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Optical bistability is a quantum optical realization of a tfi.SAorder pha,,
transition far from equilibrium. A nonlinear optical material containeI il
an optical cavity driven resonantly by an external coherent optical fielri
undergoes a first order phase tt sition to a new nonequilibrium stationary
state of broken symmetry. Resonant and nonresonant nonlinear optical
response of pi-electron excitations in conjugated electronic structure
provides the nonlinearity essentia] to the onset of bistability.
Electronic correlation effects in reduced dimensions are responsible for
nonresonant nonlinear optical responses. Saturable absorption studies of
glassy polymer films consisting of quasi-two dimensional conjugated disc-
like structure of silicon naph-thalocyanine demonstrate that on-resonance
the system behaves as an optical Bloch system with an intensity dependent
refractive index of 1 x i0-10 cm2/kW. Based on the results of these
studies, electronic absorptive optical bistability is observed on a
nanosecond time scale in a nonlinear Fabry-Perot interferometer employing
the saturable absorbing silicon naphthalocyanine film as the nonlinear
optical medium.
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ABSTRACT I
ELECTRON CORRELATION THEORY AND

EXPERIMENTAL MEASUREMENTS OF THE THIRD ORDER NONLINEAR

OPTICAL PROPERTIES OF CONJUGATED LINEAR CHAINS 1

I
I
I

Comprehensive theoretical and experimental studies of the magnitude, sign,

dispersion, and length dependence of the third order molecular susceptibility U
Yijkl(-o.4;col,o)2,cI 3) demonstrate that the microscopic origin of the nonresonant third

order nonlinear optical properties of conjugated linear chains is determined by the effects

of electron correlation due to electron-electron repulsion. Multiple-excited configuration

interaction calculations of yIjki(-c,4;o)!,c&2,wo) for the archetypal class of quasi-one

dimensional conjugated structures known as polyenes reveal for the first time the

principal role of strongly correlated, energetically high-lying, two photon IAS virtual

states in the largest of the two dominant, competing virtual excitation processes that 1

determine yijk(-o);co1,o)2,(*3). It is also found in studies of the effects of conformation

on yij i(-o;cold12,(o3) that the origin of the third order optical properties remains

basically the same for the all-trans and cis-transoid polyenes, and the results for the two

conformations are unified by a conunon power law dependence of the dominant tensor

1
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component yxxx(-0oU;o)1,a)2,a)3) on the physical end-to-end length L of the chain with

an exponent of 3.5. Calculations for a noncentrosymmetric conjugated chain

demonstrate that virtual excitation processes involving diagonal transition moments that

are forbidden in centrosymmetric structures lead to a more than an order of magnitude

enhancement in yxx-.(-oA;(o1,oY2,o3) compared to the analog centrosymmetric structure.

Experimental measurements of the dispersion in the isotropically averaged dc-induced

second harmonic susceptibility <y-2o;o, oO)> and third harmonic susceptibility

<-3o;ww.ow)> in two important polyene structures confirm the electron correlation

description of yijk(-o.4;.o,cLD2,o)3). The measured values of <'(-2w;w,,o)> and

<Y(- 3a.;w,co,o))> at several near infrared fundamental wavelengths for hexatriene, the

N = 6 carbon site polyene chain, are in excellent agreement with the calculated

magnitude, sign, and dispersion. Corresponding measurements for P3-carotene, a

substituted N = 22 polyene chain, together with the results for hexatriene, also verify

the calculated power law dependence of <y(-o4;(o ,cz2,co3)> on L. It was further found

in the course of the experimental measurements that the comnmon reference standard for

the macroscopic susceptibility X(3)(-3co;c*,coco) is too large by a factor of 2.0, and an

improved standard value is proposed.
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Chapter 1

INTRODUCTION

The delocalized, one-dimensional ic-electron system of organic conjugated linear

chains provides this unique class of materials with novel nonlinear optical and electronic

properties. 1-5 However, because the repulsive Coulomb interaction between electrons

requires that an exact solution of the electronic structure involves many-electron

wavefunctions, the ground state and electronic excitations of conjugated chains have

remained not fully understood. Although many approximate theoretical descriptions

have been presented that either neglect entirely the electron-electron interaction or treat it

in a mean-field theory, there is increasing evidence that electron correlation effects and

the many-body nature of the wavefunctions are essential to a complete understanding of

the optical and electronic properties of n-electron systems. In fact, it has been clearly

and unambiguously established that electron correlation is responsible for the ordering

of the low-lying electronic excitations of the short and intermediate length conjugated

chains known as polyenes. 6 In this report, the nonresonant nonlinear optical properties

of conjugated linear chains are demonstrated to be determined by electron correlation; 7,8

and, in turn, nonlinear optical experiments provide highly sensitive measurements and

tests of electron correlation effects on electronic structure. Through a series of

combined experimental and theoretical studies of the nonresonant molecular third order

susceptibility 'yijkX(-a4;w1 ,co2,o'3) of finite linear chains, we demonstrate the essential

role of electron-electron interactions in the microscopic origin of the nonlinear optical

1
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I
responses of conjugated structures and achieve agreement between experiment and

theory for the magnitude, sign, dispersion, and length dependence of 3
Yijkl(-Co4;1,0)2,C03) in quasi-one dimensional systems for the first time. 3

The large, nonresonant third order nonlinear optical susceptibility of one

dimensional conjugated chains is illustrated, for example, by third harmonic generation I
(TG) measurements of crystalline polydiacetylene TCDU (specified by the side group 3
R = (CH 2)4OCONHC6 H5) which yielded a macroscopic susceptibility

X (3)1 (-3 o ;co,co , .o) = 7 x 10-11 esu for a fundamental wavelength X = 1.89 gm.9 For I
. 2.62 pm, such that the third harmonic light at 0.89 li is still further from the 3

optical absorption peak at 0.56 pm and dispersive effects are less important, the

measured susceptibility is only slightly reduced to X3)1 ( ,  = 3.7 x l(3) esu.

In a separate comparative study of THG in saturated and conjugated linear chains, it was 3
shown that although the saturated alkane chains exhibit a linear dependence of the

isotropically averaged molecular susceptibility <(-3o;o,(o,(o)> on the length of the

chain, <y(-3co;o,wow)> of conjugated linear chains increases in a dramatic supralinear 3
fashion due to the delocalized xt-electron system. 10  3

The nonresonant nonlinear optical response of conjugated chains has also been

demonstrated in a number of studies to occur on ultrafast timescales. Thin f'ms of bis I
(p-toluene sulfonate) polydiactylene (PTS), for example, were studied by degenerate

four wave mixing (DFWM) in which two incident laser pulses form a refractive index4
grating from which a third (probe) pulse scatters. II The decay of the induced grating is

a measure of the inherent response time of the nonlinear optical process and can be I
2 I
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determined by the scattered light intensity as a function of the temporal delay between

the coincident grating-forming pulses and the probe pulse. For laser pulses with 300

femtosecond (fs) temporal width at X = 652 nm, just within the onset of the film's

optical absorption, the scattered light intensity was found to decay with a lifetime of 1.8

picoseconds (ps). A transient saturable absorption measurement at the same wavelength

yielded an excited state lifetime of 2.0 ps and provided verification that the grating

measured in this resonant DFWM experiment was due to population of excited electronic

states. Most importantly, a DFWM measurement for a wavelength outside the optical.

Iabsorption (X = 723 nm), demonstrated that the nonresonant response time was shorter

than the 300 fs pulse width as evidenced by the existence of a scattered signal only when

all three pulses were temporally overlapped within the film. Thus, the nonresonant

j grating induced strictly in the electronic polarization, and not in the excited state

population, responds on at least the femtosecond timescale.

One of the earliest evidences of the importance of electron correlation effects in

conjugated structures derives from the observation that the first excited state in polyenes

is, in fact, the low-lying, two-photon 2lAg state.6 Prior to this discovery, it was

believed that the lowest-lying electronic excitation was the large oscillator strength

I IBu +- I 'Ag one-photon transition. The increased oscillator strength and decreased

Iexcitation energy of this transition with increased chain length are well-described by

one-electron theory that treats the electrons as independent particles. There were,1 .
however, a few irreconcilable spectroscopic puzzles. First, the experimentally observed

Iintrinsic fluorescence lifetimes of polyenes are at least an order of magnitude larger than

3
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the values obtained by standard analysis of the I IBu absorption band. 12.13 Second,

there is a significant separation between the lowest energy peak of the absorption I
spectrum and the highest energy peak of the fluorescence spectrum. Ordinarily, one

would expect these spectra to share a common origin and be mirror images of one

another. Finally, the absorption spectrum exhibits a much stronger dielectric shift in U
polar media than the fluorescence spectrum.

The observation by Hudson and Kohler of a weak, symmetry-forbidden

absorption below the 11B u ---- IlAg transition in the eight site chain case of all-trans- 1,8- U
diphenyloctatetraene resolved these apparent paradoxes. 14 Below the I IBu state lies a 3
state that possesses the same symmetry as the 1 'Ag ground state and is therefore

denoted the 21Ag state. Schulten and Karplus demonstrated that inclusion of electron I

correlation by multiple-excited configuration interaction within the Pariser-Parr-Pople 3
(PPP) it-electron Hamiltonian does, in fact, yield a strongly correlated two-photon 21Ag

state at lower energy than the one-photon allowed 1 Bu state. 15 Subsequent

experimental and theoretical work over the years has clearly shown that the existence of

a low-lying, strongly correlated 2lAg state is a general feature of all unsubstituted

polyenes with number of carbon sites N larger than six.6.16 20

In spite of the clear evidence of electron correlation in finite polyenes, the I
electronic structure of infinite chain conjugated polymers has often been considered 3
within the context of tight-binding 21 or Fermi-liquid models. 22 These theories, which

concentrate on the electron-phonon coupling and neglect the electron-electron

interaction, have been moderately successful in the interpretation of experimental data 3
4 I
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from transient optical absorption to resonant Raman scattering to charge transport. 23

Initial mean-field studies of electron-electron interaction within these models concluded

that since the on-site Coulomb repulsion tended to destroy the experimentally observed

dimerized bonding structure, or bond order wave, of the polymer chain, conjugated

polymers must fall in the weak interaction limit.24 However, less approximate

I theoretical studies employing Monte Carlo,25 valence bond, 26 variational, 27 and

renormalization group 28 methods have found that the effect of on-site Coulomb

repulsion is, in fact, to increase the dimerization amplitude for small and intermediate

Istrengths of the electron-electron interaction. These conclusions remain valid even

Iwhen off-diagonal interactions in the site representation are included in the

Hamiltonian, 29 and it may therefore be concluded that the electron-electron interaction

1 should not be considered to be weak on the basis of the known dimerization of the

Ipolymer and that it can, instead, significantly affect the electronic and optical properties

of the system.

IIn light of the above discussion, it is clear that a thorough analysis of the effects

jof electron correlation on the nonlinear optical properties of conjugated linear chains is

necessary to a fundamental understanding of these properties. Although many

theoretical studies of the third order susceptibility ijkl(-a 4;O1,0a2,C03) of linear polyenes

have been published, prior to the work presented in this report,7 ,8,30 ,3 1 none of them

considered electron correlation effects. The independent particle models previously

employed include the free-electron model, 32 undimerized 33 and dimerized34 Huckel

Imodels, single-excited configuration interaction of the PPP Hamiltonian, 35 coupled

I 5
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SCF perturbation theory of the CNDO molecular orbital method,36 perturbative density

matrix treatment of the PPP Hamiltonian, 37 and ab initio coupled-perturbed Hartree- I
Fock theory. 38 We present here results from multiple-excited configuration interaction 3
theory applied to a self-consistent-field molecular orbital method that, for the first time,

explicitly accounts for the electron-electron interaction and electron correlation.

Through examination of the individual third order virtual excitation processes that 3
contribute to yijkl(-o4;(ol,o2,(o3), we demonstrate that electron correlation plays a

dominant role in the nonlinear optical properties of conjugated linear chains. In 1
particular, virtual transitions that involve previously unexpected, strongly correlated, 3
high-lying, two-photon states are essential in the determination of the magnitude, sign,

and dispersion of yjk(-o4;oI,o,2,o3) in linear polyenes. Our conclusions concerning

the importance of electron correlation effects to the nonlinear optical properties of 3
conjugated structures have received subsequent, independent confirmation by exact

diagrammatic valence bond theory of the more approximate PPP Hamiltonian39 and by

multiple-excited configuration interaction of the INDO molecular orbital method. 0  I
This report presents the electron correlation description of the microscopic origin 3

of third order optical responses in conjugated linear chains and experimental dispersion

measurements of dc-induced second harmonic generation (DCSHG) and third harmonic I
generation (THG) for two important molecular structures that quantitatively verify some 3
of the key theoretical results. In Chapter 2, we describe the theoretical methods

employed in the calculation of ijk(-w4;wl1,w2,w)3). Section B presents the Method of U
Averages technique of time-dependent perturbation theory that expresses 3

6 I
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excitation energies of the eigenstates of the molecular Hamiltonian. The electron

Icorrelation theory of multiple-excited configuration interactions applied to the self-

j consistent-field molecular orbital method that we employ to calculate the ground state

and it-electron excited state electronic wavefunctions of conjugated structures is

Ireviewed in section C.

I Chapter 3 presents the results obtained for calculations of yjk,(-(o0;co1,ao2.±)

for all-trans polyenes that range in number of carbon atom sites from N = 4 to 16. In

I short chains, the magnitude, sign, and dispersion of yijk(-oM4;wl,,c,) is found to be

determined by just two competing third order virtual excitation processes. The smaller,

negative contribution involves only the ground state and the large oscillator strength

I Bu state. A surprising, larger, positive term additionally involves a high-lying two-

photon IAg state that is highly correlated and couples strongly to the I IBu state. The

dominant tensor component yx (-ow;ol,(p2,o3) is found to have a power law

dependence on N with an exponent of 3.9 that therefore leads to very large nonresonant

susceptibilities for intemAediate length chains.

The effects of two basic structural alterations to all-trans polyenes are considered

in Chapter 4. In section B, we discuss an alternate structural conformation known as

the cis-transoid conformation. The results are in direct analogy to those of the all-trans

chains with the exception that, for a given N, y r(-ow;col,wo2,o3)is smaller in the cis-

transoid conformation. This is understood in terms of the reduced physical length L of

the chain along the conjugation axis in te cis-transoid conformation, and the results are

unified by a common power law dependence of (-oM;ol,o,cz3) on L with an

7
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exponent of 3.5. Section C describes results for a noncentrosymnetric polyene in

which the symmetry is lowered by heteroatomic substitution on the ends of the chain. I
The introduction of nonzero diagonal elements to the transition moment matrix (e.g.

ground and excited state dipole moments) is found to enhance yxxx(-)4;cOj,o2,0o3) by

more than an order of magnitude. I
Chapter 5 presents dispersion measurements of DCSHG in hexatriene (HT), the

N = 6 polyene, and 1-carotene, which corresponds to an N = 22 polyene; and similar

dispersion measurements for THG in these two molecular structures are discussed in. I
Chapter 6. For HT, the experimental magnitude and dispersion of <y(-2o);o,w,O)> and

<y(-3;o,w,,co)>, the isotropically averaged susceptibilities for DCSHG and THG,

respectively, are in good agreement with the theoretical results that are discussed in I
extensive detail in Chapters 3 and 4. Although 13-carotene is a longer molecule than can 3
currently be computationally considered, the experimental nonresonant value of

<-o4;Wl,W2,(3)> for -carotene is in excellent agreement with extrapolation of the 1
theoretical power law chain length dependence providing additional verification of the

theoretical results. As a separate issue, by comparison of the DCSHG and THG results

we have found that the values for X(3)(-3(a;co,co,o) of quartz and glass that are

commonly used as the reference standards for THG measurements of thin films and I
liquids are too large by a factor of 2.0. X(3)(-3(o;wcce) reference standards are 3
discussed in section E of Chapter 6.

I
I
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Chapter 2

METHOD FOR CALCULATION OF "yjk1(-O)4;w01,O02,0)3) I
I

A. Introduction

One major motivation of this work was to provide an accurate theoretical

description at the molecular level of the third order optical properties of conjugated linear

chains that explicitly accounts for the effects of electron correlation. In particular, we I
wish to understand at the microscopic level the molecular third order susceptibility

tensor yijkI(-aU;,o41,o2,co3) which is defined through the constitutive equation

P' =ikX-W4;W1 '(02,033) eE4 E" (2.1)

where p(4 is the i-component of the molecular polarization induced at frequency co in

response to the specified components of applied electric fields at frequencies wj, co2 and I
oq3. By consideration of only the electric field amplitudes of the incident light, we have

made the generally valid approximation that the electric dipole interaction with the

molecule is much stronger than the magnetic and higher order electric interactions. I
If the frequencies w)I, w2, and "o3 are degenerate at frequency (o, then

yijkX(-3c0;),),o) is responsible for the creation of light at 3o through third harmonic

generation (THG). Another important third order optical phenomenon is the intensity

dependent refractive index that results from 'ij(-;c,-0),co), where we have taken the

12 3
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complex conjugate of one of the incident fields. Further, if in addition to the optical

field at frequency co, one applies a dc electric field, the third order process of dc-

induced second harmonic generation (DCSHG) occurs via the susceptibility

yijk/(- 2 co;o3,o,O). Thus, it is clear that yijkl(-o);oIw2,0w3) governs a multitude of

fundamental nonlinear optical processes each determined by the condition

w = wI + w2 + o3, where each frequency (ol, o2, and o may be taken as positive or

negative.

Of the two principal methods for the calculation of yijkI(-(o4;o)l,(A2,o3), usually

jreferred to as the summation-over-states1.2 and finite field3 techniques, the summation-

over-states formalism offers several advantages. Primary among these is the ability to

identify specific virtual excitation processes among the eigenstates of the system that

I make the most significant contributions to yijkK-OJ4;oIl,c02,CO3). This results from the

Isummation-over-states respresentation of "yjk('-O;wOI,oY2,03) as a perturbation

expansion over all possible virtual excitations. In contrast, the computationally more

Isimple finite field technique, which involves taking derivatives of the perturbed ground

Istate energy or dipole moment of the molecule as a function of applied field strength,

yields only a final value for yijkI(-o4;cOl,o),co3) with no information regarding its

origin. Additionally, the summation-over-states method allows one to calculate the

frequency-dependence or dispersion of yijk(-wi;;lc2,o3) since it is founded in time-

dependent perturbation theory while the finite field technique only calculates the zero-

frequency limit yijkI(-0;0,0,0). A third strength of the summation-over-states method is

Ithe capability to include the many-electron nature of the molecular wavefunctions

13



I
through either multiple-excited configuration interactions or generalized valence bond

theory. I
The summation-over-states method derives its name from the expression of 3

yijk(-o4;)I,0)2,"o3) through summations over all eigenstates of the system of terms that

involve the transition dipole moments and excitation energies of the eigenstates. The I
calculation of yiykI(-c04;O)1,Oc2,0)3) is therefore no more accurate than the values obtained I
for the transition moments and excitation energies of the ground and excited states of the

molecule. In this thesis, we concentrate on organic conjugated linear chains, a class of I
molecular structures for which electron correlation effects have been demonstrated to be 3
crucial.4 The electronic structure of conjugated chains has been studied by a variety of

theoretical methods including Huckel, Hubbard, Pariser-Parr-Pople (PPP), and all- 1
valence electron Hartree-Fock theories such as the complete neglect of differential I
overlap (CNDO) molecular orbital theory. The spectroscopic parametrization of CNDO

theory developed by del Bene and Jaffe5 and modified by Lipari and Duke6, known as

CNDO/S, has been particularly successful in calculation of molecular electronic

absorption spectra, and we have therefore chosen to apply the CNDO/S method with

multiple-excited configuration interactions to account for electron correlation to the

calculation of Yjkl(-o)4;(o1,co2,o)3). Section B of this chapter presents the derivation7 of I
the summation-over-states expression of yijk(-cIM;Oc1,wo2,co3) employing the Method of 3
Averages developed by Bogoliubov and Mitropolsky8 which eliminates secular

divergences that otherwise occur when any subset of the applied frequencies sums to

zero. In section C, we review the multiple-excited configuration interaction theory and 3
14
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I

self-consistent-field molecular orbital method that allow us to calculate the transition

Idipole moments and excitation energies of the x-electron molecular states taking account

Iof electron correlation effects by explicit inclusion of electon-electron interactions.

I B. Derivation of Yijkl(-(04;Wo),(02,c03) by the Method of Averages

I
The Method of Averages is a perturbation technique that involves separation of

the wavefunction into slowly and rapidly varying components. 8 The slowly varying

I component is responsible for the secular divergences that occur in standard perturbation

theory and leads to shifts of the energy levels while the rapidly varying component

produces the polarization induced in response to the applied fields. We start with the

1 unperturbed molecular Hamiltonian HO possessing eigenstates ) n > that satisfy

I
H0In>=to0n In> (2.2)I

I The time-dependent perturbation .H/(t) leads to a total Hamiltonian

I H(t) = HO + E/l(t) (2.3)

I
where we will assume EHI(t) = 0 for ts 0. In particular, we consider the semi-classical

interaction of the incident radiation field with the molecule in the electric dipole

approximation such that

I 15
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I

H (t) = -e E(t) r (2.4) 1
I

where E(t) is the optical electric field amplitude and er is the molecular dipole moment

operator. I
For algebraic simplicity, we use a modified interaction representation with state

vector I (D(t) > defined by I
I (t) > = exp[iHot ll] exp[i J dt' <EHi(t)>gg / h] I '(t)> (2.5) 3

where I 'I(t) > is the solution to the time-dependent Schrodinger equation I
I

W ete h vt I IF(t) > (i!) - I (t) I T (t) >. (2.6)

We then haveI

I 0(t) > = E H(t) I (O) > (2.7)

wherem

wh (t) = (MI)" exp[iHlt/] HIt) exp[-iHo/ ] - (M)"1 <HI(t)>gg (2.8)

with

<A>q a < i I A I j > (2.9)

and the barred operator is defined by

Ai z A - > (2.10) I
The molecular polarization p(t) is given by 3

16
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p(t) = < (t) I p I (t) > / < (t) I (t) > (2.11)

which can be rewritten as

Ip() = <( (t) I - I 4(t) > / < 0(t) I (t) > + <>gg (2.12)

where

p = p eiHOh/h (2.13)

I
We can express the perturbation Hamiltonian and resultant polarization in terms

of Fourier components

I
I p(t) = pO + 2 p e Ot + 0 e"' (.

1~)=P L. [, pO) e-i'o~t + p--ac eoo (2.14)

I
We can then specify the particular yijkI(-O4;co|,o)2,0q3) of interest by choosing the coj

I corresponding to (ol, o)2, and (a3 and setting wo = o4.

IThe fundamental assumption of the Method of Averages is that the temporal

behavior of I Q(t) > can be separated into rapidly and slowly varying pieces. We then

make the expansion

17
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I c(t)> + Ea F(a)] I > (2.15) I
where the rapid variations are contained in Fa) and the slowly varying part is I >

which has temporal evolution given by I

I > ca G(a) 1 >. (2.16)

Substitution of Eqs. (2.15) and (2.16) into (2.7) and expansion in powers of F, yields. I

I
G() + (71F(3) = HF(2) - F(I)G(2) _

G(2) + a ()= HF(2 - PO(217))

I

which has the general form

G(a) + aF(a) = R(Q) (2.18)

I
where R(a) involves only the Hamiltonian and functions of lower order than a. The

utility of the Method of Averages lies in our ability to assign particular manix elements

I
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< R(a) >m to either G(a) or F(a). If we assume that no excited states achieve significant

population, for which the formal requirement is

< F(a) >, -_ = 2 < HI >n t< 1 (2.19)
< F(al) >mg hr.

I where rn is the inverse radiative lifetime of state I n >, then the only terms we wish to

assign to G(a) are the secular terms in which some combination of frequencies

Scol + (o2 + ... = 0, where col, (o, ... are the frequencies involved in the perturbation

I Hamiltonian. 7 All diagonal terms of R(O) would then diverge if assigned to F(a). This

is because R(a) has the general form

< R(a) >Mfn cc e[it ((Om, - (1 -0 -"")A (2.20)

I
where cOm = (aor - (on.

I If we expand I > in the set of eigenfunctions I n > of the unperturbed

I Hamiltonian H0,

I I> = -In><nIP> = ln>4n, (2.21)
n n

I we obtain

4 n ea <G() >,,,nP~ .n (2.22)

Since we have assigned only the diagonal elements of < R(a) >,. to G(a), we have

19
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I

= ct Ea < G(a) >,, (2.23)I
I

which has the solution

=n(t) W() e- i &E I /A (2.24) I
where

AEn = Ea < G(a) >nn (2.25)
cv-l

AE. corresponds to a time-independent energy shift of state I n >. 3
W ith th e in itia l c o n d itio n W( ) 8 n g g() , ( 2 .2 6 )

Eq. (2.15) can be rewritten as 3
14(t)> = g [ 1+ ea F a)] I g >. (2.27)

I

We insert Eq. (2.27) into Eq. (2.12) and separate according to order of e to obtain

P(O)(t) = < p >gg I

I
p(l)(t) = < F(I)tP >gS + < P FM >gg

p(2)(t) = < F(2)t >gg + < F()t ji F() >g + < p F (2) >g

20
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i p(3)(t) < F(3)t >gg + < F(2)t P F 1) >gg + < F(I)t F(2 )>gg+ < F(3) >gg

[ < F(2)t >gg + < F()t Fl) >gg + < F(2) >gg ]

i [< F()t P >gg + < F(1) >gg1 (2.28)

I For further simplification, let us define a projection operator g that projects out from H

only those terms that we have assigned to GM:

g H = G(1) (2.29)

From Eq. (2.17), we have

I F(1) = "dt (H - gH), (2.30)

I
and we therefore define a projection operatorf through

Sf H f dt (H - gH) = F(). (2.31)

I
The higher orders of G(a) and F a ) can then be expressed asI

I G(2) = g HfH

F(2) = fh f H - 2 H g H

I21
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G(3 ) gHfHfH - gHf 2 HgH I
F(3 ) =fHfHfH -fHf 2 Hgh 3

-f2gHfH -f 2 HfHgH +f 3 lHgHgH (2.32) I
Eqs. (2.28) can now be written in terms of , H, and the projection operatorsf and g: I

p(r() = <i ,t ft P >gg + < Pf HA>gg

p(2)(t) = <jtft> + < f H >gg + <fHf >gg I
= <W ftP >g + < kt Pf> 8  + ff> 8

p(3)(t) = <pfHfHfH>g8 + <ktftfHfH>gg

- <Pf 2 H>gg<gHfH>gg - <fHfH>8 <Htff >

- <HtftffH><fH>gg - <fHfH 8>gg<Pf H>gg

+ Hermitian conjugate (2.33) 5
N

where we have made use of < gH >88 = 0.

As an example, we calculate the linear polarizability aqj(-co; d) given by I
I

p (a- aij-co;o) EW (2.34)

The second term of p(%l)) in Eq. (2.33) can be expanded as 3
223



<pifH>gg = ,< Pi>gn<fH - ng (2.35)
n

where we now consider the i-componLnt of the polarization. Explicitly writing out -

and H, we get

< Pif H >gg = <gleiHSIT pi e- iHp1 
/ - <pi>gg In>

n

<nI (i) - If (eiHSTh HI e- HOtih - <HI>gg) Ig> (2.36)

which reduces to

< if H >gg = (01)-  <gI piIn> e-i(wn-g)t <nIfHl ei(wn - g)t Ig> (2.37)
n

where the prime on the summation indicates that the ground state is omitted from the

sum (n * g). Expansion of HI as a Fourier series and performance of the time integral

involved in the definition off yield

<Pih~g i/t -1  I' <gI pilIn> <nI HOli g>
< ifH>g= (h IIEI -e-iwi (2.38)

n O)ng - Oj

The first term of p(1)(t) in Eq. (2.33) is simply the complex conjugate of Eq. (2.35).

The polarization p(l) Wat frequency co t"s then given by
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I

S gI p1 In> <nl Hw Ig> <gI H a In> <nl pi Ig>p(!a = 1 <lp-ln InH 1 (2.39)

t n ong - (t0(Ong + 0)

I
and %(-o;t) is

aij(-_o;o)= e2  ' [ <gI ri In> <ni r Ig1> + <gIr In> <nI r' Ig> j. (2.40)
t n (Ong - () (Ong + 3

This is the usual expression for the linear susceptibility and is well-behaved in the

CO - 0 limit. 3
To obtain the third order polarizability ?yj ,(-(4;olo(,co3) as defined in Eq.

