

Parameters: none

Returns: none

209

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.8 Force Processor (FORCE) CSC [120TX systems only]

The Force CSC gives the 120TX CIG the ability to display two-dimensional, non-
perspective visual data as an overlay on the usual three-dimensional, perspective image.
The forcetask is the task that runs on the Force board and serves as the data processing
interface between the CIG real-time task and the 2-D processor task. The Force board is
the physical interface between the VME chassis and the 2-D processor board.

The real-time software provides 2-D overlay information to the Force board via the
forcetask. The forcetask then writes the data to the GSP, the graphics processor chip on
the MPV (Micro Processor Video) board. The GSP contains memory for code storage and
for storing and manipulating the 2-D image. The Force board can also read data from GSP
memory about particular attributes of the displayed image.

The Force and GSP tasks are initially loaded and started by the gspload function in the
Real-Time Processing component. gspload is called by db._mcc-setup before beginning
either viewport configuration or 2-D overlay processing, if a Force board is present and
GSP has not yet been initialized.

The real-time software communicates with the forcetask via the Force interface structure
(defined in mbx.h). The Force front-end control register (FECONTROL) is used to
specify the command to be performed (SUBSYSREADHDATA,
SUBSYSNMISTART, SUBSYSTESTMEM, etc.).

Force-GSP processing can also be invoked via the gos_120tx function in Gossip. This
function is called when the Gossip user selects the "l2Otx/t menu" option from the Gossip
main menu. The user can then select the "Talk to 2D process/mem" option to display the
FORCE-2D Communications Menu. This menu is used to interface with the forcetask.

The forcetask communicates with the GSP to do the following:

Display the 2-D overlays.
The original 2-D overlay configuration is passed to Force by the linkup function in
the 2-D Overlay Compiler component. The configuration includes the component
pointer table, component descriptor table, and window descriptor table. These
structures are downloaded into GSP memory and used to generate the overlays
displayed on the viewports.

Change the 2-D overlays during runtime.
Each frame, runtime changes to 2-D components are passed to Force from the real-
time software Each message consists of the command (CHANGE_DRAW_2D,
DRAWTEXT_2D, ROTATE_TRANSLATE_2D, etc.) and any arguments (theta,
x translation, y translation, etc.) required for that command. Processing for these
messages is as follows:

1. The Simulation Host sends a MSG_PASS_ON message to specify the 2-D

component changes.

2. The real-time software writes the message to Force memory.

3. The forcetask writes the message to GSP memory.

210

BBN Systems and Technologies 120TX/T CIG HOST CSCI

4. The GSP parses each command in the message, updates the component
descriptor table in its memory, then regenerates the 2-D overlays.

A new PASS_ON message is expected every frame. If none is sent, the forcetask
reprocesses the last PASSON message it received.

The format for each 2-D runtime command is described in the "2-D Commands and
Parameters" document.

Return messages to simulation.
Messages such as error reports can be returned from Force to the Simulation Host.
The forcetask places the data in Force board memory. The real-time software puts
the data into a MSGPASSBACK message and returns it to the Simulation Host.

Process laser range request messages.
The Simulation Host can use the MSGREQUESTLASERRANGE message to
request the depth of the pixel located at the screen position represented by i, j,
where i is the horizontal coordinate (column) and j is the vertical coordinate (row).
The real-time software uses the Force interface to request the pixel depth
information from the MPV. The real-time software takes the returned value and
sends a MSG_LASERRETURN message to the Simulation Host.

Process mail.
This process triggers the Force/MPV interface to send and receive data such as pass
on, pass back, and laser range request messages.

Change the color lookup table.
The MPV's sky color lookup table (LUT) defines the range of 3-D pixel color for
each pixel. Available lookup tables are:

OTW Out the Window
DTV Daylight TV
WHT White Hot
BHT Black Hot

The active lookup table can be changed using the MSG_VIEWFLAGS message.
This message is processed by process..vflags in the Viewport Configuration
component of the UPSTART CSC. process vflags sets the lookup table in Force
memory if a Force board is present.

Change the video control registers.
The video control registers can be changed using the MSGVIEWFLAGS
message. This message is processed by process-yflags in the Viewport
Configuration component of the UPSTART CSC. process yflags sets the video
control registers in Force memory if a Force board is present.

Start or stop the GSP task.
gsp-load starts the GSP task initially, and stops and restarts it when testing GSP
memory. GSP can also be stopped and restarted via Gossip.

Test reading from/writing to GSP memory.
GSP memory testing is performed by gspjoad at GSP initialization time. Memory
testing can also be invoked through Gossip.

Figure 2-19 identifies the CSUs that make up the Force CSC. These CSUs are described
in this section.

211

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Task Initialization

Forostaik Daman
Baiicsm Intiftac lWa Usar nGe- Gosp Flea

Processing Fedakmeln

dsiajyp.c
exceplon~Asm
torce~Am~
forcetaskx
gspjo.c
nmitype.c
poiLeady.c
read_stuff.c
testgsp.c

Figure 2-19. Force Processing CSUs

2.8.1 data_type.c

The data type function reads data from and writes data to GSP memory.

The function call is data-typeo. datatype does the following:

* Retrieves the type of front-end command: read data or write data.
* Sets the host control value based on whether or not the GSP task is executing, and

whether the command is read or write.
* Calls gsp-read or gsp-write to read or write the data as specified by the command.

Called By: main (in forcetask)

Routines Called: gsp-jocdwrite
gsp-read
gsp-write

Parameters: none

Returns: none

212

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.8.2 exception.asm

The exception.asm CSU contains two functions:

* excep-init
" spurint

2.8.2.1 excepinit

The excep-init function initializes the vector base register (VBR) of the 68010 and all
entries of the exception vector table to point to spur~jnt.

Called By: main (in forcetask)

Routines Called: spurint

Parameters: none

Returns: none

2.8.2.2 spur_int

The spur_int function saves all of the 68010 data registers into the structure "context." The
order of the save is as follows: DO-D7, AO-A6, SSP, USP, PC, SR.

Called By: excepinit

Routines Called: none

Parameters: none

Returns: none

2.8.3 force.asm

The force.asm CSU contains a group of subroutines used by the Force functions to read
from and write to the GSP. These functions are the following:

* gsp-write
gspjread
gspioctl_write

213

BBN Systems and Technologies 120TX/T CIG HOST CSCI

" gspioctl read
* init-ports

This module is written in assembly language to obtain the optimal performance from the
68230-to-GSP interface.

2.8.3.1 gspwrite

The gsp..write function writes a block of data from the Force board memory down to the
GSP.

The function call is gspwrite(number hwords, data buffer, gspaddress),
where:

number hwords is the number of words to be written to the GSP
data buffer is the location of the data in Force memory
gsp address is the address to write to

Called By: datajtype
main (in forcetask)
nmitype
poll-ready
test-gsp

Routines Called: none

Parameters: HWORD number_hwords
HWORD *data-buffer
WORD gsp address

Returns: none

2.8.3.2 gspread

The gsp-read function reads a block of data from the GSP into Force memory.

The function call is gspread (numberhwords, data_buffer, gspaddress),
where:

number hwords is the number of words to be read from the GSP
data buffer is the location of the data in Force memory
gsp_address is the address to read from

Called By: data-type
main (in forcetask)
read-stuff
test-gsp

214

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none

Parameters: HWORD number_hwords
HWORD *databuffer
WORD gsp-address

Returns: none

2.8.3.3 gspioctlwrite

The gsp-ioctl write function writes the control word to the GSP host interface control
register.

The function call is gsp ioctlwrite(control-data), where control-data is the control
word to be written.

Called By: datatype
gspio
main (in forcetask)
nmi-type
poll ready
read-stuff
test-gsp

Routines Called: none

Parameters: int controldata

Returns: none

2.8.3.4 gspioctlread

The gsp-joctlread function reads the control word from the GSP host interface control
register. The function returns the control word as an integer (half word = 16 bits).

The function call is gsp_ioctI_readO.

Called By: gspio
main (in forcetask)

p Routines Called: none

215

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: none

Returns: controldata

2.8.3.5 initports

The iniLports function is called at start-up to initialize the Force-GSP interface.

The function call is initportso.

Called By: main (in forcetask)

Routines Called: none

Parameters: none

Returns: none

2.8.4 forcetask.c

The forcetask.c CSU contains the main Force program. The two functions in forcetask.c
are:

* main
" comparebuffers

2.8.4.1 main

The main function processes commands received from the 2-D overlay compiler or Gossip.

The function call is maino. main does the following:

• Sets up registers and initializes various parameters.
• Calls init-ports to initialize the Force-GSP interface.
" Turns off the Force lights.
• Checks the error count.
" Calls gsp-read to check for an illegal opcode trap.
• Calls poll ready to read the command in the FE_CONTROL register.
• Processes each message, calling other Force functions as appropriate.
• Clears the ready bit.

The following table describes the processing performed by main for each command sent by
linkup or gos_120tx. The first column identifies the command, preceded by the value
returned by poll-ready (the upper byte of the value in the FE_CONTROL register). The

216

BBN Systems and Technologies 120TX/T CIG HOST CSCI

second column describes the purpose of the command (in italics), then shows the steps
performed by main to process that command.

Message Processing by main

0 SUBSYSMAIL_SEND Process mail, pixel depth information, and pass on 2-D
components to/from the GSP.
Calls gspio.

1 SUBSYS READ START, Send data to or receive data from the GSP.
SUBSYSWRITE_START, Calls datajtype.
SUBSYS_READMORE,
SUBSYS..WRITEMORE

2 SUBSYS_NM!_START Start the GSP task.
Calls nmitype.

3 SUBSYS-TESTMEM Test the ability to readfrom/write to GSP memory.
Calls test-gsp.

6 SUBSYSSTOP Halt the GSP task.
Calls gspioctLwrite; sets nmi set flag to 0.

10 SUBSYSREADHCTRL Read the control register.
Calis gspioctl read.

11 SUBSYS_WRITE_HCTRL Write to the control register.
Calls gsp-iocl_write.

12 SUBSYSREADHDATA Read data from GSP memory.
Calls gsp-read.

13 SUBSYSWRITEHDATA Write data to GSP memory.
Calls gsp-write; if the verify flag is on, calls gspjread and
compare-buffers to verify the data was written correctly.

Called By: none (the forcetask is loaded and started by gspioad)

Routines Called: comparebuffers
datatype
excepinit
gspjio
gspjoctl_read
gspjioctlwrite
gsp-read
gsp-write
initports
nmi-type
poll ready
test_gsp

Parameters: none

Returns: none

217

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.8.4.2 comparebuffers

The compare_buffers function is a boolean function that compares the contents of two
buffers.

The function call is comparebuffers(hword_count, ptrl, ptr2), where:

hword count is the length of the data to be compared
ptrl axdi ptr2 are pointers to the buffers to be compared

The function returns 1 if the buffer contents are equal, and 0 if they are not.

Called By: main (in forcetask)

Routines Called: none

Parameters: HWORD hwordcount
HWORD *ptrl
HWORD *ptr2

Returns: 1 (TRUE)
0 (FALSE)

2.8.5 gsp-io.c

The gsp-io function processes mail and pixel depth data to and from the GSP.

The function call is gspioo. gsp-io does the following:

* Sets the data strobe bit to signal the GSP of input/output.
* Gets the buffer id and base address.
• Calls sendstuff to write pixel request data and mail to the GSP.
• Calls readstuff to read pixel depth data and mail from the GSP.
• Clears tle ready bit.

Called By: main (in forcetask)

Routines Called: gspjioctl_read
gsp-joctl write
readstuff
send-stuff

Parameters: none

218

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.8.6 nmitype.c

The nmi-type function starts the GSP task.

The function call is nmi-typeo. nmi-type does the following:

* Puts the GSP start address into a data buffer.
" Writes the start address into the nmi vector area of GSP memory.
* Writes to the GSP host interface control register to flush and clear the GSP cache.
* Writes to the GSP host interface control register to start the GSP task.
• Sets the NMI flag for other routines to check before writing to the control register.
• Clears the ready bit.

The NMI (non-maskable interrupt) is a bit in the GSP host interface control register.

Called By: main (in forcetask)

Routines Called: gspjioctlwrite
gspwrite

Parameters: none

Returns: none

2.8.7 pollready.c

The poll ready function polls the ready bit in the FECONTROL register until the bit is set.
This register is used to pass messages from the real-time software to the forcetask.

The function call is pollreadyo. poll-ready does the following:

* Sets up the address for the FECONTROL register.
* While waiting for the ready bit to be set, performs various background functions:

- Checks for host input regarding color lookup tables, and loads a new table
if required.

- Checks for host input regarding video control registers, and transfers the
appropriate values to the MPV (Micro Processor Video) board.

* When it detects that the ready bit is set, returns the upper byte of the control register
to the forcetask. This value tells the forcetask what command to process.

Called By: main (in forcetask)

Routines Called: gspjioctlwrite

219

BBN Systems and Technologies 120TX/T CIG HOST CSCI

gsp-write

Parameters: none

Returns: <upper byte of front-end control register>

2.8.8 read stuff.c

The readstuff function is called by gspio to read pixel depth data and mail from GSP
memory.

The function call is read stuffo. readstuff does the following:

• Sets the control word for data read.
" Reads the 2D-to-SIM buffer from GSP memory.
• Sets the control word for data read.
* Reads pixel i and pixel j depth from GSP memory.

Called By: gspio

Routines Called: gspioctl_write
gspread

Parameters: none

Returns: none

2.8.9 test_gsp.c

The test-gsp function writes a pattern to GSP memory, reads it back, and compares values.

The function call is test.gspo. test__gsp does the following:

* Writes a test pattern to a buffer area.
* Sets the host control register for data write.
• Writes the buffer to GSP memory.
* Sets the host control register for data read.
* Reads GSP memory into a second buffer.
" Compares the two buffers and reports the number of errors detected.

Called By: main (in forcetask)

Routines Called: gsp ioctI write
gsp-read

220

BBN Systems and Technologies 120TX/T CIG HOST CSCI

gsp-write

Parameters: none

Returns: enr.count

221

BBN Systems and Technologies 120TX/T CIG HOST CSCI

3 RESOURCE UTILIZATION

This section summarizes the disk space and memory requirements of the CIG Real-Time
software.

3.1 Disk Space Requirements

The total amount of disk space required to house the object files for all of the CIG real-time
functions on a 120TX system is approximately 1,593,796 bytes (approximately 1.52
megabytes). On a 120T system, this total is approximately 1,530,170 bytes (1.46
megabytes).

The amount of disk space required to house the terrain database, the dynamic elements
database, and the other data files required for a simulation is application-dependent.

3.2 Memory Requirements

The system's memory requirements vary based on application-specific parameters and
system options. In general, a minimum of 1 megabyte of CPU memory is required. A
minimum of 1.5 megabytes of memory is required for active area memory; additional AAM
memory is required for databases with an extended viewing range (greater than 4000
meters).

0

222

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX A. SYSTEM INCLUDE FILES

Include files define data structures and parameters used throughout the system. Although
many include files are used exclusively by functions in one area, others are used by
multiple CSCs. For easy reference, all of the include files are described in this appendix,
in alphabetical order.

A.1 ballistics.h

The ballistics.h file includes all of the common Ballistics header files:

* bxdefines.h
* bx messages.h
" bxrtdbstructs.h
* bxstructs.h
* bxmacros.h
" bmfunctions.h
" mxdefines.h
* slave 133_functions.h (if running on a slave board)

Included By: All Ballistics Interface Message Processing CSUs
All Ballistics Intersection Calculation CSUs
bxinit.c
bxtask.c
gos.bal-query.c

A.2 bbnctype.h

The bbnctype.h file defines character-testing macros (isalpha, isdigit, isascii, etc.) and
character-conversion macros (tolower, toupper,and toascii).

Included By: bbnctype.c
readconfigfile.c

A.3 bflydisk.h

The bflydisk.h file contains declarations for the Butterfly disk (maximum number of files in
a directory and maximum file name size) and provides the typedef for the root directory
structure. This file is used for Butterfly Simulation Hosts only.

Included By: findfn.c
support.c

A.4 bm functions.h

The bm_functions.h file declares all Ballistics messages (b0_balsconfig, b0_databaseinfo,
bOaddtraj-table, etc.).

Included By: ballistics.h
bxinit.c

223

BBN Systems and Technologies 120TX/T CIG HOST CSCI

bxreset.c 0
A.5 bp-functions.h

The bpjfunctions.h file is not used by the 120TX/T CIG.

A.6 bx defines.h

The bxdefines.h file defines the following:

" The MALLOC macro (described in Appendix B).
• The maximum number of bvol types, model types, AAM partitions, messages,

static vehicles, rounds, bvol cache entries, poly cache entries, load modules,
vehicle load modules, and trajectories.

• DTP data transformation commands.
* DTP data components commands.
* DTP data traversal commands.
• Database effect model numbers.

Included By: ballistics.h

A.7 bx externs.h

The bxextems.h file declares external variables for Ballistics, including:

* Input and output buffers.
• Global (G_*) variables.
• Temporary variables used for message processing.

Included By: All Ballistics Mainline CSUs
All Ballistics Interface Message Processing CSUs
bx_chordintersect.c
bxfunctions.c
bx.get_lm_data.c
bxmodel_int.c
bxreset.c
bxtrajectory.c
gos-bal-query.c

A.8 bx-globals.h

The bx.globals.h file declares variables for Ballistics, including:

* Input and output buffers.
• Global (G-*) variables.
* Temporary variables used for message processing.

Included By: bxtask

224

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.9 bx macros.h

The bxmacros.h file defines the following macros used by various functions in Ballistics:

" DELETEROUND
* DELETESTATVEH
• FREELM_CACHE
* GETCHORDEND
" GET_DB POS
" GETLB FROMLM
" NEWROUND
* NEWSTATVEH

These macros are described in Appendix B.

Included By: ballistics.h

A.10 bxmessages.h

The bxmessages.h file contains the following:

" Declaration of the maximum message size.
* Definitions for the bal_board_ype (Ballistics board type) variable.
* Definitions for code trace bits.
: The addresses where the boards are locateG.
• Typedefs for all simulation-to-Ballistics (MSGB0_*) messages.
* Typedefs for all Ballistics-to-simulation (MSG B1 *) messages.

Included By: balroutines.c
ballistics.h
dbmcc.setup.c
downloadbvols.c
gossip.c
load_modules.c
opendbase.c
opended.c
rowcolrd.c
simulation.c
upstart.c

A.11 bx rtdbstructs.h

The bxrtdbstructs.h file defines the structure of the real-time database for Ballistics. It
includes typedefs for the following:

* Floating bounding volume entry.
" Single-transform model structure.
* Show effects stamp structure.
* Tank structure.
* Database directory entry.

225

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Runtime database header.
* Fixed bounding volume entry.
* Generic load module directory entry.
• Grid components.
* Grid locator information.
• Load module header.
" Load module statistics (generic model, unique static, and terrain grid polygon

count, plus total bytes per load module).
" Polygon data (info word).
• Polygon list of vertices and alpha betas for texturing.

This file also defines the maximum number of models that can be put in the generic module
of the runtime database, the maximum number of stamps possible in one unique static
object definition, and the number of z values in a grid component.

Included By: ballistics.h

A.12 bx structs.h

The bxstructs.h file contains structure definitions for Ballistics. It includes typedefs for
the following:

* Load module/grid search list.
" Static vehicle.
" bvol cache entry.
* Terrain and object polygon.
* Polygon cache entry.
* Load module cache entry.
* Trajectory table entry.
• Trajectory table.
* Point data.
* Chord.
" Round data.
" Terrain comers.

Included By: ballistics.h

A.13 cibfly.h

The ciibfly.h file defines the DGI-Labs message interface. It includes the typedefs for
DGI-to-Labs and Labs-to-DGI messages, and defines the mailboxes. This file is required
for Butterfly Simulation Hosts only.

Included By: realtime.h

A.14 configtree_def.h

The configtreedef.h file provides definitions used when manipulating the configuration
tree, such as matrix and node type values.. It also defines the maximum number of
configuration nodes, viewport entries, and graphics path entries.

