AD-A244
H"III)IlH’ll'l’l/’llllﬁlﬂ!I"’H"Hll/

SOFTWARE DESIGN DOCUMENT
CIG Host CSCI (9A)

June, 1991

Prepared by:

BBN Systems and Technologies,

A Division of Bolt Beranek and Newman Inc.
10 Moulton Street

Cambridge, MA 02138

(617) 873-3000 FAX: (617) 873-4315

Prepared for:

Defense Advanced Research Projects Agency (DARPA)
Information and Science Technology Office

1400 Wilson Blvd., Arlington, VA 22209-2308

(202) 694-8232, AUTOVON 224-8232

Program Manager for Training Devices (PM TRADE)
12350 Research Parkway

Orlando, FL 32826- 3276

(407) 380-4518

92 1 A 064

92-00261
NSRRI

APPROVED FOR PUBLIC RELEASE
DISTRILILTY N i L INITED

SOFTWARE DESIGN DOCUMENT
CIG Host CSCI (9A)

June, 1991

Prepared by:

BBN Systems and Technologies,

A Division of Bolt Beranek and Newman Inc.
10 Moulton Street

Cambridge, MA 02138

(617) 873-3000 FAX: (617) 873-4315

Prepared for: ; S
Defense Advanced Research Projects Agency (DARPA) T -
Information and Science Technology Office J By

1400 Wilson Blvd., Arlington, VA 22209-2308 POt L
(202) 694-8232, AUTOVON 224-8232 —

Program Manager for Training Devices (PM TRADE)
12350 Research Parkway

Orlando, FL 32826-3276

(407) 380-4518

APPROVED FOR PUBLIC RELEASE
DISTRIBUTIONM UNLIMITED

REPORT DOCUMENTATION PAGE OPMNG: o704 0188

PﬂcvmehMakmdeﬂmunlwhm 1 hour pet teeponse, Inchuting e me e revigwing Patuctons, se .Moﬁwﬁ.mmm“
mantaneyg e drta needed, and reviewing the ool s.? it urden esemaw mmdn«loﬂmd
:m:‘.&m :;dwa‘-;‘mzm a.n::: mm;'ww oco;:: Reporw, 1218 Rm Devis Highway, Suiw 1204, AMtingwon, \ﬂtuwm -
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1991 Software Design Document .
4. ITLEAND SUBTITLE $. FUNDING NUMBERS
Software Design Document CIG Host CSCI (9A)
Contract Numbers:
6. AUTHOR(S) MDA972-89-C-0060
) MDA972-89-C-0061
Author not specified
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Bolt Beranck and Newman, Inc. (BBN) Re NUMBER
Systems and Technologies; Advanced Simulation Advanced Simulation #:
10 Moulton Street . 9112
Cambridge, MA 02138
9. SPONSORINGMONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. g;ggg‘?almaim"a ITORING AGENCY
Defense Advanced Research Projects Agency (DARPA DARPA Report Number:
3701 North Fairfax Drive None.
Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

X

None

12a. DISTRIBUT ION'AVAILABILITY STATEMENT 120. DISTRIBUTION CODE

Distribution Statement A: Approved for public release; distribution is unlimited.

Distribution Code:
A

13 A*TRACT (Maximum 200 words)

A Simulation Network (SIMNET) project Software Design Document that describes the Computer Image
Generator (CIG) Host Computer Software Configuration Item (CSCI number 9A) of the SIMNET hardware and
software training system for vehicle crew training and operational training.

~
\
4
14 SUBJECT TERMS 1. NUMOER OF PAGES
SIMNET Softwarc Design Docuinent for the CIG Host CSCI (CSCI 9A). 76 PACE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIF ICATION 20, LMIT,
O'E‘ REPORT OF THIS PAGE OF ABSTRACT LIMITATION OF ABSTRACT
Unclassified Unclassified Unclassified Same as report.
NSN 7540-01-280-3500 Standard Foﬂnm

rmab-u,msu ™

BBN Systems and Technologies 120TX/T CIG Host CSCI

1

Table of Contents
INTRODUCTION: CIG HOST CSClcootreiinrrcnearienennsseesesescnssnsesssssessossesssossessens 1
1.1 THE SIMULATOR.........oicirirrecreceecereninninressessssssesessessecnsssasssonsenssssessssssssssnsanes 1
1.1.1 The Simulation HOSL.......cccocvevuiriirinirriensinsmiicnsisecnesvessesssesnnnnas 2
112 The CIG.....iieericiiienieneneeneseessesnssssossostsnesssssssessessssssasessnssnense 2
12 CIG-SIM COMMUNICATION.....ccounirrrrirtrreereesnenaecessressesseesassesssssasssessssssesns 2
1.3 CIG SOFTWARE STRUCTURE..............ovtereerrienrinnecrnenneniessssneiesnsssenconne 3
1.4 HOW THIS DOCUMENT IS ORGANIZED........ccccesureumseersenunsicrierrnrrnnsrernnas 4
CSC DESCRIPTIONSuiiieereeneecnnsonntsteniansaeseassssesnesssessssesanssssesessesssssssssssssssssssesns 6
2.1 TASK INITIALIZATION (RTT) CSC.....corveiriniritienrinetiiscereaenneseisines 7
P28 U8 B ¢ 2 2O OO O U OO RO 7
2.1.1.1 APINIL.ccciniiiiiiiteceeenr et satesiessstsssasssessb e sssssabesannes 7
2.1.1.2 ASSIZM ..civiiiriiireerernereeeeeseestesstsaesssnensesrsessassaennesssnaeen 8
2.1.13 BASSIEN ..couiiiireeectecrersr et easeseeeaasssessasessessassesssesnsesnsons 9
2.2 CIG HOST MAINLINE (UPSTART) CSC.....cccoontiiinteninreeneeeesnscrriecsssenes 10
221 Viewport CONfIGUIALIONcccceveeerreeneereeerecrneeensenseseessesssssessseenses 12
2.2.1.1 BAM_MANAZET.C....cecvveerreenereeseressaaesseesessssesmsasersesssessones 16
22.1.1.1 aam_mMaAllOCceeveeceenersricneieeeneicsseriesssssessiss e 17
22.1.12 TEtUIM_2AM_PLTecvereneennineeneensennens 17
22.1.13 System_aam_init.........ccceevvemvcnrinnnncns 18
221.14 dynamic_aam_init..........cccevvrireniennnnnes 18
22.1.2 bbNCtype.C ..ot 19
2213 CIE_CONFIZ.Cunrnririnrirereeneracniaeneesss e essesnsse st anes 19
2.2.1.3.1 Cig_CONfig....corinirrenicincirinecieiinanen 19
22132 init_configtreecccvvvieimninnnniennnne 21
22133 free_configtreecccceeveveecvviinnnencne 22
2214 CONCAL_MIX.C .eovvrirnciiseenineesneiseciosenesssesssessrnsossnsssasne 22
2.2.15 confignode_SEtUP.Ccccevveirurnicrinccriniiisisseeceennacns 24
2216 fIll_trEE.C oottt snerne s saseeens 25
2.2.1.6.1 fIIl_Iree ..ccvvereeeieveeenreennee s nnaceneeseeennee 25
2.2.1.6.2 1107 RO 25
22.1.7 BEICHLC eiiiiieccrcecre et rrt e s e saeeseen et st st s on 26
22.18 MAat_QUMP.C.....ooreeecervirniinieeness s sssseesss et esssae s eane 26
2.2.1.8.1 rdmat_dumpcccceeiiicniiinininininnnnee 27
22182 r8mat_dumpcoceevveenennenienncnaenee 27
2219 OVETIAY_SCLUP.C ceveveerrerrresrersesaserssansseesasessassnssnsrsssessanes 28
2.2.1.10 Process_vflags.C ...ocvevereercninininnenere s 28
22.1.11 PTOCESS_VPPOS.C eveererrrnricnasmessneserssessessessassasssssssssssssans 29

BBN Systems and Technologies 120TX/T CIG Host CSCI
22.1.12 read_configfile.C......covnninneninmcnnicticinneccsecneenene 30
2.2.1.12.1 read_configfilecccceevnviivreencenennne 31

22.1.12.2 WORD_fscanf.........cceecvenrenrunrereennene 32

2.2.1.123 String_to_intccoveeveveeineniieeecenennene 32

22.1.124 REALA _fscanf.........ccccocceveveneccennennnee 33

22.1.125 STRING_fscanf..........cccoevereeereecuecnnes 33

2.2.1.12.6 PATSET c.ecvvencranrareareneeensesessansesesaceseoseses 34

22.1.13 13) o7 E-LTN {0 X o0 OO 34
2.2.1.13.1 update_fov.......cccvevnniniinriencccnnnnnen 34

2.2.1.13.2 VIEWSPACE_MUXeevurererenreeisassassneencenes 35

22.1.14 UPALE_TEZ.C .ccovvvenrrnecnirirnreesneeeesissasssenneeseensesscesssans 36
2.2.1.15 VEC_AUMP.C .ottt sessessnsssens 36
2.2.1.15.1 rdvec_dump......ccceeeverecennercerneecreesennns 37

2.2.1.152 r8vec_dump.......ccccrvrceeeniicnenceeneenee 37

2.2.1.16 VIEWPOTT_SCIUP.C «.covrurrninrirnsiencsreneninsisesecsesesnesnsssssnans 38
2.2.1.16.1 VIEWPOTT_SCLUP «.covveevenvermearenneraenernsones 38

2.2.1.16.2 calc_paths........ccoceecenreienienrennenseecennns 39

2.2.1.16.3 VIEWPOTT_INit...ccvereerrenernrneiaeereeeraenens 39

2.2.2 DTP Command Generator........ccccceeerrureriesureseeesseesessscraesnarsssesaessseens 41
2221 Atp_COMPILEL.C vt 42
2222 AP_fUNCS.C vttt cscncsisnessseeseas 43
22221 push_node.....c.ocevievnniiiinnennennnncnenenns 43

22222 POP_NOALceerrerrieeeeeeerenaesseaseeenens 44

22223 what_node_on_stacKccccoeereerinnnnne 44

22224 init_dtp_stacks.....ccccoocerveninnieicnnecnen. 45

22225 dtp_malloc......cooeveeveneeenieeiieeeeeeen 45

22226 dtp_malloc_init.......ccceveererererceereennens 45

2223 AP_rav1.C .ottt 46
2224 AIP_LrAV2.C ettt et er st 47
2225 TCEUNCS.C c.veeerrcreerneeceesseccssocuensensaeeseesseessesssesssesansmesesens 49
22251 rel_init_Stack......cccoccecieninninneencnnenne 50

22252 TCL_Push ..ot 50

22253 TCL_POP..cniriiiirinictiisinccet et 51

22254 rcl_patch_adrsccoceevviniecvenninnnenee. 52

22255 TCL_SEt_ETTPI ...ceeeeeeenreeene e caeees 52

22.2.5.6 rel_init_adrs......c.ccocevvininiinnennencnen. 52

22257 rel_rtn_adrs........coeeeenicnniinnienenninne, 53

22258 rcl_set_labelcccocoveciiiininvenrenrnenne 53

22259 rcl_set_cntlbl ..o 54

222510 rcl_Iblemd......ocii Ll 54

222511 rcl_command...........coceenrieninnnniinnnnne 56

2225.12 rCl_component.........coceeeeerieiiveninsecene 58

2225.13 rel_data.........oooeceeeceiiee 59

ii

BBN Systems and Technologies

120TX/T CIG Host CSCI

223

2.2.2.5.14 rel_stuff_data........c.coevveeeeeenincniecinnnnne 60
Real-Time Processingcoccoievvcreecernnseisnnccsensennrensesrennesesssenens 61
2231 aa_init.c (active_area_init)ccceeeeeerreerevseeecneeens 62
2232 DAl_TOULINES.C .ccveeinrerrenrreeerreeeneseeesesesssessesseessnesseessones 63
2233 DUS_GITOT.ASIMN ...ocicuiriciiiecnerenneeesenececnesecrnnsensnsessnneas 63
2234 CALC creiirreeecenenstteieecctee s e ee s ase s sare e nae s aneersaaeseens 63
2235 db_MCC_SEIUP.C .ouirenicnrcnrnenenenientieneeeseeseassnsecasens 64
2236 debug_initdr.Ccovveveeveerreceenrireesrnreeseeeseeneeresesneene 66
2237 ded_model_trace.cccceeeevrerrreeneersecnrensennnencseeranns 66
2238 download_bVOIS.Ceoveerrerrereereerneeerrnesraeneneeseens 67
2239 Ar Gttt rtertr e caesaee e eestesnesseesaeessesneesnssssnnnssins 68
2.239.1 L+ L SO U OU PO SRR 68
2.239.2 dr_is_okay....cccoveereereerenceneenieneennnnnenee 68
2.2.3.10 file_CONMIOL.C .eevieerrerrieeecteeecreeccree et e v 69
2.2.3.11 fINA_FN.C oo 71
2.2.3.12 EXDVIOLL.C .ttt e e e earens 71
2.2.3.12.1 FXDVLOS]....oecveecreereeeeceerececre e 71
2.2.3.12.2 fxbvtofl_dart.........coceeeeereenenreeneerennns 72
2.23.12.3 fxbvtofl_020....cccuvomreereeeeeiecrenrrecrenen. 72
22.3.13 ESP_10ad.C o 73
22.3.14 BUN_OVETIAYS.C..oeovrrieienirnienterenreeee et e sneeseeeees 74
2.2.3.14.1 ml_gun_overlay.........ccccceviiiuerenncncn. 74
2.23.142 m2_gun_overlay.......ccceecerrvinenenrennnes 75
223.143 make_m1_overlays.........ccccoveeienercncne 75
2.23.144 make_m2_overlays........ccoccevrrenrenennnene 76
2.2.3.15 RW_LESE.C covrieeeineeriieceer e eeescnessaesereeseesseeeraessersecssesses 77
2.2.3.16 102d_dDASE.C ...ccvvirereerereerereceectenee et et eane 77
2.2.3.17 MAKE_DDNLC ..c.veiretrecrrecrecreceeceee et caeseneenns 78
2.23.17.1 PIE_MEX o.eeiveniieineieneensseececnenanssesseesees 79
2.23.17.2 POLALE_ X...oeeeerreerenneeeieneeeenseensasesnsaensnes 79
223.17.3 FOLAE_Y ..ouveeenernrenuenseeccnnntsnsrosesneessnssens 80
2.23.174 TOLALE_Z...eeeeeeeeeernrrecneaesseeessaraesnsenesens 80
2.2.3.17.5 $1010) £ 10 F:11 o b SRR 81
2.2.3.17.6 110 8 117:11 o'/ ORI 81
2.2.3.18 MKCALCoiecrvereeecriereresseesneeseessseesransreesesasesssessssanns 82
2.2.3.18.1 make_cal_overlay.........ccccovurnernreenne 82
2.23.18.2 PIX_MULL oo crreneees 83
2.2.3.19 INKMEX_NE.C...ceveeereenreersaeessecesesessuesssesessasssssssseessesssssens 83
2.23.19.1 MAKE_P_Nt...curirnreeernincicneneeesarneens 83
2.2.3.19.2 TOMALE_X_MNb...oceevererrreereeesenesrnessanesseesens 84
223.193 TOMALE_Y_Ni..oeeriniiniiiinrennenienenenanaeneene 85
2.2.3.194 TOMALE_Z_ Ml..cvcereerneieeneeenneeeneeeeesseesnnes 85
2.23.19.5 SWAP_AXIS c.eeeeeeerrerersesnessenssassessensesees 86

iii

BBN Systems and Technologies 120TX/T CIG Host CSCI

2.23.19.6 Id_4X3MEX ...t 86

2.2.3.19.7 SCAlE_MMX....ccurireernrcrenrecenneeserreernannens 87

2.2.3.19.8 ranslatecooceeveecieeenieeenennineeennnenee 87

2.2.3.199 mMult_4X3MtX ..coveereeeererererereeeeceennennas 88

2.23.19.10 EEMAIX...couccuieeereenerernrerereenarsesscnsansenne 88

2.23.19.11 mAatriX2 ...ooiveereecereneenesernecaseseesesrenee 89

2.23.19.12 MIXCPY.cverererrrerreraseeeesesnensessesesseasenns 89

2.2.3.20 MOAEI_MX.C .occveereirerreereecternirenseeseseeaesssesesasssassasnnans 90

2.2.3.21 OPEN_ADASE.Ccuererrirrrrenrnenreraeeeeecenereessnsnssnesssesnnne 90

22322 OPEN_AEA.C ..cuvennrerneiirctierenenseeeeceenaesaessessassesasssenes 91

2.2.3.23 SIMUIALON.C ..vceeiiiiricniieenneceeccsneseserte e ssesassesstnaennas 93

2.2.3.24 SUAIO.C .evirieniiriiirnesennsesesensaseeneenessnestestessonsonssnanseennanses 96

2.2.3.25 SUPPOTL.C .covveinrirrrnnrenneessesssnessasarsessssassnsessssasssnesssessenens 96

2.2.3.25.1 Start_watChcoceevvniiverineenceceeneene 97

2.2.3.25.2 read_watChccccovvmiveenrneeecrreenins 97

2.23.253 stop_watCh.........ccocevevvminencninninncne 97

223254 DUS_EITOT.....ccectieirecieceenneeseceeeeneaaea 97

223255 DUS_EITOT_W.....cccevreeeererereneenreeernaeenees 98

2.2.3.25.6 SYSIEIM..cuvinnireincrersteesesneeressnennessesenanes 98

2.2.3.25.7 S10Ad ..t 99

2.23.258 £Et_TECOTd......ucrireeiiinircnietceeenennee 100

223.259 send_data.........ccoceeveeninennenneenennnnnnens 100

2.2.3.25.10 ver_data.........cccceeeecrerreneenenieeeneenans 101

2.23.25.11 check_sum.......c.coocerececeecenrennerernannen 101

2.2.3.25.12 get_binary_data.......c..ccoereeerreccnnne 102

2232513 get_char.......cceeeceieencee e, 102

2232514 ClOL..ccccervenerrececrececreneesseeesassesseseenes 103

2.2.3.25.15 unbf_getchar.........ccccoorevenrncrenenannna 103

2.2.3.25.16 SYSTUP_ONcuererecerreerercreenennsseennenes 103

2.2.3.25.17 sysrup_off......cccoueenerenrncnerrnnns 103

2.2.3.26 UPSEATE.C ..overvtrnaneereasseessneamaeseseressnesssnensesssserssssssesssnas 104

2.2.3.26.1 TAIN..cueenceiirieeesreereeresneseeeseesensessenas 104

2.2.3.26.2 templates_initcccccuevcncnnnennincnnes 104

2.23.26.3 1] 113 7: ¢ TR UR TR 105

2.2.3.264 bootup_slavel33........c.cccoviiiincnnnn. 106

2.24 2-D Overlay Compiler [120TX systems only]........c.ccceerenrruannne. 108

22.4.1 bit_blt.c (setup_bit_blt)cccoveevevrrercrierceeeeane. 113

2242 CiZ 2d_SEUP.C ..evvereeeeccerrrnireninrenessesreessesanesansans 114

2243 cig_comp_2d.c (compile_2d)ccccevevrevrcnevennnnnnn. 115

2244 cig_getm_2d.c (get_msg_2d)ccceeerereruerencneennnnnne 115

2245 cig_link_2d.c (linkup)c.ccoceveveerrenrmcneenencneserinnne 116

2246 COMP.C (SEUP_COMP_SLATT)ceevveveeervenseerernerivennns 117

2.2.4.7 draw_line.c (setup_draw_line)ccccceeevcecenennnnnnn 118
iv

BBN Systems and Technologies 120TX/T CIG Host CSCI

23

24

2.5

22438 EEL_hINE.C ottt saevean e 119

2249 INIE_STUEELC oot esrer e ssee e 120

22.4.10 oval_rect.c (setup_oval_rectangle)coeeeeueurennns 120

224.11 POLY.C (SETUP_POLY) .eooeririreenerreceneeeeeneeesesesanenane 121

224.12 proc_cmd.c (process_command)ccoceeerveeenee 122

2.24.13 string.c (setup_define_string)c..cccceecrremrieerereeeas 123

22414 1EXL.C (SCTUP_LEXL) .cccccriicrnnrerrnrecsrneenssneesconeeearaneassnnas 124

224.15 window.c (setup_define_window)ccccccveeuenen 124
DATABASE MANAGEMENT (ROWCOL_RD) CSC.......cccoevvmmvrveireeenne 126
23,1 BENETIC_IMLC .ottt ssesaae et ssent e ssssssnesesessenennens 127
23.1.1 INIt_generic_IM........cocovivieeeineeeeie e eene e 128

2312 EENETIC_IMucciniiieierieecenrereeseneese e e srenaeeneseesens 128

2.3.2 10ad_mMOAUIES.C..ouuiineerecrneriecrectrereeecteesecseeacestesssesaesessessssernes 129
23.2.1 EEUMAP ...t 129

2322 BOLSIC.... ottt et 129

2.3.23 WhatAIrPLT ...ttt ereens 130

2.3.24 load_modulescccueerievrieirerrieireie e 131

233 TOWCOL_TA.C..ovriiviiniirrecsecnnnecneseeessesssecsssecssessssessssesssessssssssesssesnn 132
2.3.3.1 INAIN.....oiieeererueeireesnesseesresssesseesssssserssersessssossessresnnnses 132

2332 TOWCOL_TA c.ueeniieiricninenieeeeeeenaece e aseesaessnecsnensnns 132
DATABASE FEEDBACK (LOCAL_TERRAIN) CSC........ccooorvreveerneennene. 134
2.4.1 bal_get_db_pPOS.C ..coceienrireieneeerenecestsete e sessne st sa s nens 135
242 bal_get_Im_grid.C ...cccovevvverirririccrene e ereaeanens 136
243 JOC _LBT.C e cteceercceesenne e e enessessesesessessesesssntessenemsesesaennenten 136
24.3.1 INAUMN....cveeeereereereereeraesersressersessessesseossessessonsessessossessons 137

2432 local_termain..........coceeevrreeeriieeeereeesree e esresessneseessene 137
BALLISTICS PROCESSING (BALLISTICS) CSC...uuoveeveeeeeeeeeeeeeereennes 139
251 Ballistics Mainline.......c.cooueeiviicinieneeeneiceiieceeneessessressreeceessessnene 144
25.1.1 bx147_main.c (Main)cccceeeeeeeeeernereeereereeieevenneenens 144

2512 DX_INIEC ceiorieniiiireeeceeceeeereeeceesseeresaresseesesesse s ssnnan 144

25.13 DX_LASK.C coeeririeerentiiceeeisieneiet et et saseenseeanens 144

25.14 slave133_funCtions.C.......coeeveeerevrenrerrneeseenrcesseesneenns 146
25.14.1 slavel33_malloc........cccceeervenneennene. 146

2.5.14.2 freel33...... e 146

2.5.2 Ballistics Interface Message Processingc.coceerervranvenrvenennes 147
25.2.1 b0_2am_centroid.Ccoeoveevrueerenseerernrerunsvrsseenene 147

25.2.2 b0_2am_SW_COMET.Cccceeveeererireirrernrennneneienessnsennen 148

2.5.23 b0_add_static_vehiCle.Ccouvuvereevreerrerrrerreenennen. 148

2524 b0_add_traj_table.Cccoeeevrieveiiminrerecrieesieeennne 149

25.25 b0_bal_config.ccccovvvevenrrreiireereecerresrenereseene 149

25.26 bO_bVOL_entry.c ...cooereriteeeteecreectee e 150

2.5.2.7 b0_cancel_round.Ccooeeeeemnrrreneeeesneeeeesesrenene 150

BBN Systems and Technologies 120TX/T CIG Host CSCI
2528 b0_cig frame_rate.Ccoreirirvercnneneicneecnseseenenne 150
2529 b0_database_info.Ccceeecrirrveernereenerneneseeessenanes 151
2.5.2.10 b0_delete_static_vehiCle.Ccoovvviierineereecrirenenens 151
25.2.11 b0_delete_traj_table.Ccccccevvcemrmrceennennrenreereeenens 152
2.5.2.12 DO_dumMmMY.C vttt 152
2.5.2.13 bO_error_detected.Ccoveeveerrmecnrernenrreeseneesenennns 152
25.2.14 bO_iNappP_MESSAZE.Ccoverervererirenruerivenncssesnsessonanes 152
25.2.15 bO_IM_1ead.C ccccoeeeriinrieniiinceerrceteceneseeeesaeeeaaees 153
2.5.2.16 b0_model_directory.cccovreerverececirirenrererervacennen 153
2.5.2.17 b0_mOdel_eNtry.Cccoeeeeenrueerrreeneercnnenrneeseaessaeennns 153
2.5.2.18 DO_NEeW_fTrame.Cueeeirrreeereeeeccesrne s enenaees 154
25.2.19 DO_PIINLC ..ottt seeenssannes 154
2.5.2.20 bO_process_chord.cc.cccvineeverrenennneecenenceennne 155
2.5.2.21 bO_process_round.Cc.cceveeereevecceeneenacnneeneerseennes 155
2.5.2.22 bO_round_fired.Ccoceeeereemieiieeeeriecee e 156
2.5.2.23 bO_state_control.Cccooveeiiiiieiireeecirrecrreerreenanes 157
2.5.2.24 bO_Status_request.Ccoovvvveenininienieneccseeirennennnen 157
2.5.2.25 bO_traj_Chord.C ..ceocveeeeiecereiecrceeenteeee et 157
2.5.2.26 DO_traj_entry.C ..ouveeeeeeeeceneceteee sttt eeesres e 158
25.227 b0_undefined_meSSage.cccccovvrverieerrcrneennecnncennnne 159

253 Ballistics Intersection Calculations.........cooeieecicnenciieeieeensenennnnns 160
25.3.1 DX_BVOL_INE.C coveennrieieieireeeecteeeeecerreeeeesnre e cnaeseanes 160
2532 bX_ChOrd_InterseCl.Ccccomrveeicrrereerenineeeeecnreecennes 161
2.5.33 DX_fUNCHONS.C.eoeereireeicerenreriieenresseresneeenseecsaeessaesanss 162

2.5.3.3.1 bx_new_round.........ccceerurieiinrieiiniinnnn. 162
2.53.3.2 bx_delete_round........ccooeneenrinnnnen. 163
25333 bx_get_db_poscccverieinniinienienne 163
25334 bx_get_chord_end..........cccoveeeenna.e 164
2.5.3.35 bx_new_bvol........ccooeeeireiiiieene 164
2.5.3.36 bx_free_Im_cacheccceouveevuvnennnn. 165
2.5.3.3.7 bX_new_polycccecerceeiimnirnrnceennennne 165
2.5.3.3.8 bx_get_lb_from_Im........ccceeninnnnnnne 166
2.5.3.39 bx_new_stat_veh........cccoeeerrvenvennnennns 166
2.5.3.3.10 bx_delete_stat_veh...........ccuenuen.n. 167
2.5.3.3.11 bx_dist_sq_pt_lineccccceeverrrennnnne 167
2534 bx_get_Im_data.cccoviiiiiiecn e 168
2.5.35 bx_get_Im_grid.C ..ot 168
2.5.36 DX_MOAEI_INL.C ..eveeeeeiiecrieeiececcnreecrte e e v 169
2537 BX_POLY_INL.C vttt 170
2.5.3.8 DX_TESCLC .ovveerreeeirricinreecinereniseressssessssnenessrsesssssssennes 171
25.39 DX_raJECtOry.C .ooveuriinriiiireirenciniesesene s secnseseanes 171

2.54 Ballistics Message Queue Processingcceecvvieenerencvcruecennunnnns 173

2.54.1 INX_EITOT.C ..eveeerreeiruerrersaeessssnsesssesessssenssnsesssnseesssesssns 173

vi

BBN Systems and Technologies 120TX/T CIG Host CSCI

2542 INX_OPEILC ..ovviriiuienneesnnessnessescaseesesssssesnasasasasasseessenss 173

2543 MX_PEEK.C oottt ettt 174

2544 IMNX_PUSH.C ..oviitiiiniitiintieninicse st entesneeseones 175

2545 MX_SKIP.C .covrrrnniirintiinicsnitinieninecsnessaessnsnnesessones 175

2546 INX_WCOPY.C .veerrirrirsreosucssusserssscssasessanseessssesssasosnssses 176

2.6 USER INTERFACE (GOSSIP) CSC......ooniviirinerccsinnreennserneressesseressansens 177
2.6.1 QP _BIMU.C ... rreceeencnuenneseeenanes e saeeseesessansessnestansessesssastens 180
26.1.1 AIP_EMU.....oiiiiiiicticniet et san e e enas 180

26.12 ISPIAY ..ottt e s 181

26.1.3 OUtdiSPlaYcccooeneieiiieieie ettt 182

26.14 RXFIE oottt 182

26.1.5 hexdisplay.......ccccuceininninninnienrneneene st 182

2.6.1.6 FION e s 183

26.1.7 REOS ...ttt 183

26.1.8 0o E: L8 11111 | S5O RS 184

2.6.19 B IMeeeiiiiciictecece et ceae et e 184

2,62 BOS_I20X.C cocercririeeceneniieeeneenenee st eteseestestes s et e e et seena s srasesraeaeans 185
2.6.3 OS_AIP.C corenrreerriicieeestetesaesnssnesaessesanesre e snne s e nsenes e entessasbessasssennens 187
2.6.4 £0S_DAl_QUETY.C ..cceecierirrinerreeeintisreesnerseaesnesnesteessessessassssnsssensenes 188
2.6.5 OS_AD_QUETY.C ..uuvieueerieeecerientertenteeeereessessessasssessessernesaesessassean 189
2.6.5.1 80S_Ab_QUETY ..ot eeente et 189

26.5.2 gos_display_db_infoccoeeeniiiiiincninniiinceene. 189

266 8OS_AT11_QUETY.C oottt e srenens 190
2.6.7 ZOS_fIEA_I.C couoerreereeieercceeceerete et s e erae et en e e senneneenan 190
2.6.8 £0S_flea_OPHOMNS.C ...oivruivenrrtrereneretrnreesesssnseeeeeseestenssasnsessssane 191
2.6.9 BOS_fIY.C ottt et sae e eaesa s e er s b nnes 192
2.6.10 ZOS_IOCALE.C ..oovuveeerrecrerrrrnseinrseesnnssssssesesssssssssasesasnsssssesasesssssnne 192
2.6.11 ZOS_MEMOTY.C ...cceiiernrnercrerenenencninenssencscsesssesesenssssssssasssesssssans 193
2.6.12 8OS_MOAELCcucueurererreereerererneereitre e e senaessbesssse s rs e s ererevenenn 194
2.6.13 BOS_POLYS.C weoveuirenmrrrrrrencniassesresasenessssesesesessssasases saesesssasessesesaseranee 195
2.6.14 BOS_SYSIEINLC ..ecveerrrerrereraereresesressasesessesassosesassasessessssassesesessrsnsesens 195
2.6.15 BOSSIP.Cuureriniririruiiaresssriasassasestssessesssessasasessssasesessassasasansessanssansnsens 196
2.6.15.1 MUcoieiireeeerenrenecsrennnsessessesessesessassessesnssessesseseanes 196

2.6.15.2 BOSSIP.cuiiuieeressietentiseeseniestisseseennsssrasesnsesessassnesaensan 197

2.6.15.3 display_packet.........ccoueurreercnererennenteneneenennneansennas 199

2.6.154 S SEEP teurenrenrersesrereentertesessseaesesna st sras st eeassase e nansseensans 199

2.6.15.5 deode_drlIw.....iinincniniiierceernncrse e snennns 200

2.6.15.6 £OS_SINEIE_SIEP ..eeeverrvireerretinereseernesesreeceeeasnessseneas 200

2.6.16 VEI0O.C..ouvueiriireeritisesnsaenenesestncnenenessseseasnssenenssansasasssssnsessasens 201
2.6.16.1 CUP cuiirierieneneenersusstessestennssssessoseeseensesasssssnessnsssessesossans 201

2.6.16.2 SET cetetirunsaenuenneenissassesatsnsnneseessassassesssessesessassessasssesaan 201

2.6.16.3 dOUDIE_tOP.....coiruiniirccetiintecere st e senee e eaes 202

2.6.164 double_bot.......coceeiriiieneniiince e 202

vii

BBN Systems and Technologies 120TX/T CIG Host CSCI

2.6.16.5 double_Offceorireieereeie e 202

2.6.16.6 DIANKccoueereenireneeeectestes e e e s see s sre e s st s e s 203

2.6.16.7 SAVE_CUT.....ueeereeereeereeersersnssseessseasnsesacasssasesssesnscssasses 203

2.6.16.8 TESIOTE_CUTvveereeereereeenersenseessseseesssessessnsssessasssnesnes 204

2.6.169 SCTOLL_TEE ..ceiivviriiiteeerrarenressientesneee e snestessesnnassanes 204

2.7 STAND-ALONE HOST EMULATOR (FLEA) CSC........ccccoirinirnirninnne. 205
271 IEA.C et reraceeeerer et e e srasesae et se s s s seenassasesa s et st s bnnaa 206

2.72 flea_decode_data.Cccocevreiivierienienreenennnesnseeeseee e essaeesesnes 207

2.7.3 flea_encode_data.Ccovrierencinicircniinnnnrininiiiite s saennees 207

2.7.4 flea_init_Cig SW.C ..ccooiviiiriieciiincninene st e s nenes 208

2.7.5 flea_update_POS.Ccccovrirrmerennerneesenruisiisissessisissiossisssssnsssesssenennes 209

2.8 FORCE PROCESSOR (FORCE) CSC [120TX SYSTEMS ONLY]......... 210
2.8.1 dAlA_LYPE.C .ecoreirreerrnirtenineseeersesnesresesanese st s b sa s en s s srn s 212

2.8.2 €XCEPUOM.ASIM....cocuireirriieiiriennriaieseeersesessessnessssssse st s e cssesasesnnesanens 213

2.8.2.1 EXCEP_INIL c.cveiiieiieenns ctecreetent sttt eceneeanens 213

2822 SPUT_INE...eieueinieeecenteneseeneeseeensssessesnsseesnsseessesssssssssons 213

2.8.3 fOTCE.ASIM ...ceecereieeieeerceeecreenrneaaeeeseessrassaessonsarssasssessnnessnssnnsansessosess 213

2.8.3.1 BSP_WIILE ...ueiereerreerennreeeesstansesssesnssnnssssennessesssessenses 214

2.8.3.2 ESP_TCAA ettt eece e e enre st ene 214

2.8.33 BSP_IOCU_WTIE ..ot criene e e e saeeees 215

2.8.34 ESP_10CHL_Teadcveiiicrerrereee e 215

2.8.35 INIE_POTLS...vneiiriiiiiiirieerereeseeeecansessnneescrsesssenesrssesessees 216

2.8.4 fOTCELASK.C ..eoirreiiictiiiere e seecrae e e s seeesnas e ee s st ea s s sas s a e 216

2.8.4.1 INAIN . ceeioreeieerieenrrereeeeeseesesassssresssessessessesseenesseesesnsonses 216

2842 compare_buffers.........ccoceeceeenrereennecnsencnecnecnecennes 218

2.8.5 EBSP_I0.C ettt sas e bbb 218

2.8.6 NIM_LYPE.C coirierreeerececeneniesrneseenessesesasessesesessesassessassssssesssosassasnses 219

287 POL_TEAAY.C oottt s 219

2.8.8 1ead_StUFF.C et 220

2.8.9 HESI_ESP.C coercercrcrcrrrin sttt sere e e ettt et eb e sa et sane b s 220

3 RESOURCE UTILIZATION........ooriienieieniiirnesnrcnasaeseesssnessesaessessesssensesseensosssnsnas 222
3.1 DISK SPACE REQUIREMENTSccoeriirrnnrcieseciensstssarsssesesesseensnes 222
3.2 MEMORY REQUIREMENTS..........covrerreerenenncinestonnnseessnieeesessessanes 222
APPENDIX A: SYSTEM INCLUDE FILES............ccoenirteninrneneeceesnsssecsssisosessssnens 223
A1 BALLISTICS. H ... eeereeenecetreneecsesneesesnnesessesenesaesssssssnsssseassasssssnsenses 223
A.2 BBNCTYPE.H. ... crreesesesseenessessesnsestessesassssonsessessens 223
A3 BFLYDISK.Htstectnteretestesiestesssesee s eessass e ssessaonsesseens onenees 223
A4 BM_FUNCTIONS.Hciriiinientereeseesreseessesnneseessecscssssasessesaesssnas. 223
A.5 BP_FUNCTIONS . H.....c.ocotriieriintctesreen e st sees e cenestesasssc e sannen 224
A6 BX_DEFINES.H......oooiiirieiiiineeeneeneneeessesesseeeseseesatensssnessesencsssnsones 224

viii

BBN Systems and Technologies 120TX/T CIG Host CSCI

A7 BX_EXTERNS.Hiieeertiennennesre e sreseseessasssnesssseessassssesssessssssssssssas 224
A8 BX_GLOBALS H....oicecerecteeeieetecseessseesnsesssesesesesanesssessnsasssesssasssasan 224
A9 BX MAGCRC L o ectccesitsesssssisessseesssessessssassssssssssssssssessssessssesssesssen 225
A 10 BX_MESSAGES fu.oeooiiieeieneerreenrieseecveerassessesssassnsessssaessassssesssesssnassseons 225
A1l BX_RTDB_STRUCTS . H......ccooieeieiercreeeteenreestneesasssssessnsesnsassasessassnsens 225
A.12 BX_STRUCTS. H........oeeiieetrirecseeseessaessscssesssasssssessssssssassssassneesssnses 226
A13 CILBFLY . Hu.oiecereeeeecteectessaresseesseesssesssssssssssssssssasssasasassssnassnassnnens 226
A.14 CONFIGTREE_DEF.H...........ccotrrtitiirernrenrrecressraesssessssesssssssesessesesesssseas 226
A.15 CONFIGTREE_STR.H.....cteeeiieeccreenneceeeeseeesteeseessssessnessssessaasssseas 227
A16 CTYPE.H ... ettcteceeetecneesesecsvessasens sessesssssssssesaessnesssnenssasssnasn 227
A.17 DED_ID_TABLE.H.........oiitiitecntienienresaeeneeesseesnsesssnsesssssssessssssssassnees 227
A.18 DEFINES_2D.H.......oooieccteentinireereereeeeneeraeesseesssssssssessesssssesssasasssaeses 227
A.19 DEFINITIONS H.....oiiitecteeeeceeesttieerssssesssesssesseesaneenssansssssssasessasansns 228
A20 DGI_STDC . H.......oiieecieccreeceecneieeeeesreessae e e s e e erae srasessassesesesnesssaesssen 228
A.21 DGI_STDG.H ettt eerseeeerte e essesssesssseessnesesrasessssesaessnassnnnas 229
A.22 ECOMPILERLH ...ttt et s sesesvas s e ssesneesssesbaesaessnseennes 229
A23 EMEMORY_MAPH. ...ttt eersesrresvesaeseesenvesesseesvassssesssearsnas 229
A24 EXTERN.H ... iicieetieeticteeee e teestaessseeraesssrasessesastanssassssesrassnsnesssasassens 231
A.25 EXTERNALH. ... ieieteccentceeecteeseaesrantesseessn st eassssansessssssssaessessnves 231
A.26 FORCE.H.ASMoiiiiiieeitecitinraesesesetesstasssesssesessessanssnseesssassssassnssnses 231
A.27 FORCE_DEFINES. H.....ooiiieeiteceeceeeeetreeeteeeseeessesesteesrsesrsesnvesnsaessessses 231
A28 FORCE_DEFINES_C.H.....oooiioiiriieeesieerteestnecseeessesesssesssesssssssessssesssns 232
A.29 FORCE_DEFINES_D.H.......ooiiiieeeereereeenseecieseeessasessssesssssssesssseseses 232
A.30 FORCE_DEFINES_E.H.......ooootiiiiiiiieieeeeeesneesreseseenasesesseesssssssnseseens o 232
A.31 FORCE_DEFINES_TX.Hoootiiiiiiieciinicsiresreesesss ervvvessenessessssassssesanees 232
A.32 FUNCTIONS H......oecereecteeteeete st saecteebte s sesssansen s aessassnssansesranes 232
A.33 GHCTYPE . H......ooeeee et estessasssabessssnessssaesnnssnsasssnsessnessasss 233
A.34 GLOBAL_2D.H......cuoeeeee ettt ssseesesssessnesssesssesssessessaasssssaasnes 233
A.35 GLOBFIR_2ZD.H........cooereeeereieereecreee ettt crveseessesssessessessassnansessassesees 233
A36 M2 _CONFIG.H........oeeecetiececesteeeee s ebe et sanesavsessessae et ae s e e anes 233
A3T MBX H.....oeeeettetee et eteeree et sae bt s st sess s s s e e seeaeessneesesesae st e e e nessee 234
A38 MEMORY_MAP.H ...ttt esteevessvesstesssesssesb e a e neenes 234
A39 MEMORY_MAP _DEFINES . H........cuoiiiiiieeiecreceeceeerveesnesse s aenenee 234
A40 MX _DEFINES. H..........oooooiirtecieniicieineesreeseressneeneeessssossessssesssssssansssssssses 235
A4l OVRLY_DEFS.H ...t ceeeceeesssesssssssassssesssessssssssessses snssssnas 235
A.42 RCINCLUDE.H..........oiteeeteceeiieeeneereeesseseeeesssnesssesssessesessessenssansessns 235
A.43 REAL_TIME . H...........ooiiiiieetieeeieicnrenrcsrensesessessessnessesnessessssessessssssassens 236
A44 RT_DEFINITIONS . H........ocoioteieiirecrecnicnreeseersessesseessnssssesssesessnsssesssennns 237
A4S RT_MACROS . H........oeceeeeteeececresrreseeer e sssesraesssess s srsers e s ensesnaennes 237
Ad6 RT_TYPES H.....oo et stsssestes e esse s easesns e sr e sesnnensanbens 237
A.47 RTDB_STRUCT . H.....cuooeeeerteceiecne et eseessesseeessessassssessensesnssenes 237
A48 SIM_CIG_ARLH.....oieecectecerce et setsss e s et esssesssssassssesassssenssnns 238
A49 SIM_CIG_ARI_IF.H......oooieeeeeectectectresteet st ssse b st saeen s seaeas 238
ix

BBN Systems and Technologies 120TX/T CIG Host CSCI

A.S0 SIM_CIG_IF.Hcunininininniniiniseiesseseisssessssnsssssnsssessesssssssssssssens 238
A.51 SIM_CIG_IFS512XS512.H...c.coouriniieiinnniiinninnniineiessmsscisssssssssssessssns 239
A.52 SIM_CIG_IFTKXIK H....oniimnriinniiiininiiinsssseesssesssessssensessonns 239
A.53 SLAVEI33_FUNCTIONS H......ccccocvinnnnmrininnicincnnnsiisscssisssesnssssenns 239
A.54 STRUCT_2DH.....cccivintiriinrininiinnnissesssssisssssssssssesesesssssosssessssesssns 239
A.55 STRUCTURES.Hiiiiriecriissssnesnisesssssssssessssassssssssssesns 239
A56 SYSDEFS . H......iiiniinntniicinsiinsssnisessssssisessssssssssssssssnss 240
A.57 SYSDEFS2.H.....ciiiiiiniiritienritctninnesssnssssssse s sssssssssssssssssnsssneses 240
A58 TEFLAT Hu.uoooiviniitiiiinitinitiiinriniintine st sssesssssesssssessassssssssssssssssnenns 240
A.59 TFLAT_SLOW. H. ...ttt sesiesneessessssssnssesssssessessese 241
A.60 UIOSMMSABOT30HZ.H........coocenminiiiniiiiiiininnnissesnseinessssesesessesesnnes 241
A.61 U2SMMHEAT.Hccovnmiiritiitiicrnitntntinennnssesssisnsssessssiassssssesssnes 241
APPENDIX B: SYSTEM MACROS.......covvminriiitiinniiitensrennieniessssssssenesees 242
B.l AAREAD ... b e 242
B.2 ABSVAL ...ttt et shsaae s sra s 242
B3 BCOPY .ttt ssesis s ssssse e sassss s sssn e ssanesess 243
B.4 CHECK_CLOCK......tiinimiiiiiniiiessisisssissssssesssssssssssssssssssssssses 243
B.5 CHECK_FORCEc.occvminimminiiininiinnitisisssnsissesesossssissessosnesssssssennes 243
B.6 DART_ENQUEUEoriiiiitiiitiinintsieeessi s 244
B.7 DELETE_ROUND.......ccooiimtiiiintincnienc s ssse s snse e 244
B.8 DELETE_STAT_VEH.......ccccecunnirirniniinininneiscssssnenssesssssas 244
B.9 DOWNLOAD_DATAcocovviitiiiiintnininsisssis s ss st sas s ssssenes 245
B.10 DTP.* (DTP MACROS) ..ottt sesescssssessessssssssssaes 245
B.11 DUMP_DART_BUFFERcccoivmtiiiiireteretectce e 249
B.12 ERRMBSG ...ttt ssssse e ssescasass e s sasassssssses 249
B.13 EXCHANGE_DATAottt sssnssnsassssses 249
B.14 EXCHANGE_DATA_SIM......niriiininiiiiniieeniiisssssensss s 250
B.15 EXCHANGE_FLEA_DATA.cccovnminimtiniccnt i 251
B.16 FIND_LM....iitiiiiiiitnniinssnicsre e seesee sttt sas s snsennes 251
B.17 FLTOFX .ttt e cvssesssssssssssssssses 252
B.18 FREE_LM_CACHE..........ccciriirimininiiinitienienssnieesssnesssesesssssesssssnsonees 252
B.19 FXTOBSL ...ttt cr et sbss s s ssssas s sssnsns 252
B.20 FXTOFL.......cviiniiiniintiiinnnininnsissssssssnssesessssessssssssssssssessonns 253
B.21 GET_CHORD_END..........cctniiniiniinineensneisstsscssssnsssnnsesssssnes 253
B.22 GET_DB_POS ...t sssscmaesssssssssesssasaes 254
B.23 GET_LB_FROM_LM.......ccovtriitiiiniintiiinnnninsestessssisssssssssssssseses 254
B.24 GLOB........coiiriiictittii st s s e 255
B.25 INCR_COMPONENT oot stesssssssssessssssssssnines 255
B.26 INIT_MTX ...ttt st es et ess s st en 255
B.27 MALLOC ...ttt s sse st saes s sesaes 256
B.28 NEW_ROUND.......c.ccotrtiiriiciciniitisntsniiest st s e srens 256
B.29 NEW_STAT_VEH......c.ccoiviiiinniinnin s 257

BBN Systems and Technologies 120TX/T CIG Host CSCI

B.30 OPEN_EXCHANGEcovvitriitiinctiiennisstessesesesssesessessesessessesesssnns 257
B.31 OPEN_FLEA _DATAcccoicitiinctitntinrsncesssssisseneessesessassessssonns 257
B.32 PAGE_FORMAT ...ttt s sesesessessssessassssans 258
B.33 POLY.* (POLY PROCESSOR MACROS)......cccccevemerinersirirrereneerceneseseencsnns 258
B.34 PRINTDA ...ttt ssessssessessesssssssssssssssesasnes 261
B.35 PRINTDS ...ttt sssssse et sssssssscassssssssesnessesens 261
B.36 PRINTHEXA ...ttt cissessssssssssssssesissessassssssssesseses 261
B.37 PRINTHEXS.......covitiitntintiitiiessesstsssesestsssessssassssssscssssssssssssssass 262
B.38 READ_CLOCKiceiiinmrimrniintiniinnincssssssissessscssenssssssssssssisssssssssssssssssasaes 262
B.39 RESTART_CLOCK. ...ttt sssssesesoisssssessssssssesessenss 262
B.40 ROOMALABEL ...ttt ssesssssssscssnestsssesesssesnsessenes 262
B.41 ROOMCHECKcocoviinrnrmirinectitninsesissesisssescssssssssssssssssssssassssasssessssenssen 263
B.42 SET_OUT_BITS ...ttt et st sssestssessessssssssssnsseras 263
B.43 SET_OUT_M2EBITS ...ttt stencnesesacsentsssesssssaessesessessessessases 263
B.i44 SYSERR.....tinttce sttt srs e e sas e sas s 263
B.45S TORAD ...ttt st b 264
B.46 TORADIANS ...ttt ettt ssss bt sass st snss s ease e snan 265
B.47 TRIGGER_FORCE...........ooiintiicncsintineiosininescesesestesesssssssssssssasssssssnes 265
B.48 WAIT_FORCE.........iiiiiiiiininnieeeniciest s estesesaensssesacssesessssssaanes 265
B.49 XCLOSE ...ttt csesssssssassnsssassssssssassssasanens 266
B.50 XLSEEK ...ttt ssssisiessssssescssesessssonessssesssasssssssssssssssons 266
B.5S1 XOPEN.....ntiiitiinn ettt ssss st snssssss s s ssssssssssssessssaans 267
B.52 XREAD ...ttt tseesss s st ettt esenae e s s sasnas s 267
B.53 XWRITE ...ttt cseeatnse e sessenss s sessentosssessscstesssssssssasans 268
APPENDIX C: OPERATING SYSTEM SERVICE CALLS...........ccccouvemnnmmnerininnes 269
C.1 SPECIAL OS SERVICE LIBRARIEScccccenmirenrrreneancseseneencenesescssenes 269
C.2 TASK MANAGEMENT (SC_*) ROUTINEScccooemrmctrmueenccrennenene 270
C.3 STANDARD C RUNTIME LIBRARIES.........ccccccomrmrrerenueuerreneresensenencasnes 271
APPENDIX D: GLOSSARY OF TERMS AND ABBREVIATIONS............cccoviene. 273
APPENDIX E: CROSS-REFERENCE TABLES.........ccovviniceeneneniicieneencnenissssones 278
E.1 CSUS MAPPED TO CSCS ...t sssstsssseessenssssssssssnins 279
E.2 DATA TYPE NAMES MAPPED TO TYPEDEFScccvvevicnnnennnnnne. 282
E.3 FUNCTION NAMES TO SOURCE FILE LOCATION..........ccccoemvrerurunnee 287
E4 MACRO NAMES TO SOURCE FILE LOCATIONccccceininmnneninencanes 292
INDEX BY SECTION NUMBER........ccoiimneninencsintitesnnesssassssesessssssssssenes INDEX-1

xi

BBN Systems and Technologies 120TX/T CIG HOST CSCI

1 INTRODUCTION: CIG HOST CSCI

This document describes the 120TX/T Computer Image Generation (CIG) Host CSCI, also
referred to as the CIG Real-Time Embedded code.

The CIG Host CSCI is the executable code that resides within the CIG and provides the
Simulation Host (SIM) with an interface to the graphics hardware on the CIG.

1.1 The Simulator

A Vehicle Simulator Unit, or Simulator, consists of a CIG, a Simulation Host, one or more
display monitors, a user, and the user's control mechanisms. Each Simulator simulates the
actions of one combat vehicle, such as a tank, in real time. Multiple Simulators can be
connected via a Simulation Network. The entire simulation exercise is controlled and
coordinated by the Battle Manager using the Management, Command, and Control (MCC)
system computer.

Once the MCC initializes a Simulator at the beginning of the exercise, the vehicle's crew
directs the simulation. Each Simulator reports the position, orientation, and appearance of
its simulated vehicle to the MCC and the other Simulators via the network.

Figure 1-1 illustrates the relationship between the CIG, the Simulation Host, and the MCC.

Simulation Network

SIM Host Simulator Sim Host
Vehicle
1 SIM Host Controls t
CIG CIG
Display
CiG | ™1 Monitors

Figure 1-1. The Vehicle Simulator Unit (Simulator)

BBN Systems and Technologies 120TX/T CIG HOST CSCI

1.1.1 The Simulation Host

The Simulation Host receives and processes data from the simulation vehicle's mechanical
controls, interfaces with the CIG, and communicates over the simulation network with
other Simulators.

The Simulation Host is based on either a Masscomp or a Butterfly computer. The CIG's
interface to the two is functionally the same, although some code modifications were
required to interface to the Butterfly. These modifications do not affect the functionality of
the CIG real-time software or the communication between the CIG and the Simulation
Host. Code written specifically for the Butterfly platform is only cursorily addressed in
this document.

1.1.2 The CIG

The CIG interfaces with the Simulation Host, controls the images in the simulation
viewports (displays), and houses the database that describes the simulation terrain. The
CIG is available in two models:

» The 120T CIG can generate up to eight low-resolution (320 by 200 pixels) views.
These views are used in M1 and M2 Simulators.

* The 120TX CIG can generate one high-resolution (640 by 480 pixels) view or two
low-resolution (320 by 240 pixels) views. These views are used in Stealth
Simulators.

1.2 CIG-SIM Communication

The CIG and the Simulation Host communicate by exchanging 4K (4096-byte) message
packets, each of which is a grouping of data messages. The physical interface to a
Masscomp Simulation Host is a DR11-W communications device. The Butterfly platform
uses a BVME interface.

Message packet exchanges occur every frame (every 66.7 milliseconds when running at 15
Hz). The CIG is the clock master for all synchronous message passing. Exchanges are
initiated by the CIG after it detects a frame time event. Both the CIG and the Simulation
Host have until the next frame to process information.

Message packets sent from the CIG describe the current state of the simulation vehicle.
The Simulation Host uses this information to compute and update each parameter that
affects the visual displays.

Message packets sent from the Simulation Host describe the new state of the simulation
vehicle and/or changes to the simulation environment. Other messages specify where to
display special effects, such as bomb blasts and smoke. The CIG uses this information to
compute changes in the viewing displays.

The message structures used by the CIG and the Simulation Host to communicate are
documented in the "120T/TX CIG-SIM Interface Manual."

BBN Systems and Technologies 120TX/T CIG HOST CSCI

1.3 CIG Software Structure

The CIG Host software is a multi-state, multi-tasking software system. It progresses
through its various states upon receiving appropriate commands from the Simulation Host
via the CIG-SIM message interface. The states of the CIG Host software are:

Task Initialization
System Configuration
Real-Time Processing
Stand-Alone (Flea) Mode

o & o o

The simulation and other support software run as individual tasks. Using intertask mailbox
locations, the tasks exchange information through shared memory. The tasks share system
resources as needed, based on their relative priorities.

The top-level CSCs in the CIG Host CSCI are the following:
« Task Initialization (RTT)

CIG Host Mainline (UPSTART)
- Viewport Configuration
- Data Traversal Processor (DTP) Command Generator
- Real-Time Processing
- 2-D Overlay Compiler [120TX systems only]

« Database Management (ROWCOL_RD)

« Database Feedback (LOCAL_TERRAIN)

. Ballistics Processing (BALLISTICS)

o User's Interface (GOSSIP)

» Stand-Alone Message Interface (FLEA)

» Force Processor Task (FORCETASK) [120TX systems only]

Figure 1-2 illustrates these CSCs.

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Task Initialization , SIM-CIG Intertace
/

Forcetask Database
Database
Ballistics Interface sedbach Upstart Manage- Gossip Flea
Processmg F ment
Database
2D Overla Real-Time Viewport Traversal
oriay Processing Configu- Processor
wr ration Command
Generator
Figure 1-2. CIG Embedded Software CSCs

1.4 How This Document Is Organized

Section 1 (Introduction)
Provides a general overview of the CIG Embedded Software, the Simulation Host,
and the Vehicle Simulator Unit.

Section 2 (CSC Descriptions)
Describes each CSC in the CIG Embedded Software CSCI. Each subsection
begins with a general overview of the CSC, its major data structures, the primary
functions it performs, and how it relates to the other CSCs. This is followed by a
detailed description of each CSU in the CSC. The CSUs are presented in

alphabetical order.

For the purposes of this document, a CSU is defined as a source code (.c or .asm)
file. CSUs are documented as follows:

» The section heading identifies the name of the source file.

» If a CSU contains multiple functions, each is described in a separate
subsection under the CSU section heading. The functions are described in
the order in which they appear in the source file.

» If a CSU contains only one function, it is described under the CSU section
heading. If the function name differs from the CSU name, the function
name is shown in parentheses following the CSU name. If the function
name matches the CSU name (minus the .c or .asm suffix), the function
name is not shown in the heading.

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The description of a function includes its general purpose, its function call,
definitions of its parameters and return values, and a description of its processing.
The description also identifies all called and calling routines.

Section 3 (Resource Utilization)
Provides disk and memory usage statistics.

Appendix A (System Include Files)
Describes the contents of each header (.h) file used in the system, and identifies the
CSUs that include it. All include files are listed in alphabetical order.

Appendix B (System Macros)
Describes the macros used to perform specialized functions throughout the system,
and identifies where they are used. All macros are listed in alphabetical order.

Appendix C (Operating System Service Calls)
Briefly describes the operating system service libraries and standard C libraries
used by the CIG functions.

Appendix D (Glossary Of Terms And Abbreviations)
Defines some of the specialized terminology, abbreviations, and acronyms used in
this document.

