
AD-A244 957AARD-AR-302

A AARD
ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT
Z RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE

AGARD ADVISORY REPORT 302 1 '

Technical Evaluation Report
on the
Guidance and Control Panel D
52nd Symposium
on
Software for Guidance and Control
(Les Logiciels de Guidage et de Pilotage)

1w u;miae nd~ntg ('tr i'anel. 520 .sloi l .osito wav held at the Ielexpo.
/ hesaloiki, (;re('efrnt 7th to 10th Alay /191, Allpalenrxpretsntcd
ft the ,mIpot .iW u '' 'oiv 4 t tpiled a.s C tfentce lmceeling.i (I' .03.

-- NORTH ATLANTIC TREATY ORGANIZATION

Ih II ,-777I_

Published December 1991

DIstrbutlon and Avallabi~fy on Bac* Cover

AGARD-AR-302

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT
7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE

AGARD ADVISORY REPORT 302 Accesi10,1
NTIS Civ.

Technical Evaluation Report DTiC i <

on the
Justc.

' ',
Guidance and Control Panel
52nd Symposium D,o
on A, ,' . .

Software for Guidance and Control Dist '

(Les Logiciels de Guidage et de Pilotage)

, "0"

by

Mr Donald E. Dewey
Chief, Research Planning and Administration
Boeing Military Airplanes
Box 3707, MS 4C-15
Seattle, WA 98124 92-01620
United StatesIII IIn l i

The Guidance and Control Panel's 52nd Symposium was held at the Helexpo,
Thessaloniki, Greece from 7th to 10th May 1991. All papers presented
at the Symposium were compiled as Conference Proceedings CP 503.

" _ North Atlantic Treaty Organization
- -- Organisation du Trait6 de I'Atlantique Nord

92 1 17 '4 0,
!

,

The Mission of AGARD

A cording to its Charter. the mission of AGARD is to bringtogether the leading pe,,onalitic, of the NATO nations m tie fielsof scnce and technology relating to aerospace for the following purposes.

- Recommendig effective ways for the member nations to use their research and development capabilities for the
common benefit of the NATO community,

- provding socntific and technical advice and asistance to the Military Committee in the field of acropace research and

development (with particular regard to its military application),

- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defeice posture;

- Improvng the co-operationamong member nations in aerospace research and development;

- Exchange of scientific and technical information:

- Providing assistance to member nations for the purpose ot increasing their %cientific and technical potential:

- Rendering %cientific at technical assistance, as requested, to other NATO bodtes and to member nations in connection
with research and development problems in the aerospace field.

The highest authority withi AGARD is the National Delegates Board consisting of officially appointed senior representatives
from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed
by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme The
results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of
publications of which this is one

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced
dirctly from material supplied by AGARD or the author.

lublished December 1991

Copyright 0 AGARD 1991
All Rights Reserved

ISBN 92-835-0647-2

Printed by Spectahsed Prining Sence5 Limited
40 Chigwell Lane, Loughton, Essex IGIO 3TZ

, ni

Preface

Software is of increasing importance in guidance and control systems and indeed in many cases is the pacing item in
development. Guidance and control software, while embracing a wide range of software, has emphases which include high
integrity considerations, hard real-time constraints, the implications of a still evolving hardware and systems architecture, and
the need to meet delivery schedules with high productivity under the constraints of onerous customer requirements for
documentation and visibility, and in the light of strong defence and air worthiness standards and requirements. Time schedules
are frequently short since much guidance and control software is required early in the flight testing, and typically software
development is undertaken in the context of still evolving requirements and developing programme phases.

The software climate in which this takes place is one in which there is a general trend towards high level languages, integration of
support tools, introduction of mathematical formalisms into the design and verification processes, control of software sizing
and better cost estimating, and frequently a rapid tuinover of programmers.

There is often a wide gap between concept and practice, and organizations will succeed which can bridge the gap effectively,
bnnging modern methodologies, well supported by sofssare tools, to bear on the problem and understanding how to apply
these methodologies and use the tools.

To assist this understanding the symposium covered general requirements on the software, software requirements capture,
design methods and support environments for real-time software, coding techniques, and verification validation and
certification.

Pr6face

Les logiciels rev~tent de plus en plus d'importance dans ls systimes de guidage et de pilotage. En effet, le logiciel est souvent
I'6liment critique pour le ddvcloppement des syst~mes

Bien qu'il existe une large gamme de logiciels de guidage ct de pilotage,]'accent est mis principalement sur les considerations
suivantes: la haute mtdgrit6, les contraintes temps rel du matnel, les consdquences de levolution permanente des
architectures systi:mes et mat6riel, le respect des dlais de livraison pour des volumes de production dlev6s, la demande
ondreuse de documentation de la part du client, les contraintes d'intelhgbiht du logiciel, et la rigueur des sp,;cifications Ct
normes militaires et a6ronautiques. Les dlais sont souvent courts, puisque bon nombre des logiciels de guidage et de pilotage
sont demandes ds la premlire phase des essais en vol; typiquement, le logiciel est cre pendant que les besoins continuent i%
6voluer dans le contexte des diffirentes phases 6volutives du programme.

Lenvironnement logiciel de (c processus cst caracttris6 par les langages 6volu~s, l'int6gration des outils de dfveloppement,
;'mploi de formalismes mathmatiques dans les m6thodes de conception et de verification, le contr6le du dimensionnement
des logiciels, Ia recherche d'une meilleure estimation des coats et le renouvellement frquent des piogrammeurs.

I1 existe souvent un grand pas a franchir pour passer du concept la pratique. Les organisations qui r6ussiront i I'avenir seront
celles qui sauront franchir cc pas de fagon efficace, en se servant de methodologies modernes, bien appuy6es par des outils de
d6veloppement, et qui auront compris I'application de ces m6thodologies et la mise en oeuvre de ces outilsL
Afin de faciliter cette comprehension, le symposium a examin6 ls sujets suivants. conditions g6nerales requises pour les
logiciels, diaboration des sp6cifications, mithodes de conception et environnements de soutien pour les logiciels temps rel,
techniques de codage, et srification, validation et certification.

L ~ .11 ~.

Guidance and Control Panel

Chairman: Dr E B Stear Deputy Chairman: Mr S. Leek
Corporate Vice President Scientific Adviser
Technology Assessment British Aerospace (Dynamics) Ltd, PB 256
The Boeing Company PO Box 19
PO Box 3707 Six Hills Way
Mail Stop 13-43 Stevenage
Seattle, WA 98124-2207 Herts SG I 2DA
United States United Kingdom

TECHNICAL PROGRAMME COMMITTEE

Chairman: Professor J T Shepherd UK

Members: Dr Andre Benoit BE
Mr B.Jaeger FR
Mr UK. Krogmann GE
Lt F Hatzivasilou GR
MrK.A.Helps UK
Mr S Haaland US
DrJ Niemela US
Dr E Zimet US

HOST PANEL COORDINATOR

Lt Fivos Hatzivasilou
Hellenic Air Force
Technology Center (KETA)
Terpsithea Post Office
16501 Glyfada, Athens
Gicece

PANEL EXECUTIVE

Commandant M. Mouhamad, FAF

Mail from Europe: Mail from US and Canada:
AGARD-OTAN AGARD-NATO
Attn. GCP Executive Attn: GCP Executive
7, rue Ancelle Unit 21551
F-92200 Neuilly sur Seine APO AE 09777
France

Tel- 33(1)47 38 57 80
Telex- 610176 (F)

Telefax- 33(1) 47 38 57 99

ACKNOWLEDGEMENTS/REMERCIEMENTS

The Panel wishes to express Its thanks to the Gicek National Delegates to AGARD for the invitation to hold this meeting in
their country and for the facilities and personnel which made the meeting possible

Le Panel tient it remercier les D616gu~s Nationaux de la Grice pris IAGARD de leur invitation A tenir cette r6union dans
leur pays et de la mise a disposition de personnel et des installations n6cessaires.

4 -- - -. is - - -

Contents

Page

Preface/Preface iii

Guidance and Control Panel and Programme Committee iv

1.0 Introduction 1

2.0 Symposium Program

3.0 Review of Symposium Sessions 3
3.1 Session I Tools and Method, from a User's Viewpoint 3
3.2 Session 11 General Requirements on Software 5
3.3 Session III Integrated Programmes Support Environments 7
3.4 Session IV Software Requirements 10
3.5 Session V Design Methods for Real-Time Software 13
3 6 Session VI ADA Applications 18
3.7 Session VII Automated Software Generation Approaches 22

4.0 Conclusions and Recommendations 26

Appendix: Participant Evaluation of the Symposium 29

'4,

V!

_ _ _ _v,

THE 52ND GUIDANCE AND CONTROL PANEL

TECHNICAL EVALUATION REPORT

by

Mr. Donald E. Dewey

Chief, Research Planning and Admistration

Boeing Military Airplanes

Seattle, Washington U.S.A.

'..0 INTRODUCTION

The 52nd Guidance and Control Panel (GCP) Symposium was held in Thessaloniki, Greece from

May 7 to May 10, 1991. The symposium was on the important subject of "Software for Guidance and

Control."