226

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Included By: realtime.h

A.15 configtreestr.h

The configtreestr.h file describes the structures used in the configuration tree. It provides
typedefs for the following:

" Configuration node.
" Overlay parameters.
• Viewport parameters.
• Graphics path parameters.
* View positions (vppos) array.
• Field-of-view vectors.
" Screen and screen constants.

This file also defines the maximum number of graphics paths.

Included By: realtime.h

A.16 ctype.h

The ctype.h file defines character-testing macros (isalpha, isdigit, isspace, etc.) and
character-conversion macros (toupper, tolower, toascii).

Included By: get-thing.c

A.17 ded id table.h

This file is not currently used.

A.18 defines 2d.h

The defines_2d.h file contains definitions used by the 2-D compiler, including:

* All 2-D database commands (N-*, A-*, and B-*).
* Return codes (end of file, too many errors, invalid window number, etc.).
* Color, plane, and static/dynamic commands.
• MPV addresses (base component pointers and base program area).
• MPV default screen parameters (e.g., dimensions and pitch).
• MPV space allocation.
" Array sizes (maximum number of component pointers, windows, component

descriptions, etc.).
• Maximum compiler errors.

Included By: global_2d.h
globfir_2d.h

2
227

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.19 definitions.h

The definitions.h file defines miscellaneous constants and structures used by the real-time
software. It includes:

" Various definitions used for by Ballistics to parse bounding volume structures and
report hits.

" Definitions of various macros (ABSVAL, SETOUTBITS, SET_OUT_M2BITS,
XREAD, XOPEN, XCLOSE, XLSEEK, XWRITE, AAREAD). These are
described in Appendix B.

* The typedef for the load module/grid search list structure.
* Pointers for messages and other parameters.

Included By: realtime.h

A.20 dgi stdc.h

The dgi stdc.h file helps make the code compiler-independent by defining basic data types.
For Apollo and CIG standard C implementations, the types are defined as follows:

* short INT_2
* int INT_4
" unsigned char BYTE
" unsigned char BOOLEAN
" unsigned short HWORD
" unsigned int WORD
" float REAL_4
" double REAL_8
• char *STRING

Included By: bitblt.c
cig_2d-setup.c
cig-comp_2d.c
cig.link2d.c
comp.c
datatype.c
drawline.c
forcetask.c
gsplio.c
get thing.c
initstuff.c
nmi_type.c
ovalrect.c
poll-ready.c
poly.c
proc-cmd.c
readstuff.c
realtime.h
string.c
sysdefs.h
sysdefs2.h

228

BBN Systems and Technologies 120TX/T CIG HOST CSCI

testgsp.c
text.c
window.c

A.21 dgistdg.h

The dgi-stdg.h file defines various graphics structures. It includes typedefs for the
following:

" 2-D, 3-D, and 4-D vertex points.
• 4x3 matrix.
" 2-D and 3-D bounding boxes.
• Red, green, blue.
• Red, green, blue, opaque.
* Hue, saturation, lightness.
• Hue, saturation, lightness, opaque.

Included By: realtime.h

A.22 ecompilerl.h

The ecompilerl.h file contains defines for the DTP command generator, including various
DTP addresses, maximum values, and the typedef for the wherefprocess structure (used
for pre- and post-processing models and effects).

This file includes the real_time.h and ememoryjnap.h files.

Included By: dtp-compiler.c
dtplfuncs.c
dtp-travl.c
dtprav2.c
loaddbase.c
simulation.c

A.23 ememorymap.h

The ememoryjmap.h file provides external memory declarations. It includes the following:

• General-use variables, such as My Vehicle id, names of the loaded files, and the
database column markers.

* Database format variables.
• Database management variables, such as the number of load modules on a side,

load module width, and the total number of load modules.
* Variables for ballistics and flea.
• Timing and control word variables.
* Local terrain and range variables.
" Declarations for the DR 11-W interface.
* Declarations to support runtime configurable DR packet sizes.
" Intertask semaphore mailbox declarations.

Debugging and data gathering variables.
Variables for Flea's keyboard interface.

229

BBN Systems and Technologies l20TX/T CIG HOST CSCI

" FOOM missile mode global variables.
" Variables used with Force and GSP.
" Single step flags.
" Ballistics flags.
* Helicopter blade rotation variables.
* Butterfly-specific declarations.
" The GLOB (global mnemory) macro, described in Appendix B.

This file includes the xnemory..map-defines.h file.

Included By: All Flea CSUs
aa~init.c
aani~manager.c
balroutines.c
bx task.c
cal.c
cig-config.c
cig.getm_.2d.c
concat mtx.c
db mc..setup.c
debugltdr.c
ded_model-trace.c
dtp-emu.c
ecompilerl .h
file control.c
fill~tree.c
generic-lm.c
gos_ 1 2Otx.c
gos-atp.c
gosjbal-query.c
gos..db _queryxc
gos drl I Lquery.c
gosjlea -if.c
gos...flea-options.c
gosj- ly.c
gosjlocate.c
gos-memory.c
gos-model.c
gos-polys.c
gossystem.c
gossip.c
gspioad.c
gunoverlays.c
bw-test.c
load_modules.c
loc ter.c
make_bbn.c
mkcal~c
mrodel-mtx.c
open-dbase.c
open-ded.c
process -vflags.c
process -vppos.c
rcfuncs.c

230

BBN Systems and Technologies 120TX/T CIG HOST CSCI

read_configfile.c
rowcolrd.c
support.c
update-fov.c
update_rez.c
upstart.c
viewporLsetup.c

A.24 extern.h

The extem.h file defines external variables for the Butterfly interface.

Included By: real_time.h
simulation.c

A.25 external.h

The external.h file is not currently used.

A.26 force.h.asm

The force.h.asm file defines constants for the Force data link. It sets up the 68230 base
register and defines GCR codes, address select codes for GSP registers, and LED bit
definitions.

Include By: force.asm

A.27 force defines.h

The forcedefines.h file, which contains Force and GSP definitions, serves as the interface
between the real-time software, iorce, and the GSP. It includes defines for the following:

* FECONTROL (the front-end control register).
• FORCECONTROL (the Force control register).
* Force return status and error areas.
• Pixel depth r quest values.
* Lookup table variables.
" Video control variables.
* The READ_CLOCK, RESTARTCLOCK, and CHECK_CLOCK macros.

Several alternate versions of this file exist : force_defines_C.h, force_definesD.h,
force_defines__E.h, and forcedefines_TX.h. The only difference between the files is the
base address of the Force board. The applicable version of the file is copied to
forcedefines.h at system build time.

Included By: pollready.c

231

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.28 force definesC.h

The forcedefinesC.h file replaces the force_defines.h file if the Force board has a VME
base address of OxCO0000.

Included By: see forcedefines.h

A.29 force definesD.h

The forcedefinesD.h file replaces the force_defines.h file if the Force board has a VME
base address of OxDOOOOO.

Included By: see force_defines.h

A.30 force definesE.h

The forcedefinesE.h file replaces the force_defines.h file if the Force board has a VME
base address of OxEOOOOO.

Included By: see forcedefines.h

A.31 force definesTX.h

The force_definesTX.h file replaces the forcedefines.h file if the Force board has a VME
base address of 0xl00000.

Included By: see force_defines.h

A.32 functions.h

The functions.h file defines the following macros used by various functions in the real-time
software:

* DART_ENQUEUE
" DUMP_DARTBUFFER
" EXCHANGEDATA
* EXCHANGEDATASIM
" EXCHANGEFLEADATA
* FINDLM
* FLTOFX
* FXTO881
* FXTOFL
* INIT_MTX
• OPENEXCHANGE
" OPENFLEADATA
• SYSERR
* TRIGGERFORCE
* WAITFORCE

212

BBN Systems and Technologies 120TX/T CIG HOST CSCI

.These macros are described in Appendix B.

Included By: realtime.h

A.33 ghctype.h

The ghctype.h file is not currently used.

A.34 global_2d.h

The global_2d.h file includes the defines_2d.h and struct_2d.h include files. Collectively,
these files declare all global I/O variables, global temporary compiler variables, and
compiler product variables for the 2-D compiler.

Included By: bit_biLc
cig-comp_2d.c
cig-getm_2d.c
cigjlink_2d.c
comp.c
drawline.c
get.thing.c
initstuff.c
oval_rect.c
poly.c
proccmd.c
string.c
text.c
window.c

A.35 globfir 2d.h

The globfir_2d.h file includes the defines_2d.h and struct_2d.h include files. Collectively,
these files declare all global I/O variables, global temporary compiler variables, and
compiler product variables for the 2-D compiler.

Included By: cig-2d setup.c

A.36 m2_config.h

The m2_config.h file contains defines specific to the M2. It defines channel and gunner
resolution, vi- vport angular offsets, pitch up/down angular offsets, field-of-view sizes for
all channels, and texture map definitions.

Included By: gunsoverlays.c

233

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.37 mbx.h

The mbx.h file contains defines used for the Force board. It includes defines for the
following:

* The FORCE_INTERFACE structure.
* NMI and GSP configuration addresses.
" Force masks (slave/host, resolution, front ready, force busy, etc.).
" Force commands (SUBSYSREADSTART, SUBSYS_TESTMEM, etc.).
* Video control parameters (VIDEOCTLADDR, VIDEO_ON_CODE, etc.).
" GSP memory start and end addresses.

Included By: ciglink_2d.c
data.type.c
forcetask.c
gsp-io.c
nmitype.c
polleady.c
realtime.h
readstuff.c
test-gsp.c.c

A.38 memorymap.h

The memory-map.h file contains external memory declarations. It defines the following:

" Variables describing the simulated vehicle (myvehid, myveh type, etc.).
" Database header and table structure variables.
* Database management variables.
* Variables for Ballistics and Flea.
" Timing and control word variables.
" Local terrain and range variables.
* Declarations for the DR 1-W interface.
* Default DR 1-W interface packet size.
" Default local terrain chunk size and interval.
• Intertask semaphore mailbox declarations.
" Viewport position, rotation data for flying and setting individual views.
• Variables used by Flea's keyboard interface for flying.
* FOGM missile mode global variables.
* Helicopter blade rotation variables.
* Various Ballistics variables.
* The GLOB (global memory) macro, defined in Appendix B.

Included By: upstart.c

A.39 memory_map_defines.h

The memory-map-defines.h file defines variables used iin external memory declarations. It
defines the following:

234

BBN Systems and Technologies 120TX/T CIG HOST CSCI

" The default T&C location.
* The size of a load module.
" The areas of the 64KW memory board (32KW of space for the double-buffer state

table and 32KW of generic memory for the database).
" Byte offsets to data in double-buffered state table memory.
* Declarations for the DR 11-W interface.
* Local terrain message interval and starting frame number.
• Intertask semaphore mailbox locations.
" Viewport position, rotation data for flying and setting individual views.
• Helicopter blade rotation variables, used in simulation.
" Butterfly-specific variables used for the VME interface.
" Ammunition maps for the M2 gunner's overlay (high-explosive 25mm, tow

missile, sabot, and coax machine gun).

Included By: ememorymap.h
memory-map.h

A.40 mx defines.h

The mxdefines.h file defines the following:

* Constants used for Ballistics message queue processing (MXDEVICECLOSED,
MXDEVICETABLEFULL, etc.).

• The MXDEVICE and MESSAGEHEADER structures.
" The BCOPY macro, described in Appendix B.

Included By: All Ballistics Message Queue Processing CSUs
--- bal_routines.c

ballistics.h
downloadbvols.c
fleaencodedata.c
gos~fleaoptions.c
load_modules.c
open_dbase.c
opended.c
rowcol_rd.c
simulation.c
upstart.c

A.41 ovrlydefs.h

The ovrlydefs.h file contains definitions used to create calibration overlays (for example,
the dimensions of the frame triangles).

Included By: realtime.h

A.42 rcinclude.h

The rcinclude.h file is used by the DTP command generator and the Runtime Command
*Library. It does the following:

235

BBN Systems and Technologies 120TX/T CIG HOST CSCI

• Declares all RCL functions (rcl-push, rcl-pop, etc.).
• Declares address and pointer variables used by the RCL commands.
" Defines the RCL_UNION structure.
* Defines the macros used by dtp-travl and dtpjtrav2 to generate RCL commands.

These macros, which are defined in Appendix B, are used to pass the appropriate
data to rcl_command, rcLlblcmd, rcl-data, and rcLcomponent.

Included By: dtp__compiler.c
dtpjfuncs.c
dtp-travl.c
dtprav2.c
rcfuncs.c

A.43 real time.h

The real_time.h file includes many of the include files used in the real-time software. The
files it includes are the following:

" ci-bfly.h (for Butterfly compatibility)
• configtreedef.h
* configtree_str.h
* definitions.h
* dgi stdc.h
* dgi stdg.h
* extern.h (for Butterfly compatibility)
* functions.h
• mbx.h
* ovrly.defs.h
• rtdbstruct.h
* simscigif.h
• structures.h

Included By: All Ballistics Interface Message Processing CSUs
All Ballistics Message Queue Processing CSUs
All Ballistics Intersection Calculations CSUs
All Gossip CSUs
All Flea CSUs
aa init.c
aam_manager.c
baget_dbpos.c
bal-getlm.grid.c
balroutines.c
bxinit.c
bxtask.c
cal.c
cig-config.c
ciggetm_2d.c
concatnmtx.c
confignode setup.c
dbmcc-setup.c
debug-initdr.c
dedmodeltrace.c
downloadbvols.c

236

BBN Systems and Technologies 12OTX1r CIG HOST CSCI.

ecompileri .h
file_control.c
fill tree.c
find~fnhc
fxbvtofl.c
generic-lm.c
gspjoad.c
gunLoverlays.c
hw test.c
load-modules.c
loc_terxc
make-bbnxc
mat~dump.c
mkcal.c
mmnx-nt.c
model_mtxxc
open-dbase.c
open -ded.c
overlay..setup.c
process - flags.c
process..yppos.c
rcfuncs.c
readsconfigfile.c
rowcol rd.c
slave 1 33_functions.c
support.c
update fov.c
update~rez.c0 c-durp.c
viewpork-setup.c

A.44 rt-definitions.h

The rt-definitlons.h file is not used by the 12OTX/r CIG software.

A.45 rt-macros.h

The rt-macros.h file is not used by the 12OTXtT CIG software.

A.46 rt-types.h

The rttypes.h file is not used by the 120TX/T CIG software.

A.47 rtdb-struct.h

The rtdb-struct.h file defines the following real-time database structures:

Database version and tag.

Database header data.

237

BBN Systems and Technologies 120TX/T CIG HOST CSCI

" Database header overflow and landmark data.
" Generic module directory entry data and name.
" Model and catalog tables.
" Database directory entry.
* Load module header.
• Grid locator information.
* Fixed bvol entry
" Load module statistics.
* Floating bvol entry.

This file also defines the maximum number of models that can be put in the generic module
of the runtime database, the maximum number of stamps in one unique static object
definition, and the number of z values in a grid component.

Included By: realtime.h

A.48 sim_igari.h

The sim_cigari.h file is an alternate form of the simcigjif.h file, used for a specific
customer (Army Research Institute).

Included By: see simcig.if.h

A.49 simcig_ariif.h

The sim_cig-ariif.h file is an alternate form of the simcig_if.i file, used for a specific
customer (Army Research Institute). This version differs from simscig-ari.h only in the
definition of the packet buffer size.

Included By: see sim_cigif.h

A.50 simcig_if.h

The sim cigff.h file defines the interface between the CIG and the Simulation Host. It
defines the following:

" All SIM-to-CIG, CIG-to-SIM, and configuration tree message structures.
" The maximum number of tanks, non-tank vehicles, concurrent active effects, static

tanks, and static vehicles.
" Vehicle types (main battle tank, personnel carrier, etc.).
" Vehicle appearance modifiers (destroyed, flaming, dust cloud, etc.).
* Vehicle special modifier codes (small tree, rock, house, etc.).
* Special effects (explosion on ground, fire, smoke plume, etc.).
* Types of ammunition that cause effects (heat105, sabot25, etc.).
* Application-specific data (ASID) types (data unique to a particular model).
" The structures of the matrix formats.

Included By: real_time.h

238

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.51 simcig_if5l2x512.h

The simcig_if5l2x5l2.h file is obsolete. It is not used by the 120TX/T CIG software.

A.52 sim cig_if7kxlk.h

The simcigif7kxlk.h file is obsolete. It is not used by the 120TX/T CIG software.

A.53 slave133 functions.h

The slave 133_functions.h file declares the slave 133_malloc(function. This file is
included by ballistics.h if Ballistics is running on a slave board.

Included By: ballistics.h

A.54 struct_2d.h

The struct_2d.h file defines the window structures used by the 2-D compiler.

Included By: global_2d.h
globfir_2d.h

A.55 structures.h

The structures.h file defines various data structures used to process overlays and static and
dynamic models. It includes typedefs for the following structures:

* Component data type (3-D point, 2-D point, and vector).
• Texture map index.
* Polygon information word.
* Polygon and stamp lists.
• Gunner, bun barrel, and calibration overlays.
" Field-of-view test table.
" Load module call tables.
• Static and dynamic tanks.
" Static and dynamic single-transform models.
* Remove static model.
• Show effects (stamp structure).
* Ballistics chord data.
* Trajectory positions and data.
* Load module-specific data.
• Grid component definition.

This file also defines the following:

" DTP data transformation commands.
* DTP data component commands.
• DTP data traversal commands.

239

BBN Systems and Technologies 120TX/T CIG HOST CSCI

" Ballistics and local terrain data pointers.
* Bounding plane definitions.
• Channel definitions.

Included By: real_time.h

A.56 sysdefs.h

The sysdefs.h file provides system definitions for operating system versions RTOS.101
and RTOS.102. It includes the following:

* System-wide memory, resource, and software and hardware fault definitions.
• Task definitions.
* 1/0 control system definitions.
* VRTX return codes.
* Disk manager fault codes.
* File control system error codes.
* Special character definitions.
* 68901 equates.
* System interrupt equates.
* Definitions and structures used by file_control.

Included By: rtt.c

A.57 sysdefs2.h

The sysdefs2.h file provides system definitions for operating system version FOS. 100,
which allows the use of high-speed disks. It includes the following:

* System-wide memory, resource, and software and hardware fault definitions.
* Task definitions.
* 1/0 control system definitions.
* VRTX return codes.
* Disk manager fault codes.
* File control system error codes.
• Special character definitions.
* 68901 equates.
• System interrupt equates.
• Definitions and structures used by file_control.

Included By: getch.c

A.58 tflat.h

The tflat.h file defines Ballistics round trajectories for a completely flat trajectory. This is a
default table loaded for testing purposes.

Included By: bxinit.c

240

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* A.59 tflat slow.h

The tflatslow.h file defines Ballistics round trajectories for a completely flat trajectory with
a very slow fly-out. This is a default table loaded for testing purposes.

Included By: bx_init.c

A.60 ul05mmsabot3Ohz.h

The ul05mmsabot30hz.h file defines Ballistics round trajectories for a ul05mmsabot
round with a 30 Hz sample rate. This is a default table loaded for testing purposes.

Included By: bxinit.c

A.61 u25mmheat.h

The u25mmheat.h file defines Ballistics round trajectories for a u25mmheat round with a
15 Hz sample rate. This is a default table loaded for testing purposes.

Included By: bxinit.c

241

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX B. SYSTEM MACROS

Macros are used throughout the system to perform specialized functions. Most macros are
defined in one of the following files:

bx macros.h
Macros used exclusively by Ballistics.

functions.h
Macros used throughout we real-time software.

rcfuncs.c and rcinclude.h
Macros used by the Runtime Command Library and DTP.

Although some macros are used exclusively in one area of the system, others are used by
multiple CSCs. For easy reference, all macros are described in this appendix, in
alphabetical order.

B.1 AAREAD

The AAREAD macro is defined as the system call "read" for the 120T CIG MVME133,
and "fread" for the Butterfly.

Defined In: defmitions.h

Called By: none

Routines Called: fread
read

Parameters: none

B.2 ABSVAL

The ABSVAL macro determines the absolute value of a number. The usage is
ABSVAL(x), where x is the number.

