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Optical bistability is a quantum optical realization of a fi sygorder phace
transition far from equilibrium. A nonlinear optical material contained in
an optical cavity driven resonantly by an external coherent optical fielq
undergoes a first order phase tr sition to a new nonequilibrium stationary
state of broken symmetry. Resonant and nonresonant nonlinear optical
response of pi-electron excitations in conjugated electronic structure
provides the nonlinearity essential to the onset of bistability.

Electronic correlation effects in reduced dimensions are responsible for
nonresonant nonlinear optical responses. Saturable absorption studies of
glassy polymer films consisting of quasi-two dimensional conjugated disc-
like structure of silicon naph-thalocyanine demonstrate that on-resonance
the system behaves as an optical Bloch system with an intensity dependent
refractive index of 1 x 1019 cm2/kw. Based on the results of these
studies, electronic absorptive optical bistability is observed on a
nanosecond time scale in a nonlinear Fabry-Perot interferometer employing
the saturable absorbing silicon naphthalocyanine film as the nonlinear
optical medium.




PART I
ELECTRON CORRELATION THEORY AND
EXPERIMENTAL MEASUREMENTS OF THE
THIRD ORDER NONLINEAR OPTICAL PROPERTIES
OF CONJUGATED LINEAR CHAINS
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ABSTRACT

ELECTRON CORRELATION THEORY AND
EXPERIMENTAL MEASUREMENTS OF THE THIRD ORDER NONLINEAR

OPTICAL PROPERTIES OF CONJUGATED LINEAR CHAINS

Comprehensive theoretical and experimental studies of the magnitude, sign,
dispersion, and length dependence of the third order molecular susceptibility
¥ijki(-Wg;W1,672,003) demonstrate that the microscopic origin of the nonresonant third
order nonlinear optical properties of conjugated linear chains is determined by the effects
of electron correlation due to electron-electron repulsion. Multiple-excited configuration
interaction calculations of ¥;;ei(-t4;w1,02,03) for the archetypal class of quasi-one
dimensional conjugated structures known as polyenes reveal for the first time the
principal role of strongly correlated, energetically high-lying, two photon 1Ag virtual

states in the largest of the two dominant, competing virtual excitation processes that
determine ;jx(-00;01,002,03). It is also found in studies of the effects of conformation
on Yijki(-0¢;001,002,W3) that the origin of the third order optical properties remains
basically the same for the all-frans and cis-transoid polyenes, and the results for the two

conformations are unified by a common power law dependence of the dominant tensor




component Yyre-;01,W2,@3) on the physical end-to-end length L of the chain with
an exponent of 3.5. Calculations for a noncentrosymmetric conjugated chain
demonstrate that virtual excitation processes involving diagonal transition moments that
are forbidden in cenrosymmetric structures lead to a more than an order of magnitude
enhancement in Yy r(-04;01,00,003) compared to the analog centrosymmetric struciure.
Experimental measurements of the dispersion in the isotropically averaged dc-induced
second harmonic susceptibility <y(-2;®,w,0)> and third harmonic susceptibility
<Y(-3w;w,m,0)> in two important polyene structures confirm the electron correlation
description of Yjkf(-04;®1,02,w3). The measured values of <y(-2w;®,®,0)> and
<N-3w;0,w,w)> at several near infrared fundamental wavelengths for hexatriene, the
N = 6 carbon site polyene chain, are in excellent agreement with the calculated
magnitude, sign, and dispersion. Corresponding measurements for B-carotene, a
substituted N = 22 polyene chain, together with the results for hexatriene, also verify
the calculated power law dependence of <y(-(4;W1,W7,a3)> on L. It was further found
in the course of the experimental measurements that the common reference standard for
the macroscopic susceptibility %3)(-3w;,0,0) is too large by a factor of 2.0, and an

improved standard value is proposed.
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Chapter 1

INTRODUCTION

The delocalized, one-dimensional %t-electron system of organic conjugated linear
chains provides this unique class of materials with novel nonlinear optical and electronic
properties.!-5 However, because the repulsive Coulomb interaction between electrons
requires that an exact solution of the electronic structure involves many-electron
wavefunctions, the ground state and electronic excitations of conjugated chains have
remained not fully understood. Although many approximate theoretical descriptions
have been presented that either neglect entirely the electron-electron interaction or treat it
in a mean-field theory, there is increasing evidence that electron correlation effects and
the many-body nature of the wavefunctions are essential to a complete understanding of
the optical and electronic properties of n-electron systems. In fact, it has been clearly
and unambiguously established that electron correlation is responsible for the ordering
of the low-lying electronic excitations of the short and intermediate length conjugated
chains known as polyenes.6 In this report, the nonresonant nonlinear optical properties
of conjugated linear chains are demonstrated to be determined by electron correlation;’-8
and, in turn, nonlinear optical experiments provide highly sensitive measurements and
tests of electron correlation effects on electronic structure. Through a series of
combined experimental and theoretical studies of the nonresonant molecular third order
susceptibility ¥jk(-04;01,w2,003) of finite linear chains, we demonstrate the essential

role of electron-electron interactions in the microscopic origin of the nonlinear optical

1




responses of conjugated structures and achieve agreement between experiment and
theory for the magnitude, sign, dispersion, and length dependence of
Yijki(-@4:0],002,03) in quasi-one dimensional systems for the first time.

The large, nonresonant third order nonlinear optical susceptibility of one
dimensional conjugated chains is illustrated, for example, by third harmonic generation
(THG) measurements of crystalline polydiacetylene TCDU (specified by the side group
R = (CH2)4OCONHCgHs) which yielded a macroscopic susceptibility
1(131)1  (-3@im,0,w) =7 x 10-11 esu for a fundamental wavelength A = 1.89 um.% For
A =2.62 um, such that the third harmonic light at 0.89 um is still further from the
optical absorption peak at 0.56 um and dispersive effects are less important, the
measured susceptibility is only slightly reduced to 1(131) 11(-30:0,0,0) = 3.7 x 10-11 esu.
In a separate comparative study of THG in saturated and conjugated linear chains, it was
shown that although the saturated alkane chains exhibit a linear dependence of the
isotropically averaged molecular susceptibility <y(-3;®,w,m)> on the length of the
chain, <y(-3w;®,w,w)> of conjugated linear chains increases in a dramatic supralinear
fashion due to the delocalized n-electron system. 10

The nonresonant nonlinear optical response of conjugated chains has also been
demonstrated in a number of studies to occur on ultrafast timescales. Thin films of bis
(p-toluene sulfonate) polydiactylene (PTS), for example, were studied by degenerate
four wave mixing (DFWM) in which two incident laser pulses form a refractive index
grating from which a third (probe) pulse.scaners.“ The decay of the induced grating is

a measure of the inherent response time of the nonlinear optical process and can be
2




determined by the scattered light intensity as a function of the temporal delay between

the coincident grating-forming pulses and the probe pulse. For laser pulses with 300
femtosecond (fs) temporal width at A = 652 nm, just within the onset of the film's
optical absorption, the scattered light intensity was found to decay with a lifetime of 1.8
picoseconds (ps). A transient saturable absorption measurement at the same wavelength
yielded an excited state lifetime of 2.0 ps and provided verification that the grating
measured in this resonant DFWM experiment was due to population of excited electronic
states. Most importantly, a DFWM measurement for a wavelength outside the optical .
absorption (A = 723 nm), demonstrated that the nonresonant response time was shorter
than the 300 fs pulse width as evidenced by the existence of a scattered signal only when
all three pulses were temporally overlapped within the film. Thus, the nonresonant
grating induced strictly in the electronic polarization, and not in the excited state
population, responds on at least the femtosecond timescale.

One of the earliest evidences of the importance of electron correlation effects in
conjugated structures derives from the observation that the first excited state in polyenes
is, in fact, the low-lying, two-photon 2! Ag state.6 Prior to this discovery, it was
believed that the lowest-lying electronic excitation was the large oscillator strength
11By « 11Ag one-photon transition. The increased oscillator strength and decreased
excitation energy of this transition with increased chain length are well-described by
one-electron theory that treats the electrons as independent particles. There were,
however, a few irreconcilable spectrosc;)pic puzzles. First, the experimentally observed

intrinsic fluorescence lifetimes of polyenes are at least an order of magnitude larger than
3




the values obtained by standard analysis of the 1By, absorption band.!2.13 Second,
there is a significant separation between the lowest energy peak of the absorption
specarum and the highest energy peak of the fluorescence specrum. Ordinarily, one
would expect these spectra to share a common origin and be mirror images of one
another. Finally, the absorption spectrum exhibits a much stronger dielectric shift in
polar media than the fluorescence spectrum.

The observation by Hudson and Kohler of a weak, symmetry-forbidden
absorption below the 11By « 11A; transition in the eight site chain case of all-rrans-1.8-
diphenyloctatetraene resolved these apparent paradoxes.!4 Below the 11B,; state lies a
state that possesses the same symmetry as the llAg ground state and is therefore
denoted the 2‘Ag state. Schulten and Karplus demonstrated that inclusion of electron
correlation by multiple-excited configuration interaction within the Pariser-Parr-Pople
(PPP) r-electron Hamiltonian does, in fact, yield a strongly correlated two-photon 21A4
state at lower energy than the one-photon allowed 1B, state.!5 Subsequent
experimental and theoretical work over the years has clearly shown that the existence of
a low-lying, strongly correlated 21 A state is a general feature of all unsubstituted
polyenes with number of carbon sites N larger than six.6.16-20

In spite of the clear evidence of electron correlation in finite polyenes, the
electronic structure of infinite chain conjugated polymers has often been considered
within the context of tight-binding2! or Fermi-liquid models.22 These theories, which
concentrate on the electron-phonon coupfin g and neglect the electron-electron

interaction, have been moderately successful in the interpretation of experimental data
4




from transient optical absorption to resonant Raman scattering to charge transport.23
Initial mean-field studies of electron-electron interaction within these models concluded
that since the on-site Coulomb repulsion tended to destroy the experimentally observed
dimerized bonding structure, or bond order wave, of the polymer chain, conjugated
polymers must fall in the weak interaction limit.# However, less approximate
theoretical studies employing Monte Carlo,25 valence bond,26 variational,2” and
renormalization group28 methods have found that the effect of on-site Coulomb
repulsion is, in fact, to increase the dimerization amplitude for small and intermediate
strengths of the electron-electron interaction. These conclusions remain valid even
when off-diagonal interactions in the site representation are included in the
Hamiltonian,29 and it may therefore be concluded that the electron-electron interaction
should not be considered to be weak on the basis of the known dimerization of the
polymer and that it can, instead, significantly affect the electronic and optical properties
of the system.

In light of the above discussion, it is clear that a thorough analysis of the effects
of electron correlation on the nonlinear optical properties of conjugated linear chains is
necessary to a fundamental understanding of these properties. Although many
theoretical studies of the third order susceptibility ¥;jx/(-4;@1,02,03) of linear polyenes
have been published, prior to the work presented in this report,’-8.30.31 none of them
considered electron correlation effects. The independent particle models previously
employed include the free-electron model,32 undimerized33 and dimerized34 Huckel

models, single-excited configuration interaction of the PPP Hamiltonian,33 coupled
5




SCF perturbation theory of the CNDO molecular orbital method,36 perturbative density
matrix treatment of the PPP Hamiltonian,37 and ab initio coupled-perturbed Hartree-
Fock theory.38 We present here results from multiple-excited configuration interaction
theory applied to a self-consistent-field molecular orbital method that, for the first time,
explicitly accounts for the electron-electron interaction and electron correlation.
Through examination of the individual third order virtual excitation processes that
contribute to Yij/(-w4;01,002,3), we demonstrate that electron correlation plays a
dominant role in the nonlinear optical properties of conjugated linear chains. In
particular, virtual transitions that involve previously unexpected, strongly correlated,
high-lying, two-photon states are essential in the determination of the n;agnitude, sign,
and dispersion of Y;jx/(-w4;w1,w2,w3) in linear polyenes. Our conclusions concerning
the importance of electron correlation effects to the nonlinear optical properties of
conjugated structures have received subsequent, independent confirmation by exact
diagrammatic valence bond theory of the more approximate PPP Hamiltonian39 and by
multiple-excited configuration interaction of the INDO molecular orbital method.40
This report presents the electron correlation description of the microscopic origin
of third order optical responses in conjugated linear chains and experimental dispersion
measurements of dc-induced second harmonic generation (DCSHG) and third harmonic
generation (THG) for two important molecular structures that quantitatively verify some
of the key theoretical results. In Chapter 2, we describe the theoretical methods
employed in the calculation of ¥;j/(-4:01,02,03). Section B presents the Method of

Averages technique of time-dependent perturbation theory that expresses
6
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excitation energies of the eigenstates of the molecular Hamiltonian. The electron
correlation theory of multiple-excited configuration interactions applied to the self-
consistent-field molecular orbital method that we employ to calculate the ground state
and n-electron excited state electronic wavefunctions of conjugated structures is
reviewed in section C.

Chapter 3 presents the results obtained for calculations of ;jx/(-w4;w}.w2,w3)
for all-trans polyenes that range in number of carbon atom sites from N =4 to 6. In
short chains, the magnitude, sign, and dispersion of ¥;j/(-(34;01,02,@3) is found to be
determined by just two competing third order virtual excitation processes. The smaller,
negative contribution involves only the ground state and the large oscillator strength
11By, state. A surprising, larger, positive term additionally involves a high-lying two-
photon ! Ag state that is highly correlated and couples strongly to the 11By, state. The
dominant tensor component Yexxx(-04:;01,07,w3) is found to have a power law
dependence on N with an exponent of 3.9 that therefore leads to very large nonresonant
susceptibilities for intermediate length chains.

The effects of two basic structural alterations to all-frans polyenes are considered
in Chapter 4. In section B, we discuss an aiternate structural conformation known as
the cis-transoid conformation. The results are in direct analogy to those of the all-trans
chains with the exception that, for a given N, Yyxu(-4;®}1,072,03)is smaller in the cis-
transoid conformation. This is understood in terms of the reduced physical length L of
the chain along the conjugation axis in the cis-transoid conformation, and the results are

unified by a common power law dependence of Yxyx(-(4;01,072,03) on L with an
7




exponent of 3.5. Section C describes results for a noncentrosymmetric polyene in
which the symmetry is lowered by heteroatomic substitution on the ends of the chain.
The introduction of nonzero diagonal elements to the transiion moment matrix (e.g.

ground and excited state dipole moments) is found to enhance Yy -04;®1,002,w3) by

more than an order of magnitude.

Chapter 5 presents dispersion measurements of DCSHG in hexatriene (HT), the
N = 6 polyene, and B-carotene, which corresponds to an N = 22 polyene; and similar
dispersion measurements for THG in these two molecular structures are discussed in.
Chapter 6. For HT, the experimental magnitude and dispersion of <y(-2w;®,®,0)> and
<Y(-3w;0,w,w)>, the isotropically averaged susceptibilities for DCSHG and THG,
respectively, are in good agreement with the theoretical results that are discussed in
extensive detail in Chapters 3 and 4. Although B-carotene is a longer molecule than can
currently be computationally considered, the experimental nonresonant value of
<Y(-q;@1,072.03)> for B-carotene is in excellent agreement with extrapolation of the
theoretical power law chain length dependence providing additional verification of the
theoretical results. As a separate issue, by comparison of the DCSHG and THG results
we have found that the values for x3X(-3w;0,0,w) of quartz and glass that are
commonly used as the reference standards for THG measurements of thin films and

liquids are too large by a factor of 2.0. ¥3)(-3w;w,w,w) reference standards are

discussed in section E of Chapter 6.
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Chapter 2

METHOD FOR CALCULATION OF vjjx/(-w4;w01,w2,w3)

A. Introduction

One major motivation of this work was to provide an accurate theoretical
description at the molecular level of the third order optical properties of conjugated linear
chains that explicitly accounts for the effects of electron correlation. In particular, we
wish to understand at the microscopic level the molecular third order susceptibility
tensor Yjjx(-w4: W1,002,w3) which is defined through the constitutive equation

P = Yije(-04:01,02,03) E;.‘” E2E™ Q2.1)

where p;‘"‘ is the i-component of the molecular polarization induced at frequency wy in
response to the specified components of applied electric fields at frequencies wy, w; and
3. By consideration of only the electric field amplitudes of the incident light, we have
made the generally valid approximation that the electric dipole interaction with the
molecule is much stronger than the magnetic and higher order electric interactions.

If the frequencies @i, ax, and @3 are degenerate at frequency o, then
Yijei(-3@;w,0,0) is responsible for the creation of light at 3w through third harmonic
generation (THG). Another important thu'd order optical phenomenon is the intensity

dependent refractive index that results from ¥jx(-00;0,-0,w), where we have taken the
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complex conjugate of one of the incident fields. Further, if in addition to the optical
field at frequency , one applies a dc electric field, the third order process of dc-
induced second harmonic generation (DCSHG) occurs via the susceptibility
Yijki(-20;0,0,0). Thus, it is clear that y;jx(-w4;01,07,003) governs a multitude of
fundamental nonlinear optical processes each determined by the condition

W4 = W] + W7 + W3, where each frequency i, 6, and w3 may be taken as positive or
negative.

Of the two principal methods for the calculation of ¥;jk/(-(4;w1,02,03), usually
referred to as the summation-over-states!-2 and finite field3 techniques, the summation-
over-states formalism offers several advantages. Primary among these is the ability to
identify specific virtual excitation processes among the eigenstates of the system that
make the most significant contributions o ;4 x(-04:01,02,@3). This results from the
summation-over-states respresentation of Y;jx(-(4;®1,02,(3) as a perturbation
expansion over all possible virtual excitations. In contrast, the computationally more
simple finite field technique, which involves taking derivatives of the perturbed ground
state energy or dipole moment of the molecule as a function of applied field strength,
yields only a final value for ¥;jx(-4;1,02,w3) with no information regarding its
origin. Additionally, the summation-over-states method allows one to calculate the
frequency-dependence or dispersion of ¥jjxx(-wa;w1,w2,03) since it is founded in time-
dependent perturbation theory while the finite field technique only calculates the zero-
frequency limit ¥;j/-0,0,0,0). A third s;rength of the summation-over-states method is

the capability to include the many-electron nature of the molecular wavefunctions
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through either multiple-excited configuration interactions or generalized valence bond

theory.

The summation-over-states method derives its name from the expression of
Yijki(-04,01,02,w3) through summations over all eigenstates of the system of terms that
involve the transition dipole moments and excitation energies of the eigenstates. The
calculation of ¥;ji/(-w4:W1,67,3) is therefore no more accurate than the values obtained
for the transition moments and excitation energies of the ground and excited states of the
molecule. In this thesis, we concentrate on organic conjugated linear chains, a class of
molecular structures for which electron cormrelation effects have been demonstrated to be
crucial.# The electronic structure of conjugated chains has been studied by a variety of
theoretical methods including Huckel, Hubbard, Pariser-Parr-Pople (PPP), and all-
valence electron Hartree-Fock theories such as the complete neglect of differential
overlap (CNDO) molecular orbital theory. The spectroscopic parametrization of CNDO
theory developed by del Bene and JaffeS and modified by Lipari and Duke®, known as
CNDQ/S, has been particularly successful in calculation of molecular electronic
absorption spectra, and we have therefore chosen to apply the CNDO/S method with
multiple-excited configuration interactions to account for electron correlation to the
calculation of ¥jjxr(-0;®1,u,w3). Section B of this chapter presents the derivation? of
the summation-over-states expression of Yjx/(-w4;w1,02,w3) employing the Method of
Averages developed by Bogoliubov and Mitropolsky3 which eliminates secular

divergences that otherwise occur when any subset of the applied frequencies sums to

zero. In section C, we review the multiple-excited configuration interaction theory and
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self-consistent-field molecular orbital method that allow us to calculate the transition
dipole moments and excitation energies of the n-electron molecular states taking account

of electron correlation effects by explicit inclusion of electon-electron interactions.

B. Derivation of vjjx/(-04;01,02,003) by the Method of Averages

The Method of Averages is a perturbation technique that involves separation of
the wavefunction into slowly and rapidly varying components.8 The slowly varying
component is responsible for the secular divergences that occur in standard perturbation
theory and leads to shifts of the energy levels while the rapidly varying component
produces the polarization induced in response to the applied fields. We start with the

unperturbed molecular Hamiltonian Hg possessing eigenstates | n > that satisfy

Holn>=fw,In> . 2.2)

The time-dependent perturbation eH(f) leads to a total Hamiltonian

H(t) = Hy + eH (D) (2.3)

where we will assume eH(f) =0 for t <0. In particular, we consider the semi-classical
interaction of the incident radiation field with the molecule in the electric dipole
approximation such that
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eHi(t)=—-eE()or .9)
where E(¢) is the optical electric field amplitude and er is the molecular dipole moment
operator.

For algebraic simplicity, we use a modified interaction representation with state
vector | P(¢) > defined by

1) > = expliior/ 7] expli [} di' <eH\(1)>g/ ) 19D > (2.5)

where | W(f) > is the solution to the time-dependent Schrodinger equation

g; V() > = (il H() 1Y) >. (2.6)
We then have

g; | (1) > =¢ H(t) | &) > Q.7
where

H@) = @myY explitl /5] Hio) expl=iHot/B) - (A1 <Hi(0)>g  (2.8)

with

<A>j=<ilAlj> 2.9)
and the barred operator is defined by

AsA-<A>y (2.10)

The molecular polarization p(¢) is given by
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pi) = <Y IplI¥@®)>/<¥Y@)IY() > 2.11)

which can be rewritten as

P = <dOipldE)>/<DO D) >+ <P>gq 2.12)
where

p = eih’&z/h p c-iHoih . 2.13)

We can express the perturbation Hamiltonian and resultant polarization in terms

of Fourier components
Hi)) = H] + 2 X [H® ¢ iwj‘m;mjef“’ﬂ ]
J
p@) = p0 + 2 [ pP0 0! pla 00! ] (2.14)
o

We can then specify the particular ¥;x/(-w4:1.002,03) of interest by choosing the w;
corresponding to Wy, W), and w3 and setting g = W4.

The fundamental assumption of the Method of Averages is that the temporal
behavior of | &(¢) > can be separated into rapidly and slowly varying pieces. We then

make the expansion

17




l<l>(t)>=[l+m§l eQF@]IE> (2.15)

where the rapid variations are contained in F(® and the slowly varying partis | § >

which has temporal evolution given by

o0

g;|§> = a);'l e G@ | E>. (2.16)

Substitution of Egs. (2.15) and (2.16) into (2.7) and expansion in powers of € yields.

"
o

an+%ﬂn

HFAD - FOGO

am+%nn

an+%ﬂn=§nn-nnmm_nnmn 2.17)
which has the general form
6@ + LF@ = R@ (2.18)
& .

where R@® involves only the Hamiltonian and functions of lower order than a. The

utility of the Method of Averages lies in our ability to assign particular matrix elements
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< R® >, to either G(®) or F(®), If we assume that no excited states achieve significant

population, for which the formal requirement is

<F@>, - 2 <l‘-11 2am e | (2.19)
< F(a'l)>mg nrn

where I, is the inverse radiative lifetime of state | n >, then the only terms we wish to
assign to G(@) are the secular terms in which some combination of frequencies

@) + @y + ... =0, where @), wy, ... are the frequencies involved in the perturbation
Hamiltonian.” All diagonal terms of R(®) would then diverge if assigned to F(®). This
is because R(®@) has the general form

<R® >, o il Om=01-02-.)) (2.20)

where Wmp = Wy — Oy

If we expand | & > in the set of eigenfunctions | n > of the unperturbed

Hamiltonian Ho,
1IE> =Zin><ni&> = Zin>§, (2.21)
n n
we obtain
Stm =L L 0<COomE . 2.22)

Since we have assigned only the diagonal elements of < R(®) >p, to G(®), we have
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G = I, e9<G@ >y, &, (2.23)

which has the solution

En(t) = &n(0) e=# AEnt/R (2.24)
where

AE, corresponds to a time-independent energy shift of state i n >.

With the initial condition
En(0) = Bpng E4(0), (2.26)
Eq. (2.15) can be rewritten as
- b )
(> =8, [1+ OEI €2 F@)] 1 g> 2.27

We insert Eq. (2.27) into Eq. (2.12) and separate according to order of € to obtain
PO = <p>g

PO = <FATP>pe + <FINpFD > + <pFA >,
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PO = <FOTP >, + <FATpFD>p0 + <FINT D FD>,04 <p FO) >,
- [ <FOt s, + <FOTED >, + <FD 5., ]

[<FDB>g + <pFD>,] (2.28)

For further simplification, let us define a projection operator g that projects out from H

only those terms that we have assigned to G(1):

gH = GO (2.29)
From Eq. (2.17), we have

FO = fdt (| - gH), (2.30)

and we therefore define a projection operator f through

fH=[dt H-gH)=FD. @.31)

The higher orders of G(@ and F(®) can then be expressed as

FO = fHfH - fHgH




G = gHfHfH - gHf2HgH

FO® = fHfHfH - fHRHgH

-PHgHfH -PHfHgH + fHgHgH  (232)

Egs. (2.28) can now be written in terms of p, H,and the projection operators f and g:

P = <H' TP >gq + <PfH >g

PO = <HI fIH f15>pg + <H' fIhfH >gg + <pfHfH >

pOXt) = <PfHFHIH>p + <HIfIBfHfH >
- <§j2}-l>gg<gilf§>gg - <fflfl.l>gg<l-1*f'§>
— <HUftfH >0q<pfH>g - <fI—1fI_-!>88<I;f}—1>&g
+ Hermitian conjugate (2.33)

where we have made use of < gH >0 =0.

As an example, we calculate the linear polarizability a;;(-0;) given by

p‘('l) 0o g (-0;0) E‘;’ ‘ (2.34)

The second term of p(1)(¢) in Eq. (2.33) can be expanded as
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where we now consider the i-component of the polarization. Explicitly writing out p

and f—l we get

<PifH >4 = § <gl ¢iH8iR p; e-iHOMR — <p;>,0 In>

<ni ((R)-! f(eiHOR 1| e-Hok - <H1>gg) Ig> (2.36)

which reduces to
<pifH >eg = (A1 ) <gl pj In> e~Hwn - W)t <pl f H) eilwn = wgkt |g> (2.37)
n

where the prime on the summation indicates that the ground state is omitted from the

sum (n # g). Expansion of H as a Fourier series and performance of the dime integral

involved in the definition of f yield

- : <glpiln> <nl H“l’f lg>
<PifH>y = ()1 2 X e-iwjt (2.38)
"y Wng = W;

The first term of p(1)(s) in Eq. (2.33) is simply the complex conjugate of Eq. (2.35).

The polarization p(il) ©at frequency  i§ then given by
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. <glpiln> <nt H® lg>  <glH® In> <nlp;lg>
| 1_ . L 1 @39

1
p0o - L
n

and a;{(-0,w) is

<glriln> <nirilg>  <glriin> <nlriig> ] a0

2

e

oi(-0;0) = — Z [
T (l)ng - (l)ng +®

This is the usual expression for the linear susceptibility and is well-behaved in the
® - 0 limit.

To obtain the third order polarizability ¥;jxi(-w4;m1,002,03) as defined in Eq.
(2.1), we must evaluate p?)(t) from Eq. (2.33). Each term in Eq. (2.33) involves three
f~ctors of H 1 which have components that oscillate with frequencies @y, w2 and 3.
We define a permutation operator /) 2 1 that averages over all permutations of ®1, w2
and w3, where the associated indices j, k, and ! are also permuted with the frequencies
to ensure ¥;x/(-4;01,W2,03) = Yjjji(-Wa:3,01,072) and similar permutations are valid.