(2.1), we must evaluate pi3)(t) from Eq. (2.33). Each term in Eq. (2.33) involves three

f-ctors of HI which have components that oscillate with frequencies cOl, co2 and 03. 3
We define a permutation operator 112. that averages over all permutations of col, o2

and aY3, where the associated indices j, k, and I are also permuted with the frequencies

to ensure Yijk(-,)4;col,0W2,Co3) = Yijjk(-(o4;o03,ol,o2) and similar permutations are valid. I
The susceptibility ^fijk('Os;wOl,o2,0o3) is given by U

yjjk/(-c,)4;cI(l,02,co3) = K(-'4;col,w'2,Co3) (f) 11.2.3
ft3

ri - i -k 7kI -m rk I[ r9M3 rM13m2 rm2.1 r,~12  + rg1,3 rm3M2 rMins rgig1
rm rm]m rmigl rj3 lg r

rm3  3m2 r_ 2m g + r _m3 2im2mr 19

(0)g+G) )(o2+(o1+(2)(o)mg,, 3) (COm3+ 0))(coM 2,+Col+(02)(omig+ 4)
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I

mIM2 (COm2g-(O4)(Om2g-3)(Wtmg-W)() (0g0))( *n lg+(2) (O),n I g-O) 1)

r r r g rg , r,,gI +2 r in2g gmrmjg +M k2
(comg+Q4)(com 2g+(03)(MOmlg+cO1) (O)Pn29+O3)(o(tmgO)2)(oWmjg+O) 1)

(2.41)

where rmim2 is the matrix element <m I1 1 m2 > (=r - < r' >gg), liOmtg is the

3 excitation energy of state ml, and the prime on the summations indicates a sum over all

g states but g. The factor K(-0o4;col,c2," 3 ) arises from the distinguishable arrangements

of wj, o2, and w"3 that can contribute to yjjk(-w4;(olco2,3) and from the factors of 1/2

i in the definitions of the Fourier amplitudes of HI and p in Eq. (2.14). The numerical

3 values is given by K(-o;)1,o)2,oY3) = 2- m D where m is the number of nonzero input

frequencies minus the number of nonzero output frequencies and D is the number of

distinguishable orderings of the set ({co, w,2, o 1. Given the transition dipole moments

and excitation energies of the electronic states for a particular molecular structure, we

can calculate yijk(-o4;w,w2,c3) for any given set of frequenices and for any third

order optical process. We note here that some authors choose to include

K(-(o;aI,w2,oq) in the constitutive equation (Eq. (2.1)) explicitly rather than

incorporate it in yjjk(-of;wOlO?,co3). 7 In fact, comparative nonlinear optical

measurements are complicated by the many different definitions that have been adopted

3 25



I
I

for yijk(-co;o,,oo)3). The relationships between the most common notations are

given in Appendix A. 3
I

C. Multi ple-Excited Configuration Interaction Theory

and Self-Consistent-Field Molecular Orbital Methods I
I

In order to evaluate Eq. (2.41) for yijkl(-oU;(ol,O2,(03), we require the excitation

energies and transition dipole moments for the electronic states of the molecular system. I
We review here the basic principles of the all-valence electron, self-consistent-field, I
molecular orbital methods9 ,10 employed to calculate the ground state wavefunction as

well as the multiple-excited configuration interaction theory I that incorporates electron I
correlation into the determination of excited state properties. 3

The molecular Hamiltonian Htotal is given by I
Htotal(l, 2,...N; 1, 2,...n) = - A A A + A<I AB

112  V2 e 2 ZA e 2

T i A i rAi i <j rij

where N and n are the respective numbers of nuclei and electrons, MA the mass of

nucleus A, ZA e the charge of nucleus A, m and e the electron mass and charge, and rij

the distance between particles i andj. Tie terms in Eq. (2.42) correspond in order from I
left to right to the kinetic energy of the nuclei, the Coulomb repulsion between nuclei, 3

26
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the kinetic energy of the electrons, the Coulomb attraction between nuclei and electrons,

I and the Coulomb repulsion between electrons. Since the nuclear masses are several

thousand times larger than the electronic masses, we make the approximation that at any

given time the electrons adjust to the instantaneous nuclear configuration as if the nuclei

n were motionless. This is, of course, known as the Born-Oppenheimer approximation

3 and reduces the Hamiltonian to

IH(O, 2,...n) h2 2 A e2M <j~ (2.43)TM A i rAi i<j rij2.3

I
where it is understood that H(1, 2,...n) is also a function of the given nuclear

configuration. The many-electron wavefunction TPm(1, 2 .... n) is given by the

Schrodinger equation

I
H(l, 2,...n) Tm(l, 2,...n) = Em'Pm(I, 2,...n). (2.44)

Equation (2.44) is still too complicated for exact solution because the third term

of Eq. (2.43) couples the wavefunction of each electron to all the other electrons in the

system. The orbital approximation constructs the many-electron wavefunction from

individual wavefunctions determined for each electron. To maintain the antisymmetry

of the overall wavefunction, it is taken as the Slater determinant of one electron of each
IQ

of two possible spins occupying the orbitals Om:
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I

'F(l, 2,...n) = I 4 'iDI 0 2Z 2...?n/2n/2 I (2.45) I
where (bn and Zbm are one-electron orbitals of opposite spin. 3

To develop equations that provide (Dm, we first separate Eq. (2.43) for

H(1, 2,...n) into one-electron and two-electron parts H' and G ', respectively: I
I

H =H'+ G' (2.46)
where I

H2 V2 2 ZAh= (2.47)3

and

G' 2  g'(i,j) (2.48) Ii<i rij i<s I
The total electronic energy E is given by

n/2 n12 n/2

E = <FIHIF> = 2 H:. + (2Jij-Kij) (2.49)

whereI

Hii f J (1) h'(1) i(1) dti (2.50) I
and i, j sum over the n/2 occupied molecular orbitals. The Coulomb integral Jj and 3
exchange integral Kj, given by

~I

Jyj = f b()(,()-~il j2 l,2 (2.51)
j r12
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and

Ij = JJf (D(1) (;(2) -J(1j~) (i(2) dTldT2, (2.52)I
respectively, represent the Coulomb repulsion between electrons in orbitals (Di and Cj

i and the exchange interaction between electrons of parallel spin in orbitals (bi and Oj that

results from antisymmetry of the total wavefunction. If we define one-electron orbital

energies E, by
n/2

Ej = Hii + -ij Kj) (2.53)
j then

n/2 n/2 ni2

E=2 E,- (2ij -Kij) (2.54)

1 where the second term corrects for double-counting of the electron-electron interaction

energy.

The solution for ODm can be obtained by the method of Lagrange multipliers.

i When we include the orthonormality constraint that

I
SO f J(i (1) 0j( 1) dt I = 8ij, (2.55)

i the solution is obtained by minimizing the function

G = E - 2 1 Eij Sy = 2 , ii + 1. (2Jij - Kij) - 2 1 ij Si (2.56)
zd i id id
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where e0 are the undetermined Lagrange multipliers. This leads to the differential

equations I

{ h'(1) + I [ 2j(l) - Kj(l) i (1) = Ei Oi(l) (2.57)
1=1I

where we have made the unitary transformation in which the only nonzero elements of

the Lagrange multipliers Eij are the diagonal values, denoted E,. The Coulomb and

exchange operators Jj and Kj, respectively, are defined by I

J(l1) ( [D ) ;(2) f 40 1 (2) d21 ] 0i(O )

K(l)4'i(l) = [ 4 ) Oi( 2)dT2]010). (2.58) 3

The eigenvalues ei are equal to the one-electron orbital energies Ei defined in Eq. (2.53). I
Equations (2.57) are the Hartree-Fock equations that allow for solution of the set 3

of orbitals 0i, but the equations themselves are dependent on Oj through the operators

Jj and K. This requires an iterative solution that is simplified if the orbitals are further

approximated as linear combinations of atomic orbitals (LCAO), 3
I

0b I CW .U (2.59)
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where O is an atomic orbital. We define the atomic overlap integral Sgv and density

Imatrix Pgv as

I

g P~= 2 c*. cvi (2.60)

U where the sum over i in Pgv is over each of the doubly-occupied molecular orbitals.

3 The total electronic energy E given in Eq. (2.49) can be expressed in terms of the atomic

orbitals as

E = Ppv Hv + PgvX[(I V o ) - ( l vo )] (2.61)
A.V 2 AX

where

I = J' (1) h'(1) Ov(1) dt 1  (2.62)

3and
(iv I :2) 0((2) dTldT2. (2.63)r

3 The Lagrange multiplier equation that corresponds to Eq. (2.57) in terms of the atomic

orbitals is

(Fv - ei Spy) Cvi = 0 (2.64)

31

I = m • •• m m i | i || I i I



I
I

where the Fock matrix Fav is defined by I

= Hav + I Pxa [ (v I .a) - . .I va)]. (2.65)

Solution of the algebraic set of equations (2.64) yields the molecular orbitals (?i in terms

of the atomic orbital coefficients cvi. Since Eq. (2.64) involves the remaining set of

coefficients cW through P±v, it still requires iterative solution. I
We now turn to the further approximations and parameterizations that are

specific to the CNDO/S method.5.6 The atomic orbitals Og are approximated as Slater-

type orbitals when the radial part is given by U
I

Rnt(r) = (2 )n + 1/2 [(2n)!-1/2 rn - I e-4  (2.66) I
where n is the radial quantum number and is the Slater exponent. The angular 3
dependence of the wave functions is given by the spherical harmonics, Yim(O, 0). In

Roothaan's equation (Eq. (2.64)), the zero differential overlap (ZDO) approximation is

made for the overlap integrals StLv, I
U

SILV = 8lVa. (2.67)

The ZDO approximation is also made for the two-electron integrals such that 3
32

I



I
I

I (vI XI) = v 8ke ( P41 IXX . (2.68)

I
We will use gA to denote orbital g on atomic site A. Then the one-center integral

, 1A I VA VA) is taken as an input parameter that is independent of orbital type,

I
l ( 9AA I VA VA) = yA, (2.69)

and the two-center integral is given by the Ohno potential, 12

1 (9AIAV8VB) = Y =14.397 eV A

( [28.794eV A 12 + [RAB(A) ]2}1/2 (2.70)

YAA + YBB

i For the one-electron part of the Fock matrix, denoted by Hgv, the diagonal

elements are given byI
I = !p - (ZA - 1)y y (2.71)

I where IIL is the amnete ized ionization potential for orbital and ZA is the net core

charge of atom A. The off-diagonal elements of Hpv, which represent the bonding

energy of a shared electron, are taken as

HpLv = [(DA + OB) / 2] Sgv (2.72)
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where 3A is the empirical resonance integral of site A and the ZDO approximation is not 3
employed here for S v .

The final equations from which the orbital coefficients Cvi are obtained are I
v (Flv - i Iv) Cvi = 0 (2.73)

where I
FW = lg - (ZA -1) YAA + (PAA - Pgp) AA +B, I (PBB ZB) YA I

(2.74)

andU

Fv -(PA + PS)/2 Sgv - "PgvYAB (A*V) (2.75)1

where PBB is the sum of PU where X is any orbital centered on atomic site B. I

Equation (2.73), together with Eqs. (2.59) and (2.45), yields the ground state

electronic wavefunction for the molecular system of interest. In order to obtain the

excited state wavefunctions and energies, we perform a double-excited configration

interaction calculation. 1 Each state of the system Tn is expanded as 3

In= An.0'YO + Y, 1 An Op'Pkp
kuI P= n12 + I

n/2 n/2 M M

+ I =, I. n/2, II AnJplq' Pkplq (2.76) 3k-i I= Ip- n/2 + I q- n/2 + I
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I where To is the ground state wavefunction, 'p is a spin-singlet, single-excited

configuration given by

2-/ (vk =0 b ..(kk k ..OI4W

- I4l0l"'.4OkCk+l)k+'...n/26n2'OpI ) (2.77)

where p is a virtual orbital that is unoccupied in T o, and Pkplq is an analogous spin-

3_ singlet double-excited configuration. The coefficients An.i where R represents the set

of molecular orbitals involved in the configuration, are determined by

I I An.R (HRs - En SRS) = 0 (2.78)

R

where HRS = < YR I H I TS > with H defined in Eq. (2.46), En are the eigenvalues of

HRS, and SRS is the overlap between TPR and IFs.

The molecular dipole moment operator gt is defined as

S= -el ri + eIZZArA (2.79)
i A

where i sums over the valence electrons and A over the atomic cores. Within the Born-

Oppenheimer approximation, the second term of Eq. (2.79) is constant and only

contributes to the diagonal elements of Pm,' where
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Ann' = <Tn pI n'>. (2.80) 3

If we rewrite the expansion of the state function 'n as

I
T n R (2.81)

where 'R is either the ground, a single-excited, or a double-excited configuration, we I
obtain 3

Ann' = n, An'.S < TR I g I TS > (2.82) IR.S

I
where < TR I I ''S > is the transition dipole moment between the configurations 'R

and Ts.

As an example of the transition moment between configurations, we consider the 3
integral between the ground configuration 0 and the single-excited configuration Tik

that involves promotion of one electron from molecular orbital O to orbital Ok. We

wish to evaluate 3
I

< O I r(l) I ik > = 410(1, 2 .... M) r(l) Pik(l, 2,...M) d d2...dM (2.83)

3I
I
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where M is the number of valence electrons. Recall that TFO and 'Pik are constructed as

I Slater determinants of orthonormal molecular orbitals. Expansion of WO and 'Pik into

j the individual terms of the Slater determinants yield many integrals suh as

i Jp(2)0 q(2) d2 = 0 (p * q) (2.84)

I
that vanish by construction of the orbitals. The only terms for which the integrals over

I dt2.. .d-M do not yield zero are those for which electrons 2, 3,..M occupy the same

I orbitals in T'0 and 'Pik. But we note that TO and 'Tik differ in only one orbital from

which they are constructed, and, therefore, the only nonvanishing term is that for which

electron I is assigned to (i in TO and 'k in 'Pik. Integration over d2.. .dM for this

term results in

S<T'O Ir(l) I Titk> = 21/ 2 f Oi(1) r(1) Ok(l) di1 (2.85)

where the factor 2112 is due to the spin-singlet construction of 'Fik. We can then,

finally, evaluate y*A-o;oI j,ow2,o)3) through Eq. (2.41) with the electronic excitation

energies and transition dipole moments for the molecular system obtained as prescribed

I in this i etio.
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Chapter 3

I ELECTRON CORRELATION DESCRIPTION OF yu*L(-o4;o)1,wzw3)

FOR CONJUGATED LINEAR CHAINS

I A. Introduction

I
In this thesis, we will concentrate on the hydrocarbon chains known as polyenes

as the archetypal examples of organic conjugated linear chains. I Each carbon atom site

in a polyene chain is sp2 hybrid bonded to its three nearest neighbor carbon and

hydrogen atom sites. The first and last carbon sites are each bonded to one carbon and

two hydrogens while the internal carbons of the chain are bonded to two carbons and

one hydrogen. The carbon sp2 hybrid orbitals, together with the hydrogen Is orbitals,

combine to form bonding molecular orbitals of a symmetry. To an excellent

approximation, the o bonds lead to a planar molecular structure with each bond pair

I separated by 120. For example, electron diffraction data of hexatriene (HT), the

polyene with N = 6 carbon sites, are best fit by a planar configuration with minimum

and maximum bond angles of 115.0* and 124.40, respectively. 2

The remaining electrons (one 2p electron per carbon atom site) form a franework

of deloalzed, -electrOn molecular oritals. These weakly bound x-electrons are

responsible for the low-lying electronic excitations of polyenes, and, importantly,

through their large transition dipole moments they dominate the molecular nonlinear

optical susceptibilities 0q,(-n;w1,(o2) and yh-("W;1,o),o3) of these conjugated
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structures. The x-electrons do not distribute uniformly across the carbon sites; instead,

they form a ground state where the charge density is largest at the terminal carbon- I
carbon bonds and alternates between hi,h and low densities moving inward along the 3
chain. As a result, polyenes have a dimerized bonding structure where the short, double

bonds are due to larger bonding electron density. Electron diffraction data for HT yield U
a short bond length of 1.337 A and a long bond length of 1.457 A.2

B. Conformation, Symmetry, and Parametrization U
I

Various structural conformations of polyene chains can be considered based on

rotations about the carbon-carbon bonds. The two most common conformations, all-

trans and cis-transoid, are shown schematically in Figure 3-1 for the particular case of 3
N = 6, HT. Nomenclature for the conformational structures is by reference to the

locations of the neighboring carbon-carbon bonds relative to a given bond. The

structure is said to be trans if the neighboring bonds of a particular bond lie on opposite I
sides of that bond's axis and cis if they lie on the same side. In an all-trans polyene,

then, all bonds are in the trans structure. In a cis-transoid polyene, the single bonds on

either side of each double bond are in the cis structure while the double bonds on either I
side of each single bond are in the trans structure. In this chapter, we will consider only

the all-trans conformation, hereafter referred to simply as trans, which is the~I

energetically most stable conformation. In Chapter 4 we will present results for the cis-

I
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transoid conformation, hereafter referred to as cis, and compare them with the results for

the trans polyenes.

The trans polyenes belong to the C2h symmetry group, where C2 refers to a two-

fold axis of rotation (e.g. a g rotation about a C2 axis results in an equivalent

structure). 3 The C2 axis lies perpendicular to the molecular plane (out of the page in

Figure 3-1) and passes through the center of the central bond. In addition to the C2

axis, trans polyenes also possess a mirror plane which is the molecular plane itself.

Since the C2 axis is defined as the vertical axis, and the two planes that contain it, as

vertical planes, the reflection operation that the trans polyenes possess is oh where the h

refers to the horizontal plane, or equivalently, the plane perpendicular to the C2 axis.

Thus, C2h refers to the symmetry group that possesses a two-fold rotational axis and a

I mirror plane that is perpendicular to that axis.

The C2h symmetry group has four irreducible representations that are labeled Ag,

Au, Bg, and Bu. A and B refer respectively to symmetric and antisymmetric

I representations with respect to the C2 operation, and u and g refer respectively to

symmetric and antisymmetric representations with respect to the inversion operation.

The transformation properties of each irreducible representatict i of the C2h group under

the E (deatity), C2, i (inversion), and ch operations are given in Table 3-1. The self-

consihlm poud stae electronic wavefunction is the Slater determinant of the lowest

energy molecular orbitals, each doubly occupied, and the MOs are all either of a or x

synmmry where a is symmetric with rsect to the ah operation and x is antisymmetric.

I Double occupation of each orbital leads to a wavefimction that is necessarily symmetric
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under the ah operation and therefore of either Ag or Bu symmetry. Since pairwise filling

also leads to a symmetric wavefunction with respect to the C2 and i operations, the I
ground state is an Ag symmetry state. Furthermore, we will consider only xr -* n*r

excitations which must also necessarily be symmetric with respect to (h. AU x-electron

states of a trans polyene are therefore of either Ag or Bu symmetry. I
For complete identification of each individual y-electron state, we number the

states according to ascending energy within each of the two symmetry classes. Thus, the

ground state is labeled I IAg and the next lowest energy state of the same symmetry is I
21 Ag while the lowest energy state of opposite symmetry than the ground state is

denoted 1 IBu. The superscript 1 indicates that the state is a spin singlet. As a final

point with regard to symmetry, we point out that there are strict dipole selection rules I
within the g-electron states. One-photon transitions are allowed only between states of 3
opposite parity. Thus, the 'Bu states are one-photon allowed and two-photon forbidden

transitions from the 1 IAg ground state and are therefore known as one-photon states.

The excited IAg states, on the other hand, are two-photon allowed and one-photon

forbidden and are referred to as two-photon states.

Standard bond lengths, bond angles, and parametrizations of the carbon and

hydrogen atomic orbitals were employed for all calculations we carried out of various I
chain lengths and conformations. The geometry was taken to be planar with 1200 bond

angles, double and single carbon-carbon bond lengths of 1.34 and 1.46 A, respectively,

and carbon-hydrogen bond lengths of 1.09 A. The parameters for Slater exponents 4, I
valence-state ionization energies 1, Coulomb repulsion integrals y, and resonance

42

I



integrals A for the carbon 2s and 2p orbitals and the hydrogen Is orbitals are listed in

I Table 3-2. An earlier theoretical study of the excitation energies of low-lying states of

polyenes found that, compared to higher levels of configuration interaction, calculations

that include all single and double-excited configurations (SDCI) obtain proper state

I ordering and yield close results for transition dipole moments but they overcorrelate the

ground state relative to the excited states.5 That is to say, the lowering of the ground

state energy by inclusion of double-excited configurations is out of proportion to the

energy lowering of the excited states. Furthermore, this effect was found to increase

roughly linearly with increased chain length. By simply including a fraction of the

ground state correlation energy in the excitation energies,

AE (i - ground) = ED(i) - (A / N) ED(ground) (3.1)

where AE is the excitation energy of state i, ED(i) and ED(ground) are the SDCI energies

I of the i and ground states relative to the SCF ground state, and N is the number of

carbon sites in the chain, the SDCI results are in good agreement with computationally

exhaustive, higher levels of configuration interaction. 4 .5 In all of our calculations, we

I have qlde use of Eq. (3.1) with A = 3.

As a dentaration that the theoretical results appropriately describe the it-

electron states of polyenes, we compare in Table 3-3 the theoretical and experimentalI 4

values of the 21As and llB excitation energies for the chain lengths N = 4 to 12. The

theoretical values are compaed to experimental vertical excitation energies rather than
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0-0 excitation energies since the calculations are performed under the Born-Oppenheimer

frozen geometry approximation. Importantly, theory and experiment agree that the 21Ag I
state is of lower energy than the 1 Bu.

The relative locations of the 1 IBu and 2lAg states has been a critical issue in

polyene spectroscopy. I For many decades, simple molecular orbital methods had been I
believed to accurately describe the polyene excitation spectrum since they correctly

obtained the large absorption peak due to the I IBu +- 1 1Ag excitation. Hudson and

Kohler found, however, in studies of a substituted eight site chain (1,8 diphenyl- I
1,3,5,7-octatetraene) that an electronic excitation of one-photon forbidden symmetry that

lies below the I IBu state is responsible for the displaced origin of the fluorescence

spectrum and for the anomalously long fluorescence lifetime following excitation into

the 1 'Bu state. 6 Schulten and Karplus subsequently demonstrated that the experimental 3
observation that the 21AS state is lower in energy than the I 1Bu can be correctly obtained

only by calculations that account for electron-electron interactions through multiple-

excited configurations.7 The existence of a low-lying two-photon state is one clear

signature that electron correlation effects play a dominant role in polyene electronic

structure. One major conclusion of this thesis is that the importance of electron

correlation is evidenced just as clearly, if not more so, in the nonlinear optical properties I
of these conjugated linear chains.

I
I
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C. Hezatriene (N = 6)I

I We begin the discussion of the origin of nonlinear optical properties in polyenes

with a detailed discussion of yjkX(-o4;tol,w2,03) for HT (N = 6) for two principal

reasons. Because HT is one of the shortest members of the polyene family, the results

I of the calculation can be presented and interpreted in an easily manageable manner. In

addition, since HT exists at room temperature as a fairly stable liquid and is easily

evaporated into the gas phase if needed, it is a suitable system for experimental study. A

thorough comparison between the theoretical and experimental results for HT is made in

Chapters 5 and 6.

The SCF ground state consists of thirteen doubly-occupied, tightly bound a-

I electron molecular orbitals (MOs) and three doubly-occupied x-electron MOs. The

I occupied -electron MOs exist at higher energy than the occupied a MOs, and, in

addition, the three lowest energy unoccupied MOs calculated are also x orbitals. The

lowest lying electronic excited states therefore involve transitions of electrons from the

oc upied x MOs to the unoccupied x MOs with the occupied a orbitals unchanged.

Figure 3-2 (a)-(c) and Figure 3-3 (a)-(c) show contour diagrams of the three occupied

and wnoccupied xt MOs of HT, respectively, in order from lowest to highest

I ener. Solid and dadiad lines correspond to opposite signs of the one-electron wave

function, and the contour cut is taken 0.4 A above the molecular plane since x orbitals

vanish on the atoms. The x orbitals are numbered O13,0i, 1016 017,018, and O19

I in order from lowest to highest energy. The lowest occupied x MO is numbered 013
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rather than 014 because the highest occupied a MO is, in fact, calculated at a slightly

higher energy than the lowest x MO. I
The x-electron excited states are obtained by configuration interaction of all

single and double-excited configurations from the three occupied it MOs to the three

unoccupied xt MOs. This leads to a total of 55 calculated states. The excitation energies I
and x-components of the transition dipole moments of each state with the ground state,

x x

and the I IBu state, . are listed in Table 3-4 for the lowest-lying calculated

states of HT. The 2lAg two-photon state at 4.59 eV is the lowest-lying excited state

followed by the I IBu state at 4.94 eV. With xLtB = 6.66 D, the I Bu state is 3
responsible for the large oscillator strength peak that appears in the HT linear absorption

spectrum in the near uv. The . values that are identically zero for all lAg states and

the .l1B that are identically zero for all IBu states clearly demonstrate the dipole 3
xxselection rules. In addition to the large xl1u between the ground and I1IB u states,

95IAg, IIB u has the extremely large value 11.40 D. This is a critical virtual transition for

yijk(-(o4;wol,w2,O3) as will be demonstrated below. I
The calculated values for the individual tensor components of the dc-induced

second harmonic susceptibility yik,(-2 );o,o),O) of HT at a nonresonant fundamental

photon energy of n 65 eV (X = 1907 nm) are y= = 24.9, ys = 2.0, 'yy = 2.0, i
Yyxxry = 2.0, yyyxx = 2.0, and yry = 0.5 x 10-36 esu. Components of the form yijij are

identically equal to components of the form Yiijj due to the symmetry of their frequency
~I

arguments. Components of the form yiiU and yijij are not strictly identical, however,

due to dispersion; but at this low photon energy, the dispersion between these
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components is weak. The component with all electric fields along the x axis, yx=,

I where the x direction is defined along the axis of conjugation, is the dominant tensor

3 component of yijk,(-20);0o,co,0). This is reasonable since the largest transition dipole

moments are along the x axis. Transition moments along the transverse y axis are much

I smaller because of the gileater confinement in that direction; and transition moments

3 along the z axis perpendicular to the molecular plane vanish due to the antisymmetry of

the xt orbitals about the molecular plane.

For the third harmonic susceptibility )Ijk((-3;co),aco), the calculated tensor

components for HT at 0.65eV are yx = 4.7, yxxy = 0.4, -yyxx = 0.4, and yy =

0.1 x 10-36 esu. By symmetry of the associated frequency arguments, the Yxxyyy 'xyy,

and y ox components are identical. Again, as expected, the dominant tensor component

is yxx= where all electric fields are along the axis of conjugation. The larger value of

yf(-2);c,o),0) compared to yxx=(-3o;co,o) is a result of the factor

K(-o.;o)Iw2,o3) in Eq. (2.41). Since K(-2a);co,to,0) = 3/2 and K(-3wO;co,O,O) = 1/4,

i in the limit co -+ 0 we would have yxxx(-2;o-,w,0) = 6 y,,,(-3o;w,co,o). Dispersion

is responsible for the fact that the calculated value of y~a(-3;,o),co) is actually

slightly larger than 1/6 of yzta(-2o;o,o,0) at hm = 0.65 eV.

The values of RAA-o);(ol,o)2,o)3) were calculated according to Eq. (2.41) from

the exacion enagies and transition dipole moments of all x-electron states of HT. Of

all the terms from the triple and double summations of Eq. (2.41), it was found that a

single term dominates each of the two summations. Table 3-5 clearly illustrates this

feature where the contributions of each individual term to y..(-2axoO0) are listed in
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order of decreasing magnitude for the ten largest terms. The columns mI, m2, and m3

indicate the intermediate virtual states according to the notation of Eq. (2.41), and the I
final column provides the cumulative value of yxxrx(-2(o;co,o,) for all terms of equal or

larger magnitude. Terms from the double summation are denoted by m2 = I IAg and

include the overall negative sign of the double summation in the isted contribution. The I

value of yx(-2co;co,co,O) for the complete summations is determined to better than

85% by the two largest virtual excitation processes. In each of these two terms, the

1 1Bu state is intermediate virtual states ml and m3. The largest term has the 5t Ag state I

as the m2 intermediate state and the second term has the I IAg ground state as m2 .

The significance of these two virtual excitation processes can be understood

through examination of Eq. (2.41) and the transition dipole moments of the ic-electron U
states of HT. From Eq. (2.41), it is clear that the virtual xt-electron states of polyenes

must alternate in parity through the series IlAg -+ alBu --* biAg -+ cIBu- ' IlAg as a

result of the dipole selection rules where alBu represents intermediate virtual state ml,

bIAs represents M, and cIBu represents m3. Thus, the ml and m3 states must have 3
IBu symmetry and the m2 state must have IAS symmetry. The importance of the 1 Bu

state stems from its large transition moment gxt Inug with the I IAg ground state which is

much larger than all other x . The significant m2 intermediate states will then be those I

that have the largest n. IlBu. In addition to the II AS state, the other important lAg state 3
is the 5lAg state calculated at 7.97 eV with x4 lA, I Bu - 11.40 D. The 5lAg state is

much more significant to y=x(-2o;,w,O) than the low-lying, two-photon 21Ag state I

because of the small value xlA ie = 2.42 D. The magnitude and sign of
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yi"(-2) O,,O) is therefore essentially determined by just two virtual excitation

processes that contribute with opposite signs, namely, the larger and positive virtual

excitation process 1 'Ag --4 1B- 51Ag -+ I Bu -- 1 'Ag and the negative process

I Ag -+ I 'Bu - I Ag -+ I Bu- I Ag.