As stated in the announcement made for this symposium, "software is of increasing importance in

guidance and control (G&C) systems and indeed in many cases is the pacing item in development." This

importance is characterized by the need for G&C software to meet the highest standards of flight safety, meet

hard real-time operational constraints, be responsive to the evolving hardware and system architectures, and

still meet stringent delivery schedules in a cost-effective way. The 52nd GCP Symposium was structured

to address these challenges and the various approaches being taken to meet them.

To meet these challenges, there is a strong movement towards using high-level languages (especially

Ada); domain specific support tools; mathematical formalisms in the design and verification processes; and

methods to manage the development cost, schedules, and integrity of the system software.

The most notable conclusion drawn by most attendees was that support tools and methods for

improving software integrity and software development productivity are becoming available and are

effective.

2.0 SYMPOSIUM PROGRAM

This symposium was organized in seven technical sessions, each preceded by introductory remarks

by the session chairman.

Session I, Tools and Methods From a User's Viewpoint, contained two papers which surveyed the

tools and methods available for software design in general, and the tools and methods considered for the EFA

project in particular.

2

Session II, General Requirements on Software, contained three papers which included a comparison

of the United States DOD-STD-2167A military standard and the RTCA DO-178A/CUROCAE ED-12Acivil

aircraft standard, a description of a requirements and traceability management tool, and a discussion of a

coprocessor approach to relieving the overhead burden in real-time, software systems.

Session III, Integrated Programmes Support Environments, contained four papers which discussed

the features of various software development support environments. Included in the discussions were the

VISA, GALA/GALI, BVA, VISA, PLAS, and AGLAE workstations, and a modular, multipurpose

command and control workstation.

Session IV, Software Requirements, contained three papers which concentrated on methods to

improve software productivity and verify correctness. Two of the papers described the formal methods

approach and one paper described a unified software specification development and simulation process

method.

Session V, Design Methods for Real-Time G&C Software, contained six papers that described

different methods for developing real-time G&C software. Included in the methods were a system called

network programming (a decentralized approach), a data-oriented requirements implementation scheme

called DORIS, and a commercially available tool set called DSP-CITpro. Also, in this session, were papers

on how the predictive functional control technique has been used to design control laws, and a paper on the

U.S. Naval Weapons Center Analyst Workbench, which is used to analyze large quantities of flight test and

simulation test data.

Session VI, Ada Applications contained five papers which described the experiences and "lessons

learned" after using Ada on various programs. The programs included the RAFALE avionics system, an

experimental Lynx helicopter flight control system, and the EFA pilot ejection control and seat sequencer

systems. Also, included in this session, were papers on the CAMP program and on a United Kingdom study

to evaluate the suitability and problems of using Ada language in flight safety critical systems.

Session VII, Automated Software Generation Approaches, contained four papers on the research and

findings of the NATO/AGARD G&C Panel Working Group 10 (WG 10). WG 10 began investigating

automated software generators in 1988 as a means to reduce the impact of software development time,

technical risk, and complexity on G&C system development programs. WG 10 defined and investigated four

approaches to software generation: reusable software modules, expert systems, program transformation

techniques, and fourth generation languages. A report on the findings of WG 10 will be published later this

year (1991).

3.0 REVIEW OF SYMPOSIUM SESSIONS

3.1 SESSION I: TOOLS AND METHODS FROM A USER'S VIEWPOINT

Chairman: Professor J. T. SHEPHERD, (UK)

Paper 1: A Survey of available tools and methods for software requirements capture and design

D. THEWLIS, GEC-Marconi Ltd., Stanmore, Middlesex, UK

This paper discusses the basic problem of capturing the real requirements of a system design. The

current requirements capturing methods used at GEC are the Mascot, Jackson System Design (JSD), and

Yourdon.

GEC uses four requirements capturing methods: Teamwork and Software Through Pictures

(Yourdon-type methods) and Speedbuilder and PDF (Jackson-type methods). According to GEC, the

problem with these methods is that they assume all the requirements are known and a top-down design can

be made. However, they have found that if the tools are used in a strictly top-down way (defining the top-

level requirements, then decomposing down to lower requirements) the resulting lower level designs are poor

and do not meet the desired quality standards. The lower level design process failed because the requirements

were incomplete and changed throughout the program. The solution they used was to use a bottom-up design

approach and use the tools as a method for recording and maintaining the system design.

Shortcomings in their approach may be overcome by the newer object-oriented design methods, the

author believes. For this reason, the European Space Agency has developed the HOOD, a hierarchical object-

oriented design method, that has been adopted by the European Fighter Aircraft consortium. Tool sets are now

being developed for the HOOD method.

Paper 2: Tool supported software development--experiences from the EFA project.

W. M. FRAEDRICH, BMVg, Bonn, GE

This paper describes what software development standards and methods were agreed upon for the

EFA program by the multinational participants. The selection of standards had to be worked out jointly, since

one nation could not unilaterally impose standards on other participating nations. The process followed by
the participants was to, first, find the "lowest common denominator" of standards being used by the
participants and, then, establish agreements as necessary on the remaining standards.

L '

4I

Early in the EFA program four documents, called the Requirements of the Officials, established the

guiding requirements for the program. They were:

a. European Staff Target (EST, 11.10.84) which specified the use of a common high-order language.

b. European Staff Requirement (ESR, 09.12.85) which identified Ada as the preferred high-order language

and stated that the Ada programming support environment (APSE) should be used, if available.

c. European Staff Requiremnt for Development (ESR-D, 19.09.87) which specified when exceptions to Ada

or the tools were permitted and who could approve waivers.
d. Weapon System Design and Performance Specification (WSDPS, 01.10.88) which specified that the

software should be developed using a software development environment (SDE) and the SDE shou!d

include the CORE/EPOS and other tools agreed upon by the customer.

In early 1988, Eurofighter Company presented the results of a study showing Ada could be used in

all safety critical applications. The study showed that the reliability of Ada programs is comparable to that

of assembler programs (if not greater), "if any restriction on the use of the Ada language is strictly adhered

to (SAFE Ada) and the static code analyses at source code level is made." This finding led the EFA program

to accept Safe Ada for use in the flight critical portions of the EFA software program.

The system design environment select d for the EFA (EFA SDE) includes:

a. CORE/EPOS for system design.

b. HOOD toolset for software design.

c. SPARK examiner for static code analyses.

d. TESTBED for dynamic tests/analyses.

e. XD-Ada for Ada compiler.

f. IPSE based on perspective

The authors believe that the system design tools are the most critically needed. However, some of

the EFA project particpants worked for a long time without the tools, due to time-consuming delays in

obtaining license agreements and a clear definition of the participants' needs. The CORE/EPOS tool is still

not developed sufficiently for all members of the multinational group. The HOOD tool has been available

since December 1990 and will be used. The Ada compiler for the standard 68020 microprocessor is available

and functioning. The SPARK examiner and TESTBED tools have been available since Novemeber 1990.

Updates are required, but this does not seem to pose a problem.

• i

5 1

REVIEW OF SESSION I:

D. Thewlis highlighted one of the major problems in the process of developing guidance and control

software: identifying and capturing the full system requirements at the beginning of the program. As he points

out, total system requirements are not known at the beginning of a program (or for that matter, for much of

the earlier portions of a program), but, often, many of the lower details of the system are known. So why not

design the lower design details while defining the total system and then fit the pieces together at a later time?

The suggestion was generally accepted by the symposium attendees.

W. Fraedrich's position oi the acceptability of "Safe Ada" (restricted language set and other

conditions) for use in flight safety critical applications was challenged by some symposium attendees.

However, sound reasons for not accepting the position of W. Fraedrich were not given, but there are differing

opinions on the suitability of Ada in flight critical applications, depending on the company affiliation and,

at times, the technical discipline.

3.2 SESSION II: GENERAL REQUIREMENTS ON SOFTWARE

Chairman: Mr. S. HAALAND, (US)

Paper 3: Military and civil software standards and guidelines for guidance and control

K. W. WRIGHT, Smiths Industries Aerospace & Defence Systems, Cheltenham, UK

This paper compares the two widely used standards covering the development of software in the

military and civil avionics industries. These two standards are the United States DOD-STD-2167A military

standard and the RTCA DO-178A/EUROCAE ED-12A civil aircraft standard. This comparison is of

considerable interest due to recent attempts to show the degice of transferability of systems certified under

one standard to the other.

First, the authors point out the differences in scope of the two standards. The purpose of DOD-STD-

2167A is to provide a procurement specification for deliverable software in the form of computer software

configuration items. RTCA DO-178B describes the software development and management methods and

techniques that are to be used in the development of systems. Because the DOD standard is principally a

procurement standard, there are detailed requirements for the software development documentation required

as deliverables. The guidelines of the RTCA civil standard are aimed at giving the certification authorities

the assurance that the software has been developed per the regulations and, as such, there are no formal,

specified formats required for the documentation.

IF i 1 m1 ml| 1

6

In summary, the author concludes that the documentation and certification of the software provided

under the DOD standard can be used to satisfy the RTCA rivil standards, if the additional documents required

by the RTCA standard, such as the Accomplishment Summary and the Quality Assurance Plan, are provided.

On the other hand, it is highly unlikely that the information and process following the RTCA standard will

b- acceptable for military aircraft, due to the documentation flexibility permitted by the RTCA standard.

Paper 4: Requirements traceability and management.