The susceptibility Yi(-wq;w1,02,03) is given by

A
Yijki(-04;01,02,003) = K(-004;01,02,03) ( ;‘) I3

i =1 =k i I =i -k '
3! Tgmy Tmymy Tmgmy Mg + Fgmy Tmymp "'mam, rhg

MIMIM3 " (g4} Dy 01-002) @y g-D1)  (Dryg+03) Whpg-1-02) @y g-O1)

<k =i <k =1 '
+ ’ﬁm; Tmyms "n‘xzml Fmg + rf_ml Tmymy Tmom, ""'L
(W g +001 )(Wmyg+ W1 +2)(Wm, g-W3) (5 g+ 01 )( Wy g+ W1 HD2) Wy g +W4)
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. I . : .
-3 rfl’"z "";g'jml Tih g + rgmy "'Ilzg_émlr'ﬂg
mimz (wng'm4)(wng'w3)(wmlg'wl) (wng°“)3)((0mlg+m2)((°m|g'wl)
F s b Pl 1 Pl P Fhm, 7K
+ grmp " mog 'gmy 'mg + §ma "nag f'gmy ‘mig } ]
(mng"'(o‘t)(mng"’wﬁ(wmlg"'ml) (Wrpg +W3)( Wy, g-W2) (W g +01)
(2.41)
where Tymy 18 the matrix element < my | ' Ilmy > (F = ¥ — < ! >p,), idm, g is the

excitation energy of state mi, and the prime on the summations indicates a sum over all
states but g. The factor K(-tg;01,w7,w3) arises from the distinguishable arrangements
of Wy, @y, and w3 that can contribute to ¥;jki(-04;®1,w2,03) and from the factors of 1/2
in the definitions of the Fourier amplitudes of H| and p in Eq. (2.14). The numerical
values is given by K(-wq;1,02,003) = 2-m D where m is the number of nonzero input
frequencies minus the number of nonzero output frequencies and D is the number of
distinguishable orderings of the set {®,, wp, w3}. Given the transition dipole moments
and excitation energies of the electronic states for a particular molecular structure, we
can calculate ¥;ju(-0;01,02,03) for any given set of frequenices and for any third
order optical process. We note here that some authors choose to include
K(-am;1,00,073) in the constitutive equation (Eq. (2.1)) explicitly rather than
incorporate it in wju(-au;(ol,mz,an)." In fact, comparative nonlinear optical

measurements are complicated by the many different definitions that have been adopted
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for Yiju(-04;®1,02,w3). The relationships between the most common notations are

given in Appendix A.

C. Multiple-Excited Configuration Interaction Theory

and Self-Consistent-Field Molecular Orbital Methods

In order to evaluate Eq. (2.41) for v;jxi(-04:01,02,w3), we require the excitation
energies and transition dipole moments for the electronic states of the molecular system.
We review here the basic principles of the all-valence electron, self-consistent-field,
molecular orbital methods®-10 employed to calculate the ground state wavefunction as
well as the multiple-excited configuration interaction theory!! that incorporates electron
correlation into the determination of excited state propertes.

The molecular Hamiltonian Hyyg is given by

Ry 1 2 el ZaZ
Hiprai(1, 2...N; 1, 2,..n) = “TEH;V 4+ EB—;:;L

K2 2 ez e2
- Ve - £ 24 — 4
H}; i E_‘,}'_‘, Tai E) rij 242)

where N and n are the respective numbers of nuclei and electrons, M, the mass of
nucleus A, Z4 e the charge of nucleus A, m and e the electron mass and charge, and r;;
the distance between particles i and j. The terms in Eq. (2.42) correspond in order from

left to right to the kinetic energy of the nuclei, the Coulomb repulsion between nuclei,
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the kinetic energy of the electrons, the Coulomb attraction between nuclei and electrons,
and the Coulomb repulsion between electrons. Since the nuclear masses are several
thousand times larger than the electronic masses, we make the approximation that at any
given time the electrons adjust to the instantaneous nuclear configuration as if the nuclei
were motionless. This is, of course, known as the Bom-Oppenheimer approximation

and reduces the Hamiltonian to

R R ) ez e2
H(l, 2,..n) = -m-g vi - %I.}i.‘,—d-m + ,%71] (2.43)

where it is understood that H(1, 2,...n) is also a function of the given nuclear
configuration. The many-electron wavefunction Wpy(1, 2,...n) is given by the

Schrodinger equation
H(1, 2,.n) ¥ (1, 2,..n) = En¥m(l, 2,...n) . (2.44)

Equation (2.44) is still too complicated for exact solution because the third term
of Eq. (2.43) couples the wavefunction of each electron to all the other electrons in the
system. The orbital approximation constructs the many-electron wavefunction from
individual wavefunctions determined for each electron. To maintain the antisymmetry

of the overall wavefunction, it is taken as the Slater determinant of one electron of each

of two possible spins occupying the orbi‘tals O
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w(l, 2...n) = | 01D 1D2D2... 92 Dn12! (2.45)

where ®,, and ®,, are one-electron orbitals of opposite spin.
To develop equations that provide ®p,, we first separate Eq. (2.43) for

H(1, 2,...n) into one-electron and two-electron parts H ' and G ', respectively :

H=H'+G' (2.46)
where

Z [ Z ——A] Z h'(i) (2.47)
and

G' = E, ‘;’5 = ,2:.1 gG.J) . (2.48)

The total electronic energy E is given by

nf2 n/2 nf2
E=<¥IHIY> -ZZlH + 2‘. Z(z.l,, Kij) (2.49)
= i=
where
Hy; = [ &7(1) K1) (1) duy (2.50)

and i, j sum over the n/2 occupied molecular orbitals. The Coulomb integral J;; and

exchange integral Kj;, given by

s = Ho,me @~ d>,(l) @,2) duduz, 2.51)
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K = [lojm ¢;(2) r—:i‘bf“) ®i(2) dudry, (2.52)

respectively, represent the Coulomb repulsion between electrons in orbitals ®; and ;
and the exchange interaction between electrons of parallel spin in orbitals ®; and ®; that

results from antisymmetry of the total wavefunction. If we define one-electron orbital

energies E; by
n/2
Ei = Hy + j§l @Jij - Ky (2.53)
then
nf2 n/2 nf2
E=2 2'1 E; - 21 21 @i ~ Kyj) (2.54)
= 1= J:

where the second term corrects for double-counting of the electron-electron interaction

energy.
The solution for ®,, can be obtained by the method of Lagrange multipliers.
When we include the orthonormality constraint that
Sij = J®; (1) 1) duy = &y, (2.55)
the solution is obtained by minimizing the function

G=E-2X¢;Sj=2XH;+ L - Kj) - 25¢;;Sij  (2.56)
ij i iJ i
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where g;; are the undetermined Lagrange multipliers. This leads to the differential

equations

nf2
{H(Q) + 1§1 [ 271 - Ki(D) ] } ®i(1) = & Di(1) (2.57)

where we have made the unitary transformation in which the only nonzero elements of
the Lagrange multipliers ¢;; are the diagonal values, denoted ;. The Coulomb and

exchange operators J; and Kjj, respectively, are defined by

&) = [[8;0) 7= 0/@) drz ] &)

K 0D = [[8]@) 7= 0,2) dna) 9D, (2.58)

The eigenvalues ¢€; are equal to the one-electron orbital energies E; defined in Eq. (2.53).
Equations (2.57) are the Hartree-Fock equations that allow for solution of the set

of orbitals d;, but the equations themselves are dependent on ®; through the operators

Jjand Kj. This requires an iterative solution that is simplified if the orbitals are further

approximated as linear combinations of atomic orbitals (LCAO),

®; = E—Cw' Ou (2.59)




where ¢y, is an atomic orbital. We define the atomic overlap integral Sy,y and density

matrix Puv as
S = Jo (D oD du

Puv = 2? Cw Cw- (2.60)

where the sum over i in Py is over each of the doubly-occupied molecular orbitals.
The total electronic energy E given in Eq. (2.49) can be expressed in terms of the atomic

orbitals as

1 1
E = E\;PuvHuv + fu:,['MP“"PM[(“V“‘G) - E(u}»lvo)] (2.61)

where
Hyy = [ 0.(1) K() o)) dty (2.62)
and
(wvi3e) = [To,m o, 7= 6,0 0,2 dudez @63

The Lagrange multiplier equation that corresponds to Eq. (2.57) in terms of the atomic

orbitals is

X (Fyv - EiSp)cvi = 0 (2.64)
v

K)




where the Fock matrix Fyy is defined by
Fuv = Huv + T Prg[(Wv1X0) = 7(uA1vo) | (2.65)

Solution of the algebraic set of equations (2.64) yields the molecular orbitals ®; in terms
of the atomic orbital coefficients cy;. Since Eq. (2.64) involves the remaining set of
coefficients cy; through Py, it still requires iterative solution.

We now turn to the further approximations and parameterizations that are
specific to the CNDO/S method.36 The atomic orbitals ¢y, are approximated as Slater-

type orbitals when the radial part is given by
Ru(r) = QO+ 12 [Qm)t]-12 =1 e (2.66)

where n is the radial quantum number and { is the Slater exponent. The angular
dependence of the wave functions is given by the spherical harmonics, Yim(6, ¢). In
Roothaan's equation (Eq. (2.64)), the zero differential overlap (ZDO) approximation is

made for the overlap integrals Sy,

Sp,v = &uv . (267)

The ZDO approximation is also made for the two-electron integrals such that
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(BVIAG) = duy Sag (MpiAA) . (2.68)

We will use 4 to denote orbital it on atomic site A. Then the one-center integral

(HA M4 lvaVvya)istaken as an input parameter that is independent of orbital type,

(HAMAIVAVA) = YaA . (2.69)

and the two-center integral is given by the Ohno potential, 12

14.397 eV A
(HAMAIVBVB) = YaB = 38,794 eV A . 2.70)
{ (=212 + [Ras(A) P}
YAA + YBB
For the one-electron part of the Fock matrix, denoted by Hyy, the diagonal

elements are given by
Hw = lu ~ (Za-1)Yaa Q.71

where /; is the parameterized ionization potential for orbital 4 and Z, is the net core
charge of atom A. The off-diagonal elements of Hy, which represent the bonding

energy of a shared electron, are taken as

Hyv = [ (Ba + BB) /2] Spv 2.72)
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where B4 is the empirical resonance integral of site 4 and the ZDO approximation is not

employed here for Sy,

The final equations from which the orbital coefficients cy; are obtained are

Zvl (Fuv - &8u)cyi = 0 (.73)

where

Fup = Iy = @a = D¥as + (Pan = 7Pud1an + X, (Pop ~ Zo) Yas
2.74)

and

Fuv = —(Ba + B8)/2 Suv = 5Puvtas (1 =V) (2.75)

where Pggp is the sum of P»), where A is any orbital centered on atomic site B.

Equation (2.73), together with Eqgs. (2.59) and (2.4S5), yields the ground state
electronic wavefunction for the molecular system of interest. In order to obtain the
excited state wavefunctions and energies, we perform a double-excited configraton
interaction calculation.!l Each state of the system ¥, is expanded as

nf2 m

W, = Ano¥o + 2 L AV
n n0T0 =1 p=n3el nkp T kp

n2 n2 m m

y 2 X ) p Ankpig Yipiq (2.76)

kzl =l pan/2+1 g=nf2+1
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where ¥ is the ground state wavefunction, Wy, is a spin-singlet, single-excited

configuration given by

Wip=2- 12 ( '¢16l---¢k¢k+15k+l---¢nl26n/26p

- |©191... O Bre 1Dt Pr2Pr2®p| ) (2.77)

where p is a virtual orbital that is unoccupied in ‘¥g, and ¥y is an analogous spin-
singlet double-excited configuration. The coefficients A, g where R represents the set

of molecular orbitals involved in the configuration, are determined by
Z Ang (Hrs = EnSgs) = 0 (2.78)

where Hgs = < Wg 1 H | W5 > with H defined in Eq. (2.46), E, are the cigenvalues of
Hpgs, and Sgg is the overlap between ¥Wg and ¥s.

The molecular dipole moment operator |l is defined as
p.=—e2r,-+e§ZArA (2.79)
!

where i sums over the valence electrons and A over the atomic cores. Within the Bom-
Oppenheimer approximation, the second term of Eq. (2.79) is constant and only

contributes to the diagonal elements of Ji,, where

35




Hnn' = <Pl i¥p>. (2.80)

If we rewrite the expansion of the state function ¥, as
¥, = %A,,R Ve (2.81)

where Wp is either the ground, a single-excited, or a double-excited configuration, we

obtain
Unn' = RZSA"'R Aps <VYrlpi¥s> (2.82)

where < Wg | L | s > is the transition dipole moment between the configurations ‘Pz

and ¥s.

As an example of the transition moment between configurations, we consider the
integral between the ground configuration W and the single-excited configuration ‘¥,

that involves promotion of one electron from molecular orbital ®; to orbital &. We

wish to evaluate

<Wolr() 1 ¥i> = [ Wo(l, 2..M) r(1) Wi(l, 2...M) dtjdta..dty  (2.83)

1
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where M is the number of valence electrons. Recall that Wg and ¥ are constructed as
Slater determinants of orthonormal molecular orbitals. Expansion of ¥¢ and ‘¥j; into

the individual terms of the Slater determinants yield many integrals su-k as
[y @i d1 =0 (=g (2.84)

that vanish by construction of the orbitals. The only terms for which the integrals over
dt)...dtpy do not yield zero are those for which electrons 2, 3,...M occupy the same
orbitals in Wg and Wj;. But we note that ¥ and ¥ differ in only one orbital from
which they are constructed, and, therefore, the only nonvanishing term is that for which -
electron 1 is assigned to ®; in ¥ and @y in Vj;. Integration over dt2...dtM for this

term results in
<Wolr(1) 1 Wi> = 212 | @) r(1) K1) dty (2.85)

where the factor 2172 is due to the spin-singlet construction of Wix. We can then,
finally, evaluate Yygx(-00;01,002,03) through Eq. (2.41) with the electronic excitation
energies and transition dipole moments for the molecular system obtained as prescribed

in this section.
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Chapter 3
ELECTRON CORRELATION DESCRIPTION OF Yijgi(-w4;01,02,03)
FOR CONJUGATED LINEAR CHAINS

A. Introduction

In this thesis, we will concentrate on the hydrocarbon chains known as polyenes
as the archetypal examples of organic conjugated linear chains.! Each carbon atom site
in a polyene chain is sp2 hybrid bonded to its three nearest neighbor carbon and
hydrogen atom sites. The first and last carbon sites are each bonded to one carbon and °
two hydrogens while the internal carbons of the chain are bonded to two carbons and
one hydrogen. The carbon sp2 hybrid orbitals, together with the hydrogen 1s orbitals,
combine to form bonding molecular orbitals of ¢ symmetry. To an excellent
approximation, the ¢ bonds lead to a planar molecular structure with each bond pair
separated by 120°. For example, electron diffraction data of hexatriene (HT), the
polyene with N = 6 carbon sites, are best fit by a planar configuration with minimum
and maximum bond angles of 115.0° and 124.4°, respectively.2

The remaining electrons (one 2p electron per carbon atom site) form a framework
of delocalized, x-electron rﬁolecnlar ortitals. These weakly bound x-electrons are
responsible for the low-lying electronic excitations of polyenes, and, importantly,
through their large transition dipole motr;ents they dominate the molecular nonlinear
optical susceptibilities Byj(-w3;m1,02) and yijkx(-04;001,02,003) of these conjugated
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structures. The xn-electrons do not distribute uniformly across the carbon sites; instead,
they form a ground state where the charge density is largest at the terminal carbon-
carbon bonds and alternates between hizh and low densities moving inward along the
chain. As a result, polyenes have a dimerized bonding structure where the short, double
bonds are due to larger bonding electron density. Electron diffraction data for HT yield

a short bond length of 1.337 A and a long bond length of 1.457 A.2

B. Conformation, Symmetry, and Parametrization

Various structural conformations of polyene chains can be considered based on
rotations aboit the carbon-carbon bonds. The two most common conformations, all-
trans and cis-transoid, are shown schematically in Figure 3-1 for the particular case of
N =6, HT. Nomenclature for the conformational structures is by reference to the
locations of the neighboring carbon-carbon bonds relative to a given bond. The
structure is said to be trans if the neighboring bonds of a particular bond lie on opposite
sides of that bond's axis and cis if they lie on the same side. In an all-frans polyene,
then, all bonds are in the trans structure. In a cis-transoid polyene, the single bonds on
cither side of each double bond are in the cis structure while the double bonds on either
side of each single bond are in the frans structure. In this chapter, we will consider only
the all-rrans conformation, hereafter referred to simply as trans, which is the

v

energetically most stable conformation. In Chapter 4 we will present results for the cis-




transoid conformation, hereafter referred to as cis, and compare them with the results for
the trans polyenes.

The trans polyenes belong to the C7; symmetry group, where C» refers to a two-
fold axis of rotation (e.g. a x rotation about a C axis results in an equivalent
structure).3 The C7 axis lies perpendicular to the molecular plane (out of the page in
Figure 3-1) and passes through the center of the central bond. In addition to the C»
axis, trans polyenes also possess a mirror plane which is the molecular plane itself.
Since the C7 axis is defined as the vertical axis, and the two planes that contain it, as
vertical planes, the reflection operation that the frans polyenes possess is G5 where the h
refers to the horizontal plane, or equivalently, the plahe perpendicular to the C axis.
Thus, C2; refers to the symmetry group that possesses a two-fold rotational axis and a
mirror plane that is perpendicular to that axis.

The C2; symmetry group has four irreducible representations that are labeled Ag,
Ay, Bg, and By. A and B refer respectively to symmetric and antisymmetric
representations with respect to the C; operation, and u and g refer respectively to
symmetric and antisymmetric representations with respect to the inversion operation.
The transformation properties of each irreducible representatic:i of the C2, group under
the E (identity), C3, i (inversion), and 0, operations are given in Table 3-1. The self-
consistent ground melécu'mic wavefunction is the Slater determinant of the lowest
energy molecular orbitals, each doubly occupied, and the MOs are all eitherof G or &
symmetry where G is symmetric wimm;pectmdneo,.operaﬁonmdxis antisymmetric.
Double occupation of each orbital leads to a wavefunction that is necessarily symmetric
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under the G operation and therefore of either Ag or By symmetry. Since pairwise filling
also leads to a symmetric wavefunction with respect to the C2 and i operations, the
ground state is an Ag symmetry state. Furthermore, we will consider only &t — 1t*
excitations which must also necessarily be symmetric with respect to 6. All X-electron
states of a trans polyene are therefore of either Ay or By symmetry.

For complete identification of each individual n-electron state, we number the
states according to ascending energy within each of the two symmetry classes. Thus, the
ground state is labeled 11Ag and the next lowest energy state of the same symmetry is
21A4 while the lowest energy state of opposite symmetry than the ground state is
denoted 1!1By. The superscript 1 indicates that the state is a spin singlet. As a final
point with regard to symmetry, we point out that there are strict dipole selection rules
within the n-electron states. One-photon transitions are allowed only between states of
opposite parity. Thus, the 1B, states are one-photon allowed and two-photon forbicden
transitions from the 11 Ag ground state and are therefore known as one-photon states.
The excited ! Ag states, on the other hand, are two-photon allowed and one-photon
forbidden and are referred to as two-photon states.

Standard bond lengths, bond angles, and parametrizations of the carbon and
hydrogen atomic orbitals were employed for all calculations we carried out of various
chain iengths and conformations. The geometry was taken to be planar with 120° bond
angles, double and single carbon-carbon bond lengths of 1.34 and 1.46 A, respectively,
and carbon-hydrogen bond lengths of 1.09 A. The parameters for Slater exponents {,

valence-state ionization energies /, Coulomb repulsion integrals y, and resonance
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integrals B for the carbon 2s and 2p orbitals and the hydrogen 1s orbitals are listed in
Table 3-2. An earlier theoretical study of the excitation energies of low-lying states of
polyenes found that, compared to higher levels of configuration interaction, calculations
that include all single and double-excited configurations (SDCI) obtain proper state
ordering and yield close results for transition dipole moments but they overcorrelate the
ground state relative to the excited states.45 That is to say, the lowering of the ground
state energy by inclusion of double-excited configurations is out of proportion to the
energy lowering of the excited states. Furthermore, this effect was found to increase |
roughly linearly with increased chain length. By simply including a fraction of the

ground state correlation energy in the excitation energies,
AE (i « ground) = Ep(i) —~ (A / N) Ep(ground) 3.1

where AE is the excitation energy of state i, Ep(i) and Ep(ground) are the SDCI energies
of the i and ground states relative to the SCF ground state, and N is the number of
carbon sites in the chain, the SDCI resuits are in good agreement with computationally
exhaustive, higher levels of configuration interaction.45 In all of our calculations, we
have m use of Eq. (3.1) with A =3.

Asa dunotmﬁoﬁ that the theoretical results appropriately describe the x-
electron states of polyenes, we compare in Table 3-3 the theoretical and experimental
values of the 2! Ag and 11B excitation energies for the chain lengths N = 4 to 12. The

theoretical values are compared to experimental vertical excitation energies rather than
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0-0 excitation energies since the calculations are performed under the Born-Oppenheimer
frozen geometry approximation. Importantly, theory and experiment agree that the 21A,
state is of lower energy than the 11B,.

The relative locations of the 1!B, and ZlAg states has been a critical issue in
polyene spectroscopy.! For many decades, simple molecular orbital methods had been
believed to accurately describe the polyene excitation spectrum since they correctly
obtained the large absorption peak due to the 11By « 1!A4 excitation. Hudson and
Kohler found, however, in studies of a substituted eight site chain (1,8 diphenyl-
1,3,5,7-octatetraene) that an electronic excitation of one-photon forbidden symmetry that
lies below the 11By state is responsible for the displaced origin of the fluorescence
spectrum and for the anomalously long fluorescence lifetime following excitation into
the 11B, state.6 Schulten and Karplus subsequently demonstrated that the experimental
observation that the 21 Ag state is lower in energy than the 11By can be correctly obtained
only by calculations that account for electron-electron interactions through multiple-
excited configurations.” The existence of a low-lying two-photon state is one clear
signature that electron correlation effects play a dominant role in polyene electronic
structure. One major conclusion of this thesis is that the importance of electron

correlation is evidenced just as clearly, if not more so, in the nonlinear optical properues

of these conjugated linear chains.




C. Hexatriene (N = 6)

We begin the discussion of the origin of nonlinear optical properties in polyenes
with a detailed discussion of ¥jj/(-t4:w1,w2,m3) for HT (V = 6) for two principal
reasons. Because HT is one of the shortest members of the polyene family, the results
of the calculation can be presented and interpreted in an easily manageable manner. In
addition, since HT exists at room temperature as a fairly stable liquid and is easily
evaporated into the gas phase if needed, it is a suitable system for experimental study. A
thorough comparison between the theoretical and experimental results for HT is made in
Chapters § and 6.

The SCF ground state consists of thirteen doubly-occupied, tightly bound o-
electron molecular orbitals (MOs) and three doubly-occupied n-electron MOs. The
occupied n-electron MOs exist at higher energy than the occupied 6 MOs, and, in
addition, the three lowest energy unoccupied MOs calculated are also x orbitals. The
lowest lying electronic excited states therefore involve transitions of electrons from the
oc::upied x MOs to the unoccupied X MOs with the occupied G orbitals unchanged.
Figure 3-2 (a)-(c) and Figure 3-3 (a)-(c) show contour diagrams of the three occupied
and thgoe unoccupied x MOs of HT, respectively, in order from lowest to highest
enetgyr'.* Solid and dashbdlmes correspond to opposite signs of the one-electron wave
function, and the contour cut is taken 0.4 A above the molecular plane since x orbitals
vanish on the atoms. The  orbitals are numbered @3, 13, D16, 17, D1g, and Dy

in order from lowest to highest energy. The lowest occupied x MO is numbered @13
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rather than d4 because the highest occupied 6 MO is, in fact, calculated at a slightly

higher energy than the lowest t MO.

The n-electron excited states are obtained by configuration interaction of all
single and double-excited configurations from the three occupied &t MOs to the three
unoccupied T MOs. This leads to a total of 55 calculated states. The excitation energies
and x-components of the transition dipole moments of each state with the ground state,
Tl o and the 11By state, W |, , are listed in Table 3-4 for the lowest-lying calculated
states of HT. The 21Ag two-photon state at 4.59 eV is the lowest-lying excited state
followed by the 1!B state at 4.94 eV. With g . =6.66 D, the 11By state is
responsible for the large oscillator strength peak that appears in the HT linear absorption
spectrum in the near uv. The uf' P values that are identically zero for all lAg states and
the “:.l 1, that are identically zero for all 1B, states clearly demonstrate the dipole
selection rules. In addition to the large pyy g between the ground and 11B, states,
Tl Ag 118, D2 the extremely large value 11.40 D. This is a critical virtual transition for
¥ijii(-04,01,02,3) as will be demonstrated below.

The calculated values for the individual tensor components of the dc-induced
second harmonic susceptibility ¥;jxx(-20:0,w,0) of HT at a nonresonant fundamental
photon energy of N 65 eV (A = 1907 nm) are Yecxx = 24.9, Yryyx = 2.0, Yaxyy = 2.0,
Yyxxy = 2.0, Yyyxx = 2.0, and Yyyyy = 0.5 x 10-36 esu. Components of the form ¥;j;; are
identically equal to components of the form ¥;;;; due to the symmetry of their frequency

arguments. Components of the form ¥;;;; and Yy are not strictly identical, however,

due to dispersion; but at this low photon energy, the dispersion between these
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components is weak. The component with all electric fields along the x axis, Yo,
where the x direction is defined along the axis of conjugation, is the dominant tensor
component of ¥;jx/(-20;00,0,0). This is reasonable since the largest transition dipole |
moments are along the x axis. Transition moments along the transverse y axis are much
smaller because of the greater confinement in that direction; and transition moments
along the z axis perpendicular to the molecular plane vanish due to the antisymmetry of
the = orbitals about the molecular plane.

For the third harmonic susceptibility ¥;j/(-3w;w,w,w), the calculated tensor
components for HT at 0.65 eV are Yecxx = 4.7, Yxxyy = 0.4, Yyyxx = 0.4, and Yyyyy =
0.1 x 10-36 esu. By symmetry of the associated frequency arguments, the Yexyy, Yoyxy”
and Yyyyx components are identical. Again, as expected, the dominant tensor componeni
iS Yrxxx Where all electric fields are along the axis of conjugation. The larger value of
Yoo~ 20;0,0,0) compared to Yerxx(-30;0,0,0) is a result of the factor
K(-w4;01,02,03) in Eq. (2.41). Since K(-2w;0,0,0) = 3/2 and K(-30;0,0,0) = 1/4,
in the limit ® — 0 we would have Y (-2w;0,1,0) = 6 Yz (-30;®,0,0). Dispersion
is responsible for the fact that the calculated value of Yerrx(-30;0,0,0) is actually
slightly larger than 1/6 of Yrx(-200;0,0,0) at Am = 0.65 eV.

The values of Yu(-004;01,02,3) were calculated according to Eq. (2.41) from
the excitation energies and transition dipole moments of all x-electron states of HT. Of
all the terms from the triple and double summations of Eq. (2.41), it was found that a
single term dominates each of the two summations. Table 3-S clearly illustrates this

feature where the contributions of each individual term to Yru(-200:0,0,0) are listed in
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order of decreasing magnitude for the ten largest terms. The columns mjy, m2, and m3
indicate the intermediate virtual states according to the notation of Eq. (2.41), and the
final column provides the cumulative value of Yyud-2w;,0.0) for all terms of equal or
larger magnitude. Terms from the double summation are denoted by m2 = 11Ag and
include the overall negative sign of the double summation in the listed contribution. The
value of Yerud-20;0,0,0) for the complete summations is determined to better than
85% by the two largest virtual excitation processes. In each of these two terms, the
1!B,, state is intermediate virtual states mj and m3. The largest term has the 51Ag state
as the my intermediate state and the second term has the 11A4 ground state as mj.