Defined In: definitions.h

Called By: none

Routines Called: none

Parameters: int X

242

BBN Systems and Technologies 120TX/T CIG HOST CSCI

B.3 BCOPY

The BCOPY macro copies a specified number of bytes. The usage is BCOPY(source,
dest, byte-count), where:

source is a pointer to the source location
dest is a pointer to the destination location
bytecount is the number of bytes to be copied

Defined In: mx_defmes.h

Called By: bOaddstaticvehicle
bO_bal-config
bObvol-entry
bOdatabaseinfo
bOmodel-entry
bxchordintersect
downloadbvols
fleaencodedata
mx-push

Routines Called: none

Parameters: WORD *source
WORD *dest
HWORD byte-count

B.4 CHECK CLOCK

The CHECKCLOCK macro, defined in forcedefines.h, is not currently used.

B.5 CHECKFORCE

The CHECKFORCE macro checks to see if the forcetask is running by reading the ready
bit (FRONT_RDY_MASK) in the front-end control register (FECONTROL). If it is, the
Gossip operation is denied and the user is asked to retry later.

The usage is CHECK-FORCE.

Defined In: gos_120tx.c

Called By: gos_120tx

D

243

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: printf

Parameters: none

B. 6 DARTENQUEUE

The DART_ENQUEUE macro, defined in functions.h, is not currently used. Previously,
this macro was used to add a message to the DART Ballistics board's queue. The DART
Ballistics board is no longer supported.

B.7 DELETE ROUND

The DELETEROUND macro removes a round from the active list and puts it on the free
list. The usage is DELETE ROUND(deadroundP), where dead round P is a
pointer to the round to be deleted.

Defined In: bx_macros.h

Called By: b0_newframe
b0_process_round
bOroundfired

Routines Called: none

Parameters: ROUNDDATA *dead_round_P

B.8 DELETESTAT VEH

The DELETESTATVEH macro removes a static vehicle from a load module list and puts
it in the free list. The usage is DELETESTATVEH(deadsvP, tableP), where:

dead svP is a pointer to the static vehicle to be deleted
table_P is a pointer to the vehicle table

Defined In: bxmacros.h

Called By: b0_deletestaticvehicle

Routines Called: none

Parameters: STATVEH *dead sv P
STRUCTPSV *tableP

244

BBN Systems and Technologies 120TX/T CIG HOST CSCI

B.9 DOWNLOADDATA

The DOWNLOADDATA m .cro downloads 2-D overlay data into GSP memory. The
usage is DOWNLOAD-DATA.

Defined In: ciglink_2d.c

Called By: linkup

Routines Called: WAlT_FORCE

Parameters: none

B.10 dtp.* (DTP Macros)

Macros are used by the DTP Command Generator functions to interface to the Runtime
Command Library (RCL). The macros call RCL routines to generate the actual commands
that are downloaded to the hardware.

Each DTP hardware command has one or more supporting macros. The macro called by
the DTP Command Generator functions depends on the desired command, whether a label
is being used, and whether relative or absolute addressing is being used.

The following table lists each DTP macro and identifies its parameters, calling routines, and
called routines. It also identifies the DTP command generated by RCL for each macro.
Detailed descriptions of the hardware commands are beyond the scope of this document.

Defined In: rcinclude.h

Called By: see table below

Routines Called: see table below

Parameters: see table below

245

BBN Systems and Technologies 120TX/T CIG HOST CSCI.

Macro(parameters) DTP Hardware Called Routines
Command Generated By Called

dtpibcn(abel, mask, channel-data offset) Branch Channel Non- none rclIblcmd
_ _ _ _ _ _ _ _ _ _ Zero _ _

dip cnr~abll mask, channeLdataopffset) Branch Channel Non- none rcl-lblcmd
_______________________Zero Relative_____

dtcnrs(aamnaddress, mask, Branch Channel Non- none rcLcommand
channel data offset) Zero Relative_____

dtp-bcns(aam-address, mask, Branch Channel Non- none rcI-command
channel data offset) zero__________

ltpbcz~label, mask, channel dataoffset) Branch Channel Zero none rcl lblcmd

dtp-bczr(label, mask, channeLdataoffset) Branch Channel Zero nonie rii-lblcmd
_________ ________ ________ Relative _ _ _ _ _

dtpjcmr(aamaddress, mask, Branch Channel Zero none ivLcommand
channel data offset) Relative______

dtp_ bczs(aam address, mask, Branch Channel Zero none rcl-command
channel-data offset)__________ ______

dtpxgr(label, cossquared) Branch DOT Greater none rcl-lblcmd
_______________________Than Relative_____

dtpjdgrs(c,.ffset, cos-..squared) Branch DOT Greater none rcl-command
_______________________Than Relative_____

dtp-bdr~label, cossquared) Branch DOT Less Than none rcl-lblcmd
_________ ________ ________ Relative_ _ _ _ __ _ _ _ _ _

dtp~bdlrs(pc offset, cossquared) Branch DOT Less Than none rcl-command
_________ ________ ________ Relative_ _ _ _ __ _ _ _ _ _

dtp.gn(label, mask) Branch Generic Non- none rcLlblcmd
_ _ _ _ _ _ _ _ _ _ zero _ _ _ _

dtpjgns(aam a;ddres, mask) Branch Generic Non- none rcl-command
_ _ _ _ _ _ _ _ _ _ Zero _ _ _ _

dtpbgz(label, mask) Branch Generic: Zero none rcl lblcmd

dtpjbgzs(aam address, mask) Branch Genetic Zero none rcl command

dtpjlm(dp...iewpoinLaddress, Base Load Module dtp-rav2 iti~command
dtpjesult-address, x-multiplier, Calculation
y..multiplier) ___________ _______ _______

dtpjnz(label, mask, dip address) Branch Non-Zero dtpjtravl, rtl-lblcmd
______ ______ _____ ____ _ ______ _____ dtpjrv2__ __ __

dtp...nzr(label, mask, dtp address) Branch Non-Zero none rcl~lblcmd
____________________________ Relative

dip bnzrs(aam Iaddress, mask, dtp-address) Branch Non-Zero none rcLcommand
Relative________ ___

dip bnzs(aam-address, mask, dtp-address) Branc~h Non-Zero none rcl-command
Relative

dtpjpco Bounding Plane Normals dtpjrav2 rcl-command
_____________________________ Calculation_______ _______

dtpbpcxo Bounding Plane Normals none rcl-command
_____________________________ Calculation TX_______

246

BBN Systems and Technologies 120TX/T CIG HOST CSCI

dtprulabel) Branch Unconditionally dip_travi, rti-lblcmd
____________dip-trv2 _ _ _ _

dtpjrur(label) Branch Unconditionally none ivi-lblcmd
Relative _____

dtp-brrs(c.ffset) Branch Unconditionally dip-trav2 rcl command

dip hiisaam-adress) Branch Unconditionally dip-travi reLcommand
Relative ______

dzprz(abel, mask, dtp-address) Branch Zero dip- trav2 rcl lblcmd

dtp-brzlabel, mask, dtpadress; Branch Zero Relative none rel lblcmd

dtp-lbrzr(pc offset, mask, dip adrss) Branch Zero Relative none rcl command

dip Jrzs(aamnaddress, mask, dip address) Branch Zero none rcL command

dtpjlot(vx, vy, vz) Dot Product none rcl_command

dtpelmo End Load Module none ivi command

drpendO End Current Path dtpjravl, rclcommand
___________dtp-trav2

dtp fov(label, radius) Field of View Test none rcl lblcmd

dtp fovr(label, radius) Field of View Test none rcl-lblcmd
Relative_______

dtp fovrs(pc offset, radius) Field of View Test none rcl-command
Relative _____

dip fovs(aam address, radius) Field of View Test none rcl command

dtp-gdc(label, centroid x, centroid2y, Generic Data Call none rcl~blcmd

dlgci labl, eni rod x c nri y G nrc D t al o er ll m

dtp-gdcir(label, centroid-x, centroid..y, Generic Data Call none rcl~blcmd
centroid z, asid, dptr)Retie_ _____

dtp..gdcir(aama enddss, centroid, Generic Data Call none rcl-lcmad
cnrycentroid z, asid, dptr) Relative ______

dtp-gdcis(aam-address, centroid-x, Generic Data Call none rcl-command
centroid-y, centroid z, asid, dptr) Relative_ _______

dtp-gdcn(abel, cetois, centroid, Generic Data Call none rcl-lblcmad
centroidz ______,_____ ________z,______pt

dtp-gdcnrlabel, centroidx, centroidy, Generic Data Call none rcl-lblcmd
centroidjz)Reave__ ____

dip..gdcnrs~aaenddrs, centroid-x, Generic Data Call none rel-lcmad
ceocentroidenrodj Relative

dtp-gdcns(aama-ddress, centroid_x, Generic Data Call none rcl-command
ceniroid..y, centroid z) Relative ____ _______

dtp-gdcr(aaabel, esi, centroi-, Generic Data Call none rclclblcmd
centroid~, astidz) Rltv ______ ______

dtp-gdcr(aaml address, centroid, Generic Data Call none rIcomblmad
cndycentroid z, asid) Relative_______ ______

dtgdcs(aam address, centroidx, Generic Data Call none rcl_command

centroid-y, centroid z, asid) I_________ _____________

dipp-g(offset) Generic Return none rdl command

247

BBN Systems and Technologies 120TX/T CIG HOST CSCI

dtp-jmi(abel, radius) Load Module In Field of none rvi-lblcmd

dpView
Test__ _ _ _ _ _ _ _ _ _

dtjmirIabel, radius) Load Module In Field of none reLlblcmd
View Test Relative __ ________

dtpjImirspc offset, radius) Load Module In Field of none rcLcommand
View Test Relative

dtp ii(anni address, radius) Load Module In Field of none rcl-command
View Test

dtpjod~label, range-squared) Level of Detail Test none irc blcmd

dtpiodr(abel, mange..squared) Level of Detail Test none rcl_lblcmd
Relative

dtp Iodrs(pc ofst gsurd) Level of Detail Test none rcd command
Relative________ ___

dtp-Waamaddress, range .squared) Level of Detail Test none rcl command

dtpjwdolabel, dtp-addiress, word-count) Load Words dtptravl rcl lblcmd

dtpjwdlabel, dip address, wordcount) Load Words Relative none rcl lblcmd

dtpiwdrs(pc offset, dtpaddress, Load Words Relative none rcl-command
word-count) __________ ______ ______

dtpjwds(aam address, dt..address, Load Words dip travli rcl_2command
word count.) ________dtpsmrv2_____

dtpm;ml(dtpaddressa, dtp-addressb, Matrix Multiply Local none rcl-command
dtp..address..c) (A*B=>C)
dtpmjmpredtpaddressa, dtp-.Addressb, Matrix Multiply Pre none rcl-command
dtpaddressc) (A*B=>C)
dtpmps(dtp..Address.a, dtpaddressj,, Matrix Multiply Post dip travi, rcl-command
dtpaddressc) (A*B=>C) dtpsrav2 ____

dtpmwd(dtpaddressa, dip address b, Move Words dtpjravl rcl-command
word count)_______

dtp..ngc(centroid x, centroid2y, centroic-z) Non-Generic Centroid none rcl-command
dtpoio(outputjoffset, word count) Output Indirect Offset none rcl_command

dtp-oos(output-offset, word-count, Output Offset Stack none rcl-command
stack-..offset)________ _______

dtp-sd(label) Outpt' Single Word dtpjrav2 rcl-lblcmd
Direct_ _

dtp-osds(aam-.address) Output Single Word none rcl-command
Direct_ _

dtp...owd(label, word count) Output Words Direct dtpjrav2 rvi lblcmd

dtp-owds(aamfaddress, word-count) Output Words Direct dtp_2rav2 rcl command

dtp.wdsc(label, endilabel) Output Words Direct - none rcl-lblcmd
Set Count

dtp-owo(aam..address..offset, word-count) Output Words Offset none rel commnand
dtp-.owr(label, word count) Output Words Relative none rel lblcmd

dtp-owrs(pc-offset, word-count) Output Words Relative none rcl-command
dtp~owrsclabel, end-label) Output Words Relative - none rcl-lblcmd

Set Count ___

248

BBN Systems and Technologies 120TX/T CIG HOST CSCI

dlp iv0 Range Calculation none rcLcommand

dtp sub(label) Subroutine Call none rcllblcmd

dtp.subrOabel) Subroutine Call Relative none rcl lblcmd

dtp_subrs(pcoffset) Subroutine Call Relative none rclcommand

dtpsubs(aamnaddress) Subroutine Call dtp_zrav2 rcLcommand

dtptbc(totaLtime) Time Base Calculation none rcl command

dtpbdr(label, star~time, endtime) Time Base Data Relative none rcl_lblcmd

dtptbdrs(pcoffset, star ine, endime) Time Base Data Relative none rclcommand

dtptbrr(label, maximum time) Time Branch Relative none rclIblcmd

dtp_tbrrs(pcoffset, maximumjime) Time Branch Relative none rcl command

B. 11 DUMP DART BUFFER

The DUMP_DART_BUFFER macro, defined in functions.h, is not currently used.
Previously, this macro was used for DART Ballistics boards, which are no longer
supported.

B.12 ERRMSG

The ERRMSG macro prints an error for the DTP/RCL functions. The usage is
ERRMSG(a, b), where:

a is the error message text
b is the name of the calling routine

Defined In: rcfuncs.c

Called By: rcl_patch-adrs
rclpop
rclpush
rcl set cntlbl
rcl set label

Routines Called: printf

Parameters: char a[]
char b[]

B.13 EXCHANGEDATA

The EXCHANGEDATA macro is used to exchange message packets with the Simulation
Host. It loads the end message to the output buffer and sends it, then obtains an input

*message packet.

249

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The usage is EXCHANGEDATA(state), where state is the current state of the CIG.

Defined In: functions.h

Called By: getLmsg_2d
cig-config
dbmcc-setup
filecontrol
hwtest
upstart

Routines Called: debug-initdr
printf
read
scpend
sc_post
SYSERR
write

Parameters: INT_2 state

B. 14 EXCHANGEDATASIM

The EXCHANGE_DATASIM macro is used by simulation to exchange message packets
with the Simulation Host. It loads the end message to the output buffer and sends it, then
obtains an input message packet. It also determines if it is time to send a local terrain
message.

The usage is EXCHANGE_DATA_SIM(state), where state is the current state of the
CIG.

Defined In: Dinctions.h

Called By: simulation

Routines Called: printf
read
scpend
scpost
SYSERR
write

Parameters: INT_2 state

250

BBN Systems and Technologies 120TX/T CIG HOST CSCI

.B.15 EXCHANGE FLEA DATA

The EXCHANGE_FLEADATA macro is used by Flea to exchange message packets with
the CIG. It loads the end message to the output buffer and sends it , then obtains an input
message packet.

The usage is EXCHANGE FLEADATA(flea imsg, fleaomsg), where:

flea imsg is a pointer to the input message packet
flea omsg is a pointer to the output message packet

Defined In: functions.h

Called By: flea
flea__initcigsw

Routines Called: sc-pend
sc-post

Parameters: INT_4 *fleaimsg
INT_4 *flea_omsg

B.16 FINDLM
The FINDLM macro finds the load module in which a given x, y location lies. It is

assumed that the point is within active area memory.

The usage is FINDLM (x, y, Im, inv_width, mask, num_perside), where:

x is the location's x coordinate
y is the location's y coordinate
Im is the number of the load module
inv width is the inverse of the width of a load module
mask is the mask of the number of load module blocks per side (currently always

OxOF)
nwnperside is the number of load modules per side of AAM

Defined In: functions.h

Called By: bal-get-dbpos
bx.get.db-pos
gos-bal-query
simulation

251

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none

Parameters: INT_4 x
INT_4 y
INT_4 Im
REAL_4 inv_width
INT_4 mask
HWORD numper_side

B.17 FLTOFX

The FLTOFX macro, defined in functions.h, is no longer used. Previously, this macro
was used to convert a floating point value to fixed point. The FXTO881 macro is now
used to perform this operation.

B.18 FREELMCACHE

The FREE_LM_CACHE macro, when given a load module in the Ballistics database
cache, puts the bounding volumes in that module on the free bvol list, and puts the
polygons in that module on the free polygon lists.

The usage is FREELMCACHE(Im dir), where Im dir is a load module in the cache.

Defined In: bx_macros.h

Called By: bOm-read
bxnew_bvol
bxnew poly

Routines Called: none

Parameters: LMCACHEENTRY *lm_dir

B.19 FXTO881

The FXTO881 macro converts a fixed point value to floating point. The usage is
FXTO881(fxd, fit, bits), where:

fxd is the fixed point value to be converted
fit is the floating point value (result)
bits is the number of fractional bits in the fixed point number

Defined In: functions.h

252

BBN Systems and Technologies 120TXIT CIG HOST CSCI

Called By: bx-getlm_data
fxbvtofl
fxbvtofl_020
fxbvtofldart
localterrain

Routines Called: none

Parameters: INT_2 fxd
REAL_4 fit
INT_4 bits

B.20 FXTOFL

FXTOFL converts a fixed point value to floating point. The usage is FXTOFL(fxd, fit,
nfract bits, exp, tmp), where:

fxd is the fixed point value to be converted
fit is the floating point value (result)
nfractbits is the number of fractional bits in the fixed point number
exp is a temporary variable used for calculations
trap is a temporary variable used for calculations

Defined In: functions.h

Called By: localterrain
simulation

Routines Called: none

Parameters: INT_4 fxd
REAL_4 fit
INT_2 nfract_bits
INT_4 exp
INT_4 tmp

B.21 GETCHORD END

The GETCHORDEND macro finds the next chord in the trajectory. The usage is
GETCHORD END(chord_P), where chord P is a pointer to the chord.

This macro is not currently used.

Defined In: bxmacros.h

253

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: none

Routines Called: none

Parameters: CHORD *chord_P

B.22 GETDB POS

The GETDB_POS macro finds the load module that corresponds to a given point in the
database. The usage is GETDBPOS(pointP, Imrwidth, inv lmwidth,
Ir_per side), where:

point P is a pointer to the location in the database
Im width is the width of a load module
inv Im width is inverse of the width of a load module
lmjper side is the number of load m: uiles in a row or column of AAM

Defined In: bxmacros.h

Called By: bOtrajschord
bxtrajectory

Routines Called: none

Parameters: POINT_DATA *pointP
HWORD im_width
REAL_4 inv lm width
HWORD lm.perside

B.23 GET LBFROM LM

The GETLB FROMLM macro takes a load module number and calculates the number of
the load block that module is in. The usage is GETLBFROMLM(Im, Ib), where:

Im is the load module number (0 to 1023)
lb is the load block number (0 to 255)

Defined In: bxmacros.h

Called By: bO_newframe
b0_processround
bO round fired
bx-chord_-intersect

254

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none

Parameters: INT_4 im
INT_4 lb

B.24 GLOB

The GLOB macro provides a means by which global variables can be accessed on the
Butterfly platform. (The Butterfly takes all of memory map.h and puts it into a simple C
structure.) For the Masscomp, GLOB has no effect - GLOB(x) is defined as x.

Defined In: ememory_map.h
memory-map.h

Called By: all functions that access global memory

Routines Called: none

Parameters: none

B.25 INCR COMPONENT

The INCRCOMPONENT macro updates a component's word count, polygon count, and
vertex count. The usage is INCR_COMPONENT(incr), where incr is the count
increment.

Defined In: rcfuncs.c

Called By: rclcomponent
rcldata

Routines Called: none

Parameters: WORD incr

B.26 INIT MTX

The INITMTX macro initializes a 4x3 matrix to the identity matrix. The last column is
assumed and zeroes are assumed loaded. This routine is used to initialize the matrices for
all static and dynamic vehicles on start-up.

255

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The usage is INITMTX(matrix), where matrix is the model's transformation matrix.

Defined In: functions.h

Called By: active_area_init

Routines Called: none

Parameters: REAL_4 matrix

B. 2 7 MALLOC

The MALLOC macro allocates memory. MALLOC calls slavel33_malloc if Ballistics is
running on a slave board; otherwise it calls the malloc library function.

The usage is MALLOC(size), where size is the amount of memory to be allocated.