Appendix E (Cross-Reference Tables)
Provides lists that may help the reader locate CSUSs, data type definitions,
functions, and macros.

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2 CSC DESCRIPTIONS
The CSCs that make up the CIG Host software system are the following:

Task Initialization (RTT)
Initiates the execution of the other CIG Host tasks.

CIG Host Mainline (UPSTART)
Configures the viewport displays, generates DTP commands, runs the real-time
simulation, and generates two-dimensional overlays.

Database Management (ROWCOL_RD)
Reads new rows or columns of load modules from the terrain database into active
area memory as required.

Database Feedback (LOCAL TERRAIN)
Sends information describing the local terrain (the area around the simulated
vehicle) to the Simulation Host, based on the simulated vehicle's current position.

Ballistics Processing (BALLISTICS)
Determines which load modules and grids in the database are intersected by a given
chord.

User Interface (GOSSIP)
Provides a back-door user interface that allows certain debugging and query
features during runtime operation.

Stand-Alone Host Emulator (FLEA)
Emulates the Simulation Host for stand-alone CIG operation and testing.

Force Processor (FORCE)
On the 120TX CIG only, controls the interface between the CIG real-time task and
the two-dimensional overlay processor task.

This section describes the functions performed by each of these CSCs.

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.1 Task Initialization (RTT) CSC

This section details the software that performs the task initialization phase of the CIG Host
system. The task initialization CSU, rtt, is the initial task in the CIG Real-Time Software.
It is executed from the user's terminal or via the auto-boot mechanism. rtt initiates the
execution of all other tasks in the CIG Host CSCI, then terminates itself.

As shown in Figure 2-1, this CSC contains only one CSU: rtt.c. The functions in rtt.c are

described in this section.
| Task Initialization F e

Forcetask Database
Ballistics Interface gmabas' Z Upstart Manage- Gossip Flea
Processing ment

Figure 2-1. Task Initialization CSU

2.1.1 rtt.c

The rtt.c CSU contains the functions responsible for task and queue initialization. These
functions are:

* apinit
* qassign
* tassign

2.1.1.1 apinit

The apinit function is a high-priority task created by the system. apinit creates all
application queues and tasks, runs all tasks, and then deletes itself from the system.

The function call is apinit(). apinit does the following:

+ Calls bus_error to determine which type of Ballistics board is in the CIG.

* Adds a 45-second system delay for the lamplighter if switch 5 is on ("go flying"
mode) and switch 1 is off (auto-boot mode).

Initializes the application task id and queue id.

Inserts the application task table into the system task table.

Calls tassign to assign a task id to each task.

Calls gassign to assign a queue id to each queue.

Deletes its own task from the system.

BBN Systems and Technologies

120TX/T CIG HOST CSCI

apinit initiates the application task table in the operating system by establishing entries for

the other CSCs in the real-time software, as follows:

name tid priority type queue gsize entry
"upstart” yes 2 task no 0 upstart
"flea” yes 10 task yes 16 flea
"local_terrain” yes 8 task no 0 local_terrain
"ballistics” yes 6 task no 0 bx_task
"rowcol_rd" yes 4 task no 0 rowcol_rd
"gossip” yes 12 task no 0 gossip
Called By: none
Routines Called: bus_error
printf
qassign
rotate_x_nt
rotate_y_nt
rotate_z_nt
sc_tdelete
strepy
tassign
translate
Parameters: none
Returns: none
2.1.1.2 qgassign

The qassign function assigns and creates all queues. The only task for which a queue is
created is flea, with a queue size of 16.

The function call is qassign(qgsize), where gsize is the size of the queue to be created.

qassign does the following:
» Increments the queue identifier number by 1.
» Verifies that the queue size is valid.
» Calls sc_qcreate to create the queue.

Returns the queue id (apqid) to apinit.

The function returns -1 if the queue size is specified as 0 or "no.”

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: apinit
Routines Called: sc_qcreate
Parameters: . int gsize
Returns: -1
apqid

2.1.1.3 tassign

The tassign function assigns and creates the upstart, rowcol_rd, ballistics, local_terrain,
flea, and gossip tasks.

The function call is tassign(tflag, tentry, tpri), where:

tflag is "yes" (identifying this as a task)
tentry is the task's entry point (name)
tpri is the task's priority

tassign does the following:

Increments the task identifier number by 1.
Verifies that tflag is not "no.”

Calls sc_tcreate to create the task.

Returns the task id (aprid) to apinit.

The function returns -1 if iﬂag is "no."

Called By: apinit

Routines Called: sc_tcreate

Parameters: int tflag
char *tentry
int tpri

Returns: -1
aptid

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2 CIG Host Mainline (UPSTART) CSC

The CIG Host Mainline CSC, UPSTART, contains the functions responsible for
configuring the viewports (simulator displays) and running the simulation.

The Simulation Host controls all functions of the visual simulation and determines what
information is sent to the CIG. The CIG uses this information to control the images in the
viewports of the visual simulator.

Upon request from the Simulation Host, the simulation goes into database setup mode,
where memory is initialized and the appropriate database subsection is loaded into active
area memory (AAM). From setup mode, the Simulation Host can request a transition to
simulation mode. This causes a local terrain message request, enables system frame
interrupts, and initializes system variables.

Every frame, the simulation does the following:

* Waits for the system interrupt.

¢ Prepares a laser range message.

» Sends a message packet to the Simulation Host.

» Receives a message packet from the Simulation Host.

« Determines which buffer in double-buffer memory to use. (Double buffering
allows one buffer to be used by the hardware while the other is being updated by
the software. The simulation and the hardware switch buffers on every exchange,
so the hardware is always accessing the most recently updated information.)

* Restores the model return addresses.

* Processes one "My vehicle" message which:

- Expands the eight matrices (one per viewport) of the simulation vehicle.
- Loads 11 overlay characters into the gunner channel.
- Tells the T&C (Timing and Control) board which channels to display.

» Processes zero or more "other vehicle” messages, each of which:

- Expands one to three matrices for vehicles in the terrain.
- Adds a model to the proper load module.
- Displays smoke and fire if appropriate.
« Processes zero or more "show effect” messages, each of which:
- Stores effect data.
- Adds an effect to the proper load module.
» Processes zero or one trajectory chords.
» Reprocesses zero or more "show effect” messages from previous frames.

Every 32 frames, the simulation constructs and sends a message on the contents of the local
terrain. This message contains data regarding the terrain, roads, rivers, and buildings that

10

BBN Systems and Technologies 120TX/T CIG HOST CSCI

lie in the four grids surrounding the simulated vehicle. This information is used by the
Simulation Host to provide collision detection with objects in the simulated environment,
and to calculate the correct vehicle dynamics for driving on the terrain.

When complete, the Simulation Host may stop the simulation to enable going into another
mode, or may reconfigure the Simulator in another area.

The major functional components of UPSTART are as follows:

Viewport Configuration
Initializes and builds the viewport configuration tree before runtime. The
configuration tree describes the relationship between each physical component of
the simulated vehicle and the location of the viewports.

DTP Command Generator
Generates data traversal processor (DTP) hardware commands from the viewport
configuration tree.

Real-Time Processing
Runs the simulation using messages passed between the Simulation Host and
Ballistics.

2-D Overlay Compiler
Builds the 2-D (two-dimensional) overlays, and generates executable commands for
the 2-D processor on 120TX CIGs.

Figure 2-2 illustrates the components of the UPSTART CSC. The following subsections
describe the CSUs in each of these functional areas, in the order listed above.

Task Initialization

Forcetask Database
Batlistics Interface ?m Upstart Manage- Gossip Flea
Processing ment
Vie Database

2D Owerla Real-Time wport Traversal

Compiler d Processing cm"ggﬂ“ Processor
Command
Generator

Figure 2-2. UPSTART Functional Components

11

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1 Viewport Configuration

Viewport Configuration is the area of UPSTART that is responsible for initializing and
building the configuration tree before runtime. The configuration tree describes the
relationship between each physical component of the simulated vehicle and the location of
the viewports. The messages used to set up the configuration tree are received from the
Simulation Host.

The configuration tree consists of the following:

» One root node, which marks the start of the configuration tree. This node contains
no data and must be the first node created.

+ One or more matrix nodes, each of which contains a transformation matrix that
specifies rotation angles (heading, pitch, and roll) and translation values. The
matrices in all nodes in a traversal path of the tree are concatenated to generate the
view of the world for the viewport represented by that path. Matrix nodes are
designated as either dynamic (ones that are updated during the simulation) or static
(ones that do not change during the simulation).

» Zero or more conditional (branch) nodes, each of which branch into one of two
traversal paths based on a runtime condition. The node branched to if the condition
is true is the conditional node's "true child" and the node branched to if the
condition is false is the "false child." The branch values are stored in the system
view flags array. The branch values in effect at any given time in the simulation are
set via messages sent from the Simulation Host.

* Viewport parameters for each viewport. These parameters are the screen
resolution, viewing range, near plane, field-of-view angles, level-of-detail
multiplier, and aspect ratio (currently not used). Viewport parameters are
associated with the final node in each traversal path in the configuration tree.

Note that the same viewport may be defined multiple times, each with different
parameters. A conditional node enables a change to new viewport parameters
during the simulation.

» One or more sets of graphics path parameters for each viewport. A graphics path is
a window on a viewport. On the 120T, there is one graphics path per viewport.
On the 120TX, there may be two or four, depending on the resolution. The
graphics path parameters are used to load the hardware.

The structure of the configuration tree cannot be changed during runtime — all nodes and
viewport definitions must be created at CIG initialization time. However, various
parameters within the configuration tree do change during the «.: aulation. Therefore, some
Viewport Configuration functions are called by simulation (in the Real-Time Processing
component) to update configuration tree structures during runtime.

Specifically, messages can be used to update the following structures after the
configuration tree has been created:

* Dynamic matrices. The Simulation Host can provide a new matrix or a change
(e.g., rotation) to the current matrix.

12

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Branch values for the conditional nodes. Changing the branch values during a
simulation causes selection of a different traversal path and, usually, different
viewport parameters.

+ Certain viewport parameters (the level-of-detail multiplier and the field-of-view
angles). Although a message is available to change these parameters directly, it is
recommended that all desirable viewport parameter combinations be built into the
configuration tree and selected using branch values.

The configuration tree can contain a maximum of 64 nodes. Every node is referenced by a
unique index, which is used in messages sent to update the node during the simulation.
The root node is always assigned node index 0. A node that has viewport parameters
attached to it must have a node index between 1 and 31.

Every matrix node in the configuration tree must be defined in one of two formats: RTS4x3
(4 x 3 rotation translation scale) or HPRXYZS (3 x 3 scale heading pitch roll translation).
A matrix node's format can be redefined during the simulation.

The format of each of these matrix structures is as follows:

RTS4x3 (4 x 3 rotation translation scale)
The matrix format is:

rotation[0,0] rotation[0,1] rotation[0,2]
rotation[1,0] rotation[1,1] rotation[1,2]
rotation[2,0] rotation{2,1] rotation[2,2]}

| translation.x translation.y translation.z |

where: _
rotation is an angle in degrees
translation is a distance in meters

The typedef for this matrix structure is:
typedef struct
REAL_4 rotation([3]{2];
R4P3D translation;
} RTS4x3_MTX;

HPRXYZS (3 x 3 scale heading pitch roll translation)

The matrix format is:
[heading pitch roll]
translation.x translation.y translation.z
scale.x scale.y scale.z
scale order heading order pitch order
| roll order translate order 1

where:
heading = -yaw = -z rotation in degrees
pitch = x rotation in degrees
roll = y rotation in degrees
translation is a distance in meters

13

BBN Systems and Technologies 120TX/T CIG HOST CSCI

scale is a scaling factor (used to enlarge or reduce matrices)
order values specify the order in which the matrices are to be concatenated

The typedef for this matrix structure is:

typedef struct {

REAL_4 heading:;

REAL_ 4 pitch:

REAL_4 roll:;

R4P3D translation;
R4P3D scale;

BYTE concat_order(5]:

} RTS3x3_MTX;

A third matrix format, ROT2x1 (2 x 1 rotation), can be used to rotate a matrix along
one axis. Matrix nodes cannot be defined as this matrix format, although they can be
updated by it. The matrix format for ROT2x1 is:

cos(rotation ©) sin(rotation ©)
rotation axis

where:

rotation is the angle of rotation in degrees

rotation axis is the axis along which rotation is to occur: 0 (x), 1 (y), or 2 (z)
The typedef for this matrix structure is:

typedef struct {

REAL 4 cos_rotation;
REAL_4 sin_rotation;
BYTE rotation_axis;

} ROT2x1_MTX;

The functions in Viewport Configuration do the following:

* Create all configuration nodes, viewport parameter entries, and graphics path
entries, based on data received from the Simulation Host.

* Generate DTP-style matrices from the matrices provided by the Simulation Host.

* Set up calibration, gunner, and gun barrel overlays for 120T systems. (These are
hard-coded overlays that can be displayed on a viewport on top of the terrain
display.)

* Generate DTP code for the overlays.

* Process the system view flags/branch values and load them into the T&C (Timing
and Control) board.

Usually, the configuration tree is built according to messages received from the Simulation
Host. To initiate this process, db_mcc_setup (in the Real-Time Processing component)
calls the cig_config function. cig_config in turn calls other Viewport Configuration
functions to allocate memory and configure the nodes, viewports, and view flags.

14

BBN Systems and Technologies 120TX/T C1G HOST CSCI

A configuration tree can also be created from data in an ASCII file that is created off-line
and installed on the CIG. The read_configfile function is used to parse this file and call the
appropriate functions to create the tree. This method is provided for stand-alone use and
testing.

Figure 2-3 identifies the CSUs in Viewport Configuration. The functions performed by
these CSUs are described in this section.

Task Initialization

Forcetask Database
Ballistics Interface 2::;:’; Upstart Manage- Gossip Flea
Processing ment

Database
2D Overlay Real-Time Viewport Traversal
Compiler Processing Configu- Processor

ration Command

Generator

aam_manager.c overlay_setup.c
bbnctype.c process_vhags.c
cig_config.c Process_vppos.c
concat_mtx.c read_configfile.c
confignode_setup.c update_fov.c
fill_tree.c update_rez.c
getch.c vec_dump.c
mat_dump.c viewport_setup.c

Figure 2-3. Viewport Configuration CSUs

Figure 2-4 illustrates how the major functions of Viewport Configuration interact with each
other to create the configuration tree based on messages received from the Simulation Host.

15

BBN Systems and Technologies

120TX/T CIG HOST CSCI

clg_config

sam_malloc, return_sam_ptr,
system_sam_init,
dynamic_sam_init

allocate and initialize AAM

init_configtres
initializes a new configuration
tree

viewport_init
aliocates memory for

viewport parameters

confignode_setup
creates and initializes node
entries

concat_mtx
converts and loads matrices

process_vppos
sets the vehicle position

overiay_setup
generates gunner and gun
barrel overlays

process_vilags
processes system view flags

2.2.1.1

The functions in aam_manager.c are used to allocate and manage the system (static) and
dynamic areas of active area memory. Dynamic memory is located in the double-buffer

aam_manager.c

area; static memory is not double-buffered.

The functions in aam_manager.c are:

aam_malloc
return_aam_ptr
system_aam_init
dynamic_aam_init

viewport_setup u ° rez
creates viewport parameter — n&‘a.ttes— screen resolution
eniries calc_paths
calculates no. of graphics paths
updste_fov
updates fov-related fields
till_tree
sets graphics path parameters
Figure 2-4. Viewport Configuration Flow Diagram

16

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1.1.1 aam_malloc
The aam_malloc function allocates system and dynamic memory.
The function call is aam_malloc(static_flag, num_of_bytes), where:

static_flag identifies the area of memory (SYSTEM or DYNAMIC)
num_of bytes is the number of bytes of memory requested

When it receives a request to allocate active area memory, aam_malloc does the following:

Determines which area of memory is being requested.
Verifies that sufficient memory is available.
» Allocates the memory and returns a pointer (temp_ptr) to it.

If there is insufficient memory to process the request, aam_malloc returns NULL and
displays the amount of memory available.

Called By: cig_config
confignode_setup
init_configtree
viewport_setup

Routines Called: printf

Parameters: BYTE static_flag
: WORD num_of_bytes
Returns: temp_ptr
NULL

2.2.1.1.2 return_aam_ptr

The return_aam_ptr function returns the address of the next available location in the static
or dynamic area of active area memory.

The function call is return_aam_ptr(static_flag), where staric_flag identifies the area
of memory (SYSTEM or DYNAMIC).

return_aam_ptr returns system_aam (the next available address in static memory) or
dynamic_aam (the next available address in dynamic memory).

Called By: cig_config

Routines Called: nore

17

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: BYTE static_flag
Returns: system_aam
dynamic_aam

2.2.1.1.3 system_aam_init
The system_aam_init function initializes the system (static) section of active area memory.
The function call is system_aam_init(system_aam_add, limit), where:

system_aam_add is the starting address of the memory to be initialized
limit is the ending address of the memory to be initialized

The function returns system_aam, the starting address of the initialized memory.

Called By: cig_config

Routines Called: none

Parameters: WORD system_aam_add
WORD limit

Reéturns: system_aam

2.2.1.1.4 dynamic_aam_init
The dynamic_aam_init function initializes the dynamic section of active area memory.
The function call is dynamic_aam_init(dynamic_aam_add, limit), where:

dynamic_aam_add is the starting address of the memory to be initialized
limit is the ending address of the memory to be initialized

The function returns dynamic_aam, the starting address of the initialized memory.

Called By: cig_config

Routines Called: none

Parameters: WORD dynamic_aam_add
WORD limit

18

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: dynamic_aam

2.2.1.2 bbnctype.c

bbnctype is a runtime library that defines control characters, punctuation, digits, and
alphas. This file is not currently used.

Called By: none
Routines Called: none
Parameters: none
Returns: none

2.2.1.3 cig_config.c

The functions in the cig_config.c C3U initialize and manage the configuration tree. These
functions are:

« cig config
« init_configtree
» free_configtree

2.2.1.3.1 cig_config

The cig_config function is the CIG configuration message handler. It is responsible for
setting up the configuration tree before runtime. cig_config is called by db_mcc_setup (in
the Real-Time Processing component of UPSTART) when the CIG Control message from
the Simulation Host specifies C_CIG_CONFIG.

The function call is cig_config(state), where state is the current state of the CIG system
(C_CIG_CONFIG). cig_config does the following:

+ Calls system_aam_init to initialize and set up a pointer to the system section of
active area memory.

» Calls dynamic_aam_init to initialize and set up a pointer to the dynamic section of
active area memory.

« Calls init_configtree to initialize a new configuration tree and get pointers to the tree
and its associated structures.

+ Calls aam_malloc to allocate 16 view mode words and the daylight TV thermal
word (dtv_therm_word).

» Initalizes the calibration modifier.

* Loads thg reconfiguration data that goes into double-buffered active area memory
into DBO.

19

BBN Systems and Technologies 120TX/T CIG HOST CSCI
» Calls make_cal_overlay to create the calibration overlay.
» Initializes agl wanted to false. This flag can be set true by the Simulation Host to .

enable AGL (above ground level) processing. If AGL processing is enabled via the
MSG_AGL_SETUP message, the simulated vehicle's altitude above ground level
is calculated and returned to the Simulation Host every frame.

» Processes each configuration message received from the Simulation Host in turn
(see table below).

* When a CIG Control-Stop message is received, returns a pointer to the top of the
newly created configuration tree to db_mcc_setup.

The following table summarizes the processing performed by cig_config in response to
each valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by cig_config to process the
message.

Message from SIM Host Processing by cig_config
MSG_AGL_SETUP Toggles AGL processing onloff.
Sets agl_wanted in global memory.
MSG_AMMO_DEFINE Define ammunition maps.
Sets ammo_map in global memory.
MSG_CIG_CTL Causes a transition to another performance state.
C_NULL No action.
C_STOP Calls fill_tree; calls dtp_compiler; copies reconfigurable
viewport data from DBO to DB1; returns a pointer to the top
of the configuration tree to db_mcc_setup.

MSG_CREATE_CONFIGNODE | Creates a configuration tree node entry.
Calls confignode_setup.

MSG_DR11_PKT_SIZE Specifies exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chiunk
size, and local terrain message interval.

MSG_END Signals end of packet buffer.
Calls EXCHANGE_DATA to send output and receive input
buffers.
MSG_GEN_CONFIGTREE Not currently implemented.
MSG_OVERLAY_SETUP Places overlays on specified viewports.
Calls overlay_setup.
MSG_VIEW_FLAGS Sets system view flags (onloff, daylight/TV, etc.).
Calls process_vflags.
MSG_VIEWPORT_STATE Defines all viewport parameters.

Calls viewport_setup.

Called By: db_mcc_setup

Routines Called: aam_malloc
confignode_setup
dtp_compiler .
dynamic_aam_init

20

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Parameters:

Returns:

EXCHANGE_DATA
fill_tree
init_configtree
make_cal_overlay
overlay_setup

printf

process_vflags

return_aam_ptr
sc_pend

sc_post
SYSERR
system_aam_init
viewport_setup
write

INT_2

top_of_configtree

2.2.1.3.2 init_configtree

state

The init_configtree function initializes memory and pointers for the configuration tree. This
function is called by cig_config before it begins processing messages from the Simulation

Host.

The function call is init_configtree(n_nodes, n_views, n_paths), where:

n_nodes is the number of configuration nodes in the tree
n_views is the number of viewport parameter entries in the tree
n_paths is the number of graphics path entries in the tree

init_configtree does the following:

Allocates memory for the configuration tree, for the number of nodes requested.
Allocates memory for the viewport positions array and stores a pointer to it in
child_ptr[1] of the root configuration node. The viewport positions (vppos) array

stores the current location of the simulation vehicle.

* Sets up an array for the system view flags and branch values, and stores a pointer
to it in the branch_value pointer of the root configuration node.
* Allocates memory for the viewport parameters, based on the number of entries

requested.

» Calls viewport_init to initialize the viewport parameter variables.
* Allocates memory for the graphics path parameters, based on the number of entries

requested.

The function returns 1 if the configuration tree was initialized successfully. It returns O if
memory could not be allocated for the tree or for any of the structures.

Called By:

cig_config

21

-

BBN Systems and Technologies 120TX/T C1IG HOST CSCI

Routines Called: aam_malloc ‘
calloc
viewport_init

Parameters: WORD n_nodes
WORD n_views
WORD n_paths

Returns: 1 (SUCCEED)
0 (FAIL)
2.2.1.3.3 free_configtree
The free_configtree function deallocates memory and pointers for the configuration tree,
including the viewport and graphics path structures. This function is called by
db_mcc_setup (in the Real-Time Processing component) after a real-time simulation has
ended.

The function call is free_configtree().
Called By: db_mcc_setup ‘

Routines Called: free

Parameters: none
Returns: none
2.2.1.4 concat_mtx.c

The concat_mtx function generates DTP-style matrices from the matrices provided by the
Simulation Host, and loads the matrices into active area memory. This function is called by
confignode_setup to generate and load the initial matrix for each matrix node during
viewport configuration. It is called by simulation to update dynamic matrices during
runtime if any of the following messages is received from the Simulation Host:
MSG_ROT2x1_MATRIX, MSG_RTS4x3_MATRIX, MSG_HPRXYZS_MATRIX,
MSG_TRANSLATION, MSG_SCALE, MSG_1ROTATION, or MSG_3ROTATIONS.

The function call is concat_mtx(config_node, matrix, db), where:
config_node is a pointer to the configuration node

matrix is the original matrix
db is the double-buffer memory current base pointer ‘

22

BBN Systems and Technologies 120TX/T CIG HOST CSCI

concat_mtx does the following:

* Determines the Simulation Host matrix type (RTS4x3, ROT2x1, or RTS3x3).
» Unpacks the Simulation Host matrix.
For an RTS4x3 matrix:
- Calls mtxcpy to copy the new matrix.
e For an ROT2x1 matrix:
- Determines which axis the matrix is to be rotated along.
- Updates the matrix's rotation values.
» For an RTS3x3 (HPRXYZS) matrix:
- Calls id_4x3mtx to create an identity matrix.
- Determines the concatenation order specified in the message.
- Performs the concatenation in the specified order:
scale - Calls id_4x3mtx, calls scale_mtx, calls getmatrix.
heading - Calls id_4x3mx, calculates cos_theta and sin_theta, calls
rotate_z_nt, calls getmatrix.
pitch - Calls id_4x3mtx, calculates cos_theta and sin_theta, calls
rotate_x_nt, calls getmatrix.
roll - Calls id_4x3mtx, calculates cos_thera and sin_theta, calls
rotate_y_nt, calls getmatrix.
translate - Calls id_4x3mtx, calls translate, calls getmatrix.
» Calls mtxcpy to load the new or modified matrix into active area memory.

If an error is detected, concat_mtx sets err_code to TRUE.

Called By: confignode_setup
simulation

Routines Called: getmatrix
' 1d_4x3mtx

mtxcpy
mult_4x3mtx
rdmat_dump (in debug mode only)
rotate_x_nt
rotate_y_nt
rotate_z_nt
scale_mtx
translate

Parameters: CONFIGURATION_NODE *config_node
MTXUNION matrix
INT_4 db

Returns: err_code

23

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1.8 confignode_setup.c

The confignode_setup function creates and initializes node entries in the configuration tree.
confignode_setup is called by cig_config if the message from the Simulation Host is
MSG_CREATE_CONFIGNODE.

The function call is confignode_setup(imsg, top_of_configtree,
viewport_params, path_params, db), where:

imsg is a pointer to the message (MSG_CREATE_CONFIGNODE)
top_of configtree is a pointer to the configuration tree's root node
viewport_params is a pointer to the viewport parameters
path_params is a pointer to the graphics path parameters

db is the double-buffer memory current base pointer

confignode_setup does the following:

* Sets up all configuration tree-related pointers.
« If configuring the root node:
- Resets the vehicle id to 0.
* Initializes the parent index to an invalid value (-1).
* Loads the parent pointer into the configuration tree node.
» If configuring a child of a conditional node:
- For the false child, loads a pointer to it in the parent's false pointer slot.
- For the true child, loads a pointer to it in the parent's true pointer slot.
» If configuring a child of a matrix node:
- For an only child, load a pointer to it in the parent's first pointer slot.
- For a child with siblings, sets the youngest sibling's pointer to the new
: node.
» If configuring a matrix node:
- Generates the matrix.
- Loads the matrix into active area memory.
» If configuring a conditional node:

- Sets the branch value pointer using the Simulation Host index into the
branch value array. (The address of this array is in the root node's branch
value pointer.)

» If configuring a word/hull matrix node (i.e., a child of the root node):

- Sets the vehicle id.

- Loads the corresponding viewport position into the view positions (vppos)
array.

Called By: cig_config
read_configfile

Routines Called: aam_malloc
concat_mtx
mtxcpy

process_vppos
strepy

24

BBN Systems and Technologies 120TX/T CIG HOST CSCI

' Parameters: WORD *imsg
CONFIGURATION_NODE *top_of_configtree
VIEWPORT_PARAMETERS *viewport_params
GRAPHICS_PATH_PARAMETERS *path_params
INT_ 4 db
Returns: none

2.2.1.6 fill_tree.c
The fill_tree.c CSU contains two functions:

o fill_tree

+ power
2.2.1.6.1 fill_tree
The fill_tree function sets the graphics path flags in configuration tree nodes. fill_tree is
called by cig_config when the message from the Simulation Host is C_STOP, indicating
that all configuration node messages have been sent.

The function call is fill_tree(graphics_path), where graphics_path is a pointer to the
' graphics path parameters.

fill_tree does the following:
+ Uses the graphics path entry path id to set a bit in the configuration node path flag.
For example, if the path id is 4, the path flag is set to 0001 0000.

+ Traverses up the configuration tree, setting the path flags in the configuration
nodes.

Called By: cig_config
read_configfile

Routines Called: power
Parameters: GRAPHICS_PATH_PARAMETERS *graphics_path
Returns: none

2.2.1.6.2 power

The power function raises a base to a power. This function is called by fill_tree when it
' traverses the configuration tree.

25

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is power(tase, n), where:

base is the base to be raised
n is the power

The calculated value is returned as result.

Called By: fill_tree

Routines Called: none

Parameters: WORD base
WORD n

Returns: result

2.2.1.7 getch.c
The getch function gets a character from a configuration file and returns it as ch.
The function call is getch(fdi), where fdi is a unique identifier associated with the file.
Called By: read_configfile
REALA_fscanf

STRING_fscanf
WORD_fscanf

Routines Called: cmd
Parameters: INT fdi
Returns: ch

2.2.1.8 mat_dump.c

The functions in mat_dump.c are used to dump matrices to the standard output (stdout).
These functions are:

* rdmat_dump
* r8mat_dump

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1.8.1 rd4mat_dump

The r4mat_dump function dumps a matrix to stdout. This function is called only if debug
mode is enabled.

The function call is rdmat_dump(str, mat), where:

str is a string to display (on stdout) to describe the matrix
mat is a pointer to the area of active memory that contains the matrix

Called By: concat_mtx (in debug mode only)
viewspace_mtx (in debug mode only)

Routines Called: printf

Parameters: char *str
REAL 4 mat[3][3]
Returns: none

2.2.1.8.2 r8mat_dump
The r@mat_dump function dumps a matrix to stdout.
The function call is r8mat_dump(str, mat), where:
str is a string to display (on stdout) to describe the matrix
mat is a pointer to the area of active memory that contains the matrix
This function is not currently used.

Called By: none

Routines Called: printf

Parameters: char *str
REAL 8 mat[3][3]
Returns: none

27

BBN Systems and Technologies 120TX/T CIGHOST CSCI

2.2.1.9 overlay_setup.c

The overlay_setup function is a message handler that sets up calibration, M1 and M2
gunner overlays, and M1 and M2 gun barrel overlays. It also generates DTP code for the
overlays. overlay_setup is called by cig_config when the message from the Slmulauon
Host is MSG_OVERLAY_SETUP.

The function call is overlay_setup(pmsg, pview), where:

pmsg is a pointer to the MSG_OVERLAY_SETUP message
pview is a pointer to the viewport parameters

overlay_setup does the following:

» Calls make_m1_overlays or make_m2_overlays to create the gunner and gun barrel
overlays.
 Inserts the gun barrel data into the viewport parameter nodes.

Overlays are hard-coded displays of three-dimensional polygons that are displayed on a
viewport, super-imposed over the view of the terrain. The overlay shows non-terrain
objects that would normally be seen when looking outside the vehicle's window. For
example, gun overlays show those parts of the simulated vehicle that would be visible from
the window, obscuring the view of the terrain. Gunner overlays show cross-hairs and
numerical readouts of simulation parameters.

Any node that has viewport parameters and has bit 0 of the node's branch mask set has the
gunner's overlay placed on the viewport. Similarly, any node that has viewport parameters
and has bit 1 of the node's branch mask set has the gun barrel added to its processing.

Gunner, gﬁn barrel, and calibration overlays are used by the 120T CIG only. Overlays on
the 120TX are generated through the 2-D overlay compiler.

Called By: cig_config
Routines Called: make_ml_overlays
make_m?2_overlays
printf
Parameters: MSG_OVERLAY_SETUP *pmsg
VIEWPORT_PARAMETERS *pview
Returns: none

2.2.1.10 process_vflags.c

The process_vflags function processes system view flags and branch values for conditiona!
nodes. This function is called when the message from the Simulation Host is

28

BBN Systems and Technologies 120TX/T CIG HOST CSCI

MSG_VIEW_FLAGS. Itis called by cig_config to put the initial view flags in the
configuration tree, and by simulation to update the view flags during runtime.

System view flags are used to turn CRT monitors on and off, and to control viewing
modes such as thermal/daylight TV. The branch values indcxed by the branch_index for all
conditional nodes in the configuration tree are also stored in the system view flags array.

The function call is process_vflags(imsg, top_of_configtree, db), where:

imsg is a pointer to the MSG_VIEW_FLAGS message
top_of configtree is a pointer to the root configuration node
db is the double-buffer memory current base pointer

process_vflags the following:

» Sets up the view modes for DTP.

» If a Force board is present, puts the name of the new color lookup table in Force
memory. (The table is downloaded to GSP memory by the forcetask.)

» Processes the view flags and branch values.

» Loads the view flags into the T&C (Timing and Control) board.

« If a Force board is present, puts the video control commands in Force memory.
(These commands are downloaded to GSP memory by the forcetask.)

Called By: cig_config
read_configfile
simulation
Routines ¢ .2d: none
Parameters: CONFIGURATION_NODE *top_of_configtree
14P imsg
INT_4 db
Returns: none

2.2.1.11 process_vppos.c

The process_vppos function sets up the simulated vehicle's position (the x, y, and z
coordinates of its centroid) in the world. This position is used by rowcol_rd to determine
whether new load modules need to be read into active area memory. It is also used by
local_terrain when preparing local terrain messages for the Simulation Host.

This function is called by confignode_setup when creating a world/hull matrix node (a child
of the root node). It is also called by simulation whenever a word/hull matrix node is
updated (e.g., in response to a matrix message).

The function call is process_vppos(config_node, matrix, db), where:

config_node is a pointer to the configuration node (always a world/hull node)

29

BBN Systems and Technologies 120TX/T CIG HOST CSCI

matrix is the node's new matrix
db is the double-buffer memory current base pointer

The simulated vehicle's position is stored in an array. This structure allows for multiple
vehicles. At the current time, only one simulation vehicle is supported; therefore, there is
only one element in the array. The viewport positions array is pointed to by the root node's
sibling pointer.

process_vppos takes the matrix provided by the Simulation Host and converts it into world
coordinates. The algorithm used to do this depends on the matrix type, as follows:

RTS4x3_TYPE
Given a world-to-view matrix of:
| r00 r01 r02 0O |
j rl0 rll rl12 0O |
I r20 r21 r22 0 |
| tx ty tz 1 |

The location of the vehicle in the world is:
vppos.x = -(tx,ty,tz)*(r00,101,r02)
vppos.y = -(tx,ty,tz)*(r10,r11,r12)
vppos.z = -(tx,ty,tz)*(r20,r21,r22)

RTS3x3_TYPE
The location of the vehicle in the world is:
VPpPOS.X = viewpos->x = matrix.rts3x3.translation.x
Vppos.y = viewpos->y = matrix.rts3x3.translation.y
VPPOSs.z = viewpos->z = matrix.rts3x3.translation.z

ROT2x1_TYPE
No conversion is required.

Called By: confignode_setup
simulation

Routines Called: none

Parameters: CONFIGURATION_NODE *config_node
MTXUNION matrix
INT_4 db

Returns: none

2.2.1.12 read_configfile.c

The functions in read_configfile.c repackage configuration file data into SIM-t0-CIG
messages. This allows a configuration tree to be built from commands in an ASCII file
instead of messages from a Simulation Host. The ASCII file is created off-line and loaded
onto the CIG.

30

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The functions in read_configfile.c are:

» read_configfile
¢ WORD_fscanf

« REALA_fscanf

* STRING_fscanf
e parser

read_configfile is the driving function. The other functions are used by read_configfile to
interpret the data in the configuration file.

Note: The MSG_GEN_CONFIGTREE message, which would cause
read_configfile to be invoked, is not currently implemented.
Therefore, none of the functions in read_configfile.c are currently
used.

An ASCII configuration file can be read by flea_init_cig_sw (in the
Flea CSC) for stand-alone use.

2.2.1.12.1 read_configfile

The read_configfile function reads data from the configuration file and transforms it into
SIM-to-CIG messages.

The function call is read_configfile(filename), where filename is the name of the
configuration file.

read_configfile does the following:

Opens the specified file.

Builds the Simulation Host-type message packet.

Processes each node message; calls confignode_ setup to create each node entry.

Processes each viewport parameter message; calls viewport_setup to create each

viewport entry.

* Processes the view flags message; calls process_vflags to create the view flags and
the branch value array.

* Closes the file.

» Calls fill_tree to add the graphics path parameters to the tree.

The function returns 1 (SUCCEED) if the file is read and translated successfully. It returns
NULL if the specified file could not be opened.

Called By: none

Routines Called: close
confignode_setup
fill _tree
getch
parser
process_vflags

31

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Parameters:

Returns:

REALA_fscanf
STRING_fscanf
viewport_setup
WORD_fscanf
XOPEN

char filename

err_code

2.2.1.12.2 WORD_fscanf

The WORD_fscanf routine searches a file character-by-character looking for a digit. When
it finds a digit, it returns the number (WORD type) to which the digit belongs.

The function call is WORD_fscanf(hex_flag, fp), where:

hex_flag identifies the type of digit (DECIMAL or HEX)
Jp is a unique identifier associated with the file to be read

Called By:

Routines Called:

Parameters:

Returns:

read_configfile

getch

isdigit
isspace
string_to_int

INT 4 fp
BOOLEAN hex_flag

word

2.2.1.12.3 string_to_int

The string_to_int routine converts a character string to an integer, then returns the result.

The function call is string_to_int(hex_flag, string), where:

hex_flag identifies the type of result desired (DECIMAL or HEX)
string is the string to be converted

Called By:

Routines Called:

WORD_fscanf

isdigit

32

BBN Systems and Technologies

120TX/T CIG HOST CSCI

update_fov does the following:

Loads the level-of-detail multiplier.

¢ o o o o

viewspace matrix calculations.)

* Loads the field-of-view vectors.

Called By: simulation
viewport_setup

Routines Called: cos
sin
tan
viewspace_mtx

Parameters: CONFIGURATION_NODE
REAL _4
REAL 4
REAL 4
INT_4

Returns: none

2.2.1.13.2 viewspace_mtx

Initializes values required for the viewspace matrices.
Calculates each graphics path's sin_i and cos_i. (These values are required for

Calculates the field-of-view/graphics path and the level-of-detail multiplier.
Determines which double buffer is being updated this frame.

Calls viewspace_mitx to set up the perspective and non-perspective matrices.

*config_node
SIM_lod
fov_i

fov_j

db

The viewspace_mtx function generates perspective view matrices for use by the Polygon

Processor, and non-perspective view matrices for use by DTP.

The function call is viewspace_mtx(cos_i, sin_i, itan_i, itan_j, perspect_mtx,

nperspect_mtx), where:

cos_li is the cosine of the graphics path
sin_i s the sine of the graphics path

itan_i is the inverse of the tangent of the fov angle i (horizontal)
itan_j is the inverse of the tangent of the fov angle j (vertical)

perspect_mix is a pointer to the perspective view matrix

nperspect_mix is a pointer to the non-perspective view matrix

If load module blocking is enabled, viewspace_mtx scales perspective matrices for the

larger active area memory.

Called By: update_fov

35

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: getmatrix
id_4x3mtx
make_p_nt
rdmat_dump (in debug mode only)
rotate_z_nt
swap_axis
Parameters: REAL 4 cos_i
REAL_4 sin_i
REAL _4 itan_i
REAL _4 itan_j
MAT_UNIT *perspect_mtx
MAT_UNIT *nperspect_mtx
Returns: none

2.2.1.14 update_rez.c

The update_rez function updates the screen resolution in the graphics path parameter
structures if a new value is provided by the Simulation Host during runtime.

The function call is update_rez(config_node, db), where:

config_node is a pointer to the configuration node
db is the double-buffer memory current base pointer

Called By: viewport_setup

Routines Called: none

Parameters: CONFIGURATION_NODE *config_node
INT_4 db

Returns: none

2.2.1.15 vec_dump.c

The functions in the vec_dump.c CSU can be used to dump vectors to the standard output
(stdout). These functions are:

¢ rdvec_dump
» r8vec_dump

36

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1.15.1 rd4vec_dump

The r4vec_dump function dumps a vector to stdout.

The function call is r4vec_dump(str, v), where:
str is a string to output to identify the vector (currently undefined)
v is the vector

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: char *str
REAL 4 v[3]
Retumns: none

2.2.1.15.2 r8vec_dump

The r8vec_dump function dumps a vector to stdout.

The function call is r8vec_dump(str, v), where:
str is a string to output to identify the vector (currently undefined)
v is the vector

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: char *str
REAL_8 v[3]
Returns: none

37

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.1.16 viewport_setup.c

The functions in the viewport_setup.c CSU are used to create viewport parameter entries in
the configuration tree. These functions are:

viewport_setup
calc_paths
* viewport_init

2.2.1.16.1 viewport_setup

The viewport_setup function creates and initializes the viewport parameter entries for the
terminal nodes in the configuration tree. viewport_setup is called by cig_config when the
message from the Simulation Host is MSG_VIEWPORT_STATE.

The function call is viewport_setup(imsg, top_of_configtree,
top_of_view_entries, top_of_path_entries, db), where:

imsg is a pointer to the MSG_VIEWPORT_STATE message
top_of configtree is a pointer to the configuration tree

top_of view_entries is a pointer to the viewport parameters
top_of path_entries is a pointer to the graphics path parameters
db is the double-buffer memory current base pointer

viewport_setup does the following:

Sets a pointer to the owner configuration node.

Unpacks the message packet from the Simulation Host.

Sets up a pointer to the viewport positions array.

Calls calc_paths to determine how many graphics paths are needed, based on the

viewport resolution.

Sets up a local graphics path counter.

Updates the path count if processing a new viewport.

Makes sure enough graphics paths are available.

Calculates the horizontal and vertical field-of-view angles for each graphics path.

Calculates the screen resolution for each graphics path.

Loads AAM addresses for the level-of-detail multiplier, viewing range (farthest

distance that can be seen), and near plane (closest distance that can be seen).

« Fills in the viewport entry pointer, sibling pointer, path id, and AAM address to
field-of-view vectors in the graphics path entries.

» Calls update_fov to fill in the fields related to field of view.

» Updates the viewport and graphics path entry indices.

* & @ o o o

The function returns 1 if the viewport parameters are added to the configuration tree
successfully. It returns NULL if there are not enough graphics paths available.

Called By: cig_config
read_configfile

38

BBN Systems and Technologies 120TX/T CIG HOST CSCI

isxdigit
Parameters: char string[]
BOOLEAN hex_flag
Returns: result

2,2.1.12.4 REAL4_fscanf

The REALA_ fscanf routine searches a file character-by-character looking for a digit. When
it finds a digit, it returns the number (REAL_4 type) to which the digit belongs.

The function call is REAL4_fscanf(fp), where fp is a unique identifier associated with
the file to be read.
Called By: read_configfile

Routines Called: atof

getch

isdigit
Parameters: INT_4 fp
Returns: real4

2.2.1.12.5 STRING_fscanf

The STRING_fscanf routine searches a file character-by-character looking for a lower- or
uppercase alphabetic character. When it finds a legal character, it retumns the string to
which the character belongs.

The function call is STRING_fscanf(fp, string), where:

Jp is a unique identifier associated with the file to be read
string is a pointer to the returmned string

Called By: read_configfile
Routines Called: getch
isalpha
Parameters: INT_4 fp
char string(]

33

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.2.1.12.6 parser

The parser function parses a configuration file for the configuration messages used by
read_configfile to build the corresponding configuration tree. The function returns the next
message from the configuration file. Usually, it determines the message from reading just
the first character; it reads additional characters if necessary.

The function call is parser(fp), where fp is a unique identifier associated with the
configuration file.

Called By: read_configfile

Routines Called: STRING_fscanf

Parameters: INT_4 fp

Returns: cmd_line

2.2.1.13 update_fov.c

The functions in update_fov.c fill in the field-of-view (fov) fields in the graphics path
parameters and the viewport parameter entries. They also generate perspective and non-
perspective view matrices. These functions are:

» update_fov
* viewspace_mix

2.2.1.13.1 update_fov

The update_fov function fills in the fov-related fields in the graphics path parameters and
the viewport parameter entries. This function is called by viewport_setup during viewport
configuration. It is also called by simulation to change field-of-view parameters during
runtime.

The function call is update_fov(config_node, fov_i, fov_j, SIM_lod, db),
where:

config node is a pointer to the configuration node

fov_iis the horizontal field-of-view angle

fov_jis the vertical field-of-view angle

SIM lod is the level-of-detail multiplier to be applied to all non-terrain objects
db is the double-buffer memory current base pointer

34

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: aam_malloc
calc_paths
mtxcpy
update_fov

update_rez

Parameters: WORD *imsg
CONFIGURATION_NODE *top_of_configtree
VIEWPORT_PARAMETERS *top_of_view_entries
GRAPHICS_PATH_PARAMETERS *top_of_path_entries
INT_4 db

Retumns: NULL
1 (SUCCEED)
2.2.1.16.2 calc_paths

The calc_paths function calculates how many graphics paths are required. For the 120TX,
this is based on the desired viewport resolution.

The function call is calc_paths(resolution_i, resolution_j), where:

resolution_i is the number of pixels to display per row (horizontal)
resolution_j is the number of pixels to display per column (vertical)

The function returns the number of graphics paths required.

Called By: viewport_setup

Routines Called: none

Parameters: REAL 4 resolution_i
REAL_4 resolution_j

Returns: graphics_paths

2.2.1.16.3 viewport_init

The viewport_init function resets all static variables used by the viewport_setup function.
These variables are the graphics path count, view entry index, path entry index, and
maximum graphics paths count. This function is called by init_configtree before
viewport_setup is called by cig_config.

The function call is viewport_init().

39

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: init_configtree
Routines Called: none
Parameters: none
Returns: none

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.2 DTP Command Generator

The DTP (Data Traversal Processor) Command Generator translates the viewport
configuration tree generated by the real-time software into the commands required to drive
the graphics hardware. It generates DTP hardware commands (processor and channel
initialization code) from the viewport configuration tree, then downloads these commands
to the DTP CPU. The DTP then determines what data is to be sent to the 9U graphics
channel.

The DTP is a micro-coded processor board that does the following:

Looks through active area memory for DTP commands.

Computes viewpoint positions for vectors.

Computes world-to-viewpoint matrices for each viewport.

Performs field-of-view and level-of-detail tests on models and special effects.
Sends data to the Polygon Processor.

¢ © o o o

The Polygon (Poly) Processor is a special-purpose floating point processor that does the
following:

Transforms polygons from world coordinates to viewspace coordinates.
Eliminates back-facing polygons.

Clips polygons that fall partially outside of the viewing pyramid.

Fills polygons with colored or textured pixels.

Perspectively projects polygons onto the screen.

The DTP is controlled through the DTP commands it finds in active area memory. These
commands are placed in active area memory by the DTP Command Generator. The DTP
reads one buffer in double-buffer memory while the real-time software updates the other.
Each frame, the two processes switch buffers.

The DTP Command Generator uses the Runtime Command Library (RCL) to generate DTP
commands. The RCL is a set of software functions that support the configuration of lists
of runtime commands for both the DTP and the Poly Processor. The RCL is responsible
for working with the complex data structures in the DTP — the DTP Command Generator
simply specifies the command and provides the data required for the command. The RCL
also maintains addressing and data sizing information.

The interface between the DTP Command Generator functions and the RCL is implemented
via command-specific macros. Each DTP command is supported by one or more macros.
These macros are named in the form dtp_xyz, where xyz identifies the DTP command or a
version of a command. Similarly, macros that support Poly Processor commands are
named in the form poly_xyz. The DTP Command Generator function calls the appropriate
macro and passes it the data required for the selected command. The macro in turn calls the
appropriate RCL routine and passes it the command parameters. The RCL routine then
generat=s the actual DTP command and places it in active area memory.

The DTP-RCL macros are defined in the rcinclude.h file. Refer to Appendix B for a list of
these macros.

Figure 2-5 identifies the CSUs in the DTP Command Generator component of the
UPSTART CSC. These CSUs are described in this section.

41

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Task Initialization
Forcetask Database
Ballistics Interface Database Upstart ") Gossip Floa
Processing Feedback ment
Vie Database
Compiler Processing A Processor
ration Command
Generator
dtp_compiler.c
dtp_funcs.c
dip_travi.c
dip_trav2.c
refuncs.c
Figure 2-5. DTP Command Generator CSUs
2.2.2.1 dtp_compiler.c

The dtp_compiler function is the driving function for generating DTP hardware commands

from the viewport configuration tree.

The function call is dtp_compiler(root, offset), where:

root is a pointer to the configuration node
offset is the number of bytes of DTP code

dtp_compiler does the following:

. L] [3 [] * e & o

Initializes the runtime command library (RCL).
Allocates data pointers for model processing.
Initializes the DTP stack.
Calls dtp_trav1 to traverse the configuration tree for processor initialization.
Runs the RCL patch utility to patch any missing addresses and word counts.
Reinitializes the RCL and DTP stacks.
Calls dtp_trav2 to traverse the configuration tree for channel initialization.
Runs the RCL patch utility again.

42

BBN Systems and Technologies 120TX/T CIG HOST CSCI

* Prints DTP memory use data.

The function returns 1 if the commands are generated successfully, or 0 if either dtp_travl
or dtp_trav2 fails.

Called By: cig_config

Routines Called: dtp_travl
dtp_trav2
init_dtp_stacks
printf
rcl_init_adrs
rcl_init_stack
rcl_patch_adrs
rcl_rin_adrs
rcl_set_errptr

Parameters: CFG_NODE *root
WORD offset

Returns: 0 (FAIL)
1 (SUCCEED)

2.2.2.2 dtp_funcs.c

The functions in the dtp_funcs.c CSU are called by dtp_trav1 to (1) manage the node stack
it uses to traverse the configuration tree, and (2) allocate DTP user memory. These
functions are:

push_node
pop_node
what_node_on_stack
init_dtp_stacks
dtp_malloc
dtp_malloc_init

® o & o o o

2.2.2.2.1 push_node

The push_node function takes a configuration node pointer as input and places it on the
stack. It also checks for and reports node stack overflows.

The function call is push_node(node_ptr), where node_ptr is a pointer to the
configuration node to be pushed on the top of the stack.

Called By: dtp_travl

43

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: printf
Parameters: CONFIGURATION_NODE *node_ptr
Returns: none

2.2.2.2.2 pop_node

The pop_node function returns the configuration node pointer from the top of the stack. If
the node stack is empty, pop_node returns 0; this tells dtp_trav1 that the stack has been
processed completely.

The function call is pop_node().

Called By: dtp_travl
Routines Called: none

Parameters: none

Returns: gode stack pointer

2.2.2.2.3 what_node_on_stack
The what_node_on_stack function returns the node index of the node on top of the stack.

The function call is what_node_on_stack(empty), where empty is the value to be
returned if the stack is empty.

Called By: dtp_travl
Routines Called: none
Parameters: WORD empty
Returns: node_index
empty

44

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.2.2.4 init_dtp_stacks
The init_dtp_stacks function initializes the DTP stack pointers to the top of the stack.

The function call is init_dtp_stacks().

Called By: dtp_compiler
Routines Called: none
Parameters: none
Returns: none

2.2.2.2.5 dtp_malloc

The dtp_malloc function allocates DTP memory. This function is called by dtp_travl to
allocate memory for configuration node matrices.

The function call is dtp_malloc(count), where count is the amount of memory to be
allocated.

The function returns 0 if successful. It returns the current DTP user pointer (as give_away)
if insufficient memory is available.

Called By: dtp_travl
Routines Called: none
Parameters: INT_2 count
Returns: 0
give_away

2.2.2.2.6 dtp_malloc_init

The dtp_malloc_init function initializes the portion of DTP allocated as user space. It sets
the DTP user pointer to the first available memory location, which is defined in
ecompilerl.h. dtp_trav] calls this function before it starts traversing the configuration tree.

The function call is dtp_malloc_init().

45

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: dtp_travl
Routines Called: none
Parameters: none
Returns: none

2.2.2.3 dtp_travl.c

The dtp_trav] function function traverses the configuration tree to generate processor
initialization codes. It traverses each node in the configuration tree by placing the root node
on the stack and then processing the stack until it is empty. When a node is popped from
the stack, any matrix concatenation commands or bit tests are performed for that node,
based on the node's type. The node's children and siblings are then placed on the stack
such that the order of processing is the node, the node’s children, and the node’s siblings.

dtp_trav1 uses the routines in dtp_funcs.c to access and manage the node stack. It uses the
dtp_* macros (defined in Appendix B) to communicate with the RCL to generate the actual
commands for the hardware.

The function call is dtp_travl(node), where node is a pointer to the root configuration
node. dtp_travl does the following:

» Calls dtp_malloc_init to initialize the DTP user space.
+ Uses various dtp_* macros to load the following:
- Channel status and channel pointers at DTP location 0.
List of final processing.
Flush and dynamic pointer tables.
Calibration branch mask.
Cloud bottom and top branch masks (if enabled).
Daylight TV thermal word.
View mode word for each channel.
Systemn view flags and branch values.
Current time set in simulation.
» Processes each node in the tree to generate the matrix concatenations and bit tests
for each path, as follows:
- Calls push_node to push the root child 0 on the stack.
- Calls pop_node to pop each node from the stack in turn.
- Calls rcl_set_label to set a label for the node.
- Validates the node's parent pointer.
- For a matrix node:
* Allocates DTP memory for the node's matrix.
* Concatenates the matrix with the parent's matrix.
- For a branch/matrix node:
Test the node's branch value.
* Allocate DTP memory for the node's matrix.
* If the branch value is true, load the node's matrix or concatenate it ‘
with the parent's matrix.

])]]]]]]

46

BBN Systems and Technologies

120TX/T CIG HOST CSCI

* If the branch value is false, load the parent's matrix.
For a branch (conditional) node:
* Test the node's branch value.
* Load the parent's matrix.
Push the node's siblings and children onto the stack.
Performs initial data traversal.
Prepares system post-processing pointers and displays the post-processing
addresses for static vehicles, dynamic vehicles, and effects.
Allocates space for the current time to support time-base commands.
Calls rcl_data to generate a command to indicate a separation of initialization and
channel processing.

The function returns 1 if successful. It returns 0 if it detects an illegal parent pointer or an
invalid node type.

2.2.2.4

Called By: dtp_compiler

Routines Called: dtp_bnz
dtp_bru
dtp_brus
dtp_end
dtp_lwd
dtp_lwds
dtp_malloc
dtp_malloc_init
dtp_mmpst
dtp_mwd
poly_flu
pop_node
printf
push_node
rcl_data
rcl_rtn_adrs
rcl_set_errptr
rcl_set_label
what_node_on_stack

Parameters: CONFIGURATION_NODE *node

Returns:

dtp_trav2.c

The dtp_trav2 function traverses the configuration tree to generate channel initialization

codcs.

The function call is dtp_trav2(node), where node is a pointer to the root configuration

node. dtp_trav2 does the following:

47

BBN Systems and Technologies 120TX/T CIG HOST CSCI

» Saves the beginning path location.
» For a branch (conditional) node:
- Tests the condition.
- Traverses the true path.
» For a matrix node that is the terminal node in a traversal path (i.e., a node that has
v1cwport parameters):
Calculates the channel base address.
- Loads the channel parameters, field-of-view vectors, viewpoint position,
level-of-detail multiplier, and far plane.
Multiplies the hull-to-view matrix for DTP use.
Calculates bounding plane normals.
Calculates the base load module.
Outputs the channel toggle command if the channel is secondary.
Outputs the perspective matrix.
Outputs the screen constants.
Tests for calibration output for all screens.
Outputs the gun overlay if bit 0 of the node's branch mask is set.
* For the root node:
- Saves the matrix and forms the stamp word.
- Calls the cloud top and bottom models, if enabled.
* Pre-processes models:
- Creates output_direct for the node's matrix.
- Outputs the gun barrel overlay if bit 1 of the node's branch mask is set.
- For a branch node, sets the branch mask.
* Prepares the system pre-processing pointers and displays the pre-processing
addresses for dynamic vehicles, static vehicles, and effects.
» Saves common poly command data.

The functic: always returns 1.

Called By: dtp_compiler

Routines Called: dtp_blin
dtp_bnz
dtp_bpc
dtp_bru
dtp_brus
dtp_brz
dtp_end
dtp_lwds
dtp_mmpst
dtp_osd
dtp_owd
dtp_owds
dtp_subs
poly_fsw
poly_rmml
poly_sml

rcl_rtn_adrs

48

BBN Systems and Technologies 120TX/T CIG HOST CSCI

rcl_set_errptr

rcl_set_label

rcl_stuff data
Parameters: CONFIGURATION_NODE *node
Returns: 1

2.2.2.5 rcfuncs.c

The functions in the rcfuncs.c CSU are used to work with the Runtime Command Library
(RCL). These functions are:

rcl_init_stack
rcl_push
rcl_pop
rcl_patch_adrs
rcl_set_errptr
rcl_init_adrs
rcl_rtn_adrs
rcl_set_label
rcl_set_cntlbl
rcl_lblemd
rcl_command
rcl_component
rcl_data
rcl_stuff_data

¢ & & & o 6 & o o & & ¢ v o

This CSU also defines the following macros used by the RCL functions. These macros are
described in Appendix B.