The significance of these two virtual excitation processes can be understood
through examination of Eq. (2.41) and the transition dipole moments of the x-clectron
states of HT. From Eq. (2.41), it is clear that the virtual x-electron states of polyenes
must alternate in parity through the series 11Ag — alBy — blAg — c1By— 11Ag asa
result of the dipole selection rules where alBy represents intermediate virtual state m1,
blAg represents my, and c!By represents m3. Thus, the m) and m3 states must have
1B, symmetry and the m state must have ! Ag symmetry. The importance of the 11B,
state stems from its large transition moment pf 1Bug with the 1!Ag ground state which is
much larger than all other i’ ¢ - The significant m) intermediate states will then be those
that have the largest ;| . In addition to the 11Ag state, the other important !Ag state
is the 51Ag state calculated at 7.97 €V with 15y, 1p, = 11.40 D. The 5'Ag state is
much more significant to ynn(-Zm;m,m,b) than the low-lying, two-photon ZlAg state

because of the small value pé, Ag11By ™ 2.42 D. The magnitude and sign of
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Yool -20;0,,0) is therefore essentially determined by just two virtual excitation
processes that contribute with opposite signs, namely, the larger and positive virtual
excitation process 11Ag — 11B, — 51Ag — 11By — 11A; and the negative process
1'Ag - 11By = 11Ag - 11B, - 1A,

In general, six types of virtual excitation processes can be identified that
contribute to Y;jx(-04;01,2,w3). The six processes, identified as types I through VI,
are illustrated in Figure 3-4. Type I involves the same one-photon allowed state in the
roles of mj and m3 and the ground state as m, and it belongs to the double summation
of Eq. (2.41). Type II also involves the same state as m) and m3, but the m)
intermediate is an excited state. This type of process comes from the triple summation.
Types III and IV involve two different states as m) and m3 but are otherwise analogous
to types I and II, respectively. The type V and VI processes involve virtual transitions
between the same state as represented by the horizontal arrows. Since this virtual
transition involves the diagonal matrix element dm s<m|riim>, the type V and VI
processes can only be nonzero for noncentrosymmetric molecular structures. In the
centrosymmetric case under consideration here, they are identically zero by symmetry.

If there exists one transition moment i ¢ that is significantly larger than all other
I g+ 0 since the contribution of the corresponding type I term is proportional to
Iu:"l‘;-while the type III terms are proportional to u;“ 2 lu:"lz. the largest of all
possible type I and type III terms will be the type I term involving state d. It can be
shnﬂarlyargtwdﬂmifmaemmiﬁc;nnmmtsujc and W , that are much larger
thanallotheru:"andu:d.respecﬁvely,whexenreprwmsagenenlm,ﬂ\enme

49




largest of all type Il and IV terms will be the type I process g 9d 9 ¢ ->d > g. In
the case of HT, the large values of p.f 1Bug and pg 1Ag.11B, 4T responsible for the
dominance of Yxre(-203;0,w.,0) by the type [ term 11Ag — 11By — 11Ag = 11By —
11Ag and the type I term 11Ag — 11B, — 51Ag — 11B, — 1!A,. The larger
magnitude of the positive type II term compared to the negative type I term determines
the overall sign of the nonresonant Yy, {-20;0,0,0) to be positive, a result which is
corroborated by experiment8 and, further, is in distinction from the results of several
theoretical methods that omit electron correlation.

The 1B, state is 94% composed of the single-excited configuration of one
electron from the highest occupied ©-MO to the lowest unoccupied n-MO. The 21A4
and 5!Ag states, on the other hand, are nearly 60% composed of double-excited
configurations. The important distinction for Yy {(-20;®,®,0) between these two

highly electron correlated states is made most evident by the transition density matrix

Pnn' defined through the expression

<Upp>=~€ fr Pnn'(T) dr 3.2)
with

Pan'(ry) = f ‘P; (r1, r2,...ty) “l‘n.(rl, ry,...ryM) dry...dry 3.3)

where M is the number of valence electrons included in the molecular wavefunction.
Contour diagrams for pan of the ground, 2!Ag and 5!Ag states with the 11B, state are

shown in Figure 3-5 where solid and dashed lines correspond to increased and
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decreased charge density and the contour cut is again taken at 0.4 A above the molecular
plane. The contour diagram of p,, Ag11B, shows that the 21Ay — 11B transition
results in a charge redistribution concenmated at the center of the molecular structure
which yields a small transition moment of 2.42 D, and, correspondingly, a small
contibution to Y -2w;0,w,0). In sharp contrast, Pst Ag.11B, for the virtual transition
between the 51A3 and 1!By states produces a large charge separation along the chain
axis x-direction and an associated large transition moment of 11.40 D which dominates
the contributing terms of Yer(-20;®,w,0). This previously unknown feature is key. to
understanding the nonlinear optical properties of conjugated linear chains.

Table 3-6 lists the four largest configurations that compose the 2‘Ag, 11By and
51Ag states of HT. The notation @3¢ — @17, for instance, indicates the single-excited
configuration in which one electron is promoted from ®j¢ to ®7. The 11B, state
consists primarily of the single-excited configuration of one electron promoted from the
highest occupied r-MO to the lowest unoccupied 1-MO and is therefore fairly well
described in the independent particle approximation. This explains why simple MO
methods were for a long time believed to be sufficient for the polyene structures, since
the 1!B, state dominates the linear absorption spectrum. The 5!Ag and 21Aq states,
however, result from strong electron correlation effects as evidenced by their having
significant contributions from several different configurations, especially double-excited
configurations. Both the S!Ag and 2‘Ag states have large contributions from the
double-excited configuration consisting‘of two electrons promoted from the highest

occupied to lowest unoccupied x-MO. Theoretical methods that neglect electron-
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electron interactions, therefore, inadequately describe the 5! Ag state that plays a crucial

role in Yeeer(-20;0,0,0).

Figure 3-6 displays the calculated dispersion curve for Yyex(-2w;®,0,0) of HT
from0.5eV (A =2.48 um)to 3.0eV (A =0.41 um). As can be seen in Eq. (2.41) for
Yijii(-20;00,0,0), there exist 2w resonances from both !By and ! Ag states. The order in
which these resonances appear in the DCSHG dispersion is simply the order in which
the states occur energetically. Thus, the first singularity in Fig. 3-6 at 2.30 eV, is the
2w resonance of the 21 Ay state, and the singularity at 2.47 eV is the 2w resonance of the
11B, state. Since these two states are so close in energy, there is rapid variation in Yyex
in this region. Of course, in real systems natural broadening of the electronic states will
prevent divergence at the resonances and smooth out this variation. In fact, since the
2‘Ag makes such a small contribution below the resonances, when appropriately
broadened, it is not noticeable in the dispersion of Yxxx(-20;®,,0).

The natural broadening is accounted for phenomenologically by replacing the
transition frequencies Wmg in Eq. (2.41) with the complex quantities Wpmg — il'm. Figure
3-7 shows the calculated dispersion for Yyru(-20;0,0,0) of HT with a representative
value A" = 0.2 ¢V based on the width of the 11By, « 11Ag peak in the linear absorption
spectrum. The divergence that occurs due to the 2w resonance of the weakly
contributing 21 Ag state for #T" = 0.0 eV in Figure 3-6 is not apparent in Figure 3.7.

Inclusion of broadening eliminates the unphysical divergence for strongly contributing
states, as well, but Yy (-20;0,0,0) doe‘s undergo resonant enhancement in these cases

as evidenced in the 2 resonance of the 1!By, state in Figure 3-7. Since the broadening
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term makes Yexex(-200;0,0,0) complex rather than purely real, we have plotted the real
and imaginary parts of Yxuux(-20;0,0,0) in Figure 3-7 along with the complex
magnitude. Measurements in a pure sample are sensitive only to the complex magnitude
of <y(-2w;®,w,0)>, but sample mixtures allow separation of the real and imaginary
components. It should be noted that at low frequencies, the broadened and unbroadened
dispersions are indistinguishable.

The calculated dispersion of Yy(-30;0,0,w) for HT with AT = 0.2 eV is
illustrated in Figure 5-8. Compared to the dispersion of Yxyx(-20;®,w,0), the first
resonance occurs at lower energy in Yyood-3w;0,0,0). In THG, the 1B, states have
both @ and 3w resonances while the 1A states have only 20 resonances. In DCSHG,
the !B, states have w and 2w resonances while the 1Ag states have only 2 resonances.
Dispersion therefore occurs at lower frequencies in THG than DCSHG due to the 3w
resonance of the 1!By state. In the ® — 0 limit, on the other hand, we have the required
limit Yeerx(-20;0,0,0) = 6 Yeud-30;0,0,0). The details of the mechanism for
nonresonant Yy (- 3J0;0,0,w) of HT are in complete analogy to those of

Yoo (-20;0,0,0) described earlier in this section.

D. Hexadecaoctaene (N = 16)

As an example of a long polyene chain, we now discuss in detail the origin of
Yijki(-Wa;01,0%,03) in hexadecaoctaene (HDO), the chain with N = 16 carbon sites.

Most of the results are in direct analogy to those discussed in the previous section for
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HT. The primary exception is the larger number of key virtual transitions involved in
Yijii(-04;01,02,03) for HDO as compared to only the 1!Ag — 1!1By and 1!1B, — 51A;
virtual excitations and their corresponding type I and type II terms for HT.

The SCF ground state of HDO includes eight double-occupied n-electron MOs.
Complete single and double-excited configuration interaction between the eight occupied
and eight unoccupied MOs yields 2145 configurations which are diagonalized to form an
equal number of states. More generally, a single and double-excited configuratiot
interaction from n occupied to n unoccupied MOs results in (n2+1) n2/ 2 double-excited
configurations and n2 single-excited configurations in addition to the SCF ground state
configuration. The calculated excitation energies At,g and transition moments pi; g and
“i.l 1g, are listed in Table 3-7 for the lowest energy excited states of HDO. The SDCI
calculation yields a 1!B, excitation energy 0.06 eV smaller than the 2’Ag excitation
energy. As a general trend for the SDCI calculation, the energy gap between the 21Ag
and 1By states decreases with increased chain length until the states become nearly
degenerate at N = 14. Although this is in contrast to experimental data, in which the
21Ag - 11B,, gap increases with increased chain length, electron correlation is still well-
accounted for at the SDCI level of calculation, and since the 21Ag state is not of primary
importance to ¥jji(-w4;w1,02,w3), the SDCI calculation is an appropriate
approximation. This will be confirmed by the agreement of the experimental results of
chapters 5 and 6 with the extrapolated length dependence of <y(-aq;®1,w2,w3)> from

the SDCI calculations.
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The calculated values for the individual DCSHG tensor components of HDO at
0.65 eV fundamental photon energy are Yyrex = 909, Yy = 38.5, Yayyx = 38.0, Yyyax
= 38.4, Yyrry = 37.9. and Yyyyy = 5.1 x 1036 esu. The Yurox(-2;0,0,0) component is
even more dominant in the case of the N = 16 chain than in the N = 6 chain as a result of
the increased aspect ratio of the longer chain. For the THG susceptibility
Yijki(-30;0,0,0), the calculated tensor components are Yxgcx = 199, Yeryy = 7-8, Yyyxx
= 7.8, and Yyyyy = 1.0 x 10-36 esu. The ratio Yexex(-20;00,0,0) / Yoou(-3@:0,0,0) is
4.6 at 0.65 eV, even smaller than the corresponding value 5.3 for HT. The greater
deviation for the longer chain from the w — 0 limit value of 6 for this ratio is due to the
occurence of the 3 resonance of the 3.52 eV 11By state of HDO for i = 1.17 eV
compared to fiw = 1.65 eV for HT. The lower energy 3w resonance for HDO increases
the degree of dispersion between zero frequency and the fixed, nonresonant fundamental
energy 0.65 eV.

The largest contributing terms of Yyeex(-200;0,0,0) for HDO at 0.65 eV are listed
in Table 3-8 according to the same format as Table 3-5. The 11B, state of HDO at 3.52
eV with uf,Bu'” AT 11.55 D plays a key role in Yyox(-20;0,0,0) as in HT. In
addition, the high-lying 10! Ag two photon state at 5.77 €V with yg1 511, = 19-38 D
is also important. The two largest contributing virtual excitation processes are then the
type I 11Ag = 11By — 10!Ag— 11By — 11A4 process and the type I 11Ag > 11By
— 11Ag = 11By - 1!A4 process. In contrast to the HT case, however, there are other

virtual excitation processes that make smaller but significant contributions to
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Yoo -20,0,0,0). For instance, the 21Ag and 81A4 states are important due to their
respective W |1 values 6.95 and 5.57 D.

The transition density matrix diagrams for the 11Ag, 21Ag, and 101 Ag states of
HDO with the 1B, state are illustrated in Figure 3-9. The 11A; — 11B, virmal
transition results in a somewhat modulated charge redistribution that leads to the fairly
large uf,Bu' 11ag = 11.55 D whereas the 11By — 21 A4 transition has the charge
redistribution concentrated at the center of the molecule such that p; 1Ag. sy = 6.95 D.
The 11By — 101Ag transition, though, produces a highly charge separated distribution
with large pyoa 115, = 1938 D.

The N = 16 chain, HDO, has Yxx(-20;0,0,0) 37 times larger than the
corresponding value for the N = 6 chain even though the increase in chain length is only
slightly larger than a factor of three. This is in large part due to the increase in the
transition dipole moments between the 1! Ag and 11By states and between the 11By state
and the strongly coupled, highly correlated two-photon state (10! Ag in the case of
HDO). The increase in the transition moments derives from the delocalization of these
states across the entire chain length. The large increase in Yy -20;0,0,0) is also due,
however, to other virtual excitation processes that contribute significantly in the long
chain but not the short one and to the decrease in the excitation energies for the long
chain. As in the case of HT, the statements made here concerning the origin of
Yeo(-20;0,0,0) in HDO are applicable to all other Yyyod-(4;®1,02,W3) at

nonresonant frequencies.
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E. Length Dependence of yijx(-w4;01,02,03)

Complete SDCI calculations of jjx/(-wa;wy,2,w3) have been performed for the
trans polyenes of chain length N = 4 to 16 carbon sites. In each case, the general origin
of Yjjki(-w4;01,02,w3) is similar to that described for the N = 6 and N = 16 cases, HT
and HDO, respectively. The calculated individual tensor components of the DCSHG
susceptibility ¥;jx(-2;0,0,0) at 0.65 eV are listed in Table 3-9 for each chain length
studied. For all chain lengths, the dominant tensor component is Yy -20;0,0,0)
which increases supralinearly with increased chain length. Figure 3-10 shows a log-log
plot of Yo (-20;0,0,0) at 0.65 eV versus N. The good linear fit indicates that
Yood - 20;0,0,0) possesses a power law dependence on N with an exponent of 3.9.
The strong dependence of Yy (-04;01,022,03) on N is the primary reason for the
intense interest in conjugated linear chains as nonlinear optical materials. Although
various power-law behaviors for Yyxxx(-@4;01,072,03) have been previously reported
based on delocalized, noninteracting electron models, those calculations are in strong
disagreement with experiment in the magnitude, and in some cases, even the sign of

Yoo -004;01,002,033), and are therefore incomplete descriptions of third order optical

properties.9-11 The apparent similarity in power law behavior simply reflects the
delocalized nature of the conjugated bonds in polyenes as compared to, for example, the
linear dependence resulting from the bond additivity rule for localized bonds. We have

confirmed the calculated power law depéndence of Yrxx{-04;0},002,003) on chain length
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through our experimental DCSHG and THG measurements of HT and, especially, -

carotene, and the results are presented in Chapters 5 and 6.

Tables 3-10 through 3-14 list the calculated excitation energies and transition

dipole moments for the lowest lying states of the N = 4 to 14 polyenes excluding N = 6.
The corresponding data for N = 6 and 16 are given in Tables 3-4 and 3-7, respectively.
For N =4 and 8, there are just three key states and two principal virtual excitation
processes in analogy to the case of N = 6 described in section C of this chapter. The
11Ag and 1!By, states are important because of the large transition dipole moment
“TlBu.ll Ag between them that leads to a major type I virtual excitation process. In
addition, in each case, there exists a single, strongly correlated, high-lying two-photon
state with a very large “:.HBu' For N = 4, this is the 41A state at an energy of 9.18
eV; and for N = §, it is the 6!A state at an energy of 7.16 ¢V. The type I virtual
excitation processes for these respective states make positive contributions to
Yool -04; @1 ,02,003) that are larger in magnitude than the corresponding negative type I
terms. The competition between these two processes determines the magnitude and sign
of Yrxxx(-4;01,002,3). In the cases of the N = 10 and longer chains,
Yreo-004,W1,062,3) has significant contributions from more than three key states and
two virtual excitation processes. As described in Section D of this chapter for N = 16,

larger numbers of two-photon and one-photon states play important roles in

Yorre(-04;01,072,03) for the long chains.

In addition to the increase in Y@(—m;ml,wz,wg) with increased chain length

due to the larger nw.aber of significant contributing virtual excitation processes, there are
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two other principal length dependent factors that lead to rapid growth of
Yeood-004;01,002,w3). First, the electronic excitation energies decrease with increased
chain length. As an example, Figure 3-11 shows the calculated 1!B,, excitation energy
)‘Icol ig, plotted against 1 /N. The 11By excitation energy decreases proportionally to the
inverse of the chain length with an infinite chain extrapolation of 2.8 eV. The decrease
in excitation energies increases the individual terms contributing to Yijki(-04:,01,2,@3)
since Wmg appears in the denominator of Eq. (2.41) for each intermediate virtual state m.
Second, the magnitudes of the transition dipole moments along the chain axis x
direction increase steadily with chain length. This is illustrated in Figure 3-12 where the
calculated transition moment u’; 1Bu11Ag is plotted against N. Although the increase is
less than linear, the transition moment does rise monotonically with increased chain
length. The correlated x-electron virtual transitions produce a charge redistribution over
a length comparable to that of the chain, and this leads to increased Yy -04:1,002,03)

through the numerators of Eq. (2.41).

F. Single-Excited Configuration Interaction Results:

Reduced Correlation

The importance of electron correlations to ¥;(-w4;@1,w2,03) of conjugated
linear chains is further illustrated by results obtained from calculations at the SCI level
that purposely omit double-excited configurations (DCI) but are otherwise identical. As

illustrated in Figure 3-13, at this level of calculation, the values calculated for
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nonresonant Yeexx(-20;®,0,0) are negative in sign for all of the polyene chains,

contrary to the experimental results. This disagreement occurs because the SCI
calculation inadequately describes electron correlation which we have found to be of
primary importance, such as in the illustrative case of the critical 51Ag state of HT.
Instead, at the SCI level, Yo d-04:01,02,w3) is predicted to be dominated solely by the
type I virtual excitation process which involves only the llAg and 11B, states. There is
no type II term analogous to the one found for the 51Ag state. Although the calculated
sign of Yrexr(-20;0,w,0) for each case is negative in contrast to the positive values
obtained from the SDCI calculations, the power law dependence of Yxxxx(-2w;®,w,0) on
N is found to have an exponent of 3.9, the same as for SDCI calculations. This is,
however, purely accidental since the SCI calculation omits major virtual excitation
processes involved in Yyl -20;0,0,0). Thus, the predicted power law dependence

alone does not serve to identify calculations that adequately describe the mechanism of

Yijki(-W4,01,02,03).

G. Linear Polarizability

Attempts have recently been made!2.13 to infer relative magnitudes of

Yijki(-04; W1,02,03) for various molecular structures from calculated results for the

linear polarizability o(-w;w) obtained through the expression

]

e2 'ng ’ng 'ng ’ng
(- 0;W) = = p) [ + ] . 3.9
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For each chain from N = 4 to 16 we have studied, the term in which the 1By state is the
intermediate is by far the dominant contribution as evidenced, for example, in Table
3-16 where the individual terms contributing to o;(-w;w) of HT are listed in decreasing
order. Since a;(-w;w) involves a summation over just a single intermediate state, for a
centrosymmetric molecular structure, only one-photon states can contribute; and
ai(-;w) is then dominated by the large oscillator strength transition. Two-photon
states cannot contribute to o (-m;®) even though they play a key role in
Yijki(-04:1,002,003). Since Gy (-w;0) is dominated by the 1!1Ag — 11B virtual
transition which is fairly well described by independent particle models, the importance
of electron correlation in polyenes that is clear in ¥;j/(-0M;®},2,03) and in the two-
photon states is not at all apparent in a;(-w;®). It is clear from the above discussion
that it is inappropriate to draw conclusions concerning ;i /(-w4:01,02,03) from
a(-w;0) since a;(-w;w) entirely neglects two-photon states and is insensitive to
electron correlation while both of these are critical to an understanding of
Yijki(-W4;01,@2,03). The calculated x-electron contributions to 0 (-w;w) at 1.50 eV,

plotted against N on a log-log scale for N = 4 to 16 in Figure 3-14, demonstrate a power

law dependence with an exponent of 1.7.
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Table 3-1. Character Table for the C24 Symmetry Group.

Representation E Cy i
Ag 1 11
By 1 -1 1
Ay 1 1 -1
By 1 -1 -1
62
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Table 3-2. CNDO/S Input Parameters for Carbon and Hydrogen Valence Shells.

Carbon Hydrogen

2 2 ls
LA 3.78 3.78 2.30
I(eV) 21.3 115 13.6
YeV) 1.1 11.1 12.8
BeV) 210 160 10.0
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Table 3-3. Theoretical and Experimental Values for 1B, and 21A8 Vertical Excitation

Energies as a Function of Polyene Chain Length.

11By (eV) 21Ag (eV)
N(sites) Theo. Exp.2 Theo. Exp.a
4 5.77 5.91 5.31 5.4b.c
6 4.94 4.93 4.59 4.0bd
8 4.42 4.40 4.15 3.97
10 4.07 4.02 3.90 3.48
12 3.83 3.65 3.75 2.91

3 B. S. Hudson, B. E. Kohler, and K. Schulten, in Excited States, Vol. 6, E. C. Lim,
ed. (Academic, New York, 1982), p. 14.

b 0-0 excitation energy.

¢ R. R. Chadwick, D. P. Gerrity, and B. S. Hudson, Chem. Phys. Lett. 115, 24

(198S).

d B. S. Hudson and B. E. Kohler, Synth. Metals 9, 241 (1984).




Table 3-4. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of trans-Hexatriene (N = 6).

State ficong (V) T (») Wy 11p, (D)
21A 4.59 0.00 2.42
1By 4.94 6.66 0.00
21By 5.22 0.17 0.00
3lAg 6.69 0.00 1.68
alAg 6.80 0.00 0.63
31By 1.55 0.93 0.00
SlAg .97 0.00 11.40
a1B, 8.07 1.05 0.00
6!Ag 8.62 0.00 0.87
5By 9.11 0.23 0.00
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Table 3-5. Largest Contributing Virtual Excitation Processes 10 Yyxrrl(-2;®,w,0) of

rrans-Hexatriene at fiw = 0.65 eV,

Contribution (10-36 esu)

Cumulative (10-36 esu)

mi my m3
1B, 5'Ag 1!B, 415 475
11B, 1Ay 1B, -25.9 21.6
1'B, 2!A; 1B, 3.9 25.5
1B, 8lA; 1B, 1.9 27.4
alB, 5la, 1By 1.7 25.7
1B, 5lAg 41B, 17 24.0
81B, SlA; 1B, ‘1.2 2238
11B, 3!A; 1B, 1.2 240




i

Table 3-6. Configuration Compositions of the 2!Ag, 11By, and 51Ag States of rans-

Hexatriene.

21A,

Configuration

D16.P16—2P17. P17
D168
Dy5—>Py7

D5, D162D17.D18

11By
Coefficient Configuration Coefficient
-0.572 ®160P17 0.971
0.473 bi5-oD3 0.159
-0.388 D15, D16—2D17.P17 -0.090
0.274 D16, P162P17. P18 -0.070

51Ag

Configuration Coefficient

D5-P7 -0.559
D16 D16—P17.917 0554
D16—oP18 0.373

D15.D162D17. P15 0244
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Table 3-7. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of trans-Hexadecactaene

N = 16).
State Fitdng (€V) uf,‘,g (D) W, 11p, @)
11By 3.52 11.55 0.00
21A, 3.58 0.00 6.95
21B, 3.83 0.30 0.00
1A, 4.17 0.00 1.12
31B, 4.48 0.07 0.00
4lAg 4.49 0.00 0.54
51Ag 4.64 0.00 2.90
6!Ag 4.79 0.00 0.80
41B, 5.03 0.04 0.00
51By 5.05 0.12 0.00
71Ag 5.12 0.00 0.54
6By 5.34 3.41 0.00
81A; 5.39 0.00 5.57
9lAg 5.45 0.00 0.33
71By 5.5 0.12 0.00

101Aq 577 0.00 19.38
81B, 5.81 0.19 0.00
91B, 5.90 y 1.41 0.00

111Ag 6.01 0.00 0.63
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Table 3-8. Largest Contributing Virtual Excitation Processes to Yyypd(-20;0,0,0) of

trans-Hexadecaoctaene (N = 16) at fiw = 0.65 eV.

mi ma m3 Conmibution (10-36 esu) Cumulative (10-36 esu)

11B, 10!Ag 1By 1243, 1243.
11By 11Ag 11By -712. 531.
1!B, 2!Ag 1By 277. 808.
1B, 8!A; 1B, 1. 919.
91B, 101A; 1By -74. 845.
11B, 101Ag; 9!B, 71, 774.
6!B, 101A; 11By -66. 708.
1By 10!Ag 6!By -64. 644.
11B, 201Ag 1IBy 55. 699.
11B, i81A; 11B, 54. 753.
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Table 3-9. Calculated Tensor Components y;jx/(-20;0,,0) at Aiw = 0.65 eV for the

trans-Polyenes in 10-36 esu.

N (sites) XXXX YYYy XXYY YYXX XyyXx YXxy

4 43 02 05 0S5 05 05
6 249 05 20 20 20 20
8 8§19 12 51 S50 S50 50
10 1934 2.1 102 101 100 99
12 370 33 177 175 174 172
14 611 43 273 271 269 26.7
16 909 5.1 385 384 380 379
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Table 3-10. Calculated Tensor Components ¥;j/(-30;0,0,w) at fiw = 0.65 eV for the

trans-Polyenes in 10-36 esu.

N (sites) XXXX yyyy Xxxyy Yyxx

4 0.78 0.03 0.10 0.9
6 47 0.10 038 036
8 160 02 10 09
10 39.1 04 20 19
12 771 06 35 34
14 131 08 55 54
16 199 10 78 7.8
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Table 3-11. Calculated Symmetrics, Excitation Energies. and Key Transiton Dipole
Moments for the Lowest-Lying f-electron States of trans-Butadiene (N = 4).

State fitng (€V) T ) W 1p, D
_ S SR
2A 5.31 0.00 1.45
11By 5.77 5.17 0.00
3iAg 7.51 0.00 1.14
21By 9.04 0.65 0.00
alAg 9.18 0.00 3.34
31By 9.98 0.17 0.00
StAg 10.81 0.00 196
41By 13.20 0.28 0.00
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Table 3-12. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of trans-Octatetraene

(N =8).
State Hdng (€V) My g (D) Ky 11, D
21A4 4.16 0.00 343
11B, 4.42 7.91 0.00
21B, 478 0.14 0.00
31A, 5.19 0.00 0.55
41A, 6.01 0.00 2.15
SlAg 6.07 0.00 0.84
3B, 6.47 0.02 0.00
41By 7.00 1.73 0.00
61A, 7.16 0.00 13.78
51B, 7.30 0.96 0.00
1A, 7.42 0.00 240
81A, 7.56 0.00 0.54
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Table 3-13. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of trans-Decapentaene

o

(N = 10).
State Fitdng (€V) T () Mo 118, (D)
21a, 3.90 0.00 4.45
11B, 407 8.98 0.00
21, 4.41 0.16 0.00
3lAg 4.92 0.00 0.85
31B, 5.16 0.05 0.00
4lag 5.48 0.00 2.37
51Ag 5.53 0.00 1.09
41B, 6.03 0.03 0.00
61A, 6.30 0.00 1.27
5!By 6.48 2.36 0.00
TAg 6.59 0.00 1472
81Ag 6.77 0.00 6.47
6B, 6.78 0.79 0.00
71By 7.06 0.01 0.00
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Table 3-14. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying nt-electron States of rans-Dodecahexaene

N = 12).

State Hioong (€V) T () My11p, (D)
21Ag 375 0.00 539
11B, 3.83 9.93 0.00
21B, 4.15 0.21 0.00
31 Ag 4.60 0.00 0.98
31B, 497 0.06 0.00
alA, 5.08 0.00 1.77
51Ag 5.13 0.00 2.15
6!Ag 5.15 0.00 0.61
4lB, 5.62 0.06 0.00
71Ag 6.02 0.00 2.69
5B, 6.03 2.80 0.00
81A 6.13 0.00 10.68
6!B, 6.19 0.07 0.00
9l1A, 6.30 0.00 14.04
71B, 6.40 0.91 0.00
8!B, 6.59 0.03 0.00
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Table 3-15. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of trans-Tetradecaheptaene

N =14).