Defined In: bxdefines.h

Called By: bOadd trajtable

b0_databaseinfo

Routines Called: malloc
slave l33_malloc

Parameters: int size

B.28 NEWROUND

The NEWROUND macro gets a round from the free list and sets a pointer to it. The
usage is NEWROUND(newroundP), where newroundP is the pointer to the
round.

Defined In: bxmacros.h

Called By: bOprocessround
bO-roundfired

Routines Called: none

256

BBN Systems and Technologies 120TX/T CIG HOST CSCI

p Parameters: ROUNDDATA *new_round_P

B.29 NEW STAT VEH

The NEW_STATVEH macro gets a static vehicle from the free list and adds it to a
specified load module's list.

The usage is NEWSTATVEH(vehtableP, newsv_P), where:

veh_tableP is a pointer to the vehicle table
new svP is the pointer to the new vehicle

new sv P is set to NULL if no pointers are available (i.e., the maximum number of static
vehicles has been reached).

Defined In: bxmacros.h

Called By: b0_add_staticvehicle

Routines Called: none

Parameters: STRUCT_P_SV *vehtable_P
STATVEH *new svP

B.30 OPENEXCHANGE

The OPENEXCHANGE macro obtains the file descriptors for the input and output
channels for CIG-SIM communications. The usage is OPENEXCHANGE.

Defined In: functions.h

Called By: upstart

Routines Called: dr_is_okay
printf

Parameters: none

B.31 OPEN FLEA DATA

The OPENFLEADATA macro is used by Flea to obtain the file descriptors for the input
and output channels for Flea-CIG communications.

257

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The usage is OPENFLEADATA(flea imsg, flea omsg), where:

flea imsg is a pointer to the input message packet
flea omsg is a pointer to the output message packet

Defined In: functions.h

Called By: flea

Routines Called: sc-pend

Parameters: INT_4 *fleaimsg
INT_4 *fleaomsg

B.32 PAGE FORMAT

The PAGEFORMAT macro handles displays that exceed one page (16 lines). The usage
is PAGE_FORMAT(lines), where lines is the number of lines in the display.

Defined In: gos-bal-query.c

Called By: gos-bal-query

Routines Called: printf
scanf

Parameters: INT lines

B.33 poly.* (Poly Processor Macros)

Macros are used by the DTP Command Generator functions to interface to the Runtime
Command Library (RCL). These macros call RCL routines that generate the actual
commands that are downloaded to the Polygon Graphics Processor.

Each Poly Processor command has one or more supporting macros. The following table
lists each Poly Processor macro and identifies its parameters, calling routines, and called
routines. It also identifies the Poly Processor command generated by RCL for each macro.
Detailed descriptions of the hardware commands are beyond the scope of this document.

Defined In: rcinclude.h

258

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: see table belowI
Routines Called: see table below

Parameters: see table below

2

259

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Macro(paramerers) Poly Processor Called Routines
Command Generated By Called j

polyab(alphaO, betaL. aiphal, betal) Alpha Betas none Iml data

poly-bvc(ballistics~bit, localterrain- bit) Bounding Volune none rcl-componer
Component_______

polyefs~label, number -of rames) Effect Stage none rcl lblcmd

poly.efsr(label, number of frames) Effect Stage Relative none rcl lblcmd

Poly-fluo Flush dtp-travl rcl command

poly-fsw(Form Stamp Words dtpjra,/2 rcl command

poly-gc(ballistics bit, localterrainbit) Grid Component none rcl.Somponent

poly-inf(infiormation-word) Info Word none ivi data

polyjmf(matrixj.pointer) Load Matrix Full none rcl-command
rcl stuff data

polyjsc(x, y, z, w) Load Screen Constants none rcl-command

poly-mmf(matrix-pointer) Matrix Multiply Full none rcl-command,
__________________rcl stuff data

poly-pc(ballistics bit, local terrainjbit) Poly Component none ruL-component

polypoly(polyjnfo.word, vertex-list, Polygon Entry none rel-data
alpha, beta)__________

poly-rmlO Recall Matrix 1 dtp-rav2 rcl command

polyirm2o Recall Matrix 2 none rcl-command

polyjrm30 Recall Matrix 3 none rcl command

polyrm4O) Recall Matrix 4 none rcl command
poly sc(ballistics bit, local terrain bit) Stamp Component none rcl-component

poly~sci(ballisticsjbit, locaLterrainjbit, Stamp Component none rcl component,
stampjnfo-word, stampjialwidth, Incomplete rci-data
stamp..height) __________________

poly~sec(ballistics-bit, localjerrain.bit) Special Effect none rcl-component
Component ______

poly-sm 10 Save Matrix I dtp-jiav2 rcl -command

polysm2O Save Matrix 2 none rcl_cpommand

polysm30 Save Matrix 3 none rcl-command

polysm40 Save Matrix 4 none rcl command
poly..stamp(stampinfo-Word, Stamp List Entry none rct-data
stamp..half...width,, stamp-height,
stampsenterx, stampcenterjy,
stamp centerjz) ______

PolyjtogO Channel Toggle dtptrav2 rcl -command
polyytxe(x.yalue, y-yalue, z-value) Vertex List Entry none reLdata

poly-vWx(indexj), index-1, index_2, Vertex List none rcl-data
index_3) ___________ _______ _______

260)

BBN Systems and Technologies 120TX/T CIG HOST CSCI

O B.34 PRINTD4

The PRINTD4 macro prints a 32-bit word in hexadecimal and decimal format. The address
at which to start printing is in the pointer variable pntr2. The usage is PRINTD40.

Defined In: gosmemory.c

Called By: gosrnemory

Routines Called: printf

Parameters: none

B.'A5 PRINTD8

The PRINTD8 macro prints a double in hexadecimal and decimal format. The address at
which to start printing is in the pointer variable pntr2. The usage is PRINTD80.

Defined In: gosmenory.c

Called By: gosjmemory

Routines Called: printf

Parameters: none

B.36 PRINTHEX4

The PRINTHEX4 macro prints a 32-bit word in hexadecimal format. The address at
which to start printing is in the pointer variable pntr2. The usage is PRINTHEX40.

Defined In: gos-memory.c

Called By: gosmemory

Routines Called: printf

* Parameters: none

261

BBN Systems and Technologies 120TX/T CIG HOST ('I

B.37 PRINTHEX8 0
The PRINTHEX8 macro prints a 64-bit word in hexadecimal format. The address at
which to strt printing is in the pointer variable pntr2. The usage is PRINTHEX80.

Defined In: gos-memory.c

Called By: gos-memory

Routines Called: printf

Parameters: none

B.38 READCLOCK

The READCLOCK macro, defined in force_defines.h, is not currently used.

B.39 RESTARTCLOCK

The RESTARTCLOCK macro, defined in forcedefines.h, is not currently used.

B.40 ROOM4LABEL

The ROOM4LABEL macro verifies that there is room in the stack to add a label. The usage
is ROOM4LABEL(store, Ioc), where:

store is the location to store the address
loc is the label to set with the AAM location

If the stack does not have room for the label, an error is output.

Defined In: rcfuncs.c

Called By: rcllblcmd
rcl set cntlbl
rcl set label

Routines Called: ERRMSG

printfI

Paramcter,,: WORD *storc

26.

BBN Systems and Technologies 120TX/T CIG HOST CSCI

WORD m

B.41 ROOMCHECK

The ROOMCHECK macro verifies that there is enough space for a command. The usage
is ROOMCHECK(name, wdcnt), where:

name is a pointer to the routine name
wd cnt is the number of command WORDs

The function outputs an error if space is insufficient.

Defined In: rcfuncs.c

Called By: rcl_command
rclcomponent
rcllblcmd

Routines Called: ERRMSG

Parameters: char *name
WORD wdcnt

B.42 SETOUTBITS

The SETOUT_BITS macro, defined in definitions.h, is not currently used.

B.43 SETOUT M2BITS

The SETOUTM2BITS macro, defined in definitions.h, is not currently used.

B.44 SYSERR

The SYSERR macro adds an error message to the output buffer and ends processing of
input messages by pointing to a dummy end statement. The usage is SYSERR(error,
state), where:

error is the error message
state is the current state of the CIG

Defined In: functions.h

Called By: cig-config0dbmccsetup
263

BBN Systems and Technologies 120TX/T CIG HOST CSCI

filecontrol
get msg._2d
hwtest
opendbase
simulation
upstart

Routines Called: none

Parameters: INT_2 error
INT_2 state

B.45 TORAD

The TORAD macro converts an angle into radians. The usage is TORAD(angle), where
angle is the angle in degrees. The routine multiplies the given angle by 0.0 17453292.

Defined In: concatmtx.c
fleadecode_data.c
fleaencodedata.c
flea_initcig-sw.c
fleaupdate-pos.c
gosjflea-options.c
gos-model.c
simulation.c
updatefov.c
upstart.c

Called By: concat-mtx
fleadecodedata
fleaencodedata
fleainit cig-sw
fleaupdate.pos
gosjflea-options
gos model
simulation
updatefov
upstart

Routines Called: none

Parameters: INT angle

264

BBN Systems and Technologies 120TX/T CIG HOST CSCI

. B.46 toradians

The toradians macro converts an angle into radians. The usage is toradians(angle),
where angle is the angle in degrees. The routine multiplies the given angle by
0.017453293.

Defined In: make_bbn.c

Called By: rotate_x
rotate-y
rotate_z

Routines Called: none

Parameters: INT angle

B.47 TRIGGER FORCE

The TRIGGERFORCE macro puts a command into the Force front-end control register
(FECONTROL). The value in this register tells the forcetask what command is to be
performed. The usage is TRIGGERFORCE.

Defined In: functions.h

Called By: gspload

Routines Called: none

Parameters: none

B.48 WAITFORCE

The WAITFORCE macro polls the ready bit (FRONTRDYMASK) in the Force front-
end control (FE_CONTROL) register, waiting for it to be 0. The usage is
WAITFORCE.

Defined In: functions.h

Called By: DOWNLOADDATA
is' gspload

265

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: printf

Parameters: none

B.49 XCLOSE

The XCLOSE macro is defined as the system call "close" for the 120T CIG MVME 133,
and "fclose" for the Butterfly.

Defined In: definitions.h

Called By: get-im
gspload
load_dbase
opendbase
opended
rowcolrd
simulation
sload

Routines Called: close
fclose

Parameters: none

L.50 XLSEEK

The XLSEEK macro is defined as the system call "Iseek" for the 120T CIG MVME133,
and "flseek" for the Butterfly.

Defined In: definitions.h

Called By: downloadbvols
getIm
getlmdp
getside
loaddbase
open_dbase
opended

Routines Called: fiseek
Iseek

26(

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: none

B.51 XOPEN

The XOPEN macro is defined as the system call "open" for the 120T CIG MVME 133, and
"fopen" for the Butterfly.

Defined In: definitions.h

Called By: fleainitcig-sw
getilm
gsp load
open_dbase
opended
readconfigfile
rowcolrd
sload

Routines Called: fopen
open

Parameters: none

B.52 XREAD

The XREAD macro is defined as the system call "read" for the 120T CIG MVME133, and
"fread" for the Butterfly.

Defined In: definitions.h

Called By: downloadbvols
get_char
get-Im
getlmdp
getside
gsp-load
loaddbase
opendbase
open ded

Routines Called: fread
read

267

BBN Systems and Technologies 120TX/T' CIG HOST CSCI

Parameters: none

B. 53 XWRITE

The XWRITE macro is defined as the system call "write" for the 120T CIG MVMEI133,
and "fwrite" for the Butterfly.

Defined In: defmnitions.h

Called By: none

Routines Called: fWrite

write

Parameters: none

268

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX C. OPERATING SYSTEM SERVICE CALLS

This appendix provides brief descriptions of the various operating system calls and
standard C library routines used by the CIG Real-Time software.

C. 1 Special OS Service Libraries

The following table describes the system-level service routines used by the CIG Real-Time
software.

Routine Description Called By

readwatcho Gets the cumulative number of 500 uS local_terrain, simulation
ticks. Returns the number as
watch count.

start_watcho Determines which CPU board it is simulation
executing on, sets up the timer registers
appropriately, clears the stopwatch storage
areas, starts the timer, and enables the
interrupts. Returns board.

stopwatcho Gets the cumulative number of 500 simulation
(100)uS ticks, stops the timer, and turns
the timer interrupts off. Returns
watch count.

sysrup-off0 Ignores the system/frame interrupt by simulation, dtp-emu, gos-model,
moving the address of a null interrupt gossystem, dcodedr 1 w,
service routine into the 68010 exception gos_singlestep, sstep
vector space.

sysrupon(mailboxptr, Enables system/frame interrupts by simulation, dtp-emu, gosjmodel,
message) moving the address of the interrupt service gos-system, sstep

routine in to the 68010 exception vector
space. Wakes up a pending routine by
moving the calling task's mailbox address
and the message to be returned to locations
known to the isr.

269

BBN Systems and Technologies 120TX/T CIG HOST CSCI

C.2 Task Management (sc_*) Routines

The following table describes the routines that handle intertask mailbox communication and
the creation and deletion of tasks and queues. These routines are standard Ready Systems'
VRTX C interface libraries.

Routine Description Called By

scaccept(mailboxptr, Clears messages from the simulation
error_.ptr) specified mailbox.

sc_lockO Locks a queue to prevent dr-is~okay, nexopen, mx..peek,
concurrent use. mxpush, mxskip

sc__pend(mailbox._ptr, Waits for a message to be posted cig..onfig, simulation, rowcol-rd,
timeout, error.ptr) to the specified mailbox. localterrain, gos_flea_if, gossip, flea,

fleajiniLcigsw, OPENFLEADATA,
EXCHANGEDATA,
EXCHANGEDATA_SIM,
EXCHANGEFLEA DATA

scpost(mailboxptr, Posts a message to the specified cigsconfig, dbmccsetup, simulation,
message, error ptr) mailbox, upstart, rowcol-rd, local terrain, gosatp,

gos-fleajif, gosjfly, fleainit-cigsw,
DARTENQUEUE,
EXCHANGE-DATA,
EXCHANGEDATASIM,
EXCHANGE-FLEA DATA

scjqcreate(queue._id, size, Creates a system queue of the qassign
errorptr) specified size.

sc-qinquiry(queueid, Counts the entries in the specified drjs-okay
count ptr, errorptr) queue.

sc_qpend(queuejd, Removes messages from the drisokay
timeout, errorptr) specified queue.

sctcreate(task entry, Creates a system task. tassign
taskid, task-priority,
error.ptr)
sctdelete(taskid, Deletes a task from the system. apinit
priority-code, errorptr)

sc_unlocko Unlocks a locked queue. drjisokay, mxopen, mx..peek,
mx-push, mx.skip

270

BBN Systems and Technologies 120TX/T CIG HOST CSCI

S- C.3 Standard C Runtime Libraries

The following table identifies the standard C system calls, input/output routines, and
runtime libraries used by the CIG Real-Time software.

Routine Description Called By

atof Converts a string to double. REAL4_fscanf

atoi Converts a string to int. main (in upstart), main (in rowcol_.rd),
main (in local-terrain)

bzero Places a specified length of 0 main (in upstart)
bytes into a specified string.

calloc Allocates memory and initializes initconfigtree, cig_2lsetup
to zero.

close Closes a file. XCLOSE, readconfigf'de, f-lescontrol,
gosjmemory, flea-init cig-sw

and Sends a command to sio. getch

cos Calculates a cosine. updatejov, rotate x, rotatey, rotatez,
gos_flea_options, gos-model,
fleaencodedata, fleaupdateos,
flea initcig-sw

createsz Creates a file with a specified file-control, gosmemor
size.

fclose Closes an I/O stream. XCLOSE
fflush Writes all currently buffered getchar (Butterfly version), unbf getchar

characters in an output stream. (Butterfly version)

flseek Moves the read/write pointer. XLSEEK

fopen Opens an I/O stream. XOPEN

firad Reads a specified number of XREAD
bytes.

fiee Frees allocated memory. free-configtree, download bvols,
,oad dbase, opendbase, simulation,
cig_2d setup, b0_addLtrajtable, bx-reset

fwrite Writes to a file. XWRITE

Iseek Moves the read/write pointer. XLSEEK, file..control, flea-initscigsw

open Opens a file. XOPEN, file-control, gos._memory,
fleainit~cigsw

outhexl Outputs a hex value to stdout, b0_delete_static.yehicle, b0_trajentry

printf Writes to stdout. (used extensively throughout system)

puts Writes to stdout. b0_delete staticvehicle, b0_trajentry

read Reads a file. XREAD, file-control, gos-memory,
flea_initcigsw

rsec Reads multiple sectors from disk. file-control

271

BBN Systems and Technologies 120TX/T CIG HOST CSCI

scanif Reads from stdin. dtp-emu, gosj2tx, gosal-query,
gosjlb-query, gosfjlea - f,
gos-jlea-options, gos-fly, gosilocate,
gos..memory, gos~model, gos-system,

_____________ ________________gossip, PAGE FORMAT

sin Calculates a sine. updatejfov. rotate-x, rotate-y, rotate-z,
upstart, gosjfleaoptions, gosjnodel,
flea~encodejLara, fleaLjipdate..ps,

___________ __________________flea-itcigsw

sqrt Calculates a square root. dtp-em u, gos-model

strcmp Compares two strings. find-fn, setup-iomp.start,
__________________ prcsssommand

strcpy Copies a string. apinit, confignode-.setup, file-control,
__________________bootup...slavel33

strlen Length of string. filescontrol, opendbase, open ded,
sup-define-string, setup-text, gossip,

flea mnit cig..sw
system Executes a shell command. find -fn, filescontrol, bootup-slave 133, dr,

__________________gsp-load

tan Calculates a tangent. updatkjov
unbf...getchar Performs an unbuffered getchar. dtp..emu, cal, gos-2tx, gos..atp,

gos -bal-query, gosdb-query, gosjlea-if,
gos-flea-options, gosjfly, gos-nemory,

___gos...model, gos-system, gossip, s-step

write Writes a specified number of XWRITE, gos-memory, file control,
bytes. cig-config, EXCHANGEDATA 0

____________ ________________EXCHANGE-DATA SIM

272

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX D. GLOSSARY OF TERMS AND ABBREVIATIONS

2-D Two-dimensional.

AAM Active area memory. Memory that contains the currently viewable
database and models. AAM contains 256 terrain load modules (16
rows by 16 columns). This provides a 3500-meter viewing range,
plus a 500-meter buffer, in each direction. If load module blocking
is enabled, AAM is effectively quadrupled.

AGL Above ground level. If AGL processing is enabled (via the
MSGAGLSETUP message), the simulated vehicle's altitude
above ground level is calculated and returned to the Simulation Host
every frame.

ASID Application-specific identification data. ASIDs are used to add
unique data (e.g., bumper numbers, smoke plume, dust cloud, etc.)
to a model.

aspect ratio The ratio of the sides (width:height) of the viewport. This is
assumed to be 1.

BVME A VME board that interfaces with the Butterfly computer.

bvol Bounding volume. The volume of the bounding box that is used to
completely enclose an object in the simulation environment.

P centroid The theoretical "center" of an object, around which the object is
rotated. The centroid's coordinates are the averages of the
corresponding coordinates of a given set and, for a given planar or
three-dimensional figure (such as a triangle or sphere), correspond
to the center of mass of a thin plate of uniform thickness and
consistency or a body of uniform consistency having the same
boundary.

channel A connection to a viewport. One channel may have multiple
graphics paths.

CIG Computer Image Generation System. The process of generating a
3-D, perspectively accurate scene via a computer.

clipping Removing back-facing polygons or parts of polygons that lie
partially outside the viewing pyramid.

conditional node A node in the configuration tree that causes a branch into one of two
traversal paths based on some runtime condition.

configuration tree A structure that defines the relationship between each physical
component of the simulation vehicle and the location of the
viewports.

i data message Smallest data component of a packet buffer.

273

BBN Systems and Technologies 120TX/T CIG HOST CSCI

data message header A message that describes the contents of a data message.

DED Dynamic Elements Database.

double-buffer
memory Memory that contains the dynamic models built by the real-time

software and processed by the hardware. Dual buffering allbws for
one buffer to be used by the hardware while the other is being
updated by the software. The buffer used for each purpose switches
each frame, so the hardware is always using the buffer updated by
the software during the previous frame.

downloading The process of transferring data from the Simulation Host to the
CIG.