* ERRMSG

« ROOMA4LABEL

+ ROOMCHECK

* INCR_COMPONENT

The RCL labeling utility removes the need for the programmer to maintain addressing and
data size information as a command sequence is constructed. The programmer can write
runtime code and label only data that is unknown. All labels (defined as single-integer
values) must uniquely identify one location in the code. As the library generates the
runtime commands, it places any unknown information onto a patch stack. When the
library encounters a label, it stores the location of the label for use in patching the stack.
The rcl_patch_adrs function scans the list of unknown data and patches the missing
addresses and word counts.

Use of the patching utility requires a stack area for maintaining the unresolved addresses,
counts, and labels. The rcl_init_stack function is used to initialize the stack.

Most labels are used to identify a location in active area memory. Some labels are branch
labels where DTP branch commands change the direction in which the DTP is processing
messages. DTP output commands reference a location where the data begins. For these

49

BBN Systems and Technologies 120TX/T CIG HOST CSCI

commands, the calling function specifies a unique label to identify the branch of output
data, and uses the rcl_set_label function to identify the location. These locations are
patched with the supplied addresses when the rcl_patch_adrs function is executed.

Set count labels are labels that are used to identify the size of a data segment rather than the
location of command data.

The DTP has several output commands that require a word count value in order for the
DTP to pass the correct amount of data to the Poly Processor. Usually, there are two ways
to accomplish this:

+ If the exact amovnt of data that can be sent is known, the DTP output command
using the function that has data start Iabel and word count parameters can be used.

» If the data size is not known, the command can be implemented using the set count
function. Rather than specifying a word count for the command, a set count label is
defined. When generating the data, rcl_set_label is executed to identify the
beginning of the data. After generating the data, rcl_set_cntlbl is executed to
specify the start and end labels, and the set count label is loaded with the word
count of the data segment. When rcl_patch_adrs is executed, the output count is
patched with the data segment size.

The DTP supports two addressing modes: absolute and relative. In absolute mode, the
address is the actual AAM address for the branch or data. In relative mode, the address is
an offset that is added to the current location to locate the branch or data.

2.2.2.5.1 rcl_init_stack

The rcl_init_stack function initializes the unresolved address, count, and label stack.

The function call is rcl_init_stack(min_stack, max_stack), where:

min_stack is the minimum stack address
max_stack is the maximum stack address

Called By: dtp_compiler

Routines Called: none

Parameters: WORD *min_stack
WORD *max_stack

Returns: none

2.2.2.5.2 rcl_push

The rcl_push function adds a patch location to the patch stack.

50

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is rcl_push(adr, Ibiadr, name), where:
adr is the physical memory address the patch is to be made in
Ibladr is the physical memory address the label for the patch is in
name is the name of the calling routine

The function returns O if successful, or 1 if the stack is full.
Called By: rcl_lblemd

Routines Called: ERRMSG

Parameters: WORD *adr
WORD *Ibladr
char *name

Returns: 0
1

2.2.2.5.3 rcl_pop

The rcl_pop function removes a patch location from the patch stack.

The function call is rel_pop(adr, Ibladr, name), where:
adr is the physical memory address the patch is to be made in
Ibladr is the physical memory address the label for the patch is in
name is the name of the calling routine

The function returns O if successful, or 1 if the stack is empty.
Called By: rcl_patch_adrs

Routines Called: ERRMSG

printf
Parameters: WORD *adr
WORD *]bladr
char *name
Returns: 0

51

BBN Systems and Technologies

120TX/T CIG HOST CSCI

2.2.2.5.4

rcl_patch_adrs

The rcl_patch_adrs function removes remaining entries from the patch stack one at a time.
It patches the stored location with the associated label location and processes the stack until
itis empty. This function patches both absolute and relative addresses.

The function call is rcl_patch_adrs().

Called By:

Routines Called:

Parameters:

Returns:

2.2.2.5.5

dtp_compiler

none

none

rcl_set_errptr

The rcl_set_errptr function can be used to specify a character string to be output with every
RCL error message. This string can help localize the source of the error.

The function call is rcl_set_errptr(adr), where adr is the error string.

Called By:

Routines Called:

Parameters:

Returns:

2.2.2.5.6

dtp_compiler
dtp_travl
dtp_trav2

none

char *adr

none

rcl_init_adrs

The rcl_init_adrs function initializes values for shared addressing variables.

The function call is rel_init_adrs(bld_adr, aam_adr, byte_count), where:

bld_adr is the memory location to store the RCL commands

52

BBN Systems and Technologies 120TX/T CIG HOST CSCI

aam_adr is the AAM location corresponding to the bld_adr
byte_count is the number of bytes available for RCL commands, starting at bld_adr

Called By: dtp_compiler

Routines Cal’ :d: none

Parameters: WORD *bld_adr
WORD aam_adr
WORD byte_count

Returns: none

2.2.2.5.7 rcl_rtn_adrs

The rcl_rtn_adrs function returns the current values of RCL addressi.ig values, as defined
in init_addressing.

The function call is rel_rtn_adrs(bld_adr, aam_adr, byte_count), where:
bld_adr is the address to return the memory location to store the RCL commands

aam_adr is the address to return the AAM location corresponding to the bld_adr
byte_count is the address to return the number of bytes available for RCL commands

Called By: dtp_compiler
dtp_travl
dtp_trav2
Routines Called: none
Parameters: WORD **bld_adr
WORD *aam_a
WORD *byte_count
Returns: none

2.2.2.5.8 rcl_set_label

The rcl_set_label function specified that a given label refers to the current location in active
area memory (the location in rcl_aam_adr).

The function call is rcl_set_label(label), where label is the label to set with the AAM
location.

53

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: gg_g:v;
_trav

Routines Called: ERRMSG

printf

ROOMA4LABEL
Parameters: WORD label
Returns: none

2.2.2.5.9 rcl_set_cntlbl
The rcl_set_cntlbl function identifies a section of data for output. The function stores in
cnt_label the number of words from the address stored in /abel to the current AAM address.
Output commands that refer to the set count label cnt_label are patched with this data.
The function call is rcl_set_cntlbl(label, cnt_label), where:

label is a previously set label that identifies the beginning of the data

cnt_label is the label associated with an output count

Called By: none

Routines Called: ERRMSG

printf
ROOM4LABEL
Parameters: WORD label
WORD cnt_label
Returns: none

2.2.2.5.10 rcl_lblemd
The rcl_lblcmd function generates a DTP label command.
The function call is rcl_lblemd(name, wd_cnt, id, rel, 1bl), where:

name is a pointer to ‘he name of the calling routine

wd_cnt is the total nuriber of words the function will generate for the command
id is the command id value

rel is the relative addressing flag

Ibl is the label the command branch value is associated with

54

BBN Systems and Technologies 120TX/T CIG HOST CSCI

rcl_lblemd does the following:

Calls ROOMCHECK to make sure there is room for the command.

¢ Calls ROOM4LABEL to make sure there is room for the label.
* Pushes the address and label address on the stack to patch.

» Saves the correct addressing.

» Copies the additional data.

* Updates memory data.

When rcl_lblemd places the command location on the stack, rel is stored as the branch data.
rel is set to 90 for absolute addressing, and is set to rcl_aam_adr for relative addressing.
When patching cccurs, this value is subtracted from the patch label to generate the relative
or absolute value.

If wd_cnt is greater than 1, the data following /bl on the function stack is appended to the
command.

Called By: gg_gn
nr
dtp_bcz
dtp_bczr
dtp_bdgr
dtp_bdlr
dip_bgn
dtp_bgz
dtp_bnz
dtp_bnzr
dtp_bru
dtp_orur
dtp_brz
dtp_brzr
dtp_fov
dtp_fovr
dip_gdc
dtp_gdci
dtp_gdcir
dtp_gden
dtp_gacnr
dtp_gdcr

dtp_owdsc
dtp_owr
dip_owrsc
dtp_sub
dtp_subr

35

BBN Systems and Technologies

120TX/T CIG HOST CSCI

dtp_tbdr
dtp_tbrr

poly_efs
poly_efsr

Routines Called: rcl_push

ROOMA4LABEL
ROOMCHECK

Parameters: char
WORD
BYTE
WORD
WORD

Returns: none

2.2.2.5.11 rcl_command

*name
wd_cnt
id

Ibl

The rcl_command function generates a DTP command with no label.

The function call is rcl_command(name, wd_cnt, id, data), where:

name is a pointer to the routine name

wd cnt is the total number of command WORDs

id 1s the command id value
data is the data for the command

rcl_command does the following:
Copies the data.

Puts the command id in memory.
Updates memory data.

Called By: dtp_benrs
dtp_bcns
dtp_bczrs
dtp_bczs
dtp_bdgrs
dtp_bdlrs
dtp_bgns
dtp_bgzs
dtp_blm
dtp_bnzrs
dtp_bnzs
dtp_bpc
dtp_bpcx
dtp_brurs

Calls ROOMCHECK to make sure there is room for the command.

56

BBN Systems and Technologies

120TX/T CIG HOST CSCI

dtp_brus

dtp_brzrs
dtp_brzs

dtp_dot

57

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: ROOMCHECK

Parameters: char *name
WORD wd_cnt
BYTE id
WORD data
Returns: none

2.2.2.5.12 rcl_component
The rcl_component function generates a Poly Processor component command.
The function call is rcl_component(name, wd_cnt, incr, id, bal, It, data), where:

name is a pointer to the name of the calling routine

wd_cnt is the total number of words the function will generate for the command
incr is the count increment used to initialize component data

id is the command id value ‘
bal is the Ballistics bit ;
It is the local terrain bit

data is the first piece of additional data

rcl_component does the following: .

Calls ROOMCHECK to make sure there is room for the command.

Saves the component pointers for count updates.

Sets the component id.

Sets the Ballistics bit if any polygons in the component need to be checked for

Ballistics intersections.

» Sets the local terrain bit if any polygons in the component need to be included in the
local terrain message sent to the Simulation Host.

» If wd_cnt is greater than 1, zeroes the second word of the component.

» Copies the additional data.

» Calls INCR_COMPONENT to update the component's word count, polygon
count, and vertex count 1r the Poly component.

¢ Updates memory data.

* & o &

Called By: poly_bvc
poly_gc
poly_pc
poly_sc
poly_sci
poly_sec

Routines Called: INCR_COMPONENT
ROOMCHECK

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Parameters:

Returns:

2.2.2.5.13 rcl_data

char

none

*name
wd_cnt
incr

id

bal

It

data

The rcl_data function provides additional data for a poly component command.

The function call is rcl_data(name, wd_cnt, incr, data), where:

name is the name of the calling routine
wd_cnt is the total number of words the function will generate for the command

incr is the count increment used to initialize component data

data is the first piece of additional data

rcl_data does the following:

Copies the data.

Called By:

Routines Called:

Parameters:

Returns:

Updates memory data.
Calls INCR_COMPONENT to update the component's word count, polygon
count, and vertex count in the Poly component.

poly_ab
poly_inf
poly_poly
poly_sci
poly_stamp
poly_vtxe
poly_vixl

INCR_COMPONENT
ROOMCHECK

char

WORD
WORD
WORD

none

Calls ROOMCHECK to make sure there is room for the command.

*name
wd_cnt
incr

39

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.2.5.14 rcl_stuff_data

The rcl_stuff_data function places a specified number of data words found in a specified
location of user memory into successive memory locations. This function is used to add
data to the processing path when no function is available to produce the desired effect.

The function call is rcl_stuff_data(cpf, wd_cnt), where:

cpf is a pointer to the data
wd_cnt is the amount of data to copy

rcl_stuff_data does the following:

e Calls ROOMCHECK to make sure there is room for the data.
» Copies the data.
» Updates memory data.

Called By: dtp_trav2
poly_Imf

poly_mmf

Routines Called: ROOMCHECK

Parameters: WORD *cpf
WORD wd_cnt
Returns: none

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3 Real-Time Processing

Real-Time Processing, a major functional component of the UPSTART CSC, is
responsible for setting up and running the simulation using messages sent from the
Simulation Host.

Upon start-up, the upstart function initializes active area memory, initializes system tasks,
verifies that the DR11 communications interface is functional, and loads and starts
Ballistics. It then processes messages sent by the Simulation Host to place the CIG in a
specified state. The CIG states that can be set are:

Database setup
This state prepares the CIG to run a simulation. If this state is requested, upstart

passes control to db_mcc_setup.

File control
This state is used to transfer files to/from the CIG). If this state is requested,
upstart passes control to file_control.

Test mode
This state is used to run hardware tests. If this state is requested, upstart passes
control to hw_test.

MCC setup
This state prepares the CIG to act as an MCC station. This mode is not currently

used.

If database setup is specified, db_mcc_setup processes messages from the Simulation Host
to configure the viewports and the 2-D overlays (by initiating Viewport Configuration and
the 2-D Overlay Compiler, respectively). db_mcc_setup also loads the terrain database and
the dynamic elements database (DED) into active area memory, and processes requests to
download trajectory table data. Upon another state change request from the Simulation
Host, db_mcc_setup calls simulation to start the simulation.

simulation processes all runtime messages during the simulation. Upon request from the
Simulation Host, simulation moves or rotates dynamic vehicles, changes the gun overlays,
passes process round and round fired messages to Ballistics, shows effects, adds and
removes static vehicles, changes a viewport's field of view or level of detail, changes the
view mode, and updates the system view flags. simulation also processes the hit and miss
messages returned by Ballistics.

When the Simulation Host sends a message ending the simulation, simulation cleans up
and passes control back to db_mcc_setup. db_mcc_setup then initializes the configuration
tree and returns control to upstart.

The CSUs in the Real-Time Processing component are identified in Figure 2-6 and are
described in this section.

61

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Task Initialization
Forcetask Database
Balistics Interface Database Upstart Manage- Gossip Flea
Processing Feedback ment
Vi Database
2D Overlay Real-Time C:nm Traversal
Compiler Processing ration Processor
Command
Generator
aa_init.c file_control.c mkeal.c
bus_error.asm find_fn.c mkmix._nt.c
calc {xbvtoll.c model_mix.c
db_mec_setup.c gsp_load.c open_dbase.c
debig_initdr.c gun_overlays.c open_ded.c
ded_mode!_trace.c hw_test.c s&n'ulahon.c
download_bvols.c load_dbase.c stdio.c
drc make_bbn.c support.c
upstart.c

Figure 2-6. Real-Time Processing CSUs

2.2.3.1 aa_init.c (active_area_init)

The aa_init.c CSU contains one function, active_area_init. This function initializes the
active area of memory state tables and their related variables. This function is called by
upstart on start-up, and by simuli+ion when it receives a CIG Control-Stop message from
the Simulation Host.

The function call is active_area_init(). active_area_init does the following:

Clears the system area of active area memory.

Initializes tanks and other vehicles in the dynamic state table.

Initializes static tanks and other static vehicles in the static state table.
Initializes the multiple-frame effects linked list. (This structure is used when
showing effects over multiple frames.)

* & & o

Called By: simulation
upstart

62

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: INIT_MTX

Parameters: none
Returns: none
2.2.3.2 bal_routines.c

The functions in the bal_routines.c CSU are not used in the 120TX/T implementation.
Information provided on these functions in earlier versions of this document should be
disregarded.

2.2.3.3 bus_error.asm
The bus_error function touches a memory location to see if it exists. It is usually used to
determine which type of Ballistics board is in the CIG, or to find out whether the CIG

contains a Force board.

The function call is bus_error(address, accesstype), where:

address is the test address
accesstype is b (byte access), w (word access), or 1 (long word access)
' The function returns 0 if the memory location exists, or 1 if it does not.
Called By: apinit
load_dbase
upstart
Routines Called: none
Parameters: INT address
char accesstype
Returns: 0
1

2.2.3.4 cal.c

The cal (calibration menu) function exercises the video monitors by placing a known
pattern on all channels. cal presents a menu that lets the Gossip user turn the calibration
image or gunner pixel on or off. The user is then able to verify the accuracy of the image
and take appropriate measures.

. The function call is cal().

63

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: gossip

Routines Called: printf

unbf_getchar
Farameters: none
Returns: none

2.2.3.5 db_mcc_setup.c

The db_mcc_setup function processes messages from the Simulation Host to prepare the
CIG system to run a simulation. It can also prepare the CIG to act as an MCC station,
although this mode is not currently used. db_mcc_setup is called by upstart when the CIG
Control message from the Simulation Host specifies C_DB_SETUP or C_MCC_SETUP.

The function call is db_mcc_setup(state), where state is the state the system is to be set
up in: C_DB_SETUP (simulation mode) or C_MCC_SETUP (MCC station mode).

db_mcc_setup does the following:

» Initializes trajectory table static variables.

» Processes each message received from the Simulation Host (see table below).

» Returns to upstart when it returns from cig_config or a simulation, or when it
detects a CIG-Control Stop message.

The following table summarizes the processing performed by db_mcc_setup in response to
each valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by db_mcc_setup to process the
message.

64

BBN Systems and Technologies 120TX/T CIG HOST CSCI

C_START_2D_SETUP
C_STOP

Message from SIM Host Processing by db_mc-_setup
MSG_CIG_CTL Causes a transition to another performance state.
C_CIG_CONFIG Calls gsp_load if there is a Force board and GSP is not
initialized; calls cig_config; calls load_dbase.
C_MCC_SIMUL Calls simulation with state set to C_MCC_SIMUL.
C_NULL No action.
C_SIMULATION Calls simulation with state set to C_SIMULATION.

Calls gsp_load if there is a Force board and GSP is not
initialized; calls cig_2d_setup if there is a Force board.
Returns to upstart.

MSG_DR11_PKT_SIZE

Specifies exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSG_END

Signals end of packet buffer.

Posts a BALLISTICS_MB message if the CIG contains a
master Ballistics board; calls EXCHANGE_DATA to send
output and receive input buffers.

MSG_FILE_DESCR
DB_SETUP

DB_DED_SETUP

Specifies database to use for simulation.

Calls gsp_load if there is a Force board and GSP is not
initialized; calls open_dbase.

Sets ded_db_name in global memory.

MSG_TRAJ_ENTRY_XFER

Downloads an entry in a Ballistics trajectory table.

Sets trajectory table entry data; calls mx_push to push
MSG_B0O_ADD_TRAJ_ENTRY message onto Ballistics
message queue.

MSG_TRAJ_TABLE_XFER

Sets up a Ballistics trajectory table to be downloaded.

Sets data for trajectory table; calls mx_push to push
MSG_B0O_TRAJ_TABLE message onto Ballistics message
queue.

Called By:

Routines Called:

Parameters:

Returns:

upstart

cig_2d_setup
cig_config
EXCHANGE_DATA
free_configtree
gsp_load
load_dbase
mx_push
open_dbase
printf

sc_post
simulation
SYSERR

INT_ 2 state

none

65

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.6 debug_initdr.c

The debug_initdr function calls the display_packet function (in Gossip) to display the
contents of each message in a DR11 exchange packet.

The function call is debug_initdr().
Called By: EXCHANGE_DATA
Routines Called: display_packet
Parameters: none
Returns: none

2.2.3.7 ded_model_trace.c

The ded_model_trace function traces the Data Traversal Processor (DTP) commands for
each dynamic model and adjusts addresses based on the commands.

The function call is ded_model_trace(ded_size, ded_start_address,
model_start_address, gm_end_address), where:

ded_size is the amount of memory available for all dynamic models
ded start_address is the starting location for loading dynamic models
model_start_address is the starting location for a specific model
gm_end_address is the highest address in generic memory
The function returns 0 if successful. It returns -1 if it the model's address is beyond the
end of generic memory or before its start address.
Called By: open_ded

Routines Called: printf

Parameters: INT_4 ded_size
INT_4 ded_start_address
INT_4 model_start_address
INT 4 gm_end_address
Returns: 0

66

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.8 download_bvols.c
The download_bvols function downloads models and bounding volumes to Ballistics.
The function call is download_bvols(header_P, fd, dev_P, model_type), where.

header_P is a pointer to the database header data

fd is an identifier for the file containing the information to be downloaded
dev_P is a pointer to the Ballistics message queue

model_type is BX_DED_MODEL_DIRECTORY

download_bvols does the following:

» Allocates memory to work in.

» Reads the model directory information from the specified database header.

» Builds a structure with the model directory data and passes it to Ballistics by calling
mx_push to push a MSG_BO_MODEL_DIRECTORY message onto the Ballistics
message queue.

» Reads each model entry in the specified file.

» For each model entry:

- Builds a structure with the model's data.
- Passes the structure to Ballistics by calling mx_push to push a
MSG_BO0_MODEL_ENTRY message onto the Ballistics message queue.

» Reads and validates the bounding volume count from the database header.

« Reads each bounding volume entry from the specified file.

» For each bvol entry:

- Builds a structure with the bvol's data.
- Passes the structure to Ballistics by calling mx_push to push a
MSG_B0O_BVOL_ENTRY message onto the Ballistics message queue.
Frees the memory it allocated.

The function returns 0 if successful. It returns -1 if the number of bounding volumes is
less than O.

Called By: open_ded

Routines Called: BCOPY
free
fxbvtofl_020
malloc
mx_push

prin
XLSEEK
XREAD

Parameters: DB_HDR_DBASE_DATA *header_P
INT fd
MX_DEVICE *dev_P
BYTE model_type

67

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: 0

2.2.3.9 dr.c

The functions in the dr.c CSU are used to test the DR 11 interface between the CIG and the
Simulation Host. These functions are:

e dr
e dr_is_okay

2,2.3.9.1 dr
The dr function is a test routine that calls the dr_is_okay function, then loads a file over the
DR11 interface when it appears as if the interface is ready to begin communication.
The function call is dr().
Called By: none

Routines Called: printf

system
Parameters: none
Returns: none

2.2.3.9.2 dr_is_okay

The dr_is_okay function looks at absolute memory addresses to attempt to determine
whether the DR11 interface is in a safe and stable condition.

The function call is dr_is_okay(). dr_is_okay does the following:

* Waits until the DR11 registers show that both the attention bit and the status B bit
are not set. This indicates that the cables are plugged in and the Simulation Host is
powered up.

» Waits until both the status A and status C bits are set. This indicates that the
Simulation Host is waiting to read data.

* Makes sure that at most cne event is posted to the dr_mbox queue. Removes any
excess messages from the queue.

The function returns 1 if it determines that the DR11 is ready to begin communication.

68

55

BBN Systems and Technologies 120TX/T CIG HOST CSCI
Called By: dr
. OPEN_EXCHANGE
Routines Called: printf
sc_lqck]
sc_qinquiry
4 sc_qpend
sc_unlock
] Parameters: none
Returns: 1 (TRUE)

2.2.3.10 file_control.c

The file_control function processes messages from the Simulation Host to handle file
transfers to and from the Simulation Host, delete files, and produce a CIG disk directory
list for the Simulation Host. file_control is called by upstart whenever the state requested
by the Simulation Host is C_FILE_XFER.

The function call is file_control(state), where state is the current state of the CIG
system (C_FILE_XFER).

' The following table summarizes the processing performed by file_control in response to
each valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italicized letters), then lists the major steps performed by file_control to
process the message.

69

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Message from SIM Host

Processing by file_control

MSG_CIG_CTL
C_NULL
C_STOP

Causes a transition to another performance state.
No action.
Returns to upstart.

MSG_DR11_PKT_SIZE

Specifies exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

DB_CIG2SIM
DB_SIM2CIG
DB_DELETION
DB_DIRECTORY
DB_REN_FROM

DB_REN_TO

 MSG_END Signals end of packet buffer.
Calis EXCHANGE_DATA to send output and receive input
buffers.
MSG_FILE_DESCR Transfers and manages files.

Uploads file from CIG to SIM; generates
MSG_FILE_STATUS return message.

Downloads file from SIM to CIG; generates
MSG_FILE_STATUS return message.

Deletes file from CIG disk; generates MSG_FILE_STATUS
return message.

Passes CIG directory data to SIM; generates
MSG_FILE_STATUS return message.

Finds file with this name; generates MSG_FILE_STATUS
return message.

Renames file to this name; generates MSG_FILE_STATUS
return message.

MSG_FILE_STATUS

Provides response for file transfer.
Resends block or aborts if message indicates.

MSG_FILE_XFER

Contains the name of the file to upload or download.
Reads or writes data; generates MSG_FILE_STATUS return
message.

Called By:

Routines Called:

upstart

close

create_Sz
EXCHANGE_DATA
Iseek

open

printf

read
rsec

strcpy
strlen
SYSERR
system
write

Parameters:

Returns:

INT_2

none

state

70

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.11 find_fn.c
The find_fn function finds the file that has the highest extension and whose name matches a
given character string. This ensures that the calling procedure loads the latest version of a
file.
The function call is find_fn(compare, n, exact, file_name), where:
compare is the name to be matched
n is the number of characters in the compare string
exact specifies whether or not the file name must match the compare string exactly
file_name is a pointer to the file name found by find_fn
The returned parameter (success) is set to 1 if a match is found, or -1 if no match is found.

Called By: bootup_slavel33
gsp_load

Routines Called: strcmp
system

Parameters: char *compare
char *file_name
INT_2 n
BOOLEAN exact

Returns: success

2.2.3.12 fxbvtofl.c

The fxbvtofl CSU contains functions used to convert a fixed point bounding volume to
floating point. These functions are:

« fxbvtofl
« fxbvtofl_dart
« fxbvtofl_020
2.2.3.12.1 fxbvtofl
The fxbvtofl function converts a fixed point bounding volume to floating point.

The function call is fxbvtofi(tobv, frombv), where:

tobv is the floating point bvol entry
frombv is the fixed point bvol entry

71

BBN Systems and Technologies 120TX/T CIG HOST CSCI

This function is not currently used.

Called By: none

Routines Called: FXTOS881

Parameters: BVOL_ENTRY *tobv
FIX_BVOL_ENTRY *frombv
Returns: none

2.2.3.12.2 fxbvtofl_dart
The fxbvtofl_dart function converts a fixed point bounding volume to floating point.
The function call is fxbvtofl_dart(tobv, frombv), where:
tobv is the floating point bvol entry
frombv is the fixed point bvol entry
This function is not currently used.

Called By: none

Routines Called: FXTOS881

Parameters: BVOL_ENTRY *tobv
FIX_BVOL_ENTRY *frombv
Returns: none

2.2.3.12.3 fxbvtofl_020
The fxbvtofl_020 function converts a fixed point bounding volume to floating point
The function call is fxbvtofl_020(tobv, frombv), where:

tobv is the floating point bvol entry

frombv is the fixed point bvol entry

Called By: download_bvols

72

——

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: FXTOS881

Parameters: BVOL_ENTRY *tobv
FIX_BVOL_ENTRY *frombv
Returns: none

2.2.3.13 gsp_load.c

The gsp_load function loads the Force and GSP (Graphics System Processor) boards with
data and code for execution. gsp_load is called by db_mcc_setup if the system has a Force
board and GSP has not yet been initialized.

The function call is gsp_load(force_start), where force_start is TRUE if a Force board
is present. gsp_load does the following:

Initializes Force variables.

Loads the latest version of the forcetask from disk. :
Starts the forcetask. 3
Halts the GSP task. !
Runs a test on GSP memory. :
Loads the latest versions of the following GSP files from disk: bitmap, lookut (the
color lookup table), data2d (the 2-D overlay database), and task2d (the GSP task).
. + Starts the GSP task.

e & o o o o

The Force and GSP boards are used to generate and display two-dimensional overlays on
120TX systems.

Called By: db_mcc_setup

Routines Called: find_fn
printf
system
TRIGGER_FORCE
WAIT_FORCE
XCLOSE
XOPEN
XREAD

Parameters: BOOLEAN force_start

Returns: none

73

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2,.3.14 gun_overlays.c

The functions in gun_overlays.c are used to build M1 and M2 overlays. These overlays
are hard-coded displays of three-dimensional polygons that are displ: yed on the viewport,
over the terrain display. The overlay shows objects that would normally obscure the view
of the terrain, to better emulate the real-world view out the vehicle's window. Overlays are
vehicle-specific.

gun_overlays contains the following functions:

ml_gun_overlay
m2_gun_overlay
make_m1_overlays
make_m2_overlays

These functions apply to the 120T CIG only. Overlays on the 120TX are generated by the
2-D overlay compiler using Simulation Host messages.

2.2.3.14.1 ml_gun_overlay

The m1_gun_overlay function creates gun and gunner overlays for M1 vehicles. This
function is called by simulation when the message from the Simulation Host is
MSG_GUN_OVERLAY and the message type is M1_OVERLAYS.

The function call is m1_gun_overlay(pmsg, db), where:

pmsg is a pointer to the MSG_GUN_OVERLAY message
db is the double-buffer memory current base pointer

Gun overlays show the components of the gun (on the simulation vehicle) that would be
visible when looking out from the vehicle's window. Gunner overlays show cross-hairs
and digits. The MSG_GUN_OVERLAY message specifies the digits to be displayed.

Called By: simulation

Routines Called: none

Parameters: MSG_GUN_OVERLAY *pmsg
INT_4 db

Returns: none

74

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.14.2 m2_gun_overlay

The m2_gun_overlay function creates gun overlays for M2 vehicles. This function is
called by simulation when the message from the Simulation Host is
MSG_GUN_OVERLAY and the message type is M2_OVERLAYS.

The function call is m2_gun_overlay(pmsg, db), where:

pmsg is a pointer to the MSG_GUN_OVERLAY message
db is the double-buffer memory current base pointer

Gun overlays show the components of the gun (on the simulation vehicle) that would be
visible when looking out from the vehicle's window. Gunner overlays show cross-hairs
and digits. The MSG_GUN_OVERLAY message specifies the digits to be displayed.

Called By: simulation
Routines Called: none
Parameters: MSG_GUN_OVERLAY *pmsg
INT_4 db
@
Returns: none

2.2.3.14.3 make_ml_overlays

The make_m1_overlays function sets up M1 overlay data at viewport configuration time.
This function is called by overlay_setup in the Viewport Configuration component if the
Simulation Host sends a MSG_OVERLAY_SETUP message with the type set to 1
(M1_OVERLAYS).

Note: The MSG_OVERLAY SETUP message can specify
gunners_viewport (the viewport that is to have the gunner’s overlay)
and barrel_viewports (the viewports the gun barrel is to be viewable
in). These values are not currently used. The gunner’s overlay is
placed on any viewport belonging to a configuration node that has
bit 0 of its branch mask set. The gun barrel overlay is placed on any
viewport belonging to a configuration node that has bit 1 of its
branch mask set.

The function call is make_ml_overlays (po, ppg), where:
po is a pointer to the overlay parameters

ppg is a pointer to the M1_GUN_OVERLAY message

. Called By: overlay_setup

75

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: aam_malloc
id_4x3mtx
make_p_nt
swap_axis

Parameters: OVERLAY_PARAMS *po
MI1_GUN_OVERLAY *¥ppg

Returns: none

2.2.3.14.4 make_m2_overlays

The make_m2_overlays routine sets up M2 overlay data at viewport configuration time.
This function is called by overlay_setup in the Viewport Configuration component if the
Simulation Host sends a MSG_OVERLAY_SETUP message with the message type set to
2 (M2_OVERLAYYS).

Note: The MSG_OVERLAY SETUP message can specify
gunners_ v1ewport (the viewport that is to have the gunner 's overlay)
and barrel_viewports (the viewports the gun barrel is to be viewable
in). These values are not currently used. The gunner 's overlay is
placed on any viewport belonging to a configuration node that has
bit 0 of its branch mask set. The gun barrel overlay is placed on any
viewport belonging to a configuration node that has bit 1 of its
branch mask set.

The function call is make_m2_overlays (po, ppg), where:

po is a pointer to the overlay parameters
ppg is a pointer to the M2_GUN_OVERLAY message

Called By: overlay_setup
Routines Called: aam_malloc
id_4x3mtx
make_p_
swap_axis
Parameters: OVERLAY_PARAMS *po
MI1_GUN_OVERLAY **ppg
Returns: none

76

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.15 hw_test.c

The hw_test function processes messages from the SIM to handle hardware tests. hw_test
is called by upstart whenever the state requested by the Simulation Host is
C_TEST_MODE.

The function call is hw_test(state), where state is the current state of the CIG system
(C_TEST_MODE).

The following table summarizes the processing performed by hw_test in response to each
valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by hw_test to process the
message.

Message from SIM Host Processing by hw_test
MSG_CIG_CTL Causes a transition to another performance state.
C_NULL No action.
C_STOP Returns to upstart.
MSG_DRI11_PKT_SIZE Specifies exchange packet parameters.

Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSG_END Signals end of packet buffer.
Calls EXCHANGE_DATA 10 send output and receive input
buffers.
MSG_TEST_NAME Specifies test to be run.
ECHO_PKT Echoes packet back to SIM. (This test is not currently
implemented.)
Called By: upstart

Routines Called: EXCHANGE_DATA

printf

SYSERR
Parameters: INT 2 state
Returns: none

2.2.3.16 load_dbase.c

The load_dbase function loads the terrain database into active area memory, and sets up
various tables with the necessary data from the database. It also calls open_ded to load the

77

BBN Systems and Technologies 120TX/T CIG HOST CSCI

contents of the dynamic elements database (DED). load_dbase is called by db_mcc_setup
after the viewport configuration tree has been created.

The function call is load_dbase(db_name, state), where:

db_name is the name of the database
state is the current state of the CIG system (C_DB_SETUP or C_MCC_SETUP)

load _dbase does the following:

e Determines how much generic memory is available.

+ If not enough memory is available, truncates the number of bytes to what is

available.

Reads in the data from the specified database.

Processes the model directory entries.

Reads in the overflow terrain data, if there is sufficient room.

Calls open_ded : . open the dynamic elements database, read the models in, and

process them.

Calls load_modules to load the initial load modules.

o Initializes the Load Module Branch Table, subroutine call table, and field-of-view
test table for a 3500-meter or 7000-meter viewing range.

» Sets the database_is_open flag to TRUE.

Called By: db_mcc_setup

Routines Called: bus_error
free
load_modules
malloc
open_ded
printf
XLSEEK
XREAD

Parameters: char db_name]]
INT_2 state

Retumns: none

2.2.3.17 make_bbn.c

The functions in make_bbn.c are used by gossip to make and modify hull-to-world
matrices for debugging purposes. These functions are:

prt_mtx
rotate_x
rotate_y
rotate_z
multmatrix

e © o o o

78

BBN Systems and Technologies 120TX/T CI1IG HOST CSCI

+ id_matrix

These routines are used only by model_mtx, which is called by gos_model. They are
invoked only if debug mode has been enabled.

The routines used to make and update matrices for the simulation are contained in the
mkmtx_nt.c CSU.

2.2.3.17.1 prt_mtx

The prt_mtx function copies a matrix in memory.

The function call is prt_mtx(matrix, pntr), where:

matrix is the matrix _
pnitr is a pointer to the destination memory location

Called By: model_mtx

Routines Called: none

Parameters: REAL 4 matrix[4][3]
REAL 4 *pntr

Returns: none

2.2.3.17.2 rotate_x
The rotate_x function rotates a matrix about the X axis.
The function call is rotate_x(theta, matrix), where:
theta is the angle of rotation
matrix is the matrix to be rotated

Called By: model_mtx

Routines Called: cos

1d_matrix
multmatrix
sin
toradians
Parameters: REAL_4 theta
REAL_4 matrix{4][3]

79

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none .

2.2.3.17.3 rotate_y

The rotate_y function rotates a matrix about the Y axis.
The function call is rotate_y(theta, matrix), where:

theta is the angle of rotation
marrix is the matrix to be rotated

Called By: model_mtx

Routines Called: cos
id_matrix
| multmatrix
| sin
| toradians

Parameters: REAL 4 theta
REAL 4 matrix[4][3] .

Returns: none

2.2.3.17.4 rotate_z

The function call is rotate_z(theta, matrix), where:

theta is the angle of rotation

i
The rotate_z function rotates a matrix about the Z axis.
matrix is the matrix to be rotated
|

Called By: model_mtx

Routines Called: cos
id_matrix
multmatrix
sin
toradians

Parameters: REAL _4 theta
REAL 4 matrix[4][3]

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.2.3.17.5 multmatrix

The multmatrix function multiplies two matrices together. This function is used to multiply
a matrix by a rotation matrix.

The function call is multmatrix(matrix, matrix_tmp), where:

matrix is the rotation matrix
matrix_tmp is the matrix to be rotated

Called By: rotate_x
rotate_y
rotate_z
Routines Called: none
Parameters: REAL 4 matrix[4][3]
REAL 4 matrix_tmp[4][3]
Returns: none

2.2.3.17.6 id_matrix

The id_matrix function creates an identity matrix (positioned at the origin) for use in
rotating matrices.

The function call is id_matrix(matrix), where matrix is the identity matrix to be created.

Called By: model_mtx
rotate_x
rotate_y
rotate_z
Routines Called: none
Parameters: REAL 4 matrix[4][3]
Returns: none

81

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.18 mkcal.c ‘

The functions in mkcal.c generate monitor calibration images. These functions are:

make_cal_overlay
e pix_mult

The Poly Processor uses perspective matrices in normalized viewspace (i.e., the field-of-
view is not used) when crunching on overlay polygons. The only perspective matrix
required for an overlay is a matrix to swap the axes (view space into screen space). The
vertices overlay can be described to the Poly Processor as follows:

(-y.y.y) (y.y.y)
(0y,0)

(-y.y,-y) (v.y:-y)
where y is the distance from the eye to the overlay.
This means that if the vertices of an overlay (such as the monitor calibration overlay) are
given in pixel coordinates, they must be converted to the normalized view space coordinate
system. For example, if the screen resolution is 200 x 200, a vertex with pixel coordinates
(-50,100) is converted to (-1/2,1). .
2.2.3.18.1 make_cal_overlay

The make_cal_overlay function allocates and makes a calibration overlay. This function is
called by cig_config (in Viewport Configuration) as part of its initialization process.

The calibration overlay is a hard-coded pattern of triangles, vertical and horizontal
alignment bars, and colored rectangles. The overlay is displayed on a viewport on top of
the view of the terrain. The pattern helps the Simulator user center the screen.

The function call is make_cal_overlay().

Called By: cig_config

Routines Called: aam_malloc
id_4x3mtx
swap_axis

Parameters: none

BBN Systems and Technologies 120TX/T CIG HOST CSCl

2.2.3.18.2 pix_mult
The pix_mult function converts pixel coordinates into normalized viewspace coordinates.
The function call is pix_mult(resolution, y_dist), where:

resolution is the screen resolution
y_dist is the y pixel coordinate

The function divides y_dist by (resolution * .5) and returns the resuit as mulr.

Called By: none

Routines Called: none

Parameters: INT_2 resolution
REAL 4 y_dist

Retumns: mult

2.2.3.19 mkmtx_nt.c
The functions in mkmtx_nt.c are used to rotate and translate matrices. These functions are:

make_p_nt
rotate_x_nt
rotate_y_nt
rotate_z_nt
swap_axis
id_4x3mtx
scale_mtx
translate
mult_4x3mtx
getmatrix
matrix2
mtxcpy

¢ & & ¢ o O ¢ o ° ¢ o o

2.2.3.19.1 make_p_nt
The make_p_nt function converts a matrix to a perspective 4x3 matrix.

The function call is make_p_nt(itan_fov_i, itan_fov_j, hoffset_x, hoffset y,
matrix), where:

itan_fov_i is inverse of the tangent of the horizontal field-of-view angle
itan_fov_j is inverse of the tangent of the vertical field-of-view angle

83

BBN Systems and Technologies 120TX/T CIG HOST CSCI

hoffset_x is the horizontal offset of the x coordinate
hoffset_y is the horizontal offset of the y coordinate
matrix is the matrix to be converted

Called By: make_m1_overlays
make_m2_overlays
viewspace_mtx

Routines Called: id_4x3mtx

mult_4x3mtx
Parameters: REAL 4 itan_fov_i
REAL _4 itan_fov_j
REAL 4 hoffset_x
REAL 4 hoffset_y
REAL_4 matrix[4][3]
Returns: none

2.2.3.19.2 rotate_x_nt

The rotate_x_nt function rotates a 4x3 matrix about the X axis. This function is called by
concat_mtx to change the pitch of an RTS3x3 (HPRXYZS) matrix.

The function call is rotate_x_nt(cos_theta, sin_theta, matrix), where:
cos_theta is the cosine of the angle of rotation

sin_theta is the sine of the angle of rotation
matrix is the matrix to be rotated

Called By: concat_mtx
gos_model
Routines Called: id_4x3mtx
mult_4x3mtx
Parameters: REAL 4 cos_theta
REAL 4 sin_theta
REAL 4 matrix[4][3]
Returns: none

84

BBN Systems and Technologies 120TX/T CIG HOST CSClI

2.2.3.19.3 rotate_y_nt

The rotate_y_nt function rotates a 4x3 matrix about the Y axis. This function is called by
concat_mtx to change the roll of an RTS3x3 (HPRXYZS) matrix.

The function call is rotate_y_nt(cos_theta, sin_theta, matrix), where:
cos_theta is the cosine of the angle of rotation

sin_theta is the sine of the angle of rotation
matrix is the matrix to be rotated

Called By: concat_mtx
gos_model

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL 4 cos_theta
REAL _4 sin_theta
REAL 4 matrix[4][3]
Returns: none

2.2.3.19.4 rotate_z_nt

The rotate_z_nt function rotates a 4x3 matrix about the Z axis. This function is called by
concat_mtx to change the heading of an RTS3x3 (HPRXYZS) matrix.

The function call is rotate_z_nt(cos_theta, sin_theta, matrix), where:
cos_theta is the cosine of the angle of rotation

sin_theta is the sine of the angle of rotation
matrix is the matrix to be rotated

Called By: concat_mtx
gos_model
viewspace_mtx

Routines Called: id_4x3mtx

mult_4x3mtx

Parameters: REAL 4 cos_theta
REAL _4 sin_theta
REAL 4 matrix[4]{3]

85

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Retumns: none

2.2.3.19.5 swap_axis

The swap_axis function converts a matrix's axes so that the matrix conforms to the CIG's
coordinate system, as follows:

xview = xworld
yview = -zworld
zview = yworld

The function call is swap axis(matrix), where matrix is the matrix to be converted.

swap_axis first calls id_4x3mix to create a 4x3 identity matrix. It then sets this matrix to
the following:

O OO

QOO
|
OOr O

swap_axis then multiplies this matrix by the original matrix.

Called By: make_ml_overlays
make_m2_overlays
viewspace_mtx

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL 4 matrix[4][3]
Returns: none

2.2.3.19.6 id_4x3mtx

The id_4x3mtx function creates a 4x3 identity matrix (positioned at the origin) for use in
rotating matrices.

The function call is id_dx3mtx(matrix), where matrix is the new identity matrix.

Called By: concat_mtx
make_m1_overlays
make_m2_overlays
viewspace_mtx

86

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none
Parameters: REAL_4 matrix[4][3]
Returns: none

2.2.3.19.7 scale_mtx
The scale_mtx function scales (enlarges, reduces, or skews) a 4x3 matrix. This function is
used to adjust matrices if load module blocking is enabled. Itis called by concat_mtx to
change the scale of an RTS3x3 (HPRXYZS) matrix.
The function call is scale_mtx(scale, matrix), where:

scale is the scaling factor

matrix is the matrix to be scaled

Called By: concat_mtx
viewspace_mtx

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL_4 matrix[4][3]
REAL_4 scale[3]
Returns: none

2.2.3.19.8 translate
The translate function moves a matrix to a new position by adding a translation value to
each of its coordinates. This function is called by concat_mtx to change the translation of
an RTS3x3 (HPRXYZS) matrix.
The function call is translate(xval, yval, zval, matrix), where:

xval is the amount to be added to the x coordinate

yval is the amount to be added to the y coordinate

zval is the amount to be added to the z coordinate

matrix is the matrix to be translated

Translation amounts are specified in meters.

Called By: concat_mtx

87

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: id_4x3mtx
mult_4x3mtx

Parameters: REAL_4
REAL 4
REAL 4
REAL_4

Returns: none

2.2.3.19.9 mult_4x3mtx

xval
yval
zval
matrix[4]{3]

The mult_4x3mtx function multiplies two 4x3 matrices together. This function is used to

multiply a matrix by a rotation matrix.

The function call is mult_4x3mtx(matrix, matrix_tmp), where:

matrix is the rotation matrix
matrix_tmp is the matrix to be rotated

Called By: concat_mtx
make_p_nt
rotate_x_nt
rotate_y_nt
rotate_z_nt
scale_mtx
swap_axis
translate

Routines Called: none

Parameters: REAL 4
REAL 4

Returns: none

2.2.3.19.10 getmatrix

The getmatrix function concatenates a matrix with matrix_tmp.

The function call is getmatrix(matrix, matrix_tmp), where:

matrix is the original matrix and the result matrix
matrix_tmp is matrix to concatenate with the original matrix

matrix[4][3]
matrix_tmp[4][3]

88

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: concat_mtx
viewspace_mtx

Routines Called: none
Parameters: REAL _4 matrix[4][3)
REAL 4 matrix_tmp[4][3]
Returns: none
2.2.3.19.11 matrix2

The matrix2 function concatenates (multiplies) two matrices to create a third matrix.
The function call is matrix2(matrixa, matrixb, matrixc), where:

matrixa and matrixb are the matrices to be concatenated
matrixc is the result

This function is not currently used.

Called By: none
Routines Called: none
Parameters: REAL _4 matrixa [4][3]
REAL 4 matrixb [4][3]
REAL 4 matrixc [4][3]
Returns: none
2.2.3.19.12 mtxcpy

The mtxcpy function copies a matrix from one memory location to another.
The function call is mtxcpy(to_matrix, from_matrix, matrix_type), where:

to_matrix is the destination location

JSfrom_matrix is the source location

matrix_type is the type of matrix (RTS3x3_TYPE, RTS4x3_TYPE, or
ROT2x1_TYPE)

89

120TX/T CIG HOST CSCI

BBN Systems and Technologies

Called By: concat_mtx
confignode_setup
simulation
viewport_setup

Routines Called: none

Parameters: 14P to_matrix
4P from_matrix
BYTE matrix_type

Returns: none

2.2.3.20 model_mtx.c

The model_mtx function builds hull-to-world, turret-to-hull, and gun-to-turret matrices.
This function is called by gos_model for options that are available to the Gossip user only

in debug mode.

The function call is model_mtx(modnum), where modnum is the model number.

Called By: gos_model

Routines Called: id_matrix
prt_mtx
rotate_x
rotate_y
rotate_z
translate

Parameters: INT 2
Returns: none

2.2.3.21 open_dbase.c

modnum

The open_dbase function opens the terrain database and initializes configuration and active
area memory parameters for Ballistics. open_dbase is called by db_mcc_setup when it

receives a MSG_FILE_DESCR - DB_SETUP message.
The function call is open_dbase(db_name, state), where:

db_name 1s the name of the database to be opened

<tate is the current state of the CIG system (C_DB_SETUP or C_MCC_SETUP)

90

BBN Systems and Technologies 120TX/T CIG HOST CSCI

open_dbase does the following:

Opens the database file specified in the Simulation Host message or entered through
the keyboard. Calls find_fn to find the latest version of the specified file.

Reads the file header.

Verifies that the database is compatible with the software.

Initializes database variables: number of load module blocks per side, grid space,
number of load modules on a side, number of load modules per side of a load
module block, load module width, load module block width, active area width, total
number of load modules and load module blocks, etc.

Clears extra memory if load module blocking is enabled.

Initializes Ballistics configuration parameters: processor type, frame rate, number of
AAM partitions, maximum chord length, maximum model radii s, maximum
number of models, maximum number of active rounds, polygons, and bvols, etc.
Sends the configuration data to Ballistics by pushing a MSG_BO_BAL_CONFIG
message onto the Ballistics message queue.

Initializes AAM partition information for Ballistics: number of load modules per
side, total number of load modules in AAM, viewing distance, grid width, AAM
base address, etc.

Sends the AAM partition parameters to Ballistics by pushing a
MSG_BO_DATABASE_INFO message onto the Ballistics message queue.

The terrain database is loaded into active area memory by load_dbase, which is called by
db_mcc_setup after the viewport configuration tree is created.

Called By: db_mcc_setup

Routines Called: find_fn
free
malloc
mx_push
printf
strien
SYSERR
XCLOSE
XLSEEK
XOPEN
XREAD

Parameters: char db_name|[]
INT_2 state

Returns: none

2.2.3.22 open_ded.c

The open_ded function opens the dynamic elements database (DED) and processes the
dynamic model list, changing the relative AAM addresses to absolute AAM addresses.
open_ded is called by load_dbase after it loads the terrain database into active area memory.

91

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is open_ded(ded_db_name, ded_start_address, avail_gm),

where:

ded_db_name is the name of the dynamic elements database
ded_start_address is the location at which to start loading dynamic models
avail_gm is the amount of space in generic memory for model information

open_ded does the following:

Finds the DED file. The file name is specified by the Simulation Host in the
MSG_FILE_DESCR - DB_DED_SETUP message. db_mcc_setup sets the name
(ded_db_name) in global memory, and load_dbase passes it to open_ded. The file
name can also be specified through the keyboard. open_ded calls find_fn to find
the latest version of the specified file.

Opens the file.

Reads the database header and verifies it is valid.

Allocates memory for the model address, model catalog, special effects address,
and special effects catalog tables.

Verifies there is enough generic memory for the DED models.

Loads the models into the generic model AAM.

Calls download_bvols to download the models and bounding volumes to Ballistics.
Processes the model directory entries.

Processes the special effect directory entries.

Closes the DED database file.

The function returns 0 if the DED is fully or partially loaded. It returns -1 if no DED
databases are found.

Called By: load_dbase

Routines Called: ded_model_trace
download_bvols
find_fn
free
malloc
printf
strlen
XCLOSE
XLSEEK
XOPEN
XREAD

Parameters: char ded_db_name[]
INT_4 ded_start_address
INT 4 avail_gm

Returns: 0

92

BBN Systems and Technolnei<s 120TX/T CIG HOST CSCI

. 2.2.3.23 simulation.c

The sunulation function is the message handler for the real-time simulation control of the
CIG hardware and communications with the Simulation Host. simulation is called by
db_mcc_setup when it receives a MSG_CIG_CTL message with the state set to
C_MCC_SIMUL or C_SIMULATION.

The function call is simulation(state, top_of_configtree), where:

state is the current state of the CIG system (C_SIMULATION or C_MCC_SIMUL)
top_of configtree is a pointer to the root configuration node

simulation does the following:

» Inidalizes various static variables (round fired estimated impact time and range,
southwest corner of AAM, static vehicle counter, etc.).

» Displays the coordinates of the northwest corner of the terrain database.

» Posts a message to the MONITOR_MB mailbox.

» Puts Ballistics into the run state:

- Sets the Ballistics state to BX_RUN.
- Pushes a MSG_BO_STATE_CONTROL message onto the Ballistics
message queue.

» Sets the coordinates of the southwest corner of active area memory, based on the
simulated vehicle's starting position.

e Tells Ballistics where AAM is by pushing a MSG_BO_AAM_SW_CORNER

. message onto the Ballistics message queue.

¢ Initializes the multiple-frame effects pointers to the field-of-view test table (for a
7000 ‘meter viewing range) or the terrain (for a 3500-meter viewing range).

e Posts a message to the DATABASE_MB mailbox and waits for rowcol_rd to
finish. rowcol_rd loads the initial load modules into active area memory.

» Posts a message to the LOCAL_TERRAIN_MB mailbox and waits for local_terrain
to finish. local_terrain generates a message describing the terrain around the
simulated vehicle for the Simulation Host.

+ Initializes the local terrain message counter. This counter is used in conjunction
with the local terrain interval to determine when to generate local terrain messages
(currently set at every 32 frames).

* Determines the frame rate (15 or 30 Hz) and sets it in global memory.

» Tells Ballistics the frame rate by pushing a MSG_B0_CIG_FRAME_RATE
message onto the Ballistics message queue.

* Determines which double buffer is being used by the hardware.

» Processes each runtime message received from the Simulation Host in turn (see
table below).

* Reads and processes all hit, miss, and round position messages returned by

Ballistics (from the Ballistics message queue).

Processes laser return messages returned from Ballistics.

Returns all messages passed back from the 2-D overlay processor.
Performs AGL (above ground level) processing if enabled.

Calls EXCHANGE DATA to exchange message packets.

Resets the state tables and waits for the next interrupt.

The following table summarizes the processing performed by simulation in response to
' each valid message type it receives from the Simulation Host. The first column lists the

93

BBN Systems and Technologies 120TX/T CIG HOST CSCI

messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps performed by simulation to process the
message.

Message from SIM Host Processing by simulation
MSG_1ROTATION Updates a single rotation of an hprxyzs matrix.
Changes heading, pitch, or roll as indicated; calls
concat_mtx.
MSG_3ROTATIONS Updates the rotation portion (h,p,r) of an hprxyzs matrix.
Changes heading, pitch, and roll; calls concat_mtx.
MSG_AGL_SETUP Toggles AGL processing on and off.
Sets agl_wanted in global memory.
MSG_AMMO_DEFINE Define ammunition maps.
Sets ammo_map in giobal memory.
MSG_CIG_CTL Causes a transition to another performance state.

C_NULL No action.

C_STOP Resets Ballistics; turns off monitors; initializes AAM;
closes database; frees model and effect tables; returns to
db_mcc_setup.

MSG_DR11_PKT_SIZE Specifies exchange packet parameters.

Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.

MSG_END Signals end of packet buffer.

Signals T&C board; processes changes to static vehicles;
processes special effects; adds dynamic vehicles; tells Force
board to transfer data to 2-D; counts down multiple frame
effects; processes agl_wanted; sends new frame information
to Ballistics; moves load module STP to quad buffer; waits
for next interrupt.

MSG_GUN_OVERLAY Changes gunigunner overlays.
Calls m1_gun_overlay or m2_gun_overlay, as appropriate.

MSG_HPRXYZS_MATRIX Updates a configuration node’s matrix.
Calls mtxcpy; calls concat_mtx; calls process_vppos if a
world/hull matrix.

MSG_OTHERVEH_STATE Describes the state of all dynamic vehicles in the terrain.
Puts vehicle's matrix data in model table; adds mode! to
proper load module.

MSG_PASS_ON Tells simulation to pass the message on to a specific
subsystem (2-D overlay processor).
Writes message data to Force memory.

MSG_PROCESS_ROUND Tells Ballistics to process a round.
Pushes MSG_BO_PROCESS_ROUND message onto
Ballistics message queue.
MSG_REQUEST_LASER_- Asks for pixel depth for i, j position on screen.
RANGE Gets data from Force.
MSG_ROT2x1_MATRIX Updates a configuration node’s matrix.

Calls concat_mtx.

94

BBN Systems and Technologies

120TX/T CIG HOST CSCI

MSG_ROUND_FIRED

Tells Ballistics that a round has been fired.
Pushes MSG_BO_ROUND_FIRED message onto Ballistics
message queue.

MSG_RTN_LT

Requests a local terrain message; used only by the MCC
station (state=C_MCC_SIMUL).

Posts message to invoke rowcol_rd; posts message to
invoke local_terrain.

MSG_RTS4x3_MATRIX

Updates a configuration node’s matrix.
Calls concat_mtx; calls process_vppos if world/hull matrix
node.

MSG_SCALE

Updates the scale portion (x,y,z) of an hprxyzs matrix.
Unpacks coordinates from SIM Host; calls concat_mtx.

MSG_SHOW_EFFECT

Used to show the effect of an impact on terrain or a vehicle.
Sets frame count for effect and adds to mult-frame effects
list; adds effect to special effects table; finds load module the
model is in.

MSG_STATICVEH_REM

Removes a static vehicle from the local terrain.

Finds vehicle's load module; deletes vehicle from model
table; pushes MSG_BO_DELETE_STATIC_VEHICLE
message onto Ballistics message queue; generates error if
vehicle out of viewing range.

MSG_STATICVEH_STATE

Adds a static vehicle to the local terrain.

Increments count of static vehicles; updates model table; adds
model to proper load module, pushes MSG_BO_ADD_-
STATIC_VEHICLE message onto Ballistics message queue.

MSG_TRAJ_CHORD

Used for chords that represent trajectories.

Pushes MSG_BO_TRAJ_CHORD message onto Ballistics
message queue; for tracer messages, stores effect data in
memory.

MSG_TRANSLATION

Updates the translation portion (x,y,z) of an hprxyzs matrix.
Unpacks coordinates from SIM Host; calls concat_mtx; calls
process_vppos if world/hull matrix.

MSG_VIEW_FLAGS

Updates system view flags (e.g., onloff, FLIR, DTV) or
branch values.
Calls process_vflags.

MSG_VIEW_MAGNIFICATION

Changes viewport's field of-view andlor level of detail.
Calls update_fov.

MSG_VIEW_MODE

Updates view mode (off, night, day, BW, WHT, BHT).
Sets calibration modifier; sets timing_control_word; loads
AAM with view mode codes for DTP.