G. M. CROSS, Marconi Underwater Systems Ltd., Addlestone, UK

This paper describes how a new system development support tool was developed and used at

Marconi Underwater Systems Limited. The new tool, called the RTM (requirements and traceability

management), is used to capture the system requirements at the requirements capture portion of the program

(which may span more time than just the requirements analysis portion of the program). The RTM is then

used throughout the system design, coding, unit test, software integration, and acceptance portion of the

program.

The RTM does not take the place of other analysis, design, coding, configuration, or do-umentation

tools. RTM does provide a frame of reference during the other phases of the development program, providing

a basis for some degree of testing the particular stage of the system development for compliance to the system

requirements.

Paper 5: Coprocessor suppcrt for real-time ADA.

R. K. PAGE, Naval Weapons Center, China Lake, CA, US

This paper proposes that system designers of real-time systems like those encountered in guidance

and control systems should consider using a coprocessor configuration to:

a. Relieve the main program tasking processor of some of the overhead burden of time and task management.

b. Provide adequate granularity for the representation of time.

c. Provide sufficient range for the representation of time.

REVIEW OF SESSION II:

Mr. K. Wright's report on the recent activity to resolve the differences (or at least to understand them)

L.

7

between the United States and European software standards is timely and important. There is considerable

interest, within the NATO community, in making the two standards more compatible. RTCA DO-178 is

currently being reviewed and updated by the RTCA Special Committee 167 and EUROCAE Working Group

12. The current target date for the completion of this work and publication of the new standard is December

1991.

At the symposium, there was considerable interest in the coprocessor work being conducted at the

Naval Weapons Center in the United States. The coprocessor concept has merit and is being explored as a

means fir meeting the needs of systems requiring high bandwidths. This approach is similar to the transputer

concept. The question was raised about whether or not it would be advisable to include a coprocessor directly

on the same chip as the processor. There are advantages to this concept, but the main disadvantage would be

the loss of flexibility of being able to select any processor and coprocessor type and configuration.

3.3 SESSION III: INTEGRATED PROGRAMMES SUPPORT ENVIRONMENTS

Chairman: Mr. J.B.SENNEVILLE, (FR)

Paper 6: Atelier de developpement de logiciels de pilotage-guidage (Guidance software development

workshop)

D. CAIGNAULT, J. L. LEBRUN, SEXTANT Avionique, Villacoublay, FR

This paper discusses the design features of the VISA, GALA/GALI, and BVA software development

support tools.

VISA (validation interactive de specifications avioniques) supports specification development.

VISA has a graphic interface that simplifies its use and it can check for coherence of the specification through

simulation. GALA (generation automatique de logiciel avionique) and GALI (generation automatique de

logiciel d'interface) contains a "hands-off' automatic code generator that can go from the specification to

code. BVA (le banc de validation avionique) supports the final validation phase. A fourth program, PALAS

(production assistee de logiciel d'application structure) is a configuration management tool that manages the

documentation and data throughout the development cycle.

Paper 7: Atelier de specification/maquetage pour les logiciels de gestion du vol (Software development

workstation)

[" ,

8

H. ROBIN, J-C. MIELNIK, SEXTANT Avionique, Villacoublay, FR

The tools in the software development workstation described by the authors include requirements

capturing and specification debugging (syntax correcting) methods that can support the validation process.

The most interesting tool, however, is the rapid prototyping tool they are using. This tool uses the KEE object-

oriented design language adapted to the guidance and control domain. They are enthusiastic about this

approach, relating time savings from several hours on simple applications to several weeks for more

complicated applications.

While in the process of designing and developing the specification and rapid prototyping tools, they

considered a variety of many different methods and language environments. The paper contains an

informative discussion of the pros and cons of the OOA, SART, ESTEREL, LUSTRE, and HMS

specification integration methods and of the comparative usefulness of the Ada, LISP, KEE, Fortran, and C

languages in the rapid prototyping tool.

Paper 8: AGLAE-Atelier de genie logiciel de l'aerospatiale, division engins (Aerospace software engineer-

ing works)

J. HAMON, F. BOIS, M. VAZEILLES, D. MOUSSEAU, F. Y. VILLEMIN, AEROSPATIALE, Service El

ETEL, Chitillon s/Bagneux, FR, CNAM-CEDRIC, Paris, FR

This paper describes the AGLAE software environment developed by Aerospatiale for designing

aircraft control systems.

AGLAE is an automated system with an expert system to assist the user in designing a control system

by traditional methods. The rule base of the AGLAE expert system contains rules reproducing the traditional

knowledge of control system design as represented in the AEROSPATIALE E/ETEL. A "fact" base for the

expert system contains:

a. A database about the characteristics of the hardware components to be used in the control system.

b. Facts about the control system being designed.

c. The requirement specification of the control system showing the detail of its loops and external inputs/

outputs with all the detail of the algorithms of the system control laws.

Item "c" is then enriched in detail as the design progresses. At the end of this process, there will be

sufficient detail about the cyclic tasks with their timeframes, the input/output funtL.,ons, and the hardware

- -~-----.- ------------ .-

?~~

configuration chosen from components in "a" to move on to the coding phase of the development cycle.

AGLAE is hosted on a SUN 3/260 workstation and the UNIX environment with the support of the

expert system generator KNOWLEDGE CRAFT V3.3. The facts base is represented as a set of classes and

objects interconnected by inheritance relationships and grouped in workable contexts by KNOWLEDGE
CRAFT. The base of rules, along with the inference engine, are software packages that have been developed

using COMMON LISP V4.0.

The author of this paper divides the system life cycle into four main phases:

a. System concept definition and software requirement specification.

b. Preliminary and detailed design.
c. Coding, tests, integration, and validation.

d. Installation, commissioning, and maintenance.

The author is careful to point out that AGLAE only operates in the preliminary and detailed design
phase. In the future, however, AEROSPATIALE hopes to be able to integrate the present expert system with

other facilities and environments to extend the usefulness of the system into the other three phases.

Paper 9: Withdrawn.

Paper 10: Software design considerations for an airborne command and control workstation

P. KUHL, B. MUTH, P. KEILHORN, R. VISSERS, Domier Luftfahrt GmbH, Friedrichshafen, GE

This paper describes a modular, multipurpose command and control workstation developed by

Dornier Luftfahrt GmbH. The interesting features about the workstation are not so much in the applications,

but in the design; particularly, of the software.

The workstation hardvare includes a main processor, add-on processors (for additional specialized

functions), a graphic engine with one or more display screens, operator input devices, and external system

interfaces. The highly modularized approach divided the software into building blocks. Ada was used

throughout as the programming language and ARTX (operating system) was used as well.

The workstation design features the following:

10

a. Open architecture/modularity-permits easy expansion of new modules to obtain additional features.

b. Reusability-almost all of the basic software contained in the basic system can be used for command and

control domain applications.

c. Portability-system software is almost entirely in modular blocks, written in Ada (greater than 95% of

the code).

d. Real-time processing capability/tasking-no detrimental problems in real-time processing have been

experienced, which the authors attribute to the use of the ARTX operating system.

REVIEW OF SESSION III:

The three tools (VISA, GALA/GALI, and BVA) plus the PALAS configuration management

program described in paper 6 are impressive in their scope of usefulness, but they are not unique. Their value

is inherent in the t act that they exist and have been proven to be useful tools in the development of large

software systems.

Paper 7 is similar to paper 6 in purpose and scope. Like paper 6, the authors of paper 7 described

software development tools they have developed and used. However, SEXTANT Avionique went one step

further, they have been working with an object-oriented design language that has been adapted to the

guidance and control domain. This work is most promising, and should prove to be a very effective tool for

developing guidance and control software.

The ALGAE system (paper 8) is a very promising approach to guidance and control software system

design, and it is very important that this program be watched closely in the future. AEROSPACIALE has

experienced time savings of 50% (on the average) during the preliminary and design phase and a better design

has been created in the process. Extended to the other phases, ALGAE could become an even more powerful

tool.

Paper 10 once again shows that it is quite possible to design an effective workstation for the

development of guidance and control software (or other specific application domain).

3.4 SESSION IV: SOFTWARE REQUIREMENTS

Chairman: Mr. K. A. HELPS, (UK)

Paper 11: Utilisation industrielle de specifications formelles pour les telemesures (Formal specification of

satellite telemetry: a practical experience)

[! - . -m'r -g- --.2 -?---. . --2-L-- -..... 22 --2 2 --.- -- -*;.' .2.-..-'. 22 -.- ---2 - 2 ;- . '

M. LEMOINE, J-M. HUFFLEN, ONERA-CERT/DERI, Toulouse, FR

This paper describes the use of formal algebraic specifications to provide a usable specification for

processing telemetry information. The formalism, inherent in formal algebraic specification methods, was

used as a means of removing ambiguity and developing a software family in which reusability was a primary

aim.

The authors discuss the decision, made early in the project, to not use software that already existed,

but, instead, to write a formal specification of the existing software before integrating the software into the

larger system. The exercise was a failure because the writers of the formal specification were not telemetry

specialists and could not properly interpret the telemetry requirements.

To correct this problem, the telemetry specialists wrote an informal but rigorous set of requirements.

Then, the formal specification writers were able to prepare the formal algebraic specification.