In general, six types of virtual excitation processes can be identified that

contribute to yijk(-o)4;(ola)2,(3). The six processes, identified as types I through VI,

are illustrated in Figure 3-4. Type I involves the same one-photon allowed state in the

roles of mI and m3 and the ground state as m2, and it belongs to the double summation

of Eq. (2.41). Type II also involves the same state as mI and m3, but the m2

u intermediate is an excited state. This type of process comes from the triple summation.

Types III and IV involve two different states as ml and m3 but are otherwise analogous

I to types I and 1I, respectively. The type V and VI processes involve virtual transitions

between the same state as represented by the horizontal arrows. Since this virtual

transition involves the diagonal matrix element 4 a < m I r I m >, the type V and VI

- processes can only be nonzero for noncentrosymmetric molecular structures. In the

centrosymmetric case under consideration here, they are identically zero by symmetry.

If there exists one transition moment x that is significantly larger than all other

1L1  &a since the contribution of the corresponding type I tan is proportional to

IgiQ 1 while the typ Ml term are proportional to -1 f2 Ig~x 12, the largest of all

possible type I and type I terms will be the type I term involving state d. It can be

sinilarly argued that if there are transition moments and g, that are mrtxh larger

than all other 1 and I- .respectively, where n represents a general state, then the
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~Ilargest of all type 11andIV terms wilbe the type 11process g -4d -+e -+ d -+g. In

the case of HT, the large values of I~'1lBu~g and I.51Ag.1 1Bu are responsible for the

dominance of yxx.(-2;o),oz,O) by the type I term I lAg --+ I IBu --+ I lAg --+ B u -

1IAg and the type 11 term IIAg -- lIBu --* 51 Ag --+ lIBu -- lIAg. The larger

magnitude of the positive type II term compared to the negative type I term determines U
the overall sign of the nonresonant yx.x(-2w;o),o,O) to be positive, a result which is I
corroborated by experiment 8 and, further, is in distinction from the results of several

theoretical methods that omit electron correlation. I
The 1 I Bu state is 94% composed of the single-excited configuration of one

electron from the highest occupied x-MO to the lowest unoccupied x-MO. The 21A8

and 51 Ag states, on the other hand, are nearly 60% composed of double-excited I
configurations. The important distinction for yxx~r(-2;o,co,O) between these two

highly electron correlated states is made most evident by the transition density matrix

Pn' defined through the expression

I
<9nn'>" = -e f r Pzn(r) dr (3.2)

with

Pnn'(rl) = J'*' (rl, r2,...rM) nV(ri, r2 .... rM) dr2...drM (3.3) U

where M is the number of valence electrons included in the molecular wavefunction.

Contour diagrams for pn.' of the ground, 21Ag and 51Ag states with the IIBu state are

shown in Figure 3-5 where solid and dashed lines correspond to increased and 3
50 1
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decreased charge density and the contour cut is again taken at 0.4 A above the molecular

plane. The contour diagram of P21A, 11BU shows that the 21Ag .-- 1I Bu transition

3 results in a charge redistribution concentrated at the center of the molecular structure

which yields a small transition moment of 2.42 D, and, correspondingly, a small

contibution to yx.tx(- 2 o;(oco,O). In sharp contrast, PS1Ag,llBu for the virtual transition

3 between the 5lAg and 1 Bu states produces a large charge separation along the chain

axis x-direction and an associated large transition moment of 11.40 D which dominates

the contributing terms of yx7 (-2(o;,.o,0). This previously unknown feature is key to

3 understanding the nonlinear optical properties of conjugated linear chains.

Table 3-6 lists the four largest configurations that compose the 21Ag, 1IBu and

51Ag states of HT. The notation 016 - 017, for instance, indicates the single-excited

I configuration in which one electron is promoted from 1)16 to 4'17. The 1 IBu state

consists primarily of the single-excited configuration of one electron promoted from the

highest occupied xt-MO to the lowest unoccupied it-MO and is therefore fairly well

U described in the independent particle approximation. This explains why simple MO

methods were for a long time believed to be sufficient for the polyene structures, since

the I IBu state dominates the linear absorption spectrum. The 51Ag and 21Ag states,

however, result from strong electron correlation effects as evidenced by their having

significant contributions from several different configurations, especially double-excited

i configurations. Both the 5'Ag and 2t Ag states have large contributions from the

double-excited configuration consisting of two electrons promoted from the highest

I-- occupied to lowest unoccupied xt-MO. Theoretical methods that neglect electron-
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electron interactions, therefore, inadequately describe the 51Ag state that plays a crucial

role in "yx(-2;o,w,O). I
Figure 3-6 displays the calculated dispersion curve for yxtXx(-2co;w,w,0) of HT

from 0.5 eV (X = 2.48 grm) to 3.0 eV (X = 0.41 gm). As can be seen in Eq. (2.41) for

YijkI(- 20o;oo),O), there exist 2o) resonances from both IBu and IAg states. The order in I
which these resonances appear in the DCSHG dispersion is simply the order in which 3
the states occur energetically. Thus, the first singularity in Fig. 3-6 at 2.30 eV, is the

2co resonance of the 2lAg state, and the singularity at 2.47 eV is the 2W resonance of the I
1 Bu state. Since these. two states are so close in energy, there is rapid variation in yxxx

in this region. Of course, in real systems natural broadening of the electronic states will

prevent divergence at the resonances and smooth out this variation. In fact, since the U
2 1Ag makes such a small contribution below the resonances, when appropriately

broadened, it is not noticeable in the dispersion of y3x(-2o;,wo,0). I

The natural broadening is accounted for phenomenologically by replacing the

transition frequencies owg in Eq. (2.41) with the complex quantities w.g - irm. Figure

3-7 shows the calculated dispersion for y.t(-2w;,wo,0) of HT with a representative

value Wf = 0.2 eV based on the width of the 11Bu *- 1Ag peak in the linear absorption

spectrum. The divergence that occurs due to the 2o resonance of the weakly I
contributing 21Ag state for 1Fr = 0.0 eV in Figure 3-6 is not apparent in Figure 3 7. 3
Inclusion of broadening eliminates the unphysical divergence for strongly contributing

states, as well, but y=r(-2 ;o,wo,0) does undergo resonant enhancement in these cases U
as evidenced in the 2w resonance of the 1 IBu state in Figure 3-7. Since the broadening 3
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term makes yx=(-2co;,co,O) complex rather than purely real, we have plotted the real

1 and imaginary parts of yxxa(-2o;co,oO) in Figure 3-7 along with the complex

magnitude. Measurements in a pure sample are sensitive only to the complex magnitude

of <Y(-2ocw ,O)>, but sample mixtures allow separation of the real and imaginary

components. It should be noted that at low frequencies, the broadened and unbroadened

dispersions are indistinguishable.

The calculated dispersion of yx x(-3co;o,o,,) for HT with lr = 0.2 eV is

illustrated in Figure 5-8. Compared to the dispersion of yxxx(-2co;(O,,0), the first

resonance occurs at lower energy in yxxx(-3co;oco,o). In THG, the IBu states have

both co and 3w resonances while the 'Ag states have only 2W resonances. In DCSHG,

the IBu states have (o and 2w resonances while the 'Ag states have only 2.o resonances.

I Dispersion therefore occurs at lower frequencies in THG than DCSHG due to the 3o

resonance of the I IBu state. In the wo -- 0 limit, on the other hand, we have the required

limit yx/x=(-2o),w,0) = 6 yx'xx(-3w;o(o,co,). The details of the mechanism for

I nonresonant yxx.(-3o;w,co,wo) of HT are in complete analogy to those of

yx=(-2o;,.o,O) described earlier in this section.

I D. Hexadecaoctaene (N = 16)

I
As an example of a long polyene chain, we now discuss in detail the origin of

Yijk(-04;0wl,W2,(03) in hexadecaoctaene (HDO), the chain with N = 16 carbon sites.

Most of the results are in direct analogy to those discussed in the previous section for
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HT. The primary exception is the larger number of key virtual transitions involved in

yjkl(-c.)4;(olOc2,o"3) for HDO as compared to only the 1 Ag --+ I IBu and IIBu --+ 5lAg I
virtual excitations and their corresponding type I and type U1 terms for HT.

The SCF ground state of HDO includes eight double-occupied ic-electron MOs.

Complete single and double-excited configuration interaction between the eight occupied I
and eight unoccupied MOs yields 2145 configurations which are diagonalized to form an

equal number of states. More generally, a single and double-excited configuratioi

interaction from n occupied to n unoccupied MOs results in (n2 +1) n2 / 2 double-excited U
configurations and n2 single-excited configurations in addition to the SCF ground state 3
configuration. The calculated excitation energies lIwng and transition moments tX andxI
anIl Bu are listed in Table 3-7 for the lowest energy excited states of HDO. The SDCI

calculation yields a I IBu excitation energy 0.06 eV smaller than the 21Ag excitation 3
energy. As a general trend for the SDCI calculation, the energy gap between the 2lAg

and 1 IBu states decreases with increased chain length until the states become nearly

degenerate at N = 14. Although this is in contrast to experimental data, in which the I
21 Ag - I IBu gap increases with increased chain length, electron correlation is still well-

accounted for at the SDCI level of calculation, and since the 2lAg state is not of primary

importance to yijk(-M4;(l,o2,(03), the SDCI calculation is an appropriate I
approximation. This will be confirmed by the agreement of the experimental results of

chapters 5 and 6 with the extrapolated length dependence of <y(-M04;co1,co2,(03)> from

the SDCI calculations. U
I
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The calculated values for the individual DCSHG tensor components of HDO at

U 0.65 eV fundamental photon energy are ym = 909, Txryy = 38.5, -fxyyx = 38.0, Yyyxx

= 38.4, yxxy = 37.9. and y = 5.1 x 10-36 esu. The Yxxx(-2co;co,w,0) component is

even more dominant in the case of the N = 16 chain than in the N = 6 chain as a result of

the increased aspect ratio of the longer chain. For the THG susceptibility

YjkI(- 3 o;wo), )), the calculated tensor components are yxxtx = 199, yxxyy = 7.8, yyyxx

= 7.8, and yyyyy = 1.0 x 10.36 esu. The ratio yxxxx(-2co;wo,co,0) / Yxxxx(-3;ro,,) is

4.6 at 0.65 eV, even smaller than the corresponding value 5.3 for HT. The greater

deviation for the longer chain from the o -4 0 limit value of 6 for this ratio is due to the

occurence of the 3o resonance of the 3.52 eV I IBu state of HDO for 11(o = 1.17 eV

compared to 11w = 1.65 eV for HT. The lower energy 3w resonance for HDO increases

the degree of dispersion between zero frequency and the fixed, nonresonant fundamental

energy 0.65 eV.

The largest contributing terms of y.xxtr-2w;wo,0) for HDO at 0.65 eV are listed

in Table 3-8 according to the same format as Table 3-5. The 1 1Bu state of HDO at 3.52

eV with tAlBulAg = 11.55 D plays a key role in yu=(-2o;,a,O) as in HT. In

addition, the high-lying O1 Ag two photon state at 5.77 eV with gt1A1 1'B = 19.38 D

is also important. The two largest contributing virtual excitation processes are then the

type 11 lAg -+ IBu --+ 101Ag-+- lBu -4 ltAg process and the type I lIAg1 - IBu

-- 1 Ag -+ 11Bu -+ 1 IAg process. In contrast to the HT case, however, there are other

virtual excitation processes that make smaller but significant contributions to

55



I

yxxr(-2o;co,wo,O). For instance, the 2lAg and 81Ag states are important due to their

respective .fl lIBu values 6.95 and 5.57 D. I
The transition density matrix diagrams for the llAg, 21Ag, and 1lOAg states of

HDO with the 1B u state are illustrated in Figure 3-9. The I1 Ag -+ I IBu virtual

transition results in a somewhat modulated charge redistribution that leads to the fairly I
large 1 ,Bu, 1Ag = 11.55 D whereas the 1Bu --+ 2lAg transition has the charge I
redistribution concentrated at the center of the molecule such that x = 6.95 D.

The 11Bu -* IOAg transition, though, produces a highly charge separated distribution I
with large x3iO0Ag,1IBu = 19.38 D. 3

The N = 16 chain, HDO, has yx=A- 2 ;(o),co,O) 37 times larger than the

corresponding value for the N = 6 chain even though the increase in chain length is only I
slightly larger than a factor of three. This is in large part due to the increase in the 3
transition dipole moments between the I1 Ag and I 1Bu states and between the I I Bu state

and the strongly coupled, highly correlated two-photon state (10lAg in the case of

HDO). The increase in the transition moments derives from the delocalization of these

states across the entire chain length. The large increase in yxxxx(-2o;o,JO) is also due,

however, to other virtual excitation processes that contribute significantly in the long

chain but not the short one and to the decrease in the excitation energies for the long I
chain. As in the case of HT, the statements made here concerning the origin of

yt.(-2o;co,,O) in HDO are applicable to all other yxxxx(-wa;oj),o)2,w3) at

nonresonant frequencies.

I
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E. Length Dependence of 'yijkl(-(04;O)l,(o2,03)

Complete SDCI calculations of yijki(-o 4;cw1,Q2,03) have been performed for the

trans polyenes of chain length N = 4 to 16 carbon sites. In each case, the general origin

I of YijkI(-O)4;(ol,1o2,co3) is similar to that described for the N = 6 and N = 16 cases, HT

and HDO, respectively. The calculated individual tensor components of the DCSHG

susceptibility yijk(- 2 oa;co,o,O) at 0.65 eV are listed in Table 3-9 for each chain length

studied. For all chain lengths, the dominant tensor component is yxtA(-2o;o,o),0)

which increases supralinearly with increased chain length. Figure 3-10 shows a log-log

plot of ytx(-2;o,o,0) at 0.65 eV versus N. The good linear fit indicates that

yxxx(-2wo;w,o,0) possesses a power law dependence on N with an exponent of 3.9.

The strong dependen,-.e of yxxx(-w4;0o),o2,o") on N is the primary reason for the

intense interest in conjugated linear chains as nonlinear optical materials. Although

various power-law behaviors for yxxx(-o4;wl,(2,w3) have been previously reported

I based on delocalized, noninteracting electron models, those calculations are in strong

3 disagreement with experiment in the magnitude, and in some cases, even the sign of

ymr(-os;wl,(o2,0o3), and are therefore incomplete descriptions of third order optical

I properties.9-11 The apparent similarity in power law behavior simply reflects the

delocalized nature of the conjugated bonds in polyenes as compared to, for example, the

linear dependence resulting from the bond additivity rule for localized bon,-s. We have

confirmed the calculated power law dependence of yxrrx(-ou;o 1 ,(o2 ,o 3) on chain length

I
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through our experimental DCSHG and THG measurements of HT and, especially,

carotene, and the results are presented in Chapters 5 and 6. I

Tables 3-10 through 3-14 list the calculated excitation energies and transition

dipole moments for the lowest lying states of the N = 4 to 14 polyenes excluding N = 6.

The corresponding data for N = 6 and 16 are given in Tables 3-4 and 3-7, respectively. I
For N = 4 and 8, there are just three key states and two principal virtual excitation 3
processes in analogy to the case of N = 6 described in section C of this chapter. The

1 lAg and 1 Bu states are important because of the large transition dipole moment I
X.11 Ag between them that leads to a major type I virtual excitation process. In 3

addition, in each case, there exists a single, strongly correlated, high-lying two-photon

state with a very large .L l1B, ForN = 4, this is the 4'Ag state at an energy of 9.18

eV; and for N = 8, it is the 61 Ag state at an energy of 7.16 eV. The type I virtual 3
excitation processes for these respective states make positive contributions to

yxt(-4;coI,c2,o3) that are larger in magnitude than the corresponding negative type I

terms. The competition between these two processes determines the magnitude and sign

of yxxa(-U;(ol,o2,o3). In the cases of the N = 10 and longer chains,

yxxxx-'*;Ol,co2,(o3) has significant contributions from more than three key states and

two virtual excitation processes. As described in Section D of this chapter for N = 16,

larger numbers of two-photon and one-photon states play important roles in 3
yu.%(-ou;mo,(o2,(o3) for the long chains.

In addition to the increase in ymu(-4;;owl,o2,co3) with increased chain length I
due to the larger nuanber of significant contributing virtual excitation processes, there are 3
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two other principal length dependent factors that lead to rapid growth of

y.,,(-o4;ol,o2,co3). First, the electronic excitation energies decrease with increased

chain length. As an example, Figure 3-11 shows the calculated I lBu excitation energy

11(0oIB u plotted against 1 / N. The 1 1Bu excitation energy decreases proportionally to the

inverse of the chain length with an infinite chain extrapolation of 2.8 eV. The decrease

in excitation energies increases the individual terms contributing to Yik/(o;ol,2, )

since tosg appears in the denominator of Eq. (2.41) for each intermediate virtual state m.

Second, the magnitudes of the transition dipole moments along the chain axis x

direction increase steadily with chain length. This is illustrated in Figure 3-12 where the

calculated transition moment lBu, IAg is plotted against N. Although the increase is

less than linear, the transition moment does rise monotonically with increased chain

I length. The correlated xt-electron virtual transitions produce a charge redistribution over

a length comparable to that of the chain, and this leads to increased yxx(-4;o1l,oa2,o3)

through the numerators of Eq. (2.41).!
F. Single-Excited Configuration Interaction Results:

Reduced CorrelationI

The importance of electron correlations to yTij(-04;(Ol,.o2,.o3) of conjugated

linear chains is further illustrated by results obtained from calculations at the SCI levelIQ
that purposely omit double-excited configurations (DCI) but are otherwise identical. As

I illustrated in Figure 3-13, at this level of calculation, the values calculated for
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nonresonant yxx(-2o,CoO) are negative in sign for all of the polyene chains,

contrary to the experimental results. This disagreement occurs because the SCI I
calculation inadequately describes electron correlation which we have found to be of

primary importance, such as in the illustrative case of the critical 51 Ag state of HT.

Instead, at the SCI level, yxxxx.-o4;o1,(o2,oY3) is predicted to be dominated solely by the I

type I virtual excitation process which involves only the I IAg and 1 Bu states. There is

no type II term analogous to the one found for the 51Ag state. Although the calculated

sign of yx xt(-2(o;wo,co,O) for each case is negative in contrast to the positive values I
obtained from the SDCI calculations, the power law dependence of yxxx(- 2 0;c,o,O) on

N is found to have an exponent of 3.9, the same as for SDCI calculations. This is,

however, purely accidental since the SCI calculation omits major virtual excitation

processes involved in yxxx(-2o;co, o,O). Thus, the predicted power law dependence 3
alone does not serve to identify calculations that adequately describe the mechanism of

"Yijk(-co4;0)1,0)2,(03).

I
G. Linear Polarizability

Attempts have recently been made 12 .13 to infer relative magnitudes of I

yijkJ(-ao);c1,o)2,co3) for various molecular structures from calculated results for the

linear polarizability %q/(-c;to) obtained through the expression

r ri
e2 gm mg Mg 9M

aj c~o)IM_ + 1.I (3.4)

I
m C0mg - CO Omg + O
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I For each chain from N = 4 to 16 we have studied, the term in which the I 1Bu state is the

intermediate is by far the dominant contribution as evidenced, for example, in Table

3-16 where the individual terms contributing to a0j(-.o;o) of HT are listed in decreasing

order. Since aij(-o;co) involves a summation over just a single intermediate state, for a

centrosymmetric molecular structure, only one-photon states can contribute; and

ai(-;o) is then dominated by the large oscillator strength transition. Two-photon

states cannot contribute to cij<-o;o)) even though they play a key role in

YikI(-(o4;(o1.&o2,o"3). Since -oc) is dominated by the 1 Ag - I 1Bu virtual

transition which is fairly well described by independent particle models, the importance

of electron correlation in polyenes that is clear in yijk1(-ii4;col,O2,0"3) and in the two-

photon states is not at all apparent in aq(-o,;o). It is clear from the above discussion

3 that it is inappropriate to draw conclusions concerning yijkI(-M;OI,O,2,3) from

aij<(-o;co) since tij (-o;o) entirely neglects two-photon states and is insensitive to

I electron correlation while both of these are critical to an understanding of

yqk1(-(4;(o ,cao2,oa). The calculated x-electron contributions to aoU(-O;(O) at 1.50 eV,

plotted against N on a log-log scale for N = 4 to 16 in Figure 3-14, demonstrate a power

I law dependence with an exponent of 1.7.

I
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Table 3- 1. Character Table for the C2h Symmetry Group.

Representation E C2  i ahI

Ag I

Bg 1 4 1 -

Au 1 -1 -1

Bu -1 -1 1I
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Table 3-2. CNDO/S Input Parameters for Carbon and Hydrogen Valence Shells.

Carbon Hydrogen

2s 2p Is

3.78 3.78 2.30

I(eV) 21.3 11.5 13.6

7eV) 11.1 11.1 12.8

U P(eV) 21.0 16.0 10.0
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Table 3-3. Theoretical and Experimental Values for 1 1Bu and 2lAg Vertical Excitation

Energies as a Function of Polyene Chain Length. I
l

I1Bu (eV) 21Ag (eV)

N(sites) Theo. Exp.a Theo. Exp.a I
I

4 5.77 5.91 5.31 5.4b,c

6 4.94 4.93 4.59 4.0b.d I
8 4.42 4.40 4.15 3.97

10 4.07 4.02 3.90 3.48

12 3.83 3.65 3.75 2.91

I
a B. S. Hudson, B. E. Kohler, and K. Schulten, in Excited States, Vol. 6, E. C. Lim,

ed. (Academic, New York, 1982), p. 14.

b 0-0 excitation energy. I
c R. R. Chadwick, D. P. Gerrity, and B. S. Hudson, Chem. Phys. Lett. 115, 24

(1985).

d B. S. Hudson and B. E. Kohler, Synth. Metals 9, 241 (1984).

I
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Table 3-4. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of trans-Hexatriene (N = 6).

I
State IC'ng (eV) gn (D) 4ntlBu(D)

21Ag 4.59 0.00 2.42

S11Bu  4.94 6.66 0.00

21Bu 5.22 0.17 0.00

31Ag 6.69 0.00 1.68

41Ag 6.80 0.00 0.63

31Bu 7.55 0.93 0.00

I 5t Ag 7.97 0.00 11.40

41 Bu 8.07 1.05 0.00

61Ag 8.62 0.00 0.87

51B u  9.11 0.23 0.00

I
I
I
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i I
Table 3-5. Largest Contributing Virtual Excitation Processes to yx...(-2o;o,Q,0) of

trans-Hexatriene at lico = 0.65 eV. I
U

mI m2 m3 Contribution (10-36 esu) Cumulative (10-36 esu)

1Bu 51Ag IlBu 47.5 47.5

1lBu llAg l 1Bu -25.9 21.6

1lBu 2lAg l'Bu 3.9 25.5

1 Bu 81Ag lB u  1.9 27.4

4 1Bu 51Ahg I1Bu -1,7 25.7

l'Bu 51Ag 41Bu -1.7 24.0

81Bu 51Ag lBu -1.2 22.8 I
1lBu 31Ag l'Bu 1.2 24.0

I
I

4 I
I
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Table 3-6. Configuration Compositions of the 21Ag, 1 Bu, and 51Ag States of trans-

Hexatriene.

i
21 Ag 11Bu1

Configuration Coefficient Configuration Coefficient

I
i 016,0 16---*0I17,017 -0.572 0I16---40 17 0.971

(16--- 18 0.473 (15-4018 0.159

U I15-'017 -0.388 (15,(16---D17,D17 -0.090

i i 05,0I 16---40 17,0118 0.274 0I 16,0 16-+0I 17,0I)18 -0.070

i 51Ag

Configuration Coefficient

i 15.-U17 -0.559

I 416,016-.017A 17 0.554

016.-+l8 0.373
015,0 16-+07,0'18 -0.244

I
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Table 3-7. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying xt-electron States of trans-Hexadecaoctaene U
(N -- 16).

State liO)ng (eV) X, (D) ,. 1BUD)

I
1 1Bu  3.52 11.55 0.00

21Ag 3.58 0.00 6.95

21Bu 3.83 0.30 0.00

31Ag 4.17 0.00 1.12

31Bu 4.48 0.07 0.00
41Ag 4.49 0.00 0.54

51Ag 4.64 0.00 2.90 I
6lAg 4.79 0.00 0.80

41Bu 5.03 0.04 0.00
51Bu 5.05 0.12 0.00

71Ag 5.12 0.00 0.54

61Bu 5.34 3.41 0.00

81Ag 5.39 0.00 5.57

91Ag 5.45 0.00 0.33

7 1Bu 5.75 0.12 0.00

1lOAg 5.77 0.00 19.38 I
81Bu 5.81 0.19 0.00
91Bu 5.90 1.41 0.00 3

I lt Ag 6.01 0.00 0.63

I
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Table 3-8. Largest Contributing Virtual Excitation Processes to ym.(-20o;,co,0) of
Tabl trans-Hexadecaoctaene (N = 16) at 1w = 0.65 eV.

U
mI m2 m3 Contribution (10-36 esu) Cumulative (10-36 esu)

l'Bu O1 Ag IIBu  1243. 1243.

ilBu lAg IlBu -712. 531.

ll Bu 21Ag lIBu 277. 808.

I lIBu 8lAg lIBu  Ill. 919.

91Bu O1 Ag IIBu  -74. 845.

1'Bu l0'Ag 91Bu -71. 774.

U 61Bu lOAg lBu -66. 708.

1 Bu 1lOAg 61Bu -64. 644.

liBu 201Ag lIBu  55. 699.

liBu i81Ag liBu 54. 753.

I
I

I
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Table 3-9. Calculated Tensor Components yijk(- 2 o;o,u),O) at 110) = 0.65 eV for the

trans-Polyenes in 10-36 esu.I

N (sites) xxxx yyyy xxyy yyxx xyyx yxxy

4 4.3 0.2 0.5 0.5 0.5 0.5

6 24.9 0.5 2.0 2.0 2.0 2.0

8 81.9 1.2 5.1 5.0 5.0 5.0

10 193.4 2.1 10.2 10.1 10.0 9.9

12 370 3.3 17.7 17.5 17.4 17.2

14 611 4.3 27.3 27.1 26.9 26.7

16 909 5.1 38.5 38.4 38.0 37.9
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Table 3-10. Calculated Tensor Components YijkI(- 3 o;o ,(o,(o) at 11O(= 0.65 eV for the

trans-Polyenes in 10.36 esu.

I
N (sites) xxxx yyyy xxyy yyxx

i 4 0.78 0.03 0.10 0.09

6 4.7 0.10 0.38 0.36

8 16.0 0.2 1.0 0.9

U 10 39.1 0.4 2.0 1.9

12 77.1 0.6 3.5 3.4

14 131 0.8 5.5 5.4

i 16 199 1.0 7.8 7.8

II
i
i

3 71

i



I
I
I

Table 3-i1. Calculated Symmetries, Excitation Energies. and Key Transition Dipole

Moments for the Lowest-Lying ir-electron States of trans-Butadiene (N = 4).

Sfto~g (eV) L8 (D) Lln BU (D)
S ae 

------ (e )-~

2t Ag 5.31 
0.00 

1.45

1 tBu 5.77 5.17 0.00

3t Ag 7.51 
0.00 

1.14

2IBu 9.04 
0.65 

0.00

4t Ag 9.18 
0.00 

8.34

31Bu 9.98 
0.17 

0.00

St A3 10.81 0.00 1.96 3

41Bu 13.20 
0.28 

0.00

2
I
U
I

7z I
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I
Table 3-12. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying it-electron States of trans-Octatetraene

(N = 8).

State hwng (eV) X (D) llS(D)I
21Ag 4.16 0.00 3.43

1B u  4.42 7.91 0.00

21Bu 4.78 0.14 0.00
I 31Ag 5.19 0.00 0.55

41Ag 6.01 0.00 2.15
5lAg 6.07 0.00 0.84

31Bu 6.47 0.02 0.00
41Bu 7.00 1.73 0.00
61As 7.16 0.00 13.78
51Bu 7.30 0.96 0.00

7Ag 7.42 0.00 2.40

8lAg 7.56 0.00 0.54

I
I

I
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Table 3-13. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying xt-electron States of trans-Decapentaene I
(N = 10).

State AiCOng (eV) X X (D)

2lAg 3.90 0.00 4.45

11B u  4.07 8.98 0.00

21Bu 4.41 0.16 0.00

3lAg 4.92 0.00 0.85

31Bu 5.16 0.05 0.00

4lAg 5.48 0.00 2.37

5lAg 5.53 0.00 1.09

41Bu 6.03 0.03 0.00

61Ag 6.30 0.00 1.27

51Bu 6.48 2.36 0.00

7lAg 6.59 0.00 14.72

81 Ag 6.77 0.00 6.47

61Bu 6.78 0.79 0.00

71Bu 7.06 0.01 0.00

I
4 I

I
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Table 3-14. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

I Moments for the Lowest-Lying In-electron States of trans-Dodecahexaene

(N = 12).