Called By:

Routines Called:

db_mcc_setup

active_area_init

concat_mtx
EXCHANGE_DATA_SIM
FIND_LM

free

FXTOFL
ml_gun_overlay

95

BBN Systerns and Technologies

120TX/T CIG HOST CSCI

m2_gun_overlay

mtxcpy
mx_peek
mx_push
mx_skip
printf

process_vflags
process_vppos

read_watch

return_aam_ptr

sc_accept
sc_pend
sc_post
start_watch
stop_watch
SYSERR
sysrup_off
sysrup_on
update_fov
XCLOSE

Parameters: INT 2

CONFIGURATION_NODE

Returns: none

2.2.3.24 stdio.c

state
*top_of_configtree

The stdio function is required for the OASYS compiler only. It defines stdin, stdout, and

stderr.

This function is not currently used.

Called By: none
Routines Called: none
Parameters: none
Returns: none

2.2.3.25 support.c

The functions in support.c are Butterfly-compatible versions of some of the operating
system service calls used by the real-time software. These functions are as follows:

96

BBN Systems and Technologies 120TX/T CIG HOST CSCI

start_watch
read_watch
stop_watch
bus_error
bus_error_w
system

sload
get_record
send_data
ver_data
check_sum
get_binary_data
get_char

ctoi
unbf_getchar
sysrup_on
sysrup_off

® @ & & & & o ¢ & & o & o o o o o

2.2.3.25.1 start_watch

The start_watch function is a null stub for Butterfly compatibility. It is not currently used.

2.2.3.25.2 read_watch

The read_watch function is a null stub for Butterfly compatibility. It is not currently used.

2.2.3.25.3 stop_watch

The stop_watch function is a null stub for Butterfly compatibility. It is not currently used.

2.2.3.25.4 bus_error

The bus_error function is a Butterfly routine used to test whether a specified memory
location exists.

The function call is bus_error(address, accesstype), where:

address 1s the test address
accesstype is b (byte access), w (word access), or 1 (long word access)

bus_error returns ret set to 0 if the location exists, or 1 if it does not.

Called By: main (in upstart)
Routines Called: restoreker
Parameters: INT address

97

BBN Systems and Technologies 120TX/T CIG HOST CSCI

char accesstype
Returns: ret

2.2.3.25.5 bus_error_w

The bus_error_w function is a Butterfly routine used to test whether a specified memory
location exists, and to write to that address.

The function call is bus_error_w(address, accesstype, data), where:
address is the test address
accesstype is b (byte access), w (word access), or I (long word access)
data is the data to be written to the test address

bus_error_w returns ret set to 0 if the location exists, or 1 if it does not.

Called By: main (in upstart)

Routines Called: restoreker

Parameters: INT address
char accesstype
INT data

Returns: ret

2.2.3.25.6 system
The system function is a Butterfly routine used to execute a shell command.
The function call is system(request, datl, dat2, dat3), where:
request is the command to be executed: 20 (get root) or 24 (run file)
datl is the name of the file
dar? is not used
dat3 is the offset for sload

The value returned (rer) is the size of the root directory or the value returned from sload.

Called By: none

Routines Called: bcopy
Find_Value
Map_Obj

98

BBN Systems and Technologies

120TX/T CIG HOST CSCI

printf
sload
Unmap_Obj

Parameters: INT
char
char
char

Returns: ret

2.2.3.25.7 sload

request
*datl

*dar2
*dat3

The sload function converts a Motorola S-format file into executable code. It reads data
from the disk in sector-sized chunks, breaks the ASCII down into record-sized lines, then

stores the binary data.

The function call is sload(filename, offset, wsize), where:

filename is the file to be converted

offset is the amount to add to the binary data address
wsize is the size of the destination granularity

The function returns 1 if successful, or -1 if it encounters an error (file could not be
opened, bad checksum on a record, or early end-of-file detected).

Called By: system

Routines Called: check_sum

get_binary_data

get_record
printf
send_data
ver_data
XCLOSE
XOPEN

Parameters: char
INT 4
char

Returns: 1

*filename
offset
wsize

99

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2,2.3.25.8 get_record
The get_record function fills a string buffer with exactly one Motorola S-format record.
The function call is get_record(record), where record is the record to be read.
The function returns the S-format byte count if successful. It returns O if there are no
records in the file.

Called By: sload

Routines Called: get_char

Parameters: BYTE record[]
Returns: 0
byte_count

2.2.3.25.9 send_data

The send_data function writes data to memory in ascending bytes from a given start
address.

The function call is send_data(address, cptr, count, wsize), where:
address is the initial load address (absolute S-format)
cprr is a pointer to the ASCII record characters

count is the number of characters to transmit
wsize is the size of the destination granularity

Called By: sload

Routines Called: get_binary_data

printf
putchar
Parameters: WORD address
char *cptr
INT 4 count
char wsize
Returns: none

100

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.25.10 ver_data

The ver_data function compares ASCII characters with memory in ascending bytes from a
given start address.

The function call is ver_data(address, cptr, count), where:
address is the initial load address (absolute S-format)

cprr is a pointer to the ASCII record characters
count is the number of characters to compare

Called By: sload

Routines Called: get_binary_data

printf
Parameters: WORD address
char *cptr
INT 4 count
Returns: none
2.2.3.25.11 check_sum

The check_sum function verifies the checksum byte of an S-format record.
The function call is check_sum(pointer, count), where:

pointer points to the record to be checksummed
count is the byte count

The answer returned by the function is 0 if the checksum byte is correct. A non-zero value
indicates a bad checksum.

Called By: sload

Routines Called: get_binary_data

Parameters: char *pointer
INT_4 count
Returns: answer

101

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.25.12 get_binary_data .
The get_binary_data function returns the binary equivalent of specified characters.
The function call is get_binary_data(cptr, count), where:

cptr is a pointer to the character string
count is the number of characters to be converted

The result is returned as binary_data.

Called By: check_sum
get_record
send_data
sload
ver_data
Routines Called: ctoi
Parameters: char *cptr
INT_4 count
Returns: binary_data
2.2.3.25.13 get_char

The get_char function returns the next available ASCII character from a sector-sized buffer.
If a character is found, get_char returns the integer. If the buffer is empty, get_char reads
the next sector from disk. If there is no next sector, get_char returns EOF.

The function call is get_char().

Called By: get_record
unbf_getchar
Routines Called: fflush
printf
XREAD
Parameters: none
Returns: *bptr++ .
EOF

102

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.25.14 ctoi
The ctoi function converts a character to an integer.

The function call is ctoi(c), where c is the character to be converted.

Called By: get_binary_data
Routines Called: none
Parameters: char c
Returns: c-'0
c-'A"+10
2.2.3.25.15 unbf_getchar

The unbf_getchar function is a Butterfly routine that gets a single character input from the
standard input non-blocking I/O.
The function call is unbf_getchar(). The character is returned as c.

Called By: none

Routines Called: fflush

get_char
printf
Parameters: none
Returns: c
2.2.3.25.16 sysrup_on

The sysrup_on function is a null stub for Butterfly compatibility. It is not currently used.

2.2.3.25.17 sysrup_cff

The sysrup_off function is a null stub for Butterfly compatibility. It is not currently used.

103

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.3.26 upstart.c

The upstart.c CSU contains the functions that form the driver for the real-time applications
software. These functions are the following:

main (for Butterfly compatibility only)
templates_init (for Butterfly compatibility only)
upstart

bootup_slavel33

® o ¢ o

2.2.3.26.1 main

The main function is used to start upstart. This function is provided for Butterfly
compatibility only. It remaps the required addresses to VME addresses, then calls upstart.

main requires three arguments to start upstart: host_id, my_id, and bvme_id.
Called By: none

Routines Called: atoi
bus_error
bzero
Find_Value
Make_Event
Make_Obj
map_vme
Name_Bind
printf
remap_vme
upstart

Parameters: int argc
char *argv(]

Returns: none

2.2.3.26.2 templates_init

The templates_init function initializes the data used to build the AAM data structures locally
before copying them into the AAM.. This function is required for Butterfly compatibility
only.

The function call is templates_init().

Called By: upstart

104

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: bcopy
labs_dgi_buffers_init

Parameters: none
Returns: none

2.2.3.26.3 upstart

The upstart function is the driver for the real-time applications software. It establishes
communication with the Simulation Host, reads a message, then calls the appropriate
function depending on the system state requested in the message.

upstart is initiated by rtt during the task initialization state. It does the following:

Locates the T&C (Timing and Control) board.

Loads Ballistics from disk.

Posts a BALLISTICS_MB mailbox message to start Ballistics.

Calls bootup_slave133 if a slave board is detected.

Waits for Ballistics to return a status message and a global address message.
Initializes the DR11 buffer sizes.

Initializes the local terrain chunk size and the interval between local terrain
messages.

Initializes the system tasks.

Calls OPEN_EXCHANGE to open the necessary pipes to the Simulation Host.
Initializes active area memory.

Processes messages from the Simulation Host, calling other functions as required.

* & o & o o o

e & @ o

The following table summarizes the processing performed by upstart in response to each
valid message type it receives from the Simulation Host. The first column lists the
messages in alphabetical order. The second column briefly describes the purpose of the
message (in italics), then lists the major steps upstart performs to process the message.

105

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Message from SIM Host Processing by upstart
MSG_CIG_CTL Causes a transition to another performance state. .
C_DB_SETUP Calls db_mcc_setup with state set to C_DB_SETUP.
C_FILE_XFER Calls file_control with state set to C_FILE_XFER.
C_MCC_SETUP Calls db_mcc_setup with state set to C_MCC_SETUP.
C_NULL No action.
C_STOP No action.
C_TEST_MODE Calls hw_test with state set to C_TEST_MODE.
MSG_DRI11_PKT_SIZE Specifies exchange packet parameters.
Sets CIG and SIM exchange packet size, local terrain chunk
size, and local terrain message interval.
MSG_END Signals end of packet buffer.
Calls EXCHANGE_DATA (with state set to C_STOP) to
send output and receive input buffers.

Called By: none

Routines Called: active_area_init
bootup_slavel33
bus_error

db_mcc_setup
EXCHANGE_DATA
file_control

hw_test

labs_dgi_buffers_init .
malloc

mXx_error

mx_open

mx_peek

mx_skip
OPEN_EXCHANGE

printf

SC_post

sin

SYSERR

templates_init (Butterfly only)
TORAD

Parameters: none
Returns: none

2.2.3.26.4 bootup_slavel33d

The bootup_slave133 function boots up the slave 133 board. The function first checks to

see if the Ballistics file has already been loaded. If not, it loads the latest version of the

Ballistics file from disk. If no Ballistics task is found on disk, the function resets the

Ballistics board type to master. ‘

106

BBN Systems and Technologies

120TX/T CIG HOST CSCI

The function call is bootup_slavel33().

Called By:

Routines Called:

Parameters:

Returns:

upstart

find_fn
printf
strepy
system

none

nonc

107

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.4 2-D Overlay Compiler [120TX systems only]

This section describes the functions that make up the 2-D (Two-Dimensional) Overlay
Compiler, which is a major functional component of the CIG Host Mainline (UPSTART)
CSC. These functions build the 2-D overlays from ASCII commands, then generate
executable commands for the 2-D processor.

Note: These functions apply to 120TX systems only. The only overlays
available on 120T systems are the hard-coded gun, gunner, and
calibration overlays generated in the Real-Time Processing
component.

2-D overlays are displayed on a viewport on top of the three-dimensional terrain display.
For example, overlays can be used to display calibration patterns and numerical readouts
such as current altitude and speed. Each 2-D component is classified as either dynamic
(able to move or change) or static (not capable of movement or change).

The 2-D overlay database describes all components that can be displayed in the overlays.
This database is an ASCII file sent from the Simulation Host via messages. The overall
process for creating the 2-D overlay database is as follows:

1. The Simulation Host invokes the 2-D compiler using the CIG Control - Start 2D
Setup message.

2. The Simulation Host sends the ASCII file via 2-D SETUP messages, one per
packet buffer.

3. After the entire file has been sent, the Simulation Host sends a CIG Control - Stop
message.

4. The 2-D compiler function compiles the data. If a monitor is available, error and
status information is displayed.

5. The data is downloaded via the Force board into 2-D dynamic memory on the GSP
(Graphics System Processor) chip on the MPV board.

Once the 2-D database is loaded into memory, the overlays can be changed using
PASS_ON messages sent from the Simulation Host. These messages contain commands
that are used to move or change dynamic components, and to draw or remove static
components. The 2-D task (w' - -h runs on the GSP) decodes the runtime commands and
updates the component information in the 2-D database accordingly. The 2-D task then
processes the changes to each component in the order in which they are defined in the
database.

The functions in the 2-D Overlay Compiler CSU are not involved with runtime changes.
The commands are passed directly from the real-time software to Force to the GSP, and the
GSP processes the changes to the structures in its memory.

For the complete syntax of each command used to set up or change a 2-D image, refer to
the "2-D Commands and Parameters” document. That document also provides a sample 2-
D overlay and its ASCII input file.

108

BBN Systems and Technologies 120TX/T CIG HOST CSCI

function is used to read the overlay file and generate a binary file. This file can then be
copied to the CIG and downloaded to 2-D memory (via the Force board) at a later time. All
of the source files that contain the functions used to process an overlay file offline are
prefixed by u_; these functions are not described in this document A separate "make" file is
used at system build time to select these source files instead of their online equivalents.

. Overlays can also be created and compiled offline. A special version of the 2-D compiler

The primary data structures built by the 2-D compiler are the following:

Component descriptor table
Contains each component's number (0-63), color, channel (0 for high resolution, 1
or 2 for low-resolution), plane (foreground or background), window number (0 for
screen space, 1-15 for user-defined windows), clipping values, pre-translate (pre-
rotation) values, and post-translate (post-rotation) values.

Window descriptor table
Contains each window's absolute address, width (horizontal pixels), height
(vertical pixels), pitch, and a conversion factor for GSP.

Component pointer table
Contains a pointer to each component in the 2-D database.

After compilation, these structures are downloaded into GSP memory. If the 2-D compiler
is being run off-line, the data is compiled into a binary file which can later be downloaded
to the GSP. Figure 2-7 illustrates these structures, their contents, and their inter-
relationships, as they exist in GSP memory.

‘ The primitive types handled by the 2-D compiler, and the functions used to process them,
are the following:

Primitive 2-D Setup Fuaction

bit_blt setup_bit_blt
draw_line setup_draw_line
draw_oval setup_oval_rectangle
draw_rect setup_oval_rectangle
fill_oval setup_oval_rectangle
fill_poly setup_poly
fill_rect setup_oval_rectangle
polyline setup_poly
string setup_define_string
text setup_text

The specified function is responsible for retrieving the parameters associated with the
primitive, validating the data, then adding the data to the component descriptor table.

The structure of each of these primitives is illustrated in Figure 2-8.

109

BBN Systems and Technologies 120TX/T CIG HOST CSCI
32 bits
(address 0x(7804000)
Pt 1o Component pointcr table Compone;l;'::lnter Tabl
ptr to window descriptor table (likely address 0x7804100)
pir to component descriptor table PIr to component 0
total number of components pr to component 1
size of window description Ptr to component 2
not used
not used
not used
Pir to component 62
ptr to component 63
Window Descriptor Tabli Comp;):;:l:.ll)‘::criptors
32 bits (likely address 0x7805100)
b1 pir to Window 0 ‘ | processflag P
& dy color
pitch conversion channel/planc
unused unused - a
Pptr to window 1 vie t height
& &y viewport width
pitch conversion viewport x
unused unused viewporty
satic/dynamic
drawAmdraw
rotate
pre-translation x
ptr to window 15 pre-translation y
& & post-translation x
pitch conversion post-translation y
unused unused primitive type
primitive data
primitive type
Notes: primitive data
34010 does half-word swapping .
34010 addresses are BIT addresses
process flag S N—

Figure 2-7. 2-D Memory (From The 2-D Compiler)

110

BBN Systems and Technologies 120TX/T CIG HOST CSCI

1 TEXT SDRAW_OVAL
2 STRING 3BIT_BLT 4 DRAW_LINE 6FILL_OVAL
7DRAW_RECT
itive Primitive (3) Primitive (4) 8 FILL_RECT
. 0: destination x 0:
0: x e a2 Primitive (5, 6,7, 8)
0: 0: destination y 0: y0
- 1: destination X 0: width
: : 0:
lx —— xl 0: height
1y 1: destination y 0: y1 5
— X
2: % 2: destination x 1: x0 0y
2y 2: destination y 1: y0 o
font source window 1:x1 — -
- 1: height
x source X 1:y1
1:x
source y 2: x0 Ty
destination x . -
M — 2 Y0 2: width
char 3 char2 destination y 2:x1 2 height
width 2:y1
N 2:x
height x0 _
0 POLYLINE opersior 2.y
10 FILL_POLY) width
X
height
[H !
Primitive (0, 10) X
S TTTa A |
ptr to 0 buffer] point x y
t to 0 buffer point yO
tr to 1 buffer T
pir to 1 buffer point xm
pur to 2 buffer point ym Notes:
pir 1o 2 buffer 5 All boxes indicate 16-bit values
number of ines: i Tt chrctns s e sunpped
number of points: m point X0
line x0 point y0
line y0
point xm
line xn point ym
line yn
_point x0
2:
point y0
point X0
int Xm point y0
int ym
point xm
point ym

Figure 2-8. 2-D Compiler Primitives

111

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Figure 2-9 identifies the CSUs in the 2-D Overlay Compiler component of the UPSTART

CSC. These CSUs are described in this section.

Task Initialization

Forcetask Dat o
Ballistcs iertace Eﬁ ﬁi Upstart Manage- Gossip Fea
Processing L ment
i Database
2D Overlay Real-Time X:V;Wt Traversal
Compiler Processing nligu- Processor
ration Com
Generator
bit_bit.c init_stuff.c
cig_2d_setup.c oval_rect.c
cig_comp_2d.c poly.c
cig_getm_2d.c proc_cmd.c
cig_fink_2d.c string.c
comp.c text.c
draw_line.c window.c
get_thing.c
Figure 2-9. 2-D Overlay Compiler CSUs

112

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Figure 2-10 illustrates how the CSUs in the 2-D Overlay Compiler interact.

cig_2d_setup
complle_2d
init_stuff
1 initializes global data
get_msg
- - gets next message from

ASCl! file
get_thing

process_command setup_bit_blt

»-|processes commands —1 setup_comp_stant

from ASCII file setup_draw_line
setup_oval_rectangie
setup_poly
setup_define_string

No setup_text
setup_define_window
End of file?
Yes

linkup

allocates memory for windows;

downloads data to GSP

Figure 2-10. 2-D Overlay Compiler Flow Diagram

2.2.4.1 bit_blt.c (setup_bit_bit)

The bit_blt.c CSU contains one function, setup_bit_blt. This function is responsible for
setting up block-transferring pixel information in the component descriptor table.

The function call is setup_bit_blt(cmd), where cmd is the command (N_BIT_BLT)
passed by process_command.

setup_bit_blt does the following:

. * Verifies that component start data has already been processed.

113

]

BBN Systems and Technologies 120TX/T CIG HOST CSCI
» Calis get_thing to retrieve the parameters associated with this primitive.
» Determines if the component descriptor table has room available.
» Places the source window pixel x and y into the component descriptor table.
» Places the destination window pixel x and y into the component descriptor table.
» Places the width, height, and operator into the component descriptor table.

The rtn_val returned by the function is one of the following:

SUCCESS if the data is added to the table successfully.
COMPONENT_DESCRIPTOR_TBL_FULL if the table does not have enough
room for the new data.

SYNTAX_ERROR if the data in the message is invalid.

Called By: process_command

Routines Called: get_thing

printf
Parameters: INT cmd
Returns: rtn_val

2.2.4.2 cig_2d_setup.c

The cig_2d_setup function is the 2-D overlay setup handler. This function is called by
db_mcc_setup if the message from the Simulation Host is MSG_CIG_CTL -
C_START_2D_SETUP, and a Force board is present.

The function call is cig_2d_setup(). cig_2d_setup does the following:

*

.

Allocates memory for the setup.
Starts the 2-D compiler by calling compile_2d.
Deallocates the memory when the compiler is finished.

Called By: db_mcc_setup

Routines Called: calloc

compile_2d

free

printf
Parameters: none
Returns: none

114

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.4.3 cig_comp_2d.c (compile_2d)

The cig_comp_2d.c CSU contains one function, compile_2d. This function is the main
driver for the 2-D database compiler. compile_2d is responsible for processing the 2-D
setup messages (MSG_2D_SETUP) sent from the Simulation Host. Each message
represents one line in the ASCII 2-D database file.

The function call is compile_2d(). compile_2d does the following:

Calls init_stuff to initialize various compiler variables.

Calls get_msg_2d to get each line of the input file.

Calls process_command to process each command from the input file.
Checks for errors from process_command.

Calls linkup to set up the window pointers and write the data to the GSP.
Reports the number of errors detected during the compile.

Cleans up and quits.

® © & ¢ & o o

Called By: cig_2d_setup

Routines Called: get_msg_2d
init_stuff
linkup
printf
process_command

Parameters: none
Returns: none

2.2.4.4 cig_getm_2d.c (get_msg_2d)

The cig_getm_2d.c CSU contains one function, get_msg_2d. This function gets the next
2-D message from the input file and sets a pointer to it for compile_2d.

Each MSG_2D_SETUP message received from the Simulation Host represents one line of
data in the ASCII input file. Each setup message is followed by a MSG_END message,
making the MSG_2D_SETUP message the only message in the packet. get_msg_2d calls
EXCHANGE_DATA to exchange packets each time a MSG_END message is detected.
The full sequence is terminated by a MSG_CIG_CTL - C_STOP message.

The function call is get_msg_2d().
The msg_code returned by the function is one of the following:
« CONTINUE_2D_SETUP if a valid 2-D setup message is found.

+ STOP_2D_SETUP if a CIG Control-Stop message is detected.
» INVALID_2D_SETUP if an unknown message is detected.

115

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: compile_2d
get_thing

Routines Called: EXCHANGE_DATA

SYSERR
Parameters: none
Returns: msg_code

2.2.4.5 cig_link_2d.c (linkup)

The cig_link_2d.c CSU contains one function, linkup. This function is responsible for
setting up window pointers and allocating available MPV (Micro Processor Video) memory
for windows. It also downloads the data to GSP memory.

The function call is linkup(). linkup does the following:

Calculates base addresses and table sizes for all information.

Outputs the following information to stdout: compouent pointers table base address
and size, window descriptor table base address and size, component descriptor
table base address and size, allocatable window base address and maximum size,
and base program address. See Figure 2-11 for a sample output.

Sets up the screen window area (this should not vary).

Changes the component pointers to absolute addresses.

Allocates space for the dynamic polygon buffer areas.

Sets the allocatable window area to the space following the component descriptor
table.

Allocates space for all windows and sets the window pointers.

Downloads all data to GSP memory via the Force control register.

If the offline version of linkup is run, it writes all 2-D overlay data (header, component
pointer table, window descriptor table, and component descriptor table) to the 2-D binary
database file. The binary file can then be copied to the CIG and downloaded to GSP
memory at a later time.

Figure 2-11 is a sample of the output generated by linkup.

116

BBN Systems and Technologies 120TX/T CIG HOST CSCI

file data2d_itl.0400 - Compiler output from:
compile 2d data2d_ita.0400 data_2d itb.0400 > data2d itl1.0400

BBN Systems and Technologies Graphics Technology Division
2D Database Compiler Date Thu Nov 17 15:23:31 PST 1988 Version: 0400
Link step starting ...

BASE COMPONENT POINTERS ADDRESS: 0x07804100
size of component pointer table: 0x00000800
BASE WINDOW DESCRIPTOR TABLE ADDRESS: 0x07804900
size of window descriptor table: 0x00000800
BASE COMPONENT DESCRIP TABLE ADDRESS: 0x07805100
size of component_descriptor_table: 0x0000744d0
BASE ALLOCATABLE WINDOW ADDRESS: 0x0780c5e0
maximum size of allocatable area: 0x00373a20
BASE PROGRAM ADDRESS: 0x07b80000

Allocating Dynamic Poly 0x3 at 0x780c5e0

Next Available Address: 0x780ec20

Space used: 0x2640 Space available: 0x3713e0

Allocating Dynamic Poly 0x4 at 0x780ec20

Next Available Address: 0x780ed40

Space used: 0x2760 Space available: 0x3712c0

Window 0x1 Allocated at GSP address: 0x780ed50

Next Available Address: 0x78b6dS0

Space used: 0xaa760 Space available: 0x2c92b0
Compile finished -- Number of Errors = 0

Figure 2-11. Sample 2-D Compiler Output

Called By: compile_2d

Routines Called: DOWNLOAD_DATA

printf
TRIGGER_FORCE
WAIT_FORCE
Parameters: none
Returns: none
2.2.4.6 comp.c (setup_comp_start)

The comp.c CSU contains one function, setup_comp_start. This function is responsible
for placing component start data into the component descriptor table.

The function call is setup_comp_start(cmd), where cmd is the command
(N_COMP_START) passed by process_command.

setup_comp_start does the following:

117

BBN Systems and Technologies 120TX/T CIG HOST CSCI

» Calls get_thing to retrieve the component number, color, channel number, plane
(foreground or background), window number, static/dynamic parameter, and
rotation/translation values.

¢ Determines if the component descriptor table has room available.

» Places a pointer to this component in the component pointer table.

» Places all of the component data in the component descriptor table.

setup_comp_start provides some defaults if invalid parameters are encountered. The
default color is white, the default plane is background, and the default static/dynamic
parameter is static.

The rtn_val returned by the function is one of the following:
» SUCCESS if the data is added to the table successfully.
COMPONENT_DESCRIPTOR_TBL_FULL if the table does not have enough
room for the new data.

« INVALID_PARAMETERS if any of the component parameters provided is out of
range.

Called By: process_command

Routines Called: get_thing

printf
strcmp
Parameters: INT cmd
Returns: rin_val
2.2.4.7 draw_line.c (setup_draw_line)

The draw_line.c CSU contains one function, setup_draw_line. This function is
responsible for updating line data in the component descriptor table.

The function call is setup_draw_line(cmd), where cmd is the command
(N_DRAW_LINE) passed by process_command.

setup_draw_line does the following:

« Calls get_thing to retrieve the parameters associated with this primitive.

* Determines if the component descriptor table has room available.

» Places the line's starting point x (column) and y (row), and the ending point x and
y, into the component descriptor table.

The rtn_val returned by the function is one of the following:
* SUCCESS if the data is added to the table successfully.

¢« COMPONENT_DESCRIPTOR_TBL_FULL if the table does not have enough
room for the new data.

118

BBN Systems and Technologies 120TX/T CIG HOST CSCI

SYNTAX_ERROR if the data in the message is invalid.
Called By: process_command

Routines Called: get_thing

printf
Parameters: INT cmd
Returns: rn_val

2.2.4.8 get_thing.c

The get_thing function scans input lines for a specified number of data items of a specified

type.

The function call is get_thing(type, number), where:

type is the type of item (DATA_TYPE, COMMAND_TYPE, or TEXT_TYPE)
number is the number of items to be read

get_thing processes data as follows:

Blank spaces and tab characters are discarded.

If a digit is found and type is DATA_TYPE, get_thing sets a pointer to the data.
If an alpha character is found and type is COMMAND_TYPE, get_thing sets a
pointer to the command.

If a quote character is found and type is TEXT_TYPE, get_thing sets a pointer to
the text.

If the end of line or comment is found, get_thing reads the next line.

This process continues until an error occurs or the specified number of items are read. The
rin_val returned by the function is one of the following:

SUCCESS if the items were read successfully.
SYNTAX_ERROR if unexpected data was found.

Called By: process_command
setup_bit_blt
setup_comp_start
setup_define_string
setup_define_window
setup_draw_line
setup_oval_rectangle

setup_poly
setup_text

119

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: get_msg 2d
isalpha
isdigit
printf

Parameters: INT type
INT number

Returns: rn_val

2.2.4.9 init_stuff.c
The init_stuff function initializes the following global data for the 2-D compilation process:

Window descriptor table
Allocation list

Component pointer table
Component descriptor table

The function call is init_stuff().

Called By: compile_2d
Routines Called: none
Parameters: none
Returns: none

2.2.4.10 oval_rect.c (setup_oval_rectangle)

The oval_rect.c CSU contains one function, setup_oval_rectangle. This function is
responsible for updating oval and rectangle data in the component descriptor table.

The function call is setup_oval_rectangle (cmd), where cmd is the command
(N_DRAW_OVAL, N_FILL_OVAL, N_DRAW_RECT, or N_FILL_RECT) passed by
process_command.

setup_oval_rectangle does the following:

» Calls get_thing to retrieve the data in the message.

* Determines if the component descriptor table has room available.

+ Places the object's width and height into the component descriptor table.

+ Places the object's x (column of the upper left comer) and y (row of the upper left
corner) coordinates into the component descriptor table.

120

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The rin_val returned by the function is one of the following:
. o SUCCESS if the data is added to the table successfully.
« COMPONENT_DESCRIPTOR_TBL_FULL if the table does not have enough

room for the new data.
» SYNTAX_ERROR if the data could not be processed.

Called By: process_command

Routines Called: get_thing

printf
Parameters: INT cmd
Returns: rtn_val

2.2.4.11 poly.c (setup_poly)
The poly.c CSU contains one function, setup_poly. This function is responsible for
updating polygon data in the component descriptor table.

The function call is setup_poly(cmd), where cmd is the command (N_POLYLINE or
. N_FILL_POLY) passed by process_command.
setup_poly does the following:
o Calls get_thing to retrieve the data in the message.
Determines if the component descriptor table has room available.
+ Places the polygon's line and point data into the componen: descriptor table.
The ren_val returned by the function is one of the following:
+ SUCCESS if the data is added to the table successfully.
« COMPONENT_DESCRIPTOR_TBL_FULL if the table does not have enough

room for the new data.
» SYNTAX_ERROR if the data in the message could not be processed.

Called By: process_command

Routines Called: get_thing
printf

Parameters: INT cmd

' Retumns: rtn_val

121

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.4.12 proc_cmd.c (process_command)

The proc_cmd.c CSU contains one function, process_command. This function is
responsible for retrieving a command string from get_thing, then calling the appropriate
setup routine.

The function call is process_command(). process_command does the following:

Calls get_thing to retrieve a command string.
* Compares the string with each possible command to determine which it is.
* When a match is found, calls the applicable setup routine.

The loop is repeated until all commands in the input file have been retrieved. The
commands processed by process_command, and the setup function it calls for each, are
listed below.

Command Function Called(cmd)
A_BIT BLTor B_BIT BLT setup_bit_blit(N_BIT_BLT)
A_COMP_START or B_COMP_START setup_comp_start(N_COMP_START)
A_DEFINE_STRING or B_DEFINE_STRING setup_define_string(N_DEFINE_STRING)
A_DEFINE_WINDOW or B_DEFINE_WINDOW | sctup_define_window(N_DEFINE_WINDOW)
A_DRAW_LINE or B_DRAW_LINE setup_draw_line(N_DRAW_LINE)
A_DRAW_OVAL or B_LDRAW_OVAL setup_oval_rectangle(N_DRAW_OVAL)
A_DRAW_RECT or it DRAW_RECT setup_oval_rectangle(N_DRAW_RECT)
A_ENDCOMP or B_ENDCOMP none
A_FILL_OVAL or B_FILL_OVAL setup_oval_rectangle(N_FILL_OVAL)
A_FILL_POLY or B_FILL_POLY setup_poly(IN_FILL_POLY)
A_FILL_RECT or B_FILL_RECT setup_oval_rectangle(N_FILL_RECT)
A_POLYLINE or B_ POLYLINE setup_poly(N_POLYLINE)
A_TEXT or B_TEXT setup_text(N_TEXT)

process_command keeps track of the number of errors returned by the setup functions. If
the number of errors exceeds MAX_COMPILE_ERRORS (defined in defines_2d.h),
process_command returns a r:n_val of TOO_MANY_ERRORS. This causes compile_2d
to terminate the compile.

Called By: compile_2d
Routines Called: get_thing
printf

setup_bit_blt
setup_comp_start
setup_define_string

122

BBN Systems and Technologies 120TX/T CIG HOST CSCI

setup_define_window
setup_draw_line
setup_oval_rectangle

setup_poly

setup_text

strcmp
Parameters: none
Returns: rtn_val

2.2.4.13 string.c (setup_define_string)

The string.c CSU contains one function, setup_define_string. This function is responsible
for placing initial string data into the component descriptor table.

The function call is setup_define_string(cmd), where cmd is the command
(N_DEFINE_STRING) passed by process_command.

setup_define_string does the following:

» Calls get_thing to retrieve the data from the message.

* Verifies that component start data has been entered into the component descriptor
table.

* Determines whether the component descriptor table has room available.

» Places the string's font, x and y coordinates, and character data into the component
descriptor table.

The rtn_val returned by the function is one of the following:
» SUCCESS if the data is added to the table successfully.
+ COMPONENT_DESCRIPTOR_TBL_FULL if the table does not have enough
room for the new data.

+ SYNTAX_ERROR if if the string exceeds the maximum length allowed, the string
contains a non-ASCII character, or the data in the message cannot be processed.

Called By: process_command

Routines Called: get_thing

printf

strlen
Parameters: INT cmd
Returns: rtn_val

123

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.2.4.14 text.c (setup_text)

The text.c CSU contains one function, setup_text. This function is responsible for placing
fixed-length text data into the component descriptor table.

The function call is setup_text(cmd), where cmd is the command (N_TEXT) passed by
process_command. setup_text does the following:

Calls get_thing to retrieve the data from the message.

» Verifies that the component descriptor table has room available.

» Places the text's font, x coordinate (lower left column), y coordinate (lower left
row), and character string into the component descriptor table.

The rtn_val returned by the function is one of the following:
» SUCCESS if the data is added to the table successfully.
+ COMPONENT_DESCRIPTOR_TBL_FULL if the table does not have enough
room for the new data.

* SYNTAX_ERROR if a non-ASCII character is detected in the text string, or if the
data in the message cannot be processed.

Called By: process_command

Routines Called: get_thing

printf

strlen
Parameters; INT cmd
Returns: rtn_val

2.2.4.15 window.c (setup_define_window)

The window.c CSU contains one function, setup_define_window. This function is
responsible for placing window data into the window descriptor table.

The function call is setup_define_window(cmd), where cmd is the command
(N_DEFINE_WINDOW) passed by process_command.

setup_define_window does the following:

Calls get_thing to retrieve the data from the message.

Verifies that the parameters are valid.

Computes the window's pitch and conversion factor. (See table below.)
Places all window parameters (number of horizontal pixels, number of vertical
pixels, pitch, and GSP conversion factor) into the window array structure.

* o o o

124

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Places the window number into the allocation list so linkup can allocate memory for

the window.

Pitch and conversion factors are computed as shown below.

horizontal pixels pitch count conversion factor
(hex) (hex) (dec) (dec)
4001-8000 8000 15 16
2001-4000 4000 14 17
1001-2000 2000 13 18
801-1000 1000 12 19
401-800 800 11 20
201-400 400 10 21
101-200 200 9 22
80-100 100 8 23
41-80 80 7 24
2140 40 6 25
11-20 20 5 26
8-10 10 4 27
4-8 8 3 28
24 4 2 29
1-2 2 1 30
1-1 1 0 31

The rtn_val returned by the function is one of the following:

® & & o o o

SUCCESS if the data is added to the table successfully.

INVALID_WINDOW_NUMBER if the window number is out of range.
INVALID_WINDOW_DX if the window's width is out of range.
INVALID_WINDOW_DY if the window's height is out of range.
WINDOW_PITCH_TOO_LARGE if the window's pitch is out of range.
SYNTAX_ERROR if the data in the message cannot be processed.

Called By:

Routines Called:

Parameters:

Retumns:

process_command

get_thing
printf

INT

rtn_val

125

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.3 Database Management (ROWCOL_RD) CSC

The Database Management CSC is responsible for determining whether new rows and/or
columns need to be read from the terrain database into active area memory for hardware,
local terrain, and Ballistics use.

The terrain database, which is stored in the CIG, describes the entire terrain that can be
displayed in the simulation. It also contains the graphic information used to display
vehicles, houses, trees, hills, and other objects in the terrain.

The items stored in the terrain database are represented by connected polygons that are
three-dimensional images. The polygons are grouped into compacted data structures such
as terrain grids, polygon models, and stamp arrays. They are further grouped into unique
static objects (rivers, roads, and other features that appear only once in the database) and
generic models (houses, trees, vehicles, and other features that commonly recur in the
database).

The terrain database is divided into units called load modules. One load module contains
the instructions and data required to process a one-half kilometer square area of static
objects. Each load module contains all the roads, rivers, terrains, buildings, and other
features within a SO0 by S00 meter area. The load modules in the terrain database are
organized in rows and columns. The total size of the database is variable.

Each load module is divided into four areas called grids. Each grid is a 125M by 125M
square.

Active area memory (AAM) contains the subset of the local terrain that can be viewed and
interacted with at a given point in time by the simulation. The AAM stores an 8K by 8K
area centered around the simulation vehicle. This provides a viewing range of 3500 meters
in each direction, with a 500-meter buffer along each edge. The AAM contains 256 load
modules (16 rows by 16 columns).

_ 16 load modules o

g

@ G
My_Vehicle oM
(my_Int_x, my_int_y)

16 load modules

126

BBN Systems and Technologies 120TX/T CIG HOST CSCI

As the simulated vehicle moves toward an edge of active area memory, the Database
Management CSC brings in new load modules from the terrain database, overwriting those
areas that the vehicle is moving away from. The objective of this process is to keep the
simulated vehicle in the center of active area memory.

Active area memory can be thought of as a window that moves over the terrain database.
As the vehicle travels east, for example, the window must be moved east to keep the
vehicle in the center. To do this, Database Management determines what column in the
database lies east of the current east boundary of AAM. It then reads part of that column
(the 16 load modules in the column that lie between AAM's north and south boundaries)
into AAM. Finally, it shifts the west boundary of AAM over one column.

With very large terrain databases, load module blocking can be enabled. One load module
block contains four load modules (two rows by two colunns). Therefore, one load
module block is 1000 meters by 1000 meters, or a one-kilometer square area. Load
module blocking increases the amount of terrain that can be loaded into active area memory
to 16K by 16K. It also doubles the viewing range of the simulated vehicle (from 3500
meters to 7000 meters).

Figure 2-12 identifies the CSU: in the Database Management CSC. The functions
performed by these CSUs are described in this section.

Task Initialization

Forcetask Database
Ballistics interface Database Upstarnt Manage- Gossip Flea
Processing Feedback ment
generic_im
foad_modules.c
rowcol_rd.c

Figure 2-12. Database Management CSUs

2.3.1 generic_Im.c

The generic_Im.c CSU is used to initialize and generate a generic load module containing
one ocean polygon. This allows a system to go beyond the defined database boundaries
but still retain some orientation reference.

This CSU contains two functions:

127

BBN Systems and Technologies 120TX/T CIG HOST CSCI

init_generic_lm
e generic_lm
2.3.1.1 init_generic_lm
The init_generic_lm function initializes a generic load module.

The function call is init_generic_lm(view_range), where view_range is the viewing
distance (3500 or 7000).

init_generic_lm does the following:
* Generates the load module header.

¢ Generates the required DTP commands.
* Generates the grid components.

Called By: load_modules

Routines Called: none

Parameters: INT_4 view_range
Returns: none

2.3.1.2 generic_Im

The generic_Im function generates the generic load module. It copies the load module to
memory, then updates the load module header, DTP, and grid components.

The function call is generic_lm(swx, swy, centoff, memptr), where:

swx is the x coordinate of the load module's southwest corner
swy is the y coordinate of the load module's southwest comer
centoff is the offset to the center of the load module

memptr is a pointer to the AAM location for the new load module

Called By: getside

Routines Called: none

Parameters: INT_4 SWX
INT_4 swy
REAL_4 centoff
GENLM *memptr

128

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.3.2 load_modules.c

The functions in load_modules.c are used to load new active area rows and columns from
the terrain database when required. These functions are:

getlmdp
getside
whatdirptr
load_modules

e o o o

2.3.2.1 getlmdp
The getlmdp function gets a load module’s disk pointer from the database.
The function call is getimdp(xmod, ymod, rowcol_dbfd), where:
xmod is the load module array number x
ymod is the load module array number y
rowcol_dbfd is the file descriptor for the terrain database
The function rervens the disk pointer if successful, or 0 if the load module is not in the
database. If O :s ret . med, getside calls generic_lm to get a generic load module.

Called By: getside

Routines Called: XLSEEK

XREAD
Parameters: INT_4 xmod

INT 4 ymod

int rowcol_dbfd
Returns: dbde.lm_loc

2.3.2.2 getside

The getside function loads part of a row or column from the terrain database into active area
memory. The number of load modules in the row or column that are actually loaded into
AAM is 16 (the normal height/width of AAM) or 32 (the height/width of AAM if load
module blocking is enabled).

The function call is getside(lImdloc, xmod, ymod, xinc, yinc, diroff, zeroit,
rowcol_dbfd), where:

129

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Imdloc is a pointer to the first load module on disk

xmod is the first load module's array number x (west column)

ymod is the first load module's array number y (south row)

xinc is the load module’s array number increment x

yinc is the load module's armay number increment y

diroff is a byte offset to the directory pointer in the load module header

zeroit is a flag used to determine when the running average load module centroid should

be zeroed

rowcol_dbfd is the file descriptor for the terrain database

getside does the following for each new load module it loads into AAM:

Sets the load module number and gets its AAM address.

Checks that the load module is in the database and gets its disk pointer.

If (t)hdc }oad module is not in the database, calls generic_lm to get a generic load
module.

Informs Ballistics of the new load module (by pushing a MSG_BO_LM_READ
message onto the Ballistics message queue).

Updates the field-of-view tables for the new load module.

Called By: load_modules
rowcol_rd

Routines Called: getlmdp

generic_Im
mx_push
XLSEEK
XREAD
Parameters: WORD Imdloc
INT_4 xmod
INT_4 ymod
INT_4 xinc
INT_4 yinc
WORD diroff
WORD zeroit
int rowcol_dbfd
Returns: none

2.3.2.3 whatdirptr

The whatdirptr function finds the direction pointer for the load module at a specified
location in a specified direction.

The function call is whatdirptr(xmod, ymod, diroff), where:

xmod is the load module's array number x (west column)
ymod is the load module's array number y (south row)

130

BBN Systems and Technologies 120TX/T CIG HOST CSCI

diroff is the byte offset to the direction pointer in the load module header

Called By: load_modules
rowcol_rd

Routines Called: none

Parameters: INT 4 xmod
INT 4 ymod
WORD diroff

Returns: <direction pointer>

2.3.2.4 load_modules

The load_modules function loads a portion of the terrain database into AAM.

load_modules is called when AAM needs to be completed loaded. It is called by load_dbase
to load the initial load modules into active area memory. During a simulation,
load_modules is called by rowcol_rd if the simulated vehicle is detected to be out of
viewing range of active area memory. Specifically, the vehicle must be more than one-half
the width of AAM outside its boundaries. In this instance, none of the terrain that is
currently visible to the vehicle is in AAM — usually, this is due to "warping" across the
terrain. rowcol_rd then calls load_modules to rebuild all of AAM based on the vehicle's
current location.

The function call is load_modules(file_descriptor), where file_descriptor identifies
the database file to be read.

load_modules does the following:

» Initializes direction offsets.

» Calls init_generic_lm to initialize a generic load module for the applicable viewing
range.

+ Calculates the southwest corner of AAM based on the current coordinates of the
simulated vehicle.

e Calculates the four borders of AAM.

» Reads each AAM row (south to north) from west to east, calling getside to load the
appropriate load modules from the database.

. Calli(\ivhatdirpu' to find the direction pointer after the first row of load modules is
loaded.

» After reaching the northernmost row, resets the address of the south border.

Called By: load_dbase
rowcol_rd

Routines Called: getside
init_generic_lm

131

BBN Systems and Technologies 120TX/T CIG HOST CSCI

whatdirptr
Parameters: INT file_descriptor
Returns: none

2.3.3 rowcol_rd.c
The rowcol_rd.c CSU contains two functions:

» main (for Butterfly compatibility only)
e rowcol_rd

2.3.3.1 main

The main function invokes the rowcol_rd function. It requires one argument: bvme_id,
which identifies the Butterfly-VME interface. This function is required for Butterfly
compatibility only.

Called By: none

Routines Called: atoi
Find_Value
Make_Event
map_vme
Name_Bind
printf
remap_vme

Parameters: int argc
char *argv(]

Returns: none

2.3.3.2 rowcol_rd

The rowcol_rd function determines whether a new row or column of the database needs to
be read into active area memory. This task is started automatically by rtt during the task
initialization state.

rowcol_rd waits until simulation posts a message to its mailbox, indicating that database
management is required. It then does the following:

+ Initializes direction offsets.

132

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Tells Ballistics where the southwest comer of active area memory is, by pushing
the MSG_BO_AAM_SW_CORNER message onto the Ballistics message queue.
Checks to see if the simulated vehicle is out of viewing range of AAM (i.e., is
beyond an AAM boundary by a distance of more than one-half AAM width). If so,
calls load_modules to reload 21l of AAM from the terrain database.

Checks to see if the simulated vehicle is inside AAM, or outside but within viewing
range of it. If so, compares the coordinates of the vehicle's centroid to the center of
AAM.

If the vehicle is detected to be off-center, calls whatdirptr and getside to load a new
row or column in the needed direction. For example, if the vehicle is detected to be
too far away from the west boundary (i.e., is east of AAM center), a column is
added to the east side and deleted from the west. This has the effect of shifting all
of AAM east by one column.

Updates the necessary database data variables to reflect the change to AAM
boundaries.

Checks to make sure all static vehicles are within the active area.

Called By: none

Routines Called: getside
load_modules
mx_push
sc_pend
sc_post
whatdirptr
XCLOSE

Parameters: none

Returns: none

133

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.4 Database Feedback (LOCAL_TERRAIN) CSC

The Database Feedback CSC buiids new local terrain messages. These messages are used
by the Simulation Host to provide collision detection with objects in the simulated
environment, and to calculate the dynamics of the vehicle in operation.

A local terrain message contains data describing the terrain, roads, rivers, and buildings
that lie within the four grids surrounding the simulated vehicle. (One grid is usually 125
meters per side. One load module is defined as four grids — two rows by two columns.)

A new local terrain message is sent to the Simulation Host every 32 frames. Each message
contains the following:

* A header that specifies the number of polygon definitions and the number of
bounding volumes (bvols) contained in the message.

» Polygons that describe the local terrain and the objects in it. These polygons are
planar, convex, and three- or four-sided. Each polygon entry in the message
specifies the soil type, priority code, minimum and maximum coordinates, and all
polygon vertices in counter-clockwise order.

* Bounding volumes. A bvol definition contains one or more four-sided bounding
boxes each of which has a planar, convex, polygonal base and a height (expressed
in units on the z axis) for the volume given. Each bvol entry in the message
specifies the bvol's height above the polygonal base, the bvol type identifier, the
minimum and maximum coordinates, and the vertex list.

Local terrain messages can also be sent on demand from the Simulation Host, in response
to a MSG_RTN_LT (return local terrain) message. This message is to be used by the
MCC station only.

The CSUs in the Database Feedback CSC are identified in Figure 2-13. The functions
performed by these CSUs are described in this section.

134

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Task Initialization

Forcetask Database Database
Baitistics Interface Feedback Upstan Manage- Gossip Fiea
Processing ment
bal_get db_pos.c
bal_get_im_grid.c
loc_ter.c

Figure 2-13. Database Feedback CSU

2.4.1 bal_get_db_pos.c

The bal_get_db_pos function finds the load module number and grid number of a given
chord point. This function is called by local_terrain to determine the load module and grid
of the simulated vehicle's current position.

The function call is bal_get_db_pos(pcrd, Im_width, Im_per_side), where:

pcrd is a pointer to the chord data

Im_width is the width of a load module

Im_per _side is the number of load modules in a row or column of AAM
bal_get_db_pos calls FIND_LM to determine the load module for the x and y coordinates
provided by local_terrain (in the chord data). It then calculates which grid the vehicle

occupies within the load module. The load module and grid number are placed in the chord
data structure.

Called By: local_terrain

Routines Called: FIND_LM

Parameters: CHORD_DATA *pcrd
INT 4 Im_width
INT_4 Im_per_side
Returns: none

135

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.4.2 bal_get_Im_grid.c

The bal_get_Im_grid function finds the load modules and grids in the database that are
intersected by a chord. This function is called by local_terrain to determine what four grids
lie around the simulated vehicle. (One grid is 125 meters wide.)

The function call is bal_get_Im_grid(pcrd, Im_per_side, Im_size,
Im_base_addr, bal search dvl _search, Im wndth) where:

pcrd is a pointer to the chord data

Im_per_side is the number of load modules in a row or column of AAM
im_size is the size in bytes of a load module

Im_base_addr is the load module's base address

bal search is the array in which to store load module offsets and grid words
dvl_search is the array in which to store dynamic module path data
Im_width is the width of a load module

The function returns 1 if it is successful, or 0 if an illegal chord (one longer than 125
meters) is detected.

Called By: local_terrain

Routines Called: none

Parameters: CHORD_DATA perd[]
INT_4 Im_per_side
INT_4 Im_size
INT_4 Im_base_addr
SEARCH_LIST bal_search{]
INT_4 dvl_search[]
INT_4 Im_width

Returns: 1 (TRUE)
0 (FALSE)

2.4.3 loc_ter.c
The loc_ter.c CSU contains two functions:

» main (for Butterfly compatibility only)
» local_terrain

136

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.4.3.1 main

The main function invokes the local_terrain function. It requires one argument: bvme_id,
which identifies the Butterfly-VME interface. This function is required for Butterfly
compatibility.

Called By: none

Routines Called: aroi
Find_Valve
local_terrain
Make_Event
map_vme
Name_Bind
printf
remap_vme

Parameters: int argc
char *argv(]

Returns: -1

2.4.3.2 local_terrain

The local_terrain function builds a local terrain message, based on the simulated vehicle's
current position, for transmission to the Simulation Host. The local_terrain task is loaded
by rtt during the task initialization state. It is suspended until simulation posts a message to
its mailbox (LOCAL_TERRAIN_MB).

The first frame at which a local terrain message is created, and the interval at which new
messages are generated, are defined in the memory_map_defines.h include file. Currently,
the first frame is set to 16 and the interval is set to 32.

The simulation vehicle's current position (my_int_x, my_int_y) is stored in the viewport
positions array, which is maintained by process_vppos. local_terrain assumes that the
vehicle's coordinates have just been updated.

When woken up by simulation, local_terrain does the following:

 Initializes the local terrain output buffer header (version and leve’).

» Calls read_watch to get the timer tick count.

» Calls bal_get_db_pos to find the simulated vehicle's current load module number
and grid number.

» Calls bal_get_Ilm_grid to find the four grids that surround the simulated vehicle.

* Determines whether a new local terrain message needs to be built (i.e., if the
simulated vehicle's position has changed since the last local terrain message).

» If the vehicle has moved, reinitializes the local terrain output buffer.

137

BBN Systems and Technoiogies 120TX/T CIG HOST CSCI

» Searches the four grids that lie around the simulated vehicle for polygons, and
builds the polygon portion of the message.

 Searches the four grids that lie around the simulated vehicle for polygon
components, and builds the polygon component portion of the message.

» Searches the four grids that lie around the simulated vehicle for bounding volumes,
and builds the bvol portion of the message.

« Sets a pointer to the new local terrain message data.

» Creates the message header: message size, message type
(MSG_LOCAL_TERRAIN, and the total number of polygons and bvols in the

message.

» Posts a message to the RTN_TERRAIN_MB mailbox.

Called By:

Routines Called:

Parameters:

Retumns:

nonc

bal_get_db_pos
bal_get Im_grid
FXTO881
FXTOFL
read_watch
sc_pend
sc_post

none

none

138

BBN Systems and Technologies 120TX/T CIG HOST CSCI

. 2.5 Ballistics Processing (BALLISTICS) CSC
The Ballistics Processing CSC is responsible for the following:

» Detecting intersections with the terrain database and the currently viewable models
(static and dynamic vehicles).

* Processing round data and returning hit or miss information to the real-time
software.

* Processing trajectory chord data and returning hit or miss information to the real-
time software.

The following points apply to intersection calculations:

¢ When determining whether a given trajectory intersects with a model or the terrain,
Ballistics treats the trajectory as a series of consecutive chords. Each chord is a
maximum of 115 meters. All computations are performed on the chords.

* Intersections with models are calculated with the bounding volume surrounding the
model or its articulated part, not with the model itself. A bounding volume, or
bvol, is the volume of the bounding box that is used to enclose a model in the
simulation environment. The use of bvols reduces the number of surfaces that
Ballistics must deal with. An intersection with any surface of any bvol belonging to

. a model is considered an intersection with that model.

» Intersections with the terrain are calculated with polygons that have the local terrain
flag and/or the Ballistics flag set true.

Ballistics is loaded and started by upstart, then put into the run state by simulation. The
communication between the real-time software and Ballistics consists of the following:

* Messages sent from the Simulation Host. For example, a message may tell
Ballistics that a round has been fired, or that a static vehicle has been added to the
local terrain. Each Ballistics message is received by simulation, which pushes it
onto the Ballistics message queue. Ballistics processes the message (which
typically involves computing whether any model or terrain in the database was hit),
then returns a hit or miss message if applicable. Messages returned from Ballistics
are removed from the message queue by simulation, which sends them to the
Simulation Host.

* Once per frame, simulation notifies Ballistics that a frame interrupt has taken place,
and informs it (via a MSG_BO_NEW_FRAME message) of the current frame count
and the new status of all dynamic vehicles.

* When the getside task (called by load_modules) loads a new load module from disk
into active area memory, it informs Ballistics using a MSG_B0_LM_READ
message.

Ballistics Processing may be run on a master board or a slave board in the CIG, as follows:

139

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Master
If the CIG has only one MVME133 board, it is the master that is used to run all of
the real-time software, including Ballistics.

Slave
If the CIG has two MVME133 boards, the left board is the master that runs the real-
time software. The right board is the slave that runs Ballistics. This configuration
is used for high rate-of-fire weapons.

A CIG that interfaces to a Butterfly Simulation Host has only one MVME133 board, which
is used to run Ballistics. The real-time software runs on the Butterfly itself.

Note: The Dart Ballistics Processing board is no longer supported.
References in the code to the Dart implementation can be
disregarded.

The Ballistics software that runs on a master board is very similar to the software that runs
on a slave board. Most of the variations are identified in the code by the SLAVE133
compiler flag. The real-time software determines what type of Ballistics board is in the
CIG, then loads the appropriate version of the Ballistics task.

The major data structures used in Ballistics Processing are the following:

Trajectory table directory
Contains one entry for each trajectory table. A trajectory table, which describes the
trajectory for a specific type of round, consists of the trajectory type, frame rate,
effect type, table size, and a pointer to the table's entries. Each trajectory table entry
contalins the trajectory's boresight x and y coordinates (with respect to the gun
barrel).

Trajectory tables are predefined for certain round types. The Simulation Host may
define trajectory tables for other round types.

Terrain model directory
Describes the models that are placed on the terrain (houses, telephone poles, water
towers, etc.). Each entry defines the model type, bvol flag, component count, bvol
ﬁourllg, r(riliodcl directory type, model radius, and the primary, secondary, and tertiary
vol indices.

Note: The terrain model directory is not currently used. It is set up to
accommodate future enhancements to the database.

Terrain bvol directory
Describes the bounding volume for each terrain model. Each entry defines the
model directory type, type id, the bvol's height above the poly-defining perimeter,
and the perimeter defining the bvol polygon (its vertices).

Note: The terrain bvol directory is not currently used. It is set up to
accommodate future enhancements to the database.

DED model directory
Describes the models in the dynamic elements database. Each entry defines the
model type, bvol flag, component count, bvol count, model directory type, modzl
radius, and the primary, secondary, and tertiary bvol indices.

140

BBN Systems and Technologies 120TX/T CIG HOST CSCI

DED bvol directory

Describes the bounding volume for each DED model. Each entry defines the bvol
index, the model directory type, type id, the bvol's height above the poly-defining
perimeter, and the perimeter defining the bvol polygon (its vertices).

Load module directory

Contains one entry for each load module in active area memory. Each load module
entry contains the load module's cache flag, frame stamp, polygon count,
maximum polygon height above the poly-defining perimeter, bvol count, and
maximum bvol height above the poly-defining perimeter. Each load module entry
also contains pointers to the polygon and bvol lists attached to that load module.

Static vehicle directory

Contains one entry for every load module in active area memory. Each entry points
to a list of the static vehicles in that load module. Each entry in the static vehicle list
contains the static vehicle's vehicle id, AAM partition index, component count,
unique type, load module number, application-specific data (ASID), transformation
matrix, rotation angles for the second component, and back and forward pointers.