DR 11-W A Digital Equipment Corp. standard interface that enables the
Simulation Host and the CIG processor to communicate at a high
transmission rate.

DTP Data Traversal Processor.

dynamic vehicle A vehicle whose position and orientation is redefined in every frame
sent by the Simulation Host.

false child The configuration tree node branched to from a conditional node if
the runtime conditions is false.

fov Field of view. The volume of space which encompasses all objects
that are visible from a specific viewpoint and view angle.

frame Information displayed on a television monitor for 33.3 milliseconds

(at 30 Hz) or 66.6 milliseconds (at 15 Hz).

frame event An interrupt signal given by the hardware.

frame rate The rate at which a new image is created and displayed on the
screen.

frame time The amount of time each frame is displayed.

graphics path A window on a viewport. The 120T has one graphics path per
viewport. The 120TX may have two or four, depending on the
resolution. Graphics path parameters are the viewport parameters
that are used to load the hardware.

GSP Graphics System Processor. The TMS34010 graphics processor on
the MPV board that generates and controls 2-D graphics.

graphics processor First board in the graphics pipeline that processes 3-D data and
converts it into 2-D screen space for the tiler, based on the input of
graphics processor commands. Also called the poly processor.

heading The direction the viewer is pointing.

274

BBN Systems and Technologies 120TX/T CIG HOST CSCI

hull transformation Description of the position and orientation of the base of a vehicle.

Hz Hertz; cycles per second.

load module A unit of terrain in the terrain database, measuring 500 meters by
500 meters. Data is brought into active area memory in whole load
modules only.

load module block A structure containing four load modules (two rows by two
columns, for a total size of 1000 meters by 1000 meters). Blocking
load modules doubles the viewing range and quadruples the amount
of terrain that can be loaded into active area memory.

lod Level of detail. The selective reduction of model detail (polygon
count) or texture map detail based on distance from the viewer.

lookup table A table used to convert color-map addresses into the actual color
values displayed.

matrix A rectangular array of elements arranged in rows and columns.

matrix node A node in the configuration tree that contains a transformation
matrix. The matrices in each node in a traversal path are
concatenated to generate the view of the world for the viewport
represented by that path.

MCC Management, Command, and Control. The computer on the
simulation network that monitors and controls the entire simulation
exercise.

model Generally used to refer to models of arbitrary, three-dimensional
objects such as buildings and vehicles.

model space The coordinate system used to define and build a particular model.
The vehicle's centroid is defined as location (0,0,0).

MPV Micro Processor Video. The last board in the graphics pipeline in a
120TX system.

My_Vehicle The simulation vehicle.

object All simulated models: vehicles, hidden obstacles, etc.

overlay A two-dimensional view that is displayed on a viewport on top of
the three-dimensional view of the terrain.

packet buffer Several data messages grouped together that describe one frame
time.

pitch The angle at which the viewer is looking up or down.

pixel Picture element. The smallest addressable element on a video
screen.

275

BBN Systems and Technologies 120TXfT CIG HOST CSCI

Poly Processor See graphics processor.

polygon A closed, planar figure bounded by straight lines and consisting of
three or four vertices.

real-time The ability to respond rapidly, frequently, or both to an event or
transaction. Also refers to the software that is used to run real-time
operations.

roll The angle which measures the amount of rotation along the viewing
vector (tilt).

rotation The process by which coordinates are rotated around a particular

axis. Used to define the direction of the viewing window.

rotation matrix A means of specifying orientation.

RCL Runtime command library. A set of routines used to generate
hardware commands for the DTP and the Poly Processor.

RTS Rotation translation scale.

scaling The process by which an object's coordinates are changed to
effectively enlarge, reduce, or skew the object in a particular
direction.

SIM The Simulation Host computer. The computer that controls the
simulated vehicle's behavior.

simulation The process that involves a computerized model of specific,
significant features of some physical or logical system or
environment.

simulation vehicle The vehicle represented by a simulated viewpoint. Also called
simulated vehicle or My- Vehicle.

simulator A simulation unit consisting of a Simulation Host, a CIG, one or
more monitors, and the vehicle controls. Also called a Vehicle
Simulator Unit.

static vehicle A vehicle with no anticipated movement, tracked only when its
status changes.

T&C Timing and Control. Board that controls all CIG synchronization
and timing.

terrain database The database on the CIG that contains the polygons that describe the
simulation terrain and all objects (houses, trees, etc.) in it.

translation The process by which coordinates are "moved" from one location to
another.

276

BBN Systems and Technologies 120TX/T CIG HOST CSCI

transformation A combination of translations and rotations that convert the
coordinates of a point in one coordinate system into coordinates in
another coordinate system.

transformation matrix A matrix used to describe the position and orientation of an object.

true child The configuration tree node branched to from a conditional node if

the runtime conditions is true.

vector A straight line with a specific direction.

vertex A point in space, the termination point of a line, or the intersection
point of two or more lines.

viewpoint The direction of view from the user's eye to the target or object
being viewed.

viewport A display screen connected to the CIG. Each viewport simulates the
view of the world from a specific window of the simulated vehicle.

viewport parameters The screen resolution, viewing range, near plane, field-of-view
angles, level-of-detail multiplier, and aspect ratio (currently not
used) of a viewport.

viewspace The area that falls within the field of view of a viewport.

VME Versa Module European. An industry-standard bus.

world space The absolute coordinate system used to define the simulation area.
A three-dimensional space fixed relative to the world. Location
(0,0) is the southwest comer of the database.

S
277

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX E. CROSS-REFERENCE TABLES

This appendix contains the following cross-reference tables:

E. 1 CSUs (source files) mapped to CSCs.
E.2 Data type names mapped to location of typedef.
E.3 Function names mapped to source file location, with section numbers.
E.4 Macro names mapped to source file location, with section numbers.

278

BBN Systems and Technologies 120TX/T CIG HOST CSCI

I
EA CSUs Mapped To CSCs

The following list shows every CSU (.c or .asm file) in the CIG Real-Time CSCI, and
identifies the CSC to which it belongs. The CSUs are listed in alphabetical order.

CSU CSC
aa-init.c UPSTART (Real-Time Processing component)
aam_manager.c UPSTART (Viewport Configuration component)
b0 aamcentroid.c BALLISTICS (Interface Messaging component)
bOaam_swcorner.c BALLISTICS (Interface Messaging component)
bO_add_staticvehicle.c BALLISTICS (Interface Messaging component)
b0_addLtrajtable.c BALLISTICS (Interface Messaging component)
bObal-config.c BALLISTICS (Interface Messaging component)
bO_bvol-entry.c BALLISTICS (Interface Messaging component)
bO_cancelround.c BALLISTICS (Interface Messaging component)
bO_cigframe_.ate.c BALLISTICS (Interface Messaging component)
bO databaseinfo.c BALLISTICS (Interface Messaging component)
b0_deletestaticvehicle.c BALLISTICS (Interface Messaging component)
bOdeletejtraj_table.c BALLISTICS (Interface Messaging component)
bO dummy.c BALLISTICS (Interface Messaging component)
bO enror_detected.c BALLISTICS (Interface Messaging component)
bOinapp-message.c BALLISTICS (Interface Messaging component)
b0Om read.c BALLISTICS (Interface Messaging component)
bO modeldirectory.c BALLISTICS (Interface Messaging component)
bOmodelentry.c BALLISTICS (Interface Messaging component)
bOnew_frame.c BALLISTICS (Interface Messaging component)
b0_print.c BALLISTICS (Interface Messaging component)
bOprocessschord.c BALLISTICS (Interface Messaging component)
b0.process round.c BALLISTICS (Interface Messaging component)
b0_roundfired.c BALLISTICS (Interface Messaging component)
bOstate-control.c BALLISTICS (Interface Messaging component)
b0_status~requesLc BALLISTICS (Interface Messaging component)
b0_traj__chord.c BALLISTICS (Interface Messaging component)
b0_traj entry.c BALLISTICS (Interface Messaging component)
bOundefmedmessage.c BALLISTICS (Interface Messaging component)
bal_.getdb_pos.c LOCALTERRAIN
bal-get-Im-grid.c ROWCOLRD
balroutines.c UPSTART (Real-Time Processing component)
bbnctype.c UPSTART (Viewport Configuration component)
bit_blt.c UPSTART (2-D Overlay Compiler component)
bus_error.asm UPSTART (Real-Time Processing component)
bx 147_main.c BALLISTICS (Mainline component)
bxbvolint.c BALLISTICS (Intersection Calculations component)
bxchordintersect.c BALLISTICS (Intersection Calculations component)
bxfunctions.c BALLISTICS (Intersection Calculations component)
bx.get_lm data.c BALLISTICS (Intersection Calculations component)
bx-geulmgrid.c BALLISTICS (Intersection Calculations component)
bxinit.c BALLISTICS (Mainline component)
bxmodelint.c BALLISTICS (Intersection Calculations component)
bx-poly-int.c BALLISTICS (Intersection Calculations component)
bxreseLc BALLISTICS (Intersection Calculations component)
bxtask.c BALLISTICS (Mainline component)
bxtrajectory.c BALLISTICS (Intersection Calculations component)
cal.c UPSTART (Real-Time Processing component)
cig_2d-setup.c UPSTART (2-D Overlay Compiler component)

279

BBN Systems and Technologies 120TXT CIG HOST CSCI

CSU CSC
cig_ comp_2d.c UPSTART (2-D Overlay Compiler component)
cig.config.c UPSTART (Viewport Configuration component)
ciggetm_2d.c UPSTART (2-D Overlay Compiler component)
cig.litnk_2d.c UPSTART (2-D Overlay Compiler component)
comp.c UPSTART (2-D Overlay Compiler component)
concat mtx. UPSTART (Viewport Configuration component)
confignode-setup.c UPSTART (Viewport Configuration component)
datatype.c FORCE
db_mcc-setup.c UPSTART (Real-nime Processing component)
debuginitdr.c UPSTART (Real-Time Processing component)
ded-modeluace.c UPSTART (Real-Time Processing component)
downloadbvols.c UPSTART (Real-Time Processing component)
dr.c UPSTART (Real-Time Processing component)
drawline.c UPSTART (2-D Overlay Compiler component)
dtpcompiler UPSTART (DTP Command Generator component)
dtp-emu.c GOSSIP
dtp-funcs.s UPSTART (DTP Command Generator component)
dtpjmv l.c UPSTART (DTP Command Generator component)
dtpjrav2.c UPSTART (DTP Command Generator component)
exception.asm FORCE
file_control.c UPSTART (Real-Time Processing component)
fill_tree.c UPSTART (Viewport Configuration component)
findfn.c UPSTART (Real-Time Processing component)
flea.c FLEA
fleadecode_data.c FLEA
flea encode__datac FLEA
flea_init-cig__sw.c FLEA
flea update.pos.c FLEA
force.asm FORCE
forcetask.c FORCE
fxbvtofl.c UPSTART (Real-Time Processing component)
generic_lm.c ROWCOL_RD
getfthing.c UPSTART (2-D Overlay Compiler component)
getch.c UPSTART (Viewport Configuration component)
gos120tx.c GOSSIP
gos atp.c GOSSIP
gos_bal_query.c GOSSIP
gosdbquery.c GOSSIP
gosdrl -query.c GOSSIP
gos flea_if.c GOSSIP
gos.flea options.c GOSSIP
gos fly.c GOSSIP
gos-locate.c GOSSIP
gos..memory.c GOSSIP
gosjmodel.c GOSSIP
gos.polys.c GOSSIP
gos-system.c GOSSIP
gossip.c GOSSIP
gspio.c FORCE
gsp-load.c UPSTART (Real-Time Processing component)
gun-overlays.c UPSTART (Real-Time Processing component)
hwtest.c UPSTART (Real-Time Processing component)
init stuff.c UPSTART (2-D Overlay Compiler component)
load_dbase.c UPSTART (Real-Time Processing component)
load_modules.c ROWCOLRD
loc_tcr.c ROWCOLRD
makebbn.c UPSTART (Real-Time Processing component)
,nat. dump.c UPSTART (Viewport Configuration component)

280

BBN Systems and Technologies 120TX/T CIG HOST CSCI

CSU CSC
mkcal.c UPSTART (Real-Time Processing component)
mkmtx_nt.c UPSTART (Real-Time Processing component)
model_mtx.c UPSTART (Real-Time Processing component)
mx_-eror.c BALLISTICS (Message Queue Processing component)
mxopen.c BALLISTICS (Message Queue Processing component)
mx.peek.c BALLISTICS (Message Queue Processing component)
mx-push.c BALLISTICS (Message Queue Processing component)
mxskip.c BALLISTICS (Message Queue Processing component)
mx_wcopy.c BALLISTICS (Message Queue Processing component)
nmi_type.c FORCE
opendbase.c UPSTART (Real-Time Processing component)
open-ded.c UPSTART (Real-Time Processing component)
oval_recLc UPSTART (2-D Overlay Compiler component)
overlay-setup.c UPSTART (Viewpon Configuration component)
polLready.c FORCE
poly.c UPSTART (2-D Overlay Compiler component)
procqmd.c UPSTART (2-D Overlay Compiler component)
processvflags.c UPSTART (Viewport Configuration component)
processvppos.c UPSTART (Viewport Configuration component)
rcftmcs.c UPSTART (DTP Command Generator component)
read_configfde.c UPSTART (Viewport Configuration component)
read stuff.c FORCE
rowcol_rd.c ROWCOLRD
rtt.c RTT
simulation.c UPSTART (Real-Time Processing component)
slavel33_functions.c BALLISTICS (Mainline component)
stdio.c UPSTART (Real-Time Processing component)
string.c UPSTART (2-D Overlay Compiler component)
support.c UPSTART (Real-Time Processing component)
test-gsp.c FORCE
text.c UPSTART (2-D Overlay Compiler component)
update fov.c UPSTART (Viewport Configuration component)
updaterez.c UPSTART (Viewport Configuration component)
upstart.c UPSTART (Real-Time Processing component)
vec_dump.c UPSTART (Viewport Configuration component)
viewport-setup.c UPSTART (Viewport Configuration component)
vtl00.c GOSSIP
window.c UPSTART (2-D Overlay Compiler component)

281

BBN Systems and Technologies 120TX/T CIG HOST CSCI.

E .2 Data Type Names Mapped To Typedefs

The following list shows the special data types used throughout the real-time software, and
identifies the file that provides the type definition. The type names are listed in alphabetical
order.

Data Type Typedef Location
ALLOCPOLY /120/zxinclude/structd.h
ASID_OMODEL /12Ocxincludelstructures.h
ASID_-SHOW_EFF /l2Otxlinclude/structures.h
BIBBOX2D) /l2Otxfinc~ude/dgistdg.h
BIBBOX3D) /I20txfinc~udeldgistdg.b
BIHSL /12Otx/includeldgistdg.h
BIHSLO /I20txfincludeldgLstdg.h
BIMTX4X3 /I2Otx/include/dgLstdg.h
BINM4X4 /120tx/include/dgistdg.h
B1P2D) /I20txfinclude/dgLstdg.h
BIP3D) /I20tx/includeldgistdg.h
B 1P4D /I2Otxinclude/(dgLstdg.h
BIRGB /12Otxfincludel(dgicstdg.h
B 1RGBO /I2Otxfinclude/dgjistdg.b
BOOLEAN /I 2Otx/include/(dgistdc.h
BVOL_-ENTRY /12Otx/include/tdb _struCLh
BYTE /12Otx/include/dgistdc.h
CAL_-OVRLY /120txcficlude/Structures.h
CATALOGTABLESTRUCT /I 2Oixincludeltb _struCL h
CHANC NST /12Wm/iclude/structures.h
CHANSETCMD /12Otx/include/structures.h
CHORD_-DATA /12Otfnclude/structures.h
CLR_-FLAGS /l2Otx/souicesouceAoadbase.c
CMD /I 2Otx/include/structures.h
CMDR_-OVRLY /120Wxinclude/Structures.h
COMM4ANDLINEI1 /l2Otx~mclude/Stnuctures.h
COMMVANDLINE2 /Il2Oixfmclude/structures.h
CONFIGURATIONNODE /Il2Otx/include/configtmeestr.h
DB_-DIR_-ENTRY /l2Otx/includefrtdb _strucLh
DB_-HDRDBASE_DATA /12OtL/includelrndk-strum~h
DB_-HDR_-LMARKS_-DATA /12Otxincudertdb_structh
DB_-HDR_-OFLOWDATA /Il2Otx/include/rtdb_struCLh
DB_TAG_-STRUCT' /Il2Oix/includehltdb_struCih
DBVERSIONSTRUCT /I 2Otx/includeArtb_strUCLh
DGITOLABSMSGS /120/txfinclude/Cibfly.h
DTP_CMND_-INF /12Otx/sourcesowreded_model_b-ace.c
EDGE_-FLG /I 2Ocxhnclude/definitions.h
EO_-EFFECTS /I 2Otxfjnclude/structures.h
EOOVRLY /I 2Oixfmclude/structures.h
FAKE_-DV /I 2Otxfuclude/stuctures.h
FIX_-BVOL_.,ENTRY /I2Oix/include/rtb -struct~h
FORCE_-INTERFACE /I2Otx/force/mbx.h
FOV /12Otxfinclude/simscig~if.h
FOV_-VECTORS /12OtWinclude/Configtree_str.h
FOVTT /1 2Otx/includc/structures.h
GENLM /1 2Otx/source/source/generic-jmnc
GM_-DIR_-ENTRY_-DATA Al2Otx/include/rtdb _StrUCih
GMDIR. ENTRY NAME /I 2Otx/ncliidc/rtdb_strucLth

282

BBN Systems and Technologies 120TX/l' CIG HOST CSCI

Data Type Typedef LocationSGRAPHICSPATHPARAMETERS /12Otx/include/Configtreestr.h
GRIDCOMPDEF /12Oix/include/structures.h
GRIDLOC /120tx/include/rtdbstrUCLh
GUN -B /12Otx/include/structures.h
GUN_-B_-LSIDE /I2Otxfinclude/Structures.h
C UN_-B_-RSIDE /120tx/include/structures.h
GUNNER_-OVRLY /12Oixfinclude/structures.b
HWORD /12Otx/include/dgi..stdc.h
12BBOX2D) /12Otx/lnclude/dg0Wtg.h
12BBOX3D) /12OtxmnImude/dgi-stdg.h
I2HSL /12OtxAnlude/dgi-stdg.h
I2HSLO /l2Otx/include/dgi..stdg.h
I2M[TX4X3 /12Otxfinclude/dg~stdg.h
12MTrX4X4 /12Otmcincude/dgLstdg.h
12P2D /l2Mx/nclude/dgi-stdg.h
12P3D /12Otx/includeldgi-stdg.h
12P4D /120tx/include/dgi-stdg.h
I2RGB /12ftx/nclude/dgi-stdg.h
I2RGBO /A 2Otx/incude/dgistdg.h
14BBOX2D /1 2Otxlincludeldgi-stdg.h
14BBOX3D /12Otxfincludeldgistdg.h
14HSL /120txfrncludeldgi..stdg.h
I4HSLO /120Mxlncludeffdgistdg.h
I4MTX4X3 /I 2Otxfincludedg&..stdg.h
I4NM4X4 /I 2Otxlicludeldgistdg.h
14P2D /1 2Otx/include/dgLstdg.h
I4P3D /1 2Otxlncludeldgi-.stdg.h
I4P4D /1 2Otxlinclude/dgi..stdg.hS I4RGB /12Otxlinclude/dgi..stdg.h
14RGBO Al2Otxinclude/dgistdg.h
TNT_2 /I 2Otx/include/dgistdc.h
TNT_4 /I 20tx/irclude/dgi-stdc.h
LAB3STODGIMvSGS /120/axinclude/ci tfly.h
LMCALL 1 /12Oix/iclude/stures.h
LM_-CALL2 /1 2Otx~nclude/structures.h
LM -H A 201x/includelrdb..strUCLh
LM_-STATS /I2Otx/includeArtb-struCLh
LMS_-DATA /I2Oigmclude/structures.h
LTBVOLENTRY /12Otx/include/sim~sig_ff.h
LT_-POLY_-ENTRY /12OtxAncudesimcig-if.h
Ml_ GUN_-OVERLAY /12Oixfmclude/structures.h
M2_GUNOVERLAY /I 2Otfmclude/structures.h
MAT _UNIT A 2O0xfinclude/structres.h
MESSAGE_-HEADER /1 20/tx/include/nxdefines. h
MODEL_-TABLESTRUCT /1201x/includelrtdbstrUCth
MSG -IROTATION /12OtWncludesimsigjif.h
MSG_2D_-SETUP /12Otxncude/simcigjif.h
MSG_3ROTATIONS /12Otx/ncludesimcigg-if.h
MSGADDTRA.JTABLE /l2Otx/includesimcig-if.h
MSG_-AOL /I20txc/incud/sim..cig if.h
MSGAGLSETUP /12OtxfincludesimSig if.h
MSG_-AIRVEH_-STATE /l2Otxfncludesimscigjif.h
MSG_-AMMO_-DEFINE /l2Otxfinclude/simcig..if.h
MSG_-ASID_-OTHERVEH_-STATE /I2Otxfinclude/sim cigjif.h
MSG_-ASID_-SHOW_-EFFECT /12Otxfincludcsimcigjif.h
MSG_-ASID_-STATICVEH_-STATE /120txinclude/simcigjif.hSMSG_-BO_-AAM_CENTROID /l2OtxAncluda/xjnemsges.h
MSGBOAAMSWCORNER /I2Otfinclude/bx-m c s.h