State

2iAg
11By
21B,
31Ag
31By
4lAg
51Ag
61Ag
41B,
5!By
6By
71Ag
8lAg
91Ag
71By
81By

h-a)ng (CV)

3.65
3.65
3.96
4.35
471
475
4.84
5.01
5.13
5.30
5.65
5.69
573
5.99
6.01
6.11

Tai>)

0.00

10.78

76

0.25
0.00
0.07
0.00
0.00
0.00
0.03
0.08
3.14
0.00
0.00
0.00
0.10
1.12

Ko 118, @)

6.23
0.00
0.00
1.06
0.00
0.99
2.5
0.75
0.00
0.00
0.00
4.61
5.46
17.73
0.00
0.00
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Table 3-16. Contributions of n-electron States to o {-®;w) of trans-Hexatriene at Aw =

0.65eV.
State Energy (eV) O (-@;0) (10-24 esu)
11B, 494 4.12
41B, 8.07 0.06
31B, 7.55 0.05
81By, 11.34 0.006
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Figure 3-1. Schematic diagrams of the molecular structures for (a) all-rrans and (b) cis-
transoid hexatriene (HT).
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(a)

(©)

Figure 3-2. Contour diagrams of the three occupied X-electron molecular orbitals of HT
in order of increasing energy. The orbitals are numbered (a) 13, (b) @15, and (c) P16.
The contour cuts are taken 0.4 A above the molecular plane.
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Figure 3-3. Contour diagrams of the three ynoccupied n-electron molecular orbitals of
HT in order of increasing energy. The orbitals are numbered (a) @17, (b) @13, and (c)

d)9.
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Figure 3-4. The six general types of third order virtual excitation processes that
contribute to ¥jxA(-w4:01,02,03). Types I - [V are allowed for molecular structures of
any symmetry; types V and VI are only allswed for noncentrosymmetric molecular
structures.
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Figure 3-5. Transition density matrix contour diagrams of rans-HT for the (a) ground,
(b) 21Ag, and (c) 5!Aq states with the 11B, state. The corresponding x-components of
the transition dipole moments are 6.66, 2.42, and 11.40 D, respectively. The contour

cuts are taken 0.4 A above the molecular plane.
82



500.0
4000 |
3000 |
2000 |
1000 |-

00
-1000 |
-2000 }
-3000 |
-4000 |

-500.0 1 — - u
05 10 15 20 25 30

PHOTON ENERGY (eV)

V(- 20;0,0,0) (10-36 esu)

Figure 3-6. Calculated dispersion of Yxcx(-2w;0,w,0) for trans-HT with #I" = 0. The
first vertical dash locates the 2w resonance of the 11Ag state and the second locates the
2w resonance of the 11B, state.
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Figure 3-7. Calculated dispersion of Yxexr(-20;w,®,0) for trans-HT with il = 0.2 eV.
The solid curve is Hyn(-20;0,0,0)! and the dashed and dotted curves are
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Figure 3-8. Calculated dispersion of Yyex(-30;w,w,w) for trans-HT with Al = 0.2 V.
The solid curve is Heeod-30;0,0,w)! and the dashed and dotted curves are
Re[Yoox(-30;0,0,0)] and Im{Yeex(-30;0,0,0)), respectively.
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Figure 3-9. Transition density matrix contour diagrams of trans-hexadecaoctaene (HDO)
for the (a) ground, (b) 2!Ag, and (c) 101A; states with the 1!B,, state. The
corresponding x-components of the transition dipole moments are 11.55, 6.95, and

19.38 D, respectively.
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Figure 3-10. Log-log plot of Yrrud-20,w:0,0) at Aw = 0.65 eV versus the number N
of carbon atom sites in the the polyene chain. The linear fit corresponds to
Yeexr(-20;0,0,0) e N3.9,
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Figure 3-11. The calculated 1!B, excitation energy of trans polyenes as a function of
inverse number of sites in the chain.
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Figure 3-12. The x-component of the transition dipole moment between the ground and

1B, states as a function of the number of sites in the chain.
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Figure 3-13. Log-log plot of Yrrxr(-2w;m,w,0) at 0.65 eV versus the number N of
carbon atom sites in the the polyene chain for a calculation at the SCI level. Contrary to
experiment and multiple-excited configuration interaction calculations, the values of
Yoo (- 20;0,0,0) are negative for this reduced correlation calculation.
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Figure 3-14. Log-log plot of the calculated R-electron contribution to 0 (-w;w) at
fiw = 1.50 eV versus the number of sites N. The linear fit corresponds to

Orr(-@;0) o« N1.7,
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Chapter 4
EFFECTS OF CONFORMATION AND

NONCENTROSYMMETRY ON vyjjx(-04;01,02,03)

A. Introduction

Having discussed in detail the origin of the third order optical properties of all-
trans polyenes, we now consider the effects on ¥jjk/(-0;1,02,w3) of changes in the
structural conformation and symmetry to this archetypal structure for the general class of
conjugated linear chains. As a first important case, we discuss the effect of structural
conformation by way of the cis-transoid, or simply cis form. The origin of
Yijki(-024,01,002,003) in cis polyenes is found to be identical to that for trans, though the
cis conformation possesses smaller Yyod(-4;01,02,03). The reduction of
Yrxx(-004;®1,02,03), as we shall see, is a geometrical result of the reduced physical
length of the molecular structure.

The next important effect on ¥;xx(-4;01,002,@3) is that of lowered symmetry
realized by heteroatom substitution of electron donating and accepting groups to the
ends of the polyene chain. The creation of a noncentrosymmetric molecular structure
introduces previously forbidden virtual excitation processes to ¥;jk/(-04;1,02,m3).
The new virtual processes, which involve diagonal matrix elements of the dipole
moment operator, lead to an order of magnitude enhancement of Yyxx(-(q;®1,002,003)
compared to the corresponding centrosymmetric conjugated linear chain.
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B. Structural Conformation: cis-transoid Polyenes

The cis conformation is schematically illustrated in Figure 3-1(b) for the case of
N = 6. No cis-transoid form of BD (N = 4) is possible, so we will make comparison
between our frans and cis calculations for chains from N = 6 to 16 sites. The first point
to note is that not all of these chains belong to the same symmetry group. The cis chains
with an odd number of short bonds (N = 6, 10, 14,...) are not centrosymmetric and
possess C2, symmetry whereas the chains with an even number of short bonds (N = 8,
12, 16....) belong to the C25 group along with the trans conformations. The states of
the C», group are identified as Aj, A2, B1, and B2 in contrast to the familliar Ag and By
of Cp4. For t — nt* excitations, the states must be either A or By symmetry, the
ground state being always [A;.

The corresponding one-photon dipole-allowed selection rules are also somewhat
different for the two symmetry groups. For Caj, only the !By, states are one-photon
allowed transitions from the 11Ag ground state for any electric field polarization.
However, for the cis chains in the C2, symmetry group, where the y-axis is the axis of
C7 two-fold rotational symmetry (perpendicular to the conjugation axis and in the
molecular plane), the 1B states are one-photon allowed for fields polarized along the x-
axis and the excited 1A states are the one-photon allowed transitions for polarizations
along y. This implies that all of the s'mg.let R — ®* excitations are one-photon allowed

transitions for the chains that are members of the C2y group. But it should be noted that
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because these chains are quasi-one dimensicaal, the x-components of the transition
dipole moments will, in general, far exceed the y-components, and the oscillator
strengths of the 1B states will therefore dominate those of the 1A states. We will
therefore consider the 1A} and !B states of the C3, group to be analogous to the ‘Ag
and !By states of the Cp, group, respectively.

For the range of chain lengths that we have considered, we find that the
transition energies of the 1!B, and 21Ag states of the cis conformations are slightly red-
shifted from the values for the frans conformations by 0.02 to 0.10 eV with the shift
constantly increasing with increased chain length. These results are in agreement with
the literature.!2 For example, an experimental gas phase absorption study of the cis
and trans forms of HTZ found 1!By ¢ 1!Ag transition energies of 4.919 and 4.935 eV,
respectively, which is in very good correspondence with our calculated transition
energies of 4.92 and 4.94 ¢V.

The calculated energies and x and y components of the transition dipole moments
Hng and Wy 118, for the low-lying states of cis-HT are listed in Table 4-1. The y-
components of the transition moments are seen to be small and non-zero only for states
of like parity. The largest transition moment involving the ground state is iy .=
6.83 D, and the largest transition moment of all is u;, Ap11Bz = 10.49 D. These two
virtual transitions dominate Yy (-4;®1,02,w3) in analogy with trans-HT.

The calculated values of the independent tensor components of ¥;jx(-2w;u,0,0)
for cis-HT at 0.65 eV are Yyxxx = 20.3‘. Yexyy = 1.9, Yayyx = 1.8, Vyyxx=1.7, Yyxxy =

1.8, and Yyyyy = 0.5 x 10-36 esu. Although the components involving the y-direction
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have different selection rules than those involving x, the dominant tensor component
remains Yo (-20;0,0,0). The individual terms that contribute to Yxxx(-20;®,0,0) are
listed in order of descending magnitude in Table 4-2. As in the case of rrans-HT, the
largest term is positive and results from the g = 1!B3 = 5!A| = 11B2 — g virtual
excitation process. This type II term and the negativeg = 11B; 5 11A; 5 11By > ¢
type I term are almost entirely responsible for the sign and magnitude of
Yerex(-20;®,,0) in cis-HT.

Transition density matrix diagrams of the key virtual excitations of cis-HT are
shown in Figure 4-1. The transition density matrix diagrams for cis-HT are nearly
identical to those for rans-HT shown in Figure 3-5. The (a) cis 1!A} = 11B; virtual
transition results in a somewhat modulated redistribution of charge with a transition
moment of 6.83 D. For the transition involving the high-lying, strongly correlated two-
photon 5! A state, however, there is a resultant highly separated charge redistribution in
the (b) cis 11B3 — S!A| virtual excitation. The corresponding transition moment is
10.49 D for the cis conformation, compared to 11.40 D for trans-HT.

Chapters 5 and 6 of this thesis present experimental results for the isotropically
averaged susceptibilities <y(-2w;®,®,0)> and <y(-3w;®,w,w)> of HT measured in the

neat liquid . The isotropically averaged susceptibility is shown in Appendix B to be

given by

[T

<Y(-04;®1,002,W3)> = % [; Yiiii +

i E:j Miiij + Yijij * Yigid ) 4.1




Since the only commercially available HT was found by chromatographic methods2 to
contain 60% of the trans conformation and 40% of the cis, we will calculate
<Y(-20;w,0,0)> and <y(-3w;n,0,w)> weighted accordingly by those fractions of trans
and cis isomers for comparison with experiment.

As a further refinement, we note that although the r-electron contribution to
<y(-a4;01,02,003)> dominates the G-electron contribution for long conjugated chains,
the two contributions are comparable for HT. Kajzar and Messier have measured
<Y(-3w;w,w,w)> in a series of nonconjugated alkane chains and found that the results
are well-explained by the bond additivity approximation.3 The best fit to the
experimental data obtains values of 0.0148 x 10-36 esu for each carbon-carbon bond and
0.0250 x 10-36 esu for each carbon-hydrogen bond. These quoted values are 8.0 times
smaller than the values listed in Table 7 of Ref. 3 due to a difference in definition of the
electric field amplitudes that makes their convention for ¥;jk/(-4;®1,w2,03) 4 tines
larger than ours and a correction factor of 2.0 for their reference value of
x3)(-30;w,0,w) (see Section 6.E). Since HT contains five carbon-carbon bonds and
eight carbon-hydrogen bonds, we obtain 0.27 x 10-36 esu for the o-electron
contribution to <¥-3;w,0,w)> and 1.64 x 10-36 esu for the o-electron contribution to
<y(-2W;0,0,0)>.

The calculated values for <y(-2m;w,®,0)> and <Y(-3w;®,w,w)> that are to be

used for comparison with experiment are then

+



<Y(-20;0,1,0)> = 0.6 <Yirgns(-2w;0,0,0)>

+ 0.4 <y.is(-20;0,0,0)> + 1.64 x 10-36 esu 4.2;

and
<N-30;0,0,w)> = 0.6 <Yirans(-30;0,0,0)>

+0.4 <yis(-30;0,0,0)> + 027 x 106 esu . (4.3)

The calculated dispersions of <y(-2w;®,0,0)> and <y(-3w;w,0,w)> are illustrated in
Figure 4-2 where <y(-3w;w,0,w)> has been multiplied by a factor of 6. A broadening
term #I" = 0.2 eV was included in both instances. At very low fundamental photon
energies, the relationship <y(-2w;w,w,0)> = 6 <Y(-3w;w,w,w)> is seen to hold. As the
3w resonance of the 11B, state at #iw = 1.65 eV is approached, however,
<Y(-3w;w,m,)> increases more rapidly than <y(-2@;®,®,0)> and we have
I<(-200;0,0,0)>1 < 6 l<Y(-3w;0,0,w)>.  The experimental measurements of
<H-20;0,0,0)> and <y(-3w;0,w,w)> will be seen to be in very good agreement with
the theory for the magnitude, sign, and dispersion of the susceptibility.

The isotropically averaged dc-induced second harmonic susceptibility
<N(-20;w,w,0)> has been measured previously in the gas phase for both HT and
butadiene (BD), the N = 4 site chain, by Ward and Elliott at A = 694 nm (1.787 eV).4

After appropriate conversion of their notation to ours (<y(-2;@,,0)> = 3X(3)/ 2) the

experimental values are <y(-20;0,w,0)> = 3.45+0.20 x 10-36 esu for BD and 11.30 ¢

1.05 x 1036 esu for HT. By performing experiments in gas mixtures, they further

determined that the sign of <¥(-2w;w,w,0)> is positive for both BD and HT. For BD,
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which has no cis-ransoid conformation, we calculate 2.1 x 10-36 esu for the n-electron
contribution to <y(-2w;w,0,0)> at 1.787 eV. Since BD consists of 3 carbon-carbon
bonds and 6 carbon-hydrogen bonds, we obtain 1.2 x 10-36 esu for the -electron
contribution to <y(-2w;®,®,0)> based on the bond additivity approximation discussed
above.3 The resultant value for <y(-2w;®,w,0)> accounting for both &t and G-electrons,
3.3 x 10-36 esu, is in excellent agreement with experiment.
The trans conformation of HT is calculated to have a n-electron contribution to

<Y(-20;w,0,0)> of 15.0 x 10-36 esu at 1.787 eV, and the cis conformation,

12.2 x 10-36 esu. From Eq. (4.2), <(-20;®,®,0)> is 15.5 x 10-36 esy, somewhat
larger than the experimental value. Ward and Elliott measured <y(-2m;®,0,0)> as a
function of temperature, and the reported values correspond to the T — oo limit.4 In
BD, <y(-2w;»,»,0)> was found to be independent of temperature, while a decrease in
the signal for HT with increased temperature was ascribed to a negative f(-20;®,w)
second order susceptibility. However, trans-HT is centrosymmetric such that the
second order susceptibility is identically zero, and our calculations of the
conformationally-induced B(-2;w,) for cis-HT indicate it is much too small to be
observable. If one neglects the temperature dependence and simply takes the measured
value of <y(-2w;®,,0)> at room temperature, the experimental value is 12.9 x 10-36
esu rather than 11.3 x 10-36 esu, which is in much better agreement with theory.

The calculated excitation energies and transition moments ' g and Wy 1p, for

the lowest-lying states of the N = 8 to lé cis polyene chains are listed in Tables 4-3

through 4-7 for completeness and to allow comparison with the equivalent resuits for
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the trans conformation chains. Table 4-8 contains the values of Yod-20;®,0,0) and
Yeeod -30;0,0,0) calculated for the N = 4 to 16 cis polyenes at fundamental photon
energy 0.65 eV. In each case, the dominant tensor component exhibits a rapid increase
with increased chain length, and the origin of Yyxx(-0M;®1,02,w3) is entirely analogous
to the description given in Chapter 3 for the trans polyenes. For comparison, Figure
4-3 shows a log-log plot of the calculated Yy, (-30;0,0,0) at 0.65 eV against the

number N of carbon atom sites in the cis and trans polyenes. The linear fit for the cis

chains corresponds to

Yeoee(-30;0,0,0) =< N39 4.9)

where the same three length-dependent factors that lead to the power law dependence of

Yoo -4 01,07,03) for the trans polyenes are also responsible for the rapid growth in

the cis case.

Although there is an excellent qualititative analogy between the descriptions of
Yoo (-0; 01,02,03) for the cis and trans polyenes, there is an important quantitative
distinction. For chains with equal numbers of sites, the value of Yyxx(-04;®1,02,03)
at a fixed frequency is in all cases calculated to be smaller for the cis chain than the trans

chain. There is also a slightly lesser rate of growth for Y x(-4;®1,072,03) with

increasing N for the cis. The power law exponent in Yeo(-3W;0,0,0), for example, in

*

the cis case is 3.9 versus 4.0 for the frans.
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These differences are well-accounted for in Figure 4-3 in which we also plot on
a log-log scale Yy (-3W;,0,w) against the actual length L of the chain rather than the
number of sites. We have defined L to be the distance in the x-direction (along the chain
axis) between the two end carbon sites. The calculated values for both the cis and trans
polyenes are very well fit by a single line. This plot unifies the calculated values for the

two conformations and yields
Yexex(-30;0,0,0) e L35 | (4.5)

The differences in Yood-04;®1,002,w3) for an equal number of sites are
primarily due to the shorter distance along the conjugation axis produced by the cis
geometry. For equal numbers of carbon sites, the cis conformation is always shorter
than the rrans conformation. Figure 4-3 implies that the values of Y (-4 ®1,w2,W3)
will be the same for cis and trans polyene chains which have equal lengths along the
chain axis rather than equal numbers of carbon sites. We conclude that although the
trans third order susceptibilities are larger than those for the cis conformation of an equal
number of carbons, Ye(-04;01,02,w3) is in fact much more sensitive to the physical
length of the chain than to the conformation.

Finally, we can make a rough estimate of the implications of these calculations
for the infinite chain polymer by extrapolating to longer chains the power law
dependence that we have observed. A t):pical value of the nonresonant macroscopic

third order susceptibility X(3)(-3c;w,0,w) observed for conjugated polymers is 10-10

101




esu.36 For an (nearly) isotropic distribution of chains considered as independent
sources of nonlinear response with a single dominant tensor component

Yroa(-30;0,0,0), we have

X3 300,0,0) =';' N (£2)3 39 Yrre(-30;0,0,00) (4.6)

where N is the number density of chains and f% is the Lorentz-Lorenz local field factor.
Using typical values of N = 1020 molecules/cm?3 and 1.8 for the refractive index, we
derive a Yu(-30;0,0,w) of roughly 2 x 10-3! esu. An extrapolation of our power law
dependence of Yyxud-3W;0,@,w) on N for the trans-polyenes yields a value for N in the
range 50 to 100 carbon sites or, equivalently, a length of approximately 50 - 100 A.
Since many of these polymers consist of much longer chains, we infer that

Yoo (-30;0,0,0) must deviate from the power law dependence and begin to saturate at
a length shorter than 100 A. It is then concluded that large nonresonant values of
Y(-ag; 01,002,03), and, correspondingly, x(3X(-w4;w1,w7,w3), may only require chains
of intermediate length of order 50 - 100 A with little to be gained by increasing the chain

length beyond this limit.
C. Noncentrosymmetric Polyenes

Thus far, we have considered the third order nonlinear optical properties of

centrosymmetric linear chains and have illustrated the important role of definite parity
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selection rules in the third order virtual excitation processes. We will demonstrate in
this section that lowering the symmetry to a noncentrosymmetric structure can act as a
mechanism for the enhancement of nonresonant y;jx(-04;w1,t,03). As seen in Eq.
(2.41), for noncentrosymmetric structures the Bogoliubov-Mitropolsky formalism
admits new types of virtual excitation processes otherwise forbidden under
centrosymmetric conditions.

The symmetry is l¢ wered by heteroatomic substitution on the linear chain. A
principal noncentrosymmetric analog to the N = 8 site chain, octatetraene (OT), is 1,1-
dicyano-8-N,N-dimethylamino-1,3,5,7-octatetraene (which we will refer to as NOT)
having dicyano acceptor groups on one end and a dimethylamino donor group on the
other as shown in Figure 4-4 and which has been synthesized in our laboratories.
Comparison with the earlier detailed discussion of unsubstituted polyenes will allow
direct understanding of the effect of lowered symmetry on ¥jx/(-wa4;wy,002,03).

The calculation of the electronic states and nonlinear optical properties of NOT
involved all single and double-excited configurations of the six occupied and six
unoccupied x-electron molecular orbitals. This leads to 703 configurations in the CI
matrix which is then diagonalized to produce 703 singlet x-electron states. The
complete calculation including computation of all transition dipole moments of Eq.
(2.41) for Yija(-:1,w2,@3) required 53 CPU hours on a CRAY-X/MP. The
calculated excitation energies and transition moments i , u g+ and Wya1ar Of NOT

are given in Table 4-9. The dominant excitation is that from the lowest energy =-

clectron singlet excited state located at 2.81 e¢V. This is 1.6 ¢V lower than the energy of
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the dominant one-photon 1!By, state of OT. There is a secondary peak predicted in the
optical absorption spectrum at 3.58 eV which actually corresponds to the 21Ag state of
OT. Because of the lowered symmetry of NOT, there are no one-photon selection rules
as there are in OT. Instead, all of the x-electron states of NOT possess A' symmetry
and all are one-photon allowed excitations from the ground state. Thus, in addition to
the lowering in energy of the analog to the 11B,, state, the symmetry lowering has two
interesting effects on linear optical properties. The analog of the Z‘Ag state becomes a
one-photon allowed transition which turns out to have a sizable oscillator strength, and
the ordering of the analogs of the 21A; and 11B,, states is inverted. We wish to
emphasize, however, that although the existence of the ZlAg telow the 1!B,, provided
the first definitive evidence of the importance of electron correlation in polyenes, the
inverted order in the substituted chains is not due to any less correlation. The 31A’ state
of NOT, which is the 21 Ag analog, is still composed of more than 40% double excited
configurations.

The principal symmetry constraint in the case of centrosymmetric structures that
the intermediate virtual states must alternate between one-photon states and two-photon
states is lifted upon symmetry lowering. Matrix elements of the form < nl | n > are no
longer symmetry-forbidden and can have an important role in ¥;jx(-W4:1,62,W3).

Diagonal transitions of this form are best illustrated in the difference density matrix Apn

where

Apa(r) = pa(r) — pe(r) 4.7
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and

<Apn> =-efr ‘on(r) dr . (4.8)

The function p,(r) is given by Eq. (3.3) with n equal to n". The contour diagram of
Ap21A'(r) is shown in Figure 4-5(a) where the solid and dashed lines correspond to
increased and decreased electron density, respectively. There is a large redistribution of
electron density along the dipolar x-axis leading to a large dipole moment difference
A p.,;, A of 14.49 D. The calculated ground state dipole moment ul‘, A LS 1093 D in
good agreement with the experimental value 11.8 0.3 D. The sign for Au;l 4 15 seen
to be positive as electron density is decreased in the region of the electron donor and
increased in the region of the electron acceptor group upon excitation. This is consistent
with the experimentally observed shift to lower energies of the first optical absorption
peak in increasingly polar solvents. The magnitude of Aple A is relatively large and
leads to important terms in ¥;j/(-W4; @] ,@2,03) that involve the matrix element
<2!A’ 1 xI21A’>. There are no analogous terms in Y;jx(-@4;001,002,03) in the case of
centrosymmetric linear chains since the dipole moments of the ground state and all
excited states are zero by symmetry. Transition density matrix diagrams for the (b)
ground and (c) 7!A’ states with the 21 A’ state are also shown in Figure 4-5.

For the third harmonic susceptibility ¥;xi(-30;0,0,w), it is found, once again,
that the Yoo(-30,0,0,0) component is by far the largest. At 0.65 eV, the independent
tensor components are Yeycr = 407, yl;yy = 3.0, Yyyxr = 1.2, and Yyyyy = 0.7 x 10-36

esu. The calculated dispersion curve of Yxxu!(-30;®,0,0) in Figure -6 smoothly
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increases to the first resonance occurring at 0.94 eV which is the 3w resonance of the
2!A' state. Because of the lowered symmetry of NOT, the 3w and 2w resonance
selection rules for the centrosymmetric polyenes are no longer applicable. Thus, every
excited state has allowed 3w, 2m and w resonances, and the dispersive behavior of
Yoo -30;0,w,w) exhibits all of these many resonances at frequencies beyond the first
resonance.
The individual virtual excitation processes that contribute t0 Yy (-30;®,0,w) of
NOT at 0.65 eV are listed in Table 4-10 in order of decreasing magnitude. The value of
Yeeod -30;0,0,0) is essentially determined by three terms. As described earlier, for
centrosymmetric structures there are two important types of virtual excitation processes
that dominate Yyyxx(-04:01,002,003). We have found for the noncentrosymmetric chains
a third type of process is allowed and, in fact, makes a larger contribution to
Yool -04:1,02,03) than the other two. These three types of virtual excitation
processes in NOT are illustrated in Figure 4-7. The processes illustrated in Figures
4-7(a) and (b) are analogous to the dominant processes for centrosymmetric polyenes.
For NOT, the 21A' state plays the role of the 1!B state of HT because it has the largest
transition dipole moment (9.34 D) with the ground state. The type I term is a result of
the double summation in the Bogoliubov-Mitropolsky formalism and has the ground
state as the middle intermediate state. The largest term of this type is the one with 21A’
as the first and last intermediate state because of its large transition moment with the

ground state. The type I term illustrated in Figure 4-7(a) makes a negative contribution

10 Vire{ - 30;,0,w) because although the numerator and denominator are both positive,
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the double sum makes a negative contribution t0 Yyx(-3W;w,w,w). In the type II
process, there is a high-lying middle intermediate state that has a large transition moment
with 21 A", The analog to the 5! A’ state of HT is the 7! A’ state of NOT. The type II
term makes a positive contribution to Yyxx(-30;®,0,m) because the numerator is
effectively the square of two matrix elements and the denominator is positive when

below all resonances.

Most importantly, however, for noncentrosymmetric structures, there is a new
type of process which is allowed. This process is illustrated in Figure 4-7(c) and
corresponds to a type V process from Figure 3-3. For NOT, this is the dominant type
of term contributing to Yra(-30;0,0,0). Type V terms involve a diagonal matrix
element and are therefore forbidden in centrosymmetric structures which cannot possess
a permanent dipole moment. The important quantity in this term is the dipole moment
difference between an excited state and the ground state Ay,. For the 21A’ state, the
Aule 5 Value of 14.49 D leads to a very large term in the triple sum in which all three
intermediate states are the 2!A". Since the numerator and denominator are both positive,
the contribution of this term to Yy is positive. The lowered symmetry of NOT, as
compared to OT, produces a new type of virtual excitation process which dominates
Yea(-30;@,0,0) and causes the value of Yal-30;0,0,w) to be more than an order
of magmutude larger for NOT compared to OT. For example, the calculated nonresonant
values of Y- 30;0,0,0) at 0.65 eV for NOT and OT are 407 and 16.0 x 10-36 esu,
respectively. Therefore, although regular conformational changes affect

Yooo(-004; @1,02,003) only through the change in the physical length of the molecular
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structure, lowering of the symmetry by attachment of donor and acceptor groups
significantly enhances Yxoud-4;®1,002,3) through the introduction ot previously

symmetry-forbidden virtual excitation processes.
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Table 4-1. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying r-electron States of cis-Hexatriene (N = 6).