I xx
State lfong (eV) 9t,9 (D) 9n. I t u (D)

I
21Ag 3.75 0.00 5.39

5 1'Bu 3.83 9.93 0.00

21Bu 4.15 0.21 0.00

3Ag 4.60 0.00 0.98

31Bu 4.97 0.06 0.00

41Ag 5.08 0.00 1.77

51Ag 5.13 0.00 2.15

61Ag 5.15 0.00 0.61

I 41Bu 5.62 0.06 0.00

7Ag 6.02 0.00 2.69

5 51Bu 6.03 2.80 0.00

81Ag 6.13 0.00 10.68

5 61Bu 6.19 0.07 0.00

91Ag 6.30 0.00 14.04

3 71Bu 6.40 0.91 0.00

81Bu 6.59 0.03 0.00

I
I
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Table 3-15. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying nt-electron States of trans-Tetradecaheptaene I

(N = 14). 3
State hong (eV) tg (D) ,1Bu(D)

21Ag 3.65 0.00 6.23

11Bu 3.65 10.78 0.00 I
21Bu 3.96 0.25 0.00

31Ag 4.35 0.00 1.06

31Bu 4.71 0.07 0.00

4lAg 4.75 0.00 0.99

5lAg 4.84 0.00 2.75

61Ag 5.01 0.00 0.75

41Bu 5.13 0.03 0.00 3
51Bu 5.30 0.08 0.00

61Bu 5.65 3.14 0.00 3
71Ag 5.69 0.00 4.61

81Ag 5.73 0.00 5.46 I
91Ag 5.99 0.00 17.73

71 Bu 6.01 0.10 0.00

81Bu 6.11 1.12 0.00

I
I
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Table 3-16. Contributions of x-electron States to aa(-.o;w) of trans-Hexatriene at NO =

0.65 eV.I
State Energy (eV) atxx(-co;wo) (10-24 esu)

I 1IB u  4.94 4.12

41Bu 8.07 0.06

3 1Bu 7.55 0.05

81Bu 11.34 0.006

I
I

I
I

I

I
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(a)

I

(b)

I
I

Figure 3-1. Schematic diagrams of the molecular structures for (a) all-trans and (b) cis-
transoid hexatriene (HI).

I
I
I
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III III
---- - - - -- - - ----

IV V VI
-- ------ - - - -

Figure 3-4. The six general types of third order virtual excitation processes that
contribute to yikI(-c 4;.)l,c02,cq3). Types I - IV are allowed for molecular structures of
any symmetry; types V and VI are only allowed for noncentrosymmetric molecular

structures.
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(C)
,. I

(c) I

Figure 3-5. Transition density matrix contour diagrams of trans-HT for the (a) ground, I
(b) 21As, and (c) 5 Ag states with the I Bu state. The corresponding x-components of

the transition dipole moments are 6.66, 2.42, and 11.4u D, respectively. The contour

cuts are taken 0.4 A above the molecular plane.
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Figure 3-6. Calculated dispersion of yxtx.(-2o;w,co,0) for trans-HT withiF = 0. The

first vertical dash locates the 2w resonance of the I 1Ag state and the second locates the

2co resonance of the 1 Bu state.
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I
Figure 3-7. Calculated dispersion of yxx (-2co;o),,O) for trans-HT with F= 0.2 eV.
The solid curve is Pyxx(-2o;wo,0)I and the dashed and dotted curves are
Re[yx=(-2wo;(o,(o,0)J and Im[y=(-2o;(o,o,0)j, respectively.
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Figure 3-8. Calculated dispersion of yxxxx-3o;co,co) for trans-HT with tiF = 0.2 eV.

The solid curve is yr,(-3o;.,cco)l and the dashed and dotted curves are

Re[y rx(-3ao;co,co,co)j and Im[yxxa(-3o;co, o,)1, respectively.

85



(C)

Fi ur 3 9.Tr nsti n en it m trx on o r ia ra s f ra s-ex de ao ta ne(IO
forth () rond () 1 gan () 0 1Agstte wthth II u tae.Un
corepodig -c mp netsofth tanitondiol m metsar 1. 5,6.5,an
19.38D, rspectvely

(b)



1000.

e6 100.-

S

C~l

10.

10.

I - , I - I I I , I I,

2 10 20

Sites (N)

Figure 3-10. Log-log plot of yxxx(-2o;o mo,O) at lco) = 0.65 eV versus the number N
of carbon atom sites in the the polyene chain. The linear fit corresponds to

y tr(-2co;o,wo,O) - N3.9.

87



6.0

5.0

~4.0I

3.0

3.0I

0.0 0.1 0.2 0.3
1/N

Figure 3-11. The calculated jI Bu excitation energy of trans polyenes as a function of
inverse number of sites in the chain.
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Figure 3-12. The x-component of the transition dipole moment between the ground and

I~ Bu, states as a function of the number of sites in the chain.
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Figure 3-13. Log-log plot of yxu-2a)w,c),O) at 0.65 eV versus the number N of3
carbon atom sites in the the polyene chain for a calculation at the SCI level. Contrary to
experiment and multiple-excited configuratipn interaction calculations, the values of 3
yr~(-2(o;owco,0) are negative for this reduced correlation calculation.
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Chapter 4

EFFECTS OF CONFORMATION AND

1 NONCENTROSYMMETRY ON Yijk1(-04;(o1,o2,o3)

I
A. IntroductionI

I Having discussed in detail the origin of the third order optical properties of all-

trans polyenes, we now consider the effects on yijk(-(04;0I,o2,Wt3) of changes in the

structural conformation and symmetry to this archetypal structure for the general class of

conjugated linear chains. As a first important case, we discuss the effect of structural

conformation by way of the cis-transoid, or simply cis form. The origin of

1 Yyijt(-o)4; lo)2,(o3) in cis polyenes is found to be identical to that for trans, though the

I cis conformation possesses smaller yxvy(-oa;woi,o)2,o ). The reduction of

yxxa-z;co,coy2,o3), as we shall see, is a geometrical result of the reduced physical

length of the molecular structure.

The next important effect on "yjkX-ou;ol1,O2,(o3) is that of lowered symmetry

realized by heteroatom substitution of electron donating and accepting groups to the

ends of the polyene chain. The creation of a noncentrosymmetric molecular structure

I introduces previously forbidden virtual excitation processes to "ijkX-w4;(o 1,0)2 ,( 0 3) .

The new virtual processes, which involve diagonal matrix elements of the dipoleIi
moment operator, lead to an order of magnitude enhancement of yu.(-o4;CO1,2,o,3)

Icompared to the corresponding centrosymmetric conjugated linear chain.

I 93
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B. Structural Conformation: cis-transoid Polyenes I
I

The cis conformation is schematically illustrated in Figure 3-1(b) for the case of

N = 6. No cis-transoid form of BD (N = 4) is possible, so we will make comparison U
between our trans and cis calculations for chains from N = 6 to 16 sites. The first point

to note is that not all of these chains belong to the same symmetry group. The cis chains

with an odd number of short bonds (N = 6, 10, 14,...) are not centrosymmetric and U
possess C2v symmetry whereas the chains with an even number of short bonds (N = 8, 3
12, 16,...) belong to the C2h group along with the trans conformations. The states of

the C2v group are identified as AI, A2, BI, and B2 in contrast to the familliar Ag and Bu

of C2h. For x -* x* excitations, the states must be either AI or B2 symmetry, the 3
ground state being always IA I.

The corresponding one-photon dipole-allowed selection rules are also somewhat

different for the two symmetry groups. For C2h, only the t Bu states are one-photon I
allowed transitions from the I 'Ag ground state for any electric field polarization.

However, for the cis chains in the C2v symmetry group, where the y-axis is the axis of

C2 two-fold rotational syrmetry (perpendicular to the conjugation axis and in the I
molecular plane), the IB2 states are one-photon allowed for fields polarized along the x- 3
axis and the excited IA1 states are the one-photon allowed transitions for polarizations

along y. This implies that all of the singlet x -+ i* excitations are one-photon allowed

transitions for the chains that are members of the C2v group. But it should be noted that 3
94 I
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I
Ibecause these chains are quasi-one dimensicnal, the x-components of the transition

dipole moments will, in general, far exceed the y-components, and the oscillator

Istrengths of the 1B2 states will therefore dominate those of the IAI states. We will

therefore consider the IA1 and IB2 states of the C2v group to be analogous to the IAg

and IBu states of the C2h group, respectively.

I For the range of chain lengths that we have considered, we find that the

transition energies of the 1 IBu and 2lAg states of the cis conformations are slightly red-

shifted from the values for the trans conformations by 0.02 to 0.10 eV with the shift

Iconstantly increasing with increased chain length. These results are in agreement with

I the literature. 12 For example, an experimental gas phase absorption study of the cis

and trans forms of HT2 found 1 Bu <-- 1 IAg transition energies of 4.919 and 4.935 eV,

1 respectively, which is in very good correspondence with our calculated transition

energies of 4.92 and 4.94 eV.

The calculated energies and x and y components of the transition dipole moments

4n,, and 9nlIB2 for the low-lying states of cis-HT are listed in Table 4-1. The y-

Icomponents of the transition moments are seen to be small and non-zero only for states

of like parity. The largest transition moment involving the ground state is iIB2.g

6.83 D, and the largest transition moment of all is x4 !A1,1 1B2 - 10.49 D. These two

I virtual transitions dominate y=a(-o4;colI2,(o3) in analogy with trans-HT.

The calculated values of the independent tensor components of yqkI(- 2w;co,0)

for cis-HT at 0.65 eV are Yxxx = 20.3, Yxryy = 1.9, Yxyyx = 1.8, "yyyxxl.7, Yyxxy

1.8, and yy, = 0.5 x 10-36 esu. Although the components involving the y-direction
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have different selection rules than those involving x, the dominant tensor component

remains yxx(-2co;€,o,0). The individual terms that contribute to yxza(-2o;o,o,0) are I
listed in order of descending magnitude in Table 4-2. As in the case of trans-HT, the

largest term is positive and results from the g --+ 1 1B2 --+ 51AI --+ 1 1B2 -+ g virtual

excitation process. This type II term and the negative g -- lIB2 -4 I1 AI -9 1B2 -- g I
type I term are almost entirely responsible for the sign and magnitude of

yxxxx(-2co;ajo,0) in cis-HT.

Transition density matrix diagrams of the key virtual excitations of cis-HT are U
shown in Figure 4-1. The transition density matrix diagrams for cis-HT are nearly

identical to those for trans-HT shown in Figure 3-5. The (a) cis I 'AI --+ I B2 virtual

transition results in a somewhat modulated redistribution of charge with a transition I
moment of 6.83 D. For the transition involving the high-lying, strongly correlated two- 1
photon 51AI state, however, there is a resultant highly separated charge redistribution in

the (b) cis 1 IB2 -+ 51AI virtual excitation. The corresponding transition moment is

10.49 D for the cis conformation, compared to 11.40 D for trans-HT.

Chapters 5 and 6 of this thesis present experimental results for the isotropically

averaged susceptibilities <X-2o;(, O)> and <y-3o;o,,co)> of HT measured in the

neat liquid. The isotropically averaged susceptibility is shown in Appendix B to be I
given by

<Y-o4;ol,o0)2,o)3)> - ". yiiii + 3 j y ij1 j + ijjz)I. (4.1)

I
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Since the only commercially available HT was found by chromatographic methods2 to

contain 60% of the trans conformation and 40% of the cis, we will calculate

<y(-2(o;wo,ow,0)> and <y-3(o;a),o,o)> weighted accordingly by those fractions of trans

and cis isomers for comparison with experiment.

As a further refinement, we note that although the it-electron contribution to

<y(-o4,coI,cI2,o)> dominates the a-electron contribution for long conjugated chains,

the two contributions are comparable for HT. Kajzar and Messier have measured

<t(-3C.o;.,o,w)> in a series of nonconjugated alkane chains and found that the results

are well-explained by the bond additivity approximation. 3 The best fit to the

experimental data obtains values of 0.0 148 x 10-36 esu for each carbon-carbon bond and

0.0250 x 10-36 esu for each carbon-hydrogen bond. These quoted values are 8.0 times

smaller than the values listed in Table 7 of Ref. 3 due to a difference in definition of the

electric field amplitudes that makes their convention for yijI(-ow4;1,co2,o3) 4 tintes

larger than ours and a correction factor of 2.0 for their reference value of

X(3)(-3Co;(o,(,co) (see Section 6.E). Since HT contains five carbon-carbon bonds and

eight carbon-hydrogen bonds, we obtain 0.27 x 10-36 esu for the a-electron

contribution to <fl-3co~oco)> and 1.64 x 1036 esu for the a-electron contribution to

<y(-2co;co,o,0)>.

The calculated values for <'-2co;o,co,0)> and <y(-3w;wo,w)> that are to be

used for comparison with experiment are then
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<=-2co;coco,0> 0.6 <7trans(- 2 0P;(O,CO,O)> U
+ 0.4 <ycjs(- 2o);O),oJ,O)> + 1.64 x 10.36 eSU (4.2) 1

and

< -30o;co,o,co)> = 0.6 <ytrans(-3 ();O),O),o)>

+ 0.4 <ycis(-3(o;(o,w,co)> + 0.27 x 10.36 esu (4.3) 1
I

The calculated dispersions of <y(-2co;o,o,0)> and <y(-3co;to,o,€)> are illustrated in

Figure 4-2 where <7(-3o ;co,jo,a)> has been multiplied by a factor of 6. A broadening I
term ijF = 0.2 eV was included in both instances. At very low fundamental photon I
energies, the relationship <y(-2;co,o,0)> = 6 <y(-3co;o,(o,o)> is seen to hold. As the

3co resonance of the I IBu state at 11o = 1.65 eV is approached, however, I
-q(-3wo;0o,co))> increases more rapidly than <Y(- 2w;co,,0)> and we have

I<y%-2co;o),(o,0)>I < 6 1<%K-3(o;o,co,co)>I. The experimental measurements of

<-X-2(o;o,co,0)> and <Y-3o;co,o)> will be seen to be in very good agreement with

the theory for the magnitude, sign, and dispersion of the susceptibility. 3
The isotropically averaged dc-induced second harmonic susceptibility

<f(-2w;w,o),0)> has been measured previously in the gas phase for both HT and

butadiene (BD), the N = 4 site chain, by Ward and Elliott at X = 694 nm (1.787 eV).4  3
After appropriate conversion of their notation to ours (<K-2o;o,"O)> = 3X(3) /2) the

experimental values are <y-2co;o,o,0)> = 3.45 ± 0.20 x 10-36 esu for BD and 11.30±

1.05 x 10,36 esu for HT. By performing experiments in gas mixtures, they further

determined that the sign of <y-2o;co,o,0)> is positive for both BD and HT. For BD,
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which has no cis-transoid conformation, we calculate 2.1 x 10-36 esu for the it-electron

contribution to <y(-2o);o),o),0)> at 1.787 eV. Since BD consists of 3 carbon-carbon

Ibonds and 6 carbon-hydrogen bonds, we obtain 1.2 x 10 esu for the a-electron

contribution to <'(-2(o;c,o,0)> based on the bond additivity approximation discussed

above. 3 The resultant value for <y(-2.o;to,o),0)> accounting for both it and ay-electrons,

I3.3 x 10-36 esu, is in excellent agreement with experiment.

The trans conformation of HT is calculated to have a it-electron contribution to

<7-2co;o,o,0)> of 15.0 x 10-36 esu at 1.787 eV, and the cis conformation,

I12.2 x 10-36 esu. From Eq. (4.2), <yf-2ow;(o,o,0)> is 15.5 x 10-36 esu, somewhat

larger than the experimental value. Ward and Elliott measured <'y-2o);,O,0)> as a

function of temperature, and the reported values correspond to the T -+-* limit.4 In

1 BD, <y(-2co;o),,0)> was found to be independent of temperature, while a decrease in

Ithe signal for HT with increased temperature was ascribed to a negative P(-2oma)

second order susceptibility. However, trans-HT is centrosymmetric such that the

Isecond order susceptibility is identically zero, and our calculations of the

I conformationally-induced P(-2o);o,co) for cis-HT indicate it is much too small to be

observable. If one neglects the temperature dependence and simply takes the measured

value of <y(-2co;ocoO)> at room temperature, the experimental value is 12.9 x 10-36

esu rather than 11.3 x 10-36 esu, which is in much better agreement with theory.

The calculated excitation energies and transition moments xand X
n'dW, I IBufo

the lowest-lying states of the N = 8 to 16 cis polyene chains are listed in Tables 4-3

I through 4-7 for completeness and to allow comparison with the equivalent results for
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the trans conformation chains. Table 4-8 contains the values of yzxa(-20;o,(o,0) and

ymtx(-3co;ca,o),w) calculated for the N = 4 to 16 cis polyenes at fundamental photon I
energy 0.65 eV. In each case, the dominant tensor component exhibits a rapid increase

with increased chain length, and the origin of yxj=(-aA;co1,o)2,c03) is entirely analogous

to the description given in Chapter 3 for the trans polyenes. For comparison, Figure I

4-3 shows a log-log plot of the calculated yx(-3o;o,co) at 0.65 eV against the

number N of carbon atom sites in the cis and trans polyenes. The linear fit for the cis

chains corresponds to

I
y,.(-3;o,co,o) - N3.9  (4.4)

where the same three length-dependent factors that lead to the power law dependence of I

yxr(-co;wl,o,o3) for the trans polyenes are also responsible for the rapid growth in

the cis case.

Although there is an excellent qualititative analogy between the descriptions of I
Ty~(-)4;(o,2,o)3) for the, cis and trans polyenes, there is an important quantitative

distinction. For chains with equal numbers of sites, the value of y=r-o-s;1,(2,(o3)

at a fixed frequency is in all cases calculated to be smaller for the cis chain than the trans I
chain. There is also a slightly lesser rate of growth for y(-coo2, o3 with

increasing N for the cis. The power law exponent in yx r(-3o;(Oo,o)), for example, in• I
the cis case is 3.9 versus 4.0 for the trans.

I
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These differences are well-accounted for in Figure 4-3 in which we also plot on

a log-log scale y .(-3.&(3comom) against the actual length L of the chain rather than the

number of sites. We have defined L to be the distance in the x-direction (along the chain

axis) between the two end carbon sites. The calculated values for both the cis and trans

polyenes are very well fit by a single line. This plot unifies the calculated values for the

two conformations and yields

yxxxx(-3o;€o,€o,(o) -, L3 .5  (4.5)

The differences in yx (-ow(;o,o2,wa3) for an equal number of sites are

primarily due to the shorter distance along the conjugation axis produced by the cis

geometry. For equal numbers of carbon sites, the cis conformation is always shorter

than the trans conformation. Figure 4-3 implies that the values of yx(-M;oiCa2,o3)

will be the same for cis and trans polyene chains which have equal lengths along the

chain axis rather than equal numbers of carbon sites. We conclude that although the

trans third order susceptibilities are larger than those for the cis conformation of an equal

number of carbons, y=.x(-w4;(ol,(o2,o3) is in fact much more sensitive to the physical

length of the chain than to the conformation.

Finally, we can make a rough estimate of the implications of these calculations

for the infinite chain polymer by extrapolating to longer chains the power law

dependence that we have observed. A typical value of the nonresonant macroscopic

third order susceptibility X(3)(-3o;o),coco) observed for conjugated polymers is 10-10
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esu.5,6 For an (nearly) isotropic distribution of chains considered as independent

sources of nonlinear response with a single dominant tensor component I
yxx.(-3o;Co,o,o), we have

11-3;,,) (" N()3f . (-3;,,o) (4.6) I
where N is the number density of chains andjp is the Lorentz-Lorenz local field factor.

Using typical values of N = 1020 molecules/cm 3 and 1.8 for the refractive index, we

derive a y (-3coww) of roughly 2 x 10-31 esu. An extrapolation of our power law

dependence of yx(-3c;o(,co, ) on N for the trans-polyenes yields a value for N in the

range 50 to 100 carbon sites or, equivalently, a length of approximately 50 - 100 A.

Since many of these polymers consist of much longer chains, we infer that

yx=(-3;c,co,) must deviate from the power law dependence and begin to saturate at

a length shorter than 100 A. It is then concluded that large nonresonant values of

K-(a4;Wo1,co2,co3), and, correspondingly, X(3)(-c4;(O1,o2,3), may only require chains I
of intermediate length of order 50 - 100A with little to be gained by increasing the chain

length beyond this limit. I
C. Noncentrosymmetric Polyenes

4I

Thus far, we have considered the third order nonlinear optical properties of

centrosyrmmetric linear chains and have illustrated the important role of definite parity
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selection rules in the third order virtual excitation processes. We will demonstrate in

this section that lowering the symmetry to a noncentrosymmetric structure can act as a

mechanism for the enhancement of nonresonant 7Yijk(-w4;coI02,o3). As seen in Eq.

(2.41), for noncentrosymmetric structures the Bogoliubov-Mitropolsky formalism

admits new types of virtual excitation processes otherwise forbidden under

centrosymmetric conditions.

The symmetry is twered by heteroatomic substitution on the linear chain. A

principal noncentrosymmetric analog to the N = 8 site chain, octatetraene (OT), is 1,1-

dicyano-8-N,N-dimethylamino-1,3,5,7-octatetraene (which we will refer to as NOT)

having dicyano acceptor groups on one end and a dimethylamino donor group on the

other as shown in Figure 4-4 and which has been synthesized in our laboratories.

Comparison with the earlier detailed discussion of unsubstituted polyenes will allow

direct understanding of the effect of lowered symmetry on ^jjj(-o)4;wI ,Co2,Co3).

The calculation of the electronic states and nonlinear optical properties of NOT

involved all single and double-excited configurations of the six occupied and six

unoccupied x-electron molecular orbitals. This leads to 703 configurations in the CI

matrix which is then diagonalized to produce 703 singlet sr-electron states. The

complete calculation including computation of all transition dipole moments of Eq.

(2.41) for yjjk(-o);€olo2,ov)) required 5rCPU hours on a CRAY-X/MP. The

calculated excitation energies and transition moments , in d g of NOTKn-. .9 n,21tA' ofNO

are given in Table 4-9. The dominant excitation is that from the lowest energy t-

electron singlet excited state located at 2.81 eV. This is 1.6 eV lower than the energy of
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the dominant one-photon I IBu state of OT. There is a secondary peak predicted in the

optical absorption spectrum at 3.58 eV which actually corresponds to the 2t Ag state of I
OT. Because of the lowered symmetry of NOT, there are no one-photon selection rules

as there are in OT. Instead, all of the x-electron states of NOT possess A' symmetry

and all are one-photon allowed excitations from the ground state. Thus, in addition to I

the lowering in energy of the analog to the 11 Bu state, the symmetry lowering has two 3
interesting effects on linear optical properties. The analog of the 2t Ag state becomes a

one-photon allowed transition which turns out to have a sizable oscillator strength, and I

the ordering of the analogs of the 21Ag and I 1Bu states is inverted. We wish to 3
emphasize, however, that although the existence of the 2IAg below the I 1Bu provided

the first definitive evidence of the importance of electron correlation in polyenes, the

inverted order i the substituted chains is not due to any less correlation. The 31A' state I
of NOT, which is the 21Ag analog, is still composed of more than 40% double excited

configurations.

The principal symmetry constraint in the case of centrosymmetric structures that I
the intermediate virtual states must alternate between one-photon states and two-photon 3
states is lifted upon symmetry lowering. Matrix elements of the form < nl r4 I n > are no

longer symmetry-forbidden and can have an important role in Yijk(-o)4;owl,Co2,O3). I
Diagonal transitions of this form are best illustrated in the difference density matrix APn 3
where

Ap,(r) = pn(r) - pg(r) (4.7) 3
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and

<Ali> = -ef r 'o,.(r) dr . (4.8)

The function pn(r) is given by Eq. (3.3) with n equal to n'. The contour diagram of

AP21A'(r) is shown in Figure 4-5(a) where the solid and dashed lines correspond to

increased and decreased electron density, respectively. There is a large redistribution of

electron density along the dipolar x-axis leading to a large dipole moment difference

A 2 Iof 14.49 D. The calculated ground state dipole moment x is 10.93 D in

good agreement with the experimental value 11.8 ± 0.3 D. The sign for A41 is seen

to be positive as electron density is decreased in the region of the electron donor and

increased in the region of the electron acceptor group upon excitation. This is consistent

with the experimentally observed shift to lower energies of the first optical absorption

peak in increasingly polar solvents. The magnitude of x is relatively large and

leads to important terms in yjjk-oa;(al,(*2,"o3) that involve the matrix element

< 21A ' I x I 21A' >. There are no analogous terms in yijkl(-(o4;OlO2,03) in the case of

centrosymmetric linear chains since the dipole moments of the ground state and all

excited states are zero by symmetry. Transition density matrix diagrams for the (b)

ground and (c) 7 1A' states with the 21A' state are also shown in Figure 4-5.

For the third harmonic susceptibility yjk(-3,;coCO,co), it is found, once again,

that the y=Lv(-3wo;wwo,0) component is by far the largest. At 0.65 eV, the independent

tensor components are yx.= = 407, yry = 3.0, yy = 1.2, and Yyyyy = 0.7 x l0 -36

esu. The calculated dispersion curve of yx.m(-3.o;w,o,o.) in Figure '-6 smoothly
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increases to the first resonance occurring at 0.94 eV which is the 3o resonance of the

2 1A' state. Because of the lowered symmetry of NOT, the 3o and 2w resonance I
selection rules for the centrosymmetric polyenes are no longer applicable. Thus, every 3
excited state has allowed 3w, 2o and co resonances, and the dispersive behavior of

y~x(-3o;wo,wo,wo) exhibits all of these many resonances at frequencies beyond the first I
resonance. i

The individual virtual excitation processes that contribute to YXM(-30;W,,oW) of

NOT at 0.65 eV are listed in Table 4-10 in order of decreasing magnitude. The value of 1
yxtrx(-3wo;wo,wo,wo) is essentially determined by three terms. As described earlier, for 3
centrosymmetric structures there are two important types of virtual excitation processes

that dominate yxwr(-au;wo1,wo2,wo3). We have found for the noncentrosymmetric chains

a third type of process is allowed and, in fact, makes a larger contribution to 3
yxxxx(-ou;woj,w2,o3) than the other two. These three types of virtual excitation

processes in NOT are illustrated in Figure 4-7. The processes illustrated in Figures

4-7(a) and (b) are analogous to the dominant processes for centrosymmetric polyenes. I
For NOT, the 21A' state plays the role of the 1 Bu state of HT because it has the largest 3
transition dipole moment (9.34 D) with the ground state. The type I term is a result of

the double summation in the Bogoliubov-Mitropolsky formalism and has the ground I
state as the middle intermediate state. The largest term of this type is the one with 2 1 A' 3
as the first and last intermediate state because of its large transition moment with the

ground state. The type I term illustrated in Figure 4-7(a) makes a negative contribution

to yzvz(-3w;w,wo,wo) because although the numerator and denominator are both positive,
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I the double sum makes a negative contribution to yxxx(-3o;co,cz)). In the type II

process, there is a high-lying middle intermediate state that has a large transition moment

I with 2 1A'. The analog to the 5 1A' state of HT is the 7 1A' state of NOT. The type II

term makes a positive contribution to yx=(-3o;(o,o,co) because the numerator is

effectively the square of two matrix elements and the denominator is positive when

I below all resonances.

I Most importantly, however, for noncentrosymmetric structures, there is a new

type of process which is allowed. This process is illustrated in Figure 4-7(c) and

corresponds to a type V process from Figure 3-3. For NOT, this is the dominant type

of term contributing to y a(-3co;o,o) ,). Type V terms involve a diagonal matrix

element and are therefore forbidden in centrosymmetric structures which cannot possess

a permanent dipole moment. The important quantity in this term is the dipole moment

difference between an excited state and the ground state Agn. For the 2 1A' state, the

A1xA, value of 14.49 D leads to a very large term in the triple sum in which all three

intermediate states are the 21A'. Since the numerator and denominator are both positive,

the contribution of this term to yx= is positive. The lowered symmetry of NOT, as

compared to OT, produces a new type of virtual excitation process which dominates

y¥ (-3o;o),o,co) and causes the value of yzva-3(0;.,ow,w) to be more than an order

of magnitude larger for NOT compared to OT. For example, the calculated nonresonant

values of yxt(-3o;ao,co,oa) at 0.65 eV for NOT and OT are 407 and 16.0 x 10-36 esu,

respectively. Therefore, although regular conformational changes affect

y '(r(-ow;(ol,(*2,o)3) only through the change in the physical length of the molecular
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structure, lowering of the symmetry by attachment of donor and acceptor groups

significantly enhances yx~r.-oM;w1,oY2,or) through the introduction ot previously I

symmetry-forbidden virtual excitation processes. I

U
I
U
I
I
I
U
I
I
I
I
U
I
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I Table 4-1. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying it-electron States of cis-Hexatriene (N = 6).1
State iOng (eV) p 1.ng ( I(tD hBZ()(D )  'nY 1B2 (D )

I 21AI 4.55 0.00 0.08 1.72 0.00

I 11B2  4.92 6.83 0.00 0.00 0.01

21B2 5.24 0.14 0.00 0.00 1.67

- 31AI 6.75 0.00 1.11 1.55 0.00

4 1AI 6.80 0.00 0.62 0.24 0.00

31B2  7.46 1.52 0.00 0.00 0.30

41B2  7.72 1.84 0.00 0.00 0.09

I 51AI 7.86 0.00 0.11 10.49 0.00

1 61AI 8.78 0.00 1.73 1.12 0.00

51B2  9.12 0.24 0.00 0.00 2.88

I
I
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Table 4-2. Largest Contributing Virtual Excitation Processes to y (-2w;),w,0) of

cis-Hexatriene at lIw = 0.65 eV. I
ml m2 m3 Contribution (10-36 esu) Cumulative (10-36 esu)

I'B2 51AI 11B2  43.7 43.7 3
IIB2 1'AI I B2 -29.1 14.6 3

1iB2 81AI 11B2  3.8 18.4

1IB2 I01AI 11B2  2.5 20.9 1
41B2 51AI IeB2  -2.4 18.5 1
1IB2 5t AI 41B2  -2.3 16.2

lIB2 21A1  1'B2 2.1 18.3 1
I
I
I
I
I
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Table 4-3. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying x-electron States of cis-Octatetraene

(N = 8).