The lessons learned from the project were:

a. A formal algebraic specification is the only way to remove specification ambiguities.

b. A formal specification is an efficient way to develop a reusable family of software.

c. A formal specification is an excellent way to express what a user wants which greatly simplifies the V&V

process.

Experience has shown that the telemetry specialists accept the formal language more readily than

software engineers. The authors concluded that writing a formal specification is becoming a feasible task

for industrial applications.

Paper 12: Formal verification of a redundancy management algorithm

J. DRAPER, GEC Avionics, Rochester, Kent, UK

This paper describes an offline experimental application of formal techniques to capture and verify

the redundancy management part of a flight control system. The system was part of a safety critical software

avionic system.

The first stage involved the use of a specification language Z and verified the specification with

handwritten, rigorous proofs. In the first part, the final result was a proof that alternated between a series of

12

formal steps and rigorous steps The formal steps were very tedious to check (they were checked by hand)

and the rigorous steps were hard to check as well, thus, undermining the confidence in the whole process. The

second phase adopted a computer-aided tool to assist in the identification of many of the formal steps and to

provide a record of the proof process.

The author concluded that using a formal specification highlighted ambiguities in the informal

description and allowed for theirremoval before going into test and verification. The list of assumptions made

during the formal specification development was useful both for the formal specification and for the proof

process as well. An approach in which theorems are written with wide coverage originally and to which

exceptions are added later in the proof stage appears to be advantageous, even when those exceptions are

handled by informal analyses.

Paper 13: A methodology for software specification and development based on simulation

G. FERNANDEZ de la MORA, R. MINGUEZ, S. KHAN, J. R. VILLA, SENER, Madrid, SP

This paper discusses an experimental method for specifying and developing guidance and control

software. The authors refer to this method as the "phased" or "simulation-based development" approach. The

application case discussed in the paper was a small flight critical subset of the software used for the EJ-200

DECU (software used in the control of the EFA engine main metering valve and the main fuel metering unit).

Starting from a systems requirements document, the approach taken involved the capture of

requirements for both "simulation embodied software" and "other simulation software". The former

encapsulates the parts of the software which are common to the simulation and the flight software and the

latter relates to the simulation of the environment. The approach basically proposes that the software

(developed early in the system definition phase for requuiteneits analysis and design definition) simulates

the design, then becomes the flight software itself (simulation embodied software). This means that the

software generated must be generic enough so that changes can be easily implemented as the design

progresses and the software can still operate under real-time constraints. Iteration was used to mitigate this

conflict.

The authors reported that errors, usually very costly to find and correct, were eliminated early in the

program using this process. Errors generated while translating simulation software into the software

requirements document were eliminated as well. The only errors that survived undetected through software

testing were those due to software inaccuracies and errors in the environment simulation. Development time

was observed to decrease due to a combination of factors; flight software prototypes were available early

13

in the program and the software for both the simulation and actual flight software was developed only once.

However, more effort was required in the preparation of simulation and the embedded software was

nonoptimal from an execution viewpoint.

REVIEW OF SESSION IV:

This session was devoted to the investigation of methods of capturing and documenting requirements

and then developing a design specifikation having few or no ambiguities. Papers I and 12 approach the

problem using formal language specitic.ions. This approach will solve the problem of ambiguity and,

additionally, offers the promise of being able to produce code automatically from the formal specification.

However, there are a number of problems with formal specifications that need to be resolved before formai

specifications can be used extensively. First, formal languages are normally based on mathematical notions

(such as predicate calculus) and are not as readable as they need to be by both the applications engineers and

their management. Second, there is still a lack of support tools for formal methods. Third, operational

properties, such as timing and space constraints and quality are not currently within the expressive power of

formal languages. It is possible that these deficiencies will be overcome in the future, but probably not in

the near future.

Paper 12 proposed an interim method for getting arouaid some of these problems. J. Draper believes

that by using formal specifications only in certain critical elements of a system, where the use of formal

specifications are truly needed, one can benefit from the rigorous, unambiguous nature of the method, and

yet not be burdened by the method in parts of the system where it is not required.

The methodology presented in paper 13 uses simulation to aid in the development of requirements

specifications. The simulation software is then used as a rapid prototyping tool to develop the embedded

software. This process solves some of the problems normally encounteed when using current approaches.

3.5 SESSION V: DESIGN METHODS FOR REAL-TIME SOFTWARE

Chairman: Dr. A. BENOfT (BE)

Paper 14: Network programming: a design method and programming strategy for large software systems

L. SCHUBERTH, J. KUTSCHER, W-J. GRUNEWALD, Forschungsinstitut fUr Funk und Mathematik,

Wachtburg-Werthhoven, GE

Lp

V

1'

14

This paper describes a methodology for developing and supporting large data processing systems.
The methodology, called network programming, is a decentralized approach which makes it possible for the
various parts to be developed independently, and for different languages to be used. The key to the process
is the construction of channels that are used to communicate among the various parts of the large system
software. The channels also act as buffers, changing the parameters of the interface communication data as
necessary to enable the parts ! communicate without errors.

The authors point out that large software systems, like guidance and control embedded software, are
subject to changes in the hardware configuration, in requirements, or even in design goals as the development
progresses. Network programming helps to cope with changes because it:

a. Supports the Implementation of well-defined processes.
b. Allows processes to be written in different languages to communicate effectively.
c. Makes processes communicate effectively that are run on different machines and under different operating

systems.

d. Supports changing programs, adding processes to the system, and removing processes from the system
at minimal cost in implementation and test time.

An Ada-oriented workbench has been developed that uses the network programming methodology.
It provides the tools to handle communication channels and the generators for the necessary test environ-
ments. Both the channel and test environment are developed using Ada.

Paper 15: The data oriented requirements implementation scheme

C. M. THOMAS, British Aerospace (Dynamics) Ltd., Stevenage, HERTS, UK

This paper describes the data-oriented requirements implementation scheme (DORIS) methodology
and tool set. Recognizing that there are many tools supporting different parts of a system's life cycle, but
there is not one set of integrated tools .vhtch covers all phases of the life cycle, DORIS is an applied research

project at British Aerospace designed to remedy this situation.

DORIS is a set of integrated methods and associated tools that have been developed to support the
bpecification, design, and development of real-time embedded software systems. DORIS uses two existing
methods: CORE (controlled requirements expression) which is used in the definition phase, and MASCOT
(modular approach to software construction, operation, and test) which is used in the design phase. Both
CORE and MASCOT have been extended and adapted to permit their integration into the DORIS scheme.
The data interaction architecture (DIA) is used to implement the hardware design.

Z

! • | f

15

Paper 16: Process/object-oriented ADA software design for an experimental helicopter

K. GRAMBOW, Elektronik-System, GmbH, Miinchen, GE

This paper describes how boftware for an experimental helicopter avionic system was developed
using a method based on the Ada tasking model and object-onented design prnciples. The avionic system

is controlled by a multiprocessor system of 68030 processor boards. The avionic system includcs all of the

basic elements of flight control, guidance, and pilot control ai.d displays. The software for the system was

designed using a methodology derived from the one developed by K. Nielsen and K. Sliumate at Hughes

Aircraft Company. This methodology tollows five steps, as summarized below:

a. Determine all processes/interactions at the top level.

b. Connect external devices via handler processes.

c Construct a shallow leveled data flow diagram (DFD).

d. Refine the DFDs until the concurrent processes are identified (in steps "c" and "d", thc main avicnic

application is decomposed using the Yourdon/De Marco DFDs, not for functional analysis of the project,

but for the software design itself).

e. Determine the rendezvous direction, showing the result in Ada task graphs.

The author points out that most real-time avionic systems are typically constructed using a global

cyclical scheduler. Thi design approach was taken to guarantee that critical time constraints could bz met

by certain software fun,.,,ons. With larger applications, these functional and periodicity requirements are

difficult to meet. The author further states that by using the inherent tasking features in Ada, the language

itself provides all the features necessary for real-time scheduling.

The basic concern commonly expressed about using the Ada tasking model is that its nondetermin-

istic nature cannot be used to develop software needing deterministic, time critical features. However, studies

at the Software Engineering Institute have proved that all tasks will meet their deadlines without knowing

exactly when any given task will be running if:

a. The software program stays within certain bounds of central processing unit utilization.

b. A "rate monotonic scheduling algorithm" (which gives each task a fixed priority, assigning higher

priorities shorter period;cics) is used.

c. A "priority ceiling protocol" (which prevents deadlock situations and unwanted priority inversions to

occur) is used.

16

Another concern expressed is that present Ada compilers add an unacceptable amount of overhead
on the software run-time schedules. SIGAda performance working group reports show that compilers now
have good performance; a task switch can be completed in less than 50us, a null rendezvous less than 100us,
and clock resolution less than 200us.

Paper 17: Code generation for fast DSP-based real-time control

H. HANSELMANN, A. SCHWARTE, H. HENRICHFREISE, dSPACE digital signal processing and
control engineerng, Paderborn, GE

This paper describes how a commercially available tool set (DSP-CITpro) is being used to
automatically generate code for digital single-chip processors (DSP). Examples of DSP applications include
servohydraulic actuators, active damping of flexible structures, and other motion controllers. The DSP-
CITpro complements existing control design tools by closing the gap between the design and the implem-
entation of the design. Because the DSP-CITpro can model the actual design, it can be used also for real-time
system simulation (hardware-in-the-loop simulation).