Static vehicle entries that are not currently assigned to a load module are contained
in the static vehicle free list. When the Simulation Host requests the addition of a
static vehicle, Ballistics removes one from the free list and adds it to the proper load
module list. When the Simulation Host specifies deletion of a static vehicle,
Ballistics removes it from the load module and returns it to the free list. The free
list is a mechanism for ensuring that the maximum number of static vehicles is not
exceeded.

Polygon lists

Contain one entry for each polygon in a given load module in active area memory.
Each entry contains the polygon's soil type, vertex count, priority, shade, minimum
and maximum values, Ballistics flag, local terrain flag, grid location, and vertex
list. Each load module in active area memory has its own polygon list.

Polygon entries that are not currently assigned to a load module are contained in the
free polygon list. When a new load module is added to active area memory,
Ballistics removes the required number of polygons from the free list and adds them
to the new load module's polygon list. If the free list does not contain enough
polygons for a new load module, Ballistics swaps out the least-recently-used load
module. When a load module is removed from active area memory, Ballistics
returns its polygons to the free list.

Bvol lists

Contain one entry for each bounding volume in a given load module in active area
memory. Each entry contains the bvol's type id, distance above the poly-defining
perimeter, vertex list, and grid location. Each load module in active area memory
has its own bvol list.

141

BBN Systems and Technologies 120TX/T CIG HOST CSCI

bvol entries that are not currently assigned to a load module are contained in the free
bvol list. When a new load module is added to active area memory, Ballistics
removes the required number of bvols from the free list and adds them to the new
load module's bvol list. If the free list does not contain enough bvols for a new
load module, Ballistics swaps out the least-recently-used load module. When a
load module is removed from active area memory, Ballistics returns its bvols to the
free list.

Round list
Contains one entry for each active round. Each entry contains th: round's active
frame count, frame count, frame interval, trajectory entry index, trajectory table
size, offset, trajectory pointer, points, and back and forward pointers.

Round entries that are not currently active are contained in the free round list.
When the Simulation Host requests a new round, Ballistics removes one from the
free list and adds it to the active list. After processing the round, Ballistics removes
it from the active list and returns it to the free list. The free list is a mechanism for
ensuring that the maximum number of rounds is not exceeded.

Ballistics Processing is divided into the following functional areas:

Ballistics Mainline
Initializes all Ballistics structures at start-up, and drives all Ballistics processing.

Ballistics Interface Message Processing
Processes the Ballistics messages received from the Simulation Host.

Ballistics Intersection Calculations
Calculates chord intersections to determine if anything in the simulated environment
was hit by a round or trajectory. Acquires polygon and bounding volume
information from the terrain database, and maintains the data in a cache using an
LRU swapping algorithm. Also maintains static vehicles using a set of free lists.

Ballistics Message Queue Processing
Maintains the message queues used as the interface between Ballistics and the real-
time software.

Figure 2-14 identifies the CSUs in the Ballistics CSC. The CSUs in each functional area
are described in the following subsections, in the order listed above.

142

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Task Initiaiization
Database
Ballistics Interface Upetart Manage- Gossp Flea
Processing Feedback ment
Baflistics bx_init.c
———— . e bX_task.c
Mainiine slave133_funclions.c
b0_aam_centroid.c b0_delete_static_vehicle.c b0_process_chord.c
bO_aam_sw_comer.c b0_delete_traj table.c b0_process_round.c
b0_add_static_vehicle.c b0_error_detected.c bO_round_fired.c
) b0_add_traj table.c b0_inapp_message.c b0_state_control.c
| Balstics Ir;tedace. b b0_bal_config.c b0_im_read.c bO_status_request.c
Message Processing bO_bvol_entry.c bo_model_directory.c bO_traj_chord.c
b0_cancel_round.c b0_model_entry.c b0_traj entry.c
bO_cig_frame_rate.c bO_new_{frame.c b0_undefined_message.c
bO_database_info.c b0_print.c
- . bx_bvol_int.c bx_model_int.c
——{ Balistics Intersectionf—— ., "chord _intersect.c bx_poly_int.c
Calculations bx_functions bx_reset.c
bx_get_im_data.c bx_trajectory.c
bx_get_Im_grid.c
- mx_error.c mx_push.c
- Balistics Mmge r— mx_open.c mx_skip.c
Queue Processing mx_peek.c mx_wcopy.c

Figure 2-14. Ballistics Processing CSUs

143

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.1 Ballistics Mainline

This section describes the Ballistics Mainline component of the Ballistics Processing CSC.
The CSUs in this component provide the functions that initialize and drive Ballistics
Processing on the CIG.

2.5.1.1 bx147_main.c (main)

The main function in bx147_main.c is not used on the 120TX/T CIG. Information
provided on this function in earlier releases of this document should be disregarded.

2.5.1.2 bx_init.c

The bx_init function is called by bx_task to initialize Ballistics. bx_init defines the message
arrays (G_init_message[] and G_run_message[]) used by bx_task to process Ballistics
messages. It also initializes the following structures:

Terrain and dynamic elements database (DED) model directories.
Terrain and DED bounding volume directories.

Static vehicle list.

Bounding volume cache list.

Polygon cache list.

Round list.

Trajectory table directory and tables.

Various pointers, lists, and temporary variables.

® & & ¢ & ¢ o o

The function call is bx_init().

Called By: bx_task
Routines Called: none
Parameters: none
Retumns: none

2.5.1.3 bx_task.c

The bx_task function is the main Ballistics task. It is loaded into the task table by rtt during
task initialization, and put into the run state by simulation.

bx_task does the following:

+ Calls bx_init to initialize structures used by Ballistics.

144

BBN Systems and Technologies 120TX/T CIG HOST CSCI

» Locates the message queues used to communicate with the real-time software, and
installs and opens them.

* Notifies the real-time software that Ballistics has started (via a
MSG_B1_STATUS_RETURN message).

* Gives the real-time software the addresses of Ballistics global variables (via a
MSG_B1_GLOBAL_ADDR message).

* Reads each Ballistics message in turn from the message queue.

Messages are pushed onto the Ballistics message queue by simulation. bx_task manages
the message queue using the Ballistics Message Queue Processing functions (see section
2.5.4). When it pops a message from the stack, it calls the appropriate Ballistics Interface
Message Processing routine (see section 2.5.2) to process it.

Called By: none

Routines Called:

b0_delete_static_vehicle
b0_cclete_traj_table
bO_error_detected
b0_inapp_message
b0_lm_read
b0_model_directory
b0_model_entry
b0_new_frame
b0_print

b0_process_chord
b0_process_round
b0_round_fired
b0_state_control
b0_status_request
b0_traj_chord
b0_traj_entry
b0_undefined_message
bx_init

mx_error

mx_open

mx_peek

mx_push

mx_skip

printf

puts

Parameters: none

145

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Retumns: none

2.5.1.4 slavel33_functions.c

The slave133_functions.c CSU contains functions that are required to run Ballistics on a
slave board. The functions contained in this CSU are the following:

» slavel33_malloc
o freel33
2.5.1.4.1 slavel33_malloc

The slave133_malloc function allocates memory on the slave board. The MALLOC macro
invokes slave133_malloc (instead of malloc) if Ballistics is running on a slave board.

The function call is slavel33_malloc(byte_count), where byte_count is the amount of
memory to be allocated. The function returns a pointer to the beginning of the free area of
memory as head _P.

Called By: MALLOC

Routines Called: none

Parameters: WORD byte_count
Returns: head P

2.5.1.4.2 freel33

The free133 function returns all memory allocated with slave133_malloc to the slave
board's memory pool. This function is called by bx_reset to reclaim dynamic memory.

The function call is free133().

Called By: bx_reset
Routines Called: none
Parameters: none
Returns: none

146

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2 Ballistics Interface Message Processing

This section describes Ballistics Interface Message Processing, a major functional
component of the Ballistics Processing CSC. It contains the functions that process the
Ballistics messages that are received by the bx_task from the real-time software.

The Ballistics Interface Message Processing functions are defined as elements of arrays in
bx_init. Two arrays are used: G_init_message[] and G_run_message[]. The messages in
G _init_message are used to initialize Ballistics (e.g., define model entries or the trajectory
table). The messages in G_run_message are used to respond to runtime messages (e.g.,
process rounds or manage static vehicles). The index into either array is the message code
(G_m_code).

The complete processing mechanism is as follows:
1. The Simulation Host sends a Eallistics message.

2. simulation calls mx_push to push the message onto the Ballistics message queue.
simulation sets the message_code to M_B0_<message>.

3. bx_task pops the message from the message queue.

4. bx_task indexes into G_init_message[] or G_run_message[] with the message code
(G_m_code). It also passes a pointer to the message (message_P).

5. The function corresponding to the specified element in the specified array is called
with the message_P parameter.

This method of invoking the Ballistics Interface Message Processing functions provides for
faster processing than direct function calls.

Note that some of the messages sent from simulation to Ballistics do not originate from the
Simulation Host. For example, simulation generates messages to start or stop Ballistics,
and to tell Ballistics where active area memory is. The processing mechanism for such
messages is the same as for those received from the Simulation Host.

Some Ballistics messages cause a return message. For example, a ROUND_FIRED
message results in a HIT_RETURN or MISS message. The Ballistics Interface Message
Processing function generates the response message and calls mx_push to push it onto the
message queue with the message code set to M_B1_<message>. simulation retrieves the
message from the queue and processes it accordingly.

2.5.2.1 b0_aam_centroid.c

The b0_aam_centroid function is a stub for future expansion,; it is not currently used.

The function call is b0_aam_centroid(). The function always returns 0.

147

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2.2 b0_aam_sw_corner.c

The b0_aam_sw_comer function processes the message MSG_B0_AAM_SW_CORNER.
This message is sent by simulation when Ballistics is first put into the run state. It is also
sent by rowcol_rd whenever active area memory is relocated. The message gives Ballistics
the coordinates of the southwest corner of active area memory. The b0_aam_sw_corner
function calculates the coordinates of the northeast corner by adding twice the viewing
range in each direction.

The function call is b0_aam_sw_corner(message_P), where message_P is a pointer
to the MSG_BO_AAM_SW_CORNER message.

The function always returns 0.
Called By: bx_task
Routines Called: none
Parameters: MSG_B0O_AAM_SW_CORNER *message_P
Returns: 0

2.5.2.3 b0_add_static_vehicle.c

The b0_add_static_vehicle function processes the MSG_B0_ADD_STATIC_VEHICLE
message. This message is sent by simulation when the Simulation Host sends a message
to add a new static vehicle to the local terrain. The message specifies the vehicle id, type,
orientation, and position.

The function call is b0_add_static_vehicle(message_P), where message_P is a
pointer to the MSG_BO_ADD_STATIC_VEHICLE message.

The function returns a 0 if successful. It returns 1 if the vehicle's load module is out of
range, the maximum vehicle limit has been reached, or the number of components (values
used to determine the vehicle's orientation and position) is not 1 or 3.

Called By: bx_task

Routines Called: BCOPY
NEW_STAT_VEH

Parameters: MSG_BO_ADD_STATIC_VEHICLE *message_P

148

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: 1

2.5.2.4 b0_add_traj_table.c

The b0_add_traj_table function processes the message MSG_BO_ADD_TRAJ_TABLE.
This message is sent by db_mcc_setup when processing a MSG_TRAJ_TABLE_XFER
message from the Simulation Host. This message is used to add trajectory tables. The
message specifies the table's trajectory type, frame rate, effect type, and number of entries.
Entries are added using the b0_traj_entry function.

The function call is b0_add_traj_table(message_ P), where message_P is a pointer to
the MSG_BO_ADD_TRAJ_TABLE message.
The function returns 0 if successful, or -1 if the trajectory type is invalid.

Called By: bx_task

Routines Called: free

MALLOC
Parameters: MSG_B0_ADD_TRAJ_TABLE *message_P
Returns: -1

0

2.5.2.5 b0_bal_config.c

The b0_bal_config function processes the message MSG_BO_BAL_CONFIG. This
message is sent by open_dbase to give Ballistics its initialized configuration parameters.

The function call is b0_bal_config(message), where message_P is a pointer to the
MSG_BO_BAL_CONFIG message.
The function always returns 0.

Called By: bx_task

Routines Cailed: BCOPY

Parameters: MSG_B0O_BAL_CONFIG *message_P

Returns: 0

149

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2.6 b0_bvol_entry.c

The b0_bvol_entry function processes the message MSG_BO_BVOL_ENTRY. This
message is sent by download_bvols to to add bounding volumes to the terrain or DED
model directory.

The function call is b0)_bvol_entry(message_P), where message_P is a pointer to the
MSG_B0_BVOL_ENTRY message.

The function always returns 0.
Called By: bx_task
Routines Called: BCOPY
Parameters: MSG_BO_BVOL_ENTRY *message_P
Returns: 0

2.5.2.7 b0_cancel_round.c

The b0_cancel_round function is a stub for future expansion; it is not currently
implemented.

The function call is bO_cancel_round(). The function always returns 0.

2.5.2.8 b0 _cig_frame_rate.c

The b0_cig_frame_rate function processes the message MSG_B0O_CIG_FRAME_RATE.
simulation sends this message to tell Ballistics the frame rate (15 or 30 Hz).

The function call is b0_cig_frame_rate(message_P), where message_P is a pointer to
the MSG_BO0_CIG_FRAME_RATE message.

The function always returns 0.

Called By: bx_task
Routines Called: none
Parameters: MSG_B0_CIG_FRAME_RATE *message_P

150

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: 0

2.5.2.9 b0_database_info.c

The b0_database_info function processes the message MSG_BO_DATABASE_INFO.
open_dbase sends this message after it initializes AAM partition information.

The function call is b0_database_info (message_P), where message_P is a pointer to
the MSG_BO_DATABASE_INFO message.

b0_database_info does the following:
« Allocates space for the load module tables.
» Loads the load module cache data.
e Sets up the table of load module addresses.

The function always returns 0.
Called By: bx_task
Routines Called: MALLOC
Parameters: MSG_BO_DATABASE_INFO *message_P
Returns: 0

2.5.2.10 bO0_delete_static_vehicle.c

The b0_delete_static_vehicle function processes the message MSG_BO_DELETE_-
STATIC_VEHICLE. simulation sends this message when it receives a
MSG_STATICVEH_REM message from the Simulation Host. The message contains the
vehicle id, type, and current position (x, y, and z coordinates) of the vehicle to be deleted
from active area memory.

The function call is b0_delete_static_vehicle(message_P), where message_P is a
pointer to the MSG_BO_DELETE_STATIC_VEHICLE message.

The function returns O if the static vehicle is successfully deleted. It returns 1 if the
specified vehicle not found in active area memory.

Called By: bx_task

Routines Called: DELETE_STAT_VEH
outhexl (if running on a slave board)
puts (if running on a slave board)

151

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: MSG_BO_DELETE_STATIC_VEHICLE *message_P
Retumns: 1
0

2.5.2.11 b0_delete_traj_table.c

The b0_delete_traj_table function a stub for future enhancement; it is not currently
implemented.

The function call is bO_delete_traj_table(). The function always returns 0.

2.5.2.12 b0_dummy.c

The b0_dummy function is a template for adding other b0_* functions; it is not called by
any other function.

The function call is b0_dummy(). The function always returns 0.

2.5.2.13 bO0_error_detected.c

The b0_error_detected function is a stub for future enhancement; it is not currently
implemented.

The function call is b0_error_detected(). The function always returns 0.
2.5.2.14 b0_inapp_message.c
The b0_inapp_message function outputs the "*** Inappropriate Message ***" error for
slave boards.
The function call is bO_inapp_message(). The function always returns 0.

Called By: bx_task

Routines Called: puts

Parameters: none

Returns: 0

152

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2.15 b0_Ilm_read.c
The b0_lm_read function processes the message MSG_BO_LM_READ for Ballistics. This
message is sent by getside (in load_modules) to inform Ballistics of a new load module
added to the local terrain.
The function call is b0_Im_read(message_P), where message_P is a pointer to the
MSG_BO_LM_READ message. The function always returns 0.

Called By: bx_task

Routines Called: FREE_LM_CACHE

Parameters: MSG_BO_LM_READ *message_P

Returns: 0

2.5.2.16 b0_model_directory.c

The b0_model_directory function a stub for future enhancement; it is not currently
implemented.

The function call is b0_model_directory(). The function always returns 0.

2.5.2.17 b0_model_entry.c

The bO_model_entry function processes the message MSG_BO_MODEL_ENTRY for
Ballistics. This message is sent by download_bvols to add entries to the terrain or DED
model] directory.

The function call is b0_model_entry(message P), where message P is a pointer to the
MSG_B0O_MODEL_ENTRY message. The function always returns 0.
Called By: bx_task

Routines Called: BCOPY

Parameters: MSG_BO_MODEL_ENTRY *message_P

Returns: 0

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.2.18 b0_new_frame.c

The bO_new_frame function processes the message MSG_BO_NEW_FRAME for
Ballistics. simulation passes this message to give Ballistics new frame information (frame
count and the new state of all dynamic models). b0_new_frame then processes each active
round.

The function call is b0_new_frame(message_P), where message_P is a pointer to the
MSG_BO_NEW_FRAME message. The function always returns 0.

When it is called, b0_new_frame processes each active round as follows:

» Calls bx_trajectory to see where the round's trajectory ends.

- If the trajectory extends beyond the viewing space, b0_new_frame sends a
MISS message, then deletes the round.

- If the trajectory ends within the viewing space, bO_new_frame calls
bx_chord_intersect to determine what was hit, returns a HIT_RETURN
message, then deletes the round.

¢ For rounds that are to be traced, b0_new_frame calculates the position and returns a
ROUND_POSITION message.

Called By: bx_task
Routines Called: bx_chord_intersect
bx_trajectory

DELETE_ROUND
GET_LB_FROM_LM

mx_push
Parameters: MSG_BO_NEW_FRAME *message_P
Returns: 0

2.5.2.19 b0_print.c

The bO_print function is a generalized message printing routine. The message is printed to
stdout.

The function call is bO_print(message P), where message P is a pointer to the
message. The function always returns 0.

Called By: bx_task
Routines Called: printf (if running on a master board)
puts (if running on a slave board)

154

BBN Systems and Technologies 120TX/T CIG HOST CSCI

. Parameters: char *message_P
Retumns: 0

2.5.2.20 bO0_process_chord.c

The b0_process_chord function is a stub for future enhancement; it is not currently
implemented.

The function call is b0_process_chord(). The function always returns 0.

Called By: none
Routines Called: none
Parameters: none
Returns: 0

‘ 2.5.2.21 b0_process_round.c

The b0_process_round function processes the message MSG_B0O_PROCESS_ROUND.
This message is sent by simulation upon request from the Simulation Host. The message
specifies the round id, database id, round type, tracer type, frame rate, mode, proximity
range, gun's position and velocity, and gun's elevation and azimuth.

The function call is b0_process_round(message_P), where message_P is a pointer to
the MSG_BO_PROCESS_ROUND message.

b0_process_round does the following:

« Validates the round type.

» Calls NEW_ROUND to get a round from the free list and put in on the active list.

 Verifies that the gun barrel is within active area memory; deletes the round if it is
not.

» Calls bx_trajectory to see if the round's trajectory exceeds active area memory;
returns a MISS message and deletes the round if it does.

» Calls bx_chord_intersect to see what the round hit; returns a HIT_RETURN
message and deletes the round.

» For rounds that are to be traced, calculates the position and returns a
ROUND_POSITION message.

The function returns 0 if successful. It returns -1 if the round fired is not of a known type,
the free list is empty (i.e., the maximum number of active rounds has been reached), or the
. gun barrel is not within the AAM database.

155

BBN Systems and Technologies 120TX/T CIG HOST CSClI

Called By: bx_task

Routines Called: bx_chord_intersect
bx_trajectory
DELETE_ROUND
GET_LB_FROM_LM

mx_push

NEW_ROUND
Parameters: MSG_BO_PROCESS_ROUND *message_P
Returns: 0

2.5.2.22 b0_round_fired.c

The b0_round_fired function processes the message MSG_BC_ROUND_FIRED for
Ballistics. This message is sent by simulation upon request from the Simulation Host. The
message specifies the round type, whether or not tracer effects are to be displayed, the
round identifier, the gun tip position and velocity, the gun's elevation and azimuth, the
estimated time to impact, and the estimated range of impact.

The function call is b0_round_fired(round_fired_P), where round_fired_P is a
pointer to MSG_BO_ROUND_FIRED the message.

b0_round_fired does the following:

e Validates the round type.

e Calls NEW_ROUND to get a round from the free list and put it on the active list.
Verifies that the gun barrel is within active area memory; deletes the round if it is
not.

» Calls bx_trajectory to see if the round's trajectory exceeds active area memory,;
returns @ MISS message and deletes the round if it does.

¢ Calls bx_chord_intersect to see what the round hit; returns a HIT_RETURN
message and deletes the round.

+ Forrounds that are to be traced, calculates the position and returns a
ROUND_POSITION message.

The function returns Q if successful. It returns -1 if the round fired is not of a known type,
the free list is empty, or the gun barrel is outside active area memory.

The MSG_ROUND_FIRED message has been replaced by the MSG_PROCESS_ROUND
message. MSG_ROUND_FIRED is retained for backwards compatibility.

Called By: bx_task

156

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: bx_chord_intersect
bx_trajectory
DELETE_ROUND
GET_LB_FROM_ILM

mx_push

NEW_ROUND
Parameters: MSG_BO_ROUND_FIRED *round_fired_P
Returns: 0

-1

2.5.2.23 b0_state_control.c

The b0_state_control function processes the message MSG_BO_STATE_CONTROL for
Ballistics. simulation uses this message to reset Ballistics or put it into the run state.

The function call is b0_state_control(message_P), where message_P is a pointer to
the MSG_BO_STATE_CONTROL message.

b0_state_control sets the Ballistics global variable G_bal_state to the new state provided. If
the new state is BX_RESET, b0_state_control calls bx_reset.

The function always returns 0.
Called By: bx_task
Routines Called: bx_reset
Parameters: MSG_BO_STATE_CONTROL *message_P
Returns: 0

2.5.2.24 bO0_status_request.c

The b0_status_request function is a stub for future enhancement; it is not currently
implemented.

The function call is b0_status_request(). The function always returns 0.

2.5.2.25 bO_traj_chord.c

The b0_traj_chord function processes the message MSG_BO_TRAJ_CHORD for
Ballistics. This message is sent by simulation upon request from the Simulation Host. The
message message specifies the tracer effect type, whether or not tracer effects are to be

157

BBN Systems and Technologies 120TX/T CIG HOST CSCI

displayed, the chord identifier, and the chord's starting and ending positions (x, y, and z
coordinates). This message is also sent by simulation when processing the simulated
vehicle's AGL (altitude above ground level).

The function call is b0_traj_chord(message_P), where message_P is a pointer to the
MSG_BO_TRAJ_CHORD message.

bO0_traj_chord does the following:

» Locates the chord in the terrain.
» Calls bx_chord_intersect to determine whether the chord hits anything in the local
terrain.
+ Pushes either a hit or a miss message (as appropriate) onto the Ballistics message
queue.
The function always returns 0.
Called By: bx_task
Routines Called: bx_chord_intersect
GET_DB_POS
mx_push
Parameters: MSG_BO_TRAJ_CHORD *message_P
Returns: 0

2.5.2.26 b0_traj_entry.c

The b0_traj_entry function processes the message MSG_BO_TRAJ_ENTRY for Ballistics.
This ruessage is used to add entries to a trajectory table. The message is sent by
db_mcc_setup when processing a MSG_TRAJ_TABLE_XFER message from the
Simulation Host.

The function call is b0_traj_entry(message_P), where message_P is a pointer to the
MSG_BO_TRAJ_ENTRY message.

The function returns 0 if successful. It returns -1 if the trajectory type is invalid. It returns
1 if the trajectory table is full.

Called By: bx_task
Routines Called: outhexl (if running on a slave board)

puts (if running on a slave board)
Parameters: MSG_BO_TRAJ_ENTRY *message_P

158

BBN Systems and Technologies 120TX/T CIG HOST CSCI ‘

0

|
Returns: 1
-1 !

2.5.2.27 b0_undefined_message.c

The b0_undefined_message function outputs the "*** Undefined Message ***" error for
slave Ballistics boards.

The function call is b0_undefined_message(). The function always returns 0.

Called By: bx_task

Routines Called: puts (if running on a slave board)
Parameters: none

Returns: 0

159

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.3 Ballistics Intersection Calculations

This section details the CSUs in Ballistics Intersection Calculations component of the
Ballistics Processing CSC. It contains the functions that are responsible for calculating
chord intersections (hits) for various purposes.

The driving function is bx_chord_intersect. This function is called by the functions in the
Ballistics Interface Message Processing component that deal with processing rounds or
tracing trajectories. bx_chord_intersect calls other Ballistics Intersection Calculations
functions to check for intersections with various objects (static vehicles, dynamic vehicles,
terrain bvols, and terrain polygons).

2.5.3.1 bx_bvol_int.c

The bx_bvol_int function intersects a chord with a bounding volume. This function is
called by bx_chord_intersect to check for intersections with terrain bounding volumes, and
is called by bx_model_int to check for intersections with model (vehicle) bounding
volumes.

The function call is bx_bvol_int(start, end, pbvl, ratio_to_intersect,
vehicle_flag), where:

start is the chord's starting point

end is a pointer to the return location for the chord’s ending point (the intersection
point); returned by bx_bvol_int

pbvl is a pointer to the bvol entry

ratio_to_intersect is a pointer to the r2turn location for the distance from the chord's
start point to the intersection point , divided by the total length of the chord; this
value is returned by bx_bvol_int and is useful when transforming chord points into
the vehicle coordinate system

vehicle_flag is TRUE if the model is a vehicle, FALSE if not

bx_bvol_int does the following:

« Checks the bvol's vertices against the chord's start and end points to see if they
intersect. Returns FALSE if they do not.

Clips backfaces (the sides of a polygon that face away from the viewpoint).
Checks for start- and endpoints on the same side of the bounding volume.
Checks for hits on the top or bottom of the bounding volume.

Clips around the quadrilateral projection of the bounding volume.

Sets the chord's ending position.

The function returns 1 if successful or 0 if no intersection is detected. The function also
returns the intersection point and the ratio_to_intersect by placing the data in the locations
specified in the call.

Called By: bx_chord_intersect
bx_model_int

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none
Parameters: R4P3D *start
R4P3D *end
BVOL_ENTRY *pbvl
REAL 4 *ratio_to_intersect
BOOLEAN vehicle_flag
Returns: 1 (TRUE)
0 (FALSE)

2.5.3.2 bx_chord_intersect.c

The bx_chord_intersect function determines whether a given chord intersects with anything
in active area memory. It calls other functions in the Ballistics Intersection Calculations
component to check for intersections with models or the terrain, then creates the hit or miss
message.

The function call is bx_chord_intersect(chord_P, buffer_P, aam_index,
dv_ex_flag, dv_veh |d) where:

chord_P is a pointer to the chord's data

buffer P is a pointer to the hit return data

aam_index is the AAM partition index

dv_ex_flag is TRUE if a particular vehicle is to be excluded from intersection
processing, or FALSE if all vehicles are to be included

dv_veh_id is the id of the vehicle to be excluded, if dv_ex_flag is TRUE

bx_chord_intersect does the following:

» Checks for hits on pre- and post-processed dynamic models. |
» Calls bx_get_lm_grid to find the load modules to be searched, based on the chord's |
location.

Calls bx_model_int to check for intersections with static models.

Calls bx_model_int to check for intersections with dynamic models.

Calls bx_get_Im_data to get data for the load module (if not in cache).

Calls bx_bvol_int to check for intersections with terrain bounding volumes.

Calls bx_poly_int to check for intersections with terrain polygons.

Builds the hit return message (to be returned to simulation by the calling routine).

® & ¢ o o o

The function returns 1 if an intersection is detected. It retumns 0 if no intersection was
detected, or if the load module could not be found.

Called By: b0_new_frame
b0_process_round
b0_round_fired
bO0_traj_chord

Routines Called: BCOPY

161

BBN Systems and Technologies

120TX/T CIG HOST CSCI

bx_bvol_int
bx_get_Im_data
bx_get_Im_grid
bx_model_int
bx_poly_int
GET_LB_FROM_LM

*chord_P
*buffer_P
aam_index
dv_ex_flag
dv_veh_id

The bx_functions.c CSU contains utility functions used for Ballistics. These functions are

Parameters: CHORD
BYTE
HWORD
BOOLEAN
HWORD
Retumns: 1 (TRUE)
0 (FALSE)
2.5.3.3 bx_functions.c
the following:
* bx_new_round
* bx_delete_round
* bx_get_db_pos
* bx_get_chord_end
* bx_new_bvol
* bx_free_lm_cache
* bx_new_poly
* bx_get_Ib_from_Im
* bx_new_stat_veh
* bx_delete_stat_veh

bx_dist_sq_pt_line

Note: Most of these functions are no longer used. Macros (see Appendix

B) are used instead, to increase performance.

2.5.3.3.1 bx_new_round

The bx_new_round function gets a new round from the free list, and increments the
number of active rounds. The function returns a pointer (new_round_P) to the new round.

The pointer is set to NULL if no free rounds are available.

The function call is bx_new_round().

This function is not currently used. The NEW_ROUND macro is used to get rounds from

the free list.

Called By: none

162

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none
Parameters: none
Returns: new_round_P

2.5.3.3.2 Dbx_delete_round

The bx_delete_round function removes a round from the active list and puts it on the free
list. It then decrements the number of active rounds and increments the number of free
rounds.

The function call is bx_delete_round(dead_round_P), where dead_round_P is a
pointer to the round to be deleted.

This function is not currently used. The DELETE_ROUND macro is used to delete active
rounds.

Called By: none
Routines Called: none
Parameters: ROUND_DATA *dead_round_P
Returns: none

2.5.3.3.3 bx_get_db_pos

The bx_get_db_pos function finds the load module that corresponds to a given point in the
database.

The function call is bx_get_db_pos(point_P, Im_width, inv_Ilm_width,
Im_per_side), where:

point_P is a pointer to the location in the database

Im_width is the width of a load module

inv_Im_width is the inverse of the width of a load module

Im_per_side is the number of load modules in a row or column of AAM (usually 16)

This function is not currently used. The GET_DB_POS macro is used to find database
positions.

Called By: none

163

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: FIND_I.M

Parameters: POINT_DATA *point_P
HWORD Im_width
REAL_4 inv_lm_width
HWORD Im_per_side
Returns: none

2.5.3.3.4 bx_get_chord_end

The bx_get_chord_end function finds the end of the current chord (and, therefore, the
beginning of the next chord in the trajectory), given an active round and a trajectory table

entry.

The function call is bx_get_chord_end(chord_P, round_message P,
traj_entry_P, offset), where:

chord_P is a pointer to the chord

round_message_P is a pointer to the active round
traj_entry P is s a point to the trajectory table entry
offset is the gun barrel velocity offset

This function is not currently used.

Called By: none

Routines Called: none

Parameters: CHORD *chord_P
MSG_BO_PROCESS_ROUND *round_message_P
TRAJ_ENTRY *traj_entry_P
REAL_4 offset

Returns: none

2.5.3.3.5 bx_new_bvol

The bx_new_bvol function gets a new bounding volume from the free list and adds itto a
load module list. If there are no free bvols, bx_new_bvol swaps out the least-recently-used
load module.

The function call is bx_new_bvol(lm_dir), where Im_dir is a load module in the cache.

‘The function returns a pointer (hvol_P) to the new bounding volume.

164

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: bx_get_lm_data

Routines Called: FREE_LM_CACHE

Parameters: LM_CACHE_ENTRY *Im_dir
Returns: bvol_P

2.5.3.3.6 bx_free_lm_cache

The bx_free_lm_cache function, when given a load module in the Ballistics database cache,
puts the bounding volumes in that module on the free bvol list, and puts the polygons in
that module on the free polygon list.

The function call is bx_free_Ilm_cache(Im_dir), where Im_dir is a load module in the
cache.

This function is not currently used. The FREE_LM_CACHE macro is used to free load
mocule bvols and polygons.

Called By: none
Routines Called: none
Parameters: LM_CACHE_ENTRY *Im_dir
Returns: none
2.5.3.3.7 bx_new_poly
The bx_new_poly function gets a new polygon from the free list and puts it on a specified

load module list. If there are no free polygons, bx_new_poly swaps out the least-recently-
used load module.

The function call is bx_new_poly(Im_dir), where /m_dir is a load module in the cache.

The function returns a pointer to the new polygon.
Called By: bx_get_Ilm_data

Routines Called: FREE_LM_CACHE

165

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: LM_CACHE_ENTRY *Im_dir
Returns: poly_P

2.5.3.3.8 bx_get_Ib_from_lm

The bx_get_lb_from_Im function takes a load module number and returns the number (0 to
255) of the load block that module is in.

The function call is bx_get_lb_from_Ilm (Im), where Im is the load module number (0
to 1023).

This function is not currently used. The GET_LB_FROM_LM macro is used to determine
load block numbers.

Called By: none

Routines Called: none

Parameters: INT_4 Im
Returns: Tow*16 + column

2.5.3.3.9 bx_new_stat_veh

The bx_new_stat_veh function gets a static vehicle from the free list and adds it to the list
of the specified load module.

The function call is bx_new_stat_veh(veh_table_P) where veh_table_P is a pointer to
the vehicle table.

The function returns a pointer to the new static vehicle. It returns NULL if no pointers are
available (i.e., the maximum number of static vehicles has been reached).

This function is not currently used. The NEW_STAT_VEH macro is used to put a static
vehicle into a load module's list.

Called By: none
Routines Called: none
Parameters: STRUCT_P_SV *veh_table_P

166

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: NULL
new_sv_P
2.5.3.3.10 bx_delete_stat_veh

The bx_delete_stat_veh function removes a static vehicle from a specified load module list
and returns it to the free list.

The function call is bx_delete_stat_veh(dead_sv_P, table_P), where:

dead_sv_P is a pointer to the static vehicle to be deleted
table_ P is a pointer to the vehicle table

This function is not currently used. The DELETE_STAT_VEH macro is used to delete
static vehicles.

Called By: none

Routines Called: none

Parameters: STAT_VEH *dead_sv_P
STRUCT_P_SV *table_P

Returns: none

2.5.3.3.11 bx_dist_sq_pt_line

The bx_dist_sq_pt_line function finds the distance squared between a point and a line
segment.

The function call is bx_dist_sq_pt_line(pt_P, start_P, end_P), where:

pt_P is a pointer to the point

start_P is a pointer to the start of the line segment

end_P is a pointer to the end of the line segment
The function returns the result of the calculation as resulr. It returns 1000000.00 if the
result is less than 0.

Called By: bx_model_int

Routines Called: none

167

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: R4P3D *pt_P
R4P3D *start_ P
R4P3D *end_P
Returns: 1000000.00
result

2.5.3.4 bx_get_Im_data.c

The bx_get_lm_data function finds and caches all bounding volumes and polygons in a
given load module that have their local terrain or Ballistics bit set to true. The function can
also be used to cache all bvols and polygons in the load module, regardless of their local
terrain and Ballistics bits. This function is called by bx_chord_intersect to get load module
data from the AAM if it is not already cached.

The function call is bx_get_Im_data(lm_addr, Im_dir, poly_mask), where:
Im_addr is the address of the load module
Im_dir is the load module directory
poly_mask is TRUE if all polygons are to be cached, regardless of the state of their
local terrain and Ballistics bits

The function always returns 0.

Called By: bx_chord_intersect
Routines Called: bx_new_bvol
bx_new_poly
FXTO881
Parameters: WORD Im_addr
LM_CACHE_ENTRY *m_dir
WORD poly_mask
Returns: 0

2.5.3.5 bx_get_Im_grid.c

The bx_get_Im_grid function finds the load modules and grids in the database that are
intersected by a given chord. It is called by bx_chord_intersect when it is looking for the
load modules to search.

The function call is bx_get_Im_grid(pcrd, Im_per_side, bal_search,
dvl_search, Im_width, Im_addr_table), where:

pcrd is a pointer to the chord
Im_per_side is the number of load modules in a row or column of AAM

168

BBN Systems and Technologies 120TX/T CIG HOST CSCI

bal_search is used to store load module offsets and grid words
dvl_search is used to store dynamic module path info
Im_width is the width of a load module

Im_addr_table is an array of load module addresses

The function returns 1 if successful. It returns 0 if the chord crosses four load modules,
yet one of the grids is not a comer grid of a load module; this is an error condition.

Called By: bx_chord_intersect

Routines Called: none

Parameters: CHORD *pcrd
HWORD Im_per_side
LM_SEARCH_LIST bal_search(}
HWORD dvl_search[]
HWORD Im_width
WORD Im_addr_table[]

Retumns: 1 (TRUE)
0 (FALSE)

2.5.3.6 bx_model_int.c

The bx_model_int function intersects a chord with a model. This function is called by
bx_chord_intersect to check for intersections with static and dynamic vehicles.

The function call is bx_model_int(chord_P, model_inst_P, hit_data_P), where:

chord_P is a pointer to the chord
model_inst_P is a pointer to the model
hit_data_P is a pointer to the data for the hit return message

bx_model_int does the following:

« Based on the model's radius, checks to see if the chord falls completely outside of
the model. Returns FALSE if it does.
» Checks the model's first component for a hit.

- Converts the chord to vehicle coordinates.

- Translates and rotates the chord.

- Calls bx_bvol_int to check for a bounding volume intersection. If an
intersection is found, sets hit_flag to TRUE. Subtracts a fixed offset
(INTERSECT _OFFSET, currently defined as 1.5%) from the actual
ratio_to_intersect value. This moves the intersection point slightly away
from the middle of the object enclosed by the intersected bvol, causing any
special effects for the hit to appear largely outside of the object. Places the
hit information in Ait_data_P.

» If no hit was found, checks the model's second component, if it has one.

- Rotates the chord into turret coordinates.

169

BBN Systems and Technologies 120TX/T CIG HOST CSCI

- Calls bx_bvol_int to check for a bounding volume intersection. If an
intersection is found, sets hit_flag to TRUE; subtracts
INTERSECT_OFFSET frcm the ratio_to_intersect value; places the hit
information in hit_data P.

The function returns hit_flag set to TRUE if a hit is detected, or FALSE if no intersection is
detected.
Called By: bx_chord_intersect

Routines Called: bx_bvol_int

Parameters: CHORD *chord_P
STAT_VEH *model_inst_P
MSG_BI1_HIT_RETURN *hit_data_P

Returns: hit_flag

2.5.3.7 bx_poly_int.c

The bx_poly_int function intersects a chord and a polygon. This function is called by
bx_chord_intersect to check for intersections with terrain polygons.

The function call is bx_poly_int(start, end, vtx_count, pvtx), where:

start is the starting point of the chord

end is a pointer to the return location for the ending point of the chord (the point of
intersection)

vix_count is the number of vertices in the polygon

pvix is a pointer to the polygon vertex data

bx_poly_int does the following:

» Clips around the polygon using the minimum and maximum values and a fixed
offset (currently set at 10 meters).

Makes the polygon normals.

Calculates the cross product.

Clips out backface intersections.

Checks to see if the intersection is in the interior of the polygon.

Finds the normal-to-polygon side by taking the cross product of the polygon
normal and the polygon side.

e e o o o

The function returns 1 if the chord intersects the polygon, or 0 if it does not. Tiie
intersection point is placed in the end location specified in the call.

Called By: bx_chord_intersect

170

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none

Parameters: WORD vtx_count
R4P3D *start
R4P3D *end
R4P3D *pvix(]

Returns: 1 (TRUE)
0 (FALSE)

2.5.3.8 bx_reset.c

The bx_reset function resets Ballistics. bx_reset is called by b0_state_control when the
message from simulation specifies a new state of BX_RESET.

The function call is bx_reset(). bx_reset reclaims dynamic memory, then initializes the
following structures:

Terrain and dynamic elements database (DED) model directories.
Terrain and DED bounding volume directories.

Static vehicle list.

Bounding volume cache list.

Polygon cache list.

Round list.

Trajectory table directory.

Various pointers, lists, and temporary variables.

® & 9 o 0 o o o

Called By: b0_state_control

Routines Called: free

free133
Parameters: none
Returns: none

2.5.3.9 bx_trajectory.c

The bx_trajectory function r.turns the position of a projectile using the provided trajectory
tables.

The function call is bx_trajectory(round_P), where round_P is a point to the round
data. bx_trajectory does the following:

» If this is the first call for a new round, finds the trajectory table for the round type.
* Rotates through the elevation angle.

171

BBN Systems and Technologies 120TX/T CIG HOST CSC1

» Rotates through the azimuth angle.
* Adds in the gun position and velocity.

The function returns 1 if it finds the position in the database. It returns 0 if the round
travels beyond the viewing space, or if the end of the trajectory table was reached.

Called By: b0_new_frame
b0_process_round
b0_round_fired
GET_DB_POS
Routines Called: none
Parameters: ROUND_DATA *round_P
Returns: 1 (TRUE)
0 (FALSE)

172

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.4 Ballistics Message Queue Processing

This section details the CSUs in Ballistics Message Queue Processing, a major functional
component of the Ballistics Processing CSC. These functions are responsible for
manipulating and maintaining the queues that make up the interface between Ballistics and
real-time software.

2.5.4.1 mx_error.c

The mx_error function returns a Ballistics error message. The function is called by bx_task
to provide a text message for output to the operator.

The function call is mx_error(status), where status is the error message.

Called By: bx_task
download_bvols
simulation
upstart

Routines Called: none
Parameters: WORD status

Returns: "DEVICE CLOSED"
"DEVICE TABLE FULL"
"DEVICE OPENED"
"DEVICE BUSY"
"DEVICE EMPTY"
"DEVICE FULL"
"MESSAGE PUSHED"
"MESSAGE POPPED"
"MESSAGE PREVIEWED"
"MESSAGE SKIPPED"
"UNDEFINED ERROR"
"UNDEFINED RETURN"

2.5.4.2 mx_open.c
The mx_open function opens an MX device over a queue message.

The function call is mx_open(dev_P, device_size), where:

dev_P is a pointer to the MX device (message queue)
device_size is the size of the message queue

The function always returns MX_DEVICE_OPENED.

173

BBN Systems and Technologies

120TX/T CIG HOST CSCI

2.5.4.3

Called By:

Routines Called:

Parameters:

Returns:

mx_peek.c

bx_task
upstart

sc_lock
sc_unlock

MX_DEVICE
INT_4

MX_DEVICE_OPENED

The mx_peek function previews a queue message.

*dev_P
device_size

The function call is mx_peek(dev_P, message_code, message_size,

message_addr), where:

dev_P is a pointer to the message queue
message_code is the message type

message_size is the size of the message
message_addr is a pointer to the return location for a pointer to the message’s address

If successful, the function returns MX_MESSAGE_PREVIEWED and places a pointer to
the message at the head of the queue in the message_addr location specified in the call. The
function returns MX_DEVICE_EMPTY if the specified queue contains no messages.

Called By:

Routines Called:

Parameters:

Returns:

bx_task
simulation
upstart

sc_lock
sc_unlock

MX_DEVICE
HWORD
HWORD
BYTE

MX_DEVICE_EMPTY
MX_MESSAGE_PREVIEWED

*dev_P
*message_code
*message_size
**message_addr

174

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.5.4.4 mx_push.c
The mx_push function pushes a message onto the Ballistics message queue.

The function call is mx_push(dev_P, source_address, message_code,
message_size), where:

dev_P is a pointer to the message queue
source_address is the address of the message
message_code is the type of message

message_size is the number of bytes in the message

The function returns MX_MESSAGE_PUSHED if successful. It returns
MX_DEVICE_FULL if the specified message queue is already full.

Called By: b0_new_frame
b0_process_round
bO_round_fired
b0_traj_chord
bx_task
db_mcc_setup
download_bvols
getside
open_dbase
rowcol_rd
simulation

Routines Called: BCOPY

sc_lock
sc_unlock
Parameters: MX_DEVICE *dev_P
WORD source_address
HWORD message_code
HWORD message_size
Returns: MX_DEVICE_FULL

MX_MESSAGE_PUSHED

2.5.4.5 mx_skip.c

The mx_skip function skips over a message in the queue. The message at the head of the
queue is flushed, and the next message moves to the head of the queue.

The function call is mx_skip(dev_P), where dev_P is a pointer to the queue.

175

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function returns MX_MESSAGE_SKIPPED if successful. It returns
MX_DEVICE_EMPTY if the specified message queue contains no messages.

Called By: bx_task
simulation
upstart

Routines Called: sc_lock

sc_unlock
Parameters: MX_DEVICE *dev_P
Returns: MX_DEVICE_EMPTY

MX_MESSAGE_SKIPPED

2.5.4.6 mx_wcopy.c

The mx_wcopy function performs a block copy.

The function call is mx_wcopy (source_P, destination_P, byte_count), where:
source_P is a pointer to the source data
destination_P is a pointer to the destination location
byte_count is the number of bytes to be copied

This function is not currently used.

Called By: none

Routines Called: none

Parameters: WORD *source_P
WORD *destination_P
INT_2 byte_count

Returns: none

176

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.6

User Interface (GOSSIP) CSC

This section describes the functions that make up the Gossip CSC. This CSC provides a
backdoor user interface which allows various debugging and query features during runtime
operation. Gossip provides the ability to interrogate system performance, view and modify
system memory, and debug real-time problems.

The Gossip user can do the following:

Display data from the Ballistics database.

Display data from the terrain and DED databases.

Display DR11 variables.

Initiate and run demos.

Initiate and use flying mode.

Initiate and interface with Flea (the Simulation Host emulator).
Display current information about simulation memory.
Modify simulation memory.

Display static and dynamic models.

Invoke a DTP emulator.

Interface to the 2-D overlay processor (120TX systems only).
Perform calibration acceptance tests (120TX systems only).
Load color polygons.

Display and change various system variables.

Display DR11 message packets.

Enable and disable frame interrupts.

Enable and disable single-step mode.

Place a calibration pattern on all channels.

Change the default database or configuration file.

Start, stop, or reset timers,

The gossip task runs at the lowest priority, to prevent interference with the simulation.

The CSUs contained in the Gossip CSC are identified in Figure 2-15 and described in this
section.

177

BBN Systems and Technologies 120TX/T CIG HOST CSCI
Task Initialization
Forcetask Database
Database
Ballistics Interface Upstart Manage- Gossip Flea

Processing Feedback ment
gossip.c gos_flea_options.c
dip_emu.c gos_fly.c
gos_120tx.c gos_locate.c
gos_atp.c Qos_memory.c
gos_bal_query.c gos_mode!.c
gos_db_query.c @gos_polys.c
gos_dri1_query.c gos_system.c
pos_flea_if.c vi100.c

Figure 2-16 illustrates the interaction between the major CSUs in Gossip.

Figure 2-15. Gossip CSUs

178

BBN Systems and Technologies

120TX/T CIG HOST CSCl

gossip

cal

Runs calibration tests
gos_model gos_locate
Displays static and dy Supports reconfigurable
models nts
gos_system cal, dispiay_packet, o_step,
Dispiays and changes system g | gO8_memory, dcode_dr1 1w
varisbles

_120tx gos_eip

Provides options dealing with the Runs oalibration acosptance tests
Foroe board and the 2-D proocsssor. gos_memory, s_step,
goe_bal_query gos_single_step

Displays Balkstics data Sets single-step mode
dtp_smu display, hexdisplay, out-
Emulates the DTP for debugging dispiay, hxiit, ftoh, htof,

mat_mault, get_im
gos_memory
=31 Displays and modifies simuiation

memory

o_step

Enables/disables frame interrupts

and single-step mode

dcode_dritw dispiay_packest

Oecodes and displays DR11-W

message packets

_fly gos_fles_i, gos_flea_options
> Starts flying mode and demos Provide usef interiace for
flea options

gos_polys

Aliocates and generates monitor

oafibration images

gos_db_guery g‘n_dbplq_db_l'nh

=" Disglays temin and DED databuse Displays database info
data
| gos_dr11_query
Examines DR11 variables

Figure 2-16. Gossip Flow Diagram

179

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.6.1 dtp_emu.c

The dtp_emu.c CSU contains the functions used to emulate the Data Traversal Processor
(DTP) for debugging. These functions are the following:

dtp_emu
display
outdisplay
hxflt
hexdisplay
ftoh

htof
mat_mult
get_Im

e e & o6 & o o o o

2.6.1.1 dtp_emu

The dtp_emu function is a DTP emulator used in debugging. The function is invoked from
gossip when the user selects the “dtp emulator" option from the Gossip main menu. The
DTP is a micro-coded processor board that sends data to the Polygon Graphics Processor,
based on commands placed in active area memory by the DTP Command Generator.
dtp_emu emulates the functions performed by the DTP.

The function call is dtp_emu(). Once dtp_emu is invoked, the Gossip user can request
the following:

Set poly data display mode on or off.

Set the display mode to float or hex.

Set tracing on or off.

Set system interrupts on or off.

Display the current modes (display, poly data, system interrupt, and trace) and the
DTP stack pointer.

Display the DTP stack

Start the DTP emulator.

Step through the various DTP commands.

Restart the emulator.

Set the memory address for the emulator program counter.
Set the address of the AAM peek (view) register.

Set the address of the emulator peek (view) register.

Write the contents of AAM.

Set break points (currently not implemented).

”» ¢ ¢ o o

® & & ¢ & ¢ o o o

Called By: gossip

Routines Called: display
ftoh
get_lm
hexdisplay
htof

180

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Parameters:

Returns:

2.6.1.2 display

hxflt
mat_mult
outdisplay
printf
scanf

sqrt
sysrup_off
sysrup_on
unbf_getchar
XCLOSE
XLSEEK
XOPEN
XREAD

none

nonec

The display function is used to convert hexadecimal digits or floating point numbers for

display purposes.

The function call is display(ptr, num, poly), where:

ptr is a pointer to the data in AAM

num is the number of characters to convert

poly is LOAD if a load module is being processed, or POLY if a polygon is being

processed

The function always returns 1.

Called By:

Routines Called:

Parameters:

Returns:

dtp_emu

hxflt
printf

INT_4
INT_2
INT_2

* *ptr
num
poly

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.6.1.3 outdisplay

The outdisplay function is used to display formatted data depicting polygon commands in
the DTP processing path.

The function call is outdisplay(ptr, wd_count), where:

ptr is the AAM pointer to the start of the Poly Processor command
wd_count is the number of bytes in the command

The function returns 0 if successful or 1 if the command could not be displayed.

Called By: dtp_emu
Routines Called: hxflt
printf
Parameters: INT_4 **ptr
WORD wd_count
Returns: 0

2.6.1.4 hxflt
The hxflt function is used to convert hexadecimal characters for output to the display.

The function call is hxflt(h), where A is the character to be converted.

Called By: dtp_emu
outdisplay

Routines Called: htgf

printf
Parameters: WORD h
Returns: none

2.6.1.5 hexdisplay

The hexdisplay function is used to display hexadecimal numbers.

182

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The function call is hexdisplay(pntr, args), where:
pntr is the AAM address of the data to be displayed
args is the number of digits to display

Called By: dtp_emu

Routines Called: printf

Parameters: INT_4 **pntr
INT_ 4 args
Returns: none

2.6.1.6 ftoh

The ftoh function is used to convert an IEEE floating point value to internal hex
representation for display.

The function call is ftoh(f, h), where:

fis the floating point value
h is the hexadecimal equivalent
Called By: dtp_emu
mat_mult
Routines Called: none
Parameters: REAL 4 *f
WORD *h
Returns: *h

2.6.1.7 htof

The htof function is used to convert a hexadecimal number to IEEE floating point for
display.

The function call is htof(h,), wheie:

h is the hexadecimal value
fis the floating point equivalent

183

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: dtp_emu
hxflt
mat_mult
Routines Called: none
Parameters: WORD *h
REAL 4 *f
Returns: *f

2.6.1.8 mat_mult

The mat_mult function is used to multiply (concatenate) two matrices to generate a third
matrix.

The function call is mat_mult(a, b, c), where:
a is the address of the first matrix

b is the address of the second matrix
¢ 1s the address of the result matrix

Called By: dtp_emu

Routines Called: ftoh

htof
printf
Parameters: WORD *3
WORD *p
WORD *c
Returns: none

2.6.1.9 get_Im

The get_Ilm function is used to simulate the DTP function of getting the next load module
pointer for processing.

The function call is get_Im(flag), where flag is 0 (open -> hdglut -> Imlut), 1 (Imlut), 2
(close), or 3 (hdglut -> Imlut).

The function returns 1 if successful, or 0 if an error occurred.

184

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: dtp_emu

Routines Called: printf
XCLOSE
XLSEEK
XOPEN

Parameters: INT_2 flag

Returns: 0

2.6.2 gos_120tx.c

The gos_120tx function provides options to the Gossip user that are available only on a
120TX CIG. These options all deal with 2-D overlays and the Force board. This function
is invoked by gossip when the user selects the "120tx/t menu" option from the Gossip main
menu.

The function call is gos_120tx(). The following table identifies the function called or the
action taken by gos_120tx for each option on its main menu.

gos_] 120tx Menu Option Processing by gos_120tx

1 Start/Stop 2D updates Sets gsp_io_flag. T

2 Enable/Disable Force timers Sets force_timing_flag.

3 Change look up tables Prompts user for table code (out the window,
daylight TV, white hot, or black hot); sets
dtv_therm_word accordingly.

a Perform acceptance tests Calls gos_atp.

d (Does not appear on menu) Calls dcode_drllw.

g Talk to 2D process/mem See table below.

m (Does not appear on menu) Calls gos_memory.

p Sets pixel depth request i,j Asks user for pixel i and j positions; shows Force
locations.

r (Does not appear on menu) Returns pixel depth for pixel i and j.

s (Does not appear on menu) Calls s_step.

Selecting the "Talk to 2D process/mem" option (g) displays the FORCE-2D
Communications Menu. The following table identifies the function called or the action
taken by gos_120tx for each option on this menu.

185

BBN Systems and Technologies

120TX/T CIG HOST CSCI

FORCE-2D Communications
Menu Option

Processing by gos_120tx

0 Restart 2d processor

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_NMI_START.

4 Read Host Control

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_READ_HCTRL.

5 Write Host Control

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_WRITE_HCTRL.

6 ReadData Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_READ_HDATA.
7 Write Data Calls CHECK_FORCE; sets FE_CONTROL to

SUBSYS_WRITE_HDATA.

9 Halt 2D Processor

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_STOP.

a Set GSP address to read/write

Asks user for the GSP address; sets gsp_temp_addr.

b Set number of times to fill mem

Asks user for number of times to fill memory; sets
fill_metm_count.

¢ Send mail to 2D processor

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_MAIL_SEND.

f Display force/2D registers

Displays Front End Control Register, Force
Control Register, Force Status Register, Force
Errors Register, GSP Address, HWORDS count,
Repeat Block Fill Count.

g Read data from 2D processor memory

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_READ_START.

i Start memory fill

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_WRITE_START.

1 Load output buffer with pattern o

Asks user for 16-bit pattern,; sets
SUBSYS_DATA_BUFF_OUT.

m (Does not appear on menu)

Calls gos_memory.

n (Does not appear on menu)

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_NMI_START.

o Load output buffer (16 bits)

Prompts user for data; sets
SUBSYS_DATA_BUFF_OUT.

P Write data to 2D processor memory

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_WRITE_START.

r View input data buffer

Displays contents of buffer.

t One time communications test

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_TEST_MEM.

w Set word count to read/write

Asks user for the word count; sets
SUBSYS_DATA_COUNT.

y Endless communications test

Calls CHECK_FORCE; sets FE_CONTROL to
SUBSYS_TEST_MEM2.

The CHECK_FORCE macro referenced in the above table checks to see if the forcetask is
running. If it is, the user is asked to retry later. (This prevents the Gossip operation from

186

BBN Systems and Technologies

120TX/T CIG HOST CSCI

interfering with processing required for the simulation.) FE_CONTROL is the front-end
control register; the value placed in the register tells the forcetask what command to
perform.

Called By:

Routines Called:

Parameters:

Returns:

2.6.3 gos_atp.c

gossip

dcode_drllw

gos_atp
gos_memory
printf

s_step

scanf
unbf_getchar

none

none

The gos_atp function is used to run acceptance tests that use the calibration database. This
function is called by gos_120tx when the user selects the "perform acceptance tests” option
from its main menu.

The function call is gos_atp(). The following calibration tests are available:

¢ & @ & & @ o o o o

Populated Area

Depth Complexity

Color Resolution

Full Perspective Texture

Level of Detail

Moving Models (plant, display)

Occulting Levels

Polygon Throughput

Texture with Transparency

Polygon Test Pattern

Called By: gos_120tx

Routines Called: g0s_memory
printf
sc_post
unbf_getchar

Parameters: none

187

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.6.4 gos_bal_query.c

The gos_bal_query function displays data from the Ballistics database. 'This function is
invoked from gossip when the user selects the "query ballistics” option from the Gossip
main menu.