State hIcong (eV) , . (D) 9ie(D)

21Ag 4.11 0.00 2.78

11Bu 4.37 8.00 0.00

21B 4.77 0.05 0.00

31 Ag 5.22 0.00 0.32

4t Ag 6.03 0.00 1.77

51Ag 6.08 0.00 0.68

3Bu 6.47 0.16 0.00

41Bu 6.82 2.97 0.00

6Ag 7.03 0.00 12.62

51Bu 7.09 0.08 0.00

71A9 7.41 0.00 0.69

8Ag 7.42 0.00 0.44
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Table 4-4. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying n-electron States of cis-Decapentaene 3
(N = 10).

State Wng (eV) .n8 (D) 1 B2 (D)

2 1A1 3.85 0.00 3.80 1
1 1B2 4.00 9.04 0.00

21B2 4.38 0.02 0.00 1
31At 4.91 0.00 0.56

31B2 5.19 0.04 0.00 3
41AI 5.48 0.00 2.06

51AI 5.53 0.00 0.56 3
41B2 6.02 0.27 0.00

51B2 6.24 3.35 0.00 I
61AI 6.29 0.00 2.11

7IAt 6.47 0.00 14.08 I
61B2 6.61 0.09 0.00

81AI 6.72 0.00 2.15

71B2 7.06 0.04 0.00 3
I
I
I
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Table 4-5. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

I Moments for the Lowest-Lying n-electron States of cis-Dodecahexaene

I(N = 12).

State fIng (eV) ItI~g(D) I L.l.(D)

21Ag 3.69 0.00 4.73

1 IBu 3.74 9.98 0.00

21Bu 4.11 0.04 0.00

31Ag 4.58 0.00 0.69

31Bu 4.97 0.04 0.00

41Ag 5.09 0.00 2.27

51Ag 5.11 0.00 0.51

61Ag 5.17 0.00 0.33

41Bu 5.61 0.22 0.00

51Bu 5.82 3.71 0.00

I 71Ag 6.00 0.00 7.22

81AS 6.06 0.00 12.19

91Ag 6.18 0.00 6.98

61Bu 6.19 0.09 0.00

71Bu 6.22 0.21 0.00
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Table 4-6. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying x-electron States of cis-Tetradecaheptaene

(N = 14).

I
State 1cong (eV) t.g (D) .LfIhIB2 (D)

1 'B2 3.55 10.85 0.00

2 1AI 3.59 0.00 5.55

21B2 3.92 0.07 0.00

31A1  4.32 0.00 0.77

31B2 4.69 0.04 0.00

4 1AI 4.77 0.00 1.08 3
51AI 4.82 0.00 2.20

6 1AI 5.02 0.00 0.58

4 1B2 5.16 0.01 0.00

51B2 5.29 0.15 0.00

61B2 5.50 3.96 0.00

7 1AI 5.67 0.00 7.82

8 1AI 5.71 0.00 3.96

91AI 5.83 0.00 14.41

7 1B2 5.89 0.73 0.00 I
81B2 6.01 0.02 0.00 I

I
U
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Table 4-7. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying it-electron States of cis-Hexadecaoctaene

(N = 16).

State conrg (eV) l.JX (D) nl1Bu(D)

11Bu 3.41 11.65 0.00

21Ag 3.52 0.00 6.27

2 1Bu 3.78 0.01 0.00

3lAg 4.13 0.00 0.84

31Bu 4.46 0.03 0.00

41Ag 4.50 0.00 0.82

51Ag 4.62 0.00 2.39

61Ag 4.79 0.00 0.64

41Bu 5.04 0.08 0.00

5 1Bu 5.04 0.04 0.00

71Ag 5.15 0.00 0.54

61Bu 5.24 4.10 0.00

81AS 5.36 0.00 5.84

91AS 5.43 0.00 0.50

10lAS 5.60 0.00 16.66

7 1Bu 5.63 1.36 0.00

81Bu 5.74 0.12 0.00
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Table 4-8. Calculated Values for yx=(-2o;o,.o,O) and "yxxx(-3w;(Oo,O) at 1.o = 0.65 I
eV for the cis-Polyenes in 10.36 esu.

N (sites) y'xx.(-2(o;oo,O) yxx(-3.o;co,(,o) I

I
6 20.3 3.83

8 63.8 12.5 1
10 150.1 30.4 3
12 290.1 60.9

14 488.2 105.8 3
16 742.0 165.5

I
I
I
I
I
I
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Table 4-9. Calculated Symmetries, Excitation Energies, and Key Transition Dipole

Moments for the Lowest-Lying x-electron States of NOT.

State *Ong (eV) X' (D) g (D) ,2 IA (D)

I IA' 0.00 10.93 10.93 9.34

21A' 2.81 25.42 9.34 25.42

31A' 3.58 13.27 4.12 2.22

41A' 4.10 14.78 0.54 1.41

51A' 4.40 15.21 0.50 2.21

6 1A'  4.84 14.14 0.31 1.59

71A' 5.01 19.25 2.80 10.94

81A' 5.21 16.49 0.60 4.54

91A' 5.72 19.04 0.79 1.40

101A' 5.90 12.95 0.3 2.02

111A' 6.04 12.74 1.17 9.24

121A '  6.29 20.39 0.05 1.08

131A'  6.68 15.76 0.23 0.09

141A' 6.78 14.23 0.35 1.91
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Table 4-10. Largest Contributing Virtual Excitation Processes to yxxxr(-30;.o,wc) of

NOT at i1o = 0.65 eV.

I
m I m2 m3 Contribution (10-36 esu) Cumulative (10-36 esu)

21A' 21A' 21A' 550.3 550.3

21A ' IIA' 21A' -172.6 377.7

21A ' 71A ' 21A' 135.4 513.1

21A' IlIA' 21A'  76.6 589.7 U
71A' 21A' 21A'  -63.1 526.6

21A' 21A' 71A' -45.8 480.8

31A ' 21A' 21A' -27.8 453.0 I
31A' IIIA' 21A' 26.0 479.0

21A ' 21A' 31A'  -22.5 456.5

I
I
I
I
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(a)

Figure 4- 1. Transition density matrix contour diagrams of cis-HT for the (a) ground
and (b) 5 Ag states with the IeI u state. The x-componcnts of the triansition dipole
moments are 6.83 and 10.49 D, respectivaely. T"he contour cuts are taken 0.4 A above
the molecular plane.
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Figure 4-2. The calculated dispersions of <)(-2a;,co,0)> (solid) and <fl-3.o;.o,w,w)>(dashed) for HT. The values of <fl-3o.;wo,w)> have been multiplied by a factor of 6. 3
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Length (A)

Figure 4-3. Log-log plot of yLc(- 3 o;,co,w) at PIow = 0.65 eV versus the number N
of carbon sites (upper axis and dashed lines) and length L (lower axis and solid line).
The values for trans chains are represented by squares; and the values for cis chains, by
circles. The linear fit of the solid line corresponds to yxx.(-3o;w,w,co)) L3 .5.
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(C)

Figure 4-5. Contour diagrams for NOT of (a) the difference density matrix for the 21A'

state, and transition density matrices of the 4b) ground and (c) 71 A' states with the 21 A'

state. The increased charge near the cyano groups in (a) represents a large increase in the

x-component of the dipole moment from 10.93 D in the ground state to 25.42 D in the

2 1A' state.
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Figure 4-6. Calculated dispersion of y==(-3(o;co,o,,o) for NOT with Air = 0.2 eV. The I

solid curve is Iykxx (-3o;Caco,))I and the dashed and dotted curves are

Re[yxu(-3(o;o),co,0)j and Im[y (-3o;co,w,co), respectively.
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-IA'

(c)

Figure 4-7. The three principal third order virtual excitation processes for NOT. The

diagram in (c) corresponds to a process that can only occur in noncentrosymmetric

structures and dominates yxtxx(-3w;),o),)) in NOT.
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Chapter 5

DISPERSION OF <y(-2o;co,o),O)> IN HEXATRIENE AND 13-CAROTENE

Chapters 3 and 4 presented the detailed results of the electron correlation

description of the nonlinear optical properties of conjugated linear chains. In order to test

the validity of these results, the frequency dependence of the isotropically averaged

molecular third order susceptibility <y(-o;wo1,o2,o)3)> has been measured for two

fundamentally important conjugated molecular systems, hexatriene (HT) and 1-carotene,

through two separate nonlinear optical processes. The hexatriene results allow us direct

comparison with the theoretical predictions for the magnitude and dispersion of

<(-oM;ot1,,o)3> for HT presented in chapters 3 and 4 while the length dependence of

<y-o4;w),o)2,"o)> is experimentally determined by the measurements on 1-carotene, a

symetrically substituted polyene corresponding to N = 22. This chapter describes the

measurement of <y(-2o;co,0,0)> in HT and 0-carotene at 1907, 1543, and 1064 rn by

dc-induced second harmonic generation (DCSHG). Chapter 6 will present third

harmonic generation experiments, which measure the related quantity <y(-3co;co,o,co)>.

A. Introduction to DCSHG

Electric field-induced second harmonic generation is now well-established as a

primary method for the determination of the molecular second order susceptibility

JNjk(- 2co;o)o) in gases, liquids, and solids. 14 Use of this technique has allowed rapid
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and direct measurement of molecular second order optical properties in a varety of

conjugated structures to aid in understanding the microscopic origin of Oyit(-2co;o,co) I
and the effect substituenits and different parent structures have on Pijt(-2o;co,co). In

addition, DCSHG provides a method for evaluation of candidate molecular structures for

their potential in electrooptics or frequency doubling applications in noncentrosymmetric I

crystals 5,6 or poled, doped polymers.7-9 The measurement of X (-3;)co'v2), which 5
requires a macroscopically noncentrosymmetric medium, is easily accomplished in

DCSHG, where removal of centrosymmetry in a polar solution is achieved by

application of a static electric field, as compared to direct second harmonic generation or

linear electrooptic effect measurements of crystals or poled polymers for which extensive

sample preparation is required.

Despite its primary role in measurement of P3ij(-2co ,c), DCSHG is, in fact, a 5
third order nonlinear optical process defined through the polarization expression

p~ =ryk EO EO 0.(5.1)I
i j k

where p1C' is the macroscopic polarization at a frequency 2o induced by two applied
i

optical electric fields of amplitude El and E and an applied static field of amplitude 0.I
J k I

The magnitude of the second harmonic polarization is governed hy the effective DCSHG

susceptibility tensor Fijt which has three potential contributing mechanisms.1 We note
(3) "

here that Fijkl is equivalent to ZX(-2;0),o,O) and is a prevalent notation in the

I
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DCSHG literature. We will use the notation Fijkl throughout the remainder of this

chapter.

The electronic molecular third order susceptibility for DCSHG, yji(- 2 co;o,ao,0),

results in a microscopic polarization

p.w = yijkI(- 2 (o;oc)O) E £<') EO (5.2)
j k

This purely electronic polarization effect does not involve any vibrational, rotational, or

orientational motion of the molecule and corresponds to the ijkX-2co;,w,O) calculated

in chapters 3 and 4. For an isotropic medium, when the static, fundamental, and

harmonic electric fields are all parallel to the X axis in the laboratory coordinate frame,

2co= <Y(-2o;co,(o,O)> E' EO E0 (5.3)

where the microscopic isotropically averaged DCSHG susceptibility <Y(-2o;o,o,O)> is

given by (see Appendix B)

{Y-(~ooO y,,,,-c.o,o,o) + [yjj-cocz)O
1 1;

+ yiji(-2co;mm,O) + yvii(-2om;,w,O)] } . (5.4)

Eq. (5.4) has often 1,2 been written as

1I

<y> = . (yzm + Yyyyy + yzzz + 2y + 2yxxz + 2yyyzz) (5.5)
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where the frequency arguments have been omitted. It is assumed in Eq. (5.5) that I
I

"YX.= yy= YXYX = YYYXX= Yyx = YYXYX (5.6) I
and that the corresponding equalities involving the subscript pairs xz and y,z also hold;

but this is strictly valid only in the zero frequency limit ((o = 2wo = 0). For nonzero

frequencies, dispersion leads to violation of most of these proposed equalities, and the

only strict identities are of the form

yijkI(- 2co;(o,coO) = Yikjj(- 2 0o;cO,O),O) (5.7)

Thus, making use of 3
Yij(-2w;wOo,O) = yiijj(- 2 ox;.,o,O) (5.8)

from Eq. (5.7), Eq. (5.4) can be simplified to3  I

1 I
<-2o= o [2yj 11-2co;o,(o,O) + ',i.(- 2 o,;w,o),) (5.9)

In nonlinear optical processes involving only optical frequencies, such as THG, 3
the exclusive contribution to ijj(-oU;woj,oa2,o3) is of electronic origin since molecular

vibrational and rotational excitations cannot follow the optical frequency oscillations.

The static field in DCSHG, however, can couple to the vibrational normal modes of the 3
1303
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molecule through the hyper-Raman susceptibility that contributes a second harmonic

polarization

P. = t ijk.O EO  Q.i j k (510

where Ijk.o is the hyper-Raman susceptibiity and Qa the vibrational normal coordinate

for mode a. Using the vibrational equation of motion

2
% Q, e,,gE5 (5.11)

where m0 is the reduced mass, oe the vibrational frequency, and e! ,o the effective

charge, we have

= 2w v(-2w;w,oO) EO) E£O £ (5.12)
Y ~j k I

where

Yekj(-2 1,€o,o,0j) ( m o ) (5.13)
(0

is the vibrational contribution to the third order susceptibility. The isotropic average of

yik,(-2w;(o,(o,0) is also of the form of Eq. (5.4).

Finally, for noncentrosynmetric molecular structures, Njk(-2(o;o,co) is

nonvanishing and leads to a microscopic second harmonic polarization
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I
2 Pjk(-2O;(o,Ow) E( E (5.14)

In an isotropic medium such as a gas or liquid, however, the average of p 2w over the

uniform molecular orientational distribution function leads to a vanishing net second

harmonic polarization and no SHG is observed. In DCSHG, with the application of a dc

electric field, the medium becomes anisotropic. In the case of the dc and optical electric 3
fields all applied along the X-axis in the laboratory coordinate frame, the isotropically

averaged contribution of 31jk(-2wo;too) to p..) can be shown to be

I
<2.- 90~x E('O E( E2 5.5

where gt is the magnitude of the molecular dipole moment and

13x = I(-Xco.;wto)) + P)(-2co;w,ci) + Ixzz(-2co;co,o) (5.16) I
is the vector part of Pjjk(-2o);co,w) along the molecular dipolar axis x. 3

Combining the electronic third order, vibrational third order, and static field

induced second order contributions to p2m, we obtain 1
xI

= [<2 -2o;(,0,O> + <(-2oo~o,,O)> + g 5p&2o>;,, ,]-EE (5.17)
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Comparison of third order susceptibilities of several centrosymmetric organic structures

measured by DCSHG and by frequency-mixing has shown that the measured

susceptibilities are essentially identical in the two processes. 1. 10 Since yv contributes to

DCSHG but not to frequency-mixing, these results demonstrate that, in general, the

Aectronic term <y(-2co;o ,O)> dominates the hyper-Raman term <Y'p(-2€.;co,WO)>.

Furthermore, for centrosymmetric molecules . and IPijk(- 2 (o;oo) are identically zero

reducing Eq. (5.17) to

plo = <y-20;(oo),O)> (EO)) 2 E (5.18)

The DCSHG experiments presented in this chapter were performed on centrosymmetric

molecular structures in the liquid phase such that the experiments are governed by Eq.

(5.18), and only the electronic third order susceptibility <fl-2w;co,€o,O)> is measured.

In gaseous media, the relationship between Eqs. (5.1) and (5.18) is simply

FXXX x = 1; [Nm < ym(-2ow;o ,(O,O)>] (5.19)

where Nm is the number density of molecular species m. For condensed media, such as

liquids, it is necessary to additionally take into account the effect of linear polarization of

the medium on the magnitude of the local electric field experienced at the molecular site.
4

This is done via the local field factorsjf yielding
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rxxxx-A , (I)2jO [Nm <Ym(-2;o),o,0)> (5.20)

where the local fields have been taken as spat ,niform and independent of the

molecular species. Onsagerl I showed for nonassociating liquids that

S(EOC + 2) ca I
(E + 2) £ (5.21)

where E is the non-dipole contribution to the dielectric constant (effectively n2 at

optical frequencies). Thus, we finally have

2 2 2rXX2o;oo, n2, + 2 .+ 22(.+ 2) e)
Fxxx(-2o;mw.0) = ( 3 n 2)2 (n

n 2 + 2E

27 [Nn <ym(-2co;0,CD),O)>I (5.22)

where e is the static dielectric constant and nr is the refractive index at frequency co.

B. Derivation of Second Harmonic I
Intensity in the DCSHG Configuration u

In this section we derive the expression for the second harmonic intensity at the

output of the DCSHG configuration2 illustrated schematically in Figure 5-1. Four I

1343
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interfaces must be considered: air-glass, glass-liquid, liquid-glass, and glass-air. The

static field electrodes extend over the entire liquid region and part of the glass windows

such that the electric field is constant over the entire liquid length but is negligible at the

air-glass interfaces. Since air, glass, and liquid are all isotropic, there is an effective

second order susceptibility only in the region where the static field is nonzero. We will

consider the fundamental and second harmonic beams to be monochromatic plane waves

3 (e.g. the confocal parameter zo > zI + z2) and allow for absorption at both the

fundamental and second harmonic frequencies within the liquid.

I The nonlinear wave equation that governs the second harmonic electric field

SE-Va(z) is

+ X2(o =z+ k; E = - c.-- def/(z) [E(z)]2 ekb (5.23)

where a22o is the absorption coefficient at the harmonic frequency, deg(z) the effective

second harmonic susceptibility (de(z) = r(-2co;co,,0)E0(z)), EO(z) the amplitude of the

fundamental field that decreases with increased z due to ao and kf= (2o n2)lc and kb

= (2wa n03)/c are the wave vectors of the free and bound harmonic waves, respectively.

The free wave is the solution to the homogeneous differential equation and the bound

wave is the particular solution for the nonlinear polarization source term leading to the

solution

E2)(z) = Ere-a2w"2 & + Eb(z) eike (5.24)
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where Ef and Eb(z) are the free and bound electric field amplitudes, respectively. I

Insertion of Eq.(5.24) into Eq. (5.23) yields

aE E 2k216=r°2
aZ- + (ao + 2ikb) + (k2 - k + kb) Eb() = - - [EWz)I.
3z 2  c ~yz

(5.25)

Because the spacing of the electrodes is large compared to the coherence length 1c

--X / kf- kbl, the variation of defz) due to the fringe electric fields is weak such that the

first two terms of Eq. (5.25) are small compared to the third. In this limit, the solution 3
for Eb(z) is

Eb(z) 161t( 2  de(z) [EtO(z)12  (5.26) 3
C2(k2. k- + ikba2w ) I

which further reduces to I
Eb(z) 2 2 de(z) [Eo(z)J2  (5.27)

2o03

for the usua'1 case of a2, << kf - k bA. U
We first consider the general case of a single boundary at z = zo between media 1

and 2 and then apply the solution to the particular configuration of Figure 5-1. The

second harmonic electric field in medium I is composed of the free E( 1) boundE( 1) and

reflecied fm E( 1 waves, I
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E2MNz) = Efl) e1'y - (a2cd1z + E,)(z) e [ikb - ak)]z + E(') efi'kf -(a2o/2)1z . (.8

Any possible absorption at the fundamental frequency is here explicitly accounted for in

the phase factor accompanying E(1 )(z) and will therefore be omitted from [En(z)]2 when

Eq. (5.26) is used for E(z). We can now solve for the free wave in medium 2, E2), infI

terms of E(l), E(' ) and Eb2) by applying the boundary conditions on E20 and H20 at zo.

We have

E()e9,+ E( ')zo) ei'P + E( e'"P - , + .kZO)ei'Pb
f b f b

+ ~ 4kzo)e"~b n~ ~ e"f (2)~ E(2) +~2~ z~ 3~

(5.29)

where the free and bound wave phases, p = (kf + ia2wt2)zo and (pb = (kb + iom)zo,

respectively, refer to medium 1. Elimination of E(' ) yields

=T2,. E5(', e'"f + [TI E( , 1(zo) .T2 (zo)] e"(Pb (5.O)

where 2n

TA - 1 ( (2)

T (1) n (2)
2) 2wn (2) + n(I)

T= n2 + (~)
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n(2)+ n(1)
Ci0 2wo

= (2) (1) (5.31) 3
n2o+ n 2o)

The phase of E()(zo) in Eq. (5.29) is ei'b because it, like E()(zo), derives from the I
propagation of EWO through medium 1.

We can now apply Eq. (5.30) to the boundaries of the actual DCSHG

configuration. At the first boundary, z = zi, 0(zi) = 0 and no second harmonic is

generated. Therefore, at the z = 0 glass-liquid interface, there is no incident free wave I
E(, ), and the bound waves are given by

E4')(0) = EG =r EO (EI('
(n2G)2 - (n)2 I

- L = ( E (5.32)

from Eq. (5.27) where G and L refer to glass and liquid, respectively, EwO is the

amplitude of the fundamrental field incident on the air-glass boundary, and

=2 /(0+ n)andP )t= 2nG / (no + are the Fesnel transmission factors for E3Oat

the air-glass and glass-liquid interfaces, respectively. From Eq. (5.30) the free wave 3
created in the liquid at the glass-liquid interface is

. I
(1.33) 3
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where the phase ei b is unity since the fundamental absorption in the glass is negligible.

As the free wave propagates through the liquid to the liquid-glass interface at

z = I it becomes

E<1) = EL e[ikf" (a 2 /2)1. (5.34)

The bound wave in the liquid at z = I is still EL and the bound wave in the glass at z = Ib

is equal to the bound wave in the glass at z = 0 reduced by the Fresnel factors P) and(I)

t(3) L L Gth '-Iudadlqi-lsineac,
W= 2n, / l(n,+n;) corresponding to the gass-liqud and liqud-glass itrfacs,

respectively. We therefore make the identifications E(1 ') EL E(.') = EL

b= (t) t3))2, and zo = I for insertion into (5.30) and obtain

EG. T- L. euPfr+ [TL , G (2 ) t(3))2 E0j eiP (5.35)1 L 2 Lc+ bG 0) c)ab

with

2 n L

2 n G + n L

2(0 2(o

L L
ncI+ n2w

TL"G L
n2d,1 n2
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nG + nL

03 2w

TG= nG L (5.36)

2wo 2w

Because all of the glass and liquid refractive indices in the current experiments lie in the

range 1.40 to 1.52, we can make the following approximations: t2) t(3) 1,

T1 L = TG, and T2 L TL. This simplifies Eq. (5.35) to I
E (GE - TL E ) (e"4 f -e"'Pb) (5.37)

Finally, at the glass-air interface z = z2, the static electric field is negligible and

there is no bound wave. The free wave EG. simply propagates through the boundary

with the transmission factor 2 = 2n /(+ n~). The total second harmonic electric

field out of the DCSHG cell is then I

E2w 0)7r (TG E - TL E.) (e(f -(a2w 2)' 1- e [ikb - a ) (5.38) 1N2o=qo ( Lb -T b) (eif ( 2 2)  - ekb"a l)'5.) I

and the second harmonic intensity 2w is

I2'(O) [ ~It (T _E TL EL)] ~ (+ (u20 /2)1 11

{cosh (( "l - os[ (k-k)i]1 (5.39) 3
4I

If there is no absorption, Eq. (5.39) reduces to I
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2x 2 b [)1 2 sin2 [(k-kb)1/21 (5.40)

which oscillates periodically with increased pathlength through the liquid. In the

wedged Maker fringe configuration, the liquid is confined between windows that make a

small angle, a. As the wedge is translated perpendicularly to the beam, the path length I

is increased producing oscillations in the output second harmonic intensity that are

known as Maker fringes. The effect on the Maker fringes of absorption at either co or

2w is to decrease the amplitude and introduce a nonzero minimum as can be seen in Eq.

(5.39).

The second harmonic intensity is seen in Eqs. (5.39) and (5.40) to depend on

both rG(-2co;o,o,0) and rL(-2o;o,€oO). In order to determine the desired quantity

rL(-2co;co,o),o), we must have previous knowledge of FG(-2(o;(o,co,O) for the BK-7

glass cell windows. Furthermore, rather than attempt an absolute calibration of Eq.

(5.40) with every experimental run, the Maker fringes from the DCSHG cell containing

sample liquid are comparn -ith tL fringes obtained from a known reference standard.

A careful absolute determination of the second harmonic coefficient of quartz has

yielded12 d.21 = X(2)(-2);(0,0o) = 1.2 x 10-9 esu, and this value is comnonly used as the

standard for both second harmonic susceptibility X(2)(-2o;o,Co) and dc-induced second

harmonic susceptibility X(3)(-2w;o, ,O) measurements. We fix the absolute magnitude

of rL, then, by bracketing the DCSHG measurements with second harmonic

measurements of a quartz wedge without a static electric field applied. The analysis for

the SH intensity observed from the quartz wedge is similar to the one given above, but
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there are only two boundaries and the bound wave in the air at each one is zero. The

final result is2  I

12coQ) = .. (TQ E-) 2 sin2 [(k7 - kQ)I /2] (5.41)

where Q

nQ + nQ

0) + 2co
TQ= + Q (5.42)I + n 2o

and I

EQ =Q)M (5.43)b (nQ )2 -(nQ ) 1+ IQ)

In the absence of absorption, one can simply compare the peak heights of the3

liquid DCSHG and quartz SHG Maker fringes to obtain FL. From Eqs. (5.40) and

(5.41), one finds
Le nL F (ta)2 I
L L () 2

rL IL [L( 1 2) TG nG+n

'C 0 CO ) 20w I

in Eq. (5.32), TL and TG in Eq. (5.36), and TQ in Eq. (5.42). Thus, in addition to the 3
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refractive indices of liquid, glass and quartz at the fundamental and second harmonic

frequencies, one must also know rG, a91, and EO. The static field strength is Eo =V

where V is the applied high voltage and d is the electrode spacing.

C. Implementation of DCSHG Experiment

Laser Source

The optical source for the DCSHG experiment is a Quanta-Ray DCR-I

neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. The YAG laser is actively

Q-switched at 10 Hz and produces 8 ns pulses at a wavelength of 1064 nm with a

maximum output energy of 300 mJ per pulse. For the dispersion measurements of

DCSHG in hexatriene and J3-carotene, it was determined that appropriate, accessible

wavelengths are 1064, 1543, and 1907 nm. The latter two wavelengths were obtained

by frequency conversion of the YAG fundamental through the stimulated Raman

scattering process.

The Stokes and anti-Stokes Raman processes illustrated in Figure 5-2 correspond

to the subtraction and addition, respectively, of a quantum of energy of the material

system from the incident photon. In Stokes Raman processes, the Raman medium

makes a transition from an initial eigenstate I i > to a higher-energy eigenstate

If>; whereas in anti-Stokes processes, the I i > state is of higher energy. For our
4

purposes, energies on the order of I mI/pulse at the desired wavelengths were obtained

by focusing the 1064 nm YAG fundamental into a Im long metal cell that contained
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hydrogen or methane gas at a pressure of 300 psi. The vibrational Stokes shift of

hydrogen at 4155 cm -I and of methane at 2916 cm - I produced first Stokes lines of 1907 I

and 1543 nm, respectively. Higher order Stokes conversion is also observed due to the

interaction of multiple vibrational quanta with the incident photon, and the available

wavelengths are listed in Table 5-1.