Paper 18: Conception assistie par ordinateur du pilotage et du guidage de syst~mes d'armes utilisant la
technique de commande fonctionnelle predictive PFC (Computer-aided design of weapon system guidance
and control with Predictive Functional Control technique.)

D. CUADRADO, P. GUERCHET, THOMSON-CSF/DSE, Bagneux, FR; and S. ABU EL ATA-DOSS,
ADERSA Verriires-le-Buisson, FR

This paper describes how the predictive functional control (PFC) technique has been used to design
control laws in two simulation applications: (1) a high velocity missile operating in the initial, pursuit, and
terminal phases, and (2) a turret homing device for a very short-range weapon system. The PFC technique,
with an associated computer-aided design (CAD) tool, permitted the designers to not only improve the
dynamic performance, but also to analyze and design into the system techniques for rejecting the effect of
unscheduled perturbations, such as wind blasts and inertia variation. For example, the miss distance for the
missile guidance law was reduced between 30% and 60%. For the turret control system, good performance
and robustness was achieved under a wider set of operating conditions than the previous turret control system
design.

Paper 19: Analyst Workbench

I l

T. F. REESE, F. P. ARMOGIDA, Naval Weapons Center, China Lake, CA, US

This paper describes an analysis tool developed by the Naval Weapons Center for analyzing flight

test and simulation test data to study the performance and effectiveness of missile systems. The tool takes

normal test data (telemetry or otherwise) and stores the information (which can be large quantities of data)
on hard disk drives. The stored data can then be interactively queried, analyzed, and manipulated through

special support programs resident in the workstation.

This workstation has not only enhanced personnel productivity, but has enhanced the communica-

tion between analysts and also between the analysts and their management.

REVIEW OF SESSION V:

The network programming method described in paper 14 has many advantages. There are other

systems similar to this one, such as the network computer system (NCS), that have been proven effective in

the development of large software systems. However, if this kind of approach is used to develop guidance

and control systems there is a basic problem; it is difficult, if not impossible, to control the timing of

interacting processes, a function critical in many real-time guidance and control functions.

The DORIS system, described by C. M. Thomas in paper 15, is a significant prospect for the future.
It is being designed to be language, host, and processor independent. Once the system is well integrated and

proven, DORIS should provide excellent improvements in productivity.

Paper 16 (and papers 14 and 15) provide compelling reasons to believe that, with the proper

environment of methods and protocols, Ada can be used effectively to design and develop guidance and

control software programs.

Although there is little new in using a microprocessor-based code generator for small, embedded

applications (as described in paper 17), it is interesting to note the effectiveness of the commercially available

tool set for designing and developing software for closed-loop controllers found in guidance and control

systems. Papers 18 and 19 did not address the issues of software design. However, paper 18 was an

informative paper on a method of designing and rapidly prototyping complex control laws in guidance and

control systems.

18

3.6 SESSION VI: ADA APPLICATIONS

Chairman: Dr. J. NIEMELA, (US)

Paper 20: Une experience pratique de l'utilisation d'ADA pour le d~veloppement du logiciel embarqui.

(Practical experience of ADA for developing embedded software)

C. GOETHALS, C. GRANDJEAN, DASSAULT ELECTRONIQUE, Saint Cloud, FR

This paper is a "lessons learned" report made by the RAFALE software development team. They

used Ada throughout the avionic system, including most of the real-time executive system.

The RAFALE has two mission computers, three data buses, and standard tactical subsystems

including; radar, HUD, INUs, and multifunction displays. Each mission computer contained about 1

megabyte of software. Part of the software was designed using the process-driven method, and the other part

(the man-machine interface) of the software was designed using the object-oriented design method. The

RAFALE design team used their own real-Lime executive that complied to rate monotonic scheduling

principles.

Concerns about many of the aspects of Ada led the team to concentrate on assembling and adapting

an impressive set of software support tools. For specification development support, they used the STP

(software through picture) adapted to operate with several modeling techniques, including structured analy-

sis (Yourdon/DeMarco), structured design (Constantine), structured real-time analysis (Hatley), and entity-

relationship model (Chen). They used the KEYONE tool to support the detailed design and coding phase

and they used DEVISOR for the software debug and test phase. DEVISOR was also used in the validation

phase, as was the software validation bench (SVB). The SVB simulates the computer environment and was

used to validate the complete operational software.

The RAFALE software development team members report that they experienced an overall gain in

productivity of approximately 30%. However, they also report that the amount of effort spent in the

archiectural design phase increased significantly, but they do not quantify this increased effort.

Paper 21: The development of a requirement specification for an experimental active flight control system

for a variable stability helicopter-an ADA simulation in JSD

G. PADFIELD, RAE, Flight Dynamics Division, Bedford, UK; R. BRADLEY, University of Glasgow,

Dept. of Aerospace Engineering, UK; A. MOORE, LBMS, UK

[-

19

This paper describes how an active control technology (ACT) system is being developed for an

experimental Lynx helicopter by the Royal Aerospace Establishment. The development process starts with

the capturing of the system requirements, progresses to the development of a system design specification, and

ends with software code automatically generated for a PC-hosted simulation. The entire process is supported

using the Jackson S stem Development (JSD) methodology and CASE tools. The features of the new ACT

system include: a full authority fly-by-wire actuation system, a safety pilot with back-driven controls; a fail-

operate/fail-safe hardware architecture coupled to a variety of sensors; and a pilot interface (sidestick

controller, displays) providing inputs to the control laws.

Early in the development process, the ACT system and the supporting simulation environment were

broken into functional elements (or modules) that would correspond to elements in the actual helicopter

avionics system; or, in the case of the simulation environment, that would make it possible to rapidly change

the simulation program. Descriptions of the elements were prepared, including the element TYPE (analog,

digital, mechanical, etc,), FUNCTION (what the element does), OPERATION (narrative), PERFORM-

ANCE (task timing and accuracy), INPUTS and OUTPUTS (signals), INTERFACES (unit to unit),

TESTING (how function is to be verified), and FAILURE REPORTING AND RECOVERY (how errors are

reported and how the system will recover). Once the basic specification was complete, a full JSD

specification was developed which:

a. Provided a check on specification ambiguity, vagueness, and outright errors.

b. Made it possible to generate code automatically for the simulator.

c. Provided a "living design specification" for the ACT as the design was interactively tested and modified.

d. Eventually, generated proven code automatically for the flight software program.

Paper 22: Withdrawn

Paper 23: Software methodologies for safety critical systems

W. C. DOLMAN, A. M. ASHDOWN, Lucas Aerospace, Electronic Systems Division, Birmingham, UK; T.

C. MOORES, Ministry of Defence, London, UK

This paper discusses a program sponsored by the Ministry of Defence in the United Kingdom to

analyze and evaluate the suitability and the problems of using Ada language in the flight safety critical

systems. The stated concern of the Ministry of Defence was that Ada was not yet ready for incorporation

into full development of high integrity software based systems. The Ministry of Defence awarded a contract,

called the High Order Language Demonstrator (HOLD), to Lucas Aerospace to study the issue.

, 1

_J

20

The study called for implementation of Ada in an existing, flight validated, safety critical function,

and:

a. Identifying those features of the Ada language which conflict with the requirements for a flight safety
"critical" aeroengine control system.

b. Providing a critical assessment of the design and development methods that will provide the best possible

application of the language to meet both performance and integrity requirements.

c. Assessing the efficiency of the executable code and the resulting system performance and integrity using

an existing flight certified electronic engine control (EEC) as a benchmark.

The program is about 75% complete. However, the program has progressed enough for the authors

to conclude that using the Yourdon methods is an improvement over using past development processes. Also,

the Ada run-time system is completely compatible for use in future engine control systems.

Paper 24: CAMP: common ADA missile packages

B. MULLINS, Airforce Armament Laboratory, Eglin AFB, FL, US

The CAMP program was started in September 1984 to determine if sufficient commonality existed

within the missile operational flight software domain to warrant the development of reusable software parts

and, if so, to identify and establish methods and tools to use these parts in future missile development

programs. In phase 1 of the program, it was proven that commonality does exist within the ARMONICS

(armament electronics) domain (missiles). During this first phase, 219 reusable parts were id;.ntified and

designed. In phase 2, reusable parts were built and tested. An "1 th" missile was designed using reusable

parts identified from 10 existing missile systems. This part of the program proved that, by using the reusable

parts alone, a 15% increase in productivity could be gained. This program also proved that a 28% productivity

increase could be gained if the reusable parts and the engineering tools and methods were both used. The

program is now in phase 3. The purpose of this phase is to improve the reusable parts and the methods and

tools.

Paper 25: Development and Verification of Softwre for Flight Safety Critical Systems

H. AFZALI, A. MATrISSEK, LITEF GmbH, Freiburg, GE

This paper discusses how two flight critical systems for the EFA are being developed using Ada. The

paper also describes how systcm safety analysis techniques are being used to identify, assess, and eliminate

21

(or minimize) safety hazards. One of the applications is the pilot ejection control for the LITEF (a triple-

redundant seat sequencer system), and the other application is a fail-op/fail-op flight c itrol self-aligning

attitude and heading reference system for the inertial measurement unit (a quad-redundant system) for the

EFA flight control system.