283

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Data Type Typeder Location
MSG_BO_ADD_STATICVEHICLE /120tx/ilude/bxmssages.h
MSG_-BO_-ADD_-TRAJTABLE /1 20txincludebxmessages.h
MSG_BOBAL_CONFIG, /I20tx/includebxjnessages.h
MSG_-BOBVOLENTRY /I2Otxlinclude/bx-messages.h
MSG_-BOCANCEL_ROUND /I2Ozxincudjxjnessages.h
MSG_BO_-CIG_-FRAMERATE /l2OtxAnclude/x..messagesh
MSG_-BODATABASE_INFO /l2Ov~Ix~ude/xjnessages.b
MSGBO_16DELETESTATICVE111CLE /1 20tx/hnclude/bxjnessages.h
MSG_BODELETE_TRAJ_TABLE /I20txlinclude,'xmessages.h
MSG_BO_-LM_-READ /12Otx/include~x-messages.h
MSG_BOMODEL_DIRECTORY /l20xfinludelx..messages.h
MSG_-BO_-MODEL _ENTRY /I20vvinclude/,bx..messages.h
MSG_BO_NEWFRAME /120Mx/ncludeibxjnessages.h
MSG_-BOPRINT /1201x/includelx-messages.h
MSG_-BOPROCESS_CHORD /120Mxlicude/bxjnessages.h
MSG_-BO_-PROCESS_-ROUND /I20tx/includeAxjnessages.h
MSG_BO_-ROUNDFIRED /120mxincludeftxmessages.h
MSG_-BO_-STATECONTROL /120tx/include/bx.messages.h
MSGBOTRAJCHORD /I 2Otxincludefbxt.messages.h
MSG_-BO_-TRAJ_ENTRY /I 2Otxincludeft-messages.h
MSG_BlLBLAD /2tincludelbx msges.h
MSG_-BIHiT_ -RETURN /120vxlncludcixmessages.h
MSG_-BI_-MISS /I2Otxincludefbxmessages.h
MSGBI_ROUNDPOSITION /l20minudebxmessages.h
MSGBI_-STATUS_RETURN /l2OtA/includefbxmessages.h
MSG_-CANCEL._ROUND /120txlimcludesimcigjf.h
MSG_-CIG_-CTL /120txfmdcudesim_cigjif.h
MSG_-CREATECONFIGNODE /120txlincludasim_cigjif.h
MSG_-DELETE_TRAJ_TABLE /l20tx/includelsimcig-if.h
MSG_-DR11 _PKT_SIZE /120txfincludesimcigjif.h
MSGEO /l20tx/include/simcigjif.h
MSG_-FILEDESCR /120txlinclude/simscigjf.h, sysdefs.h, sysdefs2.h
MSG_-FILE_-STATUS /120txfinclude/sim._.cigjif.h, sysdefs.h, sysdefs2.h
MSG_-FILE_-XFER /12Otx/includesimscig~f.h, sysdefs.h, sysdefs2.h
MSG_GEN_CONFIGTREE /120txlincludcsimcigjif.h
MSG_-GENVEH_STATE /I20txfincludsimcigjif.h
MSG_-GUNOVERLAY /I20tx/includesimscigjif.h
MSG_-HDR /I20txlincludesim cig-f.h
MSG_-HIT /120txlinclude/simscigjf.h
MSG _.,T_-RETURN /120Lxlimdudasimcigjif.h
MSG_-HPRXYZS_-MATRIX /l2Otx/includc/sim...cig-if.h
MSG_-LASERRETURN /120txlimcludesimscigjf.h
MSG_LOCAL_,TERRAIN /i20 nclude/sim cig if.h
MSG_-LT_-PIECE /120tx/imcludasimcigjif.h
MSG_-MIVEH_-STATE /I20txfincludesimcigjif.h
MSG_-M2VEH_-STATE /120txlincludesimscigjif.h
MSG_-MISS /I20txlinclude/sim_cigjif.h
MSG_-OBSCURE /I2Otxfinclude/simcigjf.h
MSG_-OTHERVEH_-STATE /12Otmincludasimscigjif.h
MSG_-OVERLAY_SETUP /120txlincludesim cig-if.h
MSG_-PASS_-BACK /I20txfincludesimscigjif.h
MSG_-PASS_-ON /l20txfincludjsimcigjif.h
MSG_-PROCESS_ROUND /120txfindludsimcigjif.h
MSG REQUEST _LASER_RANGE /I20txficludesimscigjif.h
MSG_-ROT2x1_-MATRIX /I20txlincludcsimscigjif.h
MSG_-ROUND_-FIRED /I2Qtx/include/sim_cigjif.h
MSG_-RTN_-LT /120zzlincludelsim cig-if.h
MSG _RTS4x3 -MATRIX /I20txfincude/sim.cigjif.h

284

BBN Systems and Tech-, logies 120TX/T CIG HOST CSCI

Data Type Typedef LocationSMSGSCALE /120tx/includasimcig-if.h
MSGSHOWEFFECT /120tx/includesim-cig-if.h
MSG STATICVEHREM /l2OtxAnclude/sim...cigjif.h
MSGSTATICVEHSTATE /120txfindudesimcigjif.h
M3 GSYS_-ERROR /120txfinclud/simsig-if.h
MSG_-TEST_-NAME /l2Otx/includesimcig-f-h
MSG_-TRAJ_-CHORD /120tx/includelsims-ig-if.h
MSGTRAJ_-ENTRY /12Wuxndudesimcig-if.h
MSGTRAJ_-ENTRYXFER /l2OtxfincludesimSigjif.h
MSGTRAJTABLE_-XFER /120mfinclu&lsimcig-f.h
MSG_-TRANSLATION /12Otx/includelsim-ig..if.h
MSG_-VIEW_-FLAGS /120Lx/inc~uesim-cig-if.h
MSG_-VIEW_-MAGNIFICATION /l2ftxincludesimcig-if.h
MSG_-VIEWMODE /120tx/includeWsimcig-if.h
MSGVIEWPORT1_STATE /I2Otxincudesimscig-if h
MSGSBLK /120txfincludesimcig-if.h
MTrXUNION /120txfincludesimcig-if.h
MX_-DEVICE /120/Wxinclude/mx.Aefines.h
OMODEL /I 2Otxfinclude/structures.h
OVERLAYPARAMS /I 20ux/include/configre.str.h
POLY_-INFO_-WORD /I 2Otx/iclude/stnictures.h
POLYGON_-LIST /120txflnclude/Structures.h
PROJDATA /1l2Otxfmnclude/structures.h
PROJDATA_2 /I 2O0m/iclude/structures.h
R4BBOX2D /1 20t/ncludic/dgi-stdg.h
R4BBOX3D /1 2Olncludedgi -stdg.h
R4HSL /1 2Otxinclude/dgi-stdg.h
R4HSLO /I 2Otxinclude/dgi-stdg-h
R4MTX4X3 /I 2Otxlincludeldgi-stdg -hS R4MTX4X4 /1 2OtxmIcudc/dgi-stdg.h
R4P2D /1 2Otxlinclude/dgi-stdg.h
R4P3D /1 2Otxfincludedgi-stdg.h
R4P4D /1 2Olxfinclude/dgi-stdg-h
R4RGB /I 2Ozxliclude/dgistdg.h
R4RGBO /I 20zx/includeldgistdg.h
R8BBOX2D /1 20owincud/dgi..stdg.h
R8BBOX3D /1 2Ocxfincude/dgi-stdg.h
R8HSL /1 2Otxlincludeldgi-stdg-h
R8HSLO /I 20tx/icIudc/dgi-stdg-h
R8MTX4X3 /I 2Otxfincludc/dgi-stdg-h
R8MTX4X4 /I 20txfincludeldgi-stdg.h
R8P2D /1 2Otxfinc-ludc/dgi-stdg-h
R8P3D /1 20tx/include/dgi..stdg.h
R8P4D /1 20tx/include/dgistdg.h
R8RGB /I 2Otxfirclude/dgi-stdg.h
R8RGBO /l2OtxfincIudc/dgi-stdg.h
RCL_,UNION /I 2Ocxlnclude/rcinclude.h
REAL_-4 /1 20tx/includo/dgi-stdc.h
REAL_-8 /1 2Otxinclude/dgi-stdc.h
RESOLUTIO0N /1 20txfincludc/sim__.cig_&~h
RGBPOLY_-LIST 12Oucfinclude/structures.h
ROOT /1 2Ou/includelfydisk.h. /1 2Otx/sowrce/source/find. fn.c
ROT2xl -MTX /I2Owinclude/simcig-if.h
RTS3x3_-MTX /I 2Otxlncludesimcig-f. h
RTS4x3_-MTX /I 2Otxfinclude/simcig-if.h
SCREEN /1 2OiL/include/configtree-str. h
SCRN -CONSTANTS /1 2OLVinclude/configtree-str. h

SEARCHLIST /1 2Orxfincludc/defi nifions. h

285

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Data Type Typedef Location
SHOW_-EFF /12Ouc/include/structures.h
SOMODEL /1 2Otx/include/structures.h
SREM /I 2tx/include/structures.h
STAMP_-LIST /120tx/include/structures.h
STANK /I 2Otxfnclude/structures.b
STRING /1 20tx/include/dgi- dc.h
STRUCT2D) /I20/txflnclude/struct_2d.h
TACSTATUS /I20mhw~ncedefinitions.h
TANK /1 2Oixinclude/styuctures.h
tasks /1 2OWinclude/sysdefs.h. sysdefs2.h
TEXTURE E1DEX /I 20iti/include/stnictures.h
TEXTUREMAP /I 2Oix/include/structures.h
TFI /l2Otx/incude/simrigjf.h
TF2 /12Otxfinclude/sim-.cig-if.h
TRAJDATA /I 20txfinclude/structures.h
TRAJ_-DATA_2 /I 2Otxfinclude/structures.h
TRAJ_POS /120txficludc/Istructures.h
TRAJ_-POS_2 /Il2Otx/include/structures.h
UIR4P /1 2Otxftnclude/structures.h
UIR4P3D /I 2Otxficlude/structuies.h
VIE WPORTPARAMETERS /I 2Otxinclud/configtreestr.h
VPPOS_-ARRAY /I 2Otx/include/Configtreestr.h
WHEREPROCESS /I 2Otx/include/ecompiler Lh
WINDOW -DESCRIPTORTABLE /120/vx/nclude/structI2d.h
WORD /I 20tx/inc lude/dgi-stdc.h

28 6

BBN Systems and Technologies 120TX/T CIG HOST CSCI

E.3 Function Names To Source File Location

The following list shows each function in the CIG real-time software, and identifies the file
in which the function is located. The third column shows the section number in which the
function is described in this document.

Function Name Location Section
aan_miaoc /120txsource/configaam...manager.c 2.2.1.1.1
active_area~imit /l2Otx/source/source/aa~initLc 2.2.3.1
apinit /12Otx/source/source/rtt.c2.1.

b _aapentroid /120txbLli _ore/ Abaamcentroid.c 2.5.2.1
hO~aan-sw-corner /12Ocxiallis/source/b/bOaamsw_corner.c 2.5.2.2
hO_add_static-vehicle /120tx/ballist/source/bO/bO add-static-vehicle-c 2.5.2.3
1,0_add-.tajj-able /1 20tx/bauist/source/bOibO....addrajitble-c 2.5.2.4
b0_bal -config /120tx/ballist/source/bO/bQ..balconfig.c 2.5.2.5
hO-bvoL-entry /I 20tx/balist/source/bO/bbvol -entry.c 2.5.2.6
bO~cancelround /l20tcx/balist/sourcWb/bO_=acel -round.c 2.5.2.7
hO~cig-E.rane-rate /120tx/balist/souc/O/bQ cigr eaec2.28
hO-database-info /120x/ballist/source/bO/bO database _info.c 2.5.2.9
hO-delete-static_vehicle /120tx/ballist/source/bO/bO delete static-vehicle.c 2.5.2.10
bO-deletejrajjable /l2Otx/ballistsoub0W/bOdelete..traj-table.c 2.5.2.11
hO _dummry /12Otx/ballist/sourcebjbWO..urnry.c 2.5.2.12
bO~errorjdetected /120x/aist/sourve/bO-0errrdetected.c 2.5.2.13
bQ-jnapp-message /12Otx/ballist/source/e/bObonapp-jnessage.c 2.5.2.14
hOQIrn-read /120tx/ballist/source/bO/bInread.c 2.5.2.15
bO.model-diretory /12Otx/afist/souc/bO/bOnodeI directory.c 2.5.2.16
hO-modeL entry /l20uclbalis/surc/bO/bO..model.entry.c 2.5.2.17
hO-new-frame /120tx/ballist/source/bO/bO new frame.c 2.5.2.18
hO print /120OWballist/source/bO/bQJprinLC 2.5.2.19
h0..processchord /1 2Otxxballist/source/bO/bO..processchord.c 2.5.2.20
h04,rocessjround /12Otx/ballist/source/bO/bprocess-round.c 2.5.2.21
b,0_ound -fired /120wtballist/sourcebO/bO round -fired.c 2.5.2.22
hO-state -control /l2Otx/ballist/source/bO/bO state control.c 2.5.2.23
1,0_satusjequest /l2Otxvballist/source/bO/bO...statusjequieSLC 2.5.2.24
1,0traj-chord /l20tx/ballist/source/b0/hoj.chord.c 2.5.2.25
bO~tra-entry /l2Otx/ballist/source/bO/bO-jj.entry.c 2.5.2.26
1,0_undefined-message /l2O~cbalist/source/bO/bO undefied message.c 2.5.2.27
bal-.getdb4,os /120tx/Source/soubcal-geLb.Pos.c 2.4.1
bal-.get-lm...id /12Otx/SourcesoucebAl...getlm.grid.c 2.4.2
bbnctype /l~tx/source/Config/bbnctyp.c 2.2.1.2
blank /l2Otx/source/gossip/vtIOO.c 2.6.16.6
bootup-slave! 33 /12Otz'/source/source/upstartc 2.2.3.26.4
bus _error /l2Otx/source/Source/bus-errorasm 2.2.3.3
bus-error (Butterfly) /Il2Otx/source/sourcelsupport-c 2.2.3.25.4
bus_error~w /Il2Otx/source/source/support-c 2.2.3.25.5
bx -bvol int /l2Otx/balist/source/bt/bx-bvol-intc 2.5.3.1
bx_chord intersect /l2Otx/balist/source/bflx_cphord_intersect.c 2.5.3.2
bx-deletq-round /l2Otx/ballist/source/bulbbx-functions.c 2.5.3.3.2
bx -delete -stat_veh 11l2Otx/ballist/source./bribx_functions.c 2.5.3.3.10
bx_distsqjptjine /1201x/ballist/source/bt/bx-functions.c 2.5.3.3.11
bx fireIm cache /12Oux/ballist/sourcc/bt/bx-functions.c 2.5.3.3.6
bx..get~chordLend /l2Otx/ballist/source/t/bx-functions.c 2.5.3.3.4
bx..getdbpos /1 2Otx/allist/sourca/t/bx-functions.c 2.5.3.3.3
bx~get-lb_from_lm /12Otx/ballisu/source/Nb/bx-functions.c 2.5.3.3.8
bx..get-lindata /120Oballist/source/bt/bx...geLlm-data.c 2.5.3.4

287

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Function Name Location Section
bx..getlm-.grid /12OalUist/sourelbtbx.glmgid.c 2.5.3.5
bx...nit /120tx/ballist/source/main/bx-init.c 2.5.1.2
bx..modeLint /120txballist/soure/bd/bx model-int.c 2.5.3.6
bx_new_b)vol /1201x/ballist/source/bt/bxfunctions.c 2.5.3.3.5
bx..new..poly /120utxlalist/sourcelbtfunjicions.c 2.5.3.3.7
bx..new-round /12Ocxbalist/sourceltblxfunctions.c 2.5.3.3.1
bx -newv stat~veb /l2Otx/ballist/source/b/bxfunctions.c 2.5.3.3.9
bx..polyint /120txcjballist/sourcebtbX...ply..nLC 2.5.3.7
bx-reset /l2Otxjba1ist/sourceAt/bx-reset.c 2.5.3.8
bx~task /12Oa11ist/sourc(mainflbxask-c 2.5. 1.3
bx-nrjectory /12Otx/ballist/source/bt/bxjrajector.c 2.5.3.9
cal. /120tx/sourcelsource/ca.c 2.2.3.4
calcjPaths /l2Otxsowve/config/viewpor~setup.c 2.2.1.16.2
check sum /120tx/source/sourcAlsupportzc 2.2.3.25.11
cig-.2d..setup /l20tx/souwcef2d/cig-.2d-setup.c 2.2.4.2
cig-config /12Otx/source/config/cig-ofig.c 2.2.1.3.1
ccmparebuffers Al2t/force/forcetask~c 2.8.4.2
comnpile..2d /120tx/sourcet~dcig-omp.2c 2.2.4.3
concat~mtx /120tx/sounre/config/concat~mtx.c 2.2.1.4
confignode-.setup /1 20tx/sourcc/config/confignode..setup.c 2.2.1.5
ctoi /120tx/sourcelsourcelsupport.c 2.2.3.25.14
cup /l2Otx/sourcelgossip/vtlOO.c 2.6.16.1
data rt Ax /Il2Otx/foive/datak-type.c 2.8. 1
db-mcc -setup /120tisour-isodbkmccsetp.c 2.2.3.5
dcode -dri 1w /l2Ozxlsource/gossiplgossip.c 2.6.15.5
debug-initdr /l20tx/source/soume/debug-nitdr.c 2.2.3.6
ded~modeltvae /l20tx/Source/sourcededmodel tace.c 2.2.3.7
display /l20tx/sourcelgossip/dtpemu.c 2.6.1.2
display..packet /l20tx/source/gossip/gossip.c 2.6.15.3
double -bot /l20txlsource/gossip/vtlOO.c 2.6.16.4
double -off /l2Otx/source/gossip/vtl~o.c 2.6.16.5
double.top /120tx/source/gossip/vtlOO.c 2.6.16.3
download-bvols /l20tx/source/source/download-bvols.c 2.2.3.8

dr/I20tx/source/source/dr.c 2.2.3.9.1
drjis..okay /I 20txsource/source/dr.c 2.2.3.9.2
dtp-p.ompiler /l20txsourcegendtp/dtp-.compiler.c 2.2.2.1
dtp..emu /l20tx/source/gossip/dtpj..mu.c 2.6.1.1
dtp...mafloc /I 20tx/source/gen...t/tpjuncs.c 2.2.2.2.5
dtp-.malloc-init /l2Otxsourcgn...tp/dtp-funcs.c 2.2.2.2.6
dtpjtravl /120tx/source/gen..dtp/dtpjrav I .c 2.2.2.3
dtpjr.av2 /1 20tx/source/gen..dtp/dtp .trav2.c 2.2.2.4
dynamic-aam-imit A 20tx/source/configtaam...maager.c 2.2.1.1.4
excepjnit /l2Otx/force/exceptionasrn 2.8.2.1
file-.control / I2Otx/source/sourceiilecontrol. c 2.2.3.10
fill-tree /1 20tx/source/config/fill-reexc 2.2.1.6.1
find~fn /l20tx/source/sourcc/find-fn.c 2.2.3.11
flea /120tx/source/flea/flea.c 2.7. 1
flea-decode~data /1201x/sourcefflea/flea decode~datac 2.7.2
flea--encode-data /I 20vc/source/flea/fleaL encode-data~c 2.7.3
flea jniLcig.sw /120tx/source/flea/fleainiLig.sw.c 2.7.4
flea-update-.pos /1201x/sourre/flea/fleaupdate-jWs.c 2.7.5
freel33 /l2Ot/allist/sourc/main/slavel 33_functions.c 2.5.1.4.2
free-onfigtree /I 20Wxsource/config/ci 6config.c 2.2.1.3.3
ftoh /120tx/source/gossip/dtpemu.c 2.6.1.6
fxbvtofl /1 20Lx/source/Source/fxbvtofl.c 2.2.3.12.1
fxbvtofl_-020 /1 20tx/source/source/fxbvtofl.c 2.2.3.12.3
fxbvtofl -dart /1 20tx/source/sourcc/fxbvtofl.c 2.2.3.12.2
gencric_,Im /Il2Otx/source/source/gcnericImnc 2.3.1.2