I
Optical Layout

A schematic illustration of the DCSHG experimental layout is shown in Figure

5-3. The YAG fundamental at 1064 nm was steered by prism P1 and focused by lens LI 1
into the gas Raman cell. The reflection from P1 was focused onto the gate photodiode

PD which served as an optical trigger for the data collection electronics as discussed

later. The output from the Raman cell consisting of many discrete wavelengths was U
recollimated by lens L2 and steered by prism P2 towards the dispersive prism P3.

Rotation of P3 allows selection of the desired wavelength by aligning it through the

pinhole PH while the other Raman lines are blocked. The beam was further filtered by I
the band pass filter F1 . Prism P5 steered the beam towards the DCSHG sample cell

while the reflection from P5 was guided by prism P6 into the reference arm.

In the sample arm, after steering by P5, the beam was focused into the DCSHG

sample cell S to be described in detail below. The cell was mounted on a configuration

of four translation stages that controlled the height of the cell with respect to the beam,

the position of the cell along the beam path, and the position of the cell transverse to the

beam path. Control of the position along the beam path was required to adjust the beam I
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waist to the center of the cell, a condition required for optimization of the Maker fringes.

Two stages adjusted the cell position transverse to the beam path, one to rapidly select

between the sample cell and a quartz wedge mounted beside it on the stage assembly and

the second driven by a stepper motor to allow fine adjustment of the transverse beam

position for the Maker fringe data collection. The quartz wedge served to set the

absolute magnitude of rL by comparison of quartz SHG Maker fringes to the liquid

DCSHG Maker fringes through Eq. (5.44). The stepper motor was controlled by a

PDP- 11 computer to translate the wedge sample in fine steps across the beam, thereby

increasing the beam pathlength through the sample and generating Maker fringes. The

output of the sample, consisting of the strong fundamental light and relatively weak

second harmonic, was passed through filters (i.e. CuSO4 solution) to absorptively

remove the fundamental, further spectrally filtered by the monochromator M, and then

weakly focused on the photomultiplier cathode PMT I.

The refer'rce beam was focused on a separate quartz crystal R that was used to

reduce the fluctuations in the SH intensity 12w. Because stimulated Raman conversion is

a nonlinear process, fluctuations in the YAG fundamental are amplified in the Raman

output, and further amplification of the fluctuations occurs in the SH conversion. Under

the assumption that the intensities in the sample and reference arms are linearly related

independent of the Raman fluctuations (e.g. linear beam splitting, detection, etc.),

f2) -c (lW)2 of each arm is also linearly related. Thus division of the sample l by the
4 S

reference 12 should remain constant. Pulse-to-pulse variations in beam profile and
R

focal plane position still lead to slight variation in I / I-, but the pulse-to-pulse signal
S R
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stability was drastically improved by this referencing iechnique. Further reduction in

fluctuation was accomplished by averaging over at least 20 to 30 shots for each data 1
point and rejecting all shots in which 12(a varied by more ta 30% from the mean value.

The reference beam was passed through absorptive filters to remove the fundamental and

weakly focused on PMT2. 1

Liquid Sample Cell

There are three primary requirements to be incorporated into the design of the

sample cell: 1) The boundary conditions leading to Eq. (5.39) require that the electrodes

be wide enough that FO is essentially constant across the liquid but narrow enough that

E° is negligible at the front and back window-air interfaces. Analysis of the electrode

fringe fields demonstrates that the electrodes must extend a distance d beyond the glass-

liquid boundaries and be at least 4d away from the glass-air boundaries, where d is the

spacing between the electrodes. 13 2) The wedge angle c of the liquid must be chosen

such that several fringes may be obtained in full translation of the cell for typical I
coherence lengths Ic on the order of 15 to 30 pm. 3) The mean thickness 1 of the liquid

compartmnt should be relatively small so that the contrast between the Maker fringe

maximum and minimum is not "washed out" in weakly absorptive liquids as determined 1
by Eq. (5.39).

The cell, illustrated in Figure 5-4, consists primarily of two fine annealedBK-7

glass windows of dimension 8 x 24 x 1.6 mm formed into a wedge of ot = 0.0227

radian with two stainless steel electrodes of dimension 6 x 28 mm attached at the top and 1
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bottom. This configuration is encased in a larger glass cell with the two glass windows

protruding slightly through the cell. The joints are sealed by Omega high temperature

ceramic adhesive and coated by silicone rubber to ensure a leak-proof se-. The mean

thickness of the liquid between the windows is about I nm and thc, electrode spacing is

1.6 mm, the thickness of the windows.

Photomultiplier Tubes

For applications of DCSHG with a fundamental wavelength of 1907 nm, it is

necessary to have a detector with high sensitivity in the near infrared out to 954 nm. For

most photomultiplier tubes, the quantum efficiency is negligible beyond 900 nm. The

Varian VPM-159A PMT with InGaAsP photocathode, however, has a typical quantum

efficiency of 5% at 900 nm and 2% at 1060 nm. A gain of i04 - 05 is obtained from

the 12 stage dynode configuration at the typical applied voltage of -1300 V. The PMT

output pulse is longer than the laser pulse since the tube has a rise time of -10 ns, but the

output pulse is shorter than 100 ns and falls well within the opening of the ADC gate.

Permanent cooling to below -200 C is required for the VPM-159A to avoid irreversible

damage to the cathode. The PMT cooled housing obtained from Products for Research,

Inc. also serves to drastically reduce the dark current that results from thernionic

emission of electrons from the cathode and dynodes. As an additional consideration, too

high an input intensity to the PMT can lead to saturation of the photocathode and,

therefore, nonlinearity of the PMT respon ie. The focusing conditions, input intensity,

and high voltage were carefully maintained in the linear response regime.
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Electronics and Data Acquisition 1
The high voltage pulse applied to the sample cell electrodes, the analog-to-digital

converter (ADC) gate pulse provided by the photodiode, and the PMT output pulse must

all be carefully synchronized. Rather than supply a constant high voltage to the

electrodes, a 5 kV, 10 pgs pulse is provided by a Cober 60S high voltage pulse generator I
to minimize the ionic conductivity and polarization of the electrodes. The laser pulse is

synchronized to arrive near the 8 pas mark within the rectangular HV pulse; and since the

laser pulse is of only 8 ns duration, the HV may be considered to provide a static E0.

The laser pulse is adjusted to arrive towards the end of the HV pulse in order to allow

orientational equilibrium to occur in the liquid. Relative timing between the HV and

laser pulses was achieved by triggering the HV generator on a pulse provided by the U
YAG laser upon firing of the flashlamps. The HV is triggered 250 lis after flashlamp

firing, and the laser Q-switch is triggered 84as later still. The 250 lis delay maximizes

the laser output by allowing energy buildup in the cavity prior to Q-switching. I
The PMT output is digitized through a LeCroy 2249w 12 channel ADC inserted

into a standard CAMAC crate controller (Kinetic Systems model 3912) interfaced to a

PDP- 11. The ADC inputs have a common gate that is provided by a circuit triggered on

the gate photodiode. The 600 ns gate covers the entire PMT output pulse with 3
synchronization between the gate and PMT pulses achieved by delay boxes. After

averaging the ratio PMTI/PMT2 over the desired number of shots, the computer stores
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the result and advances the stepper motor to increase the beam pathlength. The fringes

are also plotted in real time on an x -y recorder as a monitor during the measurements.

Materials Handling and Preparation

Hexatriene, which was measured in the neat liquid, was obtained from Aldrich

Chemical Company in fused, glass ampules containing 1 gm of HT each. These were

stored in a freezer and allowed to warm to room temperature only a couple of hours

before use. The DCSHG cell was sealed with septa and filled with nitrogen for fifteen

minutes. After all other preparations for the measurement had been made, the ampule

was cracked open and HT was immediately transferred to the sealed DCSHG cell. After

data-taking of no more than thirty minutes, the HT was discarded. In this way,

exposure of HT to light, oxygen, and water was kept to a minimum.

1-carotene was obtained in microcrystalline form, also from Aldrich, and stored

in a refrigerator. Structural transformation in 1-carotene is known to occur in solutions

with exposure to water or UV light and is manifested in a strong blue-shift in the optical

absorption spectrum accompanied by a striking color change from red to yellow. 14 .15 In

order to prepare stock solutions, then, 150 mg f-carotene was quickly but carefully

weighed out on a Mettler H20 electronic balance, transferred to a flask, and placed in a

glove box. After evacuation of the glove box and inflow of nitrogen, 30 ml 1,4 dioxane

was added to the flask which was then capped with a septum, sealed with Parafilm, and

wrapped in aluminum foil for protection from light. The tendency of dioxane to absorb
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water from the atmosphere was prevented by storage in an Aldrich "sure-seal" bottle and

transfer into a nitrogen-filled flask. I
Dilution of the stock solution for concentration-dependence measurements was

carried out by transfer from the stock solution flask to small vials sealed with septa

containing nitrogen and pure dioxane. The DCSHG sample cell was always filled with

nitrogen before the addition of solution. Measurements of one week old solutions 5
yielded a 20% decrease in <t(-2o; ;o,o,0)> of 1-carotene compared to fresh solutions.

Therefore, all measurements reported here were performed in less than two days after

preparation of the stock solution. 5

D. Experimental Results and Analysis

I
Quartz, Glass, and Dioxane 3

As discussed in conjunction with Eq. (5.44), several quantities must be precisely

known in order to achieve accurate measurements of the liquid DCSHG susceptibility I
FL. In particular, the refractive indices, coherence lengths, and susceptibilities of I
quartz, BK-7 glass, and dioxane must be well-characterized. In this subsection, we

present the reference values used for these quantities at the relevant wavelengths of I
1907, 1543, and 1064 rum and discuss the internal consistency of these results. 3

The value of the second harmonic susceptibility d 1I of quartz has been carefully
~I

determined 12 to be 1.20 x 10-9 esu at a fundamental wavelength of 1064 nm and this

value is universally accepted in the community as the reference standard. To obtain diI I
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at 1907 and 1543 rum, we applied the generalized form of Miller's rule. Miller

discovered in a survey of dI 1 values of inorganic crystals that, for crystals with d 1

values that vary over three orders of magnitude, d, 1 could be described by

dII No (0t (0tX 8t (5.45)

where I 1 is the linear susceptibility and 811, known as the Miller's coefficient, has a

variation of less than a factor of two. 16 This empirical rule has been generalized to

describe the dispersion of d, 1 in inorganic crystals in the weakly dispersive regime,

leading to

20)' (a' xV'

df) do' (5.46)11 11 x2to x 3 C
xit xIl 1 11

Table 5-2 lists the values obtained for 49 from Eq. (5.46) along with the tabulated 17

refractive indices at the fundamental and second harmonic wavelengths.

An example of the Maker fringes obtained from quartz is compared to the fringes

obtained from the DCSHG cell filled with dioxane in Figure 5-5 for X = 1543 nm.

(2)
Because quartz generates SH intensity via 2jk (-2w;co,) and the DCSHG cell via the

(3)higher order jkJ (-2ca;cOoa,0), the quartz signal is several orders of magnitude larger.

The quartz fringe amplitude in Fig. 5-5 was depressed by a factor of 3.72 x 103 with

neutral density filters (OD = 3.57) relative to the dioxane fringe. The Maker fringes are

least-squares fit to a function of the form
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12X0) = A1 sin2  + A 4 ) + A2  (5.47)

I
where A 1 is the fringe amplitude, A2 the fringe minimum. A3 the coherence length 1c,

and A4 an arbitrary phase factor. In evaluation of rL from Eq. (5.44), we use the mean I
fringe height Am = A + A2 for 120) rather than the fringe maximum in order to properly I
account for any non-zero minimum that results from finite beam size effects. 2,18

The Maker fringe analysis directly yields Ic as well as 12 for insertion into Eq.' I
(5.44). Since we also have the relation 3

(kI- kb ) 4(n2(o-n) 5.4

if we have the necessary refractive index values, we can verify the consistency of the

measured Ic with the expected value. Experimentally, lc is determined by the angle of the

wedge and the transverse displacement I of the cell from a fringe minimum to a I
maximum through 3

Ic = I sin cL (5.49) I

The quartz wedge angle cL was independently measured to be 0.0195 radian. The0 i
calculated values of Ic for quartz from Eq. (5.48) and refractive index data are in

excellent agreement with the experimental values of 1c as shown in Table 5-2. I
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The refractive indices of the BK-7 glass windows at the pertinent wavelengths

were calculated from the dispersion relation

n2 (X) = A0 + A I ; 2 + A2 ;- 2 + A 3 )- 4 + A4 )-6 + A5 ),-8 (5.50)

where X is the wavelength in microns and the dispersion constants A0 through A5

obtained from Schott-Glass Technologies 19 are listed in Table 5-3. The DCSHG

susceptibility of BK-7 glass rG has been measured at 1064 run by Oudar to be 3.50 x

L0-14 esu using a glass wedge with HV electrodes attached and in direct comparison

with d,1 of quartz. 2 FG values at 1907 and 1543 nm were obtained through this value in

conjunction with the generalized Miller's rule. Table 5-4 lists the calculated values of

nfO, n2', FG , and F for BK-7 at the wavelengths 1064, 1543, and 1907 nm.

The measurement of FL for pure 1,4 dioxane at each of the three fundamental

wavelengths was required for the determination of <'K-2co;o),o,0)> for f-carotene from

concentration dependence studies of solutions and serves to illustrate the basic procedure

for DCSHG experiments in liquids. For example, the last squares fit to Eq. (5.47) of

the fringes taken for quartz and dioxane at X = 1064 nm yields values for AQ, I, AL
m' C' m

and k. The value for AQ must then be scaled up by OOD where OD is the optical

density of the filters used to reduce the quartz SH intensity on PMTI to maintain linearity

of the PMT signal. The measured angle for the DCSHG cell of a = 0.0277 rad is used

in the calculation of b. From Aldrich Chemical Company, the refractive index of

dioxane at . = 590 rum (Sodium d line) is 1.4215. Our measured value of Ic for
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dioxane, 26.67 gm, yields n2 0(532 nm) - n(0(1064 am) = 0.010. We therefore use n0O

= 1.41 and n26) = 1.42 where the lesser precision of the refractive indices of dioxane in I
comparison to BK-7 and quartz introduces less than 1% uncertainty into FL. The full set 3
of parameters used to determine rL of dioxane at 1064 nim are listed in Table 5-5.

Insertion into Eq. (5.44) yields FL = 5.71 x 10-14 esu. I
The coherence lengths of dioxane at 1907 and 1543 nm allow us to approximate 3

the refractive index at these wavelengths as well. At 1543 nm, Ic = 71.1 prn gives An =

n2a) - nO = 0.005; and at 1907 rum, for Ic = 105.7 gm, An = 0.005. The refractive index I
is well-enough approximated for our purposes by 1.41 at 1907, 1543, 10o4, and 953

nm and 1.42 at 771 and 532 nm. The values of the refractive index at the fundamental

and second harmonic frequencies, the coherence length, and the measured FL for

dioxane at X = 1064, 1543, and 1907 inm are listed in Table 5-6. 3
Finally, we can calculate the molecular susceptibility <K-2co;co,co,0)> from

n + 2 n 2 + 2 (n + 2 )F.
FtL = N(-.- (n 3 ) [M2 <(-2c;ito,0)> (5.51)n. +2e

U
where N is the number density of molecules and E is the static dielectric constant of the

liquid. The number density is given by I

N d(5.52)

I
I



where NA is Avogadro's number, MW the molecular weight and d the density. For

dioxane, with MW = 88.1 grn/mole and d = 1.034 gm/cm 3, we obtain N = 7.065 x 1021

cm "3. The static dielectric constant is E = 2.209 at room temperature. The values thus

obtained for <y(-2,o;),co,O)> from the measured rL are also listed in Table 5-6. Since

the optical absorption of dioxane begins near X = 300 nm, the dispersion of

<Y(-2wo;w,w,0)> is expected to be weak in our experimental wavelength regime. The

weak, montonic increase in the experimental <Y-2o;o),o,0)> with decreased

wavelength is a satisfying indication that our experimental technique is consistent from

wavelength to wavelength and possesses high precision.

Hexatriene

The optical absorption spectrum of liquid HT in the vicinity of the I IBu -- I IAg

x-electron transition is shown in Figure 5-6. The 0-0 transition occurs at 274 nm (4.53

eV) and the vertical transition at 243 nm (5.10 eV). In comparison with the vapor phase

absorption spectrum in which both the 0-0 and vertical u'ansitions occur at 251 nm (4.93

eV), it is seen that the primary effect on the spectrum in going from the gaseous to

condensed phase is a red-shift of the low-energy shoulder of the spectrum while the

peak of the oscillator strength (vertical transition) shifts only slightly. Since the second

harmonic wavelengths in the current study are at 953,771 and 532 nim, all well below

the 1 Bu +- I IA3 absorption, it is expected that the dispersion of <y(-2co;co,,0)> will

be weak, in analogy to the dioxane results.
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I
The refractive indices of HT, required for evaluation of rL from the Maker fringe

data as well as for determination of <(-2co;co,0)>, were obtained from the value n =

1.56135 at 590 nm from Aldrich in conjunction with the An = n2 a - n0O values derived

from IC at each fundamental wavelength. The measured values of Ic at 1907, 1543 and

1064 nm, 49.5, 29.1 and 7.9 gm, respectively, yield An = 0.010, 0.0 13, and 0.034.

The consistent set of refractive indices determined by these values to a precision of I
±0.01 is listed in Table 5-7.

FL at each fundamental wavelength was calculated for neat HT from the Maker

fringe data and the quartz and BK-7 values given in Tables 5-2 and 5-4 in the same 3
manner as described above for dioxane. The dispersion is fairly weak as expected.

Primarily through the significantly shorter Ic of HT compared to dioxane, but also due to

as much as 60% increase in fringe height, FL of HT at the various wavelengths is 3.5 to

4.2 times larger than that of dioxane. Table 5-7 lists the experimental values for FL of

HT at each wavelength.

From the HT molecular weight of 80.13 and density d = 0.737 gm/cm 3 , we I
determine the number density N to be 5.54 x 1021 cm"3 in the neat liquid. Using this

value of N, e = 2.276,20 the refractive indices from Table 5-7, and Eq. (5.51), we

obtain <K(-2c;o,ao,0)> = 8.2, 7.5, and 10.0 x 10-36 esu for 1907, 1543, and 1064 nm, I
respectively. These values as well as those of FL have an associated experimental 3
uncertainity of ±15% determined from the reproducibility of the Maker fringes and

uncertainities in the standard and derived values employed for quartz and BK-7 glass.

Comparison of the measured values for <Y-2o;co,O0)> with the theoretically predicted I
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values as described in Chapter 4 is made in Table 5-8. At each of the three fundamental

wavelengths, experiment and theory are in agreement within the 15% experimental

uncertainity. As discussed in Chapter 4, the theoretical values are for a mixture of 60%

trans and 40% cis conformations of HT and include a small a-electron contribution to

<y(-2w;w, O)> determined from bond additivity analysis of alkane chains.

The experimental values of <y(-2o;co,oO)> are also plotted against the

theoretically predicted dispersion curve in Figure 5-7. Since the first 2o resonance is

predicted to occur for a fundamental wavelength of 502 nm, far shorter than our shortest

experimental wavelength, the dispersion is predicted to result in only a 25% increase in

<'y(-2co;w(,,O)> in the experimental region. Indeed, the difference between the smallest

and largest experimental values is 33%. The 8% larger measured value at 1907 nm

relative to 1543 nm is considered a fluctuation within the experimental uncertainty and is

not evidence for anomalous dispersion. The experimental results demonstrate that the

theoretical method accounting for electron correlation described in Chapters 2 through 4

accurately determines the magnitude and dispersion of <K-2co;o,,0)> in HT.

a-Carotene

The optical absorption spectrum of -carotene in solution with dioxane, shown

in the vicinity of the 1I Bu +- I 'Ag x-electron transition in Figure 5-8, exhibits the onset

of absorption near 530 nm (2.34 eV), the 0-0 transition at 484 nm (2.56 eV), and the
a

vertical transition at 455 nm (2.73 eV). The second harmonic wavelengths 953 and 771
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nm are quite far from the 1 IBU excitation, but we expect the second harmonic at 532 run

to exhibit strong resonant enhancement due to its proximity to the optical absorption.

Under certain conditions, DCSHG measurements in solution at a single

concentration can yield unreliable results due to solute-solute interactions.3 In order to

eliminate this possibility as well as to obtain more precise values of <y(-2co;co,co,O)>, we

have measured rL as function of 3carotene concentration. In the analysis of these

measurements, we have assumed that each molecular species contributes to FL in a

weighted average of <y(-2o;wco,o,0)>, that the local field factors are independent of the

molecular species, and that n and e are independent of concentration in these relatively 3
dilute solutions of nonpolar solvent and solute. With these approximations, we have

2 2 2. n + 2 2  n2  + 2 (2 + 2)e

rL =(-'3- 3T n 2 +2e

[N 1 <Yi(-20O;(O,,O) > + N2 <y2(-2co;o,o,O) > 1 (5.53) I
where the subscripts 1 and 2 refer to solvent and solute, respectively. Furthermore, in

the limit 1<(-2o;o),O)> >> ky1 (-2co;o,WO)>1, Z[j, where C is the concentration in

mole / litre; depends only on <y2(-2co;wo,co)>. We then have, 1
I

< €2 ,, o)> (% +22 n2 2I

n2 +2e .r
.2 1

2e 6.02 x 1020) " (5.54)
(n + 2)F.
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We used stock concentrations of 8 - 9 x 10-3 mole / liter and measured rL at

several more dilute concentrations for each fundamental wavelength. In all cases, UL

was quite linearly dependent on C indicating that the approximations that lead to Eq.

(5.54) are valid. At 1907 and 1543 nm, Ic of the solutions decreased by no more than

3% relative to pure dioxane, while at 1064 nm, a 10% decrease was observed. The

larger change in Ic at 1064 nm is due to the strong dispersion in the linear susceptibility

of IP-carotene as the second harmonic wavelength approaches the I IBu -- I Ag

excitation wavelength. Nevertheless, the decrease in Ic at 1064 nm from 26.7 to 24.2

jim results from a change in n2(o - nw from 0.0 10 to 0.011 since the solution is dilute,

and the approximation of constant refractive index remains valid. The SH fringe height,

however, increases by 95% for the stock solution relative to pure solvent at 1064 nm

and by 50% at 1907 and 1543 nm.

The concentration dependences of rL = X(3)(-2wa;co,o),0) at X. = 1907, 1543, and

1064 nm are shown in Figures 5-9, 5-10, and 5-11, respectively. The measurements at

1543 and 1064 nrm were made in solutions of n-carotene in dioxane while at 1907 nm

the solvent was benzene. rL at each concentration was determined as described above.

The refractive indices of benzene, for the 1907 nm measurements, are nW =-. n2  - 1.50.

Table 5-9 lists the slopes arL determined from each concentration dependence

values for <Y(-2u;co,^,0)> of P-carotene obtained from Eq. (5.54). The closeness of

the measured values at 1907 and 1543 nm in the weak dispersion regime demonstrates

that solvent-solute interactions are relatively weak. As expected based on the optical
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absorption spectrum, <'(-2o;co,O)> at 1064 nm is, however, much larger than the

values at the two longer wavelengths. 1
In Figure 5-12, the experimental value for <y-2;o,o,0)- of 1-carotene at 1907

nm is plotted against the length of the chain along with the theoretical results from

Chapter 4. For kcarotene, the length L is taken as 25.4 A which corresponds to the

N = 22 linear trans-polyene. The 1-carotene experimmtal value is in excellent 3
agreement with extrapolation of the theoretically predicted power law dependence

<(-2(o;co,o,0)> - L3.4 . This result taken together with the agreement between

experiment and theory for the magnitude of <W(-2w;(oo,0)> for HT, both validates the 3
theoretical power law dependence and extends the region of chain lengths over which it

holds beyond the largest length addressable with current computational resources.

I
I
I
I
I
I

a I
I
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Table 5-I. Vibrational Raman Lines from Hydrogen and Methane Pumped by a

Nd:YAG Laser.

am M-in 2 C14 1H2 CH4

Pump Wavelenph (nm) 1064 1064 532 532

Second Stokes (nm) ---- 2804 954 771

First Stokes (n) 1907 1543 683 630

First anti-Stokes (nm) 738 812 436 461

Second anti-Stokes (nm) 565 657 369 406

11-ird anti-Stokes (nm) 457 551 320 363
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Table 5-2. Fundamental and Second Harmonic Refractive Indices, Calculated and

Experimental Coherence Lengths, and Derived dl 1 Values for Quartz.

I
X(nm) nO n2w lc= (ji m) exp. (.mi) dii (10"9 esu)

4(n2O-nO) II

1907 1.5224 1.5358 35.6 ± 1.6 36.3 ± 0.2 1.14

1543 1.5278 1.5390 34.4 ± 2.0 34.9 ± 0.2 1.16

1064 1.5341 1.5470 20.6 ± 1.0 21.2 ± 0.2 1.20 1
1

I
U
U
I
U
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Table 5-3. Constants for Refractive Index Dispersion Relation of BK-7 Glass.

[n()] 2 =A 0 + A 1 X2 + A2 X-2 + A3 X-4 + A4 X-6 + A5 X- 8  (X in gm)

AO :2.2718929

A : -1.0108077 x 10-2

A2 : 1.0592509 x 10-2

A3 : 2.0816965 x 10-4

A4 : -7.6472538 x 10-6

A5 : 4.9240991 x 10-7
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Table 5-4. Fundamental and Second Harmonic Refractive Indices, Coherence Lengths,

and rG for BK-7 Glass. i
i

X (nm) nw n2( Ic (JIM) rG (10-14 esu)

1907 1.4960 1.5082 39.08 3.32 5
1543 1.5008 1.5114 36.39 3.39

1064 1.5067 1.5191 21.37 3.50

I
I

I

I
I
I

I



Table 5-5. Parameters for rL of Dioxane at ), = 1064 am.

d 11Quartz 1.20 x 10-9 esu

Ic Quartz 21.4 tm

nOw Quartz 1.5341

n2 0 Quartz 1.5470

rG BK-7 3.50 x 10- 14 esu

Ic BK-7 21.37 um

nW BK-7 1.5067

n2w BK-7 1.5191

n(O Dioxane 1.41

n2A Dioxane 1.42

lc Dioxane 26.7 gtm

E0 : 5.10 kV / 0.16 cm

Am Quartz 4.41 x 104

Am Dioxane: 0.758
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Table 5-6. Fundamental and Second Harmonic Refractive Indices, Coherence Length,

rL, and <K-2;coo,0)> for Dioxane. i
I

X(n) n(O nf)le (pmfl) rL (10-14 esu) <'7(-2wo;co,o)> (10-36 esu)

1907 1.41 1.41 105.7 4.50 1.95

1543 1.41 1.42 71.1 4.93 2.14

1064 1.41 1.42 26.7 5.71 2.48

I
I
I
I

I
I
I

' I
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Table 5-7. Fundamental and Second Harmonic Refractive Indices, Coherence Length,

and rL for HT.

X(nm) 1( 2( c (JILM) FL (10-14 esu)

1907 1.48 1.49 49.6 17.7

1543 1.48 1.50 26.3 16.1

1064 1.49 1.51 7.9 22.0
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Table 5-8. Experimental and Theoretical Values of <y(-2ao;co,0,)> for HT.

X (nm) Experiment (10.36 esu) Theory (10-36 esu)

1907 8.2 ± 1.2 7.1

1543 7.5 ±1.1 7.5I

1064 10.0 ± 1.5 8.9
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Table 5-9. arL / aC and <y(-2w;w,oO)> for P-Carotene.