State  ficdng (€V) u’,ﬁ.g (D) l»lf,',g (D) Ha1tg, @ Ky 115, @)

21A, 4.55 0.00 0.08 1.72 0.00
11B, 492 6.83 0.00 0.00 0.01
21B, 5.24 0.14 0.00 0.00 1.67
31A4 6.75 0.00 1.11 1.55 0.00
4l1A) 6.80 0.00 0.62 0.24 0.00
31B, 7.46 1.52 0.00 0.00 0.30
41B, 1.72 1.84 0.00 0.00 0.09
51A4 7.86 0.00 0.11 10.49 0.00
61A) 8.78 0.00 1.73 1.12 0.00
5!B, 9.12 0.24 0.00 0.00 2.88
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Table 4-2. Largest Contributing Virtual Excitation Processes t0 Yrrx(-20;,0,0) of

cis-Hexatriene at fio = 0.65 eV.

my my m3 Contribution (1036 esu)  Cumulative (10-36 esu)
11By 51A; 11By 43.7 437
11By 11A; 11By -29.1 14.6
11B; 8!A; 11B; 3.8 18.4
11B; 101A; 11By 2.5 209
418, 5lA; 1By 2.4 18.5
11By S!A; 41B; 2.3 16.2
11By 21A; 11B; 2.1 18.3
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Table 4-3. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of cis-Octatetracne

(N = 38).
State Fidng (€V) 1, ¢ ©) W, 11g, ©)
21A 411 0.00 278
11B, 437 8.00 0.00
21B, 4.77 0.05 0.00
31Ag 5.22 0.00 0.32
alAg 603 0.00 177
SlAg 6.08 0.00 0.68
3iB, 6.47 0.16 0.00
41B, 6.82 2.97 0.00
61Ag 7.03 0.00 12.62
51By 7.09 0.08 0.00
71Ag 7.41 0.00 0.69
81Ag 7.42 0.00 0.44
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Table 4-4. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying m-electron States of cis-Decapentaene

(N = 10).

State

21A4
11B;
21B;
31A;
31B,
4lA4
S1A}
1373
51B;
61A1
71A¢
6!By
81A}
718,

Titdng V)

3.85
4.00
4.38
491
5.19
5.48
5.53
6.02
6.24
6.29
6.47
6.61
6.72
1.06

Hn
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0.00
9.04
0.02
0.00
0.04
0.00
0.00
0.27
3.35
0.00
0.00
0.09
0.00
0.04

3.80
0.00
0.00
0.56
0.00
2.06
0.56
0.00
0.00
2.11
14.08
0.00
2.15
0.00




Table 4-5. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying %-electron States of cis-Dodecahexaene

(N = 12).
State fidng (€V) W, ©) Wy 118, @
21Ag 3.69 0.00 473
11B, 3.74 9.98 0.00
21B, 4.11 0.04 0.00
31A4 4.58 0.00 0.69
3‘Bu 497 0.04 0.00
41Ag 5.09 0.00 2.27
51Ag 5.11 0.00 0.51
6!Ag 5.17 0.00 033
418“ 5.61 0.22 0.00
51B, 5.82 3.71 0.00
7 lAg 6.00 0.00 722
81A, 6.06 0.00 12.19
91As 6.18 0.00 6.98
6‘Bu 6.19 0.09 0.00
7‘B“ 6.22 0.21 0.00
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Table 4-6. Calculated Symmetries, Excitaton Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of cis-Tetradecaheptaene

(N = 14).
State fitdng (V) T (o) Wy 118 (D)
11B; 3.55 10.85 0.00
21A, 3.59 0.00 5.55
21B; 3.92 0.07 0.00
314, 4.32 0.00 0.77
31B; 4.69 0.04 0.00
414, 4.17 0.00 1.08
51A; 4.82 0.00 2.20
6!A; 5.02 0.00 0.58
41B; 5.16 0.01 0.00
5!B; 5.29 0.15 0.00
6By 5.50 3.96 0.00
71A, 5.67 0.00 7.82
81A) 571 0.00 3.96
9lA; 5.83 0.00 14.41
71B; 5.89 0.73 0.00
81B; 6.01 0.02 0.00
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Table 4-7. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of cis-Hexadecaoctaene

(N = 16).
State hing (eV) u:’g (D) l—r,t,' 11By (D)
11By 341 11.65 0.00
2 lAg 352 0.00 6.27
21B, 3.78 0.01 0.00
31Ag 413 0.00 0.84
31B, 446 0.03 0.00
41Ag 4.50 0.00 0.82
5 lAg 4.62 0.00 2.39
61A8 479 0.00 0.64
41B, 5.04 0.08 0.00
51By 504 0.04 0.00
71A8 5.15 0.00 0.54
61B, 5.24 4.10 0.00
8 lAg 5.36 0.00 5.84
9‘Ag 543 0.00 0.50
lolA, 5.60 0.00 16.66
71B, 5.63 1.36 0.00
81B, 574 0.12 0.00
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Table 4-8. Calculated Values for Yxo(-20,0,0,0) and V(- 30;0,0,0) at fiw = 0.65

eV for the cis-Polyenes in 10-36 esu.

N (sites) Yeoo(-20;0,0,0) Yol -30;0,0,0)
6 20.3 3.83
8 63.8 12.5
10 150.1 30.4
12 290.1 60.9
14 488.2 105.8
16 742.0 165.5
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Table 4-9. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of NOT.

State

1A
2A°
A
41A’
S1A
6lA'
A’
8lA’
9lA
101A
1A
121A°
131A°

141A°

hwng eV)

0.00
2.81
3.58
4.10
4.40
484
5.01
5.21
5.72
5.90
6.04
6.29
6.68

6.78

T (o) BT () B TPAIRT (o)
10.93 10.93 9.34
25.42 9.34 25.42
13.27 4.12 222
14.78 0.54 1.41
15.21 0.50 2.21
14.14 0.31 1.59
19.25 2.80 10.94
16.49 0.60 4.54
19.04 0.79 1.40
12.95 0.3 2.02
12.74 1.17 9.24
20.39 0.05 1.08
15.76 0.23 0.09
14.23 0.35 1.91
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Table 4-10. Largest Contributing Virtual Excitation Processes to Yyy(-30;0,0,0) of

NOT at i = 0.65 eV.

my mz m3 Contribution (10-36 esu) Cumulative (10-36 esu)
21A 217" 21AY 550.3 550.3
21A' 11A" 2lA° -172.6 377.7
21A" TIAY 2MA° 1354 513.1
21A' 111A" A 76.6 589.7
1A 21A" 21A° -63.1 526.6
2tAT 21AT 71AY -45.8 480.8
3IAT 21A 204 -27.8 453.0
1A 111AY 21A° 260 479.0
21A" 217" 317 -22.5 456.5
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Figure 4-1. Transition density matrix contour diagrams of cis-HT for the (a) ground
and (b) 5!Ag states with the 11B,, state. The X-components of the transition dipole
moments are 6.83 and 10.49 D, respectively. The contour cuts are taken 0.4 A above
the molecular plane.
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Figure 4-2. The calculated dispersions of <N-2w;0,0,0)> (solid) and <y(-3w;w,0,0)>
(dashed) for HT. The values of <Y(-3w;0,0,w)> have been multiplied by a factor of 6.
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Figure 4-3. Log-log plot of Yyxxx(-30;0,w,w) at Aw =0.65 eV versus the number N
of carbon sites (upper axis and dashed lines) and length L (lower axis and solid line).
The values for trans chains are represented by squares; and the values for cis chains, by
circles. The linear fit of the solid line corresponds to Yyrex(-302;0,0,w) o< L33,
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CNW\N (CH4 ),

CN

Figure 4-4. Schematic diagram of the molecular structure of 1,1-dicyano-8-N,N-
dimethylamino-1,3,5,7-octatetracne (NOTD).
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(b)

©)

Figure 4-5. Contour diagrams for NOT of (a) the difference density matrix for the 21A
state, and transition density matrices of the (b) ground and (c) 7!A’ states with the 1A

state. The increased charge near the cyano groups in (a) represents a large increase in the
x-component of the dipole moment from 10.93 D in the ground state to 25.42Dinthe

21A’ state.
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Figure 4-6. Calculated dispersion of Yxexx(-3@;00,0,w) for NOT with Ail' =0.2 eV. The
solid curve is Wyrxd-30;0,0,0)! and the dashed and dotted curves are
Re[Yeru(-30:0,0,0)] and Im[yy (- 30;0,0,m)], respectively.
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Figure 4-7. The three principal third order virtual excitation processes for NOT. The
diagram in (c) corresponds to a process that can only occur in noncentrosymmetric

structures and dominates Yyoud-30;0,0,w) in NOT.
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Chapter §

DISPERSION OF <y(-20;0,,0)> IN HEXATRIENE AND B-CAROTENE

Chapters 3 and 4 presented the detailed results of the electron correlation
description of the nonlinear optical properties of conjugated linear chains. In order to test
the validity of these resuits, the frequency dependence of the isotropically averaged
molecular third order susceptibility <y(-wq;®1,62,w3)> has been measured for two
fundamentally important conjugated molecular systems, hexatriene (HT) and B-carotene,
through two separate nonlinear optical processes. The hexatriene results allow us direct
comparison with the theoretical predictions for the magnitude and dispersion of
<Y(-t0g;®1,02,003)> for HT presented in chapters 3 and 4 while the length dependence of
<Y(-(4;01,00,003)> is experimentally determined by the measurements on B-carotene, a
symetrically substituted polyene corresponding to N = 22. This chapter describes the
measurement of <y(-2e;®,0,0)> in HT and B-carotene at 1907, 1543, and 1064 nm by
dc-induced second harmonic generation (DCSHG). Chapter 6 will present third

harmonic generation experiments, which measure the related quantity <y(-3w;®,0,0)>.

A. Introduction to DCSHG

Electric field-induced second harmonic generation is now well-established as a
primary method for the determination of the molecular second order susceptibility

Bijr(-2;m,w) in gases, liquids, and solids.!4 Use of this technique has allowed rapid
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and direct measurement of molecular second order optical properties in a varety of
conjugated structures to aid in understanding the microscopic origin of B;jx(-20;0,®)
and the effect substituer:s and different parent structures have on f;(-2w;w,w). In
addition, DCSHG provides a method for evaluation of candidate molecular structures for
their potential in electrooptics or frequency doubling applications in noncentrosymmetric
crystalsS or poled, doped polymers.7-9 The measurement of xf.fz(-(m;wl,mz), which
requires a macroscopically noncentrosymmetric medium, is easily accomplished in
DCSHG, where removal of centrosymmetry in a polar solution is achieved by
application of a static electric field, as compared to direct second harmonic generation or
linear electrooptic effect measurements of crystals or poled polymers for which extensive
sample preparation is required.

Despite its primary role in measurement of B;;(-2w;w,w), DCSHG is, in fact, a

third order nonlinear optical process defined through the polarization expression
P = Ty E} EY E) CBY)

where P?“’ is the macroscopic polarization at a frequency 2 induced by two applied
optical electric fields of amplitude E;" and E9 and an applied static field of amplitude E?
The magnitude of the second harmonic polarization is governed by the effective DCSHG
susceptibility tensor I'jjz; which has three potential contributing mechanisms.! We note
here that [y is equivalent to x) -Zm;o;,m.O) and is a prevalent notation in the

Ul
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DCSHG literature. We will use the notation I'j; throughout the remainder of this
chapter.
The electronic molecular third order susceptibility for DCSHG, ¥iji(-20;0,w,0),

results in a microscopic polarization
P2 = Yju-20:0,00) E E) [ (5.2)

This purely electronic polarization effect does not involve any vibrational, rotational, or
orientational motion of the molecule and corresponds to the ¥;je(-2w;w,w,0) calculated
in chapters 3 and 4. For an isotropic medium, when the static, fundamental, and

harmonic electric fields are all parallel to the X axis in the laboratory coordinate frame,
20 _ Yy

where the microscopic isotropically averaged DCSHG susceptibility <y(-2w;®,w,0)> is

given by (see Appendix B)

N-20,0,0,0)> = é{ % Yiii(-20,0,w,0) + %Eq [iijf(-200;0,0,0)
!
* Yiif(-20,0,0,0) + Yiji(-20,0,0,0)] } . (5.4)

Eq. (5.4) has often!2 been written as

<= é‘ (Yrxxx + Yyyyy + Yezzz + 2Yaxyy + 2¥xuzz + 2Yyyz:) (5.5)
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where the frequency arguments have been omitted. It is assumed in Eq. (5.5) that

Yaxyy = Yxyyx = Yxyxy = Yyyxx = Yyxxy = Yyxyx (5.6)

and that the corresponding equalities involving the subscript pairs x,z and y,z also hold;
but this is strictly valid only in the zero frequency limit (® = 2w = 0). For nonzero
frequencies, dispersion leads to violation of most of these proposed equalities, and the

only strict identities are of the form

Yijki(-20;0,0,0) = Yikj(-20;0,0,0) . X))

Thus, making use of
¥ijij(-20;®,0,0) = ¥iiji(-2w;0,0,0) (5.8)

from Eq. (5.7), Eq. (5.4) can be simplified to3
<N-20;0,0,0)> = -1-13 % [2%ij(-20;0,0,0) + ¥y;i(-20;0,0,0)] . (5:9)
1J

In nonlinear optical processes involving only optical frequencies, such as THG,
the exclusive contribution to ;jkr(-4;W1,02,w3) is of electronic origin since molecular

vibrational and rotational excitations cannot follow the optical frequency oscillations.

The static field in DCSHG, however, can couple to the vibrational normal modes of the
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molecule through the hyper-Raman susceptibility that contributes a second harmonic

polarization
20
P = § Sijko E E) Qg (5.10)

where &;¢ o is the hyper-Raman susceptibiity and Qg the vibrational normal coordinate

for mode 6. Using the vibrational equation of motion
2 * Eo
mg wg QO =0 f] (511)

where mg is the reduced mass, (g the vibrational frequency, and e;,o the effective

charge, we have

20 .
PO = Y (200.00) £ E E (5.12)
where
. 2
V20000 = T (&jks e10)/ (mo @) (5.13)
G

is the vibrational contribution to the third order susceptibility. The isotropic average of
Yy (-200:00,0,0) i also of the form of Eq. (5.4).
Finally, for noncentrosymmetric molecular structures, Bijx(-2w;m,w) is

nonvanishing and leads to a microscopic second harmonic polarization
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Pf“’ = Biji(-2w;0,w) E‘j" E‘;’ . (5.14)

In an isotropic medium such as a gas or liquid, however, the average of pf“’ over the
uniform molecular orientational distribution function leads to a vanishing net second
harmonic polarization and no SHG is observed. In DCSHG, with the application of a dc
electric field, the medium becomes anisotropic. In the case of the dc and optical electric
fields all applied along the X-axis in the laboratory coordinate frame, the isowropically

averaged contribution of Bjjx(-2w;0,w) to pi"’ can be shown to be
2> = 4 g0 £ £ (5.15)
where W is the magnitude of the molecular dipole moment and
Br = Brar(-20,0,0) + Pryy(-20,0,w) + Byzz(-20;0,w) (5.16)
is the vector part of B;ji(-2w;0,w) along the molecular dipolar axis .

Combining the electronic third order, vibrational third order, and static field

induced second order contributions to pi"’, we obtain

20 . X U Bx(-20;00,0), o 0
Py = [< 200,00 + <yV(-2w,a>:m,0)> + 77— E}" EYEx. (51D
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Comparison of third order susceptibilities of several centrosymmetric organic structures
measured by DCSHG and by frequency-mixing has shown that the measured
susceptbilities are essentially identical in the two processes.!-10 Since y¥ contributes to
DCSHG but not to frequency-mixing, these results demonstrate that, in general, the
:lectronic term <Y(-2w;®,®,0)> dominates the hyper-Raman term <y(-2;®,0,0)>.
Furthermore, for centrosymmetric molecules y and B; jk(-Zw;w,m) are identically zero

reducing Eq. (5.17) to
P2 = R 20i0,0.0)> (E? Ey - (5.18)

The DCSHG experiments presented in this chapter were performed on centrosymmetric
molecular structures in the liquid phase such that the experiments are governed by Eq.
(5.18), and only the electronic third order susceptibility <y(-2;w,,0)> is measured.

In gaseous media, the relationship between Eqgs. (5.1) and (5.1R) is simply
Txxxx = }".:. [Ny < Ym(-20;0,0,0)>] (5.19)
where N, is the number density of molecular species m. For condensed media, such as
liquids, it is necessary to additionally take into account the effect of linear polarization of

the medium on the magnitude of the local electric field experienced at the molecular site.

This is done via the local field factors f© yielding
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Txxxx=29 (f9)2 f0 % [N <Ym(-20;0,0,0)>) (5.20)

where the local fields have been taken as spat  uniform and independent of the

molecular species. Onsager!! showed for nonassociating liquids that

(e +2)eq
= —— (5.21)

Eoo + 2eq

where €__ is the non-dipole contribution to the dielectric constant (effectively n? at

optical frequencies). Thus, we finally have

n + 2, (n +2)e

Dxooxx(-20;,0,w,0) = (—-3—-) (T) (

)

+2£

gl'. [N <ym(-20:0,0,0)>] (5.22)

where ¢ is the static dielectric constant and ng, is the refractive index at frequency .

B. Derivation of Second Harmcnic

Intensity in the DCSHG Configuration

In this section we derive the expression for the second harmonic intensity at the

output of the DCSHG configuration? illustrated schematically in Figure 5-1. Four
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interfaces must be considered: air-glass, glass-liquid, liquid-glass, and glass-air. The
static field electrodes extend over the entire liquid region and part of the glass windows
such that the electric field is constant over the entire liquid length but is negligible at the
air-glass interfaces. Since air, glass, and liquid are all isotropic, there is an effective
second order susceptibility only in the region where the static field is nonzero. We will
consider the fundamental and second harmonic beams to be monochromatic plane waves
(e.g. the confocal parameter zg > z1 + z2) and allow for absorption at both the
fundamental and second harmonic frequencies within the liquid.

The nonlinear wave equation that governs the second harmonic electric field

E20(z) is

a;f%! *“2‘”%3_@* kg E% = "l%uﬁdqy(ﬂ (o2 (5.23)

where a2, is the absorption coefficient at the harmonic frequency, deg(2) the effective
second harmonic susceptibility (dgg(2) = I'(-2;0,w,0)E%(z)), E9(z) the amplitude of the
fundamental field that decreases -vith increased z due to ayy, and k¢ = (20 n2w)/c and kp
= (2w ny)/c are the wave vectors of the free and bound harmonic waves, respectively.
The free wave is the solution to the homogeneous differential equation and the bound

wave is the particular solution for the nonlinear polarization source term leading to the

solution

E2(z) = Epe @202 kf 4 Ey(7) MV (5.24)
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where Efand Ep(2) are the free and bound electric field amplitudes, respectively.
Insertion of Eq.(5.24) into Eq. (5.23) yields

16mw?

92 _ .
-a?gﬁ + (020 + 2ikp) %—Ezﬁ + (kf2 - ki + ikp0) Ep(z) = - — def(2) [E(2)].

(5.25)
Because the spacing of the electrodes is large compared to the coherence length /c
=1t / k¢ - kpl, the variation of dg(z) due to the fringe electric fields is weak such that the

first two terms of Eq. (5.25) are small compared to the third. In this limit, the solution

for Ep(2) is
Byo) = -4 EOOR (526)
Cz(kf - k% + ikp0200)
which further reduces to
4r
Ex(D) = ~ =y degt@) (ES)? (527)
"0 "o

for the usual case of (g << Ik - k pl.

We first consider the general case of a single boundary at z = zg between media 1
and 2 and then apply the solution to the particular configuration of Figure 5-1. The
second harmonic electric field in medium 1 is composed of the free £, bound E{", and
reflected free Eg) waves,
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E20g) = BV oY @20 4 gD k- %ulz 4 QD el (020Dl (524

Any possible absorption at the fundamental frequency is here explicitly accounted for in
the phase factor accompanying E‘bl)(z) and will therefore be omitted from [E®(2)}2 when
Eq. (5.26) is used for Ep(z). We can now solve for the free wave in medium 2, E}z), in
terms of E}l). E(bl). and E(bz) by applying the boundary conditions on E2® and H2® at 2.

We have
E}l) &Y 4+ E?)(zo) ¢ 4 Eg) ' = E}z) + Ef)(zo) %

1 i 1 j 1 -i 2 2 ‘
"(20)) E}l) ¥ 4 n(m) E,(bl)(zo) % . "(213)) Eg)c % = "(20)) 5}2) + n(w) E(bz) (z0) e'®

(5.29)
where the free and bound wave phases, ¢ = (kf + iai20/2)20 and @p = (kp + i0)20,

respectively, refer to medium 1. Elimination of Eg) yields

ED = TaE}) Y + (T1E (o) - T2ED ()] % (5.0)

where

), ()
Ao * Moy

R D)
"2m+"2m
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@, ()
Ry * Mo

T} = —————em | (5.31)

(2) )
20) +n /0

The phase of Ef)(zo) in Eq. (5.29) is ¢'® because it, like E(b”(zo). derives from the
propagation of £® through medium 1.

We can now apply Eq. (5.30) to the boundaries of the actual DCSHG
configuration. At the first boundary, z = z1, £9(z1) = 0 and no second harmonic is

generated. Therefore, at the z = 0 glass-liquid interface, there is no incident free wave

E}l), and the bound waves are given by

EN©) = £F = M1 £ (E,, (V)2
(ny)2 - (n
EDQ) = E = —mn Eo (Enr) D) (5.32)

from Eq. (5.27) where G and L refer to glass and liquid, respectively, E, is the
amplitude of the fundamental field incident on the air-glass boundary, and

‘” =2/(l+n m) and ¢ ‘2’ =210/ (ng + n_) are the Fresnel transmission factors for Egat
the air-glass and glass-liquid interfaces, respectively. From Eq. (5.30) the free wave

created in the liquid at the glass-liquid interface is

EL = TlEf - Tzﬁt (5.33)




where the phase eiq’" is unity since the fundamental absorption in the glass is negligible.
As the free wave propagates through the liquid to the liquid-glass interface at

z =1 it becomes
EXD = Ef ol (@201, (5.34)

The bound wave in the liquid at z = / is still E; and the bound wave in the glass atz =/
©)

is equal to the bound wave in the glass at z = 0 reduced by the Fresnel factors to and
'S) = an;/ (n:mg) corresponding to the glass-liquid and liquid-glass interfaces,
respectively. We therefore make the identifications E‘}l) = E;.' Eg) = Elb',
ED = ES (@ O, and 20 = I for insertion into (5.30) and obtain
_ i 2 Q) ip
ES = T, E % + [TLE] - TGy (P E;) % (5.35)
with
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(5.36)

Because all of the glass and liquid refractive indices in the current experiments lie in the

range 1.40 to 1.52, we can make the following approximations: t((? 'S) = 1,

T.. This simplifies Eq. (5.35) to

1]

Tt

L L
20 = TG. and T2 tzm

ES = GGE; - TLEy) &% - ') . (5.37)

Finally, at the glass-air interface z = 23, the static electric field is negligible and
there is no bound wave. The free wave EfG simply propagates through the boundary
with the transmission factor Tgm = 2"(2;0)/ (1+ nfw). The total second harmonic electric

field out of the DCSHG cell is then

o = 18 (@G ES - Ty &y (N - ek~ aully (5.38)

and the second harmonic intensity /2® is

2 [y +
P™0) = = [rgm TGES - TLEDP e (G + (22} !
{cosh [(%~a12°-’)l] - cos [(kr = kn)i]} (5.39)

If there is no absorption, Eq. (5.39) reduces to
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which oscillates periodically with increased pathlength through the liquid. In the
wedged Maker fringe configuration, the liquid is confined between windows that make a
small angle, a. As the wedge is translated perpendicularly to the beam, the path length /
is increased producing oscillations in the output second harmonic intensity that are
known as Maker fringes. The effect on the Maker fringes of absorption at either w or
2w is to decrease the amplitude and introduce a nonzero minimum as can be seen in Eq.
(5.39).

The second harmonic intensity is seen in Eqgs. (5.39) and (5.40) to depend on
both I'(-20;0,0,0) and I (-2w;w,0,0). In order to determine the desired quantity
I, (-20;0,w,0), we must have previous knowledge of I'(-2w;®,0,0) for the BK-7
glass cell windows. Furthermore, rather than attempt an absolute calibration of Eq.
(5.40) with every experimental run, the Maker fringes from the DCSHG cell containing
sample liquid are comparud vith the fringes obtained from a known reference standard.
A careful absolute determination of the second harmonic coefficient of quartz has
yielded12 dﬁ = 1(2)(-20;0,0) = 1.2 x 109 esu, and this value is commonly used as the
standard for both second harmonic susceptibility x(2)(-2a;m,w) and dc-induced second
harmonic susceptibility %(3)(-2w;®,0,0) measurements. We fix the absolute magnitude
of I'z, then, by bracketing the DCSHG measurements with second harmonic
measurements of a quartz wedge without a static electric field applied. The analysis for

the SH intensity observed from the quartz wedge is similar to the one given above, but
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there are only two boundaries and the bound wave in the air at each one is zero. The

final result is2
20y = £ 2 o2 [(kQ ~ @
10 = = (TQEY sin2 [ - k2)1/2] (5.41)
where
2o+ nl
Tp = —— (5.42)
20
and |
~4n dS, an 2
) E. . (5.43)
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(2)%- (29?2 "1+12

In the absence of absorption, one can simply compare the peak heights of the
liquid DCSHG and quartz SHG Maker fringes to obtain I';. From Egs. (5.40) and
(5.41), one finds

L L
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where Ic = ®/(ks- kp) = N4(n2°"'n‘°) is the coherence length and ¢ (” (2) are defined

in Eq. (5.32), T, and Tg in Eq. (5.36), and T in Eq. (5.42). Thus, in addition to the
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refractive indices of liquid, glass and quartz at the fundamental and second harmonic
frequencies, one must also know [, del, and Eg. The static field strength is Ep =‘2/-

where V is the applied high voltage and d is the electrode spacing.
C. Implementation of DCSHG Experiment

Laser Source e

The optical source for the DCSHG experiment is a Quanta-Ray DCR-1
neodymium-doped yttrium aluminum gamnet (Nd: YAG) laser. The YAG laser is actively
Q-switched at 10 Hz and produces 8 ns pulses at a wavelength of 1064 nm with a
maximum output energy of 300 mJ per pulse. For the dispersion measurements of
DCSHG in hexatriene and -carotene, it was determined that appropriate, accessible
wavelengths are 1064, 1543, and 1907 nm. The latter two wavelengths were obtained
by frequency conversion of the YAG fundamental through the stimulated Raman
scattering process.

The Stokes and anti-Stokes Raman processes illustrated in Figure 5-2 correspond
to the subtraction and addition, respectively, of a quantum of energy of the material
system from the incident photon. In Stokes Raman processes, the Raman medium
makes a transition from an initial eigenstate | { > to a higher-energy eigenstate
| f >, whereas in anti-Stokes processes, ﬂ‘\e I i > state is of higher energy. For our
purposes, energies on the order of 1 mJ/pulse at the desired wavelengths were obtained

by focusing the 1064 nm YAG fundamental into a 1m long metal cell that contained
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hydrogen or methane gas at a pressure of 300 psi. The vibrational Stokes shift of
hydrogen at 4155 cm-! and of methane at 2916 cm-! produced first Stokes lines of 1907
and 1543 nm, respectively. Higher order Stokes conversion is also observed due to the

interaction of multiple vibrational quanta with the incident photon, and the available

wavelengths are listed in Table 5-1.

Optical Layout

A schematic illustration of the DCSHG experimental layout is shown in Figure
5-3. The YAG fundamental at 1064 nm was steered by prism P, and focused by lens L,
into the gas Raman cell. The reflection from P; was focused onto the gate photodiode
PD which served as an optical trigger for the data collection electronics as discussed
later. The output from the Raman cell consisting of many discrete wavelengths was
recollimated by lens L, and steered by prism P, towards the dispersive prism Ps.
Rotation of Pj allows selection of the desired wavelength by aligning it through the
pinhole PH while the other Raman lines are blocked. The beam was further filtered by
the band pass filter F;. Prism Pg steered the beam towards the DCSHG sample cell
while the reflection from Pg was guided by prism Pg into the reference arm.