The function call is gos_bal_query(). The function can be used to:

» Set ballistics addresses to user-specified values. (This is required before any other
function can be accessed; the addresses can also be changed later on.)

e List any of the following information:

ballistics configuration (frame rate and AAM partitions)

a user-specified trajectory directory

free bvols directory

active rounds

frame count

load module cache information for a user-specified load module

load module bounding volumes for a user-specified load module

load module cache

AAM partition info

trajectory table for a user-specified trajectory type

free poly directory

free rounds directory

terrain corners

load module polygons for a user-specified load module

* Set smgle-sth mode (by calling gos_single_step).

¢ Print MSG_PROCESS_ROUND messages.

+ Print MSG_TRAJ_CHORD messages.

Called By: gossip

Routines Called: FIND_LM
gos_single_.tep
PAGE_FORMAT
printf
scanf
unbf_getchar

Parameters: none

Returns: none

188

BBN Systems and Technologies 120TX/T CIG HOST CSCi

2.6.5 gos_db_query.c

The gos_db_query.c CSU is used to examine database information. It contains two
functions:

gos_db_query
* gos_display_db_info

2.6.5.1 gos_db_query

The gos_db_query function examines terrain and DED database informadon. This function
is invoked from gossip when the user selects the "query database" option from the Gossip
main menu.

The function call is gos_db_query(). The function can be used to do the following:

Display terrain database information (calls gos_dis.lay_db_info).

Display dynamic elements database information (calls gos_display_db_info).

List all models.

List all effects.

Modify a specified model’'s component count, process code, or hardware address.
Modify a specified effect's component count, process code, or hardware address.
Block copy from a specified source location to a specified destination.

e & & & ¢ o o

Called By: gos_model
gossip

Routines Called: gos_display_db_info

printf

scanf

unbf_getchar
Parameters: none
Returns: none

2.6.5.2 gos_display_db_info

The gos_display_db_info function is used by gos_db_query to display terrain and dynamic
elements database information to the Gossip user.

The fuuction call is gos_display_db_info(data_P), where dara_P is a pointer to the
database header to be displayed.

Called By: gos_db_query

189

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: printf
Parameters: DB_HDR_DBASE_DATA *data_P
Returns: none

2.6.6 gos_drll_query.c

The gos_drl1_query function examines DR11 variables. This function is invoked from
gossip when the user selects the "display dr11 variables" option from the Gossip main
menu.

The function call is gos_dr11_query(). The function displays the CIG and SIM
exchange packet sizes, local terrain chunk size, and local terrain message interval. It then

displays the current status of the real-time software: entering data exchange, writing to the
Simulation Host, reading from the Simulation Host, or processing messages.

Called By: gossip
Routines Called: printf
Parameters: none
Returns: none

2.6.7 gos_flea_if.c

The gos_flea_if function is used in flying mode and when running demos. gos_flea_if is
called by gos_fly if the user requests to enter Flea mode.

The function call is gos_flea_if(). The function prompts the user for the viewpoint
position and orientation, then posts a FLEA_MB mailbox message to wake up flea. It then
waits for a MONITOR_MB mailbox message.

After flea is running, gos_flea_if processes commands to do the following:
» Go forward, go back, stop, change rotation on any axis, change skid on any axis,
change velocity, shoot.

+ Start, stop, or resume script; display script values.
» Call gos_flea_options if requested by the user.

Cauied By: gos_fly

190

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: blank
cup
gos_flea_options
printf
sc_pend
SC_post
scanf
unbf_getchar

Parameters: none
Returns: none

2.6.8 gos_flea_options.c

The gos_flea_options function displays the Flea options menu, and processes the functions
requested by the Gossip user. This function is invoked from gos_flea_if if the user enters
("flea options") at the Command prompt.

The function call is gos_flea_options(). The following actions are supported by
gos_flea_options:

Increase, zero, or decrease velocity.

Increase, zero, or decrease x, y, or z rotation (to center the steering bar).
Toggle auto fire.

Change the round type.

Add or delete a vehicle.

Display current location, rotation, AGL, and speed.
Display hits and misses per minute.

Plant a static vehicle.

Remove a static vehicle.

Fire or process a round.

Show an effect.

Show the model list.

Specify a new process code for a DED model.
Specify gun overlay data.

Specify the ammunition define map.

® & 6 & & © & &6 ¢ 6 o © O o o

Called By: gos_flea_if

Routines Called: blank
cos
cup
printf
scanf
sin
unbf_getchar

161

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: none
Retumns: none

2.6.9 gos_fly.c

The gos_fly function is used to enter flying mode and to run demos. This function is
invoked from gossip when the user selects the "vehicle demo and fly options" option from
the Gossip main menu.

The function call is gos_fly(). The function lets the Gossip user do the following:

» Start and stop other vehicle demonstrations.

« Start and stop flying in auto-pilot demonstration mode, optionally in endless loop
mode. gos_fly posts a SIMULATION_MB message to wake up the simulation
function if this option is selected.

» Enter flying mode. gos_fly prompts for the viewpoint position and orientation,
then posts a FLEA_MB message to wake up flea. It also provides options to the
user to manipulate the vehicle.

* Enter Flea mode. gos_fly calls gos_flea_if.

Called By: gossip
Routines Called: gos_flea_if
printf
sc_post
scanf
unbf_getchar
Parameters: none
Returns: none
2.6.10 gos_locate.c

The gos_locate function traverses the top level of the configuration tree and builds a hull-to-
world matrix from the world-to-hull matrix. If the CIG is detected to be supporting
simulations of multiple vehicles, gos_locate prompts the Gossip user to identify a reference
vehicle.

The function call is gos_locate(mtx_h_w), where mtx_h_w is a hull-to-world matrix.

The function returns the hull-to-world matrix if successful. It returns NULL if the
configuration tree is not initialized or is empty.

192

BBN Systems and Technologies

120TX/T CIG HOST CSCI

2.6.11

Called By:

Routines Called:

Parameters:

Returns:

gos_model

printf
scanf

REAL _4

NULL
mtx_h_w

gos_memory.c

*mtx_h_w

The gos_memory function displays relatively current data about simulation memory. This
function is invoked from gossip when the user selects the "memory examine/modify"
option from the Gossip main menu.

The function call is gos_memory(). The function can be used to:

Display a specified block of memory.
Modify a specified block of memory.

Modify a specified memory address.
Send a snapshot of memory to a specified file.
Load a snapshot from a specified file into memory.

Called By:

Routines Called:

Parameters:

Retumns;

gos_120tx
gos_atp
gos_model
g0s_system
gossip

close
create_sz
open
printf
read
scanf

unbf_getchar
write

none

none

193

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.6.12 gos_model.c

The gos_model function displays dynamic and static models. This function is invoked
from gossip when the user selects the "model menu" option from the Gossip main menu.

The function call is gos_model().
If debug is not enabled, gos_model can be used to do the following:

« Plant a model in tracks.
* Examine memory.

If debug is enabled, the following additional options are supported:

* Add or delete a static vehicle.
« Plant a model.
» Control the DED level of detail (includes moving vehicles and rotating models).
» Select a database for level-of-detail control.
» Database/DED query menu.
« Display effect timing.
» Set the view mode.
» Display view mode.
Called By: gossip
Routines Called: cos
gos_db_query
gos_locate
£0s_memory
model_mtx
printf
rotate_x_nt
rotate_y_nt
rotate_z nt
scanf
sin
sqrt
sysrup_off
Sysrup_on
unbf_getchar
Parameters: none
Retumns: none

194

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.6.13 gos_polys.c

The gos_polys function allocates and generates monitor calibration images. This function
is invoked from gossip when the user selects the "load color polygons" option from the
Gossip main menu.

The Polygon Processor uses perspective matrices in normalized viewspace (i.e., the field-
of-view is not used) when crunching on overlay polygons. The only perspective matrix

required for an overlay is a matrix to swap the axes (view space into screen space). The
vertices overlay can be described to the Polygon Processor as follows:

(-y.y.y) (v.y.y)
(0,y,0)

(-y.y.-y) (y.y,-y)
where vy is the distance from the eye to the overlay.
This means that if the vertices of an overlay (such as the monitor calibration overlay) are
given in pixel coordinates, they must be converted to the normalized view space coordinate
system. For example, if the screen resolution is 200 x 200, a vertex with pixel coordinates
(-50,100) is converted to (-1/2,1).

The function call is gos_polys().
Called By: gossip

Routines Called: id_4x3mtx

swap_axis
Parameters: none
Returns: none
2.6.14 gos_system.c

The gos_system function is used to display and change system variables. This function is
invoked from gossip when the user selects the "system status menu" option from the
Gossip main menu.

The function call is gos_system(). The function can be used to do the following:

» Display local terrain data.

195

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Display active area data.

Display the active area map.

Display a load module header.

Examine/modify memory — calls gos_memory.
Set the calibration modifier.

Print round messages.

Print chord messages.

Select hardware display channels.

Start/stop frame — calls s_step.

Set the display lights flag.

Display DR11 message packets — calls dcode_dr11w.
Change the default database name.

® @ o & ¢ ¢ o o o & o o

Called By: gossip

Routines Called: cal
dcode_drllw
display_packet
£0s_memory
printf
s_step
scanf
sysrup_off
sysrup_on
unbf_getchar

Parameters: none
Retumns: none

2.6.15 gossip.c

The gossip.c CSU contains the functions used to display relatively current data about the
simulation. These functions are the following:

main (for Butterfly compatibility only)
gossip

display_packet

s_step

dcode_drllw

gos_single_step

* ¢ & ¢ o o

2.6.15.1 main

The main function is provided for Butterfly compatibility only. It requires one argument:
bvme_id, which identifies the Butterfly-VME interface. main remaps the addresses used
by the Ballistics boards to VME addresses, then calls gossip.

196

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: none

Routines Called: Find_Value
gossip
map_vme
printf
remap_vime

Parameters: none
Returns: none

2.6.15.2 gossip

The gossip function is invoked when Gossip is executed by the user. gossip displays the
Gossip main menu, which allows the user to select the type of data to be queried.
Depending on the selection made, gossip may prompt for additional information, such as
the name of the database or configuration file to use. It then calls the applicable Gossip
function.

The following table identifies the function called or the action taken by gossip for each
option on the Gossip main menu.

197

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Gossip Main Menu Option Processing by gossip
1 calibration menu Calls cal.
2 model menu Calls gos_model.
3 system status menu Calls gos_system.
4 120tx/t menu Calls gos_120tx.
6 dtp emulator Calls dtp_emu.
b query ballistics Calls gos_bal_query.
¢ change default configfile name Prompts user for new file name; sets global
variable.
D display drl1 variables Calls gos_drl1_query.
d display DR11W messages Calls dcode_dr1lw,
e query database Calls gos_db_query.
i start/stop drllw init prints Toggles drl1w_init_out.
k reset times Sets all timers to 0.
m memory examine/modify Calls gos_memory.
p load color polygons Calls gos_polys; calls cal.
s start/stop frame interrupt Calls s_step.
t start/stop timers Toggles rtsw_timing_flag.
u change default db name Prompts user for new database name; sets
global variable.
w set DED AAM start address Prompts user for address; sets global variable.
z vehicle demo and fly options Calls gos_fly.
Called By: none
Routines Called: cal
dcode_drllw
dtp_emu
gos_120tx
gos_bal_query
gos_db_query
gos_drl1_query
gos_{ly
£0s_memory
gos_model
gos_polys
gos_system
printf
S_step
sc_pend
scanf
strlen
unbf_getchar

198

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: INT arge
char *argv
Returns: none

2.6.15.3 display_packet

The display_packet function displays the contents of each message in a DR11 exchange
packet. This function is called by dcode_dr11w when the user selects the "display DR11W
messages” option from the Gossip main menu.

The function call is display_packet(pntr), where pnir is a pointer to the message packet.

Called By: debug_initdr
dcode_drl1w
gos_system

Routines Called: printf
Parameters: INT_4 pntr
Returns: none

2.6.15.4 s_step

The s_step function is used to (1) enable and disable frame interrupts, and (2) enable and
disable single-step mode. This function is called by gossip if the user selects "start/stop
frame interrupt” from the Gossip main menu.

The function call is s_step(). s_step prompts the user to set/or cancel single-step mode,
then does the following;:

« If the user requests "interrupts on," s_step calls sysrup_on, then sets single_step to
FALSE.

« If the user requests "interrupts off," s_step calls sysrup_off, then sets single_step
to FALSE.

o If the user requests "single-step mode,” (used with the "display dr11 variables”
option), s_step sets single_step to TRUE and dr11_msg to TRUE.

Called By: gos_120tx
gos_system
gossip

Routines Called: printf
sysrup_on

199

BBN Systems and Technologies 120TX/T CIG HOST CSCI

sysrup_off

unbf_getchar
Parameters: none
Returns: none

2.6.15.5 dcode_drllw

The dcode_dr11w function decodes and displays DR11 packets. This function is called by
gossip if the user selects the "display DR11W messages" option from the Gossip main
menu.

The function call is dcode_dr1lw(). dcode_drllw calls display_packet to display the
input and output packets.

Called By: gos_120tx
gos_system
gossip

Routines Called: display_packet

printf

sysrup_on
Parameters: none
Returns: none

2.6.15.6 gos_single_step

The gos_single_step function forces the system to single-step a real-time frame by posting
a message to the simulation mailbox. If gos_single_step detects that single step is TRUE,
it calls sysrup_on.

The function call is gos_single_step().

Called By: gos_bal_query
Routines Called: sysrup_on
Parameters: none

200

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Returns: none

2.6.16 vt100.c
The vt100.c CSU contains functions that provide VT100 graphics control. These are:
cup

Sgr
double_top
double_bot
double_off
blank
save_cur
restore_cur
scroll_reg

® & & & & o o o o

2.6.16.1 cup
The cup function positions the cursor at a specified row and column.

The function call is cup(r, ¢), where r is the row number and c is the column number.

Called By: gos_fiea_if
gos_flea_options

Routines Called: printf

Parameters: INT 4 T
INT_ 4 c
Returns: none

2.6.16.2 sgr
The sgr function is used for special graphics renditions.
The function call is sgr(r), where r is the row number.

This function is not currently used.

Called By: none

Routines Called: printf

201

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: INT_4 r
Retumns: none

2.6.16.3 double_top

The double_top function represents double-wide, double-high for the top half of the
monitor screen.

The function call is double_top(s), where s is the starting line.

This function is not currently used.
Called By: none
Routines Called: printf
Parameters: BYTE s
Returns: none
2.6.16.4 double_bot

The double_bot function represents double-wide, double-high for the bottom half of the
monitor screen.

The function call is double_bot(s), where s is the starting line.

This function is not currently used.
Called By: none
Routines Called: printf
Parameters: BYTE s
Returns: none
2.6.16.5 double_off

The double_off function returns to single-high and single-width. This reverses the effect
of double_top and/or double_bot.

202

BBN Systems and Technologies

120TX/T CIG HOST CSCI

The function call is double_off().

This function 1s not currently used.
Called By: none
Routines Called: printf
Parameters: none
Returns: none

2.6.16.6 blank

The blank function clears the screen, starting at a specified location.

The function call is blank(m), where m is the starting character position from which the

screen is to be blanked.

Called By: gos_flea_if
gos_flea_options

Routines Called: printf

Parameters: INT_4

Returns: none

2.6.16.7 save_cur

The save_cur function saves the current cursor position.

The function call is save_cur(). This function is not currently used.

Called By: none

Routines Called: printf

Parameters: none

203

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Retumns: none

2.6.16.8 restore_cur
The restore_cur function restores the cursor position to the location saved by save_cur.

The function call is restore_cur(). This function is not currently used.
Called By: none
Routines Called: printf
Parameters: none
Returns: none

2.6.16.9 scroll_reg
The scroll_reg function sets the top and bottom boundaries of the scrolling region.
The function call is scroll_reg(t, b), where:

t is the top of the scroll region
b is the bottom of the scroll region

This function is not currently used.

Called By: none

Routines Called: printf

Parameters: INT_4 t
INT_4 b

Returns: none

204

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.7 Stand-Alcne Host Emulator (FLEA) CSC

Flea is an embedded, stand-alone, Simulation Host emulator that resides within the CIG
real-time software. Flea permits a system to execute specific features and test limited
functionality.

Flea is available only in stand-alone opcration mode (i.e., when the system is not being
driven through simulation). This mode allows the CIG to generate visual images without
interacting with a Simulation Host computer.

Flea is accessed through Gossip, as follows:

The user selects the "vehicle demo and fly options” from the Gossip menu.
gossip calls gos_fly.

The user selects "enter FLEA mode" from the Flying and Demo Selection menu.
gos_fly calls gos_flea_if.

gos_flea_if asks the user for the vehicle's current location and orientation, then
posts a mailbox message to "wake up" flea.

NN -

All user commands are entered through Gossip menus. (Refer to sections 2.6.8 and 2.6.9
for details on the Flea user interface.) Flea mode, which requires a VT100-compatible
terminal, allows movement around the database via keyboard control.

Flea is not available for Butterfly-based systems.

Figure 2-17 identifies the CSUs in the Flea CSC. These CSUs are described in this
section. :

Task Initialization

Forcetask Database
- Database
Ballistics Interface Feedback Upstart Manage- Gossip Flea
Processing ment
flea.c

flea_decode_data.c
flea_encode_data.c
flea_init_cig_sw.c
filea_update_pos.c

Figure 2-17. Flea CSUs

Figure 2-18 illustrates how the CSUs in the Flea CSC interact.

205

BBN Systems and Technologies 120TX/T CIG HOST CSCI

flea_Init_cig_sw

Finds and reads the configuration
1 file. Creates all configuration
nodes.

flea_update_pos
Updates the position of the
simulated vehicle.

flea_decode_data
1 Decodes messages from the CIG.

flea_encode_data
Encodes messages to the CIG.

Figure 2-18. Flea Flow Diagram

2.7.1 flea.c

The flea function is a task that runs on the back of the real-time software. It emulates the
Simulation Host for stand-alone CIG operation.

The function call is flea(). The flea task is created by rtt during the task initialization
stage. flea initializes various flags and variables, then suspends itself until gos_flea_if or
gos_fly (in the Gossip CSC) posts a FLEA_MB message.

When a FLEA_MB message is posted, flea does the following:

Calls OPEN_FLEA_DATA to establish the CIG-Flea communications path.
Calls flea_init_cig_sw to find and read the viewport configuration file.

Calls EXCHANGE_FLEA_DATA to exchange a message packet with the CIG.
Calls flea_update_pos to update the position of the simulated vehicle.

Calls flea_decode_data to decode CIG-to-Flea messages.

Calls flea_encode_data to encode Flea-to-CIG messages.

Calls EXCHANGE_FLEA_DATA to exchange a message packet with the CIG.

flea continues to process messages until the system is reset.

Called By: none

206

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: EXCHANGE_FLEA_DATA
flea_decode_data
flea_encode_data
flea_init_cig sw
flea_update_pos
OPEN_FLEA_DATA
sc_pend

Parameters: none
Returns: none

2.7.2 flea_decode_data.c

The flea_decode_data function decodes runtime messages returned from the CIG real-time
software. These messages emulate those that would normally be sent to the Simulation
Host.

The function call is flea_decode_data(). flea_decode_data decodes messages that do the
following:

Report the simulated vehicle's altitude above ground level MSG_AGL).
Report a hit MSG_HIT, MSG_HIT_RETURN, MSG_SHOW_EFFECT).
Report a miss (MSG_MISS).

Report on a laser (MSG_LASER_RETURN).

Describe the local terrain (MSG_LOCAL_TERRAIN, MSG_LT_PIECE).

® o & & o

Called By: flea

Routines Called: none
Parameters: none
Returns: none

2.7.3 flea_encode_data.c

The flea_encode_data function encodes messages to send to the CIG real-time software.
These messages emulate runtime messages that would normally be sent by the Simulation
Host.

The function call is flea_encode_data(). flea_encode_data encodes messages to do the
following:

» Update the matrix for the simulated vehicle (MSG_RTS4x3_MATRIX).

207

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Update the system view flags (MSG_VIEW_FLAGS).
Process a round (MSG_PROCESS_ROUND).

Fire a round (MSG_ROUND_FIRED).

Update the system view mode (MSG_VIEW_MODE).
Turn on AGL processing (MSG_AGL_SETUP).
Handle auto-firing (MSG_PROCESS_ROUND).
Update dynamic vehicle matrices MSG_OTHERVEH_STATE).
Add static vehicles MSG_STATICVEH_STATE).
Remove static vehicles (MSG_STATICVEH_REM).
Show effects MSG_SHOW_EFFECT).

Display gun overlays MSG_GUN_OVERLAY).
Define the amnmunition map (MSG_AMMO_DEFINE).

* & o & & o & o o o ¢ o

This function also counts hits and misses per minutes.

Called By: flea

Routines Called: BCOPY

cos

sin
Parameters: none
Returns: none

2.7.4 flea_init_cig_sw.c
The flea_init_cig_sw function encodes viewport configuration messages.
The function call is flea_init_cig_sw(). The function does the following:

Opens the viewport configuration file.

Rewinds the file.

Reads the file size.

Encodes the configuration messages in the file (MSG_CREATE_CONFIGNODE,
MSG_VIEWPORT_STATE, MSG_OVERLAY_SETUP, and
MSG_AMMO_DEFINE).

e € & 9

The function returns 1 if successful, or -1 if no configuration file was found.

Called By: flea

Routines Called: close
cos
EXCHANGE_FLEA_DATA
find_fn
id_4x3mtx

208

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Iseek

open

printf

read
rotate_x_nt
rotate_y_nt
rotate_z_nt
sc_pend
sC_post

sin

strlen
translate

Parameters: none

Returns: -1

2.7.5 flea_update_pos.c

The flea_update_pos function updates the 4x3 matrix information that is sent each frame to
update the position of the simulated vehicle. flea_update_pos also stores the simulated
vehicle's current position and orientation if a script is stopped, and restores the simulated
vehicle's position and orientation if a script is restarted.

The function call is flea_update_pos().
Called By: flea

Routines Called: cos
id_4x3mtx
rotate_x_nt
rotate_y_nt
rotate_z_nt
sin
translate

Parameters: none

Returns: none

209

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.8 Force Processor (FORCE) CSC [120TX systems only]

The Force CSC gives the 120TX CIG the ability to display two-dimensional, non-
perspective visual data as an overlay on the usual three-dimensional, perspective image.
The forcetask is the task that runs on the Force board and serves as the data processing
interface between the CIG real-time task and the 2-D processor task. The Force board is
the physical interface between the VME chassis and the 2-D processor board.

The real-time software provides 2-D overlay information to the Force board via the
forcetask. The forcetask then writes the data to the GSP, the graphics processor chip on
the MPV (Micro Processor Video) board. The GSP contains memory for code storage and
for storing and manipulating the 2-D image. The Force board can also read data from GSP
memory about particular attributes of the displayed image.

The Force and GSP tasks are initially loaded and started by the gsp_load function in the
Real-Time Processing component. gsp_load is called by db_mcc_setup before beginning
either viewport configuration or 2-D overlay processing, if a Force board is present and
GSP has not yet been initialized.

The real-time software communicates with the forcetask via the Force interface structure
(defined in mbx.h). The Force front-end control register (FE_CONTROL) is used to
specify the command to be performed (SUBSYS_READ_HDATA,
SUBSYS_NMI_START, SUBSYS_TEST_MEM, etc.).

Force-GSP processing can also be invoked via the gos_120tx function in Gossip. This
function is called when the Gossip user selects the "120tx/t menu” option from the Gossip
main menu. The user can then select the "Talk to 2D process/mem" option to display the
FORCE-2D Communications Menu. This menu is used to interface with the forcetask.

The forcetask communicates with the GSP to do the following:

Display the 2-D overlays.
The original 2-D overlay configuration is passed to Force by the linkup function in
the 2-D Overlay Compiler component. The configuration includes the component
pointer table, component descriptor table, and window descriptor table. These
structures are downloaded into GSP memory and used to generate the overlays
displayed on the viewports.

Change the 2-D overlays during runtime.
Each frame, runtime changes to 2-D components are passed to Force from the real-
time software Each message consists of the command (CHANGE_DRAW_2D,
DRAW_TEXT_2D, ROTATE_TRANSLATE_2D, etc.) and any arguments (theta,
X translation, y translation, etc.) required for that command. Processing for these
messages is as follows:

1. The Simulation Host sends a MSG_PASS_ON message to specify the 2-D
component changes.

2. The real-time software writes the message to Force memory.

3. The forcetask writes the message to GSP memory.

210

BBN Systems and Technologies 120TX/T CIG HOST CSCI

4. The GSP parses each command in the message, updates the component
descriptor table in its memory, then regenerates the 2-D overlays.

A new PASS_ON message is expected every frame. If none is sent, the forcetask
reprocesses the last PASS_ON message it received.

The format for each 2-D runtime command is described in the "2-D Commands and
Parameters” document.

Return messages to simulation.
Messages such as error reports can be returned from Force to the Simulation Host.
The forcetask places the data in Force board memory. The real-time software puts
the data into a MSG_PASS_BACK message and returns it to the Simulation Host.

Process laser range request messages.
The Simulation Host can use the MSG_REQUEST_LASER_RANGE message to
request the depth of the pixel located at the screen position represented by i, j,
where i is the horizontal coordinate (column) and j is the vertical coordinate (row).
The real-time software uses the Force interface to request the pixel depth
information from the MPV. The real-time software takes the returned value and
sends a MSG_LASER_RETURN message to the Simulation Host.

Process mail.
This process triggers the Force/MPV interface to send and receive data such as pass
on, pass back, and laser range request messages.

Change the color lookup table.

The MPV's sky color lookup table (LUT) defines the range of 3-D pixel color for
each pixel. Available lookup tables are:

oW Out the Window

DTV Daylight TV

WHT White Hot

BHT Black Hot
The active lookup table can be changed using the MSG_VIEW_FLAGS message.
This message is processed by process_vflags in the Viewport Configuration
component of the UPSTART CSC. process_vflags sets the lookup table in Force
memory if a Force board is present.

Change the video control registers.
The video control registers can be changed using the MSG_VIEW_FLAGS
message. This message is processed by process_vflags in the Viewport
Configuration component of the UPSTART CSC. process_vflags sets the video
control registers in Force memory if a Force board is present.

Start or stop the GSP task.
gsp_load starts the GSP task initially, and stops and restarts it when testing GSP
memory. GSP can also be stopped and restarted via Gossip.

Test reading from/writing to GSP memory.
GSP memory testing is performed by gsp_load at GSP initialization time. Memory
testing can also be invoked through Gossip.

Figure 2-19 identifies the CSUs that make up the Force CSC. These CSUs are described
in this section.

211

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Task Initialization

Baliistics

Forcotask

Interface
Processing

Database Up.m
Feedback

ment

Gossip

Flea

data_type.c
exception.asm
force.asm
forcetask.c
gsp_lo.c
nmi_type.c
poll_ready.c
read_stuff.c
test_gsp.c

2.8.1 data_type.c

The data_type function reads data from and writes data to GSP memory.

Figure 2-19. Force Processing CSUs

The function call is data_type(). data_type does the following:

Retrieves the type of front-end command: read data or write data.

Sets the host control value based on whether or not the GSP task is executing, and
whether the command is read or write.
Calls gsp_read or gsp_write to read or write the data as specified by the command.

Called By:

Routines Called:

Parameters:

Returns:

main (in forcetask)

gsp_ioctl_write
gsp_read
gsp_write

none

none

212

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.8.2 exception.asm

The exception.asm CSU contains two functions:
e excep_init
e spur_int

2.8.2.1 excep_init

The excep_init function initializes the vector base register (VBR) of the 68010 and all
entries of the exception vector table to point to spur_int.

Called By: main (in forcetask)
Routines Called: spur_int
Parameters: none

Returns: none

2.8.2.2 spur_int

The spur_int function saves all of the 68010 data registers into the structure "context.” The
order of the save is as follows: D0O-D7, A0-A6, SSP, USP, PC, SR.

Called By: excep_init
Routines Called: none
Parameters: none
Returns: none

2.8.3 force.asm

The force.asm CSU contains a group of subroutines used by the Force functions to read
from and write to the GSP. These functions are the following:

e gsp_write
» gsp_read
o gsp_ioctl_write

213

BBN Systems and Technologies 120TX/T CIG HOST CSCI

e gsp_ioctl_read
* init_ports

This module is written in assembly language to obtain the optimal performance from the
68230-to-GSP interface.

2.8.3.1 gsp_write

The gsp_write function writes a block of data from the Force board memory down to the
GSP.

The function call is gsp_write(number_hwords, data_buffer, gsp_address),
where:

number_hwords is the number of words to be written to the GSP
data_buffer is the location of the data in Force memory
gsp_address is the address to write to

Called By: data_type
main (in forcetask)
nmi_type
poll_ready
test_gsp

Routines Called: none

Parameters: HWORD number_hwords
HWORD *data_buffer
WORD gsp_address
Returns: none

2.8.3.2 gsp_read
The gsp_read function reads a block of data from the GSP into Force memory.

The function call is gsp_read (number_hwords, data_buffer, gsp_address),
where:

numhber_hwords is the number of words to be read from the GSP
data_buffer is the location of the data in Force memory
gsp_address is the address to read from

Called By: data_type
main (in forcetask)
read_stuff
test_gsp

214

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Routines Called: none

Parameters: HWORD
HWORD
WORD

Returns: none

2.8.3.3 gsp_ioctl_write

number_hwords
*data_buffer
gsp_address

The gsp_ioctl_write function writes the control word to the GSP host interface control

register.

The function call is gsp_ioctl_write(control_data), where control_data is the control

word to be written.

Called By: data_type

gsp_io

main (in forcetask)
nmi_type
poll_ready
read_stuff

test_gsp
Routines Called: none
Parameters: int
Returns: none

2.8.3.4 gsp_ioctl_read

control_data

The gsp_ioctl_read function reads the control word from the GSP host interface control
register. The function returns the control word as an integer (half word = 16 bits).

The function call is gsp_ioctl_read().

Called By: gsp_io
main (in forcetask)

Routines Called: none

215

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: none
Returns: control_data

2.8.3.5 init_ports
The init_ports function is called at start-up to initialize the Force-GSP interface.

The function call is init_ports().

Called By: main (in forcetask)
Routines Called: none
Parameters: none
Returns: none

2.8.4 forcetask.c

The forcetask.c CSU contains the main Force program. The two functions in forcetask.c
are:

* main
* compare_buffers

2.8.4.1 main
The main function processes commands received from the 2-D overlay compiler or Gossip.
The function call is main(). main does the following:

Sets up registers and initializes various parameters.

Calls init_ports to initialize the Force-GSP interface.

Turns off the Force lights.

Checks the error count.

Calls gsp_read to check for an illegal opcode trap.

Calls poll_ready to read the command in the FE_CONTROL register.
Processes each message, calling other Force functions as appropriate.
Clears the ready bit.

® @& & & o o o »

The following table describes the processing performed by main for each command sent by
linkup or gos_120tx. The first column identifies the command, preceded by the value
returned by poll_ready (the upper byte of the value in the FE_CONTROL register). The

216

BBN Systems and Technologies

second column describes the purpose of the command (in italics), then shows the steps
performed by main to process that command.

Message Processing by main
0 SUBSYS_MAIL_SEND Process mail, pixel depth information, and pass on 2-D
components tolfrom the GSP.
Calls gsp_io.
1 SUBSYS_READ_START, Send data to or receive data from the GSP.
SUBSYS_WRITE_START, Calls data_type.
SUBSYS_READ_MORE,
SUBSYS_WRITE_MORE
2 SUBSYS_NMI_START Start the GSP task.
Calls nmi_type.
3 SUBSYS_TEST_MEM Test the ability to read from/write to GSP memory.
Calls test_gsp.
6 SUBSYS_STOP Halt the GSP task.

Calls gsp_ioctl_write; sets nmi_set_flag to 0.

10 SUBSYS_READ_HCTRL

Read the control register.
Calis gsp_ioctl_read.

11 SUBSYS_WRITE_HCTRL

Write to the control register.
Calls gsp_ioctl_write.

12 SUBSYS_READ_HDATA Read data from GSP memory.
Calls gsp_read.
13 SUBSYS_WRITE_HDATA Write data to GSP memory.

Calls gsp_write; if the verify flag is on, calls gsp_read and
compare_buffers to verify the data was written correctly.

Called By:

Routines Called:

Parameters:

Returns:

none (the forcetask is loaded and started by gsp_load)

compare_buffers
data_
excep_init
gsp_io
gsp_ioctl_read
gsp_ioctl_write
gsp_read
gsp_write
init_ports
nmi_type
poll_ready
test_gsp

none

none

217

120TX/T CIG HOST CSCI

BBN Systems and Technologies 120TX/T CIG HOST CSCI

2.8.4.2 compare_buffers

The compare_buffers function is a boolean function that compares the contents of two

buffers.

The function call is compare_buffers(hword_count, ptrl, ptr2), where:

hword_count is the length of the data to be compared
pirl and ptr2 are pointers to the buffers to be compared

The function returns 1 if the buffer contents are equal, and O if they are not.

Called By:

Routines Called:

Parameters:

Returns:

2.8.5 gsp_io.c

main (in forcetask)

none

HWORD hword_count
HWORD *ptrl
HWORD *ptr2

1 (TRUE)

0 (FALSE)

The gsp_io function processes mail and pixel depth data to and from the GSP.

The function call is gsp_io(). gsp_io does the following:

» Clears the ready bit.
Called By:
Routines Called:
Parameters:

Sets the data strobe bit to signal the GSP of input/output.

Gets the buffer id and base address.

Calls send_stuff to write pixel request data and mail to the GSP.
Calls read_stuff to read pixel depth data and mail from the GSP.

main (in forcetask)

gsp_ioctl_read
gsp_ioctl_write
read_stuff
send_stuff

none

218

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Retumns: none

2.8.6 nmi_type.c
The nmi_type function starts the GSP task.
The function call is nmi_type(). nmi_type does the following:

Puts the GSP start address into a data buffer.

Writes the start address into the nmi vector area of GSP memory.

Writes to the GSP host interface control register to flush and clear the GSP cache.
Writes to the GSP host interface control register to start the GSP task.

Sets the NMI flag for other routines to check before writing to the control register.
Clears the ready bit.

The NMI (non-maskable interrupt) is a bit in the GSP host interface control register.

Called By: main (in forcetask)

Routines Called: gsp_ioctl_write
gsp_write

Parameters: none

Returns: none

2.8.7 poll_ready.c

The poll_ready function polls the ready bit in the FE_CONTROL register until the bit is set.
This register is used to pass messages from the real-time software to the forcetask.

The function call is poll_ready(). poll_ready does the following:

» Sets up the address for the FE_CONTROL register.
» While waiting for the ready bit to be set, performs various background functions:
- Checks for host input regarding color lookup tables, and loads a new table
if required.
- Checks for host input regarding video control registers, and transfers the
appropriate values to the MPV (Micro Processor Video) board.
* When it detects that the ready bit is set, returns the upper byte of the control register
to the forcetask. This value tells the forcetask what command to process.

Called By: main (in forcetask)

Routines Called: gsp_ioctl_write

219

BBN Systems and Technologies 120TX/T CIG HOST CSCI

gsp_write
Parameters: none
Retumns: <upper byte of front-end control register>

2.8.8 read_stuff.c

The read_stuff function is called by gsp_io to read pixel depth data and mail from GSP
memory.

The function call is read_stuff(). read_stuff does the following:

Sets the control word for data read.

Reads the 2D-to-SIM buffer from GSP memory.
Sets the control word for data read.

Reads pixel i and pixel j depth from GSP memory.

Called By: gsp_io

Routines Called: gsp_ioctl_write
gsp_read

Parameters: none

Returns: none

2.8.9 test_gsp.c
The test_gsp function writes a pattern to GSP memory, reads it back, and compares values.
The function call is test_gsp(). test_gsp does the following:

Writes a test pattern to a buffer area.

Sets the host control register for data write.

Writes the buffer to GSP memory.

Sets the host control register for data read.

Reads GSP memory into a second buffer.

Compares the two buffers and reports the number of errors detected.

*¢ o ¢ o o

Called By: main (in forcetask)
Routines Called: gsp_ioctl_write

gsp_read

220

BBN Systems and Technologies 120TX/T CIG HOST CSCI

gsp_write
Parameters: none
Returns: err_count

221

BBN Systems and Technologies 120TX/T CIG HOST CSCI

3 RESOURCE UTILIZATION

This section summarizes the disk space and memory requirements of the CIG Real-Time
software.

3.1 Disk Space Requirements

The total amount of disk space required to house the object files for all of the CIG real-time
functions on a 120TX system is approximately 1,593,796 bytes (approximately 1.52
megabytes). On a 120T system, this total is approximately 1,530,170 bytes (1.46

megabytes).

The amount of disk space required to house the terrain database, the dynamic elements
database, and the other data files required for a simulation is application-dependent.

3.2 Memory Requirements

The system's memory requirements vary based on application-specific parameters and
system options. In general, a minimum of 1 megabyte of CPU memory is required. A
minimum of 1.5 megabytes of memory is required for active area memory; additional AAM
memory is required for databases with an extended viewing range (greater than 4000
meters).

222

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX A. SYSTEM INCLUDE FILES

Include files define data structures and parameters used throughout the system. Although
many include files are used exclusively by functions in one area, others are used by
multiple CSCs. For easy reference, all of the include files are described in this appendix,
in alphabetical order.

A.1 Dballistics.h
The ballistics.h file includes all of the common Ballistics header files:

bx_defines.h

bx_messages.h

bx_rtdb_structs.h

bx_structs.h

bx_macros.h

bm_functions.h

mx_defines.h

slave133_functions.h (if running on a slave board)

Included By: All Ballistics Interface Message Processing CSUs
All Ballistics Intersection Calculation CSUs
bx_init.c
bx_task.c
gos_bal_query.c

® & & & o o o o

A.2 Dbbnctype.h

The bbnctype.h file defines character-testing macros (isalpha, isdigit, isascii, etc.) and
character-conversion macros (tolower, toupper,and toascii).

Included By: bbnctype.c
read_configfile.c

A.3 Dbflydisk.h

The bflydisk.h file contains declarations for the Butterfly disk (maximum number of files in
a directory and maximum file name size) and provides the typedef for the root directory
structure. This file is used for Butterfly Simulation Hosts only.

Included By: find_fn.c
support.c

A.4 bm_functions.h

The bm_functions.h file declares all Ballistics messages (b0_bal_config, b0_database_info,
b0_add_traj_table, etc.).

Included By: ballistics.h
bx_init.c

223

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.S

bx_reset.c

bp_functions.h

The bp_functions.h file is not used by the 120TX/T CIG.

A.6

bx_defines.h

The bx_defines.h file defines the following:

A.7

The MALLOC macro (described in Appendix B).

The maximum number of bvol types, model types, AAM partitions, messages,
static vehicles, rounds, bvol cache entries, poly cache entries, load modules,
vehicle load modules, and trajectories.

DTP data transformation commands.

DTP data components commands.

DTP data traversal commands.

Database effect model numbers.

Included By: ballistics.h

bx_externs.h

The bx_externs.h file declares external variables for Ballistics, including:

A.8

Input and output buffers.
Global (G_¥*) variables.
Temporary variables used for message processing.

Included By: All Ballistics Mainline CSUs
All Ballistics Interface Message Processing CSUs
bx_chord_intersect.c
bx_functions.c
bx_get_Im_data.c
bx_model_int.c
bx_reset.c
bx_trajectory.c
gos_bal_query.c

bx_globals.h

The bx_globals.h file declares variables for Ballistics, including:

Input and output buffers.
Global (G_¥*) variables.
Temporary variables used for message processing.

Included By: bx_task

224

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.9 bx_macros.h
The bx_macros.h file defines the following macros used by various functions in Ballistics:

DELETE_ROUND
DELETE_STAT_VEH
FREE_LM_CACHE
GET_CHORD_END
GET_DB_POS
GET_LB_FROM_LM
NEW_ROUND
NEW_STAT_VEH

*® @ & & o ¢ o o

These macros are described in Appendix B.
Included By: ballistics.h

A.10 bx_messages.h
The bx_messages.h file contains the following:

Declaration of the maximum message size.

Definitions for the bal_board_type (Ballistics board type) variable.
Definitions for code trace bits.

The addresses where the boards are locatec.

Typedefs for all simulation-to-Ballistics (MSG_BO0_*) messages.
Typedefs for all Ballistics-to-simulation (MSG_B1_*) messages.

Included By: bal_routines.c
ballistics.h
db_mcc_setup.c
download_bvols.c
gossip.c
load_modules.c
open_dbase.c
open_ded.c
rowcol_rd.c
simulation.c
upstart.c

A.11 bx_rtdb_structs.h

The bx_rtdb_structs.h file defines the structure of the real-time database for Ballistics. It
includes typedefs for the following:

Floating bounding volume entry.
Single-transform model structure.
Show effects stamp structure.
Tank structure.

Database directory entry.

225

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Runtime database header.

Fixed bounding volume entry.

Generic load module directory entry.

Grid components.

Grid locator information.

Load module header.

Load module statistics (generic model, unique static, and terrain grid polygon
count, plus total bytes per load module).

Polygon data (info word).

Polygon list of vertices and alpha betas for texturing.

This file also defines the maximum number of models that can be put in the generic module
of the runtime database, the maximum number of stamps possible in one unique static
object definition, and the number of z values in a grid component.

Included By: ballistics.h

A.12 bx_structs.h

The bx_structs.h file contains structure definitions for Ballistics. It includes typedefs for
the following:

Load module/grid search list.
Static vehicle.

bvol cache entry.

Terrain and object polygon.
Polygon cache entry.

Load module cache entry.
Trajectory table entry.
Trajectory table.

Point data.

Chord.

Round data.

Terrain corners.

Included By: ballistics.h

® & & & & o o S O o 0 o

A.13 ci_bfly.h

The ci_bfly.h file defines the DGI-Labs message interface. It includes the typedefs for
DGl-to-Labs and Labs-to-DGI messages, and defines the mailboxes. This file is required
for Butterfly Simulation Hosts only.

Included By: real_time.h

A.14 configtree_def.h

The configtree_def.h file provides definitions used when manipulating the configuration
tree, such as matrix and node type values.. It also defines the maximum number of
configuration nodes, viewport entries, and graphics path entries.

226

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Included By: real_time.h

A.15 configtree_str.h

The configtree_str.h file describes the structures used in the configuration tree. It provides
typedefs for the following:

Configuration node.

Overlay parameters.
Viewport parameters.
Graphics path parameters.
View positions (vppos) array.
Field-of-view vectors.
Screen and screen constants.

e & ¢ o & o o

This file also defines the maximum number of graphics paths.
Included By: real_time.h

A.16 ctype.h

The ctype.h file defines character-testing macros (isalpha, isdigit, isspace, etc.) and
character-conversion macros (toupper, tolower, toascii).

Included By: get_thing.c

A.17 ded_id_table.h

This file is not currently used.

A.18 defines_2d.h
The defines_2d.h file contains definitions used by the 2-D compiler, including:

All 2-D database commands (N_*, A_*, and B_*).

Return codes (end of file, too many errors, invalid window number, etc.).
Color, plane, and static/dynamic commands.

MPYV addresses (base component pointers and base program area).

MPV default screen parameters (e.g., dimensions and pitch).

MPYV space allocation.

Array sizes (maximum number of component pointers, windows, component
descriptions, etc.).

* Maximum compiler errors.

® & ¢ ¢ o o o

Included By: global_2d.h
globfir_2d.h

227

BBN Systems and Technologies

120TX/T CIG HOST CSCI

A.19 definitions.h

The definitions.h file defines miscellaneous constants and structures used by the real-time
software. It includes:

.

A.20

Various definitions used for by Ballistics to parse bounding volume structures and

report hits.

Definitions of various macros (ABSVAL, SET_OUT_BITS, SET_OUT_M2BITS,

XREAD, XOPEN, XCLOSE, XLSEEK, XWRITE, AAREAD). These are

described in Appendix B.

The typedef for the load module/grid search list structure.
Pointers for messages and other parameters.

Included By:

dgi_stdc.h

real_time.h

The dgi_stdc.h file helps make the code compiler-independent by defining basic data types.

For Apollo and CIG standard C implementations, the types are defined as follows:

*® & & & o o o o o

short

int

unsigned char
unsigned char
unsigned short
unsigned int
float

double

char

Included By:

REAL_8
*STRING

bit_blt.c
cig_2d_setup.c
cig_comp_2d.c
cig_link_2d.c
comp.c
data_type.c
draw_line.c
forcetask.c
gsp_io.c
get_thing.c
init_stuff.c
nmi_type.c
oval_rect.c
poll_ready.c
poly.c
proc_cmd.c
read_stuff.c
real_time.h
string.c
sysdefs.h
sysdefs2.h

228

BBN Systems and Technologies 120TX/T CIG HOST CSCI

test_gsp.c
text.c
window.c

A.21 dgi_stdg.h

The dgi_stdg.h fiie defines various graphics structures. It includes typedefs for the
following:

2-D, 3-D, and 4-D vertex points.
4x3 matrix.

2-D and 3-D bounding boxes.
Red, green, blue.

Red, green, blue, opaque.

Hue, saturation, lightness.

Hue, saturation, lightness, opaque.

*® e @& © o o o

Included By: real_time.h

A.22 ecompilerl.h

The ecompilerl.h file contains defines for the DTP command generator, including various
DTP addresses, maximum values, and the typedef for the where_process structure (used
for pre- and post-processing models and effects).

This file includes the real_time.h and ememory_map.h files.

Included By: dtp_compiler.c
dtp_funcs.c
dtp_travl.c
dtp_trav2.c
load_dbase.c
simulation.c

A.23 ememory_map.h
The ememory_map.h file provides external memory declarations. It includes the following:

» General-use variables, such as My Vehicle id, names of the loaded files, and the
database column markers.

» Database format variables.

Database management variables, such as the number of load modules on a side,

load module width, and the total number of load modules.

Variables for ballistics and flea.

Timing and control word variables.

Local terrain and range variables.

Declarations for the DR11-W interface.

Declarations to support runtime configurable DR packet sizes.

Intertask semaphore mailbox declarations.

Debugging and data gathering variables.

Variables for Flea's keyboard interface.

® & ¢ & o o o o

229

BBN Systems and Technologies

120TX/T CIG HOST CSCI

e O O ¢ & o o

This file includes the memory_map_defines.h file.

Included By:

FOGM missile mode global variables.
Variables used with Force and GSP.
Single step flags.

Ballistics flags.

Helicopter blade rotation variables.
Butterfly-specific declarations.

The GLOB (global memory) macro, described in Appendix B.

All Flea CSUs
aa_init.c
aam_manager.c
bal_routines.c
bx_task.c

cal.c
cig_config.c
cig_getm_2d.c
concat_mtx.c
db_mcc_setup.c
debug_initdr.c
ded_model_trace.c
dtp_emu.c
ecompiler1l.h
file_control.c
fill_tree.c
generic_lm.c
gos_120tx.c
gos_atp.c
gos_bal_query.c
gos_db_query.c
gos_drll_query.c
gos_flea_if.c
gos_flea_options.c
gos_fly.c
gos_locate.c
g0s_memory.c
gos_model.c
gos_polys.c
g0s_system.c
gossip.c
gsp_load.c
gun_overlays.c
hw_test.c
load_modules.c
loc_ter.c
make_bbn.c
mkcal.c
model_mtx.c
open_dbase.c
open_ded.c
process_vflags.c
process_vppos.c
rcfuncs.c

230

BBN Systems and Technologies 120TX/T CIG HOST CSCI

read_configfile.c
rowcol_rd.c
support.c
update_fov.c
update_rez.c
upstart.c
viewport_setup.c

A.24 extern.h
The extern.h file defines external variables for the Butterfly interface.
Included By: real_time.h
simulation.c

A.25 external.h

The external.h file is not currently used.

A.26 force.h.asm

The force.h.asm file defines constants for the Force data link. It sets up the 68230 base
register and defines GCR codes, address select codes for GSP registers, and LED bit
definitions.

Include By: force.asm

A.27 force_defines.h

The force_defines.h file, which contains Force and GSP definitions, serves as the interface
between the real-time software, rorce, and the GSP. It includes defines for the following:

FE_CONTROL (the front-end control register).

FORCE_CONTROL (the Force control register).

Force return status and error areas.

Pixel depth rcquest values.

Lookup table variables.

Video control variables.

The READ_CLOCK, RESTART_CLOCK, and CHECK_CLOCK macros.

® O ¢ o o o

Several alternate versions of this file exist : force_defines_C.h, force_defines_D.h,
force_defines_E.h, and force_defines_TX.h. The only difference between the files is the
base address of the Force board. The applicable version of the file is copied to
force_defines.h at system build time.

Included By: poll_ready.c

231

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.28 force_defines_C.h

The force_defines_C.h file replaces the force_defines.h file if the Force board has a VME
base address of 0xC00000.

Included By: see force_defines.h

A.29 force_defines_D.h

The force_defines_D.h file replaces the force_defines.h file if the Force board has a VME
base address of 0xD00000.

Included By: see force_defines.h

A.30 force_defines_E.h

The force_defines_E.h file replaces the force_defines.h file if the Force board has a VME
base address of 0xE00000.

Included By: see force_defines.h

A.31 force_defines_TX.h

The force_defines_TX.h file replaces the force_defines.h file if the Force board has a VME
base address of 0x100000.

Included By: see force_defines.h

A.32 functions.h

The functions.h file defines the following macros used by various functions in the real-time
software:

DART_ENQUEUE
DUMP_DART_BUFFER
EXCHANGE_DATA
EXCHANGE_DATA_SIM
EXCHANGE_FLEA_DATA
FIND_LM

FLTOFX

FXTOB881

FXTOFL

INIT_MTX
OPEN_EXCHANGE
OPEN_FLEA_DATA
SYSERR
TRIGGER_FORCE
WAIT_FORCE

® & & & ¢ & ¢ O o & ¢ o & o

222

BBN Systems and Technologies 120TX/T CIG HOST CSCI

These macros are described in Appendix B.
Included By: real_time.h

A.33 ghctype.h
The ghctype.h file is not currently used.

A.34 global_2d.h

The global_2d.h file includes the defines_2d.h and struct_2d.h include files. Collectively,
these files declare all global I/O variables, global temporary compiler variables, and
compiler product variables for the 2-D compiler.

Included By: bit_blt.c
cig_comp_2d.c
cig_getm_2d.c
cig_link_2d.c
comp.c
draw_line.c
get_thing.c
init_stuff.c
oval_rect.c
poly.c
proc_cmd.c
string.c
text.c
window.c

A.35 globfir_2d.h
The globfir_2d.h file includes the defines_2d.h and struct_2d.h include files. Collectively,
these files declare all global I/O variables, global temporary compiler variables, and

compiler product variables for the 2-D compiler.

Included By: cig 2d_setup.c

A.36 m2_config.h

The m2_config.h file contains defines specific to the M2. It defines channel and gunner
resolution, vic vport angular offsets, pitch up/down angular offsets, field-of-view sizes for
all channels, and texture map definitions.

Included By: gun_overlays.c

233

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.37 mbx.h

The mbx.h file contains defines used for the Force board. It includes defines for the
following:

The FORCE_INTERFACE structure.

NMI and GSP configuration addresses.

Force masks (slave/host, resolution, front ready, force busy, etc.).

Force commands (SUBSYS_READ_START, SUBSYS_TEST_MEM, etc.).
Video control parameters (VIDEO_CTL_ADDR, VIDEO_ON_CODE, etc.).
GSP memory start and end addresses.

Included By: cig link_2d.c
data_type.c
forcetask.c
gsp_io.c
nmi_type.c
poll_ready.c
real_time.h
read_stuff.c
test_gsp.c.c

A.38 memory_map.h
The memory_map.h file contains external memory declarations. It defines the following:

Variables describing the simulated vehicle (myveh_id, myveh_type, etc.).
Database header and table structure variables.

Database management variables.

Variables for Ballistics and Flea.

Timing and control word variables.

Local terrain and range variables.

Declarations for the DR11-W interface.

Default DR11-W interface packet size.

Default local terrain chunk size and interval.

Intertask semaphore mailbox declarations.

Viewport position, rotation data for flying and setting individual views.
Variables used by Flea’s keyboard interface for flying.

FOGM missile mode global variables.

Helicopter blade rotation variables.

Various Ballistics variables.

The GLOB (global memory) macro, defined in Appendix B.

¢ & & ¢ & 6 &6 o & & ¢ 5 o 0 o o

Included By: upstart.c

A.39 memory_map_defines.h

The memory_map_defines.h file defines variables used in: external memory declarations. It
defines the following:

234

BBN Systems and Technologies 120TX/T CIG HOST CSCI

» The default T&C location.

» The size of a load module.

The areas of the 64KW memory board (32KW of space for the double-buffer state
table and 32KW of generic memory for the database).

Byte offsets to data in double-buffered state table memory.

Declarations for the DR11-W interface.

Local terrain message interval and starting frame number.

Intertask semaphore mailbox locations.

Viewport position, rotation data for flying and setting individual views.
Helicopter blade rotation variables, used in simulation.

Butterfly-specific variables used for the VME interface.

Ammunition maps for the M2 gunner’s overlay (high-explosive 25mm, tow
missile, sabot, and coax machine gun).

® & o & & o & o

Included By: ememory_map.h
memory_map.h

A.40 mx_defines.h
The mx_defines.h file defines the following:

» Constants used for Ballistics message queue processing (MX_DEVICE_CLOSED,
MX_DEVICE_TABLE_FULL, etc.).

* The MX_DEVICE and MESSAGE_HEADER structures.

+ The BCOPY macro, described in Appendix B.

Included By: All Ballistics Message Queue Processing CSUs
bal_routines.c
ballistics.h
download_bvols.c
flea_encode_data.c
gos_flea_options.c
load_modules.c
open_dbase.c
open_ded.c
rowcol_rd.c
simulation.c
upstart.c

A.41 ovrly_defs.h

The ovrly_defs.h file contains definitions used to create calibration overlays (for example,
the dimensions of the frame triangles).

Included By: real_time.h

A.42 rcinclude.h

The rcinclude.h file is used by the DTP command generator and the Runtime Command
Library. It does the following:

235

BBN Systems and Technologies

120TX/T CIG HOST CSCI

o o o o

A.43 real_time.h

The real_time.h file includes many of the include files used in the real-time software.

Declares all RCL functions (rcl_push, rcl_pop, etc.).

Declares address and pointer variables used by the RCL commands.
Defines the RCL_UNION structure.

Defines the macros used by dtp_trav] and dtp_trav2 to generate RCL commands.
These macros, which are defined in Appendix B, are used to pass the appropriate
data to rcl_command, rcl_lblemd, rcl_data, and rcl_component.

Included By:

dtp_compiler.c
dtp_funcs.c
dtp_travl.c
dtp_trav2.c
rcfuncs.c

files it includes are the following:

® & 6 & & &5 & ¢ o O 0 o 0

ci_bfly.h (for Butterfly compatibility)

configtree_def.h
configtree_str.h

definitions.h
dgi_stdc.h
dgi_stdg.h

extern.h (for Butterfly compatibility)

functions.h
mbx.h
ovrly_defs.h
rtdb_struct.h
sim_cig_if.h
structures.h

Included By:

All Ballistics Interface Message Processing CSUs
All Ballistics Message Queue Processing CSUs
All Ballistics Intersection Calculations CSUs
All Gossip CSUs

All Flea CSUs

aa_init.c

aam_manager.c

bal_get_db_pos.c

bal_get_Ilm_grid.c

bal_routines.c

bx_init.c

bx_task.c

cal.c

cig _config.c

cig_getm_2d.c

concat_nitx.c

confignode_setup.c

db_mcc_setup.c

debug_initdr.c

ded_model_trace.c

download_bvols.c

236

BBN Systems and Technologies

120TX/T CIG HOST CSCI

A.44 rt_definitions.h

ecompilerl.h
file_control.c
fill_tree.c
find_fn.c
fxbvtofl.c
generic_lm.c
gsp_load.c
gun_overlays.c
hw_test.c
load_modules.c
loc_ter.c
make_bbn.c
mat_dump.c
mkcal.c
mkmtx_nt.c
model_mtx.c
open_dbase.c
open_ded.c
overlay_setup.c
process_vflags.c
process_vppos.c
rcfuncs.c
read_configfile.c
rowcol_rd.c

slavel33_functions.c

support.c
update_fov.c

update_rez.c
upstart.c
vec_dump.c
viewport_setup.c

The rt_definifions.h file is not used by the 120TX/T CIG software.

A.45 rt_macros.h

The rt_macros.h file is not used by the 120TX/T CIG software.

A.46 rt_types.h

The rt_types.h file is not used by the 120TX/T CIG software.