The overall objectives of the safety analysis were "to identify hazards, to eliminate the hazards (if

possible) through design or by reducing the associated risk to an acceptable level, and to minimize the

(consequences of) the hazardous events." LITEF is using the traditional fault tree, scenario tree, and FMECA

methods during the requ~rements analysis and detailed design phases: and the static and dynamic code

analysis methods during the test and verification phase. The objective of the static code analysis is to identify

the deficiencies in the data flow, control flow, and information flow. The objective of the dynamic code

analysis is to verify that the test cases selected provide sufficient coverage to validate the software.

REVIEW OF SESSION VI:

Unlike the conclusions drawn in paper 16 where productivity increased due to using Ada, paper 20

concludes that increased productivity came from using good software developmer. t support tools and not as

the result of using Ada. The two papers are complementary, however. In both instances, full Ada and good

software support tools were used. The increased productivity was probably due to the combination of Ada

and good tools.

The ACT system described in paper 21 has proven to be an excellent tool for designing and

developing closed-loop flight control systems. While there were benefits in developing the system design

specification, the greatest benefit was in code generation for the simulation program and flight software, if

and when the program flight tests the experimental Lynx helicopter.

There was considerable debate about paper 23. First, there was a repeat discussion (from an earlier

session) about the relative value of using formal methods and formal specifications. All agreed that formal

methods would lead to unambiguous specifications, but everyone did not agree on whether or not formal

methods should be used at all and, if so, to what extent. Most people agreed that, given the present status of

formal methods, they should be used, but should not be imposed on all parts of a project. Paper 12 proposed

this approach as well. A second debate centered (again) on using Ada in flight critical software. This question

is basically the issue being investigated in paper 23. Most of the symposium attendees emphatically agreed

that Ada is here and will be used. As one attendee said, "Ada is being used successfully and will continue

to be used exclusively on the EFA." It must be pointed out, however, that this study will provide valuable

insight into the problems of validating flight critical systems.

L2> i i

22

Paper 25 differed greatly from paper 23. This paper suggests that high integrity, flight critical

systems can be developed and verified by using a restricted subset of Ada (a technique also suggested by

others) and carefully applying proven, traditional safety analysis techniques.

3.7 SESSION VII: AUTOMATED SOFTWARE GENERATION APPROACHES

Chairman: Dr. E. B. STEAR (US)

Paper 26: Reusable software approach to software generation

A. P. DeTHOMAS, WRDC/FIGX,Wright-Patterson AFB, OH, US; D. DEWEY, Boeing Military Systems,

Seattle, WA, US; S. WILSON, LOCUS Co., Fairfax, VA, US

This paper begins with a discussion of where and how the reusable software approach can be applied

and what benefit the method could, theoretically, have on software generation productivity. A reusable

software analysis model was used to estimate the cost benefits that might be expected. The model indicates

that the development cycle costs could be reduced by 25% to 45%, and total life cycle costs would show an

improvement of 11% to 26%.

WG 10 made a survey of the current work going on within the NATO countries using the reusable

software approach. Included in the survey were the CAMP, STARS, SCR, GRACE, CARE, ESPRIT, SPC,

and the Eureka Software Factory (ESF) programs.

The authors conclude that the reuse concept can be applied across all phases of the design process

(design through testing), but the reuse methodology must be built into the development process before a

project is started and cannot be an afterthought. This means that the reuse system must possess certain

characteristics or mechanisms to fully exploit software reuse. These mechanisms include:

a. Storage and retrieval of reusable objects (implying use of a library).

b. A specification process that provides an understanding of the object within the library.

c. Tools for tailoring reusable object to the current application.

d. Tools for integrating the objects into a new system.

WGlO believes that the lack of well-designed libraries of reusable software is a majorlimiting factor

in the wide acceptance and use of reusable software. A second limiting factor and possibly the most important

one, is how to handle the business aspects of reusing software. These issues include softwaie developed by

23

one business group and used by another, who will bear the first-time development costs, and liabilities in

terms of performance, safety, and maintenance.

WGI0 concluded that there are no major technological breakthroughs required. However, several

technology enhancements will speed the application of software reuse. Enhancements include: adopting

existing development methodologies and standard interfaces, new tools for accessing and maintaining reuse

libraries, and refinement of cost models to qualify reuse options. A strategy for infusing reuse technology

was also provided. The three-stage process includes enhancement of the reuse technology (as previously

discussed), demonstration of relevant GNC programs, and introduction of the results into the user

community.

Paper 27. Fourth generation languages

P. CHINN, Marconi Defence Systems, Bucks, UK

This paper begins by tracing the evolution of the fourth generation language (4GL) concept from the

first through the third generation languages. The 4GL appproach can be thought of as a combination and

evolution of the rapid prototyping and integrated program support system concepts. Although it is difficult

to consolidate the many definitions, 4GLs share three common characteristics. They are:

a. A close relationship to the task for which they are to be used (such as application- specific constructs).

b. An easy interface with the user.

c. Extensive use of modem support tools.

A 4GL approach to automatic software generation should provide the following benefits:

a. An improved product since the communication barrier between application engineer and the final code

is removed.

b. Improved productivity, because the application-specific engineer can interact directly with the automated

tools, using an application-specific language.

c. A greater consistency in the product.

d. Easier development and maintenance, which can be approached from a system engineering, rather than

from a software engineering, viewpoint.

On the other hand, a 4GL approach has some limitations as well. For example, the user interface with

the system is likely to be a proprietary workstation. If the intermediate level language is a standard

engineering language, then support of the target types will depend on that implementation. Another potential

24

problem is that a 4GL system will have many components requiring periodic update or maintenance and

keeping these compatible will be difficult.

Most of the technology and components for a 4GL system exists. However, some of the components

are only in the embryonic stage. Overall, the members of WGIO are "cautiously optimistic" about the

possibility that a full 4GL automatic software generator for guidance and control applications will one day

be used. Some limited systems have been developed. However, pervasive use of this technology will depend

on the stability of the application domain and hardware and projected use to warrent the investment.

Paper 28. Me'thodes de transformation (Transformation Methods)

P. de BONDELI, Aerospatiale--STS/L, Les Mureaux, FR; M. LEMOINE, ONERA-CERT/DERI, Tou-

louse, FR

Transformational programming is defined in the WG1O report as a methodology of program

construction by successive applications of transformation (conversion) rules. A transformation rule is a

formal mapping between two programs (P and P') which preserves the initial functionality. The transforma-

tional programming process, as defined in the WG10 report, starts with a formal specification and ends with

executable efficient code.

Transformational programming is being endorsed as a way to solve current software development

problems. Ideal software development follows a waterfall model (B. Boehm), where one sequence follows

another similar to the development cycle of an aircraft system. However, the process breaks down in the

development of software because requirements are not fully kncwn at the beginning of the program and they

often change as the program progresses. If transformational programming is to succeed as a major element

in automatic software generators, then it will be necessary to follow a more appropriate methodology.

There are a number of transformational programming initiatives at the present time. These include

initiatives at the Information Science Institute of the University of Southern California (SAFE and TI), PSI

(LIBRA, PMB, PECOS), Edinburgh (investigation of hybrid rules), Stanford (DEDALUS), the Technical

University of Munich (CIP), and others. One of the most significant ongoing system projects using

transformational programming is a software technology project sponsored by the ESPRIT program.

Initiatives within this software technology project, such as the PROSPECTRA, TOOLUSE, RAISE, and

REPLAY, emphasize transformational programming.

*w-. 25 4

Some members of industry (such as, IBM Hursley Laboratory, Bull in France, ONERA/CERT/DERI

(see paper 11), and Lockheed/LASC) have been experimenting with program transformations. There are

many benefits to using program transformations including establishing proved programs, adoption and

maintenance of programs, and synthesizing several algorithms from a single specification. Although limited

experiences have shown that considerable improvements can be achieved, there are several areas which must

be improved; such as, the development of more comprehensive support tools and training of personnel.

Paper 29: Knowledge-based approach to software generation

W. MANSEL, MBB, Deutsche Aerospace, Ulm, GE; H. ROSCHMANN, TST, Deutsche Aerospace,

Ulm, GE

WG1O studied the use of expert systems in software generation to:

a. Support the software development process itself; this includes functions such as tutoring, user guidance,

documentation, and information retrieval.

b. Identify and retrieve reusable software components; this includes functions such as pattern matching and

deciphering semantic descriptions. Examples of this concept are the CAMP (see paper 24) and

PRACTITIONER (an ESPRIT project).

c. Assist in the transformation process when applying formal methods. Examples of this function are STES

and REFINE.

d. Be a part of the software generation and automated programming function itself.

WG1O has conducted a review of the current status within the main areas listed above and has

identified some of the problems and issues requiring further research. While there is a real need to use

knowledge-based approaches, there is a continuing problem of verification and validation. A rapid

prototyping facility needs to be incorporated into the process and advanced user interface and rrepresentation

methods are required in future 4GL systems.

PANEL REVIEW AND ANALYSIS OF SESSION VII:

AfterWG 10 completed their report, a panel of selected members of the WG was convened with Prof.