288

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Function Name Location Section
*geLbinary-Oata /l20txlsource/sourcelsupportzc 2.2.3.25.12

geLchar /l2Otx/soure/source/support~c 2.2.3.25.13
geL.Im /120tx/source/gossip/dqtenuc 2.6.1.9
get..msg..2d /120tx/sourve/2d/cig-getm_2d.c 2.2.4.4
get..record /120tx/soure/sourcelsupport-c 2.2.3.25.8
geuhing I2Olx/sourcel~dgeLthing.c 2.2.4.8
getch /1201x/source/config/getch.c 2.2.1.7
geilmdp /120tx/source/sourcelaad-modules.c 2.3.2.1
getmatrix /1l20vd/source/source/mimtx...nc 2.2.3.19.10
getside /120tx/sourcesource/load-modules.c 2.3.2.2
gosi_2Otx /120tx/sourcelgossip/gosj-20tx.c 2.6.2
gosatp /120tx/source/gossip/gos..atp.c 2.6.3
gos-ba1.query /12Oix/source/gossip/gos...baquery-c 2.6.4
gos...db.query /120tx/sourcegossip/gos..d...query.c 2.6.5.1
gosjlsplay..dbjnfo /120txc/sourcegossip/gosjl.Auery.c 2.6.5.2
gosdrI I-query /12Otx/sourcejgossip/gos..drl Lquery.c 2.6.6
gosjlea-if /l20tx/source/gossip/gos -flea~if.c 2.6.7
gos..fleasoptions /120tx/souregossip/gos -flea..options.c 2.6.8
gosfly /l20tx/source/gossip/gos _fly.c 2.6.9
gosiocate /l20zx/source/gossip/gos -locate.c 2.6.10
gosjnemory /120txsource/gossipgos..memory.c 2.6.11
gosmodel /l2tx/sourcelgossip/gos-model.c 2.6.12
gosjpolys /l20tx/source/gossip/gos-polys.c 2.6.13
gos-single -step /120tx/source/gossip/gossip.c 2.6.15.6
gos-system /120txsourcelgossip/gos..system.c 2.6.14
gossip /120tx/source/gossip/gossip.c 2.6.15.2
gspjio /I 2Otx/force/gsp-io.c 2.8.5
gsp~iocd~read /Il20tx/force/force.asm 2.8.3.4

*gsp-ioctl -write /l20tx/force/force.asm 2.8.3.3
gspjoad /120tx/source/source/gspioad.c 2.2.3.13
gsp-mad /120tx/forcellorce.asm 2.8.3.2
gspwrite /120tu/forcelforce.asm 2.8.3.1
hexdisplay /l2Otx/source/gossip/dtp_jemu.c 2.6.1.5
htof /l20txlsource/gossi p/dip_emu.c 2.6.1.7
hw -test /l20t/urce/sourcewI estc 2.2.3.15
hxflt /l20x/source/gossip/dip-emu.c 2.6.1.4
id_4x3mtx /l2Otx/source/source/mkmtxnt-c 2.2.3.19.6
id matrix /12Otx/source/source/makie-bbn.c 2.2.3.17.6
init-configtree /120tx/source/configcig-.config.c 2.2.1.3.2
mu _dtp-stacks /120tx/sourcelgen-..tp/dtpjuncs.c 2.2.2.2A4
init-.generic -I /l20tx/sowresource/generic;-lm.c 2.3.1.1
itiports /120tx/force/(force.asm 2.8.3.5

mnit-stuff /120tx/source/2dinit-stuff.c 2.2.4.9
linkup /120ix/source/2d/cig-ink..2d.c 2.2.4.5
load-dbase /I2Otx/sow/souceoad-O.base.c 2.2.3.16
loadtmodules /12Otx/souresouve/lag-modules-c 2.3.2.4
locaLterrain /I20ex/source/reoc_ter.c 2.4.3.2
m 1..gun...overlay /120tx/ouvelsource/gun..verlays.c 2.2.3.14.1
m2..gun-.overlay /12O~x/oucelsource/gun..verlays.c 2.2.3.14.2
main (ballistics) /120~/alis rcemai x47.main.c 2.5.1.1
main (force) /Il2OLx/fbrce/forcetask~c 2.8.4.1
main (gossip) /l20tx/source/gossip/gossip.c 2.6.15.1
main (locaLterrin) /Il2Otx/source/sourcc/Ioc_ter.c 2.4.3.1
main (rowcolryd) /120tx/source/sourcerowcord-c 2.3.3.1
main (upstart) /120tx/source/source/upstart~c 2.2.3.26.1
makepal-overlay /1 20tx/source/source/mnkcal.c 2.2.3.18.1
make-mlI overlays /1 2Otx/source/source/gun .overlays.c 2.2.3.14.3
make-m2_overlays /1 2Otx/source/source/gun...verlays-c 2.2.3.14.4

289

BBN Systems and Technologies 120TXfT CIG HOST CSCI.

Function Name Location Section
make..p..nt /l2Otx/source/source/mkmtx-ntc 2.2.3.19.1
mat -mult /120tx/source/gossip/dtpLemu.c 2.6. 1.80
matrix2 /l20tx/source/source/mkmtxnt.c 2.2.3.19.11
model-mtx /l2Otx/source/source/model_mtx.c 2.2.3.20
mtxcpY /l2Otx/source/source/mkmtx-nt.c 2.2.3.19.12
mult_.4x3mtx /l2Otxsource/source/ImkmVtxnt.C 2.2.3.19.9
multmatrix /l2Otx/sourcesource/make-bbn.c 2.2.3.17.5
mx~effor /12Otx/ballist/source/mx/fixercr.c 2.5.4.1
mx open /120bAllis/urce/mx/m..open.c 2.5.4.2
mx...peek /l20xbalfist/sourc4/mx/mx-jpeek.c 2.5.4.3
mx...push /12Ovallist/sourem/mx...push.c 2.5.4.4
mxskip /120tx/ballist/source/mx/mxskip.c 2.5.4.5
mx-wcopy /120OWballst/source/mx/mx-wcopy.c 2.5.4.6
rni type Il20txlforce/nmi-ype.c 2.8.6
open dbas /I 20uxourcesoure/pen.dbase.c 2.2.3.21
open-ded /l2Otx/sourvesource/open-.dedc 2.2.3.22
outdisplay /l20tx/sourc/gossip/dp..ezu.c 2.6.1.3
overlay-setup /I120vc/sourcelconfigloverlay...stup.c 2.2.1.9
parser /12Otx/soure/configkreadsconfigfile.c 2.2.1.12.6
pix-mult /12Otx/source/source/mnkcal.c 2.2.3.18.2
poll ready /l20tx/force/polljeady.c 2.8.7
pop-node /l20tx/sourcelgen...tp/dtpjuncs.c 2.2.2.2.2
power /l20txsource/config/fihl-tree.c 2.2.1.6.2
process-command /l2Otx/sourcet2d/proc-cmd.c 2.2.4.12
process..vflags /1l2Otx/sourccelconfigfpocess-vflags.c 2.2.1.10
process vppos /l20txlsourcelconfig/process-vppos.c 2.2.1.11
prt-mtx /120tx source/source/make bbn.c 2.2.3.17.1
push-node /Il2OtxK/source/gen..dtp/dtpjfuncs.c 2.2.2.2.1
qassign /l2Otx/sourcclsource/rtLC 2.1.1.2
r4matdump /120tx/source/Config/mat-dump.c 2.2.1.8.1
r4vec..dump /l2Otx/source/config/vec...dump.c 2.2.1.15.1
r8mat.dump /Il20tx/source/config/matdump.c 2.2.1.8.2
r8vec-cdump /120tx/source/configtvec..dump.c 2.2. 1. 15.2
rcl -command /I 20tx/source/gen-O.tptrcfuncs.c 2.2.2.5.11
rcLcomponent /I 2Otx/source/gen - d4p/cfuncs.c 2.2.2.5.12
rcl -data /lI20txsource/gen.dtP/rcfuncs.c 2.2.2.5.13
rcl -miit -adrs /Il2Otx/sourcegen-O.tpfrcfuncs.c 2.2.2.5.6
rcl -iit -stack /120txc/source/gen-Atpdzrcfuncs.c 2.2.2.5.1
rcu~blcmd I2Otx/source/gen-dtp/rcfuncs.c 2.2.2.5.10
rtl...patch-adrs /l2Otx/source/gen-Atp/rcfuncs.c 2.2.2.5.4
rcl-pop /I120tx/source/gen..dtp/rcfuncs.c 2.2.2.5.3
rcl-.push /120tx/sourcelgen.dtp/rcfuncs.c 2.2.2.5.2
red-rtn-adrs /I 20tx/source/gen...tp/cfuncs.c 2.2.2.5.7
rcl -set_cndlbl /I120t/sourcegen-Otpd4rifuncs.c 2.2.2.5.9
rcl-seL-errptr /1 2Otx/sourcelgen..dtjtrcfuncs.c 2.2.2.5.5
rcl-set-label /I 2Otx/source/gen.dtplrcfuncs.c 2.2.2.5.8
rclgsuff~data /Il20tx/source/gen-O.tp/rcfuncs.c 2.2.2.5.14
readsconfigfdle /120tx/sourrejconfig/read-configfile.c 2.2.1.12.1
read-stuff /I 2Otx/forcelread-stuff c 2.8.8
itad_watch /I120tx/soure/source/supportc 2.2.3.25.2
REAM4-fscanf /l2Otxsource/config/read..configfile.c 2.2.1.12.4
restore.-cur /l2Otx/source/gossip/vtlOO.c 2.6.16.8
retumnaam-ptr /l20tx/source/config/aamjnanager.c 2.2.1.1.2
rotate-x /Il2Otx/source/source/make,-bbn.c 2.2.3.17.2
rotate-x-nt /l2Otx/source/Source/Mkmtx _nt.c 2.2.3,19.2
rotate-y /I2Otx/sourcelsource/make-bbnxc 2.2.3.17.3
rotate..y-nt /l2Otx/source/Source/mkmtx-nt.c 2.2.3.19.3

rotate , z /1l2Otx/source/source/make-bbn.c 2.2.3.17.4

290

BBN Systems and Technologies 12OTXfT GIG HOST CSCI.

Function Name Location Section
rotate-z-nt /120/souc/sorc/nkmtxnt.c 2.2.3.19.4
rowcol -rd A 2Oix/source/source/rowcoLrc 2.3.3.2
s~step /l2Otx/source/gossip/gossip.c 2.6.15.4
save .cur Il2Orx/sourcejgossip/vtlOO.c 2.6.16.7
scale -mtx. /l2Otx/source/source/znkmtx-nt.c 2.2.3.19.7
scrolijeg /l20txsourcegossip/vtlOO.c 2.6.16.9
send.-data /2x/orsor4uprtc2.2.3.25.9

setupji~blt /120tx/source/2d/biLblLc2.41
setup-comp..start /source/2d/comp.c 2.2.4.6
setup...eflne..string /12Otx/sourcej~dstring.c 2.2.4.13
setup-define-window /12Otx/sourcef2d/window.c 2.2.4.15
setup draw line. /l20tx/source~ddraw-jine.c 2.2.4.7
setup-oval-rectangle /l20tx/sowvce/2d/bval..reCt.C 2.2.4.10
setup-.ply /l2Otx/sourvt4dpoly.c 2.2.4.11
setup-text A 20tx/source/2dVtext.c 2.2.4.14
sgir /120tx/sourceigossip/tOO.c 2.6.16.2
simulation /120tx/source/sourcesimulation.c 2.2.3.23
slavel 33_malloc /lI2Otx/ballist/sourcelmain/slave 1 33_functions.c 2.5.1.4.1
sload /Il20tx/sourcc/sourcelsupport.c 2.2.3.25.7
spur_int /120Wforcelexception.asm 2.8.2.2
start -watch /l2Otx/source/souielsupport.c 2.2.3.25
stdio A 2Oui/sourcc/source/suiio.c 2.2.3.24
stop-watch /120tourcsourcesupport-c 2.2.3.25.3
STRING -fscanf /120Wxsource/conflg/read-configfile.c 2.2.1.12.5
stringto nt /10/ov/ofg/read-conflgflle.c 2.2.1.12.3
swap-axis /l20tx/source/source/mkmtx-nt.c 2.2.3.19.5
sysrup...ff /120tx/surc/sourc/support.c 2.2.3.25.17
sysrup-on /l2Otx/sourcelsourcelsupport.c 2.2.3.25.16
system /I 20tx/source/source/support.c 2.2.3.25.6
system-aam-imit /120tx/source/config/aam...anger.c 2.2.1.1.3
tassign 1120tx/sourcelsource/rttLC 2.1.1.3
templates - nit /l20xource/source/upstart~c 2.2.3.26.2
test-.gsp /l20txforcetest-.gsp.c 2.8.9
translate /l2Otx/source/Source/mkmtx-nt.c 2.2.3.19.8
unbf-.getchar /l20tx/source/sourcejsupport.c 2.2.3.25.15
update-fov /I20tx/sourcc/config/update -fov.c 2.2.1.13.1
update-re /120tx/source/config/update-rez.c 2.2.1.14
upstart /l2Otx/source/source/upstartc 2.2.3.26.3
verdata /l2Otx/sourcelsource/support.c 2.2.3.25.10
viewportinit /120tx/source/config/viewport.setup.c 2.2.1.16.3
viewportsetup /120tx/sourelconrig/viewport.setup.c 2.2.1.16.1
viewspacemvit /120tx/sourcelconfig/updatej-ov.c 2.2.1.13.2
what -node-on-stack /120tx/souc/gen-..tp/dtp-funcs.c 2.2.2.2.3
whatdirptr Al20tx/sourcelsowvce/load-modules.c 1.3.2.3
WORD-fscanf /l20urvoeconfigread-onfigfle.c 2.2.1.12.2

291

BBN Systems and Technologies 120TX/T CIG HOST CSCI

E.4 Macro Names To Source File Location

The following list shows each macro function used by the CIG real-time software, and
identifies the file in which the macro is defined. The third column shows the section
number in which the macro is described in this document.

Macro Name Location Section
k&JRAJD /12Otx/inlude/definitions.h B.1
ABS VAL /12Otx/include/definifions.h B.2
BCOPY /l2OtxAnclude~nxjlefies.h B.3
CHECKCLOCK /12Otx/fbxce/foice~defines.h BA4
CHECKFORCE /l2Oix/source/gossip/gos -12Otx.c B.5
DART _ENQUELIE /12Otxfincludefunctions.h B.6
DELETEROUND /12OtWinclude/bix-macroslh B.7
DELETESTATVEH /l2Ot/nclude/bxjnacros.h B.8
DOWNLOADDATA /12Owx/sourcet2V/cigjink_2d.c B.9
dip_bcn /120Mx/nclude/hvincludelh B.10
dtp--bcnr /l20tmnclude/rcincludelh B.10
dtp-bcnrs /l2Otx/lnclude/rcincludelh B.10
dip-bcns /12Olx/include/rcinclude.h B. 10
dipjbcz /I 20tx/incude/ivinclude.h B.10
dipjbczr /120tx/include/,ciicludelh B.10
dipjbczis /120tx/include/ncincludelh B.10
dip-bczs /120O/nclude/rcinclude.h B.10
dtp.bgr /120txinclude/icinclude.h B.10
dip~grs /12Ovc/include/rcinclude.h B. 10
dip-bdl /120tx/includeficincludelh B.10
dip-bdlrs /120tx/include/rcinclude.h B. 10
dtpjign /l20O/nclude/rcinclude.h B.10
dtpbgns /I 2Otx/include/rcinclude.h B.10
dtpj gz /120O/nclude/rcincludceh B. 10
dtpjgzs /120xAnclude/rcinclude.h B.10
d"ipbm /12Otxfinclude/rcincludelh B.10
dip_jbnz /120txinclude/rcinclude.h B.10
dip~nzr /I 201x/include/rcinclude.h B.10
dip_ bnzrs /I 2Otxfiniclude/xincludelh B.10
dti~nzs /I 20tx/icludeficinclude.h B.10
dtp bpc /12Otxinclude/rcincludc.h B.10
dtpbpcx /I 20tx/include/rcinclude.h B.10
dip-bru /I 2Otx/ncude/itinclude.h B.10
dip_ brur /120tx/include/rcinclude.h B.10
dip~brurs /120(Winclude/itincludelh B.10
dip-brus /l2ftxfincludercincludelh B.10
dip_biz /l20xnclude/cincludelh B. 10
dipjbm' /120tx/include/rcincludelb B.10
dip-brzirs /120tx/include/ivincludelh B.10
dipjbrzs /12Otxfinclude/rcincludelh B.10
dip-dot /120txAncIude/hcinclude.h B. 10
dip--elm /120txinclude/include.h B.10
dip end /120txfinclude/icincludelh B.10
dip-fov /I 20txfinclude/rcinclude.h B. 10
dip-fowr /120tx/include/ivincludelh B. 10
dip-fovrs /I 20tx/include/rcirrcludelh B.10
dip-fovs /l2Otxfinclude/rvincludelh B.10
dtp..gdc /120txfinclude/rcinclude.h B.10

292

BBN Systems and Technologies 12OTXTI' CIG HOST CSCI

Macro Name Location Section
dtp..gdci /120C/include/rciriclude.h B.10
dip..gcir /12Wt/nclude/icinclude.h B.10
dtp-gdcirs /12Otx/inlude/rcinclude.h B.10
dtp..gdcis /12ftx/include/cinclude.h B.10
dip-gdcn /120txfmclude/xrinclude.h B.10
dtp..gdcnr /120txfinclude/vinclude~h B.10
dtp-gdcnrs /12Oinlude/rcinclude.h B.10
dip-gdens /120ovdillude/itinclude.h B.10
dip-gdcr /120tx/include/zcinclude.h B.10
dtp..gcrs /12Otx/inude/rcnclude.h B.10
dtp..gdrcs /l20tAnludelrcinclude.h B.10
chpgr /12OmIncude/rcinclude.h B.10
dtp-jmi /12Otx/incude/rciiclude.h B.10
dtp-jmir /12OW=Incude/rcinbclude.h B.10
dtp-Imirs /12OtAnclude/riinclude.h B.10
dtp-Imis /120uxinclude/xtinclude.h B.10
dtp-la /120itinclude/rinclude.h B.10
dti odr /120tmc/nclude/hcincludelh B.10
dti odrs /120txfinclude/rcinclude.h B.10
dtpiods /12Otxincludelrcinclude.h B.10
dip Iwd /120tx/include/icincludelh B.10
dip lwdr /120tx/include/rcinclude.h B. 10
dip jwdrs /l20fincludeivinclude.h B.10
dtplwds /120Mnclude/rcincludelh B.10
dip-mini /120txfinclude/rciriclude.h B.10
dtp-nmpre /l20tx/include/rcinclude.h B.10
dtp-.mmpst /120tx/iriclude/kcinclude.h B. 10
dtp-mwd /l2Otxfinclude/rcinclude.h B.10
dtp-jigc /120txfinclude/rcinclude.h B.10
dtp...oio /120tx/include/iicludelh B.10
dtp oos /120Ix/include/cincludelh B.10
dip-osd /l2Oxnclude/rcinclude.h B.10
dtp-osds /120tx/lnclude/ivinclude.h B.10
dtpowd /120xinclude/rcinclude.h B.10
dtp-owds /I 20zxiinclude/rcinclude.h B. 10
dtpopwdsc /120txfinclude/ivinclude.h B.10
dtp owo /l20txfnclude/rcinclude.h B.10
dtpopwr /120tx/include/rcinclude.h B.10
dtpo-wrs /l20tx/include/rcinclude.h B.10
dtp..wrsc /I 20tx/include/rcinclude.h B.10
dtprc /120O/nclude/rcincludelh B. 10
dip-sub /I 20tx/include/rcinclude.h B. 10
dtp...subr /l20txfinclude/itinclude.h B.10
dtpsubrs /l2Otxfinlude/rcinclude.h B.10
dip-subs /I 20txfinlude/rcinclude.h B.10
dtp-tbc /1200Winludercinclude.h B.10
dtpjbd /120tx/include/rcinclude.h B.10
dip ibdrs /12Otx/irrclude/rcinclude.b B.10
dip tbrT /120txftnclude/irinclude.h B.10
dtp-tbrrs /12Otx/include/zvinclude.b B. 10
DUMP_-DARTBUFFER /120tx/include/functions.h B.11
ERRMSG /120xsu/ge.dtpcfuncs.c B.12
EXCHANGEDATA /120tx/include/functions.h B.13
EXCHANGEDATASIM /I20xl/includelfunctions.h B.14
EXCHANGEFLEADATA /12Otx/include/functions.h B.15
FINDLM /12Otx/include/funcfions.h B.16
FLTOFX /l20txincludefunctions.h B.17
FREELMCACHE /120Lx/includeibxmacros.h B. 18

293

BBN Systems and Technologies 120TX/T CIG HOST CSCI.