A.47 rtdb_struct.h

The rtdb_struct.h file defines the following real-time database structures:

» Database version and tag.

e Database header data.

237

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Database header overflow and landmark data.
Generic module directory entry data and name.
Model and catalog tables.

Database directory entry.

Load module header.

Grid locator information.

Fixed bvol entry

Load module statistics.

Floating bvol entry.

® O & o6 & o o o o

This file also defines the maximum number of models that can be put in the generic module
of the runtime database, the maximum number of stamps in one unique static object
definition, and the number of z values in a grid component.

Included By: real_time.h

A.48 sim_cig_ari.h

The sim_cig_ari.h file is an alternate form of the sim_cig_if.h file, used for a specific
customer (Army Research Institute).

Included By: see sim_cig_if.h

A.49 sim_cig_ari_if.h

The sim_cig_ari_if.h file is an alternate form of the sim_cig_if." file, used for a specific
customer (Army Research Institute). This version differs from sim_cig_ari.h only in the
definition of the packet buffer size.

Included By: see sim_cig_if.h

A.50 sim_cig_if.h

The sim_cig_if.h file defines the interface between the CIG and the Simulation Host. It
defines the following:

» All SIM-to-CIG, CIG-to-SIM, and configuration tree message structures.
« The maximum number of tanks, non-tank vehicles, concurrent active effects, static
tanks, and static vehicles.

Vehicle types (main battle tank, personnel carrier, etc.).

Vehicle appearance modifiers (destroyed, flaming, dust cloud, etc.).
Vehicle special modifier codes (small tree, rock, house, etc.).

Special effects (explosion on ground, fire, smoke plume, etc.).

Types of ammunition that cause effects (heat105, sabot25, etc.).
Application-specific data (ASID) types (data unique to a particular model).
The structures of the matrix formats.

® & o o ¢ o o

Included By: real_time.h

238

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.51 sim_cig_if512x512.h
The sim_cig_if512x512.h file is obsolete. It is not used by the 120TX/T CIG software.

A.52 sim_cig_if7kx1k.h
The sim_cig_if7kx1k.h file is obsolete. It is not used by the 120TX/T CIG software.

A.53 slavel33_functions.h

The slave133_functions.h file declares the slave133_malloc() function. This file is
included by ballistics.h if Ballistics is running on a slave board.

Included By: ballistics.h

A.54 struct_2d.h
The struct_2d.h file defines the window structures used by the 2-D compiler.

Included By: global_2d.h
globfir_2d.h

A.55 structures.h

The structures.h file defines various data structures used to process overlays and static and
dynamic models. It includes typedefs for the following structures:

Component data type (3-D point, 2-D point, and vector).
Texture map index.

Polygon information word.

Polygon and stamp lists.

Gunner, bun barrel, and calibration overlays.
Field-of-view test table.

Load module call tables.

Static and dynamic tanks.

Static and dynamic single-transform models.
Remove static model.

Show effects (stamp structure).

Ballistics chord data.

Trajectory positions and data.

Load module-specific data.

Grid component definition.

® & o6 & & ¢ & & ¢ o O ¢ o o o

This file also defines the following:

+ DTP data transformation commands.
e DTP data component commands.
+ DTP data traversal commands.

239

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Ballistics and local terrain data pointers.
Bounding plane definitions.
Channel definitions.

Included By: real_time.h

A.56 sysdefs.h

The sysdefs.h file provides system definitions for operating system versions RTOS.101
and RTOS.102. It includes the following:

System-wide memory, resource, and software and hardware fault definitions.
Task definitions.

I/0 control system definitions.

VRTX return codes.

Disk manager fault codes.

File control system error codes.

Special character definitions.

68901 equates.

System interrupt equates.

Definitions and structures used by file_control.

Included By: rt.c

A.57 sysdefs2.h

The sysdefs2.h file provides system definitions for operating system version FOS.100,
which allows the use of high-speed disks. It includes the following:

®* & & ¢ & o o ¢ o o

System-wide memory, resource, and software and hardware fault definitions.
Task definitions.

/O control system definitions.

VRTX return codes.

Disk manager fault codes.

File control system error codes.

Special character definitions.

68901 equates.

System interrupt equates.

Definitions and structures used by file_control.

Included By: getch.c

A.58 tflat.h

The tflat.h file defines Ballistics round trajectories for a completely flat trajectory. This is a
default table loaded for testing purposes.

Included By: bx_init.c

240

e

BBN Systems and Technologies 120TX/T CIG HOST CSCI

A.59 tflat_slow.h

The tflat_slow.h file defines Ballistics round trajectories for a completely flat trajectory with
a very slow fly-out. This is a default table loaded for testing purposes.

Included By: bx_init.c

A.60 ul0Smmsabot30hz.h

The ul05mmsabot30hz.h file defines Ballistics round trajectories for a ul0Smmsabot
round with a 30 Hz sample rate. This is a default table loaded for testing purposes.

Included By: bx_init.c

A.61 u25mmheat.h

The u25mmheat.h file defines Ballistics round trajectories for a u25mmheat round with a
15 Hz sample rate. This is a default table loaded for testing purposes.

Included By: bx_init.c

241

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX B. SYSTEM MACROS

Macros are used throughout the system to perform specialized functions. Most macros are
defined in one of the following files:

bx_macros.h
Macros used exclusively by Ballistics.

functions.h
Macros used throughout wuie real-time software.

rcfuncs.c and rcinclude.h
Macros used by the Runtime Command Library and DTP.

Although some macros are used exclusively in one area of the system, others are used by
multiple CSCs. For easy reference, all macros are described in this appendix, in
alphabetical order.

B.1 AAREAD

The AAREAD macro is defined as the system call "read"” for the 120T CIG MVME133,
and "fread” for the Butterfly.

Defined In: definitions.h
Called By: none
Routines Called: fread

read
Parameters: none

B.2 ABSVAL

The ABSVAL macro determines the absolute value of a number. The usage is
ABSVAL(x), where x is the number.

Defined In: definitions.h

Called By: none

Routines Called: none

Parameters: int X

242

BBN Systems and Technologies 120TX/T CIG HOST CSCI

B.3 BCOPY

The BCOPY macro copies a specified number of bytes. The usage is BCOPY(source,
dest, byte_count), where:

source is a pointer to the source location
dest is a pointer to the destination location
byte_count is the number of bytes to be copied

Defined In: mx_defines.h

Called By: b0_add_static_vehicle
b0_bal_config
b0_bvol_entry
b0_database_info
b0_model_entry
bx_chord_intersect
download_bvols

flea_encode_data
mx_push

Routines Called: none

Parameters: WORD *source
WORD *dest
HWORD byte_count

B.4 CHECK_CLOCK
The CHECK_CLOCK macro, defined in force_defines.h, is not currently used.

B.5 CHECK_FORCE
The CHECK_FORCE macro checks to see if the forcetask is running by reading the ready

bit (FRONT_RDY_MASK) in the front-end control register (FE_CONTROL). Ifitis, the
Gossip operation is denied and the user is asked to retry later.

The usage is CHECK_FORCE.

Defined In: gos_120tx.c

Called By: gos_120tx

243

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: printf
Parameters: none

B.6 DART_ENQUEUE

The DART_ENQUEUE macro, defined in functions.h, is not currently used. Previously,
this macro was used to add a message to the DART Ballistics board’s queue. The DART
Ballistics board is no longer supported.

B.7 DELETE_ROUND

The DELETE_ROUND macro removes a round from the active list and puts it on the free
list. The usage is DELETE_ROUND(dead_round_P), where dead_round_P is a
pointer to the round to be deleted.

Defined In: bx_macros.h
Called By: b0_new_frame
b0_process_round
b0_round_fired
Routines Called: none
Parameters: ROUND_DATA *dead_round_P

B.8 DELETE_STAT_VEH

The DELETE_STAT_VEH macro removes a static vehicle from a load module list and puts
it in the free list. The usage is DELETE_STAT_VEH(dead_sv_P, table_P), where:

dead_sv_P is a pointer to the static vehicle to be deleted
table_P is a pointer to the vehicle table

Defined In: bx_macros.h
Called By: b0_delete_static_vehicle
Routines Called: none
Parameters: STAT_VEH *dead_sv_P
STRUCT_P_SV *table_P
! 244 o

BBN Systems and Technologies 120TX/T CIG HOST CSCI

B.9 DOWNLOAD _DATA

The DOWNLOAD_DATA m cro downloads 2-D overlay data into GSP memory. The
usage is DOWNLOAD_DATA.

Defined In: cig link_2d.c
Called By: linkup
Routines Called: WAIT_FORCE
Parameters: none

B.10 dtp.* (DTP Macros)

Macros are used by the DTP Command Generator functions to interface to the Runtime
Command Library (RCL). The macros call RCL routines to generate the actual commands
that are downloaded to the hardware.

Each DTP hardware command has one or more supporting macros. The macro called by
the DTP Command Generator functions depends on the desired command, whether a label
is being used, and whether relative or absolute addressing is being used.

The following table lists each DTP macro and identifies its parameters, calling routines, and

called routines. It also identifies the DTP command generated by RCL for each macro.
Detailed descriptions of the hardware commands are beyond the scope of this document.

Defined In: rcinclude.h
Called By: see table below
Routines Called: see table below

Parameters: see table below

245

BBN Systems and Technologies 120TX/T CIG HOST CSCI
Macro(parameters) DTP Hardware Called Routines

Command Generated By Called

dtp_ben(label, mask, channel_data_offset) Branch Channel Non- none rcl_lblemd
Zero

drp_benr(label, mask, channel_data_offset) | Branch Channel Non- none rcl_lblemd
Zero Relative

dtp_benrs(aam_address, mask, Branch Channel Non- none rcl_command

channel_data_offset) Zero Relative

dtp_bcns(aam_address, mask, Branch Channel Non- none rcl_command

channel _data_offset) Zero

dtp_bcez(label, mask, channel_data_offset) Branch Channel Zero none rcl_lblemd

dtp_bczr(label, mask, channel_data_offset) | Branch Channel Zero none rcl_lblemd
Relative

dtp_bczrs(aam_address, mask, Branch Channel Zero none rcl_command

channel_data_offset) Relative

dtp_bczs(aam_address, mask, Branch Channel Zero none rcl_command

channel_data_offset)

dep_bdgr(label, cos_squared) Branch DOT Greater none rcl_Iblcmd
Than Relative

dp_bd; _offset, cos_squared) Branch DOT Greater none rcl_command
Than Relative

dtp_bdlr(label, cos_squared) Branch DOT Less Than | none rcl_lblcmd
Relative

dtp_bdlrs(pc_offset, cos_squared) Branch DOT Less Than | none rcl_command
Relative

dip_bgn(label, mask) Branch Generic Non- none rcl_lblcmd
Zero

dtp_bgns(aam_address, mask) Branch Generic Non- none rcl_command
Zero

dtp_bgz(label, mask) Branch Generic Zero none rcl_Iblemd

dtp_bgzs(aam_address, mask) Branch Geneiic Zero none rcl_command

dip_blm(dtp_viewpoint_address, Base Load Module dtp_trav2 rcl_command

dtp_result_address, x_multiplier, Calculation

y_multiplier)

dtp_bnz(label, mask, dtp_address) Branch Non-Zero dtp_travl, rcl_lblcmd

dtp_trav2

dtp_bnzr(label, mask, dtp_address) Branch Non-Zero none rcl_lIblemd
Relative

dtp_bnzrs(aam_address, mask, dtp_address) | Branch Non-Zero none rcl_command
Relative

dtp_bnzs(aam_address, mask, dtp_address) | Branch Non-Zero none rcl_command
Relauve

dtp_bpc) Bounding Plane Normals | dtp_trav2 rcl_command
Calculation

dtp_bpcx() Bounding Plane Normals | none rcl_command
Calculation TX

246

BBN Systems and Technologies

120TX/T CIG HOST CSCI

dtp_brulabel) Branch Unconditionally _travl, rcl_Iblcmd
dtp_trav2

dtp_brur(label) Branch Unconditionally | none rcl_Iblemd
Relative

dip_brurs(pc_offset) Branch Unconditionally | dtp_trav2 rcl_command

dip_brus(aam_address) Branch Unconditionally | dtp_travl rcl_command
Relative

dtp_brz(label, mask, dtp_address) Branch Zero dtp_trav2 rcl_lblecmd

dtp_brzr(label, mask, dtp_address Branch Zero Relative none rcl_lblemd

dtp_brzrs(pc_offset, mask, dtp_address) Branch Zero Relative none rcl_command

_brzs(aam_address, mask, dtp_address) Branch Zero none rcl_command

dtp_dot(vx, vy, vz) Dot Product none rcl_command

dip_elm() End Load Module none rcl_command

dip_end(End Current Path dtp_travl, rcl_command

dtp_trav2

dip_fov(label, radius) Field of View Test none rcl_Iblcmd

dtp_fovr(label, radius) Field of View Test none rcl_lblemd
Relative

dtp_fovrs(pc_offset, radius) Field of View Test none rcl_command
Relative

dtp_fovs(aam_address, radius) Field of View Test none rcl_command

dtp_gdc(label, centroid_x, centroid_y, Generic Data Call none rcl_Iblemd

centroid_z, asid)

dtp_gdci(label, centroid_x, centroid_y, Generic Data Call none rcl_lblemd

centroid_z, asid, dptr)

dtp_gdcir(label, centroid_x, centroid_y, Generic Data Call none rcl_Iblcmd

centroid_z, asid, dptr) Relative

dtp_gdcirs(aam_address, centroid_x, Generic Data Call none rcl_command

centroid_y, centroid_z, asid, dptr) Relative

dtp_gdcis(aam_address, centroid_x, Generic Data Call none rcl_command

centroid_y, centroid_z, asid, dptr)

dtp_gdcn(label, centroid_x, centroid_y, Generic Data Call none rcl_lblcmd

centroid_z)

dtp_gdcnr(label, centroid_x, centroid_y, Generic Data Call none rcl_lblcmd

centroid_z) Relative

dtp_gdcnrs(aam_address, centroid_x, Generic Data Call none rcl_command

centroid_y, centroid_z) Relative

dtp_gdcns(aam_address, centroid_x, Generic Data Call none rcl_command

centroid_y, centroid_z)

dtp_gdcr(label, centroid_x, centroid_y, Generic Data Cali none rcl_Iblemd

centroid_z, asid) Relative

dtp_gdcrs(aam_address, centroid_x, Generic Data Call none rcl_command

centroid_y, centroid_z, asid) Relative

dtp_gdcs(aam_address, centroid_x, Generic Data Call none rcl_command

centroid_y, centroid_z, asid)

dtp_gr(offset) Generic Return none rcl_command

247

BBN Systems and Technologies 120TX/T CIG HOST CSCI

dtp_Imi(label, radius) Load Module In Field of | none rcl_lblcmd
View Test

dtp_lmir(label, radius) Load Module In Field of { none rcl_lblcmd
View Test Relative

dtp_lmirspc_offset, radius) Load Module In Field of | none rcl_command
View Test Relative

dtp_lmis(aam_address, radius) Load Module In Field of { none rcl_command
View Test

dtp_lod(label, range_squared) Level of Detail Test none rcl_lblemd

dtp_lodr(label, range_squared) Level of Detail Test none rcl_lblcmd
Relative

dtp_lodrs(pc_offset, range_squared) Level of Detail Test none rcl_command
Relative

dtp_lods(aam_address, range_squared) Level of Detail Test none rcl_command

dip_lwd(label, dtp_address, word_count) Load Wards dtp_travl rcl_lblcmd

dtp_lwdr(label, dtp_address, word_count) Load Words Relative none rcl_lblcmd

dtp_lwdrs(pc_offset, dtp_address, Load Words Relative none rcl_command

word_count)

_twds(aam_address, dtp_address, Load Words dtp_travl, rcl_command
word_count) dtp_trav2
dtp_mmi(dtp_address_a, dip_address_b, Matrix Multiply Local | none rcl_command

_address_c) (A*B=>C)
dp_mmpre(dtp_address_a, dip_address_b, Matrix Multiply Pre none rcl_command
dip_address_c) (A*B=>C)
dtp_mmpst(dtp_address_a, dtp_address_b, Matrix Multiply Post dip_travl, rcl_command
dip_address_c) (A*B=>0) dtp_trav2
dtp_mwd(dtp_address_a, dtp_address_b, Move Words dep_travl rcl_command
word_count)
dtp_ngc(centroid_x, centroid_y, centroid_z) | Non-Generic Centroid none rcl_command
dtp_oio(output_offset, word_count) Output Indirect Offset none rcl_command
dtp_ocs(output_offset, word_count, Output Offset Stack none rcl_command
stack_offset)
dtp_osd(label) Outprt Single Word dtp_trav2 rcl_lblemd

Direct
dtp_osds(aam_address) Output Single Word none rcl_command
Direct
dtp_owd(label, word_count) Output Words Direct dtp_trav2 rcl_lbicmd
dtp_owds(aam_address, word_count) Output Words Direct dtp_trav2 rcl_command
dtp_owdsc(label, end_label) Output Words Direct - none rcl_Iblcmd
Set Count
dtp_owo(aam_address_offset, word_count) | Output Words Offset none rcl_command
dtp_owr(label, word_count) Output Words Relative | none rcl_Iblemd
dtp_owrs(pc_offset, word_count) Output Words Relative | none rcl_command
dtp_owrsclabel, end_label) Output Words Relative - | none rcl_lblemd
Set Count

248

BBN Systems and Technologies

120TX/T CIG HOST CSCI

_ rc(Range Calculation none rcl_command

_sub(label) Subroutine Call none rcl_Iblcmd
dip_subr(label) Subroutine Call Relative | none rcl_Iblcmd
dtp_subrs(pc_offset) Subroutine Call Relative | none rcl_command
dtp_subs(aam_address) Subroutine Call dip_trav2 rcl_command
dtp_tbc(total_time) Time Base Calculation | none rcl_command
dtp_tbdr(label, start_time, end_time) Time Base Data Relative | none rcl_Iblemd
dtp_tbdrs(pc_offset, start_time, end_time) | Time Base Data Relative | none rcl_command
dip_tbrr(label, maximum_time) Time Branch Relative none rcl_Iblemd
dtp_tbrrs(pc_offset, maximum_time) Time Branch Relative none rcl_command

B.11 DUMP_DART_BUFFER

The DUMP_DART_BUFFER macro, defined in functions.h, is not currently used.
Previously, this macro was used for DART Ballistics boards, which are no longer

supported.

B.12 ERRMSG

The ERRMSG macro prints an error for the DTP/RCL functions. The usage is

ERRMSG(a, b), where:

a is the error message text

b is the name of the calling routine

Defined In: rcfuncs.c

Called By: rcl_patch_adrs

rcl_pop

rcl_push
rcl_set_cntlbl
rcl_set_label

Routines Called: printf

Parameters: char
char

B.13 EXCHANGE_DATA

The EXCHANGE_DATA macro is used to exchange message packets with the Simulation

a[]
b[)

Host. It loads the end message to the output buffer and sends it , then obtains an input

message packet.

249

BBN Systems and Technologies

120TX/T CIG HOST CSCI

The usage is EXCHANGE_DATA(state), where state is the current state of the CIG.

Defined In:

Called By:

Routines Called:

Parameters:

functions.h

get_msg 2d
cig_config
db_mcc_setup
file_control
hw_test
upstart

debug_initdr
printf

read
sc_pend
sc_post
SYSERR
write

INT 2 state

B.14 EXCHANGE_DATA _SIM

The EXCHANGE_DATA_SIM macro is used by simulation to exchange message packets
with the Simulation Host. It loads the end message to the output buffer and sends it , then
obtains an input message packet. It also determines if it is time to send a local terrain

The usage is EXCHANGE_DATA_SIM(state), where state is the current state of the

message.

CIG.
Defined In:
Called By:
Routines Called:
Parameters:

imnctions.h

simulation

printf
read
sc_pend
sc_post
SYSERR
write

INT 2 state

250

BBN Systems and Technologies 120TX/T CIG HOST CSCI

B.15 EXCHANGE_FLEA_DATA
The EXCHANGE_FLEA_DATA macro is used by Flea to exchange message packets with
the CIG. It loads the end message to the output buffer and sends it , then obtains an input
message packet.
The usage is EXCHANGE_FLEA_DATA(flea_imsg, flea_omsg), where:
flea_imsg is a pointer to the input message packet
flea_omsg is a pointer to the output message packet

Defined In: functions.h

Called By: flea
flea_init_cig_sw

Routines Called: sc_pend

SC_post
Parameters: INT 4 *flea_imsg
INT_ 4 *flea_omsg

B.16 FIND_LM

The FIND_LM macro finds the load module in which a given x, y location lies. Itis
assumed that the point is within active area memory.

The usage is FIND_LM (x, y, Im, inv_width, mask, num_per_side), where:

x is the location's x coordinate

y is the location's y coordinate

Im is the number of the load module

inv_width is the inverse of the width of a load module

mask is the mask of the number of load module blocks per side (currently always
0x0F)

num_per_side is the number of load modules per side of AAM

Defined In: functions.h

Called By: bal_get_db_pos
bx_get_db_pos
gos_bal_query
simulation

251

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Routines Called: none

Parameters: INT 4 X
INT_4 y
INT_4 Im
REAL_4 inv_width
INT_ 4 : mask
HWORD num_per_side

B.17 FLTOFX

The FLTOFX macro, defined in functions.h, is no longer used. Previously, this macro
was used to convert a floating point value to fixed point. The FXTO881 macro is now
used to perform this operation.

B.18 FREE_LM_CACHE
The FREE_LM_CACHE macro, when given a load module in the Ballistics database
cache, puts the bounding volumes in that module on the free bvol list, and puts the

polygons in that module on the free polygon lists.
The usage is FREE_LM_CACHE(Im_dir), where Im_dir is a load module in the cache.

Defined In: bx_macros.h
Called By: b0_Ilm_read
bx_new_bvol
bx_new_poly
Routines Called: none
Parameters: LM_CACHE_ENTRY *Im_dir

B.19 FXTO881

The FXTO881 macro converts a fixed point value to floating point. The usage is
FXTOS881(fxd, fit, bits), where:

fxd is the fixed point value to be converted

f1t is the floating point value (result)
bits is the number of fractional bits in the fixed point number

Defined In: functions.h

252

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: bx_get_lm_data
fxbvtofl
fxbvtofl_020
fxbvtofl_dart
local_terrain

Routines Called: none

Parameters: INT 2 fxd
REAL_4 flt
INT_4 bits

B.20 FXTOFL

FXTOFL converts a fixed point value to floating point. The usage is FXTOFL(fxd, fit,
nfract_bits, exp, tmp), where:

fxd is the fixed point value to be converted

flt is the floating point value (result)

nfract_bits is the number of fractional bits in the fixed point number
exp is a temporary variable used for calculations

tmp is a temporary variable used for calculations

Defined In: functions.h

Called By: local_terrain
simulation

Routines Called: none

Parameters: INT_4 fxd
REAL 4 flt
INT 2 nfract_bits
INT_4 exp
INT_4 tmp

B.21 GET_CHORD_END

The GET_CHORD_END macro finds the next chord in the trajectory. The usage is
GET_CHORD_END(chord_P), where chord_P is a pointer to the chord.

This macro is not currently used.

Defined In: bx_macros.h

253

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: none
Routines Called: none
Parameters: CHORD *chord_P

B.22 GET_DB_POS

The GET_DB_POS macro finds the load module that corresponds to a given point in the
database. The usage is GET_DB_POS(point_P, Im_width, inv_Ilm_width,
Im_per_side), where:

point_P is a pointer to the location in the database

Im_width is the width of a load module

inv_Im_width is inverse of the width of a load module

Im_per_side is the number of load m« .:ules in a row or column of AAM

Defined In: bx_macros.h

Called By: b0_traj_chord
bx_trajectory

Routines Called: none

Parameters: POINT_DATA *point_P
HWORD Im_width
REAL_4 inv_lm_width
HWORD Im_per_side

B.23 GET_LB_FROM_LM

The GET_LB_FROM_LM macro takes a load module number and calculates the number of
the load block that module is in. The usage is GET_LB_FROM_LM(Im, Ib), where:

Im is the load module number (0 to 1023)
Ib is the load block number (0 to 255)

Defined In: bx_macros.h

Called By: b0_new_frame
bO0_process_round
b0_round_fired
bx_chord_intersect

254

BBN Systems and Technologies 120TX/T CIG HOST CSCI
. Routines Called: none
Parameters: INT_4 Im
INT_4 Ib
B.24 GLOB

The GLOB macro provides a means by which global variables can be accessed on the
Butterfly platform. (The Butterfly takes all of memory_map.h and puts it into a simple C
structure.) For the Masscomp, GLOB has no effect — GLOB(x) is defined as x.

Defined In:

Called By:

Routines Called:

Parameters:

ememory_map.h
memory_map.h

all functions that access global memory

none

none

B.25 INCR_COMPONENT

The INCR_COMPONENT macro updates a component's word count, polygon count, and
vertex count. The usage is INCR_COMPONENT (incr), where incr is the count

increment.
Defined In:

Called By:

Routines Called:
Parameters:

B.26 INIT_MTX

rcfuncs.c

rcl_component
rcl_data

none

WORD incr

The INIT_MTX macro initializes a 4x3 matrix to the identity matrix. The last column is

assumed and zeroes are as§umed loaded. This routine is used to initialize the matrices for
all static and dynamic vehicles on start-up.

255

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The usage is INIT_MTX(matrix), where matrix is the model's transformation matrix.

Defined In: functions.h

Called By: active_area_init

Routines Called: none

Parameters: REAL _4 matrix
B.27 MALLOC

The MALLOC macro allocates memory. MALLOC calls slavel133_malloc if Ballistics is
running on a slave board; otherwise it calls the malloc library function.

The usage is MALLOC(size), where size is the amount of memory to be allocated.

Defined In: bx_defines.h
Called By: b0_add_traj_table
b0_database_info

Routines Called: malloc
slave133_malloc

Parameters: int size

B.28 NEW_ROUND

The NEW_ROUND macro gets a round from the free list and sets a pointer to it. The
usage is NEW_ROUND(new_round_P), where new_round_P is the pointer to the
round.

Defined In: bx_macros.h

Called By: b0_process_round
b0_round_fired

Routines Called: none

256

BBN Systems and Technologies 120TX/T CIG HOST CSCI

' Parameters: ROUND_DATA *new_round_P

B.29 NEW_STAT_VEH

The NEW_STAT_VEH macro gets a static vehicle from the free list and adds itto a
specified load module's list.

The usage is NEW_STAT_VEH(veh_table_P, new_sv_P), where:

veh_table_P is a pointer to the vehicle table
new_sv_P is the pointer to the new vehicle

new sv_P is set to NULL if no pointers are available (i.e., the maximum number of static

vehicles has been reached).
Defined In: bx_macros.h
Called By: b0_add_static_vehicle
Routines Called: none
' Parameters: STRUCT_P_SV *veh_table_P
STAT_VEH *new_sv_P

B.30 OPEN_EXCHANGE
The OPEN_EXCHANGE macro obtains the file descriptors for the input and output

channels for CIG-SIM communications. The usage is OPEN_EXCHANGE.
Defined In: functions.h

Called By: upstart

Routines Called: dr_is_okay
printf

Parameters: none

B.31 OPEN_FLEA_DATA

The OPEN_FLEA_DATA macro is used by Flea to obtain the file descriptors for the input
. and output channels for Flea-CIG communications.

257

BBN Systems and Technologies 120TX/T CIG HOST CSCI

The usage is OPEN_FLEA_DATA(flea_imsg, flea_omsg), where:
flea_imsg is a pointer to the input message packet
flea_omsg is a pointer to the output message packet
Defined In: functions.h
Called By: flea

Routines Called: sc_pend

Parameters: INT_4 *flea_imsg
INT_4 *flea_omsg
B.32 PAGE_FORMAT
The PAGE_FORMAT macro handles displays that exceed one page (16 lines). The usage
is PAGE_FORMAT (lines), where lines is the number of lines in the display.
Defined In: gos_bal_query.c
Called By: gos_bal_query

Routines Called: printf
scanf

Parameters: INT lines

B.33 poly.* (Poly Processor Macros)

Macros are used by the DTP Command Generator functions to interface to the Runtime
Command Library (RCL). These macros call RCL routines that generate the actual
commands that are downloaded to the Polygon Graphics Processor.

Each Poly Processor command has one or more supporting macros. The following table
lists each Poly Processor macro and identifies its parameters, calling routines, and called
routines. It also identifies the Poly Processor command generated by RCL for each macro.
Detailed descriptions of the hardware commands are beyond the scope of this document.

Defined In; rcinclude.h

258

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Called By: see table below
Routines Called: see table below
Parameters: see table below

259

BBN Systems and Technologies 120TX/T CIG HOST CSCI
Macro{parameiters) Poly Processor Called Routines
Command Generated By Called
poly_ab(alpha_0, beta_0, alpha_1, beta_1) | Alpha Betas none rcl_data
poly_bvc(ballistics_bit, local_terrain_bit) | Bounding Volume none rcl_componer- !
Component
poly_efs(label, number_of_frames) Effect Stage none rcl_Iblcmd
poly_efsr(label, number_of_frames) Effect Stage Relative none rcl_lblcmd
poly_fluQ Flush dtp_travl rcl_command
poly_fsw(Form Stamp Words dip_tra2 rcl_command
poly_gc(ballistics_bit, local_terrain_bit) Grid Component none rcl_component
poly_inf(information_word) Info Word none rcl_data
poly_lmf(matrix_pointer) Load Matrix Full none rcl_command
rcl_stuff_data
poly_Isc(x, y, z, W) Load Screen Constants | none rcl_command
poly_mmf(matrix_pointer) Matrix Multiply Full none rcl_command,
rcl_stuff_data
poly_pc(ballistics_bit, local_terrain_bit) Poly Component none rcl_component
poly_poly(poly_info_word, vertex_list, Polygon Entry none rcl_data
alpha, beta)
poly_m1l(Recall Matrix 1 dtp_trav2 rcl_command
poly_m?2() Recall Matrix 2 none rcl_command
poly_m3() Recall Matrix 3 none rcl_command
poly_md() Recall Matrix 4 none rcl_command
poly_sc(ballistics_bit, local_terrain_bit) Stamp Component none rcl_component
poly_sci(ballistics_bit, local_terrain_bit, Stamp Component none rcl_component,
stamp_info_word, stamp_half_width, Incomplete rcl_data
stamp_height)
poly_sec(ballistics_bit, local_terrain_bit) Special Effect none rcl_component
Component
poly_sm1() Save Matrix 1 dtp_trav2 rcl_command
poly_sm2(Save Matrix 2 none rcl_command
poly_sm3Q Save Matrix 3 none rcl_command
poly_sm4() Save Matrix 4 none rcl_command
poly_stamp(stamp_info_word, Stamp List Entry none rcl_data
stamp_half_width,, stamp_height,
stamp_center_x, stamp_center_y,
stamp_center_z)
poly_tog() Channel Toggle dtp_trav2 rcl_command
poly_vixe(x_value, y_value, z_value) Vertex List Entry none rcl_data
poly_vixl(index_0, index_1, index_2, Vertex List none rcl_data

index_3)

260

BBN Svstems and Technologies 120TX/T CIG HOST CSCI

B.34 PRINTD4
The PRINTD4 macro prints a 32-bit word in hexadecimal and decimal format. The address
at which to start printing is in the pointer variable pntr2. The usage is PRINTD4().
Defined In: g0s_memory.c
Called By: £0s_memory
Routines Called: printf
Parameters: none
B.35 PRINTDS
The PRINTD8 macro prints a double in hexadecimal and decimal format. The address at
which to start printing is in the pointer variable pntr2. The usage is PRINTDS().
Defined In: £0s_menory.c
Called By: £0s_memory
Routines Called: printf
Parameters: none
B.36 PRINTHEX4

The PRINTHEX4 macro prints a 32-bit word in hexadecimal format. The address at
which to start printing is in the pointer variable pntr2. The usage is PRINTHEX4().

Defined In: £0s_memory.c
Called By: £0s_memory
Routines Calied: printf
Parameters: none

261

BBN Systems and Technologies 120TX/T CIGHOST ¢ 71

B.37 PRINTHEXS

The PRINTHEXS8 macro prints a 64-bit word in hexadecimal format. The address at
which to st=rt printing is in the pointer variable pntr2. The usage is PRINTHEXS8().

Defined In: £0s_memory.c
Called By: £0s_memory
Routines Called: printf
Parameters: none

B.38 READ _CiL.OCK
The READ_CLOCK macro, defined in force_defines.h, is not currently used.

B.39 RESTART_CLOCK
The RESTART_CLOCK macro, defined in force_defines.h, is not currently used.

B.40 ROOMJ4LABEL

The ROOM4LABEL macro verifies that there is room in the stack to add a label. The usage
is ROOMJ4LABEL(store, loc), where:

store is the location to store the address
loc is the label to set with the AAM location

If the stack does not have room for the label, an error is output.

Defined In: rcfuncs.c
Called By: rcl_lblemd
rcl_set_cntlbl
rcl_set_label
Routines Called: ERRMSG
printf
Parameters: WORD *store

BBN Systems and Technologies 120TX/T CIG HOST CSCI

WORD m

B.41 ROOMCHECK

The ROOMCHECK macro verifies that there is enough space for a command. The usage
is ROOMCHECK(name, wd_cnt), where:

name is a pointer to the routine name
wd_cnt is the number of command WORDs

The function outputs an error if space is insufficient.

Defined In: rcfuncs.c

Called By: rcl_command
rcl_component
rcl_lblemd

Routines Called: ERRMSG

Parameters: char *name
. WORD Wd_cnt
B.42 SET_OUT_BITS
The SET_OUT_BITS macro, defined in definitions.h, is not currently used.

B.43 SET_OUT_M2BITS
The SET_OUT_M2BITS macro, defined in definitions.h, is not currently used.

B.44 SYSERR

The SYSERR macro adds an error message to the output buffer and ends processing of
input messages by pointing to a dummy end statement. The usage is SYSERR(error,
state), where:

error is the error message
state is the current state of the CIG

Defined In: functions.h
Called By: cig_config
. db_mcc_setup

263

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Routines Called:

Parameters:

B.45 TORAD

The TORAD macro converts an angle into radians. The usage is TORAD(angle), where

file_control
get_msg _2d
hw_test
open_dbase
simulation
upstart

none

INT_ 2 error
INT 2 state

angle is the angle in degrees. The routine multiplies the given angle by 0.017453292.

Defined In:

Called By:

Routines Called:

Parameters:

concat_mtx.c
flea_decode_data.c
flea_encode_data.c
flea_init_cig_sw.c
flea_update_pos.c
gos_flea_options.c
gos_model.c
simulation.c
update_fov.c
upstart.c

concat_mtx
flea_decode_data
flea_encode_data
flea_init_cig_sw
flea_update_pos
gos_flea_options
gos_model
simulation
update_fov
upstart

none

INT angle

264

BBN Systems and Technologies 120TX/T CIG HOST CSCI

B.46 toradians

The toradians macro converts an angle into radians. The usage is toradians(angle),
where angle is the angle in degrees. The routine multiplies the given angle by
0.017453293.

Defined In: make_bbn.c
Called By: rotate_x
rotate_y
rotate_z
Routines Called: none
Parameters: INT angle

B.47 TRIGGER_FORCE

The TRIGGER_FORCE macro puts a command into the Force front-end control register
(FE_CONTROL). The value in this register tells the forcetask what command is to be
performed. The usage is TRIGGER_FORCE.

Defined In: functions.h
Called By: gsp_load
Routines Called: none
Parameters: none

B.48 WAIT_FORCE

The WAIT_FORCE macro polls the ready bit FRONT_RDY_MASK) in the Force front-
end control (FE_CONTROL) register, waiting for it to be 0. The usage is
WAIT_FORCE.

Defined In: functions.h
Called By: DOWNLOAD_DATA
gsp_load

265

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Routines Called:

Parameters:

B.49 XCLOSE

printf

none

The XCLOSE macro is defined as the system call "close” for the 120T CIG MVME133,

and "fclose" for the Butterfly.

Defined In:

Called By:

Routines Called:

Parameters:

L.50 XLSEEK

definitions.h

get_lm
gsp_load
load_dbase
open_dbase
open_ded
rowcol_rd
simulation
sload

close
fclose

none

The XLSEEK macro is defined as the system call "Iseek” for the 120T CIG MVME133,

and "flseek” for the Butterfly.

Defined In:

Called By:

Routines Called:

definitions.h

download_bvols
get_Im

getlmdp

getside
load_dbase
open_dbase
open_ded

flseek
Iseek

260

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Parameters:

B.51 XOPEN

none

The XOPEN macro is defined as the system call "open” for the 120T CIG MVME133, and

"fopen” for the Butterfly.

Defined In:

Called By:

Routines Called:

Parameters:

B.52 XREAD

definitions.h

flea_init_cig_sw
get_Im

gsp_load
open_dbase -
open_ded
read_configfile
rowcol_rd

sload

fopen
open

non¢

The XREAD macro is defined as the system call "read" for the 120T CIG MVME133, and

"fread" for the Butterfly.

Defined In;

Called By:

Routines Called:

definitions.h

download_bvols
get_char

get_lm

getlmdp

getside

gsp_load
load_dbase
open_dbase
open_ded

fread
read

267

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Parameters: none

B.53 XWRITE

The XWRITE macro is defined as the system call "write" for the 120T CIG MVME133,
and "fwrite" for the Butterfly.

Defined In: definitions.h
Called By: none
Routines Called: fwrite
write
Parameters: none
---------- _ 26; - - §

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX C. OPERATING SYSTEM SERVICE CALLS

This appendix provides brief descriptions of the various operating system calls and
standard C library routines used by the CIG Real-Time software.

C.1 Special OS Service Libraries

The following table describes the system-level service routines used by the CIG Real-Time
software.

Routine Description Called By
read_watch() Gets the cumulative number of 500 uS local_terrain, simulation
ticks. Returns the number as
waich_count.
start_watch() Determines which CPU board it is simulation

executing on, sets up the timer registers
appropriately, clears the stopwatch storage
areas, starts the timer, and enables the
interrupts. Returns board.

stop_watch() Gets the cumulative number of 500 simulation
(100)usS ticks, stops the timer, and turns
the timer interrupts off. Returns

walch_count.
sysrup_offQ Ignores the system/frame interrupt by simulation, dtp_emu, gos_model,
moving the address of a null interrupt gos_system, dcode_drllw,
service routine into the 68010 exception | gos_single_step, s_step
vector space.
sysrup_on(mailbox_ptr, | Enables system/frame interrupts by simulation, dtp_emu, gos_model,
message) moving the address of the interrupt service | gos_system, s_step

routine in to the 68010 exception vector
space. Wakes up a pending routine by
moving the calling task's mailbox address
and the message to be returned to locations
known to the isr.

269

BBN Systems and Technologies

120TX/T CIG HOST CSCI

C.2 Task Management (sc_*) Routines

The following table describes the routines that handle intertask mailbox communication and
the creation and deletion of tasks and queues. These routines are standard Ready Systems’

VRTX C interface libraries.
Routine Description Called By

sc_accept(mailbox_ptr, Clears messages from the simulation

€ITor_ptr) specified mailbox.

sc_lock() Locks a queue to prevent dr_is_okay, mx_open, mx_peek,

concurrent use. mx_push, mx_skip

sc_pend(mailbox_ptr, Waits for a message to be posted | cig_config, simulation, rowcol_rd,

timeout, error_ptr) to the specified mailbox. local_terrain, gos_flea_if, gossip, flea,
flea_init_cig_sw, OPEN_FLEA_DATA,
EXCHANGE_DATA,
EXCHANGE_DATA_SIM,
EXCHANGE_FLEA_DATA

sc_post(mailbox_ptr, Posts a message to the specified | cig_config, db_mcc_setup, simulation,

message, error_ptr) mailbox. upstart, rowcol_rd, local_terrain, gos_atp,

gos_flea_if, gos_fly, flea_init_cig_sw,
DART_ENQUEUE,
EXCHANGE_DATA,
EXCHANGE_DATA_SIM,
EXCHANGE_FLEA_DATA

sc_qcreate(queue_id, size, | Creates a system queue of the qassign
€ITor_ptr) specified size.

sc_qinquiry(queue_id, Counts the entries in the specified | dr_is_okay
count_ptr, error_ptr) queue.

sc_gpend(queue_id, Removes messages from the dr_is_okay
timeout, error_ptr) specified queue.

sc_tcreate(task_entry, Creates a system task. tassign
task_id, task_priority,

error_ptr)

sc_tdelete(task_id, Deletes a task from the system. apinit

priority_code, error_ptr)

sc_unlock()

Unlocks a locked queue.

dr_is_okay, mx_open, mx_peek,
mx_push, mx_skip

BBN Systems and Technologies

120TX/T CIG HOST CSCI

C.3 Standard C Runtime Libraries

The following table identifies the standard C system calls, input/output routines, and
runtime libraries used by the CIG Real-Time software.

Routine Description Called By
atof Converts a string to double, REALA_fscanf
atoi Converts a string to int. main (in upstart), main (in rowcol_rd),
main (in local_terrain)
bzero Places a specified length of 0 main (in upstart)
bytes into a specified string.
calloc Allocates memory and initializes | init_configtree, cig_2d_setup
to zero.
close Closes a file. XCLOSE, read_configfile, file_control,
gos_memory, flea_init_cig_sw
cmd Sends a command to sio. geich
€os Calculates a cosine. update_fov, rotate_x, rotate_y, rotate_z,
gos_flea_options, gos_model,
flea_encode_data, flea_update_pos,
flea_init_cig_sw
create_sz Qreates a file with a specified file_control, gos_memory
size.
fclose Closes an 1/O stream. XCLOSE
fflush Writes all currently buffered get_char (Butterfly version), unbf_getchar
characters in an output stream. (Butterfly version)
fiseek Moves the read/write pointer. XLSEEK
fopen Opens an 1/O stream. XOPEN
fread Reads a specified number of XREAD
bytes.
free Frees allocated memory. free_configtree, download_bvols,
.0ad_dbase, open_dbase, simulation,
cig_2d_setup, b0_add_traj_table, bx_reset
fwrite Writes to a file. XWRITE
Iseek Moves the read/write pointer. XLSEEK, file_control, flea_init_cig_sw
open Opens a file. XOPEN, file_control, gos_memory,
flea_init_cig_sw
outhexl Outputs a hex value to stdout, b0_delete_static_vehicle, bO_traj_entry
printf Writes to stdout. (used extensively throughout system)
puts Writes to stdout. b0_delete_static_vehicle, b0_traj_entry
read Reads a file. XREAD, file_control, gos_memory,
flea_init_cig_sw
rsec Reads multiple sectors from disk. { file_control

271

BBN Systems and Technologies

120TX/T CIG HOST CSCI

scanf

Reads from stdin.

_emu, gos_120tx, gos_bal_query,
gos_db_query, gos_flea_if,
gos_flea_options, gos_fly, gos_locate,
gos_memory, gos_model, gos_system,
gossip, PAGE_FORMAT

sin

Calculates a sine.

update_fov, rotate_x, rotate_y, rotate_z,
upstart, gos_flea_options, gos_model,
flea_encode_data, flea_update_pos,
flea_init_cig_sw

Calculates a square root.

dtp_emu, gos_model

strcmp

Compares two strings.

find_fn, setup_comp_start,
process_command

strepy

Copies a string.

apinit, confignode_setup, file_control,
bootup_slavel33

strlen

Length of string.

file_control, open_dbase, open_ded,
setup_define_string, setup_text, gossip,
flea_init_cig_sw

system

Executes a shell command.

find_fn, file_control, bootup_slave133, dr,
gsp_load

tan

Calculates a tangent.

update_fov

unbf_getchar

Performs an unbuffered getchar.

dtp_emu, cal, gos_120tx, gos_atp,
gos_bal_query, gos_db_query, gos_flea_if,
gos_flea_options, gos_fly, gos_memory,
gos_model, gos_system, gossip, s_step

Writes a specified number of
bytes.

XWRITE, gos_memory, file_control,
cig_config, EXCHANGE_DATA,
EXCHANGE_DATA_SIM

BBN Systems and Technologies

120TX/T CIG HOST CSCI

APPENDIX D.

2-D
AAM

AGL

ASID

aspect ratio

BVME
bvol

centroid

channel

CIG

clipping

conditional node

configuration tree

data message

GLOSSARY OF TERMS AND ABBREVIATIONS

Two-dimensional.

Active area memory. Memory that contains the currently viewable
database and models. AAM contains 256 terrain load modules (16
rows by 16 columns). This provides a 3500-meter viewing range,
plus a 500-meter buffer, in each direction. If load module blocking
is enabled, AAM is effectively quadrupled.

Above ground level. If AGL processing is enabled (via the
MSG_AGL_SETUP message), the simulated vehicle's altitude
above ground level is calculated and returned to the Simulation Host
every frame.

Application-specific identification data. ASIDs are used to add
unique data (e.g., bumper numbers, smoke plume, dust cloud, etc.)
to a model.

The ratio of the sides (width:height) of the viewport. This is
assumed to be 1.

A VME board that interfaces with the Butterfly computer.

Bounding volume. The volume of the bounding box that is used to
completely enclose an object in the simulation environment.

The theoretical “center” of an object, around which the object is
rotated. The centroid's coordinates are the averages of the
corresponding coordinates of a given set and, for a given planar or
three-dimensional figure (such as a triangle or sphere), correspond
to the center of mass of a thin plate of uniform thickness and
consistency or a body of uniform consistency having the same
boundary.

A connection to a viewport. One channel may have multiple
graphics paths.

Computer Image Generation System. The process of generating a
3-D, perspectively accurate scene via a computer.

Removing back-facing polygons or parts of polygons that lie
partially outside the viewing pyramid.

A node in the configuration tree that causes a branch into one of two
traversal paths based on some runtime condition.

A structure that defines the relationship between each physical
component of the simulation vehicle and the location of the
viewports.

Smallest data component of a packet buffer.

273

BBN Systems and Technologies 120TX/T CIG HOST CSCI

data message header

DED

double-buffer
memory

downloading

DR11-W

DTP

dynamic vehicle

false child

fov

frame

frame event
frame rate

frame time
graphics path

GSP

graphics processor

heading

A message that describes the contents of a data message.

Dynamic Elements Database.

Memory that contains the dynamic models built by the real-time
software and processed by the hardware. Dual buffering allows for
one buffer to be used by the hardware while the other is being
updated by the software. The buffer used for each purpose switches
each frame, so the hardware is always using the buffer updated by
the software during the previous frame.

The process of transferring data from the Simulation Host to the
CIG.

A Digital Equipment Corp. standard interface that enables the
Simulation Host and the CIG processor to communicate at a high
transmission rate.

Data Traversal Processor.

A vehicle whose position and orientation is redefined in every frame
sent by the Simulation Host.

The configuration tree node branched to from a conditional node if
the runtime conditions is false.

Field of view. The volume of space which encompasses all objects
that are visible from a specific viewpoint and view angle.

Information displayed on a television monitor for 33.3 milliseconds
(at 30 Hz) or 66.6 milliseconds (at 15 Hz).

An interrupt signal given by the hardware.

The rate at which a new image is created and displayed on the
screen.

The amount of time each frame is displayed.

A window on a viewport. The 120T has one graphics path per
viewport. The 120TX may have two or four, depending on the
resolution. Graphics path parameters are the viewport parameters
that are used to load the hardware.

Graphics System Processor. The TMS34010 graphics processor on
the MPV board that generates and controls 2-D graphics.

First board in the graphics pipeline that processes 3-D data and
converts it into 2-D screen space for the tiler, based on the input of
graphics processor commands. Also called the poly processor.

The direction the viewer is pointing.

274

BBN Systems and Technologies

120TX/T CIG HOST CSCI

hull ransformation

Hz
load module

load module block

lod

lookup table

matrix

matrix node

MCC

model

model space

MPV

My_Vehicle
object

overlay

packet buffer

pitch

pixel

Description of the position and orientation of the base of a vehicle.
Hertz; cycles per second.

A unit of terrain in the terrain database, measuring 500 meters by
500 meters. Data is brought into active area memory in whole load
modules only.

A structure containing four load modules (two rows by two
columns, for a total size of 1000 meters by 1000 meters). Blocking
load modules doubles the viewing range and quadruples the amount
of terrain that can be loaded into active area memory.

Level of detail. The selective reduction of model detail (polygon
count) or texture map detail based on distance from the viewer.

A table used to convert color-map addresses into the actual color
values displayed.

A rectangular array of elements arranged in rows and columns.

A node in the configuration tree that contains a transformation
matrix. The matrices in each node in a traversal path are
concatenated to generate the view of the world for the viewport
represented by that path.

Management, Command, and Control. The computer on the
simulation network that monitors and controls the entire simulation
exercise.

Generally used to refer to models of arbitrary, three-dimensional
objects such as buildings and vehicles.

The coordinate system used to define and build a particular model.
The vehicle's centroid is defined as location (0,0,0).

Micro Processor Video. The last board in the graphics pipeline in a
120TX system.

The simulation vehicle.
All simulated models: vehicles, hidden obstacles, etc.

A two-dimensional view that is displayed on a viewport on top of
the three-dimensional view of the terrain.

Several data messages grouped together that describe one frame
time.

The angle at which the viewer is looking up or down.

Picture element. The smallest addressable element on a video
screen.

275

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Poly Processor

polygon

real-time

roll

rotation

rotation matrix

RCL

RTS

scaling

SIM

simulation

simulation vehicle

simulator

static vehicle

T&C

terrain database

translation

See graphics processor.

A closed, planar figure bounded by straight lines and consisting of
three or four vertices.

The ability to respond rapidly, frequently, or both to an event or
transaction. Also refers to the software that is used to run real-time
operations.

The angle which measures the amount of rotation along the viewing 1
vector (tilt). \

The process by which coordinates are rotated around a particular
axis. Used to define the direction of the viewing window.

A means of specifying orientation.

Runtime command library. A set of routines used to generate
hardware commands for the DTP and the Poly Processor.

Rotation translation scale.
The process by which an object's coordinates are changed to

effectively enlarge, reduce, or skew the object in a particular
direction.

The Simulation Host computer. The computer that controls the ‘
simulated vehicle's behavior.

The process that involves a computerized model of specific,

significant features of some physical or logical system or

environment.

The vehicle represented by a simulated viewpoint. Also called
simulated vehicle or My_ Vehicle.

A simulation unit consisting of a Simulation Host, a CIG, one or
more monitors, and the vehicle controls. Also called a Vehicle
Simulator Unit.

A vehicle with no anticipated movement, tracked only when its
status changes.

Timing and Control. Board that controls all CIG synchronization
and timing.

The database on the CIG that contains the polygons that describe the
simulation terrain and all objects (houses, trees, etc.) in it.

The process by which coordinates are "moved"” from one location to
another.

276

BBN Systems and Technologies 120TX/T CIG HOST CSCI

transformation

transformation matrix

true child

vector

vertex

viewpoint

viewport

viewport parameters

viewspace

VME

world space

A combination of translations and rotations that convert the
coordinates of a point in one coordinate system into coordinates in
another coordinate system.

A matrix used to describe the position and orientation of an object.

The configuration tree node branched to from a conditional node if
the runtime conditions is true.

A straight line with a specific direction.

A point in space, the termination point of a line, or the intersection
point of two or more lines.

The direction of view from the user's eye to the target or object
being viewed.

A display screen connected to the CIG. Each viewport simulates the
view of the world from a specific window of the simulated vehicle.

The screen resolution, viewing range, near plane, field-of-view
angles, level-of-detail multiplier, and aspect ratio (currently not
used) of a viewport.

The area that falls within the field of view of a viewport.

Versa Module European. An industry-standard bus.

The absolute coordinate system used to define the simulation area.

A three-dimensional space fixed relative to the world. Location
(0,0) is the southwest comner of the database.

277

BBN Systems and Technologies 120TX/T CIG HOST CSCI

APPENDIX E. CROSS-REFERENCE TABLES

This appendix contains the following cross-reference tables:

E.1 CSUs (source files) mapped to CSCs.

E.2 Data type names mapped to location of typedef.

E.3 Function names mapped to source file location, with section numbers.
E4 Macro names mapped to source file location, with section numbers.

BBN Systems and Technologies 120TX/T CIG HOST CSCI

E.1 CSUs Mapped To CSCs

The following list shows every CSU (.c or .asm file) in the CIG Real-Time CSCI, and
identifies the CSC to which it belongs. The CSUs are listed in alphabetical order.

CSu

aa_init.c
aam_manager.c
b0_aam_centroid.c
b0_aam_sw_corner.c
b0_add_static_vehicle.c

CSC

UPSTART (Real-Time Processing component)
UPSTART (Viewport Configuration component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)

b0_add_traj_table.c BALLISTICS (Interface Messaging component)
bO_bal_config.c BALLISTICS (Interface Messaging component)
b0_bvol_entry.c BALLISTICS (Interface Messaging component)

b0_cancel_round.c
b0_cig_frame_rate.c
b0_database_info.c
b0_delete_static_vehicle.c
b0_delete_traj_table.c
b0_dummy.c
b0_error_detected.c
b0_inapp_message.c

BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)

b0_Im_read.c BALLISTICS (Interface Messaging component)
b0_model_directory.c BALLISTICS (Interface Messaging component)
b0_model_entry.c BALLISTICS (Interface Messaging component)
b0_new_frame.c BALLISTICS (Interface Messaging component)
bO_print.c BALLISTICS (Interface Messaging component)

b0_process_chord.c
b0_process_round.c
b0_round_fired.c
b0_state_control.c
b0_status_request.c

BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)
BALLISTICS (Interface Messaging component)

bO_traj_chord.c BALLISTICS (Interface Messaging component)
b0_traj_entry.c BALLISTICS (Interface Messaging component)
b0_undefined_message.c BALLISTICS (Interface Messaging component)
bal_get_db_pos.c LOCAL_TERRAIN

bal_get_Im_grid.c ROWCOL_RD

bal_routines.c UPSTART (Real-Time Processing component)
bbnctype.c UPSTART (Viewport Configuration component)
bit_blt.c UPSTART (2-D Overlay Compiler component)
bus_error.asm UPSTART (Real-Time Processing component)
bx147_main.c BALLISTICS (Mainline component)

bx_bvol_int.c . BALLISTICS (Intersection Calculations component)
bx_chord_intersect.c BALLISTICS (Intersection Calculations component)
bx_functions.c BALLISTICS (Intersection Calculations component)
bx_get_Im_data.c BALLISTICS (Intersection Calculations component)
bx_get_Im_grid.c BALLISTICS (Intersection Calculations component)
bx_init.c BALLISTICS (Mainline component)
bx_model_int.c BALLISTICS (Intersection Calculations component)
bx_poly_int.c BALLISTICS (Intersection Calculations component)
bx_reset.c BALLISTICS (Intersection Calculations component)
bx_task.c BALLISTICS (Mainline component)

bx_trajectory.c BALLISTICS (Intersection Calculations component)
cal.c UPSTART (Real-Time Processing component)
cig_2d_setup.c UPSTART (2-D Overlay Compiler component)

279

BBN Systems and Technologies

120TX/T CIG HOST CSCI

CSu

cig_comp_2d.c
cig_config.c
cig_getm_2d.c
cig link_2d.c
comp.c
concat_mitx.
confignode_setup.c
data_type.c
db_mcc_setup.c
debug_initdr.c
ded_model_trace.c
download_bvols.c
drc
draw_line.c
dtp_compiler
dtp_emu.c
_funcs.s
dtp_travic
_trav2.c
exception.asm
file_control.c
fill_tree.c
find_fn.c
fleac
flea decode datac
flea_encode_data.c
flea_init_cig_sw.c
flea_update_pos.c
force.asm
forcetask.c
fxbvtofl.c
generic_lm.c
get_thing.c
getch.c
gos_120tx.c
gOs_atp.c
gos_bal_query.c
gos_db_query.c
gos_dr11_query.c
gos_flea_if.c
gos_flea_options.c
gos_fly.c
gos_locate.c
gOS_memory.c
gos_model.c
gos_polys.c
g0s_system.c
gossip.c
gsp_io.c
gsp_load.c
gun_overlays.c
hw_test.c
init_stuff.c
load_dbase.c
load_modules.c
loc_ter.c
make_bbn.c
nat_dump.c

CSC

UPSTART (2-D Overlay Compiler component)
UPSTART (Viewport Configuration component)
UPSTART (2-D Overlay Compiler component)
UPSTART (2-D Overlay Compiler component)
UPSTART (2-D Overlay Compiler component)
UPSTART (Viewpon Configuration component)
UPSTART (Viewport Configuration component)
FORCE

UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
UPSTART (2-D Overlay Compiler component)
UPSTART (DTP Command Generator component)
GOSSIP

UPSTART (DTP Command Generator component)
UPSTART (DTP Command Generator component)
UPSTART (DTP Command Generator component)
FORCE

UPSTART (Real-Time Processing component)
UPSTART (Viewport Configuration component)
UPSTART (Real-Time Processing component)
FLEA

FLEA

FLEA

FLEA

FLEA

FORCE

FORCE

UPSTART (Real-Time Processing component)
ROWCOL_RD

UPSTART (2-D Overlay Compiler component)
UPSTART (Viewport Configuration componcnt)
GOsSsIP

GOsSIP

GOSSIP

GOSSIP

GOSSIP

GOSSIP

GOSSIP

GOSSIP

GOSSIP

GOSSIP

GOSSIP

GOSssIP

GOSSIP

GOSSIP

FORCE

UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
UPSTART (2-D Overlay Compiler component)
UPSTART (Real-Time Processing component)
ROWCOL_RD

ROWCOL_RD

UPSTART (Real-Time Processing componcnt)
UPSTART (Viewport Configuration component)

280

BBN Systems and Technologies

120TX/T CIG HOST CSCI

CSsuU
mkcal.c
mkmtx_nt.c
model_mix.c
MX_eITor.c
mx_open.c
mx_peek.c
mx_push.c
mx_skip.c
MmX_wCopy.C
nmi_type.c
open_dbase.c
open_ded.c
oval_rectc
overlay_setup.c
poll_ready.c
poly.c

_cmd.c
process_vflags.c
Process_vppos.c
rcfuncs.c
read_configfile.c
read_swff.c
rowcol_rd.c
rt.c
simulation.c
slave133_functions.c
stdio.c
string.c
support.c
test_gsp.c
text.c
update_fov.c
update_rez.c
upstart.c
vec_dump.c
viewport_setup.c
vt100.c
window.c

CSC

UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
BALLISTICS (Message Queue Processing component)
BALLISTICS (Message Queue Processing component)
BALLISTICS (Message Queue Processing component)
BALLISTICS (Message Queue Processing component)
BALLISTICS (Message Queue Processing component)
BALLISTICS (Message Queue Processing component)
FORCE

UPSTART (Real-Time Processing component)
UPSTART (Real-Time Processing component)
UPSTART (2-D Overlay Compiler component)
UPSTART (Viewport Configuration component)
FORCE

UPSTART (2-D Overlay Compiler component)
UPSTART (2-D Overlay Compiler component)
UPSTART (Viewport Configuration component)
UPSTART (Viewport Configuration component)
UPSTART (DTP Command Generator component)
UPSTART (Viewport Configuration component)
FORCE

ROWCOL_RD

RTT

UPSTART (Real-Time Processing component)
BALLISTICS (Mainline component)

UPSTART (Real-Time Processing component)
UPSTART (2-D Overlay Compiler component)
UPSTART (Real-Time Processing component)
FORCE

UPSTART (2-D Overlay Compiler component)
UPSTART (Viewport Configuration component)
UPSTART (Viewport Configuration component)
UPSTART (Real-Time Processing component)
UPSTART (Viewport Configuration component)
UPSTART (Viewport Configuration component)
GOSSIP

UPSTART (2-D Overlay Compiler component)

281

BBN Systems and Technologies

120TX/T CIG HOST CSCl

E.2 Data Type Names Mapped To Typedefs

The following list shows the special data types used throughout the real-time software, and
identifies the file that provides the type definition. The type names are listed in alphabetical

order.