J. T. Shepherd as panel moderator.

There was only one comment concerning the reusability report. An observation was made that

standard software modules and interfaces are already occurring (de facto) in the personal computer world (the

inference was that this practice may spread into the guidance and control domain).

waLrcieasped giac

26

A concern was expressed about how 4GL (which are usually, by nature, domain specific) will be used

and combined in software generators for complete aircraft systems. It was suggested by a WGl0 panel

member that an interface would be required similar to that designed by Pragma program to interface other

languages with Ada. A simple transformation also might work in some cases, but certainly not in those

instances where a formal method is being applied.

Again, problems about the transformation methods were discussed by the audience and WG 10 panel

members. A strong point was made and agreed upon by those discussing the issue that, while transformation

methods have desirable features and are valuable tools in certain applications, it will be necessary to have an

informal reading accompany the formal specification.

Since the software generation methods discussed are heavily dependent on the development and use

of tools, a concern was expressed on flight safety issues. WG 10 stated that the tools must be verified to the

same level as the flight critical requirement to enable its use in the V&V and certification process.

Mr. K. Helps, a member of the WG 10 panel, made a provocative statement in the discussion period;

he pointed out that, even though the panel working group found promising ways to increase software

development productivity by as much as two times using automatic software generators, this fell far short of

the hoped-for goal of ten times improvement. It is believed, however, that combinations of the methods

investigated (expert systems combined with reusability, for example) will provide significant increases in

software productivity. WG 10 took a conservative approach in estimating payoffs. The real proof of the

payoffs from these methods will be the demonstration and quantification of results.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The suitability of using Ada in high-integrity, flight critical applications continues to be debated.

However, most people at the symposium appeared to support the position that Ada, or at least Safe Ada, is

not only usable in flight critical applications, but has desirable features for these applications (papers 2, 16,

20, and 25 all supported the position that Ada was suitable in these applications). W. M. Fraefrich, in paper

2, referred to the Eurofighter study which demonstrated that the reliability of Ada programs is comparable

to that of assembler programs (if not greater) if Safe Ada is strictly adhered to and the static code analysis

at source code level is made. Paper 25 approached the problem differently; H. Afzali and Dr. A. Mattissek

suggest (as did paper 2) that flight critical systems can be developed by using Safe Ada, but added the qualifier

that traditional safety analysis techniques must be carefully applied to ensure integrity., Concerns about the

suitability of Ada in time critical, deterministic applications (such as flight control) were addressed by W,

- 'I

q _

27

Fraedrick. In his paper 16, he refers to a study conducted by the Software Engineering Institute that proves

all tasks will meet their deadlines if certain design principles are followed. C. Goethals and C. Grandjean
do not claim benefits or penalties from using Ada, but they do say that, with superior support tools, they were
able to design a high-integrity system with increased productivity. Paper 23 authored by W. Dolman, A.
Ashdown, and T. Moores, reported on an ongoing program sponsored by the United Kingdom Ministry of

Defence to resolve some of the remaining questions about the applicability of Ada in G&C applications.

A second conclusion is that there have been significant advances recently in the evolution of software
development support tools and methods for G&C applications. Most notable are the CORE/EPOS, HOOD,

SPARK examiner, TESTBED, IPSE, AGLAE, and DORIS. The successes being achieved using che object-

oriented design method (HOOD, DORIS, etc.) are most encouraging.

The third conclusion is that it is evident there is a shift occurring in the overall design process

approach. It has been established dogma that the standard "V" process was to be strictly followed if complex,
high-integrity software was to be developedon time and on schedule. However, many people are beginning

to question the wisdom of this rule. D. F. Thewlis captures this idea in paper 1, and presents compelling

arguments for considering a simultaneous top-down and bottom-up approach. G. Fernandez de la Mora, R.
Minguez, S. Khan, and J. Villa are proposing a "phased" or "simulation-based development" approach,
where the software requirements and design are iteratively analyzed throughout the process. The software

used to simulate the design during the analysis process then becomes thc flight software system. Most rapid-
prototyping tools enable the software designer to iteratively progress up and down the "V" chart process. This

capability will probably bring a change in the overall development process logic.

4.2 RECOMMENDATIONS
There needs to be a serious look at the possibility of establishing standard interfaces among the

various Ada support tools. Good interface definitions are required before the various individual process

support tools can be linked together to support all phases of G&C software development. Efforts to link
together a full set of support tools (like the DORIS system described by C. Thomas) requires good interfaces,
but standard interfaces are needed if there is to be a rapid evolution of effective software development tools

and processes. Efforts like DORIS should be carefully followed as they mature and reported to the G&C
design community., The AGARD GCP could be instrumental in providing an effective communications base

for possible Ada ASPE standards.

Formal methods for developing high-integrity, flight safety software for G&C systems have great

potential. However, there are a number of problems that must be overcome before they can be used
effectively. Further research is recommended in this promising technique.

L!

28

WGO 10 concluded that automated software generators based on reusable software, expert systems,

4GL, or transformation methods alone would provide an increase in prodtctivity. However, it was concluded

that significant improvements (perhaps twice the productivity or more) could only be achieved in an approach

that combined two or more of the concepts. It would be very useful if WG 10 or some other GCP group would

quantify the productivity improvements using the combinational approach.

r 29

APPENDIX: PARTICIPANT EVALUATION OF THE SYMPOSIUM

At the end of the symposium, each participant was asked to fill out an evaluation form and make

comments on their opinions about the symposium. From 31 evaluation forms returned, the responses are

summarized below:

Question 1: In your view did the papers presented meet the published objectives of the meeting?

Answer: Most 26 About half 5 Very few 0

Question 2: Were the topics selected for presentation of interest to you?

Answer:, Most 16 About half 13 Very few 2

Question 3: Was the general level of the papers:

Answer: Too deep 0 Satisfactory 25 Too superficial 6

Question 4: Were the speakers effective in presenting their topics?

Answer: Most 16 About half 14 Very few 1

Question 5: Time was allowed for discussion after each presentation and at the end of the meeting. Was this:

Answer: Too little 7 About right 24 Too much 0

Question 6: Was the meeting effectively organized (location, joining instructions, duration, audiovisual

equipment, refreshments, etc.)?

Answer: Yes 26 (However, some said "but"...viewgraphs were hard to

read; some transportation problems from hotel to symposium.)

No 5 (Same comments as above.)

I-

30

Question 7: Did language cause a problem?

Answer: Yes 4 (Two people said that good viewgraph projectors would

have alleviated the problem.)

No 27

Question 8: Please add any other comments you may have:

1) Four people suggested that a list of attendees, prepared and distributed after

checking, would be helpful in getting acquainted with other attendees.

2) It was suggested that a small book on the mission of AGARD and the various

groups sponsored by AGARD be handed out at the beginning of the symposium.

3) Two people suggested a get-acquainted party on the first evening of each symposium.

Question 9: Overall, what was you assessment of the meeting?

Answer: Excellent 0 Very good 14 Good 15

Satisfactory 2 Poor 9

Question 10: Please add here any suggestions you have for followup activity in this field,

or for AGARD lecture series, courses, symposiums, etc. ini other fields.

Suggestions: Almost all of the suggestions offered for future discussion centered around the issues of

software certification in flight safety critical systems and verification and validation of

software development tools. Clearly, these issues still have not been resolved and will

continue to be a major concern in the future.

L~.

REPORT DOCUMENTATION PAGE

1. Recipient's Reference 2. Originator's Reference 3. Further Reference 4. Security Classification
of Document

AGARD-AR-302 ISBN 92-835-0647-2 UNCLASSIFIED

5. Originator Advisory Group for Aerospace Research and Development
North Atlantic Treaty Organization
7 rue Ancelle, 92200 Neuilly sur Seine, France

6. Title TECHNICAL EVALUATION REPORT ON THE GUIDANCE AND
CONTROL PANEL 52ND SYMPOSIUM ON SOFTWARE FOR GUIDANCE
AND CONTROL.

7. Presented at

8. Author(s)/Editor(s) 9. Date

Donald E. Dewey December 1991

10. Author's/Editor's Address I. Pages
Boeing Military Airplanes
Box 3707, MS 4C- 15 38
Seattle, WA 98124, United States

12. Distribution Statement This document is distributed in accordance with AGARD
policies and regulations, which are outlined on the
back covei s of all AGARD publications.

13. Keyords/Descriptors

". Guidance and control, Software support environmcnts,

ADA -programing language,, Design,
Formal methods, Real time operations.., /V/1 T6
Expert system Co ter-ystf r ' -

14. Abstract

Technical Evaluation Report on the Guidance and Control Panel's 52nd Symposium held at the
Helexpo, Thessaloniki, Greece from 7th to 10th May 1991.

-" In all, 27 papers were presented covering the following headings:

-;3I'ools and methods for a user's viewpoint;
General requirements on software;

-Intgrated programmes support environments;
Software requirements;
Design methods for real-time software;

-r ADA applications; 4-,
- -. Automated software generation approaches ,) (,.

.4 s

.5.

-o -
o . 0 u

E-)
t" !5 s E C9 c0

'Cu

Cr.

E. E . .C a q~C C.
In

EC o.
111111 .00.~

mo Do111

C E

C! - lb
H

H0

w LQ w C-

u u

Z Z Z~ Z
S0~ 01, 0r.