X. (nm) (10- 12 esu/M) <Y-2co;c,w,)> (10-36 esu)

1907 1.50 ±0.15 616 ±62

1543 1.16 ±0.07 592 ±36

1064 3.09 ±0.25 1580 ±130
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Figure 5-2. Schematic illustrations of the Stokes and anti-Stokes Raman processes that

are used for frequency conversion of the Nd:YAG laser output.
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Figure 5-3. Ex~perimental layout of the dc-induced second harmonic generation

(DCSHG) experiment.
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I Figure 5-4. The DCSHG liquid sample cell. The BK-7 glass windows form a wedge
angle a = 0.0227 rad with a mean pathlength of 1.0 mm. The HV electrodes are

I separated by 1.6 mm.
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Figure 5-5. Sample DCSHG Maker fringes obtained for (a) quartz and (b) 1,4-dioxane

at a fundamental wavelength X = 1543 nm. The quartz second harmonic intensity is

attenuated by an optical density of 3.57.
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Figure 5-6. The linear absorption spectrum of hexatriene (H-T) in the neat liquid in the
region of the I I Bu I- 1 1Ag i-electron transi tion.
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Figure 5-7. The experimentally determined values of <y(-2;w,cO,0)> for HT at X
1907, 1543, and 1064 nm and the theoretical dispersion curve.
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Figure 5-8. The linear absorption spectrum of 1-carotene in solution with 1,4-dioxane

in the region of the 1 IBu +- I Ag it-electron transition. The molecular structure of

13-carotene is also shown.
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Figure 5-9. Concentration dependence of X(3)(-2ro;coco,0) for 0-carotene in solution I
with benzene at . = 1907 nm.
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Figure 5-12. The experimental value of <y(-2co;co,o,O)> for f[-carotene at X = 1907 nm

(Aw = 0.65 eV) (solid square) compared with the theoretical values for the N = 4 to 16

trans polyenes (open squares) as a function of chain length L. The 3carotene experi-

mental value confirms the theoretical power law dependence <Y-2o;o,co,)> - 0 4

represented by the solid line.
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Chapter 6

DISPERSION OF <-3o;(o,.,o)> IN HEXATRIENE AND 1-CAROTENE

I
A. Introduction

The technique of third harmonic generation (THG) is ideally suited to the

measurement of third order optical nonlinearities of electronic origin. In contrast to

DCSHG, which possesses potential contributions both from the second order

susceptibility 3jjk(-2(o;o,co) and from the vibrationally-derived third order hyper-Raman

susceptibility 1jk,a as described in the previous chapter, THG involves only optical

input and output frequencies that oscillate too rapidly (> 1014 Hz) for molecular

orientations, vibrations, or rotations to follow. THG possesses the additional advantage I
over degenerate four-wave mixing (DFWM) measurements, governed by I
yijkI(-.o;,o,-co,o)), for example, that it involves detection of a frequency different than

that of the input light. In DFWM experiments, one detects the scattered signal of an I
incident probe beam from a refractive-index grating formed in the medium by two other

incident beams. In addition to grating formation in the electronic polarization of the

, iedium, thermal, acoustic, and population gratings may also form and scatter the

incident beam. While deconvolution of the various mechanisms is a difficult problem in

DFWM, it is clear that thermal, acoustic and population variations cannot lead to the

creation of a new frequency and thus cannot contribute to THG.

I
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An additional motivation for THG dispersion measurements in HT and

3-carotene is to make careful comparison between DCSHG and THG results. In the

I limit co -+ 0, the molecular susceptibilities yijt-2o;w,.,O) and yjk1(-3;.0,I,w) are

related by a simple multiplicative factor. From the convention defined in Chapter 2, the

relationship isI
yLjk(- 2 co;co,woO) = 6 jkj(-3o;(o,w,(o) . (6.1)

U For optical frequencies that lie below the first 3o THG resonance, dispersion increases

the magnitude of each yijk/(-(.4; l,(o2," ) above its (o = 0 limit. In this frequency

region, the dispersion of yjk/(-3wo;o,co,.o) is larger than that of y7jkj(- 2 W;(oo,O), and

therefore, for a given co, the multiplicative factor between yijkA- 2 ;w,.o,O) and

I y~~k(- 3 .ocmm,) is less than 6 and monotonically decreases with increased (o. Thus,

although comparisons between measured values of y11&r(-2co;wco, O) and

Yif(-3;.oa,.) have been made previo,,ly, they have been hampered by the

uncertainty in the degree of dispersion. In the present work, since the experimental and

theoretical values of <Y(-2o;w,o,0)> have been shown to be in excellent agreement, a

similar comparison between theory and experiment for <.(-3o(;,W,o)> allows us to

also address the relationship between <y(-2o;ww,O)> and <,(-3C;o,,ww)> as a

function of dispersion.

The derivation of the TH intensity in the THG wedge Maker fringe configuration

and the implementation of the THG experiment are very similar to what was described in
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the previous chapter for the DCSHG experiments. In fact, the THG and DCSHG

experiments were performed on the same optical table, used the same laser source, and

had many optical components in common. The intentional versatility of the experimental

design allowed us to switch between the THG and DCSHG arrangements with only

slightly more effort than is required to change the fundamental wavelength within either

of the two experimental configurations. Because of the similarity of THG to DCSHG.

the derivation of the TH intensity and the description of experimental design in this

chapter will primarily focus only on the aspects that are different than those described in

the previous chapter.

I
B. Derivation of Third Harmonic Intensity in the THG Configuration

I
The following derivation closely follows the one given in Section 5.B. The

macroscopic polarization induced in a medium at a frequency 3o by three applied optical

electric fields at frequency co with amplitudes E, E , and Ew' in the j, k and I directions I
is given by

p3 0) = X(3 (-3co;w,W,CO) £E') E(O E( (6.2)I
jkl , k I

where X(3)(-3o;ocoo)) is the macroscopic THG susceptibility tensor. In the case

where the polarizations of all fields are parallel, the corresponding nonlinear wave

equation that detemines the third harmonic electric field ENO(z) is given by I
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a2E3(a aE3(o 367RO)2(3
_ 

+  k2 E3 6=-"2 X: 1 (-3o;o,w,w) [EW(z)1 3 eikbz (6.3)

where a 3 , is the absorption coefficient at the harmonic frequency, EW(z) is the amplitude

of the fundamental field and decreases due to a,,, A = (3(o n3o/c and kb = (3(o n)/c

are the wave vectors of the free and bound harmonic waves, respectively, and the z-axis

is the direction of wave propagation. Eq. (6.3) has the solution

I E3 (z) = Ee - 3('12 eikf + Eb(z) eikbZ (6.4)

I
g where the bound wave amplitude is given by

I Eb (z) 4x2 X3(-3 oo,, [E0(z)13  (6.5)

I
For the general case of a boundary at z = z0 between two media, we find for the free

I wave in the second medium

I
= T3,. (l)e"f + [T, E()(zO) - T2 E(2(z 0)] e' Pb (6.6)

where .= (k ia3S2)zO, (pb = (kb + i3 J2)zj, and

I (1)

2 n3w
T3W = n() (2)

3w 3
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nC
0) + n(

U
)

3(a 3wo
n(2) + n(1)
3a 30)

n(2) +n(1)1
(0 30)

T2 (2) +(1) (6.7) 3

Since all materials have a nonzero X(3) - in our THG configuration,

air, glass, and liquid sample all generate TH light. This is in contrast to the DCSHG 3
experiment in which SH light is only generated in regions where the static electric field is

nonzero. We can, however, simplify the THG analysis and mimic the DCSHG

configration by using long glass windows in the THG sample cell. We choose focusing I
conditions such that the electric field amplitudes at the air-glass interfaces are less than

one-tenth of the amplitudes at the glass-liquid interfaces. Thus, since for air Ic - 50 mm

and X(3) - 10-18 esu and for glass 1c - 20 pin and X(3) - 10-14 esu, the bound wave due

to air is less than 0.001 of the bound waves generated in the glass and liquid and can be

neglected. More detail will be provided in section 6.C with the description of the THG

sample cell; in the following, we neglect the air-glass interfaces and consider only the I
glass-liquid intertaces for generation of TH light. 3

By solvuig for the free wave in the liquid EL after the z =0 glass-liquid

boundary, we obtain

I
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I = T1 E -G T (6.8)

where

I

E= G -n GEO ~l)(n3_,2 - (n 3)

L - x (3t ocoo) (E t t) (6.9)
b () 2 - (n LW)2I

with) = 2 andt0= 2 n /(n 0 + n . Following the z I liquid glass

boundary, the free wave in the rear window of the sample cel, E, is given by

£0 = T1' E ei"~2 + [TLtE3 - ( (, ))3 £EGiPb (6.10)

If 3wo I b To (0 t bj

where 2n L

ITL= 2NoL-a n3. + n 3.

L L
n +n

cc 3cc
TL= G L

n3 m + nt 3 w

G Lamno+ n 3,

TG= G L (6.11)I n 3 ,n 3osn3
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P' = 2n 1 I (n L + n . qf= (kf + ia 3(j2)I, Wb - (kb + i3rtJ2)I. The total third

harmonic electric field that leaves the THG cell is then found to be I

I
E3° = 7 '(TG EG - TL EL,) (efikf-(a3 2 )]i - e[ikb -(3(7 2)II) (6.12)

where _ = 2n /(1 + n3GJ, after we propagate EG. through the final glass-air
3w 3w 3w- fI

boundary and make approximations on the refractive index factors similar to those made

for Eq. (5.37).

The third harmonic intensity 1&0 as a function of the path length I through the 3
liquid sample is given by

!30(1)=L [7-G (TG ECI - T, E]2 e[3a/2 + (U3R/)11

I- 1 ] - COS[(kf-k b ) I11 (6.13)

which reduces for the condition a.) = a3, = 0 to I

lo) = [I. (TG E ,G _TLEL12 si) (6.14)
2zc L3o b b AL~J~h 2 c

whee c V(nL L

where = 6(n3 - n;). If we define Am as the mean amplitude of the Maker fringes,

then for measurements made on two different liquids, we find the ratio of Am is
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1'G(3 (L))]

G G TL L[TGL -G G T L -L. tL")

L n3 o r n 3o) + n C

= ( ) (6.15)

n 3 w + n 0) n3Re + n C

Iwhere R refers to the reference liquid and t(2), TL t (2) , and TGR are t(2) and TG

evaluated for the sample and reference liquids, respectively. Finally, solving for X(3) in

Eq. (6.15), we get

L~ + n L I7G (3)

n3 ce + G

(3) =G3
X L (tG23 0c - +

cAGc -I~R

(A-)2 ITGR G , TR R R ( 2)3 1 ]" (6.16)

Amn3 + n n3 , +ncW

Thus, X (3)(-3co;o),40) can be obtained from the refractive indices of the glass, reference

liquid, and sample liquid, X(3) and I of the glass windows, x(3) of the reference liquid,

, R L, and IR determined from the Maker fringe analysis.Sand A A

C. Implementation of THG Experiment

I4

The optical layout for THG is nearly identical to the one for DCSHG illustrated

in Figure 5-3, the only major difference being that THG does not require an HV source.
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The Quanta-Ray DCR-I Nd:YAG 8 ns laser was used as the light source, and the THG

fundamental wavelengths were the Nd:YAG fundamental and Raman lines generated in

hydrogen and methane gas cells. In addition to the 1064, 1543 and 1907 nm

wavelengths employed in the DCSHG experiments, for the THG dispersion of

P-carotene we also used the 2148 ram first vibrational-rotational Stokes line generated in

hydrogen. The 2148 nm line, which results from subtracting one vibrational quantum at

4155 cm - 1 and one rotational quantum at 587 cm-1 from the Nd:YAG fundamental

output of 9398.5 cm-I, was obtained with circularly polarized light incident on the

Raman cell in order to efficiently couple the beam to the hydrogen rotational modes.

Before it was split into the sample and reference arms of the layout, the Raman output

was converted back to vertical linear polarization with a Glan-Taylor polarizer. We used

the 2148 nm line in the -carotene dispersion measurements in lieu of 1064 rnm since the I
third harmonic of 1064 nm, 355 nm, is strongly absorbed within the I IBu +- I IAg

absorption band.

As opposed to the DCSHG configuration in which the laser flashlamp trigger I
signal is used to trigger the HV pulse, is delayed, and then triggers the Q-switch, since

no HV pulse is needed in THG, the laser internal delay and firing electronics were

employed. It was still necessary, of course, to gate the ADC and synchronize the data

collection electronics with the gate photodiode. One other minor difference in the two

experiments is in the use of the reference arn signal. The small intensity split off into

the reference arm was not sufficient to generate a substantial third harmonic signal, and,

therefore, the quartz second harmonic signal was again employed for referencing. Since I
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the SH signal is proportional to the square of the fundamental intensity and the TH

signal, the cube, the reference signal was raised to the 3/2 power for each laser pulse

I before the sample to reference signal ratio was taken. This produced a very stable THG

signal. The design of the THG sample cell is the final difference in the THG and

DCSHG experiments. See Section 5.C for details on the laser source, optical layout,

PMTs, data collection electronics, and materials handling that are all applicable to THG

as well as DCSHG.

THG Sample Cell

Because all media have nonzero (3) (-3w;o,,w6) regardless of their symmetry,

the environmental air surrounding a THG cell can make a measurable contribution to the

third harmonic intensity. Two independent studies employing conventional THG cell

I configurations determined 13(a / 13 _ 4 where 1&0 and 13.) are the peak third harmonic
vac ar vac ir

intensities observed for glass in vacuum and at I atmosphere, respectively. 12 In order

to eliminate the contributions of air to the TH signal and to simplify and make more

I reliable the analysis, we adopted the cell design developed by Kajzar and Messier. 3 The

3 design takes advantage of the focusing conditions employed in THG by moving the air-

glass boundaries to positions where the fundamental intensity is reduced to less than

U 10% of its value at the focus in the center of the cell. The corresponding contribution of

air to the TH signal through X(3 )(-3co;o),o),co) is therefore reduced by more than 103

relative to the liquid and glass contributions. This is achieved by making the BK-7 glass

windows 5.0 cm long and focusing with anf= 30 cm lens.
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The THG sample cell is shown schematically in Figure 6-1. Each of the 1.0 x

2.0 x 5.0 cm BK-7 glass windows is polished to flatter than V,4 and the ends are made

parallel to within 5 seconds. The windows are leakproof sealed to the aluminum holder I
with RTV silicone rubber, and threaded screw holes through the aluminum allow fine

adjustment of the window positions. The cell can be disassembled for cleaning or

replacement of the windows. During the course of the present experiments, the I
windows were adjusted to form a wedge of angle a = 0.0125 radian with mean

pathlength 1 = 0.44 mm.

I
D. Experimental Results and Analysis g

Glass and Pure Solvents I
To measure X 1 l(-3oo,m) of a given liquid, one requires the values of (3)

and Ic of the BK-7 glass windows and a reference liquid at the desired frequency. After

Maker fringe analysis of both sample and reference and determination of the fundamental I
and harmonic refractive indices, y. (-3o;(o,,o)) is obtained through Eq. (6.16). For 3
glass, we use a value of 3)l (-3o);coco) =0.58 x l "14 esu at . = 1907 nm as a

standard and employ Miller's rule to obtain values at 2148, 1543, and 1064 nm. The I
origin of this standard value for BK-7 glass will be described at the end of the chapter. 3
The refractive indices at each fundamental and harmonic wavelength obtained through

the RK-7 dispersion relation of Eq. (5.50) fix the value XG) (X) of BK-7 glass at a given

fundamental wavelength through Miller's rule I
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S(31 X (3)l%97 nG ) G (6.17)

n m)G ix(1907 nm)] 3 X() (636 nm)

and the coherence length Ic through

c = 6(n3  n) (6.18)

Table 6-1 lists the resultant values for XG)(-3w;cwo), 1c , n0 and n3 " for each of the

four fundamental wavelengths at which we performed THG measurements.

Two surveys of X(3)(-3cn;o,(o,co) for organic liquids exist in the literature.

Meredith, Buchalter, and Hanzlik performed THG measurements at 1907 nm with a

wedge cell configuration maintained in vacuum that is valid only in the instance of

negligible absorption at the fundamental and harmonic wavelengths.4 Kajzar and

Messier developed an analysis of the effects of air on Maker fringes and employed it to

measure several organic liquids at fundamental wavelengths of 1907 and 1064 rim.2

The results of Kajzar and Messier are in agreement with those of Meredith, Buchalter,

and Hanzlik to within 10% for all but one solvent. Kajzar and Messier observed

reasonable agreement, as well, in separate measurements employing the cell

configuration we use that eliminates the contributions of air.3 In the present

experiments, we use the measurements of Kajzar and Messier for acetone at 1907 and

1064 nm as our liquid reference values. The reported values of X(3)(-3Wo;o),o),O) for

acetone are 0.513 and 0.586 x 10-14 esu at 1907 and 1064 nm, respectively. 2 We point
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out here that the values above are different than those reported in Ref. 2. due to a factor

of 4 difference in conventions (see Appendix A) and a factor of 2.0 difference in the

reference value for the glass windows that will be explained later in the chapter.

At 1064 nm, we measured X(3)(-3);o,o),CO) of several liquids for comparison

with Kajzar and Messier. The values we obtained for X(3)(-30;W,uo,wO), lc, and

<y(-3o;o,oo)> of methanol, dimethylformamide, water, and cyclohexane are I
compared to the results of Ref. 2 in Table 6-2. In the case of the discrepancy for

cyclohexane, we point out the Ic and refractive index values of Ref. 2 for cyclohexane

are in good agreement with our results for cyclohexanone and suggest that the I
measurements in Ref. 2 were actually performed on cyclohexanone rather than

cyclohexane.

Since our -carotene measurements were performed in dioxane solutions, we I
chose to use pure dioxane as the reference liquid in each data-taking run where the value

for X(3)(-3co;co,co,) of dioxane at each wavelength was determined by a separate

comparison of dioxane Maker fringes with acetone. For X(3)(-3;o,0,O) of acetone at

1543 nm, we used the value 0.534 x 10"14 esu obtained from interpolation of the

measured values at 1907 and 1064 rum. For dioxane at 2148 nm, since no value is

available for acetone at this wavelength, we assumed that dioxane has the same 2%

dispersion determined for BK-7 glass, and our relative uncertainty in this value is I
therefore less than 2%. We list in Table 6-3 the measured values of Z(3)(-3;o,co,wo),

Ic and <W-3;wc,co)> for dioxane together with the values of the refractive index at

I
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the fundamental and harmonic wavelengths. In analogy with Eq. (5.51),

<y(-3€o;(ow,c)> was obtained throughI
n 2 + 2 )3 n3 + 2

X(3)(-3o);co,)'0) = N ( )3 ( 3 <y(-3co;co,co,o)> (6.19)

I where N is the molecular number density and the local field factors are taken as isotropic

Lorentz-Lorenz terms.

-Heatene

I( 3)(-3co;(o,wo,co) and, correspondingly, <,y(-3;to,co,co)> were measured for HT

at 1907, 1543, and 1064 nm. In addition to the X(3)(-3o;o,wo,), 1c, nO), and n3(0 values

for BK-7 glass and dioxane listed in Tables 6-1 and 6-3, respectively, evaluation of

X(3)(-3;o,co,) for HT requires the values for nW and n3'w of HT. From the measured

coherence lengths Ic of 11.8, 6.2, and 1.18 g±m at 1907, 1543, and 1064 nm,

respectively, we obtain for An = n3o) - n(O the values 0.027, 0.041 and 0.16 from Eq.

(6.18). The extremely large dispersion in the HT refractive index between 1064 and

355 nm results from the proximity of 355 nm to the strong lIBu -- IIAg t-electron

transition that begins at 290 nm. The values for n(O and n3(i that are consistently

determined from these results, the refractive index at 590 nm obtained from Aldrich, and

the lc's measured by THG are listed in Table 6-4.

The values obtained for X(3)(-3);c),o),co) of HT at each wavelength from the

Maker fringe analysis through Eq. (6.16) are also isted in Table 6-4. As in DCSHG,
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the values for HT are several times larger than those for dioxane, but, importantly, at

1064 nm X(3)(-3o);co,o,CO) of HT increases to 6.5 times larger than dioxane. As in the I
linear refractive index, the nearness of the third harmonic wavelength to the HT it-

electron absorption produces a large dispersion in X(3)(-3);o),,O)).

We compare in Table 6-5 the experimental values of < -3o;,ww)> for HT, I

obtained from Eq. (6.19) with the molecular number density N = 5.54 x 1021 cm-3 and

the refractive index values given in Table 6-4, with the theoretical values from Chapter

4. The theoretical values include a small a-electron contribution to <Y(-3o ;,o),O)> in

addition to the directly calculated s-electron contribution and consider the liquid to

consist of 60% trans conformation and 40% cis. We observe good agreement between

experiment and theory for the magnitude of <'(-3w;www)>. Furthermore, the larger

dispersion theoretically predicted for THG compared to DCSHG is clearly observed. 3
The degree of dispersion predicted by theory is quantified by the ratio of

<y(-3co;wo,w)> calculated at fundamental wavelength 1064 nm to <y(-3w;O,w,w)> at

1907 nm which has a value of 1.77. The experimentally determined ratio of I
<Y(-3oo;a,co,()> at these two wavelengths is 1.87 in good agreement with the theoretical

ratio. For comparison, the theoretically predicted ratio for the less dispersive DCSHG

process at these wavelengths is 1.25. The experimental values for <y-3o;wo,,o))> are I
also plotted with the theoretical dispersion curve in Figure 6-2 for visual comparison of

experiment and theory.

In the case of the Maker fringes for HT at X = 1064 nm, since the coherence

length Ic is extremely short (1.18 jin) due to the large dispersion in the refractive index
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between the fundamental and harmonic wavelengths, an interesting effect occurs due to

@ the finite width of the laser beam at the sample. The Maker fringe technique relies on the

fact that the output harmonic intensity from the sample cell is a periodic function of the

pathlength of the beam through the liquid. In the wedge configuration we employ, a

beam with a finite waist w necessarily samples an interval of pathlength rather than one

I single, well-defined pathlength. A consequence of finite beam waist, then, is that if the

3 interval of pathlength covered is sufficiently large, although the beam may be centered

on the pathlength that yields zero harmonic output intensity, the edges of the beam

I traverse pathlengths that yield non-zero harmonic intensity. The net effect of finite beam

waist is an increase in the minimum of the Maker fringe from zero to a finite magnitude.

The observed fringes for HT, shown in Figure 6-3(a), have a minimum value that is

1 35% of the peak value. In contrast, the fringes for acetone of Figure 6-3(b)

demonstrate a perfect zero for the minimum. The measured Ic of acetone is 6.6 pm, 5.6

times larger than Ic of HT. For clarity, the horizontal scale of Figure 6-3(a) was

expanded by a factor of 3 compared to the scale of 6-3(b).

To calculate the effect of finite beam width on the fringe shape, we approximate

the beam profile by a constant intensity disc of diameter w. (The actual output of the

Quanta-Ray DCR- 1 resonator cavity is a multimode "donut" profile that consists of a

high intensity annulus surrounding the lower intensity central region.) For a liquid

sample wedge of angle a, the beam covers a pathlength interval Al = aw. From Eq.Ie
(6.14), we note that, in the absence of absorption, the pathlength dependent part of the

harmonic intensity is given by
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f(/) = sin 2 (itc) (6.20)

If we define d = 7t(AI) / 2 1c then the normalized fringe height when the beam is

centered on a path I' with c = xl / 2 1c) is

I
/(c) sin 2 xx (6.21)

The normalization of Eq. (6.21) is chosen such that, when d is small enough t.latft) is I

constant over the beam width, we have l(c) =f(l'). The minimum value of the fringe is

then given by U
1 r sin 2 x dx = - d (6.22)

and the maximum value by I

I j p/2, +d2 1 sind
=-M sin 2 xd x  = -7+= (6.23)

where it is clear that the reduction in the fringe peak amplitude due to finite beam width

is equal to the increase in the minimum. The value J,/lmJ, = 0.35 observed for FIT in

Figure 6-3(a) corresponds to d = 1.94 rad or A/Ic = 1.24. Since IC = 1.18 Im and CE =

0.0125 rid, we therefore expect to observe this ratio of in/,, for a beam diameter w I

200

I



= 106 pn. This is quite reasonable since our focusing conditions have been directly

measured to yield a typical beam diameter of 100-400 pim at the sample. In Table 6-5

are listed the ratios l,,j,/l m= calculated from Eqs. (6.22) and (6.23) for other values of

Al/i c . It can be seen from the table that for AN/ic five times smaller than for HT, the

minimum is only 1% of the maximum peak height. This explains why the other

measured solvents, all possessing Ic's many times greater than that of HT, do not exhibit

nonzero minima.

I -Carotene

We measured the concentration dependence of X(3)(-3(0; ,o4) for 1-carotene

solutions in dioxane at fundamental wavelengths of 2148, 1907, and 1543 nm. THG

measurements at X = 1064 nm were not possible since the solution strongly absorbs the

third harmonic at 355 nrm. As was found in the DCSHG measurements, Ic was weakly

dependent on concentration. For example, at 1907 nm. Ic = 32.7 pm for pure dioxane

and 31.8 gm for the stock solution concentration 8.15 x 10-3 mole/litre. At each

concentration, therefore, X(3)(-30);W,,oW) was calculated with the directly measured Ic at

that concentration, but with the refractive indices of pure dioxane. From the

concentration dependence of X(3)(-3(o;W,o,Qo), we determined <y(-3co;Oo,o)> of

-arotene according to

n2 2 n +2 6.02 x 102 0y  od<'-3w;co,)> - + 2 2 + 2~ •0 (6.24)
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where C is the concentration in mole/litre and the same valid approximations are made

that led to Eq. (5.54).

The concentration dependences of X(3)(-3o;w,o,z) at X = 2148, 1907, and 1543

nm are illustrated in Figures 6-4, 6-5, and 6-6, respectively. In each case, 3
X(3)(-3co;o,o ,co) shows good linearity with concentration. Table 6-6 lists

c)X( 3 )(-3);o),,o) / C determined from each concentration dependence and the I
corresponding values obtained for <y(-3w;w,co,(o)>. The strong near-resonant 3
enhancement at 1543 nm results from the proximity of the third harmonic wavelength

514 nm to the 1 1Bu +- I tAg absorption band that peaks at 455 rnm. I
In Figure 6-7, the experimental value for <,(-3w;wcow)> of J-carotene at 1907 3

nm is plotted against the length of the chain along with the theoretical results from

Chapter 4. As in the case of DCSHG, the THG experimental value for <y(-3w;co, o,o)> U
of kcarotene is in agreement with the extrapolation of the theoretical power law

dependence <y(-3o;cow,o))> - L3.5 . This serves as a separate experimental

confirmation that the theoretically predicted power law dependence of <y(-3o)cw,O,(o)>

on chain length is correct and that it is valid for chains at least as long as 25 A or N = 22.

The p-carotene molecular structure is longer than we can accurately calculate, and

we therefore are unable to make the same comparison between experiment and theory for

the dispersion of <fl-3o);cow,co)> that we made for HT. We have, however, based on 3
the theoretical results for shorter chains presented in Chapters 3 and 4, developed a

model that adequately describes the experimentally observed dispersion of

<y-3o;co,wc)> and <y(-20co,o,0)>. We pointed out in Chapter 3 that for very short U
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chains, N = 4, 6, and 8, the nonresonant <y-ca4 ;ca1 ,o2,o3)> is determined almost

exclusively by three states. These three key states are the I IA. ground state, the I IBu

lowest-lying one-photon state, and a high-lying 'Ag two-photon state that strongly

couples to ll Bu" For increased chain length, we found that there were larger numbers

of both IBu and lAg states that made significant contributions to <Y(-wo4 ;wl,o.,ao-)>.

I The first strong resonance that occurs both in <y(-3ca;co,)> and in <y(-2c;ca,ca,O)>,

however, in all cases results from the 1 IBU state. In <%(-30;wo,(*,c)>, the 3o resonance

of I IBu is the lowest-frequency electronic resonance that can occur, in <Y(-2o;o,CO)>,

I the first resonance that occurs, the 2cw resonance of the 21Ag state, is weak because of

the small transition moment between 2lAg and 11Bu, and the low frequency dispersion

is therefore dominated by the 2o resonance of the 1 IBu state.

U We have found that the experimental dispersions are well-described by a three-

level model with one free parameter that fixes the magnitude of the nonresonant

<y(-co4;c 1 ,.o2,o 3)>. The expression for <y(-3wo;woo, o)> for a system that has only a

ground state (labeled 0), a one-photon state (1), and a two-photon state (2) is

I
44 {6 X1X2

{ [(wjo - 3,,)(, 20 - 2w)(wjIo - ) ]-+ [ (owlO + w)(,o20 - 2wo)(oj0 - co) 1-1

I + [(,ol0 + wo)(o20 + 2o)()io - o) ]I+ [ (,o10 + o)(o20 + 2o)()lO + 3o) ]- }
4

Xl { [ (ito - 3o)(olo - 0D)((olo - o) ]-l + [ ((Oo- o)(wlo + w)(Olo - CO) ].

+ [ (olo + 3w)((oo + w)(wlo + o) ]-1 + [ (Oito + w)(Olo - w)(Wlo + 0) j-l } }

-- (6.25)
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where xOj and x 12 are the x-components of the transition moments between states 0 and

1 and states 1 and 2, respectively, and f1o0 and *oM are the excitation energies of

states 1 and 2, respectively. In this three-level model, state 1 corresponds to the 1 1Bu

state of 1-carotene. We therefore take it0o = 2.71 eV from the peak of the 13-carotene

absorption spectrum and x0 I = 15.0 D from extrapolation of the calculated l I IAg.Bu

values to N = 22. For hoo20, we use 4.6 eV by extrapolation of the dominant high-lying

two-photon state energies of Chapter 3, though this value is not critical since fo)20 and

x12 together effectively fix the magnitude of the nonresonant <y(-3w;,o,o)>. Choice

of a smaller value for hfl2o could be compensated by a smaller value for x12 as well.

We have taken the representative values Ar10 = hF20 = 0.2 eV based on the width of the

I IBu +- 1 lA, peak in the experimental linear absorption spectrum.

The remaining value to be determined in the three-level model is x12. State 2 acts I
as a representative state here, taking the role of the several other two-photon and one-

photon states that actually determine <y(-3w;wco,t*)>. We thus consider x12 to be a free

parameter that is used to fit the experimental dispersion data by fixing the correct I
magnitude of the low frequency <'(-3w;oo)>. The best fit to the experimental data

was found for X12 = 21.8 D and is illustrated in Figure 6-8. The fit of the three-level

model dispersion curve to the data is quite satisfactory considering the simplicity of the

modeL The observed dispersion is clearly due predominantly to the 30o resonance of the 3
I IBU state.