In the sample arm, after steering by P, the beam was focused into the DCSHG
sample cell S to be described in detail below. The cell was mounted on a configuration
of four translation stages that controlled the height of the cell with respect to the beam,
the position of the cell along the beam path, and the position of the cell transverse to the

beam path. Control of the position along the beam path was required to adjust the beam
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waist to the center of the cell, a condition required for optimization of the Maker fringes.
Two stages adjusted the cell position transverse to the beam path, one to rapidly select
between the sample cell and a quartz wedge mounted beside it on the stage assembly and
the second driven by a stepper motor to allow fine adjustment of the transverse beam
position for the Maker fringe data collection. The quartz wedge served to set the
absolute magnitude of I'; by comparison of quartz SHG Maker fringes to the liquid
DCSHG Maker fringes through Eq. (5.44). The stepper motor was controlled by a
PDP-11 computer to translate the wedge sample in fine steps across the beam, thereby
increasing the beam pathlength through the sample and generating Maker fringes. The
output of the sample, consisting of the strong fundamental light and relatively weak
second harmonic, was passed through filters (i.e. CuSO4 solution) to absorptively
remove the fundamental, further spectrally filtered by the monochromator M, and then
weakly focused on the photomultiplier cathode PMT}.

The refersnce beam was focused on a separate quartz crystal R that was used to
reduce the fluctuations in the SH intensity /20, Because stimulated Raman conversion is
a nonlinear process, fluctuations in the YAG fundamental are amplified in the Raman
output, and further amplification of the fluctuations occurs in the SH conversion. Under
the assumption that the intensities in the sample and reference arms are linearly related
independent of the Raman fluctuations (e.g. linear beam splitting, detection, etc.),
[20 e (J©)2 of each arm is also linearly related. Thus division of the sample 1§‘° by the
reference li“’ should remain constant. Pulse-to-pulse variations in beam profile and

focal plane position still lead to slight variation in 1?” / 1‘2;“. but the pulse-to-pulse signal
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stability was drastically improved by this referencing iechnique. Further reduction in
fluctuation was accomplished by averaging over at least 20 to 30 shots for each data
point and rejecting all shots in which 112:’ varied by more than 30% from the mean value.

The reference beam was passed through absorptive filters to remove the fundamental and

weakly focused on PMT3.

Liquid Sample Cell

There are three primary requirements to be incorporated into the design of the
sample cell: 1) The boundary conditions leading to Eq. (5.39) require that the electrodes
be wide enough that FO is essentially constant across the liquid but narrow enough that
EQ is negligible at the front and back window-air interfaces. Analysis of the electrode
fringe fields demonstrates that the electrodes must extend a distance 4 beyond the glass-
liquid boundarnies and be at least 4d away from the glass-air boundaries, where d is the
spacing between the electrodes.!3 2) The wedge angle a of the liquid must be chosen
such that several fringes may be obtained in full translation of the cell for typical
coherence lengths /; on the order of 15 to 30 um. 3) The mean thickness / of the liquid
compartment should be relatively small so that the contrast between the Maker fringe
maximum and minimum is not "washed out" in weakly absorptive liquids as determined
by Eq. (5.39).

The cell, illustrated in Figure 5-4, consists primarily of two fine annealed BK-7
glass windows of dimension 8 x 24 x 1.6 mm formed into a wedge of a = 0.0227

radian with two stainless steel electrodes of dimension 6 x 28 mm attached at the top and
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bottom. This configuration is encased in a larger glass cell with the two glass windows
protruding slightly through the cell. The joints are sealed by Omega high temperature
ceramic adhesive and coated by silicone rubber to ensure a leak-proof se.’. The mean
thickness of the liquid between the windows is about 1 n.m and the: electrode spacing is

1.6 mm, the thickness of the windows.

Photomultiplier Tubes

For applications of DCSHG with a fundamental wavelength of 1907 nm, it is
necessary to have a detector with high sensitivity in the near infrared out to 954 nm. For
most photomultiplier tubes, the quantum efficiency is negligible beyond 900 nm. The
Varian VPM-159A PMT with InGaAsP photocathode, however, has a typical quantum
efficiency of 5% at 900 nm and 2% at 1060 nm. A gain of 104 - 105 is obtained from
the 12 stage dynode configuration at the typical applied voitage of -1300 V. The PMT
output pulse is longer than the laser pulse since the tube has a rise time of ~10 ns, but the
output pulse is shorter than 100 ns and falls well within the opening of the ADC gate.
Permanent cooling to below -200C is required for the VPM-159A to avoid irreversible
damage to the cathode. The PMT cooled housing obtained from Products for Research,
Inc. also serves to drastically reduce the dark current that results from thermionic
emission of electrons from the cathode and dynodes. As an additional consideration, too
high an input intensity to the PMT can lead to saturation of the photocathode and,
therefore, nonlinearity of the PMT response. The focusing conditions, input intensity,
and high voltage were carefully maintained in the linear response regime.
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Electronics and Data Acquisition

The high voltage pulse applied to the sample cell electrodes, the analog-to-digital
converter (ADC) gate pulse provided by the photodiode, and the PMT output pulse must
all be carefully synchronized. Rather than supply a constant high voltage to the
electrodes, a 5 kV, 10 us pulse is provided by a Cober 60S high voltage pulse generator
to minimize the ionic conductivity and polarization of the electrodes. The laser pulse is
synchronized to arrive near the 8 s mark within the rectangular HV pulse; and since the
laser pulse is of only 8 ns duration, the HV may be considered to provide a static £9.
The laser pulse is adjusted to arrive towards the end of the HV pulse in order to allow
orientational equilibrium to occur in the liquid. Relative timing between the HV and
laser pulses was achieved by triggering the HV generator on a pulse provided by the
YAG laser upon firing of the flashlamps. The HV is triggered 250 us after flashlamp
firing, and the laser Q-switch is triggered 8us later still. The 250 us delay maximizes

the laser output by allowing energy buildup in the cavity prior to Q-switching.

The PMT output is digitized through a LeCroy 2249w 12 channel ADC inserted
into a standard CAMAC crate controller (Kinetic Systems model 3912) interfaced to a
PDP-11. The ADC inputs have a common gate that is provided by a circuit triggered on
the gate photodiode. The 600 ns gate covers the entire PMT output pulse with
synchronization between the gate and PMT pulses achieved by delay boxes. After

averaging the ratio PMT/PMT> over the desired number of shots, the computer stores
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the result and advances the stepper motor to increase the beam pathlength. The fringes

are also plotted in real time on an x - y recorder as a monitor during the measurements.

Materials Handling and Preparation

Hexatriene, which was measured in the neat liquid, was obtained from Aldrich
Chemical Company in fused, glass ampules containing 1 gm of HT each. These were
stored in a freezer and allowed to warm to room temperature only a couple of hours
before use. The DCSHG cell was sealed with septa and filled with nitrogen for fifteen
minutes. After all other preparations for the measurement had been made, the ampule
was cracked open and HT was immediately transferred to the sealed DCSHG cell. After
data-taking of no more than thirty minutes, the HT was discarded. In this way,
exposure of HT to light, oxygen, and water was kept to a minimum.

B-carotene was obtained in microcrystalline form, also from Aldrich, and stored
in a refrigerator. Structural transformation in B-carotene is known to occur in solutions
with exposure to water or UV light and is manifested in a strong blue-shift in the optical
absorption spectrum accompanied by a striking color change from red to yellow.14.15 In
order to prepare stock solutions, then, 150 mg B-carotene was quickly but carefully
weighed out on a Mettler H20 electronic balance, transferred to a flask, and placed in a
glove box. After evacuation of the glove box and inflow of nitrogen, 30 ml 1,4 dioxane
was added to the flask which was then capped with a septum, sealed with Parafilm, and

wrapped in aluminum foil for protection from light. The tendency of dioxane to absorb
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water from the atmosphere was prevented by storage in an Aldrich "sure-seal” bottle and

transfer into a nitrogen-filled flask.

Dilution of the stock solution for concentration-dependence measurements was
carried out by transfer from the stock solution flask to small vials sealed with septa
containing nitrogen and pure dioxane. The DCSHG sample cell was always filled with
nitrogen before the addition of solution. Measurements of one week old solutions
yielded a 20% decrease in <y(-2w;®,w,0)> of B-carotene compared to fresh solutions.

Therefore, all measurements reported here were performed in less than two days after

preparation of the stock solution.
D. Experimental Results and Analysis

Quartz, Glass, and Dioxane

As discussed in conjunction with Eq. (5.44), several quantities must be precisely
known in order to achieve accurate measurements of the liquid DCSHG susceptibility
I';. In particular, the refractive indices, coherence lengths, and susceptibilities of
quartz, BK-7 glass, and dioxane must be well-characterized. In this subsection, we
present the reference values used for these quantities at the relevant wavelengths of
1907, 1543, and 1064 nm and discuss the internal consistency of these results.

The value of the second harmonic susceptibility dy of quartz has been carefully
determined!2 to be 1.20 x 109 esuat a f:mdamcmal wavelength of 1064 nm and this

value is universally accepted in the community as the reference standard. To obtain dy;
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at 1907 and 1543 nm, we applied the generalized form of Miller's rule. Miller
discovered in a survey of dy; values of inorganic crystals that, for crystals with dy;

values that vary over three orders of magnitude, d}; could be described by
0 o
dy = XZI(;) X111 X1 o1 (5.45)

where 11 is the linear susceptibility and 8, known as the Miller's coefficient, has a
variation of less than a factor of two.16 This empirical rule has been generalized to
describe the dispersion of d}; in inorganic crystals in the weakly dispersive regime,
leading to
0 L0 o
X Xy X
d‘;)l = d(rl 20 ., 0 © (5.46)
xll X i1 X 11

Table 5-2 lists the values obtained for de, from Eq. (5.46) along with the tabulated!?
refractive indices at the fundamental and second harmonic wavelengths.

An exampie of the Maker fringes obtained from quartz is compared to the fringes
obtained from the DCSHG cell filled with dioxane in Figure 5-5 for A = 1543 nm.
Because quartz generates SH intensity via nﬁ) (-2w;w,w) and the DCSHG cell via the
higher order x,(,i), (-20;0,0,0), the quartz signal is several orders of magnitude larger.
The quartz fringe amplitude in Fig. 5-5 was depressed by a factor of 3.72 x 103 with
neutral density filters (OD = 3.57) relative to the dioxane fringe. The Maker fringes are

least-squares fit to a function of the form
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2o = A sin? (% + Ag) + Ay (5.47)

where A is the fringe amplitude, A, the fringe minimum, A3 the coherence length [,
and A4 an arbitrary phase factor. In evaluation of I'; from Eq. (5.44), we use the mean
fringe height A, = %Lo- A, for 120 rather than the fringe maximum in order to properly
account for any non-zero minimurmn that results from finite beam size effects.2:18

The Maker fringe analysis directly yields /. as well as /2@ for insertion into Eq.

(5.44). Since we also have the relation

u A (5.48)
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if we have the necessary refractive index values, we can verify the consistency of the
measured /. with the expected value. Experimentally, /. is determined by the angle of the
wedge and the transverse displacement [ of the cell from a fringe minimum to a

maximum through

Ic =1 sina (5.49)

The quartz wedge angle o was independently measured to be 0.0195 radian. The
calculated values of I, for quartz from Eq. (5.48) and refractive index data are in

excellent agreement with the experimental values of I, as shown in Tabie 5-2.
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The refractive indices of the BK-7 glass windows at the pertinent wavelengths

were calculated from the dispersion relation
n2A) = Ag + ApAZ + AQA2 + A3A4 + A0 6 + A58 (5.50)

where A is the wavelength in microns and the dispersion constants Aq through A
obtained from Schott-Glass Technologies!9 are listed in Table 5-3. The DCSHG
susceptibility of BK-7 glass I'; has been measured at 1064 nm by Oudar to be 3.50 x
10-14 esu using a glass wedge with HV electrodes attached and in direct comparison
with dy, of quartz.2 T'; values at 1907 and 1543 nm were obtained through this value in
conjunction with the generalized Miller's rule. Table 5-4 lists the calculated values of
n®, n20, T, and If for BK-7 at the wavelengths 1064, 1543, and 1907 nm.

The measurement of I'; for pure 1,4 dioxane at each of the three fundamental
wavelengths was required for the determination of <y(-2w;w,w,0)> for B-carotene from
concentration dependence studies of solutions and serves to illustrate the basic procedure
for DCSHG experiments in liquids. For example, the 1=ast squares fit to Eq. (5.47) of
the fringes taken for quartz and dioxane at A = 1064 nm yields values for Ag, l? Af;l
and l: The value for A,?' must then be scaled up by 100D where OD is the optical
density of the filters used to reduce the quartz SH intensity on PMT to maintain linearity
of the PMT signal. The measured angle for the DCSHG cell of a = 0.0277 rad is used
in the calculation of lf,‘ From Aldrich Chemical Company, the refractive index of

dioxane at A = 590 nm (Sodium d line) is 1.4215. Our measured value of /. for
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dioxane, 26.67 pm, yields n29(532 nm) — n®(1064 nm) = 0.010. We therefore use n®

= 1.41 and n29 = 1,42 where the lesser precision of the refractive indices of dioxane in
comparison to BK-7 and quartz introduces less than 1% uncertainty into ;. The full set
of parameters used to determine I'; of dioxane at 1064 nm are listed in Table 5-5.
Insertion into Eq. (5.44) yields I'; = 5.71 x 10-14 esu.

The coherence lengths of dioxane at 1907 and 1543 nm aliow us to approximate
the refractive index at these wavelengths as well. At 1543 nm, [, =71.1 um gives An =
n2® . n® = 0.00S; and at 1907 nm, for /. = 105.7 um, An = 0.005. The refractive index
is well-enough approximated for our purposes by 1.41 at 1907, 1543, 10uv4, and 953
nm and 1.42 at 771 and 532 nm. The values of the refractive index at the fundamental
and second harmonic frequencies, the coherence length, and the measured I'; for
dioxane at A = 1064, 1543, and 1907 nm are listed in Table 5-6.

Finally, we can caiculate the molecular susceptibility <y(-2w;®,®,0)> from

2
n2+2

» nw 2)e
—) (%

+2 (ni +
) [ ] <v-20000> (65D
n, +

r, =N (

where N is the number density of molecules and ¢ is the static dielectric constant of the

liquid. The number density is given by

N
N = H’&‘V d (5.52)
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where N, is Avogadro's number, MW the molecular weight and d the density. For
dioxane, with MW = 88.1 gm/mole and d = 1.034 gm/cm3, we obtain N = 7.065 x 1021
cm-3. The static dielectric constant is € = 2.209 at room temperature. The values thus
obtained for <y(-2;®,®,0)> from the measured I'; are also listed in Table 5-6. Since
the optical absorption of dioxane begins near A = 300 nm, the dispersion of
<Y(-2w;w,,0)> is expected to be weak in our experimental wavelength regime. The
weak, montonic increase in the experimental <y(-2®;®,w,0)> with decreased
wavelength is a satisfying indication that our experimental technique is consistent from

wavelength to wavelength and possesses high precision.

Hexatriene

The optical absorption spectrum of liquid HT in the vicinity of the 11B, « 11A,
n-electron transition is shown in Figure 5-6. The 0-0 transition occurs at 274 nm (4.53
eV) and the vertical transition at 243 nm (5.10 eV). In comparison with the vapor phase
absorption spectrum in which both the 0-0 and vertical transitions occur at 251 nm (4.93
eV), it is seen that the primary effect on the spectrum in going from the gaseous to
condensed phase is a red-shift of the low-energy shoulder of the spectrum while the
peak of the oscillator strength (vertical transition) shifts only slightly. Since the second
harmonic wavelengths in the current study are at 953, 771 and 532 nm, all well below
the 1!By « 11Ag absorption, it is expected that the dispersion of <\(-2w;w,w,0)> will

be weak, in analogy to the dioxane results.
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The refractive indices of HT, required for evaluation of I'z, from the Maker fringe
data as well as for determination of <y(-2w;w,®,0)>, were obtained from the value n =
1.56135 at 590 nm from Aldrich in conjunction with the An = n2® - n® values derived
from /, at each fundamental wavelength. The measured values of /. at 1907, 1543 and
1064 nm, 49.5, 29.1 and 7.9 pum, respectively, yield An = 0.010, 0.013, and 0.034.
The consistent set of refractive indices determined by these values to a precision of
10.01 is listed in Table S-7.

I';, at each fundamental wavelength was calculated for neat HT from the Maker
fringe data and the quartz and BK-7 values given in Tables 5-2 and 5-4 in the same
manner as described above for dioxane. The dispersion is fairly weak as expected.
Primarily through the significantly shorter /. of HT compared to dioxane, but also due to
as much as 60% increase in fringe height, I'; of HT at the various wavelengths is 3.5 to
4.2 times larger than that of dioxane. Table 5-7 lists the experimental values for I'; of
HT at each wavelength.

From the HT molecular weight of 80.13 and density d = 0.737 gm/cm-3, we
determine the number density N to be 5.54 x 102! cm*3 in the neat liquid. Using this
value of N, & = 2.276,20 the refractive indices from Table 5-7, and Eq. (5.51), we
obtain <y(-20;w,w,0)> = 8.2, 7.5, and 10.0 x 10-36 esu for 1907, 1543, and 1064 nm,
respectively. These values as well as those of I'; have an associated experimental
uncertainity of +15% determined from the reproducibility of the Maker fringes and

uncertainities in the standard and derived values employed for quartz and BK-7 glass.

Comparison of the measured values for <y(-2m;w,m,0)> with the theoretically predicted
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values as described in Chapter 4 is made in Table 5-8. At each of the three fundamental
wavelengths, experiment and theory are in agreement within the 15% experimental
uncertainity. As discussed in Chapter 4, the theoretical values are for a mixture of 60%
trans and 40% cis conformations of HT and include a small 6-electron contribution to
<Y(-20;0,,0)> determined from bond additivity analysis of alkane chains.

The experimental values of <y(-2w;®,®,0)> are also plotted against the
theoretically predicted dispersion curve in Figure 5-7. Since the first 2 resonance is
predicted to occur for a fundamental wavelength of 502 nm, far shorter than our shortest
experimental wavelength, the dispersion is predicted to result in only a 25% increase in
<Y(-2w;®,w,0)> in the experimental region. Indeed, the difference between the smallest
and largest experimental values is 33%. The 8% larger measured value at 1907 nm
relative to 1543 nm is considered a fluctuation within the experimental uncertainty and is
not evidence for anomalous dispersion. The experimental results demonstrate that the
theoretical method accounting for electron correlation described in Chapters 2 through 4

accurately determines the magnitude and dispersion of <y(-2w;®,®,0)> in HT.

B-Carotene

The optical absorption spectrum of B-carotene in solution with dioxane, shown
in the vicinity of the 11B,, ¢ 11Ag r-clectron transition in Figure 5-8, exhibits the onset
of absorption near 530 nm (2.34 ¢V), the 0-0 transition at 484 nm (2.56 eV), and the

vertical transition at 455 nm (2.73 ¢V). The second harmonic wavelengths 953 and 771
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nm are quite far from the 11B,, excitation, but we expect the second harmonic at 532 nm
to exhibit strong resonant enhancement due to its proximity to the optical absorption.
Under certain conditions, DCSHG measurements in solution at a single
concentration can yield unreliable results due to solute-solute interactions.3 In order to
eliminate this possibility as well as to obtain more precise values of <y(-20;0,w,0)>, we
have measured I'; as function of B-carotene concentration. In the analysis of these
measurements, we have assumed that each molecular species contributes to I'; in a
weighted average of <y(-2m;w,®,0)>, that the local field factors are independent of the
molecular species, and that n and € are independent of concentration in these relatively

dilute solutions of nonpolar solvent and solute. With these approximations, we have

n +2 (n + 2)e
rL-(_T_) (sz )[ +Ze]
m
[ M) <ri(-20;0,0.0) > + Ny <12(-200;0,0,0) > ] (5.53)

where the subscripts 1 and 2 refer to solvent and solute, respectively. Furthermore, in
the limit I<y)(-20;0,0,0)>1 >> I<y;(-20;0,0,0)>, %EF where C is the concentration in

mole / litre; depends only on <Y;(-2w;®,0,0)>. We then have,

p(-20;0,00)> = ( 3 ) ( )
™ + 2
n:, + 2¢ 1 -
@+ z)g] Gorxion) (5.54)
[ ]
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We used stock concentrations of 8 - 9 x 10-3 mole / liter and measured I'; at
several more dilute concentrations for each fundamental wavelength. Inall cases, I'y
was quite linearly dependent on C indicating that the approximations that lead to Eq.
(5.54) are valid. At 1907 and 1543 nm, /. of the solutions decreased by no more than
3% relative to pure dioxane, while at 1064 nm, a 10% decrease was observed. The
larger change in /. at 1064 nm is due to the strong dispersion in the linear susceptibility
of B-carotene as the second harmonic wavelength approaches the 11B,, « 11A,
excitation wavelength. Nevertheless, the decrease in /. at 1064 nm from 26.7 to0 24.2
um results from a change in 12® — n® from 0.010 to 0.011 since the solution is dilute,
and the approximation of constant refractive index remains valid. The SH fringe height,
however, increases by 95% for the stock solution relative to pure solvent at 1064 nm
and by 50% at 1907 and 1543 nm.

The concentration dependences of I'; = x(3)(-21;0,0,0) at A = 1907, 1543, and
1064 nm are shown in Figures 5-9, 5-10, and 5-11, respectively. The measurements at
1543 and 1064 nm were made in solutions of B-carotene in dioxane while at 1907 nm
the solvent was benzene. I, at each concentration was determined as described above.
The refractive indices of benzene, for the 1907 nm measurements, are n® = n2¢ = 1.50.
Table 5-9 lists the slopes %%‘dcwnnined from each concentration dependence and the
values for <y(-2w;0,w,0)> of B-carotene obtained from Eq. (5.54). The closeness of
the measured values at 1907 and 1543 nm in the weak dispersion regime demonstrates

that solvent-solute interactions are relatively weak. As expected based on the optical
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absorption spectrum, <Y(-20;®,®,0)> at 1064 nm is, however, much larger than the

values at the two longer wavelengths.

In Figure 5-12, the experimental value for <y(-2w;,®,0)> of B-carotene at 1907
nm is plotted against the length of the chain along with the theoretical results from
Chapter 4. For B-carotene, the length L is taken as 25.4 A which corresponds to the
N = 22 linear irans-polyene. The B-carotene experim:ntal value is in excellent
agreement with extrapolation of the theoretically predicted power law dependence
<N-2w;0,0,0)> e« L34 . This result taken together with the agreement between
experiment and theory for the magnitude of <W(-2w;®,®,0)> for HT, both validates the
theoretical power law dependence and extends the region of chain lengths over which it

holds beyond the largest length addressable with current computational resources.
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Table 5-1. Vibrational Raman Lines from Hydrogen and Methane Pumped by a

Nd:YAG Laser.
Raman Medium Hy CHa Ha CH,
Pump Wavelength (nm) : 1064 1064 532 5§32
Second Stokes (nm) 2804 954 M
First Stokes (nm) 1907 1543 683 630
First anti-Stokes (nm) 738 812 436 461
Second anti-Stokes (nm) 565 657 369 406
Third anti-Stokes (nm) 457 551 320 363
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Table 5-2. Fundamental and Second Harmonic Refractive Indices, Calculated and

Experimental Coherence Lengths, and Derived d1} Values for Quartz.

A

Xp-
TRy U T ()

A(nm) n® g0 =

di1 (109 esu)

1907 1.5224 1.5358 35616 36.3+0.2
1543 1.5278 1.5390 344120 349102

1064 1.5341 1.5470 206110 21.2+£0.2
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Table 5-3. Constants for Refractive Index Dispersion Relation of BK-7 Glass.

[P)]2=A0+ A1 A2+ A2 A2+ A3 A4 + A4 A0 + A5 A8 (A in um)

Ag : 22718929

Ay : -1.0108077 x 10-2
A7 : 1.0592509 x 10-2
A3 : 20816965 x 104
A4 : -7.6472538 x 106

As : 4.9240991 x 10-7
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Table 5-4. Fundamental and Second Harmonic Refractive Indices, Coherence Lengths,

and I'g for BK-7 Glass.

A (nm) n® n2w lc (um) [ (1014 esu)
1907 1.4960 1.5082 39.08 3.32
1543 1.5008 1.5114 36.39 3.39
1064 1.5067 1.5191 21.37 3.50
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Table 5-5. Parameters for [ of Dioxane at A = 1064 nm.

dy) Quartz 1.20 x 109 esu
lc Quartz : 21.4 um

n® Quartz : 1.5341

n20 Quartz 1.5470

I'g BK-7 : 3.50 x 10-14 esu
I BK-7 : 21.37 um

n® BK-7 : 1.5067

n20 BK-7 : 1.5191

n® Dioxane : 1.41

n20 Dioxane : 1.42

lc Dioxane 26.7 ym

Eg : 5.10kV/0.16 cm
Ap Quartz 4.41 x 104

Ap Dioxane 0.758
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Table 5-6. Fundamental and Second Harmonic Refractive Indices, Coherence Length,

Iz, and <¥(-20;0,0,0)> for Dioxane.

A (nm) n® n2® [ (um)
1907 1.41 1.41 105.7
1543 1.41 1.42 71.1
1064 1.41 1.42 26.7

I (10-14 esu)

<Y(-2w;0,,0)> (10-36 esu)

4.50
493

5N
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Table 5-7. Fundamental and Second Harmonic Refractive Indices, Coherence Length,

and I'; for HT.
A (nm) nw n2o [c (um) [ (10-14 esu)
1907 1.48 1.49 49.6 17.7
1543 1.48 1.50 26.3 16.1
1064 1.49 1.51 7.9 22.0
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Table 5-8. Experimental and Theoretical Values of <y(-2;w,,0)> for HT.

A (nm) Experiment (10-36 esu) Theory (10-36 esu)
1907 82+1.2 7.1
1543 7511 7.5
1064 100t 1.5 8.9
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Table 5-9. oIy /9C and <Y(-2w;w,w,0)> for B-Carotene.

A (nm) %I;.L( 10-12 esu/M) <Y(-20;w,w,0)> (10-36 esu)
1907 1.50 £ 0.15 616 £ 62
1543 1.16 £0.07 592 + 36
1064 3.09+0.25 1580+ 130
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Figure 5-1. Schematic illustration of the DCSHG cell configuration.The top and bottom
steel HV electrodes extend entirely over the liquid compartment of width / and partially
over the glass windows. In the actual cell, the windows form a wedge such that the
pathlength / varies across the transverse dimension.

170




- = = == = virtual level

()] o — WR

T | f >

IR

Stokes

- = = = = = vyirtual level

'O W + MR

li>
.T.
AR

1 | f >

anti-Stokes

Figure 5-2. Schematic illustrations of the Stokes and anti-Stokes Raman processes that

are used for frequency conversion of the Nd:YAG laser output.
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Figure 5-3. Experimental layout of the dc-induced second harmonic generation
(DCSHG) experiment.
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Figure 5-4. The DCSHG liquid sample cell. The BK-7 glass windows form a wedge
angle a = 0.0227 rad with a mean pathlength of 1.0 mm. The HV electrodes are

separated by 1.6 mm.
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Figure 5-5. Sample DCSHG Maker fringes obtained for (a) quartz and (b) 1.4-dioxane
at a fundamental wavelength A = 1543 nm. The quartz second harmonic intensity is

attenuated by an optcal density of 3.57.