< <

z- -01 w Z5 d

= EE r
C- E E

.Co CC C~ v 0 2 <C.C z r

0 14 H . v D

> >
C.Zw oc) A E Z CCE.-

C0 u i- L) Z 0 -u' -

.2

_ E
*5 E E

o E ~ C c E

E
E '~

L~C .- -. E.-- --

101[AN(AI LllI 92200 NFJJII Y 1,JR-[INI: D)1 I ~I IIN DE 111111,1111(A I4 INS

I RANCE A(.ARi)NON (LASSIlS

1 ci cope (14Al 38 57 99

11Isw, ilk. I,' Al ,\I) k %I 0tssick' .1iPIC% tic% pay ilvil csisc* tic cct: i crasisit'llss par I niusrneissire li% (cssircs Natiosnseut de
f! -11 'II!S.l III\ fill\ A I'-wcpIift i ' I e III ls, .i, cciic% (11%10)'cIisen ti il cilIS'% slidiiIIIIci',; dalgs % i s C4 11trdirc.s i I 1111:11

I III. 4% s'iiij' I CS" ,,s I ieI l fille I iIissi %' till tk ic liw ic arlc% I le\ sc Ageticc% tic Ventei n 51 a iiise smSic.

IIN] 11IS 1)11 1)11+1ISi0N NAI I ()NAI'\

\1fII VINi Iti1 ANDii

ill 5 llic C ii / I losil

1Ii.fl-illoss sIcl liihi ci Ac ivilsis. I Illicis dcl I ccegssis Nts/gssssai aHlAG Aiti
0 tslict Reis. Hk,'aisci iActospsrtis i'ratics cli Marci

Iu t' crc, I I 140 uirs cIic 000i140 i'sncuiia (Romia)

I)IN \i 5)A U1i*1iI01Hi,

I Iilcisl il sit i.., tikHrasiisii Scsiis~cI air iicigiqssc
\iig5sc tic hi DIccic Naisiisii NO)VI_
I.ws (illatriti K I A 0IK2 Nrwegiasn D~efence Rescarch I'Isi'iss~s

DAN Nl\R4K Allis.ii Bibimicket
I)nisI)cicc Hwrcsirh flo al 11.0. Box 25

cd lkii.icispalkcs .1 N-200i7 Kjieffer
10 Copel.r~cs ils 0 I%"YS-i(AS

I ~I'A Ni> Nctiic, linuis Dele'igaion t4o AljARI)
IN I A\ (M\ .ili) 'ibiicionIss~ Nluiovs rl; sc I siirisyN
hii is Rs s'.alc',34 26KiISyvcrwcg

I IA I, IN S Prlugucsi: Natioinal Coordintosr toi A(iARI)
Naiol 5 Ass illauifc', andi Spaice Atiiistai', G1)1aincts tic Islt~uisis c Prsigrasmas
I isigic) Rewarch ('vcte ('LAFA
%I S I M aeti lrgd
I 1,11 'ioi. 'isiia 2311 iia',edeAirjdc

I RAN(1-20 AIdr

I NR.A. (iiiccliisiij RO0'AUMI; UNI
)5Awcii ic sic la I)i viio 1i 1 cies It I)ccncc Researchi Informatiion (Cenitre~ 211 ailSils iiIL~IiI~C1i Kentigern I louse

(65 Brown Strect

I iI cicArFit Glasgow (12 81-X

Air War Colilege I URQUIE
scientilic and Icisical hbrarx Milii Savunma Bajkanhs~i (MSII)
I)ekclia Air Fosrce Base ARGE [).tire Balkanligi (A RGE)
Dciv)ckii. Athiensl 'GA 1101 Ankara

IT. (FNTRE NAiFIINAI. DL. DISTIBihUTION IIS FTATS-UNIS (NASA) NE DETIENT PAS DI: STOCKS
II 'I N ill I('AlIONS A(GARi) FLLS I)1MANOFhS D'I.iXEMPLAIREiS 01VFNT F.IiRL~ ADRFSSE-ES i)IRFC IFMF-Ni

AO SFRVIC Ii NATIONAl l-TCI INIOUE; DE L'INFORMATiON (NTIS) l)ONT L'ADRFSSE SUIT.
AGENCES DF VVNTF

NanizIIl, I echniesi lrfsiraissu Service FSA/Inforsmation Retrieval Service The Biritish Library
IN IlII luropean Space Agency Document SuppilDiviiion
5295 Poirt iRssyai Road it0. rue Mario Nikis Boston Spa, Wetherby
Slirmui-lielsI. Voirgiia 2 2 1s(1 750)15 Paris West Yorkshire LS23 7BO

itast'ii',France Royaume Us

I c% e sisisantics sic inicrsiiiche', ou de phostsocopies dec documents AGA RD (y compris leb demandcs fiites mupris du NTIS) dolvent componter
I it itusisrinai ion AGA RO, ai nsi que Ie numcro de siric de P'AGARD (par exempgle AGARD-AG-31 5) DsInformations analogues, telles
ti le clitrc ci 11 dlate diu puhlication %)ot ssouhaiiahlss. Veuiiler noter qu sly yaleu de specifier AGARD-R-nnneciAOARD-AR-nnn lorsdelaI
ci Ininaindc tic rapprisI A0A RD et c es rappssris consui taiis AGARI) reapectivement. lDes riffdrencs bibillographiques compIltes asnai que
tic's rcsu m Idcs pubicatsmnx AGARD) figurcntl dun% Its journaux suivanis:

Scientifique andTecchnical Aerospace Reports (STAR) Government Reports Announcements and Index (ORA&1)
isuitij par lit NASA Scientific and Technical p ubid par Ie National Technical Information Servcc
Infsormation Division Springfield

NASA I Icacquainers (NIT) Virginia 22161
Washin tcsn l).C. 205 46 Etats-Unis

i~i',-l ~(accessible 6 alement en mode intersetifdans la base de

dorm&%s hilorpiquts en ligne du NTIS, et sur CD-ROM)

Irnprimn6 par Spedaliked Polilig Senvs.' es Limited

~eeX 40 Chigilisell Lane, Loughton, Evsezt 1103TZ

NATO OrAN

RUL1. ANC[LIE -91200 NEUILLY-SUR-SFINE i~Im 14~) , %l II

FRANCE %GARD III llll(Al IONS

tecploi (1)47.38 57,00 -Telex 610 176

T11elefai (1)4738.57.99

rilctin iina~i ,\ l~)GR Mnlcriher Niitioii ttiriiht file 141114ing Natimial I)istuiitmill (iitre" I 111iticr f"IlC .01':s 4 11ivIlc,

isd.IL C tiii these (Cntics (Ccspt In tile Uniited States), hill it 1110 miv i Jilre cti ill iriiti 3Itl~4l*P 11'.111 F t hei ',.ic'
\vo ic lited heico..

NA I I(NAI. I IS I RiIIU I IO N (INlR[S
B1 1I .I I .XIAIIIOLJH(,

(*tU'I klikt i)11 \ (t (*/i I V SI Set- lcigitinil
I tat-Nlajir ie li Iocc. ,\e ici
(hiartier Rcint: Ict,..aheih N I ti11 RI

National AcronautiCs and
Space Administration 4

Washington, D.C. SPECIAL FOURTH CLS MAI
20546 BOOK

IL **-** ittii iAI(I)

DekeliaAlhensTA 1011

D~irector ot Aiaitiiif Kentigern House
e!o Flugrad 65 Brown Street
Reykjavik Glasgow G2 8EX

I IlALY U N ITEI1) STATES
Aeronautica Militare National Aeronautics and Space Administration (NASA)
Ufficio del lDelegato Nazionale aII'AGARD Langley Research Center
Acropo-to Pra lica di Mire M/S 180
0001(40 Pomczia (Roma) Hamton, Virginia 23665

T14E UNITEI)STATIES NATIONAL D)IST RIBUTION CENTRE (NASA) DOES NOT HOLD
STIOCKS OF AGARI) PUBLICATIONS. AND) APPLICATIONS FOR COPI ES SHOULIII; MAD)E

I)IRECI, TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.
SALES AGENCIES

National fechnical USA; Information Retrieval Service The British Library
Information Service (NTIS) European Space Agency Document Supply Centre
5285 Port Royal Road 1t). rue Mario Nikis Boston Spa, Wethertby
Springfield. Virginia 22 16h1 75(015 Paris West Yorkshire LS23 7110
United Slates France United Kingdom

Requests for microfiches or photocopies of AGARD documents (including requests to NTIS) should include the word AGARD'and the
AOARD serial number (for example AGARD-AG-3IS). Collateral information Such as title and publication date is desirable. Note that
A(G RI) Reports and Advisory Reports should be s pecified as AGAR D-R-nnn and AGA RD-AR-tsnn. respectively, Full bibliographical

references and abstracts 01 AGA RD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements and Index.(GRA&I)
published by NASA Scientific and Technical published by the National Technical Information Servtice
Information Division iged
NASA Headquarters (NTT) Ivirfinia 22 161
Washington D.C. 2Z56 Un ted States
United Stattes (aso available online in the NTIS Bibliogiraphic

Daabase or on CD-ROM)

SeS~ Printed by Speclalid Printing.Sentiies Limited
40 ChigwlI Lane, Loughton, Essex IGlO 3TZ

ISIIN 92-S*S-(O47-2