Data Type
ALLOC_POLY
ASID_OMODEL
ASID_SHOW_EFF
B1BBOX2D

B1BBOX3D

BI1HSL

BI1HSLO

BIMTX4X3

BIMTX4X4

B1P2D

B1P3D

B1P4D

BIRGB

BIRGBO

BOOLEAN
BVOL_ENTRY

BYTE

CAL_OVRLY
CATALOG_TABLE_STRUCT
CHAN_CNST
CHAN_SETCMD
CHORD_DATA
CLR_FLAGS

CMD

CMDR_OVRLY
COMMAND_LINE1
COMMAND_LINE2
CONFIGURATION_NODE
DB_DIR_ENTRY
DB_HDR_DBASE_DATA
DB_HDR_LMARKS _DATA
DB_HDR_OFLOW_DATA
DB_TAG_STRUCT
DB_VERSION_STRUCT
DGI_TO_LABS_MSGS
DTP_CMND_INF
EDGE_FLG
EO_EFFECTS
EO_OVRLY

FAKE_DV
FIX_BVOL_ENTRY
FORCE_INTERFACE
FOV

FOV_VECTORS

FOVTT

GENLM
GM_DIR_ENTRY_DATA
GM_DIR _ENTRY NAME

Typedef Location
/120/xfinclude/struct_2d.h
/120txfinclude/structures.h
/120txfinclude/structures.h
/120txfinclude/dgi_stdg.h
N120x/include/dgi_stdg.h

120 /include/dgi_stdg.h

/120 finclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120x/include/dgi_stdg.h
/120x/include/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120tx/include/dgi_stdg.h
/120tx/include/dgi_stdg.h
/120tx/finclude/dgi_stdg.h
/120tx/include/dgi_stdc.h
/120tx/include/rtdb_struct.h
/120tx/include/dgi_stdc.h
/120tx/include/structures.h
/120tx/include/rtdb_struct.h
/120x/finclude/structures.h
/120tx/include/structures.h
/120txfinclude/structures.h
/120tx/source/source/fload_dbase.c
/120tx/include/structures.h
/120tx/include/structures.h
/120txfinclude/structures.h
/120tx/include/structures.h
/120tx/include/configtrec_str.h
/120wx/include/rtdb_struct.h
/120tx/include/rtdb_struct.h
/120tx/include/rtdb_struct.h
/120tx/include/rtdb_struct.h
/120ix/include/rtdb_struct.h
/120tx/include/rtdb_struct.h
/120/txfinclude/ci_bfly.h
/120tx/source/source/ded_model_trace.c
/120w finclude/definitions.h
/120txfinclude/structures.h
/120txfinclude/structures.h
/120txfinclude/structures.h
/120tx/include/ridb_struct.h
/120tx/force/mbx.h
/120tx/include/sim_cig_if.h
/120wx/include/configtree_str.h
/120tx/include/structures.h
/120tx/source/source/generic_lm.c
/120wx/include/rtdb_struct.h
/120utx/include/ridb_struct.h

282

BBN Systems and Technologies

Data Type
GRAPHICS_PATH_PARAMETERS
GRID_COMP_DEF
GRID_LGC

GUN B

GUN_B_LSIDE
CUN_B_RSIDE
GUNNER_OVRLY
HWORD

R2BBOX2D

2BBOX3D

I2HSL

I2HSLO

I2MTX4X3

I2MTX4X4

12P2D

12P3D

I2P4D

I2RGB

I2RGBO

I4BBOX2D

4BBOX3D

4HSL

I4HSLO

[4AMTX4X3

I4AMTX4X4

14P2D

14P3D

14P4D

I4RGB

I4RGBO

INT_2

INT_4
LABS_TO_DGI_MSGS
LM_CALL1

LM_CALL2

LM_H

LM_STATS

LMS_DATA
LT_BVOL_ENTRY
LT_POLY_ENTRY
MI1_GUN_OVERLAY
M2_GUN_OVERLAY
MAT_UNIT
MESSAGE_HEADER
MODEL_TABLE_STRUCT
MSG_IROTATION
MSG_2D_SETUP
MSG_3ROTATIONS
MSG_ADD_TRAJ_TABLE
MSG_AGL
MSG_AGL_SETUP
MSG_AIRVEH_STATE
MSG_AMMO_DEFINE
MSG_ASID_OTHERVEH_STATE
MSG_ASID_SHOW_EFFECT
MSG_ASID_STATICVEH_STATE

Typedef Location
/120tx/include/configtree_str.h
/120tx/include/structures.h
/120tx/include/rtdb_struct.h
/120txfinclude/structures.h
/120txfinclude/structures.h
/120txfinclude/structures.h
/120tx/include/structures.h
/120w/include/dgi_stdc.h
/120txfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120xfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
120txfinclude/dgi_stdg.h

/120 finclude/dgi_stdg.h
/120 finclude/dgi_stdg.h

/120 /include/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
120u/include/dgi_stdg.h

/120w /include/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120tx/include/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120ixfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120tx/include/dgi_stdc.h
/120x/include/dgi_stdc.h
/120/w/include/ci_bfly.h
/120txfinclude/structures.h
/120tx/include/structures.h
/120tx/include/ridb_structh
/120tx/include/rtdb_struct.h
/120tx/include/structures.h
/120txfinclude/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/structures.h
/120tx/include/structures.h
/120tx/include/structures.h
/120/tx/include/mx_defines.h
/120tx/include/ridb_struct.h
/120txinclude/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120x/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120wx/include/sim_cig_if.h

120TX/T CIG HOST CSCI

MSG_B0_AAM_CENTROID
MSG_BO_AAM_SW_CORNER

/120tx/include/bx_messages.h
/120tx/include/bx_mcssages.h

283

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Data Type
MSG_BO_ADD_STATIC_VEHICLE
MSG_B0_ADD_TRAJ_TABLE
MSG_B0O_BAL_CONFIG
MSG_B0_BVOL_ENTRY
MSG_B0_CANCEL_ROUND
MSG_BO0_CIG_FRAME_RATE
MSG_B0O_DATABASE_INFO
MSG_BO_DELETE_STATIC_VEHICLE
MSG_BO_DELETE_TRAJ_TABLE
MSG_BO_LM_READ
MSG_B0_MODEL_DIRECTORY
MSG_B0O_MODEL_ENTRY
MSG_BO_NEW_FRAME

MSG_BO0_PROCESS_CHORD
MSG_BO_PROCESS_ROUND
MSG_BO_ROUND_FIRED
MSG_BO_STATE_CONTROL
MSG_BO_TRAJ_CHORD
MSG_BO_TRAJ_ENTRY
MSG_B1_GLOBAL_ADDR
MSG_B1_HIT_RETURN
MSG_B1_MISS
MSG_B1_ROUND_POSITION
MSG_B1_STATUS_RETURN
MSG_CANCEL_ROUND
MSG_CIG_CTL
MSG_CREATE_CONFIGNODE
MSG_DELETE_TRAJ_TABLE
MSG_DR11_PKT_SIZE
MSG_EO

MSG_FILE_DESCR
MSG_FILE_STATUS
MSG_FILE_XFER
MSG_GEN_CONFIGTREE
MSG_GENVEH_STATE
MSG_GUN_OVERLAY
MSG_HDR

MSG_HIT
MSG_..IT_RETURN
MSG_HPRXYZS_MATRIX
MSG_LASER_RETURN
MSG_LOCAL_TERRAIN
MSG_LT_PIECE
MSG_MI1VEH_STATE
MSG_M2VEH_STATE
MSG_MISS

MSG_OBSCURE
MSG_OTHERVEH_STATE
MSG_OVERLAY_SETUP
MSG_PASS_BACK
MSG_PASS_ON
MSG_PROCESS_ROUND
MSG_REQUEST_LASER_RANGE
MSG_ROT2x1_MATRIX
MSG_ROUND_FIRED
MSG_RTN_LT
MEG_RTS4x3_MATRIX

Typedef Location

/120 /include/bx_messages.h
/120txfinclude/bx_messages.h
/120tx/include/bx_messages.h
120tx/include/ox_messages.h
/120txfinclude/bx_messages.h
120txfinclude/bx_messages.h
N20xfinclude/bx_messages.h
N20x/include/bx_messages.h
/120txfinclude/bx_messages.h
/120xfinclude/bx_messages.h
/120tx/finclude/bx_messages.h
/120x/include/bx_messages.h
/120txfinclude/bx_messages.h
120x/include/bx_messages.h
N120txfinclude/bx_messages.h
/120tx/include/bx_messages.h
/120txfinclude/bx_messages.h
/120tx/include/bx_messages.h
/120tx/include/bx_messages.h
/120txfinclude/bx_messages.h
/120tx/include/bx_messages.h
/120txfinclude/bx_messages.h
/120tx/include/bx_messages.h
/120x/include/bx_messages.h
/120tx/include/bx_messages.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/finclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120wx/include/sim_cig_if.h

/120txfinclude/sim_cig_if.h, sysdefs.h, sysdefs2.h
/120tx/include/sim_cig_if.h, sysdefs.h, sysdefs2.h
/120tx/include/sim_cig_if.h, sysdefs.h, sysdefs2.h

/120tx/finclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120tx/include/sim_cig _if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.-h
/120tx/finclude/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120tx/include/sim_cig_if.h

284

BBN Systems and Tec!.~ logies

120TX/T CIG HOST CSCI

Data Type
MSG_SCALE
MSG_SHOW_EFFECT
MSG_STATICVEH_REM
MSG_STATICVEH_STATE
MoG_SYS_ERROR
MSG_TEST_NAME
MSG_TRAJ_CHORD
MSG_TRAJ_ENTRY
MSG_TRAJ_ENTRY_XFER
MSG_TRAJ_TABLE_XFER
MSG_TRANSLATION
MSG_VIEW_FLAGS
MSG_VIEW_MAGNIFICATION
MSG_VIEW_MODE
MSG_VIEWPORT_STATE
MSGS_BLK

MTXUNION
MX_DEVICE

OMODEL
OVERLAY_PARAMS
POLY_INFO_WORD
POLYGON_LIST
PROJ_DATA
PROJ_DATA_2
R4BBOX2D

R4BBOX3D

R4HSL

R4HSLO

R4AMTX4X3

RAMTX4X4

R4P2D

R4P3D

R4P4D

R4RGB

R4RGBO

R8BBOX2D

R8BBOX3D

RSHSL

R8HSLO

R8MTX4X3

R8MTX4X4

R8P2D

R8P3D

R8P4D

RSRGB

R8RGBO

RCL_UNION

REAL_4

REAL 8

RESOLUTION
RGBPOLY_LIST

ROOT

ROT2x1_MTX
RTS3x3_MTX
RTS4x3_MTX

SCREEN
SCRN_CONSTANTS
SEARCH_LIST

Typedef Location
/120wx/finclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120wxfinclude/sim_cig_if.h
/120wx/include/sim_cig_if.h
/120wxfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if.h
/120txfinclude/sim_cig_if h
/120txfinclude/sim_cig_if.h
/120wxfinclude/sim_cig_if.-h
/120/tx/include/mx_defines.h
/120txfinclude/structures.h

/120x/include/configtree_str.h

/120tx/include/structures.h
/120tx/include/structures.h
/120tx/include/structures.h
/120txfinclude/structures.h
/120t/include/dgi_stdg.h
/120w/include/dgi_stdg.h
/120w/include/dgi_stdg.h
/120x/include/dgi_stdg.h
/120w/include/dgi_stdg.h
/120w/include/dgi_stdg.h
/120 /include/dgi_stdg.h
/120wxfinclude/dgi_stdg.h
/120tx/include/dgi_stdg.h
/120tx/include/dgi_stdg.h
/120tx/include/dgi_stdg.h
/120wx/include/dgi_stdg.h
/120w finclude/dgi_stdg.h
/120wx/include/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120txfinclude/dgi_sidg.h
/120txfinclude/dgi_stdg.h
/120tx/include/dgi_stdg.h
/120wxfinclude/dgi_stdg.h
/120txfinclude/dgi_stdg.h
/120w /include/dgi_stdg.h
/120tx/include/dgi_stdg.h
/120tx/include/rcinclude.h
/120wx/include/dgi_stdc.h
/120x/include/dgi_stdc.h
/120tx/include/sim_cig_if.h
/120¢x/include/structures.h

/120tx/include/bflydisk.h, /120tx/source/source/find_fn.c

/120w /include/sim_cig_if.h
/120tx/include/sim_cig_if.h
/120txfinclude/sim_cig_if.h

/120tx/include/configree_str.h
/120tx/include/configirec_str.h

/120tx/include/definitions.h

285

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Data Type
SHOW_EFF
SOMODEL

SREM
STAMP_LIST
STANK

STRING
STRUCT2D
TAC_STATUS
TANK

tasks

TEXTURE _INDEX
TEXTURE_MAP
TF1

TF2

TRAJ_DATA
TRAJ_DATA_2
TRAJ_POS
TRAJ_POS_2
UIR4P

UIR4P3D
VIEWPORT_PARAMETERS
VPPOS_ARRAY
WHERE_PROCESS
WINDOW_DESCRIPTOR_TABLE
WORD

Typedef Location
/120tx/include/structures.h
/120txfinclude/structures.h
/120tx/include/structures.h
/120txAAnclude/structures.h
/120txfinclude/structures.h
/120w/include/dgi_stdc.h
/120/x/include/struct_2d.h
/120 finclude/definitions.h
/120txfinclude/structures.h

/120tx/include/sysdefs.h, sysdefs2.h

/120tx/include/structures.h
/120txinclude/structures.h
120t finclude/sim_cig_if.h
/120w /include/sim_cig_if.h
/120txfinclude/structures.h
/1201x/include/structures.h
/120ex/includc/structures.h
/120tx/include/structures.h
/120wx/include/structures.h
/120tx/include/structures.h

/120tx/include/configtree_str.h
/120tx/include/configtree_str.h

/120tx/include/ecompilerl.h
/120/ixfinclude/struct_2d.h
/120tx/include/dgi_stdc.h

BBN Systems and Technologies 120TX/T CIG HOST CSCI

E.3 Function Names To Source File Location

The following list shows each function in the CIG real-time software, and identifies the file
in which the function is located. The third column shows the section number in which the
function is described in this document.

Function Name Location Section
aam_malloc /120tx/source/config/aam_manager.c 2.2.1.1.1
active_area_init /120tx/source/source/aa_init.c 2231
apinit /120tx/source/source/rtt.c 2.1.11
b0_aam_centroid /120tx/ballist/source/b0/b0_aam_centroid.c 2.5.21
b0_aam_sw_comer /120tx/ballist/source/b0/b0_aam_sw_corner.c 2522
b0_add_static_vehicle /120tx/ballist/source/b0/b0_add_static_vehicle.c 2.5.23
b0_add_traj_table /120tx/ballist/source/b0/b0_add_traj_table.c 2524
b0_bal_config /120txballist/source/b0/b0_bal_config.c 2.5.25
b0O_bvol_entry /120tx/ballist/source/b0/b0_bvol_entry.c 25.26
b0_cancel_round /120tx/ballist/source/b0/b0_cancel_round.c 2.5.2.7
bO_cig frame_rate /120tx/ballist/source/b0/b0_cig_frame_rate.c 2528
b0_database_info /120tx/ballist/source/b0/b0_database_info.c 2.5.2.9
b0_delete_static_vehicle /120tx/ballist/source/b0/b0_delete_static_vehicle.c 2.5.2.10
b0_delete_traj_table /120tx/ballist/source/b0/b0_delete_traj_table.c 2.5.2.11
b0_dummy /120tx/ballist/source/b0/b0_dummy.c 2.5.2.12
bO_error_detected /120tx/ballist/source/b0/b0_error_detected.c 2.5.2.13
b0_inapp_message /120tx/ballist/source/50/b0_inapp_message.c 25.2.14
b0_lm_read /120tx/ballist/source/b0/b0_Im_read.c 25.2.15
b0_model_directory /120tx/ballist/source/b0/b0_model_directory.c 2.5.2.16
b0_model_entry {120tx/ballist/source/b0/b0_model_entry.c 25217
b0_new_frame /120tx/ballist/source/b0/b0_new_frame.c 2.5.2.18
b0_print /120x/ballisi/source/b0/b0_print.c 2.5.2.19
b0_process_chord /120ux/ballist/source/b0/b0O_process_chord.c 2.5.2.20
b0_process_round /120 ballist/source/b0/b0_process_round.c 2.5.2.21
b0_round_fired /120tx/ballist/source/b0/b0_round_fired.c 2.5.2.22
b0_state_control /120tx/ballist/source/b0/b0_state_control.c 2.5.2.23
b0_status_request /120tx/ballist/source/b0/b0_status_request.c 25.2.24
b0_traj_chord /120tx/ballist/source/b0/b0_traj_chord.c 2.5.2.25
b0_traj_entry /120tx/ballist/source/b0/b0_traj_entry.c 2.5.2.26
b0_undefined_message /120tx/ballist/source/b0/b0_undefined_message.c 2.5.2.27
bal_get_db_pos /120tx/source/source/bal_get db_pos.c 24.1
bal_get_Im_grid /120tx/source/source/bal_get_Im_grid.c 242
bbnctype /120tx/source/config/bbnctype.c 2212
blank /120tx/source/gossip/vt100.c 2.6.16.6
bootup_slavel33 /120tx/source/source/upstart.c 2.2.3.26.4
bus_error /120tx/source/source/bus_error.asm 2233
bus_error (Butterfly) /120tx/source/source/support.c 2.23.254
bus_error_w /120tx/source/source/support.c 223.25.5
bx_bvol_int /120tx/ballist/source/bt/bx_bvol_int.c 25.3.1
bx_chord_intersect /120tx/ballist/source/bt/bx_chord_intersect.c 25.3.2
bx_delet>_round /120tx/ballist/source/bi/bx_functions.c 25332
bx_delete_stat_veh /120tx/ballist/source/bt/bx_functions.c 2.5.3.3.10
bx_dist_sq_pt_line /120tx/ballist/source/bt/bx_functions.c 253.3.11
bx_free_Im_cache /120ex/ballist/source/bt/bx_functions.c 25336
bx_get_chord_end /120tx/ballist/source/bi/bx_functions.c 2.5.3.34
bx_get_db_pos /120tx/ballist/source/bi/bx_functions.c 25333
bx_get_Ib_from_Im /120tx/ballist/source/bt/bx _functions.c 25338
bx_get_Im_data /120tx/ballist/source/bt/bx_get_lm_data.c 2534

287

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Function Name
bx_get_Im_grid
bx_init
bx_model_int
bx_new_bvol
bx_new_poly
bx_new_round
bx_new_stat_veh
bx_poly_int
bx_reset
bx_task
bx_trajectory

cal

calc_paths
check_sum
cig_2d_setup
cig_config
ccmpare_buffers
compile_2d
concat_mtx
confignode_setup
ctoi

cup

data_type
db_mcc_setup
dcode_drliw
debug_initdr
ded_model_trace
display
display_packet
double_bot
double_off
double_top
download_bvols
&

dr_is_okay
dtp_compiler
dtp_emu
dtp_malloc
dtp_malloc_init
dtp_travl
dtp_trav2
dynamic_aam_init
excep_init
file_control
fill_tree

find_fn

flea
flea_decode_data
flea_encode_data
flea_init_cig sw
flea_update_pos
free133
free_configtree
ftoh

fxbvtofl
fxbvtofl_020
fxbviofl_dart
generic_lm

Location
/1201xfballisy/source/bt/bx_get_Im_grid.c
/120tx/ballist/source/main/bx_init.c
/120tx/ballist/source/bi/bx_model_int.c
/120tx/ballist/source/bt/bx_functions.c
/120oyballist/source/bi/bx_functions.c
/120tx/ballist/source/bt/bx_functions.c
/120tx/ballist/source/bt/bx_functions.c
/120tx/ballist/source/by/bx_poly_int.c
/120tx/ballist/source/bt/bx_reset.c
/120tx/ballist/source/main/bx_task.c
/120wx/ballist/source/by/bx_trajectory.c
/120tx/source/source/cal.c
/120tx/source/config/viewport_setup.c
/120w/source/source/support.c
/120tx/source/2d/cig_2d_setup.c
/120tx/source/config/cig_config.c
1120tx/forcefforcetask.c
/120tx/source/2d/cig_comp_2d.c
/120x/source/config/concat_mtx.c
/120tx/source/config/confignode_setup.c
/120tx/source/source/support.c
/120tx/source/gossip/vt100.c
/120x/force/data_type.c
/120tx/source/source/db_mcc_setup.c
/120tx/source/gossip/gossip.c
/120tx/source/source/debug_initdr.c
/120w /source/source/ded_mode!_trace.c
/120tx/source/gossip/dtp_emu.c
/120tx/source/gossip/gossip.c
/120tx/source/gossip/vt100.c
/120x/source/gossip/vt100.c
/120tx/source/gossip/vt100.c
/120w/source/source/download_bvols.c
/120tx/source/source/dr.c
/120tx/source/source/dr.c
/120wx/source/gen_dtp/dtp_compiler.c
/120wx/source/gossip/dtp_emu.c
/120tx/source/gen_dtp/dip_funcs.c
/120tx/source/gen_dip/dip_funcs.c
/120tx/source/gen_dtp/dtp_travi.c
/120tx/source/gen_dtp/dip_trav2.c
/120wx/source/config/aam_manager.c
/120tx/force/exception.asm
/120tx/source/source/file_control.c
/120tx/source/config/fill_tree.c
/120wx/source/source/find_fn.c
N20wx/source/flea/flea.c
/120x/sourcefleaflea_decode_datac
/120tx/sourcefflea/flea_encode_data.c
/120tx/source/flea/flea_init_cig sw.c
/120ex/source/flea/flea_update_pos.c

/120tx/ballist/source/main/slave 133_functions.c

/120tx/source/config/ciy,_config.c
/120wx/source/gossip/dtp_emu.c
/120tx/source/source/fxbvtofl.c
/120tx/source/source/fxbviofl.c
/120tx/source/source/fxbvtofl.c
/120wx/source/source/generic_Im.c

288

Section

%)
in
W
th

O

DR RROPDRRDNNON
Wwrbbwbbio=
PownubbbLLwab

2.6.16.1
2.8.1
2235
2.6.15.5
2236
2237
26.1.2
2.6.15.3
2.6.16.4

Wi

SINY
1O LW =

IS SN N R e A a S e
el A A B L B T B B B B B N
- YRS

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Function Name
get_binary_data
get_char
get_lm
get_msg_2d
get_recard
get_thing
getch
getimdp
getmatrix
getside
gos_1201x
gos_atp
_bal_query
gos_db_query
gos_display_db_info
gos_drll_query
gos_flea_if
gos_flea_options
gos_fly
gos_locate
g0s_memory
gos_model
gos_polys
gos_single_step
gOs_system
gossip
gsp_io
gsp_ioctl_read
gsp_ioctl_write
_load
_read
gsp_write
hexdisplay
htof
hw_test
hxflt
id_4x3mtx
id_matrix
init_configtree
init_dtp_stacks
init_generic_Im
init_ports
init_stuff
linkup
load_dbase
load_modules
local_terrain
ml_gun_overlay
m2_gun_overlay
main (ballistics)
main (force)
main (gossip)
main (local_terrain)
main (rowcol_rd)
main (upstart)
make_cal_overlay
make_m1_overlays
make_m2_overlays

Location
/120tx/source/source/support.c
/120tx/source/source/support.c
/120tx/source/gossip/dtp_emu.c
/120tx/source/2d/cig_getm_2d.c
/120tx/source/source/support.c
/120tx/source/2d/get_thing.c
/120tx/source/config/getch.c
/120tx/source/source/load_modules.c
/120tx/source/source/mkmtx_nt.c
/1201x/source/source/load_modules.c
/120tx/source/gossip/gos_1201x.c
/120tx/source/gossip/gos_atp.c
/120tx/source/gossip/gos_bal_query.c
/120wx/source/gossip/gos_db_query.c
/120tx/source/gossip/gos_db_query.c
120tx/source/gossip/gos_drll_query.c
/120tx/source/gossip/gos_flea_if.c
/120tx/source/gossip/gos_flea_options.c
/120tx/source/gossip/gos_fly.c
/120tx/source/gossip/gos_locate.c
/120tx/source/gossip/gos_memory.c
/120tx/source/gossip/gos_model.c
/120tx/source/gossip/gos_polys.c
/120tx/source/gossip/gossip.c
/120tx/source/gossip/gos_system.c
/120tx/source/gossip/gossip.c
/120tx/force/gsp_io.c
/120tx/force/force.asm
/120tx/force/force.asm
/120tx/source/source/gsp_load.c
/120tx/force/force.asm
/120tx/force/force.asm
/120tx/source/gossip/dtp_emu.c
/120tx/source/gossip/dtp_emu.c
/120tx/source/source/nw_test.c
/120wx/source/gossip/dip_emu.c
/120tx/source/source/mkmtx_nt.c
/120tx/source/source/make_bbn.c
/120tx/source/config/cig_config.c
/120tx/source/gen_dtp/dtp_funcs.c
/120x/source/source/generic_im.c
/120x/force/force.asm
/120tx/source/2d/init_stuff.c
/120tx/source/2d/cig_link_2d.c
/120tx/source/source/load_dbase.c
/120tx/source/source/load_modules.c
/120tx/source/source/loc_ter.c
/120tx/source/source/gun_overlays.c
/120tx/source/source/gun_overlays.c
/120ix/ballisy/source/main/bx 147_main.c
/120tx/force/forcetask.c
/120tx/source/gossip/gossip.c
/120tx/source/source/loc_ter.c
/120tx/source/source/rowcol_rd.c
/120tx/source/source/upstart.c
/120tx/source/source/mkcal.c
/120tx/source/source/gun_overlays.c
/120tx/source/source/gun_overlays.c

Section
2232512
2.2.3.25.13
2.6.19
2244
2.2.3.258
2248
2.2.1.7
23.2.1
2.2.3.19.10
2.3.2.2
2.6.2

2.6.3

2.6.4
2.6.5.1
2.6.5.2
2.6.6

2.6.7

289

BBN Systems and Technologies 120TX/T CIG HOST CSCI
Function Name Location Section
make_p_nt /120tx/source/source/mkmtx_nt.c 2.2.3.19.1
mat_mult /120x/source/gossip/dtp_emu.c 2.6.1.8
matrix2 /120tx/source/source/mkmix_nt.c 2.2.3.19.11
model_mtx /120tx/source/source/model_mix.c 2.23.20
mtxcpy /120tx/source/source/mkmix_nt.c 2.2.3.19.12
mult_4x3mitx /120tx/source/source/mkmtx_nt.c 2.23.19.9
multmatrix /120tx/source/source/make_bbn.c 223175
mx_error /120tx/ballist/source/mx/mx_error.c 2541
mx_open /120x/ballist/source/mx/mx_open.c 2542
mx_peek /120tx/ballist/source/mx/mx_peek.c 2543
mx_push /120tx/ballist/source/mx/mx_push.c 2544
mx_skip /120tx/ballist/source/mx/mx_skip.c 2545
mx_wcopy /120tx/ballist/source/mx/mx_wcopy.c 2.54.6
nmi_type /120tx/force/nmi_type.c 2.8.6
_dbase /120tx/source/source/open_dbase.c 22.3.21
open_ded /120ex/source/source/open_ded.c 22322
outdisplay /120tx/source/gossip/dtp_emu.c 2.6.1.3
overlay_setup /120tx/source/config/overlay_setup.c 2219
parser /120tx/source/config/read _configfile.c 2.2.1.12.6
pix_mult /120tx/source/source/mkcal.c 223.18.2
poll_ready /120tx/force/poll_ready.c 2.8.7
pop_node /120x/source/gen_dtp/dtp_funcs.c 22222
power /120tx/source/config/fill_tree.c 22.16.2
process_command /120x/source/2d/proc_cmd.c 224.12
process_vflags /1201x/source/config/process_vflags.c 2.2.1.10
process_vppos /120tx/source/config/process_vppos.c 2.2.1.11
pri_mtx /120tx/source/source/make_bbn.c 2.2.3.17.1
push_node /120tx/source/gen_dtp/dip_funcs.c 22221
qassign /120tx/source/source/rtt.c 2.1.1.2
rdmat_dump /120x/source/config/mat_dump.c 22.18.1
rdvec_dump /120x/source/configivec_dump.c 2.2.1.15.1
r8mat_dump /120tx/source/config/mat_dump.c 22182
r8vec_dump /120tx/source/config/vec_dump.c 2.2.1.15.2
rcl_command /120tx/source/gen_dtp/rcfuncs.c 2225.11
rcl_component /120tx/source/gen_dtp/refuncs.c 2.2.2.5.12
rcl_data /120tx/source/gen_dtp/rcfuncs.c 22.25.13
rcl_init_adrs /120tx/source/gen_dtp/rcfuncs.c 2.2.2.56
rcl_init_stack /120tx/source/gen_dtp/refuncs.c 22.25.1
rcl_lblemd /120tx/source/gen_dtp/rcfuncs.c 2.2.25.10
rcl_patch_adrs /120tx/source/gen_dtp/rcfuncs.c 22254
rcl_pop /120tx/source/gen_dtp/rcfuncs.c 22253
rcl_push /120tx/source/gen_dtp/rcfuncs.c 22252
rcl_nn_adrs /120wx/source/gen_dtp/rcfuncs.c 22257
rcl_set_cntlbl /120tx/source/gen_dtp/refuncs.c 22259
rcl_set_errptr /120tx/source/gen_dtpfrcfuncs.c 2.2.2.5.5
rcl_set_label /120w/source/gen_dtp/rcfuncs.c 22258
rcl_stuff_data /120tx/source/gen_dtp/rcfuncs.c 22.25.14
read_configfile /120tx/source/config/read_configfile.c 2.2.1.12.1
read_stuff /120wx/forcefread_stuff.c 2.8.8
read_watch /120tx/source/source/support.c 22.3.25.2
REALA_fscanf /120tx/source/config/read_configfile.c 22.1.124
restore_cur /120x/source/gossip/vt100.c 2.6.16.8
return_aam_ptr /120tx/source/config/aam_manager.c 22.1.1.2
rotate_x /120tx/source/source/make_bbn.c 223.17.2
rotate_x_nt /120tx/source/source/mkmtx_nt.c 22.3.19.2
rotate_y /120tx/source/source/make_bbn.c 223,173
rotate_y_nt /120tx/source/source/mkmtx_nt.c 2.23.19.3
rotate 7 /120tx/source/source/make_bbn.c 223174

290

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Function Name
rotate_z_nt
rowcol_rd

s_step

save_cur

scale_mx
scroll_reg
send_data
setup_bit_blt
setup_comp_start
setup_define_string
setup_define_window
setup_draw_line
setup_oval_rectangle
setup_poly
setup_text

sgr

simulation
slavel33_malloc
sload

spur_int
start_watch

stdio

stop_watch
STRING_fscanf
string_to_int
swap_axis
sysrup_off
sysrup_on

system
system_aam_init
tassign
templates_init
test_gsp

translate
unbf_getchar
update_fov
update_rez

upstart

ver_data
viewport_init
viewport_setup
viewspace_mix
what_node_on_stack
whatdirptr
WORD_fscanf

Location
/120tx/source/source/mkmtx_nt.c
/120tx/source/source/frowcol_rd.c
/120tx/source/gossip/gossip.c
/120tx/source/gossip/vt100.c
/120tx/source/source/mkmtx_nt.c
/120tx/source/gossip/vt100.c
/120tx/source/source/support.c
/120tx/source/2d/bit_blt.c
/120tx/source/2d/comp.c
/1201x/source/2d/string.c
/120tx/source/2d/window.c
/120tx/source/2d/draw_line.c
/120wx/source/2d/oval_rect.c
/120x/source/2d/poly.c
/120tx/source/2d/text.c
/120tx/source/gossip/vt100.c
/120tx/source/source/simulation.c

/120wx/ballist/source/main/slave133_functions.c

/120tx/source;/'source/support.c
/120ix/force/exception.asm
/120x/source/source/support.c
/120tx/source/source/staio.c
/120tx/source/source/support.c
/120tx/source/config/read_configfile.c
/120tx/source/config/read_configfile.c
/120tx/source/source/mkmtx_nt.c
/120tx/source/source/support.c
/120tx/source/source/support.c
/120tx/source/source/support.c
/120tx/source/config/aam_manager.c
/120tx/source/source/rit.c
/120tx/source/source/upstart.c
/120tx/force/test_gsp.c
/120tx/source/source/mkmtx_nt.c
/120tx/source/source/support.c
/120tx/source/config/update_fov.c
/120tx/source/config/update_rez.c
/120tx/source/source/upstart.c
/120tx/source/source/support.c
/120tx/source/config/viewport_setup.c
/120tx/source/config/viewport_setup.c
/120tx/source/config/update_fov.c
/120tx/source/gen_dtp/dtp_funcs.c
/120tx/source/sourcefload_modules.c
/120tx/source/configfread_configfile.c

Section
223.19.4
2332
2.6.15.4
2.6.16.7
2.2.3.19.7
2.6.16.9
2.2.3.259
224.1
2246
224.13
2.24.15
2.24.7
224.10
2.24.11
2.24.14
2.6.16.2
2.23.23
2.5.14.1
2.2.3.25.7
2822
223.25
22324

291

BBN Systems and Technologies 120TX/T CIG HOST CSCI

E.4 Macro Names To Source File Location

The following list shows each macro function used by the CIG real-time software, and
identifies the file in which the macro is defined. The third column shows the section
number in which the macro is described in this document.

Macro Name Location Section
AAREAD /120txfinclude/definitions.h B.1
ABSVAL /120txfinclude/definitions.h B.2
BCOPY /120x/include/mx_defines.h B.3
CHECK_CLOCK 120 /force/force_defines.h B4
CHECK_FORCE /120tx/source/gossip/gos_120tx.c B.5
DART_ENQUEUE /120tx/include/functions.h B.6
DELETE_ROUND /120txfinclude/bx_macros.h B.7
DELETE_STAT_VEH /120txfinclude/bx_macros.h B.8
DOWNLOAD_DATA /120tx/source/2d/cig_link_2d.c B.9
dip_ben /120x/include/reinclude.h B.10
dtp_benr /120tx/include/rcinclude.h B.10
_benrs /120tx/include/reinclude.h B.10
_bcns /120tx/include/rcincinde.h B.10
_bez /120xfinclude/reinclude.h B.10
dip_bczr /120txfinclude/reinclude.h B.10
_bczrs /120txfinclude/reinclude.h B.10
dtp_bczs /120x/include/reinclude.h B.10
dip_bdgr /120wx/include/rcinclude.h B.10
dtp_bdgrs /120x/include/rcinclude.h B.10
dtp_bdir /120xx/include/rcinclude.h B.10
dtp_bdlrs /120tx/includefreinclude.h B.10
dip_bgn /120txfincludefrcinclude.h B.10
dp_bgns /120txfinclude/rcinclude.h B.10
_bgz /120x/include/reinclude.h B.10
dtp_bgzs /120txfinclude/rcinclude.h B.10
dtp_blm /120txfincludercinclude.h B.10
dtp_bnz /120txfincludefrcinciude.h B.10
dtp_bnzr /120txfinclude/rcinclude.h B.10
_bnzrs /120tx/include/rcinclude.h B.10
_bnzs /120t/include/frcinclude.h B.10
dtp_bpc /120txfinclude/rcinclude.h B.10
dip_bpcx /120tx/include/rcinclude.h B.10
dtp_bru /120txfinclude/rcinclude.h B.10
dtp_brur 120x/include/reinclude.h B.10
dtp_brurs /120tx/include/reinciude.h B.10
dtp_brus /120tx/include/frcinclude.h B.10
dtp_brz /120tx/include/frcinclude.h B.10
dip_bex /120tx/include/rcinclude.h B.10
dtp_brzrs /120tx/include icinclude.h B.10
dip_brzs /120tx/include/reinclude.h B.10
dip_dot /120txfinclude/reinclude.h B.10
dtp_elm /120tx/include/reinclude.h B.10
_end /120tx/includefreinclude.h B.10
dip_fov /120 /include/reinclude.h B.10
dtp_fovr /120 finclude/rcinclude.h B.10
dtp_fovrs /120t /include/rcinclude.h B.10
dip_fovs /120tx/include/rcinclude.h B.10

dip_gdc /120tx/include/reinclude.h B.10

292

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Macro Name

dip_gdci
dip_gdcir

dtp_imi
dtp_Imir
dtp_lmirs
dtp_lmis
dip_lod
_lodr
_lodrs
dtp_lods
dip_twd
dtp_lwdr
_lwdrs
dip_lwds
dip_mml
_mmpre
dtp_mmpst
dtp_mwd
_nge

dtp_oio

DUMP_DART_BUFFER
ERRMSG
EXCHANGE_DATA
EXCHANGE_DATA_SIM

EXCHANGE_FLEA_DATA

FIND_LM
FLTOFX
FREE_LM_CACHE

Location

/120txfinclude/reinclude.h
/120tx/includefrcinclude.h
/120x/include/reinclude.h
/120txAinclude/rcinclude.h
/120tx/include/rcinclude.h
/120txfinclude/rcinclude.h
/120tx/include/reinclude.h
N20ofinclude/rcinclude.h
/120tx/include/reinclude.h
/120t finclude/rcinclude.h
/120txfinclude/reinclude.h
/120tx/includefreinclude.h
/120txfinclude/reinclude.h
/120txfinclude/rcinclude.h
/120x/include/reinclude.h
/120tx/include/rcinclude.h
/120x/include/rcinclude.h
/120x/includefrcinclude.h
/120txfinclude/rcinclude.h
/120tx/include/rcinclude.h
/120tx/include/rcinclude.h
/120tx/include/frcinclude.h
/120t fincludefrcinclude.h
/120txfinclude/reinclude.h
/120tx/include/rcinclude.h
/120txfinclude/rcinclude.h
/120 /include/rcinclude.h
/120tx/include/rcinclude.h
/120tx/includercinclude.h
/120x/include/rcinclude.h
/120txfinclude/rcinclude.h
/120tx/include/rcinclude.h
/120txfinclude/rcinclude.h
/120x/include/rcinclude.h
/120tx/include/rcinclude.h
/120tx/include/rcinclude.h
/120tx/include/reinclude.h
/120tx/include/rcinclude.h
/120tx/include/rcinclude.h
/120tx/include/frcinclude.h
/120tx/include/rcinclude.h
/120tx/include/frcinclude.h
/120x/include/rcinclude.h
/120tx/finclude/rcinclude.h
/120tx/include/rcinclude.h
/120txfinclude/rcinclude.h
/120txfinclude/rcinclude.h
120tx/finclude/rcinciude.h
/120tx/include/rcinclude.h
/120txfinclude/rcinclude.h
/120tx/include/functions.h

/120tx/source/gen_dtp/rcfuncs.c

/120x/include/functions.h
/120tx/include/functions.h
/120tx/include/functions.h
/120tx/include/functions.h
/120tx/include/functions.h
/120txfinclude/bx_macros.h

Section
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18

293

BBN Systems and Technologies

120TX/T CIG HOST CSCI

Macro Name
FXTO881

FXTOFL
GET_CHORD_END
GET_DB_POS
GET_LB_FROM_LM
GLOB
INCR_COMPONENT
INIT_MTX
MALLOC
NEW_ROUND
NEW_STAT_VEH
OPEN_EXCHANGE
OPEN_FLEA_DATA
PAGE_FORMAT
poly_ab

poly_bvc

poly_efs

poly_efsr

poly_flu

poly_fsw

ROOMALABEL
ROOMCHECK
SET_OUT_BITS
SET_OUT_M2BITS
SYSERR

TORAD

toradians
TRIGGER_FORCE
WAIT_FORCE
XCIL.OSE

Location
/120x/include/functions.h
/120x/include/functions.h
/120txfinclude/bx_macros.h
/120tx/include/bx_macros.h
/120txfinclude/bx_macros.h
/120wx/include/ememory_map.h, memory_map.h
/120tx/source/gen_dtp/refuncs.c
/120 finclude/functions.h
/120tx/include/bx_defines.h
/120txfinclude/bx_macros.h
/120txfinclude/bx_macros.h
/120tx/include/functions.h
/120txfinclude/functions.h
/120ex/source/gossip/gos_bal_query.c
/120txfinclude/reinclude.h
/120xfinclude/reinclude.h
/120x/include/reinclude.h

/120 finclude/rcinclude.h
/120txfinclude/rcinclude.h
/120tx/include/reinclude.h
/120x/include/reinclude.h
/120xfinclude/rcinclude.h
/120x/include/rcinclude.h

/120 finclude/reinclude.h
/120tx/include/reinclude.h
/120txfinclude/rcinclude.h
/120x/include/rcinclude.h
/120txfinclude/reinclude.h
N20tx/include/rcinclude.h
/120tx/include/rcinclude.h
/120x/include/rcinclude.h
/120tx/include/rcinclude.h
/120txfinclude/rcinclude.h
/120tx/include/rcinclude.h
/120tx/include/rcinclude.h
120tx/include/rcinclude.h
/120tx/include/rcinclude.h
/120tx/include/rcinclude.h
/120xfinclude/rcinclude.h
120tx/finclude/rcinclude.h
/120tx/include/reinclude.h
/120tx/include/rcinclude.h
/120tx/source/gossip/gos_memory.c
/120tx/source/gossip/gos_memory.c
/120tx/source/gossip/gos_memory.c
/120tx/source/gossip/gos_memory.c
/120tx/force/force_defines.h
/120txfforce/force_defines.h
/120tx/source/gen_dtp/rcfuncs.c
/120/source/gen_dtp/rcfuncs.c
/120xfinclude/definitions.h
/120x/include/definitions.h
/120tx/include/functions.h
<multiple files; see section B.45 for list>
/120tx/source/source/make_bbn.c
/120tx/include/functions.h
/120tx/include/functions.h
/120tx/include/definitions.h

Section

B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27

294

BBN Systems and Technologies 120TX/T CIG HOST CSCI

Macro Name Location Section
XLSEEK /120 /include/definitions.h B.50
XOPEN /120wx/include/definitions.h B.51
XREAD /120tx/include/definitions.h B.52
XWRITE /120txfinclude/definitions.h B.53

295

BBN Systems and "~chnologies 120TX/T CIG Host CSCI
INDEX BY SECTION NUMBER

2-D Overlay Compiler [120TX systems only] 224
aam_malloc 22.1.1.1
aam_manager.c 2.2.1.1
aa_init.c (active_area_init) 22.3.1
apinit 2.1.1.1
b0_aam_centroid.c 25.2.1
b0_aam_sw_comer.c 2522
b0_add_static_vehicle.c 2523
b0_add_traj_table.c 2524
b0_bal_config.c 25.25
b0_bvol_entry.c 2526
b0_cancel_round.c 2527
b0_cig_frame_rate.c 2528
b0_database_info.c 25.29
b0_delete_static_vehicle.c 25.2.10
b0_delete_traj_table.c 25.2.11
b0_dummy.c 25.2.12
b0_error_detected.c 25.2.13
b0_inapp_message.c 25.2.14
b0_Ilm_read.c 25.2.15
b0_model_directory.c 25.2.16
b0_model_entry.c 25.2.17
b0_new_frame.c 25.2.18
b0_print.c 2.5.2.19
b0_process_chord.c 2.5.2.20
b0_process_round.c 25.2.21
b0_round_fired.c 25222
b0_state_control.c 25.2.23
bO0_status_request.c 25224
b0_traj_chord.c 25225
b0_traj_entry.c 2.5.2.26
b0_undefined_message.c 25227
Ballistics Interface Message Processing 25.2
Ballistics Intersection Calculations 253
Ballistics Mainline 25.1
Ballistics Message Queue Processing 254
Ballistics Processing (BALLISTICS) CSC 25
bal_get_db_pos.c 24.1
bal_get_Im_grid.c 242
bal_routines.c 2232
bbnctype.c 2212

Index-1

BBN Systems and Technologies 120TX/T CIG Host CSCI
bit_blt.c (setup_bit_blt) 224.1
blank 2.6.16.6
bootup_slave133 22.3.26.4
bus_error 223254
bus_error.asm 2233
bus_error_w 2.2.3.25.5
bx147_main.c (main) 25.1.1
bx_bvol_int.c 2.5.3.1
bx_chord_intersect.c 2532
bx_delete_round 25.3.3.2
bx_delete_stat_veh 2.5.3.3.10
bx_dist_sq_pt_line 25.33.11
bx_free_lm_cache 2.5.3.3.6
bx_functions.c 2533
bx_get_chord_end 25334
bx_get_db_pos 2.5.3.3.3
bx_get_lb_from_lm 25338
bx_get_Im_data.c 2534
bx_get_Im_grid.c 2535
bx_init.c 2.5.1.2
bx_model_int.c 2.5.3.6
bx_new_bvol 2.5.335
bx_new_poly 25337
bx_new_round 2.5.3.3.1
bx_new_stat_veh 2.5.3.3.9
bx_poly_int.c 2.5.3.7
bx_reset.c 2538
bx_task.c 25.13
bx_trajectory.c 2.5.39
cal.c 2234
calc_paths 22.1.16.2
check_sum 2.2.3.25.11
CIG Host Mainline (UPSTART) CSC 2.2

CIG Software Structure 1.3
CIG-SIM Communication 1.2
cig_2d_setup.c 2242
cig_comp_2d.c (compile_2d) 2243
cig_config 22.13.1
cig_config.c 2213
cig_getm_2d.c (get_msg_2d) 2244
cig_link_2d.c (linkup) 2245
comp.c (setup_comp_start) 2246
compare_buffers 2842

BBN Systems and Technologies 120TX/T CIG Host CSCI
concat_mtx.c 22.14
confignode_setup.c 22.15
CSC Descriptions 2

ctoi 2.2.3.25.14
cup 2.6.16.1
Database Feedback (ILOCAL_TERRAIN) CSC 24
Database Management (ROWCOL_RD) CSC 23
data_type.c 28.1
db_mcc_setup.c 2235
dcode_drllw 2.6.15.5
debug_initdr.c 2236
ded_model_trace.c 2237
Disk Space Requirements 3.1
display 26.1.2
display_packet 2.6.153
double_bot 26.164
double_off 2.6.16.5
double_top 26.16.3
download_bvols.c 2238
dr 22391
drc 2239
draw_line.c (setup_draw_line) 2247
dr_is_okay 22392
DTP Command Generator 222
dtp_compiler.c 2221
dtp_emu 26.1.1
dtp_emu.c 2.6.1
dtp_funcs.c 2222
dtp_malloc 22225
dtp_malloc_init 22226
dtp_travl.c 2223
dtp_trav2.c 2224
dynamic_aam_init 22.1.14
exception.asm 28.2
excep_init 238.2.1
file_control.c 223.10
fill_tree 22.16.1
fill _tree.c 2216
find_fn.c 22.3.11
flea.c 27.1
flea_decode_data.c 272
flea_encode_data.c 273
flea_init_cig_sw.c 274

Index-3

BBN Systems and Technologies

120TX/T CIG Host CSCI

flea_update_pos.c

Force Processor (FORCE) CSC [120TX systems only]

force.asm
forcetask.c
free133
free_configtree
ftoh

fxbvtofl
fxbvtofl.c
fxbvtofl_020
fxbvtofl_dart
generic_lm
generic_lm.c
getch.c

getimdp
getmatrix
getside
get_binary_data
get_char
get_lm
get_record
get_thing.c
gossip

gossip.C
gos_120tx.c
gos_atp.c
gos_bal_query.c
gos_db_query
gos_db_query.c
gos_display_db_info
gos_drl1_query.c
gos_flea_if.c
gos_flea_options.c
gos_fly.c
gos_locate.c
£0S_memory.c
gos_model.c
gos_polys.c
gos_single_step
gos_system.c
gsp_io.c
gsp_ioctl_read
gsp_ioctl_write

2.7.5

2.8

283
284
25.14.2
22133
2.6.1.6
2.2.3.12.1
223.12
223.123
223.12.2
23.1.2
23.1
22.1.7
23.2.1
2.2.3.19.10
23.2.2
2.2.3.25.12
2.23.25.13
2.6.19
2.2.3.25.8
22438
2.6.15.2
2.6.15
2.6.2
263
264
26.5.1
2.6.5
2.6.5.2
2.6.6
2.6.7
2638
2.6.9
2.6.10
26.11
2.6.12
2.6.13
2.6.15.6
26.14
285
2834
2833

BBN Systems and Technologies 120TX/T CIG Host CSCI
gsp_load.c 223.13
gsp_read 2.8.3.2
gsp_write 2.8.3.1
gun_overlays.c 223.14
hexdisplay 26.15
How This Document Is Organized 14

htof 26.1.7
hw_test.c 223.15
hxflt 26.14
id_4x3mtx 22.3.19.6
id_matrix 2.2.3.17.6
init_configtree 22.13.2
init_dtp_stacks 22224
init_generic_lm 2.3.1.1
init_ports 2835
init_stuff.c 2249
Introduction: CIG Host CSCI 1
load_dbase.c 2.2.3.16
load_modules 23.24
load_modules.c 232
local_terrain 2432
loc_ter.c 243
ml_gun_overlay 223141
m2_gun_overlay 223.14.2
main 2.2.3.26.1
main 23.3.1
main 2431
main 2.6.15.1
main 284.1
make_bbn.c 22317
make_cal_overlay 2.2.3.18.1
make_m1l_overlays 2.2.3.14.3
make_m2_overlays 2.2.3.144
make_p_nt 2.2.3.19.1
matrix2 2.2.3.19.11
mat_dump.c 2218
mat_mult 26.1.8
Memory Requirements 32
mkcal.c 223.18
mkmtx_nt.c 2.2.3.19
model_mtx.c 223.20
mtxcpy 2.2.3.19.12
multmatrix 22.3.17.5

Index-5

BBN Systems and Technologies 120TX/T CIG Host CSCI
mult_4x3mtx 2.2.3.19.9
IMX_error.c 254.1
mx_open.c 2542
mx_peek.c 2543
mx_push.c 2544
mx_skip.c 2545
mX_wcopy.c 2.54.6
nmi_type.c 28.6
open_dbase.c 22321
open_ded.c 22322
outdisplay 26.13
oval_rect.c (setup_oval_rectangle) 22410
overlay_setup.c 2219
parser 22.1.12.6
pix_mult 223.18.2
poll_ready.c 2.8.7
poiy.c (setup_poly) 224.11
pop_node 22222
power 22.16.2
process_vflags.c 22.1.10
Process_vppos.c 22.1.11
proc_cmd.c (process_command) 224.12
prt_mtx 223.17.1
push_node 22221
gassign 2.1.1.2
rdmat_dump 22.18.1
rdvec_dump 2.2.1.15.1
r8mat_dump 221.8.2
r8vec_dump 22.1.15.2
rcfuncs.c 2225
rcl_command 2.2.25.11
rcl_component 22.25.12
rcl_data 222513
rcl_init_adrs 22256
rcl_init_stack 2.2.25.1
rcl_lblemd 2.2.25.10
rcl_patch_adrs 22254
rcl_pop 22253
rcl_push 22.25.2
rcl _rtn_adrs 2.2.2.5.7
rcl_set_cntlbl 22259
1cl_set_errptr 22255
rcl set_label 22258

Index-6

BBN Systems and Technologies 120TX/T CIG Host CSCI
rcl_stuff_data 22.2.5.14
read_configfile 22.1.12.1
read_configfile.c 22.1.12
read_stuff.c 2.8.8
read_watch 2.2.3.25.2
Real-Time Processing 223
REALA_fscanf 2.2.1.124
Resource Utilization 3
restore_cur 2.6.16.8
return_aam_ptr 22.1.1.2
rotate_x 2.2.3.17.2
rotate_x_nt 2.2.3.19.2
rotate_y 223.173
rotate_y_nt 2.2.3.19.3
rotate_z 223174
rotate_z_nt 2.2.3.194
rowcol_rd 2332
rowcol_rd.c 233
rt.c 2.1.1
save_cur 2.6.16.7
scale_mtx 2.2.3.19.7
scroll_reg 2.6.16.9
send_data 2.2.3.259
sgr 2.6.16.2
mulation.c 2.2.3.23
"-vel33_functions.c 2514
+¢133_malloc 25.14.1
d 2.2.3.25.7
. _int 2.8.22
S -d-Alone Host Emulator (FLEA)CSC 2.7
st: watch 2.2.3.25.1
stc 2 2.2.3.24
sto watch 2.2.3.25.3
st 2.c (setup_define_string) 22.4.13
STRING_fscanf 2.2.1.12.5
string_to_int 2.2.1.12.3
support.c 22325
swap_axis 2.2.3.195
sys-up_off 2.2.3.25.17
sysrup_on 2.2.3.25.16
systemn 2.2.3.25.6
syst.-1_aam_init 22.1.13
s_step 26.154

Index-7

BBN Systems and Technologies 120TX/T CIG Host CSCI
Task Initialization (RTT) CSC 2.1

tassign 2.1.1.3
templates_init 2.2.3.26.2
test_gsp.c 2.89

text.c (setup_text) 22414
The CIG 1.1.2

The Simulation Host 1.1.1

The Simulator 1.1
translate 2.23.19.8
unbf_getchar 2.23.25.15
update_fov 2.2.1.13.1
update_fov.c 22.1.13
update_rez.c 221.14
upstart 2.2.3.26.3
upstart.c 2.2.3.26
User Interface (GOSSIP) CSC 2.6
vec_dump.c 2.2.1.15
ver_data 2.2.3.25.10
Viewport Configuration 2.2.1
viewport_init 22.1.16.3
viewport_setup 2.2.1.16.1
viewport_setup.c 2.2.1.16
viewspace_mtx 2.2.1.132
vt100.c 2.6.16
whatdirptr 2323
what_node_on_stack 22223
window.c (setup_define_window) 2.2.4.15
WORD_fscanf 221.12.2