174




rrryrr T rrrrT

Absorption

S 1 N I |
200 250 300 350

Wavelength (nm)

Figure 5-6. The linear absorption spectrum of hexatriene (HT) in the neat liquid in the
region of the 1By « 11Aq n-electron transition.
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Figure 5-7. The experimentally determined values of <y(-2w;w,w,0)> for HT at A =
1907, 1543, and 1064 nm and the theoretical dispersion curve.
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Figure 5-8. The linear absorption spectrum of -carotene in solution with 1,4-dioxane
in the region of the 1!B, ¢ 11Ag n-¢lectron transition. The molecular structure of
B-carotene is also shown.
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7.5

XB3)(-20;0,»,0) (10-14 esu)

00 20 40 60 80 100
CONCENTRATION (10-3 mole/liter)

Figure 5-9. Concentration dependence of x(3)(-2w:w,w,0) for B-carotene in solution
with benzene at A = 1907 nm.
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Figure 5-10. Concentration dependence of x(3)(-20;1,0,0) for B-carotene in soiution
with dioxane at A = 1543 nm.
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Figure 5-11. Concentration dependence of x(3)(-2w;w,w,0) for B-carotene in solution
with dioxane at A = 1064 nm.
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Figure 5-12. The experimental value of <y(-2w;®,w,0)> for B-carotene at A = 1907 nm
(Ao = 0.65 eV) (solid square) compared with the theoretical values for the N =4 to 16
trans polyenes (open squares) as a function of chain length L. The B-carotene experi-
mental value confirms the theoretical power law dependence <y(-20;w,®,0)> o< L34
represented by the solid line.
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Chapter 6

DISPERSION OF <y(-30;0,0,0)> IN HEXATRIENE AND B-CAROTENE

A. Introduction

The technique of third harmonic generation (THG) is ideally suited to the
measurement of third order optical nonlinearities of electronic origin. In contrast to
DCSHG, which possesses potential contributions both from the second order
susceptibility B;j(-2w;0,w) and from the vibrationally-derived third order hyper-Raman
susceptibility &;jx o as described in the previous chapter, THG involves only optical
input and output frequencies that oscillate too rapidly (> 1014 Hz) for molecular
orientations, vibrations, or rotations to follow. THG possesses the additional advantage
over degenerate four-wave mixing (DFWM) measurements, governed by
Yijki(-w;w,-0,0), for example, that it involves detection of a frequency different than
that of the input light. In DFWM experiments, one detects the scattered signal of an
incident probe beam from a refractive-index grating formed in the medium by two other
incident beams. In addition to grating formation in the electronic polarization of the
r1edium, thermal, acoustic, and population gratings may also form and scatter the
incident beam. While deconvolution of the various mechanisms is a difficult problem in

DFWM, it is clear that thermal, acoustic and population variations cannot lead to the

creation of a new frequency and thus cannot contribute to THG.
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An additional motivation for THG dispersion measurements in HT and
B-carotene is to make careful comparison between DCSHG and THG results. In the
limit @ - 0, the molecular susceptbilities ¥;jA-2(;00,0,0) and ;j(-30;0,0,w) are
related by a simple multiplicative factor. From the convention defined in Chapter 2, the

relationship is
Yijri(-20;0,0.0) = 6 V(- 30,0,0,0) . (6.1)

For optical frequencies that lie below the first 3w THG resonance, dispersion increases
the magnitude of each Yjj,(-w4;®},0;,03) above its @ = 0 limit. In this frequency
region, the dispersion of ¥;j(-30;w,0,w) is larger than that of ¥;y(-20;w,0.0), and
therefore, for a given w, the multiplicative factor between ¥ (-2w;0,w,0) and
Yije(-30;0,0,w) is less than 6 and monotonically decreases with increased . Thus,
although comparisons between measured values of ¥;;(-2w;0,0,0) and
Yijki(-30,0,0,0) have been made previonsly, they have been hampered by the
uncertainty in the degree of dispersion. In the present work, since the experimental and
theoretical values of <y(-2w;w,w,0)> have been shown to be in excellent agreement, a
similar comparison between theory and experiment for <y(-3®;®,w,0)> allows us to
also address the relationship between <y(-20;®,0,0)> and <¥(-30;®,w,w)> as a
function of dispersion.

The derivation of the TH intensity in the THG wedge Maker fringe configuration

and the implementation of the THG experiment are very similar to what was described in
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the previous chapter for the DCSHG experiments. In fact, the THG and DCSHG
experiments were performed on the same optical table, used the same laser source, and
had many optical components in common. The intentional versatility of the experimental
design allowed us to switch between the THG and DCSHG arrangements with only
slightly more effort than is required to change the fundamental wavelength within either

of the two experimental configurations. Because of the similarity of THG o DCSHG,
the derivation of the TH intensity and the description of experimental design in this

chapter will primarily focus only on the aspects that are different than those described in

the previous chapter.

B. Derivation of Third Harmonic Intensity in the THG Configuration

The following derivation closely follows the one given in Section 5.B. The
macroscopic polarization induced in a medium at a frequency 3w by three applied optical
electric fields at frequency @ with amplitudes E.j" E‘: and E‘l" in the j, k and / directions
is given by

= vI 30
Pf“’ = X 30i0.00) E;" E} E} (6.2)

where xgk)l(dw;w.m,m) is the macroscopic THG susceptibility tensor. In the case
where the polarizations of all fields are parallel, the corresponding nonlinear wave
equation that determines the third harmonic electric field E3¢Xz) is given by
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36mwe 3)

2E3w 3 -
oL E kfz B3 = -—— i n3eew.w) EXP e* (6.3)

522 " @ Tt

where a3, is the absorption coefficient at the harmonic frequency, £9(2) is the amplitude

of the fundamental field and decreases due to 0y, kr= (30 n3y)/c and kp = 3w ny)/c

are the wave vectors of the free and bound harmonic waves, respectively, and the z-axis

is the direction of wave propagation. Eq. (6.3) has the solution

E3o(z) = Epe 02 o*f 4 E () (6.4)

where the bound wave amplitude is given by

4
Ep(2) = - —— A (30000 [E@B . (6.5)
n -n

Jo 0]

For the general case of a boundary at z = z; between two media, we find for the free

wave in the second medium
ED = Ty, B &% + (T E} () - T ER () % (6.6)

where @ = (ks + i3/2)20, Pp = (kp ‘+i30.(,,/2)20, and

2
Ho="5"0

Mo ¥ Mg
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Since all materials have a nonzero x(l3l)l 1(-3w;0,0,0), in our THG configuration,

air, glass, and liquid sample all generate TH light. This is in contrast to the DCSHG
experiment in which SH light is only generated in regions where the static electric field is

nonzero. We can, however, simplify the THG analysis and mimic the DCSHG

conditions such that the electric field amplitudes at the air-glass interfaces are less than
one-tenth of the amplitudes at the glass-liquid interfaces. Thus, since for air /; ~ 50 mm
and ((3) ~ 10-18 esu and for glass /; ~ 20 um and x(3) ~ 10-14 esu, the bound wave due

to air is less than 0.001 of the bound waves generated in the glass and liquid and can be

neglected. More detail will be provided in section 6.C with the description of the THG
sample cell; in the following, we neglect the air-glass interfaces and consider only the
glass-liquid interraces for generation of TH light.

By solvuig for the free wave in the liquid E;‘ after the z = 0 glass-liquid

boundary, we obtain
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EfL =T\E] - T,E (6.8)
where
~4r
b= oo o Bemew Eer)]
(ny)s=(n)
~-4r 1 @2
, xfl-&n;m,m,w) (E® t(m) tﬁn)):" (6.9)

(i) - (nc?

with £ = 2/(14n0) and 2 = 205/ (xS + %) . Following the z = liquid glass

boundary, the free wave in the rear window of the sample cell, Ef.; , is given by

= T E % + T By - To a2 9 EJ) €™ (6.10)

®

where L
_ 2n3 °

3o G L

n3m +n 3o

TG = ———r (6.11)




L : ;
,g) =2n_/ (nl‘; +ni). Q= (ks + ia3w/2), @ = (kp +i30,y2)l. The total third

harmonic electric field that leaves the THG cell is then found to be

Elo = Tg;m (TcEg -7 Eﬁ) (elikf @3N _ (likp -Cog/Dlly (6.12)

where TG = 2n /(1+ "Sm) after we propagate EG through the final glass-air

boundary and make approximations on the refractive index factors similar to those made

for Eq. (5.37).
The third harmonic intensity /3@ as a function of the path length / through the

liquid sample is given by
Bo() = g_; (1S, @G ES - T, B & P02 + Dl
{cosh[( Mo _ %0 —=2) 1] - cosltke—kp) 1] } 613
which reduces for the conditions a, = a3, =0 to
po @ £ 115, ToE§ - TLEIsin? (7 (6.14)

where lf; = MS(n;' o n';). If we define A, as the mean amplitude of the Maker fringes,

then for measurements made on two different liquids, we find the ratio of A, is
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Fx( ) tx(L) 2 )
[r6o = - T ]
AL "3m+”w n3m+nm
m
- 6.15
ax 1D F D (6.15)
[Toro—s - Th 7— T
’l3m + Ilm ’l3m + nm

(2)

) ,and Tgg aret

where R refers to the reference liquid and 1(2) TgL, t( and T

evaluated for the sample and reference liquids, respectively. Finally, solving for 1(3)

Eq. (6.15), we get

nL + nL IG x(s)
(3) _

XL —'(T_[GL'G_'_G
£y () ny +n,

AL n IGx(3) lR x(3)
(5t - Ta —r @P¥l1. 610
A"' 3co + "m 3m * "m

Thus, 1(3)( 3m;0,0,0) can be obtained from the refractive indices of the glass, reference
liquid, and sample liquid, x(3) and IG of the glass windows, xg) of the reference liquid,

and AL, AR, £, and ¥ determined from the Maker fringe analysis.

C. Implementation of THG Experiment

The optical layout for THG is nearly identical to the one for DCSHG illustrated

in Figure 5-3, the only major difference being that THG does not require an HV source.
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The Quanta-Ray DCR-1 Nd:YAG 8 ns laser was used as the light source, and the THG

fundamental wavelengths were the Nd:YAG fundamental and Raman lines generated in
hydrogen and methane gas cells. In addition to the 1064, 1543 and 1907 nm
wavelengths employed in the DCSHG experiments, for the THG dispersion of
B-carotene we also used the 2148 nm first vibrational-rotational Stokes line generated in
hydrogen. The 2148 nm line, which results from subtracting one vibrational quantum at
4155 cm-1 and one rotational quantum at 587 cm-1 from the Nd:YAG fundamental
output of 9398.5 cm-1, was obtained with circularly polarized light incident on the
Raman cell in order to efficiently couple the beam to the hydrogen rotational modes.
Before it was split into the sample and reference arms of the layout, the Raman output
was converted back to vertical linear polarization with a Glan-Taylor polarizer. We used
the 2148 nm line in the B-carotene dispersion measurements in lieu of 1064 nm since the
third harmonic of 1064 nm, 355 nm, is strongly absorbed within the 11B, « 11A4
absorption band.

As opposed to the DCSHG configuration in which the laser flashlamp trigger
signal is used to trigger the HV pulse, is delayed, and then triggers the Q-switch, since
no HV pulse is needed in THG, the laser internal delay and firing electronics were
employed. It was still necessary, of course, to gate the ADC and synchronize the data
collection electronics with the gate photodiode. One other minor difference in the two
experiments is in the use of the reference arm signal. The small intensity split off into

the reference arm was not sufficient to generate a substantial third harmenic signal, and,

therefore, the quartz second harmonic signal was again employed for referencing. Since
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the SH signal is proportional to the square of the fundamental intensity and the TH
signal, the cube, the reference signal was raised to the 3/2 power for each laser pulse
before the sample to reference signal ratio was taken. This produced a very stable THG
signal. The design of the THG sample cell is the final difference in the THG and
DCSHG experiments. See Section 5.C for details on the laser source, optical layout,

PMTs, data collection electronics, and materials handling that are all applicable to THG

as well as DCSHG.

THG Sample Cell

Because all media have nonzero x&(-:&m;m,co,m) regardless of their symmetry,
the environmental air surrounding a THG cell can make a measurable contribution to the
third harmonic intensity. Two independent studies employing conventional THG cell
configurations determined 13;‘; / Iif:’ =4 where 13V‘:c and li‘;’ are the peak third harmonic
intensities observed for glass in vacuum and at 1 atmosphere, respectively.!2 In order
to eliminate the contributions of air to the TH signal and to simplify and make more
reliable the analysis, we adopted the cell design developed by Kajzar and Messier.3 The
design takes advantage of the focusing conditions employed in THG by moving the air-
glass boundaries to positions where the fundamental intensity is reduced to less than

10% of its value at the focus in the center of the cell. The corresponding contribution of
air to the TH signal through x(3)(-3m;m,‘co,m) is therefore reduced by more than 103
relative to the liquid and glass contributions. This is achieved by making the BK-7 glass
windows 5.0 cm long and focusing with an f = 30 cm lens.
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The THG sample cell is shown schematically in Figure 6-1. Each of the 1.0 x
2.0 x 5.0 cm BK-7 glass windows is polished to flatter than A/4 and the ends are made
parallel to within § seconds. The windows are leakproof sealed to the aluminum holder
with RTV silicone rubber, and threaded screw holes through the aluminum allow fine
adjustment of the window positions. The cell can be disassembled for cleaning or
replacement of the windows. During the course of the present experiments, the
windows were adjusted to form a wedge of angle o = 0.0125 radian with mean

pathlength / = 0.44 mm.

D. Experimental Results and Analysis

Glass and Pure Solvents

To measure 1(131)1 1(-30;0,0,0) of a given liquid, one requires the values of x(3)
and /;, of the BK-7 glass windows and a reference liquid at the desired frequency. After
Maker fringe analysis of both sample and reference and determination of the fundamental
and harmonic refractive indices, ¥”(-3;00,0,0) is obtained through Eq. (6.16). For
glass, we use a value of x(l3l)"(-3w;m,m,m) =0.58 x 10-4 esuat A =1907 nmas a
standard and employ Miller's rule to obtain values at 2148, 1543, and 1064 nm. The
origin of this standard value for BK-7 glass will be described at the end of the chapter.
The refractive indices at each fundamental and harmonic wavelength obtained through
the BK-7 dispersion relation of Eq. (5.50) fix the value x(g) (A) of BK-7 glass at a given
fundamental wavelength through Miller's rule
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o o P xS a3
XG Q) =X (1907 nm) o m (6.17)
[xg (1907 nm)}3 x'-’(636 nm)
and the coherence length /.. through
A . (6.18)

€7 630~ o)

Table 6-1 lists the resultant values for xg)(-3m;m,m,m), Ic, n® and n3@ for each of the
four fundamental wavelengths at which we performed THG measurements.

Two surveys of (3)(-3w;w,w,0) for organic liquids exist in the literature.
Meredith, Buchalter, and Hanzlik performed THG measurements at 1907 nm with a
wedge cell configuration maintained in vacuum that is valid only in the instance of
negligible absorption at the fundamental and harmonic wavelengths.4 Kajzar and
Messier developed an analysis of the effects of air on Maker fringes and employed it to
measure several organic liquids at fundamental wavelengths of 1907 and 1064 nm.2
The results of Kajzar and Messier are in agreement with those of Meredith, Buchalter,
and Hanzlik to within 10% for all but one solvent. Kajzar and Messier observed
reasonable agreement, as well, in separate measurements employing the cell
configuration we use that eliminates the contributions of air.3 In the present
experiments, we use the measurements oxf Kajzar and Messier for acetone at 1907 and

1064 nm as our liquid reference values. The reported values of x(3)(-3;w,0,w) for

acetone are 0.513 and 0.586 x 10-14 esu at 1907 and 1064 nm, respectively.2 We point

195




out here that the values above are different than those reported in Ref. 2. due to a factor
of 4 difference in conventions (see Appendix A) and a factor of 2.0 difference in the
reference value for the glass windows that will be explained later in the chapter.

At 1064 nm, we measured x(3)(-3w;w,w,0) of several liquids for comparison
with Kajzar and Messier. The values we obtained for %(3)(-3w;w,w,0), /;, and
<Y(-3w;0,w,0)> of methanol, dimethylformamide, water, and cyclohexane are
compared to the results of Ref. 2 in Table 6-2. In the case of the discrepancy for
cyclohexane. we point out the /. and refractive index values of Ref. 2 for cyclohexane
are in good agreement with our results for cyclohexanone and suggest that the
measurements in Ref. 2 were actually performed on cyclohexanone rather than
cyclohexane.

Since our B-carotene measurements were performed in dioxane solutions, we

chose to use pure dioxane as the reference liquid in each data-taking run where the value

for x3)(-3w;w,m,w) of dioxane at each wavelength was determined by a separate
comparison of dioxane Maker fringes with acetone. For ¥(3)(-3®;w,0,w) of acetone at
1543 nm, we used the value 0.534 x 10-14 esu obtained from interpolation of the
measured values at 1907 and 1064 nm. For dioxane at 2148 nm, since no value is
available for acetone at this wavelength, we assumed that dioxane has the same 2%
dispersion determined for BK-7 glass, and our relative uncertainty in this value is
therefore less than 2%. We list in Table 6-3 the measured values of x(3)(-3w;w,0,0),

I, and <(-3;m,w,0)> for dioxane together with the values of the refractive index at




the fundamental and harmonic wavelengths. In analogy with Eq. (5.51),

<y(-3w;m,0,w)> was obtained through

n, + 2 3 nim + 2
1 -300,00) = N ( —3-—) ( ——3——) <-30:0,00)>  (6.19)

where N is the molecular number density and the local field factors are taken as isotropic

Lorentz-Lorenz terms.

Hexatriene

1 (3)(-3w;w,0,w) and, correspondingly, <y(-3w;w,0,w)> were measured for HT
at 1907, 1543, and 1064 nm. In addition to the x3)X(-3w;w0,®,0), /¢, n®, and n3® values
for BK-7 glass and dioxane listed in Tables 6-1 and 6-3, respectively, evaluation of
¥ 3X-3w;w,0,w) for HT requires the values for n® and n3@ of HT. From the measured
coherence lengths /- of 11.8, 6.2, and 1.18 um at 1907, 1543, and 1064 nm,
respectively, we obtain for An = n3® — n® the values 0.027, 0.041 and 0.16 from Eq.
(6.18). The extremely large dispersion in the HT refractive index between 1064 and
355 nm results from the proximity of 355 nm to the strong 11B,, « 11A; n-¢lectron
transition that begins at 290 nm. The values for n® and n3® that are consistently
determined from these results, the refractive index at 590 nm obtained from Aldrich, and
the /¢'s measured by THG are listed in Table 6-4.

The values obtained for x3)(-3w;w,w,w) of HT at each wavelength from the

Maker fringe analysis through Eq. (6.16) are also listed in Table 6-4. As in DCSHG,
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the values for HT are several times larger than those for dioxane, but, importantly, at
1064 nm x(3)(-3w;w,w,w) of HT increases to 6.5 times larger than dioxane. As in the
linear refractive index, the nearness of the third harmonic wavelength to the HT n-
electron absorption produces a large dispersion in %(3)(-3w;w0,0,0).

We compare in Table 6-5 the experimental values of <y(-3w;w,w,w)> for HT,
obtained from Eq. (6.19) with the molecular number density N = 5.54 x 102! cm-3 and
the refractive index values given in Table 6-4, with the theoretical values from Chapter
4. The theoretical values include a smail o-electron contribution to <Y(-3®;w,®,w)> in
addition to the directly calculated x-electron contribution and consider the liquid to
consist of 60% trans conformation and 40% cis. We observe good agreement between
experiment and theory for the magnitude of <y(-3w;w,®,w)>. Furthermore, the larger
dispersion theoretically predicted for THG compared to DCSHG is clearly observed.
The degree of dispersion predicted by theory is quantified by the ratio of
<Y(-3w;m,w,w)> calculated at fundamental wavelength 1064 nm to <Y(-3w;®,m,w)> at

1907 nm which has a value of 1.77. The experimentally determined ratio of
<Y(-3w;0,m,0)> at these two wavelengths is 1.87 in good agreement with the theoretical
ratio. For comparison, the theoretically predicted ratio for the less dispersive DCSHG
process at these wavelengths is 1.25. The experimental values for <y(-3w;®,w,w)> are
also plotted with the theoretical dispersion curve in Figure 6-2 for visual comparison of
experiment and theory.

In the case of the Maker fringes t:or HT at A = 1064 nm, since the coherence

length /.. is extremely short (1.18 um) due to the large dispersion in the refractive index
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between the fundamental and harmonic wavelengths, an interesting effect occurs due to
the finite width of the laser beam at the sample. The Maker fringe technique relies on the
fact that the output harmonic intensity from the sample cell is a periodic function of the
pathlength of the beam through the liquid. In the wedge configuration we employ, a
beam with a finite waist w necessarily samples an interval of pathlength rather than one
single, well-defined pathlength. A consequence of finite beam waist, then, is that if the
interval of pathlength covered is sufficiently large, although the beam may be centered
on the pathlength that yields zero harmonic output intensity, the edges of the beam
traverse pathlengths that yield non-zero harmonic intensity. The net effect of finite beam
waist is an increase in the minimum of the Maker fringe from zero to a finite magnitude.
The observed fringes for HT, shown in Figure 6-3(a), have a minimum value that is
35% of the peak value. In contrast, the fringes for acetone of Figure 6-3(b)
demonstrate a perfect zero for the minimum. The measured /. of acetone is 6.6 um, 5.6
times larger than /. of HT. For clarity, the horizontal scale of Figure 6-3(a) was
expanded by a factor of 3 compared to the scale of 6-3(b).

To calculate the effect of finite beam width on the fringe shape, we approximate
the beam profile by a constant intensity disc of diameter w. (The actual output of the
Quanta-Ray DCR-1 resonator cavity is a multimode “"donut" profile that consists of a
high intensity annulus surrounding the lower intensity central region.) For a liquid
sample wedge of angle @, the beam covers a pathlength interval Al = aw. From Eq.

(6.14), we note that, in the absence of absorption, the pathlength dependent part of the
harmonic intensity is given by
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D = sin2 (1’,‘71;) (6.20)

If we define d = n(Af) / 2l , then the normalized fringe height when the beam is

centered on a path [’ with c = =’/ 2[) is

1 j‘*"” .
I(c)=3 e sin? x dx (6.21)

The normalization of Eq. (6.21) is chosen such that, when d is small enough that (/) is

constant over the beam width, we have /(c) = ). The minimum value of the fringe is

then given by
Iin = ﬁr; sin2x dr = 5 -S4 (6.22)

and the maximum value by

pi2 + di2
1 I sin? x dx 1, sind (6.23)

Im=a

"
~
4

pl2-dn

where it is clear that the reduction in the fringe peak amplitude due to finite beam width
is equal to the increase in the minimum. The value /pyp//ar = 0.35 observed for HT in
Figure 6-3(a) corresponds to d = 1.94 rad or Alfl. = 1.24. Sincel;=1.18 ymanda =

0.0125 rad, we therefore expect to observe this ratio of /,y// g, for a beam diameter w
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= 106 um. This is quite reasonable since our focusing conditions have been directly
measured to yield a typical bearn diameter of 100-400 um at the sample. In Table 6-5

are listed the ratios /,;,/l yiq, calculated from Eqs. (6.22) and (6.23) for other values of
Al/l.. It can be seen from the table that for Al/l,. five times smaller than for HT, the
minimum is only 1% of the maximum peak height. This explains why the other
measured solvents, all possessing /.'s many times greater than that of HT, do not exhibit

nonzero minima.

B-Carotene

We measured the concentration dependence of %(3)(-3w;®,m,w) for B-carotene
solutions in dioxane at fundamental wavelengths of 2148, 1907, and 1543 nm. THG
measurements at A = 1064 nm were not possible since the solution strongly absorbs the
third harmonic at 355 nm. As was found in the DCSHG measurements, /. was weakly

dependent on concentration. For example, at 1907 nm, /. = 32.7 um for pure dioxane

and 31.8 um for the stock solution concentration 8.15 x 10-3 mole/litre. At each
concentration, therefore, x(3)(-3w;w,w,w) was calculated with the directly measured /. at
that concentration, but with the refractive indices of pure dioxane. From the
concentration dependence of x(3)(-3w;w.w,w), we determined <Y(-3w;®,0,w)> of

B-carotene according to

3 N3, 3 1 N O)(-3w;0,0,00)
<Y(-30,0,0,0)> = (6.24)
X (,,i + 2) (,,gm + 2) (6.02 x 1020) dC
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where C is the concentration in mole/litre and the same valid approximations are made

that led to Eq. (5.54).

The concentration dependences of x(3)(-3w;w,w,w) at A = 2148, 1907, and 1543
nm are illustrated in Figures 6-4, 6-5, and 6-6, respectively. In each case,
x(3)(-30);m,(o,m) shows good linearity with concentration. Table 6-6 lists
I 3)(-3w;w,m,0) / 3C determined from each concentration dependence and the
correspending values obtained for <y(-3w;w,w,w)>. The strong near-resonant
enhancement at 1543 nm results from the proximity of the third harmonic wavelength |
514 nm to the 11B, « 1!Ag absorption band that peaks at 455 nm.

In Figure 6-7, the experimental value for <y(-3w;m,m,w)> of B-carotene at 1907
nm is plotted against the length of the chain along with the theoretical results from
Chapter 4. As in the case of DCSHG, the THG experimental value for <y(-3w;®,0,w)>
of B-carotene is in agreement with the extrapolation of the theoretical power law
dependence <Y(-3w;w,w,w)> = L3-5. This serves as a separate experimental
confirmation that the theoretically predicted power law dependence of <y(-3w;®,w,w)>
on chain length is correct and that it is valid for chains at least as long as 25 A or ¥ = 22.

The B-carotene molecular structure is longer than we can accurately calculate, and
we therefore are unable to make the same comparison between experiment and theory for
the dispersion of <y(-3w;w,m,w)> that we made for HT. We have, however, based on

the theoretical results for shorter chains ?rmnwd in Chapters 3 and 4, developed a
model that adequately describes the experimentally observed dispersion of

<N(-3;0,0,0)> and <Y(-20;0,,0)>. We pointed out in Chapter 3 that for very short

202




chains, N = 4, 6, and 8, the nonresonant <Y(-W4;®},(,,w3)> is determined almost
exclusively by three states. These three key states are the 1!A, ground state, the 11B,,
lowest-lying one-photon state, and a high-lying lAg two-photon state that strongly
couples to 1!B,. For increased chain length, we found that there were larger numbers
of both !B, and 1A states that made significant contributions to <Y(-4;®1,a%,@3)>.
The first strong resonance that occurs both in <y(-3w;®,w,w)> and in <Y(-2w;0,0,0)>,
however, in all cases results from the llBu state. In <y(-30;w,w,w)>, the 3w resonance
of 11B,, is the lowest-frequency electronic resonance that can occur; in <Y(-2w;w,0,0)>,

the first resonance that occurs, the 2® resonance of the 21Ag state, is weak because of

is therefore dominated by the 2w resonance of the 11B,, state.

We have found that the experimental dispersions are well-described by a three-
level model with one free parameter that fixes the magnitude of the nonresonant
<Y(-W4;®1,Wp,03)>. The expression for <y(-3w;w,w,w)> for a system that has only a
ground state (labeled 0), a one-photon state (1), and a two-photon state (2) is

Yreox(-30;0,0,0) = i- { x(z)l xiz
an3
{ [ (@10 - 30)(ang - 20)(@10 - @) "1+ [ (@10 + w)(@20 — 200) (@10 - ®) ]!
+ [ (@10 + @)(w20 + 20)(@10 - @) |1+ (@10 + ©)(en0 + 20) (@10 + 3w) 1 }
- x3, { [ (@10 - 30)(@10 - 0)}@10 - ®) ]! + [ (010 - @)(@10 + @) @10~ ) ]!

+ [ (@10 + 30)(@10 + W)@10 + ®) ' + [ (@10 + ©)@10 - ©)} @10+ ) I } }

(6.25)
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where xg; and x5 are the x-components of the transition moments between states 0 and

1 and states 1 and 2, respectively, anc #w;q and fiayg are the excitation energies of
states 1 and 2, respectively. In this three-level model, state 1 corresponds to the 11B,
state of B-carotene. We therefore take #iwyg = 2.71 ¢V from the peak of the B-carotene
absorption spectrum and xg; = 15.0 D from extrapolation of the calculated Mo Ag.llBu
values to N = 22. For #iwy, we use 4.6 eV by extrapolation of the dominant high-lying
two-photon state energies of Chapter 3, though this value is not critical since 7w, and
x| together effectively fix the magnitude of the nonresonant <y(-3w,w,w,w)>. Choice
of a smaller value for 7wy could be compensated by a smaller value for xy, as well.
We have taken the representative values AI'jo = #l'3g = 0.2 ¢V based on the width of the
11B, ¢ 11A; peak in the experimental linear absorption spectrum.