For DCSHG, the expression for the three-level model is

I
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y" (-2comco,0)= 01-- 2

( [(oiO - 2ca)(o020 - 20)(oo - (o) ]- + [ ((Oo + 0)(oo - 2co)(Olo - (0) ]-1

+ [ ((olO + dz)(o2o + 2(o)(colO - 0) 1- + [ (cwlo + co)(o20 + 2co)(c010 + 20)) 1-1

+ [ (oo - 2(o)(o20 - oa)(colo - Co) 1- + [ (0o1o + co)(ca20 - co)(0o0 - co) 1-1

+ [ (0)o0 + c0)(0o2 + a))QOlo - 0) ]-1 + [ (O1o + o))(o2o + c)(Olo + 2co) ]-I

I + [ (010 - 2o))(o2 0 - c)(Olo - 0) ]- + [ (0)10 + 0))(0)2o - (0)(C0o - 0) 1-1

+ [ (o1 - 0)(a20 + o)(00lo - 0)) 1.l + [ (olo - 0)(w2o + 0)(olo + 20) 1-1 }
4

-Xol { [(Oo - 20o)(Oio - 0)((01o - (0) -1 + [ ((o1o - 0)(COlo + co)(olo - 0) ]1

I + [ (0)10 + 20o)(0)l0 + 0)(0o10 + (0) 1-1 + [(0)10 + 0)((lo0 - (0)(0)10 + )

+ [ (01o - 20o)(0o)o - c0)(0o10 - (0) ]-1 + [ ((Oo - 0))(0)1o + 0)((Oio - Co)

+ [ (coio + 2c)(Colo + 0))((Olo + 0)]-1 + [ (Colo + o0)(0)1o - 0)(01o + (0)

+ [ ((Olo - 2cJ)(olo - (0)((0lo - 0)1]1 + [ (C01o - 0))(clo + (0)((Olo - 0) i-I

+ [ (o)io + 2co)(oio + (0)(0lo + 0)1-1 + [ (01o + c0)((0lo - c0)(cOlo + 0) ]-1 } }

(6.26)

We again set x0l = 15.0 D, hlo0 = 2.71 eV, oW2 0 = 4.6 eV, and r F10 = A1f 20 = 0.2 eV

as described above. Figure 6-9 shows the calculated dispersion curve for the DCSHG

three-level model with x12 = 23.7 D. Again, the essential features of the dispersion are

well-described by the three-level model. The slight discrepancy in the values for x12 in

the THG and DCSHG three-level models is reasonable considering the level of

approximation. We point out, however, that an accurate calculation of dispersion

requires determination of the complete x-electron excited state manifold, especially for
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long chains, even though the three-level model successfully demonstrates that the low-

frequency dispersion is dominated by the first multi-photon resonance of the 1 IBU state.

E. Reference Standard for X(3 )(-3wc;,a,o)

The currently accepted reference values for THG measurements of liquids and

thin films are X((-3;,wo ,) = 1.17 x 10-14 esu for BK-7 glass and X(3)(-3wom,)

0.70 x 10-14 esu for fused silica at X = 1907 nrn. These values, which have been I
converted into our convention for X(3)(-3o0,o) through division by a factor of 4 (see 3
Appendix A), were determined by Buchalter and Meredith by comparison to

ZO (-3co-we0,rO) = 0.95 x 10-14 esu for a-quartz.5 The quartz X Q(-3(o;(o,co) value I
is derived from an analysis of interference fringes between 3w light due to I
X(-30); caw, 6) and 3o light generated by the cascading of (2)(-2wdL, co) and

X )(-3w;2o,cO).6 It was pointed out that the silica and glass X(3)(-3_j;O,acI) values

were not in agreement with measurements by other third order processes, and this was 3
attributed as most likely due to the incompatibility of the multi-mode laser source in the

quartz experiment with the experimental analysis that assumed a single-mode source.5

Nonetheless, these values were taken as the standard reference values for THG I
measurements.

Until the present experiments, no comparisons have been made between theory

and experimental values of <'c(-3o;wco ,o)> obtained using the above reference m

standards. As a result, only relative experimental values of <Y(-3o);m,0,w)> were I
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Imeaningful. In the course of our measurements, it became clear that the experimental

values for <'y-3o;co,c, )> of HT that we derived based on Buchalter and Meredith's

value of X(3) (-3o;(,o)) were in conflict with our theoretical results and with our

experimental values for <y(-2(o;co,o,0)>. A survey of the literature yielded six

independent measurements of X(3)(-c04;(0.,(02,(o3) for BK-7 glass via four separate

Ithird order processes, namely DCSHG, 7-9 non-degenerate three-wave mixing

(NDTWM), 1 0 time-resolved interferometry (TRI),I I and ellipse rotation (ER), 12 that

give consistent values to better than 10%. These values are listed in Table 6-7 along

Iwith the THG measurement of Buchalter and Meredith. Each value has been converted

I into the convention for X(3)(-3o;co,co,o). For instance, since we have the relation

X(3)(-2c;co,co,0) = 6 X(3) (-3wo;ww,o) in the extreme nonresonant limit, the DCSHG

values have been divided by a factor of 6.

IThe X(3)(-3w;co,co,w) value of BK-7 glass from Buchalter and Meredith is clearly

too large compared to the other values. In the experimental results for <z -3o);ww,o)>

presented in section D of this chapter, we instead took X(3)(-3oo;co,wo,o) = 0.58 x 1014

esu for BK-7 glass. This value, in addition to being consistent with the measurements

of Table 6-7, provides much better agreement between experiment and theory. We

would like to mention here that our calculations for <y(-2o);co,oO)>/<y(-3co;o,co,o)>

for HT yielded a ratio of 5.3 rather than 6.0 at 1907 rim. Even at this long wavelength,

dispersion increases <y-3o) ;o,o))> more quickly than <y(-2o;o)o,0)>. Thus, as

regards our comparison of X(3)(-wO4;ol ,02,(03) in Table 6-7, we expect
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X(3)(-3(o;co,o,o) should in fact be 5-15% larger than X(3)(-c04;001,C02,o3) of other
processes.

We conclude, then, that the common reference values for X(3)(-30;co,O,W) of

BK-7 glass and silica are too large by a factor of 2.0. Until a careful absolute

measurement of X(3)(-3o;o,oo) is performed as an additional check, we recommend U
that the value of X(3)(-3co;,co,) = 0.58 x 10- 14 esu for BK-7 glass at X = 1907 nm be

used as the standard reference value.

I
I
I
I
I
I
I
I
I
I

208

I



I

i Table 6- 1. Fundamental and Third Harmonic Refractice Indices, Coherence Length, and

X(3)(-3Wo;o,oco) of BK-7 Glass.

I X(nmnO ) J  n3 I lc (A.M) X(3)(-3 o;o,,.o) (10-14 esu)

2148 1.4925 1.5127 17.72 0.568

1907 1.4960 1.5150 16.12 0.580

1543 1.5008 1.5205 13.03 0.600

1064 1.5067 1.5382 5.63 0.635

I
I
I
I
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Table 6-2. Comparison of Measured Ic, X(3)(-3o;o,(,w,), and <-K-3o;co,ca,co)> at 1064

nm for Several Common Liquids. I
Liquid I(nl'm) lc(pIm)a X(3) (10- 14 esu) X(3) a <y> (10.36 esu) <y> a

Acetone 6.90 6.86 0. 5 86 b 0.586 0.225 0.225

Methanol 8.45 8.41 0.386 0.373 0.106 0.104

DMF 4.42 4.43 0.792 0.696 (0.7 66)c 0.314 0.303c

Water 7.35 7.40 0.359 0.350 0.107 0.104 i

Cyclohexane 6.32 5.94 0.728 0.809 0.374 0.415 I

Cyclo- 5.86 0.788 0.378

hexanone I
I

a From Kajzar and Messier, Phys. Rev. A32, 2352 (1985).

b Taken as reference. I

c From Kaizar and Messier, Rev Sci. Instrum. 58, 2081 (1987).

I
I
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Table 6-3. Fundamental and Third Harmonic Refractive Indices, Coherence Length,

X(3)(-3w;o,)o,o), and <(-3o;x,,o)> of Dioxane.I
X(nm) nO n3"w t c (1im) X(3)(-3o;o,o,o) (10-14 esu) <y(-3(0;w,o,o)>(10 -36 esu)

I 2148 1.41 1.42 38.7 0.621 0.279

1907 1.41 1.42 32.7 0.643 0.289

1543 1.41 1.42 19.6 0.702 0.316

i 1064 1.41 1.44 6.4 0.738 0.327

I
i
I
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Table 6-4. Fundamental and Third Harmonic Refractive Indices, Coherence Length,

and X(3)(-3o;co,(o,cw) of HT.

)X(nm) n(O n3co Ic (PMu) X( 3 )(-30);W,(o,(o) (10-14 esu)

1907 1.48 1.51 11.7 2.253

1543 1.48 1.52 6.2 2.57

1064 1.48 1.63 1.18 4.55I
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Table 6-5. Experimental and Teoretical Values for <-3owc)>of HT.

IX (nm) Experiment (10-36 esu) Theory (103 esu)

1907 1.04 ±0.16 1.30

1543 1.18 ±0.18 1.45

1064 1.94 ±0.29 2.30

21



Table 6-6. Effect of Finite Beanm Diameter on Ratio of Minimum to Maximum MakerI

Fringe Intensity.

0.25 0.01I

0.50 0.053

0.75 0.12

1.00 0.22I

1.25 0.353
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I ~~Table 6-7. O-,(3)(-3o)co,,o) / aJC and <-cooc)>for fk-arotene.

I X (nm) c)(3)(-3o;o,a,co) /aC (10-12 esu) <y-3(o;o),w,(o)> (10-36 esu)

2148 0.098 ±0.003 51.8 ±1.3

1907 0.174 ±0.004 92.0±t2.1

j1543 0.49±0.10 358±64
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Table 6-8. Measured Values for X(3)(-(04;oI,c2,o3) of BK-7 Glass Through Several

Nonlinear Optical Processes.

I
X(3)(-0)4;01,02,03) (10-14 esu) Process Referencea

0.58 DCSHG Oudar I
0.58 DCSHG Levine and Bethea,

0.53 DCSHG Teng

0.52 Nondegenerate Three Wave Mixing Adair et al. I
0.50 Time-Resolved Interferometry Milam and Weber

0.56 Ellipse Rotation Hellwarth

1.17 THG Buchalter and Meredith

I
a Complete references are given in the Chapter 6 References.

I
4 I

I
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I
I liquid compartment

[BK-7 l t I ,

II
( teflon cap

aluminum frame

top view

Figure 6- 1. Illustration of the third harmonic generation (THG) liquid sample cell.The

5.0 cm long BK-7 glass windows eliminate the X(3)(-3o;w,o,wO) contribution of air.
The liquid compartment wedge angle a is 0.0 125 rad with mean pathlength 0.44 mm.
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Figure 6-2. The experimentally determined values of <y(-3o;o,wo)> for HT at X =
1907, 1543, and 1064 nm and the theoretical dispersion curve.
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Pathlength Pathlength

(a) (b)

Figure 6-3. Sample THG Maker fringes for (a) HT and (b) acetone at X = 1064 nm.

The nonzero minimum in the case of the fringes for HT is due to the finite beam size
effect. For HT, the coherence length Ic = 1.18 gm, while for acetone, lc = 6.6 Im. The
horizontal scale of (a) is expanded by a factor of 3 compared to (b) for clarity.
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~I0.70 2148nran

- I
SI

3 0.65

o& o InI

0.601
0.0 2.0 4.0 6.0 8.0 10.0

CONCENTRATION (10-3 mole/liter) I
Figure 6-4. Concentration dependence of X(3)(-3co;co,wco) for f-carotene in solution I
with dioxane at X = 2148 nm.
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3

0.6 I . I

0.0 2.0 4.0 8.0 8.0 10.0

CONCENTRATION (10-3 mole/liter)

Figure 6-5. Concentration dependence of X(3)(-3orw,co,w) for 13-carotene in solution

with dioxane at X -1907 nrn
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Figure 6-6. Concentration dependence of X(3)(-3o;a),co,co) for 3carotene in solution I
with dioxane at X = 1543 nm.
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6- 10.
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V

0. 1
2. 10. 50.

LENGTH (A)

Figure 6-7. The experimental value of <V(-3o;wca,)> for 1-carotene at X = 1907 nm

(Aco = 0.65 eV) (solid square) compared with the theoretical values for the N = 4 to 16
trans polyenes (open squares) as a functioh of chain length L. The 1-carotene experi-

mental value is in agreement with the theoretical power law dependence

<(-3co;cco,co)> ,- L3.5 represented by the solid line.
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Figure 6-8. The experimentally determined values of <y(-3;co,oj)> for 13-carotene at I
X = 2148, 1907, and 1543 nm compared with a three-level model for the dispersion of

<'(-3co;oj,c, o)> of 1-carotene (dashed curve).
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Figure 6-9. The experimentally determined values of <y-20;C0,o0,0)> for 13-carotene at

X = 1907, 1543. and 1064 rum compared with a three-level model for the dispersion of

<"-2co;co,ro,O)> of -carotene (dashed curve).
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Chapter 7

CONCLUSION

We have presented a comprehensive theoretical and experimental study of the

microscopic origin of nonresonant third order nonlinear optical processes in conjugated

linear chains and demonstrated that electron correlation effects markedly determine the

virtual excitation processes and third order nonlinear optical properties of these quasi-one

dimensional structures. We first presented a detailed analysis of the molecular third

order susceptibility yijk(-a4;co ,co2,o3) in conjugated linear chains with a theoretical

method that demonstrates the importance of electron correlation due to electron-electron

repulsion. Many-electron calculations of yijkl (-co4;co1w,2,co3) of trans and cis polyenes

reveal the primary role of strongly correlated, energetically high-lying, two-photon 1Ag

virtual states. For short polyene chains, yijkl (-o4;ol,o2,o3) is dominated by two

competing third order virtual excitation processes that involve just three states. For the

N = 6 site chain hexatriene, for example, the largest virtual excitation process, which

I makes a positive contribution to yijkj (-oa4;wa1,co2,0w3), involves a previously unexpected,

I high-lying 5lAg state that is strongly coupled to the large oscillator strength I1Bu state

and cannot be properly described by uncorrelated, independent particle models. This

i virtual process, together with a negative virtual process that involves only the I 'Bu state

and the I1 Ag ground state, determines the sign, magnitude, and dispersion in thisII
archetypal class of conjugated structures. The dominant tensor component of the

susceptibility, yu=(-s;aOl,o2,co3) with all electric fields polarized along the molecular
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axis of the conjugation, has been discussed in terms of transition density matrix

diagrams that graphically illustrate the large charge separation that occurs upon virtual I
excitation between the I IBu state and the strongly correlated, high-lying 51Ag state. 5

The same basic mechanism for y,,k1(-ou;o ,c,ca03) holds for all chain lengths

calculated from N = 4 to 16. For chains of increased length, there are a larger number of I
virtual excitation processes that make a significant contribution to yxt(-co4 ;wj,o*2,o3); 3
but, in all cases, there is always at least one important highly correlated, two-photon IAg

state. It is found that yxx (-co4;(o1,Op2,o) increases dramatically with chain length as

evidenced, for example, by the calculated power law dependence of the dc-induced 3
second harmonic susceptibility yx.,-2co;o,O) on the number N of carbon atom sites

in the chain with an exponent of 3.9 for the trans polyenes in the range N = 4 to 16. The

supralinear chain length dependence of yxr('o4;olO2,oY) originates in the increased I
transition moments between the principal virtual states, the decreased excitation energies

of those states, and the increased number of significant virtual excitation processes.

Comparison of calculations for the cis structural conformation of polyenes with I
results for the trans conformation demonstrates that the fundamental origin of I
yqk1(- ;wo1,co2,o3) remains basically the same, irrespective of the structural

conformation. The only significant difference in the results for the two conformations is I
that, in all cases, the value of yztxj(-o ;o j,ow2,o3) for a cis chain is smaller than that of 3
the corresponding trans chain of the same number of sites. The results are unified by a

power law dependence of 1xm(-ow4;wi ,c2,(o3) on the physical end-to-end length of the

chain L with an exponent of 3.5. The cis conformation results in a smaller L for a given 3
228 3
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N than the trans conformation. Conformation affects yxx-o4;co1,o02,co3) only

inasmuch as it affects the physical length of the chain. Furthermore, extrapolation of the

power law dependence of yxtxxr-(-4;co 1, 0 2, O) on L indicates that the values of

X(3)(-z)4;(OICO2,Qy3) measured in conjugated polymers correspond to effective lengths of

only 50 - 100 A. We infer that yxxxx(-OM;O1,02,o,3) must therefore deviate from the

j power law dependence and begin to saturate at a length shorter than IOOA.

I Theoretical analysis of a noncentrosymnetric chain heteroatomically substituted

with electron accepting groups on one chain end and an electron donating group on the

1 other indicates that the lowered symmetry leads to more than an order of magnitude

Ienhancement of yxxxx(-o)4;wl,o)2,o3). In noncentrosymmetric structures, virtual

excitation processes involving diagonal elements of the transition dipole moment matrix

I that are forbidden in centrosymmetric structures can contribute to yijk1(-o4;(l,(02,o-).

In the case considered here, 1,1-dicyano-8-N,N-dimethylamino-1,3,5,7-octatetraene

(NOT), the virtual excitation process that involves the dipole moment difference of the

21A ' state (analog of the centrosymmetric polyene I IBu state) and the ground state is

much larger than even the analogs of the two dominant virtual excitation processes for

the centrosymmetric chains and is responsible for the large enhancement of

IExperimental measurements of the dispersion of the isotropically averaged dc-

induced second harmonic susceptibility <A-2o);co,,O)> and the third harmonic

susceptibility <)%-3co;co,co,co)> in two key polyene structures have demonstrated that the

Ielectron correlation theoretical description of the nonlinear optical properties of
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conjugated linear chains is appropriate and quantitatively correct. The measured values

of <y-2co;co,(o,0)> and <y-3o;co,0,0)> at the fundamental wavelengths X = 1907,

1543, and 1064 nrr. for hexatriene (HTD, the N = 6 site chain, are in excellent

quantitative agreement with the calculated magnitude, sign, and dispersion. For

example, while the dispersion of <,(-2w;ww,0)> is found to be weak in this wavelength

region, experiment and theory are in agreement in the fact that <y(-3(o;cOco,)> at X = I
1064 nm is 1.8 times larger than the value at X = 1907 nm. For f-carotene, a 3
substituted, N = 22 site chain, the nonresonant experimental values of <,(-2o;co,w,0)>

and <y(-3w;wco,()> are in agreement with extrapolation of the calculated power law I
dependence of <y(-(o4;woI,(o2,o3)> on chain length L. Thus, together with the results 3
for HT, these measurements quantitatively validate the power law dependence on chain

length L. Furthermore, based on our theoretical understanding of "ijk,(-oU;co,)2,W3), I
we developed a three-level model that adequately describes the experimentally measured 3
dispersion of <y-2(o;o,w,0)> and <y(-3co;wco,co)> for 03-carotene.

In obtaining the experimental values of <y(-2w;coo,0)> and <,(-3co;co),co)>,

we have given careful consideration to the values for X(3)(-W4;(ol,wC2,wo3), the coherence I
lengths, and the fundamental and refractive indices of quartz, BK-7 glass, and dioxane

that are required for the analysis. Each of these has been carefully measured at X =

1907, 1543, and 1064 mi, and the results are presented in detail. In the course of these I
studies, it was found that the common reference standard for X(3)(-3CO;COCOWo) of BK-7 3
glass was inconsistent with our results and with measurements of X(3)(-o)4;o)Iw2,()3) by

other fundamental nonlinear optical processes. The common reference value was found I
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to be too large by a factor of 2.0, and an improved reference standard has been

proposed.

Finally, the work presented in this report has recently lead to a novel fundamental

development in nonlinear optical processes. In general, the real population of the initial

state for the virtual electronic excitations can be either the usual singlet ground state So,

or an optically pumped excited state Sn. This report deals strictly with the case of So

ground state population. We have have found, however, that for quasi-one and quasi-

two dimensional chain-like and disc-like structures, compared to the ground state, the

nonresonant /(-0o4; 1,(02,(o3) and second order susceptibility i.k(-(03;( 1,(02) can

markedly increase, or even change sign, when the first (Si) or second (S2), 7t-electron

excited state is optically pumped and then populated for timescales sufficiently long to

allow nonresonant measurements of n,(-o4;0i,o02,( 3) and 3S (_-03 ;(01,(02). 1-3 The

enhanced magnitude has three principal origins: smaller transition energies NO)mSn

between the populated state Sn and intermediate virtual states m, many additional

accessible virtual excited states with large transition dipole moments, and a larger

number of significant virtual excitation processes with a reduced degree of cancellation.

These new excited state nonlinear optical processes are currently under extensive

experimental and theoretical investigation and will continue into the forseeable future.

The microscopic understanding of excited state nonlinear optical processes is based upon

the developments for ground state nonlinear optical processes presented in this report.
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Appendix A

COMPARISON OF COMMON

CONVENTIONS FOR Yijk1(-c04;(o1,02,03)

Comparison of theoretical and experimental values for yijkl(-Oa);wO,co2,0)3)

reported by various authors is complicated by the lack of a universally accepted

definition of yijkj(-o4;Ojlco2,3). In this appendix, we discuss the most common

conventions employed for y"ijk(-Oa;col,o2,03) and relate them to the definition used in

this work.

The definition of yijk(-o4;(o1,o2,ow3) is fully specified by the constitutive

equation for the nonlinear polarization combined with the convention for the electric field

amplitudes. Throughout this report, we have employed the constitutive equation

pi0 = Yjkl(-(04;co1,o)2,(03) &0) E0 2 EO)3  (A.l1)Sj k I

where the electric field Fourier amplitudes are defined through

El~t) = X E. n cos cont (A.2)
n J

With these definitions, the susceptibilities ylijk(-O4;o l,o,o3) for different third order

processes (e.g. different sets (col, o2, w3)) are related in the co -4 0 (dispersionless)
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limit by the multiplicative factor (cf. Eq. (2.41)) K(-oU;Coj,z2,o3) = 2-,n D where n is

the number of nonzero input frequencies minus the number of nonzero output U
frequencies and D is the number of distinguishable orderings of the set 1o, (02, o3. 3
The origin of K(-ca;iol,(o2,(o3) is intuitively illustrated through consideration of the

cube of an optical electric field of amplitude EYa and a dc field of amplitude E : I
lN

Cos Mt + E 3 = -1os Rot + E E cos 2

+[ + 3E( 2] Cos O + [3 Ew)2E?+ (E4?3] (A.3)
4 2

I
Thus, K(-2co;o),,O) = 3/2, K(-3o;coco,co) = 1/4, and

Yijkl(- 20);coo),O) = 6 Yijkt(- 3wO;wcow).

We now list the other common conventions:3

I) Orr and Wardl:

The constitutive equationI

I
p4 = K(-044;ot,CO2,w3) X) -oW;O)2,(*3) Er"- E; Eto, (A.4)

is used and the electric field Fourier amplitudes are defined as in Eq. (A.2). The symbol 3
X(3) rather than y is used by these authors to denote the molecular third ordera (3 )
susceptibility. Since K(-wIM;ojt,e)32,3) is excluded from Xijk((-0o4;oo,2,co3) in this
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notation, X(3),(-ow4;QI,w2,"o3) is equal for all third order processes in the c) -+ 0 limit.

X (-O ;,cL2,co3) is related to our definition of yik(-o;coI2,o) by
ijkl

K(-ol4;wli,o)2,(o3) X (3(-o4;l,o2,(03) = Yijk/(-(04;o)1,02,(03) (A.5)
ziki

In particular, we have yykI(- 2aD;co,wO) = 3.x (-2i;co,O) for the measurements of

Ward and Elliott. 2

2) Kajzar and Messier,3 Meredith et a/.,4 and Hermann and Ducuing:5

These authors use Eq. (A.1) for the third harmonic susceptibility vylM(-3W;co,w,co), but
Iijkl

the electric field Fourier amplitudes are defined as

Ej(t) = (E%. e-iOw + complex conjugate). (A.6)

n J

We then have

vK-M(-3 ;oxmm) = 4 yijkj(-3"coC),wC) (A.7)
Iijkl

since the field amplitudes in Eq. (A.6) are defined as only half as large as those in Eq.

(A.2). We further point out that the reference values for X(3)(-3(;O3,,C) of glass and
2

235



I
I

silica in refs. 3 and 4 were found to be too large by a factor of 2.0 as discussed in

section 6.E, and this must also be included for comparison with our results. I
I

3) Levine and Bethea6 and Oudar:7

yjjkl(- 2o);w,(o,O) is defined in the same manner as in the present work. I
N

4) Maker and Terhune:8

The macroscopic susceptibility cl 11 I(-3oZCo),i),W) of these authors is equivalent to our I
1 (-;oo,), but for degenerate four wave mixing 3

3 cll(ozo,-o,w) = X(3)(-O;O ,-(, ))). (A.8) U
I

5) Hellwarth, Owyoung, and George:9

The electronic contribution to the nonlinear polarization is denoted by a and is related to

our convention by

I
aijl = 8 yijk(- 3 );o),o, ). (A.9) I

6) Soos and Ramasesha:10  3
Inspection of the summation-over-states expression for yjjk/(-3;c,wooA) used by these

authors yields

236 I
I
I



2 -oao)= yijk1(-3cJ);(O),o,cJ)) (A.l10)sjkI

7) Finite-field calculations: 1 1-13

The third order susceptibility is determined according to

W(E) = W(O) - gE- -Iaij EE

- Pijk EiEj Ek - -LYijkl j Ej Ek El - (A. l)

where W(E) is the energy of the system in the presence of a static field of amplitude E.

By this definition

Yijkl = 6 K(-w4;wL,o)2,(o3) yi/kl(-o4;l,0o2,0o3). (A.12)
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Appendix B

ISOTROPIC ORIENTATIONAL

AVERAGE OF ijkl(.O)4;O)l,(02,o)3)

Chapters 5 and 6 of this report present liquid phase experimental measurements

of dc-induced second harmonic generation (DCSHG) and third harmonic generation

(THG) for two important conjugated molecular structures. In each of the experiments,

the output and all three of the input electric fields are in the same direction in the

laboratory coordinate frame, which we will refer to as X. Since the molecules in a liquid

are randomly distributed in direction, we must perform an isotropic average of the

molecular susceptibility "ijk(-04;ol,o2,0o3), where lowercase subscripts denote the

molecular coordinate frame, to relate it to the measured laboratory frame quantity, which

we will write as <7XXXX(-o4;o,, 2,0o3)>, or simply <y(-04;01,02,(03)>.

The isotropic average is performed by integration of the randomly oriented

molecular tensor quantity yijkl projected onto the laboratory coordinate frame to obtain

<yxxxx>, where we have omitted the frequency arguments to simplify the notation.

For the general case,

_1 2n 2X

<YIJKL> 8 2 f 0 do F. sin 0d O dp R1i Rjj RKk RLI Yijkl

I <Tfikl Rli RJj RKk RL l > (B. 1)
ijkl

239



U
I

where the rotation matrix R is given by

cos 0 cos O cos (p sin 0 cos 0 cos (P - sin O cos (p

-sin sin p + cos 0 sinp

R = -cos cos 0 sinp - sin cos 0 sin p sin 0 sin p

-sin Cos p + Cos Cos (P

cos 0 sin 0 sin 0 sin 0 cos 0 (B.2)

We note that, by the symmetry conditions for R, < yijkJ R1i Rjj RKk R/d > vanishes for

every subscript set ( ijkll that has an odd number of any one coordinate.

We now evaluate <yXvXy>. Consider, for exmple, the contribution of .

One obtains I

zzzz RXz Rz RXz Ryz > do r.sin 0 d 0 dqp cos4  sin4 0 I
- ' (2.) 2xco 0 do sin5 o dI

I7x2 0T 0
- (1 (16

TaS 5 (B.3)
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Similarly, one finds

Y.x RXx RXx Rxx RXx > - (B.4)5

and

< yyyy RXy Rxy RXyRXy > =  5 (B.5)

Now consider the contribution of yyyzz to <Tomy>. We must evaluate

< Yyyzz RXy Rxy RX. RXz > = Yyvzz d 0 d Rp

(-cos * cos e sin q) - sin € cos p) 2 (cos € sin 0) 2 . (B.6)

The final result is

< Yyyzz Rxy Rxy RXz Rxz > = Xyz!z (B.7)15

and similar results are obtained for all other subscript sets (ijkli that involve two

different pairs of subscripts x, y, or z in any order. The isotropically averaged

susceptibility can thus be expressed in the compact notation

<P I[ 1 'Yjjj+ 1: (fjj, + fjjj +-fiji)(B.8)
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