Macro Name Location Section
FXT0881 /12Otncludefuncios.h B.19
FXTOFL /12Ot/includefunctions.h B.20
GETCHORD_-END /l2Oix/nclude/bxjacros.h B.21
GET _DB_-P05 /I2Ouc/include/bxjnucro.h B.22
GET_-LB_-FROMLM /l2OtxlInude/bx-macros.h B.23
GLOB /I2Ovc/=Inude/emnemoryjnap.h, ineroryjnap.h B.24
INCRCOMIPONENT /I20tx/surcedgenjI4p/rcfuncs.c B.25
INriMTX /I20tx/inC~udcfunctions.b B.26

NEWROUND /12OtxmInude/bixjnacros.h B.28
NEW_-STAT_-VEH /I20txfnclude/bx-niacros.h B.29
OPENEXCHANGE /I20txfmdclefunctions.h B.30
OPEN_FLEA _DATA /12Otxiicludeffunctions.b B.31
PAGE_-FORMAT /120tx/source/gossip~gos.bal-query.c B.32
poly-ab fl2Otx/include/rcinclude.h B.33
polyibvc /12Otxlinelude/icinclude.h B.33
poly-efs /120wincude/ivinclude.h B.33
poly-efs /120txcflnelude/rcinclude.h B.33
poly-flu /120tx/include/rcinclude-h B.33
poly-fsw /12Otx/include/rcinclude.h B.33
poly-gc /12Otx/include/rcinclude.h B.33
poly- inf /120tx/include/zcincludebh B.33
polyjmf /120Mfmiclude/reinclude.h B.33
polyjIsc /12Otincludelrcinclude.h B.33
poly-mmf /120tx/include/rcinclude.h B.33
poly-.PC /12Ozxfnclude/rcinclude-h B.33
poly-poly /12Otxfincludelrcinclude.h B.33
polyrnil /120Mx/nclude/icinclude.h B.33
poly-rm2 /I2Otxfinlude/rcinclude.h B.33
polyjin3 /12Oixfinclude/rvinclude.h B.33
polyjrm4 /1ftfincludeAcinclude.h B.33
polyscw /12Otx/lnclude/rrinclude.h B.33
poly-.sci /12OtxilncludeI'tincludebh B.33
poly-see /12Otx/include/reinclude.h B.33
poly..sm 1 /12Ozx/include/rcinclude.h B.33
polysm2 /12Otxlinclude/rcinclude-h B.33
poly...sm3 /12Otx/ncludexvinclude.h B.33
polysm4 /I 2Otxinclude/reinclude.h B.33
poly-stamp /12Otx/include/itinclude-h B.33
poly-tog /12Ozx/nclude/rcinclude.h B.33
poly..ytxe /12Otx/nclude/rcinclude.h B.33
polyvtxl /12Otxinclude/rcinclude.h B.33
PRINTD4 /12Otx/sourcc/gossip/gos..memnory.c B.34
PRITD8 /12Otxlsourceagossip/gos..memoryxc B.35
PRINTHEX4 /12Otxlsource/gossiplgos -memory-c B.36
PRINTHEX8 /l2Otxsourc/gosipgos.memory.c B.37
READ_CLOCK I 2Otx/force/force-defiries. h B.38
RESTART...CLOCK /lOfxefndefmshB3
ROOM4LABEL I2Otx/source/genjftp/rcfuncs.c B.40
ROOMCHECK /Il20tx/soure/genjkj/cfuncs.c B.41
SETOUTBITS /12Otx/include/definitions.h B.42
SETOUTM2BITS /12Otx/ncude/deflnitions.h B.43
SYSERR /120txlinclude/functions-h B4
TORAD <multiple files; see section B.45 for list> B.45
toradians /1 2OWourcr/source~nake.bbn.c B .46
TRIGGERFORCE /12Ozx/includc/functions.h B .47
WAITFORCE /12Otx/include/functions.h B.48
XCLOCSE /12Ozxlincludeldefinitions.h B.49

294

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Macro Name Location Section
XLSEEK /120Otx/include/definitions.h B.50
XOPEN /120tx/include/definitions.h B.51
XREAD /120tx/include/definitions.h B.52
XWRITE /120tx/include/definitions.h B.53

295

BBN Systems and r-chnologies 120TX/T CIG Host CSCI

INDEX BY SECTION NUMBER

.2-D Overlay Compiler [12OTX systems only] 2.2.4
aaxn_malloc 2.2.1.1.1
aam-.manager.c 2.2.1.1
aa-init.c (active_area_mnit) 2.2.3.1
apinit 2.1.1.1
bO-aani-centroid.c 2.5.2.1
bO-aamnsw-corner.c 2.5.2.2
bO-add-static-vehicle.c 2.5.2.3
b-add-traj-jable.c 2.5.2.4
bO-bal_config.c 2.5.2.5
bO-bvol--entry.c 2.5.2.6
bO-cancel-round.c 2.5.2.7
b0sig-frame-ratexc 2.5.2.8
bO-database-infoxc 2.5.2.9
bO~delete-static_vehiclexc 2.5.2.10
bO-delete-traj-tablexc 2.5.2.11
bQ-dumniy.c 2.5.2.12
bO-error -detected.c 2.5.2.13
bO-jnapp-.message.c 2.5.2.14.bO-lm-read.c 2.5.2.15
bO-model-directory.c 2.5.2.16
bO-model--entry.c 2.5.2.17
bO-new-frame.c 2.5.2.18
bO...printLC 2.5.2.19
b~processs-hordxc 2.5.2.20
b-processjoundxc 2.5.2.2 1
hO-round-fired.c 2.5.2.22
bO-state-controlic 2.5.2.23
bO-status-equest.c 2.5.2.24
bQ-traj-chord.c 2.5.2.25
bQ-raj..entry.c 2.5.2.26
bOLundefined-.message.c 2.5.2.27
Ballistics Interface Message Processing 2.5.2
Ballistics Intersection Calculations 2.5.3
Ballistics Mainline 2.5.1
Ballistics Message Queue Processing 2.5.4
Ballistics Processing (BALLISTICS) CSC 2.5
bal...get-dW.pos.c 2.4.1
bal-get-m.Wgid.c 2.4.2
bal-routines.c 2.2.3.2Obbnctype.c 2.2.1.2

Index- I

BBN Systems and Technologies 120TX/T CIG Host CSCI

bitblt.c (setup bit-blt) 2.2.4.1
blank 2.6.16.6
bootup-slave 133 2.2.3.26.4
bus_error 2.2.3.25.4
buserror.asm 2.2.3.3
bus_error_w 2.2.3.25.5
bx147_main.c (main) 2.5.1.1
bxbvol_int.c 2.5.3.1
bx_chordintersect.c 2.5.3.2
bx_delete_round 2.5.3.3.2
bx_deletestatveh 2.5.3.3.10
bxdistsq.ptline 2.5.3.3.11
bxfree_lmcache 2.5.3.3.6
bxfunctions.c 2.5.3.3
bx.get-chordend 2.5.3.3.4
bx_.geLdb pos 2.5.3.3.3
bx...getlbfrom_lm 2.5.3.3.8
bxgetIm_data.c 2.5.3.4
bx-getlm_grid.c 2.5.3.5
bxinit.c 2.5.1.2
bxmodelint.c 2.5.3.6
bx-newbvol 2.5.3.3.5
bxnew-poly 2.5.3.3.7
bxnew_round 2.5.3.3.1
bxnewstatveh 2.5.3.3.9
bxpoly-int.c 2.5.3.7
bxreset.c 2.5.3.8
bx-task.c 2.5.1.3
bxtrajectory.c 2.5.3.9
cal.c 2.2.3.4
calcpaths 2.2.1.16.2
checksum 2.2.3.25.11
CIG Host Mainline (UPSTART) CSC 2.2
CIG Software Structure 1.3
CIG-SIM Communication 1.2
cig_2d&setup.c 2.2.4.2
cig-comp_2d.c (compile_2d) 2.2.4.3
cigconfig 2.2.1.3.1
cig__config.c 2.2.1.3
cig_getmL2d.c (getmsg_2d) 2.2.4.4
cig_link_2d.c (linkup) 2.2.4.5
comp.c (setup-comp-start) 2.2.4.6
comparebuffers 2.8.4.2

Index-2

BBN Systems and Technologies 120TX/T CIG Host CSCI

concatmtx.c 2.2.1.4
confignode-setup.c 2.2.1.5
CSC Descriptions 2
ctoi 2.2.3.25.14
cup 2.6.16.1
Database Feedback (LOCAL_TERRAIN) CSC 2.4
Database Management (ROWCOLRD) CSC 2.3
datatype.c 2.8.1
db_mccsetup.c 2.2.3.5
dcodedrl lw 2.6.15.5
debug.initdr.c 2.2.3.6
ded_modeltrace.c 2.2.3.7
Disk Space Requirements 3.1
display 2.6.1.2
display-packet 2.6.15.3
double_bot 2.6.16.4
doubleoff 2.6.16.5
double-top 2.6.16.3
downloadbvols.c 2.2.3.8
dr 2.2.3.9 1
dr.c 2.2.3.9
drawjline.c (setup-drawjline) 2.2.4.7
drisokay 2.2.3.9.2
DTP Command Generator 2.2.2
dtp-sompiler.c 2.2.2.1
dtp_emu 2.6.1.1
dtp_emu.c 2.6.1
dtpfuncs.c 2.2.2.2
dtp_malloc 2.2.2.2.5
dtp_malloc_init 2.2.2.2.6
dtp_travl.c 2.2.2.3
dtp_trav2.c 2.2.2.4
dynamicaaminit 2.2.1.1.4
exception.asm 2.8.2
excep-init 2.8.2.1
file_control.c 2.2.3.10
filltree 2.2.1.6.1
fill_tree.c 2.2.1.6
find_fn.c 2.2.3.11
flea.c 2.7.1
fleadecode_data.c 2.7.2
flea__encodedata.c 2.7.3S flea init.cigsw.c 2.7.4

Index-3

BBN Systems and Technologies 120TX/T CIG Host CSCI

flea..update-pos.c 2.7.5
Force Processor (FORCE) CSC [120TX systems only] 2.8
force.asm 2.8.3
forcetask.c 2.8.4
free 133 2.5.1.4.2
free configtree 2.2.1.3.3
ftoh 2.6.1.6
fxbvtofl 2.2.3.12.1
fxbvtofl.c 2.2.3.12
fxbvtofl_020 2.2.3.12.3
fxbvtofl-dart 2.2.3.12.2
generic-Im 2.3.1.2
generic-Im.c 2.3.1
getch.c 2.2.1.7
getlmdp 2.3.2.1
getmatrix 2.2.3.19.10
getside 2.3.2.2
get-binary-data, 2.2.3.25.12
get-char 2.2.3.25.13
get-lIm 2.6.1.9
get_record 2.2.3.25.8
get-thing.c 2.2.4.8
gossip 2.6.15.2
gossip.c 2.6.15
gos_120tx.c 2.6.2
gos...atp-c 2.6.3
gos-bal-query.c 2.6.4
gos...db-query 2.6.5.1
gos-db-query.c 2.6.5
gos-displayjdb-info 2.6.5.2
gos-drl I Lquery.c 2.6.6
gos-flea-if.c 2.6.7
gosjlea.pptions.c 2.6.8
gos fly-c 2.6.9
gos-locate.c 2.6.10
gos...memory.c 2.6.11
gos-madel.c 2.6.12
gos polys.c 2.6.13
gos...single-step 2.6.15.6
gos...system.c 2.6.14
gsp-io.c 2.8.5
gsp-ioc.Lread 2.8.3.4
gsp-ioctl-write 2.8.3.3

lndex-4

BBN Systems and Technologies 120TX/T CIG Host CSCI

gspload.c 2.2.3.13
gspread 2.8.3.2
gspwrite 2.8.3.1
gun-overlays.c 2.2.3.14
hexdisplay 2.6.1.5
How This Document Is Organized 1.4
htof 2.6.1.7
hwtest.c 2.2.3.15
hxflt 2.6.1.4
id_4x3mtx 2.2.3.19.6
id matrix 2.2.3.17.6
initsconfigtree 2.2.1.3.2
nit-dtp-stacks 2.2.2.2.4
init-generic-lm 2.3.1.1
mit-ports 2.8.3.5
mitstuff.c 2.2.4.9
Introduction: CIG Host CSCI 1
loaddbase.c 2.2.3.16
loadmodules 2.3.2.4
loadmodules.c 2.3.2
localterrain 2.4.3.2
locter.c 2.4.3
m lgun-overlay 2.2.3.14.1
m2_gun-overlay 2.2.3.14.2
main 2.2.3.26.1
main 2.3.3.1
main 2.4.3.1
main 2.6.15.1
main 2.8.4.1
make-bbn.c 2.2.3.17
make cal overlay 2.2.3.18.1
make_m l_overlays 2.2.3.14.3
makem2_overlays 2.2.3.14.4
make-pnt 2.2.3.19.1
matrix2 2.2.3.19.11
mat-dump.c 2.2.1.8
matmult 2.6.1.8
Memory Requirements 3.2
mkcal.c 2.2.3.18
mkmtxnt.c 2.2.3.19
modelmtx.c 2.2.3.20
mtxcpy 2.2.3.19.12S multmatrix 2.2.3.17.5

Index-5

BBN Systems aaid Technologies 120TX/T CIG Host CSCI

mult_4x3mtx 2.2.3.19.9
mxerror.c 2.5.4.1
mxopen.c 2.5.4.2
mxpeek.c 2.5.4.3
mx-push.c 2.5.4.4
mx-skip.c 2.5.4.5
mx.wcopy.c 2.5.4.6
nmitype.c 2.8.6
opendbase.c 2.2.3.21
opended.c 2.2.3.22
outdisplay 2.6.1.3
oval-rect.c (setupovaljrectangle) 2.2.4.10
overlaysetup.c 2.2.1.9
parser 2.2.1.12.6
pixmult 2.2.3.18.2
poll-ready.c 2.8.7
poiy.c (setup-poly) 2.2.4.11
pop.node 2.2.2.2.2
power 2.2.1.6.2
process vflags.c 2.2.1.10
process..vppos.c 2.2.1.11
procscmd.c (process-command) 2.2.4.12
prt-mtx 2.2.3.17.1
pushnode 2.2.2.2.1
qassign 2.1.1.2
r4mat-dump 2.2.1.8.1
r4vec-dump 2.2.1.15.1
r8matjdump 2.2.1.8.2
r8vec-dump 2.2.1.15.2
rcfuncs.c 2.2.2.5
rcl_command 2.2.2.5.11
rcl_component 2.2.2.5.12
rcldata 2.2.2.5.13
rclinit-adrs 2.2.2.5.6
rclinitstack 2.2.2.5.1
rcllblcmd 2.2.2.5.10
rcl-patch adrs 2.2.2.5.4
rcl-pop 2.2.2.5.3
rcl.-push 2.2.2.5.2
rcl rtn adrs 2.2.2.5.7
rcl set cntlbl 2.2.2.5.9
i clset errptr 2.2.2.5.5
rcl setlabel 2.2.2.5.8

Index-6

BBN Systems and Technologies 120TX/T CIG Host CSCI

rcl-stuff data 2.2.2.5.14
read_configfile 2.2.1.12.1
readconfigfile.c 2.2.1.12
read_stuff.c 2.8.8
read_watch 2.2.3.25.2
Real-Time Processing 2.2.3
REAM4_fscanf 2.2.1.12.4
Resource Utilization 3
restorecur 2.6.16.8
returnaamnptr 2.2.1.1.2
rotatex 2.2.3.17.2
rotate_x_nt 2.2.3.19.2
rotatey 2.2.3.17.3
rotateynt 2.2.3.19.3
rotatez 2.2.3.17.4
rotate z nt 2.2.3.19.4
rowcolrd 2.3.3.2
rowcolrd.c 2.3.3
rtt.c 2.1.1
savecur 2.6.16.7
scalemtx 2.2.3.19.7
scroll-reg 2.6.16.9
senddata 2.2.3.25.9
s g 2.6.16.2

rnulation.c 2.2.3.23
ve133_functions.c 2.5.1.4
,e133_malloc 2.5.1.4.1
d 2.2.3.25.7

int 2.8.2.2
S d-Alone Host Emulator (FLEA) CSC 2.7
st. watch 2.2.3.25.1
stc ,; 2.2.3.24
sto watch 2.2.3.25.3
stri -.c (setup-define-string) 2.2.4.13
STRINGfscanf 2.2.1.12.5
string-tojnt 2.2.1.12.3
support.c 2.2.3.25
swapaxis 2.2.3.19.5
sys-up.off 2.2.3.25.17
sysrt'pjon 2.2.3.25.16
system 2.2.3.25.6
syst- --i_aam_init 2.2.1.1.3
s_step 2.6.15.4

Index-7

BBN Systems and Technologies 120TX/T CIG Host CSCI

Task Initialization (RTI) CSC 2.1
tassign 2.1.1.3
templatesinit 2.2.3.26.2
testgsp.c 2.8.9
text.c (setupjtext) 2.2.4.14
The CIG 1.1.2
The Simulation Host 1.1.1
The Simulator 1.1
translate 2.2.3.19.8
unbf-getchar 2.2.3.25.15
updatefov 2.2.1.13.1
updatefov.c 2.2.1.13
update-rez.c 2.2.1.14
upstart 2.2.3.26.3
upstart.c 2.2.3.26
User Interface (GOSSIP) CSC 2.6
vec-dump.c 2.2.1.15
verdata 2.2.3.25.10
Viewport Configuration 2.2.1
viewport_init 2.2.1.16.3
viewportsetup 2.2.1.16.1
viewport-setup.c 2.2.1.16
viewspace_mtx 2.2.1.13.2
vtlOO.c 2.6.16
whatdirptr 2.3.2.3

whatnode_on_stack 2.2.2.2.3
window.c (setupdefinewindow) 2.2.4.15
WORDfscanf 2.2.1.12.2

1idex-N