The remaining value to be determined in the three-level model is x;5. State 2 acts
as a representative state here, taking the role of the several other two-photon and one-
photon states that actually determine <y(-3w;®,0,0)>. We thus consider x;; to be a free
parameter that is used to fit the experimental dispersion data by fixing the correct
magnitude of the low frequency <y(-3w;w,0,w)>. The best fit to the experimental data
was found for x;7 = 21.8 D and is illustrated in Figure 6-8. The fit of the three-level
model dispersion curve to the data is quite satisfactory considering the simplicity of the
model. The observed dispersion is clearly due predominantly to the 3 resonance of the

11B, state.

.

For DCSHG, the expression for the three-level model is
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Yeoex(-20;0,0,0) = _e‘; { xgl x%z

3
{ (10— Zw)iz)zo - 2a)(@10 - ®) I’ + [ (@10 + 0)(ar20 - 2w)(w10 ~ @) ]!
+[ (10 + @)(a0 + 20)(@;0 - 0) ]! + [ (w19 + w)(ano + 2w)(@w10 + 2w) ]!
+ [ (@10 - 20)(an0 - W) (@10 - @) ]! +[ (w10 + ©) (w20 - W) (w10~ @) ]!
+[ (010 + w)(@20 + W) (@10 - ®) I'! + [ (w10 + @)(@20 + W)(@10 + 2w) |
+[ (@10 - 2w)(ar0 - W) (@10 - 0) ]! + [ (w10 + W)(w20 - w)(w10 - 0) )-!
+[ (010 - 0)(ex20 + w)(@10 - ®) |1 + [ (w10 - 0) (a0 + W) (@10 +2w) |1 }
~ x5, { [ (@10 - 20)(@10 - 0)(@10 - ©) | +[ (@10~ 0)(@10 + @)(®10 - ®) !
+ [ (w10 + 20)(@10 + 0) (10 + @) }'1 + [ (w10 + 0) (w10 ~ W) (@10 + @) -]
+ [ (10 - 20)(@10 - ®)(010 - ©) ]! +[ (010 - @)(@10 + 0)(@10 - ) ]
+ [ (010 + 20)(@10 + @)(@10 + @) ]! + [ (@10 + @)(@10 - 0)(@10 + ®) I
+ [ (@10 - 20)(@10 - ®) (@10 - 0) I +[ (w10 - w)(@10 + @)(@i0 - 0) I
+[ (@10 + 20)®10 + @10+ 0) I'! + [ (@10 + @)@i0 - W)@io+0) 1 } }
(6.26)
We again set xg; = 15.0 D, Ay = 2.71 eV, g = 4.6 eV, and Al = Al = 0.2 eV
as described above. Figure 6-9 shows the calculated dispersion curve for the DCSHG
three-level model with xy5 = 23.7 D. Again, the essential features of the dispersion are
well-described by the three-level model. The slight discrepancy in the values for xy; in
the THG and DCSHG three-level models is reasonable considering the level of
approximation. We point out, however, ‘that an accurate calculation of dispersion

requires determination of the complete n-electron excited state manifold, especially for
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long chains, even though the three-level model successfully demonstrates that the low-

frequency dispersion is dominated by the first multi-photon resonance of the 1!B,, state.
E. Reference Standard for x(3)(-3w;0,0,w)

The currently accepted reference values for THG measurements of liquids and

thin films are xg)(~3(o;m,(o,m) = 1.17 x 10-14 esu for BK-7 glass and x§3)(~3(o;w,m,m)

=0.70 x 10-14 esu for fused silica at A = 1907 nm. These values, which have been
converted into our convention for ¥G)(-3w;w,,w) through division by a factor of 4 (see

Appendix A), were determined by Buchalter and Meredith by comparison to

xg)(-?s(o;m,o),m) =0.95 x 10-14 esu for a-quartz.5 The quartz xg) (-3w;0,0,0) value

is derived from an analysis of interference fringes between 3w light due to

xg)(- 30;0,0,0) and 3w light generated by the cascading of xg)(-Zm;m,m) and
x(Qz)(-3m;2m,co).6 It was pointed out that the silica and glass 3(3)(-3w;0,0,w) values

were not in agreement with measurements by other third order processes, and this was

attributed as most likely due to the incompatibility of the multi-mode laser source in the
quartz experiment with the experimental analysis that assumed a single-mode source.’
Nonetheless, these values were taken as the standard reference values for THG
measurements.

Until the present experiments, no comparisons have been made between theory
and experimental values of <')(-3w;co,o),;n)> obtained using the above reference

standards. As a result, only relative experimental values of <y(-3w;®,w,w)> were
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meaningful. In the course of our measurements, it becamne clear that the experimental
values for <y(-3w;w,w,w)> of HT that we derived based on Buchalter and Meredith's
value of xg) (-3w;w,0,w) were in conflict with our theoretical results and with our
experimental values for <y(-2w;n,w,0)>. A survey of the literature yielded six
independent measurements of ¥(3)(-w4;w1,wy,w3) for BK-7 glass via four separate
third order processes, namely DCSHG,’-9 non-degenerate three-wave mixing
(NDTWM), 10 time-resolved interferometry (TRI),!! and ellipse rotation (ER),!2 that
give consistent values to better than 10%. These values are listed in Table 6-7 along
with the THG measurement of Buchalter and Meredith. Each value has been converted
into the convention for %(3)(-3w;w,w,w). For instance, since we have the relation
1O)-20;0,,0) = 6 x3) (-3w;0,w,0) in the extreme nonresonant limit, the DCSHG
values have been divided by a factor of 6.

The xGX-3w;0,w,0) value of BK-7 glass from Buchalter and Meredith is clearly
too large compared to the other values. In the experimental results for <y(-3w;w,w,w)>
presented in section D of this chapter, we instead took X(3)(-3c;w,0,w) = 0.58 x 10-14
esu for BK-7 glass. This value, in addition to being consistent with the measurements
of Table 6-7, provides much better agreement between experiment and theory. We
would like to mention here that our calculations for <y(-2w;®,,0)>/<Y¥(-3w;®,0,w)>
for HT yielded a ratio of 5.3 rather than 6.0 at 1907 nm. Even at this long wavelength,

dispersion increases <y(-3;w,®,w)> more quickly than <y(-2w;w,»,0)>. Thus, as

regards our comparison of x(3)(-w4;1,m7,w3) in Table 6-7, we expect
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% (3)(-30;w,m,0) should in fact be 5-15% larger than x(3)(-w4;w},wp,w3) of other
processes.

We conclude, then, that the common reference values for x(3)(-30;0,0,0) of
BK-7 glass and silica are too large by a factor of 2.0. Until a careful absolute
measurement of X(3)(-3w;w,w,0) is performed as an additional check, we recommend

that the value of %(3)(-3w;®,w,w) = 0.58 x 10-14 esu for BK-7 glass at A = 1907 nm be

used as the standard reference value.
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Table 6-1. Fundamental and Third Harmonic Refractice Indices, Coherence Length, and

A(nm)

2148
1907
1543

1064

13)(-30;0,0,0) of BK-7 Glass.

n®

1.4925
1.4960
1.5008

1.5067

n3ow

1.5127
1.5150
1.5205

1.5382

lc (um)

17.72
16.72
13.03

5.63
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13N (-30;0,0,w) (10-14 esu)

0.568
0.580
0.600

0.635




Table 6-2. Comparison of Measured /., x(3)(-30;w,0,0) , and <y(-3w;0,w,0)> at 1064

nm for Several Common Liquids.

Liquid lum) lump@ ¥ 10-14esu) xD2 <> (106 esu) <p>2

Acetone 6.90
Methanol 8.45
DMF 442
Water 7.35
Cyclohexane 6.32

Cyclo- 5.86

hexanone

6.86
8.41
443
7.40

5.94

0.586> 0.586 0.225 0.225
0.386 0.373 0.106 0.104
0.792 0.696 (0.766)¢ 0.314 0.303¢
0.359 0.350 0.107 0.104
0.728 0.809 0.374 0.415
0.788 0.378

a From Kajzar and Messier, Phys. Rev. A32, 2352 (1985).

b Taken as reference.

¢ From Kajzar and Messier, Rev Sci. Instrum. 58, 2081 (1987).
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Table 6-3. Fundamental and Third Harmonic Refractive Indices, Coherence Length,

1(3)(-3<0;(0,0),0)), and <y(-3w;w,0,w)> of Dioxane.

A(nm) n® 30 [ (um) %ON-30;0,0,0) (10-14 esu) <Y(-30;0,0,0)>(10-36 esu)

2148 141 142 387 0.621 0.279

1907 1.41 142 327 0.643 0.289

1543 1.41 142 19.6 0.702 0.316

1064 141 144 64 0.738 0.327
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Table 6-4. Fundamental and Third Harmonic Refractive Indices, Coherence Length,

and x3)(-30;w,0,0) of HT.

A(nm) no  plo [ (um) A3(-30;0,0,0) (10-14 esu)
1907 1.48 1.51 11.7 2.25
1543 1.48 1.52 6.2 2.57
1064 1.48 1.63 1.18 4.55
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Table 6-5. Experimental and Theoretical Values for <y(-3w;w,w,w)> of HT.

A (nm) Experiment (10-36 esu) Theory (10-36 esu)
1907 1.04 £0.16 1.30
1543 1.181+0.18 1.45
1064 1.94 £0.29 2.30
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Table 6-6. Effect of Finite Beam Diameter on Ratio of Minimum to Maximum Maker

Fringe Intensity.

Alll;

0.25
0.50
0.75
1.00

1.25

lmin/lmax

0.0t
0.05
0.12
0.22

0.35
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Table 6-7. Ix3)(-3w;w,w,0) /3C and <y(-3w;w,m,w)> for B-carotene.

A (nm)

2148

1907

1543

(-30;0,0,w) / 3C (1012 esu)  <Y(-3w;0,0,0)> (10-36 esu)

0.098 +0.003 518%+13

0.174 £ 0.004 92021

0.49 £0.10 358+ 64
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Table 6-8. Measured Values for x(3)(-w4;w;,w72,03) of BK-7 Glass Through Several

Nonlinear Optical Processes.
x3(-w4;01,02,w3) (10-14 esu) Process Referenced
0.58 DCSHG Oudar
0.58 DCSHG Levine and Bethea
0.53 DCSHG Teng
0.52 Nondegenerate Three Wave Mixing Adair et al.
G.50 Time-Resolved Interferometry  Milam and Weber
0.56 Ellipse Rotation Hellwarth
1.17 THG Buchalter and Meredith

a Complete references are given in the Chapter 6 References.
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liquid compartment

, teflon cap
aluminum frame

top view

Figure 6-1. [lustration of the third harmonic generation (THG) liquid sample cell. The
5.0 cm long BK-7 glass windows eliminate the ¥(3)(-3w;m,®,m) contribution of air.
The hquid compantment wedge angle a is 0.0125 rad with mean pathlength 0.44 mm.
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Figure 6-2. The experimentally determined values of <y(-3®;0,w,w)> for HT at A =
1907, 1543, and 1064 nm and the theoretical dispersion curve.
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Figure 6-3. Sample THG Maker fringes for (2) HT and (b) acetorie at A = 1064 nm.
The nonzero minimum in the case of the fringes for HT is due to the finite beam size
effect. For HT, the coherence length /. = 1.18 um, while for acetone, /. = 6.6 um. The
horizontal scale of (a) is expanded by a factor of 3 compared to (b) for clarity.
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Figure 6-4. Concentration dependence of 3()(-3w;w,w,w) for B-carotene in solution
with dioxane at A = 2148 nm.
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Figure 6-5. Concentration dependence of 1 3)(-30;0,w,w) for B-carotene in solution
with dioxane at A = 1907 nm.

4

221




o
™

XC)(-30;0,0,0) (10-14 esu)
o

1 . 1 P L

0.8
0.0

10 20 3.0 40

CONCENTRATION (10-3 mole/liter)

Figure 6-6. Concentration dependence of x(3)(-3w;w,w,w) for B-carotene in solution

with dioxane at A = 1543 nm.
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Figure 6-7. The experimental value of <y(-3@;w,w,w)> for B-carotene at A = 1907 nm
(Fiw = 0.65 eV) (solid square) compared with the theoretical values for the N =410 16
trans polyenes (open squares) as a functioh of chain length L. The B-carotene experi-
mental value is in agreement with the theoretical power law dependence
<Y(-3w;0,w,w)> e L3-5 represented by the solid line.
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Figure 6-8. The experimentally determined values of <y(-3w;®,w,w)> for B-carotene at
A =2148, 1907, and 1543 nm compared with a three-level model for the dispersion of

<Y(-3w;0,w,0)> of B-carotene (dashed curve).
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Figure 6-9. The experimentally determined values of <y(-2;w,w,0)> for B-carotene at
A = 1907, 1543, and 1064 nm compared with a three-level model for the dispersion of

<Y(-2w;0,w,0)> of B-carotene (dashed curve).
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Chapter 7
CONCLUSION

We have presented a comprehensive theoretical and experimental study of the
microscopic origin of nonresonant third order nonlinear optical processes in conjugated
linear chains and demonstrated that electron correlation effects markedly determine the
virtual excitation processes and third order nonlinear optical properties of these quasi-one
dimensional structures. We first presented a detailed analysis of the molecular third
order susceptibility ¥;jx/(-w4;01,02,03) in conjugated linear chains with a theoretical
method that demonstrates the importance of electron correlation due to electron-electron
repulsion. Many-electron calculations of ¥k (-w4;01,02,w3) of trans and cis polyenes
reveal the primary role of strongly correlated, energetically high-lying, two-photon lAg
virtual states. For short polyene chains, ¥ijk; (-w4;01,002,03) is dominated by two
competing third order virtual excitation processes that involve just three states. For the
N = 6 site chain hexatriene, for example, the largest virtual excitation process, which
makes a positive contribution to Y;jx (-04;®1,w2,03), involves a previously unexpected,
high-lying 5!Ag state that is strongly coupled to the large oscillator strength 11By, state
and cannot be properly described by uncorrelated, independent particle models. This
virtual process, together with a negative virtual process that involves only the 11B, state
and the 1 lAg ground state, determines tflc sign, magnitude, and dispersion in this
archetypal class of conjugated structures. The dominant tensor component of the

susceptibility, Yoox(-4;01,02,03) with all electric fields polarized along the molecular
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axis of the conjugation, has been discussed in terms of transition density matrix
diagrams that graphically illustrate the large charge separation that occurs upon virtual
excitation between the 1By state and the strongly correlated, high-lying 5!1Ag state.

The same basic mechanism for Yiji(-04;01,02,w3) holds for all chain lengths
calculated from N = 4 to 16. For chains of increased length, there are a larger number of
virtual excitation processes that make a significant contribution 10 Yy {-@4;®1,02,63);
but, in all cases, there is always at least one important highly correlated, two-photon 1Aq
state. It is found that Yyeo(-04:;01,02,@3) increases dramatically with chain length as
evidenced, for example, by the calculated power law dependence of the dc-induced
second harmonic susceptibility Yy (-2w;0,0,0) on the number N of carbon atom sites
in the chain with an exponent of 3.9 for the trans polyenes in the range N = 4 to 16. The
supralinear chain length dependence of Yyru(-4;01,0,03) originates in the increased
transition moments between the principal virtual states, the decreased excitation energies
of those states, and the increased number of significant virtual excitation processes.

Comparison of calculations for the cis structural conformation of polyenes with
results for the frans conformation demonstrates that the fundamental origin of
¥ijiki(-4;001,002,03) remains basically the same, irrespective of the structural
conformation. The only significant difference in the results for the two conformations is
that, in all cases, the value of Y-, W1,002,m3) for a cis chain is smaller than that of

the corresponding trans chain of the same number of sites. The results are unified by a

power law dependence of Yy (-(g;®},W2,003) on the physical end-to-end length of the

chain L with an exponent of 3.5. The cis conformation results in a smaller L for a given
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N than the trans conformation. Conformation affects Yxoud-04;®1,02,a3) only
inasmuch as it affects the physical length of the chain. Furthermore, extrapolation of the
power law dependence of Yyx(-04;®1,w2,m3) on L indicates that the values of
XO)(-wq;01,07,003) measured in conjugated polymers correspond to effective lengths of
only 50 - 100 A. We infer that Yooox(-04;01,w2,003) must therefore deviate from the
power law dependence and begin to saturate at a length shorter than 100A.

Theoretical analysis of a noncentrosymmetric chain heteroatomically substituted
with electron accepting groups on one chain end and an electron donating group on the
other indicates that the lowered symmetry leads to more than an order of magnitude
enhancement of Yy (-W4;®1,w2,w3). In noncentrosymmetric structures, virtual
excitation processes involving diagonal elements of the transition dipole moment matrix
that are forbidden in centrosymmetric structures can contribute to Yijki(-004;01,072,W3).
In the case considered here, 1,1-dicyano-8-N,N-dimethylamino-1,3,5,7-octatetraene
(NOT), the virtual excitation process that involves the dipole moment difference of the
21 A’ state (analog of the centrosymmetric polyene 11B, state) and the ground state is
much larger than even the analogs of the two dominant virtual excitation processes for
the centrosymmetric chains and is responsible for the large enhancement of
Yrxax(-04;01,002,03).

Experimental measurements of the dispersion of the isotropically averaged dc-
induced second harmonic susceptibility <y(-2w;,w,0)> and the third harmonic
susceptibility <y(-3w;®,w,w)> in two k;y polyene structures have demonstrated that the

electron correlation theoretical description of the nonlinear optical properties of
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conjugated linear chains is appropriate and quantitatively correct. The measured values
of <y(-2w;,,0)> and <y(-3w;®,w,w)> at the fundamental wavelengths A = 1907,
1543, and 1064 nr for hexatriene (HT), the N = 6 site chain, are in excellent
quantitative agreement with the calculated magnitude, sign, and dispersion. For
example, while the dispersion of <y(-2w;®,w,0)> is found to be weak in this wavelength
region, experiment and theory are in agreement in the fact that <(-3w;0,w,0)> at A =
1064 nm is 1.8 times larger than the value at A = 1907 nm. For B-carotene, a
substituted, N = 22 site chain, the nonresonant experimental values of <y(-2w;®,®,0)>
and <y(-3@;w,m,w)> are in agreement with extrapolation of the calculated power law
dependence of <y(-w4;w},02,03)> on chain length L. Thus, together with the results
for HT, these measurements quantitatively validate the power law dependence on chain
length L. Furthermore, based on our theoretical understanding of ¥;jx:(-04;01,072,03),
we developed a three-level model that adequately describes the experimentally measured
dispersion of <y(-20;®,®,0)> and <¥(-3®;w,m,w)> for B-carotene.

In obtaining the experimental values of <y(-2;w,®,0)> and <Y(-3w;0,m,w)>,

we have given careful consideration to the values for x3)(-4;01,002,03), the coherence
lengths, and the fundamental and refractive indices of quartz, BK-7 glass, and dioxane
that are required for the analysis. Each of these has been carefully measured at A =

1907, 1543, and 1064 nm, and the results are presented in detail. In the course of these
studies, it was found that the common reference standard for 1O)(-3w;0,0,w) of BK-7
glass was inconsistent with our results and with measurements of 1 3)(-wg;1,02,(73) by

other fundamental nonlinear optical processes. The common reference value was found
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to be too large by a factor of 2.0, and an improved reference standard has been
proposed.

Finally, the work presented in this report has recently lead to a novel fundamental
development in nonlinear optical processes. In general, the real population of the initial
state for the virtual electronic excitations can be either the usual singlet ground state S,
or an optically pumped excited state S,. This report deals strictly with the case of S
ground state population. We have have found, however, that for quasi-one and quasi-
two dimensional chain-like and disc-like structures, compared to the ground state, the
nonresonant szl(-au;wl,(oz,mg) and second order susceptibility Bijs.;(-(og;ml,(oz) can
markedly increase, or even change sign, when the first (S1) or second (52), X-electron
excited state is optically pumped and then populated for timescales sufficiently long to
allow nonresonant measurements of *4;;‘1(-034;(01,&)2,(03) and |3i]s.l’('(-co3;(o1,o)2).1'3 The
enhanced magnitude has three principal origins: smaller transition energies #@ys,,
between the populated state S, and intermediate virtual states m, many additional
accessible virtual excited states with large transition dipole moments, and a larger
number of significant virtual excitation processes with a reduced degree of cancellation.
These new excited state nonlinear optical processes are currently under extensive
experimental and theoretical investigation and will continue into the forseeable future.
The microscopic understanding of excited state nonlinear optical processes is based upon

the developments for ground state nonlinear optical processes presented in this report.
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Appendix A
COMPARISON OF COMMON

CONVENTIONS FOR yjjki(-04501,02,03)

Comparison of theoretical and experimental values for ;jx/(-(34;®1,02,03)
reported by various authors is complicated by the lack of a universally accepted
definition of ¥jjx(-04;01,w2,w3). In this appendix, we discuss the most common
conventions employed for Y;jxi(-4;w1,w2,3) and relate them to the definition used in
this work.

The definition of ¥jjki(-04;01,2,03) is fully specified by the constitutive
equation for the nonlinear polarization combined with the convention for the electric field

amplitudes. Throughout this report, we have employed the constitutive equation

D.

,m 4 = Yjr-0401,02,03) Ej‘”1 Ef’z EI‘"3 (A.1)

where the electric field Fourier amplitudes are defined through
E() = X E]f"" COS Wyt (A2)
n

With these definitions, the susceptibilities ¥;jx/(-4;01,02,w3) for different third order

processes (e.g. different sets {1, wp, w3}) are related in the @ — O (dispersionless)
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limit by the multiplicative factor (c.f. Eq. (2.41)) K(-4;01,60,03) =2 D where m is
the number of nonzero input frequencies minus the number of nonzero output
frequencies and D is the number of distinguishable orderings of the set {®y, @y, w3).
The origin of K(-wq:®1,00,03) is intuitively illustrated through consideration of the

cube of an optical electric field of amplitude E‘," and a dc field of amplitude E? :

(E‘i" cos W + E?)3 = i(E‘i”)3 cos 3a¢ + %(E"")zE? cos 2a¥¢
+ [%(5‘1}53 + 3E“,"(E?)2] cos ¥ + [%(E"f’)zli?+ (E?)3] . (A3)

Thus, K(-2w;0,0,0) = 3/2, K(-30;0,0,0) = 1/4, and

Yijii(-20;0,0,0) = 6 Yjei(-30;0,0,0).

We now list the other common conventions:

1) Orr and Ward!:

The constitutive equation

P = K(0go10.00) Yo (asoLme) N EZED (A4

is used and the electric field Fourier amplitudes are defined as in Eq. (A.2). The symbol
%) rather than v is used by these authors to denote the molecular third order

susceptibility. Since K(-t;e),0,03) is excluded from ngg,(-au;ml.on.ms) in this
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notation, xgzl(-m;ml,wz,m) is equal for all third order processes in the @ — 0 limit.

xgzl(-au;m,,mg,m) is related to our definition of ¥;jk/(-W4;®1,02,w3) by

K(-w4:01,02,03) x(;,zl(-m;ml,m,m) = Yijki(-04;01,02,03) (A.3)

In particular, we have ¥;j/(-2w;0,0,0) = %xgk)l(&m;m.m,O) for the measurements of

Ward and Elliott.2
2)  Kajzar and Messier,3 Meredith ef al.,4 and Hermann and Ducuing:5
These authors use Eq. (A.1) for the third harmonic susceptibility ij;‘,“(-:sm;m,m,m), but
the electric field Fourier amplitudes are defined as

Eft) = § (E;,"" e-ion! + complex conjugate) . (A.6)
We then have

-M )
ikt COS0.00) = 4jj(-30,0,0,0) (A7)

since the field amplitudes in Eq. (A.6) are defined as only half as large as those in Eq.

(A.2). We further point out that the reference values for x(3)(-3w;0,0,) of glass and
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silica in refs. 3 and 4 were found to be too large by a factor of 2.0 as discussed in

section 6.E, and this must also be included for comparison with our results.

3) Levine and Bethea6 and Oudar:7

Yijki(-2w;0,w,0) is defined in the same manner as in the present work.

4) Maker and Terhune:8
The macroscopic susceptibility c1111(-3w;®,w,0) of these authors is equivalent to our

X(131) 1 1(-3@;(0.0),(0), but for degenerate four wave mixing

3eamnmiCwo, 00 = x(f’l)u(-m;m.-m.m). (A.8)

5) Hellwarth, Owyoung, and George:9

The electronic contribution to the nonlinear polarization is denoted by ¢ and is related to

our convention by

Oiji = 8 Yijri(-30;0,0,0) . (A.9)

6) Soos and Ramasesha: 10

Inspection of the summation-over-states expression for ¥jjk/(-300;®,m,w) used by these

authors yields
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2 ikl (-30;0,0,0) = Y;ju(-30,0,0,0) . (A.10)

7 Finite-field calculations:11-13

The third order susceptibility is determined according to

W(E) = W(O) - WE; - %aij EiEj

- %Bij[z EiEjEx ~ lgv.-ju EiEjEE - .. (A.11)

where W(E) is the energy of the system in the presence of a static field of amplitude E.

By this definition

Yijt = 6 K(-4;01,02,03) Yjjii(-04;01,02,03) . (A.12)
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Appendix B
ISOTROPIC ORIENTATIONAL

AVERAGE OF Yjjg(-04;01,02,03)

Chapters 5 and 6 of this report present liquid phase experimental measurements
of dc-induced second harmonic generation (DCSHG) and third harmonic generation
(THG) for two important conjugated molecular structures. In each of the experiments,
the output and all three of the input electric fields are in the same direction in the
laboratory coordinate frame, which we will refer to as X. Since the molecules in a liquid
are randomly distributed in direction, we must perform an isotropic average of the
molecular susceptibility Yijx/(-04;01,02,03), where lowercase subscripts denote the
molecular coordinate frame, to relate it to the measured laboratory frame quantity, which
we will write as <yxxxx(-w4;01,02,03)>, or simply <y(-g4;01,w2,m3)>.

The isotropic average is performed by integration of the randomly oriented
molecular tensor quantity ¥;j; projected onto the laboratory coordinate frame to obtain

<Yxxxx>, where we have omitted the frequency arguments to simplify the notation.

For the general case,
1 J'21t In . Juzu
<WKL> = g5 7 do o Sin 0 do 0 do Ry Ryj Rk RL1 Yijki
= ijzkl <Yijkt Rri Rjj Rxx Rpy > B.1)
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where the rotation matrix R is given by

cos ¢ cos 8 cos @ sin ¢ cos O cos @ ~-sin®cos ¢
-sin ¢ sin @ +cos 0 sin @
R = -cosdcos@sin@ —sin¢cosOsing sin O sin @
- sin ¢ cos P + cos § cos @
cos ¢ sin @ sin ¢ sin © cos9 . (B.2)

We note that, by the symmetry conditions for R, < ¥jju Ry Rjj Rxx Ry > vanishes for
every subscript set {ijk/} that has an odd number of any one coordinate.

We now evaluate <yxxxx>. Consider, for exmple, the contribution of Yzz72-

One obtains
2
< Y727 Rxz Rx: Rx: Rx; > = Y;;zz IZ dé r sin 6 40 j do cos4 ¢ sin 0
Yzzzz 2n r 5
== 2ml, cos? ¢ d¢ ] . sin> 6 dO
- Yzzzz (31\’) (

= 14;-‘-‘- : (B.3)




Similarly, one finds

< Yrxxx RXx RXx RXX Rxx > = zx;x—x (B4)
and
< Yyyyy Rxy Rxy RxyRxy > = I"%”- . (B.S)

Now consider the contribution of Yyyz; to <yxxxx>. We must evaluate

2n
<Yyyzz Rxy Rxy Rx; Rx; > = %ﬁ:‘w I:smedﬂ jo do

(—cos ¢ cos O sin @ ~ sin ¢ cos p)2 (cos ¢ sin )2 . (B.6)
The final result is
< Yyyzz Rxy Rxy Rx; Rxz; > = _'Yzlysz_z ’ (B.7)

and similar results are obtained for all other subscript sets {ijk/} that involve two
different pairs of subscripts x, y, or z in any order. The isotropically averaged

susceptibility can thus be expressed in the compact notation

<P = ‘;'[ 21: Yiiii + %E; Chijj + Yijij + Ywi)] . (B.8)
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